
BSD Linker

Konstantin Belousov <kib@FreeBSD.org>

Draft rev. 2, November 14, 2011

Contents
1 Introduction 3

2 Overview of the existing linkers 3

3 Basic Functionality 3
3.1 Architectures . 3

3.1.1 Portability . 4
3.2 Operation . 4
3.3 Linker control . 5
3.4 Sections . 5
3.5 Symbols . 5

3.5.1 Symbol hash tables . 6
3.5.2 Weak symbols . 6
3.5.3 Syntesized symbols . 7
3.5.4 Symbol versioning . 7
3.5.5 Commons . 7

3.6 Libraries . 7
3.6.1 Static libraries . 8
3.6.2 Shared libraries . 8
3.6.3 Undefined symbols in the shared libraries 8
3.6.4 -rpath . 9

3.7 Relocations . 9
3.7.1 Relocation processing . 9
3.7.2 GOT . 9
3.7.3 Position-independed code, PLT 10
3.7.4 Direct bindings . 10
3.7.5 PT_GNU_RELRO . 10
3.7.6 Architecture-specific code generation 10

3.8 Unwinding . 10
3.9 -g . 11

4 Miscellaneous features 11
4.1 PT_GNU_STACK . 11
4.2 Map files and inspection of the linking 11
4.3 Unwritten ELF quirks . 12
4.4 Filters . 12
4.5 C++ mangling and demangling . 12

1

CONTENTS 2

5 Future 12
5.1 Plugins . 12
5.2 Audit . 12
5.3 LTO . 13

A About me 14

1 INTRODUCTION 3

1 Introduction
The document describes the goals of the project together with enumeration of the
planned features, and gives some considerations for the architectural solutions.

The current version of the document is the work in progress. If you note that
some very important ELF feature is missing from the text, but absolutely must be in-
cluded as a requirement for the useful general-purpose ELF OS linker, please notify
me instead of making bold claims. Thanks.

2 Overview of the existing linkers
Linking is (usually) the last step in producing the on-disk binary in the classic compiler
processing flow. Linker combines separately compiled object files into single result-
ing object, resolving symbolic references and transforming the chunks of data for the
binary into its on-disk form. In the modern systems, like ELF-based UNIXes, the bi-
nary should be further processed at the image activation time, e.g. to resolve external
references to the dynamic linking libraries and to execute dynamic relocations. Due to
this, ld(1) linker sometimes called static linker, to distinguish it from the run-time, or
dynamic, linker.

Modern linkers are quite flexible (and buggy) tools. GNU ld has ≈ 100 KLoC of
machine- and format-independed code, with bfd library measured at ≈ 600 KLoC to
support formats and processors. The Gold, Google’ reimplementation of the GNU ld
in C++ by Ian Lance Taylor, weights 130 KLoC. Gold does not support ia64 and mips.
A copyright owner for both GNU ld and Gold is Free Software Foundation, code is
licensed under GPLv3 and relies on the GPLv3 BFD library.

Another popular ELF linker is provided by Sun as /usr/ccs/bin/ld in Solaris. Sources
for Sun ld were never released, as far as I know.

3 Basic Functionality
The linker will target only ELF platforms. This means that support for PE / PE+ /
COFF and Mach-O is explicitely excluded.

Successfully finished project shall produce a linker that alone can be used as THE
linker to build fully functional FreeBSD systems and to execute make universe. None-
theless, please note that modern linkers offer more features then utilized by the FreeBSD
base system. The scope described in the document is explicitely larger then neccessary
only for the FreeBSD src/ tree. Still, I expect that more work will be needed to cover all
existing usage of the linker, e.g. by the Ports Collection and other third-party software.

3.1 Architectures
The linker must link ELF objects for all architectures currently supported by FreeBSD.
First versions may be limited by x86 only, but eventually other architectures shall be
available. The linker must be organized to allow new architecture addition without
restructuring of the core code.

The list of the architectures is: i386, amd64, sparc64, ia64, mips, powerpc, arm.
For several architectures in the list, several ABIs must be implemented:

• o32, n32 and n64 for mips, both big- and little-endian.

3 BASIC FUNCTIONALITY 4

• For powerpc, we need 32- and 64-bit support. -dotsyms.

• XXX For arm, EABI.

• XXX Do we need big-endian ia64 ?

By default, the build of the linker must support all architectures and ABIs. The
target object ABI shall be determined automatically from the source objects, if possible.
Of course, the manual override of target ABI shall be provided.

The interesting proposition is to build the linker executable as the wrapper around
the linker library. The library will export the API which is mostly equivalent to the
linker command line. A potential user of the library, besides the linker itself, would be
compiler frontends and IDEs.

3.1.1 Portability

The linker shall be reasonably portable. In particular, all needed ELF definitions shall
be carried in the linker source, not depending on the platform varying ELF headers.
The platform headers are often not enough for the linker implementation compilation
anyway, and definitely omit the definitions for cross-architectures.

Use of the common features of modern Unixes should be not a problem.
The restrictions on the use of the host system resources can be useful, but probably

a secondary target in the course of development.

3.2 Operation
Depending on the linker invocation, the link target may be of several types. The linker
will need to operate in several modes, to be able to produce the following results:

• binary, default.

• PIE binary, -pie.

• dynamic shared object, -shared.

• relocatable ELF object file, for incremental linking, -r.

-shared, -Bshareable Produce shared library.
-pie, -pic-executable Produce PIE executable.
-r, --relocatable Perform partial linking.
-Ur Specify that partial linking shall be performed, but do re-

solve the references to constructor.
-o out, --output=out Specify the name of the link result.
--noinhibit-exec Create the linking results even if errors are encountered.

Table 1: Linking-mode

A feature of the GNU ld is its ability to produce the resulting binaries even if
errors occur during the linking, controlled by the --noinhibit-exec. The binary is
not marked as executable in case of errors, that does not help for the shared libraries,
though. Traditional Unix linker exits on the first error encountered, that is sometimes
unuseful.

3 BASIC FUNCTIONALITY 5

Diagnostic from the linkers is often confusing for the users, due to the concepts
used during the link stage are often unknown, and most programmers ignore the low-
level plumbing in the build system, at least until it works.

See Table 1 for the description of the options affecting the mode of the linker oper-
ations.

3.3 Linker control
The new linker has no choice but use the same syntax for the command line as the
GNU ld.

Linker must support the control of the layout of the final object by using the linker
script language. There, the GNU syntax shall be supported too. Since only vague
description of the GNU linker script syntax is available in the texinfo documentation
for GNU ld, reference to the bison grammar for ld and gold will be required.

XXX should the project proposal include the definition of the linker script language
? Even if yes, the actual implemented language will be definitely different from what
is written there, due to bugs in the specification.

Options allowing to control the linker scripts usage are described in the Table 2.

-T script,
--script=script

Makes the script the linker script for the current linking.

-dT script,
--default-script=script

Makes the script the linker script for the current linking.
The processing of the script is postponed until the whole
command line is read.

Table 2: Linker scripts

3.4 Sections
The linking operation combines the sections from the input files into the sections and
possibly segments1 of the output file. Sections with the same name are combined into
a single section, then sections are merged into segments based on the attributes and the
instructions in the linker script. GNU linker script allows to specify section names as
globs, to concatenate differently named sections.

To support modern features of C++, for instance, C++ templates instantion and
vtables generation, compiler sometimes have to emit the same section data from dif-
ferent compilation units. GNU linker allows to merge the duplicate content using the
.gnu.linkonce naming convention for sections.

XXX elaborate
The link-time operations on the sections are described in the Table 3.

3.5 Symbols
See the Table 5 for the linker options related to the handling of symbols.

1For non-partial linking.

3 BASIC FUNCTIONALITY 6

-Tbss=orig, -Tdata=orig,
-Ttext=orig

Specify the expression orig as the starting virtual
address for .bss, .data and .text sections re-
spectively.

-Ttext-segment=orig An alias for the -Ttext option.
--section-start=sectionname=orig The start of the section sectionname is at orig.
--sort-section=name,
--sort-section=alignment

The sections combined due to a wildcard section
pattern in the linker script, will be sorted by name
or alignment, respectively.

--gc-sections Garbage collect unused sections. The used sec-
tions are the one containing the entry point, sym-
bols which were marked undefined on the com-
mand line, and sections referenced by dynamic
objects, and sections referenced from relocations
of the sections above. When building the shared
library, all visible exported symbols are refer-
enced.

--no-gc-sections Disables garbage collection of the unused sec-
tions.

--warn-section-align Warn if alignment changes the section start ad-
dress, for the sections which address is specified
explicitely.

--check-sections Check section addresses for overlap.
--no-check-sections Do not check section addresses for overlap.
--unique[=section] Create a separate output section for each input sec-

tion which is matched by glob section. By de-
fault, linker concatenates the input sections of the
same name. If section is ommitted, the same
is done for any section not listed in the linker
script(s).

Table 3: Sections

3.5.1 Symbol hash tables

ELF requires that static linker prepares the symbol hash table, that hashes the symbol
names for faster lookup. Recently, GNU linkers developed the improved version of the
hash table, using djb hash function. Also, they provide a Bloom filter over the set of
hashed symbol names, to facilitate fast negative lookup.

FreeBSD dynamic linker uses only the old ELF hash table. Implementing GNU
extension is not needed initially.

3.5.2 Weak symbols

Normal rules for ELF forbid the appearance of more then one definition for the symbol.
Weak symbols are exempt from this restriction, and are only taken into account when
reference is made to the symbol for which the normal (strong) definition is absent.
Weak references do not cause fatal linking error, and are resolved to zero if no symbol
definition is found.

3 BASIC FUNCTIONALITY 7

3.5.3 Syntesized symbols

XXX

3.5.4 Symbol versioning

GNU style symbol-versioning extends the versioning introduced by Sun. Versioning
allows to declare that given object supports specific ABI interfaces, and also allows to
migrate the ABI of the single symbol among different ABI interfaces.

Symbol versioning is implemented as a set of tables in the ELF object, generated
by the static linker based on the supplied version script and additional specifications
from the object files.

The specification for the GNU symbol versioning tables is available at [6]. See
Table 4 for the list of linker options affecting symbol versioning.

--default-symver Create default symbol version, equal to the soname of the
linking object, for unversioned exported symbols.

--default-imported-symver Create default symbol version for unversioned imported
symbols.

--no-undefined-version Generate a fatal error if a symbol with undefined version
is encountered.

--version-script=filename Specify the file name for the version script.

Table 4: Symbol versioning

3.5.5 Commons

Common symbols are implicitely initialized to zero and are kept in the .bss. Different
declarations of the common symbols are merged by the linker, with the final allocation
taking space of the largest declared common. To support somewhat sloppy but popular
practice of redeclaring common with the initialized symbol, linker supports overriding
common symbol by defined with the same name.

Commons-related options are listed in the Table 6.

3.6 Libraries
The libraries support is the critical and the most visible part of the linker interaction
with the user. The well-known linker facitilities to direct the library search and to
specify the used libraries on the command line are the -L and -l switches. The -L
adds the path to be used during the library search, the -lname specifies which library
to use.

On the ELF platform, for the -lname specification, linker will search the shared
library libname.so first, and the static library libname.a second. This behaviour
may be adjusted with the use of -Bstatic, -Bdynamic switches, which require to use
only static archives, and turns on the default behaviour, respectively.

See the Table 7 for the options controlling the generic linker behaviour related to
the libraries.

3 BASIC FUNCTIONALITY 8

3.6.1 Static libraries

The linker scans the static libraries specified on the command line sequentially, using
archive members to resolve all found undefined symbols, before moving to the next
archive. Only archive members that define some symbol, which was undefined in the
previously processed object file, is fetched. This behaviour require right order of the
libraries on the command line, which is sometimes confusing for novices.

The static library may contain an index, maintained by ranlib(1) command,
which allowed the linker to satisfy the undefined symbols from the library using the
library members. Without the index, traditional Unix linker was unable to satisfy un-
defined symbols from the library members by other members from the same library.
There are several small variations of the archive format and the index, BSD2, SysVR3
and SysVR4 / GNU. Support for the variants is easy, but only SysVR4 has practical
meaning in the ELF world.

GNU ld(1) extends the idea of indexes by allowing to specify a group of static
libraries on the command line. The libraries from the group are used to resolve each
other undefined symbols until no progress can be made.

3.6.2 Shared libraries

See the Table 8 for description of the options for shared libraries build.
The use of the shared library for the linking stage is limited to the following actions:

• Enumeration of the undefined symbols that are satisfied by the library. Found
symbols are not marked undefined anymore and are not searched in the following
objects. The GOT and possibly PLT entries are generated to avoid relocations
against text. See 3.7.3 for the further discussion.

• Special handling of the R_ARCH_COPY relocations. The data objects which are
referenced from the main binary but defined in the shared objects, are handled
specially. The definition of the symbol is added to the commons of the linked
binary, and R_ARCH_COPY relocation is placed over the common object. The run-
time linker copies the initial value of the object from the shared library into the
executable object upon image activation. This is done to emulate the semantic of
the static archives while using shared libraries.

• The found shared library is recorded in the linked object by storing the content
of the DT_SONAME dynamic tag from the library in the DT_NEEDED dynamic tag
of the linkage result.

By default, the mere fact that the library was specified on the command line causes
the DT_NEEDED to be recorded. The --as-needed flag directs linker to only record
the library if it indeed participated in the resolution of the undefined symbols. The
option allows avoiding loading not needed libraries without requiring the developer to
carefully inspect the use of each shared object.

3.6.3 Undefined symbols in the shared libraries

On the ELF platform, there is very rare to have undefined symbols in the shared li-
braries. Usually, if such symbol appears, this means that programmer forgot to ex-
plicitely list the library dependencies. Besides being a sloppy practice, the missed

2Also Seven edition.

3 BASIC FUNCTIONALITY 9

recorded dependencies can cause very confusing errors in the programs that use the
wrongly built library at the build or run time. There are several facilities to help the
programmer to avoid the mistake.

The --no-allow-shlib-undefined causes the linker to emit the error if linked
shared library contains undefined symbol. Note that it is not always an indication of
error, but typically is.

Traditionally, ELF linkers implicitely added shared libraries, specified by DT_NEEDED
of the explicitely listed shared libraries, to the link process. This way, if liba.so de-
pends of libb.so, and -la was specified on the linker command line, then the whole
namespace from libb.so is brought into the link. This implicit action may be turned
off with the --no-copy-dt-needed-entries. Recent gcc(1) started specifying the
--no-copy-dt-needed-entries option for the link stage. Also, there is a possibil-
ity that the option behaviour will become the default for recent versions of the GNU
ld(1). It is already the default for gold(1).

3.6.4 -rpath

The -rpath ld(1) option is used to inform the dynamic linker about the search path
for the shared libraries. The arguments of all -rpath options are combined and stored
in the string table, pointed to by DT_RPATH or DT_RUNPATH dynamic tags. I am not sure
about the differences between two tags semantic.

Historical behaviour of the SunOS static linker was to automatically construct rpath
from the all -L options specified for the link. This behaviour appeared to be more
troublesome then helpful, so now rpath is only recorded when explicitely provided.

3.7 Relocations
3.7.1 Relocation processing

The relocation is an instruction to a linker to modify some location in the object, ac-
cording to the relocation-type specific rules. Relocation types are closely tied to the
instruction set of the CPU, they are often made to modify selected bit fields in the en-
coding of the specific instruction class for the CPU. This can be mostly seen on the
RISC architectures with the fixed width of the instructions, where immediate operands
are placed in the designated subfield of the instruction word. X86 relocations affect the
whole byte or word.

Relocation processing is the main purpose of the static linker. The dynamic loading
facilities of the ELF makes it impossible to fully resolve object file relocations during
the static linkage phase. Some relocations are postponed for the dynamic linking phase,
some must be transformed into the form appropriate for the dynamic linking. See below
the description of the GOT and PLT tables.

See the Table 9 for the options related to the relocation processing.
Relocations allow the late binding of the references to their definitions. Also, the

functioning of the symbol interposing and thread local storage heavily depends on the
relocations.

3.7.2 GOT

Global Offset Table (GOT) is the main mechanism that allows ELF platform to simulate
the static libraries behaviour with the dynamic shared objects. By default, all interpos-
able symbol references are tunneled through the GOT, which is the single place to fixup

3 BASIC FUNCTIONALITY 10

external symbol in the object during the image activation. Static linker generates GOT
and places the entries into the table when it sees some relocations in the linked object
files. Kind of relocations is platform-specific. GOT is put into the writeable segment,
to prevent the patching of the read-only text segment. Properly generated code should
reference the GOT entries.

3.7.3 Position-independed code, PLT

ELF handling of loading of the shared libraries requires the libraries to use position-
independed code. Since some architectures do not support position-independence of
the machine code naturally, relocations must be applied that fixup the code for the
load address. ELF still allows to have the non-PIC code in the text segment for shared
libraries, which prevents sharing of the pages of the text, by using the DT_TEXTREL
dynamic tag. It is a linker responsibility to properly mark objects needing application
of relocations to the read-only segments with the tag.

Procedure Linkage Table (PLT) is the complementary structure to the GOT. It al-
lows lazy resolution of the external code references, while still keeping the text purity.
PLT works in conjunction with GOT.

Both GOT and PLT structures are architecture-depended. Linker must generate
them from the thin air when doing final linking for either executable that reference
shared libraries, or when linking shared library.

The Sun ld(1) has an option -b which prevents the linker from generating the GOT
and PLT. Instead ld(1) keeps the relocations against the text segment that are resolved
at the image activation time. Also, the R_ARCH_COPY relocations are not created, leav-
ing data objects in the shared libraries. Gnu ld(1) has the option -z nocopyreloc
that inhibits creation of the copy relocation.

3.7.4 Direct bindings

XXX

3.7.5 PT_GNU_RELRO

The GNU ELF extension PT_GNU_RELRO allows to have a set of the read-only pages in
the image that still can be the target of the relocations. The dynamic linker must mark
the pages that contain the region of [p_vaddr, p_vaddr + p_memsz] as readonly, after
the dynamic relocations are applied.

3.7.6 Architecture-specific code generation

Several architectures use function descriptors to represent function pointers. Among
them are IA64 and PowerPC64, at least. Linker must support them. For PowerPC 64,
see ELF ABI supplement version 1.9 [8].

For PowerPC 64, recent version of binutils changed the naming of the symbol
pointing to the actual function fun address from .fun to .L.fun.

3.8 Unwinding
Unwinding on the ELF platforms is based on the table-driven exception tables, as spec-
ified by the IA64 C++ ABI standard [7]. Linker participates in the preparation of the
tables, merging the per-object file tables into the target exception table.

4 MISCELLANEOUS FEATURES 11

The unwinding table proper is supplied in the .eh_frame section. There, the Com-
mon Information Entry (CIE) followed by Frame Description Entries (FDE) are placed.
Each CIE introduces a sequence of FDEs. E.g., one CIE may be provided for each ob-
ject file. The FDE describes the way uwinding shall be performed for the range of
instructions recorded in FDE.

Modern method of providing the unwind run-time with the references to the .eh_frame
is to create addition section .eh_frame_hdr, specified by the --eh-frame-hdr option
of GNU ld(1). The section consists of some header and sorted array of two-word
records, each specifying starting instruction and corresponding FDE location.

The unwind run-time finds the .eh_frame_hdr through the PT_GNU_EH_FRAME pro-
gram header. Details of the tables are specified in the Linux Standard Base [9], which
references the DWARF standard [5].

Unwind-related options are listed in the Table 10.

3.9 -g

The debugging information on the ELF platforms usually presented as the Dwarf ver-
sion 2 / 3 / 4 records [5]. Probably, among the modern compilers, only not very newest
versions of the Sun compiler emited stubs instead of Dwarf when compiler is given
the -g switch. Handling of the Dwarf symbolic information from the linker perspec-
tive should not require any additional work except the normal section and relocation
processing.

Gnu ld(1) ignores the -g switch altogether, for this reason. See Table 11 for the
full list of the options related to handling of debugging information.

4 Miscellaneous features
Options not fit into other lists are summarized in the Table 12.

4.1 PT_GNU_STACK

The section named .note.GNU-stack do not contribute to the image bytes in memory.
Instead, the presence of the section in the object file indicates that the code in the file
do not require executable permission of the thread stack.

If even single object file used during the linking contained the .note.GNU-stack
section, linker will generate the PT_GNU_STACK program header. The only significant
information in the header if the access permission bits. They must always include PF_R
and PF_W. If all object files used during linkage included .note.GNU-stack section,
the PT_GNU_STACK header flags field has PF_X flag cleared, indicating that the resulting
object do not require executable stack.

See Table 13 for the related options.

4.2 Map files and inspection of the linking
Linkers traditionally provide the map file which lists the details of the linking process
in the human-readable form. At least, the map file contain the memory map and the
assigned symbols values. GNU ld(1) also tracks the libraries references.

It is not clear whether it is feasible to produce map file which is char-to-char com-
patible with the Gnu ld(1).

5 FUTURE 12

The options controlling map file generation and overall introspection of the linking
process are listed in the Table 14.

4.3 Unwritten ELF quirks
The program headers must be located within the first page of the ELF object. The ELF
branding note must be located within the first page of the object too.

4.4 Filters
Linker must support both normal and auxillary filter objects on the shared libraries. The
support is almost trivial, since linker shall only create DT_FILTER and DT_AUXILIARY
dynamic tags basing on the command line switches.

Filtering options are present in the Table 15.

4.5 C++ mangling and demangling
To provide better diagnostic messages, linker might employ symbol demangling algo-
rithms. To ease the construction of the symbol versioning scripts, as well as for use
with the command line switches and linker scripts, the mangling of the C++ identifiers
may be used.

Mangling is generally compiler-specific. Linker must support at least the GNU
C++ mangling and demangling algorithms.

See Table 16 for the related options.

5 Future
The facilities described in the section are not planned for the first series of the linker
releases. They are listed as highly desired features, which shall be considered when
designing the linker architecture, to not make it impossible to graft them later.

5.1 Plugins
The main method for extending linker3 is the use of the linker plugins. There is no
well-established plugin API for the linkers, in part because there is no much variety in
the available linkers, in part because any plugin API will be closely tied to the linker
internals. Defining the API will be the part of the further project, after the basic linker
functionality is done.

Next subsections describe some prospective applications of the plugins in the con-
text of the project, mostly in the hand-waving form.

5.2 Audit
There are two audits point when linking process is involved. One is the static linking
process, and another one is the later dynamic linking. Static linking shall allow the
audit plugins. Also, it arranges for the run-time auditing.

Static linking audit is performed by loading the auditing plugin. XXX elaborate.
Audit-related options are listed in the Table 17.

3As opposed to embedding it.

5 FUTURE 13

5.3 LTO
LTO stands for the Link Time Optimization. The technique performs the final opti-
mization pass at the linking stage, since there the full text of the resulting binary is
available. The LTO can be reasonably executed only over the intermediate code repre-
sentation, thus compiler output for LTO usually contains both native code sections and
intermediate language (IR) sections. The non-LTO link uses native code, while LTO
picks the IR.

The IR is ultimately compiler-specific. Confining the general-purpose linker to the
single compiler implementation, possibly even to the (lagging) versions of the com-
piler seems unuseful. Instead, the LTO shall be delegated to the plugins, supplied by
compiler authors or third-party. Linker duty is to provide a plugin API that makes the
LTO possible.

A ABOUT ME 14

A About me
I am kib@freebsd.org. During the last years I implemented the following features in
the FreeBSD ld-elf.so(8):

• Support for dynamic token strings in rpath and soname, like $ORIGIN.

• Support for the filters on dynamic shared objects.

• Optimization to provide a system information to the startup through ELF aux
vectors, which eliminated around ten sysctl(2) calls from each exec.

• GNU-style non-executable stacks using PT_GNU_STACK program header, gener-
ated by the GNU- and compatible toolchains.

• Cleanup of the atexit(3) handlers installed by shared object, on the object
unload.

I ported the libunwind stack unwinding library [10] to FreeBSD, supporting i386
and amd64 architectures.

REFERENCES 15

References
[1] Steve Chamberlain, Ian Lance Taylor. The GNU linker. From GNU binutils

2.21.1.

[2] John R. Levine. Linkers and loaders.

[3] Oracle. Linker and Libraries Guide.

[4] Tool Interface Standard (TIS). Executable and Linking Format (ELF) Specifica-
tion Version 1.2.

[5] DWARF Debugging Information Format Workgroup. DWARF Debugging Infor-
mation Format Version 3.

[6] Ulrich Drepper. ELF Symbol Versioning.

[7] Itanium C++ ABI http://sourcery.mentor.com/public/cxx-abi/abi.
html.

[8] Ian Lance Taylor, Zembu Labs. 64-bit PowerPC ELF. Application Binary Inter-
face Supplement 1.9.

[9] Linux Standard Base.

[10] libuwind http://www.nongnu.org/libunwind/.

http://sourcery.mentor.com/public/cxx-abi/abi.html
http://sourcery.mentor.com/public/cxx-abi/abi.html
http://www.nongnu.org/libunwind/

REFERENCES 16

-E, --export-dynamic Specifies that all global symbols from the linking object
must appear in the dynamic symbol table.

--no-export-dynamic Reverts the --export-dynamic, restoring the default be-
haviour of only adding symbol to the dynamic symbol
table if referenced by some shared library specified for
linking.

--defsym=symbol=value Enters the symbol symbol into the linker symbol table
with the value value.

-u symbol, --undefined=symbol Enters the symbol symbol into the linker symbol table as
undefined. As a result, the symbol will be searched for in
libraries.

--retain-symbols-file=file Only retain dynamic symbols listed in the file file.
-x, --discard-all Delete all local symbols, i.e. symbols not referenced ex-

ternally.
-X, --discard-locals Delete all local symbols name of which starts with .L.
-R filename, --just-symbols=filename The content of the file filename is not included in the

linking output. Only symbol names and their values are
used.

--dynamic-list=file The symbols which name are listed in the file, are added
to the GOT.

--dynamic-list-data Add all global data symbols to the GOT.
--dynamic-list-cpp-new Add the symbols implementing C++ new and delete op-

erators, to the GOT.
--dynamic-list-cpp-typeinfo Add the symbols implementing C++ typeinfo data, to the

GOT.
--unresolved-symbols=method Handle the unresolved symbols according to the method.

The method can be one of

• ignore-all

• report-all

• ignore-in-object-files

• ignore-in-shared-libs

-z defs, --no-undefined Report undefined symbols from the normal object files,
even if linking non-symbolic shared library.

-z muldefs, --allow-multiple-definition Allow multiple definitions of the same symbol. The first
definition encountered is used.

--warn-once Warn about each undefined symbol only once, instead of
making a message on processing each reference.

--warn-unresolved-symbols Generate a warning, and not the error, when linker en-
counters undefined symbol.

--error-unresolved-symbols Turns off --warn-unresolved-symbols.

Table 5: Symbols

REFERENCES 17

-d, -dc, -dp Assign space for the common symbols even for relocat-
able linking.

--no-define-common Do not allocate commons for non-relocatable linking.
--sort-common{=method} Sort common symbols by alignment. The method is

ascending or descending, default descending.
--warn-common Warn on the common symbol mixing with the definition.
--no-define-common Inhibit the allocation of space for the referenced common

symbols. This allows to specify that shared library refer-
ences the common symbols from the main binary or other
shared library, instead of making a copy in the library it-
self.

Table 6: Commons

-L path Specifies the libraries search path.
-lname Requests the use of the static or dynamic library named

libname.
-Bstatic, -static, -dn Prefer static libraries.
-Bdynamic, -call_shared, -dy Prefer dynamic libraries.
--whole-archive Requests inclusion of the whole content of the static

archives into the linking results. The object files from
an archive are linked even if not resolving any undefined
symbol from the previously processed objects.

--no-whole-archive Turns off --whole-archive.
-(, --start-group Start the group of the static archives that are searched as a

group for any undefined symbols, until all possible sym-
bols are resolved from the group.

-), --end-group Ends the group started by --start-group.
-nostdlib Library search paths from the linker scripts are ignored.

Only the paths specified with the -L option are searched.
-Y path Add path to the default library search path.

Table 7: Libraries

REFERENCES 18

--copy-dt-needed-entries Copy the DT_NEEDED entries from the shared libraries
specified on the command line, into the linking result.

--no-copy-dt-needed-entries Do not copy the DT_NEEDED entries from the shared li-
braries specified on the command line, into the linking
result.

-h name, -soname=name Specifies the name recorded into the DT_SONAME dynamic
tag for the shared library.

--exclude-libs lib1,lib2,... List of static libraries symbols from which are made hid-
den.

--as-needed Record DT_NEEDED only for the libraries which are refer-
enced by a symbol relocations.

--no-as-needed Turns off --as-needed.
--allow-shlib-undefined Allow the linking to succeed even if the resulting shared

library contains unresolved symbols (default).
--no-allow-shlib-undefined Fail the link if the resulting shared library contains unde-

fined symbols.
--rpath=dir Add the directory dir to the path used by the dynamic

linker to search dependencies.
--rpath-link=dir Add the directory dir to the path used by the static linker

to search dependencies of the shared libraries specified
on the command line.

-Bsymbolic The symbolic references from the resulting object are
bound to the object itself. The object is the first inter-
poser for the resolution of the symbols from itself.

-Bsymbolic-functions The function references from the resulting object are
bound to the object itself.

-Bgroup Mark the resulting object and its dependencies for
the dynamic linker as allowing resolution of the
undefined symbols only among itself. Implies
--unresolved-symbols=report-all.

-z initfirst Mark the resulting object as requiring the initialization
first, before other object loaded due to the same depen-
dency chain. The object is finalized last.

-z interpose The symbols of the resulting object interpose all other
objects symbols, except the main executable.

-z nodelete Mark the resulting object as not unloadable after the last
dlclose(3).

-z nodlopen Mark the resulting object as not loadable with
dlopen(3).

-z nodump Mark the resulting object as not dumpable by dldump(3).
-z now Mark the resulting object as requiring the immediate re-

location processing, even for the lazy PLT relocations.
-z lazy Mark the resulting object as accepting the lazy relocation

processing for PLT entries.
-z origin Marks the resulting object as requiring dynamic tokens

expansion for rpath and sonames.
-z nodefaultlib Mark the resulting object as ignoring the default paths for

searching the dependencies.

Table 8: Shared libraries

REFERENCES 19

-q, --emit-relocs Keep relocations in the final executable.
-z combreloc Combine multiple relocation sections into one.
-z nocombreloc Do not combine relocation sections.
-z nocopyreloc Do not create copy relocations.
-z norelro Do not generate PT_GNU_RELRO segment.
-z relro Enable the generation of the PT_GNU_RELRO segment.
--warn-shared-textrel Warn if relocations are recorded against the text segment.

Table 9: Relocations

--eh-frame-hdr Generate .eh_frame_hdr.

Table 10: Unwinding

-g Ignored.
-s Remove all unneeded symbol and debugging information

from the resulting object.
-S Remove debugging information from the resulting object.

Table 11: Debugging information

-@ file Batch files. Options are read from the file.
-e entry, --entry entry Specify entry point.
-init=symbol Call the function symbol at the object initialization time.

By default, the _init function is called, if defined.
-fini=symbol Call the function symbol at the object unload time. By

default, the _fini function is called, if defined.
-I filename, --dynamic-linker=filename Use the named dynamic interpreter for the image activa-

tion.
--wrap=symbol The undefined references to the symbol are resolved

to the -__wrap_symbol. The references to the
__real_symbol are resolved to symbol.

--build-id=uuid|sha1|md5|hexstring|none Create the .note.gnu.build-id section in the output
file.

--build-id The same as --build-id=sha1.
-z max-page-size=val Set the maximum page size to the value val.
-z common-page-size=value Set the common page size to the value val.

Table 12: Miscellaneous options

-z execstack Mark the object as requiring executable stack.
-z noexecstack Mark the object as not requiring executable stack.

Table 13: Executable stack

REFERENCES 20

-M, --print-map Print the linking map file to the standard output.
-Map=mapfile Write the linking map to mapfile.
-t, --trace Print the names of the input files on the first open.
--verbose=N Set verbosity level.
--print-gc-sections Print the names of the section which are garbage-

collected.
--no-print-gc-sections Turns off --print-gc-sections.
-y symbol, --trace-symbol=symbol Print the name of each input file or archive member which

references symbol symbol.
-v, --version, -V Print the version of the linker.
--cref Output the cross-reference information for the symbols.
--fatal-warnings Any warning causes the fatal error.
--no-fatal-warnings Turns off --fatal-warnings.
--no-warn-mismatch Do not warn if an object file not compatible with the cur-

rently linking object was encountered. The file is ignored.
--no-warn-search-mismatch Do not warn if an library incompatible with the currently

linking object is found on the search path.

Table 14: Linking process inspection

-F name, --filter=name Use the object with the name name as a filter.
-f name, --auxiliary=name Use the object with the name name as an auxiliary filter.
-z loadfltr Mark the object for the dynamic linker, noting that the

filters for the object shall be loaded immediately.

Table 15: Filtering

--demangle[=style] The symbol names used in the output are de-
mangled according to the rules of the man-
gler for C++ compiler, specified by style.
Also affects --dynamic-list-cpp-new and
--dynamic-list-cpp-typeinfo options.

--no-demangle Do not demangle the symbol names on output.

Table 16: Mangling

--audit lib Record the library lib as DT_AUDIT.
--depaudit lib, -P lib Record the library lib as DT_DEPAUDIT.

Table 17: Audit

	Introduction
	Overview of the existing linkers
	Basic Functionality
	Architectures
	Portability

	Operation
	Linker control
	Sections
	Symbols
	Symbol hash tables
	Weak symbols
	Syntesized symbols
	Symbol versioning
	Commons

	Libraries
	Static libraries
	Shared libraries
	Undefined symbols in the shared libraries
	-rpath

	Relocations
	Relocation processing
	GOT
	Position-independed code, PLT
	Direct bindings
	PT_GNU_RELRO
	Architecture-specific code generation

	Unwinding
	-g

	Miscellaneous features
	PT_GNU_STACK
	Map files and inspection of the linking
	Unwritten ELF quirks
	Filters
	C++ mangling and demangling

	Future
	Plugins
	Audit
	LTO

	About me

