
1/20

AMD64 mode switching

Konstantin Belousov kib@FreeBSD.org

June 11, 2021, git date: 2021-06-13

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



2/20

Context Switching

Inter-Thread
Done only in kernel mode
Only subset of the whole CPU state is switched

Inter-Protection Domains
User → Kernel
Kernel → User

Other
SMI

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



3/20

When: User->Kernel switch reasons

Synchronous
syscalls
exceptions

Asynchronous
exceptions
interrupts
Non-maskable interrupts (NMI, MCE, delayed DB)

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



4/20

What: What is handled on kernel entry

Switched
General Purpose Registers
%RFLAGS.DF and %RFLAFS.AC
TLS base, complicated by WRGSBASE
Stack
%CR3 for PTI case

Not switched (by FreeBSD)

FPU registers (whole XSAVE management), handled on thread
context switch
segment registers, handled on return to usermode

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



5/20

Kernel TLS

Still based on segmentation, but AMD64 makes it much less
functional comparing with IA32
Segment register %gs based, GSBASE MSR
Shared with userspace, needs switching
Before we know anything about kernel context
Hack: SWAPGS: exchanges GSBASE and KGSBASE
Critical to only do SWAPGS when needed
user GSBASE is not neccessary what is set by the SYSARCH
syscall, if WRGSBASE is supported. Done to support
usermode context switching

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



6/20

Other non-GPR parts

Stack switching
syscalls and synchronous exceptions, interrupts: RSP0 or reuse
asynchronous exceptions and non-maskable interrupts: IST

PTI: %CR3
follows stack logic
but needs space/stack to not corrupt interrupted context

Invisible CPU state
NMI disable state
DB disable (single-instruction)

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



7/20

Problems

Switching is not atomic against NMI and faults
Exception and non-maskable interrupt handlers must
understand what was interrupted (e.g. avoid unneeded
SWAPGS)
Reuse of stack means that we might nest on very limited PTI
stack
Nested exceptions which use IST corrupt stack
Not all state is visible: NMI blocking, pending DB, STI
interrupt shadowing
Interrupt shadowing means that DB is not maskable

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



8/20

Return to userspace

Restore user segment registers
May fault

Stack, %CR3
Are switched back to userspace

IRETQ
May fault
Fault CPU state: %CR3, stack, TLS all userspace, but fault
from kernel
Different between Intel, AMD, and most emulators

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



9/20

What we need

Atomicity of context switch
With more elements added to context definition, like GS.base,
stack handling
No interrupt shadowing
Explicit management for hidden arch state, like NMI blocking
Would be nice to not make it yet another level of hacks

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



10/20

Problems recognized

Intel
Flexible Return and Event Delivery (FRED)
Seems to be available for simics

AMD
Supervisor Entry Extensions
much less fleshed than Intel proposal (e.g. no MSR numbers
allocated)

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



11/20

FRED: Intel handles AMD mistakes

Removed
IDT
FAR CALL, FAR RET, IRETQ
SWAPGS

Added
FRED Event Delivery: SYSCALL, INT⋆, exceptions, and
interrupts
LKGS formally not FRED

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



12/20

FRED

Context
%CS
%RIP
%SS
%RSP
%RFLAGS
%GS.BASE
stack level (AKA replacement for IST)

Event Delivery
Whole context is switched atomically
Stack: stack level selects
Two events handler entry points: User and Kernel

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



13/20

FRED

RSP
Four stack levels, Current Stack Level CSL
Stack level is configurable for event (maskable interrupts and
32 exceptions), otherwise it is 0
Event from usermode: CSL = -1 effectively
New stack level = Max(CSL, event stack level)
%RSP = CSL changed ? Top of new stack : %RSP - GAP
(GAP is configurable)

Stack Level
Select by allowed nesting and requirement of having good
stack
Not a mistake to handle lower event on higher level stack

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



14/20

FRED saved Context

0
63 0

%CR2/%DR6
63 0

0
57

S
56

0
52

ET
48

0
40

Vec
32

0
16

Error
0

0
16

%SS
0

%RSP
63 0

%RFLAGS
63 0

0
26

CSL
24

0
19

Y
18

X
17

N
16

%CS
0

%RIP
63 0

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



15/20

Legend

S Enclave/SGX
ET Event Type (same as VMX)
N NMI
X SYSCALL SYSENTER INT
Y STI blocking AKA Interrupt shadow

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



16/20

Fred: return from event

New Instructions
ERETS return to supervisor
ERETU return to user, can fault in kernel ctx like IRETQ

NMI
%CS[16]

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



17/20

AMD: Supervisor Entry Extension

(this is my interpretation of an incomplete spec)

Kernel Entry Changes
GS.base is managed by SYSENTER
No interrupt shadowing

IDT Re-EntrantProtection
Busy bit in the IDT entry
Second exception of the same kind translated to double-fault
How it would work? Perhaps trap handler must clear the busy
bit before enabling preemption

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



18/20

Glossary

DB Debugger Exception
GPR General Purpose Registers
IDT Interrupts Descriptors Table
IRETQ Return from Interrupt instruction
MCE Machine Check Exception
MSR Model Specific Register, often not model-specific
NMI Non-Maskable Interrupt
PTI Page Table Isolation, a technique to mitigate Meltdown
SGX Software Guard Extensions AKA Enclaves
SMI System Management Interrupt
SMM System Management Mode

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



19/20

Glossary: continued

STI Enable Interrupts instruction
TLS Thread Local Storage
VMX Virtual Machine Extensions
%gs segment register, base for TLS segment
%cs code segment register
%CR0 control register, machine control, in combination with
%CR4 and %EFER registers
%CR2 control register, address of the last page fault
%CR3 control register, physical address of the page tables root
%rflags CPU state flags registers
%rip instructions pointer
%rsp stack pointer
%ss stack segment register

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching



20/20

References

Intel 64 and IA-32 Architectures Software Developer Manuals,
Volume 3
Intel, 346446, Flexible Return and Event Delivery (FRED), rev.
1.0, March 2021
AMD, AMD64 Architecture Programmer’s Manual Volume 2:
System Programming
AMD, 57115, AMD Supervisor Entry Extensions, rev. 0.50,
February 2021

Konstantin Belousov kib@FreeBSD.org AMD64 mode switching


