
VT-d and FreeBSD

Константин Белоусов
kib@freebsd.org

21 сентября 2013 г.

Revision : 1.12
Константин Белоусов kib@freebsd.org VT-d and FreeBSD

PCIe

Copyright © 2007, PCI-SIG, All Rights Reserved 8PCI-SIG Developers Conference

Switch

PCIe
Endpoint

Legacy
Endpoint

PCIe
Endpoint

Root Complex

CPU

PCIe

Memory

PCIe
Bridge To

PCIe PCIe

PCIe PCIe

Legend
PCI Express Device Downstream Port
PCI Express Device Upstream Port

PCIe
Endpoint

PCI/PCI-X

PCI/PCI-X

Root

Virtual
PCI

Bridge

Virtual
PCI

Bridge

Virtual
PCI

Bridge

RCRB

Bus 0

PCI Express Links

CPU Bus

Switch

Virtual
PCI

Bridge

Virtual
PCI

Bridge

Virtual
PCI

Bridge

Virtual
PCI

Bridge

Example PCI Express
Topology – Root & Switch

PCIe

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

PCIe

TLP - Transaction Layer Packets

I/O
Host access to device (BARs)
Device access to memory (DMA)
Peer to peer

GPU RDMA over Infiniband
Nvidia Optimus

Messaging: Interrupts, Errors
Configuration I/O.

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

Device DMA engines

Features and Limitations
Scatter/Gather: number of segments
DMA engine restrictions

Address width
Dead bits (alignment)
Segment length

Streaming
Coherence (Snoop)
Traffic Prioritization

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

VT-d

Intel® Virtualization Technology for Directed I/O
February 2011 Architecture Specification - Rev 1.3
Order Number: D51397-005 9

I ntroduction—I ntel® Virtualization Technology for Directed I / O

1 I ntroduction

This document describes the Intel® Virtualization Technology for Directed I/O (“Intel® VT for Directed
I/O”); specifically, it describes the components supporting I/O virtualization as it applies to platforms
that use Intel® processors and core logic chipsets complying with Intel® platform specifications.

Figure 1-1 illustrates the general platform topology.

The document includes the following topics:

• An overview of I/O subsystem hardware functions for virtualization support

• A brief overview of expected usages of the generalized hardware functions

• The theory of operation of hardware, including the programming interface

The following topics are not covered (or are covered in a limited context):

• Intel® Virtualization Technology for Intel®64 Architecture. For more information, refer to the
“Intel® 64 Architecture Software Developer's Manual, Volume 3B: System Programming Guide”.

• Intel® Virtualization Technology for Intel® I tanium® Architecture. For more information, refer to
the “Intel® I tanium® Architecture software developer's manuals”.

1.1 Audience

This document is aimed at hardware designers developing Intel platforms or core-logic providing
hardware support for virtualization. The document is also expected to be used by operating system
and virtual machine monitor (VMM) developers utilizing the I/O virtualization hardware functions.

Figure 1-1. General Platform Topology

P rocessor

S ystem B us

N orth B ridge

S outh
B ridge

D R A M

P rocessor

P C I E xpress
D evices

P C I, LP C ,
Legacy dev ices

In tegra ted
D ev ices

D M A R em apping

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

VT-d

DMAR
Process TLPs from devices accessing memory
Performs

Address Translation and Access Control
Snoop Control
Prioritization

Based on the originator of the TLP

Requester Identifier

I ntel® Virtualization Technology for Directed I / O—DMA Remapping

Intel® Virtualization Technology for Directed I/O
Architecture Specification - Rev 1.3 February 2011
20 Order Number: D51397-005

3.3.1 Source I dentifier

DMA and interrupt requests appearing at the address-translation hardware is required to identify the
device originating the request. The attribute identifying the originator of an I/O transaction is referred
to as the “source-id” in this document. The remapping hardware may determine the source-id of a
transaction in implementation-specific ways. For example, some I/O bus protocols may provide the
originating device identity as part of each I/O transaction. In other cases (for Root-Complex
integrated devices, for example), the source-id may be derived based on the Root-Complex internal
implementation.

For PCI Express devices, the source-id is the requester identifier in the PCI Express transaction layer
header. The requester identifier of a device, which is composed of its PCI Bus/Device/Function
number, is assigned by configuration software and uniquely identifies the hardware function that
initiated the request. Figure 3-6 illustrates the requester-id1 as defined by the PCI Express
Specification.

The following sections describe the data structures for mapping I/O devices to domains.

3.3.2 Root-Entry

The root-entry functions as the top level structure to map devices on a specific PCI bus to their
respective domains. Each root-entry structure contains the following fields:

• Present flag: The present field is used by software to indicate to hardware whether the root-
entry is present and initialized. Software may Clear the present field for root entries
corresponding to bus numbers that are either not present in the platform, or don’t have any
downstream devices attached. If the present field of a root-entry used to process a DMA request
is Clear, the DMA request is blocked, resulting in a translation fault.

• Context-entry table pointer: The context-entry table pointer references the context-entry
table for devices on the bus identified by the root-entry. Section 3.3.3 describes context entries in
further detail.

Section 9.1 illustrates the root-entry format. The root entries are programmed through the root-entry
table. The location of the root-entry table in system memory is programmed through the Root-entry
Table Address register. The root-entry table is 4KB in size and accommodates 256 root entries to
cover the PCI bus number space (0-255). In the case of a PCI device, the bus number (upper 8-bits)
encoded in a DMA transaction’s source-id field is used to index into the root-entry structure.
Figure 3-7 illustrates how these tables are used to map devices to domains.

1. For PCI Express devices supporting Alternative Routing-ID Interpretation (ARI), bits traditionally
used for the Device Number field in the Requester-id are used instead to expand the Function
Number field.

Figure 3-6. Requester I dentifier Format

02378
1
5

Bus # Device # Function #

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

VT-d

DMAR translation structures

Intel® Virtualization Technology for Directed I/O
February 2011 Architecture Specification - Rev 1.3
Order Number: D51397-005 21

DMA Remapping—I ntel® Virtualization Technology for Directed I / O

3.3.3 Context-Entry

A context-entry maps a specific I/O device on a bus to the domain to which it is assigned, and, in
turn, to the address translation structures for the domain. The context entries are programmed
through the memory-resident context-entry tables. Each root-entry in the root-entry table contains
the pointer to the context-entry table for the corresponding bus number. Each context-entry table
contains 256 entries, with each entry representing a unique PCI device function on the bus. For a PCI
device, the device and function numbers (lower 8-bits) of a source-id are used to index into the
context-entry table.

Each context-entry contains the following attributes:

• Domain I dentifier: The domain identifier is a software-assigned field in a context entry that
identifies the domain to which a device with the given source-id is assigned. Hardware may use
this field to tag its caching structures. Context entries programmed with the same domain
identifier must reference the same address translation structure. Context entries referencing the
same address translation structure are recommended to use the same domain identifier for best
hardware efficiency.

• Present Flag: The present field is used by software to indicate to hardware whether the context-
entry is present and initialized. Software may Clear the present field for context entries
corresponding to device functions that are not present in the platform. If the present field of a
context-entry used to process a DMA request is Clear, the DMA request is blocked, resulting in a
translation fault.

• Translation Type: The translation-type field indicates the type of the address translation
structure that must be used to address-translate a DMA request processed through the context-
entry.

• Address Width: The address-width field indicates the address width of the domain to which the
device corresponding to the context-entry is assigned.

Figure 3-7. Device to Domain Mapping Structures

Root-entry Table

Context-entry Table
for Bus N

Context-entry Table
for Bus 0

Root entry 0

Root entry N

Root entry 255
Address Translation

Structures for Domain A

Address Translation
Structures for Domain B

Context entry 0

Context entry 255

(Dev 0, Func 0)

(Dev 31, Func 7)

(Dev 0, Func 1)

Context entry 255

Context entry 0

(Bus 0)

(Bus 255)

(Bus N)

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

VT-d

Hardware
Nehalem+ Xeons
Desktop Core i7 CPUs: not -K, BIOS
Core2 gen: G45, 5500

Documentation
Intel R© Virtualization Technology for Directed I/O,
D51397-005
External Design Specification (EDS)
BIOS Write Guide (BWG)
Chipset erratas

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

VT-d

Compatibility
SMI handlers, USB legacy
UMA GPU: GTT and VGA framebuffer
Service processor for BMC (AMT, IPMI, iLO, DRAC etc)

Bugs
Hardware bugs, Specification Updates
BIOS bugs

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

VT-d

How to detect
acpidump -t

DMAR: Length=368, Revision=1, Checksum=7,
OEMID=DELL, OEM Table ID=PE_SC3, OEM Revision=0x1,
Creator ID=DELL, Creator Revision=0x1
Host Address Width=46
Flags={INTR_REMAP,X2APIC_OPT_OUT}

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

VT-d

Other features
Interrupt remapping

MSI, MSI-X: memory write
IO-APICs
FSB interrupts: HPET

ATS (Address Translation Service): IO TLB in devices
Hypervisors PCI pass-through

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

IOMMU

PCI-era
Architectures

SPARC4u
POWER: DART

coarse domains

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

DMA in FreeBSD

Busdma(9) layer

FreeBSD KPI abstracting access to DMA implementations
from NetBSD

Busdma(9) overview

Tags: device capabilities
Maps: Accessible memory
Loads and unloads: maps activation and deactivation

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

Busdma implementations

Bounce buffers
Allocate memory to satisfy device constraints

contigmalloc(9)
Low 16MB, low 4GB

Copy to/from
Flush cache on non-coherent platforms

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

Busdma implementations

IOMMU: pro
Performance: No bouncing
Stability: No memory corruption
Privacy: Only sanctioned access to memory
Driver debugging: Reports of violations

IOMMU: contra
Performance: Page table setup
Performance: Translation overhead

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

Busdma over VT-d

Layers
Page tables and TLB invalidation
Fault handler
Context and domain
Busdma emulation

Integration
ACPI: DMAR table parsing

DMAR discovery
RMRR and BIOS bugs

newbus: bus_get_dma_tag()
fallback to bounce, enabling pass-through

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

Busdma over VT-d

Busdma KPI problems
Locking

BUS_DMA_NOWAIT abuse
bus_dmamap_unload(9) cannot sleep

No I/O direction
Tag specification of alignment

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

Busdma over VT-d

Current state
Drivers

Storage: ahci(4), mfi(4)
USB: uhci(4), ehci(4)
Network: em(4), igb(4) (*), bce(4)

Platforms
Xeon 5400, 5500 NB
Xeon Romely-EP (E5-26XX)
Haswell (Core i7 4770)

Not supported yet
Intel GPUs

Not tested
HDA
Discrete GPUs (Radeon, Nvidia)
Everything else (HW bugs)

Константин Белоусов kib@freebsd.org VT-d and FreeBSD

