
AMD 64-Bit Technology

AMD x86-64 Architecture
Programmer’s Manual

Volume 2:
System Programming

Publication No. Revision Date

24593 3.07 September 2002

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Trademarks
AMD, the AMD arrow logo, AMD Athlon, AMD Duron, and combinations thereof, and 3DNow! are trademarks, and Am486, Am5x86,
and AMD-K6 are registered trademarks of Advanced Micro Devices, Inc.
MMX is a trademark and Pentium is a registered trademark of Intel Corporation.
Windows NT is a registered trademark of Microsoft Corp.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

© 2002 Advanced Micro Devices, Inc. All rights reserved.
The contents of this document are provided in connection with Advanced Micro Devices, Inc.
(“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or
completeness of the contents of this publication and reserves the right to make changes to
specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this
publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes
no liability whatsoever, and disclaims any express or implied warranty, relating to its products
including, but not limited to, the implied warranty of merchantability, fitness for a particular pur-
pose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as components in
systems intended for surgical implant into the body, or in other applications intended to support
or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without
notice.

Contents iii

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Contents

Preface .xxiii
About This Book .xxiii
Audience .xxiii
Organization . xxiv
Definitions. xxv
Related Documents . xxxvi

1 System-Programming Overview . 1

1.1 Memory Model. 1
Memory Addressing. 2
Memory Organization . 4
Canonical Address Form. 5

1.2 Memory Management . 6
Segmentation . 6
Paging . 8
Mixing Segmentation and Paging . 10
Real Addressing. 11

1.3 Operating Modes . 12
Long Mode . 14
64-Bit Mode . 15
Compatibility Mode . 15
Legacy Modes. 16
System Management Mode (SMM) . 17

1.4 System Registers . 17
1.5 System-Data Structures . 20
1.6 Interrupts . 22
1.7 Additional System-Programming Facilities 24

Hardware Multitasking . 24
Machine Check . 25
Software Debugging . 26
Performance Monitoring. 26

2 x86 and x86-64 Architecture Differences 29

2.1 Operating Modes . 29
Long Mode . 29
Legacy Mode . 30
System-Management Mode . 30

2.2 Memory Model. 31
Memory Addressing. 31
Page Translation . 31
Segmentation . 33

2.3 Protection Checks . 35
2.4 Registers. 35

General-Purpose Registers . 35

iv Contents

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

128-Bit Media Registers . 36
Flags Register . 36
Instruction Pointer . 36
Stack Pointer . 36
Control Registers. 36
Debug Registers. 36
Extended Feature Register (EFER) . 37
Memory Type Range Registers (MTRRs) 37
Other Model-Specific Registers (MSRs) 37

2.5 Instruction Set . 37
REX Prefixes . 37
Segment-Override Prefixes in 64-Bit Mode. 38
Operands and Results . 38
Address Calculations. 38
Instructions that Reference RSP . 39
Branches . 40
NOP Instruction. 43
Single-Byte INC and DEC Instructions 43
MOVSXD Instruction . 43
Invalid Instructions . 44
FXSAVE and FXRSTOR Instructions 45

2.6 Interrupts and Exceptions . 46
Interrupt Descriptor Table . 46
Stack Frame Pushes . 46
Stack Switching . 46
IRET Instruction . 47
Task-Priority Register (CR8) . 48
New Exception Conditions . 48

2.7 Hardware Task Switching . 48
2.8 Long-Mode vs. Legacy-Mode Differences 49

3 System Resources. 51

3.1 System-Control Registers . 51
CR0 Register . 53
CR2 and CR3 Registers. 57
CR4 Register . 58
CR1 and CR5–CR7 Registers . 62
64-Bit-Mode Extended Control Registers 62
CR8 (Task Priority Register, TPR). 62
RFLAGS Register . 62
Extended Feature Enable Register (EFER) 67

3.2 Model-Specific Registers (MSRs) . 69
System Configuration Register (SYSCFG) 70
System-Linkage Registers . 72
Memory-Typing Registers . 72
Debug-Extension Registers . 73
Performance-Monitoring Registers . 73
Machine-Check Registers . 74

Contents v

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

3.3 Processor Feature Identification . 75

4 Segmented Virtual Memory . 77

4.1 Real Mode Segmentation . 78
4.2 Virtual-8086 Mode Segmentation . 78
4.3 Protected Mode Segmented-Memory Models. 79

Multi-Segmented Model . 79
Flat-Memory Model . 80
Segmentation in 64-bit mode . 80

4.4 Segmentation Data Structures and Registers 80
4.5 Segment Selectors and Registers . 82

Segment Selectors . 82
Segment Registers. 84
Segment Registers in 64-bit Mode . 85

4.6 Descriptor Tables . 87
Global Descriptor Table . 88
Global Descriptor-Table Register . 89
Local Descriptor Table . 90
Local Descriptor-Table Register . 91
Interrupt Descriptor Table . 94
Interrupt Descriptor-Table Register . 95

4.7 Legacy Segment Descriptors . 95
Descriptor Format . 95
Code-Segment Descriptors . 98
Data-Segment Descriptors . 100
System Descriptors . 102
Gate Descriptors . 104

4.8 Long-Mode Segment Descriptors . 106
Code-Segment Descriptors . 106
Data-Segment Descriptors . 108
System Descriptors . 109
Gate Descriptors . 111
Long Mode Descriptor Summary . 114

4.9 Segment-Protection Overview . 116
Privilege-Level Concept . 117
Privilege-Level Types . 118

4.10 Data-Access Privilege Checks . 119
Accessing Data Segments . 119
Accessing Stack Segments . 121

4.11 Control-Transfer Privilege Checks . 122
Direct Control Transfers . 123
Control Transfers Through Call Gates. 127
Return Control Transfers . 135

4.12 Limit Checks . 138
Determining Limit Violations . 138

4.13 Type Checks. 139
Type Checks in Legacy and Compatibility Modes 140
Long Mode Type Check Differences 141

vi Contents

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

5 Page Translation and Protection . 143

5.1 Page Translation Overview . 144
Page-Translation Options . 146
Page-Translation Enable (PG) Bit . 147
Physical-Address Extensions (PAE) Bit. 147
Page-Size Extensions (PSE) Bit . 147
Page-Directory Page Size (PS) Bit . 148

5.2 Legacy-Mode Page Translation . 148
CR3 Register . 149
Normal (Non-PAE) Paging . 150
PAE Paging. 154

5.3 Long-Mode Page Translation . 158
Canonical Address Form. 159
CR3 . 159
4-Kbyte Page Translation . 160
2-Mbyte Page Translation . 163

5.4 Page-Translation-Table Entry Fields 166
Field Definitions . 166

5.5 Translation-Lookaside Buffer (TLB) 170
Global Pages. 171
TLB Management . 171

5.6 Page-Protection Checks . 172
No Execute (NX) Bit . 173
User/Supervisor (U/S) Bit . 173
Read/Write (R/W) Bit . 174
Write Protect (CR0.WP) Bit . 174

5.7 Protection Across Paging Hierarchy 174
Access to User Pages when CR0.WP=1 176

5.8 Effects of Segment Protection . 176

6 System-Management Instructions . 177

6.1 Fast System Call and Return . 179
SYSCALL and SYSRET . 180
SYSENTER and SYSEXIT (Legacy Mode Only) 182
SWAPGS Instruction . 183

6.2 System Status and Control . 184
Processor Feature Identification (CPUID) 184
Accessing Control Registers. 184
Accessing the RFLAGs Register . 185
Accessing Debug Registers. 185
Accessing Model-Specific Registers 186

6.3 Segment Register and Descriptor Register Access 186
Accessing Segment Registers. 186
Accessing Descriptor-Table Registers 187

6.4 Protection Checking . 187
Checking Access Rights . 187
Checking Segment Limits. 188

Contents vii

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Checking Read/Write Rights . 188
Adjusting Access Rights . 188

6.5 Processor Halt . 188
6.6 Cache and TLB Management . 189

Cache Management . 189
TLB Invalidation . 189

7 Memory System . 191

7.1 Memory-Access Ordering . 194
Read Ordering . 195
Write Ordering. 195
Read/Write Barriers . 196

7.2 Memory Coherency and Protocol . 197
Special Coherency Considerations . 199

7.3 Memory Types . 200
7.4 Buffering and Combining Memory Writes 204

Write Buffering . 204
Write Combining . 205

7.5 Memory Caches . 206
Cache Organization and Operation . 207
Cache Control Mechanisms . 210
Cache and Memory Management Instructions 213
Serializing Instructions . 214

7.6 Memory-Type Range Registers . 215
MTRR Type Fields. 216
MTRRs . 217
Using MTRRs. 224
MTRRs and Page Cache Controls . 225
MTRRs in Multi-Processing Environments. 227

7.7 Page-Attribute Table Mechanism . 228
PAT Register . 228
PAT Indexing . 229
Identifying PAT Support. 230
PAT Accesses . 230
Combined Effect of MTRRs and PAT 231

7.8 Memory-Mapped I/O . 232
Extended Fixed-Range MTRR Type-Field Encodings 233
IORRs . 235
IORR Overlapping. 237
Top of Memory . 237

8 Exceptions and Interrupts. 241

8.1 Overview . 241
8.2 General Characteristics . 242

Precision . 242
Instruction Restart . 242
Types of Exceptions. 243
Masking External Interrupts . 243

viii Contents

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Masking Floating-Point and Media Instructions 244
Disabling Exceptions. 244

8.3 Vectors . 245
#DE—Divide-By-Zero-Error Exception (Vector 0) 248
#DB—Debug Exception (Vector 1) . 248
NMI—Non-Maskable-Interrupt Exception (Vector 2) 250
#BP—Breakpoint Exception (Vector 3) 250
#OF—Overflow Exception (Vector 4) 250
#BR—Bound-Range Exception (Vector 5). 251
#UD—Invalid-Opcode Exception (Vector 6) 251
#NM—Device-Not-Available Exception (Vector 7). 252
#DF—Double-Fault Exception (Vector 8) 252
Coprocessor-Segment-Overrun Exception (Vector 9) 254
#TS—Invalid-TSS Exception (Vector 10) 254
#NP—Segment-Not-Present Exception (Vector 11) 255
#SS—Stack Exception (Vector 12) . 256
#GP—General-Protection Exception (Vector 13) 257
#PF—Page-Fault Exception (Vector 14) 259
#MF—x87 Floating-Point Exception-Pending (Vector 16). . 260
#AC—Alignment-Check Exception (Vector 17) 261
#MC—Machine-Check Exception (Vector 18) 262
#XF—SIMD Floating-Point Exception (Vector 19) 263
User-Defined Interrupts (Vectors 32–255) 264

8.4 Exceptions During a Task Switch . 265
8.5 Error Codes . 265

Selector-Error Code. 265
Page-Fault Error Code. 266

8.6 Priorities. 267
Floating-Point Exception Priorities . 269
External Interrupt Priorities . 270

8.7 Real-Mode Interrupt Control Transfers 272
8.8 Legacy Protected-Mode Interrupt Control Transfers 274

Locating the Interrupt Handler . 274
Interrupt To Same Privilege. 275
Interrupt To Higher Privilege . 276
Privilege Checks . 278
Returning From Interrupt Procedures 281

8.9 Virtual-8086 Mode Interrupt Control Transfers. 282
Protected-Mode Handler Control Transfer 283
Virtual-8086 Handler Control Transfer 284

8.10 Long-Mode Interrupt Control Transfers 285
Interrupt Gates and Trap Gates . 285
Locating the Interrupt Handler . 286
Interrupt Stack Frame . 287
Interrupt-Stack Table . 290
Returning From Interrupt Procedures 292

Contents ix

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

8.11 Virtual Interrupts . 293
Virtual-8086 Mode Extensions . 294
Protected Mode Virtual Interrupts . 298
Effect of Instructions that Modify EFLAGS.IF 298

9 Machine Check Mechanism . 303

9.1 Determining Machine-Check Support. 303
9.2 Machine-Check Errors . 304

Error Sources . 304
9.3 Machine Check MSRs . 305

Global Status and Control Registers 306
Error-Reporting Register Banks . 308
Error Codes . 310

9.4 Initializing the Machine-Check Mechanism 312
9.5 Using Machine Check Features . 313

Handling Machine Check Exceptions 314
Reporting Correctable Machine Check Errors 316

10 System-Management Mode . 319

SMM Differences . 320
10.1 SMM Resources . 320

SMRAM . 320
SMBASE Register . 321
SMRAM State-Save Area . 322
SMM-Revision Identifier . 328

10.2 Using SMM. 329
System-Management Interrupt (SMI) 329
SMM Operating-Environment . 329
Exceptions and Interrupts . 330
Invalidating the Caches . 332
Saving Additional Processor State. 332
Operating in Protected Mode and Long Mode 333
Auto-Halt Restart . 333
I/O Instruction Restart . 334

10.3 Leaving SMM . 335

11 128-Bit, 64-Bit, and x87 Programming 337

11.1 Overview of System-Software Considerations 337
11.2 Determining Media and x87 Feature Support 337
11.3 Enabling 128-Bit Media Instructions. 338
11.4 Media and x87 Processor State . 339

128-Bit Media State . 339
64-Bit Media State . 341
x87 State. 342
Saving Media and x87 Processor State 344

12 Task Management . 357

12.1 Hardware Multitasking Overview . 357

x Contents

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

12.2 Task-Management Resources. 358
TSS Selector. 360
TSS Descriptor. 360
Task Register . 361
Legacy Task-State Segment . 363
64-Bit Task State Segment . 368
Task Gate Descriptor (Legacy Mode Only) 371

12.3 Hardware Task-Management in Legacy Mode. 371
Task Memory-Mapping . 371
Switching Tasks . 373
Task Switches Using Task Gates . 375
Nesting Tasks . 377

13 Debug and Performance Resources . 381

13.1 Software-Debug Resources. 382
Debug Registers. 383

13.2 Breakpoints . 392
Setting Breakpoints. 392
Using Breakpoints . 394
Breakpoint Instruction (INT3) . 399
Control-Transfer Breakpoint Features. 399

13.3 Performance Optimization . 401
Performance Counters . 402
Performance Event-Select Registers 403
Using Performance Counters . 406
Time-Stamp Counter . 406

14 Processor Initialization and Long-Mode Activation 409

14.1 Reset and Initialization . 409
Built-In Self Test (BIST) . 409
Clock Multiplier Selection . 410
Processor Initialization State . 410
Multiple Processor Initialization . 413
Fetching the First Instruction. 413

14.2 Hardware Configuration. 414
Processor Implementation Information 414
Enabling Internal Caches . 414
Initializing Media and x87 Processor State 415
Model-Specific Initialization . 417

14.3 Initializing Real Mode . 418
14.4 Initializing Protected Mode . 419
14.5 Initializing Long Mode . 420
14.6 Enabling and Activating Long Mode. 422

Activating Long Mode. 423
Consistency Checks . 424
Updating System Descriptor Table References 424
Relocating Page-Translation Tables. 425

14.7 Leaving Long Mode. 425

Contents xi

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

14.8 Long-Mode Initialization Example . 426

Appendix A MSR Cross-Reference. 433
A.1 MSR Cross-Reference by MSR Address 433
A.2 System-Software MSRs . 437
A.3 Memory-Typing MSRs. 438
A.4 Machine-Check MSRs . 441
A.5 Software-Debug MSRs . 442
A.6 Performance-Monitoring MSRs . 443

Index. 445

xii Contents

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figures xiii

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figures

Figure 1-1. Segmented-Memory Model . 7

Figure 1-2. Flat Memory Model . 8

Figure 1-3. Paged Memory Model . 9

Figure 1-4. 64-Bit Flat, Paged-Memory Model . 11

Figure 1-5. Real-Address Memory Model . 12

Figure 1-6. Operating Modes of the x86-64 Architecture 14

Figure 1-7. System Registers . 19

Figure 1-8. System-Data Structures . 21

Figure 3-1. Control Register 0 (CR0) . 53

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode. 57

Figure 3-3. Control Register 2 (CR2)—Long Mode 57

Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging . . . 57

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging 57

Figure 3-6. Control Register 3 (CR3)—Long Mode 58

Figure 3-7. Control Register 4 (CR4) . 58

Figure 3-8. RFLAGS Register. 63

Figure 3-9. Extended Feature Enable Register (EFER) 68

Figure 3-10.x86-64 Architecture Model-Specific Registers 70

Figure 3-11.System-Configuration Register (SYSCFG) 71

Figure 4-1. Segmentation Data Structures . 81

Figure 4-2. Segment and Descriptor-Table Registers 82

Figure 4-3. Segment Selector . 83

Figure 4-4. Segment-Register Format . 85

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode 86

Figure 4-6. Global and Local Descriptor-Table Access 89

Figure 4-7. GDTR and IDTR Format—Legacy Modes 89

Figure 4-8. GDTR and IDTR Format—Long Mode. 90

Figure 4-9. Relationship between the LDT and GDT. 91

Figure 4-10.LDTR Format—Legacy Mode . 92

Figure 4-11.LDTR Format—Long Mode . 92

Figure 4-12.Indexing an IDT . 95

xiv Figures

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 4-13.Generic Segment Descriptor—Legacy Mode. 96

Figure 4-14.Code-Segment Descriptor—Legacy Mode 99

Figure 4-15.Data-Segment Descriptor—Legacy Mode 101

Figure 4-16.LDT and TSS Descriptor—Legacy/Compatibility Modes 104

Figure 4-17.Call-Gate Descriptor—Legacy Mode . 105

Figure 4-18.Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode . . 105

Figure 4-19.Task-Gate Descriptor—Legacy Mode. 105

Figure 4-20.Code-Segment Descriptor—Long Mode 107

Figure 4-21.Data-Segment Descriptor—Long Mode 108

Figure 4-22.System-Segment Descriptor—64-Bit Mode 111

Figure 4-23.Call-Gate Descriptor—Long Mode . 112

Figure 4-24.Interrupt-Gate and Trap-Gate Descriptors—Long Mode 113

Figure 4-25.Privilege-Level Relationships . 118

Figure 4-26.Data-Access Privilege-Check Examples. 120

Figure 4-27.Stack-Access Privilege-Check Examples 122

Figure 4-28.Nonconforming Code-Segment Privilege-Check Examples . . 125

Figure 4-29.Conforming Code-Segment Privilege-Check Examples 127

Figure 4-30.Legacy-Mode Call-Gate Transfer Mechanism 128

Figure 4-31.Long-Mode Call-Gate Access Mechanism 129

Figure 4-32.Privilege-Check Examples for Call Gates 131

Figure 4-33.Legacy-Mode 32-Bit Stack Switch, with Parameters 133

Figure 4-34.32-Bit Stack Switch, No Parameters—Legacy Mode. 134

Figure 4-35.Stack Switch—Long Mode. 135

Figure 5-1. Virtual to Physical Address Translation—Long Mode 145

Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode . . 149

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode 149

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode 151

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode 151

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode 152

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode . 153

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode 153

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode 155

Figure 5-10.4-Kbyte PDPE—PAE Paging Legacy-Mode 156

Figures xv

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 5-11.4-Kbyte PDE—PAE Paging Legacy-Mode 156

Figure 5-12.4-Kbyte PTE—PAE Paging Legacy-Mode 156

Figure 5-13.2-Mbyte PAE Page Translation—Legacy Mode 157

Figure 5-14.2-Mbyte PDPE—PAE Paging Legacy-Mode. 158

Figure 5-15.2-Mbyte PDE—PAE Paging Legacy-Mode 158

Figure 5-16.Control Register 3 (CR3)—Long Mode 159

Figure 5-17.4-Kbyte Page Translation—Long Mode 161

Figure 5-18.4-Kbyte PML4E—Long Mode . 162

Figure 5-19.4-Kbyte PDPE—Long Mode . 162

Figure 5-20.4-Kbyte PDE—Long Mode. 162

Figure 5-21.4-Kbyte PTE—Long Mode . 163

Figure 5-22.2-Mbyte Page Translation—Long Mode. 164

Figure 5-23.2-Mbyte PML4E—Long Mode . 165

Figure 5-24.2-Mbyte PDPE—Long Mode . 165

Figure 5-25.2-Mbyte PDE—Long Mode . 165

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs. 181

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs . 183

Figure 7-1. Processor and Memory System . 192

Figure 7-2. MOESI State Transitions . 198

Figure 7-3. Cache Organization Example . 208

Figure 7-4. MTRR Mapping of Physical Memory . 218

Figure 7-5. Fixed-Range MTRR . 219

Figure 7-6. MTRRphysBasen Register. 221

Figure 7-7. MTRRphysMaskn Register . 222

Figure 7-8. MTRR defType Register Format . 223

Figure 7-9. MTRR Capability Register Format . 225

Figure 7-10.PAT Register. 228

Figure 7-11.Extended MTRR Type-Field Format (Fixed-Range MTRRs) 233

Figure 7-12.IORRBasen Register . 236

Figure 7-13.IORRMaskn Register . 237

Figure 7-14.Memory Organization Using Top-of-Memory Registers 238

Figure 7-15.Top-of-Memory Registers (TOP_MEM, TOP_MEM2) 239

Figure 8-1. Control Register 2 (CR2) . 259

xvi Figures

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 8-2. Selector Error Code . 265

Figure 8-3. Page-Fault Error Code . 266

Figure 8-4. Task Priority Register (CR8) . 271

Figure 8-5. Real-Mode Interrupt Control Transfer 272

Figure 8-6. Stack After Interrupt in Real Mode . 273

Figure 8-7. Protected-Mode Interrupt Control Transfer 275

Figure 8-8. Stack After Interrupt to Same Privilege Level 276

Figure 8-9. Stack After Interrupt to Higher Privilege 278

Figure 8-10.Privilege-Check Examples for Interrupts 280

Figure 8-11.Stack After Virtual-8086 Mode Interrupt to Protected Mode284

Figure 8-12.Long-Mode Interrupt Control Transfer 287

Figure 8-13.Long-Mode Stack After Interrupt—Same Privilege 289

Figure 8-14.Long-Mode Stack After Interrupt—Higher Privilege. 290

Figure 8-15.Long-Mode IST Mechanism . 292

Figure 9-1. MCG_CAP Register . 306

Figure 9-2. MCG_STATUS Register. 307

Figure 9-3. MCG_CTL Register . 308

Figure 9-4. MCi_CTL Registers . 309

Figure 9-5. MCi_STATUS Register . 309

Figure 10-1.Default SMRAM Memory Map . 321

Figure 10-2.SMBASE Register. 322

Figure 10-3.SMM-Revision Identifier . 328

Figure 11-1.128-Bit Media-Instruction State . 340

Figure 11-2.64-Bit Media-Instruction State . 341

Figure 11-3.x87-Instruction State . 343

Figure 11-4.FSAVE/FNSAVE Image (32-Bit, Protected Mode) 346

Figure 11-5.FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes) . 347

Figure 11-6.FSAVE/FNSAVE Image (16-Bit, Protected Mode) 348

Figure 11-7.FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes) . 349

Figure 11-8.FXSAVE and FXRSTOR Image (64-Bit Mode) 351

Figure 11-9.FXSAVE and FXRSTOR Image (All Modes Other than
64-bit Mode) . 352

Figure 12-1.Task-Management Resources . 359

Figures xvii

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 12-2.Task-Segment Selector . 360

Figure 12-3.TR Format, Legacy Mode . 362

Figure 12-4.TR Format, Long Mode . 362

Figure 12-5.Relationship between the TSS and GDT 363

Figure 12-6.Legacy 32-bit TSS . 364

Figure 12-7.I/O-Permission Bitmap Example . 368

Figure 12-8.Long Mode TSS Format . 370

Figure 12-9.Task-Gate Descriptor, Legacy Mode Only 371

Figure 12-10.Privilege-Check Examples for Task Gates. 377

Figure 13-1.Address-Breakpoint Registers (DR0–DR3) 384

Figure 13-2.Debug-Status Register (DR6) . 385

Figure 13-3.Debug-Control Register (DR7) . 386

Figure 13-4.Debug-Control MSR (DebugCtlMSR). 389

Figure 13-5.Control-Transfer Recording MSRs . 391

Figure 13-6.Performance Counter (PerfCtrn) . 402

Figure 13-7.Performance Event-Select Register (PerfEvtSeln) 404

Figure 13-8.Time-Stamp Counter (TSC) . 406

xviii Figures

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Tables xix

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Tables

Table 1-1. Operating Modes . 13

Table 1-2. Interrupts and Exceptions. 24

Table 2-1. Instructions That Reference RSP . 40

Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size 41

Table 2-3. Invalid Instructions in 64-Bit Mode . 44

Table 2-4. Invalid Instructions in Long Mode . 45

Table 2-5. Reassigned Instructions in 64-Bit Mode. 45

Table 2-6. Differences Between Long Mode and Legacy Mode. 50

Table 4-1. Segment Registers . 84

Table 4-2. Descriptor Types . 97

Table 4-3. Code-Segment Descriptor Types. 100

Table 4-4. Data-Segment Descriptor Types . 102

Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode . . . 103

Table 4-6. System-Segment Descriptor Types—Long Mode 110

Table 4-7. Descriptor-Entry Field Changes in Long Mode. 115

Table 5-1. Supported Paging Alternatives (CR0.PG=1) 146

Table 5-2. Physical-Page Protection, CR0.WP=0 175

Table 5-3. Effect of CR0.WP=1 on Supervisor Page Access 176

Table 6-1. System-Management Instructions . 177

Table 7-1. Memory Access by Memory Type . 203

Table 7-2. Caching Policy by Memory Type . 203

Table 7-3. x86-64 Architecture Cache-Operating Modes 211

Table 7-4. MTRR Type Field Encodings . 217

Table 7-5. Fixed-Range MTRR Address Ranges . 220

Table 7-6. Combined MTRR and Page-Level Memory Type with
Unmodified PAT MSR . 226

Table 7-7. PAT Type Encodings . 229

Table 7-8. PAT-Register PA-Field Indexing . 230

Table 7-9. Combined Effect of MTRR and PAT Memory Types 232

Table 7-10. Extended Fixed-Range MTRR Type Encodings 235

Table 8-1. Interrupt-Vector Source and Cause . 246

Table 8-2. Interrupt-Vector Classification. 247

Table 8-3. Double-Fault Exception Conditions . 253

Table 8-4. Invalid-TSS Exception Conditions . 255

xx Tables

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Table 8-5. Stack Exception Error Codes . 257

Table 8-6. General-Protection Exception Conditions 258

Table 8-7. Data-Type Alignment. 262

Table 8-8. Simultaneous Interrupt Priorities . 268

Table 8-9. Simultaneous Floating-Point Exception Priorities 270

Table 8-10. Virtual-8086 Mode Interrupt Mechanisms. 283

Table 8-11. Effect of Instructions that Modify the IF Bit. 299

Table 10-1. x86-64 Architecture SMM State-Save Area 323

Table 10-2. Legacy SMM State-Save Area (Not used by AMD x86-64
Architecture) . 326

Table 10-3. SMM Register Initialization . 330

Table 11-1. Deriving FSAVE Tag Field from FXSAVE Tag Field 355

Table 12-1. Effects of Task Nesting . 378

Table 13-1. Breakpoint-Setting Examples . 393

Table 13-2. Breakpoint Location by Condition . 395

Table 13-3. Operating-System Mode and User Mode Bits 404

Table 14-1. Initial Processor State . 410

Table 14-2. Initial State of Segment-Register Attributes 413

Table 14-3. x87 Floating-Point State Initialization 416

Table 14-4. Processor Operating Modes. 422

Table 14-5. Long-Mode Consistency Checks . 424

Table A-1. MSRs of the x86-64 Architecture . 433

Table A-2. System-Software MSR Cross-Reference 437

Table A-3. Memory-Typing MSR Cross-Reference 439

Table A-4. Machine-Check MSR Cross-Reference. 441

Table A-5. Software-Debug MSR Cross-Reference 442

Table A-6. Performance-Monitoring MSR Cross-Reference. 443

Chapter : xxi

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter : xxi

Revision History

Date Revision Description

September 2002 3.07 Made numerous small grammatical changes and factual clarifications. Added
Revision History.

xxii Chapter :

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Preface xxiii

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD
x86-64 Architecture Programmer’s Manual. This table lists each
volume and its order number.

Audience

This volume (Volume 2) is intended for programmers writing
operating systems, loaders, linkers, device drivers, or system
utilities. It assumes an understanding of x86-64 architecture
application-level programming that is described in Volume 1.

This volume describes the AMD x86-64 architecture’s resources
and functions that are managed by system software, including
operating-mode control, memory management, interrupts and
exceptions, task and state-change management, system-
management mode (including power management), multi-
processor support, debugging, and processor initialization.

Application-programming topics are described in Volume 1.
Details about each instruction are described in volumes 3, 4,
and 5.

Title Order No.

Volume 1, Application Programming 24592

Volume 2, System Programming 24593

Volume 3, General-Purpose and System Instructions 24594

Volume 4, 128-Bit Media Instructions 26568

Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

xxiv Preface

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Organization

This volume begins with an overview of system programming
and differences between the x86 and x86-64 architectures. This
is followed by chapters that describe the following details of
system programming:

� System Resources—The system registers and processor ID
(CPUID) functions.

� Segmented Virtual Memory—The segmented-memory models
supported by the architecture and their associated data
structures and protection checks.

� Page Translation and Protection—The page-translation
functions supported by the architecture and their associated
data structures and protection checks.

� System-Management Instructions—The instructions used to
manage system functions.

� Memory System—The memory-system hierarchy and its
resources and protocols, including memory-characterization,
caching, and buffering functions.

� Exceptions and Interrupts—Details about the types and
causes of exceptions and interrupts, and the methods of
transferring control during these events.

� Machine-Check Mechanism—The resources and functions
that support detection and handling of machine-check
errors.

� System-Management Mode—The resources and functions
that support system-management mode (SMM), including
power-management functions.

� 128-Bit, 64-Bit, and x87 Programming—The resources and
functions that support use (by application software) and
state-saving (by the operation system) of the 128-bit media,
64-bit media, and x87 floating-point instructions.

� Multiple-Processor Management—The features of the
instruction set and the system resources and functions that
support multiprocessing environments.

� Debug and Performance Resources—The system resources and
functions that support software debugging and performance
monitoring.

Preface xxv

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Legacy Task Management—Support for the legacy hardware
multitasking functions, including register resources and
data structures.

� Processor Initialization and Long-Mode Activation—The
methods by which system software initializes and changes
operating modes.

� Mixing Code Across Operating Modes—Things to remember
when running programs in different operating modes.

There are appendices describing details of model-specific
registers (MSRs) and machine-check implementations.
Definitions assumed throughout this volume are listed below.
The index at the end of this volume cross-references topics
within the volume. For other topics relating to the x86-64
architecture, see the tables of contents and indexes of the other
volumes.

Definitions

Some of the following definitions assume a knowledge of the
legacy x86 architecture. See “Related Documents” on
page xxxvi for descriptions of the legacy x86 architecture.

Terms and Notation 1011b
A binary value—in this example, a 4-bit value.

F0EAh
A hexadecimal value—in this example a 2-byte value.

[1,2)
A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).

7–4
A bit range, from bit 7 to 4, inclusive. The high-order bit is
shown first.

128-bit media instructions
Instructions that use the 128-bit XMM registers. These are a
combination of the SSE and SSE2 instruction sets.

64-bit media instructions
Instructions that use the 64-bit MMX™ registers. These are
primarily a combination of MMX and 3DNow!™ instruction

xxvi Preface

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

sets, with some additional instructions from the SSE and
SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit
address size is active. See legacy mode and compatibility
mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

64-bit mode
A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute
Said of a displacement that references the base of a code
segment rather than an instruction pointer. Contrast with
relative.

biased exponent
The sum of a floating-point value’s exponent and a constant
bias for a particular floating-point data type. The bias makes
the range of the biased exponent always positive, which
allows reciprocation without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default
address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

Preface xxvii

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

commit
To irreversibly write, in program order, an instruction’s
result to software-visible storage, such as a register
(including flags), the data cache, an internal write buffer, or
memory.

CPL
Current privilege level.

CR0–CR4
A register range, from register CR0 through CR4, inclusive,
with the low-order register first.

CR0.PE = 1
Notation indicating that the PE bit of the CR0 register has a
value of 1.

direct
Referencing a memory location whose address is included in
the instruction’s syntax as an immediate operand. The
address may be an absolute or relative address. Compare
indirect.

dirty data
Data held in the processor’s caches or internal buffers that is
more recent than the copy held in main memory.

displacement
A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI
The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

xxviii Preface

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

EFER.LME = 0
Notation indicating that the LME bit of the EFER register
has a value of 0.

effective address size
The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size
The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception
An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. For all exceptions
except 128-bit media SIMD floating-point exceptions and
x87 floating-point exceptions, control is transferred to the
handler (or service routine) for that exception, as defined by
the exception’s vector. For floating-point exceptions defined
by the IEEE 754 standard, there are both masked and
unmasked responses. When unmasked, the exception
handler is called, and when masked, a default response is
provided instead of calling the handler.

FF /0
Notation indicating that FF is the first byte of an opcode,
and a subopcode in the ModR/M byte has a value of 0.

flush
An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)
invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”

GDT
Global descriptor table.

IDT
Interrupt descriptor table.

Preface xxix

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

IGN
Ignore. Field is ignored.

indirect
Referencing a memory location whose address is in a
register or other memory location. The address may be an
absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on
page xxxvi for descriptions of the legacy x86 architecture.

legacy mode
An operating mode of the x86-64 architecture in which
existing 16-bit and 32-bit applications and operating systems
run without modification. A processor implementation of
the x86-64 architecture can run in either long mode or legacy
mode. Legacy mode has three submodes, real mode, protected
mode, and virtual-8086 mode.

long mode
An operating mode unique to the x86-64 architecture. A
processor implementation of the x86-64 architecture can run
in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.

lsb
Least-significant bit.

LSB
Least-significant byte.

xxx Preface

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

main memory
Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

mask
(1) A control bit that prevents the occurrence of a floating-
point exception from invoking an exception-handling
routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memory.

ModRM
A byte following an instruction opcode that specifies
address calculation based on mode (Mod), register (R), and
memory (M) variables.

moffset
A direct memory offset. In other words, a displacement that
is added to the base of a code segment (for absolute
addressing) or to an instruction pointer (for addressing
relative to the instruction pointer, as in RIP-relative
addressing).

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
A combination of 128-bit media instructions and 64-bit media
instructions.

octword
Same as double quadword.

offset
Same as displacement.

Preface xxxi

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

overflow
The condition in which a floating-point number is larger in
magnitude than the largest, finite, positive or negative
number that can be represented in the data-type format
being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy
mode.

relative
Referencing with a displacement (also called offset) from an
instruction pointer rather than the base of a code segment.
Contrast with absolute.

REX
An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

xxxii Preface

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.
Compare moffset.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies
address calculation based on scale (S), index (I), and base
(B).

SIMD
Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit
media instructions and 64-bit media instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media
instructions and 64-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CR8).

TSS
Task-state segment.

underflow
The condition in which a floating-point number is smaller in
magnitude than the smallest nonzero, positive or negative
number that can be represented in the data-type format
being used.

vector
(1) A set of integer or floating-point values, called elements,
that are packed into a single operand. Most of the 128-bit

Preface xxxiii

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

and 64-bit media instructions use vectors as operands.
Vectors are also called packed or SIMD (single-instruction
multiple-data) operands.
(2) An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:

AH–DH
The high 8-bit AH, BH, CH, and DH registers. Compare
AL–DL.

AL–DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH–DH.

AL–r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B–R15B registers, available in 64-bit mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX–eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX–rSP.

EBP
Extended base pointer register.

xxxiv Preface

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

eIP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For
the 64-bit data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8–R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8–r15
The 8-bit R8B–R15B registers, or the 16-bit R8W–R15W
registers, or the 32-bit R8D–R15D registers, or the 64-bit
R8–R15 registers.

Preface xxxv

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

rAX–rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with
nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit
size.

RAX
64-bit version of the EAX register.

RAZ
Read as zero (0), regardless of what is written.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

xxxvi Preface

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register, a new register introduced in the
x86-64 architecture to speed interrupt management.

TR
Task register.

Endian Order The x86 and x86-64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their
least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

Related Documents
� Peter Abel, IBM PC Assembly Language and Programming,

Prentice-Hall, Englewood Cliffs, NJ, 1995.

� Rakesh Agarwal, 80x86 Architecture & Programming: Volume
II, Prentice-Hall, Englewood Cliffs, NJ, 1991.

� AMD data sheets and application notes for particular
hardware implementations of the x86-64 architecture.

� AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia
Technology, Sunnyvale, CA, 2000.

� AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

� AMD, AMD Extensions to the 3DNow!™ and MMX™
Instruction Sets, Sunnyvale, CA, 2000.

� AMD, SYSCALL and SYSRET Instruction Specification
Application Note, Sunnyvale, CA, 1998.

� Don Anderson and Tom Shanley, Pentium Processor System
Architecture, Addison-Wesley, New York, 1995.

� Nabajyoti Barkakati and Randall Hyde, Microsoft Macro
Assembler Bible, Sams, Carmel, Indiana, 1992.

Preface xxxvii

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly
Language Programming, Macmillan Publishing Co., New
York, 1994.

� Barry B. Brey, Programming the 80286, 80386, 80486, and
Pentium Based Personal Computer, Prentice-Hall, Englewood
Cliffs, NJ, 1995.

� Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley,
New York, 1994.

� Penn Brumm and Don Brumm, 80386/80486 Assembly
Language Programming, Windcrest McGraw-Hill, 1993.

� Geoff Chappell, DOS Internals, Addison-Wesley, New York,
1994.

� Chips and Technologies, Inc. Super386 DX Programmer’s
Reference Manual, Chips and Technologies, Inc., San Jose,
1992.

� John Crawford and Patrick Gelsinger, Programming the
80386, Sybex, San Francisco, 1987.

� Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix
Corporation, Richardson, TX, 1995.

� Cyrix Corporation, M1 Processor Data Book, Cyrix
Corporation, Richardson, TX, 1996.

� Cyrix Corporation, MX Processor MMX Extension Opcode
Table, Cyrix Corporation, Richardson, TX, 1996.

� Cyrix Corporation, MX Processor Data Book, Cyrix
Corporation, Richardson, TX, 1997.

� Jeffrey P. Doyer, Introduction to Protected Mode
Programming, course materials for an onsite class, 1992.

� Ray Duncan, Extending DOS: A Programmer's Guide to
Protected-Mode DOS, Addison Wesley, NY, 1991.

� William B. Giles, Assembly Language Programming for the
Intel 80xxx Family, Macmillan, New York, 1991.

� Frank van Gilluwe, The Undocumented PC, Addison-Wesley,
New York, 1994.

� John L. Hennessy and David A. Patterson, Computer
Architecture, Morgan Kaufmann Publishers, San Mateo, CA,
1996.

� Thom Hogan, The Programmer’s PC Sourcebook, Microsoft
Press, Redmond, WA, 1991.

xxxviii Preface

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro,
Peer-to-Peer Communications, Menlo Park, CA, 1997.

� IBM Corporation, 486SLC™ Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

� IBM Corporation, 486SLC2™ Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

� IBM Corporation, 80486DX2 Processor Floating Point
Instructions, IBM Corporation, Essex Junction, VT, 1995.

� IBM Corporation, 80486DX2 Processor BIOS Writer's Guide,
IBM Corporation, Essex Junction, VT, 1995.

� IBM Corporation, Blue Lightening 486DX2 Data Book, IBM
Corporation, Essex Junction, VT, 1994.

� Institute of Electrical and Electronics Engineers, IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985.

� Institute of Electrical and Electronics Engineers, IEEE
Standard for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Std 854-1987.

� Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86
IBM PC and Compatible Computers, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

� Hans-Peter Messmer, The Indispensable Pentium Book,
Addison-Wesley, New York, 1995.

� Karen Miller, An Assembly Language Introduction to
Computer Architecture: Using the Intel Pentium, Oxford
University Press, New York, 1999.

� Stephen Morse, Eric Isaacson, and Douglas Albert, The
80386/387 Architecture, John Wiley & Sons, New York, 1987.

� NexGen Inc., Nx586 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1993.

� NexGen Inc., Nx686 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1994.

� Bipin Patwardhan, Introduction to the Streaming SIMD
Extensions in the Pentium III, www.x86.org/articles/sse_pt1/
simd1.htm, June, 2000.

� Peter Norton, Peter Aitken, and Richard Wilton, PC
Programmer’s Bible, Microsoft Press, Redmond, WA, 1993.

� PharLap 386|ASM Reference Manual, Pharlap, Cambridge
MA, 1993.

Preface xxxix

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� PharLap TNT DOS-Extender Reference Manual, Pharlap,
Cambridge MA, 1995.

� Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced
Programming, Van Nostrand Reinhold, New York, 1993.

� Tom Shanley, Protected Mode System Architecture, Addison
Wesley, NY, 1996.

� SGS-Thomson Corporation, 80486DX Processor SMM
Programming Manual, SGS-Thomson Corporation, 1995.

� Walter A. Triebel, The 80386DX Microprocessor, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

� John Wharton, The Complete x86, MicroDesign Resources,
Sebastopol, California, 1994.

� Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

xl Preface

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Chapter 1: System-Programming Overview 1

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 1

1 System-Programming Overview

This ent i re volume is intended for system-software
developers—programmers writing operating systems, loaders,
linkers, device drivers, or utilities that require access to system
resources. These system resources are generally available only
to software running at the highest-privilege level (CPL=0), also
referred to as privileged software. Privilege levels and their
interactions are fully described in “Segment-Protection
Overview” on page 116.

This chapter introduces the basic features and capabilities of
the x86-64 architecture that are available to system-software
developers. The concepts include:

� The supported address forms and how memory is organized.

� How memory-management hardware makes use of the
various address forms to access memory.

� The processor operating modes, and how the memory-
management hardware supports each of those modes.

� The system-control registers used to manage system
resources.

� The interrupt and exception mechanism, and how it is used
to interrupt program execution and to report errors.

� Additional, miscellaneous features available to system
software, including support for hardware multitasking,
reporting machine-check exceptions, debugging software
problems, and optimizing software performance.

Many of the legacy features and capabilities are enhanced by
the x86-64 architecture to support 64-bit operating systems and
applications, while providing full backward-compatibility with
existing software.

1.1 Memory Model

The x86-64 architecture memory model allows system software
to manage application software and associated data in a secure
fashion. The memory model is backward-compatible with the
legacy memory model. Hardware-translation mechanisms are
provided to map addresses between virtual-memory space and
physical-memory space. The translation mechanisms allow

2 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

system software to relocate applications and data transparently,
either anywhere in physical-memory space, or in areas on the
system hard drive managed by the operating system.

In long mode, the x86-64 architecture implements a flat-
memory model. In legacy mode, the architecture implements all
legacy memory models.

1.1.1 Memory
Addressing

The x86-64 architecture supports address relocation. To do this,
several types of addresses are needed to completely describe
memory organization. Specifically, four types of addresses are
defined by the x86-64 architecture:

� Logical addresses

� Effective addresses, or segment offsets, which are a portion
of the logical address.

� Linear (virtual) addresses

� Physical addresses

Logical Addresses. A l og ica l addres s i s a reference into a
segmented-address space. It is comprised of the segment
selector and the effective address. Notationally, a logical
address is represented as

Logical Address = Segment Selector : Offset

The segment selector specifies an entry in either the global or
local descriptor table. The specified descriptor-table entry
describes the segment location in virtual-address space, its size,
and other characteristics. The effective address is used as an
offset into the segment specified by the selector.

Logical addresses are often referred to as far pointers. Far
pointers are used in software addressing when the segment
reference must be explicit (i.e., a reference to a segment
outside the current segment).

Effective Addresses. The offset into a memory segment is referred
to as an effective address (see “Segmentation” on page 6 for a
description of segmented memory). Effective addresses are
formed by adding together elements comprising a base value, a
scaled-index value, and a displacement value. The effective-
address computation is represented by the equation

Effective Address = Base + (Scale x Index) + Displacement

Chapter 1: System-Programming Overview 3

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 3

The elements of an effective-address computation are defined
as follows:

� Base—A value stored in any general-purpose register.

� Scale—A positive value of 1, 2, 4, or 8.

� Index—A two’s-complement value stored in any general-
purpose register.

� Displacement—An 8-bit, 16-bit, or 32-bit two’s-complement
value encoded as part of the instruction.

Effective addresses are often referred to as near pointers. A near
pointer is used when the segment selector is known implicitly
or when the flat-memory model is used.

Long mode defines a 64-bit effective-address length. If a
processor implementation does not support the full 64-bit
virtual-address space, the effective address must be in canonical
form (see “Canonical Address Form” on page 5).

Linear (Virtual) Addresses. The segment-selector portion of a
logical address specifies a segment-descriptor entry in either
the global or local descriptor table. The specified segment-
descriptor entry contains the segment-base address, which is
the starting location of the segment in linear-address space. A
linear address is formed by adding the segment-base address to
the effective address (segment offset), which creates a
reference to any byte location within the supported linear-
address space. Linear addresses are often referred to as virtual
addresses, and both terms are used interchangeably throughout
this document.

Linear Address = Segment Base Address + Effective Address

When the flat-memory model is used—as in 64-bit mode—a
segment-base address is treated as 0. In this case, the linear
address is identical to the effective address. In long mode,
linear addresses must be in canonical address form, as
described in “Canonical Address Form” on page 5.

Physical Addresses. A physical address is a reference into the
physical-address space, typically main memory. Physical
addresses are translated from virtual addresses using page-
translation mechanisms. See “Paging” on page 8 for
information on how the paging mechanism is used for virtual-
address to physical-address translation. When the paging

4 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

mechanism is not enabled, the virtual (linear) address is used
as the physical address.

1.1.2 Memory
Organization

The x86-64 architecture organizes memory into virtual memory
and physical memory. Virtual-memory and physical-memory
spaces can be (and usually are) different in size. Generally, the
virtual-address space is much larger than physical-address
memory. System software relocates applications and data
between physical memory and the system hard disk to make it
appear that much more memory is available than really exists.
System software then uses the hardware memory-management
mechanisms to map the larger virtual-address space into the
smaller physical-address space.

Virtual Memory. Software uses virtual addresses to access
locations within the virtual-memory space. System software is
responsible for managing the relocation of applications and
data in virtual-memory space using segment-memory
management. System software is also responsible for mapping
virtual memory to physical memory through the use of page
translation. The x86-64 architecture supports different virtual-
memory sizes using the following address-translation modes:

� Protected Mode—This mode supports 4 gigabytes of virtual-
address space using 32-bit virtual addresses.

� Long Mode—This mode supports 16 exabytes of virtual-
address space using 64-bit virtual addresses.

Physical Memory. Physical addresses are used to directly access
main memory. For a particular computer system, the size of the
available physical-address space is equal to the amount of main
memory installed in the system. The maximum amount of
physical memory accessible depends on the processor
implementation and on the address-translation mode. The
x86-64 architecture supports varying physical-memory sizes
using the following address-translation modes:

� Real-Address Mode—This mode, also called real mode,
supports 1 megabyte of physical-address space using 20-bit
physical addresses. This address-translation mode is
described in “Real Addressing” on page 11. Real mode is
available only from legacy mode (see “Legacy Modes” on
page 16).

� Legacy Protected Mode—This mode supports several different
address-space sizes, depending on the translation

Chapter 1: System-Programming Overview 5

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 5

mechanism used and whether extensions to those
mechanisms are enabled.

Legacy protected mode supports 4 gigabytes of physical-
address space using 32-bit physical addresses. Both segment
translation (see “Segmentation” on page 6) and page
translation (see “Paging” on page 8) can be used to access
the physical address space, when the processor is running in
legacy protected mode.

When the physical-address size extensions are enabled (see
“Physical-Address Extensions (PAE) Bit” on page 147), the
page-translation mechanism can be extended to support 52-
bit physical addresses. 52-bit physical addresses allow up to
4 petabytes of physical-address space to be supported.
(Currently, the x86-64 architecture supports 40-bit addresses
in this mode, allowing up to 1 terabyte of physical-address
space to be supported.

� Long Mode—This mode is unique to the x86-64 architecture.
This mode supports up to 4 petabytes of physical-address
space using 52-bit physical addresses. Long mode requires
the use of page-translation and the physical-address size
extensions (PAE).

1.1.3 Canonical
Address Form

Long mode defines 64 bits of virtual-address space, but
processor implementations can support less. Although some
processor implementations do not use all 64 bits of the virtual
address, they all check bits 63 through the most-significant
implemented bit to see if those bits are all zeros or all ones. An
address that complies with this property is in canonical address
form. In most cases, a virtual-memory reference that is not in
canonical form causes a general-protection exception (#GP) to
occur. However, implied stack references where the stack
address is not in canonical form causes a stack exception (#SS)
to occur. Implied stack references include all push and pop
instructions, and any instruction using RSP or RBP as a base
register.

By checking canonical-address form, the x86-64 architecture
prevents software from exploiting unused high bits of pointers
for other purposes. Software complying with canonical-address
form on a specific processor implementation can run
unchanged on long-mode implementations supporting larger
virtual-address spaces.

6 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

1.2 Memory Management

Memory management consists of the methods by which
addresses generated by sof tware are trans lated by
segmentation and/or paging into addresses in physical memory.
Memory management is not visible to application software. It is
handled by the system software and processor hardware.

1.2.1 Segmentation Segmentation was originally created as a method by which
system software could isolate software processes (tasks), and
the data used by those processes, from one another in an effort
to increase the reliability of systems running multiple processes
simultaneously.

The x86-64 architecture supports all forms of legacy
segmentation. However, most modern system software does not
use the segmentation features available in the legacy x86
architecture. Instead, system software typically handles
program and data isolation using page-level protection. For this
reason, the x86-64 architecture dispenses with multiple
segments in 64-bit mode and, instead, uses a flat-memory
model. The elimination of segmentation allows new 64-bit
system software to be coded more simply, and it supports more
efficient management of multi-processing than is possible in
the legacy x86 architecture.

Segmentation is, however, used in compatibility mode and
legacy mode. Here, segmentation is a form of base memory-
addressing that allows software and data to be relocated in
virtual-address space off of an arbitrary base address. Software
and data can be relocated in virtual-address space using one or
more variable-sized memory segments. The legacy x86
architecture provides several methods of restricting access to
segments from other segments so that software and data can be
protected from interfering with each other.

In compatibility and legacy modes, up to 16,383 unique
segments can be defined. The base-address value, segment size
(called a limit), protection, and other attributes for each
segment are contained in a data structure called a segment
descriptor. Collections of segment descriptors are held in
descriptor tables. Specific segment descriptors are referenced or
selected from the descriptor table using a segment selector
register. Six segment-selector registers are available, providing
access to as many as six segments at a time.

Chapter 1: System-Programming Overview 7

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 7

Figure 1-1 shows an example of segmented memory.
Segmentation is described in Chapter 4, “Segmented Virtual
Memory.”

Figure 1-1. Segmented-Memory Model

Flat Segmentation. One special case of segmented memory is the
flat-memory model. In the legacy flat-memory model, all
segment-base addresses have a value of 0, and the segment
limits are fixed at 4 Gbytes. Segmentation cannot be disabled
but use of the flat-memory model effectively disables segment
translation. The result is a virtual address that equals the
effective address. Figure 1-2 on page 8 shows an example of the
flat-memory model.

513-201.eps

Effective Address

Selectors

Base

Limit

Base

Limit

Descriptor Table

Virtual Address
Space

Virtual Address

Segment

Segment

DS

ES

FS

GS

CS

SS

8 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Software running in 64-bit mode automatically uses the flat-
memory model. In 64-bit mode, the segment base is treated as if
it were 0, and the segment limit is ignored. This allows an
effective addresses to access the full virtual-address space
supported by the processor.

Figure 1-2. Flat Memory Model

1.2.2 Paging Paging allows software and data to be relocated in physical-
address space using fixed-size blocks called physical pages. The
legacy x86 architecture supports three different physical-page
sizes of 4 Kbytes, 2 Mbytes, and 4 Mbytes. As with segment
translation, access to physical pages by lesser-privileged
software can be restricted.

Page translation uses a hierarchical data structure called a
page-translation table to translate virtual pages into physical-
pages. The number of levels in the translation-table hierarchy
can be as few as one or as many as four, depending on the
physical-page size and processor operating mode. Translation
tables are aligned on 4-Kbyte boundaries. Physical pages must
be aligned on 4-Kbyte, 2-Mbyte, or 4-Mbyte boundaries,
depending on the physical-page size.

513-202.eps

Effective Address

Virtual Address
Space

Virtual Address

Flat Segment

Chapter 1: System-Programming Overview 9

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 9

Each table in the translation hierarchy is indexed by a portion
of the virtual-address bits. The entry referenced by the table
index contains a pointer to the base address of the next-lower-
level table in the translation hierarchy. In the case of the lowest-
level table, its entry points to the physical-page base address.
The physical page is then indexed by the least-significant bits
of the virtual address to yield the physical address.

Figure 1-3 shows an example of paged memory with three levels
in the translation-table hierarchy. Paging is described in
Chapter 5, “Page Translation and Protection.”

Figure 1-3. Paged Memory Model

Software running in long mode is required to have page
translation enabled.

513-203.eps

Page Translation Tables

Physical Address
Space

Physical Address

Page Table Base Address

Virtual Address

Physical Page

Table 3Table 2Table 1

10 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

1.2.3 Mixing
Segmentation and
Paging

Memory-management software can combine the use of
segmented memory and paged memory. Because segmentation
cannot be disabled, paged-memory management requires some
minimum initialization of the segmentation resources. Paging
can be completely disabled , so segmented -memory
management does not require initialization of the paging
resources.

Segments can range in size from a single byte to 4 Gbytes in
length. It is therefore possible to map multiple segments to a
single physical page and to map multiple physical pages to a
single segment. Alignment between segment and physical-page
boundaries is not required, but memory-management software
is simplified when segment and physical-page boundaries are
aligned.

The simplest, most efficient method of memory management is
the flat-memory model. In the flat-memory model, all segment
base addresses have a value of 0 and the segment limits are
fixed at 4 Gbytes. The segmentation mechanism is still used
each time a memory reference is made, but because virtual
addresses are identical to effective addresses in this model, the
segmentation mechanism is effectively ignored. Translation of
virtual (or effective) addresses to physical addresses takes
place using the paging mechanism only.

Because 64-bit mode disables segmentation, it uses a flat,
paged-memory model for memory management. The 4 Gbyte
segment limit is ignored in 64-bit mode. Figure 1-4 on page 11
shows an example of this model.

Chapter 1: System-Programming Overview 11

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 11

Figure 1-4. 64-Bit Flat, Paged-Memory Model

1.2.4 Real Addressing Real addressing is a legacy-mode form of address translation
used in real mode. This simplified form of address translation is
backward compatible with 8086-processor effective-to-physical
address translation. In this mode, 16-bit effective addresses are
mapped to 20-bit physical addresses, providing a 1-Mbyte
physical-address space.

Segment selectors are used in real-address translation, but not
as an index into a descriptor table. Instead, the 16-bit segment-
selector value is shifted left by 4 bits to form a 20-bit segment-
base address. The 16-bit effective address is added to this 20-bit
segment base address to yield a 20-bit physical address. If the
sum of the segment base and effective address carries over into
bit 20, that bit can be optionally truncated to mimic the 20-bit

513-204.eps

Physical Address
Space

Page Frame

Physical Address

Page Translation Tables

Page Table Base Address

Effective Address

Virtual Address
Space

Virtual Address

Flat Segment

12 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

address wrapping of the 8086 processor by using the A20M#
input signal to mask the A20 address bit.

Real-address translation supports a 1-Mbyte physical-address
space using up to 64K segments aligned on 16-byte boundaries.
Each segment is exactly 64K bytes long. Figure 1-5 shows an
example of real-address translation.

Figure 1-5. Real-Address Memory Model

1.3 Operating Modes

The legacy x86 architecture provides four operating modes or
environments that support varying forms of memory
management, virtual-memory and physical-memory sizes, and
protection:

� Real Mode.

� Protected Mode.

� Virtual-8086 Mode.

� System Management Mode.

513-205.eps

Effective Address

Selectors

+

0000 Effective Address 0000Selector

Physical Address

019019

019

015

DS

ES

FS

GS

CS

SS

Chapter 1: System-Programming Overview 13

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 13

The x86-64 architecture supports all these legacy modes, and it
adds a new operating mode called long mode. Table 1-1 shows
the differences between long mode and legacy mode. Software
can move between all supported operating modes as shown in
Figure 1-6 on page 14. Each operating mode is described in the
following sections.

Table 1-1. Operating Modes

Mode
System

Software
Required

Application
Recompile
Required

Defaults1

Register
Extensions2

Maximum
GPR

Width
(bits)

 Address
Size
(bits)

Operand
Size
(bits)

Long Mode3

64-Bit
Mode New

64-bit OS

yes 64
32

yes 64

Compatibility
Mode

no
32

no 32
16 16

Legacy
Mode

Protected
Mode Legacy 32-

bit OS
no

32 32

no

32
16

Virtual-8086
Mode

16 16 32

Real Mode
Legacy 16-

bit OS

Note:
1. Defaults can be overridden in most modes using an instruction prefix or system control bit.
2. Register extensions includes eight new GPRs and eight new XMM registers (also called SSE registers).
3. Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode.

14 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 1-6. Operating Modes of the x86-64 Architecture

1.3.1 Long Mode Long mode consists of two submodes: 64-bit mode and
compatibility mode. 64-bit mode supports several new features,
including the ability to address 64-bit virtual-address space.
Compatibility mode provides binary compatibility with existing
16-bit and 32-bit applications when running on 64-bit system
software.

Throughout this document, references to long mode refer
collectively to both 64-bit mode and compatibility mode. If a
function is specific to either 64-bit mode or compatibility mode,
then those specific names are used instead of the name long
mode.

513-206.eps

System
Management

Mode

Real
Mode

Virtual
8086
Mode

Protected
Mode

Long Mode

64-bit
Mode

Compatibility
Mode

EFER.LME=1, CR4.PAE=1
then CR0.PG=1

CR0.PE=1

CR0.PG=0
then EFER.LME=0

CS.L=0

CS.L=1

CS.L=0

CR0.PE=0

EFLAGS.VM=1

EFLAGS.VM=0

RSMSMI#

RSM

SMI#

SMI#

SMI#

RSM

RSM

SMI#RSM

Reset

Reset
Reset

Reset

Chapter 1: System-Programming Overview 15

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 15

Before enabling and activating long mode, system software
must first enable protected mode. The process of enabling and
activating long mode is described in Chapter 14, “Processor
Initialization and Long-Mode Activation.” Long mode features
are described throughout this document, where applicable.

1.3.2 64-Bit Mode 64-bit mode, a submode of long mode, provides support for 64-
bit system software and applications by adding the following
new features:

� 64-bit virtual addresses (processor implementations can
have fewer).

� Register extensions through a new instruction prefix (REX):

- Adds eight GPRs (R8–R15).

- Widens GPRs to 64 bits.

- Adds eight 128-bit streaming SIMD extension (SSE)
registers (XMM8–XMM15).

� 64-bit instruction pointer (RIP).

� New RIP-relative data-addressing mode.

� Flat-segment address space with single code, data, and stack
space.

The mode is enabled by the system software on an individual
code-segment basis. Although code segments are used to enable
and disable 64-bit mode, the legacy segmentation mechanism is
largely disabled. Page translation is required for memory
management purposes. Because 64-bit mode supports a 64-bit
virtual-address space, it requires 64-bit system software and
development tools.

In 64-bit mode, the default address size is 64 bits, and the
default operand size is 32 bits. The defaults can be overridden
on an instruction-by-instruction basis using instruction
prefixes. A new REX prefix is introduced for specifying a 64-bit
operand size and the new registers.

1.3.3 Compatibility
Mode

Compatibility mode, a submode of long mode, allows system
software to implement binary compatibility with existing 16-bit
and 32-bit x86 applications. It allows these applications to run,
without recompilation, under 64-bit system software in long
mode, as shown in Table 1-1 on page 13.

In compatibility mode, applications can only access the first
4 Gbytes of virtual-address space. Standard x86 instruction

16 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

prefixes toggle between 16-bit and 32-bit address and operand
sizes.

Compatibility mode, like 64-bit mode, is enabled by system
software on an individual code-segment basis. Unlike 64-bit
mode, however, segmentation functions the same as in the
legacy-x86 architecture, using 16-bit or 32-bit protected-mode
semantics. From an application viewpoint, compatibility mode
looks like a legacy protected-mode environment. From a
system-software viewpoint, the long-mode mechanisms are used
for address translation, interrupt and exception handling, and
system data-structures.

1.3.4 Legacy Modes Legacy mode consists of three submodes: real mode, protected
mode, and virtual-8086 mode. Protected mode can be either
paged or unpaged. Legacy mode preserves binary compatibility
not only with existing x86 16-bit and 32-bit applications but also
with existing x86 16-bit and 32-bit system software.

Real Mode. In this mode, also called real-address mode, the
processor supports a physical-memory space of 1 Mbyte and
operand sizes of 16 bits (default) or 32 bits (with instruction
prefixes). Interrupt handling and address generation are nearly
identical to the 80286 processor’s real mode. Paging is not
supported. All software runs at privilege level 0.

Real mode is entered after reset or processor power-up. The
mode is not supported when the processor is operating in long
mode because long mode requires that paged protected mode
be enabled.

Protected Mode. In this mode, the processor supports virtual-
memory and physical-memory spaces of 4 Gbytes and operand
sizes of 16 or 32 bits. All segment translation, segment
protection, and hardware multitasking functions are available.
System software can use segmentation to relocate effective
addresses in virtual-address space. If paging is not enabled,
virtual addresses are equal to physical addresses. Paging can be
optionally enabled to allow translation of virtual addresses to
physical addresses and to use the page-based memory-
protection mechanisms.

In protected mode, software runs at privilege levels 0, 1, 2, or 3.
Typically, application software runs at privilege level 3, the
system software runs at privilege levels 0 and 1, and privilege

Chapter 1: System-Programming Overview 17

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 17

level 2 is available to system software for other uses. The 16-bit
version of this mode was first introduced in the 80286 processor.

Virtual-8086 Mode. Virtual-8086 mode allows system software to
run 16-bit real-mode software on a virtualized-8086 processor.
In this mode, software written for the 8086, 8088, 80186, or
80188 processor can run as a privilege-level-3 task under
protected mode. The processor supports a virtual-memory
space of 1 Mbytes and operand sizes of 16 bits (default) or 32
bits (with instruction prefixes), and it uses real-mode address
translation.

Virtual-8086 mode is enabled by setting the virtual-machine bit
in the EFLAGS register (EFLAGS.VM). EFLAGS.VM can only
be set or cleared when the EFLAGS register is loaded from the
TSS as a result of a task switch, or by executing an IRET
instruction from privileged software. The POPF instruction
cannot be used to set or clear the EFLAGS.VM bit.

Virtual-8086 mode is not supported when the processor is
operating in long mode. When long mode is enabled, any
attempt to enable virtual-8086 mode is silently ignored.

1.3.5 System
Management Mode
(SMM)

System management mode (SMM) is an operating mode
designed for system-control activities that are typically
transparent to conventional system software. Power
management is one popular use for system management mode.
SMM is primarily targeted for use by the basic input-output
system (BIOS) and specialized low-level device drivers. The
code and data for SMM are stored in the SMM memory area,
which is isolated from main memory by the SMM output signal.

SMM is entered by way of a system management interrupt
(SMI). Upon recognizing an SMI, the processor enters SMM and
switches to a separate address space where the SMM handler is
located and executes. In SMM, the processor supports real-
mode addressing with 4 Gbyte segment limits and default
operand, address, and stack sizes of 16 bits (prefixes can be
used to override these defaults).

1.4 System Registers

Figure 1-7 on page 19 shows the system registers defined for the
x86-64 architecture. System software uses these registers to,
among other things, manage the processor operating

18 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

environment, define system resource characteristics, and to
monitor software execution. With the exception of the RFLAGS
register, system registers can be read and written only from
privileged software.

Except for the descriptor-table registers and task register, the
x86-64 architecture defines all system registers to be 64 bits
wide. The descriptor table and task registers are defined by the
x86-64 architecture to include 64-bit base-address fields, in
addition to their other fields.

As shown in Figure 1-7 on page 19, the system registers include:

� Control Registers—These registers are used to control system
operation and some system features. See “System-Control
Registers” on page 51 for details.

� System-Flags Register—The RFLAGS register contains
system-status flags and masks. It is also used to enable
virtual-8086 mode and to control application access to I/O
devices and interrupts. See “RFLAGS Register” on page 62
for details.

� Descriptor-Table Registers—These registers contain the
location and size of descriptor tables stored in memory.
Descriptor tables hold segmentation data structures used in
protected mode. See “Descriptor Tables” on page 87 for
details.

� Task Register—The task register contains the location and
size in memory of the task-state segment. The hardware-
multitasking mechanism uses the task-state segment to hold
state information for a given task. The TSS also holds other
data, such as the inner-level stack pointers used when
changing to a higher privilege level. See “Task Register” on
page 361 for details.

� Debug Registers—Debug registers are used to control the
software-debug mechanism, and to report information back
to a debug utility or application. See “Debug Registers” on
page 383 for details.

Chapter 1: System-Programming Overview 19

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 19

Figure 1-7. System Registers

Also defined as system registers are a number of model-specific
registers included in the x86-64 architectural definition, and
shown in Figure 1-7:

� Extended-Feature-Enable Register—The EFER register is used
to enable and report status on special features not
controlled by the CRn control registers. In particular, EFER

Control Registers

CR0

CR2

CR3

CR4

CR8

System-Flags Register

RFLAGS

Debug Registers

DR0

DR1

DR2

DR3

DR6

DR7

513-260.eps

Memory-Typing Registers

MTRRcap

MTRRdefType

MTRRphysBasen

MTRRphysMaskn

MTRRfixn

PAT

TOP_MEM

TOP_MEM2

Machine-Check Registers

MCG_CAP

MCG_STAT

MCG_CTL

MCi_CTL

MCi_STATUS

MCi_ADDR

MCi_MISC

Performance-Monitoring Registers

TSC

PerfEvtSeln

PerfCtrn

Model-Specific Registers

Descriptor-Table Registers

GDTR

IDTR

LDTR

Task Register

TR

Extended-Feature-Enable Register

EFER

Debug-Extension Registers

DebugCtlMSR

LastBranchFromIP

LastBranchToIP

LastIntFromIP

LastIntToIP

System-Configuration Register

SYSCFG

System-Linkage Registers

STAR

LSTAR

CSTAR

FS.base

GS.base

KernelGSbase

SYSENTER_CS

SYSENTER_ESP

SYSENTER_EIP

SFMASK

20 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

is used to control activation of long mode. See “Extended
Feature Enable Register (EFER)” on page 67 for more
information.

� System-Configuration Register—The SYSCFG register is used
to enable and configure system-bus features. See “System
Configuration Register (SYSCFG)” on page 70 for more
information.

� System-Linkage Registers—These registers are used by
system-linkage instructions to specify operating-system
entry points, stack locations, and pointers into system-data
structures. See “Fast System Call and Return” on page 179
for details.

� Memory-Typing Registers—Memory-typing registers can be
used to characterize (type) system memory. Typing memory
gives system software control over how instructions and data
are cached, and how memory reads and writes are ordered.
See “MTRRs” on page 217 for details.

� Debug-Extension Registers—These registers control
additional software-debug reporting features. See “Debug
Registers” on page 383 for details.

� Performance-Monitoring Registers—Performance-monitoring
registers are used to count processor and system events, or
the duration of events. See “Performance Optimization” on
page 401 for more information.

� Machine-Check Registers—The machine-check registers
control the response of the processor to non-recoverable
failures. They are also used to report information on such
failures back to system utilities designed to respond to such
failures. See “Machine Check MSRs” on page 305 for more
information.

1.5 System-Data Structures

Figure 1-8 on page 21 shows the system-data structures defined
for the x86-64 architecture. System-data structures are created
and maintained by system software for use by the processor
when running in protected mode. A processor running in
protected mode uses these data structures to manage memory
and protection, and to store program-state information when an
interrupt or task switch occurs.

Chapter 1: System-Programming Overview 21

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 21

Figure 1-8. System-Data Structures

As shown in Figure 1-8, the system-data structures include:

� Descriptors—A descriptor provides information about a
segment to the processor, such as its location, size and
privilege level. A special type of descriptor, called a gate, is
used to provide a code selector and entry point for a
software routine. Any number of descriptors can be defined,
but system software must at a minimum create a descriptor
for the currently executing code segment and stack segment.
See “Legacy Segment Descriptors” on page 95, and “Long-

513-261.eps

Segment Descriptors (Contained in Descriptor Tables)

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Task-State Segment

Page-Translation Tables

Page-Map Level-4 Page TablePage DirectoryPage-Directory Pointer

Global-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Interrupt-Descriptor Table

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

Local-Descriptor Table

Descriptor

Descriptor

. . .

Descriptor

Descriptor Tables

22 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Mode Segment Descriptors” on page 106 for complete
information on descriptors.

� Descriptor Tables—As the name implies, descriptor tables
hold descriptors. The global-descriptor table holds
descriptors available to all programs, while a local-
descriptor table holds descriptors used by a single program.
The interrupt-descriptor table holds only gate descriptors
used by interrupt handlers. System software must initialize
the global-descriptor and interrupt-descriptor tables, while
use of the local-descriptor table is optional. See “Descriptor
Tables” on page 87 for more information.

� Task-State Segment—The task-state segment is a special
segment for holding processor-state information for a
specific program, or task. It also contains the stack pointers
used when switching to more-privileged programs. The
hardware multitasking mechanism uses the state
information in the segment when suspending and resuming
a task. Calls and interrupts that switch stacks cause the
stack pointers to be read from the task-state segment.
System software must create at least one task-state segment,
even if hardware multitasking is not used. See “Legacy Task-
State Segment” on page 363, and “64-Bit Task State
Segment” on page 368 for details.

� Page-Translation Tables—Use of page translation is optional
in protected mode, but it is required in long mode. A four-
level page-translation data structure is provided to allow
long-mode operating systems to translate a 64-bit virtual-
address space into a 52-bit physical-address space. Legacy
protected mode can use two- or three-level page-translation
data structures. See “Page Translation Overview” on
page 144 for more information on page translation.

1.6 Interrupts

The x86-64 architecture provides a mechanism for the processor
to automatically suspend (interrupt) software execution and
transfer control to an interrupt handler when an interrupt or
exception occurs. An interrupt handler is privileged software
designed to identify and respond to the cause of an interrupt or
exception, and return control back to the interrupted software.
Interrupts can be caused when system hardware signals an
interrupt condition using one of the external-interrupt signals
on the processor. Interrupts can also be caused by software that

Chapter 1: System-Programming Overview 23

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 23

executes an interrupt instruction. Exceptions occur when the
processor detects an abnormal condition as a result of
executing an instruction. The term “interrupts” as used
throughout this volume includes both interrupts and exceptions
when the distinction is unnecessary.

System software not only sets up the interrupt handlers, but it
must also create and initialize the data structures the processor
uses to execute an interrupt handler when an interrupt occurs.
The data structures include the code-segment descriptors for
the interrupt-handler software and any data-segment
descriptors for data and stack accesses. Interrupt-gate
descriptors must also be supplied. Interrupt gates point to
interrupt-handler code-segment descriptors, and the entry
point in an interrupt handler. Interrupt gates are stored in the
interrupt-descriptor table. The code-segment and data-segment
descriptors are stored in the global-descriptor table and,
optionally, the local-descriptor table.

When an interrupt occurs, the processor uses the interrupt
vector to find the appropriate interrupt gate in the interrupt-
descriptor table. The gate points to the interrupt-handler code
segment and entry point, and the processor transfers control to
that location. Before invoking the interrupt handler, the
processor saves information required to return to the
interrupted program. For details on how the processor transfers
control to interrupt handlers, see “Legacy Protected-Mode
Interrupt Control Transfers” on page 274, and “Long-Mode
Interrupt Control Transfers” on page 285.

Table 1-2 on page 24 shows the supported interrupts and
exceptions, ordered by their vector number. Refer to “Vectors”
on page 245 for a complete description of each interrupt, and a
description of the interrupt mechanism.

24 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

1.7 Additional System-Programming Facilities

1.7.1 Hardware
Multitasking

A task is any program that the processor can execute, suspend,
and later resume executing at the point of suspension. During
the time a task is suspended, other tasks are allowed to execute.

Table 1-2. Interrupts and Exceptions

Vector Description

0 Integer Divide-By-Zero Exception

1 Debug Exception

2 Non-Maskable-Interrupt

3 Breakpoint Exception (INT 3)

4 Overflow Exception (INTO instruction)

5 Bound-Range Exception (BOUND instruction)

6 Invalid-Opcode Exception

7 Device-Not-Available Exception

8 Double-Fault Exception

9 Coprocessor-Segment-Overrun Exception (reserved in x86-64)

10 Invalid-TSS Exception

11 Segment-Not-Present Exception

12 Stack Exception

13 General-Protection Exception

14 Page-Fault Exception

15 (reserved)

16 x87 Floating-Point Exception

17 Alignment-Check Exception

18 Machine-Check Exception

19 SIMD Floating-Point Exception

0-255 Interrupt Instructions

Any Hardware Maskable Interrupts

Chapter 1: System-Programming Overview 25

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 25

Each task has its own execution space, consisting of a code
segment, data segments, and a stack segment for each privilege
level. Tasks can also have their own virtual -memory
environment managed by the page-translation mechanism. The
state information defining this execution space is stored in the
task-state segment (TSS) maintained for each task.

Support for hardware mult i tasking i s provided by
implementations of the x86-64 architecture when software is
running in legacy mode. Hardware multitasking provides
automated mechanisms for switching tasks, saving the
execution state of the suspended task, and restoring the
execution state of the resumed task. When hardware
multitasking is used to switch tasks, the processor takes the
following actions:

� The processor automatically suspends execution of the task,
allowing any executing instructions to complete and save
their results.

� The execution state of a task is saved in the task TSS.

� The execution state of a new task is loaded into the
processor from its TSS.

� The processor begins executing the new task at the location
specified in the new task TSS.

Use of hardware-multitasking features is optional in legacy
mode. Generally, modern operating systems do not use the
hardware-multitasking features, and instead perform task
management entirely in software. Long mode does not support
hardware multitasking at all.

Whether hardware multitasking is used or not, system software
must create and initialize at least one task-state segment data-
structure. This requirement holds for both long-mode and
legacy-mode software. The single task-state segment holds
critical pieces of the task execution environment and is
referenced during certain control transfers.

Detailed information on hardware multitasking is available in
Chapter 12, “Task Management,” along with a full description
of the requirements that must be met in initializing a task-state
segment when hardware multitasking is not used.

1.7.2 Machine Check Implementations of the x86-64 architecture support the
machine-check exception. This exception is useful in system

26 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

applications with stringent requirements for reliability,
availability, and serviceability. The exception allows
specialized system-software utilities to report hardware errors
that are generally severe and non-recoverable. Providing the
capability to report such errors can allow complex system
problems to be pinpointed rapidly.

The machine-check exception is described in Chapter 9,
“Machine Check Mechanism.” Much of the error-reporting
capabil ities is implementation dependent. For more
information, developers of machine-check error-reporting
software should also refer to the BIOS writer’s guide for a
specific implementation.

1.7.3 Software
Debugging

A software-debugging mechanism is provided in hardware to
help software developers quickly isolate programming errors.
This capability can be used to debug system software and
application software alike. Only privileged software can access
the debugging facilities. Generally, software-debug support is
provided by a privileged application program rather than by the
operating system itself.

The facilities supported by the x86-64 architecture allow
debugging software to perform the following:

� Set breakpoints on specific instructions within a program.

� Set breakpoints on an instruction-address match.

� Set breakpoints on a data-address match.

� Set breakpoints on specific I/O-port addresses.

� Set breakpoints to occur on task switches when hardware
multitasking is used.

� Single step an application instruction-by-instruction.

� Single step only branches and interrupts.

� Record a history of branches and interrupts taken by a
program.

The debugging facilities are fully described in “Software-Debug
Resources” on page 382. Some processors provide additional,
implementation-specific debug support. For more information,
refer to the BIOS wri ter ’s guide for the speci f ic
implementation.

1.7.4 Performance
Monitoring

For many software developers, the ability to identify and
eliminate performance bottlenecks from a program is nearly as

Chapter 1: System-Programming Overview 27

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Chapter 1: System-Programming Overview 27

important as quickly isolat ing programming errors .
Implementations of the x86-64 architecture provide hardware
performance-monitoring resources that can be used by special
software applications to identify such bottlenecks. Non-
privileged software can access the performance monitoring
facilities, but only if privileged software grants that access.

The performance-monitoring facilities allow the counting of
events, or the duration of events. Performance-analysis
software can use the data to calculate the frequency of certain
events, or the time spent performing specific activities. That
information can be used to suggest areas for improvement and
the types of optimizations that are helpful.

The performance-monitoring facilities are fully described in
“Performance Optimization” on page 401. The specific events
that can be monitored are generally implementation specific.
For more information, refer to the BIOS writer’s guide for the
specific implementation.

28 Chapter 1: System-Programming Overview

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Chapter 2: x86 and x86-64 Architecture Differences 29

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

2 x86 and x86-64 Architecture Differences

The x86-64 architecture provides full binary compatibility with
all previous AMD implementations of the x86 architecture. This
chapter summarizes the new features and architectural
enhancements introduced by the x86-64 architecture, and
compares those features and enhancements with previous AMD
x86 processors. Most of the new capabilities introduced by the
x86-64 architecture are available only in long mode (64-bit
mode, compatibility mode, or both). However, some of the new
capabilities are also available in legacy mode, and are
mentioned where appropriate.

The material throughout this chapter assumes the reader has a
solid understanding of the x86 architecture. For those who are
unfamiliar with the x86 architecture, please read the remainder
of this volume before reading this chapter.

2.1 Operating Modes

See “Operating Modes” on page 12 for a complete description
of the operating modes supported by the x86-64 architecture.

2.1.1 Long Mode The x86-64 architecture introduces long mode and its two sub-
modes: 64-bit mode and compatibility mode.

64-Bit Mode. 64-bit mode provides full support for 64-bit system
software and applications. The new features introduced in
support of 64-bit mode are summarized throughout this chapter.
To use 64-bit mode, a 64-bit operating system and tool chain are
required.

Compatibility Mode. Compatibility mode allows 64-bit operating
systems to implement binary compatibility with existing 16-bit
and 32-bit x86 applications. It allows these applications to run,
without recompilation, under control of a 64-bit operating
system in long mode. The architectural enhancements
introduced by the x86 -64 architecture that support
compatibility mode are summarized throughout this chapter.

Unsupported Modes. Long mode does not support the following
two operating modes:

30 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Virtual-8086 Mode—The virtual-8086 mode bit
(EFLAGS.VM) is ignored when the processor is running in
long mode. When long mode is enabled, any attempt to
enable virtual-8086 mode is silently ignored. System
software must leave long mode in order to use virtual-8086
mode.

� Real Mode—Real mode is not supported when the processor
is operating in long mode because long mode requires that
protected mode be enabled.

2.1.2 Legacy Mode The x86-64 architecture supports a pure x86 legacy mode, which
preserves binary compatibility not only with existing 16-bit and
32-bit applications but also with existing 16-bit and 32-bit
operating systems. Legacy mode supports real mode, protected
mode, and virtual-8086 mode. A reset always places the
processor in legacy mode (real mode), and the processor
continues to run in legacy mode until system software activates
long mode. New features added by the x86-64 architecture that
are supported in legacy mode are summarized in this chapter.

2.1.3 System-
Management Mode

The x86-64 architecture supports system-management mode
(SMM). SMM can be entered from both long mode and legacy
mode, and SMM can return directly to either mode. The
following differences exist between the support of SMM in the
x86-64 architecture and the SMM support found in previous
processor generations:

� The SMRAM state-save area format is changed to hold the
64-bit processor state. This state-save area format is used
regardless of whether SMM is entered from long mode or
legacy mode.

� The auto-halt restart and I/O-instruction restart entries in
the SMRAM state-save area are one byte instead of two
bytes.

� The initial processor state upon entering SMM is expanded
to reflect the 64-bit nature of the processor.

� New conditions exist that can cause a processor shutdown
while exiting SMM.

� SMRAM caching considerations are modified because the
legacy FLUSH# external signal (writeback, if modified, and
invalidate) is not supported on implementations of the
x86-64 architecture.

Chapter 2: x86 and x86-64 Architecture Differences 31

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

See Chapter 10, “System-Management Mode,” for more
information on the SMM differences.

2.2 Memory Model

The x86-64 architecture provides significant enhancements to
the legacy memory model to support very large physical-
memory and virtual-memory spaces while in long mode. Some
of this expanded support for physical memory is available in
legacy mode.

2.2.1 Memory
Addressing

Virtual-Memory Addressing. Virtual-memory support is expanded
to 64 address bits in long mode. This allows up to 16 exabytes of
virtual-address space to be accessed. The virtual-address space
supported in legacy mode is unchanged.

Physical-Memory Addressing. Physical-memory support is expanded
to 52 address bits in long mode and legacy mode. This allows up
to 4 petabytes of physical memory to be accessed. The
expanded physical-memory support is achieved by using paging
and the page-size extensions.

Implementations can support fewer than 52 physical-address
bits. The first implementation of the x86-64 architecture, for
example, supports 40-bit physical addressing in both long mode
and legacy mode.

Effective Addressing. The effective-address length is expanded to
64 bits in long mode. An effective-address calculation uses 64-
bit base and index registers, and sign-extends 8-bit and 32-bit
displacements to 64 bits. In legacy mode, effective addresses
remain 32 bits long.

2.2.2 Page Translation The x86-64 architecture defines an expanded page-translation
mechanism supporting translation of a 64-bit virtual address to
a 52-bit physical address. See “Long-Mode Page Translation” on
page 158 for detailed information on the enhancements to page
translation in the x86-64 architecture. The enhancements are
summarized below.

Physical-Address Extensions (PAE). The x86-64 architecture requires
physical-address extensions to be enabled (CR4.PAE=1) before
long mode is entered. When PAE is enabled, all paging data-
structures are 64 bits, allowing references into the full 52-bit
physical-address space supported by the architecture.

32 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Page-Size Extensions (PSE). Page-size extensions (CR4.PSE) are
ignored in long mode. Long mode does not support the 4-Mbyte
page size enabled by page-size extensions. Long mode does,
however, support 4-Kbyte and 2-Mbyte page sizes.

Paging Data Structures. The x86-64 architecture extends the page-
translation data structures in support of long mode. The
extensions are:

� Page-map level-4 (PML4)—Long mode defines a new page-
translation data structure, the PML4 table. The PML4 table
sits at the top of the page-translation hierarchy and
references PDP tables.

� Page-directory pointer (PDP)—The PDP tables in long mode
are expanded from 4 entries to 512 entries each.

� Page-directory pointer entry (PDPE)—Previously undefined
fields within the legacy-mode PDPE are defined by the
x86-64 architecture.

CR3 Register. The CR3 register is expanded to 64 bits for use in
long-mode page translation. When long mode is active, the CR3
register references the base address of the PML4 table. In
legacy mode, the upper 32 bits of CR3 are masked by the
processor to support legacy page translation. CR3 references
the PDP base-address when physical-address extensions are
enabled, or the page-directory table base-address when
physical-address extensions are disabled.

Legacy-Mode Enhancements. Legacy-mode software can take
advantage of the enhancements made to the physical-address
extension (PAE) support and page-size extension (PSE)
support. The four-level page translation mechanism introduced
by long mode is not available to legacy-mode software.

� PAE—When physical-address extensions are enabled
(CR4.PAE=1), the x86-64 architecture allows legacy-mode
software to load up to 52-bit (maximum size) physical
addresses into the PDE and PTE. (Addresses are expanded
to the maximum physical address size supported by the
implementation.)

� PSE—The use of page-size extensions allows legacy mode
software to define 4-Mbyte pages using the 32-bit page-
translation tables. When page-size extensions are enabled
(CR4.PSE=1), the x86-64 architecture enhances the 4-Mbyte
PDE to support 40 physical-address bits.

Chapter 2: x86 and x86-64 Architecture Differences 33

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

See “Legacy-Mode Page Translation” on page 148 for more
information on these enhancements.

2.2.3 Segmentation In long mode, the effects of segmentation depend on whether
the processor is running in compatibility mode or 64-bit mode:

� In compatibility mode, segmentation functions just as it
does in legacy mode, using legacy 16-bit or 32-bit protected
mode semantics.

� 64-bit mode requires a flat-memory model for creating a flat
64-bit virtual-address space. Much of the segmentation
capability present in legacy mode and compatibility mode is
disabled when the processor is running in 64-bit mode.

The differences in the segmentation model as defined by the
x86-64 architecture are summarized in the following sections.
See Chapter 4, “Segmented Virtual Memory,” for a thorough
description of these differences.

Descriptor-Table Registers. In long mode, the base-address portion
of the descriptor-table registers (GDTR, IDTR, LDTR, and TR)
are expanded to 64 bits. The full 64-bit base address can only be
loaded by software when the processor is running in 64-bit
mode (using the LGDT, LIDT, LLDT, and LTR instructions,
respectively). However, the full 64-bit base address is used by a
processor running in compatibility mode (in addition to 64-bit
mode) when making a reference into a descriptor table.

A processor running in legacy mode can only load the low 32
bits of the base address, and the high 32 bits are ignored when
references are made to the descriptor tables.

Code-Segment Descriptors. The x86-64 architecture defines a new
code-segment descriptor attribute, L (long). In compatibility
mode, the processor treats code-segment descriptors as it does
in legacy mode, with the exception that the processor
recognizes the L attribute. If a code descriptor with L=1 is
loaded in compatibi l i ty mode, the processor leaves
compatibility mode and enters 64-bit mode. In legacy mode, the
L attribute is reserved.

The following differences exist for code-segment descriptors in
64-bit mode only:

� The CS base-address field is ignored by the processor.

� The CS limit field is ignored by the processor.

34 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Only the L (long), D (default size), and DPL (descriptor-
privilege level) fields are used by the processor in 64-bit
mode. All remaining attributes are ignored.

Data-Segment Descriptors. The following differences exist for data-
segment descriptors in 64-bit mode only:

� The DS, ES, and SS descriptor base-address fields are
ignored by the processor.

� The FS and GS descriptor base-address fields are expanded
to 64 bits and used in effective-address calculations. The 64
bits of base address are mapped to model-specific registers
(MSRs), and can only be loaded using the WRMSR
instruction.

� The limit fields and attribute fields of all data-segment
descriptors (DS, ES, FS, GS, and SS) are ignored by the
processor.

In compatibility mode, the processor treats data-segment
descriptors as it does in legacy mode. Compatibility mode
ignores the high 32 bits of base address in the FS and GS
segment descriptors when calculating an effective address.

System-Segment Descriptors. In 64-bit mode only, The LDT and TSS
system-segment descriptor formats are expanded by 64 bits,
allowing them to hold 64-bit base addresses. LLDT and LTR
instructions can be used to load these descriptors into the
LDTR and TR registers, respectively, from 64-bit mode.

In compatibility mode and legacy mode, the formats of the LDT
and TSS system-segment descriptors are unchanged. Also,
unlike code-segment and data-segment descriptors, system-
segment descriptor limits are checked by the processor in long
mode.

Some legacy mode LDT and TSS type-field encodings are illegal
in long mode (both compatibility mode and 64-bit mode), and
others are redefined to new types. See “System Descriptors” on
page 109 for additional information.

Gate Descriptors. The following differences exist between gate
descriptors in long mode (both compatibility mode and 64-bit
mode) and in legacy mode:

� In long mode, all 32-bit gate descriptors are redefined as 64-
bit gate descriptors, and are expanded to hold 64-bit offsets.

Chapter 2: x86 and x86-64 Architecture Differences 35

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

The length of a gate descriptor in long mode is therefore 128
bits (16 bytes), versus the 64 bits (8 bytes) in legacy mode.

� Some type-field encodings are illegal in long mode, and
others are redefined to new types. See “Gate Descriptors”
on page 111 for additional information.

� The interrupt-gate and trap-gate descriptors define a new
field, called the interrupt-stack table (IST) field.

2.3 Protection Checks

The x86-64 architecture makes the following changes to the
protection mechanism in long mode:

� The page-protection-check mechanism is expanded in long
mode to include the U/S and R/W protection bits stored in
the PML4 entries and PDP entries.

� Several system-segment types and gate-descriptor types that
are legal in legacy mode are illegal in long mode
(compatibility mode and 64-bit mode) and fail type checks
when used in long mode.

� Segment-limit checks are disabled in 64-bit mode for the CS,
DS, ES, FS, GS, and SS segments. Segment-limit checks
remain enabled for the LDT, GDT, IDT and TSS system
segments.

All segment-limit checks are performed in compatibility
mode.

� Code and data segments used in 64-bit mode are treated as
both readable and writable.

See “Page-Protection Checks” on page 172 and “Segment-
Protection Overview” on page 116 for detailed information on
the protection-check changes.

2.4 Registers

The x86-64 architecture adds additional registers to the
architecture, and in many cases expands the size of existing
registers to 64 bits. The 80-bit floating-point stack registers and
their overlaid 64-bit MMX™ registers are not modified by the
x86-64 architecture.

2.4.1 General-Purpose
Registers

In 64-bit mode, the general-purpose registers (GPRs) are 64 bits
wide, and eight additional GPRs are available. The GPRs are:

36 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and the new
R8–R15 registers. To access the full 64-bit operand size, or the
new R8–R15 registers, an instruction must include a new REX
instruction-prefix byte (see “REX Prefixes” on page 37 for a
summary of this prefix).

In compatibility and legacy modes, the GPRs consist only of the
eight legacy 32-bit registers. All legacy rules apply for
determining operand size.

2.4.2 128-Bit Media
Registers

In 64-bit mode, eight additional 128-bit XMM registers are
available, XMM8–XMM15. A REX instruction prefix is used to
access these registers. In compatibility and legacy modes, the
XMM registers consist of the eight 128-bit legacy registers,
XMM0–XMM7.

2.4.3 Flags Register The flags register is expanded to 64 bits, and is called RFLAGS.
All 64 bits can be accessed in 64-bit mode, but the upper 32 bits
are reserved and always read back as zeros. Compatibility mode
and legacy mode can read and write only the lower-32 bits of
RFLAGS (the legacy EFLAGS).

2.4.4 Instruction
Pointer

In long mode, the instruction pointer is extended to 64 bits, to
support 64-bit code offsets. This 64-bit instruction pointer is
called RIP.

2.4.5 Stack Pointer In 64-bit mode, the size of the stack pointer, RSP, is always 64
bits. The stack size is not controlled by a bit in the SS
descriptor, as it is in compatibility or legacy mode, nor can it be
overridden by an instruction prefix. Address-size overrides are
ignored for implicit stack references.

2.4.6 Control
Registers

The x86-64 architecture defines several enhancements to the
control registers (CRn). In long mode, all control registers are
expanded to 64 bits, although the entire 64 bits can be read and
written only from 64-bit mode. A new control register, the task-
priority register (CR8 or TPR) is added, and can be read and
written from 64-bit mode. Last, the function of the page-enable
bit (CR0.PG) is expanded. When long mode is enabled, the PG
bit is used to activate and deactivate long mode.

2.4.7 Debug Registers In long mode, all debug registers are expanded to 64 bits,
although the entire 64 bits can be read and written only from
64-bit mode. Expanded register encodings for the decode
registers allow up to eight new registers to be defined

Chapter 2: x86 and x86-64 Architecture Differences 37

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

(DR8–DR15), although presently those registers are not
supported by the x86-64 architecture.

2.4.8 Extended
Feature Register
(EFER)

The EFER is expanded by the x86-64 architecture to include a
long-mode-enable bit (LME), and a long-mode-active bit (LMA).
These new bits can be accessed from legacy mode and long
mode.

2.4.9 Memory Type
Range Registers
(MTRRs)

The legacy MTRRs are architecturally defined as 64 bits, and
can accommodate the maximum 52-bit physical address allowed
by the x86-64 architecture. From both long mode and legacy
mode, implementations of the x86-64 architecture reference the
entire 52-bit physical-address value stored in the MTRRs. Long
mode and legacy mode system software can update all 64 bits of
the MTRRs to manage the expanded physical-address space.

2.4.10 Other Model-
Specific Registers
(MSRs)

Several other MSRs have fields holding physical addresses.
Examples include the APIC-base register and top-of-memory
register. Generally, any model-specific register that contains a
physical address is defined architecturally to be 64 bits wide,
and can accommodate the maximum physical-address size
defined by the x86-64 architecture. When physical addresses
are read from MSRs by the processor, the entire value is read
regardless of the operating mode. In legacy implementations,
the high-order MSR bits are reserved, and software must write
those values with zeros. In legacy mode on x86-64 architecture
implementations, software can read and write all supported
high-order MSR bits.

2.5 Instruction Set

2.5.1 REX Prefixes REX prefixes are a new family of instruction-prefix bytes used
in 64-bit mode to:

� Specify the new GPRs and XMM registers.

� Specify a 64-bit operand size.

� Specify additional control registers. One additional control
register, CR8, is defined in 64-bit mode.

� Specify additional debug registers (although none are
currently defined).

Not all instructions require a REX prefix. The prefix is
necessary only if an instruction references one of the extended

38 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

registers or uses a 64-bit operand. If a REX prefix is used when
it has no meaning, it is ignored.

Default 64-Bit Operand Size. In 64 -bi t mode, two groups of
instructions have a default operand size of 64 bits and thus do
not need a REX prefix for this operand size:

� Near branches.

� All instructions, except far branches, that implicitly
reference the RSP. See “Instructions that Reference RSP”
on page 39 for additional information.

2.5.2 Segment-
Override Prefixes in
64-Bit Mode

In 64-bit mode, the DS, ES, SS, and CS segment-override
prefixes have no effect. These four prefixes are no longer
treated as segment-override prefixes in the context of multiple-
prefix rules. Instead, they are treated as null prefixes.

The FS and GS segment-override prefixes are treated as
segment-override prefixes in 64-bit mode. Use of the FS and GS
prefixes cause their respective segment bases to be added to
the effective address calculation. See “FS and GS Registers in
64-Bit Mode” on page 86 for additional information on using
these segment registers.

2.5.3 Operands and
Results

The x86-64 architecture provides support for using 64-bit
operands and generating 64-bit results when operating in 64-bit
mode. See “Operands” in Volume 1 for details.

Operand-Size Overrides. In 64-bit mode, the default operand size is
32 bits. A REX prefix can be used to specify a 64-bit operand
size. Software uses a legacy operand-size (66h) prefix to toggle
to 16-bit operand size. The REX prefix takes precedence over
the legacy operand-size prefix.

Zero Extension of Results. In 64-bit mode, when performing 32-bit
operations with a GPR destination, the processor zero-extends
the 32-bit result into the full 64-bit destination. 8-bit and 16-bit
operations on GPRs preserve all unwritten upper bits of the
destination GPR. This is consistent with legacy 16-bit and 32-bit
semantics for partial-width results.

2.5.4 Address
Calculations

The x86-64 architecture modifies aspects of effective-address
calculation to support 64-bit mode. These changes are
summarized in the following sections. See “Memory
Addressing” in Volume 1 for details.

Chapter 2: x86 and x86-64 Architecture Differences 39

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Address-Size Overrides. In 64-bit mode, the default-address size is
64 bits. The address size can be overridden to 32 bits by using
the address-size prefix (67h). 16-bit addresses are not supported
in 64-bit mode. In compatibility mode and legacy mode,
address-size overrides function the same as in x86 legacy
architecture.

Displacements and Immediates. General ly, d i splacement and
immediate values in 64-bit mode are not extended to 64 bits.
They are still limited to 32 bits and sign extended during
effective-address calculations. In 64-bit mode, however, support
is provided for some 64-bit displacement and immediate forms
of the MOV instruction.

Zero Extending 16-Bit and 32-Bit Addresses. All 16 -bit and 32 -bi t
address calculations are zero extended in long mode to form 64-
bit addresses. Address calculations are first truncated to the
effective-address size of the current mode (64-bit mode or
compatibility mode), as overridden by any address-size prefix.
The result is then zero extended to the full 64-bit address width.

RIP-Relative Addressing. A new addressing form, RIP-relative
(instruction-pointer relative) addressing, is implemented in 64-
bit mode. The effective address is formed by adding the
displacement to the 64-bit RIP of the next instruction.

2.5.5 Instructions that
Reference RSP

With the exception of far branches, all instructions that
implicitly reference the 64-bit stack pointer, RSP, default to a
64-bit operand size in 64-bit mode (see Table 2-1 on page 40 for
a listing). Pushes and pops of 32-bit stack values are not
possible in 64-bit mode with these instructions, but they can be
overridden to 16 bits.

40 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

2.5.6 Branches The x86-64 architecture expands two branching mechanisms to
accommodate branches in the full 64-bit virtual-address space:

� In 64-bit mode, near-branch semantics are redefined.

� In both 64-bit and compatibility modes, a 64-bit call-gate
descriptor is defined for far calls.

In addition, enhancements are made to the legacy SYSCALL
and SYSRET instructions.

Near Branches. In 64-bit mode, the operand size for all near
branches defaults to 64 bits (see Table 2-2 on page 41 for a
listing). Therefore, these instructions update the full 64-bit RIP
without the need for a REX operand-size prefix. The following
aspects of near branches default to 64 bits:

Table 2-1. Instructions That Reference RSP

Mnemonic Opcode
(hex) Description

ENTER C8 Create Procedure Stack Frame

LEAVE C9 Delete Procedure Stack Frame

POP reg/mem 8F/0 Pop Stack (register or memory)

POP reg 58-5F Pop Stack (register)

POP FS 0F A1 Pop Stack into FS Segment Register

POP GS 0F A9 Pop Stack into GS Segment Register

POPF, POPFD, POPFQ 9D
Pop to rFLAGS Word, Doubleword, or
Quadword

PUSH imm32 68 Push onto Stack (sign-extended
doubleword)

PUSH imm8 6A Push onto Stack (sign-extended byte)

PUSH reg/mem FF/6 Push onto Stack (register or memory)

PUSH reg 50-57 Push onto Stack (register)

PUSH FS 0F A0 Push FS Segment Register onto Stack

PUSH GS 0F A8 Push GS Segment Register onto Stack

PUSHF, PUSHFD,
PUSHFQ 9C Push rFLAGS Word, Doubleword, or

Quadword onto Stack

Chapter 2: x86 and x86-64 Architecture Differences 41

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Truncation of the instruction pointer.

� Size of a stack pop or stack push, resulting from a CALL or
RET.

� Size of a stack-pointer increment or decrement, resulting
from a CALL or RET.

� Size of operand fetched by indirect-branch operand size.

The operand size for near branches can be overridden to 16 bits
in 64-bit mode.

The address size of near branches is not forced in 64-bit mode.
Such addresses are 64 bits by default, but they can be
overridden to 32 bits by a prefix.

The size of the displacement field for relative branches is still
limited to 32 bits.

Far Branches Through Long-Mode Call Gates. Long mode redefines the
32-bit call-gate descriptor type as a 64-bit call-gate descriptor
and expands the call-gate descriptor size to hold a 64-bit offset.
The long-mode call-gate descriptor allows far branches to
reference any location in the supported virtual-address space.
In long mode, the call-gate mechanism is changed as follows:

� In long mode, CALL and JMP instructions that reference
call-gates must reference 64-bit call gates.

� A 64-bit call-gate descriptor must reference a 64-bit code-
segment.

� When a control transfer is made through a 64-bit call gate,
the 64-bit target address is read from the 64-bit call-gate

Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size

Mnemonic Opcode
(hex) Description

CALL E8, FF/2 Call Procedure Near

Jcc many Jump Conditional Near

JMP E9, EB, FF/4 Jump Near

LOOP E2 Loop

LOOPcc E0, E1 Loop Conditional

RET C3, C2 Return From Call (near)

42 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

descriptor. The base address in the target code-segment
descriptor is ignored.

Stack Switching. Automatic stack switching is also modified when
a control transfer occurs through a call gate in long mode:

� The target-stack pointer read from the TSS is a 64-bit RSP
value.

� The SS register is loaded with a null selector. Setting the
new SS selector to null allows nested control transfers in 64-
bit mode to be handled properly. The SS.RPL value is
updated to remain consistent with the newly loaded CPL
value.

� The size of pushes onto the new stack is modified to
accommodate the 64-bit RIP and RSP values.

� Automatic parameter copying is not supported in long mode.

Far Returns. In long mode, far returns can load a null SS selector
from the stack under the following conditions:

� The target operating mode is 64-bit mode.

� The target CPL<3.

Allowing RET to load SS with a null selector under these
conditions makes it possible for the processor to unnest far
CALLs (and interrupts) in long mode.

Task Gates. Control transfers through task gates are not
supported in long mode.

Branches to 64-Bit Offsets. Because immediate values are generally
limited to 32 bits, the only way a full 64-bit absolute RIP can be
specified in 64-bit mode is with an indirect branch. For this
reason, direct forms of far branches are eliminated from the
instruction set in 64-bit mode.

SYSCALL and SYSRET Instructions. The x86-64 architecture expands
the function of the legacy SYSCALL and SYSRET instructions
in long mode. In addition, two new STAR registers, LSTAR and
CSTAR, are provided to hold the 64-bit target RIP for the
instructions when they are executed in long mode. The legacy
STAR register is not expanded in long mode. See “SYSCALL
and SYSRET” on page 180 for additional information.

Chapter 2: x86 and x86-64 Architecture Differences 43

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

SWAPGS Instruction. The x86-64 architecture provides the
SWAPGS instruction as a fast method for system software to
load a pointer to system data-structures. SWAPGS is valid only
in 64-bit mode. An undefined-opcode exception (#UD) occurs if
software attempts to execute SWAPGS in legacy mode or
compatibility mode. See “SWAPGS Instruction” on page 183
for additional information.

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT
instructions are invalid in long mode, and result in an invalid
opcode exception (#UD) if software attempts to use them.
Software should use the SYSCALL and SYSRET instructions
when running in long mode. See “SYSENTER and SYSEXIT
(Legacy Mode Only)” on page 182 for additional information.

2.5.7 NOP Instruction The legacy x86 architecture commonly uses opcode 90h as a
one-byte NOP. In 64-bit mode, the processor treats opcode 90h
specially in order to preserve this NOP definition. This is
necessary because opcode 90h is actually the XCHG EAX, EAX
instruction in the legacy architecture. Without special handling
in 64-bit mode, the instruction would not be a true no-operation.
Therefore, in 64-bit mode the processor treats opcode 90h (the
legacy XCHG EAX, EAX instruction) as a true NOP, regardless
of a REX operand-size prefix.

This special handling does not apply to the two-byte ModRM
form of the XCHG instruction. Unless a 64-bit operand size is
specified using a REX prefix byte, using the two-byte form of
XCHG to exchange a register with itself does not result in a no-
operation, because the default operation size is 32 bits in 64-bit
mode.

2.5.8 Single-Byte INC
and DEC Instructions

In 64-bit mode, the legacy encodings for the 16 single-byte INC
and DEC instructions (one for each of the eight GPRs) are used
to encode the REX prefix values. The functionality of these INC
and DEC instructions is still available, however, using the
ModRM forms of those instructions (opcodes FF /0 and FF /1).
See “Single-Byte INC and DEC Instructions in 64-Bit Mode” in
Volume 3 for additional information.

2.5.9 MOVSXD
Instruction

MOVSXD is a new instruction in 64-bit mode (the legacy ARPL
instruction opcode, 63h, is reassigned as the MOVSXD opcode).
It reads a fixed-size 32-bit source operand from a register or
memory and (if a REX prefix is used with the instruction) sign-
extends the value to 64 bits. MOVSXD is analogous to the

44 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

MOVSX instruction, which sign-extends a byte to a word or a
word to a doubleword, depending on the effective operand size.
See “General-Purpose Instruction Reference” in Volume 3 for
additional information.

2.5.10 Invalid
Instructions

Table 2-3 lists instructions that are illegal in 64-bit mode.
Table 2-4 on page 45 lists instructions that are invalid in long
mode (both compatibility mode and 64-bit mode). Attempted
use of these instructions causes an invalid-opcode exception
(#UD) to occur.

Table 2-3. Invalid Instructions in 64-Bit Mode

Mnemonic Opcode
(hex) Description

AAA 37 ASCII Adjust After Addition

AAD D5 ASCII Adjust Before Division

AAM D4 ASCII Adjust After Multiply

AAS 3F ASCII Adjust After Subtraction

BOUND 62 Check Array Bounds

CALL (far) 9A Procedure Call Far (far absolute)

DAA 27 Decimal Adjust after Addition

DAS 2F Decimal Adjust after Subtraction

INTO CE Interrupt to Overflow Vector

JMP (far) EA Jump Far (absolute)

LAHF 9F Load Status Flags into AH Register

LDS C5 Load DS Segment Register

LES C4 Load ES Segment Register

POP DS 1F Pop Stack into DS Segment

POP ES 07 Pop Stack into ES Segment

POP SS 17 Pop Stack into SS Segment

POPA, POPAD 61 Pop All to GPR Words or Doublewords

PUSH CS 0E Push CS Segment Selector onto Stack

PUSH DS 1E Push DS Segment Selector onto Stack

Chapter 2: x86 and x86-64 Architecture Differences 45

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Table 2-5 lists the instructions that are no longer valid in 64-bit
mode because their opcodes have been reassigned. The
reassigned opcodes are used in 64-bit mode as REX instruction
prefixes.

2.5.11 FXSAVE and
FXRSTOR Instructions

The FXSAVE and FXRSTOR instructions are used to save and
restore the entire 128-bit media, 64-bit media, and x87
instruction-set environment during a context switch. The x86-64

PUSH ES 06 Push ES Segment Selector onto Stack

PUSH SS 16 Push SS Segment Selector onto Stack

PUSHA, PUSHAD 60 Push All GPR Words or Doublewords onto Stack

SAHF 9E Store AH into Flags

Redundant Grp1
(undocumented) 82 Redundant encoding of group1 Eb,Ib opcodes

SALC
(undocumented) D6 Set AL According to CF

Table 2-4. Invalid Instructions in Long Mode

Mnemonic Opcode
(hex) Description

SYSENTER 0F 34 System Call

SYSEXIT 0F 35 System Return

Table 2-5. Reassigned Instructions in 64-Bit Mode

Mnemonic Opcode
(hex) Description

ARPL 63
Opcode for MOVSXD instruction in 64-bit mode.
In all other modes, this the Adjust Requestor
Privilege Level instruction opcode.

DEC and INC 40-4F Decrement by 1, Increment by 1. Two-byte
versions of DEC and INC are still valid.

Table 2-3. Invalid Instructions in 64-Bit Mode (continued)

Mnemonic Opcode
(hex) Description

46 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

architecture modifies the memory format used by these
instructions in order to save and restore the full 64-bit
instruction and data pointers, as well as the XMM8–XMM15
registers. Selection of the 32-bit legacy format or the expanded
64-bit format is accomplished by using the corresponding
operand size with the FXSAVE and FXRSTOR instructions.
When 64-bit software executes an FXSAVE and FXRSTOR with
a 32-bit operand size (no operand-size override) the 32-bit
legacy format is used. When 64-bit software executes an
FXSAVE and FXRSTOR with a 64-bit operand size, the 64-bit
format is used.

2.6 Interrupts and Exceptions

When a processor is running in long mode, an interrupt or
exception causes the processor to enter 64-bit mode. All long-
mode interrupt handlers must be 64-bit code. The x86-64
architecture expands the legacy interrupt-processing and
exception-processing mechanism to support handling of
interrupts by 64-bit operating systems and applications. The
changes are summarized in the following sections. See “Long-
Mode Interrupt Control Transfers” on page 285 for detailed
information on these changes.

2.6.1 Interrupt
Descriptor Table

The long-mode interrupt-descriptor table (IDT) must contain
64-bit mode interrupt-gate or trap-gate descriptors for all
interrupts or exceptions that can occur while the processor is
running in long mode. Task gates cannot be used in the long-
mode IDT, because control transfers through task gates are not
supported in long mode. In long mode, the IDT index is formed
by scaling the interrupt vector by 16. In legacy protected mode,
the IDT is indexed by scaling the interrupt vector by eight.

2.6.2 Stack Frame
Pushes

In legacy mode, the size of an IDT entry (16 bits or 32 bits)
determines the size of interrupt-stack-frame pushes, and
SS:eSP is pushed only on a CPL change. In long mode, the size
of interrupt stack-frame pushes is fixed at eight bytes, because
interrupts are handled in 64-bit mode. Long mode interrupts
also cause SS:RSP to be pushed unconditionally, rather than
pushing only on a CPL change.

2.6.3 Stack Switching Legacy mode provides a mechanism to automatically switch
stack frames in response to an interrupt. In long mode, a
slightly modified version of the legacy stack-switching

Chapter 2: x86 and x86-64 Architecture Differences 47

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

mechanism is implemented, and an alternative stack-switching
mechanism—called the interrupt stack table (IST)—is
supported.

Long-Mode Stack Switches. When stacks are switched as part of a
long-mode privilege-level change resulting from an interrupt,
the following occurs:

� The target-stack pointer read from the TSS is a 64-bit RSP
value.

� The SS register is loaded with a null selector. Setting the
new SS selector to null allows nested control transfers in 64-
bit mode to be handled properly. The SS.RPL value is
cleared to 0.

� The old SS and RSP are saved on the new stack.

Interrupt Stack Table. In long mode, a new interrupt stack table
(IST) mechanism is available as an alternative to the modified
legacy stack-switching mechanism. The IST mechanism
unconditionally switches stacks when it is enabled. It can be
enabled for individual interrupt vectors using a field in the IDT
entry. This allows mixing interrupt vectors that use the
modified legacy mechanism with vectors that use the IST
mechanism. The IST pointers are stored in the long-mode TSS.
The IST mechanism is only available when long mode is
enabled.

2.6.4 IRET Instruction In compatibility mode, IRET pops SS:eSP off the stack only if
there is a CPL change. This allows legacy applications to run
properly in compatibility mode when using the IRET
instruction.

In 64-bit mode, IRET unconditionally pops SS:eSP off of the
interrupt stack frame, even if the CPL does not change. This is
done because the original interrupt always pushes SS:RSP.
Because interrupt stack-frame pushes are always eight bytes in
long mode, an IRET from a long-mode interrupt handler (64-bit
code) must pop eight-byte items off the stack. This is
accomplished by preceding the IRET with a 64-bit REX
operand-size prefix.

48 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

In long mode, an IRET can load a null SS selector from the stack
under the following conditions:

� The target operating mode is 64-bit mode.

� The target CPL<3.

Allowing IRET to load SS with a null selector under these
conditions makes it possible for the processor to unnest
interrupts (and far CALLs) in long mode.

2.6.5 Task-Priority
Register (CR8)

The x86-64 architecture allows software to define up to 15
external interrupt-priority classes. Priority classes are
numbered from 1 to 15, with priority-class 1 being the lowest
and priority-class 15 the highest.

A new control register (CR8) is introduced by the x86-64
architecture for managing priority classes. This register, also
called the task-priority register (TPR), uses the four low-order
bits for specifying a task priority. How external interrupts are
organized into these priority classes is implementation
dependent. See “External Interrupt Priorities” on page 270 for
information on this feature.

2.6.6 New Exception
Conditions

The x86-64 architecture defines a number of new conditions
that can cause an exception to occur when the processor is
running in long mode. Many of the conditions occur when
software attempts to use an address that is not in canonical
form. See “Vectors” on page 245 for information on the new
exception conditions that can occur in long mode.

2.7 Hardware Task Switching

The legacy hardware task-switch mechanism is disabled when
the processor is running in long mode. However, long mode
requires system software to create data structures for a single
task—the long-mode task.

� TSS Descriptors—A new TSS-descriptor type, the 64-bit TSS
type, is defined for use in long mode. It is the only valid TSS
type that can be used in long mode, and it must be loaded
into the TR by executing the LTR instruction in 64-bit mode.
See “TSS Descriptor” on page 360 for additional
information.

� Task Gates—Because the legacy task-switch mechanism is
not supported in long mode, software cannot use task gates in

Chapter 2: x86 and x86-64 Architecture Differences 49

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

long mode. Any attempt to transfer control to another task
via a task gate causes a general-protection exception (#GP)
to occur.

� Task-State Segment—A 64-bit task state segment (TSS) is
defined for use in long mode. This new TSS format contains
64-bit stack pointers (RSP) for privilege levels 0–2,
interrupt-stack-table (IST) pointers, and the I/O-map base
address. See “64-Bit Task State Segment” on page 368 for
additional information.

2.8 Long-Mode vs. Legacy-Mode Differences

Table 2-6 on page 50 summarizes several major system-
programming differences between 64-bit mode and legacy
protected mode. The third column indicates whether the
difference also applies to compatibility mode. “Differences
between Long Mode and Legacy Mode” in Volume 3
summarizes the application-programming model differences.

50 Chapter 2: x86 and x86-64 Architecture Differences

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Table 2-6. Differences Between Long Mode and Legacy Mode

Subject 64-Bit Mode Difference
Applies To

Compatibility
Mode?

x86 Modes Real and virtual-8086 modes not supported Yes

Task Switching Task switching not supported Yes

Addressing

64-bit virtual addresses No

4-level paging structures
Yes

PAE must always be enabled

Loaded Segment (Usage
during memory reference)

CS, DS, ES, SS segment bases are ignored

No
CS, DS, ES, FS, GS, SS segment limits are ignored

DS, ES, FS, GS attribute are ignored

CS, DS, ES, SS Segment prefixes are ignored

Exception and Interrupt
Handling

All pushes are 8 bytes

Yes
IDT entries are expanded to 16 bytes

SS is not changed for stack switch

SS:RSP is pushed unconditionally

Call Gates

All pushes are 8 bytes

Yes

16-bit call gates are illegal

32-bit call gate type is redefined as 64-bit call gate and is
expanded to 16 bytes.

SS is not changed for stack switch

System-Descriptor Registers GDT, IDT, LDT, TR base registers expanded to 64 bits Yes

System-Descriptor Table
Entries and Pseudo-
Descriptors

LGDT and LIDT use expanded 10-byte pseudo-descriptors.
No

LLDT and LTR use expanded 16-byte table entries.

Chapter 3: System Resources 51

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

3 System Resources

The operating system manages the software-execution
environment and general system operation through the use of
system resources. These resources consist of system registers
(control registers and model-specific registers) and system-data
structures (memory-management and protection tables). The
system-control registers are described in detail in this chapter;
many of the features they control are described elsewhere in
this volume. The model-specific registers supported by the
x86-64 architecture are introduced in this chapter.

Because of their complexity, system-data structures are
described in separate chapters. Refer to the following chapters
for detailed information on these data structures:

� Descriptors and descriptor tables are described in
“Segmentation Data Structures and Registers” on page 80.

� Page-translation tables are described in “Legacy-Mode Page
Translation” on page 148 and “Long-Mode Page
Translation” on page 158.

� The task-state segment is described in “Legacy Task-State
Segment” on page 363 and “64-Bit Task State Segment” on
page 368.

Not all processor implementations are required to support all
possible features. The last section in this chapter addresses
processor-feature identification. System software uses the
capabilities described in that section to determine which
features are supported so that the appropriate service routines
are loaded.

3.1 System-Control Registers

The registers that control the x86-64 architecture operating
environment include:

� CR0—Provides operating-mode controls and some processor-
feature controls.

� CR2—This register is used by the page-translation
mechanism. It is loaded by the processor with the page-fault
virtual address when a page-fault exception occurs.

52 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� CR3—This register is also used by the page-translation
mechanism. It contains the base address of the highest-level
page-translation table, and also contains cache controls for
the specified table.

� CR4—This register contains additional controls for various
operating-mode features.

� CR8—This new register, accessible in 64-bit mode using the
REX prefix, is introduced by the x86-64 architecture. CR8 is
used to prioritize external interrupts and is referred to as
the task-priority register (TPR).

� RFLAGS—This register contains processor-status and
processor-control fields. The status and control fields are
used primarily in the management of virtual-8086 mode,
hardware multitasking, and interrupts.

� EFER—This model-specific register contains status and
controls for additional features not managed by the CR0 and
CR4 registers. Included in this register are the long-mode
enable and activation controls introduced by the x86-64
architecture.

Control registers CR1, CR5–CR7, and CR9–CR15 are reserved.

In legacy mode, all control registers and RFLAGS are 32 bits.
The EFER register is 64 bits in all modes. The x86-64
architecture expands all 32-bit system-control registers to 64
bits. In 64-bit mode, the MOV CRn instructions read or write all
64 bits of these registers (operand-size prefixes are ignored). In
compatibility and legacy modes, control-register writes fill the
low 32 bits with data and the high 32 bits with zeros, and
control-register reads return only the low 32 bits.

In 64-bit mode, the high 32 bits of CR0 and CR4 are reserved
and must be written with zeros. Writing a 1 to any of the high 32
bits results in a general-protection exception, #GP(0). All 64
bits of CR2 are writable. However, the MOV CRn instructions do
not check that addresses written to CR2 are within the virtual-
address limitations of the processor implementation.

All CR3 bits are writable, except for unimplemented physical
address bits, which must be cleared to 0.

The upper 32 bits of RFLAGS are always read as zero by the
processor. Attempts to load the upper 32 bits of RFLAGS with
anything other than zero are ignored by the processor.

Chapter 3: System Resources 53

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

3.1.1 CR0 Register The CR0 register is shown in Figure 3-1. The legacy CR0
register is identical to the low 32 bits of the register shown in
Figure 3-1 (CR0 bits 31–0).

Figure 3-1. Control Register 0 (CR0)

The functions of the CR0 control bits are (unless otherwise
noted, all bits are read/write):

Protected-Mode Enable (PE) Bit. Bit 0. Software enables protected
mode by setting PE to 1, and disables protected mode by
clearing PE to 0. When the processor is running in protected
mode, segment-protection mechanisms are enabled.

See “Segment-Protection Overview” on page 116 for
information on the segment-protection mechanisms.

Monitor Coprocessor (MP) Bit. Bit 1. Software uses the MP bit with
the task-switched control bit (CR0.TS) to control whether
execution of the WAIT/FWAIT instruction causes a device-not-
available exception (#NM) to occur, as follows:

� If both the monitor-coprocessor and task-switched bits are
set (CR0.MP=1 and CR0.TS=1), then executing the

63 32

reserved, MBZ

31 30 29 28 19 18 17 16 15 6 5 4 3 2 1 0

P
G

C
D

N
W

reserved A
M

r W
P

reserved N
E

E
T

T
S

E
M

M
P

P
E

Bits Mnemonic Description R/W
63–32 reserved Reserved, Must be Zero
31 PG Paging R/W
30 CD Cache Disable R/W
29 NW Not Writethrough R/W
28–19 reserved Reserved
18 AM Alignment Mask R/W
17 reserved Reserved
16 WP Write Protect R/W
15-6 reserved Reserved
5 NE Numeric Error R/W
4 ET Extension Type R
3 TS Task Switched R/W
2 EM Emulation R/W
1 MP Monitor Coprocessor R/W
0 PE Protection Enabled R/W

54 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

WAIT/FWAIT instruction causes a device-not-available
exception (#NM).

� If either the monitor-coprocessor or task-switched bits are
clear (CR0.MP=0 or CR0.TS=0), then executing the
WAIT/FWAIT instruction proceeds normally.

Software typically should set MP to 1 if the processor
implementation supports x87 instructions. This allows the
CR0.TS bit to completely control when the x87-instruction
context is saved as a result of a task switch.

Emulate Coprocessor (EM) Bit. Bit 2 . Software forces a l l x87
instructions to cause a device-not-available exception (#NM) by
setting EM to 1. Likewise, setting EM to 1 forces an invalid-
opcode exception (#UD) when an attempt is made to execute
any of the 64-bit or 128-bit media instructions. The exception
handlers can emulate these instruction types if desired. Setting
the EM bit to 1 does not cause an #NM exception when the
WAIT/FWAIT instruction is executed.

Task Switched (TS) Bit. Bit 3. When an attempt is made to execute
an x87 or media instruction while TS=1, a device-not-available
exception (#NM) occurs. Software can use this mechanism—
sometimes referred to as “lazy context-switching”—to save the
unit contexts before executing the next instruction of those
types. As a result, the x87 and media instruction-unit contexts
are saved only when necessary as a result of a task switch.

When a hardware task switch occurs, TS is automatically set to
1. System software that implements software task-switching
rather than using the hardware task-switch mechanism can still
use the TS bit to control x87 and media instruction-unit context
saves. In this case, the task-management software uses a MOV
CR0 instruction to explicitly set the TS bit to 1 during a task
switch. Software can clear the TS bit by either executing the
CLTS instruction or by writing to the CR0 register directly.
Long-mode system software can use this approach even though
the hardware task-switch mechanism is not supported in long
mode.

The CR0.MP bit controls whether the WAIT/FWAIT instruction
causes an #NM exception when TS=1.

Extension Type (ET) Bit. Bit 4 , read-only. In some early x86
processors, software set ET to 1 to indicate support of the

Chapter 3: System Resources 55

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

387DX math-coprocessor instruction set. This bit is now
reserved and forced to 1 by the processor. Software cannot clear
this bit to 0.

Numeric Error (NE) Bit. Bit 5. Clearing the NE bit to 0 disables
internal control of x87 floating-point exceptions and enables
external control. When NE is cleared to 0, the IGNNE# input
signal controls whether x87 floating-point exceptions are
ignored:

� When IGNNE# is 1, x87 floating-point exceptions are
ignored.

� When IGNNE# is 0, x87 floating-point exceptions are
reported by setting the FERR# input signal to 1. External
logic can use the FERR# signal as an external interrupt.

When NE is set to 1, internal control over x87 floating-point
exception reporting is enabled and the external reporting
mechanism is disabled. It is recommended that software set NE
to 1. This enables optimal performance in handling x87
floating-point exceptions.

Write Protect (WP) Bit. Bit 16. Read-only pages are protected from
supervisor-level writes when the WP bit is set to 1. When WP is
cleared to 0, supervisor software can write into read-only pages.

See “Page-Protection Checks” on page 172 for information on
the page-protection mechanism.

Alignment Mask (AM) Bit. Bit 18. Software enables automatic
alignment checking by setting the AM bit to 1 when
eFLAGS.AC=1. Alignment checking can be disabled by clearing
either AM or eFLAGS.AC to 0. When automatic alignment
checking is enabled and CPL=3, a memory reference to an
unaligned operand causes an alignment-check exception (#AC).

Not Writethrough (NW) Bit. Bit 29. When NW is cleared to 0, cache
writeback is enabled, meaning only write misses and writes to
shared lines update memory. Cache invalidation is allowed
when NW=0.

When NW is set to 1, cache writethroughs are enabled, meaning
all writes update memory, including those that hit in the cache.
Cache invalidation as a result of a snoop cycle is not allowed
when NW=1, but use of the WBINVD and INVD instructions to
invalidate the cache is allowed.

56 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

If software attempts to set NW to 1 when the cache is enabled
(CD is cleared to 0), the processor causes a general-protection
exception (#GP). See “Memory Caches” on page 206 for
information on the internal caches.

Cache Disable (CD) Bit. Bit 30. When CD is cleared to 0, the internal
caches are enabled. When CD is set to 1, no new data or
instructions are brought into the internal caches. However, the
processor still accesses the internal caches when CD=1 under
the following situations:

� Reads that hit in an internal cache cause the data to be read
from the internal cache that reported the hit.

� Writes that hit in an internal cache cause the cache line that
reported the hit to be written back to memory and
invalidated in the cache.

Cache misses do not affect the internal caches when CD=1.
Software can prevent cache access by writing back and
invalidating the caches before setting CD to 1 (this avoids
caching the instructions that set CD to 1).

Setting CD to 1 also causes the processor to ignore the page-
level cache-control bits (PWT and PCD) when paging is
enabled. These bits are located in the page-translation tables
and CR3 register. See “Page-Level Writethrough (PWT) Bit” on
page 168 and “Page-Level Cache Disable (PCD) Bit” on
page 168 for information on page-level cache control.

See “Memory Caches” on page 206 for information on the
internal caches.

Paging Enable (PG) Bit. Bit 31. Software enables page translation
by setting PG to 1, and disables page translation by clearing PG
to 0. Page translation cannot be enabled unless the processor is
in protected mode (CR0.PE=1). If software attempts to set PG
to 1 when PE is cleared to 0, the processor causes a general-
protection exception (#GP).

See “Page Translation Overview” on page 144 for information
on the page-translation mechanism.

Reserved Bits. Bits 28–19, 17, 15–6, and 63–32. When writing the
CR0 register, software should set the values of reserved bits to
the values found during the previous CR0 read. No attempt
should be made to change reserved bits, and software should

Chapter 3: System Resources 57

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

never rely on the values of reserved bits. In long mode, bits
63–32 are reserved and must be written with zero, otherwise a
#GP occurs.

3.1.2 CR2 and CR3
Registers

The CR2 (page-fault linear address) register, shown in Figures
3-2 and 3-3, and the CR3 (page-translation-table base address)
register, shown in Figures 3-4, 3-5, and 3-6, are used only by the
page-translation mechanism.

Figure 3-2. Control Register 2 (CR2)—Legacy-Mode

Figure 3-3. Control Register 2 (CR2)—Long Mode

See “CR2 Register” on page 259 for a description of the CR2
register.

The CR3 register is used to point to the base address of the
highest-level page-translation table.

Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging

Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging

31 0

Page-Fault Virtual Address

63 32

Page-Fault Virtual Address

31 0

Page-Fault Virtual Address

31 12 11 5 4 3 2 0

Page-Directory-Table Base Address reserved
P
C
D

P
W
T

reserved

31 5 4 3 2 0

Page-Directory-Pointer-Table Base Address
P
C
D

P
W
T

reserved

58 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 3-6. Control Register 3 (CR3)—Long Mode

The legacy CR3 register is described in “CR3 Register” on
page 149, and the long-mode CR3 register is described in
“CR3” on page 159.

3.1.3 CR4 Register The CR4 register is shown in Figure 3-7. In legacy mode, the
CR4 register is identical to the low 32 bits of the register shown
in Figure 3-7 (CR4 bits 31–0). The features controlled by the
bits in the CR4 register are model-specific extensions. Except
for the performance-counter extensions (PCE) feature,
software can use the CPUID instruction to verify that each
feature is supported before using that feature.

Figure 3-7. Control Register 4 (CR4)

63 52 51 32

reserved Page-Map Level-4 Table Base Address

31 12 11 5 4 3 2 0

Page-Map Level-4 Table Base Address reserved
P
C
D

P
W
T

reserved

63 32

reserved, MBZ

31 11 10 9 8 7 6 5 4 3 2 1 0

reserved, MBZ
O
S
X

OSF
XSR

P
C
E

P
G
E

M
C
E

P
A
E

P
S
E

D
E

T
S
D

P
V
I

V
M
E

Bits Mnemonic Description R/W
63–11 reserved Reserved, Must be Zero
10 OSXMMEX-

CPT
Operating System Unmasked Exception
Support

R/W

9 OSFXSR Operating System FXSAVE/FXRSTOR Sup-
port

R/W

8 PCE Performance-Monitoring Counter Enable R/W
7 PGE Page-Global Enable R/W
6 MCE Machine Check Enable R/W
5 PAE Physical-Address Extension R/W
4 PSE Page Size Extensions R/W
3 DE Debugging Extensions R/W
2 TSD Time Stamp Disable R/W
1 PVI Protected-Mode Virtual Interrupts R/W
0 VME Virtual-8086 Mode Extensions R/W

Chapter 3: System Resources 59

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

The function of the CR4 control bits are (all bits are read/write):

Virtual-8086 Mode Extensions (VME) Bit. Bit 0 . Sett ing VME to 1
enables hardware-supported performance enhancements for
software running in virtual-8086 mode. Clearing VME to 0
disables this support. The enhancements enabled when VME=1
include:

� Virtualized, maskable, external-interrupt control and
notification using the VIF and VIP bits in the rFLAGS
register. Virtualizing affects the operation of several
instructions that manipulate the rFLAGS.IF bit.

� Selective intercept of software interrupts (INTn
instructions) using the interrupt-redirection bitmap in the
TSS.

Protected-Mode Virtual Interrupts (PVI) Bit. Bit 1. Setting PVI to 1
enables support for protected-mode virtual interrupts. Clearing
PVI to 0 disables this support. When PVI=1, hardware support
of two bits in the rFLAGS register, VIF and VIP, is enabled.

Only the STI and CLI instructions are affected by enabling PVI.
Unlike the case when CR0.VME=1, the interrupt-redirection
bitmap in the TSS cannot be used for selective INTn
interception.

PVI enhancements are also supported in long mode. See
“Virtual Interrupts” on page 293 for more information on using
PVI.

Time-Stamp Disable (TSD) Bit. Bit 2. The TSD bit allows software to
control the privilege level at which the time-stamp counter can
be read. When TSD is cleared to 0, software running at any
privilege level can read the time-stamp counter using the
RDTSC instruction. When TSD is set to 1, only software running
at privilege-level 0 can execute the RDTSC instruction.

Debugging Extensions (DE) Bit. Bit 3. Setting the DE bit to 1 enables
the I/O breakpoint capability and enforces treatment of the
DR4 and DR5 registers as reserved. Software that accesses DR4
or DR5 when DE=1 causes a invalid opcode exception (#UD).

When the DE bit is cleared to 0, I/O breakpoint capabilities are
disabled. Software references to the DR4 and DR5 registers are
aliased to the DR6 and DR7 registers, respectively.

60 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Page-Size Extensions (PSE) Bit. Bit 4. Setting PSE to 1 enables the
use of 4-Mbyte physical pages. With PSE=1, the physical-page
size is selected between 4 Kbytes and 4 Mbytes using the page-
directory entry page-size field (PS). Clearing PSE to 0 disables
the use of 4-Mbyte physical pages and restricts all physical
pages to 4 Kbytes.

The PSE bit has no effect when physical-address extensions are
enabled (CR4.PAE=1) . Because long mode requires
CR4.PAE=1, the PSE bit is ignored when the processor is
running in long mode.

See “4-Mbyte Page Translation” on page 152 for more
information on 4-Mbyte page translation.

Physical-Address Extension (PAE) Bit. Bit 5. Setting PAE to 1 enables
the use of physical-address extensions and 2-Mbyte physical
pages. Clearing PAE to 0 disables these features.

With PAE=1, the page-translation data structures are expanded
from 32 bits to 64 bits, allowing the translation of up to 52-bit
physical addresses. Also, the physical-page size is selectable
between 4 Kbytes and 2 Mbytes using the page-directory-entry
page-size field (PS). Long mode requires PAE to be enabled in
order to use the 64-bit page-translation data structures to
translate 64-bit virtual addresses to 52-bit physical addresses.

See “PAE Paging” on page 154 for more information on
physical-address extensions.

Machine-Check Enable (MCE) Bit. Bit 6. Setting MCE to 1 enables the
machine-check exception mechanism. Clearing this bit to 0
disables the mechanism. When enabled, a machine-check
exception (#MC) occurs when an uncorrectable machine-check
error is encountered.

Regardless of whether machine-check exceptions are enabled,
the processor records enabled-errors when they occur. Error-
reporting is performed by the machine-check error-reporting
register banks. Each bank includes a control register for
enabling error reporting and a status register for capturing
errors. Correctable machine-check errors are also reported, but
they do not cause a machine-check exception.

Chapter 3: System Resources 61

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

See Chapter 9, “Machine Check Mechanism,” for a description
of the machine-check mechanism, the registers used, and the
types of errors captured by the mechanism.

Page-Global Enable (PGE) Bit. Bit 7 . When page translation is
enabled, system-software performance can often be improved
by making some page translations global to all tasks and
procedures. Setting PGE to 1 enables the global-page
mechanism. Clearing this bit to 0 disables the mechanism.

When PGE is enabled, system software can set the global-page
(G) bit in the lowest level of the page-translation hierarchy to 1,
indicating that the page translation is global. Page translations
marked as global are not invalidated in the TLB when the page-
translation-table base address (CR3) is updated. When the G bit
is cleared, the page translation is not global. All supported
physical-page sizes also support the global-page mechanism.
See “Global Pages” on page 171 for information on using the
global-page mechanism.

Performance-Monitoring Counter Enable (PCE) Bit. Bit 8. Setting PCE to
1 allows software running at any privilege level to use the
RDPMC instruction. Software uses the RDPMC instruction to
read the four performance-monitoring MSRs, PerfCTR[3:0].
Clearing PCE to 0 allows only the most-privileged software
(CPL=0) to use the RDPMC instruction.

FXSAVE/FXRSTOR Support (OSFXSR) Bit. Bit 9. System software must
set the OSFXSR bit to 1 to enable use of the 128-bit media
instructions. When this bit is set to 1, it also indicates that
system software uses the FXSAVE and FXRSTOR instructions
to save and restore the processor state for the x87, 64-bit media,
and 128-bit media instructions.

Clearing the OSFXSR bit to 0 indicates that 128-bit media
instructions cannot be used. Attempts to use those instructions
while this bit is clear result in an invalid-opcode exception
(#UD). Software can continue to use the FXSAVE/FXRSTOR
instructions for saving and restoring the processor state for the
x87 and 64-bit media instructions.

Unmasked Exception Support (OSXMMEXCPT) Bit. Bit 10 . System
software must set the OSXMMEXCPT bit to 1 when it supports
the SIMD floating-point exception (#XF) for handling of
unmasked 128-bit media floating-point errors. Clearing the

62 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

OSXMMEXCPT bit to 0 indicates the #XF handler is not
supported. When OSXMMEXCPT=0, unmasked 128-bit media
floating-point exceptions cause an invalid-opcode exception
(#UD). See “SIMD Floating-Point Exception Causes” in
Volume 1 for more information on 128-bit media unmasked
floating-point exceptions.

3.1.4 CR1 and
CR5–CR7 Registers

Control registers CR1, CR5–CR7, and CR9–CR15 are reserved.
Attempts by software to use these registers result in an
undefined-opcode exception (#UD).

3.1.5 64-Bit-Mode
Extended Control
Registers

In 64-bit mode, additional encodings for control registers are
available. The REX.R bit, in a REX prefix, is used to modify the
ModRM reg field when that field encodes a control register, as
shown in “REX Prefix-Byte Fields” in Volume 3. These
additional encodings enable the processor to address
CR8–CR15.

One additional control register, CR8, is defined in 64-bit mode
for all hardware implementations, as described in “CR8 (Task
Priority Register, TPR),” below. Access to the CR9–CR15
registers is implementation-dependent. Any attempt to access
an unimplemented register results in an invalid-opcode
exception (#UD).

3.1.6 CR8 (Task
Priority Register,
TPR)

The x86-64 architecture introduces a new control register, CR8,
defined as the task priority register (TPR). The register is
accessible in 64-bit mode using the REX prefix. See “External
Interrupt Priorities” on page 270 for a description of the TPR
and how system software can use the TPR for controlling
external interrupts.

3.1.7 RFLAGS Register The RFLAGS register contains two different types of
information:

� Control bits provide system-software controls and directional
information for string operations. Some of these bits can
have privilege-level restrictions.

� Status bits provide information resulting from logical and
arithmetic operations. These are written by the processor
and can be read by software running at any privilege level.

Figure 3-8 on page 63 shows the format of the RFLAGS register.
The legacy EFLAGS register is identical to the low 32 bits of the
register shown in Figure 3-8 (RFLAGS bits 31–0). The term

Chapter 3: System Resources 63

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

rFLAGS is used to refer to the 16-bit, 32-bit, or 64-bit flags
register, depending on context.

Figure 3-8. RFLAGS Register

The functions of the RFLAGS control and status bits used by
application software are described in “Flags Register” in
Volume 1. The functions of RFLAGS system bits are (unless
otherwise noted, all bits are read/write):

Trap Flag (TF) Bit. Bit 8. Software sets the TF bit to 1 to enable
single-step mode during software debug. Clearing this bit to 0
disables single-step mode.

When single-step mode is enabled, a debug exception (#DB)
occurs after each instruction completes execution. Single
stepping begins with the instruction following the instruction
that sets TF. Single stepping is disabled (TF=0) when the #DB
exception occurs or when any exception or interrupt occurs.

63 32

reserved, RAZ

31 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved, RAZ I
D

V
I
P

V
I
F

A
C

V
M

R
F

0 N
T IOPL O

F
D
F

I
F

T
F

S
F

Z
F

0 A
F

0 P
F

1 C
F

Bits Mnemonic Description R/W
63–22 reserved Reserved, Read as Zero
21 ID ID Flag R/W
20 VIP Virtual Interrupt Pending R/W
19 VIF Virtual Interrupt Flag R/W
18 AC Alignment Check R/W
17 VM Virtual-8086 Mode R/W
16 RF Resume Flag R/W
15 reserved Reserved, Read as Zero
14 NT Nested Task R/W
13-12 IOPL I/O Privilege Level R/W
11 OF Overflow Flag R/W
10 DF Direction Flag R/W
9 IF Interrupt Flag R/W
8 TF Trap Flag R/W
7 SF Sign Flag R/W
6 ZF Zero Flag R/W
5 reserved Reserved, Read as Zero
4 AF Auxiliary Flag R/W
3 reserved Reserved, Read as Zero
2 PF Parity Flag R/W
1 reserved Reserved, Read as One
0 CF Carry Flag R/W

64 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

See “Single Stepping” on page 398 for information on using the
single-step mode during debugging.

Interrupt Flag (IF) Bit. Bit 9. Software sets the IF bit to 1 to enable
maskable interrupts. Clearing this bit to 0 causes the processor
to ignore maskable interrupts. The state of the IF bit does not
affect the response of a processor to non-maskable interrupts,
software-interrupt instructions, or exceptions.

The ability to modify the IF bit depends on several factors:

� The current privilege-level (CPL)

� The I/O privilege level (RFLAGS.IOPL)

� Whether or not virtual-8086 mode extensions are enabled
(CR4.VME=1)

� Whether or not protected-mode virtual interrupts are
enabled (CR4.PVI=1)

See “Masking External Interrupts” on page 243 for information
on interrupt masking. See “Accessing the RFLAGs Register” on
page 185 for information on the specific instructions used to
modify the IF bit.

I/O Privilege Level Field (IOPL) Field. Bits 13–12. The IOPL field
specifies the privilege level required to execute I/O address-
space instructions (i.e., instructions that address the I/O space
rather than memory-mapped I/O, such as IN, OUT, INS, OUTS,
etc.). For software to execute these instructions, the current
privilege-level (CPL) must be equal to or higher than (lower
numerical value than) the privilege specified by IOPL (CPL <=
IOPL). If the CPL is lower than (higher numerical value than)
that specified by the IOPL (CPL > IOPL), the processor causes a
general-protection exception (#GP) when software attempts to
execute an I/O instruction. See “Protected-Mode I/O” in
Volume 1 for information on how IOPL controls access to
address-space I/O.

Virtual-8086 mode uses IOPL to control virtual interrupts and
the IF bit when virtual-8086 mode extensions are enabled
(CR4.VME=1). The protected-mode virtual- interrupt
mechanism (PVI) also uses IOPL to control virtual interrupts
and the IF bit when PVI is enabled (CR4.PVI=1). See “Virtual
Interrupts” on page 293 for information on how IOPL is used by
the virtual interrupt mechanism.

Chapter 3: System Resources 65

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Nested Task (NT) Bit. Bit 14, IRET reads the NT bit to determine
whether the current task is nested within another task. When
NT is set to 1, the current task is nested within another task.
When NT is cleared to 0, the current task is at the top level (not
nested).

The processor sets the NT bit during a task switch resulting
from a CALL, interrupt, or exception through a task gate. When
an IRET is executed from legacy mode while the NT bit is set, a
task switch occurs. See “Task Switches Using Task Gates” on
page 375 for information on switching tasks using task gates,
and “Nesting Tasks” on page 377 for information on task
nesting.

Resume Flag (RF) Bit. Bit 16. The RF bit allows an instruction to be
restarted following an instruction breakpoint resulting in a
debug exception (#DB). This bit prevents multiple debug
exceptions from occurring on the same instruction.

The processor clears the RF bit after every instruction is
successfully executed, except when the instruction is:

� An IRET that sets the RF bit.

� JMP, CALL, or INTn through a task gate.

In both of the above cases, RF is not cleared to 0 until the next
instruction successfully executes.

When an exception occurs (or when a string instruction is
interrupted), the processor normally sets RF=1 in the rFLAGS
image saved on the interrupt stack. However, when a #DB
exception occurs as a result of an instruction breakpoint, the
processor clears the RF bit to 0 in the interrupt-stack rFLAGS
image.

For instruction restart to work properly following an instruction
breakpoint, the #DB exception handler must set RF to 1 in the
interrupt-stack rFLAGS image. When an IRET is later executed
to return to the instruction that caused the instruction-
breakpoint #DB exception, the set RF bit (RF=1) is loaded from
the interrupt-stack rFLAGS image. RF is not cleared by the
processor until the instruction causing the #DB exception
successfully executes.

Virtual-8086 Mode (VM) Bit. Bit 17. Software sets the VM bit to 1 to
enable virtual-8086 mode. Software clears the VM bit to 0 to

66 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

disable virtual-8086 mode. System software can only change
this bit using a task switch or an IRET. It cannot modify the bit
using the POPFD instruction.

Alignment Check (AC) Bit. Bit 18. Software enables automatic
alignment checking by setting the AC bit to 1 when CR0.AM=1.
Alignment checking can be disabled by clearing either AC or
CR0.AM to 0. When automatic alignment checking is enabled
and the current privilege-level (CPL) is 3 (least privileged), a
memory reference to an unaligned operand causes an
alignment-check exception (#AC).

Virtual Interrupt (VIF) Bit. Bit 19. The VIF bit is a virtual image of
the RFLAGS.IF bit. It is enabled when either virtual-8086 mode
extensions are enabled (CR4.VME=1) or protected-mode
virtual interrupts are enabled (CR4.PVI=1), and the
RFLAGS.IOPL field is less than 3. When enabled, instructions
that ordinarily would modify the IF bit actually modify the VIF
bit with no effect on the RFLAGS.IF bit.

System software that supports virtual-8086 mode should enable
the VIF bit using CR4.VME. This allows 8086 software to
execute instructions that can set and clear the RFLAGS.IF bit
without causing an exception. With VIF enabled in virtual-8086
mode, those instructions set and clear the VIF bit instead,
giving the appearance to the 8086 software that it is modifying
the RFLAGS.IF bit. System software reads the VIF bit to
determine whether or not to take the action desired by the 8086
software (enabling or disabling interrupts by setting or clearing
the RFLAGS.IF bit).

In long mode, the use of the VIF bit is supported when
CR4.PVI=1. See “Virtual Interrupts” on page 293 for more
information on virtual interrupts.

Virtual Interrupt Pending (VIP) Bit. Bit 20. The VIP bit is provided as
an extension to both virtual-8086 mode and protected mode. It
is used by system software to indicate that an external,
maskable interrupt is pending (awaiting) execution by either a
virtual-8086 mode or protected-mode interrupt-service routine.
Software must enable v irtual -8086 mode extensions
(CR4.VME=1) or protected-mode virtual interrupts
(CR4.PVI=1) before using VIP.

VIP is normally set to 1 by a protected-mode interrupt-service
routine that was entered from virtual-8086 mode as a result of

Chapter 3: System Resources 67

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

an external, maskable interrupt. Before returning to the
virtual-8086 mode application, the service routine sets VIP to 1
if EFLAGS.VIF=1. When the virtual-8086 mode application
attempts to enable interrupts by clearing EFLAGS.VIF to 0
while VIP=1, a general-protection exception (#GP) occurs. The
#GP service routine can then decide whether to allow the
virtual-8086 mode service routine to handle the pending
external, maskable interrupt. (EFLAGS is specifically referred
to in this case because virtual-8086 mode is supported only from
legacy mode.)

In long mode, the use of the VIP bit is supported when
CR4.PVI=1. See “Virtual Interrupts” on page 293 for more
information on virtual-8086 mode interrupts and the VIP bit.

Processor Feature Identification (ID) Bit. Bit 21 . The abi l i ty of
software to modify this bit indicates that the processor
implementation supports the CPUID instruction. See
“Processor Feature Identification” on page 75 for more
information on the CPUID instruction.

3.1.8 Extended
Feature Enable
Register (EFER)

The extended-feature-enable register (EFER) contains control
bits that enable additional processor features not controlled by
the legacy control registers. The EFER is a model-specific
register (MSR) with an address of C000_0080h (see “Model-
Specific Registers (MSRs)” on page 69 for more information on
MSRs). It can be read and written only by privileged software.
Figure 3-9 on page 68 shows the format of the EFER register.

68 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 3-9. Extended Feature Enable Register (EFER)

The function of the EFER bits are (unless otherwise noted, all
bits are read/write):

System-Call Extension (SCE) Bit. Bit 0. Setting this bit to 1 enables
the SYSCALL and SYSRET instructions. Application software
can use these instructions for low-latency system calls and
returns in a non-segmented (flat) address space. See “Fast
System Call and Return” on page 179 for additional
information.

Long Mode Enable (LME) Bit. Bit 8. Setting this bit to 1 enables the
processor to activate long mode. Long mode is not activated
until software enables paging some time later. When paging is
enabled after LME is set to 1, the processor sets the EFER.LMA
bit to 1, indicating that long mode is not only enabled but also
active. See Chapter 14, “Processor Initialization and Long-
Mode Activation,” for more information on activating long
mode.

Long Mode Active (LMA) Bit. Bit 10, read-only. This bit indicates
that long mode is active. The processor sets LMA to 1 when both
long mode and paging have been enabled by system software.
See Chapter 14, “Processor Initialization and Long-Mode
Activation,” for more information on activating long mode.

63 32

reserved, MBZ

31 11 10 9 8 7 1 0

reserved, MBZ
N
X
E

L
M
A

r
L
M
E

reserved, RAZ
S
C
E

Bits Mnemonic Description R/W

63–12 reserved,
MBZ

Reserved, Must be Zero

11 NXE No-Execute Enable R/W

10 LMA Long Mode Active R

9 reserved,
MBZ

Reserved, Must be Zero

8 LME Long Mode Enable R/W

7-1 reserved,
RAZ

Reserved, Read as Zero

0 SCE System Call Extensions R/W

Chapter 3: System Resources 69

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

When LMA=1, the processor is running either in compatibility
mode or 64-bit mode, depending on the value of the L bit in a
code-segment descriptor, as shown in Figure 1-6 on page 14.

When LMA=0, the processor is running in legacy mode. In this
mode, the processor behaves like a standard 32-bit x86
processor, with none of the new 64-bit features enabled.

No-Execute Enable (NXE) Bit. Bit 11. Setting this bit to 1 enables the
no-execute page-protection feature. The feature is disabled
when this bit is cleared to 0. See “No Execute (NX) Bit” on
page 173 for more information.

Before setting NXE, system software should verify the
processor supports the feature by examining the extended-
feature flags returned by the CPUID instruction. For more
information, see “Function 8000_0001h: Processor Signature
and AMD Features” in Volume 3.

3.2 Model-Specific Registers (MSRs)

Processor implementations provide model-specific registers
(MSRs) for software control over the unique features supported
by that implementation. Software reads and writes MSRs using
the pr iv i leged RDMSR and WRMSR instruct ions .
Implementations of the x86-64 architecture can contain a
mixture of two basic MSR types:

� Legacy MSRs. The AMD family of processors often share
model-specific features with other x86 processor
implementations. Where possible, AMD implementations
use the same MSRs for the same functions. For example, the
memory-typing and debug-extension MSRs are
implemented on many AMD and non-AMD processors.

� AMD model-specific MSRs. There are many MSRs common to
the AMD family of processors but not to legacy x86
processors. Where possible, AMD implementations use the
same AMD-specific MSRs for the same functions.

Every model-specific register, as the name implies, is not
necessarily implemented by all members of the AMD family of
processors. Appendix A, “MSR Cross-Reference,” lists MSR-
address ranges currently used by various AMD and other x86
processors.

70 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

The x86-64 architecture includes a number of features that are
controlled using MSRs. Those MSRs are shown in Figure 3-10.
The EFER register—described in “Extended Feature Enable
Register (EFER)” on page 67—is also an MSR.

Figure 3-10. x86-64 Architecture Model-Specific Registers

The following sections briefly describe the MSRs in the x86-64
architecture.

3.2.1 System
Configuration
Register (SYSCFG)

The system-configuration register (SYSCFG) contains control
bits for enabling and configuring system bus features. SYSCFG
is a model-specific register (MSR) with an address of
C001_0010h. Figure 3-11 shows the format of the SYSCFG

513-262.eps

Memory-Typing Registers

MTRRcap

MTRRdefType

MTRRphysBasen

MTRRphysMaskn

MTRRfixn

PAT

TOP_MEM

TOP_MEM2

Machine-Check Registers

MCG_CAP

MCG_STAT

MCG_CTL

MCi_CTL

MCi_STATUS

MCi_ADDR

MCi_MISC

Performance-Monitoring Registers

TSC

PerfEvtSeln

PerfCtrn

System-Linkage Registers

STAR

LSTAR

CSTAR

FS.base

GS.base

KernelGSbase

SYSENTER_CS

SYSENTER_ESP

SYSENTER_EIP

Debug-Extension Registers

DebugCtlMSR

LastBranchFromIP

LastBranchToIP

LastIntFromIP

LastIntToIP

System-Configuration Register

SYSCFG

SFMASK

Chapter 3: System Resources 71

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

register. Some features are implementation specific, and are
described in the BIOS writer’s guide for the implementation.
Implementation-specific features are not shown in Figure 3-11.

Figure 3-11. System-Configuration Register (SYSCFG)

The function of the SYSCFG bits are (all bits are read/write
unless otherwise noted):

MtrrFixDramEn Bit. Bit 18. Setting this bit to 1 enables use of the
RdMem and WrMem attributes in the fixed-range MTRR
registers. When cleared, these attributes are disabled. The
RdMem and WrMem attributes allow system software to define
fixed-range IORRs using the fixed-range MTRRs. See
“Extended Fixed-Range MTRR Type-Field Encodings” on
page 233 for information on using this feature.

MtrrFixDramModEn Bit. Bit 19. Setting this bit to 1 allows software
to read and write the RdMem and WrMem bits. When cleared,
writes do not modify the RdMem and WrMem bits, and reads
return 0. See “Extended Fixed-Range MTRR Type-Field
Encodings” on page 233 for information on using this feature.

MtrrVarDramEn Bit. Bit 20. Setting this bit to 1 enables the
TOP_MEM register and the variable-range IORRs. These
registers are disabled when the bit is cleared to 0. See “IORRs”
on page 235 and “Top of Memory” on page 237 for information
on using these features.

MtrrTom2En Bit. Bit 21. Sett ing this bi t to 1 enables the
TOP_MEM2 register. The register is disabled when this bit is
cleared to 0. See “Top of Memory” on page 237 for information
on using this feature.

31 22 21 20 19 18 17 0

reserved

T
O
M
2

M
V
D
M

M
F
D
M

M
F
D
E

reserved

Bits Mnemonic Description R/W

31-22 reserved
21 TOM2 MtrrTom2En R/W

20 MVDM MtrrVarDramEn R/W

19 MFDM MtrrFixDramModEn R/W

18 MFDE MtrrFixDramEn R/W

17-0 reserved

72 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

3.2.2 System-Linkage
Registers

System-linkage MSRs are used by system software to allow fast
control transfers between applications and the operating
system. The functions of these registers are:

STAR, LSTAR, CSTAR, and SFMASK Registers. These registers are used
to provide mode-dependent linkage information for the
SYSCALL and SYSRET instructions. STAR is used in legacy
modes, LSTAR in 64-bit mode, and CSTAR in compatibility
mode. SFMASK is used by the SYSCALL instruction for
rFLAGS in long mode.

FS.base and GS.base Registers. These registers allow 64-bit base-
address values to be specified for the FS and GS segments, for
use in 64-bit mode. See “FS and GS Registers in 64-Bit Mode”
on page 86 for a description of the special treatment the FS and
GS segments receive.

KernelGSbase Register. This register is used by the SWAPGS
instruction. This instruction exchanges the value located in
KernelGSbase with the value located in GS.base.

SYSENTERx Registers. The SYSENTER_CS, SYSENTER_ESP, and
SYSENTER_EIP registers are used to provide linkage
information for the SYSENTER and SYSEXIT instructions.
These instructions are only used in legacy mode.

The system-linkage instructions and their use of MSRs are
described in “Fast System Call and Return” on page 179.

3.2.3 Memory-Typing
Registers

Memory-typing MSRs are used to characterize, or type,
memory. Memory typing allows software to control the
cacheability of memory, and determine how accesses to memory
are ordered. The memory-typing registers perform the following
functions:

MTRRcap Register. This register contains information describing
the level of MTRR support provided by the processor.

MTRRdefType Register. This register establishes the default
memory type to be used for physical memory that is not
specifically characterized using the fixed-range and variable-
range MTRRs.

MTRRphysBasen and MTRRphysMaskn Registers. These registers form
a register pair that can be used to characterize any address
range within the physical-memory space, including all of

Chapter 3: System Resources 73

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

physical memory. Up to eight address ranges of varying sizes
can be characterized using these registers.

MTRRfixn Registers. These registers are used to characterize fixed-
size memory ranges in the first 1 Mbytes of physical-memory
space.

PAT Register. This register allows memory-type characterization
based on the virtual (linear) address. It is an extension to the
PCD and PWT memory types supported by the legacy paging
mechanism. The PAT mechanism provides the same memory-
typing capabilities as the MTRRs, but with the added flexibility
provided by the paging mechanism.

TOP_MEM and TOP_MEM2 Registers. These top-of-memory registers
allow system software to specify physical addresses ranges as
memory-mapped I/O locations.

Refer to “Memory-Type Range Registers” on page 215 for more
information on using these registers.

3.2.4 Debug-
Extension Registers

The debug-extension MSRs provide software-debug capability
not available in the legacy debug registers (DR0–DR7). These
MSRs allow single stepping and recording of control transfers
to take place. The debug-extension registers perform the
following functions:

DebugCtlMSR Register. This register provides control over control-
transfer recording and single stepping, and external-breakpoint
reporting and trace messages.

LastBranchx and LastExceptionx Registers. The four regis ters ,
LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and
LastExceptionFromIP, are all used to record the source and
target of control transfers when branch recording is enabled.

Refer to “Control-Transfer Breakpoint Features” on page 399
for more information on using these debug registers.

3.2.5 Performance-
Monitoring Registers

The time-stamp counter and performance-monitoring registers
are useful in identifying performance bottlenecks. There can be
any number of performance counters, each numbered from 0 to
n. These registers perform the following functions:

TSC Register. This register is used to count processor-clock cycles.
It can be read using the RDMSR instruction, or it can be read

74 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

using the read time-stamp counter instruction, RDTSC. System
software can make RDTSC available for use by non-privileged
software by clearing the time-stamp disable bit (CR4.TSD) to 0.

PerfEvtSeln Registers. These registers are used to specify the
events counted by the corresponding performance counter, and
to control other aspects of its operation.

PerfCtrn Registers. These registers are performance counters that
hold a count of processor events or the duration of events,
under the control of the corresponding PerfEvtSeln register.
Each PerfCtrn register can be read using the RDMSR
instruction, or they can be read using the read performance-
monitor counter instruction, RDPMC. System software can
make RDPMC available for use by non-privileged software by
setting the performance-monitor counter enable bit (CR4.PCE)
to 1.

Refer to “Using Performance Counters” on page 406 for more
information on using these registers.

3.2.6 Machine-Check
Registers

The machine-check registers control the detection and
reporting of hardware machine-check errors. The types of errors
that can be reported include cache-access errors, load-data and
store-data errors, bus-parity errors, and ECC errors. Two types
of machine-check MSRs are shown in Figure 3-10 on page 70.

The first type is global machine-check registers, which perform
the following functions:

MCG_CAP Register. This register identifies the machine-check
capabilities supported by the processor.

MCG_CTL Register. This register provides global control over
machine-check-error reporting.

MCG_STATUS Register. This register reports global status on
detected machine-check errors.

The second type is error-reporting register banks, which report
on machine-check errors associated with a specific processor
unit (or group of processor units). There can be different
numbers of register banks for each processor implementation,
and each bank is numbered from 0 to i. The registers in each
bank perform the following functions:

Chapter 3: System Resources 75

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

MCi_CTL Registers. These registers control error-reporting.

MCi_STATUS Registers. These registers report machine-check
errors.

MCi_ADDR Registers. These registers report the machine-check
error address.

MCi_MISC Registers. These registers report miscellaneous-error
information.

Refer to “Using Machine Check Features” on page 313 for more
information on using these registers.

3.3 Processor Feature Identification

The CPUID instruction provides information about the
processor implementation and its capabilities. Software
operating at any privilege level can execute the CPUID
instruction to collect this information. After the information is
collected, software can be tuned to optimize performance and
benefit to users. For example, game software can identify and
enable the media capabilities of a particular processor
implementation.

The CPUID instruction supports multiple functions, each
providing different information about the processor
implementation, including the vendor, model number, revision
(stepping), features, cache organization, and name. The
multifunction approach allows the CPUID instruction to return
a detailed picture of the processor implementation and its
capabilities — more detailed information than could be
returned by a single function. This flexibility also allows for the
addition of new CPUID functions in future processor
generations.

Function codes are loaded into the EAX register before
executing the CPUID instruction. CPUID functions are divided
into two types:

� Standard functions include the earliest features offered in
the x86 architecture.

� Extended functions include newer features of the x86 and
x86-64 architectures, such as SSE, SSE2, and 3DNow!
instructions, and long mode.

76 Chapter 3: System Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

See “CPUID” in Volume 3 for details on the operation of this
instruction, and the AMD x86-64 Processor Recognition
Application Note Addendum (order no. 25481) for information
returned by each processor implementation.

Chapter 4: Segmented Virtual Memory 77

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

4 Segmented Virtual Memory

The legacy x86 architecture supports a segment-translation
mechanism that allows system software to relocate and isolate
instructions and data anywhere in the virtual-memory space. A
segment is a contiguous block of memory within the linear
address space. The size and location of a segment within the
linear address space is arbitrary. Instructions and data can be
assigned to one or more memory segments, each with its own
protection characteristics. The processor hardware enforces the
rules dictating whether one segment can access another
segment.

The segmentation mechanism provides ten segment registers,
each of which defines a single segment. Six of these registers
(CS, DS, ES, FS, GS, and SS) define user segments. User
segments hold software, data, and the stack and can be used by
both application software and system software. The remaining
four segment registers (GDT, LDT, IDT, and TR) define system
segments. System segments contain data structures initialized
and used only by system software. Segment registers contain a
base address pointing to the starting location of a segment, a
limit defining the segment size, and attributes defining the
segment-protection characteristics.

Although segmentation provides a great deal of flexibility in
relocating and protecting software and data, it is often more
efficient to handle memory isolation and relocation with a
combination of software and hardware paging support. For this
reason, most modern system software bypasses the
segmentation features. However, segmentation cannot be
completely disabled, and an understanding of the segmentation
mechanism is important to implementing long-mode system
software.

In long mode, the effects of segmentation depend on whether
the processor is running in compatibility mode or 64-bit mode:

� In compatibility mode, segmentation functions just as it
does in legacy mode, using legacy 16-bit or 32-bit protected
mode semantics.

� 64-bit mode, segmentation is disabled, creating a flat 64-bit
virtual-address space. As will be seen, certain functions of

78 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

some segment registers, particularly the system-segment
registers, continue to be used in 64-bit mode.

4.1 Real Mode Segmentation

After reset or power-up, the processor always initially enters
real mode. Protected Modes are entered from real mode.

As noted in “Real Addressing” on page 11, Real mode (real-
address mode), provides a physical-memory space of 1 Mbyte.
In this mode, a 20-bit physical address is determined by shifting
a 16-bit segment selectors to the left four bits and adding the
16-bit effective address.

Each 64K segment (CS, DS, ES, FS, GS, SS) is aligned on 16-byte
boundaries. The segment base is the lowest address in a given
segment, and is equal to the segment selector * 16. The POP
and MOV instructions can be used to load a (possibly) new
segment selector into one of the segment registers. When this
occurs, the selector is updated and the selector base is set to
selector * 16. The segment limit and segment attributes are
unchanged, but are normally 64K (the maximum allowable
limit) and read/write data, respectively.

On FAR transfers, CS (code segment) selector is updated to the
new value, and the CS segment base is set to selector * 16. The
CS segment limit and attributes are unchanged, but are usually
64K and read/write, respectively.

If the interrupt descriptor table (IDT) is used to find the real
mode IDT see “Real-Mode Interrupt Control Transfers” on
page 272.

The GDT, LDT, and TSS (see below) are not used in real mode.

4.2 Virtual-8086 Mode Segmentation

Virtual-8086 mode supports 16-bit real mode programs running
under protected mode (see below). It uses a simple form of
memory segmentation, optional paging, and limited protection
checking. Programs running in virtual-8086 mode can access up
to 1MB of memory space.

As with real mode segmentation, each 64K segment (CS, DS,
ES, FS, GS, SS) is aligned on 16-byte boundaries. The segment

Chapter 4: Segmented Virtual Memory 79

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

base is the lowest address in a given segment, and is equal to the
segment selector * 16. The POP and MOV instructions work
exactly as in real mode and can be used to load a (possibly) new
segment selector into one of the segment registers. When this
occurs, the selector is updated and the selector base is set to
selector * 16. The segment limit and segment attributes are
unchanged, but are normally 64K (the maximum allowable
limit) and read/write data, respectively.

FAR transfers, with the exception of interrupts and exceptions,
operate as in real mode. On FAR transfers, CS (code segment)
selector is updated to the new value, and the CS segment base
is set to selector * 16. The CS segment limit and attributes are
unchanged, but are usually 64K and read/write, respectively.
Interrupts and exceptions switch the processor to protected
mode. (See Chapter 8, “Exceptions and Interrupts” for more
information.)

4.3 Protected Mode Segmented-Memory Models

System software can use the segmentation mechanism to
support one of two basic segmented-memory models: a flat-
memory model or a mult i - segmented model . These
segmentation models are supported in legacy mode and in
compatibility mode. Each type of model is described in the
following sections.

4.3.1 Multi-
Segmented Model

In the multi-segmented memory model, each segment register
can reference a unique base address with a unique segment
size. Segments can be as small as a single byte or as large as 4
Gbytes. When page translation is used, multiple segments can
be mapped to a single page and multiple pages can be mapped
to a single segment. Figure 1-1 on page 7 shows an example of
the multi-segmented model. The multi-segmented memory
model provides the greatest level of flexibility for system
software using the segmentation mechanism.

Compatibility mode allows the multi-segmented model to be
used in support of legacy software. However, in compatibility
mode, the multi-segmented memory model is restricted to the
first 4 Gbytes of virtual-memory space. Access to virtual
memory above 4 Gbytes requires the use of 64-bit mode, which
does not support segmentation.

80 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

4.3.2 Flat-Memory
Model

The flat-memory model is the simplest form of segmentation to
implement. Although segmentation cannot be disabled, the
flat-memory model allows system software to bypass most of the
segmentation mechanism. In the flat-memory model, all
segment-base addresses have a value of 0 and the segment
limits are fixed at 4 Gbytes. Clearing the segment-base value to
0 effectively disables segment translation, resulting in a single
segment spanning the entire virtual-address space. All segment
descriptors reference this single, flat segment. Figure 1-2 on
page 8 shows an example of the flat-memory model.

4.3.3 Segmentation in
64-bit mode

In 64-bit mode, segmentation is disabled. The segment-base
value is ignored and treated as 0 by the segmentation hardware.
Likewise, segment limits and most attributes are ignored. There
are a few exceptions. The CS-segment DPL, D, and L attributes
are used (respectively) to establish the privilege level for a
program, the default operand size, and whether the program is
running in 64-bit mode or compatibility mode. The FS and GS
segments can be used as additional base registers in address
calculations, and those segments can have non-zero base-
address values. This facilitates addressing thread-local data and
certain system-software data structures. See “FS and GS
Registers in 64-Bit Mode” on page 86 for details about the FS
and GS segments in 64-bit mode. The system-segment registers
are always used in 64-bit mode.

4.4 Segmentation Data Structures and Registers

Figure 4-1 on page 81 shows the following data structures used
by the segmentation mechanism:

� Segment Descriptors—As the name implies, a segment
descriptor describes a segment, including its location in
virtual-address space, its size, protection characteristics,
and other attributes.

� Descriptor Tables—Segment descriptors are stored in
memory in one of three tables. The global-descriptor table
(GDT) holds segment descriptors that can be shared among
all tasks. Multiple local-descriptor tables (LDT) can be
defined to hold descriptors that are used by specific tasks
and are not shared globally. The interrupt-descriptor table
(IDT) holds gate descriptors that are used to access the
segments where interrupt handlers are located.

Chapter 4: Segmented Virtual Memory 81

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Task-State Segment—A task-state segment (TSS) is a special
type of system segment that contains task-state information
and data structures for each task. For example, a TSS holds a
copy of the GPRs and EFLAGS register when a task is
suspended. A TSS also holds the pointers to privileged-
software stacks. The TSS and task-switch mechanism are
described in Chapter 12, “Task Management.”

� Segment Selectors—Descriptors are selected for use from the
descriptor tables using a segment selector. A segment
selector contains an index into either the GDT or LDT. The
IDT is indexed using an interrupt vector, as described in
“Legacy Protected-Mode Interrupt Control Transfers” on
page 274, and in “Long-Mode Interrupt Control Transfers”
on page 285.

Figure 4-1. Segmentation Data Structures

Figure 4-2 on page 82 shows the registers used by the
segmentation mechanism. The registers have the following
relationship to the data structures:

513-263.eps

Segment Descriptors

Code

Stack

Data

Gate

Task-State Segment

Local-Descriptor Table

Global-Descriptor Table (GDT)

Descriptor

Descriptor

. . .

Descriptor

Local-Descriptor Table (LDT)

Descriptor

Descriptor

. . .

Descriptor

Segment Selectors

Selector 1

Selector 2

. . .

Selector n
Interrupt-Descriptor Table (IDT)

Gate Descriptor

Gate Descriptor

. . .

Gate Descriptor

82 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Segment Registers—The six segment registers (CS, DS, ES,
FS, GS, and SS) are used to point to the user segments. A
segment selector selects a descriptor when it is loaded into
one of the segment registers. This causes the processor to
automatically load the selected descriptor into a software-
invisible portion of the segment register.

� Descriptor-Table Registers—The three descriptor-table
registers (GDTR, LDTR, and IDTR) are used to point to the
system segments. The descriptor-table registers identify the
virtual-memory location and size of the descriptor tables.

� Task Register (TR)—Describes the location and limit of the
current task state segment (TSS).

Figure 4-2. Segment and Descriptor-Table Registers

A fourth system-segment register, the TR, points to the TSS.
The data structures and registers associated with task-state
segments are described in “Task-Management Resources” on
page 358.

4.5 Segment Selectors and Registers

4.5.1 Segment
Selectors

Segment selectors are pointers to specific entries in the global
and local descriptor tables. Figure 4-3 on page 83 shows the
segment selector format.

513-264.eps

DS

ES

FS

GS

Data Segment Registers

CS

Code Segment Register

SS

Stack Segment Register

IDTR

Interrupt-Descriptor-Table Register

GDTR

Global-Descriptor-Table Register

LDTR

Local-Descriptor-Table Register

TR

Task Register

Chapter 4: Segmented Virtual Memory 83

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-3. Segment Selector

The selector format consists of the following fields:

Selector Index Field. Bits 15–3. The selector-index field specifies
an entry in the descriptor table. Descriptor-table entries are
eight bytes long, so the selector index is scaled by 8 to form a
byte offset into the descriptor table. The offset is then added to
either the global or local descriptor-table base address (as
indicated by the table-index bit) to form the descriptor-entry
address in virtual-address space.

Some descriptor entries in long mode are 16 bytes long rather
than 8 bytes (see “Legacy Segment Descriptors” on page 95 for
more information on long-mode descriptor-table entries). These
expanded descriptors consume two entries in the descriptor
table. Long mode, however, continues to scale the selector
index by eight to form the descriptor-table offset. It is the
responsibility of system software to assign selectors such that
they correctly point to the start of an expanded entry.

Table Indicator (TI) Bit. Bit 2. The TI bit indicates which table holds
the descriptor referenced by the selector index. When TI=0 the
GDT is used and when TI=1 the LDT is used. The descriptor-
table base address is read from the appropriate descriptor-table
register and added to the scaled selector index as described
above.

Requestor Privilege-Level (RPL) Field. Bits 1–0. The RPL represents
the privilege level (CPL) the processor is operating under at the
time the selector is created.

RPL is used in segment privilege-checks to prevent software
running at lesser privilege levels from accessing privileged
data. See “Data-Access Privilege Checks” on page 119 and
“Control-Transfer Privilege Checks” on page 122 for more
information on segment privilege-checks.

15 3 2 1 0

SI T
I

RPL

Bits Mnemonic Description R/W
15-3 SI Selector Index R/W
2 TI Table Indicator R/W
1-0 RPL Requestor Privilege Level R/W

84 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Null Selector. Null selectors have a selector index of 0 and TI=0,
corresponding to the first entry in the GDT. However, null
selectors do not reference the first GDT entry but are instead
used to invalidate unused segment registers. A general-
protection exception (#GP) occurs if a reference is made to use
a segment register containing a null selector. By initializing
unused segment registers with null selectors software can trap
references to unused segments.

Null selectors can only be loaded into the DS, ES, FS and GS
data-segment registers, and into the LDTR descriptor-table
register. A #GP occurs if software attempts to load the CS or SS
register with a null selector.

4.5.2 Segment
Registers

Six 16-bit segment registers are provided for referencing up to
six segments at one time. All software tasks require segment
selectors to be loaded in the CS and SS registers. Use of the DS,
ES, FS, and GS segments is optional, but nearly all software
accesses data and therefore requires a selector in the DS
register. Table 4-1 lists the supported segment registers and
their functions.

The processor maintains a hidden portion of the segment
register in addition to the selector value loaded by software.
This hidden portion contains the values found in the descriptor-
table entry referenced by the segment selector. The processor
loads the descriptor-table entry into the hidden portion when
the segment register is loaded. By keeping the corresponding
descriptor-table entry in hardware, performance is optimized
for the majority of memory references.

Table 4-1. Segment Registers

Segment
Register Segment Register Function

CS References code-segment descriptor entry

DS References default data-segment descriptor entry

ES References optional data-segment descriptor entry

FS References optional data-segment descriptor entry

GS References optional data-segment descriptor entry

SS References stack segment descriptor entry

Chapter 4: Segmented Virtual Memory 85

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-4 shows the format of the visible and hidden portions
of the segment register. Except for the FS and GS segment base,
software cannot directly read or write the hidden portion
(shown as gray-shaded boxes in Figure 4-4).

Figure 4-4. Segment-Register Format

CS Register. The CS register is loaded with the segment selector
referencing the current code-segment descriptor entry. All
instruction fetches reference the CS descriptor. When a new
selector is loaded into the CS register, the current-privilege
level (CPL) of the processor is set to that of the CS-segment
descriptor-privilege level (DPL).

Data-Segment Registers. The DS register is loaded with the
segment selector referencing the default data-segment
descriptor entry. The SS register is loaded with the stack-
segment selector. The ES, FS, and GS registers are optionally
loaded with segment selectors referencing other data segments.
Data accesses default to referencing the DS descriptor except
in the following two cases:

� The ES descriptor is referenced for string-instruction
destinations.

� The SS descriptor is referenced for stack operations.

4.5.3 Segment
Registers in 64-bit
Mode

CS Register in 64-Bit Mode. In 64-bit mode, most of the hidden
portion of the CS register is ignored. Only the L (long), D
(default operation size), and DPL (descriptor privilege-level)
attributes are recognized by 64-bit mode. Address calculations
assume a CS.base value of 0. CS references do not check the

Hidden From Software 513-221.eps

32-Bit Segment Limit

32-Bit Segment Base Address

Segment Attributes

Selector

86 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

CS.limit value, but instead check that the effective address is in
canonical form.

DS, ES, and SS Registers in 64-Bit Mode. In 64-bit mode, the contents
of the ES, DS, and SS segment registers are ignored. All fields
(base, limit, and attribute) in the hidden portion of the segment
registers are ignored.

Address calculations in 64-bit mode that reference the ES, DS,
or SS segments are treated as if the segment base is 0. Instead
of performing limit checks, the processor checks that all virtual-
address references are in canonical form.

Neither enabling and activating long mode nor switching
between 64-bit and compatibility modes changes the contents
of the visible or hidden portions of the segment registers. These
registers remain unchanged during 64-bit mode execution
unless explicit segment loads are performed.

FS and GS Registers in 64-Bit Mode. Unlike the CS, DS, ES, and SS
segments, the FS and GS segment overrides can be used in 64-
bit mode. When FS and GS segment overrides are used in 64-bit
mode, their respective base addresses are used in the effective-
address (EA) calculation. The complete EA calculation then
becomes (FS or GS) .base + base + (scale ∗ index) +
displacement. The FS.base and GS.base values are also
expanded to the full 64-bit virtual-address size, as shown in
Figure 4-5. The resulting EA calculation is allowed to wrap
across positive and negative addresses.

Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode

Hidden From Software 513-265.eps

64-Bit Segment Base Address

32-Bit Segment Limit

Segment Attributes

Selector

Chapter 4: Segmented Virtual Memory 87

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

In 64-bit mode, FS-segment and GS-segment overrides are not
checked for limit or attributes. Instead, the processor checks
that all virtual-address references are in canonical form.

Segment register-load instructions (MOV to Sreg and POP Sreg)
load only a 32-bit base-address value into the hidden portion of
the FS and GS segment registers. The base-address bits above
the low 32 bits are cleared to 0 as a result of a segment-register
load.

To allow loading all 64 bits of the base address, the FS.base and
GS.base hidden descriptor-register fields are mapped to MSRs.
Privileged software (CPL=0) can load the 64-bit base address
into FS.base or GS.base using a single WRMSR instruction. The
addresses written into the expanded FS.base and GS.base
registers must be in canonical form. A WRMSR instruction that
attempts to write a non-canonical address to these registers
causes a general-protection exception (#GP) to occur.

The FS.base MSR address is C000_0100h while the GS.base
MSR address is C000_0101h.

When in compatibility mode, the FS and GS overrides operate
as defined by the legacy x86 architecture regardless of the
value loaded into the high 32 bits of the hidden descriptor-
register base-address field. Compatibility mode ignores the
high 32 bits when calculating an effective address.

4.6 Descriptor Tables

Descriptor tables are used by the segmentation mechanism
when protected mode is enabled (CR0.PE=1). These tables hold
descriptor entries that describe the location, size, and privilege
attributes of a segment. All memory references in protected
mode access a descriptor-table entry.

As previously mentioned, there are three types of descriptor
tables supported by the x86 segmentation mechanism:

� Global Descriptor Table (GDT)

� Local Descriptor Table (LDT)

� Interrupt Descriptor Table (IDT)

Software establishes the location of a descriptor table in
memory by initializing its corresponding descriptor-table

88 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

register. The descriptor-table registers and the descriptor tables
are described in the following sections.

4.6.1 Global
Descriptor Table

Protected-mode system software must create a global
descriptor table (GDT). The GDT contains code-segment and
data-segment descriptor entries (user segments) for segments
that can be shared by all tasks. In addition to the user segments,
the GDT can also hold gate descriptors and other system-
segment descriptors. System software can store the GDT
anywhere in memory and should protect the segment
containing the GDT from non-privileged software.

Segment selectors point to the GDT when the table-index (TI)
bit in the selector is cleared to 0. The selector index portion of
the segment selector references a specific entry in the GDT.
Figure 4-6 on page 89 shows how the segment selector indexes
into the GDT. One special form of a segment selector is the null
selector. A null selector points to the first entry in the GDT (the
selector index is 0 and TI=0). However, null selectors do not
reference memory, so the first GDT entry cannot be used to
describe a segment (see “Null Selector” on page 84 for
information on using the null selector). The first usable GDT
entry is referenced with a selector index of 1.

Chapter 4: Segmented Virtual Memory 89

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-6. Global and Local Descriptor-Table Access

4.6.2 Global
Descriptor-Table
Register

The global descriptor-table register (GDTR) points to the
location of the GDT in memory and defines its size. This
register is loaded from memory using the LGDT instruction (see
“LGDT and LIDT Instructions” on page 187). Figure 4-7 shows
the format of the GDTR in legacy mode and compatibility
mode.

Figure 4-7. GDTR and IDTR Format—Legacy Modes

Figure 4-8 on page 90 shows the format of the GDTR in 64-bit
mode.

513-209.eps

Descriptor Table Base Address Descriptor Table Limit

Global (TI=0)
Local (TI=1)

Descriptor Table

+

+

Global or Local Descriptor-Table Register

Selector Index 000

Selector Index TI Segment Selector

Unused in GDT

513-220.eps

16-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

90 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 4-8. GDTR and IDTR Format—Long Mode

The GDTR contains 2 fields:

Limit. 2 bytes. These bits define the 16-bit limit, or size, of the
GDT in bytes. The limit value is added to the base address to
yield the ending byte address of the GDT. A general-protection
exception (#GP) occurs if software attempts to access a
descriptor beyond the GDT limit.

The offsets into the descriptor tables are not extended by the
x86-64 architecture in support of long mode. Therefore, the
GDTR and IDTR limit-field sizes are unchanged from the legacy
sizes. The processor does check the limits in long mode during
GDT and IDT accesses.

Base Address. 8 bytes. The base-address field holds the starting
byte address of the GDT in virtual-memory space. The GDT can
be located at any byte address in virtual memory, but system
software should align the GDT on a doubleword boundary to
avoid the potential performance penalties associated with
accessing unaligned data.

The x86-64 architecture increases the base-address field of the
GDTR to 64 bits so that system software running in long mode
can locate the GDT anywhere in the 64-bit virtual-address
space. The processor ignores the high-order 4 bytes of base
address when running in legacy mode.

4.6.3 Local Descriptor
Table

Protected-mode system software can optionally create a local
descriptor table (LDT) to hold segment descriptors belonging to
a single task or even multiple tasks. The LDT typically contains
code-segment and data-segment descriptors as well as gate
descriptors referenced by the specified task. Like the GDT,
system software can store the LDT anywhere in memory and

513-266.eps

16-Bit Descriptor-Table Limit

64-Bit Descriptor-Table Base Address

Chapter 4: Segmented Virtual Memory 91

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

should protect the segment containing the LDT from non-
privileged software.

Segment selectors point to the LDT when the table-index bit
(TI) in the selector is set to 1. The selector index portion of the
segment selector references a specific entry in the LDT (see
Figure 4-6 on page 89). Unlike the GDT, however, a selector
index of 0 references the first entry in the LDT (when TI=1, the
selector is not a null selector).

LDTs are described by system-segment descriptor entries
located in the GDT, and a GDT can contain multiple LDT
descriptors. The LDT system-segment descriptor defines the
location, size, and privilege rights for the LDT. Figure 4-9 shows
the relationship between the LDT and GDT data structures.

Loading a null selector into the LDTR is useful if software does
not use an LDT. This causes a #GP if an erroneous reference is
made to the LDT.

Figure 4-9. Relationship between the LDT and GDT

4.6.4 Local
Descriptor-Table
Register

The local descriptor-table register (LDTR) points to the
location of the LDT in memory, defines its size, and specifies its
attributes. The LDTR has two portions. A visible portion holds
the LDT selector, and a hidden portion holds the LDT
descriptor. When the LDT selector is loaded into the LDTR, the
processor automatically loads the LDT descriptor from the GDT

513-208.eps

Global
Descriptor

Table

GDT Limit

GDT Base Address

LDT Selector

LDT Attributes

LDT Limit

LDT Base Address

Local
Descriptor

Table

Global Descriptor Table Register Local Descriptor Table Register

92 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

into the hidden portion of the LDTR. The LDTR is loaded in one
of two ways:

� Using the LLDT instruction (see “LLDT and LTR
Instructions” on page 187).

� Performing a task switch (see “Switching Tasks” on
page 373).

Figure 4-10 shows the format of the LDTR in legacy mode.

Figure 4-10. LDTR Format—Legacy Mode

Figure 4-11 shows the format of the LDTR in long mode (both
compatibility mode and 64-bit mode).

Figure 4-11. LDTR Format—Long Mode

The LDTR contains four fields:

Hidden From Software 513-221.eps

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Descriptor Attributes

Selector

Hidden From Software 513-267.eps

64-Bit Descriptor-Table Base Address

32-Bit Descriptor-Table Limit

Descriptor Attributes

Selector

Chapter 4: Segmented Virtual Memory 93

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

LDT Selector. 2 bytes. These bits are loaded explicitly from the
TSS during a task switch, or by using the LLDT instruction. The
LDT selector must point to an LDT system-segment descriptor
entry in the GDT. If it does not, a general-protection exception
(#GP) occurs.

The following three fields are loaded automatically from the
LDT descriptor in the GDT as a result of loading the LDT
selector. The register fields are shown as shaded boxes in
Figures 4-10 and 4-11.

Base Address. The base-address field holds the starting byte
address of the LDT in virtual-memory space. Like the GDT, the
LDT can be located anywhere in system memory, but software
should align the LDT on a doubleword boundary to avoid
performance penalties associated with accessing unaligned
data.

The x86-64 architecture expands the base-address field of the
LDTR to 64 bits so that system software running in long mode
can locate an LDT anywhere in the 64-bit virtual-address space.
The processor ignores the high-order 32 base-address bits when
running in legacy mode. Because the LDTR is loaded from the
GDT, the system-segment descriptor format (LDTs are system
segments) has been expanded by the x86-64 architecture in
support of 64-bit mode. See “Long Mode Descriptor Summary”
on page 114 for more information on this expanded format. The
high-order base-address bits are only loaded from 64-bit mode
using the LLDT instruction (see “LLDT and LTR Instructions”
on page 187 for more information on this instruction).

Limit. This field defines the limit, or size, of the LDT in bytes.
The LDT limit as stored in the LDTR is 32 bits. When the LDT
limit is loaded from the GDT descriptor entry, the 20-bit limit
field in the descriptor is expanded to 32 bits and scaled based
on the value of the descriptor granularity (G) bit. For details on
the limit biasing and granularity, see “Granularity (G) Bit” on
page 98.

If an attempt is made to access a descriptor beyond the LDT
limit, a general-protection exception (#GP) occurs.

The offsets into the descriptor tables are not extended by the
x86-64 architecture in support of long mode. Therefore, the
LDTR limit-field size is unchanged from the legacy size. The

94 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

processor does check the LDT limit in long mode during LDT
accesses.

Attributes. This field holds the descriptor attributes, such as
privilege rights, segment presence and segment granularity.

4.6.5 Interrupt
Descriptor Table

The final type of descriptor table is the interrupt descriptor
table (IDT). Multiple IDTs can be maintained by system
software. System software selects a specific IDT by loading the
interrupt descriptor table register (IDTR) with a pointer to the
IDT. As with the GDT and LDT, system software can store the
IDT anywhere in memory and should protect the segment
containing the IDT from non-privileged software.

The IDT can contain only the following types of gate
descriptors:

� Interrupt gates.

� Trap gates.

� Task gates.

The use of gate descriptors by the interrupt mechanism is
described in Chapter 8, “Exceptions and Interrupts.” A
general-protection exception (#GP) occurs if the IDT descriptor
referenced by an interrupt or exception is not one of the types
listed above.

IDT entries are selected using the interrupt-vector number
rather than a selector value. The interrupt-vector number is
scaled by the interrupt-descriptor entry size to form an offset
into the IDT. The interrupt-descriptor entry size depends on the
processor operating mode as follows:

� In long mode, interrupt descriptor-table entries are 16 bytes.

� In legacy mode, interrupt descriptor-table entries are eight
bytes.

Figure 4-12 on page 95 shows how the interrupt-vector number
indexes the IDT.

Chapter 4: Segmented Virtual Memory 95

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-12. Indexing an IDT

4.6.6 Interrupt
Descriptor-Table
Register

The interrupt descriptor-table register (IDTR) points to the IDT
in memory and defines its size. This register is loaded from
memory using the LIDT instruction (see “LGDT and LIDT
Instructions” on page 187). The format of the IDTR is identical
to that of the GDTR in all modes. Figure 4-7 on page 89 shows
the format of the IDTR in legacy mode. Figure 4-8 on page 90
shows the format of the IDTR in long mode.

The offsets into the descriptor tables are not extended by the
x86-64 architecture in support of long mode. Therefore, the
IDTR limit-field size is unchanged from the legacy size. The
processor does check the IDT limit in long mode during IDT
accesses.

4.7 Legacy Segment Descriptors

4.7.1 Descriptor
Format

Segment descriptors define, protect, and isolate segments from
each other. There are two basic types of descriptors, each of
which are used to describe different segment (or gate) types:

� User Segments—These include code segments and data
segments. Stack segments are a type of data segment.

� System Segments—System segments consist of LDT
segments and task-state segments (TSS). Gate descriptors

513-207.eps

IDT Base Address IDT Limit

Interrupt
Descriptor Table

*

Interrupt Vector

Descriptor Entry
Size

+

+

Interrupt Descriptor Table Register

96 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

are another type of system-segment descriptor. Rather than
describing segments, gate descriptors point to program
entry points.

Figure 4-13 shows the generic format for user-segment and
system-segment descriptors. User and system segments are
differentiated using the S bit. S=1 indicates a user segment, and
S=0 indicates a system segment. Gray shading indicates the
field or bit is reserved. The format for a gate descriptor differs
from the generic segment descriptor, and is described
separately in “Gate Descriptors” on page 104.

Figure 4-13. Generic Segment Descriptor—Legacy Mode

Figure 4-13 shows the fields in a generic, legacy-mode, 8-byte
segment descriptor. In this figure, +0 indicates the address of
the descriptor’s first byte, and +4 indicates the address of the
descriptor’s fifth byte. The fields are defined as follows, from
least-significant to most-significant bit positions:

Segment Limit. The 20 -bi t segment l imit i s formed by
concatenating bits 19–16 of byte +4 with bits 15–0 of byte +0.
The segment limit defines the segment size, in bytes. The
granularity (G) bit controls how the segment-limit field is
scaled (see “Granularity (G) Bit” on page 98). For data
segments, the expand-down (E) bit determines whether the
segment limit defines the lower or upper segment-boundary
(see “Expand-Down (E) Bit” on page 101).

If software references a segment descriptor with an address
beyond the segment limit, a general-protection exception (#GP)
occurs. The #GP occurs if any part of the memory reference falls
outside the segment limit. For example, a doubleword (4-byte)
address reference causes a #GP if one or more bytes are located
beyond the segment limit.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

Base Address 31–24 G
D
/
B

A
V
L

Segment
Limit 19–16 P DPL S Type Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

Chapter 4: Segmented Virtual Memory 97

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Base Address. The 32-bit base address is formed by concatenating
bits 31–24 of byte +4 with bits 7–0 of byte +4, and with bits 15–0
of byte +0. The segment-base address field locates the start of a
segment in virtual-address space.

S Bit and Type Field. Bit 12 of byte +4, and bits 11–8 of byte +4. The
S and Type fields, together, specify the descriptor type and its
access characteristics. Table 4-2 summarizes the descriptor
types by S-field encoding and gives a cross reference to
descriptions of the Type-field encodings.

Descriptor Privilege-Level (DPL) Field. Bits 14–13 of byte +4. The DPL
field indicates the descriptor-privilege level of the segment.
DPL can be set to any value from 0 to 3, with 0 specifying the
most privilege and 3 the least privilege. See “Data-Access
Privilege Checks” on page 119 and “Control-Transfer Privilege
Checks” on page 122 for more information on how the DPL is
used during segment privilege-checks.

Present (P) Bit. Bit 15 of byte +4. The segment-present bit
indicates that the segment referenced by the descriptor is
loaded in memory. If a reference is made to a descriptor entry
when P=0, a segment-not-present exception (#NP) occurs. This
bit is set and cleared by system software and is never altered by
the processor.

Available To Software (AVL) Bit. Bit 20 of byte +4. This field is
available to software, which can write any value to it. The
processor does not set or clear this field.

Default Operand Size (D/B) Bit. Bit 22 of byte +4. The default
operand-size bit is found in code-segment and data-segment
descriptors but not in system-segment descriptors. Setting this

Table 4-2. Descriptor Types

S Field Descriptor
Type Type-Field Encoding

0 (System)

LDT

See Table 4-5 on page 103TSS

Gate

1 (User)
Code See Table 4-3 on page 100

Data See Table 4-4 on page 102

98 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

bit to 1 indicates a 32-bit default operand size, and clearing it to
0 indicates a 16-bit default size. The effect this bit has on a
segment depends on the segment-descriptor type. See “Code-
Segment Default-Operand Size (D) Bit” on page 100 for a
description of the D bit in code-segment descriptors. “Data-
Segment Default Operand Size (D/B) Bit” on page 102 describes
the D bit in data-segment descriptors, including stack
segments, where the bit is referred to as the “B” bit.

Granularity (G) Bit. Bit 23 of byte +4. The granularity bit specifies
how the segment-limit field is scaled. Clearing the G bit to 0
indicates that the limit field is not scaled. In this case, the limit
equals the number of bytes available in the segment. Setting
the G bit to 1 indicates that the limit field is scaled by 4 Kbytes
(4096 bytes). Here, the limit field equals the number of 4-Kbyte
blocks available in the segment.

Setting a limit of 0 indicates a 1-byte segment limit when G = 0.
Setting the same limit of 0 when G = 1 indicates a segment limit
of 4095.

Reserved Bits. Generally, software should clear all reserved bits
to 0, so they can be defined in future revisions to the x86-64
architecture.

4.7.2 Code-Segment
Descriptors

Figure 4-14 on page 99 shows the code-segment descriptor
format (gray shading indicates the bit is reserved). All software
tasks require that a segment selector, referencing a valid code-
segment descriptor, is loaded into the CS register. Code
segments establish the processor operating mode and execution
privilege-level. The segments generally contain only
instructions and are execute-only, or execute and read-only.
Software cannot write into a segment whose selector references
a code-segment descriptor.

Chapter 4: Segmented Virtual Memory 99

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-14. Code-Segment Descriptor—Legacy Mode

Code-segment descriptors have the S bit set to 1, identifying the
segments as user segments. Type-field bit 11 differentiates
code-segment descriptors (bit 11 set to 1) from data-segment
descriptors (bit 11 cleared to 0). The remaining type-field bits
(10–8) define the access characteristics for the code-segment, as
follows:

Conforming (C) Bit. Bit 10 of byte +4. Setting this bit to 1 identifies
the code segment as conforming. When control is transferred to
a higher-privilege conforming code-segment (C=1) from a lower-
privilege code segment, the processor CPL does not change.
Transfers to non-conforming code-segments (C=0) with a higher
privilege-level than the CPL can occur only through gate
descriptors. See “Control-Transfer Privilege Checks” on
page 122 for more information on conforming and non-
conforming code-segments.

Readable (R) Bit. Bit 9 of byte +4. Setting this bit to 1 indicates the
code segment is both executable and readable as data. When
this bit is cleared to 0, the code segment is executable, but
attempts to read data from the code segment cause a general-
protection exception (#GP) to occur.

Accessed (A) Bit. Bit 8 of byte +4. The accessed bit is set to 1 by the
processor when the descriptor is copied from the GDT or LDT
into the CS register. This bit is only cleared by software.

Table 4-3 on page 100 summarizes the code-segment type-field
encodings.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address 31–24 G D
A
V
L

Segment
Limit 19–16 P DPL 1 1 C R A Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

100 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Code-Segment Default-Operand Size (D) Bit. Bit 22 of byte +4. In code-
segment descriptors, the D bit selects the default operand size
and address sizes. In legacy mode, when D=0 the default
operand size and address size is 16 bits and when D=1 the
default operand size and address size is 32 bits. Instruction
prefixes can be used to override the operand size or address
size, or both.

4.7.3 Data-Segment
Descriptors

Figure 4-15 on page 101 shows the data-segment descriptor
format. Data segments contain non-executable information and
can be accessed as read-only or read/write. They are referenced
using the DS, ES, FS, GS, or SS data-segment registers. The DS
data-segment register holds the segment selector for the
default data segment. The ES, FS and GS data-segment
registers hold segment selectors for additional data segments
usable by the current software task.

The stack segment is a special form of data-segment register. It
is referenced using the SS segment register and must be
read/write. When loading the SS register, the processor requires
that the selector reference a valid, writable data-segment
descriptor.

Table 4-3. Code-Segment Descriptor Types

Hex
Value

Type Field

DescriptionBit 11
(Code/Data)

Bit 10 Bit 9 Bit 8

Conforming
(C)

Readable
(R)

Accessed
(A)

8

1

0 0 0 Execute-Only

9 0 0 1 Execute-Only — Accessed

A 0 1 0 Execute/Readable

B 0 1 1 Execute/Readable — Accessed

C 1 0 0 Conforming, Execute-Only

D 1 0 1 Conforming, Execute-Only — Accessed

E 1 1 0 Conforming, Execute/Readable

F 1 1 1 Conforming, Execute/Readable — Accessed

Chapter 4: Segmented Virtual Memory 101

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-15. Data-Segment Descriptor—Legacy Mode

Data-segment descriptors have the S bit set to 1, identifying
them as user segments. Type-field bit 11 differentiates data-
segment descriptors (bit 11 cleared to 0) from code-segment
descriptors (bit 11 set to 1). The remaining type-field bits (10–8)
define the data-segment access characteristics, as follows:

Expand-Down (E) Bit. Bit 10 of byte +4. Setting this bit to 1
identifies the data segment as expand-down. In expand-down
segments, the segment limit defines the lower segment
boundary while the base is the upper boundary. Valid segment
offsets in expand-down segments lie in the byte range limit+1 to
FFFFh or FFFF_FFFFh, depending on the value of the data
segment default operand size (D/B) bit.

Expand-down segments are useful for stacks, which grow in the
downward direction as elements are pushed onto the stack. The
stack pointer, ESP, is decremented by an amount equal to the
operand size as a result of executing a PUSH instruction.

Clearing the E bit to 0 identifies the data segment as expand-
up. Valid segment offsets in expand-up segments lie in the byte
range 0 to segment limit.

Writable (W) Bit. Bit 9 of byte +4. Setting this bit to 1 identifies
the data segment as read/write. When this bit is cleared to 0,
the segment is read-only. A general-protection exception (#GP)
occurs if software attempts to write into a data segment when
W=0.

Accessed (A) Bit. Bit 8 of byte +4. The accessed bit is set to 1 by the
processor when the descriptor is copied from the GDT or LDT
into one of the data-segment registers or the stack-segment
register. This bit is only cleared by software.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address 31–24 G
D
/
B

A
V
L

Segment
Limit 19–16 P DPL 1 0 E W A Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

102 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Table 4-4 summarizes the data-segment type-field encodings.

Data-Segment Default Operand Size (D/B) Bit. Bit 22 of byte +4. For
expand-down data segments (E=1), setting D=1 sets the upper
bound of the segment at 0_FFFF_FFFFh. Clearing D=0 sets the
upper bound of the segment at 0_FFFFh.

In the case where a data segment is referenced by the stack
selector (SS), the D bit is referred to as the B bit. For stack
segments, the B bit sets the default stack size. Setting B=1
establishes a 32-bit stack referenced by the 32-bit ESP register.
Clearing B=0 establishes a 16-bit stack referenced by the 16-bit
SP register.

4.7.4 System
Descriptors

There are two general types of system descriptors: system-
segment descriptors and gate descriptors. System-segment
descriptors are used to describe the LDT and TSS segments.
Gate descriptors do not describe segments, but instead hold
pointers to code-segment descriptors. Gate descriptors are used
for protected-mode control transfers between less-privileged
and more-privileged software.

Table 4-4. Data-Segment Descriptor Types

Hex
Value

Type Field

DescriptionBit 11
(Code/Data)

Bit 10 Bit 9 Bit 8

Expand-
Down

(E)

Writable
(W)

Accessed
(A)

0

0

0 0 0 Read-Only

1 0 0 1 Read-Only — Accessed

2 0 1 0 Read/Write

3 0 1 1 Read/Write — Accessed

4 1 0 0 Expand-down, Read-Only

5 1 0 1 Expand-down, Read-Only — Accessed

6 1 1 0 Expand-down, Read/Write

7 1 1 1 Expand-down, Read/Write — Accessed

Chapter 4: Segmented Virtual Memory 103

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

System-segment descriptors have the S bit cleared to 0. The
type field is used to differentiate the various LDT, TSS, and
gate descriptors from one another. Table 4-5 summarizes the
system-segment type-field encodings.

Figure 4-16 on page 104 shows the legacy-mode system-segment
descriptor format used for referencing LDT and TSS segments
(gray shading indicates the bit is reserved). This format is also
used in compatibility mode. The system-segments are used as
follows:

� The LDT typically holds segment descriptors belonging to a
single task (see “Local Descriptor Table” on page 90).

� The TSS is a data structure for holding processor-state
information. Processor state is saved in a TSS when a task is

Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode

Hex
Value

Type Field
(Bits 11–8) Description

0 0000 reserved (Illegal)

1 0001 Available 16-bit TSS

2 0010 LDT

3 0011 Busy 16-bit TSS

4 0100 16-bit Call Gate

5 0101 Task Gate

6 0110 16-bit Interrupt Gate

7 0111 16-bit Trap Gate

8 1000 reserved (Illegal)

9 1001 Available 32-bit TSS

A 1010 reserved (Illegal)

B 1011 Busy 32-bit TSS

C 1100 32-bit Call Gate

D 1101 reserved (Illegal)

E 1110 32-bit Interrupt Gate

F 1111 32-bit Trap Gate

104 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

suspended, and state is restored from the TSS when a task is
restarted. System software must create at least one TSS
referenced by the task register, TR. See “Legacy Task-State
Segment” on page 363 for more information on the TSS.

Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes

4.7.5 Gate Descriptors Gate descriptors hold pointers to code segments and are used to
control access between code segments with different privilege
levels. There are four types of gate descriptors:

� Call Gates—These gates (Figure 4-17 on page 105) are
located in the GDT or LDT and are used to control access
between code segments in the same task or in different
tasks. See “Control Transfers Through Call Gates” on
page 127 for information on how call gates are used to
control access between code segments operating in the same
task. The format of a call-gate descriptor is shown in
Figure 4-17.

� Interrupt Gates and Trap Gates—These gates (Figure 4-18 on
page 105) are located in the IDT and are used to control
access to interrupt-service routines. “Legacy Protected-
Mode Interrupt Control Transfers” on page 274 contains
information on using these gates for interrupt-control
transfers. The format of interrupt-gate and trap-gate
descriptors is shown in Figure 4-17.

� Task Gates—These gates (Figure 4-19 on page 105) are used
to control access between different tasks. They are also used
to transfer control to interrupt-service routines if those
routines are themselves a separate task. See “Task-
Management Resources” on page 358 for more information
on task gates and their use.

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0

Base Address 31–24 G
I
G
N

A
V
L

Segment
Limit 19–16 P DPL 0 Type Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

Chapter 4: Segmented Virtual Memory 105

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-17. Call-Gate Descriptor—Legacy Mode

Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode

Figure 4-19. Task-Gate Descriptor—Legacy Mode

There are several differences between the gate-descriptor
format and the system-segment descriptor format. These
differences are described as follows, from least-significant to
most-significant bit positions:

Target Code-Segment Offset. The 32-bit segment offset is formed by
concatenating bits 31–16 of byte +4 with bits 15–0 of byte +0.
The segment-offset field specifies the target-procedure entry

31 16 15 14 13 12 11 8 7 6 5 4 0

Target Code-Segment Offset 31–16 P DPL 0 Type
Reserved

IGN
Parameter

Count +4

Target Code-Segment Selector Target Code-Segment Offset 15–0 +0

31 16 15 14 13 12 11 8 7 0

Target Code-Segment Offset 31–16 P DPL 0 Type Reserved, IGN +4

Target Code-Segment Selector Target Code-Segment Offset 15–0 +0

31 16 15 14 13 12 11 8 7 0

reserved, IGN P DPL S Type reserved, IGN +4

TSS Selector reserved, IGN +0

106 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

point (offset) into the segment. This field is loaded into the EIP
register as a result of a control transfer using the gate
descriptor.

Target Code-Segment Selector. Bits 31–16 of byte +0. The segment-
selector field identifies the target-procedure segment
descriptor, located in either the GDT or LDT. The segment
selector is loaded into the CS segment register as a result of a
control transfer using the gate descriptor.

TSS Selector. Bits 31–16 of byte +0 (task gates only). This field
identifies the target-task TSS descriptor, located in any of the
three descriptor tables (GDT, LDT, and IDT).

Parameter Count (Call Gates Only). Bits 4–0 of byte +4. Legacy-mode
call-gate descriptors contain a 5-bit parameter-count field. This
field specifies the number of parameters to be copied from the
currently-executing program stack to the target program stack
during an automatic stack switch. Automatic stack switches are
performed by the processor during a control transfer through a
call gate to a greater privilege-level. The parameter size
depends on the call-gate size as specified in the type field. 32-
bit call gates copy 4-byte parameters, and 16-bit call gates copy
2-byte parameters. See “Stack Switching” on page 132 for more
information on call-gate parameter copying.

4.8 Long-Mode Segment Descriptors

The interpretation of descriptor fields is changed in long mode,
and in some cases the format is expanded. The changes depend
on the operating mode (compatibility mode or 64-bit mode) and
on the descriptor type. The following sections describe the
changes.

4.8.1 Code-Segment
Descriptors

Code segments continue to exist in long mode. Code segments
and their associated descriptors and selectors are needed to
establish the processor operating mode as well as execution
privilege-level. The new L attribute specifies whether the
processor is running in compatibility mode or 64-bit mode (see
“Long (L) Attribute Bit” on page 107). Figure 4-20 shows the
long-mode code-segment descriptor format. In compatibility
mode, the code-segment descriptor is interpreted and behaves
just as it does in legacy mode as described in “Code-Segment
Descriptors” on page 98.

Chapter 4: Segmented Virtual Memory 107

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

In Figure 4-20, gray shading indicates the code-segment
descriptor fields that are ignored in 64-bit mode when the
descriptor is used during a memory reference. However, the
fields are loaded whenever the segment register is loaded in 64-
bit mode.

Figure 4-20. Code-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit
mode, and code segments span all of virtual memory. In this
mode, code-segment base addresses are ignored. For the
purpose of virtual-address calculations, the base address is
treated as if it has a value of zero.

Segment-limit checking is not performed, and both the
segment-limit field and granularity (G) bit are ignored. Instead,
the virtual address is checked to see if it is in canonical-address
form.

The readable (R) and accessed (A) attributes in the type field
are also ignored.

Long (L) Attribute Bit. Bit 21 of byte +4. Long mode introduces a
new attribute, the long (L) bit, in code-segment descriptors.
This bit specifies that the processor is running in 64-bit mode
(L=1) or compatibility mode (L=0). When the processor is
running in legacy mode, this bit is reserved.

Compatibility mode, maintains binary compatibility with
legacy 16-bit and 32-bit applications. Compatibility mode is
selected on a code-segment basis, and it allows legacy
applications to coexist under the same 64-bit system software
along with 64-bit applications running in 64-bit mode. System
software running in long mode can execute existing 16-bit and
32-bit applications by clearing the L bit of the code-segment
descriptor to 0.

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address 31–24 G D L
A
V
L

Segment
Limit 19–16

P DPL 1 1 C R A Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

108 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

When L=0, the legacy meaning of the code-segment D bit (see
“Code-Segment Default-Operand Size (D) Bit” on page 100)—
and the address-size and operand-size prefixes—are observed.
Segmentation is enabled when L=0. From an application
viewpoint, the processor is in a legacy 16-bit or 32-bit operating
environment (depending on the D bit), even though long mode
is activated.

If the processor is running in 64-bit mode (L=1), the only valid
setting of the D bit is 0. This setting produces a default operand
size of 32 bits and a default address size of 64 bits. The
combination L=1 and D=1 is reserved for future use.

“Instruction Prefixes” in Volume 3 describes the effect of the
code-segment L and D bits on default operand and address sizes
when long mode is activated. These default sizes can be
overridden with operand size, address size, and REX prefixes.

4.8.2 Data-Segment
Descriptors

Data segments continue to exist in long mode. Figure 4-21
shows the long-mode data-segment descriptor format. In
compatibility mode, data-segment descriptors are interpreted
and behave just as they do in legacy mode.

In Figure 4-21, gray shading indicates the fields that are ignored
in 64-bit mode when the descriptor is used during a memory
reference. However, the fields are loaded whenever the
segment register is loaded in 64-bit mode.

Figure 4-21. Data-Segment Descriptor—Long Mode

Fields Ignored in 64-Bit Mode. Segmentation is disabled in 64-bit
mode. The interpretation of the segment-base address depends
on the segment register used:

� In data-segment descriptors referenced by the DS, ES and
SS segment registers, the base-address field is ignored. For

31 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

Base Address 31–24 G
D
/
B

A
V
L

Segment
Limit 19–16

P DPL 1 0 E W A Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

Chapter 4: Segmented Virtual Memory 109

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

the purpose of virtual-address calculations, the base address
is treated as if it has a value of zero.

� Data segments referenced by the FS and GS segment
registers receive special treatment in 64-bit mode. For these
segments, the base address field is not ignored, and a non-
zero value can be used in virtual-address calculations. A 64-
bit segment-base address can be specified using model-
specific registers. See “FS and GS Registers in 64-Bit Mode”
on page 86 for more information.

Segment-limit checking is not performed on any data segments
in 64-bit mode, and both the segment-limit field and granularity
(G) bit are ignored. The D/B bit is unused in 64-bit mode.

The expand-down (E), writable (W), and accessed (A) type-field
attributes are ignored.

A data-segment-descriptor DPL field is ignored in 64-bit mode,
and segment-privilege checks are not performed on data
segments. System software can use the page-protection
mechanisms to isolate and protect data from unauthorized
access.

4.8.3 System
Descriptors

In long mode, the allowable system-descriptors types encoded
by the type field are changed. Some descriptor types are
modified, and others are illegal. The changes are summarized in
Table 4-6 on page 110. An attempt to use an illegal descriptor
type causes a general-protection exception (#GP).

110 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

In long mode, the modified system-segment descriptor types
are:

� The 32-bit LDT (02h), which is redefined as the 64-bit LDT.

� The available 32-bit TSS (09h), which is redefined as the
available 64-bit TSS.

� The busy 32-bit TSS (0Bh), which is redefined as the busy 64-
bit TSS.

In 64-bit mode, the LDT and TSS system-segment descriptors
are expanded by 64 bits, as shown in Figure 4-22 on page 111. In

Table 4-6. System-Segment Descriptor Types—Long Mode

Hex
Value

Type Field
Description

Bit 11 Bit 10 Bit 9 Bit 8

0 0 0 0 0
reserved (Illegal)

1 0 0 0 1

2 0 0 1 0 64-Bit LDT1

3 0 0 1 1

reserved (Illegal)

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1 Available 64-bit TSS

A 1 0 1 0 reserved (Illegal)

B 1 0 1 1 Busy 64-bit TSS

C 1 1 0 0 64-bit Call Gate

D 1 1 0 1 reserved (Illegal)

E 1 1 1 0 64-bit Interrupt Gate

F 1 1 1 1 64-bit Trap Gate

Note:
1. In 64-bit mode only. In compatibility mode, the type specifies a 32-bit LDT.

Chapter 4: Segmented Virtual Memory 111

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

this figure, gray shading indicates the fields that are ignored in
64-bit mode. Expanding the descriptors allows them to hold 64-
bit base addresses, so their segments can be located anywhere
in the virtual-address space. The expanded descriptor can be
loaded into the corresponding descriptor-table register (LDTR
or TR) only from 64-bit mode. In compatibility mode, the legacy
system-segment descriptor format, shown in Figure 4-16 on
page 104, is used. See “LLDT and LTR Instructions” on
page 187 for more information.

Figure 4-22. System-Segment Descriptor—64-Bit Mode

The 64-bit system-segment base address must be in canonical
form. Otherwise, a general-protection exception occurs with a
selector error-code, #GP(selector), when the system segment is
loaded. System-segment limit values are checked by the
processor in both 64-bit and compatibility modes, under the
control of the granularity (G) bit.

Figure 4-22 shows that bits 12–8 of byte +12 must be cleared to
0. These bits correspond to the S and Type fields in a legacy
descriptor. Clearing these bits to 0 corresponds to an illegal
type in legacy mode and causes a #GP if an attempt is made to
access the upper half of a 64-bit mode system-segment
descriptor as a legacy descriptor.

4.8.4 Gate Descriptors As shown in Table 4-6 on page 110, the allowable gate-
descriptor types are changed in long mode. Some gate-

31 23 20 19 16 15 14 13 12 11 10 9 8 7 0

reserved, IGN 0 0 0 0 0 reserved, IGN +12

Base Address 63–32 +8

Base Address 31–24 G
A
V
L

Segment
Limit 19–16 P DPL 0 Type Base Address 23–16 +4

Base Address 15–0 Segment Limit 15–0 +0

112 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

descriptor types are modified and others are illegal. The
modified gate-descriptor types in long mode are:

� The 32-bit call gate (0Ch), which is redefined as the 64-bit
call gate.

� The 32-bit interrupt gate (0Eh), which is redefined as the 64-
bit interrupt gate.

� The 32-bit trap gate (0Fh), which is redefined as the 64-bit
trap gate.

In long mode, several gate-descriptor types are illegal. An
attempt to use these gates causes a general-protection
exception (#GP) to occur. The illegal gate types are:

� The 16-bit call gate (04h).

� The task gate (05h).

� The 16-bit interrupt gate (06h).

� The 16-bit trap gate (07h).

In long mode, gate descriptors are expanded by 64 bits,
allowing them to hold 64-bit offsets. The 64-bit call-gate
descriptor is shown in Figure 4-23 and the 64-bit interrupt gate
and trap gate are shown in Figure 4-24 on page 113. In these
figures, gray shading indicates the fields that are ignored in long
mode. The interrupt and trap gates contain an additional field,
the IST, that is not present in the call gate—see “IST Field
(Interrupt and Trap Gates)” on page 114.

Figure 4-23. Call-Gate Descriptor—Long Mode

31 16 15 14 13 12 11 10 9 8 7 0

reserved, IGN 0 0 0 0 0 reserved, IGN +12

Target Offset 63–32 +8

Target Offset 31–16 P DPL S Type reserved, IGN +4

Target Selector Target Offset 15–0 +0

Chapter 4: Segmented Virtual Memory 113

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode

The target code segment referenced by a long-mode gate
descriptor must be a 64-bit code segment (CS.L=1, CS.D=0). If
the target is not a 64-bit code segment, a general-protection
exception, #GP(error), occurs. The error code reported depends
on the gate type:

� Call gates report the target code-segment selector as the
error code.

� Interrupt and trap gates report the interrupt-vector number
as the error code.

A general-protection exception, #GP(0), occurs if software
attempts to reference a long-mode gate descriptor with a target-
segment offset that is not in canonical form.

It is possible for software to store legacy and long mode gate
descriptors in the same descriptor table. Figure 4-23 shows that
bits 12–8 of byte +12 in a long-mode call gate must be cleared to
0. These bits correspond to the S and Type fields in a legacy call
gate. Clearing these bits to 0 corresponds to an illegal type in
legacy mode and causes a #GP if an attempt is made to access
the upper half of a 64-bit mode call-gate descriptor as a legacy
call-gate descriptor.

It is not necessary to clear these same bits in a long-mode
interrupt gate or trap gate. In long mode, the interrupt-
descriptor table (IDT) must contain 64-bit interrupt gates or

16 15 14 13 12 11 8 7 3 2 0

reserved, IGN +12

Target Offset 63–32 +8

Target Offset 31–16 P DPL S Type reserved, IGN IST +4

Target Selector Target Offset 15–0 +0

114 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

trap gates. The processor automatically indexes the IDT by
scaling the interrupt vector by 16. This makes it impossible to
access the upper half of a long-mode interrupt gate, or trap
gate, as a legacy gate when the processor is running in long
mode.

IST Field (Interrupt and Trap Gates). Bits 2–0 of byte +4. Long-mode
interrupt gate and trap gate descriptors contain a new, 3-bit
interrupt-stack-table (IST) field not present in legacy gate
descriptors. The IST field is used as an index into the IST
portion of a long-mode TSS. If the IST field is not 0, the index
references an IST pointer in the TSS, which the processor loads
into the RSP register when an interrupt occurs. If the IST index
is 0, the processor uses the legacy stack-switching mechanism
(with some modifications) when an interrupt occurs. See
“Interrupt-Stack Table” on page 290 for more information.

Count Field (Call Gates). The count field found in legacy call-gate
descriptors is not supported in long-mode call gates. In long
mode, the field is reserved and should be cleared to zero.

4.8.5 Long Mode
Descriptor Summary

System descriptors and gate descriptors are expanded by 64
bits to handle 64-bit base addresses in long mode or 64-bit
mode. The mode in which the expansion occurs depends on the
purpose served by the descriptor, as follows:

� Expansion Only In 64-Bit Mode—The system descriptors and
pseudo-descriptors that are loaded into the GDTR, IDTR,
LDTR, and TR registers are expanded only in 64-bit mode.
They are not expanded in compatibility mode.

� Expansion In Long Mode—Gate descriptors (call gates,
interrupt gates, and trap gates) are expanded in long mode
(both 64-bit mode and compatibility mode). Task gates and
16-bit gate descriptors are illegal in long mode.

The x86-64 architecture redefines several of the descriptor-
entry fields in support of long mode. The specific change
depends on whether the processor is in 64-bit mode or
compatibility mode. Table 4-7 on page 115 summarizes the
changes in the descriptor entry field when the descriptor entry
is loaded into a segment register (as opposed to when the
segment register is subsequently used to access memory).

Chapter 4: Segmented Virtual Memory 115

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Table 4-7. Descriptor-Entry Field Changes in Long Mode

Descriptor
Field

Descriptor
Type

Long Mode

Compatibility Mode 64-Bit Mode

Limit

Code

Same as legacy x86 Same as legacy x86Data

System

Offset Gate Expanded to 64 bits Expanded to 64 bits

Base

Code

Same as legacy x86
Same as legacy x86

Data

System

Selector Gate Same as legacy x86

IST1 Gate Interrupt and trap gates only. (New for long mode.)

S and Type

Code
Same as legacy x86 Same as legacy x86

Data

System
Types 02h, 09h, and 0Bh redefined
Types 01h and 03h are illegal

Gate
Types 0Ch, 0Eh, and 0Fh redefined
Types 04h–07h are illegal

DPL

Code

Same as legacy x86 Same as legacy x86
Data

System

Gate

Present

Code

Same as legacy x86 Same as legacy x86
Data

System

Gate

Note:
1. Not available (reserved) in legacy mode.

116 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

4.9 Segment-Protection Overview

The x86-64 architecture fully supports the legacy segment-
protection mechanism. The segment-protection mechanism
provides system software with the ability to restrict program
access into other software routines and data.

Segment-level protection remains enabled in compatibility
mode. 64-bit mode eliminates most type checking, and limit
checking is not performed, except on accesses to system-
descriptor tables.

The preferred method of implementing memory protection in a
long-mode operating system is to rely on the page-protection
mechanism as described in “Page-Protection Checks” on
page 172. System software still needs to create basic segment-
protection data structures for 64-bit mode. These structures are
simplified, however, by the use of the flat-memory model in 64-
bit mode, and the limited segmentation checks performed when
executing in 64-bit mode.

Default Size
Code

Same as legacy x86

D=0 Indicates 64-bit address, 32-bit data
D=1 Reserved

Data Same as legacy x86

Long1 Code Specifies compatibility mode Specifies 64-bit mode

Granularity

Code

Same as legacy x86 Same as legacy x86Data

System

Available

Code

Same as legacy x86 Same as legacy x86Data

System

Table 4-7. Descriptor-Entry Field Changes in Long Mode (continued)

Descriptor
Field

Descriptor
Type

Long Mode

Compatibility Mode 64-Bit Mode

Note:
1. Not available (reserved) in legacy mode.

Chapter 4: Segmented Virtual Memory 117

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

4.9.1 Privilege-Level
Concept

Segment protection is used to isolate and protect programs and
data from each other. The segment-protection mechanism
supports four privilege levels in protected mode. The privilege
levels are designated with a numerical value from 0 to 3, with 0
being the most privileged and 3 being the least privileged.
System software typically assigns the privilege levels in the
following manner:

� Privilege-level 0 (most privilege)—This level is used by critical
system-software components that require direct access to,
and control over, all processor and system resources. This
can include BIOS, memory-management functions, and
interrupt handlers.

� Privilege-levels 1 and 2 (moderate privilege)—These levels are
used by less-critical system-software services that can access
and control a limited scope of processor and system
resources. Software running at these privilege levels might
include some device drivers and library routines. These
software routines can call more-privileged system-software
services to perform functions such as memory garbage-
collection and file allocation.

� Privilege-level 3 (least privilege)—This level is used by
application software. Software running at privilege-level 3 is
normally prevented from directly accessing most processor
and system resources. Instead, applications request access
to the protected processor and system resources by calling
more-privileged service routines to perform the accesses.

Figure 4-25 on page 118 shows the relationship of the four
privilege levels to each other.

118 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 4-25. Privilege-Level Relationships

4.9.2 Privilege-Level
Types

There are three types of privilege levels the processor uses to
control access to segments. These are CPL, DPL, and RPL.

Current Privilege-Level. The current privilege-level (CPL) is the
privilege level at which the processor is currently executing.
The CPL is stored in an internal processor register that is
invisible to software. Software changes the CPL by performing
a control transfer to a different code segment with a new
privilege level.

Descriptor Privilege-Level. The descriptor privilege-level (DPL) is
the privilege level that system software assigns to individual
segments. The DPL is used in privilege checks to determine
whether software can access the segment referenced by the
descriptor. In the case of gate descriptors, the DPL determines
whether software can access the descriptor reference by the
gate. The DPL is stored in the segment (or gate) descriptor.

Requestor Privilege-Level. The requestor privilege-level (RPL)
reflects the privilege level of the program that created the
selector. The RPL can be used to let a called program know the
privilege level of the program that initiated the call. The RPL is
stored in the selector used to reference the segment (or gate)
descriptor.

The following sections describe how the CPL, DPL, and RPL are
used by the processor in performing privilege checks on data

513-236.eps Application Programs

Memory Management
File Allocation
Interrupt Handling

Device-Drivers
Library Routines

Privilege
0

Privilege 1

Privilege 2

Privilege 3

Chapter 4: Segmented Virtual Memory 119

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

accesses and control transfers. Failure to pass a protection
check generally causes an exception to occur.

4.10 Data-Access Privilege Checks

4.10.1 Accessing Data
Segments

Before loading a data-segment register (DS, ES, FS, or GS) with
a segment selector, the processor checks the privilege levels as
follows to see if access is allowed:

1. The processor compares the CPL with the RPL in the data-
segment selector and determines the effective privilege
level for the data access. The processor sets the effective
privilege level to the lowest privilege (numerically-higher
value) indicated by the comparison.

2. The processor compares the effective privilege level with
the DPL in the descriptor-table entry referenced by the
segment selector. If the effective privilege level is greater
than or equal to (numerically lower-than or equal-to) the
DPL, then the processor loads the segment register with the
data-segment selector. The processor automatically loads
the corresponding descriptor-table entry into the hidden
portion of the segment register.

If the effective privilege level is lower than (numerically
greater-than) the DPL, a general-protection exception (#GP)
occurs and the segment register is not loaded.

Figure 4-26 on page 120 shows two examples of data-access
privilege checks.

120 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 4-26. Data-Access Privilege-Check Examples

Example 1 in Figure 4-26 shows a failing data-access privilege
check. The effective privilege level is 3 because CPL=3. This
value is greater than the descriptor DPL, so access to the data
segment is denied.

Example 2 in Figure 4-26 shows a passing data-access privilege
check. Here, the effective privilege level is 0 because both the
CPL and RPL have values of 0. This value is less than the
descriptor DPL, so access to the data segment is allowed, and
the data-segment register is successfully loaded.

513-229.eps

DPL=2

Effective
Privilege

3

≤

Max

CPL=3

RPL=0 Access Denied Data
Segment

Descriptor

CS

Data
Selector

Example 1: Privilege Check Fails

DPL=2

Effective
Privilege

0

≤

Max

CPL=0

RPL=0 Access Allowed Data
Segment

CS

Descriptor

Example 2: Privilege Check Passes

Data
Selector

Chapter 4: Segmented Virtual Memory 121

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

4.10.2 Accessing Stack
Segments

Before loading the stack segment register (SS) with a segment
selector, the processor checks the privilege levels as follows to
see if access is allowed:

1. The processor checks that the CPL and the stack-selector
RPL are equal. If they are not equal, a general-protection
exception (#GP) occurs and the SS register is not loaded.

2. The processor compares the CPL with the DPL in the
descriptor-table entry referenced by the segment selector.
The two values must be equal. If they are not equal, a #GP
occurs and the SS register is not loaded.

Figure 4-27 on page 122 shows two examples of stack-access
privilege checks. In Example 1 the CPL, stack-selector RPL,
and stack segment-descriptor DPL are all equal, so access to the
stack segment using the SS register is allowed. In Example 2,
the stack-selector RPL and stack segment-descriptor DPL are
both equal. However, the CPL is not equal to the stack segment-
descriptor DPL, and access to the stack segment through the SS
register is denied.

122 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 4-27. Stack-Access Privilege-Check Examples

4.11 Control-Transfer Privilege Checks

Control transfers between code segments (also called far control
transfers) cause the processor to perform privilege checks to
determine whether the source program is allowed to transfer
control to the target program. If the privilege checks pass,
access to the target code-segment is granted. When access is
granted, the target code-segment selector is loaded into the CS
register. The rIP register is updated with the target CS offset
taken from either the far-pointer operand or the gate

513-235.eps

DPL=3

=

CPL=3

RPL=3 Access Allowed Stack
Segment

Descriptor

CS

Stack
Selector

Example 1: Privilege Check Passes

DPL=3

=

CPL=2

RPL=3 Access Denied Stack
Segment

CS

Descriptor

Example 2: Privilege Check Fails

Stack
Selector

Chapter 4: Segmented Virtual Memory 123

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

descriptor. Privilege checks are not performed during near
control transfers because such transfers do not change segments.

The following mechanisms can be used by software to perform
far control transfers:

� System-software control transfers using the system-call and
system-return instructions. See “SYSCALL and SYSRET” on
page 180 and “SYSENTER and SYSEXIT (Legacy Mode
Only)” on page 182 for more information on these
instructions. SYSCALL and SYSRET are the preferred
method of performing control transfers in long mode.
SYSENTER and SYSEXIT are not supported in long mode.

� Direct control transfers using CALL and JMP instructions.
These are discussed in the next section, “Direct Control
Transfers.”

� Call-gate control transfers using CALL and JMP
instructions. These are discussed in “Control Transfers
Through Call Gates” on page 127.

� Return control transfers using the RET instruction. These
are discussed in “Return Control Transfers” on page 135.

� Interrupts and exceptions, including the INTn and IRET
instructions. These are discussed in Chapter 8, “Exceptions
and Interrupts.”

� Task switches initiated by CALL and JMP instructions. Task
switches are discussed in Chapter 12, “Task Management.”
The hardware task-switch mechanism is not supported in long
mode.

4.11.1 Direct Control
Transfers

A direct control transfer occurs when software executes a far-
CALL or a far-JMP instruction without using a call gate. The
privilege checks and type of access allowed as a result of a
direct control transfer depends on whether the target code
segment is conforming or nonconforming. The code-segment-
descriptor conforming (C) bit indicates whether or not the
target code-segment is conforming (see “Conforming (C) Bit”
on page 99 for more information on the conforming bit).

Privilege levels are not changed as a result of a direct control
transfer. Program stacks are not automatically switched by the
processor as they are with privilege-changing control transfers
through call gates (see “Stack Switching” on page 132 for more
information on automatic stack switching during privilege-
changing control transfers).

124 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Nonconforming Code Segments. Software can perform a direct
control transfer to a nonconforming code segment only if the
target code-segment descriptor DPL and the CPL are equal and
the RPL is less than or equal to the CPL. Software must use a
cal l gate to t ransfer control to a more -pr iv i leged,
nonconforming code segment (see “Control Transfers Through
Call Gates” on page 127 for more information).

In far calls and jumps, the far pointer (CS:rIP) references the
target code-segment descriptor. Before loading the CS register
with a nonconforming code-segment selector, the processor
checks as follows to see if access is allowed:

1. DPL = CPL Check—The processor compares the target code-
segment descriptor DPL with the currently executing
program CPL. If they are equal, the processor performs the
next check. If they are not equal, a general-protection
exception (#GP) occurs.

2. RPL ≤ CPL Check—The processor compares the target code-
segment selector RPL with the currently executing program
CPL. If the RPL is less than or equal to the CPL, access is
allowed. If the RPL is greater than the CPL, a #GP
exception occurs.

If access is allowed, the processor loads the CS and rIP registers
with their new values and begins executing from the target
location. The CPL is not changed—the target-CS selector RPL
value is disregarded when the selector is loaded into the CS
register.

Figure 4-28 on page 125 shows three examples of privilege
checks performed as a result of a far control transfer to a
nonconforming code-segment. In Example 1, access is allowed
because CPL = DPL and RPL ≤ CPL. In Example 2, access is
denied because CPL ≠ DPL. In Example 3, access is denied
because RPL > CPL.

Chapter 4: Segmented Virtual Memory 125

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples

513-230.eps

Access Allowed

Code
Segment

Example 1: Privilege Check Passes

CS CPL=2

=

DPL=2

Descriptor

RPL=0
Code

Selector
≤

?

Access
Allowed

Access
Allowed

Access Denied

Code
Segment

Example 2: Privilege Check Fails

CS CPL=2

=

DPL=3

Descriptor

RPL=0
Code

Selector
≤

?

Access
Allowed

Access
Denied

Access Denied

Code
Segment

Example 3: Privilege Check Fails

CS CPL=2

=

DPL=2

Descriptor

RPL=3
Code

Selector
≤

?

Access
Denied

Access
Allowed

126 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Conforming Code Segments. On a direct control transfer to a
conforming code segment, the target code-segment descriptor
DPL can be lower than (at a greater privilege) the CPL. Before
loading the CS register with a conforming code-segment
selector, the processor compares the target code-segment
descriptor DPL with the currently-executing program CPL. If
the DPL is less than or equal to the CPL, access is allowed. If
the DPL is greater than the CPL, a #GP exception occurs.

On an access to a conforming code segment, the RPL is ignored
and not involved in the privilege check.

When access is allowed, the processor loads the CS and rIP
registers with their new values and begins executing from the
target location. The CPL is not changed—the target CS-
descriptor DPL value is disregarded when the selector is loaded
into the CS register. The target program runs at the same
privilege as the program that called it.

Figure 4-29 on page 127 shows two examples of privilege checks
performed as a result of a direct control transfer to a
conforming code segment. In Example 1, access is allowed
because the CPL of 3 is greater than the DPL of 0. As the target
code selector is loaded into the CS register, the old CPL value of
3 replaces the target-code selector RPL value, and the target
program executes with CPL=3. In Example 2, access is denied
because CPL < DPL.

Chapter 4: Segmented Virtual Memory 127

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-29. Conforming Code-Segment Privilege-Check Examples

4.11.2 Control
Transfers Through
Call Gates

Control transfers to more-privileged code segments are
accomplished through the use of call gates. Call gates are a type
of descriptor that contain pointers to code-segment descriptors
and control access to those descriptors. System software uses
call gates to establish protected entry points into system-
service routines.

Transfer Mechanism. The pointer operand of a far-CALL or far-
JMP instruction consists of two pieces: a code-segment selector
(CS) and a code-segment offset (rIP). In a call-gate transfer, the
CS selector points to a call-gate descriptor rather than a code-
segment descriptor, and the rIP is ignored (but required by the
instruction).

513-231.eps

Access Allowed
Code

Segment

Example 1: Privilege Check Passes

CS CPL=3

≥

DPL=0

Descriptor

Code
Selector

Access Denied
Code

Segment

Example 2: Privilege Check Fails

CS CPL=0

≥

DPL=3

Descriptor

Code
Selector

128 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 4-30 shows a call-gate control transfer in legacy mode.
The call-gate descriptor contains segment-selector and
segment-offset fields (see “Gate Descriptors” on page 104 for a
detailed description of the call-gate format and fields). These
two fields perform the same function as the pointer operand in
a direct control-transfer instruction. The segment-selector field
points to the target code-segment descriptor, and the segment-
offset field is the instruction-pointer offset into the target code-
segment. The code-segment base taken from the code-segment
descriptor is added to the offset field in the call-gate descriptor
to create the target virtual address (linear address).

Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism

Figure 4-31 on page 129 shows a call-gate control transfer in
long mode. The long-mode call-gate descriptor format is
expanded by 64 bits to hold a full 64-bit offset into the virtual-
address space. Only long-mode call gates can be referenced in
long mode (64-bit mode and compatibility mode). The legacy-
mode 32-bit call-gate types are redefined in long mode as 64-bit
types, and 16-bit call-gate types are illegal.

513-233.eps

Virtual-Address
Space

Virtual Address

Code Segment

Far Pointer

DPL Code-Segment Limit

Code-Segment Base

DPL Code-Segment Selector

Code-Segment Offset

Segment Selector Instruction Offset

Descriptor Table

+

Call-Gate
Descriptor

Code-Segment
Descriptor

Chapter 4: Segmented Virtual Memory 129

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-31. Long-Mode Call-Gate Access Mechanism

A long-mode call gate must reference a 64-bit code-segment
descriptor. In 64-bit mode, the code-segment descriptor base-
address and limit fields are ignored. The target virtual-address
is the 64-bit offset field in the expanded call-gate descriptor.

Privilege Checks. Before loading the CS register with the code-
segment selector located in the call gate, the processor
performs three privilege checks. The following checks are
performed when either conforming or nonconforming code
segments are referenced:

1. The processor compares the CPL with the call-gate DPL
from the call-gate descriptor (DPLG). The CPL must be
numerically less than or equal to DPLG for this check to pass.
In other words, the following expression must be true:
CPL ≤ DPLG.

513-234.eps

Virtual-Address
Space

Virtual Address

Flat Code-Segment

DPL Code-Segment Limit

Code-Segment Base

DPL Code-Segment Selector

Code-Segment Offset (31:0)

Far Pointer

Segment Selector

Unused

Instruction Offset

Descriptor Table

Code-Segment Offset (63:32)

Call-Gate
Descriptor

Code-Segment
Descriptor

130 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

2. The processor compares the RPL in the call-gate selector
with DPLG. The RPL must be numerically less than or equal
to DPLG for this check to pass. In other words, the following
expression must be true: RPL ≤ DPLG.

3. The processor compares the CPL with the target code-
segment DPL from the code-segment descriptor (DPLS).
The type of comparison varies depending on the type of
control transfer.

- When a call—or a jump to a conforming code segment—is
used to transfer control through a call gate, the CPL must
be numerically greater than or equal to DPLS for this
check to pass. (This check prevents control transfers to
less-privileged programs.) In other words, the following
expression must be true: CPL ≥ DPLS.

- When a JMP instruction is used to transfer control
through a call gate to a nonconforming code segment, the
CPL must be numerically equal to DPLS for this check to
pass. (JMP instructions cannot change CPL.) In other
words, the following expression must be true:
CPL = DPLS.

Figure 4-32 on page 131 shows two examples of call-gate
privilege checks. In Example 1, all privilege checks pass as
follows:

� The call-gate DPL (DPLG) is at the lowest privilege (3),
specifying that software running at any privilege level (CPL)
can access the gate.

� The selector referencing the call gate passes its privilege
check because the RPL is numerically less than or equal to
DPLG.

� The target code segment is at the highest privilege level
(DPLS = 0). This means software running at any privilege
level can access the target code segment through the call
gate.

Chapter 4: Segmented Virtual Memory 131

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 4-32. Privilege-Check Examples for Call Gates

In Example 2, all privilege checks fail as follows:

� The call-gate DPL (DPLG) specifies that only software at
privilege-level 0 can access the gate. The current program
does not have enough privilege to access the call gate
because its CPL is 2.

513-232.eps

Example 1: Privilege Check Passes

DPLG=3

Call-Gate Descriptor

Code
Segment

CS CPL=2

DPLS=0

Code-Segment Descriptor

Call-Gate
Selector

RPL=3

Example 2: Privilege Check Fails

DPLG=0

Call-Gate Descriptor
Code

Segment

CS CPL=2

DPLS=3

Code-Segment Descriptor

Call-Gate
Selector

RPL=3

Access Allowed

Access Denied

132 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� The selector referencing the call-gate descriptor does not
have enough privilege to complete the reference. Its RPL is
numerically greater than DPLG.

� The target code segment is at a lower privilege (DPLS = 3)
than the currently running software (CPL = 2). Transitions
from more-privileged software to less-privileged software
are not allowed, so this privilege check fails as well.

Although all three privilege checks failed in Example 2, failing
only one check is sufficient to deny access into the target code
segment.

Stack Switching. The processor performs an automatic stack
switch when a control transfer causes a change in privilege
levels to occur. Switching stacks isolates more-privileged
software stacks from less-privileged software stacks and
provides a mechanism for saving the return pointer back to the
program that initiated the call.

When switching to more-privileged software, as is done when
transferring control using a call gate, the processor uses the
corresponding stack pointer (privilege-level 0, 1, or 2) stored in
the task-state segment (TSS). The format of the stack pointer
stored in the TSS depends on the system-software operating
mode:

� Legacy-mode system software stores a 32-bit ESP value
(stack offset) and 16-bit SS selector register value in the TSS
for each of three privilege levels 0, 1, and 2.

� Long-mode system software stores a 64-bit RSP value in the
TSS for privilege levels 0, 1, and 2. No SS register value is
stored in the TSS because in long mode a call gate must
reference a 64-bit code-segment descriptor. 64-bit mode does
not use segmentation, and the stack pointer consists solely
of the 64-bit RSP. Any value loaded in the SS register is
ignored.

See “Task-Management Resources” on page 358 for more
information on the legacy-mode and long-mode TSS formats.

Figure 4-33 on page 133 shows a 32-bit stack in legacy mode
before and after the automatic stack switch. This particular
example assumes that parameters are passed from the current
program to the target program. The process followed by legacy
mode in switching stacks and copying parameters is:

Chapter 4: Segmented Virtual Memory 133

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

1. The target code-segment DPL is read by the processor and
used as an index into the TSS for selecting the new stack
pointer (SS:ESP). For example, if DPL=1 the processor
selects the SS:ESP for privilege-level 1 from the TSS.

2. The SS and ESP registers are loaded with the new SS:ESP
values read from the TSS.

3. The old values of the SS and ESP registers are pushed onto
the stack pointed to by the new SS:ESP.

4. The 5-bit count field is read from the call-gate descriptor.

5. The number of parameters specified in the count field (up
to 31) are copied from the old stack to the new stack. The
size of the parameters copied by the processor depends on
the call-gate size: 32-bit call gates copy 4-byte parameters
and 16-bit call gates copy 2-byte parameters.

6. The return pointer is pushed onto the stack. The return
pointer consists of the current CS-register value and the EIP
of the instruction following the calling instruction.

7. The CS register is loaded from the segment-selector field in
the call-gate descriptor, and the EIP is loaded from the
offset field in the call-gate descriptor.

8. The target program begins executing with the instruction
referenced by new CS:EIP.

Figure 4-33. Legacy-Mode 32-Bit Stack Switch, with Parameters

513-224.eps

Parameter n
. . .

Parameter 1
Parameter 2 +(n-2)*4

+(n-1)*4

Old SS:ESP

Old
32-Bit Stack
Before CALL

New
32-Bit Stack
After CALL

Old SS
Old ESP

Old EIP

Parameter n
. . .

Parameter 1
Parameter 2

Old CS +4

+8

+(n*4)+8

+(n*4)+12

+(n*4)

+(n*4)+4

New SS:ESP

Stack Switch

134 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 4-34 shows a 32-bit stack in legacy mode before and after
the automatic stack switch when no parameters are passed
(count=0). Most software does not use the call-gate descriptor
count-field to pass parameters. System software typically
defines linkage mechanisms that do not rely on automatic
parameter copying.

Figure 4-34. 32-Bit Stack Switch, No Parameters—Legacy Mode

Figure 4-35 on page 135 shows a long-mode stack switch. In long
mode, all call gates must reference 64-bit code-segment
descriptors, so a long-mode stack switch uses a 64-bit stack. The
process of switching stacks in long mode is similar to switching
in legacy mode when no parameters are passed. The process is
as follows:

1. The target code-segment DPL is read by the processor and
used as an index into the 64-bit TSS for selecting the new
stack pointer (RSP).

2. The RSP register is loaded with the new RSP value read
from the TSS. The SS register is loaded with a null selector
(SS=0). Setting the new SS selector to null allows proper
handling of nested control transfers in 64-bit mode. See
“Nested Returns to 64-Bit Mode Procedures” on page 137
for additional information.

As in legacy mode, it is desirable to keep the stack-segment
requestor privilege-level (SS.RPL) equal to the current
privilege-level (CPL). When using a call gate to change
privilege levels, the SS.RPL is updated to reflect the new
CPL. The SS.RPL is restored from the return-target CS.RPL
on the subsequent privilege-level-changing far return.

513-225.eps

Old SS:ESP

Old
32-Bit Stack
Before CALL

New
32-Bit Stack
After CALL

Old EIP

Old ESP
Old SS

Old CS +4

+8

+12

New SS:ESP

Stack Switch

Chapter 4: Segmented Virtual Memory 135

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

3. The old values of the SS and RSP registers are pushed onto
the stack pointed to by the new RSP. The old SS value is
popped on a subsequent far return. This allows system
software to set up the SS selector for a compatibility-mode
process by executing a RET (or IRET) that changes the
privilege level.

4. The return pointer is pushed onto the stack. The return
pointer consists of the current CS-register value and the
RIP of the instruction following the calling instruction.

5. The CS register is loaded from the segment-selector field in
the long-mode call-gate descriptor, and the RIP is loaded
from the offset field in the long-mode call-gate descriptor.

The target program begins execution with the instruction
referenced by the new RIP.

Figure 4-35. Stack Switch—Long Mode

All long-mode stack pushes resulting from a privilege-level-
changing far call are eight-bytes wide and increment the RSP
by eight. Long mode ignores the call-gate count field and does
not support the automatic parameter-copy feature found in
legacy mode. Software can access parameters on the old stack,
if necessary, by referencing the old stack segment selector and
stack pointer saved on the new process stack.

4.11.3 Return Control
Transfers

Returns to calling programs can be performed by using the RET
instruction. The following types of returns are possible:

� Near Return—Near returns perform control transfers within
the same code segment, so the CS register is unchanged. The

Old SS:RSP

Old
64-Bit Stack
Before CALL

New
64-Bit Stack
After CALL

Old RIP

Old RSP
Old SS

Old CS +8

+16

+24

New RSP

Stack Switch

(SS=0 + new_CPL)

136 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

new offset is popped off the stack and into the rIP register.
No privilege checks are performed.

� Far Return, Same Privilege—A far return transfers control
from one code segment to another. When the original code
segment is at the same privilege level as the target code
segment, a far pointer (CS:rIP) is popped off the stack and
the RPL of the new code segment (CS) is checked. If the
requested privilege level (RPL) matches the current
privilege level (CPL), then a return is made to the same
privilege level. This prevents software from changing the CS
value on the stack in an attempt to return to higher-privilege
software.

� Far Return, Less Privilege—Far returns can change privilege
levels, but only to a lower-privilege level. In this case a stack
switch is performed between the current, higher-privilege
program and the lower-privilege return program. The CS-
register and rIP-register values are popped off the stack. The
lower-privilege stack pointer is also popped off the stack and
into the SS register and rSP register. The processor checks
both the CS and SS privilege levels to ensure they are equal
and at a lesser privilege than the current CS.

In the case of nested returns to 64-bit mode, a null selector
can be popped into the SS register. See “Nested Returns to
64-Bit Mode Procedures” on page 137.

Far returns also check the privilege levels of the DS, ES, FS
and GS selector registers. If any of these segment registers
have a selector with a higher privilege than the return
program, the segment register is loaded with the null
selector.

Stack Switching. The stack switch performed by a far return to a
lower-privilege level reverses the stack switch of a call gate to a
higher-privilege level, except that parameters are never
automatically copied as part of a return. The process followed
by a far-return stack switch in long mode and legacy mode is:

1. The return code-segment RPL is read by the processor from
the CS value stored on the stack to determine that a lower-
privilege control transfer is occurring.

2. The return-program instruction pointer is popped off the
current-program (higher privilege) stack and loaded into
the CS and rIP registers.

Chapter 4: Segmented Virtual Memory 137

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

3. The return instruction can include an immediate operand
that specifies the number of additional bytes to be popped
off of the stack. These bytes may correspond to the
parameters pushed onto the stack previously by a call
through a call gate containing a non-zero parameter-count
field. If the return includes the immediate operand, then
the stack pointer is adjusted upward by adding the
specified number of bytes to the rSP.

4. The return-program stack pointer is popped off the current-
program (higher privilege) stack and loaded into the SS and
rSP registers. In the case of nested returns to 64-bit mode, a
null selector can be popped into the SS register.

The operand size of a far return determines the size of stack
pops when switching stacks. If a far return is used in 64-bit
mode to return from a prior call through a long-mode call gate,
the far return must use a 64-bit operand size. The 64-bit
operand size allows the far return to properly read the stack
established previously by the far call.

Nested Returns to 64-Bit Mode Procedures. In long mode, a far call
that changes privilege levels causes the SS register to be loaded
with a null selector (this is the same action taken by an
interrupt in long mode). If the called procedure performs
another far call to a higher-privileged procedure, or is
interrupted, the null SS selector is pushed onto the stack frame,
and another null selector is loaded into the SS register. Using a
null selector in this way allows the processor to properly handle
returns nested within 64-bit-mode procedures and interrupt
handlers.

Normally, a RET that pops a null selector into the SS register
causes a general-protection exception (#GP) to occur. However,
in long mode, the null selector acts as a flag indicating the
existence of nested interrupt handlers or other privileged
software in 64-bit mode. Long mode allows RET to pop a null
selector into SS from the stack under the following conditions:

� The target mode is 64-bit mode.

� The target CPL is less than 3.

In this case, the processor does not load an SS descriptor, and
the null selector is loaded into SS without causing a #GP
exception.

138 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

4.12 Limit Checks

Except in 64-bit mode, limit checks are performed by all
instructions that reference memory. Limit checks detect
attempts to access memory outside the current segment
boundary, attempts at executing instructions outside the
current code segment, and indexing outside the current
descriptor table. If an instruction fails a limit check, either (1) a
general-protection exception occurs for all other segment-limit
violations or (2) a stack-fault exception occurs for stack-
segment limit violations.

In 64-bit mode, segment limits are not checked during accesses
to any segment referenced by the CS, DS, ES, FS, GS, and SS
selector registers. Instead, the processor checks that the virtual
addresses used to reference memory are in canonical-address
form. In 64-bit mode, as with legacy mode and compatibility
mode, descriptor-table limits are checked.

4.12.1 Determining
Limit Violations

To determine segment-limit violations, the processor checks a
virtual (linear) address to see if it falls outside the valid range
of segment offsets determined by the segment-limit field in the
descriptor. If any part of an operand or instruction falls outside
the segment-offset range, a limit violation occurs. For example,
a doubleword access, two bytes from an upper segment
boundary, causes a segment violation because half of the
doubleword is outside the segment.

Three bits from the descriptor entry are used to control how the
segment-limit field is interpreted: the granularity (G) bit, the
default operand-size (D) bit, and for data segments, the expand-
down (E) bit. See “Legacy Segment Descriptors” on page 95 for
a detailed description of each bit.

For all segments other than expand-down segments, the
minimum segment-offset is 0. The maximum segment-offset
depends on the value of the G bit:

� If G=0 (byte granularity), the maximum allowable segment-
offset is equal to the value of the segment-limit field.

� If G=1 (4096-byte granularity), the segment-limit field is
first scaled by 4096 (1000h). Then 4095 (0FFFh) is added to
the scaled value to arrive at the maximum allowable
segment-offset, as shown in the following equation:

maximum segment-offset = (limit × 1000h) + 0FFFh

Chapter 4: Segmented Virtual Memory 139

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

For example, if the segment-limit field is 0100h, then the
maximum allowable segment-offset is

(0100h × 1000h) + 0FFFh = 10_1FFFh.

In both cases, the maximum segment-size is specified when the
descriptor segment-limit field is 0F_FFFFh.

Expand-down segments. Expand-down data segments are
supported in legacy mode and compatibility mode but not in 64-
bit mode. With expand-down data segments, the maximum
segment offset depends on the value of the D bit in the data-
segment descriptor:

� If D=0 the maximum segment-offset is 0_FFFFh.

� If D=1 the maximum segment-offset is 0_FFFF_FFFFh.

The minimum allowable segment offset in expand-down
segments depends on the value of the G bit:

� If G=0 (byte granularity), the minimum allowable segment
offset is the segment-limit value plus 1.

For example, if the segment-limit field is 0100h, then the
minimum allowable segment-offset is 0101h.

� If G=1 (4096-byte granularity), the segment-limit value in
the descriptor is first scaled by 4096 (1000h), and then 4095
(0FFFh) is added to the scaled value to arrive at a scaled
segment-limit value. The minimum allowable segment-offset
is this scaled segment-limit value plus 1, as shown in the
following equation:

minimum segment-offset = (limit × 1000) + 0FFFh + 1

For example, if the segment-limit field is 0100h, then the
minimum allowable segment-offset is

(0100h × 1000h) + 0FFFh + 1 = 10_1000h.

For expand-down segments, the maximum segment size is
specified when the segment-limit value is 0.

4.13 Type Checks

Type checks prevent software from using descriptors in invalid
ways. Failing a type check results in an exception. Type checks
are performed using five bits from the descriptor entry: the S
bit and the 4-bit Type field. Together, these five bits are used to
specify the descriptor type (code, data, segment, or gate) and

140 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

its access characteristics. See “Legacy Segment Descriptors” on
page 95 for a detailed description of the S bit and Type-field
encodings. Type checks are performed by the processor in
compatibility mode as well as legacy mode. Limited type checks
are performed in 64-bit mode.

4.13.1 Type Checks in
Legacy and
Compatibility Modes

The type checks performed in legacy mode and compatibility
mode are listed in the following sections.

Descriptor-Table Register Loads. Loads into the LDTR and TR
descriptor-table registers are checked for the appropriate
system-segment type. The LDTR can only be loaded with an
LDT descriptor, and the TR only with a TSS descriptor. The
checks are performed during any action that causes these
registers to be loaded. This includes execution of the LLDT and
LTR instructions and during task switches.

Segment Register Loads. The following restrictions are placed on
the segment-descriptor types that can be loaded into the six
user segment registers:

� Only code segments can be loaded into the CS register.

� Only writable data segments can be loaded into the SS
register.

� Only the following segment types can be loaded into the DS,
ES, FS, or GS registers:

- Read-only or read/write data segments.

- Readable code segments.

These checks are performed during any action that causes the
segment registers to be loaded. This includes execution of the
MOV segment-register instructions, control transfers, and task
switches.

Control Transfers. Control transfers (branches and interrupts)
place additional restrictions on the segment types that can be
referenced during the transfer:

� The segment-descriptor type referenced by far CALLs and
far JMPs must be one of the following:

- A code segment

- A call gate or a task gate

- An available TSS (only allowed in legacy mode)

- A task gate (only allowed in legacy mode)

Chapter 4: Segmented Virtual Memory 141

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Only code-segment descriptors can be referenced by call-
gate, interrupt-gate, and trap-gate descriptors.

� Only TSS descriptors can be referenced by task-gate
descriptors.

� The link field (selector) in the TSS can only point to a TSS
descriptor. This is checked during an IRET control transfer
to a task.

� The far RET and far IRET instructions can only reference
code-segment descriptors.

� The interrupt-descriptor table (IDT), which is referenced
during interrupt control transfers, can only contain
interrupt gates, trap gates, and task gates.

Segment Access. After a segment descriptor is successfully loaded
into one of the segment registers, reads and writes into the
segments are restricted in the following ways:

� Writes are not allowed into read-only data-segment types.

� Writes are not allowed into code-segment types (executable
segments).

� Reads from code-segment types are not allowed if the
readable (R) type bit is cleared to 0.

These checks are generally performed during execution of
instructions that access memory.

4.13.2 Long Mode
Type Check
Differences

Compatibility Mode and 64-bit Mode. The following type checks
differ in long mode (64-bit mode and compatibility mode) as
compared to legacy mode:

� System Segments—System-segment types are checked, but
the following types that are valid in legacy mode are illegal
in long mode:

- 16-bit available TSS.

- 16-bit busy TSS.

- Type-field encoding of 00h in the upper half of a system-
segment descriptor to indicate an illegal type and
prevent access as a legacy descriptor.

� Gates—Gate-descriptor types are checked, but the following
types that are valid in legacy mode are illegal in long mode:

- 16-bit call gate.

- 16-bit interrupt gate.

142 Chapter 4: Segmented Virtual Memory

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

- 16-bit trap gate.

- Task gate.

64-bit Mode. 64-bit mode disables segmentation, and most of the
segment-descriptor fields are ignored. The following list
identifies situations where type checks in 64-bit mode differ
from those in compatibility mode and legacy mode:

� Code Segments—The readable (R) type bit is ignored in 64-bit
mode. None of the legacy type-checks that prevent reads
from or writes into code segments are performed in 64-bit
mode.

� Data Segments—Data-segment type attributes are ignored in
64-bit mode. The writable (W) and expand-down (E) type
bits are ignored. All data segments are treated as writable.

Chapter 5: Page Translation and Protection 143

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

5 Page Translation and Protection

The x86 page-translation mechanism (or simply paging
mechanism) enables system software to create separate address
spaces for each process or application. These address spaces are
known as virtual-address spaces. System software uses the
paging mechanism to selectively map individual pages of
physical memory into the virtual-address space using a set of
hierarchical address-translation tables known collectively as
page tables.

The paging mechanism and the page tables are used to provide
each process with its own private region of physical memory for
storing its code and data. Processes can be protected from each
other by isolating them within the virtual-address space. A
process cannot access physical memory that is not mapped into
its virtual-address space by system software.

System software can use the paging mechanism to selectively
map physical-memory pages into multiple virtual-address
spaces. Mapping physical pages in this manner allows them to
be shared by multiple processes and applications. The physical
pages can be configured by the page tables to allow read-only
access. This prevents applications from altering the pages and
ensures their integrity for use by all applications.

Shared mapping is typically used to allow access of shared-
library routines by multiple applications. A read-only copy of
the library routine is mapped to each application virtual-
address space, but only a single copy of the library routine is
present in physical memory. This capability also allows a copy
of the operating-system kernel and various device drivers to
reside within the application address space. Applications are
provided with efficient access to system services without
requiring costly address-space switches.

The system-software portion of the address space necessarily
includes system-only data areas that must be protected from
accesses by applications. System software uses the page tables
to protect this memory by designating the pages as supervisor
pages. Such pages are only accessible by system software.

Finally, system software can use the paging mechanism to map
multiple, large virtual-address spaces into a much smaller
amount of physical memory. Each application can use the entire

144 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

32-bit or 64-bit virtual-address space. System software actively
maps the most-frequently-used virtual-memory pages into the
available pool of physical-memory pages. The least-frequently-
used virtual-memory pages are swapped out to the hard drive.
This process is known as demand-paged virtual memory.

5.1 Page Translation Overview

The x86 architecture provides support for translating 32-bit
virtual addresses into 32-bit physical addresses (larger physical
addresses, such as 36-bit or 40-bit addresses, are supported as a
special mode). The x86-64 architecture enhances this support to
allow translation of 64-bit virtual addresses into 52-bit physical
addresses, although processor implementations can support
smaller virtual-address and physical-address spaces.

Virtual addresses are translated to physical addresses through
hierarchical translation tables created and managed by system
software. Each table contains a set of entries that point to the
next-lower table in the translation hierarchy. A single table at
one level of the hierarchy can have hundreds of entries, each of
which points to a unique table at the next-lower hierarchical
level. Each lower-level table can in turn have hundreds of
entries pointing to tables further down the hierarchy. The
lowest-level table in the hierarchy points to the translated
physical page.

Figure 5-1 on page 145 shows an overview of the page-
translation hierarchy used in long mode. Legacy mode paging
uses a subset of this translation hierarchy (the page-map level-4
table does not exist in legacy mode and the PDP table may or
may not be used, depending on which paging mode is enabled).
As this figure shows, a virtual address is divided into fields,
each of which is used as an offset into a translation table. The
complete translation chain is made up of all table entries
referenced by the virtual-address fields. The lowest-order
virtual-address bits are used as the byte offset into the physical
page.

Chapter 5: Page Translation and Protection 145

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 5-1. Virtual to Physical Address Translation—Long Mode

Legacy page translation offers a variety of alternatives in
translating virtual addresses to physical addresses. Three

513-200.eps

PML4E PDE

Physical
Address

PDPE

PTE

Physical Page
Offset

Sign
Extension

63 0

Page Directory
Offset

Page Map
Level-4 Offset

Page Directory
Pointer Offset

Page Table
Offset

Page Map Base Register CR3

64-Bit Virtual Address

Page Directory Pointer
Table

Page Directory
Table

Physical Page
Frame

Page
Table

Page Map
Level 4
Table

146 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

physical-page sizes of 4 Kbytes, 2 Mbytes, and 4 Mbytes are
available. Virtual addresses are 32 bits long, and physical
addresses up to the supported physical-address size can be
used. The x86-64 architecture enhances the legacy translation
support by allowing virtual addresses of up to 64 bits long to be
translated into physical addresses of up to 52 bits long.

Currently, the x86-64 architecture defines a mechanism for
translating 48-bit virtual addresses to 52-bit physical addresses.
The mechanism used to translate a full 64-bit virtual address is
reserved and will be described in a future x86-64 architectural
specification.

5.1.1 Page-Translation
Options

The form of page-translation support available to software
depends on which paging features are enabled. Four controls
are available for selecting the various paging alternatives:

� Page-Translation Enable (CR0.PG)

� Physical-Address Extensions (CR4.PAE)

� Page-Size Extensions (CR4.PSE)

� Long-Mode Active (EFER.LMA)

Not all paging alternatives are available in all modes. Table 5-1
summarizes the paging support available in each mode.

Table 5-1. Supported Paging Alternatives (CR0.PG=1)

Mode

Physical-
Address

Extensions
(CR4.PAE)

Page-Size
Extensions
(CR4.PSE)

Page-
Directory
Page Size

Resulting
Physical-
Page Size

Maximum
Virtual

Address

Maximum
Physical
Address

Long
Mode

64-Bit
Mode Must be

enabled –

PDE.PS=0 4 Kbyte

64-bit 52-bit
Compatibility
Mode

PDE.PS=1 2 Mbyte

Legacy Mode

Enabled –
PDE.PS=0 4 Kbyte

32-bit

52-bit

PDE.PS=1 2 Mbyte 52-bit

Disabled

Disabled – 4 Kbyte 32-bit

Enabled
PDE.PS=0 4 Kbyte 32-bit

PDE.PS=1 4 Mbyte 40-bit

Chapter 5: Page Translation and Protection 147

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

5.1.2 Page-Translation
Enable (PG) Bit

Page translation is controlled by the PG bit in CR0 (bit 31).
When CR0.PG is set to 1, page translation is enabled. When
CR0.PG is cleared to 0, page translation is disabled.

The x86-64 architecture uses CR0.PG to activate and deactivate
long mode when long mode is enabled. See “Enabling and
Activating Long Mode” on page 422 for more information.

5.1.3 Physical-Address
Extensions (PAE) Bit

Physical-address extensions are controlled by the PAE bit in
CR4 (bit 5). When CR4.PAE is set to 1, physical-address
extensions are enabled. When CR4.PAE is cleared to 0,
physical-address extensions are disabled.

Setting CR4.PAE=1 enables virtual addresses to be translated
into physical addresses up to 52 bits long. This is accomplished
by doubling the size of paging data-structure entries from 32
bits to 64 bits to accommodate the larger physical base-
addresses for physical-pages.

PAE must be enabled before activating long mode. See
“Enabling and Activating Long Mode” on page 422.

5.1.4 Page-Size
Extensions (PSE) Bit

Page-size extensions are controlled by the PSE bit in CR4 (bit
4). Setting CR4.PSE to 1 allows operating-system software to
use 4Mbyte physical pages in the translation process. The
4Mbyte physical pages can be mixed with standard 4-Kbyte
physical pages or replace them entirely. The selection of
physical-page size is made on a page-directory-entry basis. See
“Page Size (PS) Bit” on page 168 for more information on
physical-page size selection. When CR4.PSE is cleared to 0,
page-size extensions are disabled.

The choice of 2 Mbyte or 4 Mbyte as the large physical-page size
depends on the value of CR4.PSE and CR4.PAE, as follows:

� If physical-address extensions are enabled (CR4.PAE=1), the
large physical-page size is 2 Mbytes, regardless of the value
of CR4.PSE.

� If physical-address extensions are disabled (CR4.PAE=0)
and CR4.PSE=1, the large physical-page size is 4 Mbytes.

� If both CR4.PAE=0 and CR4.PSE=0, the only available page
size is 4 Kbytes.

The value of CR4.PSE is ignored when long mode is active. This
is because physical-address extensions must be enabled in long

148 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

mode, and the only available page sizes are 4 Kbytes and
2 Mbytes.

In legacy mode, physical addresses up to 40 bits long can be
translated from 32-bit virtual addresses using 32-bit paging
data-structure entries when 4-Mbyte physical-page sizes are
selected. In this special case, CR4.PSE=1 and CR4.PAE=0. See
“4-Mbyte Page Translation” on page 152 for a description of the
4-Mbyte PDE that supports 40-bit physical-address translation.
The 40-bit physical-address capability is an x86-64 architecture
enhancement over the similar capability available in the legacy
x86 architecture.

5.1.5 Page-Directory
Page Size (PS) Bit

The page directory is one of the data structures used in page
translation (see Figure 5-1 on page 145). The page-size (PS) bit
in the PDE (bit 7, referred to as PDE.PS) selects between
standard 4-Kbyte physical-page sizes and larger (2-Mbyte or 4-
Mbyte) physical-page sizes. When PDE.PS is set to 1, large
physical pages are used, and the PDE becomes the lowest level
of the translation hierarchy. The size of the large page is
determined by the values of CR4.PAE and CR4.PSE, as shown
in Figure 5-1 on page 146. When PDE.PS is cleared to 0,
standard 4-Kbyte physical pages are used, and the PTE is the
lowest level of the translation hierarchy.

5.2 Legacy-Mode Page Translation

Legacy mode supports two forms of translation:

� Normal (non-PAE) Paging—This is used when physical-
address extensions are disabled (CR4.PAE=0). Entries in the
page translation table are 32 bits and are used to translate
32-bit virtual addresses into physical addresses as large as
40 bits.

� PAE Paging—This is used when physical-address extensions
are enabled (CR4.PAE=1). Entries in the page translation
table are 64 bits and are used to translate 32-bit virtual
addresses into physical addresses as large as 52 bits.

Legacy paging uses up to three levels of page-translation tables,
depending on the paging form used and the physical-page size.
Entries within each table are selected using virtual-address bit
fields. The legacy page-translation tables are:

Chapter 5: Page Translation and Protection 149

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Page Table—Each page-table entry (PTE) points to a physical
page. If 4-Kbyte pages are used, the page table is the lowest
level of the page-translation hierarchy. PTEs are not used
when translating 2-Mbyte or 4-Mbyte pages.

� Page Directory—If 4-Kbyte pages are used, each page-
directory entry (PDE) points to a page table. If 2-Mbyte or
4-Mbyte pages are used, a PDE is the lowest level of the
page-translation hierarchy and points to a physical page. In
non-PAE paging, the page directory is the highest level of
the translation hierarchy.

� Page-Directory Pointer—Each page-directory pointer entry
(PDPE) points to a page directory. Page-directory pointers
are only used in PAE paging (CR4.PAE=1), and are the
highest level in the legacy page-translation hierarchy.

The translation-table-entry formats and how they are used in
the various forms of legacy page translation are described
beginning on page 150.

5.2.1 CR3 Register The CR3 register is used to point to the base address of the
highest-level page-translation table. The base address is either
the page-directory pointer table or the page directory table.
The CR3 register format depends on the form of paging being
used. Figure 5-2 shows the CR3 format when normal (non-PAE)
paging is used (CR4.PAE=0). Figure 5-3 shows the CR3 format
when PAE paging is used (CR4.PAE=1).

Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode

Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode

The CR3 register fields for legacy-mode paging are:

31 12 11 5 4 3 2 0

Page-Directory-Table Base Address reserved
P
C
D

P
W
T

reserved

31 5 4 3 2 0

Page-Directory-Pointer-Table Base Address
P
C
D

P
W
T

reserved

150 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Table Base Address Field. This field points to the starting physical
address of the highest-level page-translation table. The size of
this field depends on the form of paging used:

� Normal (Non-PAE) Paging (CR4.PAE=0)—This 20-bit field
occupies bits 31–12, and points to the base address of the
page-directory table. The page-directory table is aligned on
a 4-Kbyte boundary, with the low-order 12 address bits
(11–0) assumed to be 0. This yields a total base-address size
of 32 bits.

� PAE Paging (CR4.PAE=1)—This field is 27 bits and occupies
bits 31–5. The CR3 register points to the base address of the
page-directory-pointer table. The page-directory-pointer
table is aligned on a 32-byte boundary, with the low 5
address bits (4–0) assumed to be 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough
indicates whether the highest-level page-translation table has a
writeback or writethrough caching policy. When PWT=0, the
table has a writeback caching policy. When PWT=1, the table
has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disable
indicates whether the highest-level page-translation table is
cacheable. When PCD=0, the table is cacheable. When PCD=1,
the table is not cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software
when writing CR3.

5.2.2 Normal (Non-
PAE) Paging

Non-PAE paging (CR4.PAE=0) supports 4-Kbyte and 4-Mbyte
physical pages, as described in the following sections.

4-Kbyte Page Translation. 4-Kbyte physical-page translation is
performed by dividing the 32-bit virtual address into three
fields. Each of the upper two fields are used as an index into a
two-level page-translation hierarchy. The virtual-address fields
are used as follows, and are shown in Figure 5-4 on page 151:

� Bits 31–22 index into the 1024-entry page-directory table.

� Bits 21–12 index into the 1024-entry page table.

� Bits 11–0 provide the byte offset into the physical page.

Chapter 5: Page Translation and Protection 151

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode

Figure 5-5 shows the format of the PDE (page-directory entry),
and Figure 5-6 on page 152 shows the format of the PTE (page-
table entry). Each table occupies 4 Kbytes and can hold 1024 of
the 32-bit table entries. The fields within these table entries are
described in “Page-Translation-Table Entry Fields” on
page 166.

Figure 5-5 shows bit 7 cleared to 0. This bit is the page-size bit
(PS), and specifies a 4-Kbyte physical-page translation.

Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode

Virtual Address

Page Offset
Page-Directory

Offset
Page-Table

Offset

01112212231

Physical
Address

PTE

PDE

1010

32

32

Page-Directory Base

1231

CR3

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

12

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

152 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode

4-Mbyte Page Translation. 4-Mbyte page translat ion i s only
supported when page-size extensions are enabled (CR4.PSE=1)
and physical-address extensions are disabled (CR4.PAE=0).

PSE defines a page-size bit in the 32-bit PDE format (PDE.PS).
This bit is used by the processor during page translation to
support both 4-Mbyte and 4-Kbyte pages. 4-Mbyte pages are
selected when PDE.PS is set to 1, and the PDE points directly to
a 4-Mbyte physical page. PTEs are not used in a 4-Mbyte page
translation. If PDE.PS is cleared to 0, or if 4-Mbyte page
translation is disabled, the PDE points to a PTE.

4-Mbyte page translation is performed by dividing the 32-bit
virtual address into two fields. Each field is used as an index
into a single-level page-translation hierarchy. The virtual-
address fields are used as follows, and are shown in Figure 5-7
on page 153:

� Bits 31–22 index into the 1024-entry page-directory table.

� Bits 21–0 provide the byte offset into the physical page.

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Chapter 5: Page Translation and Protection 153

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode

The x86-64 architecture modifies the legacy 32-bit PDE format
in PSE mode to increase physical-address size support to 40
bits. This increase in address size is accomplished by using bits
20–13 to hold eight additional high-order physical-address bits.
Bit 21 is reserved and must be cleared to 0.

Figure 5-8 shows the format of the PDE when PSE mode is
enabled. The physical-page base-address bits are contained in a
split field. The high-order, physical-page base-address bits
39–32 are located in PDE[20:13], and physical-page base-
address bits 31–22 are located in PDE[31:22].

Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode

Virtual Address

Page Offset
Page-Directory

Offset

0212231

Physical
Address

PDE

10

40

Page-Directory Base

1231

CR3

Page-
Directory

Table

4 Mbyte
Physical

Page

22

31 22 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address [31:22] 0 Physical-Page Base Address
[39:32]

P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

154 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

5.2.3 PAE Paging PAE paging is used when physical-address extensions are
enabled (CR4.PAE=1). PAE paging doubles the size of page-
translation table entries to 64 bits so that the table entries can
hold larger physical addresses (up to 52 bits). The size of each
table remains 4 Kbytes, which means each table can hold 512 of
the 64-bit entries. PAE paging also introduces a third-level
page-translation table, known as the page-directory-pointer
table (PDP).

The size of large pages in PAE-paging mode is 2 MBytes rather
than 4 Mbytes. PAE uses the page-directory page-size bit
(PDE.PS) to allow selection between 4-Kbyte and 2-Mbyte page
sizes. PAE automatically uses the page-size bit, so the value of
CR4.PSE is ignored by PAE paging.

4-Kbyte Page Translation. With PAE paging, 4-Kbyte physical-page
translation is performed by dividing the 32-bit virtual address
into four fields, each of the upper three fields is used as an
index into a 3-level page-translation hierarchy. The virtual-
address fields are described as follows and are shown in
Figure 5-9 on page 155:

� Bits 31–30 index into a 4-entry page-directory-pointer table.

� Bits 29–21 index into the 512-entry page-directory table.

� Bits 20–12 index into the 512-entry page table.

� Bits 11–0 provide the byte offset into the physical page.

Chapter 5: Page Translation and Protection 155

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode

Figures 5-10 through 5-12 on page 156 show the legacy-mode
4-Kbyte translation-table formats:

� Figure 5-10 shows the PDPE (page-directory-pointer entry)
format.

� Figure 5-11 shows the PDE (page-directory entry) format.

� Figure 5-12 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-
Translation-Table Entry Fields” on page 166.

Figure 5-11 shows the PDE.PS bit cleared to 0 (bit 7), specifying
a 4-Kbyte physical-page translation.

Virtual Address

Page Offset
Page-Directory

Offset
Page-Table

Offset

011122021293031

Physical
Address

PTE

PDE

PDPE

992

52*

52*

52*

Page-Directory-Pointer Base

531

CR3

Page-
Directory-

Pointer
Table

Page-
Directory

Table

Page
Table

4 Kbyte
Physical

Page

Page-Directory-
Pointer Offset

21

*This is an architectural limit. A given processor
implementation may support fewer bits.

156 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode

Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode

Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode

2-Mbyte Page Translation. 2-Mbyte page translation is performed
by dividing the 32-bit virtual address into three fields. Each
field is used as an index into a 2-level page-translation

63 52 51 32

reserved, MBZ
Page-Directory Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 5 4 3 2 1 0

Page-Directory Base Address AVL reserved,
MBZ

P
C
D

P
W
T

MBZ P

63 62 52 51 32

N
X

Reserved, MBZ Page-Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Reserved, MBZ Physical-Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Chapter 5: Page Translation and Protection 157

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

hierarchy. The virtual-address fields are described as follows
and are shown in Figure 5-13:

� Bits 31–30 index into the 4-entry page-directory-pointer
table.

� Bits 29–21 index into the 512-entry page-directory table.

� Bits 20–0 provide the byte offset into the physical page.

Figure 5-13. 2-Mbyte PAE Page Translation—Legacy Mode

Figure 5-14 on page 158 shows the format of the PDPE (page-
directory-pointer entry) and Figure 5-15 on page 158 shows the
format of the PDE (page-directory entry). PTEs are not used in
2-Mbyte page translations.

Figure 5-15 on page 158 shows the PDE.PS bit set to 1 (bit 7),
specifying a 2-Mbyte physical-page translation.

Virtual Address

Page Offset
Page-Directory

Offset

02021293031

Physical
Address

PDE

PDPE

92

52*

52*

Page-Directory-Pointer Base Register

531

CR3

Page-
Directory-

Pointer
Table

Page-
Directory

Table

2 Mbyte
Physical

Page

Page-Directory-
Pointer Offset

21

*This is an architectural limit. A given processor
implementation may support fewer bits.

158 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode

Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode

5.3 Long-Mode Page Translation

Long-mode page translation requires the use of physical-
address extensions (PAE). Before activating long mode, PAE
must be enabled by setting CR4.PAE to 1. Activating long mode
before enabling PAE causes a general-protection exception
(#GP) to occur.

The PAE-paging data structures support mapping of 64-bit
virtual addresses into 52-bit physical addresses. PAE expands
the size of legacy page-directory entries (PDEs) and page-table
entries (PTEs) from 32 bits to 64 bits, allowing physical-address
sizes of greater than 32 bits.

The x86-64 architecture enhances the page-directory-pointer
entry (PDPE) by defining previously reserved bits for access
and protection control. A new translation table is added to PAE

63 52 51 32

reserved, MBZ
Page-Directory Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 5 4 3 2 1 0

Page-Directory Base Address AVL reserved,
MBZ

P
C
D

P
W
T

MBZ P

63 62 52 51 32

N
X

Reserved, MBZ Physical-Page Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

Chapter 5: Page Translation and Protection 159

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

paging, called the page-map level-4 (PML4). The PML4 table
precedes the PDP table in the page-translation hierarchy.

Because PAE is always enabled in long mode, the PS bit in the
page directory entry (PDE.PS) selects between 4-Kbyte and 2-
Mbyte page sizes, and the CR4.PSE bit is ignored.

5.3.1 Canonical
Address Form

The x86-64 architecture requires implementations supporting
fewer than the full 64-bit virtual address to ensure that those
addresses are in canonical form. An address is in canonical form
if the address bits from the most-significant implemented bit up
to bit 63 are all ones or all zeros. If the addresses of all bytes in a
virtual-memory reference are not in canonical form, the
processor generates a general-protection exception (#GP) or a
stack fault (#SS) as appropriate.

5.3.2 CR3 In long mode, the CR3 register is used to point to the PML4
base address. CR3 is expanded to 64 bits in long mode, allowing
the PML4 table to be located anywhere in the 52-bit physical-
address space. Figure 5-16 shows the long-mode CR3 format.

Figure 5-16. Control Register 3 (CR3)—Long Mode

The CR3 register fields for long mode are:

Table Base Address Field. Bits 51–12. This 40-bit field points to the
PML4 base address. The PML4 table is aligned on a 4-Kbyte
boundary with the low-order 12 address bits (11–0) assumed to
be 0. This yields a total base-address size of 52 bits. System
software running on processor implementations supporting less
than the full 52-bit physical-address space must clear the
unimplemented upper base-address bits to 0.

Page-Level Writethrough (PWT) Bit. Bit 3. Page-level writethrough
indicates whether the highest-level page-translation table has a
writeback or writethrough caching policy. When PWT=0, the

63 52 51 32

reserved Page-Map Level-4 Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 5 4 3 2 0

Page-Map Level-4 Table Base Address reserved
P
C
D

P
W
T

reserved

160 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

table has a writeback caching policy. When PWT=1, the table
has a writethrough caching policy.

Page-Level Cache Disable (PCD) Bit. Bit 4. Page-level cache disable
indicates whether the highest-level page-translation table is
cacheable. When PCD=0, the table is cacheable. When PCD=1,
the table is not cacheable.

Reserved Bits. Reserved fields should be cleared to 0 by software
when writing CR3.

5.3.3 4-Kbyte Page
Translation

In long mode, 4-Kbyte physical-page translation is performed
by dividing the 48-bit virtual address into six fields. Each field
is used as an index into the four-level page-translation
hierarchy. The virtual-address fields are described as follows,
and are shown in Figure 5-17 on page 161:

� Bits 63–48 are a sign extension of bit 47, as required for
canonical-address forms.

� Bits 47–39 index into the 512-entry page-map level-4 table.

� Bits 38–30 index into the 512-entry page-directory pointer
table.

� Bits 29–21 index into the 512-entry page-directory table.

� Bits 20–12 index into the 512-entry page table.

� Bits 11–0 provide the byte offset into the physical page.

Note: The sizes of the sign extension and the PML4 fields
depend on the number of virtual address bits supported
by the implementation.

Chapter 5: Page Translation and Protection 161

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 5-17. 4-Kbyte Page Translation—Long Mode

Figures 5-18 through 5-20 on page 162 and Figure 5-21 on
page 163 show the long-mode 4-Kbyte translation-table formats:

� Figure 5-18 shows the PML4E (page-map level-4 entry)
format.

� Figure 5-19 shows the PDPE (page-directory-pointer entry)
format.

� Figure 5-20 shows the PDE (page-directory entry) format.

� Figure 5-21 shows the PTE (page-table entry) format.

The fields within these table entries are described in “Page-
Translation-Table Entry Fields” on page 166.

Figure 5-20 shows the PDE.PS bit (bit 7) cleared to 0, indicating
a 4-Kbyte physical-page translation.

Virtual Address

Sign Extend
Page-Map

Level-4 Offset
(PML4)

Page-Directory-
Pointer Offset

Page-Directory
Offset

Page-Table
Offset

01112202129303839474863

Physical
Address

PTE

PDE

PDPE

PML4E

9999

52*

52*

52*

52*

1251

CR3

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

Page-
Directory

Table
Page
Table

4 Kbyte
Physical

Page

Physical-
Page Offset

Page-Map Level-4 Base Address

12

*This is an architectural limit. A given processor
implementation may support fewer bits.

162 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 5-18. 4-Kbyte PML4E—Long Mode

Figure 5-19. 4-Kbyte PDPE—Long Mode

Figure 5-20. 4-Kbyte PDE—Long Mode

63 62 52 51 32

N
X

Available
Page-Directory-Pointer Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL IGN A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory Base Address AVL IGN A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Page-Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address AVL
I
G
N

0
I
G
N

A
P
C
D

P
W
T

U
/
S

R
/

W
P

Chapter 5: Page Translation and Protection 163

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 5-21. 4-Kbyte PTE—Long Mode

5.3.4 2-Mbyte Page
Translation

In long mode, 2-Mbyte physical-page translation is performed
by dividing the 48-bit virtual address into four fields. Each field
is used as an index into a three-level page-translation hierarchy.
The virtual-address fields are described as follows, and are
shown in Figure 5-22 on page 164:

� Bits 47–39 index into the 512-entry page-map level-4 table.

Bits 63–48 are a sign extension of bit 47 as required for
canonical address forms.

� Bits 38–30 index into the 512-entry page-directory-pointer
table.

� Bits 29–21 index into the 512-entry page-directory table.

� Bits 20–0 provide the byte offset into the physical page.

63 62 52 51 32

N
X

Available
Physical-Page Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Physical-Page Base Address AVL G
P
A
T

D A
P
C
D

P
W
T

U
/
S

R
/

W
P

164 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 5-22. 2-Mbyte Page Translation—Long Mode

Figures 5-23 through 5-25 on page 165 show the long-mode
2-Mbyte translation-table formats (the formats are identical to
those used for 4-Kbyte page translations and are repeated here
for clarity):

� Figure 5-23 shows the PML4E (page-map level-4 entry)
format.

� Figure 5-24 shows the PDPE (page-directory-pointer entry)
format.

� Figure 5-25 shows the PDE (page-directory entry) format.

The fields within these table entries are described in “Page-
Translation-Table Entry Fields” on page 166. PTEs are not used
in 2-Mbyte page translations.

Figure 5-25 shows the PDE.PS bit (bit 7) set to 1, indicating a
2-Mbyte physical-page translation.

Virtual Address

Page OffsetSign Extend
Page-Map

Level-4 Table Offset
(PML4)

Page-Directory-
Pointer Offset

Page-Directory
Offset

0202129303839474863

Physical
Address

PDE

PDPE

PML4E

999

52*

52*

52*

Page-Map
Level-4
Table

Page-
Directory-

Pointer
Table

Page-
Directory

Table

2 Mbyte
Physical

Page

CR3Page-Map Level-4 Base Address

1251
*This is an archtectural limit. A given processor

implementation may support fewer bits.

21

Chapter 5: Page Translation and Protection 165

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 5-23. 2-Mbyte PML4E—Long Mode

Figure 5-24. 2-Mbyte PDPE—Long Mode

Figure 5-25. 2-Mbyte PDE—Long Mode

63 62 52 51 32

N
X

Available
Page-Directory-Pointer Base Address

(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory-Pointer Base Address AVL IGN A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 62 52 51 32

N
X

Available Page-Directory Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 12 11 9 8 7 6 5 4 3 2 1 0

Page-Directory Base Address AVL IGN A
P
C
D

P
W
T

U
/
S

R
/

W
P

63 52 51 32

Available Page-Table Base Address
(This is an architectural limit. A given implementation may support fewer bits.)

31 21 20 13 12 11 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address Reserved, MBZ
P
A
T

AVL G 1 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

166 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

5.4 Page-Translation-Table Entry Fields

The page-translation-table entries contain control and
informational fields used in the management of the virtual-
memory environment. Most fields are common across all
translation table entries and modes and occupy the same bit
locations. However, some fields are located in different bit
positions depending on the page translation hierarchical level,
and other fields have different sizes depending on which
physical-page size, physical-address size, and operating mode
are selected. Although these fields can differ in bit position or
size, their meaning is consistent across all levels of the page
translation hierarchy and in all operating modes.

5.4.1 Field Definitions The following sections describe each field within the page-
translation table entries.

Translation-Table Base Address Field. The translation-table base-
address field points to the physical base address of the next-
lower-level table in the page-translation hierarchy. Page data-
structure tables are always aligned on 4-Kbyte boundaries, so
only the address bits above bit 11 are stored in the translation-
table base-address field. Bits 11–0 are assumed to be 0. The size
of the field depends on the mode:

� In normal (non-PAE) paging (CR4.PAE=0), this field
specifies a 32-bit physical address.

� In PAE paging (CR4.PAE=1), this field specifies a 52-bit
physical address.

52 bits correspond to the maximum physical-address size
al lowed by the x86 -64 architecture . I f a processor
implementation supports fewer than the full 52-bit physical
address, software must clear the unimplemented high-order
translation-table base-address bits to 0. For example, if a
processor implementation supports a 40-bit physical-address
size, software must clear bits 51–40 when writing a translation-
table base-address field in a page data-structure entry.

Physical-Page Base Address Field. The physical-page base-address
field points to the base address of the translated physical page.
This field is found only in the lowest level of the page-
translation hierarchy. The size of the field depends on the
mode:

Chapter 5: Page Translation and Protection 167

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� In normal (non-PAE) paging (CR4.PAE=0), this field
specifies a 32-bit base address for a physical page.

� In PAE paging (CR4.PAE=1), this field specifies a 52-bit base
address for a physical page.

Physical pages can be 4 Kbytes, 2 Mbytes, or 4 Mbytes, and they
are always aligned on an address boundary corresponding to the
physical-page length. For example, a 2-Mbyte physical page is
always aligned on a 2-Mbyte address boundary. Because of this
alignment, the low-order address bits are assumed to be 0, as
follows:

� 4-Kbyte pages, bits 11–0 are assumed 0.

� 2-Mbyte pages, bits 20–0 are assumed 0.

� 4-Mbyte pages, bits 21–0 are assumed 0.

Present (P) Bit. Bit 0. This bit indicates whether the page-
translation table or physical page is loaded in physical memory.
When the P bit is cleared to 0, the table or physical page is not
loaded in physical memory. When the P bit is set to 1, the table
or physical page is loaded in physical memory.

Software clears this bit to 0 to indicate a page table or physical
page is not loaded in physical memory. A page-fault exception
(#PF) occurs if an attempt is made to access a table or page
when the P bit is 0. System software is responsible for loading
the missing table or page into memory and setting the P bit to 1.

When the P bit is 0, indicating a not-present page, all remaining
bits in the page data-structure entry are available to software.

Read/Write (R/W) Bit. Bit 1. This bit controls read/write access to
all physical pages mapped by the table entry. For example, a
page-map level-4 R/W bit controls read/write access to all 128M
(512 × 512 × 512) physical pages it maps through the lower-level
translation tables. When the R/W bit is cleared to 0, access is
restricted to read-only. When the R/W bit is set to 1, both read
and write access is allowed. See “Page-Protection Checks” on
page 172 for a description of the paging read/write protection
mechanism.

User/Supervisor (U/S) Bit. Bit 2. This bit controls user (CPL 3)
access to all physical pages mapped by the table entry. For
example, a page-map level-4 U/S bit controls the access allowed
to all 128M (512 × 512 × 512) physical pages it maps through the

168 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

lower-level translation tables. When the U/S bit is cleared to 0,
access is restricted to supervisor level (CPL 0, 1, 2). When the
U/S bit is set to 1, both user and supervisor access is allowed.
See “Page-Protection Checks” on page 172 for a description of
the paging user/supervisor protection mechanism.

Page-Level Writethrough (PWT) Bit. Bit 3. This bit indicates whether
the page-translation table or physical page to which this entry
points has a writeback or writethrough caching policy. When
the PWT bit is cleared to 0, the table or physical page has a
writeback caching policy. When the PWT bit is set to 1, the table
or physical page has a writethrough caching policy. See
“Memory Caches” on page 206 for additional information on
caching.

Page-Level Cache Disable (PCD) Bit. Bit 4. This bit indicates whether
the page-translation table or physical page to which this entry
points is cacheable. When the PCD bit is cleared to 0, the table
or physical page is cacheable. When the PCD bit is set to 1, the
table or physical page is not cacheable. See “Memory Caches”
on page 206 for additional information on caching.

Accessed (A) Bit. Bit 5. This bit indicates whether the page-
translation table or physical page to which this entry points has
been accessed. The A bit is set to 1 by the processor the first
time the table or physical page is either read from or written to.
The A bit is never cleared by the processor. Instead, software
must clear this bit to 0 when it needs to track the frequency of
table or physical-page accesses.

Dirty (D) Bit. Bit 6. This bit is only present in the lowest level of
the page-translation hierarchy. It indicates whether the page-
translation table or physical page to which this entry points has
been written. The D bit is set to 1 by the processor the first time
the physical page is written to. The D bit is never cleared by the
processor. Instead, software must clear this bit to 0 when it
needs to track the frequency of physical-page writes.

Page Size (PS) Bit. Bit 7. This bit is only present in page-directory
entries. It specifies the lowest level of the page-translation
hierarchy and the physical-page size. When the PS bit is cleared
to 0, the lowest level of the page-translation hierarchy is the
page-table entry (PTE), and the physical-page size is 4 Kbytes.
When the PS bit is set to 1, the lowest level of the page-

Chapter 5: Page Translation and Protection 169

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

translation hierarchy is the page-directory entry (PDE)s. The
physical-page size is determined as follows:

� If CR4.PAE=0 and CR4.PSE=1, the physical-page size is
4 Mbytes.

� If CR4.PAE=1, the physical-page size is 2 Mbytes.

See Table 5-1 on page 146 for a description of the relationship
between the PS bit, PAE, physical-page sizes, and page-
translation hierarchy.

Global Page (G) Bit. Bit 8. This bit is only present in the lowest
level of the page-translation hierarchy. It indicates the physical
page is a global page. The TLB entry for a global page (G=1) is
not invalidated when CR3 is loaded either explicitly by a MOV
CRn instruction or implicitly during a task switch. Use of the G
bit requires the page-global enable bit in CR4 to be set to 1
(CR4.PGE=1). See “Global Pages” on page 171 for more
information on the global-page mechanism.

Available to Software (AVL) Bit. These bits are not interpreted by
the processor and are available for use by system software.

Page-Attribute Table (PAT) Bit. This bit is only present in the lowest
level of the page-translation hierarchy, as follows:

� If the lowest level is a PTE (PDE.PS=0), PAT occupies bit 7.

� If the lowest level is a PDE (PDE.PS=1), PAT occupies bit 12.

The PAT bit is the high-order bit of a 3-bit index into the PAT
register (Figure 7-10 on page 228). The other two bits involved
in forming the index are the PCD and PWT bits. Not all
processors support the PAT bit by implementing the PAT
registers. See “Page-Attribute Table Mechanism” on page 228
for a description of the PAT mechanism and how it is used.

No Execute (NX) Bit. Bit 63. This bit is present in the translation-
table entries defined for PAE paging, with the exception that
the legacy-mode PDPE does not contain this bit. This bit is not
supported by non-PAE paging.

The NX bit can only be set when the no-execute page-protection
feature is enabled by setting EFER.NXE to 1 (see “Extended
Feature Enable Register (EFER)” on page 67) . I f
EFER.NXE=0, the NX bit is treated as reserved. In this case, a

170 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

page-fault exception (#PF) occurs if the NX bit is not cleared to
0.

This bit controls the ability to execute code from all physical
pages mapped by the table entry. For example, a page-map
level-4 NX bit controls the ability to execute code from all 128M
(512 × 512 × 512) physical pages it maps through the lower-level
translation tables. When the NX bit is cleared to 0, code can be
executed from the mapped physical pages. When the NX bit is
set to 1, code cannot be executed from the mapped physical
pages. See “No Execute (NX) Bit” on page 173 for a description
of the no-execute page-protection mechanism.

Reserved Bits. Software should clear all reserved bits to 0. If the
processor is in long mode, or if page-size and physical-address
extensions are enabled in legacy mode, a page-fault exception
(#PF) occurs if reserved bits are not cleared to 0.

5.5 Translation-Lookaside Buffer (TLB)

When paging is enabled, every memory access has its virtual
address automatically translated into a physical address using
the page-translation hierarchy. Translation-lookaside buffers
(TLBs), also known as page-translation caches, nearly eliminate
the performance penalty associated with page translation.
TLBs are special on-chip caches that hold the most-recently
used virtual-to-physical address translations. Each memory
reference (instruction and data) is checked by the TLB. If the
translation is present in the TLB, it is immediately provided to
the processor, thus avoiding external memory references for
accessing page tables.

TLBs take advantage of the principle of locality. That is, if a
memory address is referenced, it is likely that nearby memory
addresses will be referenced in the near future. In the context
of paging, the proximity of memory addresses required for
locality can be broad—it is equal to the page size. Thus, it is
possible for a large number of addresses to be translated by a
small number of page translations. This high degree of locality
means that almost all translations are performed using the on-
chip TLBs.

System software is responsible for managing the TLBs when
updates are made to the linear-to-physical mapping of
addresses. A change to any paging data-structure entry is not

Chapter 5: Page Translation and Protection 171

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

automatically reflected in the TLB, and hardware snooping of
TLBs during memory-reference cycles is not performed.
Software must invalidate the TLB entry of a modified
translation-table entry so that the change is reflected in
subsequent address translations. TLB invalidation is described
in “TLB Management” on page 171. Only privileged software
running at CPL=0 can manage the TLBs.

5.5.1 Global Pages The processor invalidates the TLB whenever CR3 is loaded
either explicitly or implicitly. After the TLB is invalidated,
subsequent address references can consume many clock cycles
until their translations are cached as new entries in the TLB.
Invalidation of TLB entries for frequently-used or critical pages
can be avoided by specifying the translations for those pages as
global. TLB entries for global pages are not invalidated as a
result of a CR3 load. Global pages are invalidated using the
INVLPG instruction.

Global-page extensions are controlled by setting and clearing
the PGE bit in CR4 (bit 7). When CR4.PGE is set to 1, global-
page extensions are enabled. When CR4.PGE is cleared to 0,
global-page extensions are disabled. When CR4.PGE=1, setting
the global (G) bit in the translation-table entry marks the page
as global.

The INVLPG instruction ignores the G bit and can be used to
invalidate individual global-page entries in the TLB. To
invalidate all entries, including global-page entries, disable
page-global extensions (CR4.PGE=0).

5.5.2 TLB
Management

Generally, unless system software modifies the linear-to-
physical address mapping, the processor manages the TLB
transparently to software. This includes allocating entries and
replacing old entries with new entries. Software changes made
to paging-data structures are not automatically reflected in the
TLB. In these situations, it is necessary for software to
invalidate TLB entries so that these changes are immediately
propagated to the page-translation mechanism.

TLB entries can be explicitly invalidated using operations
intended for that purpose or implicitly invalidated as a result of
another operation. TLB invalidation has no effect on the
associated page-translation tables in memory.

172 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Explicit Invalidations. Two mechanisms are provided to explicitly
invalidate the TLB:

� The invalidate TLB entry instruction (INVLPG) can be used
to invalidate specific entries within the TLB. This
instruction invalidates a page, regardless of whether it is
marked as global or not.

� Updates to the CR3 register cause the entire TLB to be
invalidated except for global pages. The CR3 register can be
updated with the MOV CR3 instruction. CR3 is also updated
during a task switch, with the updated CR3 value read from
the TSS of the new task.

Implicit Invalidations. The following operations cause the entire
TLB to be invalidated, including global pages:

� Modifying the CR0.PG bit (page enable) or the CR0.PE bit
(protected-mode enable).

� Modifying the CR4.PAE bit (physical-address extensions),
the CR4.PSE bit (page-size extensions), or the CR4.PGE bit
(page-global enable).

� Entering SMM as a result of an SMI interrupt.

� Executing the RSM instruction to return from SMM.

� Updating a memory-type range register (MTRR) with the
WRMSR instruction.

� External initialization of the processor.

� External masking of the A20 address bit (asserting the
A20M# input signal).

5.6 Page-Protection Checks

Two forms of page-level memory protection are provided by the
legacy architecture. The first form of protection prevents non-
privileged (user) code and data from accessing privileged
(supervisor) code and data. The second form of protection
prevents writes into read-only address spaces. The x86-64
architecture introduces a third form of protection that prevents
software from attempting to execute data pages as instructions.
All of these forms of protection are available at all levels of the
page-translation hierarchy.

The processor checks a page for execute permission only when
the page translation is loaded into the instruction TLB as a

Chapter 5: Page Translation and Protection 173

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

result of a page-table walk. The remaining protection checks
are performed when a virtual address is translated into a
physical address. For those checks, the processor examines the
page-level memory-protection bits in the translation tables to
determine if the access is allowed. The bits involved in these
checks are:

� User/Supervisor (U/S)—The U/S bit is introduced in
“User/Supervisor (U/S) Bit” on page 167.

� Read/Write (R/W)—The R/W bit is introduced in
“Read/Write (R/W) Bit” on page 167.

� Write-Protect Enable (CR0.WP)—The CR0.WP bit is
introduced in “Write Protect (WP) Bit” on page 55.

5.6.1 No Execute (NX)
Bit

The NX bit in the page-translation tables specifies whether
instructions can be executed from the page. This bit is not
checked during every instruction fetch. Instead, the NX bits in
the page-translation-table entries are checked by the processor
when the instruction TLB is loaded with a page translation. The
processor attempts to load the translation into the instruction
TLB when an instruction fetch misses the TLB. If a set NX bit is
detected (indicating the page is not executable), a page-fault
exception (#PF) occurs.

The no-execute protection check applies to all privilege levels.
It does not distinguish between supervisor and user-level
accesses.

The no-execute protection feature is supported only in PAE-
paging mode. It is enabled by setting the NXE bit in the EFER
register to 1 (see “Extended Feature Enable Register (EFER)”
on page 67). Before setting this bit, system software must verify
the processor supports the NX feature by checking the CPUID
extended-feature flags (see “Function 8000_0001h: Processor
Signature and AMD Features” in Volume 3).

5.6.2 User/Supervisor
(U/S) Bit

The U/S bit in the page-translation tables determines the
privilege level required to access the page. Conceptually, user
(non-privileged) pages correspond to a current privilege-level
(CPL) of 3, or least-privileged. Supervisor (privileged) pages
correspond to a CPL of 0, 1, or 2, all of which are jointly
regarded as most-privileged.

When the processor is running at a CPL of 0, 1, or 2, it can
access both user and supervisor pages. However, when the

174 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

processor is running at a CPL of 3, it can only access user pages.
If an attempt is made to access a supervisor page while the
processor is running at CPL=3, a page-fault exception (#PF)
occurs.

See “Segment-Protection Overview” on page 116 for more
information on the protection-ring concept and CPL.

5.6.3 Read/Write
(R/W) Bit

The R/W bit in the page-translation tables specifies the access
type allowed for the page. If R/W=1, the page is read/write. If
R/W=0, the page is read-only. A page-fault exception (#PF)
occurs if an attempt is made by user software to write to a read-
only page. If supervisor software attempts to write a read-only
page, the outcome depends on the value of the CR0.WP bit
(described below).

5.6.4 Write Protect
(CR0.WP) Bit

The ability to write to read-only pages is governed by the
processor mode and whether write protection is enabled. If
write protection is not enabled, a processor running at CPL 0, 1,
or 2 can write to any physical page, even if it is marked as read-
only. Enabling write protection prevents supervisor code from
writing into read-only pages, including read-only user-level
pages.

A page-fault exception (#PF) occurs if software attempts to
write (at any privilege level) into a read-only page while write
protection is enabled.

5.7 Protection Across Paging Hierarchy

The privilege level and access type specified at each level of the
page-translation hierarchy have a combined effect on the
protection of the translated physical page. Enabling and
disabling write protection further qualifies the protection
effect on the physical page.

Table 5-2 on page 175 shows the overall effect that privilege
level and access type have on physical-page protection when
write protection is disabled (CR0.WP=0). In this case, when any
translation-table entry is specified as supervisor level, the
physical page is a supervisor page and can only be accessed by
software running at CPL 0, 1, or 2. Such a page allows
read/write access even if all levels of the page-translation
hierarchy specify read-only access.

Chapter 5: Page Translation and Protection 175

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

If all table entries in the translation hierarchy are specified as
user level the physical page is a user page, and both supervisor
and user software can access it. In this case the physical page is
read-only if any table entry in the translation hierarchy
specifies read-only access. All table entries in the translation
hierarchy must specify read/write access for the physical page
to be read/write.

Table 5-3 on page 176 shows the overall effect that privilege
level and access type have on physical-page access when write
protection is enabled (CR0.WP=1). When any translation-table
entry is specified as supervisor level, the physical page is a
supervisor page and can only be accessed by supervisor
software. In this case, the physical page is read-only if any table
entry in the translation hierarchy specifies read-only access. All
table entries in the translation hierarchy must specify
read/write access for the supervisor page to be read/write.

Table 5-2. Physical-Page Protection, CR0.WP=0

Page-Map Level-4
Entry

Page-Directory-
Pointer Entry

Page-Directory
Entry Page-Table Entry Effective Result on

Physical Page

U/S R/W U/S R/W U/S R/W U/S R/W U/S R/W

S — — — — — — —

S R/W
— — S — — — — —

— — — — S — — —

— — — — — — S —

U R U — U — U —

U R1
U — U R U — U —

U — U — U R U —

U — U — U — U R

U R/W U R/W U R/W U R/W U R/W

Note:
S = Supervisor Level (CPL=0, 1, or 2), U = User Level (CPL = 3), R = Read-Only Access, R/W = Read/Write Access, — = Don’t Care.

Note:
1. Supervisor-level programs can access these pages as R/W.

176 Chapter 5: Page Translation and Protection

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

5.7.1 Access to User
Pages when
CR0.WP=1

As shown in Table 5-2 on page 175, read/write access to user-
level pages behaves the same as when write protection is
disabled (CR0.WP=0), with one critical difference. When write
protection is enabled, supervisor programs cannot write into
read-only user pages.

5.8 Effects of Segment Protection

Segment-protection and page-protection checks are performed
serially by the processor, with segment-privilege checks
performed first, followed by page-protection checks. Page-
protection checks are not performed if a segment-protection
violation is found. If a violation is found during either segment-
protection or page-protection checking, an exception occurs
and no memory access is performed. Segment-protection
violations cause either a general-protection exception (#GP) or
a stack exception (#SS) to occur. Page-protection violations
cause a page-fault exception (#PF) to occur.

Table 5-3. Effect of CR0.WP=1 on Supervisor Page Access

Page-Map
Level-4
Entry

Page
Directory-

Pointer
Entry

Page
Directory

Entry

Page Table
Entry Physical Page

R/W R/W R/W R/W R/W

R — — —

R
— R — —

— — R —

— — — R

W W W W W

Note:
R = Read-Only Access Type, W = Read/Write Access Type, — = Don’t Care.
Physical page is in supervisor mode, as determined by U/S settings in Table 5-2.

Chapter 6: System-Management Instructions 177

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

6 System-Management Instructions

System-management instructions provide control over the
resources used to manage the processor operating environment.
This includes memory management, memory protection, task
management, interrupt and exception handling, system-
management mode, software debug and performance analysis,
and model-specific features. Most instructions used to access
these resources are privileged and can only be executed while
the processor is running at CPL=0, although some instructions
can be executed at any privilege level.

Table 6-1 summarizes the instructions used for system
management. These include all privileged instructions,
instructions whose privilege requirement is under the control
of system software, non-privileged instructions that are used
primarily by system software, and instructions used to transfer
control to system software. Most of the instructions listed in
Table 6-1 are summarized in this chapter, although a few are
introduced elsewhere in this manual, as indicated in the
Reference column of Table 6-1.

For details on individual system instructions, see “System
Instruction Reference” in Volume 3.

Table 6-1. System-Management Instructions

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

ARPL Adjust Requestor Privilege Level X “Adjusting Access Rights” on
page 188

CLI Clear Interrupt Flag X “CLI and STI Instructions” on
page 185

CLTS Clear Task-Switched Flag in CR0 X “CLTS Instruction” on page 185

HLT Halt X “Processor Halt” on page 188

INT3 Interrupt to Debug Vector X “Breakpoint Instruction (INT3)” on
page 399

INVD Invalidate Caches X “Cache Management” on page 189

INVLPG Invalidate TLB Entry X “TLB Invalidation” on page 189

IRETx Interrupt Return (all forms) X “Returning From Interrupt
Procedures” on page 281

Note:
1. The operating system controls the privilege required to use the instruction.

178 Chapter 6: System-Management Instructions

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

LAR Load Access-Rights Byte X “Checking Access Rights” on
page 187

LGDT Load Global-Descriptor-Table Register X
“LGDT and LIDT Instructions” on
page 187LIDT Load Interrupt-Descriptor-Table

Register X

LLDT Load Local-Descriptor-Table Register X “LLDT and LTR Instructions” on
page 187

LMSW Load Machine-Status Word X “LMSW and SMSW Instructions” on
page 184

LSL Load Segment Limit X “Checking Segment Limits” on
page 188

LTR Load Task Register X “LLDT and LTR Instructions” on
page 187

MOV CRn Move to/from Control Registers X “MOV CRn Instructions” on page 184

MOV DRn Move to/from Debug Registers X “Accessing Debug Registers” on
page 185

RDMSR Read Model-Specific Register X “RDMSR and WRMSR Instructions”
on page 186

RDPMC Read Performance-Monitor Counter X “RDPMC Instruction” on page 186

RDTSC Read Time-Stamp Counter X “RDTSC Instruction” on page 186

RSM Return from System-Management
Mode X “Leaving SMM” on page 335

SGDT Store Global-Descriptor-Table Register X
“SGDT and SIDT Instructions” on
page 187SIDT Store Interrupt-Descriptor-Table

Register X

SLDT Store Local-Descriptor-Table Register X “SLDT and STR Instructions” on
page 187

SMSW Store Machine-Status Word X “LMSW and SMSW Instructions” on
page 184

STI Set Interrupt Flag X “CLI and STI Instructions” on
page 185

STR Store Task Register X “SLDT and STR Instructions” on
page 187

SWAPGS Swap GS and KernelGSbase Registers X “SWAPGS Instruction” on page 183

SYSCALL Fast System Call X “SYSCALL and SYSRET” on page 180

Table 6-1. System-Management Instructions (continued)

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

Note:
1. The operating system controls the privilege required to use the instruction.

Chapter 6: System-Management Instructions 179

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

The following instructions are summarized in this chapter but
are not categorized as system instructions, because of their
importance to application programming:

� The CPUID instruction returns information critical to
system software in initializing the operating environment. It
is fully described in “Processor Feature Identification” on
page 75.

� The PUSHF and POPF instructions set and clear certain
RFLAGS bits depending on the processor operating mode
and privilege level. These dependencies are described in
“POPF and PUSHF Instructions” on page 185.

� The MOV, PUSH, and POP instructions can be used to load
and store segment registers, as described in “MOV, POP, and
PUSH Instructions” on page 186.

6.1 Fast System Call and Return

Operating systems can use both paging and segmentation to
implement protected memory models. Segment descriptors
provide the necessary memory protection and privilege
checking for segment accesses. By setting segment-descriptor
fields appropriately, operating systems can enforce access
restrictions as needed.

SYSENTER System Call X “SYSENTER and SYSEXIT (Legacy
Mode Only)” on page 182SYSEXIT System Return X

SYSRET Fast System Return X “SYSCALL and SYSRET” on page 180

UD2 Undefined Operation X “System Instruction Reference” in
Volume 3

VERR Verify Segment for Reads X “Checking Read/Write Rights” on
page 188VERW Verify Segment for Writes X

WBINVD Writeback and Invalidate Caches X “Cache Management” on page 189

WRMSR Write Model-Specific Register X “RDMSR and WRMSR Instructions”
on page 186

Table 6-1. System-Management Instructions (continued)

Mnemonic Name
Privilege

Reference
CPL=0 O/S1 Any

Note:
1. The operating system controls the privilege required to use the instruction.

180 Chapter 6: System-Management Instructions

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

A disadvantage of segment-based protection and privilege
checking is the overhead associated with loading a new
segment selector (and its corresponding descriptor) into a
segment register. Even when using the flat-memory model, this
overhead still occurs when switching between privilege levels
because code segments (CS) and stack segments (SS) are
reloaded with different segment descriptors.

To initiate a call to the operating system, an application
transfers control to the operating system through a gate
descriptor (call, interrupt, trap, or task gate). In the past,
control was transferred using either a far CALL instruction or a
software interrupt. Transferring control through one of these
gates is slowed by the segmentation-related overhead, as is the
later return using a far RET or IRET instruction. The following
checks are performed when control is transferred in this
manner:

� Selectors, gate descriptors, and segment descriptors are in
the proper form.

� Descriptors lie within the bounds of the descriptor tables.

� Gate descriptors reference the appropriate segment
descriptors.

� The caller, gate, and target privileges all allow the control
transfer to take place.

� The stack created by the call has sufficient properties to
allow the transfer to take place.

In addition to these call-gate checks, other checks are made
involving the task-state segment when a task switch occurs.

6.1.1 SYSCALL and
SYSRET

SYSCALL and SYSRET Instructions. SYSCALL and SYSRET are low-
latency system call and return instructions. These instructions
assume the operating system implements a flat-memory model,
which greatly simplifies calls to and returns from the operating
system. This simplification comes from eliminating unneeded
checks, and by loading pre-determined values into the CS and
SS segment registers (both visible and hidden portions). As a
result, SYSCALL and SYSRET can take fewer than one-fourth
the number of internal clock cycles to complete than the legacy
CALL and RET instructions. SYSCALL and SYSRET are
particularly well-suited for use in 64-bit mode, which requires
implementation of a paged, flat-memory model.

Chapter 6: System-Management Instructions 181

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

SYSCALL and SYSRET require that the code-segment base,
limit, and attributes (except for CPL) are consistent for all
application and system processes. Only the CPL is allowed to
vary. The processor assumes (but does not check) that the
SYSCALL target CS has CPL=0 and the SYSRET target CS has
CPL=3.

For details on the SYSCALL and SYSRET instructions, see
“System Instruction Reference” in Volume 3.

SYSCALL and SYSRET MSRs. The STAR, LSTAR, and CSTAR
registers are model-specific registers (MSRs) used to specify
the target address of a SYSCALL instruction as well as the CS
and SS selectors of the called and returned procedures. The
SFMASK register is used in long mode to specify how rFLAGS
is handled by these instructions. Figure 6-1 shows the STAR,
LSTAR, CSTAR, and SFMASK register formats.

Figure 6-1. STAR, LSTAR, CSTAR, and MASK MSRs

� STAR—The STAR register has the following fields (unless
otherwise noted, all bits are read/write):

- SYSRET CS and SS Selectors—Bits 63–48. This field is used
to specify both the CS and SS selectors loaded into CS
and SS during SYSRET. If SYSRET is returning to 32-bit
mode (either legacy or compatibility), this field is copied
directly into the CS selector field. If SYSRET is returning
to 64-bit mode, the CS selector is set to this field + 16.
SS.Sel is set to this field + 8, regardless of the target

63 48 47 32 31 0

STAR C000_0081h SYSRET CS and SS SYSCALL CS and SS 32-bit SYSCALL Target EIP

LSTAR C000_0082h Target RIP for 64-Bit-Mode Calling Software

CSTAR C000_0083h Target RIP for Compatibility-Mode Calling Software

SFMASK C000_0084h reserved, RAZ SYSCALL Flag Mask

182 Chapter 6: System-Management Instructions

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

mode. Because SYSRET always returns to CPL 3, the
RPL bits 49–48 should be initialized to 11b.

- SYSCALL CS and SS Selectors—Bits 47–32. This field is
used to specify both the CS and SS selectors loaded into
CS and SS during SYSCALL. This field is copied directly
into CS.Sel. SS.Sel is set to this field + 8. Because
SYSCALL always switches to CPL 0, the RPL bits 33–32
should be initialized to 00b.

- 32-bit SYSCALL Target EIP—Bits 31–0. This is the target
EIP of the called procedure.

The legacy STAR register is not expanded in long mode to
provide a 64-bit target RIP address. Instead, long mode
provides two new STAR registers—long STAR (LSTAR) and
compatibility STAR (CSTAR)—that hold a 64-bit target RIP.

� LSTAR and CSTAR—The LSTAR register holds the target
RIP of the called procedure in long mode when the calling
software is in 64-bit mode. The CSTAR register holds the
target RIP of the called procedure in long mode when the
calling software is in compatibility mode. The WRMSR
instruction is used to load the target RIP into the LSTAR
and CSTAR registers. If the RIP written to either of the
MSRs is not in canonical form, a #GP fault is generated on
the WRMSR instruction.

� SFMASK—The SFMASK register is used to specify which
RFLAGS bits are cleared during a SYSCALL. In long mode,
SFMASK is used to specify which RFLAGS bits are cleared
when SYSCALL is executed. If a bit in SFMASK is set to 1,
the corresponding bit in RFLAGS is cleared to 0. If a bit in
SFMASK is cleared to 0, the corresponding rFLAGS bit is
not modified.

6.1.2 SYSENTER and
SYSEXIT (Legacy
Mode Only)

SYSENTER and SYSEXIT Instructions. Like SYSCALL and SYSRET,
SYSENTER and SYSEXIT are low-latency system call and
return instructions designed for use by system and application
software implementing a flat-memory model. However, these
instructions are illegal in long mode and result in an undefined
opcode exception (#UD) if software attempts to use them. Software
should use the SYSCALL and SYSRET instructions when
running in long mode.

SYSENTER and SYSEXIT MSRs. Three model-specif ic registers
(MSRs) are used to specify the target address and stack
pointers for the SYSENTER instruction as well as the CS and

Chapter 6: System-Management Instructions 183

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

SS selectors of the called and returned procedures. The register
fields are:

� SYSENTER Target CS—Holds the CS selector of the called
procedure.

� SYSENTER Target ESP—Holds the called-procedure stack
pointer. The SS selector is updated automatically to point to
the next descriptor entry after the SYSENTER Target CS,
and ESP is the offset into that stack segment.

� SYSENTER Target EIP—Holds the offset into the CS of the
called procedure.

Figure 6-2 shows the register formats and their corresponding
MSR IDs.

Figure 6-2. SYSENTER_CS, SYSENTER_ESP, SYSENTER_EIP MSRs

6.1.3 SWAPGS
Instruction

The SWAPGS instruction provides a fast method for system
software to load a pointer to system data structures. SWAPGS
can be used upon entering system-software routines as a result
of a SYSCALL instruction or as a result of an interrupt or
exception. Before returning to application software, SWAPGS
can restore an application data-structure pointer that was
replaced by the system data-structure pointer.

SWAPGS exchanges the base-address value located in the
KernelGSbase model-specific register (MSR address
C000_0102h) with the base-address value located in the hidden
portion of the GS selector register (GS.base). This exchange
allows the system-kernel software to quickly access kernel data
structures by using the GS segment-override prefix during
memory references.

63 32 31 16 15 0

SYSENTER_CS 174h SYSENTER Target CS

SYSENTER_ESP 175h SYSENTER Target ESP

SYSENTER_EIP 176h SYSENTER Target EIP

184 Chapter 6: System-Management Instructions

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

The need for SwapGS arises from the requirement that, upon
entry to the OS kernel, the kernel needs to obtain a 64-bit
pointer to its essential data structures. When using SYSCALL
to implement system calls, no kernel stack exists at the OS
entry point. Neither is there a straightforward method to obtain
a pointer to kernel structures, from which the kernel stack
pointer could be read. Thus, the kernel cannot save GPRs or
reference memory. SwapGS does not require any GPR or
memory operands, so no registers need to be saved before using
it. Similarly, when the OS kernel is entered via an interrupt or
exception (where the kernel stack is already set up), SwapGS
can be used to quickly get a pointer to the kernel data
structures.

See “FS and GS Registers in 64-Bit Mode” on page 86 for more
information on using the GS.base register in 64-bit mode.

6.2 System Status and Control

System-status and system-control instructions are used to
determine the features supported by a processor, gather
information about the current execution state, and control the
processor operating modes.

6.2.1 Processor
Feature Identification
(CPUID)

CPUID Instruction. The CPUID instruction provides complete
information about the processor implementation and its
capabilities. Software operating at any privilege level can
execute the CPUID instruction to collect this information.
System software normally uses the CPUID instruction to
determine which optional features are available so the system
can be configured appropriately. The optional features
identified by the CPUID instruction are described in “CPUID”
in Volume 3.

6.2.2 Accessing
Control Registers

MOV CRn Instructions. The MOV CRn instructions can be used to
copy data between the control registers and the general-
purpose registers. These instructions are privileged and cause a
general-protection exception (#GP) if non-privileged software
attempts to execute them.

LMSW and SMSW Instructions. The machine status word is located
in CR0 register bits 15–0. The load machine status word (LMSW)
instruction writes only the least-significant four status-word
bits (CR0[3:0]). All remaining status-word bits (CR0[15:4]) are

Chapter 6: System-Management Instructions 185

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

left unmodified by the instruction. The instruction is privileged
and causes a #GP to occur if non-privileged software attempts
to execute it.

The store machine status word (SMSW) instruction stores all 16
status-word bits (CR0[15:0]) into the target GPR or memory
location. The instruction is not privileged and can be executed
by all software.

CLTS Instruction. The clear task-switched bit instruction (CLTS)
clears CR0.TS to 0. The CR0.TS bit is set to 1 by the processor
every time a task switch takes place. The bit is useful to system
software in determining when the x87 and multimedia register
state should be saved or restored. See “Task Switched (TS) Bit”
on page 54 for more information on using CR0.TS to manage
x87-instruction state. The CLTS instruction is privileged and
causes a #GP to occur if non-privileged software attempts to
execute it.

6.2.3 Accessing the
RFLAGs Register

The RFLAGS register contains both application and system
bits. This section describes the instructions used to read and
write system bits. Descriptions of instruction effects on
application flags can be found in “Flags Register” in Volume 1
and “Instruction Effects on RFLAGS” in Volume 3.

POPF and PUSHF Instructions. The pop and push RFLAGS
instructions are used for moving data between the rFLAGS
register and the stack. They are not system-management
instructions, but their behavior is mode-dependent.

CLI and STI Instructions. The clear interrupt (CLI) and set interrupt
(STI) instructions modify only the RFLAGS.IF bit or
RFLAGS.VIF bit. Clearing rFLAGS.IF to 0 causes the processor
to ignore maskable interrupts. Setting RFLAGS.IF to 1 causes
the processor to allow maskable interrupts.

See “Virtual Interrupts” on page 293 for more information on
the operation of these instructions when virtual-8086 mode
extensions are enabled (CR4.VME=1).

6.2.4 Accessing Debug
Registers

The MOV DRn instructions are used to copy data between the
debug registers and the general-purpose registers. These
instructions are privileged and cause a general-protection
exception (#GP) if non-privileged software attempts to execute

186 Chapter 6: System-Management Instructions

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

them. See “Debug Registers” on page 383 for a detailed
description of the debug registers.

6.2.5 Accessing
Model-Specific
Registers

RDMSR and WRMSR Instructions. The read/write model -specif ic
register instructions (RDMSR and WRMSR) can be used by
privileged software to access the 64-bit MSRs. See “Model-
Specific Registers (MSRs)” on page 69 for details about the
MSRs.

RDPMC Instruction. The read performance-monitoring counter
instruction, RDPMC, is used to read the model-specific
performance-monitor registers, PerfCTR[3:0].

RDTSC Instruction. The read time-stamp counter instruction,
RDTSC, is used to read the model-specific time-stamp counter
(TSC) register.

6.3 Segment Register and Descriptor Register Access

The x86-64 architecture supports the legacy instructions that
load and store segment registers and descriptor registers. In
some cases the instruction capabilities are expanded to support
long mode.

6.3.1 Accessing
Segment Registers

MOV, POP, and PUSH Instructions. The MOV and POP instructions
can be used to load a selector into a segment register from a
general-purpose register or memory (MOV) or from the stack
(POP). Any segment register, except the CS register, can be
loaded with the MOV and POP instructions. The CS register
must be loaded with a far-transfer instruction.

All segment register selectors can be stored in a general-
purpose register or memory using the MOV instruction or
pushed onto the stack using the PUSH instruction.

When a selector is loaded into a segment register, the processor
automatically loads the corresponding descriptor-table entry
into the hidden portion of the selector register. The hidden
portion contains the base address, limit, and segment
attributes.

Segment-load and segment-store instructions work normally in
64-bit mode. The appropriate entry is read from the system
descriptor table (GDT or LDT) and is loaded into the hidden
portion of the segment descriptor register. However, the

Chapter 6: System-Management Instructions 187

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

contents of data-segment and stack-segment descriptor
registers are ignored, except in the case of the FS and GS
segment-register base fields—see “FS and GS Registers in 64-
Bit Mode” on page 86 for more information.

The ability to use segment-load instructions allows a 64-bit
operat ing system to set up segment regis ters for a
compatibil i ty -mode applicat ion before switching to
compatibility mode.

6.3.2 Accessing
Descriptor-Table
Registers

LGDT and LIDT Instructions. The load GDTR (LGDT) and load IDTR
(LIDT) instructions load a pseudo-descriptor from memory into
the GDTR or IDTR registers, respectively.

LLDT and LTR Instructions. The load LDTR (LLDT) and load TR
(LTR) instructions load a system-segment descriptor from the
GDT into the LDTR and TR segment-descriptor registers
(hidden portion), respectively.

SGDT and SIDT Instructions. The store GDTR (SGDT) and store IDTR
(SIDT) instructions reverse the operation of the LGDT and
LIDT instructions. SGDT and SIDT store a pseudo-descriptor
from the GDTR or IDTR register into memory.

SLDT and STR Instructions. In all modes, the store LDTR (SLDT) and
store TR (STR) instructions store the LDT or task selector from
the visible portion of the LDTR or TR register into a general-
purpose register or memory, respectively. The hidden portion of
the LDTR or TR register is not stored.

6.4 Protection Checking

Several instructions are provided to allow software to
determine the outcome of a protection check before performing
a memory access that could result in a protection violation. By
performing the checks before a memory access, software can
avoid violations that result in a general-protection exception
(#GP).

6.4.1 Checking Access
Rights

LAR Instruction. The load access-rights (LAR) instruction can be
used to determine if access to a segment is allowed, based on
privilege checks and type checks. The LAR instruction uses a
segment-selector in the source operand to reference a
descriptor in the GDT or LDT. LAR performs a set of access-
rights checks and, if successful, loads the segment-descriptor

188 Chapter 6: System-Management Instructions

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

access rights into the destination register. Software can further
examine the access-rights bits to determine if access into the
segment is allowed.

6.4.2 Checking
Segment Limits

LSL Instruction. The load segment-limit (LSL) instruction uses a
segment-selector in the source operand to reference a
descriptor in the GDT or LDT. LSL performs a set of
preliminary access-rights checks and, if successful, loads the
segment-descriptor limit field into the destination register.
Software can use the limit value in comparisons with pointer
offsets to prevent segment limit violations.

6.4.3 Checking
Read/Write Rights

VERR and VERW Instructions. The verify read-rights (VERR) and
verify write-rights (VERW) can be used to determine if a target
code or data segment (not a system segment) can be read or
written from the current privilege level (CPL). The source
operand for these instructions is a pointer to the segment
selector to be tested. If the tested segment (code or data) is
readable from the current CPL, the VERR instruction sets
RFLAGS.ZF to 1; otherwise, it is cleared to zero. Likewise, if the
tested data segment is writable, the VERW instruction sets the
RFLAGS.ZF to 1. A code segment cannot be tested for
writability.

6.4.4 Adjusting Access
Rights

ARPL Instruction. The adjust RPL-field (ARPL) instruction can be
used by system software to prevent access into privileged-data
segments by lower-privileged software. This can happen if an
application passes a selector to system software and the
selector RPL is less than (has greater privilege than) the
calling-application CPL. To prevent this surrogate access,
system software executes ARPL with the following operands:

� The destination operand is the data-segment selector passed
to system software by the application.

� The source operand is the application code-segment selector
(available on the system-software stack as a result of the
CALL into system software by the application).

ARPL is not supported in 64-bit mode.

6.5 Processor Halt

The processor halt instruction (HLT) halts instruction execution,
leaving the processor in the halt state. No registers or machine
state are modified as a result of executing the HLT instruction.

Chapter 6: System-Management Instructions 189

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

The processor remains in the halt state until one of the
following occurs:

� A non-maskable interrupt (NMI).

� An enabled, maskable interrupt (INTR).

� Processor reset (RESET).

� Processor initialization (INIT).

� System-management interrupt (SMI).

6.6 Cache and TLB Management

Cache-management instructions are used by system software to
maintain coherency within the memory hierarchy. Memory
coherency and caches are discussed in Chapter 7, “Memory
System.” Similarly, TLB-management instructions are used to
maintain coherency between page translations cached in the
TLB and the translation tables maintained by system software
in memory. See “Translation-Lookaside Buffer (TLB)” on
page 170 for more information.

6.6.1 Cache
Management

WBINVD Instruction. The writeback and invalidate (WBINVD)
instruction is used to write all modified cache lines to memory
so that memory contains the most recent copy of data. After the
writes are complete, the instruction invalidates all cache lines.
This instruction operates on all caches in the memory hierarchy,
including caches that are external to the processor.

INVD Instruction. The invalidate (INVD) instruction is used to
invalidate all cache lines in all caches in the memory hierarchy.
Unlike the WBINVD instruction, no modified cache lines are
written to memory. The INVD instruction should only be used in
situations where memory coherency is not required.

6.6.2 TLB Invalidation INVLPG Instruction. The inval idate TLB entry (INVLPG)
instruction can be used to invalidate specific entries within the
TLB. The source operand is a virtual-memory address that
specifies the TLB entry to be invalidated. Invalidating a TLB
entry does not remove the associated page-table entry from the
data cache. See “Translation-Lookaside Buffer (TLB)” on
page 170 for more information.

190 Chapter 6: System-Management Instructions

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Chapter 7: Memory System 191

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

7 Memory System

This chapter describes:

� Cache coherency mechanisms

� Cache control mechanisms

� Memory typing

� Memory mapped I/O

� Memory ordering rules

� Serializing instructions

Figure 7-1 on page 192 shows a conceptual picture of a
processor and memory system, and how data and instructions
flow between the various components. This diagram is not
intended to represent a specif ic microarchitectural
implementation but instead is used to illustrate the major
memory-system components covered by this chapter.

192 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 7-1. Processor and Memory System

The memory-system components described in this chapter are
shown as unshaded boxes in Figure 7-1. Those items are
summarized in the following paragraphs.

Main memory is external to the processor chip and is the
memory-hierarchy level farthest from the processor execution
units.

Caches are the memory-hierarchy levels closest to the processor
execution units. They are much smaller and much faster than
main memory, and can be either internal or external to the

513-211.eps

Write-Combining
BuffersL1

Instruction Cache

Write Buffers

L2 Cache

L1
Data Cache

Main Memory

System Bus Interface

Load/Store Unit

Execution Units
Processor Chip

Chapter 7: Memory System 193

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

processor chip. Caches contain copies of the most frequently
used instructions and data. By allowing fast access to
frequently used data, software can run much faster than if it
had to access that data from main memory. Figure 7-1 shows
three caches, all internal to the processor:

� L1 Data Cache—The L1 (level-1) data cache holds the data
most recently read or written by the software running on the
processor.

� L1 Instruction Cache—The L1 instruction cache is similar to
the L1 data cache except that it holds only the instructions
executed most frequently. In some processor
implementations, the L1 instruction cache can be combined
with the L1 data cache to form a unified L1 cache.

� L2 Cache—The L2 (level-2) cache is usually several times
larger than the L1 caches, but it is also slower. It is common
for L2 caches to be implemented as a unified cache
containing both instructions and data. Recently used
instructions and data that do not fit within the L1 caches can
reside in the L2 cache. The L2 cache can be exclusive,
meaning it does not cache information contained in the L1
cache. Conversely, inclusive L2 caches contain a copy of the
L1-cached information.

Memory-read operations from cacheable memory first check
the cache to see if the requested information is available. A read
hit occurs if the information is available in the cache, and a read
miss occurs if the information is not available. Likewise, a write
hit occurs if the memory write can be stored in the cache, and a
write miss occurs if it cannot be stored in the cache.

Caches are divided into fixed-size blocks called cache lines. The
cache allocates lines to correspond to regions in memory of the
same size as the cache line, aligned on an address boundary
equal to the cache-line size. For example, in a cache with 32-
byte lines, the cache lines are aligned on 32-byte boundaries
and byte addresses 0007h and 001Eh are both located in the
same cache line. The size of a cache line is implementation
dependent. Most implementations have either 32-byte or 64-
byte cache lines.

The process of loading data into a cache is a cache-line fill. Even
if only a single byte is requested, all bytes in a cache line are
loaded from memory. Typically, a cache-line fill must remove
(evict) an existing cache line to make room for the new line

194 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

loaded from memory. This process is called cache-line
replacement. If the existing cache line was modified before the
replacement, the processor performs a cache-line writeback to
main memory when it performs the cache-line fill.

Cache-line writebacks help maintain coherency (consistency)
between the caches and main memory. Internally, the processor
can also maintain cache coherency by internally probing
(checking) the other caches and write buffers for a more recent
version of the requested data. External devices can also check
processor caches for more recent versions of data by externally
probing the processor. Throughout this document, the term
probe is used to refer to external probes, while internal probes
are always qualified with the word internal.

Write buffers temporarily hold data writes when main memory
or the caches are busy with other memory accesses. The
existence of write buffers is implementation dependent.

Implementations of the architecture can use write-combining
buffers if the order and size of non-cacheable writes to main
memory is not important to the operation of software. These
buffers can combine multiple, individual writes to main
memory and transfer the data in fewer bus transactions.

7.1 Memory-Access Ordering

The flexibility in which memory accesses can be ordered is
closely related to the flexibility in which a processor
implementation can execute and retire instructions. Instruction
execution creates results and status and determines whether or
not the instruction causes an exception. Instruction retirement
commits the results of instruction execution, in program order,
to software-visible resources such as memory, caches, write-
combining buffers, and registers, or it causes an exception to
occur if instruction execution created one.

Implementations of the x86-64 architecture retire instructions
in program order, but implementations can execute instructions
in any order. Implementations can also speculatively execute
instructions—executing instructions before knowing they are
needed. Internally, implementations manage data reads and
writes so that instructions complete in order. However, because
implementations can execute instructions out of order and
speculatively, the sequence of memory accesses can also be out

Chapter 7: Memory System 195

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

of program order (weakly ordered). Processor implementations
adhere to the following rules governing memory accesses,
which can be further restricted depending on the memory type
being accessed:

7.1.1 Read Ordering Generally, reads do not affect program order because they do
not affect the state of software-visible resources. However, some
system devices might be sensitive to reads. In such a situation
software can map a read-sensitive device to a memory type that
enforces strong read-ordering, or use read/write barrier
instructions to force strong read-ordering.

For cacheable memory types, the following rules govern read
ordering:

� Out-of-order reads are allowed. Out-of-order reads can occur
as a result of out-of-order instruction execution or
speculative execution. The processor can read memory out-
of-order to allow out-of-order execution to proceed.

� Speculative reads are allowed. A speculative read occurs
when the processor begins executing a memory-read
instruction before it knows the instruction will actually
complete. For example, the processor can predict a branch
will occur and begin executing instructions following the
predicted branch before it knows whether the prediction is
valid. When one of the speculative instructions reads data
from memory, the read itself is speculative.

� Reads can be reordered ahead of writes. Reads are generally
given a higher priority by the processor than writes because
instruction execution stalls if the read data required by an
instruction is not immediately available. Allowing reads
ahead of writes usually maximizes software performance.

� A read cannot be reordered ahead of a prior write if the read
is from the same location as the prior write. In this case, the
read instruction stalls until the write instruction completes
execution. The read instruction requires the result of the
write instruction for proper software operation. For
cacheable memory types, the write data can be forwarded to
the read instruction before it is actually written to memory.

7.1.2 Write Ordering Writes affect program order because they affect the state of
software-visible resources. The following rules govern write
ordering:

196 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Generally, out-of-order writes are not allowed. Write
instructions executed out of order cannot commit (write)
their result to memory until all previous instructions have
completed in program order. The processor can, however,
hold the result of an out-of-order write instruction in a
private buffer (not visible to software) until that result can
be committed to memory.

� It is possible for writes to write-combining memory types to
appear to complete out of order, relative to writes into other
memory types. See “Memory Types” on page 200 and “Write
Combining” on page 205 for additional information.

� Speculative writes are not allowed. As with out-of-order
writes, speculative write instructions cannot commit their
result to memory until all previous instructions have
completed in program order. Processors can hold the result
in a private buffer (not visible to software) until the result
can be committed.

� Write buffering is allowed. When a write instruction
completes and commits its result, that result can be buffered
before actually writing the result into a memory location in
program order. Although the write buffer itself is not
directly accessible by software, the results in the buffer are
accessible during memory accesses to the locations that are
buffered. For cacheable memory types, the write buffer can
be read out-of-order and speculatively read, just like
memory.

� Write combining is allowed. In some situations software can
relax the write-ordering rules and allow several writes to be
combined into fewer writes to memory. When write-
combining is used, it is possible for writes to other memory
types to proceed ahead of (out-of-order) memory-combining
writes, unless the writes are to the same address. Write-
combining should be used only when the order of writes
does not affect program order (for example, writes to a
graphics frame buffer).

7.1.3 Read/Write
Barriers

When the order of memory accesses must be strictly enforced,
software can use read/write barrier instructions to force reads
and writes to proceed in program order. Read/write barrier
instructions force all prior reads or writes to complete before
subsequent reads or writes are executed. The LFENCE,
SFENCE, and MFENCE instructions are provided as dedicated
read, write, and read/write barrier instructions (respectively).

Chapter 7: Memory System 197

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Serializing instructions, I/O instructions, and locked
instructions can also be used as read/write barriers.

Table 7-1 on page 203 shows the memory-access ordering
possible for each memory type supported by the x86-64
architecture.

7.2 Memory Coherency and Protocol

Implementations that support caching support a cache-
coherency protocol for maintaining coherency between main
memory and the caches. The cache-coherency protocol is also
used to maintain coherency between all processors in a
multiprocessor system. The cache-coherency protocol
supported by the x86-64 architecture is the MOESI (modified,
owned, exclusive, shared, invalid) protocol. The states of the
MOESI protocol are:

� Modified—A cache line in the modified state holds the most
recent, correct copy of the data. The copy in main memory is
stale (incorrect), and no other processor holds a copy.

� Owned—A cache line in the owned state holds the most
recent, correct copy of the data. The owned state is similar to
the shared state in that other processors can hold a copy of
the most recent, correct data. Unlike the shared state,
however, the copy in main memory can be stale (incorrect).
Only one processor can hold the data in the owned state—all
other processors must hold the data in the shared state.

� Exclusive—A cache line in the exclusive state holds the most
recent, correct copy of the data. The copy in main memory is
also the most recent, correct copy of the data. No other
processor holds a copy of the data.

� Shared—A cache line in the shared state holds the most
recent, correct copy of the data. The copy in main memory is
also the most recent, correct copy of the data. Other
processors in the system can hold copies of the data as well.

� Invalid—A cache line in the invalid state does not hold a
valid copy of the data. Valid copies of the data can be either
in main memory or another processor cache.

Figure 7-2 on page 198 shows the general MOESI state
transitions possible with various types of memory accesses. This
is a logical software view, not a hardware view, of how cache-line
state transitions. Instruction-execution activity and external-

198 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

bus transactions can both be used to modify the cache MOESI
state in multiprocessing or multi-mastering systems.

Figure 7-2. MOESI State Transitions

To maintain memory coherency, external bus masters (typically
other processors with their own internal caches) need to
acquire the most recent copy of data before caching it
internally. That copy can be in main memory or in the internal
caches of other bus-mastering devices. When an external

513-212.eps

Reset
INVD, WBINVD

Read Hit

Write Miss (WB memory)

Probe Write Hit

Probe R
ead

 Hit

Probe Write Hit

Read Miss, Exclusive

Probe Read Hit

W
rite Hit

Re
ad

 M
iss

, S
ha

re
d

Pr
ob

e
W

rit
e

Hi
t

Invalid Exclusive

Read Hit
Write Hit

Modified

Write Hit
Owned

Read Hit
Probe Read Hit

Shared

Read Hit
Probe Read Hit

Probe W
rite Hit

Write Hit

Chapter 7: Memory System 199

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

master has a cache read-miss or write-miss, it probes the other
mastering devices to determine whether the most recent copy
of data is held in any of their caches. If one of the other
mastering devices holds the most recent copy, it provides it to
the requesting device. Otherwise, the most recent copy is
provided by main memory.

There are two general types of bus-master probes:

� Read probes indicate the external master is requesting the
data for read purposes.

� Write probes indicate the external master is requesting the
data for the purpose of modifying it.

Referring back to Figure 7-2, the state transitions involving
probes are initiated by other processors and external bus
masters into the processor. Some read probes are initiated by
devices that intend to cache the data. Others, such as those
initiated by I/O devices, do not intend to cache the data. Some
processor implementations do not change the data MOESI state
if the read probe is initiated by a device that does not intend to
cache the data.

State transitions involving read misses and write misses can
cause the processor to generate probes into external bus
masters and to read main memory.

Read hits do not cause a MOESI-state change. Write hits
generally cause a MOESI-state change into the modified state.
If the cache line is already in the modified state, a write hit
does not change its state.

The specific operation of external-bus signals and transactions
and how they inf luence a cache MOESI s tate are
implementation dependent. For example, an implementation
could convert a write miss to a WB memory type into two
separate MOESI-state changes. The first would be a read-miss
placing the cache line in the exclusive state. This would be
followed by a write hit into the exclusive cache line, changing
the cache-line state to modified.

7.2.1 Special
Coherency
Considerations

In some cases, data can be modified in a manner that is
impossible for the memory-coherency protocol to handle due to
the effects of instruction prefetching. In such situations
software must use serializing instructions and/or cache-

200 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

invalidation instructions to guarantee subsequent data
accesses are coherent.

An example of this type of a situation is a page-table update
followed by accesses to the physical pages referenced by the
updated page tables. The following sequence of events shows
what can happen when software changes the translation of
virtual-page A from physical-page M to physical-page N:

1. Software invalidates the TLB entry. The tables that
translate virtual-page A to physical-page M are now held
only in main memory. They are not cached by the TLB.

2. Software changes the page-table entry for virtual-page A in
main memory to point to physical-page N rather than
physical-page M.

3. Software accesses data in virtual-page A.

During Step 3, software expects the processor to access the data
from physical-page N. However, it is possible for the processor
to prefetch the data from physical-page M before the page table
for virtual-page A is updated in Step 2. This is because the
physical-memory references for the page tables are different
than the physical-memory references for the data. Because the
physical-memory references are different, the processor does
not recognize them as requiring coherency checking and
believes it is safe to prefetch the data from virtual-page A,
which is translated into a read from physical page M.

To prevent this problem, software should insert a read/write
barrier instruction (typically a serializing instruction)
immediately after the page-table update to force subsequent
instructions to access data using the correct virtual-page-to-
physical-page translation. The serializing instructions INVLPG
and MOV CR3, used to flush the TLB, can be used for this
purpose.

7.3 Memory Types

The x86-64 architecture defines the following memory types:

� Uncacheable (UC)—Reads from, and writes to, UC memory
are not cacheable. Reads from UC memory cannot be
speculative. Write-combining to UC memory is not allowed.
Reads from UC memory cause the write buffers to be
written to memory and invalidated.

Chapter 7: Memory System 201

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

The UC memory type is useful for memory-mapped I/O
devices where strict ordering of reads and writes is
important.

� Cache Disable (CD)—The CD memory type is a form of
uncacheable memory type that occurs when caches are
disabled (CR0.CD=1 and CR0.NW=0). With CD memory, it is
possible for the address to be cached due to an earlier
cacheable access, or due to two virtual-addresses aliasing to
a single physical address.

For the L1 data cache and the L2 cache, reads from, and
writes to, CD memory that hit the cache cause the cache line
to be invalidated before accessing main memory. If the
cache line is in the modified state, the line is written to main
memory and then invalidated.

For the L1 instruction cache, reads from CD memory that hit
the cache read the cached instructions rather than access
main memory. Reads that miss the cache access main
memory and do not cause cache-line replacement.

� Write-Combining (WC)—Reads from, and writes to, WC
memory are not cacheable. Reads from WC memory can be
speculative.

Writes to this memory type can be combined internally by
the processor and written to memory as a single write
operation to reduce memory accesses. For example, four
word writes to consecutive addresses can be combined by
the processor into a single quadword write, resulting in one
memory access instead of four.

The WC memory type is useful for graphics-display memory
buffers where the order of writes is not important.

� Write-Protect (WP)—Reads from WP memory are cacheable
and allocate cache lines on a read miss. Reads from WP
memory can be speculative.

Writes to WP memory that hit in the cache do not update the
cache. Instead, all writes update memory (write to memory),
and writes that hit in the cache invalidate the cache line.
Write buffering of WP memory is allowed.

The WP memory type is useful for shadowed-ROM memory
where updates must be immediately visible to all devices
that read the shadow locations.

202 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Writethrough (WT)—Reads from WT memory are cacheable
and allocate cache lines on a read miss. Reads from WT
memory can be speculative.

All writes to WT memory update main memory, and writes
that hit in the cache update the cache line (cache lines
remain in the same state after a write that hits a cache line).
Writes that miss the cache do not allocate a cache line. Write
buffering of WT memory is allowed.

� Writeback (WB)—Reads from WB memory are cacheable
and allocate cache lines on a read miss. Cache lines can be
allocated in the shared, exclusive, or modified states. Reads
from WB memory can be speculative.

All writes that hit in the cache update the cache line and
place the cache line in the modified state. Writes that miss
the cache allocate a new cache line and place the cache line
in the modified state. Writes to main memory only take
place during writeback operations. Write buffering of WB
memory is allowed.

The WB memory type provides the highest-possible
performance and is useful for most software and data stored
in system memory (DRAM).

Table 7-1 on page 203 shows the memory access ordering
possible for each memory type supported by the x86-64
architecture. Table 7-2 on page 203 shows the caching policy for
the same memory types.

Chapter 7: Memory System 203

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Table 7-1. Memory Access by Memory Type

Memory Access
Allowed

Memory Type

UC/CD WC WP WT WB

Read

Out-of-Order no yes yes yes yes

Speculative no yes yes yes yes

Reorder Before Write no yes yes yes yes

Write

Out-of-Order1 no yes no no no

Speculative no no no no no

Buffering no yes yes yes yes

Combining2 no yes no yes yes

Note:
1. Out-of-order relative to writes into other memory types.
2. Write-combining buffers are separate from write buffers.

Table 7-2. Caching Policy by Memory Type

Caching Policy
Memory Type

UC CD WC WP WT WB

Read Cacheable no no no yes yes yes

Write Cacheable no no no no yes yes

Read Allocate no no no yes yes yes

Write Allocate no no no no no yes

Write Hits Update Memory yes yes1 yes2 yes3 yes no

Note:
1. For the L1 data cache and the L2 cache, if an access hits the cache, the cache line is invalidated. If the cache line is in the

modified state, the line is written to main memory and then invalidated. For the L1 instruction cache, read hits access the cache
rather than main memory.

2. The data is not cached, so a cache write hit cannot occur. However, memory is updated.
3. Write hits update memory and invalidate the cache line.

204 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

7.4 Buffering and Combining Memory Writes

7.4.1 Write Buffering Writes to memory (main memory and caches) can be stored
internally by the processor in write buffers before actually
writing the data into a memory location. System performance
can be improved by buffering writes, as shown in the following
examples:

� When higher-priority memory transactions, such as reads,
compete for memory access with writes, writes can be
delayed in favor of reads, which minimizes or eliminates an
instruction-execution stall due to a memory-operand read.

� When the memory is busy, buffering writes while the
memory is busy removes the writes from the instruction-
execution pipeline, which frees instruction-execution
resources.

The processor manages the write buffer so that it is transparent
to software. Memory accesses check the write buffer, and the
processor completes writes into memory from the buffer in
program order. Also, the processor completely empties the
write buffer by writing the contents to memory as a result of
performing any of the following operations:

� SFENCE Instruction—Executing a store-fence (SFENCE)
instruction forces all memory writes before the SFENCE (in
program order) to be written into memory before memory
writes that follow the SFENCE instruction. The memory-
fence (MFENCE) instruction has a similar effect, but it
forces the ordering of loads in addition to stores.

� Serializing Instructions—Executing a serializing instruction
forces the processor to retire the serializing instruction
(complete both instruction execution and result writeback)
before the next instruction is fetched from memory.

� I/O instructions—Before completing an I/O instruction, all
previous reads and writes must be written to memory, and
the I/O instruction must complete before completing
subsequent reads or writes. Writes to I/O-address space
(OUT instruction) are never buffered.

� Locked Instructions—Before completing a locked instruction
(an instruction executed using the LOCK prefix), all
previous reads and writes must be written to memory, and
the locked instruction must complete before completing

Chapter 7: Memory System 205

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

subsequent writes. Locked writes are never buffered,
although locked reads and writes are cacheable.

� Interrupts and Exceptions—Interrupts and exceptions are
serializing events that force the processor to write all results
from the write buffer to memory before fetching the first
instruction from the interrupt or exception service routine.

� UC-Memory Reads—UC-memory reads are not reordered
ahead of writes.

Write buffers can behave similarly to write-combining buffers
because multiple writes are collected internally before
transferring the data to caches or main memory. See the
following section for a description of write combining.

7.4.2 Write Combining Write-combining memory uses a different buffering scheme
than write buffering described above. Writes to write-
combining (WC) memory can be combined internally by the
processor in a buffer for more efficient transfer to main
memory at a later time. For example, 16 doubleword writes to
consecutive memory addresses can be combined in the WC
buffers and transferred to main memory as a single burst
operation rather than as individual memory writes.

The following instructions perform writes to WC memory:

� MASKMOVDQU

� MASKMOVQ

� MOVNTDQ

� MOVNTI

� MOVNTPD

� MOVNTPS

� MOVNTQ

WC memory is not cacheable. A WC buffer writes its contents
only to main memory.

The size and number of WC buffers available is implementation
dependent. The processor assigns an address range to an empty
WC buffer when a WC-memory write occurs. The size and
alignment of this address range is equal to the buffer size. All
subsequent writes to WC memory that fall within this address
range can be stored by the processor in the WC-buffer entry
until an event occurs that causes the processor to write the WC
buffer to main memory. After the WC buffer is written to main

206 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

memory, the processor can assign a new address range on a
subsequent WC-memory write.

Writes to consecutive addresses in WC memory are not required
for the processor to combine them. The processor combines any
WC memory write that falls within the active-address range for
a buffer. Multiple writes to the same address overwrite each
other (in program order) until the WC buffer is written to main
memory.

It is possible for writes to proceed out of program order when
WC memory is used. For example, a write to cacheable memory
that follows a write to WC memory can be written into the cache
before the WC buffer is written to main memory. For this
reason, and the reasons listed in the previous paragraph,
software that is sensitive to the order of memory writes should
avoid using WC memory.

WC buffers are written to main memory under the same
conditions as the write buffers, namely when:

� Executing a store-fence (SFENCE) instruction.

� Executing a serializing instruction.

� Executing an I/O instruction.

� Executing a locked instruction (an instruction executed
using the LOCK prefix).

� An interrupt or exception occurs.

WC buffers are also written to main memory when:

� A subsequent non-write-combining operation has a write
address that matches the WC-buffer active-address range.

� A write to WC memory falls outside the WC-buffer active-
address range. The existing buffer contents are written to
main memory, and a new address range is established for the
latest WC write.

7.5 Memory Caches

The x86-64 architecture supports the use of internal and
external caches. The size, organization, coherency mechanism,
and replacement algorithm for each cache is implementation
dependent. Generally, the existence of the caches is
transparent to both application and system software. In some
cases, however, software can use cache-structure information to

Chapter 7: Memory System 207

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

optimize memory accesses or manage memory coherency. Such
software can use the extended-feature functions of the CPUID
instruction to gather information on the caching subsystem
supported by the processor. For more information on using
CPUID in this manner, see “Functions 8000_0005h and
8000_0006h: Cache Information” in Volume 3.

7.5.1 Cache
Organization and
Operation

Although the detailed organization of a processor cache
depends on the implementation, the general constructs are
similar. L1 caches—data and instruction, or unified—and L2
caches usually are implemented as n-way set-associative caches.
Figure 7-3 on page 208 shows a typical logical organization of an
n-way set-associative cache. The physical implementation of the
cache can be quite different.

208 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 7-3. Cache Organization Example

As shown in Figure 7-3, the cache is organized as an array of
cache lines. Each cache line consists of three parts: a cache-data
line (a fixed-size copy of a memory block), a tag, and other
information. Rows of cache lines in the cache array are sets, and
columns of cache lines are ways. In an n-way set-associative
cache, each set is a collection of n lines. For example, in a four-

513-213.eps

Physical Address

Tag Field Index Field Offset Field

= = =

Tag Data Other

. . .

Set 1

Set 2

Set 3

Set 0

Set m-1

Tag Data Other Tag Data Other

. . .Way 1Way 0 Way n-1

Line Data 0,2 Line Data 1,2 Line Data n-1,2

MUX n:1

Hit

Miss MissMiss

Hit
Hit

. . .

Data

Hit Data

Cache

Chapter 7: Memory System 209

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

way set-associative cache, each set is a collection of four cache
lines, one from each way.

The cache is accessed using the physical address of the data or
instruction being referenced. To access data within a cache line,
the physical address is used to select the set, way, and byte from
the cache. This is accomplished by dividing the physical address
into the following three fields:

� Index—The index field selects the cache set (row) to be
examined for a hit. All cache lines within the set (one from
each way) are selected by the index field.

� Tag—The tag field is used to select a specific cache line from
the cache set. The physical-address tag field is compared
with each cache-line tag in the set. If a match is found, a
cache hit is signalled, and the appropriate cache line is
selected from the set. If a match is not found, a cache miss is
signalled.

� Offset—The offset field points to the first byte in the cache
line corresponding to the memory reference. The referenced
data or instruction value is read from (or written to, in the
case of memory writes) the selected cache line starting at
the location selected by the offset field.

In Figure 7-3 on page 208, the physical-address index field is
shown selecting Set 2 from the cache. The tag entry for each
cache line in the set is compared with the physical-address tag
field. The tag entry for Way 1 matches the physical-address tag
field, so the cache-line data for Set 2, Way 1 is selected using the
n:1 multiplexor. Finally, the physical-address offset field is used
to point to the first byte of the referenced data (or instruction)
in the selected cache line.

Cache lines can contain other information in addition to the
data and tags, as shown in Figure 7-3. MOESI state and the state
bits associated with the cache-replacement algorithm are
typical pieces of information kept with the cache line.
Instruction caches can also contain pre-decode or branch-
prediction information. The type of information stored with the
cache line is implementation dependent.

Self-Modifying Code. Software that writes into a code segment is
classified as self-modifying code. To avoid cache-coherency
problems due to self-modifying code, a check is made during
data writes to see whether the data-memory location

210 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

corresponds to a code-segment memory location. If it does,
implementations of the x86-64 architecture invalidate the
corresponding instruction-cache line(s) during the data-memory
write. Entries in the data cache are not invalidated, and it is
possible for the modified instruction to be cached by the data
cache following the memory write. A subsequent fetch of the
modified instruction goes to main memory to get the coherent
version of the instruction. If the data cache holds the most
recent copy of the instruction rather than main memory, it
provides that copy.

The processor determines whether a write is in a code segment
by internally probing the instruction cache and prefetched
instructions. If the internal probe returns a hit, the instruction-
cache line and prefetched instructions are invalidated. The
internal probes into the instruction cache and prefetch
hardware are always performed using the physical address of an
instruction in order to avoid potential aliasing problems
associated with using virtual (linear) addresses.

7.5.2 Cache Control
Mechanisms

The x86-64 architecture provides a number of mechanisms for
controlling the cacheability of memory. These are described in
the following sections.

Cache Disable. Bit 30 of the CR0 register is the cache-disable bit,
CR0.CD. Caching is enabled when CR0.CD is cleared to 0, and
caching is disabled when CR0.CD is set to 1. When caching is
disabled, reads and writes access main memory.

Software can disable the cache while the cache still holds valid
data (or instructions). If a read or write hits the L1 data cache
or the L2 cache when CR0.CD=1, the processor does the
following:

1. Writes the cache line back if it is in the modified or owned
state.

2. Invalidates the cache line.

3. Performs a non-cacheable main-memory access to read or
write the data.

If an instruction fetch hits the L1 instruction cache when
CR0.CD=1, the processor reads the cached instructions rather
than access main memory.

Chapter 7: Memory System 211

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

The processor also responds to cache probes when CR0.CD=1.
Probes that hit the cache cause the processor to perform Step 1.
Step 2 (cache-line invalidation) is performed only if the probe is
performed on behalf of a memory write or an exclusive read.

Writethrough Disable. Bit 29 of the CR0 register is the not
writethrough disable bit, CR0.NW. In early x86 processors,
CR0.NW is used to control cache writethrough behavior, and
the combination of CR0.NW and CR0.CD determines the cache
operating mode.

In early x86 processors, clearing CR0.NW to 0 enables writeback
caching for main memory, effectively disabling writethrough
caching for main memory. When CR0.NW=0, software can
disable writeback caching for specific memory pages or regions
by using other cache control mechanisms. When software sets
CR0.NW to 1, writeback caching is disabled for main memory,
while writethrough caching is enabled.

In implementations of the x86-64 architecture, CR0.NW is not
used to qualify the cache operating mode established by
CR0.CD. Table 7-3 shows the effects of CR0.NW and CR0.CD on
the x86-64 architecture cache-operating modes.

Page-Level Cache Disable. Bit 4 of all paging data-structure entries
controls page-level cache disable (PCD). When a data-structure-
entry PCD bit is cleared to 0, the page table or physical page
pointed to by that entry is cacheable, as determined by the
CR0.CD bit. When the PCD bit is set to 1, the page table or
physical page is not cacheable. The PCD bit in the paging data-
structure base-register (bit 4 in CR3) controls the cacheability
of the highest-level page table in the page-translation hierarchy.

Table 7-3. x86-64 Architecture Cache-Operating Modes

CR0.CD CR0.NW Cache Operating Mode

0 0 Cache enabled with a writeback-caching policy.

0 1
Invalid setting—causes a general-protection
exception (#GP).

1 0
Cache disabled. See “Cache Disable” on page 210.

1 1

212 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Page-Level Writethrough Enable. Bit 3 of all paging data-structure
entries is the page-level writethrough enable control (PWT).
When a data-structure-entry PWT bit is cleared to 0, the page
table or physical page pointed to by that entry has a writeback
caching policy. When the PWT bit is set to 1, the page table or
physical page has a writethrough caching policy. The PWT bit in
the paging data-structure base-register (bit 3 in CR3) controls
the caching policy of the highest-level page table in the page-
translation hierarchy.

The corresponding PCD bit must be cleared to 0 (page caching
enabled) for the PWT bit to have an effect.

Memory Typing. Two mechanisms are provided for software to
control access to and cacheability of specific memory regions:

� The memory-type range registers (MTRRs) control
cacheability based on physical addresses. See “MTRRs” on
page 217 for more information on the use of MTRRs.

� The page-attribute table (PAT) mechanism controls
cacheability based on virtual addresses. PAT extends the
capabilities provided by the PCD and PWT page-level cache
controls. See “Page-Attribute Table Mechanism” on
page 228 for more information on the use of the PAT
mechanism.

System software can combine the use of both the MTRRs and
PAT mechanisms to maximiz e control over memory
cacheability.

If the MTRRs are disabled in implementations that support the
MTRR mechanism, the default memory type is set to
uncacheable (UC). Memory accesses are not cached even if the
caches are enabled by clearing CR0.CD to 0. Cacheable memory
types must be established using the MTRRs in order for
memory accesses to be cached.

Cache Control Precedence. The cache-control mechanisms are used
to define the memory type and cacheability of main memory
and regions of main memory. Taken together, the most
restrictive memory type takes precedence in defining the
caching policy of memory. The order of precedence is:

1. Uncacheable (UC)

2. Write-combining (WC)

Chapter 7: Memory System 213

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

3. Write-protected (WP)

4. Writethrough (WT)

5. Writeback (WB)

For example, assume a large memory region is designated a
writethrough type using the MTRRs. Individual pages within
that region can have caching disabled by setting the
appropriate page-table PCD bits. However, no pages within that
region can have a writeback caching policy, regardless of the
page-table PWT values.

7.5.3 Cache and
Memory
Management
Instructions

Data Prefetch. The prefetch instructions are used by software as a
hint to the processor that the referenced data is likely to be
used in the near future. The processor can preload the cache
line containing the data in anticipation of its use. PREFETCH
provides a hint that the data is to be read. PREFETCHW
provides a hint that the data is to be written. The processor can
mark the line as modified if it is preloaded using PREFETCHW.

Memory Ordering. Instructions are provided for software to
enforce memory ordering (serialization) in weakly-ordered
memory types. These instructions are:

� SFENCE (store fence)—forces all memory writes (stores)
preceding the SFENCE (in program order) to be written into
memory before memory writes following the SFENCE.

� LFENCE (load fence)—forces all memory reads (loads)
preceding the LFENCE (in program order) to be read from
memory before memory reads following the LFENCE.

� MFENCE (memory fence)—forces all memory accesses (reads
and writes) preceding the MFENCE (in program order) to be
written into or read from memory before memory accesses
following the MFENCE.

Cache Line Flush. The CLFLUSH instruction (writeback, if
modified, and invalidate) takes the byte memory-address
operand (a linear address), and checks to see if the address is
cached. If the address is cached, the entire cache line
containing the address is invalidated. If any portion of the
cache line is dirty (in the modified or owned state), the entire
line is written to main memory before it is invalidated.
CLFLUSH affects all caches in the memory hierarchy—internal
and external to the processor. The checking and invalidation

214 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

process continues until the address has been invalidated in all
caches.

In most cases, the underlying memory type assigned to the
address has no effect on the behavior of this instruction.
However, when the underlying memory type for the address is
UC or WC (as defined by the MTRRs), the processor does not
proceed with checking all caches to see if the address is cached.
In both cases, the address is uncacheable, and invalidation is
unnecessary. Write-combining buffers are written back to
memory if the corresponding physical address falls within the
buffer active-address range.

Cache Writeback and Invalidate. Unlike the CLFLUSH instruction,
the WBINVD instruction operates on the entire cache, rather
than a single cache line. The WBINVD instruction first writes
back all cache lines that are dirty (in the modified or owned
state) to main memory. After writeback is complete, the
instruction invalidates all cache lines. The checking and
invalidation process continues until all internal caches are
invalidated. A special bus cycle is transmitted to higher-level
external caches directing them to perform a writeback-and-
invalidate operation.

Cache Invalidate. The INVD instruction is used to invalidate all
cache lines. Unlike the WBINVD instruction, dirty cache lines
are not written to main memory. The process continues until all
internal caches have been invalidated. A special bus cycle is
transmitted to higher-level external caches directing them to
perform an invalidation.

The INVD instruction should only be used in situations where
memory coherency is not required.

7.5.4 Serializing
Instructions

Serializing instructions force the processor to retire the
serializing instruction and all previous instructions before the
next instruction is fetched. A serializing instruction is retired
when the following operations are complete:

� The instruction has executed.

� All registers modified by the instruction are updated.

� All memory updates performed by the instruction are
complete.

� All data held in the write buffers have been written to
memory.

Chapter 7: Memory System 215

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Serializing instructions can be used as a barrier between
memory accesses to force strong ordering of memory
operations. Care should be exercised in using serializing
instructions because they modify processor state and affect
program flow. The instructions also force execution
serialization, which can significantly degrade performance.
When strongly-ordered memory accesses are required, but
execution serialization is not, it is recommended that software
use the memory-ordering instructions described on page 213.

The following are serializing instructions:

� Non-Privileged Instructions

- CPUID

- IRET

- RSM

� Privileged Instructions

- MOV CRn

- MOV DRn

- LGDT, LIDT, LLDT, LTR

- SWAPGS

- WRMSR

- WBINVD, INVD

- INVLPG

7.6 Memory-Type Range Registers

The x86-64 architecture supports three mechanisms for
software access-control and cacheability-control over memory
regions. These mechanisms can be used in place of similar
capabilities provided by external chipsets used with early x86
processors.

This section describes a control mechanism that uses a set of
programmable model-specific registers (MSRs) called the
memory-type-range registers (MTRRs). The MTRR mechanism
provides system software with the ability to manage hardware-
device memory mapping. System software can characterize
physical-memory regions by type (e.g. ROM, flash, memory-
mapped I/O) and assign hardware devices to the appropriate
physical-memory type.

216 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Another control mechanism is implemented as an extension to
the page-translation capability and is called the page attribute
table (PAT). It is described in “Page-Attribute Table
Mechanism” on page 228. Like the MTRRs, PAT provides
system software with the ability to manage hardware-device
memory mapping. With PAT, however, system software can
characterize physical pages and assign virtually-mapped
devices to those physical pages using the page-translation
mechanism. PAT may be used in conjunction with the MTTR
mechanism to maximize flexibility in memory control.

Finally control mechanisms are provided for managing memory-
mapped I/O. These mechanisms employ extensions to the
MTRRs and a separate feature called the top-of-memory
registers. The MTRR extensions include additional MTRR type-
field encodings for fixed-range MTRRs and variable-range I/O
range registers (IORRs). These mechanisms are described in
“Memory-Mapped I/O” on page 232.

7.6.1 MTRR Type
Fields

The MTRR mechanism provides a means for characterizing
physical-address ranges with a memory type (see “Memory
Types” on page 200). The MTRRs contain a type field used to
specify the memory type in effect for a given physical-address
range.

There are two variants of the memory type-field encodings:
standard and extended. Both the standard and extended
encodings use type-field bits 2–0 to specify the memory type.
For the standard encodings, bits 7–3 are reserved and must be
zero. For the extended encodings, bits 7–5 are reserved, but bits
4–3 are defined as the RdMem and WrMem bits. “Extended
Fixed-Range MTRR Type-Field Encodings” on page 233
describes the function of these extended bits and how software
enables them. Only the fixed-range MTRRs support the
extended type-field encodings. Variable-range MTRRs use the
standard encodings.

Table 7-4 on page 217 shows the memory types supported by the
MTRR mechanism and their encoding in the MTRR type fields
referenced throughout this section. Unless the extended type-
field encodings are explicitly enabled, the processor uses the
type values shown in Table 7-4.

Chapter 7: Memory System 217

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

If the MTRRs are disabled in implementations that support the
MTRR mechanism, the default memory type is set to
uncacheable (UC). Memory accesses are not cached even if the
caches are enabled by clearing CR0.CD to 0. Cacheable memory
types must be established using the MTRRs to enable memory
accesses to be cached.

7.6.2 MTRRs Both fixed-size and variable-size address ranges are supported
by the MTRR mechanism. The fixed-size ranges are restricted
to the lower 1 Mbyte of physical-address space, while the
variable-size ranges can be located anywhere in the physical-
address space.

Figure 7-4 on page 218 shows an example mapping of physical
memory using the fixed-size and variable-size MTRRs. The
areas shaded gray are not mapped by the MTRRs. Unmapped
areas are set to the software selected default memory type.

Table 7-4. MTRR Type Field Encodings

Type Value Type Name Type Description

00h UC—Uncacheable All accesses are uncacheable. Write combining is not allowed.
Speculative accesses are not allowed

01h WC—Write-Combining
All accesses are uncacheable. Write combining is allowed. Speculative
reads are allowed

04h WT—Writethrough Reads allocate cache lines on a cache miss. Cache lines are not allocated
on a write miss. Write hits update the cache and main memory.

05h WP—Write-Protect
Reads allocate cache lines on a cache miss. All writes update main
memory. Cache lines are not allocated on a write miss. Write hits
invalidate the cache line and update main memory.

06h WB—Writeback
Reads allocate cache lines on a cache miss, and can allocate to either the
shared, exclusive, or modified state. Writes allocate to the modified state
on a cache miss.

218 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 7-4. MTRR Mapping of Physical Memory

MTRRs are 64-bit model-specific registers (MSRs). They are
read using the RDMSR instruction and written using the
WRMSR instruction. See “Memory-Typing MSRs” on page 438
for a listing of the MTRR MSR numbers. The following sections
describe the types of MTRRs and their function.

Fixed-Range MTRRs. The f ixed- range MTRRs are used to
characterize the first 1 Mbyte of physical memory. Each fixed-
range MTRR contains eight type fields for characterizing a total
of eight memory ranges. Fixed-range MTRRs support extended
type-field encodings as described in “Extended Fixed-Range
MTRR Type-Field Encodings” on page 233. The extended type

513-214.eps

0F_FFFFh
10_0000h

0_FFFF_FFFF_FFFFh

256 Kbytes

256 Kbytes

512 Kbytes

Physical Memory

Up to 8 Variable Ranges

64 4-Kbyte Ranges

16 16-Kbyte Ranges

8 64-Kbyte Ranges

Default (Unmapped) Ranges

00_0000h

Chapter 7: Memory System 219

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

field allows a fixed-range MTRR to be used as a fixed-range
IORR. Figure 7-5 shows the format of a fixed-range MTRR.

Figure 7-5. Fixed-Range MTRR

For the purposes of memory characterization, the first 1 Mbyte
of physical memory is segmented into a total of 88 non-
overlapping memory ranges, as follows:

� The 512 Kbytes of memory spanning addresses 00_0000h to
07_FFFFh are segmented into eight 64-Kbyte ranges. A
single MTRR is used to characterize this address space.

� The 256 Kbytes of memory spanning addresses 08_0000h to
0B_FFFFh are segmented into 16 16-Kbyte ranges. Two
MTRRs are used to characterize this address space.

� The 256 Kbytes of memory spanning addresses 0C_0000h to
0F_FFFFh are segmented into 64 4-Kbyte ranges. Eight
MTRRs are used to characterize this address space.

Table 7-5 on page 220 shows the address ranges corresponding
to the type fields within each fixed-range MTRR. The gray-
shaded heading boxes represent the bit ranges for each type
field in a fixed-range MTTR. See Table 7-4 on page 217 for the
type-field encodings.

63 56 55 48 47 40 39 32

Type Type Type Type

31 24 23 16 15 8 7 0

Type Type Type Type

220 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Variable-Range MTRRs. The variable-range MTRRs can be used to
characterize any address range within the physical-memory
space, including all of physical memory. Up to eight address
ranges of varying sizes can be characterized using the MTRR.
Two variable-range MTRRs are used to characterize each
address range: MTRRphysBasen and MTRRphysMaskn (n is the
address-range number from 0 to 7). For example, address-range
3 i s characteri z ed us ing the MTRRphysBase3 and
MTRRphysMask3 register pair.

Table 7-5. Fixed-Range MTRR Address Ranges

Physical Address Range (in hexadecimal)
Register Name

63–56 55–48 47–40 39–32 31–24 23–16 15–8 7–0

70000–
7FFFF

60000–
6FFFF

50000–
5FFFF

40000–
4FFFF

30000–
3FFFF

20000–
2FFFF

10000–
1FFFF

00000–
0FFFF MTRRfix64K_00000

9C000–
9FFFF

98000–
9BFFF

94000–
97FFF

90000–
93FFF

8C000–
8FFFF

88000–
8BFFF

84000–
87FFF

80000–
83FFF MTRRfix16K_80000

BC000–
BFFFF

B8000–
BBFFF

B4000–
B7FFF

B0000–
B3FFF

AC000–
AFFFF

A8000–
ABFFF

A4000–
A7FFF

A0000–
A3FFF MTRRfix16K_A0000

C7000–
C7FFF

C6000–
C6FFF

C5000–
C5FFF

C4000–
C4FFF

C3000–
C3FFF

C2000–
C2FFF

C1000–
C1FFF

C0000–
C0FFF MTRRfix4K_C0000

CF000–
CFFFF

CE000–
CEFFF

CD000–
CDFFF

CC000–
CCFFF

CB000–
CBFFF

CA000–
CAFFF

C9000–
C9FFF

C8000–
C8FFF MTRRfix4K_C8000

D7000–
D7FFF

D6000–
D6FFF

D5000–
D5FFF

D4000–
D4FFF

D3000–
D3FFF

D2000–
D2FFF

D1000–
D1FFF

D0000–
D0FFF MTRRfix4K_D0000

DF000–
DFFFF

DE000–
DEFFF

DD000–
DDFFF

DC000–
DCFFF

DB000–
DBFFF

DA000–
DAFFF

D9000–
D9FFF

D8000–
D8FFF MTRRfix4K_D8000

E7000–
E7FFF

E6000–
E6FFF

E5000–
E5FFF

E4000–
E4FFF

E3000–
E3FFF

E2000–
E2FFF

E1000–
E1FFF

E0000–
E0FFF MTRRfix4K_E0000

EF000–
EFFFF

EE000–
EEFFF

ED000–
EDFFF

EC000–
ECFFF

EB000–
EBFFF

EA000–
EAFFF

E9000–
E9FFF

E8000–
E8FFF MTRRfix4K_E8000

F7000–
F7FFF

F6000–
F6FFF

F5000–
F5FFF

F4000–
F4FFF

F3000–
F3FFF

F2000–
F2FFF

F1000–F
1FFF

F0000–
F0FFF MTRRfix4K_F0000

FF000–
FFFFF

FE000–
FEFFF

FD000–
FDFFF

FC000–
FCFFF

FB000–
FBFFF

FA000–
FAFFF

F9000–
F9FFF

F8000–
F8FFF MTRRfix4K_F8000

Chapter 7: Memory System 221

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 7-6 shows the format of the MTRRphysBasen register
and Figure 7-7 on page 222 shows the format of the
MTRRphysMaskn register. The fields within the register pair
are read/write.

MTRRphysBasen Registers. The fields in these variable-range
MTRRs, shown in Figure 7-6, are:

� Type—Bits 7–0. The memory type used to characterize the
memory range. See Table 7-4 on page 217 for the type-field
encodings. Variable-range MTRRs do not support the
extended type-field encodings.

� Range Physical Base-Address (PhysBase)—Bits 51–12. The
memory-range base-address in physical-address space.
PhysBase is aligned on a 4-Kbyte (or greater) address in the
52-bit physical-address space supported by the x86-64
architecture. PhysBase represents the most-significant 40-
address bits of the physical address. Physical-address bits
11–0 are assumed to be 0.

Figure 7-6. MTRRphysBasen Register

MTRRphysMaskn Registers. The fields in these variable-range
MTRRs , shown in Figure 7-7 on page 222, are:

� Valid (V)—Bit 11. Indicates that the MTRR pair is valid
(enabled) when set to 1. When the valid bit is cleared to 0
the register pair is not used.

� Range Physical Mask (PhysMask)—Bits 51–12. The mask
value used to specify the memory range. Like PhysBase,
PhysMask is aligned on a 4-Kbyte physical-address
boundary. Bits 11–0 of PhysMask are assumed to be 0.

63 52 51 32

reserved, MBZ PhysBase

31 12 11 8 7 0

PhysBase reserved, MBZ Type

Bits Mnemonic Description R/W
63-52 reserved Reserved, Must be Zero
51-12 PhysBase Range Physical Base Address R/W
11-8 reserved Reserved, Must be Zero
7-0 Type Default Memory Type R/W

222 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 7-7. MTRRphysMaskn Register

PhysMask and PhysBase are used together to determine
whether a target physical-address falls within the specified
address range. PhysMask is logically ANDed with PhysBase and
separately ANDed with the upper 40 bits of the target physical-
address. If the results of the two operations are identical, the
target physical-address falls within the specified memory
range. The pseudo-code for the operation is:

MaskBase = PhysMask AND PhysBase
MaskTarget = PhysMask AND Target_Address[51:12]
if MaskBase = MaskTarget

then Target_Address_In_Range
else Target_Address_Not_In_Range

Variable Range Size and Alignment. The s i ze and a l ignment of
variable memory-ranges (MTRRs) and I/O ranges (IORRs) are
restricted as follows:

� The boundary on which a variable range is aligned must be
equal to the range size. For example, a memory range of 16
Mbytes must be aligned on a 16-Mbyte boundary.

� The range size must be a power of 2 (2n, 52 > n > 11), with a
minimum allowable size of 4 Kbytes. For example, 4 Mbytes
and 8 Mbytes are allowable memory range sizes, but
6 Mbytes is not allowable.

PhysMask and PhysBase Values. Software can calculate the
PhysMask value using the following procedure:

1. Subtract the memory-range physical base-address from the
upper physical-address of the memory range.

63 52 51 32

reserved, MBZ PhysMask

31 12 11 10 0

PhysMask V reserved, MBZ

Bits Mnemonic Description R/W
63-52 reserved Reserved, Must be Zero
51-12 PhysMask Range Physical Mask R/W
11 V MTRR Pair Enable (Valid) R/W
10-0 reserved Reserved, Must be Zero

Chapter 7: Memory System 223

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

2. Subtract the value calculated in Step 1 from the physical
memory size.

3. Truncate the lower 12 bits of the result in Step 2 to create
the PhysMask value to be loaded into the MTRRphysMaskn
register. Truncation is performed by right-shifting the value
12 bits.

For example, assume a 32-Mbyte memory range is specified
within the 52-bit physical address space, starting at address
200_0000h. The upper address of the range is 3FF_FFFFh.
Following the process outlined above yields:

1. 3FF_FFFFh–200_0000h = 1FF_FFFFh

2. F_FFFF_FFFF_FFFF–1FF_FFFFh = F_FFFF_FE00_0000h

3. Right shift (F_FFFF_FE00_0000h) by 12 = FF_FFFF_E000h

In this example, the 40-bit value loaded into the PhysMask field
is FF_FFFF_E000h.

Software must also truncate the lower 12 bits of the physical
base-address before loading it into the PhysBase field. In the
example above, the 40-bit PhysBase field is 00_0000_2000h.

Default-Range MTRRs. Physical addresses that are not within
ranges established by fixed-range and variable-range MTRRs
are set to a default memory-type using the MTRRdefType
register. The format of this register is shown in Figure 7-8.

Figure 7-8. MTRR defType Register Format

63 32

reserved, MBZ

31 12 11 10 9 8 7 0

reserved, MBZ E F
E

reserved,
MBZ Type

Bits Mnemonic Description R/W
63-12 reserved Reserved, Must be Zero
11 E MTRR Enable R/W
10 FE Fixed Range Enable R/W
9-8 reserved Reserved, Must be Zero
7-0 Type Default Memory Type R/W

224 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

The fields within the MTRRdefType register are read/write.
These fields are:

� Type—Bits 7–0. The default memory-type used to
characterize physical-memory space. See Table 7-4 on
page 217 for the type-field encodings. The extended type-
field encodings are not supported by this register.

� Fixed-Range Enable (FE)—Bit 10. All fixed-range MTRRs are
enabled when FE is set to 1. Clearing FE to 0 disables all
fixed-range MTRRs. Setting and clearing FE has no effect
on the variable-range MTRRs. The FE bit has no effect
unless the E bit is set to 1 (see below).

� MTRR Enable (E)—Bit 11. This is the MTRR enable bit. All
fixed-range and variable-range MTRRs are enabled when E
is set to 1. Clearing E to 0 disables all fixed-range and
variable-range MTRRs and sets the default memory-type to
uncacheable (UC) regardless of the value of the Type field.

7.6.3 Using MTRRs Identifying MTRR Features. Software determines whether a
processor supports the MTRR mechanism by executing the
CPUID instruction with either standard-function 1 or extended-
function 8000_0001h. If MTRRs are supported, bit 12 in the
EDX register is set to 1 by CPUID. See “Processor Feature
Identification” on page 75 for more information on the CPUID
instruction.

The MTRR capability register (MTRRcap) is a read-only
register containing information describing the level of MTRR
support provided by the processor. Figure 7-9 on page 225
shows the format of this register. If MTRRs are supported,
software can read MTRRcap using the RDMSR instruction.
Attempting to write to the MTRRcap register causes a general-
protection exception (#GP).

Chapter 7: Memory System 225

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 7-9. MTRR Capability Register Format

The MTRRcap register field are:

� Variable-Range Register Count (VCNT)—Bits 7–0. The VCNT
field contains the number of variable-range register pairs
supported by the processor. For example, a processor
supporting eight register pairs returns a 08h in this field.

� Fixed-Range Registers (FIX)—Bit 8. The FIX bit indicates
whether or not the fixed-range registers are supported. If
the processor returns a 1 in this bit, all fixed-range registers
are supported. If the processor returns a 0 in this bit, no
fixed-range registers are supported.

� Write-Combining (WC)—Bit 10. The WC bit indicates
whether or not the write-combining memory type is
supported. If the processor returns a 1 in this bit, WC
memory is supported, otherwise it is not supported.

7.6.4 MTRRs and Page
Cache Controls

When paging and the MTRRs are both enabled, the address
ranges defined by the MTRR registers can span multiple pages,
each of which can characterize memory with different types
(using the PCD and PWT page bits). When caching is enabled
(CR0.CD=0 and CR0.NW=0), the effective memory-type is
determined as follows:

1. If the page is defined as cacheable and writeback (PCD=0
and PWT=0), then the MTRR defines the effective memory-
type.

2. If the page is defined as not cacheable (PCD=1), then UC is
the effective memory-type.

63 32

reserved

31 11 10 9 8 7 0

reserved W
C

r
F
I
X

VCNT

Bits Mnemonic Description R/W
63-11 reserved Reserved
10 WC Write Combining R
9 reserved Reserved
8 FIX Fixed-Range Registers R
7-0 VCNT Variable-Range Register Count R

226 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

3. If the page is defined as cacheable and writethrough
(PCD=0 and PWT=1), then the MTRR defines the effective
memory-type unless the MTRR specifies WB memory, in
which case WT is the effective memory-type.

Table 7-6 lists the MTRR and page-level cache-control
combinations and their combined effect on the final memory-
type, if the PAT register holds the default settings.

Large Page Sizes. When paging is enabled, software can use large
page sizes (2 Mbytes and 4 Mbytes) in addition to the more
typical 4-Kbyte page size. When large page sizes are used, it is
possible for multiple MTRRs to span the memory range within a
single large page. Each MTRR can characterize the regions
within the page with different memory types. If this occurs, the
effective memory-type used by the processor within the large
page is undefined.

Table 7-6. Combined MTRR and Page-Level Memory Type with Unmodified
PAT MSR

MTRR
Memory Type

Page
PCD Bit

Page
PWT Bit

Effective
Memory-Type

UC — — UC

WC

0 — WC

1 0 WC1

1 1 UC

WP
0 — WP

1 — UC

WT
0 — WT

1 — UC

WB

0 0 WB

0 1 WT

1 — UC

Note:
1. The effective memory-type resulting from the combination of PCD=1, PWT=0 and an MTRR

WC memory type is implementation dependent.

Chapter 7: Memory System 227

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Software can avoid the undefined behavior in one of the
following ways:

� Avoid using multiple MTRRs to characterize a single large
page.

� Use multiple 4-Kbyte pages rather than a single large page.

� If multiple MTRRs must be used within a single large page,
software can set the MTRR type fields to the same value.

� If the multiple MTRRs must have different type-field values,
software can set the large page PCD and PWT bits to the
most restrictive memory type defined by the multiple
MTRRs.

Overlapping MTRR Registers. If the address ranges of two or more
MTRRs overlap, the following rules are applied to determine
the memory type used to characterize the overlapping address
range:

1. Fixed-range MTRRs, which characterize only the first 1
Mbyte of physical memory, have precedence over variable-
range MTRRs.

2. If two or more variable-range MTRRs overlap, the following
rules apply:

A. If the memory types are identical, then that memory type
is used.

B. If at least one of the memory types is UC, the UC memory
type is used.

C. If at least one of the memory types is WT, and the only
other memory type is WB, then the WT memory type is
used.

D. If the combination of memory types is not listed Steps 1
through 3 immediately above, then the memory type
used is undefined.

7.6.5 MTRRs in Multi-
Processing
Environments

In multi-processing environments, the MTRRs located in all
processors must characterize memory in the same way.
Generally, this means identical values are written to the
MTRRs used by the processors. Processor implementations do
not check the MTRR settings in other processors to ensure
consistency. It is the responsibility of system software to
initialize and maintain MTRR consistency across all processors.

228 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

7.7 Page-Attribute Table Mechanism

The page-attribute table (PAT) mechanism extends the page-
table entry format and enhances the capabilities provided by
the PCD and PWT page-level cache controls. PAT (and PCD,
PWT) allow memory-type characterization based on the virtual
(linear) address. The PAT mechanism provides the same
memory-typing capabilities as the MTRRs but with the added
flexibility of the paging mechanism. Software can use both the
PAT and MTRR mechanisms to maximize flexibility in memory-
type control.

7.7.1 PAT Register Like the MTRRs, the PAT register is a 64-bit model-specific
register (MSR). The format of the PAT registers is shown in
Figure 7-10. See “Memory-Typing MSRs” on page 438 for more
information on the PAT MSR number and reset value.

Figure 7-10. PAT Register

The PAT register contains eight page-attribute (PA) fields,
numbered from PA0 to PA7. The PA fields hold the encoding of
a memory type, as found in Table 7-7 on page 229. The PAT
type-encodings match the MTRR type-encodings, with the
exception that PAT adds the 07h encoding. The 07h encoding
corresponds to a UC- type. The UC- type (07h) is identical to the
UC type (00h) except it can be overridden by an MTRR type of
WC.

Software can write any supported memory-type encoding into
any of the eight PA fields. An attempt to write anything but
zeros into the reserved fields causes a general-protection
exception (#GP). An attempt to write an unsupported type
encoding into a PA field also causes a #GP exception.

The PAT register fields are initiated at processor reset to the
default values shown in Table 7-8 on page 230.

63 59 58 56 55 51 50 48 47 43 42 40 41 35 34 32

reserved PA7 reserved PA6 reserved PA5 reserved PA4

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0

reserved PA3 reserved PA2 reserved PA1 reserved PA0

Chapter 7: Memory System 229

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

7.7.2 PAT Indexing PA fields in the PAT register are selected using three bits from
the page-table entries. These bits are:

� PAT (page attribute table)—The PAT bit is bit 7 in 4-Kbyte
PTEs; it is bit 12 in 2-Mbyte and 4-Mbyte PDEs. Page-table
entries that don’t have a PAT bit (PML4 entries, for
example) assume PAT = 0.

� PCD (page cache disable)—The PCD bit is bit 4 in all page-
table entries. The PCD from the PTE or PDE is selected
depending on the paging mode.

� PWT (page writethrough)—The PWT bit is bit 3 in all page-
table entries. The PWT from the PTE or PDE is selected
depending on the paging mode.

Table 7-8 on page 230 shows the various combinations of the
PAT, PCD, and PWT bits used to select a PA field within the PAT
register. Table 7-8 also shows the default memory-type values
established in the PAT register by the processor after a reset.
The default values correspond to the memory types established
by the PCD and PWT bits alone in processor implementations
that do not support the PAT mechanism. In such

Table 7-7. PAT Type Encodings

Type Value Type Name Type Description

00h UC—Uncacheable All accesses are uncacheable. Write combining is not allowed.
Speculative accesses are not allowed.

01h WC—Write-Combining
All accesses are uncacheable. Write combining is allowed. Speculative
reads are allowed.

04h WT—Writethrough
Reads allocate cache lines on a cache miss, but only to the shared state.
Cache lines are not allocated on a write miss. Write hits update the cache
and main memory.

05h WP—Write-Protect
Reads allocate cache lines on a cache miss, but only to the shared state.
All writes update main memory. Cache lines are not allocated on a write
miss. Write hits invalidate the cache line and update main memory.

06h WB—Writeback
Reads allocate cache lines on a cache miss, and can allocate to either the
shared or exclusive state. Writes allocate to the modified state on a cache
miss.

07h UC-
(UC minus)

All accesses are uncacheable. Write combining is not allowed.
Speculative accesses are not allowed. Can be overridden by an MTRR
with the WC type.

230 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

implementations, the PAT field in page-table entries is reserved
and cleared to 0. See “Page-Translation-Table Entry Fields” on
page 166 for more information on the page-table entries.

7.7.3 Identifying PAT
Support

Software determines whether a processor supports the PAT
mechanism by executing the CPUID instruction with either
standard-function 1 or extended-function 8000_0001h. If PAT is
supported, bit 16 in the EDX register is set to 1 by CPUID. See
“Processor Feature Identification” on page 75 for more
information on the CPUID instruction.

If PAT is supported by a processor implementation, it is always
enabled. The PAT mechanism cannot be disabled by software.
Software can effectively avoid using PAT by:

� Not setting PAT bits in page-table entries to 1.

� Not modifying the reset values of the PA fields in the PAT
register.

In this case, memory is characterized using the same types that
are used by implementations that do not support PAT.

7.7.4 PAT Accesses In implementations that support the PAT mechanism, all
memory accesses that are translated through the paging
mechanism use the PAT index bits to specify a PA field in the

Table 7-8. PAT-Register PA-Field Indexing

Page-Table Entry Bits PAT Register
Field

Default
Memory TypePAT PCD PWT

0 0 0 PA0 WB

0 0 1 PA1 WT

0 1 0 PA2 UC-1

0 1 1 PA3 UC

1 0 0 PA4 WB

1 0 1 PA5 WT

1 1 0 PA6 UC-1

1 1 1 PA7 UC

Note:
1. Can be overridden by WC memory type set by an MTRR.

Chapter 7: Memory System 231

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

PAT register. The memory type stored in the specified PA field
is applied to the memory access. The process is summarized as:

1. A virtual address is calculated as a result of a memory
access.

2. The virtual address is translated to a physical address using
the page-translation mechanism.

3. The PAT, PCD and PWT bits are read from the
corresponding page-table entry during the virtual-address
to physical-address translation.

4. The PAT, PCD and PWT bits are used to select a PA field
from the PAT register.

5. The memory type is read from the appropriate PA field.

6. The memory type is applied to the physical-memory access
using the translated physical address.

Page-Translation Table Access. The PAT bit exists only in the PTE (4-
K paging) or PDEs (2/4 Mbyte paging). In the remaining upper
levels (PML4 PDP, 4K PDEs), only the PWT and PCD bits are
used to index into the first 4 entries in the PAT register. The
resulting memory type is used for the next lower paging level.

7.7.5 Combined Effect
of MTRRs and PAT

The memory types established by the PAT mechanism can be
combined with MTRR-established memory types to form an
effective memory-type. The combined effect of MTRR and PAT
memory types are shown in Table 7-9 on page 232. In the x86-64
architecture, reserved and undefined combinations of MTRR
and PAT memory types result in undefined behavior. If the
MTRRs are disabled in implementations that support the
MTRR mechanism, the default memory type is set to
uncacheable (UC).

232 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

7.8 Memory-Mapped I/O

Processor implementations can independently direct reads and
writes to either system memory or memory-mapped I/O. The
method used for directing those memory accesses is
implementation dependent. In some implementations, separate
system-memory and memory-mapped I/O buses can be provided
at the processor interface. In other implementations, system

Table 7-9. Combined Effect of MTRR and PAT Memory Types

PAT Memory Type MTRR Memory Type Effective Memory Type

UC UC, WC, WP, WT, WB UC

UC-

UC UC

WC WC

WP, WT, WB UC1

WC — WC

WP

UC UC

WC UC1

WP WP

WT UC1

WB WP

WT

UC UC

WC, WP UC1

WT, WB WT

WB

UC UC

WC WC

WP WP

WT WT

WB WB

Note:
1. Previously reserved (undefined) combinations are set to the UC memory type by the x86-64

architecture.

Chapter 7: Memory System 233

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

memory and memory-mapped I/O share common data and
address buses, and system logic uses sideband signals from the
processor to route accesses appropriately. Refer to AMD data
sheets and application notes for more information about
part icular hardware implementat ions of the x86 -64
architecture.

The I/O range registers (IORRs), and the top-of-memory
registers allow system software to specify where memory
accesses are directed for a given address range. The MTRR
extensions are described in the following section. “IORRs” on
page 235 describes the IORRs and “Top of Memory” on
page 237 descr ibes the top -of -memory registers . In
implementations that support these features, the default action
taken when the features are disabled is to direct memory accesses to
memory-mapped I/O.

7.8.1 Extended Fixed-
Range MTRR Type-
Field Encodings

The fixed-range MTRRs support extensions to the type-field
encodings that allow system software to direct memory accesses
to system memory or memory-mapped I/O. The extended MTRR
type-field encodings use previously reserved bits 4–3 to specify
whether reads and writes to a physical-address range are to
system memory or to memory-mapped I/O. The format for this
encoding is shown in Figure 7-11. The new bits are:

� WrMem—Bit 3. When set to 1, the processor directs write
requests for this physical address range to system memory.
When cleared to 0, writes are directed to memory-mapped
I/O.

� RdMem—Bit 4. When set to 1, the processor directs read
requests for this physical address range to system memory.
When cleared to 0, reads are directed to memory-mapped
I/O.

The type subfield (bits 2–0) allows the encodings specified in
Table 7-4 on page 217 to be used for memory characterization.

Figure 7-11. Extended MTRR Type-Field Format (Fixed-Range MTRRs)

7 5 4 3 2 0

reserved RdMem WrMem Type

234 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

These extensions are enabled using the following bits in the
SYSCFG MSR:

� MtrrFixDramEn—Bit 18. When set to 1, RdMem and WrMem
attributes are enabled. When cleared to 0, these attributes
are disabled. When disabled, accesses are directed to memory-
mapped I/O space.

� MtrrFixDramModEn—Bit 19. When set to 1, software can
read and write the RdMem and WrMem bits. When cleared
to 0, writes do not modify the RdMem and WrMem bits, and
reads return 0.

To use the MTRR extensions, system software must first set
MtrrFixDramModEn=1 to allow modification to the RdMem
and WrMem bits. After the attribute bits are properly
initialized in the fixed-range registers, the extensions can be
enabled by setting MtrrFixDramEn=1.

RdMem and WrMem allow the processor to independently
direct reads and writes to either system memory or memory-
mapped I/O. The RdMem and WrMem controls are particularly
useful when shadowing ROM devices located in memory-
mapped I/O space. It is often useful to shadow such devices in
RAM system memory to improve access performance, but
writes into the RAM location can corrupt the shadowed ROM
information. The MTRR extensions solve this problem. System
software can create the shadow location by setting WrMem=1
and RdMem=0 for the specified memory range and then copy
the ROM location into itself. Reads are directed to the memory-
mapped ROM, but writes go to the same physical addresses in
system memory. After the copy is complete, system software
can change the bit values to WrMem=0 and RdMem=1. Now
reads are directed to the faster copy located in system memory,
and writes are directed to memory-mapped ROM. The ROM
responds as it would normally to a write, which is to ignore it.

Not all combinations of RdMem and WrMem are supported for
each memory type encoded by bits 2–0. Table 7-10 on page 235
shows the allowable combinations. The behavior of reserved
encoding combinations (shown as gray-shaded cells) is
undefined and results in unpredictable behavior.

Chapter 7: Memory System 235

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

7.8.2 IORRs The IORRs operate similarly to the variable-range MTRRs. The
IORRs specify whether reads and writes in any physical-
address range map to system memory or memory-mapped I/O.
Up to two address ranges of varying sizes can be controlled
using the IORRs. A pair of IORRs are used to control each
address range: IORRBasen and IORRMaskn (n is the address-
range number from 0 to 1).

Table 7-10. Extended Fixed-Range MTRR Type Encodings

RdMem WrMem Type Implication or Potential Use

0 0

0 (UC) UC I/O

1 (WC) WC I/O

4 (WT) WT I/O

5 (WP) WP I/O

6 (WB) reserved

0 1

0 (UC)
Used while creating a shadowed ROM

1 (WC)

4 (WT)

reserved5 (WP)

6 (WB)

1 0

0 (UC) Used to access a shadowed ROM

1 (WC) reserved

4 (WT) WP Memory
(Can be used to access shadowed ROM)5 (WP)

6 (WB) reserved

1 1

0 (UC) UC Memory

1 (WC) WC Memory

4 (WT) WT Memory

5 (WP) reserved

6 (WB) WB Memory

236 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 7-12 on page 236 shows the format of the IORRBasen
registers and Figure 7-13 on page 237 shows the format of the
IORRMaskn registers. The fields within the register pair are
read/write.

IORRBasen Registers. The fields in these IORRs are:

� WrMem—Bit 3. When set to 1, the processor directs write
requests for this physical address range to system memory.
When cleared to 0, writes are directed to memory-mapped
I/O.

� RdMem—Bit 4. When set to 1, the processor directs read
requests for this physical address range to system memory.
When cleared to 0, reads are directed to memory-mapped
I/O.

� Range Physical-Base-Address (PhysBase)—Bits 51–12. The
memory-range base-address in physical-address space.
PhysBase is aligned on a 4-Kbyte (or greater) address in the
52-bit physical-address space supported by the x86-64
architecture. PhysBase represents the most-significant 40-
address bits of the physical address. Physical-address bits
11–0 are assumed to be 0.

The format of these registers is shown in Figure 7-12.

Figure 7-12. IORRBasen Register

IORRMaskn Registers. The fields in these IORRs are:

� Valid (V)—Bit 11. Indicates that the IORR pair is valid
(enabled) when set to 1. When the valid bit is cleared to 0

63 52 51 32

reserved, MBZ PhysBase

31 12 11 5 4 3 0

PhysBase reserved, MBZ R
d

W
r

reserved,
MBZ

Bits Mnemonic Description R/W
63-52 reserved Reserved, Must be Zero
51-12 PhysBase Range Physical Base Address R/W
11-5 reserved Reserved, Must be Zero
4 Rd RdMem Enable R/W
3 Wr WrMem Enable R/W
2-0 reserved Reserved, Must be Zero

Chapter 7: Memory System 237

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

the register pair is not used for memory-mapped I/O control
(disabled).

� Range Physical-Mask (PhysMask)—Bits 51–12. The mask
value used to specify the memory range. Like PhysBase,
PhysMask is aligned on a 4-Kbyte physical-address
boundary. Bits 11–0 of PhysMask are assumed to be 0.

The format of these registers is shown in Figure 7-13.

Figure 7-13. IORRMaskn Register

The operation of the PhysMask and PhysBase fields is identical
to that of the variable-range MTRRs. See page 222 for a
description of this operation.

7.8.3 IORR
Overlapping

The use of overlapping IORRs is not recommended. If
overlapping IORRs are specified, the resulting behavior is
implementation-dependent.

7.8.4 Top of Memory The top-of-memory registers, TOP_MEM and TOP_MEM2, allow
system software to specify physical addresses ranges as
memory-mapped I/O locations. Processor implementations can
direct accesses to memory-mapped I/O differently than system
I/O, and the precise method depends on the implementation.
System software specifies memory-mapped I/O regions by
writing an address into each of the top-of-memory registers. The
memory regions specified by the TOP_MEM registers are
aligned on 8-Mbyte boundaries as follows:

� Memory accesses from physical address 0 to one less than
the value in TOP_MEM are directed to system memory.

63 52 51 32

reserved, MBZ PhysMask

31 12 11 10 0

PhysMask V reserved, MBZ

Bits Mnemonic Description R/W
63-52 reserved Reserved, Must be Zero
51-12 PhysMask Range Physical Mask R/W
11 V I/O Register Pair Enable (Valid) R/W
10-0 reserved Reserved, Must be Zero

238 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Memory accesses from the physical address specified in
TOP_MEM to FFFF_FFFFh are directed to memory-mapped
I/O.

� Memory accesses from physical address 1_0000_0000h to
one less than the value in TOP_MEM2 are directed to system
memory.

� Memory accesses from the physical address specified in
TOP_MEM2 to the maximum physical address supported by
the system are directed to memory-mapped I/O.

Figure 7-14 shows how the top-of-memory registers organize
memory into separate system-memory and memory-mapped I/O
regions.

Figure 7-14. Memory Organization Using Top-of-Memory Registers

Figure 7-15 on page 239 shows the format of the TOP_MEM and
TOP_MEM2 registers. Bits 51–23 specify an 8-Mbyte aligned
physical address. All remaining bits are reserved and ignored
by the processor. System software should clear those bits to zero
to maintain compatibility with possible future extensions to the
registers. The TOP_MEM registers are model-specific registers.
See “Memory-Typing MSRs” on page 438 for information on the
MSR address and reset values for these registers.

513-269.eps

Physical Memory

TOP_MEM

Memory-Mapped
I/O

System Memory

Memory-Mapped
I/O

System Memory

TOP_MEM - 1

TOP_MEM2
TOP_MEM2 - 1

0

4GB - 1
4GB

Maximum System Memory

Chapter 7: Memory System 239

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM2)

The TOP_MEM regis ter is enabled by set t ing the
MtrrVarDramEn bit in the SYSCFG MSR (bit 20) to 1. The
TOP_MEM2 register is enabled by setting the MtrrTom2En bit
in the SYSCFG MSR (bit 21) to 1. The registers are disabled
when their respective enable bits are cleared to 0. When the
top-of-memory registers are disabled, memory accesses default
to memory-mapped I/O space.

63 52 51 32

reserved, IGN Top-of-Memory Physical Address

31 23 22 0

Top-of-Memory Physical Address reserved, IGN

240 Chapter 7: Memory System

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Chapter 8: Exceptions and Interrupts 241

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

8 Exceptions and Interrupts

8.1 Overview

Exceptions and interrupts force control transfers from the
currently-executing program to a system-software service
routine that handles the interrupting event. These routines are
referred to as exception handlers and interrupt handlers, or
collectively as event handlers. Typically, interrupt events can be
handled by the service routine transparently to the interrupted
program. During the control transfer to the service routine, the
processor stops executing the interrupted program and saves its
return pointer. The system-software service routine that
handles the exception or interrupt is responsible for saving the
state of the interrupted program. This allows the processor to
restart the interrupted program after system software has
handled the event.

When an exception or interrupt occurs, the processor uses the
interrupt-vector number as an index into the interrupt-
descriptor table (IDT). An IDT is used in all processor operating
modes, including real mode (also called real-address mode),
protected mode, and long mode.

Exceptions and interrupts come from three general sources:

� Exceptions occur as a result of software execution errors or
other internal-processor errors. Exceptions also occur
during non-error situations, such as program single stepping
or address-breakpoint detection. Exceptions are considered
synchronous events because they are a direct result of
executing the interrupted instruction.

� Software interrupts occur as a result of executing interrupt
instructions. Unlike exceptions and external interrupts,
software interrupts allow intentional triggering of the
interrupt-handling mechanism. Like exceptions, software
interrupts are synchronous events.

� External interrupts are generated by system logic in response
to an error or some other event outside the processor. They
are reported over the processor bus using external
signalling. External interrupts are asynchronous events that
occur independently of the interrupted instruction.

242 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Throughout this section, the term masking can refer to either
disabling or delaying an interrupt. For example, masking
external interrupts delays the interrupt, with the processor
holding the interrupt as pending until it is unmasked. With
floating-point exceptions (128-bit media and x87), masking
prevents an interrupt from occurring and causes the processor
to perform a default operation on the exception condition.

8.2 General Characteristics

Exceptions and interrupts have several different characteristics
that depend on how events are reported and the implications
for program restart.

8.2.1 Precision Precision describes how the exception is related to the
interrupted program:

� Precise exceptions are reported on a predictable instruction
boundary. This boundary is generally the first instruction
that has not completed when the event occurs. All previous
instructions (in program order) are allowed to complete
before transferring control to the event handler. The pointer
to the instruction boundary is saved automatically by the
processor. When the event handler completes execution, it
returns to the interrupted program and restarts execution at
the interrupted-instruction boundary.

� Imprecise exceptions are not guaranteed to be reported on a
predictable instruction boundary. The boundary can be any
instruction that has not completed when the interrupt event
occurs. Imprecise events can be considered asynchronous,
because the source of the interrupt is not necessarily related
to the interrupted instruction. Imprecise exception and
interrupt handlers typically collect machine-state
information related to the interrupting event for reporting
through system-diagnostic software. The interrupted
program is not restartable.

8.2.2 Instruction
Restart

As mentioned above, precise exceptions are reported on an
instruction boundary. The instruction boundary can be reported
in one of two locations:

� Most exceptions report the boundary before the instruction
causing the exception. In this case, all previous instructions
(in program order) are allowed to complete, but the

Chapter 8: Exceptions and Interrupts 243

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

interrupted instruction is not. No program state is updated as
a result of partially executing an interrupted instruction.

� Some exceptions report the boundary after the instruction
causing the exception. In this case, all previous
instructions—including the one executing when the
exception occurred—are allowed to complete.

Program state can be updated when the reported boundary
is after the instruction causing the exception. This is
particularly true when the event occurs as a result of a task
switch. In this case, the general registers, segment-selector
registers, page-base address register, and LDTR are all
updated by the hardware task-switch mechanism. The event
handler cannot rely on the state of those registers when it
begins execution and must be careful in validating the state
of the segment-selector registers before restarting the
interrupted task. This is not an issue in long mode, however,
because the hardware task-switch mechanism is disabled in
long mode.

8.2.3 Types of
Exceptions

There are three types of exceptions, depending on whether they
are precise and how they affect program restart:

� Faults are precise exceptions reported on the boundary
before the instruction causing the exception. Generally,
faults are caused by an error condition involving the faulted
instruction. Any machine-state changes caused by the
faulting instruction are discarded so that the instruction can
be restarted. The saved rIP points to the faulting instruction.

� Traps are precise exceptions reported on the boundary
following the instruction causing the exception. The trapped
instruction is completed by the processor and all state
changes are saved. The saved rIP points to the instruction
following the faulting instruction.

� Aborts are imprecise exceptions. Because they are imprecise,
aborts typically do not allow reliable program restart.

8.2.4 Masking
External Interrupts

General Masking Capabilities. Software can mask the occurrence of
certain exceptions and interrupts. Masking can delay or even
prevent triggering of the exception-handling or interrupt-
handling mechanism when an interrupt-event occurs. External
interrupts are classified as maskable or nonmaskable:

� Maskable interrupts trigger the interrupt-handling
mechanism only when RFLAGS.IF=1. Otherwise they are

244 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

held pending for as long as the RFLAGS.IF bit is cleared to
0.

� Nonmaskable interrupts (NMI) are unaffected by the value of
the rFLAGS.IF bit. However, the occurrence of an NMI
masks further NMIs until an IRET instruction is executed.

Masking During Stack Switches. The processor delays recognition of
maskable external interrupts and debug exceptions during
certain instruction sequences that are often used by software to
switch stacks. The typical programming sequence used to
switch stacks is:

1. Load a stack selector into the SS register.

2. Load a stack offset into the ESP register.

If an interrupting event occurs after the selector is loaded but
before the stack offset is loaded, the interrupted-program stack
pointer is invalid during execution of the interrupt handler.

To prevent interrupts from causing stack-pointer problems, the
processor does not allow external interrupts or debug
exceptions to occur until the instruction immediately following
the MOV SS or POP SS instruction completes execution.

The recommended method of performing this sequence is to
use the LSS instruction. LSS loads both SS and ESP, and the
instruction inhibits interrupts until both registers are updated
successfully.

8.2.5 Masking
Floating-Point and
Media Instructions

x87 floating-point exceptions can be masked and reported later
using bits in the x87 floating-point status register (FSW) and
the x87 floating-point control register (FCW). The floating-
point exception-pending exception is used for unmasked x87
floating-point exceptions (see “#MF—x87 Floating-Point
Exception-Pending (Vector 16)” on page 260).

The SIMD floating-point exception is used for unmasked 128-bit
media floating-point exceptions (see “#XF—SIMD Floating-
Point Exception (Vector 19)” on page 263). 128-bit media
floating-point exceptions are masked using the MXCSR
register. The exception mechanism is not triggered when these
exceptions are masked. Instead, the processor handles the
exceptions in a default manner.

8.2.6 Disabling
Exceptions

Disabling an exception prevents the exception condition from
being recognized, unlike masking an exception which prevents

Chapter 8: Exceptions and Interrupts 245

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

triggering the exception mechanism after the exception is
recognized. Some exceptions can be disabled by system
software running at CPL=0, using bits in the CR0 register or
CR4 register:

� Alignment-check exception (see “#AC—Alignment-Check
Exception (Vector 17)” on page 261).

� Device-not-available exception (see “#NM—Device-Not-
Available Exception (Vector 7)” on page 252).

� Machine-check exception (see “#MC—Machine-Check
Exception (Vector 18)” on page 262).

The debug-exception mechanism provides control over when
speci fic breakpoints are enabled and disabled. See
“Breakpoints” on page 392 for more information on how
breakpoint controls are used for triggering the debug-exception
mechanism.

8.3 Vectors

Specific exception and interrupt sources are assigned a fixed
vector-identification number (also called an “interrupt vector”,
or simply “vector”). The interrupt vector is used by the
interrupt-handling mechanism to locate the system-software
service routine assigned to the exception or interrupt. Up to
256 unique interrupt vectors are available. The first 32 vectors
are reserved for predefined exception and interrupt conditions.
Software-interrupt sources can trigger an interrupt using any
available interrupt vector.

Table 8-1 on page 246 lists the supported interrupt-vector
numbers, the corresponding exception or interrupt name, the
mnemonic, the source of the interrupt event, and a summary of
the possible causes.

246 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Table 8-2 on page 247 shows how each interrupt vector is
classified. Reserved interrupt vectors are indicated by the gray-
shaded rows.

Table 8-1. Interrupt-Vector Source and Cause

Vector Exception/Interrupt Mnemonic Cause

0 Divide-By-Zero-Error #DE DIV, IDIV instructions

1 Debug #DB Instruction accesses and data accesses

2 Non-Maskable-Interrupt — External NMI signal

3 Breakpoint #BP INT3 instruction

4 Overflow #OF INTO instruction

5 Bound-Range #BR BOUND instruction

6 Invalid-Opcode #UD Invalid instructions

7 Device-Not-Available #NM x87 instructions

8 Double-Fault #DF Exception during the handling of another exception
or interrupt

9 Coprocessor-Segment-Overrun — Unsupported (reserved)

10 Invalid-TSS #TS Task-state segment access and task switch

11 Segment-Not-Present #NP Segment register loads

12 Stack #SS SS register loads and stack references

13 General-Protection #GP Memory accesses and protection checks

14 Page-Fault #PF Memory accesses when paging enabled

15 reserved —

16
x87 Floating-Point Exception-
Pending #MF x87 floating-point instructions

17 Alignment-Check #AC Misaligned memory accesses

18 Machine-Check #MC Model specific

19 SIMD Floating-Point #XF 128-bit media floating-point instructions

20—31 reserved —

0—255 External Interrupts (Maskable) — External interrupts

0—255 Software Interrupts — INTn instruction

Chapter 8: Exceptions and Interrupts 247

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Table 8-2. Interrupt-Vector Classification

Vector Interrupt (Exception) Type Precise Class2

0 Divide-By-Zero-Error Fault
yes

Contributory

1 Debug Fault or Trap

Benign

2 Non-Maskable-Interrupt — —

3 Breakpoint
Trap

yes

4 Overflow

5 Bound-Range

Fault6 Invalid-Opcode

7 Device-Not-Available

8 Double-Fault Abort no

9 Coprocessor-Segment-Overrun

10 Invalid-TSS

Fault yes

Contributory
11 Segment-Not-Present

12 Stack

13 General-Protection

14 Page-Fault Benign or
Contributory

15 reserved

16 x87 Floating-Point Exception-
Pending Fault

no

Benign17 Alignment-Check yes

18 Machine-Check Abort no

19 SIMD Floating-Point Fault yes

Note:
1. External interrupts are not classified by type or whether or not they are precise.
2. See “#DF—Double-Fault Exception (Vector 8)” on page 252 for a definition of benign and contributory

classes.

248 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

The following sections describe each interrupt in detail. The
format of the error code reported by each interrupt is described
in “Error Codes” on page 265.

8.3.1 #DE—Divide-By-
Zero-Error Exception
(Vector 0)

A #DE exception occurs when the denominator of a DIV
instruction or an IDIV instruction is 0. A #DE also occurs if the
result is too large to be represented in the destination.

#DE cannot be disabled.

Error Code Returned. None.

Program Restart. #DE is a fault-type exception. The saved
instruction pointer points to the instruction that caused the
#DE.

8.3.2 #DB—Debug
Exception (Vector 1)

When the debug-exception mechanism is enabled, a #DB
exception can occur under any of the following circumstances:

� Instruction execution.

� Instruction single stepping.

� Data read.

� Data write.

� I/O read.

� I/O write.

� Task switch.

� Debug-register access, or general detect fault (debug register
access when DR7.GD=1).

� Executing the INT1 instruction (opcode 0F1h).

20—31 reserved

0—255 External Interrupts (Maskable)
—1 —1 Benign

0—255 Software Interrupts

Table 8-2. Interrupt-Vector Classification (continued)

Vector Interrupt (Exception) Type Precise Class2

Note:
1. External interrupts are not classified by type or whether or not they are precise.
2. See “#DF—Double-Fault Exception (Vector 8)” on page 252 for a definition of benign and contributory

classes.

Chapter 8: Exceptions and Interrupts 249

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

#DB conditions are enabled and disabled using the debug-
control register, DR7 and RFLAGS.TF. Each #DB condition is
described in more detail in “Breakpoints” on page 392.

Error Code Returned. None. #DB information is returned in the
debug-status register, DR6.

Program Restart. #DB can be either a fault-type or trap-type
exception. In the following cases, the saved instruction pointer
points to the instruction that caused the #DB:

� Instruction execution.

� Invalid debug-register access, or general detect.

In all other cases, the instruction that caused the #DB is
completed, and the saved instruction pointer points to the
instruction after the one that caused the #DB.

The RFLAGS.RF bit can be used to restart an instruction
following an instruction breakpoint resulting in a #DB. In most
cases, the processor clears RFLAGS.RF to 0 after every
instruction is successfully executed. However, in the case of the
IRET, JMP, CALL, and INTn (through a task gate) instructions,
RFLAGS.RF is not cleared to 0 until the next instruction
successfully executes.

When a non-debug exception occurs (or when a string
instruction is interrupted), the processor normally sets
RFLAGS.RF to 1 in the RFLAGS image that is pushed on the
interrupt stack. A subsequent IRET back to the interrupted
program pops the RFLAGS image off the stack and into the
RFLAGS register, with RFLAGS.RF=1. The interrupted
instruction executes without causing an instruction breakpoint,
after which the processor clears RFLAGS.RF to 0.

However, when a #DB exception occurs, the processor clears
RFLAGS.RF to 0 in the RFLAGS image that is pushed on the
interrupt stack. The #DB handler has two options:

� Disable the instruction breakpoint completely.

� Set RFLAGS.RF to 1 in the interrupt-stack rFLAGS image.
The instruction breakpoint condition is ignored immediately
after the IRET, but reoccurs if the instruction address is
accessed later, as can occur in a program loop.

250 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

8.3.3 NMI—Non-
Maskable-Interrupt
Exception (Vector 2)

An NMI exception occurs as a result of system logic signalling a
non-maskable interrupt to the processor.

Error Code Returned. None.

Program Restart. NMI is an interrupt. The processor recognizes an
NMI at an instruction boundary. The saved instruction pointer
points to the instruction immediately following the boundary
where the NMI was recognized.

Masking. NMI cannot be masked. However, when an NMI is
recognized by the processor, recognition of subsequent NMIs
are disabled until an IRET instruction is executed.

8.3.4 #BP—
Breakpoint Exception
(Vector 3)

A #BP exception occurs when an INT3 instruction is executed.
The INT3 is normally used by debug software to set instruction
breakpoints by replacing instruction-opcode bytes with the
INT3 opcode.

#BP cannot be disabled.

Error Code Returned. None.

Program Restart. #BP is a trap-type exception. The saved
instruction pointer points to the byte after the INT3
instruction. This location can be the start of the next
instruction. However, if the INT3 is used to replace the first
opcode bytes of an instruction, the restart location is likely to
be in the middle of an instruction. In the latter case, the debug
software must replace the INT3 byte with the correct
instruction byte. The saved RIP instruction pointer must then
be decremented by one before returning to the interrupted
program. This allows the program to be restarted correctly on
the interrupted-instruction boundary.

8.3.5 #OF—Overflow
Exception (Vector 4)

An #OF exception occurs as a result of executing an INTO
instruction while the overflow bit in RFLAGS is set to 1
(RFLAGS.OF=1).

#OF cannot be disabled.

Error Code Returned. None.

Program Restart. #OF is a trap-type exception. The saved
instruction pointer points to the instruction following the INTO
instruction that caused the #OF.

Chapter 8: Exceptions and Interrupts 251

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

8.3.6 #BR—Bound-
Range Exception
(Vector 5)

A #BR exception can occur as a result of executing the BOUND
instruction. The BOUND instruction compares an array index
(first operand) with the lower bounds and upper bounds of an
array (second operand). If the array index is not within the
array boundary, the #BR occurs.

#BR cannot be disabled.

Error Code Returned. None.

Program Restart. #BR is a fault-type exception. The saved
instruction pointer points to the BOUND instruction that
caused the #BR.

8.3.7 #UD—Invalid-
Opcode Exception
(Vector 6)

A #UD exception occurs when an attempt is made to execute an
invalid or undefined opcode. The validity of an opcode often
depends on the processor operating mode. A #UD occurs under
the following conditions:

� Execution of any reserved or undefined opcode in any mode.

� Execution of the UD2 instruction.

� Use of the LOCK prefix on an instruction that cannot be
locked.

� Use of the LOCK prefix on a lockable instruction with a non-
memory target location.

� Execution of an instruction with an invalid-operand type.

� Execution of the SYSENTER or SYSEXIT instructions in
long mode.

� Execution of any of the following instructions in 64-bit
mode: AAA, AAD, AAM, AAS, BOUND, CALL (opcode 9A),
DAA, DAS, DEC, INC, INTO, JMP (opcode EA), LAHF, LDS,
LES, POP (DS, ES, SS), POPA, PUSH (CS, DS, ES, SS),
PUSHA, SAHF, SALC.

� Execution of the ARPL, LAR, LLDT, LSL, LTR, SLDT, STR,
VERR, or VERW instructions when protected mode is not
enabled, or when virtual-8086 mode is enabled.

� Execution of any 128-bit media instruction (uses XMM
registers), or 64-bit media instruction (uses MMX™
registers) when CR0.NM = 1.

� Execution of any 128-bit media floating-point instruction
(uses XMM registers) that causes a numeric exception when
CR4.OSXMMEXCPT = 0.

� Use of the DR4 or DR5 debug registers when CR4.DE = 1.

252 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Execution of RSM when not in SMM mode.

See the specific instruction description (in the other volumes)
for additional information on invalid conditions.

#UD cannot be disabled.

Error Code Returned. None.

Program Restart. #UD is a fault-type exception. The saved
instruction pointer points to the instruction that caused the
#UD.

8.3.8 #NM—Device-
Not-Available
Exception (Vector 7)

A #NM exception occurs under any of the following conditions:

� An FWAIT/WAIT instruction is executed when CR0.MP=1
and CR0.TS=1.

� Any x87 instruction other than FWAIT is executed when
CR0.EM=1.

� Any x87 instruction is executed when CR0.TS=1. The
CR0.MP bit controls whether the FWAIT/WAIT instruction
causes an #NM exception when TS=1.

� Any 128-bit or 64-bit media instruction when CR0.TS=1.

#NM can be enabled or disabled under the control of the
CR0.MP, CR0.EM, and CR0.TS bits as described above. See
“CR0 Register” on page 53 for more information on the CR0
bits used to control the #NM exception.

Error Code Returned. None.

Program Restart. #NM is a fault-type exception. The saved
instruction pointer points to the instruction that caused the
#NM.

8.3.9 #DF—Double-
Fault Exception
(Vector 8)

A #DF exception can occur when a second exception occurs
during the handling of a prior (first) exception or interrupt
handler.

Usually, the first and second exceptions can be handled
sequentially without resulting in a #DF. In this case, the first
exception is considered benign, as it does not harm the ability of
the processor to handle the second exception.

In some cases, however, the first exception adversely affects the
ability of the processor to handle the second exception. These

Chapter 8: Exceptions and Interrupts 253

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

exceptions contribute to the occurrence of a #DF, and are called
contributory exceptions. If a contributory exception is followed
by another contributory exception, a double-fault exception
occurs. Likewise, if a page fault is followed by another page
fault or a contributory exception, a double-fault exception
occurs.

Table 8-3 shows the conditions under which a #DF occurs. Page
faults are either benign or contributory, and are listed
separately. See the “Class” column in Table 8-2 on page 247 for
information on whether an exception is benign or contributory.

If a third interrupting event occurs while transferring control to
the #DF handler, the processor shuts down. Only an NMI,
RESET, or INIT can restart the processor in this case. However,
if the processor shuts down as it is executing an NMI handler,
the processor can only be restarted with RESET or INIT.

#DF cannot be disabled.

Error Code Returned. Zero.

Program Restart. #DF is an abort-type exception. The saved
instruction pointer is undefined, and the program cannot be
restarted.

Table 8-3. Double-Fault Exception Conditions

First Interrupting Event Second Interrupting Event

Contributory Exceptions
• Divide-By-Zero-Error Exception
• Invalid-TSS Exception
• Segment-Not-Present Exception
• Stack Exception
• General-Protection Exception

Divide-By-Zero-Error Exception
Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

Page Fault Exception

Page Fault Exception
Divide-By-Zero-Error Exception
Invalid-TSS Exception
Segment-Not-Present Exception
Stack Exception
General-Protection Exception

254 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

8.3.10 Coprocessor-
Segment-Overrun
Exception (Vector 9)

This interrupt vector is reserved. It is for a discontinued
exception originally used by processors that supported external
x87-instruction coprocessors. On those processors, the
exception condition is caused by an invalid-segment or invalid-
page access on an x87-instruction coprocessor-instruction
operand. On current processors, this condition causes a general-
protection exception to occur.

Error Code Returned. Not applicable.

Program Restart. Not applicable.

8.3.11 #TS—Invalid-
TSS Exception (Vector
10)

A #TS exception occurs when an invalid reference is made to a
segment selector as part of a task switch. A #TS also occurs
during a privilege-changing control transfer (through a call gate
or an interrupt gate), if a reference is made to an invalid stack-
segment selector located in the TSS. Table 8-4 on page 255 lists
the conditions under which a #TS occurs and the error code
returned by the exception mechanism.

#TS cannot be disabled.

Error Code Returned. See Table 8-4 on page 255 for a list of error
codes returned by the #TS exception.

Program Restart. #TS is a fault-type exception. If the exception
occurs before loading the segment selectors from the TSS, the
saved instruction pointer points to the instruction that caused
the #TS. However, most #TS conditions occur due to errors with
the loaded segment selectors. When an error is found with a
segment selector, the hardware task-switch mechanism
completes loading the new task state from the TSS, and then
triggers the #TS exception mechanism. In this case, the saved
instruction pointer points to the first instruction in the new
task.

In long mode, a #TS cannot be caused by a task switch, because
the hardware task-switch mechanism is disabled. A #TS occurs
only as a result of a control transfer through a gate descriptor
that results in an invalid stack-segment reference using an SS
selector in the TSS. In this case, the saved instruction pointer
always points to the control-transfer instruction that caused the
#TS.

Chapter 8: Exceptions and Interrupts 255

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

8.3.12 #NP—Segment-
Not-Present
Exception (Vector 11)

An #NP occurs when an attempt is made to load a segment or
gate with a clear present bit, as described in the following
situations:

� Using the MOV, POP, LDS, LES, LFS, or LGS instructions to
load a segment selector (DS, ES, FS, and GS) that references
a segment descriptor containing a clear present bit
(descriptor.P=0).

� Far transfer to a CS that is not present.

� Referencing a gate descriptor containing a clear present bit.

� Referencing a TSS descriptor containing a clear present bit.
This includes attempts to load the TSS descriptor using the
LTR instruction.

Table 8-4. Invalid-TSS Exception Conditions

Selector
Reference Error Condition Error Code

Task-State Segment
TSS limit check on a task switch

TSS Selector Index
TSS limit check on an inner-level stack pointer

LDT Segment

LDT does not point to GDT

LDT Selector Index
LDT reference outside GDT

GDT entry is not an LDT descriptor

LDT descriptor is not present

Code Segment

CS reference outside GDT or LDT

CS Selector Index
Privilege check (conforming DPL > CPL)

Privilege check (non-conforming DPL ≠ CPL)

Type check (CS not executable)

Data Segment
Data segment reference outside GDT or LDT

DS, ES, FS or GS Selector Index
Type check (data segment not readable)

Stack Segment

SS reference outside GDT or LDT

SS Selector Index
Privilege check (stack segment descriptor DPL ≠ CPL)

Privilege check (stack segment selector RPL ≠ CPL)

Type check (stack segment not writable)

256 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Attempting to load a descriptor containing a clear present
bit into the LDTR using the LLDT instruction.

� Loading a segment selector (CS, DS, ES, FS, or GS) as part of
a task switch, with the segment descriptor referenced by the
segment selector having a clear present bit. In long mode, an
#NP cannot be caused by a task switch, because the
hardware task-switch mechanism is disabled.

When loading a stack-segment selector (SS) that references a
descriptor with a clear present bit, a stack exception (#SS)
occurs. For information on the #SS exception, see the next
section, “#SS—Stack Exception (Vector 12).”

#NP cannot be disabled.

Error Code Returned. The segment-selector index of the segment
descriptor causing the #NP exception.

Program Restart. #NP is a fault-type exception. In most cases, the
saved instruction pointer points to the instruction that loaded
the segment selector resulting in the #NP. See “Exceptions
During a Task Switch” on page 265 for a description of the
consequences when this exception occurs during a task switch.

8.3.13 #SS—Stack
Exception (Vector 12)

An #SS exception can occur in the following situations:

� Implied stack references in which the stack address is not in
canonical form. Implied stack references include all push
and pop instructions, and any instruction using RSP or RBP
as a base register.

� Attempting to load a stack-segment selector that references
a segment descriptor containing a clear present bit
(descriptor.P=0).

� Any stack access that fails the stack-limit check.

#SS cannot be disabled.

Error Code Returned. The error code depends on the cause of the
#SS, as shown in Table 8-5 on page 257:

Chapter 8: Exceptions and Interrupts 257

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Program Restart. #SS is a fault-type exception. In most cases, the
saved instruction pointer points to the instruction that caused
the #SS. See “Exceptions During a Task Switch” on page 265 for
a description of the consequences when this exception occurs
during a task switch.

8.3.14 #GP—General-
Protection Exception
(Vector 13)

Table 8-6 on page 258 describes the general situations that can
cause a #GP exception. The table is not an exhaustive, detailed
list of #GP conditions, but rather a guide to the situations that
can cause a #GP. If an invalid use of an x86-64 architectural
feature results in a #GP, the specific cause of the exception is
described in detail in the section describing the architectural
feature.

#GP cannot be disabled.

Error Code Returned. As shown in Table 8-6, a selector index is
reported as the error code if the #GP is due to a segment-
descriptor access. In all other cases, an error code of 0 is
returned.

Program Restart. #GP is a fault-type exception. In most cases, the
saved instruction pointer points to the instruction that caused
the #GP. See “Exceptions During a Task Switch” on page 265
for a description of the consequences when this exception
occurs during a task switch.

Table 8-5. Stack Exception Error Codes

Stack Exception Cause Error Code

Stack-segment descriptor present bit is clear SS Selector Index

Stack-limit violation 0

Stack reference using a non-canonical address 0

258 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Table 8-6. General-Protection Exception Conditions

Error Condition Error Code

Any segment privilege-check violation.

Selector Index

Any segment limit-check violation, except for the SS selector.

Any segment type-check violation, including read, write, and execute violations.

Accessing a long mode gate-descriptor containing a non-canonical address.

Accessing a 64-bit mode system-descriptor containing a non-canonical address.

Loading a non-canonical base address into the GDTR or IDTR in 64-bit mode.

Loading the CS or SS register with a null segment selector.

Accessing a gate descriptor containing a null segment selector.

Accessing memory with a null DS, ES, FS, or GS data-segment selector.

In long mode, referencing any 16-bit gate descriptor.

In long mode, referencing a call gate or interrupt gate that does not point to a 64-bit code segment.

In long mode, referencing any system descriptor that does not have the second type field loaded
with 0.

Attempting a control transfer to a TSS or task gate in long mode.

Referencing an LDT descriptor or TSS descriptor located in an LDT.

Control transfer to a busy TSS (except IRET).

Using the LTR instruction to load a busy TSS descriptor into the TR register.

Referencing virtual memory with a non-canonical address (except stack references).

0

Any long-mode consistency-check violation.

Using WRMSR to write a non-canonical address into the FS.base or GS.base register.

Using WRMSR to write a non-canonical address into the KernelGSbase register.

Using WRMSR to write a non-canonical address into the CSTAR or LSTAR register.

Using WRMSR to write read-only MSRs.

Writing invalid type encodings into the MTRRs or the PAT MSR.

Writing a 1 into any register field that is reserved, must be zero (MBZ).

Using a 128-bit media instruction requiring 16-byte alignment with a memory operand not aligned
on a 16-byte boundary.

Chapter 8: Exceptions and Interrupts 259

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

8.3.15 #PF—Page-Fault
Exception (Vector 14)

A #PF exception can occur during a memory access in any of the
following situations:

� A page-translation-table entry or physical page involved in
translating the memory access is not present in physical
memory. This is indicated by a cleared present bit (P=0) in
the translation-table entry.

� An attempt is made by the processor to load the instruction
TLB with a translation for a non-executable page.

� The memory access fails the paging-protection checks
(user/supervisor, read/write, or both).

� A reserved bit in one of the page-translation-table entries is
set to 1. A #PF occurs for this reason only when CR4.PSE=1
or CR4.PAE=1.

#PF cannot be disabled.

CR2 Register. The virtual (linear) address that caused the #PF is
stored in the CR2 register. Figure 8-1 shows the legacy 32-bit
CR2 register. The CR2 register in the x86-64 architecture is 64
bits long, as shown in Figure 8-1. In x86-64 implementations,
only the low-order 32 bits of CR2 can be used in legacy mode.
The processor clears the high-order 32 bits of CR2 when it is
written in legacy mode either by software or during a page
fault.

Figure 8-1. Control Register 2 (CR2)

Error Code Returned. The page-fault error code is pushed onto the
page-fault exception-handler stack. See “Page-Fault Error
Code” on page 266 for a description of this error code.

Executing privileged instructions when CPL > 0.

0Enabling paging when protected mode is disabled.

Setting CR0.NW=1 while CR0.CD=0.

Table 8-6. General-Protection Exception Conditions (continued)

Error Condition Error Code

63 0

Page-Fault Virtual Address

260 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Program Restart. #PF is a fault-type exception. In most cases, the
saved instruction pointer points to the instruction that caused
the #PF. See “Exceptions During a Task Switch” on page 265 for
a description of what can happen if this exception occurs during
a task switch.

8.3.16 #MF—x87
Floating-Point
Exception-Pending
(Vector 16)

The #MF exception is used to handle unmasked x87 floating-
point exceptions. An #MF occurs when all of the following
conditions are true:

� CR0.NE=1.

� An unmasked x87 floating-point exception is pending. This
is indicated by an exception bit in the x87 floating-point
status-word register being set to 1

� The corresponding mask bit in the x87 floating-point
control-word register is cleared to 0.

� The FWAIT/WAIT instruction or any waiting floating-point
instruction is executed.

If there is an exception mask bit (in the FPU control word) set,
the exception is not reported. Instead, the x87-instruction unit
responds in a default manner and execution proceeds normally.

The x87 floating-point exceptions reported by the #MF
exception are (including mnemonics):

� IE—Invalid-operation exception (also called #I), which is
either:

- IE alone—Invalid arithmetic-operand exception (also
called #IA), or

- SF and IE together—x87 Stack-fault exception (also
called #IS).

� DE—Denormalized-operand exception (also called #D).

� ZE—Zero-divide exception (also called #Z).

� OE—Overflow exception (also called #O).

� UE—Underflow exception (also called #U).

� PE—Precision exception (also called #P or inexact-result
exception).

Error Code Returned. None. Exception information is provided by
the x87 status-word register. See “x87 Floating-Point
Programming” in Volume 1 for more information on using this
register.

Chapter 8: Exceptions and Interrupts 261

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Program Restart. #MF is a fault - type exception. The #MF
exception is not precise, because multiple instructions and
exceptions can occur before the #MF handler is invoked. Also,
the saved instruction pointer does not point to the instruction
that caused the exception resulting in the #MF. Instead, the
saved instruction pointer points to the x87 floating-point
instruction or FWAIT/WAIT instruction that is about to be
executed when the #MF occurs. The address of the last
instruction that caused an x87 floating-point exception is in the
x87 instruction-pointer register. See “x87 Floating-Point
Programming” in Volume 1 for information on accessing this
register.

Masking. Each type of x87 floating-point exception can be
masked by setting the appropriate bits in the x87 control-word
register. See “x87 Floating-Point Programming” in Volume 1 for
more information on using this register.

#MF can also be disabled by clearing the CR0.NE bit to 0. See
“Numeric Error (NE) Bit” on page 55 for more information on
using this bit.

8.3.17 #AC—
Alignment-Check
Exception (Vector 17)

An #AC exception occurs when an unaligned-memory data
reference is performed while alignment checking is enabled.

After a processor reset, #AC exceptions are disabled. Software
enables the #AC exception by setting the following register bits:

� CR0.AM=1.

� RFLAGS.AC=1.

When the above register bits are set, an #AC can occur only
when CPL=3. #AC never occurs when CPL < 3.

Table 8-7 on page 262 lists the data types and the alignment
boundary required to avoid an #AC exception when the
mechanism is enabled.

262 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Error Code Returned. Zero.

Program Restart. #AC is a fault-type exception. The saved
instruction pointer points to the instruction that caused the
#AC.

8.3.18 #MC—Machine-
Check Exception
(Vector 18)

The #MC except ion i s model spec if ic . Processor
implementations are not required to support the #MC
exception, and those implementations that do support #MC can
vary in how the #MC exception mechanism works.

The exception is enabled by setting CR4.MCE to 1. The
machine-check architecture can include model-specific
masking for controlling the reporting of some errors. Refer to
Chapter 9, “Machine Check Mechanism,” for more information.

Table 8-7. Data-Type Alignment

Supported Data Type
Required Alignment

(Byte Boundary)

Word 2

Doubleword 4

Quadword 8

Bit string 2, 4 or 8 (depends on operand size)

128-bit media 16

64-bit media 8

Segment selector 2

32-bit near pointer 4

32-bit far pointer 2

48-bit far pointer 4

x87 Floating-point single-precision 4

x87 Floating-point double-precision 8

x87 Floating-point extended-precision 8

x87 Floating-point save areas 2 or 4 (depends on operand size)

Chapter 8: Exceptions and Interrupts 263

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Error Code Returned. None. Error information is provided by
model-specific registers (MSRs) defined by the machine-check
architecture.

Program Restart. #MC is an abort-type exception. There is no
reliable way to restart the program. If the EIPV flag (EIP valid)
is set in the MCG_Status MSR, the saved CS and rIP point to the
instruction that caused the error. If EIP is clear, the CS:rIP of
the instruction causing the failure is not known or the machine
check is not related to a specific instruction.

8.3.19 #XF—SIMD
Floating-Point
Exception (Vector 19)

The #XF exception is used to handle unmasked 128-bit media
floating-point exceptions. A #XF exception occurs when all of
the following conditions are true:

� A 128-bit media floating-point exception occurs. The
exception causes the processor to set the appropriate
exception-status bit in the MXCSR register to 1.

� The exception-mask bit in the MXCSR that corresponds to
the 128-bit media floating-point exception is clear (=0).

� CR4.OSXMMEXCPT=1, indicating that the operating
system supports handling of 128-bit media floating-point
exceptions.

The exception-mask bits are used by software to specify the
handling of 128-bit media floating-point exceptions. When the
corresponding mask bit is cleared to 0, an exception occurs
under the control of the CR4.OSXMMEXCPT bit. However, if
the mask bit is set to 1, the 128-bit media floating-point unit
responds in a default manner and execution proceeds normally.

The CR4.OSXMMEXCPT bit specifies the interrupt vector to
be taken when an unmasked 128-bit media floating-point
exception occurs. When CR4.OSXMMEXCPT=1, the #XF
interrupt vector is taken when an exception occurs. When
CR4.OSXMMEXCPT=0, the #UD (undefined opcode) interrupt
vector is taken when an exception occurs.

The 128-bit media floating-point exceptions reported by the
#XF exception are (including mnemonics):

� IE—Invalid-operation exception (also called #I).

� DE—Denormalized-operand exception (also called #D).

� ZE—Zero-divide exception (also called #Z).

� OE—Overflow exception (also called #O).

264 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� UE—Underflow exception (also called #U).

� PE—Precision exception (also called #P or inexact-result
exception).

Each type of 128-bit media floating-point exception can be
masked by setting the appropriate bits in the MXCSR register.
#XF can also be disabled by clearing the CR4.OSXMMEXCPT
bit to 0.

Error Code Returned. None. Exception information is provided by
the 128-bit media floating-point MXCSR register. See “128-Bit
Media and Scientific Programming” in Volume 1 for more
information on using this register.

Program Restart. #XF is a fault-type exception. Unlike the #MF
exception, the #XF exception is precise. The saved instruction
pointer points to the instruction that caused the #XF.

8.3.20 User-Defined
Interrupts (Vectors
32–255)

User-defined interrupts can be initiated either by system logic
or software. They occur when:

� System logic signals an external interrupt request to the
processor. The signalling mechanism and the method of
communicating the interrupt vector to the processor are
implementation dependent.

� Software executes an INTn instruction. The INTn
instruction operand provides the interrupt vector number.

Both methods can be used to initiate an interrupt into vectors 0
through 255. However, because vectors 0 through 31 are defined
or reserved by the x86-64 architecture, software should not use
vectors in this range for purposes other than their defined use.

Error Code Returned. None.

Program Restart. The saved instruction pointer depends on the
interrupt source:

� External interrupts are recognized on instruction
boundaries. The saved instruction pointer points to the
instruction immediately following the boundary where the
external interrupt was recognized.

� If the interrupt occurs as a result of executing the INTn
instruction, the saved instruction pointer points to the
instruction after the INTn.

Chapter 8: Exceptions and Interrupts 265

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Masking. The ability to mask user-defined interrupts depends on
the interrupt source:

� External interrupts can be masked using the rFLAGS.IF bit.
Setting rFLAGS.IF to 1 enables external interrupts, while
clearing rFLAGS.IF to 0 inhibits them.

� Software interrupts (initiated by the INTn instruction)
cannot be disabled.

8.4 Exceptions During a Task Switch

An exception can occur during a task switch while loading a
segment selector. Page faults can also occur when accessing a
TSS. In these cases, the hardware task-switch mechanism
completes loading the new task state from the TSS, and then
triggers the appropriate exception mechanism. No other checks
are performed. When this happens, the saved instruction
pointer points to the first instruction in the new task.

In long mode, an exception cannot occur during a task switch,
because the hardware task-switch mechanism is disabled.

8.5 Error Codes

The processor exception-handling mechanism reports error and
status information for some exceptions using an error code. The
error code is pushed onto the stack by the exception-mechanism
during the control transfer into the exception handler. The
error code has two formats: a selector format for most error-
reporting exceptions, and a page-fault format for page faults.
These formats are described in the following sections.

8.5.1 Selector-Error
Code

Figure 8-2 shows the format of the selector-error code.

Figure 8-2. Selector Error Code

The information reported by the selector-error code includes:

31 16 15 3 2 1 0

reserved Selector Index T
I

I
D
T

E
X
T

266 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� EXT—Bit 0. If this bit is set to 1, the exception source is
external to the processor. If cleared to 0, the exception
source is internal to the processor.

� IDT—Bit 1. If this bit is set to 1, the error-code selector-index
field references a gate descriptor located in the interrupt-
descriptor table (IDT). If cleared to 0, the selector-index
field references a descriptor in either the global-descriptor
table (GDT) or local-descriptor table (LDT), as indicated by
the TI bit.

� TI—Bit 2. If this bit is set to 1, the error-code selector-index
field references a descriptor in the LDT. If cleared to 0, the
selector-index field references a descriptor in the GDT. The
TI bit is relevant only when the IDT bit is cleared to 0.

� Selector Index—Bits 15–3. The selector-index field specifies
the index into either the GDT, LDT, or IDT, as specified by
the IDT and TI bits.

Some exceptions return a zero in the selector-error code.

8.5.2 Page-Fault Error
Code

Figure 8-3 shows the format of the page-fault error code.

Figure 8-3. Page-Fault Error Code

The information reported by the page-fault error code includes:

� P—Bit 0. If this bit is cleared to 0, the page fault was caused
by a not-present page. If this bit is set to 1, the page fault was
caused by a page-protection violation.

� R/W—Bit 1. If this bit is cleared to 0, the access that caused
the page fault is a memory read. If this bit is set to 1, the
memory access that caused the page fault was a write. This
bit does not necessarily indicate the cause of the page fault
was a read or write violation.

� U/S—Bit 2. If this bit is cleared to 0, an access in supervisor
mode (CPL=0, 1, or 2) caused the page fault. If this bit is set
to 1, an access in user mode (CPL=3) caused the page fault.

31 4 3 2 1 0

reserved I/D
R
S
V

U/S R/W P

Chapter 8: Exceptions and Interrupts 267

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

This bit does not necessarily indicate the cause of the page
fault was a privilege violation.

� RSV—Bit 3. If this bit is set to 1, the page fault is a result of
the processor reading a 1 from a reserved field within a
page-translation-table entry. This type of page fault occurs
only when CR4.PSE=1 or CR4.PAE=1. If this bit is cleared to
0, the page fault was not caused by the processor reading a 1
from a reserved field.

� I/D—Bit 4. If this bit is set to 1, it indicates that the access
that caused the page fault was an instruction fetch.
Otherwise, this bit is cleared to 0. This bit is only defined if
no-execute feature is enabled (EFER.NXE=1).

8.6 Priorities

To allow for consistent handling of multiple-interrupt
conditions, simultaneous interrupts are prioritized by the
processor. The x86-64 architecture defines priorities between
groups of interrupts, and interrupt prioritization within a group
is implementation dependent. Table 8-8 on page 268 shows the
interrupt priorities defined by the x86-64 architecture.

When simultaneous interrupts occur, the processor transfers
control to the highest-priority interrupt handler. Lower-priority
interrupts from external sources are held pending by the
processor, and they are handled after the higher-priority
interrupt is handled. Lower-priority interrupts that result from
internal sources are discarded. Those interrupts reoccur when
the high-priority interrupt handler completes and transfers
control back to the interrupted instruction. Software interrupts
are discarded as well, and reoccur when the software-interrupt
instruction is restarted.

268 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Table 8-8. Simultaneous Interrupt Priorities

Interrupt
Priority Interrupt Condition Interrupt

Vector

(High)
0

Processor Reset —

Machine-Check Exception 18

1

External Processor Initialization (INIT)

—SMI Interrupt

External Clock Stop (Stpclk)

2
Data, and I/O Breakpoint (Debug Register)

1
Single-Step Execution Instruction Trap (rFLAGS.TF=1)

3 Non-Maskable Interrupt 2

4 Maskable External Interrupt (INTR) 32—255

5

Instruction Breakpoint (Debug Register) 1

Code-Segment-Limit Violation 13

Instruction-Fetch Page Fault 14

6

Invalid Opcode Exception 6

Device-Not-Available Exception 7

Instruction-Length Violation (> 15 Bytes) 13

7

Invalid-TSS Exception 10

Segment-Not-Present Exception 11

Stack Exception 12

General-Protection Exception 13

Data-Access Page Fault 14

Floating-Point Exception-Pending Exception 16

Alignment-Check Exception 17

SIMD Floating-Point Exception 19

Chapter 8: Exceptions and Interrupts 269

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

8.6.1 Floating-Point
Exception Priorities

Floating-point exceptions (128-bit media and x87 floating-
point) can be handled in one of two ways:

� Unmasked exceptions are reported in the appropriate
floating-point status register, and a software-interrupt
handler is invoked. See “#MF—x87 Floating-Point
Exception-Pending (Vector 16)” on page 260 and “#XF—
SIMD Floating-Point Exception (Vector 19)” on page 263 for
more information on the floating-point interrupts.

� Masked exceptions are also reported in the appropriate
floating-point status register. Instead of transferring control
to an interrupt handler, however, the processor handles the
exception in a default manner and execution proceeds.

If the processor detects more than one exception while
executing a single floating-point instruction, it prioritizes the
exceptions in a predictable manner. When responding in a
default manner to masked exceptions, it is possible that the
processor acts only on the high-priority exception and ignores
lower-priority exceptions. In the case of vector (SIMD) floating-
point instructions, priorities are set on sub-operations, not
across all operations. For example, if the processor detects and
acts on a QNaN operand in one sub-operation, the processor can
still detect and act on a denormal operand in another sub-
operation.

When reporting 128-bit media floating-point exceptions before
taking an interrupt or handling them in a default manner, the
processor first classifies the exceptions as follows:

� Input exceptions include SNaN operand (#I), invalid
operation (#I), denormal operand (#D), or zero-divide (#Z).
Using a NaN operand with a maximum, minimum, compare,
or convert instruction is also considered an input exception.

� Output exceptions include numeric overflow (#O), numeric
underflow (#U), and precision (#P).

Using the above classification, the processor applies the
following procedure to report the exceptions:

1. The exceptions for all sub-operations are prioritized.

2. The exception conditions for all sub-operations are logically
ORed together to form a single set of exceptions covering
all operations. For example, if two sub-operations produce a
denormal result, only one denormal exception is reported.

270 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

3. If the set of exceptions includes any unmasked input
exceptions, all input exceptions are reported in MCXSR,
and no output exceptions are reported. Otherwise, all input
and output exceptions are reported in MCXSR.

4. If any exceptions are unmasked, control is transferred to the
appropriate interrupt handler.

Table 8-9 lists the priorities for simultaneous floating-point
exceptions.

8.6.2 External
Interrupt Priorities

The x86-64 architecture allows software to define up to 15
external interrupt-priority classes. Priority classes are
numbered from 1 to 15, with priority-class 1 being the lowest
and priority-class 15 the highest. The organization of these
priority classes is implementation dependent. A typical method
is to use the upper four bits of the interrupt vector number to
define the priority. Thus, interrupt vector 53h has a priority of 5
and interrupt vector 37h has a priority of 3.

Table 8-9. Simultaneous Floating-Point Exception Priorities

Exception
Priority Exception Condition

(High)
0

SNaN Operand

#I

NaN Operand of Maximum, Minimum, Compare, and Convert
Instructions (Vector Floating-Point)

Stack Overflow (x87 Floating-Point)

Stack Underflow (x87 Floating-Point)

1 QNaN Operand —

2
Invalid Operation (Remaining Conditions) #I

Zero Divide #Z

3 Denormal Operand #D

4
Numeric Overflow #O

Numeric Underflow #U

5
(Low)

Precision #P

Chapter 8: Exceptions and Interrupts 271

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

A new control register (CR8) is introduced by the x86-64
architecture for managing priority classes. This register, called
the task-priority register (TPR), uses its four low-order bits to
specify a task priority. The remaining 60 bits are reserved and
must be written with zeros. Figure 8-4 shows the format of the
TPR.

The TPR is available only in 64-bit mode.

Figure 8-4. Task Priority Register (CR8)

System software can use the TPR register to temporarily block
low-priority interrupts from interrupting a high-priority task.
This i s accomplished by loading TPR with a value
corresponding to the highest-priority interrupt that is to be
blocked. For example, loading TPR with a value of 9 (1001b)
blocks all interrupts with a priority class of 9 or less, while
allowing all interrupts with a priority class of 10 or more to be
recognized. Loading TPR with 0 enables all external interrupts.
Loading TPR with 15 (1111b) disables all external interrupts.
The TPR is cleared to 0 on reset.

System software reads and writes the TPR using a MOV CR8
instruction. The MOV CR8 instruction requires a privilege level
of 0. Programs running at any other privilege level cannot read
or write the TPR, and an attempt to do so results in a general-
protection exception (#GP).

A serializing instruction is not required after loading the TPR,
because a new priority level is established when the MOV
instruction completes execution. For example, assume two
sequential TPR loads are performed, in which a low value is
first loaded into TPR and immediately followed by a load of a
higher value. Any pending, lower-priority interrupt enabled by
the first MOV CR8 is recognized between the two MOVs.

The TPR is an architectural abstraction of the interrupt
controller (IC), which prioritizes and manages external
interrupt delivery to the processor. The IC can be an external

63 4 3 0

reserved, MBZ Task Priority
(TPR)

272 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

system device, or it can be integrated on the chip like the local
advanced programmable interrupt controller (APIC). Typically,
the IC contains a priority mechanism similar, if not identical to,
the TPR. The IC, however, is implementation dependent, and
the underlying priority mechanisms are subject to change. The
TPR, by contrast, is part of the x86-64 architecture.

Effect of IC on TPR. The features of the implementation-specific
IC can impact the operation of the TPR. For example, the TPR
might affect interrupt delivery only if the IC is enabled. Also,
the mapping of an external interrupt to a specific interrupt
priority is an implementation-specific behavior of the IC.

8.7 Real-Mode Interrupt Control Transfers

In real mode, the IDT is a table of 4-byte entries, one entry for
each of the 256 possible interrupts implemented by the system.
The real mode IDT is often referred to as an interrupt-vector
table, or IVT. Table entries contain a far pointer (CS:IP pair) to
an exception or interrupt handler. The base of the IDT is stored
in the IDTR register, which is loaded with a value of 00h during
a processor reset. Figure 8-5 shows how the real-mode interrupt
handler is located by the interrupt mechanism.

Figure 8-5. Real-Mode Interrupt Control Transfer

513-239.eps

Interrupt-Descriptor
Table

4
* +

IDT Base Address

Interrupt-Descriptor-Table Register

Interrupt Vector CS

Offset

Memory

Interrupt Handler

Chapter 8: Exceptions and Interrupts 273

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

When an exception or interrupt occurs in real mode, the
processor performs the following:

1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.

2. Clears EFLAGS.IF to 0 and EFLAGS.TF to 0.

3. Saves the CS register and IP register (RIP[15:0]) by pushing
them onto the stack.

4. Locates the interrupt-handler pointer (CS:IP) in the IDT by
scaling the interrupt vector by four and adding the result to
the value in the IDTR.

5. Transfers control to the interrupt handler referenced by the
CS:IP in the IDT.

Figure 8-6 shows the stack after control is transferred to the
interrupt handler in real mode.

Figure 8-6. Stack After Interrupt in Real Mode

An IRET instruction is used to return to the interrupted
program. When an IRET is executed, the processor performs
the following:

1. Pops the saved CS value off the stack and into the CS
register. The saved IP value is popped into RIP[15:0].

2. Pops the FLAGS value off of the stack and into
EFLAGS[15:0].

3. Execution begins at the saved CS.IP location.

513-243.eps

Interrupt-Handler and
Interrupted-Program

Stack

SS:SP

+2

+4

Return IP

Return CS

Return FLAGS

274 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

8.8 Legacy Protected-Mode Interrupt Control Transfers

In protected mode, the interrupt mechanism transfers control
to an exception or interrupt handler through gate descriptors.
In protected mode, the IDT is a table of 8-byte gate entries, one
for each of the 256 possible interrupt vectors implemented by
the system. Three gate types are allowed in the IDT:

� Interrupt gates.

� Trap gates.

� Task gates.

If a reference is made to any other descriptor type in the IDT, a
general-protection exception (#GP) occurs.

Interrupt-gate control transfers are similar to CALLs and JMPs
through call gates. The interrupt mechanism uses gates
(interrupt, trap, and task) to establish protected entry-points
into the exception and interrupt handlers.

The remainder of this chapter discusses control transfers
through interrupt gates and trap gates. If the gate descriptor in
the IDT is a task gate, a TSS-segment selector is referenced, and
a task switch occurs. See Chapter 12, “Task Management,” for
more information on the hardware task-switch mechanism.

8.8.1 Locating the
Interrupt Handler

When an exception or interrupt occurs, the processor scales the
interrupt-vector number by eight and uses the result as an
offset into the IDT. If the gate descriptor referenced by the IDT
offset is an interrupt gate or a trap gate, it contains a segment-
selector and segment-offset field (see “Legacy Segment
Descriptors” on page 95 for a detailed description of the gate-
descriptor format and fields). These two fields perform the
same function as the pointer operand in a far control-transfer
instruction. The gate-descriptor segment-selector field points
to the target code-segment descriptor located in either the GDT
or LDT. The gate-descriptor segment-offset field is the
instruction-pointer offset into the interrupt-handler code
segment. The code-segment base taken from the code-segment
descriptor is added to the gate-descriptor segment-offset field
to create the interrupt-handler virtual address (linear address).

Figure 8-7 on page 275 shows how the protected-mode interrupt
handler is located by the interrupt mechanism.

Chapter 8: Exceptions and Interrupts 275

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 8-7. Protected-Mode Interrupt Control Transfer

8.8.2 Interrupt To
Same Privilege

When a control transfer to an exception or interrupt handler at
the same privilege occurs (through an interrupt gate or a trap
gate), the processor performs the following:

1. Pushes the EFLAGS register onto the stack.

2. Clears the TF, NT, RF, and VM bits in EFLAGS to 0.

*

Interrupt Vector

+

513-240.eps

Virtual-Address
Space

Interrupt Handler

Code Segment

+

Interrupt
Descriptor Table

Code-Segment Offset

CS Selector DPL

Global or Local
Descriptor Table

Code-Segment Base

CS Limit DPL

Interrupt-Descriptor-Table Register

IDT Base Address IDT Limit

8

276 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

3. The processor handles EFLAGS.IF based on the gate-
descriptor type:

- If the gate descriptor is an interrupt gate, EFLAGS.IF is
cleared to 0.

- If the gate descriptor is a trap gate, EFLAGS.IF is not
modified.

4. Saves the return CS register and EIP register (RIP[31:0]) by
pushing them onto the stack. The CS value is padded with
two bytes to form a doubleword.

5. If the interrupt has an associated error code, the error code
is pushed onto the stack.

6. The CS register is loaded from the segment-selector field in
the gate descriptor, and the EIP is loaded from the offset
field in the gate descriptor.

7. The interrupt handler begins executing with the instruction
referenced by new CS:EIP.

Figure 8-8 shows the stack after control is transferred to the
interrupt handler.

Figure 8-8. Stack After Interrupt to Same Privilege Level

8.8.3 Interrupt To
Higher Privilege

When a control transfer to an exception or interrupt handler
running at a higher privilege occurs (numerically lower CPL
value), the processor performs a stack switch using the
following steps:

Interrupt-Handler and
Interrupted Program

Stack

Return EIP

Return CS

Return EFLAGS

Error Code SS:ESP

+4

+8

+12

513-242.eps

CS

EFLAGS

EIP SS:EIP

+4

+8

With Error Code With No Error Code

Chapter 8: Exceptions and Interrupts 277

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

1. The target CPL is read by the processor from the target
code-segment DPL and used as an index into the TSS for
selecting the new stack pointer (SS:ESP). For example, if
the target CPL is 1, the processor selects the SS:ESP for
privilege-level 1 from the TSS.

2. Pushes the return stack pointer (old SS:ESP) onto the new
stack. The SS value is padded with two bytes to form a
doubleword.

3. Pushes the EFLAGS register onto the new stack.

4. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.

5. The processor handles the EFLAGS.IF bit based on the
gate-descriptor type:

- If the gate descriptor is an interrupt gate, EFLAGS.IF is
cleared to 0.

- If the gate descriptor is a trap gate, EFLAGS.IF is not
modified.

6. Saves the return-address pointer (CS:EIP) by pushing it
onto the stack. The CS value is padded with two bytes to
form a doubleword.

7. If the interrupt-vector number has an error code associated
with it, the error code is pushed onto the stack.

8. The CS register is loaded from the segment-selector field in
the gate descriptor, and the EIP is loaded from the offset
field in the gate descriptor.

9. The interrupt handler begins executing with the instruction
referenced by new CS:EIP.

Figure 8-9 on page 278 shows the new stack after control is
transferred to the interrupt handler.

278 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 8-9. Stack After Interrupt to Higher Privilege

8.8.4 Privilege Checks Before loading the CS register with the interrupt-handler code-
segment selector (located in the gate descriptor), the processor
performs privilege checks similar to those performed on call
gates. The checks are performed when either conforming or
nonconforming interrupt handlers are referenced:

1. The processor reads the gate DPL from the interrupt-gate or
trap-gate descriptor. The gate DPL is the minimum privilege-
level (numerically-highest value) needed by a program to
access the gate. The processor compares the CPL with the
gate DPL. The CPL must be numerically less-than or equal-to
the gate DPL for this check to pass.

2. The processor compares the CPL with the interrupt-handler
code-segment DPL. For this check to pass, the CPL must be
numerically greater-than or equal-to the code-segment DPL.
This check prevents control transfers to less-privileged
interrupt handlers.

Unlike call gates, no RPL comparison takes place. This is
because the gate descriptor is referenced in the IDT using the
interrupt-vector number rather than a selector, and no RPL
field exists in the interrupt-vector number.

Interrupt-Handler Stack

Return SS

Return EIP

Return CS

Return EFLAGS

Return ESP

Error Code New SS:ESP

+4

+8

+12

+16

+20

513-241.eps

SS

CS

EFLAGS

Return ESP

EIP ESS:ESP

+4

+8

+12

+16

With Error Code With No Error Code

Chapter 8: Exceptions and Interrupts 279

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Exception and interrupt handlers should be made reachable
from software running at any privilege level that requires them.
If the gate DPL value is too low (requiring more privilege), or
the interrupt-handler code-segment DPL is too high (runs at
lower privilege), the interrupt control transfer can fail the
privilege checks. Setting the gate DPL=3 and interrupt-handler
code-segment DPL=0 makes the exception handler or interrupt
handler reachable from any privilege level.

Figure 8-10 on page 280 shows two examples of interrupt
privilege checks. In Example 1, both privilege checks pass:

� The interrupt-gate DPL is at the lowest privilege (3), which
means that software running at any privilege level (CPL) can
access the interrupt gate.

� The interrupt-handler code segment is at the highest-
privilege level, as indicated by DPL=0. This means software
running at any privilege can enter the interrupt handler
through the interrupt gate.

280 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 8-10. Privilege-Check Examples for Interrupts

In Example 2, both privilege checks fail:

� The interrupt-gate DPL specifies that only software running
at privilege-level 0 can access the gate. The current program
does not have enough privilege to access the interrupt gate,
because its CPL=2.

513-244.epsExample 2: Privilege Check Fails

DPL=0

Gate Descriptor

Access Denied

Interrupt
Handler

CS CPL=2

≤

DPL=3

Code Descriptor

Interrupt Vector

≥

?

Access
Denied

Access
Denied

Example 1: Privilege Check Passes

DPL=3

Gate Descriptor

Access Allowed

Interrupt
Handler

CS CPL=2

≤

DPL=0

Code Descriptor

Interrupt Vector

≥

?

Access
Allowed

Access
Allowed

Chapter 8: Exceptions and Interrupts 281

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� The interrupt handler has a lower privilege (DPL=3) than
the currently-running software (CPL=2). Transitions from
more-privileged software to less-privileged software are not
allowed, so this privilege check fails as well.

Although both privilege checks fail, only one such failure is
required to deny access to the interrupt handler.

8.8.5 Returning From
Interrupt Procedures

A return to an interrupted program should be performed using
the IRET instruction. An IRET is a far return to a different code
segment, with or without a change in privilege level. The
actions of an IRET in both cases are described in the following
sections.

IRET, Same Privilege. Before performing the IRET, the stack
pointer must point to the return EIP. If there was an error code
pushed onto the stack as a result of the exception or interrupt,
that error code should have been popped off the stack earlier
by the handler. The IRET reverses the actions of the interrupt
mechanism:

1. Pops the return pointer off of the stack, loading both the CS
register and EIP register (RIP[31:0]) with the saved values.
The return code-segment RPL is read by the processor from
the CS value stored on the stack to determine that an equal-
privilege control transfer is occurring.

2. Pops the saved EFLAGS image off of the stack and into the
EFLAGS register.

3. Transfers control to the return program at the target CS:EIP.

IRET, Less Privilege. If an IRET changes privilege levels, the
return program must be at a lower privilege than the interrupt
handler. The IRET in this case causes a stack switch to occur:

1. The return pointer is popped off of the stack, loading both
the CS register and EIP register (RIP[31:0]) with the saved
values. The return code-segment RPL is read by the
processor from the CS value stored on the stack to
determine that a lower-privilege control transfer is
occurring.

2. The saved EFLAGS image is popped off of the stack and
loaded into the EFLAGS register.

282 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

3. The return-program stack pointer is popped off of the stack,
loading both the SS register and ESP register (RSP[31:0])
with the saved values.

4. Control is transferred to the return program at the target
CS:EIP.

8.9 Virtual-8086 Mode Interrupt Control Transfers

This section describes interrupt control transfers as they relate
to virtual-8086 mode. Virtual-8086 mode is not supported by
long mode. Therefore, the control-transfer mechanism
described here is not applicable to long mode.

When a software interrupt occurs (not external interrupts,
INT1, or INT3) while the processor is running in virtual-8086
mode (EFLAGS.VM=1), the control transfer that occurs
depends on three system controls:

� EFLAGS.IOPL—This field controls interrupt handling based
on the CPL. See “I/O Privilege Level Field (IOPL) Field” on
page 64 for more information on this field.

Setting IOPL<3 redirects the interrupt to the general-
protection exception (#GP) handler.

� CR4.VME—This bit enables virtual-mode extensions. See
“Virtual-8086 Mode Extensions (VME) Bit” on page 59 for
more information on this bit.

� TSS Interrupt-Redirection Bitmap—The TSS interrupt-
redirection bitmap contains 256 bits, one for each possible
INTn vector (software interrupt). When CR4.VME=1, the
bitmap is used by the processor to direct interrupts to the
handler provided by the currently-running 8086 program
(bitmap entry is 0), or to the protected-mode operating-
system interrupt handler (bitmap entry is 1). See “Legacy
Task-State Segment” on page 363 for information on the
location of this field within the TSS.

If IOPL<3, CR4.VME=1, and the corresponding interrupt
redirection bitmap entry is 0, the processor uses the virtual-
interrupt mechanism. See “Virtual Interrupts” on page 293 for
more information on this mechanism.

Table 8-10 on page 283 summarizes the actions of the above
system controls on interrupts taken when the processor is
running in virtual-8086 mode.

Chapter 8: Exceptions and Interrupts 283

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

8.9.1 Protected-Mode
Handler Control
Transfer

Control transfers to protected-mode handlers from virtual-8086
mode differ from standard protected-mode transfers in several
ways. The processor follows these steps in making the control
transfer:

1. Reads the CPL=0 stack pointer (SS:ESP) from the TSS.

2. Pushes the GS, FS, DS, and ES selector registers onto the
stack. Each push is padded with two bytes to form a
doubleword.

3. Clears the GS, FS, DS, and ES selector registers to 0. This
places a null selector in each of the four registers

4. Pushes the return stack pointer (old SS:ESP) onto the new
stack. The SS value is padded with two bytes to form a
doubleword.

5. Pushes the EFLAGS register onto the new stack.

6. Clears the following EFLAGS bits to 0: TF, NT, RF, and VM.

7. Handles EFLAGS.IF based on the gate-descriptor type:

- If the gate descriptor is an interrupt gate, EFLAGS.IF is
cleared to 0.

- If the gate descriptor is a trap gate, EFLAGS.IF is not
modified.

8. Pushes the return-address pointer (CS:EIP) onto the stack.
The CS value is padded with two bytes to form a
doubleword.

Table 8-10. Virtual-8086 Mode Interrupt Mechanisms

EFLAGS.IOPL CR4.VME
TSS Interrupt
Redirection

Bitmap Entry
Interrupt Mechanism

0, 1, or 2

0 —
General-Protection Exception

1 1

1 0 Virtual Interrupt

3

0 —
Protected-Mode Handler

1 1

1 0 Virtual 8086 Handler

284 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

9. If the interrupt has an associated error code, pushes the
error code onto the stack.

10.Loads the segment-selector field from the gate descriptor
into the CS register, and loads the offset field from the gate
descriptor into the EIP register.

11.Begins execution of the interrupt handler with the
instruction referenced by the new CS:EIP.

Figure 8-11 shows the new stack after control is transferred to
the interrupt handler with an error code.

Figure 8-11. Stack After Virtual-8086 Mode Interrupt to Protected Mode

An IRET from privileged protected-mode software (CPL=0) to
virtual-8086 mode reverses the stack-build process. After the
return pointer, EFLAGS, and return stack-pointer are restored,
the processor restores the ES, DS, FS, and GS registers by
popping their values off the stack.

8.9.2 Virtual-8086
Handler Control
Transfer

When a control transfer to an 8086 handler occurs from virtual-
8086 mode, the processor creates an interrupt-handler stack
identical to that created when an interrupt occurs in real mode
(see Figure 8-6 on page 273). The processor performs the
following actions during a control transfer:

With Error Code

Return SS

Return EIP

Return CS

Return EFLAGS

Return ESP

Error Code New SS:ESP
(From TSS, CPL=0)

+4

+8

+12

+16

+20

Return ES

Return DS

Return FS

Return GS

+24

+28

+32

+36

513-249.eps

With No Error Code

SS

CS

EFLAGS

ESP

EIP SS:ESP

+4

+8

+12

+16

+20ES

DS

FS

GS

+24

+28

+32

Interrupt-Handler Stack

Chapter 8: Exceptions and Interrupts 285

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

1. Pushes the FLAGS register (EFLAGS[15:0]) onto the stack.

2. Clears the EFLAGS.IF and EFLAGS.RF bits to 0.

3. Saves the CS register and IP register (RIP[15:0]) by pushing
them onto the stack.

4. Locates the interrupt-handler pointer (CS:IP) in the 8086
IDT by scaling the interrupt vector by four and adding the
result to the virtual (linear) address 0. The value in the
IDTR is not used.

5. Transfers control to the interrupt handler referenced by the
CS:IP in the IDT.

An IRET from the 8086 handler back to virtual-8086 mode
reverses the stack-build process.

8.10 Long-Mode Interrupt Control Transfers

The long-mode architecture expands the legacy interrupt-
mechanism to support 64-bit operating systems and
applications. These changes include:

� All interrupt handlers are 64-bit code and operate in 64-bit
mode.

� The size of an interrupt-stack push is fixed at 64 bits (8
bytes).

� The interrupt-stack frame is aligned on a 16-byte boundary.

� The stack pointer, SS:RSP, is pushed unconditionally on
interrupts, rather than conditionally based on a change in
CPL.

� The SS selector register is loaded with a null selector as a
result of an interrupt, if the CPL changes.

� The IRET instruction behavior changes, to unconditionally
pop SS:RSP, allowing a null SS to be popped.

� A new interrupt stack-switch mechanism, called the
interrupt-stack table or IST, is introduced.

8.10.1 Interrupt Gates
and Trap Gates

Only long-mode interrupt and trap gates can be referenced in
long mode (64-bit mode and compatibility mode). The legacy
32-bit interrupt-gate and 32-bit trap-gate types (0Eh and 0Fh, as
described in “System Descriptors” on page 109) are redefined
in long mode as 64-bit interrupt-gate and 64-bit trap-gate types.
32-bit and 16-bit interrupt-gate and trap-gate types do not exist

286 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

in long mode, and software is prohibited from using task gates.
If a reference is made to any gate other than a 64-bit interrupt
gate or a 64-bit trap gate, a general-protection exception (#GP)
occurs.

The long-mode gate types are 16 bytes (128 bits) long. They are
an extension of the legacy-mode gate types, allowing a full 64-
bit segment offset to be stored in the descriptor. See “Legacy
Segment Descriptors” on page 95 for a detailed description of
the gate-descriptor format and fields.

8.10.2 Locating the
Interrupt Handler

When an interrupt occurs in long mode, the processor
multiplies the interrupt-vector number by 16 and uses the
result as an offset into the IDT. The gate descriptor referenced
by the IDT offset contains a segment-selector and a 64-bit
segment-offset field. The gate-descriptor segment-offset field
contains the complete virtual address for the interrupt handler.
The gate-descriptor segment-selector field points to the target
code-segment descriptor located in either the GDT or LDT. The
code-segment descriptor is only used for privilege-checking
purposes and for placing the processor in 64-bit mode. The code
segment-descriptor base field, limit field, and most attributes
are ignored.

Figure 8-12 on page 287 shows how the long-mode interrupt
handler is located by the interrupt mechanism.

Chapter 8: Exceptions and Interrupts 287

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 8-12. Long-Mode Interrupt Control Transfer

8.10.3 Interrupt Stack
Frame

In long mode, the return-program stack pointer (SS:RSP) is
always pushed onto the interrupt-handler stack, regardless of
whether or not a privilege change occurs. Although the SS
register is not used in 64-bit mode, SS is pushed to allow returns
into compatibility mode. Pushing SS:RSP unconditionally
presents operating systems with a consistent interrupt-stack-
frame size for all interrupts, except for error codes. Interrupt
service-routine entry points that handle interrupts generated
by non-error-code interrupts can push an error code on the
stack for consistency.

*

Interrupt Vector

+

513-245.eps

Virtual-Address
Space

Interrupt Handler

Interrupt-Descriptor
Table

Code-Segment Offset

CS Selector DPL

Global- or Local-
Descriptor Table

Code-Segment Base

CS Limit DPL

Interrupt-Descriptor-Table Register

IDT Base Address IDT Limit

16

288 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

In long mode, when a control transfer to an interrupt handler
occurs, the processor performs the following:

1. Aligns the new interrupt-stack frame by masking RSP with
FFFF_FFFF_FFFF_FFF0h.

2. If IST field in interrupt gate is not 0, reads IST pointer into
RSP.

3. If a privilege change occurs, the target DPL is used as an
index into the long-mode TSS to select a new stack pointer
(RSP).

4. If a privilege change occurs, SS is cleared to zero indicating
a null selector.

5. Pushes the return stack pointer (old SS:RSP) onto the new
stack. The SS value is padded with six bytes to form a
quadword.

6. Pushes the 64-bit RFLAGS register onto the stack. The
upper 32 bits of the RFLAGS image on the stack are written
as zeros.

7. Clears the TF, NT, and RF bits in RFLAGS bits to 0.

8. Handles the RFLAGS.IF bit according to the gate-descriptor
type:

- If the gate descriptor is an interrupt gate, RFLAGS.IF is
cleared to 0.

- If the gate descriptor is a trap gate, RFLAGS.IF is not
modified.

9. Pushes the return CS register and RIP register onto the
stack. The CS value is padded with six bytes to form a
quadword.

10.If the interrupt-vector number has an error code associated
with it, pushes the error code onto the stack. The error code
is padded with four bytes to form a quadword.

11.Loads the segment-selector field from the gate descriptor
into the CS register. The processor checks that the target
code-segment is a 64-bit mode code segment.

12.Loads the offset field from the gate descriptor into the
target RIP. The interrupt handler begins execution when
control is transferred to the instruction referenced by the
new RIP.

Chapter 8: Exceptions and Interrupts 289

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 8-13 shows the stack after control is transferred to the
interrupt handler.

Figure 8-13. Long-Mode Stack After Interrupt—Same Privilege

Interrupt-Stack Alignment. In legacy mode, the interrupt-stack
pointer can be aligned at any address boundary. Long mode,
however, aligns the stack on a 16-byte boundary. This alignment
is performed by the processor in hardware before pushing items
onto the s tack f rame. The previous RSP is saved
unconditionally on the new stack by the interrupt mechanism.
A subsequent IRET instruction automatically restores the
previous RSP.

Aligning the stack on a 16-byte boundary allows optimal
performance for saving and restoring the 16-byte XMM
registers. The interrupt handler can save and restore the XMM
registers using the faster 16-byte aligned loads and stores
(MOVAPS), rather than unaligned loads and stores (MOVUPS).
Although the RSP alignment is always performed in long mode,
it is only of consequence when the interrupted program is
already running at CPL=0, and it is generally used only within
the operating-system kernel. The operating system should put
16-byte aligned RSP values in the TSS for interrupts that
change privilege levels.

Return SS

Return CS

Error Code

With Error Code

Return RIP

Return RFLAGS

Return RSP

RSP

+8

+16

+24

+32

+40

SS

Return CS

With No Error Code

RIP

RFLAGS

RSP

RSP

+8

+16

+24

+32

Interrupt-Handler Stack

290 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Stack Switch. In long mode, the stack-switch mechanism differs
slightly from the legacy stack-switch mechanism (see “Interrupt
To Higher Privilege” on page 276). When stacks are switched
during a long-mode privilege-level change resulting from an
interrupt, a new SS descriptor is not loaded from the TSS. Long
mode only loads an inner-level RSP from the TSS. However, the
SS selector is loaded with a null selector, allowing nested
control transfers, including interrupts, to be handled properly
in 64-bit mode. The SS.RPL is set to the new CPL value. See
“Nested IRETs to 64-Bit Mode Procedures” on page 293 for
additional information.

The interrupt-handler stack that results from a privilege change
in long mode looks identical to a long-mode stack when no
privilege change occurs. Figure 8-14 shows the stack after the
switch is performed and control is transferred to the interrupt
handler.

Figure 8-14. Long-Mode Stack After Interrupt—Higher Privilege

8.10.4 Interrupt-Stack
Table

In long mode, a new interrupt-stack table (IST) mechanism is
introduced as an alternative to the modified legacy stack-switch
mechanism described above. The IST mechanism provides a
method for specific interrupts, such as NMI, double-fault, and
machine-check, to always execute on a known-good stack. In
legacy mode, interrupts can use the hardware task-switch

Return SS

Return CS

Error Code

With Error Code

Return RIP

Return RFLAGS

Return RSP

New RSP
(from TSS)

SS=0
(if CPL changes)

+8

+16

+24

+32

+40

SS

CS

Without Error Code

Return RIP

RFLAGS

RSP

New RSP
(from TSS)

SS=0
(if CPL changes)

+8

+16

+24

+32

Interrupt-Handler Stack

Chapter 8: Exceptions and Interrupts 291

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

mechanism to set up a known-good stack by accessing the
interrupt service routine through a task gate located in the IDT.
However, the hardware task-switch mechanism is not supported
in long mode.

When enabled, the IST mechanism unconditionally switches
stacks. It can be enabled on an individual interrupt-vector basis
using a new field in the IDT gate-descriptor entry. This allows
some interrupts to use the modified legacy mechanism, and
others to use the IST mechanism. The IST mechanism is only
available in long mode.

The IST mechanism uses new fields in the 64-bit TSS format
and the long-mode interrupt-gate and trap-gate descriptors:

� Figure 12-8 on page 370 shows the format of the 64-bit TSS
and the location of the seven IST pointers. The 64-bit TSS
offsets from 24h to 5Bh provide space for seven IST pointers,
each of which are 64 bits (8 bytes) long.

� The long-mode interrupt-gate and trap-gate descriptors
define a 3-bit IST-index field in bits 2–0 of byte +4.
Figure 4-24 on page 113 shows the format of long-mode
interrupt-gate and trap-gate descriptors and the location of
the IST-index field.

To enable the IST mechanism for a specific interrupt, system
software stores a non-zero value in the interrupt gate-descriptor
IST-index field. If the IST index is zero, the modified legacy
stack-switching mechanism (described in the previous section)
is used.

Figure 8-15 on page 292 shows how the IST mechanism is used
to create the interrupt-handler stack. When an interrupt occurs
and the IST index is non-zero, the processor uses the index to
select the corresponding IST pointer from the TSS. The IST
pointer is loaded into the RSP to establish a new stack for the
interrupt handler. The SS register is loaded with a null selector
if the CPL changes and the SS.RPL is set to the new CPL value.
After the stack is loaded, the processor pushes the old stack
pointer, RFLAGS, the return pointer, and the error code (if
applicable) onto the stack. Control is then transferred to the
interrupt handler.

292 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 8-15. Long-Mode IST Mechanism

8.10.5 Returning From
Interrupt Procedures

As with legacy mode, a return to an interrupted program in long
mode should be performed using the IRET instruction.
However, in long mode, the IRET semantics are different from
legacy mode:

� In 64-bit mode, IRET pops the return-stack pointer
unconditionally off the interrupt-stack frame and into the
SS:RSP registers. This reverses the action of the long-mode
interrupt mechanism, which saves the stack pointer whether
or not a privilege change occurs. IRET also allows a null
selector to be popped off the stack and into the SS register.
See “Nested IRETs to 64-Bit Mode Procedures” on page 293
for additional information.

� In compatibility mode, IRET behaves as it does in legacy
mode. The SS:ESP is popped off the stack only if a control
transfer to less privilege (numerically greater CPL) is
performed. Otherwise, it is assumed that a stack pointer is
not present on the interrupt-handler stack.

The long-mode interrupt mechanism always uses a 64-bit stack
when saving values for the interrupt handler, and the interrupt
handler is always entered in 64-bit mode. To work properly, an

513-248.eps

Return SS

Return CS

Error Code

64-Bit
Interrupt-Handler Stack

Return RIP

Return RFLAGS

Return RSP

+8

+16

+24

+32

+40

IST

Long-Mode
Interrupt- or Trap-
Gate Descriptor

64-Bit TSS

RSP0 : RSP2

IST1 : IST7
RSP

SS=0

Chapter 8: Exceptions and Interrupts 293

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

IRET used to exit the 64-bit mode interrupt-handler requires a
series of eight-byte pops off the stack. This is accomplished by
using a 64-bit operand-size prefix with the IRET instruction.
The default stack size assumed by an IRET in 64-bit mode is 32
bits, so a 64-bit REX prefix is needed by 64-bit mode interrupt
handlers.

Nested IRETs to 64-Bit Mode Procedures. In long mode, an interrupt
causes a null selector to be loaded into the SS register if the
CPL changes (this is the same action taken by a far CALL in
long mode). If the interrupt handler performs a far call, or is
itself interrupted, the null SS selector is pushed onto the stack
frame, and another null selector is loaded into the SS register.
Using a null selector in this way allows the processor to properly
handle returns nested within 64-bit-mode procedures and
interrupt handlers.

The null selector enables the processor to properly handle
nested returns to 64-bit mode (which do not use the SS
register), and returns to compatibility mode (which do use the
SS register). Normally, an IRET that pops a null selector into
the SS register causes a general-protection exception (#GP) to
occur. However, in long mode, the null selector indicates the
existence of nested interrupt handlers and/or privileged
software in 64-bit mode. Long mode allows an IRET to pop a
null selector into SS from the stack under the following
conditions:

� The target mode is 64-bit mode.

� The target CPL<3.

In this case, the processor does not load an SS descriptor, and
the null selector is loaded into SS without causing a #GP
exception.

8.11 Virtual Interrupts

The term virtual interrupts includes two classes of extensions to
the interrupt-handling mechanism:

� Virtual-8086 Mode Extensions (VME)—These allow virtual
interrupts and interrupt redirection in virtual-8086 mode.
VME has no effect on protected-mode programs.

� Protected-Mode Virtual Interrupts (PVI)—These allow virtual
interrupts in protected mode when CPL=3. Interrupt

294 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

redirection is not available in protected mode. PVI has no
effect on virtual-8086-mode programs.

Because virtual-8086 mode is not supported in long mode, VME
extensions are not supported in long mode. PVI extensions are,
however, supported in long mode.

8.11.1 Virtual-8086
Mode Extensions

The virtual-8086-mode extensions (VME) enable performance
enhancements for 8086 programs running as protected tasks in
virtual-8086 mode. These extensions are enabled by setting
CR4.VME (bit 0) to 1. The extensions enabled by CR4.VME are:

� Virtualizing control and notification of maskable external
interrupts with the EFLAGS VIF (bit 19) and VIP (bit 20)
bits.

� Selective interception of software interrupts (INTn
instructions) using the TSS interrupt redirection bitmap
(IRB).

Background. Legacy-8086 programs expect to have full access to
the EFLAGS interrupt flag (IF) bit, allowing programs to enable
and disable maskable external interrupts. When those
programs run in virtual-8086 mode under a multitasking
protected-mode environment, it can disrupt the operating
system if programs enable or disable interrupts for their own
purposes. This is particularly true if interrupts associated with
one program can occur during execution of another program.
For example, a program could request that an area of memory
be copied to disk. System software could suspend the program
before external hardware uses an interrupt to acknowledge that
the block has been copied. System software could subsequently
start a second program which enables interrupts. This second
program could receive the external interrupt indicating that
the memory block of the first program has been copied. If that
were to happen, the second program would probably be
unprepared to handle the interrupt properly.

Access to the IF bit must be managed by system software on a
task-by-task basis to prevent corruption of system resources. In
order to completely manage the IF bit, system software must be
able to interrupt all instructions that can read or write the bit.
These instructions include STI, CLI, PUSHF, POPF, INTn, and
IRET. These instructions are part of an instruction class that is
IOPL-sensitive. The processor takes a general-protection
exception (#GP) whenever an IOPL-sensitive instruction is

Chapter 8: Exceptions and Interrupts 295

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

executed and the EFLAGS.IOPL field is less than the CPL.
Because all virtual-8086 programs run at CPL=3, system
software can interrupt all instructions that modify the IF bit by
setting IOPL<3.

System software maintains a virtual image of the IF bit for each
virtual-8086 program by emulating the actions of IOPL-
sensitive instructions that modify the IF bit. When an external
maskable-interrupt occurs, system software checks the state of
the IF image for the current virtual-8086 program to determine
whether the program is masking interrupts. If the program is
masking interrupts, system software saves the interrupt
information until the virtual-8086 program attempts to re-
enable interrupts. When the virtual-8086 program unmasks
interrupts with an IOPL-sensitive instruction, system software
traps the action with the #GP handler.

The performance of a processor can be significantly degraded
by the overhead of trapping and emulating IOPL-sensitive
instructions, and the overhead of maintaining images of the IF
bit for each virtual-8086 program. This performance loss can be
eliminated by running virtual-8086 programs with IOPL set to
3, thus allowing changes to the real IF flag from any privilege
level. Unfortunately, this can leave critical system resources
unprotected.

In addition to the performance problems caused by virtualizing
the IF bit, software interrupts (INTn instructions) cannot be
masked by the IF bit or virtual copies of the IF bit. The IF bit
only affects maskable external interrupts. Software interrupts
in virtual-8086 mode are normally directed to the real mode
interrupt-vector table (IVT), but it can be desirable to redirect
certain interrupts to the protected-mode interrupt-descriptor
table (IDT).

The virtual-8086-mode extensions are designed to support both
external interrupts and software interrupts, with mechanisms
that preserve high performance without compromising
protection. Virtualization of external interrupts is supported
using two bits in the EFLAGS register: the virtual-interrupt flag
(VIF) bit and the virtual-interrupt pending (VIP) bit.
Redirection of software interrupts is supported using the
interrupt-redirection bitmap (IRB) in the TSS. A separate TSS
can be created for each virtual-8086 program, allowing system

296 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

software to control interrupt redirection independently for
each virtual-8086 program.

VIF and VIP Extensions for External Interrupts. When VME extensions
are enabled, the IF-modifying instructions normally trapped by
system software are allowed to execute. However, instead of
modifying the IF bit, they modifying the EFLAGS VIF bit. This
leaves control over maskable interrupts to the system software.
It can also be used as an indicator to system software that the
virtual-8086 program is able to, or is expecting to, receive
external interrupts.

When an unmasked external interrupt occurs, the processor
transfers control from the virtual-8086 program to a protected-
mode interrupt handler. If the interrupt handler determines
that the interrupt is for the virtual-8086 program, it can check
the state of the VIF bit in the EFLAGS value pushed on the
stack for the virtual-8086 program. If the VIF bit is set
(indicating the virtual-8086 program attempted to unmask
interrupts), system software can allow the interrupt to be
handled by the appropriate virtual-8086 interrupt handler.

If the VIF bit is clear (indicating the virtual-8086 program
attempted to mask interrupts) and the interrupt is for the
virtual-8086 program, system software can hold the interrupt
pending. System software holds an interrupt pending by saving
appropriate information about the interrupt, such as the
interrupt vector, and setting the virtual-8086 program’s VIP bit
in the EFLAGS image on the stack. When the virtual-8086
program later attempts to set IF, the previously set VIP bit
causes a general-protection exception (#GP) to occur. System
software can then pass the saved interrupt information to the
virtual-8086 interrupt handler.

To summarize, when the VME extensions are enabled
(CR4.VME=1), the VIF and VIP bits are set and cleared as
follows:

� VIF Bit—This bit is set and cleared by the processor in
virtual-8086 mode in response to an attempt by a virtual-
8086 program to set and clear the EFLAGS.IF bit. VIF is
used by system software to determine whether a maskable
external interrupt should be passed on to the virtual-8086
program, emulated by system software, or held pending. VIF
is also cleared during software interrupts through interrupt

Chapter 8: Exceptions and Interrupts 297

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

gates, with the original VIF value preserved in the EFLAGS
image on the stack.

� VIP Bit—System software sets and clears this bit in the
EFLAGS image saved on the stack after an interrupt. It can
be set when an interrupt occurs for a virtual-8086 program
that has a clear VIF bit. The processor examines the VIP bit
when an attempt is made by the virtual-8086 program to set
the IF bit. If VIP is set when the program attempts to set IF,
a general-protection exception (#GP) occurs before execution
of the IF-setting instruction. System software must clear VIP
to avoid repeated #GP exceptions when returning to the
interrupted instruction.

The VIF and VIP bits can be used by system software to
minimize the overhead associated with managing maskable
external interrupts because virtual copies of the IF flag do not
have to be maintained by system software. Instead, VIF and
VIP are maintained during context switches along with the
remaining EFLAGS bits.

Table 8-11 on page 299 shows how the behavior of instructions
that modify the IF bit are affected by the VME extensions.

Interrupt Redirection of Software Interrupts. In virtual-8086 mode,
software interrupts (INTn instructions) are trapped using a #GP
exception handler if the IOPL is less than 3 (the CPL for virtual-
8086 mode). This allows system software to interrupt and
emulate 8086-interrupt handlers. System software can set the
IOPL to 3, in which case the INTn instruction is vectored
through a gate descriptor in the protected-mode IDT. System
software can use the gate to control access to the virtual-8086
mode interrupt-vector table (IVT), or to redirect the interrupt
to a protected-mode interrupt handler.

When VME extensions are enabled, INTn instructions to
execute normally, vectoring directly to a virtual-8086 interrupt
handler through the virtual-8086 IVT (located at address 0 in
the virtual-address space of the task). For security or
performance reasons, however, it can be necessary to intercept
INTn instructions on a vector-specific basis to allow servicing by
protected-mode interrupt handlers. This is performed by using
the interrupt-redirection bitmap (IRB), located in the TSS and
enabled when CR4.VME=1. The IRB is available only in virtual-
8086 mode.

298 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 12-6 on page 364 shows the format of the TSS, with the
interrupt redirection bitmap located near the top. The IRB
contains 256 bits, one for each possible software-interrupt
vector. The most-significant bit of the IRB controls interrupt
vector 255, and is located immediately before the IOPB base.
The least-significant bit of the IRB controls interrupt vector 0.

The bits in the IRB function as follows:

� When set to 1, the INTn instruction behaves as if the VME
extensions are not enabled. The interrupt is directed
through the IDT to a protected-mode interrupt handler if
IOPL=3. If IOPL<3, the INTn causes a #GP exception.

� When cleared to 0, the INTn instruction is directed through
the IVT for the virtual-8086 program to the corresponding
virtual-8086 interrupt handler.

Only software interrupts can be redirected using the IRB
mechanism. External interrupts are asynchronous events that
occur outside the context of a virtual-8086 program. Therefore,
external interrupts require system-software intervention to
determine the appropriate context for the interrupt. The VME
extensions described in “VIF and VIP Extensions for External
Interrupts” on page 296 are provided to assist system software
with external-interrupt intervention.

8.11.2 Protected Mode
Virtual Interrupts

The protected-mode virtual-interrupt (PVI) bit in CR4 enables
support for interrupt virtualization in protected mode. When
enabled, the processor maintains program-specific VIF and VIP
bits similar to the manner defined by the virtual-8086 mode
extensions (VME). However, unlike VME, only the STI and CLI
instructions are affected by the PVI extension. When a program
is running at CPL=3, it can use STI and CLI to set and clear its
copy of the VIF flag without causing a general-protection
exception. The last section of Table 8-11 on page 299 describes
the behavior of instructions that modify the IF bit when PVI
extensions are enabled.

The interrupt redirection bitmap (IRB) defined by the VME
extensions is not supported by the PVI extensions.

8.11.3 Effect of
Instructions that
Modify EFLAGS.IF

Table 8-11 on page 299 shows how the behavior of instructions
that modify the IF bit are affected by the VME and PVI
extensions. The table columns specify the following:

Chapter 8: Exceptions and Interrupts 299

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Operating Mode—the processor mode in effect when the
instruction is executed.

� Instruction—the IF-modifying instruction.

� IOPL—the value of the EFLAGS.IOPL field.

� VIP—the value of the EFLAGS.VIP bit.

� #GP—indicates whether the conditions in the first four
columns cause a general-protection exception (#GP) to
occur.

� Effect on IF Bit—indicates the effect the conditions in the
first four columns have on the EFLAGS.IF bit and the image
of EFLAGS.IF on the stack.

� Effect on VIF Bit—indicates the effect the conditions in the
first four columns have on the EFLAGS.VIF bit and the
image of EFLAGS.VIF on the stack.

Table 8-11. Effect of Instructions that Modify the IF Bit
Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Real Mode
CR0.PE=0
EFLAGS.VM=0
CR4.VME=0
CR4.PVI=0

CLI

no

IF = 0

STI IF = 1

PUSHF EFLAGS.IF Stack Image = IF

POPF IF = EFLAGS.IF stack image

INTn
EFLAGS.IF Stack Image = IF
IF = 0

IRET IF = EFLAGS.IF Stack Image
Note:

Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

300 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Protected Mode
CR0.PE=1
EFLAGS.VM=0
CR4.VME=x
CR4.PVI=0

CLI
≥CPL no IF = 0

<CPL yes —

STI
≥CPL no IF = 1

<CPL yes —

PUSHF x

no

EFLAGS.IF Stack Image = IF

POPF
≥CPL IF = EFLAGS.IF Stack Image

<CPL No Change

INTn gate

x

EFLAGS.IF Stack Image = IF
IF = 0

IRET
IF = EFLAGS.IF Stack Image

IRETD

Virtual-8086 Mode
CR0.PE=1
EFLAGS.VM=1
CR4.VME=0
CR4.PVI=x

CLI
3 no IF = 0

< 3 yes —

STI
3 no IF = 1

< 3 yes —

PUSHF
3 no EFLAGS.IF Stack Image = IF

< 3 yes —

POPF
3 no IF = EFLAGS.IF Stack Image

< 3 yes —

INTn gate
3 no

EFLAGS.IF Stack Image = IF
IF = 0

< 3 yes —

IRET
3 no IF = EFLAGS.IF Stack Image

< 3 yes —

IRETD
3 no IF = EFLAGS.IF Stack Image

< 3 yes —

Table 8-11. Effect of Instructions that Modify the IF Bit (continued)
Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

Chapter 8: Exceptions and Interrupts 301

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Virtual-8086 Mode
with VME Extensions

CR0.PE=1
EFLAGS.VM=1
CR4.VME=1
CR4.PVI=x

CLI
3

x no
IF = 0 No Change

<3 No Change VIF = 0

STI

3 x no IF = 1 No Change

<3
0 no No Change VIF = 1
1 yes —

PUSHF
3

x no
EFLAGS.IF Stack Image = IF Not Pushed

<3 Not Pushed EFLAGS.IF Stack Image = VIF

PUSHFD
3

x
no EFLAGS.IF Stack Image = IF EFLAGS.VIF Stack Image = VIF

<3 yes —

POPF

3 x no IF = EFLAGS.IF Stack Image No Change

<3
0 no No Change VIF = EFLAGS.IF Stack Image

1 yes —

POPFD
3

x
no IF = EFLAGS.IF Stack Image No Change

<3 yes —

INTn gate

3

x no

EFLAGS.IF Stack Image = IF
IF = 0

No Change

<3 No Change
EFLAGS.IF Stack Image = VIF
VIF = 0

IRET

3 x no IF = EFLAGS.IF Stack Image No Change

<3

0 no No Change VIF = EFLAGS.IF Stack Image

1
no1 No Change VIF = EFLAGS.IF Stack Image

yes2 —

IRETD
3

x
no IF = EFLAGS.IF Stack Image VIF = EFLAGS.IF Stack Image

<3 yes —

Table 8-11. Effect of Instructions that Modify the IF Bit (continued)
Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

302 Chapter 8: Exceptions and Interrupts

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Protected Mode
with PVI Extensions

CR0.PE=1
EFLAGS.VM=0
CR4.VME=x
CR4.PVI=1
CPL=3

CLI
3

x no
IF = 0 No Change

<3 No Change VIF = 0

STI

3 x no IF = 1 No Change

<3
0 no No Change VIF = 1
1 yes —

PUSHF

x x no

EFLAGS.IF Stack Image = IF
Not Pushed

PUSHFD EFLAGS.VIF Stack Image = VIF

POPF
IF = EFLAGS.IF Stack Image

No Change

POPFD VIF = 0

INTn gate
EFLAGS.IF Stack Image = IF
IF = 0 (if interrupt gate)

No Change

IRET
IF = EFLAGS.IF Stack Image

No Change

IRETD VIF = EFLAGS.VIF Stack Image

Table 8-11. Effect of Instructions that Modify the IF Bit (continued)
Operating Mode Instruction IOPL VIP #GP Effect on IF Bit Effect on VIF Bit

Note:
Gray-shaded boxes indicate the bits are unsupported (ignored) in the specified operating mode.
“x” indicates the value of the bit is a “don’t care”.
“—” indicates the instruction causes a general-protection exception (#GP).

Note:
1. If the EFLAGS.IF stack image is 0, no #GP exception occurs and the IRET instruction is executed.
2. If the EFLAGS.IF stack image is 1, the IRET is not executed, and a #GP exception occurs.

Chapter 9: Machine Check Mechanism 303

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

9 Machine Check Mechanism

The machine-check mechanism allows the processor to detect
and report a variety of hardware errors. The types of errors that
can be reported include:

� Cache errors associated with reading and writing data,
probing, cache-line fills, and cache-line writebacks.

� Parity errors associated with the caches (including external
caches) and TLBs.

� ECC errors associated with the caches (including external
caches) and DRAM.

� Bus errors associated with reading and writing on the
processor external bus.

Software can enable the processor to report machine-check
errors through the machine-check exception (for additional
information, see “#MC—Machine-Check Exception (Vector
18)” on page 262). Most machine-check error conditions do not
allow reliable restarting of interrupted programs. System
software instead uses the machine-check mechanism to report
the source of hardware problems for possible servicing.

The basic machine-check mechanism is consistent across
processor implementations, but the error-reporting registers
are model specific. Processor implementations are not required
to support the mechanism, and those implementations that do
support it can vary in how the mechanism works.

9.1 Determining Machine-Check Support

The availability of machine-check registers and support of the
machine-check exception is implementation dependent.
System software executes the CPUID instruction to determine
whether a processor implements these features. After CPUID is
executed, the values of the machine-check architecture (MCA)
bit and the machine-check exception (MCE) bit loaded in the
EDX register indicate whether the processor implements the
machine-check registers and the machine-check exception,
respectively. See “Processor Feature Identification” on page 75
for more information on using the CPUID instruction to
determine the level of machine-check support.

304 Chapter 9: Machine Check Mechanism

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Once system software determines that the machine-check
registers are available, it must determine the extent of
processor support for the machine-check mechanism. This is
accomplished by reading the machine-check capabilities
register (MCG_CAP). See “Machine-Check Global-Capabilities
Register” on page 306 for more information on interpreting the
MCG_CAP contents.

Implementation-specific information concerning the machine-
check mechanism can be found in the BIOS writer’s guide for
the implementation.

9.2 Machine-Check Errors

The following classes of machine-check errors are defined for
the x86-64 architecture:

� Recoverable—The error has been corrected by the processor.
Recoverable errors do not cause a machine check exception
(#MC). However, the error is still logged in the machine-
check registers. It is the responsibility of system software to
periodically poll the machine-check registers to determine
whether recoverable errors have occurred.

� Fatal/Unrecoverable—The error cannot be corrected by the
processor. Unrecoverable errors cause a machine check
exception if CR4.MCE is set to 1.

In both cases, the contents of the machine-check registers are
maintained through a warm reset, which allows errors to be
reported even if a reset occurs.

9.2.1 Error Sources Implementations can detect errors from any number of sources
located within the various processor units. Those processor
units can include the following:

� Data-Cache Unit (DC)—Includes the cache structures that
hold data and tags, the data TLBs, and cache-probing logic.

� Instruction-Cache Unit (IC)—Includes the cache structures
that hold instructions and tags, the instruction TLBs, and
cache-probing logic.

� Bus Unit (BU)—Includes the L2 cache and any external
caches.

� Load/Store Unit (LS)—Includes logic used to manage loads
and stores.

Chapter 9: Machine Check Mechanism 305

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Northbridge (NB)—Includes the system-bus interface and
DRAM controller.

A given processor implementation can monitor machine-check
errors in sources other than those listed above. The number is
implementation-specific and is determined by examining the
MCG_CAP register (see “Machine-Check Global-Capabilities
Register” on page 306). For further information, see the
documentation for particular implementations of the
architecture.

9.3 Machine Check MSRs

The x86-64 architecture defines a set of model-specific registers
(MSRs) in support of the machine-check mechanism. These
registers include:

� Global-status and global-control registers:

- Machine-check global-capabilities register (MCG_CAP).

- Machine-check global-status register (MCG_STATUS).

- Machine-check global-control register (MCG_CTL).

� Error-reporting register banks, each containing:

- Machine-check control register (MCi_CTL).

- Machine-check status register (MCi_STATUS).

- Machine-check address register (MCi_ADDR).

- Machine-check miscellaneous error-information register
(MCi_MISC).

Each error-reporting register bank is associated with a
specific processor unit (or group of processor units).

In some cases, the machine-check handler cannot be invoked
due to an error, the error-reporting registers retain their values
through a warm reset. (A warm reset is a reset that occurs while
the processor is powered up, as opposed to a cold reset, which
occurs during power-up.) This allows BIOS or other system-boot
software to recover and report information associated with the
error.

The RDMSR and WRMSR instructions are used to read and
write the machine-check MSRs. See “Machine-Check MSRs” on
page 441 for a listing of the machine-check MSR numbers and
their reset values. The following sections describe each
machine-check MSR and its function.

306 Chapter 9: Machine Check Mechanism

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

9.3.1 Global Status
and Control Registers

The global-status and global-control MSRs supported by the
machine -check mechanism inc lude the MCG_CAP,
MCG_STATUS, and MCG_CTL registers.

Machine-Check Global-Capabilities Register. Figure 9 -1 shows the
format of the machine-check global-capabilities register
(MCG_CAP). MCG_CAP is a read-only register that specifies
the machine-check mechanism capabilities supported by the
processor implementation.

Figure 9-1. MCG_CAP Register

The fields within the MCG_CAP register are:

� Count—Bits 7–0. This field specifies how many error-
reporting register banks are supported by the processor
implementation.

� MCG_CTL Register Present (MCG_CTL_P)—Bit 8. This bit
specifies whether or not the MCG_CTL register is supported
by the processor. When the bit is set to 1, the register is
supported. When the bit is cleared to 0, the register is
unsupported.

All remaining bits in the MCG_CAP register are reserved.
Writing values to the MCG_CAP register produces undefined
results.

Machine-Check Global-Status Register. Figure 9-2 on page 307 shows
the format of the machine-check global-status register
(MCG_STATUS). MCG_STATUS provides basic information
about the processor state after the occurrence of a machine-
check error.

63 32

reserved

31 9 8 7 0

reserved

M
C
G
C
P

Count

Bits Mnemonic Description R/W
63–9 reserved
8 MCG_CTL_P MCG_CTL_PMCG_CTL register present R
7-0 Count Number of reporting banks R

Chapter 9: Machine Check Mechanism 307

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 9-2. MCG_STATUS Register

The fields within the MCG_STATUS register are:

� Restart-IP Valid (RIPV)—Bit 0. When this bit is set to 1, the
interrupted program can be reliably restarted at the
instruction addressed by the instruction pointer pushed
onto the stack by the machine-check error mechanism. If this
bit is cleared to 0, the interrupted program cannot be
reliably restarted.

� Error-IP Valid (EIPV)—Bit 1. When this bit is set to 1, the
instruction that is referenced by the instruction pointer
pushed onto the stack by the machine-check error
mechanism is responsible for the machine-check error. If this
bit is cleared to 0, it is possible that the instruction
referenced by the instruction pointer is not responsible for
the machine-check error.

� Machine Check In-Progress (MCIP)—Bit 2. When this bit is set
to 1, it indicates that a machine-check error is in progress. If
another machine-check error occurs while this bit is set, the
processor enters the shutdown state. The processor sets this
bit whenever a machine check exception is generated.
Software is responsible for clearing it after the machine
check exception is handled.

All remaining bits in the MCG_STATUS register are reserved.

Machine-Check Global-Control Register. Figure 9-3 on page 308 shows
the format of the machine-check global-control register
(MCG_CTL). MCG_CTL is used by software to control reporting
machine-check errors from various sources. Each error-
reporting register bank supported by the processor is

63 32

reserved

31 3 2 1 0

reserved

M
C
I
P

E
I
P
V

R
I
P
V

Bits Mnemonic Description R/W
63–3 reserved
2 MCIP Machine Check In-Progress R/W
1 EIPV Error IP Valid Flag R/W
0 RIPV Restart IP Valid Flag R/W

308 Chapter 9: Machine Check Mechanism

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

controlled by a corresponding enable bit in this register. Setting
all bits to 1 in this register enables all error-reporting register
banks. The number of controls and how they are used is
implementation-specific (for further information, see the
documentation for particular implementations of the
architecture). The presence of the MCG_CTL register is
indicated by the MCG_CAP register MCG_CTL_P bit, described
on page 306.

Figure 9-3. MCG_CTL Register

9.3.2 Error-Reporting
Register Banks

Error-reporting register banks contain the following registers:

� Machine-check control registers (MCi_CTL).

� Machine-check status register (MCi_STATUS).

� Machine-check address register (MCi_ADDR).

� Machine-check miscellaneous error-information register
(MCi_MISC).

The i in each register name corresponds to the number of a
supported register bank. Each error-reporting register bank is
associated with a specific processor unit (or group of processor
units). The number of error-reporting register banks is
implementation-specific. For more information, see the AMD
x86-64 Architecture BIOS and Kernel Develop’s Guide for
particular implementations of the x86-64 architecture.

Software reads the MCG_CAP register to determine the
number of supported register banks. The first error-reporting
register (MC0_CTL) always starts with MSR address 400h,
followed by MC0_STATUS (401h), MC0_ADDR (402h), and
MC0_MISC (403h). Error-reporting-register MSR addresses are
assigned sequentially through the remaining supported register
banks. Using this information, software can access all error-
reporting registers in an implementation-independent manner.

Machine-Check Control Registers. The machine -check control
registers (MCi_CTL), as shown in Figure 9-4 on page 309,
contain an enable bit for each error source within an error-
reporting register bank. Setting an enable bit to 1 enables error-

63 2 1 0

E
N
6
3

… Error-Reporting Register-Bank Enable Bits …
E
N
2

E
N
1

E
N
0

Chapter 9: Machine Check Mechanism 309

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

reporting for the specific feature controlled by the bit, and
clearing the bit to 0 disables error reporting for the feature. For
more information, see the AMD x86-64 Architecture BIOS and
Kernel Developer’s Guide for particular implementations of the
x86-64 architecture.

Figure 9-4. MCi_CTL Registers

Machine-Check Status Registers. Each error-reporting register bank
includes a machine-check status register (MCi_STATUS) that
the processor uses to report machine-check error information.
The machine-check mechanism writes the status-register bits
when an error is detected, and sets the valid bit in the register
(bit 63) to 1, indicating that the status information is valid.
Error reporting for the detected error does not need to be
enabled for the processor to write the status register. Error
reporting must be enabled for the error to result in a machine-
check exception. Software is responsible for clearing the status
register after the exception has been handled. Attempting to
write a value other than 0 to an MCi_STATUS register will raise
a general protection (#GP) exception.

Figure 9-5 shows the format of the MCi_STATUS register.

Figure 9-5. MCi_STATUS Register

63 2 1 0

E
N
6
3

… Error-Reporting Register-Bank Enable Bits …
E
N
2

E
N
1

E
N
0

63 62 61 60 59 58 57 56 32

V
A
L

O
V
E
R

U
C

E
N

M
I
S
C
V

A
D
D
R
V

P
C
C

Other Information

31 16 15 0

Model-Specific Error Code MCA Error Code

Bits Mnemonic Description R/W
63 VAL Valid R/W*
62 OVER Status Register Overflow R/W*
61 UC Uncorrected Error R/W*
60 EN Error Condition Enabled R/W*
59 MISCV Miscellaneous-Error Register Valid R/W*
58 ADDRV Error-Address Register Valid R/W*
57 PCC Processor-Context Corrupt R/W*
56–32 Other Information R/W*
31–16 Model-Specific Error Code R/W*
15–0 MCA Error Code R/W*
*Applications can only clear this bit to 0.

310 Chapter 9: Machine Check Mechanism

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

9.3.3 Error Codes When a machine-check error occurs, the processor loads an
error code into the appropriate MCi_STATUS register MCA
error-code field. The MCi_STATUS.VAL bit is set to 1,
indicating that the MCi_STATUS register contents are valid.
The machine-check mechanism also allows the processor to load
a model-specific error code into the MCi_STATUS register.

MCA error-codes are used to report errors in the memory
hierarchy, the system bus, and the system-interconnection logic.
Error-codes are divided into subfields that are used to describe
the cause of an error. The information is implementation
specific. It includes the location in the memory hierarchy where
the error occurred and the type of transaction that caused the
error. For further information, see the documentation for
particular implementations of the architecture.

The fields within the MCi_STATUS register are:

� MCA Error Code—Bits 15–0. This field encodes information
about the error, including:

- The type of transaction that caused the error.

- The memory-hierarchy level involved in the error.

- The type of request that caused the error.

- Other information concerning the transaction type.

See “Error Codes” on page 310 for information on the
format and encoding of the MCA error code.

� Model-Specific Error Code—Bits 31–16. This field encodes
model-specific information about the error. For further
information, see the documentation for particular
implementations of the architecture.

� Other Information—Bits 56–32. This field holds model-
specific error information. Software should not rely on the
field definitions being consistent between processor
implementations. Presently, the bits in this field are defined
as:

- Bits 44–32—Reserved.

- Bit 45—When set to 1, this bit indicates the error is an
uncorrectable ECC error.

- Bit 46—When set to 1, this bit indicates the error is a
correctable ECC error.

- Bits 54–47—This field holds the ECC syndrome when an
ECC error occurs.

Chapter 9: Machine Check Mechanism 311

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

- Bits 56–55—Reserved.

� PCC—Bit 57. When set to 1, this bit indicates that the
processor state is likely to be corrupt due to the machine-
check error. In this case, it is possible software cannot restart
the processor reliably. When this bit is cleared to 0, the
processor state is not corrupted by the machine-check error.
If the PCC bit is set in any error bank, the processor will
clear RIPV and EIPV in the MCG_Status register.

� ADDRV—Bit 58. When set to 1, this bit indicates that the
address saved in the corresponding error-reporting address
register (MCi_ADDR) is valid, and contains the address
where the error was detected. When this bit is cleared to 0,
MCi_ADDR does not contain a valid error address.

� MISCV—Bit 59. When set to 1, this bit indicates that
additional information about the machine-check error is
saved in the corresponding error-reporting miscellaneous
register (MCi_MISC). This bit is cleared to 0 when the
MCi_MISC registers are not implemented.

� EN—Bit 60. When set to 1, this bit indicates that the error
condition is enabled in the corresponding error-reporting
control register (MCi_CTL). Errors disabled by MCi_CTL do
not cause a machine-check exception, but the machine-check
mechanism can log errors when error reporting is disabled in
MCi_CTL.

� UC—Bit 61. When set to 1, this bit indicates that the
processor did not correct the error condition. When this bit
is cleared to 0, the processor corrected the error condition.

� OVER—Bit 62. This bit is set to 1 by the processor if the VAL
bit is already set to 1 as the processor attempts to load error
information into MCi_STATUS. This indicates that the
results of a previous machine-check error are still in the
MCi_STATUS register. In this situation, the machine-check
mechanism handles the contents of MCi_STATUS as follows:

- Status for an enabled error replaces status for a disabled
error.

- Status for an uncorrectable error replaces status for a
correctable error.

- Status for an enabled uncorrectable error is never
replaced.

� VAL—Bit 63. This bit is set to 1 by the processor if the
contents of MCi_STATUS are valid. Software should clear

312 Chapter 9: Machine Check Mechanism

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

the VAL bit after reading the MCi_STATUS register,
otherwise a subsequent machine-check error sets the OVER
bit as described above.

Machine-Check Address Registers. Each error-reporting register
bank includes a machine-check address register (MCi_ADDR)
that the processor uses to report the address associated with the
machine-check error. The address field can hold either a virtual
(linear) or physical address, depending on the type of error. For
further information, see the documentation for particular
implementations of the architecture. The contents of this
register are valid only if the ADDRV bit in the corresponding
MCi_STATUS register is set to 1.

Machine-Check Miscellaneous-Error Information Registers. Each error-
reporting register bank can include a machine-check
miscellaneous error-information register (MCi_MISC) that the
processor uses to report additional information concerning the
machine-check error. The contents of this register are valid only
if the MISCV bit in the corresponding MCi_STATUS register is
set to 1. The miscellaneous error information reported in this
register is implementation dependent.

9.4 Initializing the Machine-Check Mechanism

Following a processor reset, all machine-check error-reporting
enable bits are disabled. System software must enable these
bits before machine-check errors can be reported. Generally,
system software should init ialize the machine-check
mechanism using the following process:

� Execute the CPUID instruction and verify that the processor
supports the machine-check exception (MCE) and machine-
check registers (MCA). MCE is supported when EDX bit 7 is
set to 1, and MCA is supported when EDX bit 14 is set to 1.
Software should not proceed with initializing the machine-
check mechanism if the machine-check registers are not
supported.

� If the machine-check registers are supported, system
software should take the following steps:

- Check to see if the MCG_CTL_P bit in the MCG_CAP
register is set to 1. If it is, then the MCG_CTL register is
supported by the processor. If the MCG_CTL register is
supported, software should set its enable bits to 1 for the

Chapter 9: Machine Check Mechanism 313

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

machine-check features it uses. Software can load
MCG_CTL with all 1s to enable all machine-check
features.

- Read the COUNT field from the MCG_CAP register to
determine the number of error-reporting register banks
supported by the processor. For each error-reporting
register bank, software should set the enable bits to 1 in
the MCi_CTL register for the error types it wants the
processor to report. Software can load each MCi_CTL
with all 1s to enable all error-reporting mechanisms.

The error-reporting register banks are numbered from 0
to one less than the value found in the MCG_CAP.COUNT
field. For example, if the COUNT field indicates five
register banks are supported, they are numbered 0 to 4.

- For each error-reporting register bank, software should
clear all status fields in the MCi_STATUS register by
writing all 0s to the register.

It is possible that valid error-status is already reported by
the MCi_STATUS registers at the time software clears
them. The status can reflect fatal errors recorded before
a warm reset, or errors recorded during the system power-
up and boot process. Before clearing the MCi_STATUS
registers, software should examine their contents and log
any errors found.

� As a final step in the initialization process, system software
should enable the machine-check exception by setting
CR4.MCE (bit 6) to 1.

9.5 Using Machine Check Features

System software can detect and handle machine-check errors
using two methods:

� Software can periodically examine the machine-check status
registers for reported errors, and log any errors found.

� Software can enable the machine-check exception (#MC).
When an uncorrectable error occurs, the processor
immediately transfers control to the machine-check
exception handler. In this case, system software provides a
machine-check exception handler that, at a minimum, logs
detected errors. The exception handler can be designed for a

314 Chapter 9: Machine Check Mechanism

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

specific processor implementation or can be generalized to
work on multiple implementations.

9.5.1 Handling
Machine Check
Exceptions

The processor uses the interrupt control-transfer mechanism to
invoke an exception handler after a machine-check exception
occurs. This requires system software to initialize the interrupt-
descriptor table (IDT) with either an interrupt gate or a trap
gate that references the interrupt handler. See “Legacy
Protected-Mode Interrupt Control Transfers” on page 274 and
“Long-Mode Interrupt Control Transfers” on page 285 for more
information on interrupt control transfers.

At a minimum, the machine-check exception handler must be
capable of logging errors for later examination. Because most
machine-check errors are single-bit DRAM-ECC errors, which
are hardware recoverable , th is can be a suff ic ient
implementation for some handlers. More thorough exception-
handler implementations can analyze the error to determine if
it is unrecoverable, and whether it can be recovered in software.

Machine-check exception handlers that attempt to correct
unrecoverable errors must be thorough in their analysis and
their corrective actions. The following guidelines should be
used when writing such a handler:

� All status registers in the error-reporting register banks
must be examined to identify the cause or causes of the
machine-check exception. Read the COUNT field from
MCG_CAP to determine the number of status registers
supported by the processor. The status registers are
numbered from 0 to one less than the value found in the
MCG_CAP.COUNT field. For example, if the COUNT field
indicates five status registers are supported, they are named
MC0_STATUS to MC4_STATUS.

� Check the valid bit in each status register
(MCi_STATUS.VAL). The MCi_STATUS register does not
need to be examined when its valid bit is clear.

� Check the valid MCi_STATUS registers to see if error
recovery is possible. Error recovery is not possible when:

- The processor-context corrupt bit (MCi_STATUS.PCC) is
set to 1.

- The error-overflow status bit (MCi_STATUS.OVER) is set
to 1. This bit indicates that more than one machine-check

Chapter 9: Machine Check Mechanism 315

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

error occurred, but only one error is reported by the
status register.

If error recovery is not possible, the handler should log the
error information and return to the operating system.

� Check the MCi_STATUS.UC bit to see if the processor
corrected the error. If UC=1, the processor did not correct
the error, and the exception handler must correct the error
before restarting the interrupted program. If the handler
cannot correct the error, it should log the error information
and return to the operating system.

� When identifying the error condition, portable exception
handlers should examine only the MCi_STATUS register
MCA error-code field. See “Error Codes” on page 310 for
information on interpreting this field.

� If the MCG_STATUS.RIPV bit is set to 1, the interrupted
program can be restarted reliably at the instruction-pointer
address pushed onto the exception-handler stack. If
RIPV=0, the interrupted program cannot be restarted
reliably at that location, although it can be restarted at that
location for debugging purposes.

� When logging errors, particularly those that are not
recoverable, check the MCG_STATUS.EIPV bit to see if the
instruction-pointer address pushed onto the exception-
handler stack is related to the machine-check error. If
EIPV=0, the address is not guaranteed to be related to the
error.

� Before exiting the machine-check handler, be sure to clear
MCG_STATUS.MCIP to 0. MCIP indicates a machine-check
exception occurred. If this bit is set when another machine-
check exception occurs, the processor enters the shutdown
state.

� When an exception handler is able to, at a minimum,
successfully log an error condition, the MCi_STATUS
registers should be cleared to 0 before exiting the machine-
check handler. Software is responsible for clearing at least
the MCi_STATUS.VAL bits.

� Additional machine-check exception-handler portability can
be added by having the handler use the CPUID instruction
to identify the processor and its capabilities.
Implementation-specific software can be added to the
machine-check exception handler based on the processor
information reported by CPUID.

316 Chapter 9: Machine Check Mechanism

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

9.5.2 Reporting
Correctable Machine
Check Errors

Machine-check exceptions do not occur if the error is
correctable by the processor. If system software wishes to log
and report correctable machine-check errors, a system-service
routine must be provided to check the contents of the machine-
check status registers for correctable errors. The service routine
can be invoked by system software on a periodic basis, or it can
be manually invoked by the user as needed.

If the processor supports the machine-check registers, a service
routine that reports correctable errors should perform the
following:

� Examine each status register (MCi_STATUS) in the error-
reporting register banks. For each MCi_STATUS register
with a set valid bit (VAL=1), the service routine should:

- Save the contents of the MCi_STATUS register.

- Save the contents of the corresponding MCi_ADDR
register if MCi_STATUS.ADDRV=1.

- Save the contents of the corresponding MCi_MISC
register if MCi_STATUS.MISCV=1.

- Check to see if MCG_STATUS.MCIP=1, which indicates
that the machine-check exception handler is in progress.
If this is the case, then the machine-check exception
handler has called the service routine to log the errors. In
this situation, the error-logging service routine should
determine whether or not the interrupted program is
restartable, and report the determination back to the
exception handler. The program is not restartable if either
of the following is true:

- MCi_STATUS.PCC=1, which indicates the processor
context is corrupted, or

- MCG_STATUS.RIPV=0, which indicates the interrupted
program cannot be restarted reliably at the instruction-
pointer address pushed onto the exception-handler stack.

� Once the information found in the error-reporting register
banks is saved, the MCi_STATUS register should be cleared
to 0. This allows the processor to properly report any
subsequent errors in the MCi_STATUS registers.

� The service routine can save the time-stamp counter with
each error logged. This can help in determining how
frequently errors occur. For further information, see “Time-
Stamp Counter” on page 406.

Chapter 9: Machine Check Mechanism 317

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� In multiprocessor configurations, the service routine can
save the processor-node identifier. This can help locate a
failing multiprocessor-system component, which can then be
isolated from the rest of the system. For further information,
see the documentation for particular implementations of
the architecture.

318 Chapter 9: Machine Check Mechanism

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Chapter 10: System-Management Mode 319

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

10 System-Management Mode

System-management mode (SMM) is an operating mode
designed for system-control activities like power management.
Normally, these activities are transparent to conventional
operating systems and applications. SMM is used by system-
specific BIOS (basic input-output system) and specialized low-
level device drivers, rather than the operating system.

The SMM interrupt-handling mechanism differs substantially
from the standard interrupt-handling mechanism described in
Chapter 8, “Exceptions and Interrupts.” SMM is entered using
a special external interrupt called the system-management
interrupt (SMI). After an SMI is received by the processor, the
processor saves the processor state in a separate address space,
called SMRAM. The SMM-handler software and data structures
are also located in the SMRAM space. Interrupts and
exceptions that ordinarily cause control transfers to the
operating system are disabled when SMM is entered. The
processor exits SMM, restores the saved processor state, and
resumes normal execution by using a special instruction, RSM.

In SMM, address translation is disabled and addressing is
similar to real mode. SMM programs can address up to 4 Gbytes
of physical memory. See “SMM Operating-Environment” on
page 329 for additional information on memory addressing in
SMM.

The following sections describe the components of the SMM
mechanism:

� “SMM Resources” on page 320—this section describes
SMRAM, the SMRAM save-state area used to hold the
processor state, and special SMRAM save-state entries used
in support of SMM.

� “Using SMM” on page 329—this section describes the
mechanism of entering and exiting SMM. It also describes
SMM memory allocation, addressing, and interrupts and
exceptions.

Of these mechanisms, only the format of the SMRAM save-state
area differs between the x86-64 architecture and the legacy
architecture.

320 Chapter 10: System-Management Mode

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

10.0.1 SMM
Differences

There are functional differences between the SMM support in
the x86-64 architecture and the SMM support found in previous
architectures. These are:

� The SMRAM state-save area layout is changed to hold the
64-bit processor state.

� The initial processor state upon entering SMM is expanded
to reflect the 64-bit nature of the processor.

� New conditions exist that can cause a processor shutdown
while in SMM.

� The auto-halt restart and I/O-instruction restart entries in
the SMRAM state-save area are one byte each instead of two
bytes each.

� SMRAM caching considerations are modified because the
legacy FLUSH# external signal (writeback, if modified, and
invalidate) is not supported on implementations of the
x86-64 architecture.

� Some previous AMD x86 processors saved and restored the
CR2 register in the SMRAM state-save area. This register is
not saved by the SMM implementation in the x86-64
architecture. SMM handlers that save and restore CR2 must
perform the operation in software.

10.1 SMM Resources

The SMM resources supported by the processor consist of
SMRAM, the SMRAM state-save area, and special entries
within the SMRAM state-save area. In addition to the save-state
area, SMRAM includes space for the SMM handler.

10.1.1 SMRAM SMRAM is the memory-address space accessed by the processor
when in SMM. The default size of SMRAM is 64 Kbytes and can
range in size between 32 Kbytes and 4 Gbytes. System logic can
use physically separate SMRAM and main memory, directing
memory transactions to SMRAM after recognizing SMM is
entered, and redirecting memory transactions back to system
memory after recognizing SMM is exited. When separate
SMRAM and main memory are used, the system designer needs
to provide a method of mapping SMRAM into main memory so
that the SMI handler and data structures can be loaded.

Figure 10-1 on page 321 shows the default SMRAM memory
map. The default SMRAM code-segment (CS) has a base

Chapter 10: System-Management Mode 321

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

address of 0003_0000h (the base address is automatically scaled
by the processor using the CS-selector register, which is set to
the value 3000h). This default SMRAM-base address is known
as SMBASE. A 64-Kbyte memory region, addressed from
0003_0000h to 0003_FFFFh, makes up the default SMRAM
memory space. The top 32 Kbytes (0003_8000h to 0003_FFFFh)
must be supported by system logic, with physical memory
covering that entire address range. The top 512 bytes
(0003_FE00h to 0003_FFFFh) of this address range are the
default SMM state-save area. The default entry point for the
SMM interrupt handler is located at 0003_8000h.

Figure 10-1. Default SMRAM Memory Map

10.1.2 SMBASE
Register

The format of the SMBASE register is shown in Figure 10-2 on
page 322. SMBASE is an internal processor register that holds
the value of the SMRAM-base address. SMBASE is set to
30000h after a processor reset.

513-250.eps

SMM State-Save Area

SMRAM

0003_FFFFh

0003_FE00h

0003_8000h

0003_0000h

SMM Handler

(SMBASE+8000h)

(SMBASE)

(SMBASE+FFFFh)

322 Chapter 10: System-Management Mode

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 10-2. SMBASE Register

In some operating environments, relocation of SMRAM to a
higher memory area can provide more low memory for legacy
software. SMBASE relocation is supported when the SMM-base
relocation bit in the SMM-revision identifier (bit 17) is set to 1.
In processors implementing the x86-64 architecture, SMBASE
relocation is always supported.

Software can only modify SMBASE (relocate the SMRAM-base
address) by entering SMM, modifying the SMBASE image
stored in the SMRAM state-save area, and exiting SMM. The
SMM-handler entry point must be loaded at the new memory
location specified by SMBASE+8000h. The next time SMM is
entered, the processor saves its state in the new state-save area
at SMBASE+0FE00h, and begins executing the SMM handler at
SMBASE+8000h. The new SMBASE address is used for every
SMM until it is changed, or a hardware reset occurs.

When SMBASE is used to relocate SMRAM to an address above
1 Mbyte, 32-bit address-size-override prefixes must be used to
access this memory. This is because addressing in SMM behaves
as it does in real mode, with a 16-bit default operand size and
address size. The values in the 16-bit segment-selector registers
are left-shifted four bits to form a 20-bit segment-base address.
Without using address-size overrides, the maximum address
that can be computed is 10FFEh.

Because SMM memory-addressing is similar to real-mode
addressing, the SMBASE address must be less than 4 Gbytes.
Physical-address extensions (CR4.PAE) should not be enabled
in SMM, restricting the SMRAM address space to the range 0h
to 0FFFF_FFFFh.

10.1.3 SMRAM State-
Save Area

When an SMI occurs, the processor saves its state in the 512-
byte SMRAM state-save area during the control transfer into
SMM. The format of the state-save area defined by the x86-64

031

SMRAM Base Address

Chapter 10: System-Management Mode 323

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

architecture is shown in Table 10-1. This table shows the offsets
in the SMRAM state-save area relative to the SMRAM-base
address. The state-save area is located between offset 0_FE00h
(SMBASE+0_FE00h) and offset 0_FFFFh (SMBASE+0_FFFFh).
Software should not modify offsets specified as read-only or
reserved, otherwise unpredictable results can occur.

Table 10-1. x86-64 Architecture SMM State-Save Area

Offset (Hex)
from SMBASE Contents Size Allowable

Access

FE00h

ES

Selector Word

Read-Only
FE02h Attributes Word

FE04h Limit Doubleword

FE08h Base Quadword

FE10h

CS

Selector Word

Read-Only
FE12h Attributes Word

FE14h Limit Doubleword

FE18h Base Quadword

FE20h

SS

Selector Word

Read-Only
FE22h Attributes Word

FE24h Limit Doubleword

FE28h Base Quadword

FE30h

DS

Selector Word

Read-Only
FE32h Attributes Word

FE34h Limit Doubleword

FE38h Base Quadword

FE40h

FS

Selector Word

Read-Only
FE42h Attributes Word

FE44h Limit Doubleword

FE48h Base Quadword

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

324 Chapter 10: System-Management Mode

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

FE50h

GS

Selector Word

Read-Only
FE52h Attributes Word

FE54h Limit Doubleword

FE58h Base Quadword

FE60h–FE61h

GDTR

reserved 2 Bytes

Read-Only

FE62h reserved Word

FE64h Limit Word

FE66h–FE67h reserved 2 Bytes

FE68h Base Quadword

FE70h

LDTR

Selector Word

Read-Only
FE72h Attributes Word

FE74h Limit Doubleword

FE78h Base Quadword

FE80h–FEB1h

IDTR

reserved 2 Bytes

Read-Only

FE82h reserved Word

FE84h Limit Word

FEB6h–FEB7h reserved 2 Bytes

FE88h Base Quadword

FE90h

TR

Selector Word

Read-Only
FE92h Attributes Word

FE94h Limit Doubleword

FE98h Base Quadword

FEA0h–FEC7h reserved 40 Bytes —

FEC8h I/O Instruction Restart Byte
Read/Write

FEC9h Auto-Halt Restart Byte

Table 10-1. x86-64 Architecture SMM State-Save Area (continued)

Offset (Hex)
from SMBASE Contents Size Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

Chapter 10: System-Management Mode 325

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

FECAh—FECFh reserved 6 Bytes —

FED0h EFER Quadword Read-Only

FED8h—FEFBh reserved 36 Bytes —

FEFCh SMM-Revision Identifier1 Doubleword Read-Only

FF00h SMBASE Doubleword Read/Write

FF04h—FF47h reserved 68 Bytes —

FF48h CR4 Quadword

Read-OnlyFF50h CR3 Quadword

FF58h CR0 Quadword

FF60h DR7 Quadword
Read-Only

FF68h DR6 Quadword

FF70h RFLAGS Quadword Read/Write

FF78h RIP Quadword

Read/Write

FF80h R15 Quadword

FF88h R14 Quadword

FF90h R13 Quadword

FF98h R12 Quadword

FFA0h R11 Quadword

FFA8h R10 Quadword

FFB0h R9 Quadword

FFB8h R8 Quadword

Table 10-1. x86-64 Architecture SMM State-Save Area (continued)

Offset (Hex)
from SMBASE Contents Size Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

326 Chapter 10: System-Management Mode

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

A number of other registers are not saved or restored
automatically by the SMM mechanism. See “Saving Additional
Processor State” on page 332 for information on using these
registers in SMM.

As a reference for legacy processor implementations, the legacy
SMM state-save area format is shown in Table 10-2 .
Implementations of the x86-64 architecture do not use this format.

FFC0h RDI Quadword

Read/Write

FFC8h RSI Quadword

FFD0h RBP Quadword

FFD8h RSP Quadword

FFE0h RBX Quadword

FFE8h RDX Quadword

FFF0h RCX Quadword

FFF8h RAX Quadword

Table 10-2. Legacy SMM State-Save Area (Not used by AMD x86-64
Architecture)

Offset (Hex)
from SMBASE Contents Size Allowable

Access

FE00h—FEF7h reserved 248 Bytes —

FEF8h SMBASE Doubleword Read/Write

FEFCh SMM-Revision Identifier Doubleword Read-Only

FF00h I/O Instruction Restart Word
Read/Write

FF02h Auto-Halt Restart Word

FF04h—FF87h reserved 132 Bytes —

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

Table 10-1. x86-64 Architecture SMM State-Save Area (continued)

Offset (Hex)
from SMBASE Contents Size Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

Chapter 10: System-Management Mode 327

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

FF88h GDT Base Doubleword Read-Only

FF8Ch—FF93h reserved Quadword —

FF94h IDT Base Doubleword Read-Only

FF98h—FFA7h reserved 16 Bytes —

FFA8h ES Doubleword

Read-Only

FFACh CS Doubleword

FFB0h SS Doubleword

FFB4h DS Doubleword

FFB8h FS Doubleword

FFBCh GS Doubleword

FFC0h LDT Base Doubleword
Read-Only

FFC4h TR Doubleword

FFC8h DR7 Doubleword
Read-Only

FFCCh DR6 Doubleword

FFD0h EAX Doubleword

Read/Write

FFD4h ECX Doubleword

FFD8h EDX Doubleword

FFDCh EBX Doubleword

FFE0h ESP Doubleword

FFE4h EBP Doubleword

FFE8h ESI Doubleword

FFECh EDI Doubleword

FFF0h EIP Doubleword Read/Write

Table 10-2. Legacy SMM State-Save Area (continued)(Not used by AMD
x86-64 Architecture)

Offset (Hex)
from SMBASE Contents Size Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

328 Chapter 10: System-Management Mode

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

10.1.4 SMM-Revision
Identifier

The SMM-revision identifier specifies the SMM version and the
available SMM extensions implemented by the processor.
Software reads the SMM-revision identifier from offset FEFCh
in the SMM state-save area of SMRAM. This offset location is
compatible with earlier versions of SMM. Software must not
write to this location. Doing so can produce undefined results.
Figure 10-3 shows the format of the SMM-revision identifier.

Figure 10-3. SMM-Revision Identifier

The fields within the SMM-revision identifier are:

� SMM-revision Level—Bits 15–0. Specifies the version of SMM
supported by the processor. The SMM-revision level is of the
form 0_xx64h, where xx starts with 00 and is incremented for
later revisions to the SMM mechanism.

FFF4h EFLAGS Doubleword Read/Write

FFF8h CR3 Doubleword
Read-Only

FFFCh CR0 Doubleword

Table 10-2. Legacy SMM State-Save Area (continued)(Not used by AMD
x86-64 Architecture)

Offset (Hex)
from SMBASE Contents Size Allowable

Access

Note:
1. The offset for the SMM-revision identifier is compatible with previous implementations.

513-251eps

SMM-Revision Level

015161731

Reserved

Description Bits

SMM-Revision Level
I/O Instruction Restart
SMM Base Relocation

15:0
16
17

18

1 1

Chapter 10: System-Management Mode 329

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� I/O Instruction Restart—Bit 16. When set to 1, the processor
supports restarting I/O instructions that are interrupted by
an SMI. This bit is always set to 1 by implementations of the
x86-64 architecture. See “I/O Instruction Restart” on
page 334 for information on using this feature.

� SMM Base Relocation—Bit 17. When set to 1, the processor
supports relocation of SMRAM. This bit is always set to 1 by
implementations of the x86-64 architecture. See “SMBASE
Register” on page 321 for information on using this feature.

All remaining bits in the SMM-revision identifier are reserved.

10.2 Using SMM

10.2.1 System-
Management
Interrupt (SMI)

SMM is entered using the system-management interrupt (SMI).
SMI is an external non-maskable interrupt that operates
differently from and independently of other interrupts. SMI has
priority over all other external interrupts, including NMI (see
“Priorities” on page 267 for a list of the interrupt priorities).
SMIs are disabled when in SMM, which prevents reentrant calls
to the SMM handler.

When an SMI is received by the processor, the processor stops
fetching instructions and waits for currently-executing
instructions to complete and write their results. The SMI also
waits for all buffered memory writes to update the caches or
system memory. When these activities are complete, the
processor uses implementation-dependent external signalling
to acknowledge back to the system that it has received the SMI.

10.2.2 SMM
Operating-
Environment

The SMM operating-environment is similar to real mode, except
that the segment limits in SMM are 4 Gbytes rather than
64 Kbytes. This allows an SMM handler to address memory in
the range from 0h to 0FFFF_FFFFh. As with real mode,
segment-base addresses are restricted to 20 bits in SMM, and
the default operand-size and address-size is 16 bits. To address
memory locations above 1 Mbyte, the SMM handler must use
the 32-bit operand-size-override and address-size-override
prefixes.

After saving the processor state in the SMRAM state-save area,
a processor running in SMM sets the segment-selector registers
and control registers into a state consistent with real mode.

330 Chapter 10: System-Management Mode

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Other registers are also initialized upon entering SMM, as
shown in Table 10-3.

10.2.3 Exceptions and
Interrupts

All hardware interrupts are disabled upon entering SMM, but
exceptions and software interrupts are not disabled. If
necessary, the SMM handler can re-enable hardware interrupts.
Software that handles interrupts in SMM should consider the
following:

� SMI—If an SMI occurs while the processor is in SMM, it is
latched by the processor. The latched SMI occurs when the
processor leaves SMM.

� NMI—If an NMI occurs while the processor is in SMM, it is
latched by the processor, but the NMI handler is not invoked
until the processor leaves SMM with the execution of an
RSM instruction. A pending NMI causes the handler to be
invoked immediately after the RSM completes and before
the first instruction in the interrupted program is executed.

An SMM handler can unmask NMI interrupts by simply
executing an IRET. Upon completion of the IRET

Table 10-3. SMM Register Initialization

Register Initial SMM Contents

CS

Selector SMBASE right-shifted 4 bits

Base SMBASE

Limit FFFF_FFFFh

DS, ES, FS, GS, SS

Selector 0000h

Base 0000_0000_0000_0000h

Limit FFFF_FFFFh

RIP 0000_0000_0000_8000h

RFLAGS 0000_0000_0000_0002h

CR0
PE, EM, TS, PG bits cleared to 0.
All other bits are unmodified.

CR4 0000_0000_0000_0000h

DR7 0000_0000_0000_0400h

EFER 0000_0000_0000_0000h

Chapter 10: System-Management Mode 331

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

instruction, the processor recognizes the pending NMI, and
transfers control to the NMI handler. Once an NMI is
recognized within SMM using this technique, subsequent
NMIs are recognized until SMM is exited. Later SMIs cause
NMIs to be masked, until the SMM handler unmasks them.

� Exceptions—Exceptions (internal processor interrupts) are
not disabled and can occur while in SMM. Therefore, the
SMM-handler software should be written to avoid
generating exceptions.

� Software Interrupts—The software-interrupt instructions
(BOUND, INTn, INT3, and INTO) can be executed while in
SMM. However, it is not recommended that the SMM
handler use these instructions.

� Maskable Interrupts—RFLAGS.IF is cleared to 0 by the
processor when SMM is entered. Software can re-enable
maskable interrupts while in SMM, but it must follow the
guidelines listed below for handling interrupts.

� Debug Interrupts—The processor disables the debug
interrupts when SMM is entered by clearing DR7 to 0 and
clearing RFLAGS.TF to 0. The SMM handler can re-enable
the debug facilities while in SMM, but it must follow the
guidelines listed below for handling interrupts.

� INIT—The processor does not recognize INIT while in SMM.

Because the RFLAGS.IF bit is cleared when entering SMM, the
HLT instruction should not be executed in SMM without first
setting the RFLAGS.IF bit to 1. Setting this bit to 1 allows the
processor to exit the halt state by using an external maskable
interrupt.

In the cases where an SMM handler must accept and handle
interrupts and exceptions, several guidelines must be followed:

� Interrupt handlers must be loaded and accessible before
enabling interrupts.

� A real-mode interrupt-vector table located at virtual (linear)
address 0 is required.

� Segments accessed by the interrupt handler cannot have a
base address greater than 20 bits because of the real-mode
addressing used in SMM. In SMM, the 16-bit value stored in
the segment-selector register is left-shifted four bits to form
the 20-bit segment-base address, like real mode.

332 Chapter 10: System-Management Mode

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Only the IP (rIP[15:0]) is pushed onto the stack as a result of
an interrupt in SMM, because of the real-mode addressing
used in SMM. If the SMM handler is interrupted at a code-
segment offset above 64 Kbytes, then the return address on
the stack must be adjusted by the interrupt-handler, and a
RET instruction with a 32-bit operand-size override must be
used to return to the SMM handler.

� If the interrupt-handler is located below 1 Mbyte, and the
SMM handler is located above 1 Mbyte, a RET instruction
cannot be used to return to the SMM handler. In this case,
the interrupt handler can adjust the return pointer on the
stack, and use a far CALL to transfer control back to the
SMM handler.

10.2.4 Invalidating the
Caches

The processor can cache SMRAM-memory locations. If the
system implements physically separate SMRAM and system
memory, it is possible for SMRAM and system memory
locations to alias into identical cache locations. In some
processor implementations, the cache contents must be written
to memory and invalidated when SMM is entered and exited.
This prevents the processor from using previously-cached main-
memory locations as aliases for SMRAM-memory locations
when SMM is entered, and vice-versa when SMM is exited.

Implementations of the x86-64 architecture do not require cache
invalidation when entering and exiting SMM. Internally, the
processor keeps track of SMRAM and system-memory accesses
separately and properly handles situations where aliasing
occurs. Cached system memory and SMRAM locations can
persist across SMM mode changes. Removal of the requirement
to writeback and invalidate the cache simplifies SMM entry and
exit and allows SMM code to execute more rapidly.

10.2.5 Saving
Additional Processor
State

Several registers are not saved or restored automatically by the
SMM mechanism. These are:

� The 128-bit media instruction registers.

� The 64-bit media instruction registers.

� The x87 floating-point registers.

� The page-fault linear-address register (CR2).

� The task-priority register (CR8).

� The debug registers, DR0, DR1, DR2, and DR3.

� The memory-type range registers (MTRRs).

Chapter 10: System-Management Mode 333

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Model-specific registers (MSRs).

These registers are not saved because SMM handlers do not
normally use or modify them. If an SMI results in a processor
reset (due to powering down the processor, for example) or the
SMM handler modifies the contents of the unsaved registers,
the SMM handler should save and restore the original contents
of those registers. The unsaved registers, along with those
stored in the SMRAM state-save area, need to be saved in a non-
volatile storage location if a processor reset occurs. The SMM
handler should execute the CPUID instruction to determine the
feature set available in the processor, and be able to save and
restore the registers required by those features.

The SMM handler can execute any of the 128-bit media, 64-bit
media, or x87 instructions. A simple method for saving and
restoring those registers is to use the FXSAVE and FXRSTOR
instructions, respectively, if it is supported by the processor.
See “Saving Media and x87 Processor State” on page 344 for
information on saving and restoring those registers.

Floating-point exceptions can occur when the SMM handler
uses media or x87 floating-point instructions. If the SMM
handler uses floating-point exception handlers, they must
follow the usage guidelines established in “Exceptions and
Interrupts” on page 330. A simple method for dealing with
floating-point exceptions while in SMM is to simply mask all
exception conditions using the appropriate floating-point
control register. When the exceptions are masked, the processor
handles floating-point exceptions internally in a default
manner, and allows execution to continue uninterrupted.

10.2.6 Operating in
Protected Mode and
Long Mode

Software can enable protected mode from SMM and it can also
enable and activate long mode. An SMM handler can use this
capability to enter 64-bit mode and save additional processor
state that cannot be accessed from outside 64-bit mode (for
example, the most-significant 32 bits of CR2).

10.2.7 Auto-Halt
Restart

The auto-halt restart entry is located at offset FEC9h in the
SMM state-save area. The size of this field is one byte, as
compared with two bytes in previous versions of SMM.

334 Chapter 10: System-Management Mode

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

When entering SMM, the processor loads the auto-halt restart
entry to indicate whether SMM was entered from the halt state,
as follows:

� Bit 0 indicates the processor state upon entering SMM:

- When set to 1, the processor entered SMM from the halt
state.

- When cleared to 0, the processor did not enter SMM from
the halt state.

� Bits 7–1 are cleared to 0.

The SMM handler can write the auto-halt restart entry to
specify whether the return from SMM should take the processor
back to the halt state or to the instruction-execution state
specified by the SMM state-save area. The values written are:

� Clear to 00h—The processor returns to the state specified by
the SMM state-save area.

� Set to any non-zero value—The processor returns to the halt
state.

If the return from SMM takes the processor back to the halt
state, the HLT instruction is not re-executed. However, the halt
special bus-cycle is driven on the processor bus after the RSM
instruction executes.

The result of entering SMM from a non-halt state and returning
to a halt state is not predictable.

10.2.8 I/O Instruction
Restart

The I/O-instruction restart entry is located at offset FEC8h in
the SMM state-save area. The size of this field is one byte, as
compared with two bytes in previous versions of SMM. The I/O-
instruction restart mechanism is supported when the I/O-
instruction restart bit (bit 16) in the SMM-revision identifier is
set to 1. This bit is always set to 1 in the x86-64 architecture.

When an I/O instruction is interrupted by an SMI, the I/O-
instruction restart entry specifies whether the interrupted I/O
instruction should be re-executed following an RSM that
returns from SMM. Re-executing a trapped I/O instruction is
useful, for example, when an I/O write is performed to a
powered-down disk drive. When this occurs, the system logic
monitoring the access can issue an SMI to have the SMM
handler power-up the disk drive and retry the I/O write. The
SMM handler does this by querying system logic and detecting
the failed I/O write, asking system logic to initiate the disk-

Chapter 10: System-Management Mode 335

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

drive power-up sequence, enabling the I/O instruction restart
mechanism, and returning from SMM. Upon returning from
SMM, the I/O write to the disk drive is restarted.

When an SMI occurs, the processor always clears the I/O-
instruction restart entry to 0. If the SMI interrupted an I/O
instruction, then the SMM handler can modify the I/O-
instruction restart entry as follows:

� Clear to 00h (default value)—The I/O instruction is not
restarted, and the instruction following the interrupted I/O-
instruction is executed. When a REP (repeat) prefix is used
with an I/O instruction, it is possible that the next
instruction to be executed is the next I/O instruction in the
repeat loop.

� Set to any non-zero value—The I/O instruction is restarted.

While in SMM, the handler must determine the cause of the
SMI and examine the processor state at the time the SMI
occurred to determine whether or not an I/O instruction was
interrupted. Writing a non-zero value into the I/O-instruction
restart entry when the interrupted instruction is a non-I/O
instruction produces undefined results. Some implementations
provide model-specific facilities to assist in this determination.
For more information, refer to the BIOS writer’s guide for the
implementation.

10.3 Leaving SMM

Software leaves SMM and returns to the interrupted program
by executing the RSM instruction. RSM causes the processor to
load the interrupted state from the SMRAM state-save area and
then transfer control back to the interrupted program. RSM
cannot be executed in any mode other than SMM, otherwise an
invalid-opcode exception (#UD) occurs.

An RSM causes a processor shutdown if an invalid-state
condition is found in the SMRAM state-save area. Only an
external reset, external processor-initialization, or non-
maskable external interrupt (NMI) can cause the processor to
leave the shutdown state. The invalid SMRAM state-save-area
conditions that can cause a processor shutdown during an RSM
are:

� CR0.PE=0 and CR0.PG=1.

336 Chapter 10: System-Management Mode

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� CR0.CD=0 and CR0.NW=1.

� Any unsupported bit in CR3 is set to 1, including
unsupported physical-address bits (bits 51-12).

� Certain reserved bits are set to 1, including:

- Any CR0 bit in the range 63–32 is set to 1.

- Any unsupported bit in CR4 is set to 1.

- Any DR6 bit or DR7 bit in the range 63–32 is set to 1.

- Any unsupported bit in EFER is set to 1.

� Invalid returns to long mode, including:

- EFER.LME=1, CR0.PG=1, and CR4.PAE=0.

- EFER.LME=1, CR0.PG=1, CR4.PAE=1, CS.L=1, and
CS.D=1.

� The SSM revision identifier is modified.

Some SMRAM state-save-area conditions are ignored, and the
registers, or bits within the registers, are restored in a default
manner by the processor. This avoids a processor shutdown
when an invalid condition is stored in SMRAM. The default
conditions restored by the processor are:

� The EFER.LMA register bit is set to the value obtained by
logically ANDing the SMRAM values of EFER.LME,
CR0.PG, and CR4.PAE.

� The rFLAGS.VM register bit is set to the value obtained by
logically ANDing the SMRAM values of rFLAGS.VM,
CR0.PE, and the inverse of EFER.LMA.

� The base values of FS, GS, GDTR, IDTR, LDTR, and TR are
restored in canonical form. Those values are sign-extended
to bit 63 using the most-significant implemented bit.

� Unimplemented segment-base bits in the CS, DS, ES, and SS
registers are cleared to 0.

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 337

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

11 128-Bit, 64-Bit, and x87 Programming

This chapter describes the system-software implications of
supporting applications that use the 128-bit media, 64-bit
media, and x87 instructions. Throughout this chapter, these
instructions are collectively referred to as media and x87
(media/x87) instructions. A complete listing of the instructions
that fall in this category—and the detailed operation of each
instruction—can be found in volumes 4 and 5. Refer to
Volume 1 for information on using these instructions in
application software.

11.1 Overview of System-Software Considerations

Processor implementations can support different combinations
of the 128-bit media, 64-bit media, and x87 instruction sets. Two
sets of registers—independent of the general-purpose
registers—support these instructions. The 128-bit media
instructions operate on the XMM registers, and the 64-bit
media and x87-instructions operate on the aliased MMX™/x87
registers. The 128-bit media and x87 floating-point instruction
sets have special status registers, control registers, exception
vectors, and system-software control bits for managing the
operating environment. System software that supports use of
these instructions must be able to manage these resources
properly including:

� Detecting support for the instruction set, and enabling any
optional features, as necessary.

� Saving and restoring the processor media or x87 state.

� Execution of floating-point instructions (media or x87) can
produce exceptions. System software must supply exception
handlers for all unmasked floating-point exceptions.

11.2 Determining Media and x87 Feature Support

The support of 128-bit media, 64-bit media, and x87 instructions
is implementation dependent. System software executes the
CPUID instruction to determine whether a processor
implements any of these features (see “Processor Feature
Identification” on page 75 for more information on using the
CPUID instruction). After CPUID is executed with an extended

338 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

function codes 1 and 8000_0001h, feature support can be
determined by examining the contents of the EDX register.
General guidelines for determining feature support are given in
the list below. A few instructions belong to more than one
instruction subset. Refer to “Instruction Subsets and CPUID
Feature Sets” in Volume 3 for specific information.

� 128-bit media instructions are supported when:

- EDX[25]=1 for SSE instructions. (Returned by CPUID
function code 1.)

- EDX[26]=1 for SSE2 instructions. (Returned by CPUID
function code 1.)

� 64-bit media instructions are supported when:

- EDX[23]=1 for MMX instructions. (Returned by CPUID
function codes 1h and 8000_0001h.)

- EDX[22]=1 for AMD extensions to MMX instructions.
(Returned by CPUID function code 8000_0001h.)

- EDX[31]=1 for AMD 3DNow!™ instructions. (Returned
by CPUID function code 8000_0001h.)

- EDX[30]=1 for AMD extensions to 3DNow! instructions.
(Returned by CPUID function code 8000_0001h.)

� x87 floating-point instructions are supported when:

- EDX[0]=1. (Returned by function codes 1h and
8000_0001h.)

� FXSAVE and FXRSTOR instructions are supported when:

- EDX[24]=1. These instructions save and restore the
entire media and x87 processor state. (Returned by
function codes 1h and 8000_0001h.)

If software attempts to execute an instruction belonging to an
unsupported instruction subset, an invalid-opcode exception
(#UD) occurs. For a summary of instruction subsets, see
“Instruction Subsets and CPUID Feature Sets” in Volume 3.

11.3 Enabling 128-Bit Media Instructions

Use of the 128-bit media instructions requires system software
to support SSE and/or SSE2 features, but also the FXSAVE and
FXRSTOR instructions, which are used to save and restore the
128-bit media state (see “FXSAVE and FXRSTOR Instructions”
on page 349). When these instructions are supported, system

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 339

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

software must set CR4.OSFXSR=1 to let the processor know
that the software uses these instructions. When the processor
detects CR4.OSFXSR=1, it allows execution of the 128-bit
media instructions . I f system software does not set
CR4.OSFXSR to 1, attempts to execute 128-bit media
instructions cause an invalid-opcode exception (#UD).

System software must also clear the CR0.EM (emulate
coprocessor) bit to 0, otherwise an attempt to execute a 128-bit
media instruction causes a #UD exception.

System software should also set the CR0.MP (monitor
coprocessor) bit to 1. When CR0.EM=0 and CR0.MP=1, all
media instructions, x87 instructions, and the FWAIT/WAIT
instructions cause a device-not-available exception (#NM) when
the CR0.TS bit is set. System software can use the #NM
exception to perform lazy context switching, saving and
restoring media and x87 state only when necessary after a task
switch. See “CR0 Register” on page 53 for more information.

System software must supply an exception handler if unmasked
128-bit media floating-point exceptions are allowed to occur.
When an unmasked exception is detected, the processor
transfers control to the SIMD floating-point exception (#XF)
handler provided by the operating system. System software
must let the processor know that the #XF handler is available
by setting CR4.OSXMMEXCPT to 1. If this bit is set to 1, the
processor transfers control to the #XF handler when it detects
an unmasked exception, otherwise a #UD exception occurs.
When the processor detects a masked exception, it handles it in
a default manner regardless of the CR4.OSXMMEXCPT value.

11.4 Media and x87 Processor State

The media and x87 processor state includes the contents of the
registers used by 128-bit media, 64-bit media, and x87
instructions. System software that supports such applications
must be capable of saving and restoring these registers.

11.4.1 128-Bit Media
State

Figure 11-1 on page 340 shows the registers whose contents are
affected by execution of 128-bit media instructions. These
include:

340 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� xmm0–xmm15—Sixteen 128-bit media registers. In legacy
and compatibility modes, software access is limited to the
first eight registers, XMM0–XMM7.

� MXCSR—The 32-bit control and status register.

All of the above registers are visible to 128-bit media
application software. Refer to “128-Bit Media and Scientific
Programming” in Volume 1 for more information on these
registers.

Figure 11-1. 128-Bit Media-Instruction State

513-270.eps

XMM Data Registers
127 0

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm8

xmm9

xmm10

xmm11

xmm12

xmm13

xmm14

xmm15

31 0

128-Bit Media Control and Status Register MXCSR

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 341

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

11.4.2 64-Bit Media
State

Figure 11-2 shows the register contents that are affected by
execution of 64-bit media instructions. These registers include:

� mmx0–mmx7—Eight 64-bit media registers.

� FSW—Two fields (TOP and ES) in the 16-bit x87 status word
register.

� FTW—The 16-bit x87 tag word.

Figure 11-2. 64-Bit Media-Instruction State

The 64-bit media instructions and x87 f loating-point
instructions share the same physical data registers. Figure 11-2
shows how the 64-bit registers (MMX0–MMX7) are aliased onto
the low 64 bits of the 80-bit x87 floating-point physical data
registers (FPR0–FPR7). Refer to “64-Bit Media Programming”
in Volume 1 for more information on these registers.

Of the registers shown in Figure 11-2, only the eight 64-bit MMX
registers are visible to 64-bit media application software. The
processor maintains the contents of the two fields of the x87
status word—top-of-stack-pointer (TOP) and exception

513-272.eps

MMX Data Registers
79 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

015

6364

fpr0

fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

FSW

ESTOP

FTWx87 Tag Word

x87 Status Word
Visible to application software

Written by processor hardware

342 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

summary (ES)—and the 16-bit x87 tag word during execution of
64-bit media instructions, as described in “Actions Taken on
Executing 64-Bit Media Instructions” in Volume 1.

64-bit media instructions do not generate x87 floating-point
exceptions, nor do they set any status flags. However, 64-bit
media instructions can trigger an unmasked floating-point
exception caused by a previously executed x87 instruction. 64-
bit media instructions do this by reading the x87 FSW.ES bit to
determine whether such an exception is pending.

11.4.3 x87 State Figure 11-3 on page 343 shows the registers whose contents are
affected by execution of x87 floating-point instructions. These
registers include:

� fpr0–fpr7—Eight 80-bit floating-point physical registers.

� FCW—The 16-bit x87 control word register.

� FSW—The 16-bit x87 status word register.

� FTW—The 16-bit x87 tag word.

� Last x87 Instruction Pointer—This value is a pointer (32-bit,
48-bit, or 64-bit, depending on effective operand size and
mode) to the last non-control x87 floating-point instruction
executed.

� Last x87 Data Pointer—The pointer (32-bit, 48-bit, or 64-bit,
depending on effective operand size and mode) to the data
operand referenced by the last non-control x87 floating-
point instruction executed, if that instruction referenced
memory; if it did not, then this value is implementation
dependent.

� Last x87 Opcode—An 11-bit permutation of the instruction
opcode from the last non-control x87 floating-point
instruction executed.

Of the registers shown in Figure 11-3, only FPR0–FPR7, FCW,
and FSW are directly updated by x87 application software. The
processor maintains the contents of the FTW, instruction and
data pointers, and opcode registers during execution of x87
instructions. Refer to “Registers” in Volume 1 for more
information on these registers.

The 11-bit instruction opcode register holds a permutation of
the two-byte instruction opcode from the last non-control x87
instruction executed by the processor. (For a definition of non-

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 343

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

control x87 instruction, see “Control” in Volume 1.) The opcode
field is formed as follows:

� Opcode Register Field[10:8] = First x87 opcode byte[2:0].

� Opcode Register Field[7:0] = Second x87 opcode byte[7:0].

For example, the x87 opcode D9 F8h is stored in the opcode
register as 001_1111_1000b. The low-order three bits of the first
opcode byte, D9h (1101_1001b), are stored in opcode-register
bits 10–8. The second opcode byte, F8h (1111_1000b), is stored
in bits 7–0 of the opcode register. The high-order five bits of the
first opcode byte (1101_1b) are not needed because they are
identical for all x87 instructions.

Figure 11-3. x87-Instruction State

Tag Word

Status Word

Control Word

513-271.eps

x87 Data Registers
79 0

fpr0

fpr1

fpr2

fpr3

fpr4

fpr5

fpr6

fpr7

015

63

010

Last x87 Instruction Pointer

Last x87 Data Pointer

Opcode

FCW

FSW

FTWx87 Tag Word

x87 Status Word

x87 Control Word

344 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

11.4.4 Saving Media
and x87 Processor
State

In most cases, operating systems, exception handlers, and
device drivers should save and restore the media and/or x87
processor state between task switches or other interventions in
the execution of 128-bit, 64-bit, or x87 procedures. Application
programs are also free to save and restore state at any time.

In general, system software should use the FXSAVE and
FXRSTOR instructions to save and restore the entire media and
x87 processor state. The FSAVE/FNSAVE and FRSTOR
instructions can be used for saving and restoring the x87 state.
Because the 64-bit media registers are physically aliased onto
the x87 registers , the FSAVE/FNSAVE and FRSTOR
instructions can also be used to save and restore the 64-bit
media state. However, FSAVE/FNSAVE and FRSTOR do not
save or restore the 128-bit media state.

FSAVE/FNSAVE and FRSTOR Instructions. The FSAVE/FNSAVE and
FRSTOR instructions save and restore the entire register state
for 64-bit media instructions and x87 f loating-point
instructions. The FSAVE instruction stores the register state,
but only after handling any pending unmasked-x87 floating-
point exceptions. The FNSAVE instruction stores the register
state but skips the reporting and handling of these exceptions.
The state of all MMX/FPR registers is saved, as well as all other
x87 state (the control word register, status word register, tag
word, instruction pointer, data pointer, and last opcode). After
saving this state, the tag state for all MMX/FPR registers is
changed to empty and thus available for a new procedure.

Starting on page 346, Figure 11-4 through Figure 11-7 show the
memory formats used by the FSAVE/FNSAVE and FRSTOR
instructions when storing the x87 state in various processor
modes and using various effective-operand sizes. This state
includes:

� x87 Data Registers

- FPR0–FPR7 80-bit physical data registers.

� x87 Environment

- FCW: x87 control word register

- FSW: x87 status word register

- FTW: x87 tag word

- Last x87 instruction pointer

- Last x87 data pointer

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 345

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

- Last x87 opcode

The eight data registers are stored in the 80 bytes following the
environment information. Instead of storing these registers in
their physical order (FPR0–FPR7), the processor stores the
registers in the their stack order, ST(0)–ST(7), beginning with
the top-of-stack, ST(0).

346 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 11-4. FSAVE/FNSAVE Image (32-Bit, Protected Mode)

Bit Offset Byte
Offset31 16 15 0

ST(7)
(79–48) +68h

… …

ST(1)
(15–0)

ST(0)
(79–64) …

ST(0)
(63–32) …

ST(0)
(31–0) +1Ch

reserved, IGN Data DS Selector
(15–0) +18h

Data Offset
(31–0) +14h

00000b Instruction Opcode
(10–0)

Instruction CS Selector
(15–0) +10h

Instruction Offset
(31–0) +0Ch

reserved, IGN x87 Tag Word (FTW) +08h

reserved, IGN x87 Status Word (FSW) +04h

reserved, IGN x87 Control Word (FCW) +00h

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 347

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 11-5. FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes)

Bit Offset Byte
Offset31 16 15 0

ST(7)
(79–48) +68h

… …

ST(1)
(15–0)

ST(0)
(79–64) …

ST(0)
(63–32) …

ST(0)
(31–0) +1Ch

0000b Data Offset
(31–16) 0000 0000 0000b +18h

reserved, IGN Data Offset
(15–0) +14h

0000b Instruction Offset
(31–16) 0 Instruction Opcode

(10–0) +10h

reserved, IGN Instruction Offset
(15–0) +0Ch

reserved, IGN x87 Tag Word (FTW) +08h

reserved, IGN x87 Status Word (FSW) +04h

reserved, IGN x87 Control Word (FCW) +00h

348 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 11-6. FSAVE/FNSAVE Image (16-Bit, Protected Mode)

Bit Offset Byte
Offset31 16 15 0

Not Part of x87 State ST(7)
(79–64) +5Ch

… …

ST(0)
(79–48) +14h

ST(0)
(47–16) +10h

ST(0)
(15–0)

Data DS Selector
(15–0) +0Ch

Data Offset
(15–0)

Instruction CS Selector
(15–0) +08h

Instruction Offset
(15–0) x87 Tag Word (FTW) +04h

x87 Status Word (FSW) x87 Control Word (FCW) +00h

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 349

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 11-7. FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes)

FLDENV/FNLDENV and FSTENV Instructions. The FLDENV/FNLDENV
and FSTENV instructions load and store only the x87 floating-
point environment . These inst ruct ions , unl ike the
FSAVE/FNSAVE and FRSTOR instructions, do not save or
restore the x87 data registers.

FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR
instructions save and restore the entire 128-bit media, 64-bit
media, and x87 state. These instructions usually execute faster
than FSAVE/FNSAVE and FRSTOR because they do not
normally save and restore the x87 exception pointers (last-
instruction pointer, last data-operand pointer, and last opcode).

Bit Offset Byte
Offset31 16 15 0

Not Part of x87 State ST(7)
(79–64) +5Ch

… …

ST(0)
(79–48) +14h

ST(0)
(47–16) +10h

ST(0)
(15–0)

Data
(19–16)

0000 0000 0000b +0Ch

Data Offset (15–0)
Instruc.
(19–16)

0 Instruction Opcode
(10–0) +08h

Instruction Offset (15–0) x87 Tag Word (FTW) +04h

x87 Status Word (FSW) x87 Control Word (FCW) +00h

350 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

The only case in which they do save the exception pointers is
the relatively rare case in which the exception-summary bit in
the x87 status word (FSW.ES) is set to 1, indicating that an
unmasked exception has occurred. The FXSAVE and FXRSTOR
memory format contains fields for storing these values.

Unlike FSAVE and FNSAVE, the FXSAVE instruction does not
alter the x87 tag word. Therefore, the contents of the shared 64-
bit MMX and 80-bit FPR registers can remain valid after an
FXSAVE instruction (or any other value the tag bits indicated
before the save). Also, FXSAVE (like FNSAVE) does not check
for pending unmasked-x87 floating-point exceptions.

Figure 11-8 on page 351 shows the memory format of the media
x87 state in 64-bit mode. When in 64-bit mode using a 64-bit
operand size, the format shown in Figure 11-8 is used. If a 32-bit
operand size is used (in 64-bit mode), the memory format is the
same, except that RIP and RDS are stored as sel:offset pointers,
as shown in Figure 11-9 on page 352.

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 351

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 11-8. FXSAVE and FXRSTOR Image (64-Bit Mode)

F E D C B A 9 8 7 6 5 4 3 2 1 0 Byte

reserved, IGN +1F0h

… …

reserved, IGN +1A0h

XMM15 +190h

XMM14 +180h

XMM13 +170h

XMM12 +160h

XMM11 +150h

XMM10 +140h

XMM9 +130h

XMM8 +120h

XMM7 +110h

XMM6 +100h

XMM5 +F0h

XMM4 +E0h

XMM3 +D0h

XMM2 +C0h

XMM1 +B0h

XMM0 +A0h

reserved, IGN MMX7/FPR7 +90h

reserved, IGN MMX6/FPR6 +80h

reserved, IGN MMX5/FPR5 +70h

reserved, IGN MMX4/FPR4 +60h

reserved, IGN MMX3/FPR3 +50h

reserved, IGN MMX2/FPR2 +40h

reserved, IGN MMX1/FPR1 +30h

reserved, IGN MMX0/FPR0 +20h

MXCSR_MASK MXCSR RDP1 +10h

RIP1 FOP 0 FTW FSW FCW +00h

1. Stored as sel:offset if operand size is 32 bits.

352 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 11-9. FXSAVE and FXRSTOR Image (All Modes Other than 64-bit Mode)

Software can read and write all fields within the FXSAVE and
FXRSTOR memory image. These fields include:

� FCW—Bytes 01h–00h. x87 control word.

� FSW—Bytes 03h–02h. x87 status word.

� FTW—Byte 04h. x87 tag word. See “FXSAVE Format for x87
Tag Word” on page 354 for additional information on the
FTW format saved by the FXSAVE instruction.

� (Byte 05h contains the value 00h.)

F E D C B A 9 8 7 6 5 4 3 2 1 0 Byte

reserved, IGN +1F0h

… …

reserved, IGN +120h

XMM7 +110h

XMM6 +100h

XMM5 +F0h

XMM4 +E0h

XMM3 +D0h

XMM2 +C0h

XMM1 +B0h

XMM0 +A0h

reserved, IGN MMX7/FPR7 +90h

reserved, IGN MMX6/FPR6 +80h

reserved, IGN MMX5/FPR5 +70h

reserved, IGN MMX4/FPR4 +60h

reserved, IGN MMX3/FPR3 +50h

reserved, IGN MMX2/FPR2 +40h

reserved, IGN MMX1/FPR1 +30h

reserved, IGN MMX0/FPR0 +20h

MXCSR_MASK MXCSR rsrvd, IGN DS DP +10h

rsrvd, IGN CS EIP FOP 0 FTW FSW FCW +00h

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 353

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� FOP—Bytes 07h–06h. last x87 opcode.

� Last x87 Instruction Pointer—A pointer to the last non-
control x87 floating-point instruction executed by the
processor:

- RIP (64-bit format)—Bytes 0Fh–08h. 64-bit offset into the
code segment (used without a CS selector).

- EIP (32-bit format)—Bytes 0Bh–08h. 32-bit offset into the
code segment.

- CS (32-bit format)—Bytes 0Dh–0Ch. Segment selector
portion of the pointer.

� Last x87 Data Pointer—If the last non-control x87 floating
point instruction referenced memory, this value is a pointer
to the data operand referenced by the last non-control x87
floating-point instruction executed by the processor:

- RDP (64-bit format)—Bytes 17h–10h. 64-bit offset into the
data segment (used without a DS selector).

- DP (32-bit format)—Bytes 13h–10h. 32-bit offset into the
data segment.

- DS (32-bit format)—Bytes 15h–14h. Segment selector
portion of the pointer.

If the last non-control x87 instruction did not reference
memory, then the value in the pointer is implementation
dependent.

� MXCSR—Bytes 1Bh–18h. 128-bit media-instruction control
and status register. This register is saved only if
CR4.OSFXSR is set to 1.

� MXCSR_MASK—Bytes 1Fh–1Ch. Set bits in MXCSR_MASK
indicate supported feature bits in MXCSR. For example, if
bit 6 (the DAZ bit) in the returned MXCSR_MASK field is
set to 1, the DAZ mode and the DAZ flag in MXCSR are
supported. Cleared bits in MXCSR_MASK indicate reserved
bits in MXCSR. If software attempts to set a reserved bit in
the MXCSR register, a #GP exception will occur. To avoid
this exception, after software clears the FXSAVE memory
image and executes the FXSAVE instruction, software
should use the value returned by the processor in the
MXCSR_MASK field when writing a value to the MXCSR
register, as follows:

. MXCSR_MASK = 0: If the processor writes a zero value
into the MXCSR_MASK field, the denormals-are-
zeros (DAZ) mode and the DAZ flag in MXCSR are not

354 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

supported. Software should use the default mask
value, 0000_FFBFh (bit 6, the DAZ bit, and bits 31–16
cleared to 0), to mask any value it writes to the
MXCSR register to ensure that all reserved bits in
MXCSR are written with 0, thus avoiding a #GP
exception.

. MXCSR_MASK ≠ 0: If the processor writes a non-zero
value into the MXCSR_MASK field, software should
AND this value with any value it writes to the MXCSR
register.

� MMXn/FPRn—Bytes 9Fh–20h. Shared 64-bit media and x87
floating-point registers. Unlike the x87 FSAVE instruction,
these registers are stored in physical order
MMX0/FPR0–MMX7/FPR7. The upper six bytes in the
memory image for each register are reserved.

� XMMn—Bytes 11Fh–A0h. 128-bit media registers. These
registers are saved only if CR4.OSFXSR is set to 1.

FXSAVE Format for x87 Tag Word. Rather than saving the entire x87
tag word, FXSAVE saves a single-byte encoded version.
FXSAVE encodes each of the eight two-bit fields in the x87 tag
word as follows:

� Two-bit values of 00, 01, and 10 are encoded as a 1,
indicating the corresponding x87 FPRn register holds a
value.

� A two-bit value of 11 is encoded as a 0, indicating the
corresponding x87 FPRn is empty.

For example, assume an FSAVE instruction saves an x87 tag
word with the value 83F1h. This tag-word value describes the
x87 FPRn contents as follows:

When an FXSAVE is used to write the x87 tag word to memory,
it encodes the value as E3h. This encoded version describes the
x87 FPRn contents as follows:

x87 Register FPR7 FPR6 FPR5 FPR4 FPR3 FPR2 FPR1 FPR0

Tag Word Value (hex) 8 3 F 1

Tag Value (binary) 10 00 00 11 11 11 00 01

Meaning Special Valid Valid Empty Empty Empty Valid Zero

Chapter 11: 128-Bit, 64-Bit, and x87 Programming 355

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

If necessary, software can decode the single-bit FXSAVE tag-
word fields into the two-bit field FSAVE uses by examining the
contents of the corresponding FPR registers saved by FXSAVE.
Table 11-1 shows how the FPR contents are used to find the
equivalent FSAVE tag-field value. The fraction column refers to
fraction portion of the extended-precision significand (bits
62–0). The integer bit column refers to the integer-portion of the
significand (bit 63). See “x87 Floating-Point Programming” in
Volume 1 for more information on floating-point numbering
formats.

x87 Register FPR7 FPR6 FPR5 FPR4 FPR3 FPR2 FPR1 FPR0

Encoded Tag Byte (hex) E 3

Tag Value (binary) 1 1 1 0 0 0 1 1

Meaning Valid Valid Valid Empty Empty Empty Valid Valid

Table 11-1. Deriving FSAVE Tag Field from FXSAVE Tag Field

Encoded
FXSAVE

Tag Field
Exponent Integer Bit2 Fraction1 Type of Value

Equivalent
FSAVE

Tag Field

1 (Valid)

All 0s

0 All 0s Zero 01 (Zero)

0 Not all 0s Denormal

10 (Special)
1 All 0s

Pseudo Denormal
1 Not all 0s

Neither
all 0s nor all

1s

0

don’t care

Unnormal

1 Normal 00 (Valid)

All 1s

0 Pseudo Infinity
or Pseudo NaN

10 (Special)

1
All 0s Infinity

Not all 0s NaN

0 (Empty) don’t care Empty 11 (Empty)

Note:
1. Bits 62–0 of the significand. Bit 62, the most-significant bit of the fraction, is also called the M bit.
2. Bit 63 of the significand, also called the J bit,

356 Chapter 11: 128-Bit, 64-Bit, and x87 Programming

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Performance Considerations. When system software supports multi-
tasking, it must be able to save the processor state for one task
and load the state for another. For performance reasons, the
media and/or x87 processor state is usually saved and loaded
only when necessary. System software can save and load this
state at the time a task switch occurs. However, if the new task
does not use the state, loading the state is unnecessary and
reduces performance.

The task-switch bit (CR0.TS) is provided as a lazy context-
switch mechanism that allows system software to save and load
state only when necessary. When CR0.TS=1, a device-not-
available exception (#NM) occurs when an attempt is made to
execute a 128-bit media, 64-bit media, or x87 instruction.
System software can use the #NM exception handler to save the
state of the previous task, and restore the state of the current
task. Before returning from the exception handler to the media
or x87 instruction, system software must clear CR0.TS to 0 to
allow the instruction to be executed. Using this approach, state
is saved only when the registers are used.

In legacy mode, the hardware task-switch mechanism sets
CR0.TS=1 during a task switch (see “Task Switched (TS) Bit” on
page 54 for more information). In long mode, the hardware task-
switching is not supported, and the CR0.TS bit is not set by the
processor. Instead, the architecture assumes that system
software handles all task-switching and state-saving functions.
If CR0.TS is to be used in long mode for controlling the save and
restore of media or x87 state, system software must set and
clear it explicitly.

Chapter 12: Task Management 357

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

12 Task Management

This chapter describes the hardware task-management
features. All of the legacy x86 task-management features are
supported by the x86-64 architecture in legacy mode, but most
features are not available in long mode. Long mode, however,
requires system software to initialize and maintain certain task-
management resources . The details of these resource-
initialization requirements for long mode are discussed in
“Task-Management Resources” on page 358.

12.1 Hardware Multitasking Overview

A task (also called a process) is a program that the processor can
execute, suspend, and later resume executing at the point of
suspension. During the time a task is suspended, other tasks are
allowed to execute. Each task has its own execution space,
consisting of:

� Code segment and instruction pointer.

� Data segments.

� Stack segments for each privilege level.

� General-purpose registers.

� rFLAGS register.

� Local-descriptor table.

� Task register, and a link to the previously-executed task.

� I/O-permission and interrupt-permission bitmaps.

� Pointer to the page-translation tables (CR3).

The state information defining this execution space is stored in
the task-state segment (TSS) maintained for each task.

Full support for hardware multitasking is provided in legacy
mode. Hardware multitasking provides automated mechanisms
for switching tasks, saving the execution state of the suspended
task, and restoring the execution state of the resumed task.
When hardware multitasking is used to switch tasks, the
processor takes the following actions:

� Suspends execution of the task, allowing any executing
instructions to complete and save their results.

� Saves the task execution state in the task TSS.

358 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Loads the execution state for the new task from its TSS.

� Begins executing the new task at the location specified in
the new task TSS.

Software can switch tasks by branching to a new task using the
CALL or JMP instructions. Exceptions and interrupts can also
switch tasks if the exception or interrupt handlers are
themselves separate tasks. IRET can be used to return to an
earlier task.

12.2 Task-Management Resources

The hardware-multitasking features are available when
protected mode is enabled (CR0.PE=1). Protected-mode
software execution, by definition, occurs as part of a task. While
system software is not required to use the hardware-
multitasking features, it is required to initialize certain task-
management resources for at least one task (the current task)
when running in protected mode. This single task is needed to
establish the protected-mode execution environment. The
resources that must be initialized are:

� Task-State Segment (TSS)—A segment that holds the
processor state associated with a task.

� TSS Descriptor—A segment descriptor that defines the task-
state segment.

� TSS Selector—A segment selector that references the TSS
descriptor located in the GDT.

� Task Register—A register that holds the TSS selector and
TSS descriptor for the current task.

Figure 12-1 on page 359 shows the relationship of these
resources to each other in both 64-bit and 32-bit operating
environments.

Chapter 12: Task Management 359

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 12-1. Task-Management Resources

A fifth resource is available in legacy mode for use by system
software that uses the hardware-multitasking mechanism to
manage more than one task:

513-254.eps

32-Bit Limit64-Bit or 32-Bit Base Address Attributes

Task Register (Hidden From Software)
015

TSS Selector

Task Register (Visible)

Global-Descriptor
Table

TSS Descriptor

I/O-Bitmap Base Address

I/O-Permission Bitmap

Interrupt-Redirection Bitmap

Task-State Segment

+

360 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Task-Gate Descriptor—This form of gate descriptor holds a
reference to a TSS descriptor and is used to control access
between tasks.

The task-management resources are described in the following
sections.

12.2.1 TSS Selector TSS selectors are selectors that point to task-state segment
descriptors in the GDT. Their format is identical to all other
segment selectors, as shown in Figure 12-2.

Figure 12-2. Task-Segment Selector

The selector format consists of the following fields:

Selector Index. Bits 15–3. The selector-index field locates the TSS
descriptor in the global-descriptor table.

Table Indicator (TI) Bit. Bit 2. The TI bit must be cleared to 0, which
indicates that the GDT is used. TSS descriptors cannot be
located in the LDT. If a reference is made to a TSS descriptor in
the LDT, a general-protection exception (#GP) occurs.

Requestor Privilege-Level (RPL) Field. Bits 1–0. RPL represents the
privilege level (CPL) the processor is operating under at the
time the TSS selector is loaded into the task register.

12.2.2 TSS Descriptor The TSS descriptor is a system-segment descriptor, and it can
be located only in the GDT. The format for an 8-byte, legacy-
mode and compatibility-mode TSS descriptor can be found in
“System Descriptors” on page 102. The format for a 16-byte, 64-
bit mode TSS descriptor can be found in “System Descriptors”
on page 109.

The fields within a TSS descriptor (all modes) are described in
“Descriptor Format” on page 95. The following additional
information applies to TSS descriptors:

15 3 2 1 0

Selector Index T
I

RPL

Bits Mnemonic Description
15-3 Selector Index
2 TI Table Indicator
1-0 RPL Requestor Privilege Level

Chapter 12: Task Management 361

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Segment Limit—A TSS descriptor must have a segment limit
value of at least 67h, which defines a minimum TSS size of
68h (104 decimal) bytes. If the limit is less than 67h, an
invalid-TSS exception (#TS) occurs during the task switch.
When an I/O-permission bitmap, interrupt-redirection
bitmap, or additional state information is included in the
TSS, the limit must be set to a value large enough to enclose
that information. In this case, if the TSS limit is not large
enough to hold the additional information, a #GP exception
occurs when an attempt is made to access beyond the TSS
limit. No check for the larger limit is performed during the
task switch.

� Type—Four system-descriptor types are defined as TSS
types, as shown in Table 4-5 on page 103. Bit 9 is used as the
descriptor busy bit (B). This bit indicates that the task is
busy when set to 1, and available when cleared to 0. Busy
tasks are the currently running task and any previous
(outer) tasks in a nested-task hierarchy. Task recursion is not
supported, and a #GP exception occurs if an attempt is made
to transfer control to a busy task. See “Nesting Tasks” on
page 377 for additional information.

In long mode, the 32-bit TSS types (available and busy) are
redefined as 64-bit TSS types, and only 64-bit TSS
descriptors can be used. Loading the task register with an
available 64-bit TSS causes the processor to change the TSS
descriptor type to indicate a busy 64-bit TSS. Because long
mode does not support task switching, the TSS-descriptor
busy bit is never cleared by the processor to indicate an
available 64-bit TSS.

16-bit TSS types are illegal in long mode. A general-
protection exception (#GP) occurs if a reference is made to a
16-bit TSS.

12.2.3 Task Register The task register (TR) points to the TSS location in memory,
defines its size, and specifies its attributes. As with the other
descriptor-table registers, the TR has two portions. A visible
portion holds the TSS selector, and a hidden portion holds the
TSS descriptor. When the TSS selector is loaded into the TR,
the processor automatically loads the TSS descriptor from the
GDT into the hidden portion of the TR.

The TR is loaded with a new selector using the LTR instruction.
The TR is also loaded during a task switch, as described in
“Switching Tasks” on page 373.

362 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 12-3 shows the format of the TR in legacy mode.

Figure 12-3. TR Format, Legacy Mode

Figure 12-4 shows the format of the TR in long mode (both
compatibility mode and 64-bit mode).

Figure 12-4. TR Format, Long Mode

The x86-64 architecture expands the TSS-descriptor base-
address field to 64 bits so that system software running in long
mode can access a TSS located anywhere in the 64-bit virtual-
address space. The processor ignores the high-order 32 base-
address bits when running in legacy mode. Because the TR is
loaded from the GDT, the system-segment descriptor format has
been expanded to 16 bytes by the x86-64 architecture in support
of 64-bit mode. See “System Descriptors” on page 109 for more
information on this expanded format. The high-order base-
address bits are only loaded from 64-bit mode using the LTR

Hidden From Software 513-221.eps

32-Bit Descriptor-Table Limit

32-Bit Descriptor-Table Base Address

Descriptor Attributes

Selector

Hidden From Software 513-267.eps

64-Bit Descriptor-Table Base Address

32-Bit Descriptor-Table Limit

Descriptor Attributes

Selector

Chapter 12: Task Management 363

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

instruction. Figure 12-5 shows the relationship between the TSS
and GDT.

Figure 12-5. Relationship between the TSS and GDT

Long mode requires the use of a 64-bit TSS type, and this type
must be loaded into the TR by executing the LTR instruction in
64-bit mode. Executing the LTR instruction in 64-bit mode loads
the TR with the full 64-bit TSS base address from the 16-byte
TSS descriptor format (compatibility mode can only load 8-byte
system descriptors) . A processor running in e i ther
compatibility mode or 64-bit mode uses the full 64-bit TR.base
address.

12.2.4 Legacy Task-
State Segment

The task-state segment (TSS) is a data structure in memory that
the processor uses to save and restore the execution state for a
task when a task switch occurs. Figure 12-6 on page 364 shows
the format of a legacy 32-bit TSS.

513-210.eps

Global
Descriptor

Table

GDT Limit

GDT Base Address

Task Selector

TSS Attributes

TSS Limit

TSS Base Address

Task
State

Segment

Global Descriptor Table Register Task Register

364 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 12-6. Legacy 32-bit TSS

Bit Offset Byte
Offset31 16 15 0

I/O-Permission Bitmap (IOPB) (Up to 8 Kbytes)
IOPB
Base

Interrupt-Redirection Bitmap (IRB) (Eight 32-Bit Locations)

��
�

Operating-System Data Structure
��
�

I/O-Permission Bitmap Base Address reserved, IGN T +64h

reserved, IGN LDT Selector +60h

reserved, IGN GS +5Ch

reserved, IGN FS +58h

reserved, IGN DS +54h

reserved, IGN SS +50h

reserved, IGN CS +4Ch

reserved, IGN ES +48h

EDI +44h

ESI +40h

EBP +3Ch

ESP +38h

EBX +34h

EDX +30h

ECX +2Ch

EAX +28h

EFLAGS +24h

EIP +20h

CR3 +1Ch

reserved, IGN SS2 +18h

ESP2 +14h

reserved, IGN SS1 +10h

ESP1 +0Ch

reserved, IGN SS0 +08h

ESP0 +04h

reserved, IGN Link (Prior TSS Selector) +00h

Chapter 12: Task Management 365

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

The 32-bit TSS contains three types of fields:

� Static fields are read by the processor during a task switch
when a new task is loaded, but are not written by the
processor when a task is suspended.

� Dynamic fields are read by the processor during a task switch
when a new task is loaded, and are written by the processor
when a task is suspended.

� Software-defined fields are read and written by software, but
are not read or written by the processor. All but the first 104
bytes of a TSS can be defined for software purposes, minus
any additional space required for the optional I/O-
permission bitmap and interrupt-redirection bitmap.

TSS fields are not read or written by the processor when the
LTR instruction is executed. The LTR instruction loads the TSS
descriptor into the TR and marks the task as busy, but it does
not cause a task switch.

The TSS fields used by the processor in legacy mode are:

� Link—Bytes 01h–00h, dynamic field. Contains a copy of the
task selector from the previously-executed task. See
“Nesting Tasks” on page 377 for additional information.

� Stack Pointers—Bytes 1Bh–04h, static field. Contains the
privilege 0, 1, and 2 stack pointers for the task. These consist
of the stack-segment selector (SSn), and the stack-segment
offset (ESPn).

� CR3—Bytes 1Fh–1Ch, static field. Contains the page-
translation-table base-address (CR3) register for the task.

� EIP—Bytes 23h–20h, dynamic field. Contains the instruction
pointer (EIP) for the next instruction to be executed when
the task is restored.

� EFLAGS—Bytes 27h–24h, dynamic field. Contains a copy of
the EFLAGS image at the point the task is suspended.

� General-Purpose Registers—Bytes 47h–28h, dynamic field.
Contains a copy of the EAX, ECX, EDX, EBX, ESP, EBP, ESI,
and EDI values at the point the task is suspended.

� Segment-Selector Registers—Bytes 59h–48h, dynamic field.
Contains a copy of the ES, CS, SS, DS, FS, and GS, values at
the point the task is suspended.

366 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� LDT Segment-Selector Register—Bytes 63h–60h, static field.
Contains the local-descriptor-table segment selector for the
task.

� T (Trap) Bit—Bit 0 of byte 64h, static field. This bit, when set
to 1, causes a debug exception (#DB) to occur on a task
switch. See “Task-Switch Breakpoints” on page 398 for
additional information.

� I/O-Permission Bitmap Base Address—Bytes 67h–66h, static
field. This field represents a 16-bit offset into the TSS. This
offset points to the beginning of the I/O-permission bitmap,
and the end of the interrupt-redirection bitmap.

� I/O-Permission Bitmap—Static field. This field specifies
protection for I/O-port addresses (up to the 64K ports
supported by the processor), as follows:

- Whether the port can be accessed at any privilege level.

- Whether the port can be accessed outside the privilege
level established by EFLAGS.IOPL.

- Whether the port can be accessed when the processor is
running in virtual-8086 mode.

Because one bit is used per 8-byte I/O-port, this bitmap can
take up to 8 Kbytes of TSS space. The bitmap can be located
anywhere within the first 64 Kbytes of the TSS, as long as it
is above byte 103. The last byte of the bitmap must contain
all ones (0FFh). See “I/O-Permission Bitmap” on page 367
for more information.

� Interrupt-Redirection Bitmap—Static field. This field defines
how each of the 256-possible software interrupts is directed
in a virtual-8086 environment. One bit is used for each
interrupt, for a total bitmap size of 32 bytes. The bitmap can
be located anywhere above byte 103 within the first
64 Kbytes of the TSS. See “Interrupt Redirection of
Software Interrupts” on page 297 for information on using
this field.

The TSS can be paged by system software. System software that
uses the hardware task-switch mechanism must guarantee that
a page fault does not occur during a task switch. Because the
processor only reads and writes the first 104 TSS bytes during a
task switch, this restriction only applies to those bytes. The
simplest approach is to align the TSS on a page boundary so
that all critical bytes are either present or not present. Then, if
a page fault occurs when the TSS is accessed, it occurs before

Chapter 12: Task Management 367

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

the first byte is read. If the page fault occurs after a portion of
the TSS is read, the fault is unrecoverable.

I/O-Permission Bitmap. The I/O-permission bitmap (IOPB) allows
system software to grant less-privileged programs access to
individual I/O ports, overriding the effect of RFLAGS.IOPL for
those devices. When an I/O instruction is executed, the
processor checks the IOPB only if the processor is in virtual x86
mode or the CPL is greater than the RFLAGS.IOPL field
(access is always granted if CPL is less than or equal to
RFLAGS.IOPL). Each bit in the IOPB corresponds to a byte I/O
port. A word I/O port corresponds to two consecutive IOPB bits,
and a doubleword I/O port corresponds to four consecutive
IOPB bits. Access is granted to an I/O port of a given size when
all IOPB bits corresponding to that port are clear. If any bits are
set, a #GP occurs.

The IOPB is located in the TSS, as shown by the example in
Figure 12-7 on page 368. Each TSS can have a different copy of
the IOPB, so access to individual I/O devices can be granted on
a task-by-task basis. The I/O-permission bitmap base-address
field located at byte 66h in the TSS is an offset into the TSS
locating the start of the IOPB. If all 64K IO ports are supported,
the IOPB base address must not be greater than 0DFFFh,
otherwise accesses to the bitmap cause a #GP to occur. An extra
byte must be present after the last IOPB byte. This byte must
have all bits set to 1 (0FFh). This allows the processor to read
two IOPB bytes each time an I/O port is accessed. By reading
two IOPB bytes, the processor can check all bits when
unaligned, multi-byte I/O ports are accessed.

368 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 12-7. I/O-Permission Bitmap Example

Bits in the IOPB sequentially correspond to I/O port addresses.
The example in Figure 12-7 shows bits 12 through 15 in the
second doubleword of the IOPB cleared to 0. Those bit positions
correspond to byte I/O ports 44h through 47h, or alternatively,
doubleword I/O port 44h. Because the bits are cleared to zero,
software running at any privilege level can access those I/O
ports.

By adjusting the TSS limit, it may happen that some ports in the
I/O-address space have no corresponding IOPB entry. Ports not
represented by the IOPB will cause a #GP exception. Referring
again to Figure 12-7, the last IOPB entry is at bit 23 in the fourth
IOPB doubleword, which corresponds to I/O port 77h. In this
example, all ports from 78h and above will cause a #GP
exception, as if their permission bit was set to 1.

12.2.5 64-Bit Task
State Segment

Although the hardware task-switching mechanism is not
supported in long mode, a 64-bit task state segment (TSS) must
still exist. System software must create at least one 64-bit TSS
for use after activating long mode, and it must execute the LTR
instruction, in 64-bit mode, to load the TR register with a
pointer to the 64-bit TSS that serves both 64-bit-mode programs
and compatibility-mode programs.

The legacy TSS contains several fields used for saving and
restoring processor-state information. The legacy fields include
general-purpose register, EFLAGS, CR3 and segment-selector

Bit Offset Byte
Offset31 16 15 0

1111_1111 IOPB+Ch

IOPB+8h

0 0 0 0 IOPB+4h

IOPB

I/O-Permission Bitmap Base Address +64h

. . .

+00h

Chapter 12: Task Management 369

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

register state, among others. Those legacy fields are not
supported by the 64-bit TSS. System software must save and
restore the necessary processor-state information required by
the software-multitasking implementation (if multitasking is
supported). Figure 12-8 on page 370 shows the format of a 64-bit
TSS.

The 64-bit TSS holds several pieces of information important to
long mode that are not directly related to the task-switch
mechanism:

� RSPn—Bytes 1Bh–04h. The full 64-bit canonical forms of the
stack pointers (RSP) for privilege levels 0 through 2.

� ISTn—Bytes 5Bh–24h. The full 64-bit canonical forms of the
interrupt-stack-table (IST) pointers. See “Interrupt-Stack
Table” on page 290 for a description of the IST mechanism.

� I/O Map Base Address—Bytes 67h–66h. The 16-bit offset to
the I/O-permission bit map from the 64-bit TSS base. The
function of this field is identical to that in a legacy 32-bit
TSS. See “I/O-Permission Bitmap” on page 367 for more
information.

370 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 12-8. Long Mode TSS Format

Bit Offset Byte
Offset31 16 15 0

I/O-Permission Bitmap (IOPB) (Up to 8 Kbytes)
IOPB
Base

��
�

��
�

I/O Map Base Address reserved, IGN +64h

reserved, IGN
+60h

+5Ch

IST7[63:32] +58h

IST7[31:0] +54h

IST6[63:32] +50h

IST6[31:0] +4Ch

IST5[63:32] +48h

IST5[31:0] +44h

IST4[63:32] +40h

IST4[31:0] +3Ch

IST3[63:32] +38h

IST3[31:0] +34h

IST2[63:32] +30h

IST2[31:0] +2Ch

IST1[63:32] +28h

IST1[31:0] +24h

reserved, IGN
+20h

+1Ch

RSP2[63:32] +18h

RSP2[31:0] +14h

RSP1[63:32] +10h

RSP1[31:0] +0Ch

RSP0[63:32] +08h

RSP0[31:0] +04h

reserved, IGN +00h

Chapter 12: Task Management 371

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

12.2.6 Task Gate
Descriptor (Legacy
Mode Only)

Task-gate descriptors hold a selector reference to a TSS and are
used to control access between tasks. Unlike a TSS descriptor
or other gate descriptors, a task gate can be located in any of
the three descriptor tables (GDT, LDT, and IDT). Figure 12-9
shows the format of a task-gate descriptor.

Figure 12-9. Task-Gate Descriptor, Legacy Mode Only

The task-gate descriptor fields are:

� System (S) and Type—Bits 12 and 11–8 (respectively) of byte
+4. These bits are encoded by software as 00101b to indicate
a task-gate descriptor type.

� Present (P)—Bit 15 of byte +4. The segment-present bit
indicates the segment referenced by the gate descriptor is
loaded in memory. If a reference is made to a segment when
P=0, a segment-not-present exception (#NP) occurs. This bit
is set and cleared by system software and is never altered by
the processor.

� Descriptor Privilege-Level (DPL)—Bits 14–13 of byte +4. The
DPL field indicates the gate-descriptor privilege level. DPL
can be set to any value from 0 to 3, with 0 specifying the
most privilege and 3 the least privilege.

12.3 Hardware Task-Management in Legacy Mode

This section describes the operation of the task-switch
mechanism when the processor is running in legacy mode. None
of these features are supported in long mode (either
compatibility mode or 64-bit mode).

12.3.1 Task Memory-
Mapping

The hardware task-switch mechanism gives system software a
great deal of flexibility in managing the sharing and isolation of
memory—both virtual (linear) and physical—between tasks.

31 16 15 14 13 12 11 8 7 0

reserved, IGN P DPL S Type reserved, IGN +4

TSS Selector reserved, IGN +0

372 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Segmented Memory. The segmented memory for a task consists of
the segments that are loaded during a task switch and any
segments that are later accessed by the task code. The
hardware task-switch mechanism allows tasks to either share
segments with other tasks, or to access segments in isolation
from one another. Tasks that share segments actually share a
virtual-address (linear-address) space, but they do not
necessarily share a physical-address space. When paging is
enabled, the virtual-to-physical mapping for each task can
differ, as is described in the following section. Shared segments
do share physical memory when paging is disabled, because
virtual addresses are used as physical addresses.

A number of options are available to system software that
shares segments between tasks:

� Sharing segment descriptors using the GDT. All tasks have
access to the GDT, so it is possible for segments loaded in the
GDT to be shared among tasks.

� Sharing segment descriptors using a single LDT. Each task
has its own LDT, and that LDT selector is automatically
saved and restored in the TSS by the processor during task
switches. Tasks, however, can share LDTs simply by storing
the same LDT selector in multiple TSSs. Using the LDT to
manage segment sharing and segment isolation provides
more flexibility to system software than using the GDT for
the same purpose.

� Copying shared segment descriptors into multiple LDTs.
Segment descriptors can be copied by system software into
multiple LDTs that are otherwise not shared between tasks.
Allowing segment sharing at the segment-descriptor level,
rather than the LDT level or GDT level, provides the
greatest flexibility to system software.

In all three cases listed above, the actual data and instructions
are shared between tasks only when the tasks’ virtual-to-
physical address mappings are identical.

Paged Memory. Each task has its own page-translation table base-
address (CR3) register, and that register is automatically saved
and restored in the TSS by the processor during task switches.
This allows each task to point to its own set of page-translation
tables, so that each task can translate virtual addresses to
physical addresses independently. Page translation must be
enabled for changes in CR3 values to have an effect on virtual-

Chapter 12: Task Management 373

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

to-physical address mapping. When page translation is
disabled, the tables referenced by CR3 are ignored, and virtual
addresses are equivalent to physical addresses.

12.3.2 Switching Tasks The hardware task-switch mechanism transfers program control
to a new task when any of the following occur:

� A CALL or JMP instruction with a selector operand that
references a task gate is executed. The task gate can be
located in either the LDT or GDT.

� A CALL or JMP instruction with a selector operand that
references a TSS descriptor is executed. The TSS descriptor
must be located in the GDT.

� A software-interrupt instruction (INTn) is executed that
references a task gate located in the IDT.

� An exception or external interrupt occurs, and the vector
references a task gate located in the IDT.

� An IRET is executed while the EFLAGS.NT bit is set to 1,
indicating that a return is being performed from an inner-
level task to an outer-level task. The new task is referenced
using the selector stored in the current-task link field. See
“Nesting Tasks” on page 377 for additional information. The
RET instruction cannot be used to switch tasks.

When a task switch occurs, the following operations are
performed automatically by the processor:

� The processor performs privilege-checking to determine
whether the currently-executing program is allowed to
access the target task. If this check fails, the task switch is
aborted without modifying the processor state, and a
general-protection exception (#GP) occurs. The privilege
checks performed depend on the cause of the task switch:

- If the task switch is initiated by a CALL or JMP
instruction through a TSS descriptor, the processor
checks that both the currently-executing program CPL
and the TSS-selector RPL are numerically less-than or
equal-to the TSS-descriptor DPL.

- If the task switch takes place through a task gate, the
CPL and task-gate RPL are compared with the task-gate
DPL, and no comparison is made using the TSS-
descriptor DPL. See “Task Switches Using Task Gates”
on page 375.

374 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

- Software interrupts, hardware interrupts, and exceptions
all transfer control without checking the task-gate DPL.

- The IRET instruction transfers control without checking
the TSS-descriptor DPL.

� The processor performs limit-checking on the target TSS
descriptor to verify that the TSS limit is greater than or
equal to 67h (at least 104 bytes). If this check fails, the task
switch is aborted without modifying the processor state, and
an invalid-TSS exception (#TS) occurs.

� The current-task state is saved in the TSS. This includes the
next-instruction pointer (EIP), EFLAGS, the general-
purpose registers, and the segment-selector registers.

Up to this point, any exception that occurs aborts the task
switch without changing the processor state. From this point
forward, any exception that occurs does so in the context of
the new task. If an exception occurs in the context of the
new task during a task switch, the processor finishes loading
the new-task state without performing additional checks.
The processor transfers control to the #TS handler after this
state is loaded, but before the first instruction is executed in
the new task. When a #TS occurs, it is possible that some of
the state loaded by the processor did not participate in
segment access checks. The #TS handler must verify that all
segments are accessible before returning to the interrupted
task.

� The task register (TR) is loaded with the new-task TSS
selector, and the hidden portion of the TR is loaded with the
new-task descriptor. The TSS now referenced by the
processor is that of the new task.

� The current task is marked as busy. The previous task is
marked as available or remains busy, based on the type of
linkage. See “Nesting Tasks” on page 377 for more
information.

� CR0.TS is set to 1. This bit can be used to save other
processor state only when it becomes necessary. For more
information, see the next section, “Saving Other Processor
State.”

� The new-task state is loaded from the TSS. This includes the
next-instruction pointer (EIP), EFLAGS, the general-
purpose registers, and the segment-selector registers. The
processor clears the segment-descriptor present (P) bits (in
the hidden portion of the segment registers) to prevent

Chapter 12: Task Management 375

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

access into the new segments, until the task switch
completes successfully.

� The LDTR and CR3 registers are loaded from the TSS,
changing the virtual-to-physical mapping from that of the
old task to the new task. Because this is done in the middle
of accessing the new TSS, system software must guarantee
that TSS addresses are translated identically in all tasks.

� The descriptors for all previously-loaded segment selectors
are loaded into the hidden portion of the segment registers.
This sets or clears the P bits for the segments as specified by
the new descriptor values.

If the above steps complete successfully, the processor begins
executing instructions in the new task beginning with the
instruction referenced by the CS:EIP far pointer loaded from
the new TSS. The privilege level of the new task is taken from
the new CS segment selector’s RPL.

Saving Other Processor State. The processor does not automatically
save the registers used by the media or x87 instructions.
Instead, the processor sets CR0.TS to 1 during a task switch.
Later, when an attempt is made to execute any of the media or
x87 instructions while TS=1, a device-not-available exception
(#NM) occurs. System software can then save the previous state
of the media and x87 registers and clear the CR0.TS bit to 0
before executing the next media/x87 instruction. As a result,
the media and x87 registers are saved only when necessary
after a task switch.

12.3.3 Task Switches
Using Task Gates

When a control transfer to a new task occurs through a task
gate, the processor reads the task-gate DPL (DPLG) from the
task-gate descriptor. Two privilege checks, both of which must
pass, are performed on DPLG before the task switch can occur
successfully:

� The processor compares the CPL with DPLG. The CPL must
be numerically less than or equal to DPLG for this check to
pass. In other words, the following expression must be true:
CPL ≤ DPLG.

� The processor compares the RPL in the task-gate selector
with DPLG. The RPL must be numerically less than or equal
to DPLG for this check to pass. In other words, the following
expression must be true: RPL ≤ DPLG.

376 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Unlike call-gate control transfers, the processor does not read
the DPL from the target TSS descriptor (DPLS) and compare it
with the CPL when a task gate is used.

Figure 12-10 on page 377 shows two examples of task-gate
privilege checks. In Example 1, the privilege checks pass:

� The task-gate DPL (DPLG) is at the lowest privilege (3),
specifying that software running at any privilege level (CPL)
can access the gate.

� The selector referencing the task gate passes its privilege
check because the RPL is numerically less than or equal to
DPLG.

In Example 2, both privilege checks fail:

� The task-gate DPL (DPLG) specifies that only software at
privilege-level 0 can access the gate. The current program
does not have enough privilege to access the task gate,
because its CPL is 2.

� The selector referencing the task-gate descriptor does not
have a high enough privilege to complete the reference. Its
RPL is numerically greater than DPLG.

Although both privilege checks failed in the example, if only
one check fails, access into the target task is denied.

Because the legacy task-switch mechanism is not supported in
long mode, software cannot use task gates in long mode. Any
attempt to transfer control to another task using a task gate in
long mode causes a general-protection exception (#GP) to
occur.

Chapter 12: Task Management 377

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 12-10. Privilege-Check Examples for Task Gates

12.3.4 Nesting Tasks The hardware task-switch mechanism supports task nesting
through the use of EFLAGS nested-task (NT) bit and the TSS
link-field. The manner in which these fields are updated and
used during a task switch depends on how the task switch is
initiated:

513-255.eps

Example 1: Privilege Check Passes

DPLG=3

Task-Gate Descriptor
Task-State
Segment

CS CPL=2

DPLS

TSS Descriptor

Task-Gate
Selector

RPL=3

Example 2: Privilege Check Fails

DPLG=0

Task-Gate Descriptor

CS CPL=2

DPLS

TSS Descriptor

Task-Gate
Selector

RPL=3

Task-State
Segment

Access Allowed

Access Denied

378 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� The JMP instruction does not update EFLAGS.NT or the
TSS link-field. Task nesting is not supported by the JMP
instruction.

� The CALL instruction, INTn instructions, interrupts, and
exceptions can only be performed from outer-level tasks to
inner-level tasks. All of these operations set the EFLAGS.NT
bit for the new task to 1 during a task switch, and copy the
selector for the previous task into the new-task link field.

� An IRET instruction which returns to another task only
occurs when the EFLAGS.NT bit for the current task is set to
1, and only can be performed from an inner-level task to an
outer-level task. When an IRET results in a task switch, the
new task is referenced using the selector stored in the
current-TSS link field. The EFLAGS.NT bit for the current
task is cleared to 0 during the task switch.

Table 12-1 summarizes the effect various task-switch initiators
have on EFLAGS.NT, the TSS link-field, and the TSS-busy bit.
(For more information on the busy bit, see the next section,
“Preventing Recursion.”)

Programs running at any privilege level can set EFLAGS.NT to
1 and execute the IRET instruction to transfer control to
another task. System software can keep control over improperly
nested-task switches by initializing the link field of all TSSs

Table 12-1. Effects of Task Nesting

Task-Switch
Initiator

Old Task New Task

EFLAGS.NT Link
(Selector) Busy EFLAGS.NT Link

(Selector) Busy

JMP — — Clear to 0
(was 1) — — Set to 1

CALL
INTn
Interrupt
Exception

— —
(Was 1) Set to 1 Old Task Set to 1

IRET Clear to 0
(was 1)

— Clear to 0
(was 1)

—

Note:
“—” indicates no change is made.

Chapter 12: Task Management 379

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

that it creates. That way, improperly nested-task switches
always transfer control to a known task.

Preventing Recursion. Task recursion is not allowed by the
hardware task-switch mechanism. If recursive-task switches
were allowed, they would replace a previous task-state image
with a newer image, discarding the previous information. To
prevent recursion from occurring, the processor uses the busy
bit located in the TSS-descriptor type field (bit 9 of byte +4).
Use of this bit depends on how the task switch is initiated:

� The JMP instruction clears the busy bit in the old task to 0
and sets the busy bit in the new task to 1. A general-
protection exception (#GP) occurs if an attempt is made to
JMP to a task with a set busy bit.

� The CALL instruction, INTn instructions, interrupts, and
exceptions set the busy bit in the new task to 1. The busy bit
in the old task remains set to 1, preventing recursion
through task-nesting levels. A general-protection exception
(#GP) occurs if an attempt is made to switch to a task with a
set busy bit.

� An IRET to another task (EFLAGS.NT must be 1) clears the
busy bit in the old task to 0. The busy bit in the new task is
not altered, because it was already set to 1.

Table 12-1 on page 378 summarizes the effect various task-
switch initiators have on the TSS-busy bit.

380 Chapter 12: Task Management

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Chapter 13: Debug and Performance Resources 381

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

13 Debug and Performance Resources

Testing, debug, and performance optimization consume a
significant portion of the time needed to develop a new
computer or software product and move it successfully into
production. To stay competitive, product developers need tools
that allow them to rapidly detect, isolate, and correct problems
before a product is shipped. The goal of the debug and
performance features incorporated into processor
implementations of the x86-64 architecture is to support the
tool chain solutions used in software-product and hardware-
product development.

The debug and performance resources that can be supported by
x86-64 architecture implementations include:

� Software Debug—The x86-64 architecture supports the
legacy software-debug facilities, including the debug
registers (DR0–DR7), debug exception, and breakpoint
exception. Additional features are provided using model-
specific registers (MSRs). These registers are used to set
breakpoints on branches, interrupts, and exceptions and to
single step from one branch to the next. The software-debug
capability is described in “Software-Debug Resources” on
page 382.

� Performance Monitoring—Model-specific registers (MSRs)
are provided to monitor events within an implementation of
the x86-64 architecture. A set of control registers allow the
selection of events to be monitored and a corresponding set
of counter registers track the frequency of monitored events.
These features are used to support software-performance
and hardware-performance tuning. Performance monitoring
is described in “Performance Optimization” on page 401.

A given processor implementation may include additional
debug capabilities that allow monitoring program execution
and manipulation of processor state to be manipulated. These
resources are typically intended for BIOS and platform
development and, if available, are described in the x86-64 BIOS
and Kernel Developer’s Guide for the particular processor.

382 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

13.1 Software-Debug Resources

Software can program breakpoints into the debug registers,
causing a #DB exception when matches occur on instruction-
memory addresses, data-memory addresses, or I/O addresses.
The breakpoint exception (#BP) is also supported to allow
software to set breakpoints by placing INT3 instructions in the
instruction memory for a program. Program control is
transferred to the breakpoint exception (#BP) handler when an
INT3 instruction is executed.

In addition to the debug features supported by the debug
registers (DR0–DR7), the processor also supports features
supported by model-specific registers (MSRs). Together, these
capabilities provide a rich set of breakpoint conditions,
including:

� Breakpoint On Address Match—Breakpoints occur when the
address stored in a address-breakpoint register matches the
address of an instruction or data reference. Up to four
address-match breakpoint conditions can be set by software.

� Single Step All Instructions—Breakpoints can be set to occur
on every instruction, allowing a debugger to examine the
contents of registers as a program executes.

� Single Step Control Transfers—Breakpoints can be set to
occur on control transfers, such as calls, jumps, interrupts,
and exceptions. This can allow a debugger to narrow a
problem search to a specific section of code before enabling
single stepping of all instructions.

� Breakpoint On Any Instruction—Breakpoints can be set on
any specific instruction using either the address-match
breakpoint condition or using the INT3 instruction to force a
breakpoint when the instruction is executed.

� Breakpoint On Task Switch—Software forces a #DB exception
to occur when a task switch is performed to a task with the T
bit in the TSS set to 1. Debuggers can use this capability to
enable or disable debug conditions for a specific task.

Problem areas can be identified rapidly using the information
supplied by the debug registers when breakpoint conditions
occur:

� Special conditions that cause a #DB exception are recorded
in the DR6 debug-status register, including breakpoints due
to task switches and single stepping. The DR6 register also

Chapter 13: Debug and Performance Resources 383

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

identifies which address-breakpoint register (DR0–DR3)
caused a #DB exception due to an address match. When
combined with the DR7 debug-control register settings, the
cause of a #DB exception can be identified.

� To assist in analyzing the instruction sequence a processor
follows in reaching its current state, the source and
destination addresses of control-transfer events are saved by
the processor. These include branches (calls and jumps),
interrupts, and exceptions. Debuggers can use this
information to narrow a problem search to a specific section
of code before single stepping all instructions.

13.1.1 Debug Registers The x86-64 architecture supports the legacy debug registers,
DR0–DR7. These registers are expanded to 64 bits by the x86-64
architecture. In legacy mode and in compatibility mode, only
the lower 32 bits are used. In these modes, writes to a debug
register fill the upper 32 bits with zeros, and reads from a debug
register return only the lower 32 bits. In 64-bit mode, all 64 bits
of the debug registers are read and written. Operand-size
prefixes are ignored.

The debug registers can be read and written only when the
current-protection level (CPL) is 0 (most privileged). Attempts
to read or write the registers at a lower-privilege level (CPL>0)
cause a general-protection exception (#GP).

Several debug registers described below are model-specific
registers (MSRs). See “Software-Debug MSRs” on page 442 for
a listing of the debug-MSR numbers and their reset values.
Some processor implementations include additional MSRs used
to support implementation-specific software debug features.
For more information on these registers and their capabilities,
refer to the BIOS writer’s guide for the implementation.

Address-Breakpoint Registers (DR0-DR3). Figure 13-1 on page 384
shows the format of the four address-breakpoint registers, DR0-
DR3. Software can load a virtual (linear) address into any of the
four registers, and enable breakpoints to occur when the
address matches an instruction or data reference. The MOV
DRn instructions do not check that the virtual addresses loaded
into DR0–DR3 are in canonical form. Breakpoint conditions are
enabled using the debug-control register, DR7 (see “Debug-
Control Register (DR7)” on page 386).

384 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 13-1. Address-Breakpoint Registers (DR0–DR3)

Reserved Debug Registers (DR4, DR5). The DR4 and DR5 registers
are reserved and should not be used by software. These
registers are aliased to the DR6 and DR7 registers, respectively.
When the debug extensions are enabled (CR4.DE=1) attempts
to access these registers cause an invalid-opcode exception
(#UD).

Debug-Status Register (DR6). Figure 13-2 on page 385 shows the
format of the debug-status register, DR6. Debug status is loaded
into DR6 when an enabled debug condition is encountered that
causes a #DB exception. This register is never cleared by the
processor and must be cleared by software after the contents
have been read.

63 0

Breakpoint 0 64-bit Virtual (linear) Address

63 0

Breakpoint 1 64-bit Virtual (linear) Address

63 0

Breakpoint 2 64-bit Virtual (linear) Address

63 0

Breakpoint 3 64-bit Virtual (linear) Address

Chapter 13: Debug and Performance Resources 385

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 13-2. Debug-Status Register (DR6)

The fields within the DR6 register are set by the processor and
must be cleared by software. These fields are:

� Breakpoint-Condition Detected (B3–B0)—Bits 3–0. The
processor individually sets these bits to 1 when the
corresponding address-breakpoint register detects a
breakpoint condition, as specified by the DR7 R/Wn and
LENn controls. For example, B1 (bit 1) is set to 1 if an
address-breakpoint condition is detected by DR1. These bits
are only set if the #DB exception is enabled by the Ln and Gn
control bits in DR7.

� Debug-Register-Access Detected (BD)—Bit 13. The processor
sets this bit to 1 if software accesses any debug register
(DR0–DR7) while the general-detect condition is enabled
(DR7.GD=1).

� Single Step (BS)—Bit 14. The processor sets this bit to 1 if the
#DB exception occurs as a result of single-step mode
(rFLAGS.TF=1). Single-step mode has the highest-priority
among debug exceptions. Other status bits within the DR6
register can be set by the processor along with the BS bit.

� Task-Switch (BT)—Bit 15. The processor sets this bit to 1 if
the #DB exception occurred as a result of task switch to a
task with a TSS T-bit set to 1.

63 32

MBZ

31 16 15 14 13 12 4 3 2 1 0

Read as 1s B
T

B
S

B
D

RAZ Read as 1s B
3

B
2

B
1

B
0

Bits Mnemonic Description R/W
63–16 reserved MBZ
15 BT Breakpoint Task Switch R/W
14 BS Breakpoint Single Step R/W
13 BD Breakpoint Debug Access Detected R/W
12 reserved Read as Zero
11-4 reserved Read as 1s
3 B3 Breakpoint #3 Condition Detected R/W
2 B2 Breakpoint #2 Condition Detected R/W
1 B1 Breakpoint #1 Condition Detected R/W
0 B0 Breakpoint #0 Condition Detected R/W

386 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

All remaining bits in the DR6 register are reserved. Reserved
bits 31–16 and 11–4 must all be set to 1, while reserved bit 12
must be cleared to 0. In 64-bit mode, the upper 32 bits of DR6
are reserved and must be written with zeros. Writing a 1 to any
of the upper 32 bits results in a general-protection exception,
#GP(0).

Debug-Control Register (DR7). Figure 13-3 shows the format of the
debug-control register, DR7. DR7 is used to establish the
breakpoint conditions for the address-breakpoint registers
(DR0–DR3) and to enable debug exceptions for each address-
breakpoint register individually. DR7 is also used to enable the
general-detect breakpoint condition.

Figure 13-3. Debug-Control Register (DR7)

63 32

MBZ

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 3 2 1 0

LEN3 R/W3 LEN2 R/W2 LEN1 R/W1 LEN0 R/W0 RAZ
G
D

Read as
0s

R
A
1s

G
E

L
E

G
3

L
3

G
2

L
2

G
1

L
1

G
0

L
0

Bits Mnemonic Description R/W
63–32 reserved MBZ
31-30 LEN3 Length of Breakpoint #3 R/W
29-28 R/W3 Type of Transaction(s) to Trap R/W
27-26 LEN2 Length of Breakpoint #2 R/W
25-24 R/W2 Type of Transaction(s) to Trap R/W
23-22 LEN1 Length of Breakpoint #1 R/W
21-20 R/W1 Type of Transaction(s) to Trap R/W
19-18 LEN0 Length of Breakpoint #0 R/W
17-16 R/W0 Type of Transaction(s) to Trap R/W
15-14 reserved Read as 0s
13 GD General Detect Enabled R/W
12-11 reserved Read as 0s
10 reserved Read as 1
9 GE Global Exact Breakpoint Enabled R/W
8 LE Local Exact Breakpoint Enabled R/W
7 G3 Global Exact Breakpoint #3 Enabled R/W
6 L3 Local Exact Breakpoint #3 Enabled R/W
5 G2 Global Exact Breakpoint #2 Enabled R/W
4 L2 Local Exact Breakpoint #2 Enabled R/W
3 G1 Global Exact Breakpoint #1 Enabled R/W
2 L1 Local Exact Breakpoint #1 Enabled R/W
1 G0 Global Exact Breakpoint #0 Enabled R/W
0 L0 Local Exact Breakpoint #0 Enabled R/W

Chapter 13: Debug and Performance Resources 387

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

The fields within the DR7 register are all read/write. These
fields are:

� Local-Breakpoint Enable (L3–L0)—Bits 6, 4, 2, and 0
(respectively). Software individually sets these bits to 1 to
enable debug exceptions to occur when the corresponding
address-breakpoint register (DRn) detects a breakpoint
condition while executing the current task. For example, if
L1 (bit 2) is set to 1 and an address-breakpoint condition is
detected by DR1, a #DB exception occurs. These bits are
cleared to 0 by the processor when a hardware task-switch
occurs.

� Global-Breakpoint Enable (G3–G0)—Bits 7, 5, 3, and 1
(respectively). Software sets these bits to 1 to enable debug
exceptions to occur when the corresponding address-
breakpoint register (DRn) detects a breakpoint condition
while executing any task. For example, if G1 (bit 3) is set to 1
and an address-breakpoint condition is detected by DR1, a
#DB exception occurs. These bits are never cleared to 0 by
the processor.

� Local-Enable (LE)—Bit 8. Software sets this bit to 1 in legacy
implementations to enable exact breakpoints while
executing the current task. This bit is ignored by
implementations of the x86-64 architecture. All breakpoint
conditions, except certain string operations preceded by a
repeat prefix, are exact.

� Global-Enable (GE)—Bit 9. Software sets this bit to 1 in
legacy implementations to enable exact breakpoints while
executing any task. This bit is ignored by implementations
of the x86-64 architecture. All breakpoint conditions, except
certain string operations preceded by a repeat prefix, are
exact.

� General-Detect Enable (GD)—Bit 13. Software sets this bit to 1
to cause a debug exception to occur when an attempt is
made to execute a MOV DRn instruction to any debug
register (DR0–DR7). This bit is cleared to 0 by the processor
when the #DB handler is entered, allowing the handler to
read and write the DRn registers. The #DB exception occurs
before executing the instruction, and DR6.BD is set by the
processor. Software debuggers can use this bit to prevent the
currently-executing program from interfering with the
debug operation.

388 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� Read/Write (R/W3–R/W0)—Bits 29–28, 25–24, 21–20, and
17–16 (respectively). Software sets these fields to control the
breakpoint conditions used by the corresponding address-
breakpoint registers (DRn). For example, control-field R/W1
(bits 21–20) controls the breakpoint conditions for the DR1
register. The R/Wn control-field encodings specify the
following conditions for an address-breakpoint to occur:

- 00—Only on instruction execution.

- 01—Only on data write.

- 10—This encoding is further qualified by CR4.DE as
follows:

. CR4.DE=0—Condition is undefined.

. CR4.DE=1—Only on I/O read or I/O write.

- 11—Only on data read or data write.

� Length (LEN3–LEN0)—Bits 31–30, 27–26, 23–22, and 19–18
(respectively). Software sets these fields to control the range
used in comparing a memory address with the corresponding
address-breakpoint register (DRn). For example, control-
field LEN1 (bits 23–22) controls the breakpoint-comparison
range for the DR1 register.

The value in DRn defines the low-end of the address range
used in the comparison. LENn is used to mask the low-order
address bits in the corresponding DRn register so that they
are not used in the address comparison. To work properly,
breakpoint boundaries must be aligned on an address
corresponding to the range size specified by LENn. The
LENn control-field encodings specify the following address-
breakpoint-comparison ranges:

- 00—1 byte.

- 01—2 byte, must be aligned on a word boundary.

- 10—8 byte, must be aligned on a quadword boundary.
(Long mode only; otherwise undefined.)

- 11—4 byte, must be aligned on a doubleword boundary.

If the R/Wn field is used to specify instruction breakpoints
(R/Wn=00), the corresponding LENn field must be set to 00.
Setting LENn to any other value produces undefined results.

All remaining bits in the DR7 register are reserved. Reserved
bits 15–14 and 12–11 must all be cleared to 0, while reserved bit
10 must be set to 1. In 64-bit mode, the upper 32 bits of DR7 are
reserved and must be written with zeros. Writing a 1 to any of

Chapter 13: Debug and Performance Resources 389

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

the upper 32 bits results in a general-protection #GP(0)
exception.

64-Bit-Mode Extended Debug Registers. In 64-bit mode, additional
encodings for debug registers are available. The REX.R bit, in a
REX prefix, is used to modify the ModRM reg field when that
field encodes a control register, as shown in “REX Prefix-Byte
Fields” in Volume 3. These additional encodings enable the
processor to address DR8–DR15.

Access to the DR8–DR15 registers is implementation-
dependent. The architecture does not require any of these
extended debug registers to be implemented. Any attempt to
access an unimplemented register results in an invalid-opcode
exception (#UD).

Debug-Control MSR (DebugCtlMSR). Figure 13-4 shows the format of
the debug-control MSR, DebugCtlMSR. DebugCtlMSR provides
additional debug controls over control-transfer recording and
single stepping, and external-breakpoint reporting and trace
messages. DebugCtlMSR is an MSR and is read and written
using the RDMSR and WRMSR instructions.

Figure 13-4. Debug-Control MSR (DebugCtlMSR)

The fields within the DebugCtlMSR register are:

� Last-Branch Record (LBR)—Bit 0, read/write. Software sets
this bit to 1 to cause the processor to record the source and
target addresses of the last control transfer taken before a
debug exception occurs. The recorded control transfers

63 32

reserved

31 6 5 4 3 2 1 0

reserved
P
B
3

P
B
2

P
B
1

P
B
0

B
T
F

L
B
R

Bits Mnemonic Description R/W
63-6 reserved
5 PB3 Performance Monitoring Pin Control R/W
4 PB2 Performance Monitoring Pin Control R/W
3 PB1 Performance Monitoring Pin Control R/W
2 PB0 Performance Monitoring Pin Control R/W
1 BTF Branch Single Step R/W
0 LBR Last-Branch Record R/W

390 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

include branch instructions, interrupts, and exceptions.
When a debug exception occurs, the processor clears this bit
before transferring control to the debug-exception handler.
This prevents control transfers into the debug-exception
handler from recording the source and target addresses.

� Branch Single Step (BTF)—Bit 1, read/write. Software uses
this bit to change the behavior of the rFLAGS.TF bit. When
this bit is cleared to 0, the rFLAGS.TF bit controls
instruction single stepping, (normal behavior). When this bit
is set to 1, the rFLAGS.TF bit controls single stepping on
control transfers. The single-stepped control transfers
include branch instructions, interrupts, and exceptions.
Control-transfer single stepping requires both BTF=1 and
rFLAGS.TF=1.

� Performance-Monitoring/Breakpoint Pin-Control (PBi)—Bits
5–2, read/write. Software uses these bits to control the type
of information reported by the four external performance-
monitoring/breakpoint pins on the processor. When a PBi bit
is cleared to 0, the corresponding external pin (BPi) reports
performance-monitor information. When a PBi bit is set to 1,
the corresponding external pin (BPi) reports breakpoint
information.

All remaining bits in the DebugCtlMSR register are reserved.

Control-Transfer Recording MSRs. Figure 13-5 on page 391 shows the
format of the 64-bit control-transfer recording MSRs:
LastBranchToIP, LastBranchFromIP, LastExceptionToIP, and
LastExceptionFromIP. These registers are loaded automatically
by the processor when the DebugCtlMSR.LBR bit is set to 1.
Generally, software only reads these registers using the RDMSR
instructions. However, software can initialize the registers
using the WRMSR instruction, usually by clearing them to 0.

Chapter 13: Debug and Performance Resources 391

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Figure 13-5. Control-Transfer Recording MSRs

When DebugCtlMSR.LBR=1, the control-transfer recording
MSRs are updated as follows:

� LastBranchToIP Register—The processor loads this register
with the segment offset of the first instruction to be
executed after a control transfer occurs (also called the
target rIP). The control transfers that cause this register to
be written are branch instructions, interrupts, and
exceptions. In the case of INTn and INTO instructions,
interrupts, and exceptions, this register is loaded with the
offset of the interrupt or exception handler.

� LastBranchFromIP Register—The processor loads this
register during a control transfer (branch instructions,
interrupt, or exception). In the case of a branch instruction,
this register is loaded with the segment offset of the branch
instruction. In the case of interrupts and exceptions, this
register is loaded with the segment offset of the interrupted
instruction. In both cases, the offset loaded is referred to as
the source rIP.

� LastExceptionToIP Register—This register holds the target
rIP of the last branch that occurred before the exception or
interrupt. The processor loads this register with the contents
of the LastBranchToIP register when an interrupt or
exception occurs, before updating the LastBranchToIP
register as described above.

63 0

LastBranchToIP - 64-bit Segment Offset (RIP)

63 0

LastBranchFromIP - 64-bit Segment Offset (RIP)

63 0

LastExceptionToIP - 64-bit Segment Offset (RIP)

63 0

LastExceptionFromIP - 64-bit Segment Offset (RIP)

392 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� LastExceptionFromIP Register—This register holds the
source rIP of the last branch that occurred before the
exception or interrupt. The processor loads this register
with the contents of the LastBranchFromIP register when an
interrupt or exception occurs, before updating the
LastBranchFromIP register as described above.

13.2 Breakpoints

13.2.1 Setting
Breakpoints

Breakpoints can be set to occur on either instruction addresses
or data addresses using the breakpoint-address registers,
DR0–DR3 (DRn). The values loaded into these registers
represent the breakpoint-location virtual address. The debug-
control register, DR7, is used to enable the breakpoint registers
and to specify the type of access and the range of addresses that
can trigger a breakpoint.

Software enables the DRn registers using the corresponding
local-breakpoint enable (Ln) or global-breakpoint enable (Gn)
found in the DR7 register. Ln is used to enable breakpoints only
while the current task is active, and it is cleared by the
processor when a task switch occurs. Gn is used to enable
breakpoints for all tasks, and it is never cleared by the
processor.

The R/Wn fields in DR7, along with the CR4.DE bit, specify the
type of access required to trigger a breakpoint when an address
match occurs on the corresponding DRn register. Breakpoints
can be set to occur on instruction execution, data reads and
writes, and I/O reads and writes. The R/Wn and CR4.DE
encodings used to specify the access type are described on
page 388 of “Debug-Control Register (DR7).”

The LENn fields in DR7 specify the size of the address range
used in comparison with data or instruction addresses. LENn is
used to mask the low-order address bits in the corresponding
DRn register so that they are not used in the address
comparison. Breakpoint boundaries must be aligned on an
address corresponding to the range size specified by LENn.
Assuming the access type matches the type specified by R/Wn,
a breakpoint occurs if any accessed byte falls within the range
specified by LENn. For instruction breakpoints, LENn must
specify a single-byte range. The LENn encodings used to

Chapter 13: Debug and Performance Resources 393

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

specify the address range are described on page 388 of “Debug-
Control Register (DR7).”

Table 13-1 shows several examples of data accesses, and
whether or not they cause a #DB exception to occur based on
the breakpoint address in DRn and the breakpoint-address
range specified by LENn. In this table, R/Wn always specifies
read/write access.

Table 13-1. Breakpoint-Setting Examples

Data-Access Address
(hexadecimal)

Access Size
(bytes)

Byte-Addresses in Data-Access
(hexadecimal)

Breakpoint-Address Range
(hexadecimal) Result

DRn=F000, LENn=00 (1 Byte)

EFFB 8 EFFB, EFFC, EFFD, EFFE, EFFF,
F000, F001

F000

#DB

EFFE
2 EFFE, EFFF —

4 EFFE, EFFF, F000, F001
#DB

F000 1 F000

F001 2 F001, F002
—

F005 4 F005, F006, F007, F008

DRn=F004, LENn=11 (4 Bytes)

EFFB 8
EFFB, EFFC, EFFD, EFFE, EFFF,
F000, F001

F004–F007
—EFFE

2 EFFE, EFFF

4 EFFE, EFFF, F000, F001

F000 1 F000

F001 2 F001, F002

F005 4 F005, F006, F007, F008 #DB

Note:
“—” indicates no #DB occurs.
R/Wn specifies read/write access.

394 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

13.2.2 Using
Breakpoints

A debug exception (#DB) occurs when an enabled-breakpoint
condition is encountered during program execution. The debug-
handler must check the debug-status register (DR6), the
conditions enabled by the debug-control register (DR7), and the
debug-control MSR (DebugCtlMSR), to determine the #DB
cause. The #DB exception corresponds to interrupt-vector 1.
See “#DB—Debug Exception (Vector 1)” on page 248.

Instruction breakpoints and general-detect conditions cause
the #DB exception to occur before the instruction is executed,
while all other breakpoint and single-stepping conditions cause
the #DB exception to occur after the instruction is executed.
Table 13-2 on page 395 summarizes where the #DB exception
occurs based on the breakpoint condition.

DRn=F005, LENn=10 (8 Bytes)

EFFB 8
EFFB, EFFC, EFFD, EFFE, EFFF,
F000, F001

F000–F007

#DB

EFFE
2 EFFE, EFFF —

4 EFFE, EFFF, F000, F001

#DB
F000 1 F000

F001 2 F001, F002

F005 4 F005, F006, F007, F008

Table 13-1. Breakpoint-Setting Examples (continued)

Data-Access Address
(hexadecimal)

Access Size
(bytes)

Byte-Addresses in Data-Access
(hexadecimal)

Breakpoint-Address Range
(hexadecimal) Result

Note:
“—” indicates no #DB occurs.
R/Wn specifies read/write access.

Chapter 13: Debug and Performance Resources 395

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Instruction breakpoints and general-detect conditions have a
lower interrupt-priority than the other breakpoint and single-
stepping conditions (see “Priorities” on page 267). Data-
breakpoint conditions on the previous instruction occur before
an instruction-breakpoint condition on the next instruction.
However, if instruction and data breakpoints can occur as a
result of executing a single instruction, the instruction
breakpoint occurs first (before the instruction is executed),
followed by the data breakpoint (after the instruction is
executed).

Instruction Breakpoints. Instruction breakpoints are set by loading
a breakpoint-address register (DRn) with the desired
instruction virtual-address, and then setting the corresponding
DR7 fields as follows:

� Ln or Gn is set to 1 to enable the breakpoint for either the
local task or all tasks, respectively.

� R/Wn is set to 00b to specify that the contents of DRn are to
be compared only with the virtual address of the next
instruction to be executed.

� LENn must be set to 00b.

When a #DB exception occurs due to an instruction breakpoint-
address in DRn, the corresponding Bn field in DR6 is set to 1 to
indicate that a breakpoint condition occurred. The breakpoint
occurs before the instruction is executed, and the breakpoint-

Table 13-2. Breakpoint Location by Condition

Breakpoint Condition Breakpoint Location

Instruction
Before Instruction is Executed

General Detect

Data Write Only

After Instruction is Executed1Data Read or Data Write

I/O Read or I/O Write

Single Step1

After Instruction is Executed
Task Switch

Note:
1. Repeated operations (REP prefix) can breakpoint between iterations.

396 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

instruction address is pushed onto the debug-handler stack. If
multiple instruction breakpoints are set, the debug handler can
use the Bn field to identify which register caused the
breakpoint.

Returning from the debug handler causes the breakpoint
instruction to be executed. Before returning from the debug
handler, the rFLAGS.RF bit should be set to 1 to prevent a
reoccurrence of the #DB exception due to the instruction-
breakpoint condition. The processor ignores instruction-
breakpoint conditions when rFLAGS.RF=1, until after the next
instruction (in this case, the breakpoint instruction) is
executed. After the next instruction is executed, the processor
clears rFLAGS.RF to 0.

Data Breakpoints. Data breakpoints are set by loading a
breakpoint-address register (DRn) with the desired data
virtual-address, and then setting the corresponding DR7 fields
as follows:

� Ln or Gn is set to 1 to enable the breakpoint for either the
local task or all tasks, respectively.

� R/Wn is set to 01b to specify that the data virtual-address is
compared with the contents of DRn only during a memory-
write. Setting this field to 11b specifies that the comparison
takes place during both memory reads and memory writes.

� LENn is set to 00b, 01b, 11b, or 10b to specify an address-
match range of one, two, four, or eight bytes, respectively.
Long mode must be active to set LENn to 10b.

When a #DB exception occurs due to a data breakpoint address
in DRn, the corresponding Bn field in DR6 is set to 1 to indicate
that a breakpoint condition occurred. The breakpoint occurs
after the data-access instruction is executed, which means that
the original data is overwritten by the data-access instruction.
If the debug handler needs to report the previous data value, it
must save that value before setting the breakpoint.

Because the breakpoint occurs after the data-access instruction
is executed, the address of the instruction following the data-
access instruction is pushed onto the debug-handler stack.
Repeated string instructions, however, can trigger a breakpoint
before all iterations of the repeat loop have completed. When
this happens, the address of the string instruction is pushed
onto the stack during a #DB exception if the repeat loop is not

Chapter 13: Debug and Performance Resources 397

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

complete. A subsequent IRET from the #DB handler returns to
the string instruction, causing the remaining iterations to be
executed. Most implementations cannot report breakpoints
exactly for repeated string instructions, but instead report the
breakpoint on an iteration later than the iteration where the
breakpoint occurred.

I/O Breakpoints. I/O breakpoints are set by loading a breakpoint-
address register (DRn) with the I/O-port address to be trapped,
and then setting the corresponding DR7 fields as follows:

� Ln or Gn is set to 1 to enable the breakpoint for either the
local task or all tasks, respectively.

� R/Wn is set to 10b to specify that the I/O-port address is
compared with the contents of DRn only during execution of
an I/O instruction. This encoding of R/Wn is valid only when
debug extensions are enabled (CR4.DE=1).

� LENn is set to 00b, 01b, or 11b to specify the breakpoint
occurs on a byte, word, or doubleword I/O operation,
respectively.

The I/O-port address specified by the I/O instruction is zero
extended by the processor to 64 bits before comparing it with
the DRn registers.

When a #DB exception occurs due to an I/O breakpoint in DRn,
the corresponding Bn field in DR6 is set to 1 to indicate that a
breakpoint condition occurred. The breakpoint occurs after the
instruction is executed, which means that the original data is
overwritten by the breakpoint instruction. If the debug handler
needs to report the previous data value, it must save that value
before setting the breakpoint.

Because the breakpoint occurs after the instruction is executed,
the address of the instruction following the I/O instruction is
pushed onto the debug-handler stack, in most cases. In the case
of INS and OUTS instructions that use the repeat prefix,
however, the breakpoint occurs after the first iteration of the
repeat loop. When this happens, the I/O-instruction address can
be pushed onto the stack during a #DB exception if the repeat
loop is not complete. A subsequent return from the debug
handler causes the next I/O iteration to be executed. If the
breakpoint condition is still set, the #DB exception reoccurs
after that iteration is complete.

398 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Single Stepping. Single-step breakpoints are enabled by setting
the rFLAGS.TF bit to 1. When single stepping is enabled, a #DB
exception occurs after every instruction is executed until it is
disabled by clearing rFLAGS.TF to 0. However, the instruction
that sets the TF bit, and the instruction that follows it, is not
single stepped.

When a #DB exception occurs due to single stepping, the
processor clears rFLAGS.TF to 0 before entering the debug
handler, so that the debug handler itself is not single stepped.
The processor also sets DR6.BS to 1, which indicates that the
#DB exception occurred as a result of single stepping. The
rFLAGS image pushed onto the debug-handler stack has the TF
bit set, and single stepping resumes when a subsequent IRET
pops the stack image into the rFLAGS register.

Single-step breakpoints have a higher priority than external
interrupts. If an external interrupt occurs during single
stepping, control is transferred to the #DB handler first, causing
the rFLAGS.TF bit to be cleared to 0. Next, before the first
instruction in the debug handler is executed, the processor
transfers control to the pending-interrupt handler. This allows
external interrupts to be handled outside of single-step mode.

The INTn, INT3, and INTO instructions clear the rFLAGS.TF bit
to 0 when they are executed. If a debugger is used to single-step
software that contains these instructions, it must emulate them
instead of executing them.

The single-step mechanism can also be set to single step only
control transfers, rather than single step every instruction. See
“Single Stepping Control Transfers” on page 400 for additional
information.

Task-Switch Breakpoints. Breakpoints can be set in a task TSS to
raise a #DB exception after a task switch. Software enables a
task breakpoint by setting the T bit in the TSS to 1. When a task
switch occurs into a task with the T bit set, the processor
completes loading the new task state. Before the first
instruction is executed, the #DB exception occurs, and the
processor sets DR6.BT to 1, indicating that the #DB exception
occurred as a result of task breakpoint.

The processor does not clear the T bit in the TSS to 0 when the
#DB exception occurs. Software must explicitly clear this bit to
disable the task breakpoint. Software should never set the T-bit

Chapter 13: Debug and Performance Resources 399

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

in the debug-handler TSS if a separate task is used for #DB
exception handling, otherwise the processor loops on the debug
handler.

General-Detect Condition. General-detect is a special debug-
exception condition that occurs when software running at any
privilege level attempts to access any of the DRn registers while
DR7.GD is set to 1. When a #DB exception occurs due to the
general-detect condition, the processor clears DR7.GD to 0 and
sets DR6.BD to 1. Clearing DR7.GD to 0 allows the debug
handler to access the DRn registers without causing infinite
#DB exceptions.

A debugger enables general detection to prevent other software
from accessing and interfering with the debug registers while
they are in use by the debugger. The exception is taken before
executing the MOV DRn instruction so that the DRn contents
are not altered.

13.2.3 Breakpoint
Instruction (INT3)

The INT3 instruction, or the INTn instruction with an operand
of 3, can be used to set breakpoints that transfer control to the
breakpoint-exception (#BP) handler rather than the debug-
exception handler. When a debugger uses the breakpoint
instructions to set breakpoints, it does so by replacing the first
bytes of an instruction with the breakpoint instruction. The
debugger replaces the breakpoint instructions with the
original-instruction bytes to clear the breakpoint.

INT3 is a single-byte instruction while INTn with an operand of
3 is a two-byte instruction. The instructions have slightly
different effects on the breakpoint exception-handler stack.
See “#BP—Breakpoint Exception (Vector 3)” on page 250 for
additional information on this exception.

13.2.4 Control-
Transfer Breakpoint
Features

A control transfers is accomplished by using one of following
instructions:

� Jumps (JMP, Jcc, JCXZ, JECXZ).

� LOOPx.

� Software interrupts (INTn, INT 3, INTO).

� CALL.

� RET, IRET.

� SYSCALL, SYSRET.

� SYSENTER, SYSEXIT.

400 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Recording Control Transfers. Software enables control-transfer
recording by setting DebugCtlMSR.LBR to 1. Before setting this
bit, software can initialize the control-transfer recording MSRs
(LastBranchToIP, LastBranchFromIP, LastExceptionToIP,
LastExceptionFromIP) to a known value (such as all zeros)
using the WRMSR instruction.

After the control-transfer recording mechanism is initialized,
the processor updates the recording MSRs automatically when
control transfers occur. Every branch instruction, interrupt, and
exception causes the LastBranchToIP register to be loaded with
the target rIP, and the LastBranchFromIP register to be loaded
with the source rIP. Interrupts and exceptions cause the
processor to copy the contents of LastBranchToIP into
LastExcept ionToIP, and LastBranchFromIP into
LastExceptionFromIP, before updating LastBranchToIP and
LastBranchFromIP.

The processor automatically disables control-transfer recording
when a debug except ion (#DB) occurs by c lear ing
DebugCtlMSR.LBR to 0. The contents of the control-transfer
recording MSRs are not altered by the processor when the #DB
occurs. Before exiting the debug-exception handler, software
can set DebugCtlMSR.LBR to 1 to re-enable the recording
mechanism.

Debuggers can trace a control transfer backward from a bug to
its source using the recording MSRs and the breakpoint-address
registers. The debug handler does this by updating the
breakpoint registers from the recording MSRs after a #DB
exception occurs, and restarting the program. The program
takes a #DB exception on the previous control transfer, and this
process can be repeated. The debug handler cannot simply copy
the contents of the recording MSR into the breakpoint-address
register. The recording MSRs hold segment offsets, while the
debug registers hold virtual (linear) addresses. The debug
handler must calculate the virtual address by reading the code-
segment selector (CS) from the interrupt-handler stack, then
reading the segment-base address from the CS descriptor, and
adding that base address to the offset in the recording MSR.
The calculated virtual-address can then be used as a breakpoint
address.

Single Stepping Control Transfers. Software can enable control-
transfer single stepping by setting DebugCtlMSR.BTF to 1 and

Chapter 13: Debug and Performance Resources 401

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

rFLAGS.TF to 1. The processor automatically disables control-
transfer single stepping when a debug exception (#DB) occurs
by clearing DebugCtlMSR.BTF to 0. rFLAGS.TF is also cleared
when a #DB exception occurs. Before exiting the debug-
exception handler, software must set both DebugCtlMSR.BTF
and rFLAGS.TF to 1 to restart single stepping.

When enabled, this single-step mechanism causes a #DB
exception to occur on every branch instruction, interrupt, or
exception. Debuggers can use this capability to perform a
“coarse” single step across blocks of code (bound by control
transfers), and then, as the problem search is narrowed, switch
into a “f ine” s ingle -step mode on every instruction
(DebugCtlMSR.BTF=0, rFLAGS.TF=1).

Debuggers can use both the single-step mechanism and
recording mechanism to support full backward and forward
tracing of control transfers.

13.3 Performance Optimization

The x86-64 architecture supports the performance-monitoring
features introduced in earlier processor implementations.
These features allow the selection of events to be monitored,
and include a set of corresponding counter registers that track
the frequency of monitored events. Software tools can use these
features to identify performance bottlenecks, such as sections
of code that have high cache-miss rates or frequently mis-
predicted branches. This information can then be used as a
guide for improving or eliminating performance problems
through software opt imizat ions or hardware -des ign
improvements.

The performance-monitoring features include:

� A set of performance-counter registers that count the
frequency or duration of specific processor events.

� A set of performance-event-select registers used to specify
the events that are be tracked by the performance-counter
registers.

� A time-stamp counter that can be used to count processor-
clock cycles over time.

Implementations are not required to support the performance
counters and the event-select registers, or the time-stamp

402 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

counter. The presence of these features can be determined by
executing the CPUID instruction, and checking the returned
feature bits to determine their availability. See “Processor
Feature Identification” on page 75 for more information on
using the CPUID instruction.

The registers used in support of performance monitoring are
model-specific registers (MSRs). See “Performance-Monitoring
MSRs” on page 443 for a listing of the performance-monitoring
MSR numbers and their reset values.

Each feature, and its use, is described in the following sections.

13.3.1 Performance
Counters

Performance counters are used to count specific processor
events, such as data-cache misses, or the duration of events,
such as the number of clocks it takes to return data from
memory after a cache miss. During event counting, the
processor increments the counter when it detects an occurrence
of the event. During duration measurement, the processor
counts the number of processor clocks it takes to complete an
event. Each performance counter can be used to count one
event, or measure the duration of one event, at a time.

Implementations of the x86-64 architecture can support any
number of performance counters, PerfCtrn. The length, in bits,
of the performance counters is also implementation dependent,
but the maximum length supported is 64 bits. Figure 13-6 shows
the format of the PerfCtrn register.

Figure 13-6. Performance Counter (PerfCtrn)

The PerfCtrn registers are model-specific registers that can be
read using a special read performance-monitoring counter
instruction, RDPMC. The RDPMC instruction loads the
contents of the PerfCtrn register specified by the ECX register,
into the EDX register and the EAX register. The high 32 bits are
loaded into EDX, and the low 32 bits are loaded into EAX.
RDPMC can be executed only at CPL=0, unless system software
enables use of the instruction at all privilege levels. RDPMC
can be enabled for use at all privilege levels by setting
CR4.PCE (the performance-monitor counter-enable bit) to 1.

63 0

PerfCtrn

Chapter 13: Debug and Performance Resources 403

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

When CR4.PCE = 0 and CPL > 0, attempts to execute RDPMC
result in a general-protection exception (#GP).

The performance counters can also be read and written by
system software running at CPL=0 using the RDMSR and
WRMSR instructions, respectively. Writing the performance
counters can be useful if software wants to count a specific
number of events, and then trigger an interrupt when that
count is reached. An interrupt can be triggered when a
performance counter overflows (see “Counter Overflow” on
page 406 for additional information). Software should use the
WRMSR instruction to load the count as a two’s-complement
negative number into the performance counter. This causes the
counter to overflow after counting the appropriate number of
times.

The performance counters are not guaranteed to produce
identical measurements each time they are used to measure a
particular instruction sequence, and they should not be used to
take measurements of very small instruction sequences. The
RDPMC instruction is not serializing, and it can be executed
out-of-order with respect to other instructions around it. Even
when bound by ser ia l iz ing instruct ions , the system
environment at the time the instruction is executed can cause
events to be counted before the counter value is loaded into
EDX:EAX.

13.3.2 Performance
Event-Select
Registers

Performance event-select registers (PerfEvtSeln) are 32-bit
registers used to specify the events counted by the performance
counters, and to control other aspects of their operation. Each
performance counter supported by the implementation has a
corresponding event-select register that controls its operation.
Figure 13-7 on page 404 shows the format of the PerfEvtSeln
register.

404 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Figure 13-7. Performance Event-Select Register (PerfEvtSeln)

The fields within the PerfEvtSeln register are:

� Event Mask—Bits 7–0, read/write. This field specifies both
the event or event duration to be counted by the
corresponding PerfCtrn register. The events that can be
counted are implementation dependent. For more
information, refer to the BIOS writer’s guide for the
implementation.

� Unit Mask—Bits 15–8, read/write. This field can be used to
specify a particular processor unit to be monitored, if the
event counted can be produced by multiple units within the
processor. Implementations can also use this field to further
specify or qualify a monitored event.

� Operating-System Mode (OS) and User Mode (USR)—Bits
17–16 (respectively), read/write. Software uses these bits to
control the privilege level at which event counting is
performed according to Table 13-3.

31 24 23 22 21 20 19 18 17 16 15 8 7 0

Counter Mask
I
N
V

E
N

r
I
N
T

P
C E O

S

U
S
R

Unit Mask Event Mask

Bits Mnemonic Description R/W
31-24 Counter Mask R/W
23 INV Invert Mask R/W
22 EN Counter Enable R/W
21 reserved
20 INT Interrupt Enable R/W
19 PC Pin Control R/W
18 E Edge Detect R/W
17 OS Operating-System Mode R/W
16 USR User Mode R/W
15-8 Unit Mask R/W
7-0 Event Mask R/W

Table 13-3. Operating-System Mode and User Mode Bits

OS Mode
(Bit 17)

USR Mode
(Bit 16) Event Counting

0 0 No counting.

0 1 Only at CPL > 0.

1 0 Only at CPL = 0.

1 1 At all privilege levels.

Chapter 13: Debug and Performance Resources 405

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� Edge Detect (E)—Bit 18, read/write. Software sets this bit to 1
to count the number of edge transitions from the negated to
asserted state. This feature is useful when coupled with
event-duration monitoring, as it can be used to calculate the
average time spent in an event. Clearing this bit to 0 disables
edge detection.

� Pin Control (PC)—Bit 19, read/write. Software sets this bit to
1 to cause the external PMi pins on the processor to toggle
when the counter overflows. When this bit is cleared to 0,
the processor toggles the PMi pins each time it increments
the performance counter.

� Interrupt Enable (INT)—Bit 20, read/write. Software sets this
bit to 1 to enable an interrupt to occur when the
performance counter overflows (see “Counter Overflow” on
page 406 for additional information). Clearing this bit to 0
disables the triggering of the interrupt.

� Counter Enable (EN)—Bit 22, read/write. Software sets this
bit to 1 to enable the PerfEvtSeln register, and counting in
the corresponding PerfCtrn register. Clearing this bit to 0
disables the register pair.

� Invert Mask (INV)—Bit 23, read/write. Software sets this bit
to 1 to invert the comparison result performed on the
counter-mask field, so that a less-than or equal-to
comparison can be performed. Clearing this bit to 0 leaves
the comparison result alone, so that a greater-than or equal-
to comparison is reported.

� Counter Mask—Bits 31–24, read/write. This field is used to
set a threshold for counting multiple events that can occur in
a single clock. If the number of events occurring in the single
clock is greater than or equal to this field, the corresponding
PerfCtrn register is incremented. PerfCtrn is not
incremented if the number of events is less than the count
mask.

The INV bit, when set, causes the PerfCtrn register to be
incremented when the comparison is less than or equal to
the count mask. In this case, PerfCtrn is not incremented if
the number of events is greater than the count mask.

The performance event-select registers can be read and written
only by system software running at CPL=0 using the RDMSR
and WRMSR instructions, respectively. Any attempt to read or
write these registers at CPL>0 causes a general-protection
exception to occur.

406 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

13.3.3 Using
Performance
Counters

Starting and Stopping. Performance counting in a PerfCtrn register
is initiated by setting the corresponding PerfEvtSeln.EN bit to
1. Counting is stopped by clearing PerfEvtSeln.EN to 0.
Software must initialize the remaining PerfEvtSeln fields with
the appropriate setup information before or at the same time
EN is set. Counting begins when the WRMSR instruction that
sets PerfEvtSeln.EN to 1 completes execution. Counting stops
when the WRMSR instruction that clears PerfEvtSeln.EN to 0
completes execution.

Counter Overflow. Some processor implementations support an
interrupt-on-overflow capability that allows an interrupt to
occur when one of the PerfCtrn registers overflows. The source
and type of interrupt is implementation dependent. Some
implementations cause a debug interrupt to occur, while others
make use of the local APIC to specify the interrupt vector and
trigger the interrupt when an overflow occurs. Software
controls the triggering of an interrupt by setting or clearing the
PerfEvtSeln.INT bit.

If system software makes use of the interrupt-on-overflow
capability, an interrupt handler must be provided that can
record information relevant to the counter overflow. Before
returning from the interrupt handler, the performance counter
can be re-initialized to its previous state so that another
interrupt occurs when the appropriate number of events are
counted.

13.3.4 Time-Stamp
Counter

The time-stamp counter (TSC) is used to count processor-clock
cycles. The TSC is cleared to 0 after a processor reset. After a
reset, the TSC is incremented by one for every processor clock
cycle. Each time the TSC is read, it returns a monotonically-
larger value than the previous value read from the TSC. When
the TSC contains all ones, it wraps to zero. The TSC in a 1-GHz
processor counts for almost 600 years before it wraps.
Figure 13-8 shows the format of the 64-bit time-stamp counter
(TSC).

Figure 13-8. Time-Stamp Counter (TSC)

63 0

TSC

Chapter 13: Debug and Performance Resources 407

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

The TSC is a model-specific register that can also be read using
a special read time-stamp counter instruction, RDTSC. RDTSC
loads the contents of the TSC into the EDX register and the
EAX register. The high 32 bits are loaded into EDX, and the low
32 bits are loaded into EAX. RDTSC can be executed at any
privilege level and from any processor mode. However, system
software can disable the RDTSC instruction for programs that
run at CPL > 0 by setting CR4.TSD (the time-stamp disable bit)
to 1. When CR4.TSD = 1 and CPL > 0, attempts to execute
RDSTC result in a general-protection exception (#GP).

Some implementations allow the TSC register to be read and
written using the RDMSR and WRMSR instructions,
respectively. Support of this capability, however, is not required
by the architecture, and software should avoid using these
instructions to access the TSC. The programmer should use the
CPUID instruction to determine whether these features are
supported. If bit 4 returned by CPUID standard function 1 is
set, then the processor supports TSC, the RDTSC instruction
and CR4.TSD.

The TSC register can be used by performance-analysis
applications, along with the performance-monitoring registers,
to help determine the relative frequency of an event or its
duration. Software can also use the TSC to time software
routines to help identify candidates for optimization. In
general, the TSC should not be used to take very short time
measurements, because the resulting measurement is not
guaranteed to be identical each time it is made. The RDTSC
instruction is not serializing, and it can be executed out-of-
order with respect to other instructions around it. Even when
bound by serializing instructions, the system environment at
the time the instruction is executed can cause additional cycles
to be counted before the TSC value is loaded into EDX:EAX.

408 Chapter 13: Debug and Performance Resources

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Chapter 14: Processor Initialization and Long-Mode Activation 409

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

14 Processor Initialization and Long-Mode Activation

This chapter describes the hardware actions taken following a
processor reset and the steps that must be taken to initialize
processor resources and activate long mode. In some cases the
actions required are implementation-specific with references
made to the appropriate implementat ion -speci f ic
documentation.

14.1 Reset and Initialization

System logic initializes the processor in one of two ways. One
method is to assert an external reset signal (typically
designated RESET#). The other method, referred to here as
INIT, is performed using implementation-dependent external
signalling. Both initialization techniques place the processor in
real mode and initialize processor resources to a known,
consistent state from which software can begin execution. The
differences between the two methods are:

� RESET#—This method provides an optional built-in self test
(BIST) that can be performed as part of the RESET# process.

� INIT—This method does not modify the following state:

- Memory hierarchy, including internal and external
caches.

- 128-bit media, 64-bit media, or x87 resources.

- Memory-type range registers (MTRRs).

- Machine-check registers.

Some, but not all, model-specific registers (MSRs) are
modified by an INIT.

BIST cannot be performed as part of the INIT process.

The processor always performs RESET# after it is powered up,
but RESET# can be performed at any time. An INIT can be
performed at any time after the processor is powered up.

14.1.1 Built-In Self
Test (BIST)

An optional built-in self-test can be performed after RESET# is
asserted. The mechanism for tr iggering the BIST is
implementation-specific, and can be found in the hardware
documentation for the implementation. The number of
processor cycles BIST can consume before completing is also

410 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

implementation-specific but typically consumes several million
cycles.

BIST can be used by system implementations to assist in
verifying system integrity, thereby improving system reliability,
availability, and serviceability. The internal BIST hardware
generally tests all internal array structures for errors. These
structures can include (but are not limited to):

� All internal caches, including the tag arrays as well as the
data arrays.

� All TLBs.

� Internal ROMs, such as the microcode ROM and floating-
point constant ROM.

� Branch-prediction structures.

EAX is loaded with zero if BIST completes without detecting
errors. If any hardware faults are detected during BIST, a non-
zero value is loaded into EAX.

14.1.2 Clock Multiplier
Selection

The internal processor clock runs at some multiple of the
system clock. The processor-to-system clock multiple does not
have to be fixed by a processor implementation but instead can
be programmable through hardware or software, or some
combination of the two. For information on selecting the
processor-clock multiplier, refer to the BIOS writer’s guide for
the implementation.

14.1.3 Processor
Initialization State

Table 14-1 shows the initial processor state following either
RESET# or INIT. Except as indicated, processor resources
generally are set to the same value after either RESET# or INIT.

Table 14-1. Initial Processor State

Processor Resource Reset (RESET#) Value Initialization (INIT) Value

CR0 0000_0000_6000_0010h
CD and NW are unchanged
Bit 4 (reserved) = 1
All others = 0

CR2, CR3, CR4 0

CR8 0 Not modified

RFLAGS 0000_0000_0000_0002h

Chapter 14: Processor Initialization and Long-Mode Activation 411

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

EFER 0

RIP 0000_0000_0000_FFF0h

CS

Selector = F000h
Base = 0000_0000_FFFF_0000h
Limit = FFFFh
Attributes = See Table 14-2

DS, ES, FS, GS, SS

Selector = 0000h
Base = 0
Limit = FFFFh
Attributes = See Table 14-2

GDTR, IDTR
Base = 0
Limit = FFFFh

LDTR, TR

Selector = 0000h
Base = 0
Limit = FFFFh
Attributes = See Table 14-2

RAX
0
(non-zero if BIST is run and fails)

0

RDX Family/Model/Stepping, including extended family and extended model—see
“Processor Implementation Information” on page 414

RBX, RCX, RBP, RSP, RDI, RSI,
R8, R9, R10, R11, R12, R13, R14, R15

0

x87 Floating-Point State

FPR0–FPR7 = 0
Control Word = 0040h
Status Word = 0000h
Tag Word = 5555h
Instruction CS = 0000h
Instruction Offset = 0
x87 Instruction Opcode = 0
Data-Operand DS = 0000h
Data-Operand Offset = 0

Not modified

64-Bit Media State MMX0–MMX7 = 0 Not modified

Table 14-1. Initial Processor State (continued)

Processor Resource Reset (RESET#) Value Initialization (INIT) Value

412 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Table 14-2 on page 413 shows the initial state of the segment-
register attributes (located in the hidden portion of the
segment registers) following either RESET# or INIT.

128-Bit Media State
XMM0–XMM15 = 0
MXCSR = 1F80h

Not modified

Memory-Type Range Registers
See “Memory-Typing MSRs” on
page 438 Not modified

Machine-Check Registers See “Machine-Check MSRs” on
page 441 Not modified

DR0, DR1, DR2, DR3 0

DR6 0000_0000_FFFF_0FF0h

DR7 0000_0000_0000_0400h

Time-Stamp Counter 0 Not modified

Performance-Monitor Resources See “Performance-Monitoring MSRs”
on page 443 Not modified

Other Model-Specific Registers
See “MSR Cross-Reference” on
page 433 Not modified

Instruction and Data Caches
Invalidated Not modified

Instruction and Data TLBs

APIC Enabled Not modified

SMRAM Base Address (SMBASE) 0003_0000h Not modified

Table 14-1. Initial Processor State (continued)

Processor Resource Reset (RESET#) Value Initialization (INIT) Value

Chapter 14: Processor Initialization and Long-Mode Activation 413

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

14.1.4 Multiple
Processor
Initialization

Following reset in multiprocessor configurations, the processors
use a multiple-processor initialization protocol to negotiate
which processor becomes the bootstrap processor. This
bootstrap processor then executes the system initialization
code while the remaining processors wait for software
initialization to complete. For further information, see the
documentation for particular implementations of the
architecture.

14.1.5 Fetching the
First Instruction

After a RESET# or INIT, the processor is operating in 16-bit real
mode. Normally within real mode, the code-segment base-
address is formed by shifting the CS-selector value left four
bits. The base address is then added to the value in EIP to form
the physical address into memory. As a result, the processor can
only address the first 1 Mbyte of memory when in real mode.

However, immediately following RESET# or INIT, the CS-
selector register is loaded with F000h, but the CS base-address
is not formed by left-shifting the selector. Instead, the CS base-
address is initialized to FFFF_0000h. EIP is initialized to

Table 14-2. Initial State of Segment-Register Attributes

Attribute Value
(Binary) Description

G 0 Byte Granularity

D/B 0 16-Bit Segment

L (CS Only) 0 Legacy-Mode Segment

P 1 Segment is Present

DPL 00 Privilege-Level 0

S and
Type

Code
Segment

S = 1
Type = 1010

Executable/Readable Code Segment

Data
Segment

S = 1
Type = 0010

Read/Write Data Segment

LDTR
S = 0

Type = 0010
LDT

TR
S = 0

Type = 0011
Busy 16-Bit TSS

414 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

FFF0h. Therefore, the first instruction fetched from memory is
located at physical-address FFFF_FFF0h (FFFF_0000h +
0000_FFF0h).

The CS base-address remains at this initial value until the CS-
selector register is loaded by software. This can occur as a result
of executing a far jump instruction or call instruction, for
example. When CS is loaded by software, the new base-address
value is established as defined for real mode (by left shifting
the selector value four bits).

14.2 Hardware Configuration

14.2.1 Processor
Implementation
Information

Software can read processor-identification information from
the EDX register immediately following RESET# or INIT. This
information can be used to initialize software to perform
processor-specific functions. The information stored in EDX is
defined as follows:

� Stepping ID (bits 3–0)—This field identifies the processor-
revision level.

� Extended Model (bits 19–16) and Model (bits 7–4)—These
fields combine to differentiate processor models within a
instruction family. For example, two processors may share
the same microarchitecture but differ in their feature set.
Such processors are considered different models within the
same instruction family. This is a split field, comprising an
extended-model portion in bits 19–16 with a legacy portion
in bits 7–4

� Extended Family (bits 27–20) and Family (bits 11–8)—These
fields combine to differentiate processors by their
microarchitecture.

The CPUID instruction can be used to obtain the same
information. This is done by executing CPUID with either
standard-function code 1 or extended-function code
8000_0001h. Additional information about the processor and
the features supported can be gathered using CPUID with other
feature codes. See “Processor Feature Identification” on
page 75 for additional information.

14.2.2 Enabling
Internal Caches

Following a RESET# (but not an INIT), all instruction and data
caches are disabled, and their contents are invalidated (the
MOESI state is set to the invalid state). Software can enable

Chapter 14: Processor Initialization and Long-Mode Activation 415

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

these caches by clearing the cache-disable bit (CR0.CD) to zero
(RESET# sets this bit to 1). Software can further refine caching
based on individual pages and memory regions. Refer to
“Cache Control Mechanisms” on page 210 for more information
on cache control.

Memory-Type Range Registers (MTRRs). Following a RESET# (but not
an INIT), the MTRRdefType register is cleared to 0, which
disables the MTRR mechanism. The variable-range and fixed-
range MTRR registers are not initialized and are therefore in an
undefined state. Before enabling the MTRR mechanism, the
initialization software (usually BIOS) must load these registers
with a known value to prevent unexpected results. Clearing
these registers, for example, sets memory to the uncacheable
(UC) type.

14.2.3 Initializing
Media and x87
Processor State

Some resources used by x87 floating-point instructions and 128-
bit media instructions must be initialized by software before
being used. Initialization software can use the CPUID
instruction to determine whether the processor supports these
instructions, and then initialize their resources as appropriate.

x87 Floating-Point State Initialization. Table 14-3 on page 416 shows
the differences between the initial x87 floating-point state
following a RESET# and the state established by the
FINIT/FNINIT instruction. An INIT does not modify the x87
floating-point state. The initialization software can execute an
FINIT or FNINIT instruction to prepare the x87 floating-point
unit for use by application software. The FINIT and FNINIT
instructions have no effect on the 64-bit media state.

416 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Initialization software should also load the MP, EM, and NE bits
in the CR0 register as appropriate for the operating system. The
recommended settings for implementations of the x86-64
architecture are:

� MP=1—Setting MP to 1 causes a device-not-available
exception (#NM) to occur when the FWAIT/WAIT
instruction is executed and the task-switched bit (CR0.TS) is
set to 1. This supports operating systems that perform lazy
context-switching of x87 floating-point state.

� EM=0—Clearing EM to 0 allows the x87 floating-point unit
to execute instructions rather than causing a #NM exception
(CR0.EM=1). System software sets EM to 1 only when
software emulation of x87 instructions is desired.

� NE=1—Setting NE to 1 causes x87 floating-point exceptions
to be handled by the floating-point exception-pending
exception (#MF) handler. Clearing this bit causes the
processor to externally indicate the exception occurred, and
an external device can then cause an external interrupt to
occur in response.

Table 14-3. x87 Floating-Point State Initialization

x87 Floating-Point
Resource RESET# FINIT/FNINIT

Instructions

FPR0–FPR7 0 Not modified

Control Word

0040h
• Round to nearest
• Single precision
• Unmask all exceptions

037Fh
• Round to nearest
• Extended precision
• Mask all exceptions

Status Word 0000h

Tag Word 5555h (FPRn contain zero) FFFFh (FPRn are empty)

Instruction CS 0000h

Instruction Offset 0

x87 Instruction Opcode 0

Data-Operand DS 0000h

Data-Operand Offset 0

Chapter 14: Processor Initialization and Long-Mode Activation 417

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Refer to “CR0 Register” on page 53 for additional information
on these control bits.

64-Bit Media State Initialization. There are no special requirements
placed on software to initialize the processor state used by 64-
bit media instructions. This state is initialized completely by
the processor following a RESET#. System software should
leave CR0.EM cleared to 0 to allow execution of the 64-bit
media instructions. If CR0.EM is set to 1, attempted execution
of the 64-bit media instructions causes an invalid-opcode
exception (#UD).

The 64-bit media state is not modified by an INIT.

128-Bit Media State Initialization. BIOS or system software must also
prepare the processor to allow execution of 128-bit media
instructions. The required preparations include:

� Leaving CR0.EM cleared to 0 to allow execution of the 128-
bit media instructions. If CR0.EM is set to 1, attempted
execution of the 128-bit media instructions causes an
invalid-opcode exception (#UD).

� Enabling the 128-bit media instructions by setting
CR4.OSFXSR to 1. Software cannot execute the 128-bit
media instructions unless this bit is set. Setting this bit also
indicates that system software uses the FXSAVE and
FXRSTOR instructions to save and restore, respectively, the
128-bit media state. These instructions also save and restore
the 64-bit media state and x87 floating-point state.

� Indicating that system software uses the SIMD floating-
point exception (#XF) for handling 128-bit media floating-
point exceptions. This is done by setting
CR4.OSXMMEXCPT to 1.

� Setting (optionally) the MXCSR mask bits to mask or
unmask 128-bit media floating-point exceptions as desired.
Because this register can be read and written by application
software, it is not absolutely necessary for system software
to initialize it.

Refer to “CR4 Register” on page 58 for additional information
on these CR4 control bits.

14.2.4 Model-Specific
Initialization

Implementations of the x86-64 architecture can contain model-
specific features and registers that are not initialized by the
processor and therefore require system-software initialization.

418 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

System software must use the CPUID instruction to determine
which features are supported. Model-specific features are
generally configured using model-specific registers (MSRs),
which can be read and written using the RDMSR and WRMSR
instructions, respectively.

Some of the model-specific features are pervasive across many
processor implementations of the x86-64 architecture and are
therefore described within this volume. These include:

� System-call extensions, which must be enabled in the EFER
register before using the SYSCALL and SYSRET
instructions. See “System-Call Extension (SCE) Bit” on
page 68 for information on enabling these instructions.

� Memory-typing MSRs. See “Memory-Type Range Registers
(MTRRs)” on page 415 for information on initializing and
using these registers.

� The machine-check mechanism. See “Initializing the
Machine-Check Mechanism” on page 312 for information on
enabling and using this capability.

� Extensions to the debug mechanism. See “Software-Debug
Resources” on page 382 for information on initializing and
using these extensions.

� The performance-monitoring resources. See “Performance
Optimization” on page 401 for information on initializing
and using these resources.

Initialization of other model-specific features used by the page-
translation mechanism and long mode are described
throughout the remainder of this section.

Some model-specific features are not pervasive across processor
implementations and are therefore not described in this
volume. For more information on these features and their
initialization requirements, refer to the BIOS writer’s guide for
the implementation.

14.3 Initializing Real Mode

A basic real-mode (real-address-mode) operating environment
must be initialized so that system software can initialize the
protected-mode operating environment. This real-mode
environment must include:

Chapter 14: Processor Initialization and Long-Mode Activation 419

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� A real-mode IDT for vectoring interrupts and exceptions to
the appropriate handlers while in real mode. The IDT base-
address value in the IDTR initialized by the processor can be
used, or system software can relocate the IDT by loading a
new base-address into the IDTR.

� The real-mode interrupt and exception handlers. These must
be loaded before enabling external interrupts.

Because the processor can always accept a non-maskable
interrupt (NMI), it is possible an NMI can occur before
initializing the IDT or the NMI handler. System hardware
must provide a mechanism for disabling NMIs to allow time
for the IDT and NMI handler to be properly initialized.
Alternatively, the IDT and NMI handler can be stored in
non-volatile memory that is referenced by the initial values
loaded into the IDTR.

Maskable interrupts can be enabled by setting EFLAGS.IF
after the real-mode IDT and interrupt handlers are
initialized.

� A valid stack pointer (SS:SP) to be used by the interrupt
mechanism should interrupts or exceptions occur. The
values of SS:SP initialized by the processor can be used.

� One or more data-segment selectors for storing the
protected-mode data structures that are created in real
mode.

Once the real-mode environment is established, software can
begin initializing the protected-mode environment.

14.4 Initializing Protected Mode

Protected mode must be entered before activating long mode. A
minimal protected-mode environment must be established to
allow long-mode initialization to take place. This environment
must include the following:

� A protected-mode IDT for vectoring interrupts and
exceptions to the appropriate handlers while in protected
mode.

� The protected-mode interrupt and exception handlers
referenced by the IDT. Gate descriptors for each handler
must be loaded in the IDT.

420 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

� A GDT which contains:

- A code descriptor for the code segment that is executed
in protected mode.

- A read/write data segment that can be used as a
protected-mode stack. This stack can be used by the
interrupt mechanism if interrupts or exceptions occur.

Software can optionally load the GDT with one or more data
segment descriptors, a TSS descriptor, and an LDT descriptor
for use by long-mode initialization software.

After the protected-mode data structures are initialized, system
software must load the IDTR and GDTR (and optionally, the
LDTR and TR) with pointers to those data structures. Once
these registers are initialized, protected mode can be enabled
by setting CR0.PE to 1.

If legacy paging is used during the long-mode initialization
process, the page-translation tables must be initialized before
enabling paging. At a minimum, one page directory and one
page table are required to support page translation. The CR3
register must be loaded with the starting physical address of
the highest-level table supported in the page-translation
hierarchy. After these structures are initialized and protected
mode is enabled, paging can be enabled by setting CR0.PG to 1.

14.5 Initializing Long Mode

From protected mode, system software can initialize the data
structures required by long mode and store them anywhere in
the first 4 Gbytes of physical memory. These data structures can
be relocated above 4 Gbytes once long mode is activated. The
data structures required by long mode include the following:

� An IDT with 64-bit interrupt-gate descriptors. Long-mode
interrupts are always taken in 64-bit mode, and the 64-bit
gate descriptors are used to transfer control to interrupt
handlers running in 64-bit mode. See “Long-Mode Interrupt
Control Transfers” on page 285 for more information.

� The 64-bit mode interrupt and exception handlers to be used
in 64-bit mode. Gate descriptors for each handler must be
loaded in the 64-bit IDT.

Chapter 14: Processor Initialization and Long-Mode Activation 421

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

� A GDT containing segment descriptors for software running
in 64-bit mode and compatibility mode, including:

- Any LDT descriptors required by the operating system or
application software.

- A TSS descriptor for the single 64-bit TSS required by
long mode.

- Code descriptors for the code segments that are executed
in long mode. The code-segment descriptors are used to
specify whether the processor is operating in 64-bit mode
or compatibility mode. See “Code-Segment Descriptors”
on page 106, “Long (L) Attribute Bit” on page 107, and
“CS Register” on page 85 for more information.

- Data-segment descriptors for software running in
compatibility mode. The DS, ES, and SS segments are
ignored in 64-bit mode. See “Data-Segment Descriptors”
on page 108 for more information.

- FS and GS data-segment descriptors for 64-bit mode, if
required by the operating system. If these segments are
used in 64-bit mode, system software can also initialize
the full 64-bit base addresses using the WRMSR
instruction. See “FS and GS Registers in 64-Bit Mode” on
page 86 for more information.

The existing protected-mode GDT can be used to hold the
long-mode descriptors described above.

� A single 64-bit TSS for holding the privilege-level 0, 1, and 2
stack pointers, the interrupt-stack-table pointers, and the
I/O-redirection-bitmap base address (if required). This is the
only TSS required, because hardware task-switching is not
supported in long mode. See “64-Bit Task State Segment” on
page 368 for more information.

� The 4-level page-translation tables required by long mode.
Long mode also requires the use of physical-address
extensions (PAE) to support physical-address sizes greater
than 32 bits. See “Long-Mode Page Translation” on page 158
for more information.

If paging is enabled during the initialization process, it must be
disabled before enabling long mode. After the long-mode data
structures are initialized, and paging is disabled, software can
enable and activate long mode.

422 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

14.6 Enabling and Activating Long Mode

Long mode is enabled by setting the long-mode enable control
bit (EFER.LME) to 1. However, long mode is not activated until
software also enables paging. When software enables paging
while long mode is enabled, the processor activates long mode,
which the processor indicates by setting the long-mode-active
status bit (EFER.LMA) to 1. The processor behaves as a 32-bit
x86 processor in all respects until long mode is activated, even
if long mode is enabled. None of the new 64-bit data sizes,
addressing, or system aspects available in long mode can be
used until EFER.LMA=1.

Table 14-4 shows the control-bit settings for enabling and
activating the various operating modes of the x86-64
architecture. The default address and data sizes are shown for
each mode. For the methods of overriding these default address
and data sizes, see “Instruction Prefixes” in Volume 3.

Long mode uses two code-segment-descriptor bits, CS.L and
CS.D, to control the operating submodes. If long mode is active,
CS.L = 1, and CS.D = 0, the processor is running in 64-bit mode,
as shown in Table 14-4. With this encoding (CS.L=1, CS.D=0),

Table 14-4. Processor Operating Modes

Mode

Encoding
Default
Address

Size
(bits)2

Default
Data
Size

(bits)2

EF
ER

.L
M

A1

CS
.L

CS
.D

Long
Mode

64-Bit
Mode

1

1 0 64 32

Compatibility
Mode

0
1 32 32

0 16 16

Legacy Mode 0 x
1 32 32

0 16 16

Note:
1. EFER.LMA is set by the processor when software sets EFER.LME and CR0.PG according to the

sequence described in “Activating Long Mode” on page 423.
2. See “Instruction Prefixes” in Volume 1 for overrides to default sizes.

Chapter 14: Processor Initialization and Long-Mode Activation 423

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

default operand size is 32 bits and default address size is 64
bits. Using instruction prefixes, the default operand size can be
overridden to 64 bits or 16 bits, and the default address size can
be overridden to 32 bits.

The final encoding of CS.L and CS.D in long mode (CS.L=1,
CS.D=1) is reserved for future use.

When long mode is active and CS.L is cleared to 0, the processor
is in compatibil i ty mode, as shown in Table 14-4. In
compatibility mode, CS.D controls default operand and address
sizes exactly as it does in the legacy x86 architecture. Setting
CS.D to 1 specifies default operand and address sizes as 32 bits.
Clearing CS.D to 0 specifies default operand and address sizes
as 16 bits.

14.6.1 Activating Long
Mode

Switching the processor to long mode requires several steps. In
general, the sequence involves disabling paging (CR0.PG=0),
enabling physical-address extensions (CR4.PAE=1), loading
CR3, enabling long mode (EFER.LME=1), and finally enabling
paging (CR0.PG=1).

Specifically, software must follow this sequence to activate long
mode:

1. If starting from page-enabled protected mode, disable
paging by clearing CR0.PG to 0. This requires that the MOV
CR0 instruction used to disable paging be located in an
identity-mapped page (virtual address equals physical
address).

2. In any order:

- Enable physical-address extensions by setting CR4.PAE
to 1. Long mode requires the use of physical-address
extensions (PAE) in order to support physical-address
sizes greater than 32 bits. Physical-address extensions
must be enabled before enabling paging.

- Load CR3 with the physical base-address of the level-4
page-map-table (PML4). See “Long-Mode Page
Translation” on page 158 for details on creating the 4-
level page translation tables required by long mode.

- Enable long mode by setting EFER.LME to 1.

424 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

3. Enable paging by setting CR0.PG to 1. This causes the
processor to set the EFER.LMA bit to 1. The instruction
following the MOV CR0 that enables paging must be a
branch, and both the MOV CR0 and the following branch
instruction must be located in an identity-mapped page.

14.6.2 Consistency
Checks

The processor performs long-mode consistency checks
whenever software attempts to modify any of the control bits
directly involved in activating long mode (EFER.LME, CR0.PG,
and CR4.PAE). A general-protection exception (#GP) occurs
when a consistency check fails. Long-mode consistency checks
ensure that the processor does not enter an undefined mode or
state that results in unpredictable behavior.

Long-mode consistency checks cause a general-protection
exception (#GP) to occur if:

� An attempt is made to enable or disable long mode while
paging is enabled.

� Long mode is enabled, and an attempt is made to enable
paging before enabling physical-address extensions (PAE).

� Long mode is enabled, and an attempt is made to enable
paging while CS.L=1.

� Long mode is active and an attempt is made to disable
physical-address extensions (PAE).

Table 14-5 summarizes the long-mode consistency checks made
during control-bit transitions.

14.6.3 Updating
System Descriptor
Table References

Immediately after activating long mode, the system-descriptor-
table registers (GDTR, LDTR, IDTR, TR) continue to reference
legacy descriptor tables. The tables referenced by these
descriptors all reside in the lower 4 Gbytes of virtual-address

Table 14-5. Long-Mode Consistency Checks

Control Bit Transition Check

EFER.LME
0 → 1 If (CR0.PG=1) then #GP(0)

1 → 0 If (CR0.PG=1) then #GP(0)

CR0.PG 0 → 1
If ((EFER.LME=1) & (CR4.PAE=0) then #GP(0)
If ((EFER.LME=1) & (CS.L=1)) then #GP(0)

CR4.PAE 1 → 0 If (EFER.LMA=1) then #GP(0)

Chapter 14: Processor Initialization and Long-Mode Activation 425

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

space. After activating long mode, 64-bit operating-system
software should use the LGDT, LLDT, LIDT, and LTR
instructions to load the system descriptor-table registers with
references to the 64-bit versions of the descriptor tables. See
“Descriptor Tables” on page 87 for details on descriptor tables
in long mode.

Long mode requires 64-bit interrupt-gate descriptors to be
stored in the interrupt-descriptor table (IDT). Software must
not allow exceptions or interrupts to occur between the time
long mode is activated and the subsequent update of the
interrupt-descriptor-table register (IDTR) that establishes a
reference to the 64-bit IDT. This is because the IDTR continues
to reference a 32-bit IDT immediately after long mode is
activated. If an interrupt or exception occurred before updating
the IDTR, a legacy 32-bit interrupt gate would be referenced
and interpreted as a 64-bit interrupt gate, with unpredictable
results.

External interrupts can be disabled using the CLI instruction.
Non-maskable interrupts (NMI) and system-management
interrupts (SMI) must be disabled using external hardware. See
“Long-Mode Interrupt Control Transfers” on page 285 for more
information on long mode interrupts.

14.6.4 Relocating
Page-Translation
Tables

The long-mode page-translation tables must be located in the
first 4 Gbytes of physical-address space before activating long
mode. This is necessary because the MOV CR3 instruction used
to initialize the page-map level-4 base address must be
executed in legacy mode before activating long mode. Because
the MOV CR3 is executed in legacy mode, only the low 32 bits of
the register are written, which limits the location of the page-
map level-4 translation table to the low 4 Gbytes of memory.
Software can relocate the page tables anywhere in physical
memory, and re-initialize the CR3 register, after long mode is
activated.

14.7 Leaving Long Mode

To return from long mode to legacy protected mode with paging
enabled, software must deactivate and disable long mode using
the following sequence:

1. Switch to compatibility mode and place the processor at the
highest privilege level (CPL=0).

426 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

2. Deactivate long mode by clearing CR0.PG to 0. This causes
the processor to clear the LMA bit to 0. The MOV CR0
instruction used to disable paging must be located in an
identity-mapped page. Once paging is disabled, the
processor behaves as a standard 32-bit x86 processor.

3. Load CR3 with the physical base-address of the legacy page
tables.

4. Disable long mode by clearing EFER.LME to 0.

5. Enable legacy page-translation by setting CR0.PG to 1. The
instruction following the MOV CR0 that enables paging
must be a branch, and both the MOV CR0 and the following
branch instruction must be located in an identity-mapped
page.

14.8 Long-Mode Initialization Example

Following is sample code that outlines the steps required to
place the processor in long mode.

mydata segment para

;;
;
; This generic data-segment holds pseudo-descriptors used
; by the LGDT and LIDT instructions.
;
;;

;
; Establish a temporary 32-bit GDT and IDT.
;

pGDT32 label fword ; Used by LGDT.
 dw gdt32_limit ; GDT limit ...
 dd gdt32_base ; and 32-bit GDT base

pIDT32 label fword ; Used by LIDT.
 dw idt32_limit ; IDT limit ...
 dd idt32_base ; and 32-bit IDT base

;
; Establish a 64-bit GDT and IDT (64-bit linear base-
; address)
;

Chapter 14: Processor Initialization and Long-Mode Activation 427

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

pGDT64 label tbyte ; Used by LGDT.
 dw gdt64_limit ; GDT limit ...
 dq gdt64_base ; and 64-bit GDT base

pIDT64 label tbyte ; Used by LIDT.
 dw idt64_limit ; IDT limit ...
 dq idt64_base ; and 64-bit GDT base

mydata ends ; end of data segment

code16 segment para use16 ; 16-bit code segment

;;
;
; 16-bit code, real mode
;
;;

;
; Initialize DS to point to the data segment containing
; pGDT32 and PIDT32. Set up a real-mode stack pointer, SS:SP,
; in case of interrupts and exceptions.
;

cli
mov ax, seg mydata
mov ds, ax
mov ax, seg mystack
mov ss, ax
mov sp, esp0

;
; Use CPUID to determine if the processor supports long mode.
;

mov eax, 80000000h ; Extended-function code 8000000h.
cpuid ; Is largest extended function
cmp eax, 80000000h ; any function > 80000000h?
jbe no_long_mode ; If not, no long mode.
mov eax, 80000001h ; Extended-function code 8000001h.
cpuid ; Now EDX = extended-features flags.
bt edx, 29 ; Test if long mode is supported.
jnc no_long_mode ; Exit if not supported.

;
; Load the 32-bit GDT before entering protected mode.
; This GDT must contain, at a minimum, the following
; descriptors:

428 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

; 1) a CPL=0 16-bit code descriptor for this code segment.
; 2) a CPL=0 32/64-bit code descriptor for the 64-bit code.
; 3) a CPL=0 read/write data segment, usable as a stack
; (referenced by SS).
;
; Load the 32-bit IDT, in case any interrupts or exceptions
; occur after entering protected mode, but before enabling
; long mode).
;
; Initialize the GDTR and IDTR to point to the temporary
; 32-bit GDT and IDT, respectively.
;

lgdt ds:[pGDT32]
lidt ds:[pIDT32]

;
; Enable protected mode (CR0.PE=1).
;

mov eax, 000000011h
mov cr0, eax

;
; Execute a far jump to turn protected mode on.
; code16_sel must point to the previously-established 16-bit
; code descriptor located in the GDT (for the code currently
; being executed).
;

db 0eah ;Far jump...
dw offset now_in_prot;to offset...
dw code16_sel ;in current code segment.

;;
;
; At this point we are in 16-bit protected mode, but long
; mode is still disabled.
;
;;

now_in_prot:

;
; Set up the protected-mode stack pointer, SS:ESP.
; Stack_sel must point to the previously-established stack
; descriptor (read/write data segment), located in the GDT.

Chapter 14: Processor Initialization and Long-Mode Activation 429

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

; Skip setting DS/ES/FS/GS, because we are jumping right to
; 64-bit code.
;

mov ax, stack_sel
mov ss, ax
mov esp, esp0

;
; Enable the 64-bit page-translation-table entries by
; setting CR4.PAE=1 (this is _required_ before activating
; long mode). Paging is not enabled until after long mode
; is enabled.
;

mov eax, cr4
bts eax, 5
mov cr4, eax

;
; Create the long-mode page tables, and initialize the
; 64-bit CR3 (page-table base address) to point to the base
; of the PML4 page table. The PML4 page table must be located
; below 4 Gbytes because only 32 bits of CR3 are loaded when
; the processor is not in 64-bit mode.
;

mov eax, pml4_base ; Pointer to PML4 table (<4GB).
mov cr3, eax ; Initialize CR3 with PML4 base.

;
; Enable long mode (set EFER.LME=1).
;

mov ecx, 0c0000080h ; EFER MSR number.
rdmsr ; Read EFER.
bts eax, 8 ; Set LME=1.
wrmsr ; Write EFER.

;
; Enable paging to activate long mode (set CR0.PG=1)
;

mov eax, cr0 ; Read CR0.
bts eax, 31 ; Set PE=1.
mov cr0, eax ; Write CR0.

430 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

;
; At this point, we are in 16-bit compatibility mode
; (LMA=1, CS.L=0, CS.D=0).
; Now, jump to the 64-bit code segment. The offset must be
; equal to the linear address of the 64-bit entry point,
; because 64-bit code is in an unsegmented address space.
; The selector points to the 32/64-bit code selector in the
; current GDT.
;

db 066h
db 0eah
dd start64_linear
dw code64_sel

code16ends ; End of the 16-bit code segment

;;
;
;;
;;; Start of 64-bit code
;;
;
;;

code64 para use64

start64: ; At this point, we’re using 64-bit code

;
; Point the 64-bit RSP register to the stack’s _linear_
; address. There is no need to set SS here, because the SS
; register is not used in 64-bit mode.
;

mov rsp, stack0_linear

;
; This LGDT is only needed if the long-mode GDT is to be
; located at a linear address above 4 Gbytes. If the long
; mode GDT is located at a 32-bit linear address, putting
; 64-bit descriptors in the GDT pointed to by [pGDT32] is
; just fine. pGDT64_linear is the _linear_ address of the
; 10-byte GDT pseudo-descriptor.
;
; The new GDT should have a valid CPL0 64-bit code segment
; descriptor at the entry-point corresponding to the current

Chapter 14: Processor Initialization and Long-Mode Activation 431

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

; CS selector. Alternatively, a far transfer to a valid CPL0
; 64-bit code segment descriptor in the new GDT must be done
; before enabling interrupts.
;

lgdt [pGDT64_linear]

;
; Load the 64-bit IDT. This is _required_, because the 64-bit
; IDT uses 64-bit interrupt descriptors, while the 32-bit
; IDT used 32-bit interrupt descriptors. pIDT64_linear is
; the _linear_ address of the 10-byte IDT pseudo-descriptor.
;

lidt [pIDT64_linear]

;
; Set the current TSS. tss_sel should point to a 64-bit TSS
; descriptor in the current GDT. The TSS is used for
; inner-level stack pointers and the IO bit-map.
;

mov ax, tss_sel
ltr ax

;
; Set the current LDT. ldt_sel should point to a 64-bit LDT
; descriptor in the current GDT.
;

mov ax, ldt_sel
lldt ax

;
; Using fs: and gs: prefixes on memory accesses still uses
; the 32-bit fs.base and gs.base. Reload these 2 registers
; before using the fs: and gs: prefixes. FS and GS can be
; loaded from the GDT using a normal “mov fs,foo” type
; instructions, which loads a 32-bit base into FS or GS.
; Alternatively, use WRMSR to assign 64-bit base values to
; MSR_FS_base or MSR_GS_base.
;

mov ecx, MSR_FS_base
mov eax, FsbaseLow
mov edx, FsbaseHi
wrmsr

432 Chapter 14: Processor Initialization and Long-Mode Activation

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

;
; Reload CR3 if long-mode page tables are to be located above
; 4 Gbytes. Because the original CR3 load was done in 32-bit
; legacy mode, it could only load 32 bits into CR3. Thus, the
; current page tables are located in the lower 4 Gbytes of
; physical memory. This MOV to CR3 is only needed if the
; actual long-mode page tables should be located at a linear
; address above 4 Gbytes.
;

mov rax, final_pml4_base ; Point to PML4
mov cr3, rax ; Load 64-bit CR3

;
; Enable interrupts.
;

sti ; Enabled INTR

<insert 64-bit code here>

Appendix A: MSR Cross-Reference 433

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Appendix A MSR Cross-Reference

This appendix lists the MSRs that are defined in the x86-64
architecture. The x86-64 architecture supports some of the
same MSRs as previous versions of the x86 architecture and
implementations thereof. Where possible, the x86-64
architecture supports the same MSRs, for the same functions,
as these previous architectures and implementations.

The first section lists the MSRs according to their MSR address,
and it gives a cross reference for additional information. The
remaining sections list the MSRs by their functional group.
Those sections also give a brief description of the register and
specify the register reset value.

Some MSRs are implementation-specific For information about
these MSRs, see the documentat ion for speci f ic
implementations of the x86-64 architecture.

A.1 MSR Cross-Reference by MSR Address

Table A-1 lists the MSRs in the x86-64 architecture in order of
MSR address.

Table A-1. MSRs of the x86-64 Architecture

MSR
Address MSR Name Functional

Group Cross-Reference

0010h TSC Performance “Time-Stamp Counter” on page 406

00FEh MTRRcap Memory Typing “Identifying MTRR Features” on page 224

0174h SYSENTER_CS

System Software “SYSENTER and SYSEXIT MSRs” on page 1820175h SYSENTER_ESP

0176h SYSENTER_EIP

0179h MCG_CAP

Machine Check

“Machine-Check Global-Capabilities Register” on page 306

017Ah MCG_STATUS “Machine-Check Global-Status Register” on page 306

017Bh MCG_CTL “Machine-Check Global-Control Register” on page 307

01D9h DebugCtlMSR Software Debug “Debug-Control MSR (DebugCtlMSR)” on page 389

434 Appendix A: MSR Cross-Reference

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

01DBh LastBranchFromIP

Software Debug “Control-Transfer Recording MSRs” on page 390
01DCh LastBranchToIP

01DDh LastExceptionFromIP

01DEh LastExceptionToIP

0200h MTRRphysBase0

Memory Typing “Variable-Range MTRRs” on page 220

0201h MTRRphysMask0

0202h MTRRphysBase1

0203h MTRRphysMask1

0204h MTRRphysBase2

0205h MTRRphysMask2

0206h MTRRphysBase3

0207h MTRRphysMask3

0208h MTRRphysBase4

0209h MTRRphysMask4

020Ah MTRRphysBase5

020Bh MTRRphysMask5

020Ch MTRRphysBase6

020Dh MTRRphysMask6

020Eh MTRRphysBase7

020Fh MTRRphysMask7

Table A-1. MSRs of the x86-64 Architecture (continued)

MSR
Address MSR Name Functional

Group Cross-Reference

Appendix A: MSR Cross-Reference 435

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

0250h MTRRfix64K_00000

Memory Typing “Fixed-Range MTRRs” on page 218

0258h MTRRfix16K_80000

0259h MTRRfix16K_A0000

0268h MTRRfix4K_C0000

0269h MTRRfix4K_C8000

026Ah MTRRfix4K_D0000

026Bh MTRRfix4K_D8000

026Ch MTRRfix4K_E0000

026Dh MTRRfix4K_E8000

026Eh MTRRfix4K_F0000

026Fh MTRRfix4K_F8000

0277h PAT
Memory Typing

“PAT Register” on page 228

02FFh MTRRdefType “Default-Range MTRRs” on page 223

0400h MC0_CTL

Machine Check See the documentation for particular implementations of
the architecture.

0404h MC1_CTL

0408h MC2_CTL

040Ch MC3_CTL

0410h MC4_CTL

0401h MC0_STATUS

Machine Check “Machine-Check Status Registers” on page 309

0405h MC1_STATUS

0409h MC2_STATUS

040Dh MC3_STATUS

0411h MC4_STATUS

Table A-1. MSRs of the x86-64 Architecture (continued)

MSR
Address MSR Name Functional

Group Cross-Reference

436 Appendix A: MSR Cross-Reference

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

0402h MC0_ADDR

Machine Check “Machine-Check Address Registers” on page 312

0406h MC1_ADDR

040Ah MC2_ADDR

040Eh MC3_ADDR

0412h MC4_ADDR

0403h MC0_MISC

Machine Check “Machine-Check Miscellaneous-Error Information
Registers” on page 312

0407h MC1_MISC

040Bh MC2_MISC

040Fh MC3_MISC

0413h MC4_MISC

C000_0080h EFER System Software “Extended Feature Enable Register (EFER)” on page 67

C000_0081h STAR

System Software “SYSCALL and SYSRET MSRs” on page 181
C000_0082h LSTAR

C000_0083h CSTAR

C000_0084h SF_MASK

C000_0100h FS.Base
System Software “FS and GS Registers in 64-Bit Mode” on page 86

C000_0101h GS.Base

C000_0102h KernelGSbase System Software “SWAPGS Instruction” on page 183

C001_0000h PerfEvtSel0

Performance “Performance Event-Select Registers” on page 403
C001_0001h PerfEvtSel1

C001_0002h PerfEvtSel2

C001_0003h PerfEvtSel3

C001_0004h PerfCtr0

Performance “Performance Counters” on page 402
C001_0005h PerfCtr1

C001_0006h PerfCtr2

C001_0007h PerfCtr3

C001_0010h SYSCFG Memory Typing “System Configuration Register (SYSCFG)” on page 70

Table A-1. MSRs of the x86-64 Architecture (continued)

MSR
Address MSR Name Functional

Group Cross-Reference

Appendix A: MSR Cross-Reference 437

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

A.2 System-Software MSRs

Table A-2 lists the MSRs defined for general use by system
software in controlling long mode and in allowing fast control
transfers between applications and the operating system.

C001_0016h IORRBase0

Memory Typing “IORRs” on page 235
C001_0017h IORRMask0

C001_0018h IORRBase1

C001_0019h IORRMask1

C001_001Ah TOP_MEM
Memory Typing “Top of Memory” on page 237

C001_001Dh TOP_MEM2

Table A-1. MSRs of the x86-64 Architecture (continued)

MSR
Address MSR Name Functional

Group Cross-Reference

Table A-2. System-Software MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

C000_0080h EFER
Contains control bits that enable extended
features supported by the processor, including
long mode.

0000_0000_0000_0000h

C000_0081h STAR

In legacy mode, used to specify the target
address of a SYSCALL instruction, as well as the
CS and SS selectors of the called and returned
procedures.

undefined

C000_0082h LSTAR
In 64-bit mode, used to specify the target RIP of
a SYSCALL instruction. undefined

C000_0083h CSTAR In compatibility mode, used to specify the target
RIP of a SYSCALL instruction. undefined

C000_0084h SF_MASK SYSCALL Flags Mask undefined

C000_0100h FS.Base
Contains the 64-bit base address in the hidden
portion of the FS register (the base address from
the FS descriptor).

undefined

438 Appendix A: MSR Cross-Reference

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

A.3 Memory-Typing MSRs

Table A-3 on page 439 lists the MSRs used to control memory-
typing and the page-attribute-table mechanism.

C000_0101h GS.Base
Contains the 64-bit base address in the hidden
portion of the GS register (the base address
from the GS descriptor).

undefined

C000_0102h KernelGSbase

The SWAPGS instruction exchanges the value in
KernelGSbase with the value in GS.base,
providing a fast method for system software to
load a pointer to system data-structures.

undefined

0174h SYSENTER_CS In legacy mode, used to specify the CS selector
of the procedure called by SYSENTER. undefined

0175h SYSENTER_ESP
In legacy mode, used to specify the stack pointer
for the procedure called by SYSENTER. undefined

0176h SYSENTER_EIP In legacy mode, used to specify the EIP of the
procedure called by SYSENTER. undefined

Table A-2. System-Software MSR Cross-Reference (continued)

MSR
Address

MSR
Name

Description Reset Value

Appendix A: MSR Cross-Reference 439

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Table A-3. Memory-Typing MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

00FEh MTRRcap
A read-only register containing information
describing the level of MTRR support provided
by the processor.

0000_0000_0000_0508h

0200h MTRRphysBase0

Specifies the memory-range base address in
physical-address space of a variable-range
memory region. These registers also specify the
memory type used for the memory region.

undefined

0202h MTRRphysBase1

0204h MTRRphysBase2

0206h MTRRphysBase3

0208h MTRRphysBase4

020Ah MTRRphysBase5

020Ch MTRRphysBase6

020Eh MTRRphysBase7

0201h MTRRphysMask0

Specifies the size of a variable-range memory
region.

Valid (bit 11) = 0
All Other Bits Undefined

0203h MTRRphysMask1

0205h MTRRphysMask2

0207h MTRRphysMask3

0209h MTRRphysMask4

020Bh MTRRphysMask5

020Dh MTRRphysMask6

020Fh MTRRphysMask7

440 Appendix A: MSR Cross-Reference

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

0250h MTRRfix64K_00000

Fixed-range MTRRs used to characterize the first
1 Mbyte of physical memory. Each 64-bit
register contains eight type fields for
characterizing a total of eight memory ranges.
• MTRRfix64K_n characterizes 64 Kbyte ranges.
• MTRRfix16K_n characterizes 16 Kbyte ranges.
• MTRRfix4K_n characterizes 4 Kbyte ranges.

undefined

0258h MTRRfix16K_80000

0259h MTRRfix16K_A0000

0268h MTRRfix4K_C0000

0269h MTRRfix4K_C8000

026Ah MTRRfix4K_D0000

026Bh MTRRfix4K_D8000

026Ch MTRRfix4K_E0000

026Dh MTRRfix4K_E8000

026Eh MTRRfix4K_F0000

026Fh MTRRfix4K_F8000

0277h PAT
Used to extend the page-table entry format,
allowing memory-type characterization on a
physical-page basis.

0007_0406_0007_0406h

02FFh MTRRdefType
Sets the default memory-type for physical
addresses not within ranges established by
fixed-range and variable-range MTRRs.

0000_0000_0000_0000h

C001_0010h SYSCFG Contains control bits for enabling and
configuring system bus features. 0000_0000_0002_0601h

C001_0016h IORRBase0 Specifies the memory-range base address in
physical-address space of a variable-range I/O
region.

undefined
C001_0018h IORRBase1

C001_0017h IORRMask0
Specifies the size of a variable-range I/O region.

Valid (bit 11) = 0
All Other Bits UndefinedC001_0019h IORRMask1

C001_001Ah TOP_MEM
Sets the boundary between system memory and
memory-mapped I/O for addresses below 4
Gbytes.

0000_0000_0400_0000h

C001_001Dh TOP_MEM2
Sets the boundary between system memory and
memory-mapped I/O for addresses above 4
Gbytes.

undefined

Table A-3. Memory-Typing MSR Cross-Reference (continued)

MSR
Address

MSR
Name

Description Reset Value

Appendix A: MSR Cross-Reference 441

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

A.4 Machine-Check MSRs

Table A-4 lists the MSRs used in support of the machine-check
mechanism.

Table A-4. Machine-Check MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

0179h MCG_CAP
A read-only register that specifies the machine-
check mechanism capabilities supported by the
processor.

0000_0000_0000_0104h

017Ah MCG_STATUS
Provides basic information about the processor
state immediately after the occurrence of a
machine-check error.

undefined

017Bh MCG_CTL
Controls global reporting of machine-check
errors from various sources. 0000_0000_0000_0000h

0400h MC0_CTL Controls error reporting for the data-cache-unit
register bank. 0000_0000_0000_0000h

0404h MC1_CTL Controls error reporting for the instruction-
cache-unit register bank. 0000_0000_0000_0000h

0408h MC2_CTL
Controls error reporting for the bus-unit register
bank. 0000_0000_0000_0000h

040Ch MC3_CTL Controls error reporting for the load/store-unit
register bank. 0000_0000_0000_0000h

0401h MC0_STATUS

Status registers for each error-reporting register
bank, used to report machine-check error
information for the specified register bank.

undefined
0405h MC1_STATUS

0409h MC2_STATUS

040Dh MC3_STATUS

0402h MC0_ADDR

Reports the instruction memory-address or data
memory-address responsible for the machine-
check error for the specified register bank.

undefined
0406h MC1_ADDR

040Ah MC2_ADDR

040Eh MC3_ADDR

442 Appendix A: MSR Cross-Reference

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

A.5 Software-Debug MSRs

Table A-5 lists the MSRs used in support of the software-debug
architecture.

0403h MC0_MISC

Reports miscellaneous information about the
machine-check error for the specified register
bank.

undefined
0407h MC1_MISC

040Bh MC2_MISC

040Fh MC3_MISC

Table A-4. Machine-Check MSR Cross-Reference (continued)

MSR
Address

MSR
Name

Description Reset Value

Table A-5. Software-Debug MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

01D9h DebugCtlMSR

Provides debug controls for control-transfer
recording and control-transfer single stepping,
and external-breakpoint reporting and trace
messages.

0000_0000_0000_0000h

01DBh LastBranchFromIP
During control-transfer recording, this register is
loaded with the segment offset of the control-
transfer target.

undefined

01DCh LastBranchToIP
During control-transfer recording, this register is
loaded with the segment offset of the control-
transfer source.

undefined

01DDh LastExceptionFromIP

When an interrupt occurs during control-transfer
recording, this register is loaded with
LastBranchFromIP before LastBranchFromIP is
updated.

undefined

01DEh LastExceptionToIP

When an interrupt occurs during control-transfer
recording, this register is loaded with
LastBranchToIP before LastBranchToIP is
updated.

undefined

Appendix A: MSR Cross-Reference 443

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

A.6 Performance-Monitoring MSRs

Table A-6 lists the MSRs used in support of performance
monitoring, including the time-stamp counter.

Table A-6. Performance-Monitoring MSR Cross-Reference

MSR
Address

MSR
Name

Description Reset Value

0010h TSC Counts processor-clock cycles. It is incremented
once for each processor-clock cycle. 0000_0000_0000_0000h

C001_0000h PerfEvtSel0

For the corresponding performance counter, this
register specifies the events counted, and
controls other aspects of counter operation.

undefined
C001_0001h PerfEvtSel1

C001_0002h PerfEvtSel2

C001_0003h PerfEvtSel3

C001_0004h PerfCtr0

Used to count specific processor events, or the
duration of events, as specified by the
corresponding PerfEvtSeln register.

undefined
C001_0005h PerfCtr1

C001_0006h PerfCtr2

C001_0007h PerfCtr3

444 Appendix A: MSR Cross-Reference

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

Index 445

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

Index

Symbols
#AC... 261
#BP ... 250
#BR... 251
#D ... 260, 263
#DB... 248
#DE .. 248
#DF... 252
#GP... 257
#I .. 260, 263
#IA.. 260
#IS .. 260
#MC.. 262
#MF .. 260
#NM.. 252
#NP... 255
#O ... 260, 263
#OF... 250
#P ... 260, 264
#PF ... 259
#SS ... 256
#TS ... 254
#U... 260, 264
#UD .. 251
#XF... 263
#Z ... 260, 263

Numerics
128-bit media instructions

enabling .. 338
feature identification 338
MXCSR ... 339
saving state... 344
XMM registers.................................. 36, 339

16-bit mode... xxvi
32-bit mode... xxvi
64-bit media instructions

causing #MF exception 342
feature identification 338
initializing .. 417
MMX registers.. 341
saving state... 344

64-bit mode... xxvi, 15

A
A bit ... 99, 101, 168
abort... 243
AC bit ... 66

accessed (A)
code segment ... 99
data segment ... 101
page-translation tables 168

address-breakpoint registers (DR0-DR3) 383
addressing

RIP-relative.. xxxii
address-size prefix...................................... 39
ADDRV bit .. 311
alignment check (rFLAGS.AC) 66, 261
alignment mask (CR0.AM)................ 55, 261
alignment-check exception (#AC) 55, 66, 261
AM bit ... 55
architecture differences 29
ARPL instruction 188
attributes .. 94
available to software (AVL)

descriptor... 97
page-translation tables 169

AVL bit .. 97, 169

B
B3–B0 bits ... 385
base address............ 90, 93, 97, 150, 159, 166
BD bit .. 385
benign exception...................................... 252
biased exponent xxvi
BIST ... 409
bootstrap processor.................................. 413
BOUND instruction.................................. 251
bound-range exception (#BR) 251
branches .. 40
breakpoint .. 392

determining cause................................. 394
on address match........................... 382, 396
on any instruction 382
on I/O .. 397
on instruction .. 395
on task switch 382, 398
setting address....................................... 392
specifying address-match length 392

breakpoint exception (#BP) 250
BS bit ... 385
BT bit... 385
BTF bit .. 390
built-in self test (BIST) 409

C
C bit ... 99

446 Index

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

cache
control mechanisms 210
control precedence 212
enabling .. 414
index ... 209
invalidate.. 214
line .. 193
line writeback and invalidate............... 213
offset ... 209
organization.. 207
self-modifying code 209
set .. 208
tag.. 209
way .. 208
writeback and invalidate 214

cache disable (CD) bit 56, 210
cache disable (CD), memory type 201
cache-coherency protocol......................... 197

losing coherency 199
CALL

See call gate and control transfer.
call gate ... 104, 127

count field .. 106
count field, long mode........................... 114
descriptor, long mode.............................. 41
jump through ... 130
parameters.. 133
privilege checks 129
stack switch .. 132
stack switch, long mode 42, 134

canonical address form 5, 159
CD bit... 56, 210
CD memory type 201
CLFLUSH instruction 213
CLI instruction.. 185
clock multiplier... 410
CLTS instruction....................................... 185
code segment 33, 85, 98

64-bit mode... 85
accessed (A) ... 99
conforming (C) ... 99
default-operand size (D) 100
ignored fields in 64-bit mode................ 107
long bit (L).. 33, 107
long mode ... 106
readable (R) ... 99
type field .. 99

coherency, cache 194
commit ... xxvii
commit, instruction results...................... 194
compatibility mode............................ xxvi, 15

conforming (C), code segment 99
consistency checks, long mode 424
contributory exception 253
control registers 36, 51
control transfer... 122

See also call gate and interrupt.
call gate.. 127
direct .. 123
far, conforming code segment 126
far, nonconforming code segment........ 124
interrupt to higher privilege................ 276
interrupt to same privilege 275
parameters ... 133
stack switch.. 132

control-transfer recording MSRs 390
coprocessor-segment-overrun exception 254
count field... 114, 306
counter mask field 405
CPL.. 118

definition ... 118
in call gate protection........................... 129
in data segment protection 119
in interrupt to higher privilege 278
in page protection 173
in protecting conforming CS 126
in protecting nonconforming CS.......... 124
in stack segment protection 121
privileged instructions.......................... 177
SYSCALL, SYSRET assumptions 181

CPUID instruction 67, 75, 184
CR0 .. 53

alignment mask (AM) 55, 261
cache disable (CD) 56, 210
emulate coprocessor (EM).............. 54, 339
extension type (ET) 54
monitor coprocessor (MP) 53
not write-through (NW) 55, 211
numeric error (NE) 55, 261
paging enable (PG) 56, 147
protection enable (PE) 53, 78, 87
task switched (TS)........................... 54, 185
write protect (WP) 55, 174

CR1 .. 62
CR2 .. 57, 259
CR3 32, 57, 149, 159, 365

non-PAE paging 149
PAE paging 57, 149
PAE paging, long mode......................... 159
page-level cache disable (PCD) ... 150, 160
page-level write-through (PWT) .. 150, 159
table-base address......................... 150, 159

Index 447

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

CR4 .. 58
debugging extensions (DE)..................... 59
machine-check enable (MCE)......... 60, 262
OS #XF support (OSXMMEXCPT) 263,

339
OS FXSAVE/FXRSTOR support (OSFXSR)

338
page-global enable (PGE) 61, 171
page-size extensions (PSE) 60, 147, 152
performance counter enable (PCE) 61,

186, 402
physical-address extensions (PAE) 60, 147,

158
protected-mode virtual interrupts (PVI).....

59
time-stamp disable (TSD) 59, 186, 407
virtual-8086 mode extensions (VME) ... 59,

294
CR5–CR7 ... 62
CR8 .. 62, 271
CR9–CR15 ... 62
CS register... 85
CSTAR register 181, 436, 437

D
D bit ... 100, 108, 168
D/B bit .. 97, 102
data prefetch, cache 213
data segment................................. 34, 85, 100

64-bit mode... 86
accessed (A) ... 101
default operand size (D) 102
expand down (E).................................... 101
FS and GS... 34, 86
ignored fields in 64-bit mode................ 108
long mode ... 108
privilege checks 119
type field .. 101
writable (W) ... 101

DAZ bit .. 354
DE bit... 59
DE exception..................................... 260, 263
debug ... 26

See breakpoint and single-step.
debug exception (#DB)............... 65, 248, 394
debug registers.................................... 36, 383

address-breakpoint registers (DR0-DR3)
383

control-transfer recording MSRs.......... 390
debug-control MSR (DebugCtlMSR) ... 389
debug-control register (DR7)................ 386
debug-status register (DR6).................. 384

reserved (DR4, DR5)............................. 384
debug-control MSR (DebugCtlMSR)...... 389
debug-control register (DR7) 386
DebugCtlMSR register 389, 433, 442
debugging extensions (CR4.DE)............... 59
debug-status register (DR6) 384
DEC instruction.. 43
default operand size

B bit, stack segment 102
D bit, code segment 100
D bit, data segment....................... 102, 138
D/B bit, descriptor................................... 97
with expand down 139

denormalized-operand exception (DE). 260,
263

denormals-are-zeros (DAZ) mode 353
descriptor.. 80, 95

available to software (AVL).................... 97
code segment ... 33
data segment ... 34
default operand size (D/B)...................... 97
DPL... 97, 118, 371
gate ... 34
granularity (G)... 98
long mode... 106
present (P) 97, 371
S field ... 97, 371
segment base ... 97
segment limit... 96
system segment 34
TSS.. 360
type field.. 97, 371

descriptor table 80, 87
global-descriptor table (GDT)................ 82
interrupt-descriptor table (IDT) 46
local-descriptor table (LDT)................... 82

descriptor-table registers 33, 82
64-bit mode .. 114
GDTR.. 89
IDTR ... 95
LDTR .. 91

device-not-available exception (#NM) 53,
54, 252

differences (architectural) 29
direct referencing................................... xxvii
dirty (D), page-translation tables 168
displacement .. 39
displacements... xxvii
divide-by-zero-error exception (#DE)..... 248
double quadword.................................... xxvii
double-fault exception (#DF).................. 252

448 Index

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

doubleword.. xxvii
DP field.. 353
DPL .. 118

data segment, 64-bit mode.................... 109
definition .. 118
in call gate protection 129
in data segment protection................... 119
in interrupt stack switch 277
in interrupt to higher privilege............ 278
in protecting conforming CS................. 126
in protecting nonconforming CS 124
in stack segment protection.................. 121
in stack switching 133

DPL field ... 97, 371
DR0-DR3 registers 383
DR4, DR5 registers................................... 384
DR6 register .. 384
DR7 register .. 386
DS field.. 353
DS register... 85, 86

E
E bit ... 101, 405
eAX–eSP register.................................. xxxiii
EFER ... 37, 67

long mode active (LMA).................. 68, 422
long mode enable (LME) 68, 422
system-call extension (SCE) 68

EFER register 436, 437
effective address..................................... 2, 31
effective address size xxviii
effective operand size xxviii
EFLAGS

See rFLAGS.
eFLAGS register xxxiv
EIP

See rIP.
eIP register... xxxiv
EIPV bit ... 307
element.. xxviii
EM bit .. 54, 416
emulate coprocessor (CR0.EM)......... 54, 339
EN bit... 311, 405
endian byte-ordering............................. xxxvi
environment .. 344
error code

page fault.. 266
selector ... 265

ES register... 86
ESP

See rSP.
ET bit ... 54

event handler, definition 241
event mask field 404
exception handler, definition.................. 241
exceptions .. xxviii

abort ... 243
benign... 252
contributory ... 253
definition of ... 241
definition of vector 245
differences in long mode 46
error code, page fault 266
error code, selector 265
fault .. 243
floating-point priorities 269
imprecise.. 242
maskable 128-bit media floating point 244
maskable x87 floating point................. 244
masking during stack switches 244
overview ... 241
precise .. 242
priorities .. 267
trap ... 243
while in SMM... 331

exclusive state, MOESI............................ 197
expand down (E)

data segment ... 101
stack segment 101, 139

exponent .. xxvi
extended family field............................... 414
extended model field............................... 414
extension type (CR0.ET) 54

F
family field.. 414
far control transfer................................... 122
far return... 42, 136
fault ... 243
FCW register 342, 344, 352
feature identification................................. 75
fence instructions..................................... 196
fill, cache-line ... 193
first instruction .. 413
flat segmentation 7, 10, 80
FLDENV, FSTENV instructions 349
floating-point exception pending (#MF) 260

caused by 64-bit media instructions.... 342
floating-point exception priorities 269
flush.. xxviii
FOP register ... 353
FPR registers 342, 344
FS and GS ... 34, 86
FS register .. 86

Index 449

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

FS.Base register 436, 437
FSAVE, FRSTOR instructions................. 344
FSW register 341, 342, 344, 352
FTW register 341, 342, 344, 352
FXSAVE, FXRSTOR instructions 45, 61, 349

32-bit memory image............................. 352
64-bit memory image............................. 351
x87 tag word format............................... 354

G
G bit ... 98, 169
G3–G0 bits ... 387
gate descriptors .. 34

call gate .. 104
DPL ... 118
ignored fields in long mode 112
illegal types in long mode..................... 112
interrupt gate... 104
long mode 111, 114
redefined types in long mode............... 112
target-segment offset 105
target-segment selector......................... 106
task gate ... 104
trap gate ... 104

GD bit .. 387
GDT.. 88
GDTR ... 89
GE bit... 387
general detect fault 248, 399
general-protection exception (#GP)........ 257
general-purpose registers (GPRs) 35
global descriptor table (GDT) 82, 88

base address, 64-bit mode....................... 90
first entry.. 88
limit check, long mode 90

global descriptor-table register (GDTR) .. 89
base address ... 90
limit... 90
loading .. 187
storing ... 187

global page (G), page-translation tables 169
global pages .. 61, 171
granularity (G), descriptor 98, 138
GS register... 86
GS.Base register................................ 436, 438

H
halt ... 188
HLT instruction... 188

I
I/O privilege level field (rFLAGS.IOPL) .. 64
I/O, memory-mapped 232

I/O-permission bitmap
in 32-bit TSS .. 366
in 64-bit TSS .. 369

I/O-permission bitmap (IOPB) 367
ID bit ... 67
IDT... 94
IDTR.. 95
IE exception...................................... 260, 263
IF bit.. 64, 299
IGN ... xxix
immediate operand.................................... 39
imprecise exceptions and interrupts...... 242
INC instruction... 43
indirect ... xxix
inexact-result exception 260, 264
INIT ... 409
initialization ... 409
initialization (INIT).................................. 409

processor state....................................... 410
instructions (system-management) 177
INT bit ... 405
INT3 instruction 250, 399
integer bit ... 355
interrupt descriptor table (IDT)............... 94

limit check, long mode............................ 95
interrupt descriptor-table register (IDTR)

95
loading.. 187
storing .. 187

interrupt flag (rFLAGS.IF) 64, 185
interrupt gate 104, 285

IST field ... 114
interrupt handler, definition................... 241
interrupt redirection........................ 282, 297
interrupt-descriptor table (IDT)

index....................................... 241, 274, 286
protected mode...................................... 274
real-address mode 272

interrupt-redirection bitmap 366
interrupts

definition of external............................ 241
definition of software 241
definition of vector 245
differences in long mode 46
external .. 264
external maskable................................. 243
external nonmaskable 244
external-interrupt priorities 270
imprecise.. 242
long mode summary 285
overview ... 241

450 Index

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

precise... 242
priorities ... 267
returning from 64-bit mode 292
returns .. 281
software .. 264
stack alignment, long mode.................. 289
stack pointer push, long mode 287
stack switch, long mode 46, 290
to higher privilege 276
to same privilege 275
while in SMM ... 331

interrupt-stack table (IST)......... 47, 114, 290
in 64-bit TSS ... 369

interrupt-vector table............................... 272
INTn instruction 264, 399
INTO instruction....................................... 250
INV bit ... 405
invalid arithmetic-operand exception 260
invalid state, MOESI 197
invalid-opcode exception (#UD)........ 44, 251
invalid-operation exception (IE) 260, 263
invalid-TSS exception (#TS) 254
INVD instruction 189, 214
INVLPG instruction.......................... 171, 189
IOPB... 366, 367
IOPL field .. 64, 282
IOPL-sensitive instruction 294
IORRBasen registers 236, 437, 440
IORRMaskn registers 236, 440
IORRs, variable-range.............................. 235
IRET instruction

less privilege .. 281
long mode ... 47, 292
same privilege.. 281

IST field... 114

J
J bit .. 355
jump

See call gate and control transfer.

K
KernelGSbase register 183, 436, 438

L
L bit.. 107
L1 data cache .. 193
L1 instruction cache 193
L2 cache... 193
L3–L0 bits .. 387
LAR instruction .. 187
LastBranchFromIP register...... 391, 434, 442
LastBranchToIP register 391, 434, 442

LastExceptionFromIP register................ 392
LastExceptionToIP register 391
LastIntFromIP register 434, 442
LastIntToIP register......................... 434, 442
LBR bit .. 389
LDT.. 90
LDTR ... 91
LDTselector field 366
LE bit... 387
legacy mode xxix, 16, 30
legacy x86 .. xxix
LEN3–LEN0 bits....................................... 388
LFENCE instruction 213
LGDT instruction 187
LIDT instruction....................................... 187
limit ... 90, 93, 96, 361
linear address ... 3
Link field .. 365
LLDT instruction...................................... 187
LMA bit ... 68
LME bit ... 68
LMSW instruction 184
load ordering .. 213
local descriptor table (LDT) 82, 90

base address, 64-bit mode 93
limit check, long mode............................ 93

local descriptor-table register (LDTR)..... 91
attributes ... 94
base address... 93
hidden portion... 91
LDT selector .. 93
limit .. 93
loading.. 187
storing .. 187

locality... 170
logical address .. 2
long attribute (L)

code segment ... 107
effect on D bit.. 108

long mode..................................... xxix, 14, 29
activating ... 423
consistency checks 424
differences from legacy mode................ 49
enabling ... 422
enabling versus activating.................... 422
GDT requirements 421
IDT requirements.................................. 420
leaving .. 425
page translation-table requirements... 421
relocating descriptor tables 424
relocating page tables........................... 425

Index 451

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

TSS requirements 421
use of CS.L and CS.D............................. 422

long mode active (EFER.LMA) 68, 422
long mode enable (EFER.LME) 68, 422
LSB.. xxix
lsb.. xxix
LSTAR register 181, 436, 437
LTR instruction... 187

M
M bit... 355
machine check

error codes.. 310
error sources... 304
error-reporting address register

(MCi_ADDR) 312
error-reporting control register (MCi_CTL)

308
error-reporting miscellaneous register

(MCi_MISC)...................................... 312
error-reporting register banks.............. 308
error-reporting status register

(MCi_STATUS)................................. 309
global-capabilities register (MCG_CAP)

306
global-control register (MCG_CTL) 307
global-status register (MCG_STATUS) 306
initialization ... 312

machine check registers........................... 305
machine-check enable (CR4.MCE) ... 60, 262
machine-check exception (#MC) 262

fatal ... 304
recoverable ... 304

mask... xxx
masking

definition of interrupt........................... 242
MBZ.. xxx
MCA error code field 310
MCE bit ... 60
MCG_CAP register 306, 433, 441
MCG_CTL register.................... 307, 433, 441
MCG_CTL_P bit .. 306
MCG_STATUS register............. 306, 433, 441
MCi_ADDR registers 312, 436, 441
MCi_CTL registers............ 308, 309, 435, 441
MCi_MISC registers.................. 312, 436, 442
MCi_STATUS registers............. 309, 435, 441
MCIP bit .. 307
memory .. 191
memory addressing

canonical address form 5
effective address .. 2

linear address .. 3
logical address ... 2
near pointers.. 3
physical address .. 3
real address.. 11
RIP-relative address................................ 39
segment offset ... 2
virtual address... 3

memory management 6
memory serialization 213
memory system... 191
memory type... 200

determining effective 225
memory-access ordering

description ... 194
read ordering ... 195
write ordering.. 195

memory-mapped I/O
directing reads and writes to 233, 237

memory-type range register (MTRR)....... 37
combined with PAT 231
effect of paging cache controls 225
effects with large page sizes 226
fixed range ... 218
identifying features 224
initial value.. 415
IORRBase... 236
IORRMask ... 236
MTRRcap ... 224
MTRRdefType 224
MTRRfix16K.. 220
MTRRfix4K.. 220
MTRRfix64K.. 220
MTRRphysBase 221
MTRRphysMask.................................... 221
overlapping ranges................................ 227
type field, default 216
type field, extended.............................. 233
variable range.. 220
variable range size and alignment 222

MFENCE instruction 213
MISCV bit ... 311
MMX registers .. 341
model field.. 414
model-specific error code field 310
model-specific registers (MSRs) . 37, 69, 186

control-transfer recording 390
debug extensions..................................... 73
debug-control MSR (DebugCtlMSR)... 389
FS.base ... 87
GS.base... 87

452 Index

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

initializing .. 417
machine check.................................. 74, 305
memory typing 72, 217
PAT.. 228
performance monitoring 73, 402
SYSCFG .. 70
system linkage 72, 181
time-stamp counter.......................... 73, 406
TOP_MEM .. 237
TOP_MEM2 .. 237

modes... 12
16-bit .. xxvi
32-bit .. xxvi
64-bit .. xxvi, 15
compatibility xxvi, 15
legacy ... xxix, 16
long... xxix, 14
protected ... xxxi, 16
real ... xxxi, 4, 16
virtual-8086 xxxiii, 17

modified state, MOESI............................. 197
MOESI ... 197
moffset... xxx
monitor coprocessor (CR0.MP) 53
MOV CRn instruction............................... 184
MOV DRn instruction............................... 185
MOVSXD instruction.................................. 43
MP bit .. 53, 416
MSB.. xxx
msb... xxx
MSR .. xxxiv
MSRs.. 69
MTRRcap register 224, 433, 439
MTRRdefType register 224, 435, 440
MTRRfix16K_n registers 220
MTRRfix4K_n registers 220
MTRRfix64K_n registers 220, 435, 440
MtrrFixDramEn bit 71, 234
MtrrFixDramModEn bit..................... 71, 234
MTRRphysBasen registers....... 221, 434, 439
MTRRphysMaskn registers 221, 439
MTRRs... 217
MtrrTom2En bit 71, 239
MtrrVarDramEn bit............................ 71, 239
MXCSR field ... 353
MXCSR register.. 340
MXCSR_MASK field 353

N
NE bit... 55, 416
near branch

operand size, 64-bit mode 40

near control transfer................................ 122
near pointers .. 3
near return.. 135
nested task (rFLAGS.NT).................. 65, 377
NMI.. 250
no-execute (NX)

page protection...................................... 173
page-translation tables, bit in 169

nonmaskable interrupt exception (NMI) 250
while in SMM... 330

non-PAE paging .. 148
CR3 format... 149

NOP instruction.. 43
not write-through (CR0.NW)............. 55, 211
NT bit .. 65
null selector .. 84

64-bit mode far return 137
interrupt return from 64-bit mode 293
long mode interrupts 290, 291
long mode stack switch 134

numeric error (CR0.NE) 55, 261
NW bit ... 55
NX bit .. 169, 173
NXE bit ... 69

O
octword.. xxx
OE exception 260, 263
offset.. xxx, 105
operand-size prefix..................................... 38
operating modes... 12
OS bit... 404
OS FXSAVE/FXRSTOR support

(CR4.OSFXSR) 338
OS unmasked exception support

(CR4.OSXMMEXCPT) 263, 339
OSFXSR bit .. 61
OSXMMEXCPT bit 61
OVER bit... 311
overflow.. xxxi
overflow exception (#OF)........................ 250
overflow exception (OE).................. 260, 263
owned state, MOESI 197

P
P bit ... 97, 167, 371
packed .. xxxi
PAE bit .. 60, 147
PAE paging ... 31, 148

CR3 format....................................... 57, 149
CR3 format, long mode......................... 159
legacy mode ... 154
long mode... 160

Index 453

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

page directory ... 149
page size (PS) 148, 152, 154

page directory pointer...................... 149, 154
page size (PS), page-translation tables... 168
page table .. 149
page translation .. 143
page-attribute table (PAT)....................... 228

combined with MTRR 231
effect on memory access 230
identifying support................................ 230
indexing .. 229
page-translation tables, bit in............... 169

page-fault exception (#PF) 167, 173, 174,
259

page-fault virtual address 259
page-global enable (CR4.PGE).......... 61, 171
page-level cache disable (PCD)............... 211

CR3, bit in .. 150
page-translation tables, bit in............... 168

page-level write-through (PWT).............. 212
CR3, bit in .. 150
page-translation tables, bit in............... 168

page-map level-4 159
page-size extensions (CR4.PSE). 32, 60, 147,

152
40-bit physical address support.... 148, 153
unsupported in long mode 147

page-translation cache 170
page-translation tables............................... 32

accessed (A) ... 168
available to software (AVL) 169
dirty (D) .. 168
global page (G)....................................... 169
hierarchy... 145
no-execute .. 169
page directory entry (PDE) 149
page size (PS) ... 168
page table entry (PTE).......................... 149
page-attribute table (PAT).................... 169
page-directory pointer entry (PDPE) ... 32,

149, 154
page-level cache disable (PCD) 168
page-level write-through (PWT)........... 168
page-map level-4 entry (PML4E) ... 32, 159
physical-page base address................... 166
present (P).. 167
read/write (R/W) 167
translation-table base address.............. 166
user/supervisor (U/S)............................. 167

paging .. 8, 31, 143
See also PAE paging and non-PAE paging.

effect of segment protection 176
protection across translation hierarchy

174
protection checks 172
supported translations.......................... 145

paging enable (CR0.PG).................... 56, 147
activating long mode..................... 147, 424

parameter count field 106
PAT

See page-attribute table (PAT).
PAT bit... 169
PAT register 228, 435, 440
PBi bits .. 390
PC bit... 405
PCC bit .. 311
PCD bit...................................... 150, 160, 168
PCE bit .. 61
PDE.. 149
PDPE ... 149
PE bit... 53
PE exception..................................... 260, 264
PerfCtrn registers..................... 402, 436, 443
PerfEvtSeln registers............... 403, 436, 443
performance counter 186
performance counter enable (CR4.PCE) 61,

186, 402
performance optimization................. 26, 401
performance-monitoring counter

overflow.. 406
PerfCtrn ... 402
PerfEvtSeln.. 403
starting and stopping............................ 406

PG bit .. 56, 147
PGE bit.. 61
physical address 3, 31

as index into cache................................ 209
physical memory .. 4
physical-address extensions (CR4.PAE) . 31,

32, 60, 147, 158
activating long mode..................... 147, 423
See also PAE paging.

POP instruction .. 185
precise exceptions and interrupts 242
precision exception (PE) 260, 264
PREFETCH instruction........................... 213
present (P)

descriptor... 97, 371
page-translation tables 167

principle of locality.................................. 170
priorities, interrupt.................................. 267
privilege level ... 117

454 Index

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

probe, cache 194, 198
during cache disable.............................. 211

processor feature identification
(rFLAGS.ID) 67

processor halt.. 188
processor state .. 410
protected mode xxxi, 16

initial operating environment 419
protected-mode virtual interrupts (CR4.PVI)

59
protection checks

adjusting RPL .. 188
call gate .. 129
checking access rights 187
data segment .. 119
direct call, conforming 126
direct call, nonconforming.................... 124
enabling .. 78
far return .. 136
interrupt return 281
interrupt to higher privilege 278
limit check, 64-bit mode........................ 138
long mode changes 35
long mode interrupt 290
long mode interrupt return 292
stack segment... 121
type check... 139
verifying read/write access 188

protection enable (CR0.PE) 53, 78, 87
PS bit ... 148, 168
PSE bit ... 60
PSE paging .. 32
PTE .. 149
PUSH instruction...................................... 185
PVI bit ... 59
PWT bit...................................... 150, 159, 168

Q
quadword.. xxxi

R
R bit ... 99
R/W bit... 167, 174
R/W3–R/W0 bits .. 388
r8–r15.. xxxiv
rAX–rSP... xxxv
RAZ... xxxi
RdMem, MTRR type field 71, 233
RDMSR instruction 69, 186
RDP field... 353
RDPMC instruction 61, 186, 402
RDTSC instruction 59, 186, 407
read hit .. 193

read miss ... 193
read ordering .. 213
read/write (R/W)

page protection...................................... 174
page-translation tables, bit in 167

readable (R), code segment 99
real address... 11
real address mode. See real mode
real mode xxxi, 4, 16

initial operating environment.............. 418
registers

See also entries for individual registers.
128-bit media registers (XMM).............. 36
address-breakpoint registers (DR0-DR3)....

383
control registers................................. 36, 51
control-transfer recording MSRs 390
CR0 ... 53
CR2 ... 259
CR3 32, 57, 149, 159
CR4 ... 58
CSTAR.. 181
debug registers 36, 383
debug-control MSR (DebugCtlMSR)... 389
debug-control register (DR7) 386
debug-extension MSRs 73
debug-status register (DR6) 384
descriptor-table registers.................. 33, 82
eAX–eSP ... xxxiii
EFER .. 37, 67
eFLAGS ... xxxiv
eIP.. xxxiv
FPR... 342, 344
FS and GS .. 86
FS.base ... 87
GDTR.. 89
GPRs... 35
GS.base... 87
IDTR ... 95
IORRBase... 236
IORRMask ... 236
last x87 data pointer 342, 344, 353
last x87 instruction pointer.. 342, 344, 353
LDTR .. 91
LSTAR .. 181
machine-check MSRs 74
MCG_CAP .. 306
MCG_CTL .. 307
MCG_STATUS 306
MCi_ADDR .. 312
MCi_CTL .. 308

Index 455

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

MCi_MISC .. 312
MCi_STATUS ... 309
memory-type range register (MTRR) ... 37,

72, 217
MMX ... 341
model-specific registers (MSRs)............. 37
MTRR, fixed range 218
MTRR, variable range........................... 220
MTRRcap.. 224
MTRRdefType.. 224
MTRRfix16K .. 220
MTRRfix4K .. 220
MTRRfix64K .. 220
MTRRphysBase...................................... 221
MTRRphysMask 221
MXCSR ... 340
PAT.. 228
PerfCtrn .. 402
PerfEvtSeln .. 403
performance-monitoring MSRs 73
r8–r15 ... xxxiv
rAX–rSP.. xxxv
rFLAGS..................................... xxxv, 36, 62
rIP.. xxxv
rSP... 36
segment registers..................................... 84
STAR ... 181
SYSCFG .. 70
SYSENTER_CS 183
SYSENTER_EIP 183
SYSENTER_ESP.................................... 183
system-linkage MSRs 72
task-priority register (CR8) 48, 62, 270
time-stamp counter.......................... 73, 406
TOP_MEM .. 71, 237
TOP_MEM2 71, 237
x87 FCW 342, 344, 352
x87 floating-point processor state........ 342
x87 FSW.......................... 341, 342, 344, 352
x87 FTW.......................... 341, 342, 344, 352
x87 opcode.............................. 342, 345, 353
XMM registers.. 340

relative.. xxxi
replacement, cache-line 194
reset ... 409

processor state 410
RESET# signal .. 409
resume flag (rFLAGS.RF).......... 65, 249, 398
RET instruction .. 135

from 64-bit mode.................................... 137
long mode ... 42, 136

popping null selector, 64-bit mode 137
stack switch.. 136

retire, instruction 194
revision history.. xxi
REX prefix .. 37
RF bit .. 65
rFLAGS ... 36, 62

alignment check (AC) 66, 261
I/O privilege level field (IOPL) 64
interrupt flag (IF) 64, 185
nested task (NT).............................. 65, 377
processor feature identification (ID) 67
resume flag (RF) 65, 249, 398
trap flag (TF) ... 63
virtual interrupt (VIF).................... 66, 296
virtual interrupt pending (VIP)..... 66, 296
virtual-8086 mode (VM) 65

rFLAGS register xxxv
rIP .. 36
rIP register.. xxxv
RIP-relative address................................... 39
RIP-relative addressing xxxii
RIPV bit .. 307
RPL.. 83, 118

adjusting .. 188
definition ... 118
in call gate protection........................... 130
in data segment protection 119
in far return ... 136
in IRET instruction 281
in protecting conforming CS 126
in protecting nonconforming CS.......... 124
in stack segment protection 121

RPL field... 360
RSM instruction 319, 335
rSP ... 36

call gate stack switch 132
implicit reference.................................... 39

S
S bit ... 97, 371
SCE bit .. 68
segment base .. 97
segment limit.. 96
segment offset .. 2
segment registers 82, 84

64-bit mode .. 85
accessing .. 186
hidden portion... 84
initializing unused registers................... 84

segmentation .. 6, 33
64-bit mode .. 80

456 Index

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

combining with paging............................ 10
flat segmentation........................... 7, 10, 80
multi-segmented model........................... 79

segment-not-present exception (#NP) 255
segment-override prefix............................. 38
selector 81, 82, 83, 93, 106, 360
selector index.. 83
self-modifying code 209
serializing instructions............................. 214
set ... xxxii
SF exception.. 260
SFENCE instruction................................. 213
SGDT instruction...................................... 187
shared state, MOESI................................. 197
shut down .. 253
SIDT instruction 187
SIMD floating-point exception (#XF) 61,

263, 339
single-step

all instructions 382, 398
control-transfers............................. 382, 400

SLDT instruction 187
SMBASE register 321
SMI... 319
SMM... 319
SMM interrupts... 330
SMM revision identifier 328
SMM state-save area................................. 322
SMRAM ... 320
SMRAM state-save area 322
SMSW instruction..................................... 184
speculative execution............................... 194
SS register ... 86
SSE... xxxii
SSE-2.. xxxii
stack exception (#SS) 256
stack pointers

in 32-bit TSS ... 365
in 64-bit TSS ... 369

stack segment...................................... 85, 100
64-bit mode... 86
default operand size (D) 102
expand down (E).................................... 101
privilege checks 121

stack switch
call gate .. 132
call gate, long mode......................... 42, 134
far return .. 136
interrupt ... 277
interrupt return 281
interrupt, long mode 46

stack-fault exception (SF) 260
STAR register 181, 436, 437
status word.. 184
stepping ID field 414
STI instruction.. 185
sticky bits .. xxxii
store ordering ... 213
STR instruction .. 187
supervisor page .. 173
SWAPGS instruction 183
SYSCALL Flag Mask register 181
SYSCALL, SYSRET instructions...... 68, 180
SYSCFG

MtrrFixDramEn............................... 71, 234
MtrrFixDramModEn 71, 234
MtrrTom2En .. 239
MtrrVarDramEn 71, 239

SYSCFG register 70, 436, 440
SYSENTER, SYSEXIT instructions 182

illegal in long mode 182
SYSENTER_CS register 183, 433, 438
SYSENTER_EIP register......... 183, 433, 438
SYSENTER_ESP register........ 183, 433, 438
system call and return 179
system data structures............................... 20
system management interrupt (SMI).... 319,

329
while in SMM... 330

system management mode (SMM) 17, 30
leaving .. 335
long mode differences 320
operating environment 329
revision identifier 328
saving processor state........................... 332
SMBASE register................................... 321
SMRAM.. 320
state-save area, legacy 326
state-save area, x86-64 architecture 322

system registers.. 17
system segment 34, 95, 102

ignored fields in 64-bit mode 110
illegal types in long mode 109
long mode... 109
type field.. 103

system-call extension (EFER.SCE) 68
system-linkage MSRs......................... 72, 181

T
T bit ... 366
table indicator, selector............................. 83
task gate.. 104

in task switching.................................... 375

Index 457

24593—Rev. 3.07—September 2002 AMD 64-Bit Technology

long mode ... 114
Task Register (TR) 82
task register (TR) 361

loading .. 187
selector ... 360
storing ... 187

task switch... 357, 373
disabled in long mode 48
lazy context switch........................... 54, 356
nesting tasks... 377
preventing recursion 379

task switched (CR0.TS) 54, 185
task, execution space 357
task-priority register (CR8) 48, 62, 270
task-state segment (TSS)

descriptor ... 360
dynamic fields.. 365
I/O-permission bitmap................... 366, 369
interrupt-redirection bitmap 366
interrupt-stack table.............................. 369
legacy 32-bit ... 363
link field ... 377
software-defined fields.......................... 365
stack pointers 365, 369
static fields ... 365

TF bit ... 63
TI bit .. 83, 360
time-stamp counter........................... 186, 406
time-stamp disable (CR4.TSD).. 59, 186, 407
TLB... 169, 170

explicit invalidation 172, 189
implicit invalidation 172

top of memory ... 237
TOP_MEM register............. 71, 237, 437, 440
TOP_MEM2 register 71, 237, 437, 440
TPR register 48, 62, 271
TR register .. 358, 361
translation lookaside buffer (TLB) 170
trap... 243
trap flag (rFLAGS.TF)................................ 63
trap gate .. 104, 285
TS bit ... 54
TSC register 406, 433, 443
TSD bit... 59
TSS ... xxxii, 358, 363
TSS descriptor .. 358
TSS selector 106, 358
type check ... 139
Type field..................................... 97, 361, 371

U
U/S bit .. 167, 173

UC bit .. 311
UC memory type 200
UD2 instruction.. 251
UE exception 260, 264
uncacheable (UC), memory type 200
uncacheable (UC-), memory type 228
underflow.. xxxii
underflow exception (UE)............... 260, 264
unit mask field ... 404
user page... 173
user segment... 95
user/supervisor (U/S)

page protection...................................... 173
page-translation tables, bit in 167

USR bit.. 404

V
VAL bit .. 311
Variable-range IORRs.............................. 235
vector... xxxii
vector, interrupt 245
VERR instruction..................................... 188
VERW instruction 188
VIF bit ... 66
VIP bit ... 66
virtual address.. 3, 31
virtual interrupt (rFLAGS.VIF)........ 66, 296
virtual interrupt pending (rFLAGS.VIP) 66,

296
virtual interrupts 64, 66, 293, 296
virtual interrupts, protected mode......... 298
virtual memory ... 4
virtual-8086 mode xxxiii, 17

interrupt to protected mode 283
interrupts ... 282

virtual-8086 mode (rFLAGS.VM) 65
virtual-8086 mode extensions (CR4.VME)

59, 294
VM bit ... 65
VME... 294
VME bit... 59, 282

W
W bit .. 101
WAIT/FWAIT instruction 53
WB memory type...................................... 202
WBINVD instruction........................ 189, 214
WC memory type...................................... 201
WP bit.. 55, 174
WP memory type...................................... 201
writable (W), data segment..................... 101
write buffer....................................... 194, 204

emptying .. 204

458 Index

AMD 64-Bit Technology 24593—Rev. 3.07—September 2002

write hit ... 193
write miss .. 193
write ordering 195, 213
write protect (CR0.WP) 55

page protection 174
write-back (WB), memory type................ 202
writeback, cache line................................ 194
write-combining (WC), memory type 201
write-combining buffer 194, 205

emptying... 206
write-protect (WP), memory type 201
write-though (WT), memory type............ 202
WrMem, MTRR type field 71, 233
WRMSR instruction 69, 186
WT memory type 202

X
x87 control word 342, 344, 352
x87 data pointer register 342, 344, 353
x87 environment 344
x87 floating-point instructions

feature identification 338
initializing .. 415
processor state 342
saving state... 344

x87 instruction pointer register 342, 344,
353

x87 opcode register 342, 345, 353
x87 status word 341, 342, 344, 352
x87 tag word 341, 342, 344, 352

FXSAVE format 354
XMM registers .. 340

Z
ZE exception 260, 263
zero extension 38, 39
zero-divide exception (ZE) 260, 263

	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Definitions
	Related Documents

	1 System-Programming Overview
	1.1 Memory Model
	1.1.1 Memory Addressing
	Logical Addresses
	Effective Addresses
	Linear (Virtual) Addresses
	Physical Addresses

	1.1.2 Memory Organization
	Virtual Memory
	Physical Memory

	1.1.3 Canonical Address Form

	1.2 Memory Management
	1.2.1 Segmentation
	Flat Segmentation.

	1.2.2 Paging
	1.2.3 Mixing Segmentation and Paging
	1.2.4 Real Addressing

	1.3 Operating Modes
	1.3.1 Long Mode
	1.3.2 64-Bit Mode
	1.3.3 Compatibility Mode
	1.3.4 Legacy Modes
	Real Mode
	Protected Mode
	Virtual-8086 Mode

	1.3.5 System Management Mode (SMM)

	1.4 System Registers
	1.5 System-Data Structures
	1.6 Interrupts
	1.7 Additional System-Programming Facilities
	1.7.1 Hardware Multitasking
	1.7.2 Machine Check
	1.7.3 Software Debugging
	1.7.4 Performance Monitoring

	2 x86 and x86�64 Architecture Differences
	2.1 Operating Modes
	2.1.1 Long Mode
	64-Bit Mode
	Compatibility Mode
	Unsupported Modes

	2.1.2 Legacy Mode
	2.1.3 System- Management Mode

	2.2 Memory Model
	2.2.1 Memory Addressing
	Virtual-Memory Addressing
	Physical-Memory Addressing
	Effective Addressing.

	2.2.2 Page Translation
	Physical-Address Extensions (PAE)
	Page-Size Extensions (PSE)
	Paging Data Structures
	CR3 Register
	Legacy-Mode Enhancements

	2.2.3 Segmentation
	Descriptor-Table Registers
	Code-Segment Descriptors
	Data-Segment Descriptors
	System-Segment Descriptors
	Gate Descriptors

	2.3 Protection Checks
	2.4 Registers
	2.4.1 General-Purpose Registers
	2.4.2 128-Bit Media Registers
	2.4.3 Flags Register
	2.4.4 Instruction Pointer
	2.4.5 Stack Pointer
	2.4.6 Control Registers
	2.4.7 Debug Registers
	2.4.8 Extended Feature Register (EFER)
	2.4.9 Memory Type Range Registers (MTRRs)
	2.4.10 Other Model- Specific Registers (MSRs)

	2.5 Instruction Set
	2.5.1 REX Prefixes
	Default 64-Bit Operand Size

	2.5.2 Segment- Override Prefixes in 64-Bit Mode
	2.5.3 Operands and Results
	Operand-Size Overrides
	Zero Extension of Results

	2.5.4 Address Calculations
	Address-Size Overrides
	Displacements and Immediates
	Zero Extending 16-Bit and 32-Bit Addresses
	RIP-Relative Addressing

	2.5.5 Instructions that Reference RSP
	2.5.6 Branches
	Near Branches
	Far Branches Through Long-Mode Call Gates
	Stack Switching
	Far Returns
	Task Gates
	Branches to 64-Bit Offsets
	SYSCALL and SYSRET Instructions
	SWAPGS Instruction
	SYSENTER and SYSEXIT Instructions

	2.5.7 NOP Instruction
	2.5.8 Single-Byte INC and DEC Instructions
	2.5.9 MOVSXD Instruction
	2.5.10 Invalid Instructions
	2.5.11 FXSAVE and FXRSTOR Instructions

	2.6 Interrupts and Exceptions
	2.6.1 Interrupt Descriptor Table
	2.6.2 Stack Frame Pushes
	2.6.3 Stack Switching
	Long-Mode Stack Switches
	Interrupt Stack Table

	2.6.4 IRET Instruction
	2.6.5 Task-Priority Register (CR8)
	2.6.6 New Exception Conditions

	2.7 Hardware Task Switching
	2.8 Long-Mode vs. Legacy-Mode Differences

	3 System Resources
	3.1 System-Control Registers
	3.1.1 CR0 Register
	Protected-Mode Enable (PE) Bit
	Monitor Coprocessor (MP) Bit
	Emulate Coprocessor (EM) Bit
	Task Switched (TS) Bit
	Extension Type (ET) Bit
	Numeric Error (NE) Bit
	Write Protect (WP) Bit
	Alignment Mask (AM) Bit
	Not Writethrough (NW) Bit
	Cache Disable (CD) Bit
	Paging Enable (PG) Bit
	Reserved Bits

	3.1.2 CR2 and CR3 Registers
	3.1.3 CR4 Register
	Virtual-8086 Mode Extensions (VME) Bit
	Protected-Mode Virtual Interrupts (PVI) Bit
	Time-Stamp Disable (TSD) Bit
	Debugging Extensions (DE) Bit
	Page-Size Extensions (PSE) Bit
	Physical-Address Extension (PAE) Bit
	Machine-Check Enable (MCE) Bit
	Page-Global Enable (PGE) Bit
	Performance-Monitoring Counter Enable (PCE) Bit
	FXSAVE/FXRSTOR Support (OSFXSR) Bit
	Unmasked Exception Support (OSXMMEXCPT) Bit

	3.1.4 CR1 and CR5–CR7 Registers
	3.1.5 64-Bit-Mode Extended Control Registers
	3.1.6 CR8 (Task Priority Register, TPR)
	3.1.7 RFLAGS Register
	Trap Flag (TF) Bit
	Interrupt Flag (IF) Bit
	I/O Privilege Level Field (IOPL) Field
	Nested Task (NT) Bit
	Resume Flag (RF) Bit
	Virtual-8086 Mode (VM) Bit
	Alignment Check (AC) Bit
	Virtual Interrupt (VIF) Bit
	Virtual Interrupt Pending (VIP) Bit
	Processor Feature Identification (ID) Bit

	3.1.8 Extended Feature Enable Register (EFER)
	System-Call Extension (SCE) Bit
	Long Mode Enable (LME) Bit
	Long Mode Active (LMA) Bit
	No-Execute Enable (NXE) Bit

	3.2 Model-Specific Registers (MSRs)
	3.2.1 System Configuration Register (SYSCFG)
	MtrrFixDramEn Bit
	MtrrFixDramModEn Bit
	MtrrVarDramEn Bit
	MtrrTom2En Bit

	3.2.2 System-Linkage Registers
	STAR, LSTAR, CSTAR, and SFMASK Registers
	FS.base and GS.base Registers
	KernelGSbase Register
	SYSENTERx Registers

	3.2.3 Memory-Typing Registers
	MTRRcap Register
	MTRRdefType Register
	MTRRphysBasen and MTRRphysMaskn Registers
	MTRRfixn Registers
	PAT Register
	TOP_MEM and TOP_MEM2 Registers

	3.2.4 Debug- Extension Registers
	DebugCtlMSR Register
	LastBranchx and LastExceptionx Registers

	3.2.5 Performance- Monitoring Registers
	TSC Register
	PerfEvtSeln Registers
	PerfCtrn Registers

	3.2.6 Machine-Check Registers
	MCG_CAP Register
	MCG_CTL Register
	MCG_STATUS Register
	MCi_CTL Registers
	MCi_STATUS Registers
	MCi_ADDR Registers
	MCi_MISC Registers

	3.3 Processor Feature Identification

	4 Segmented Virtual Memory
	4.1 Real Mode Segmentation
	4.2 Virtual-8086 Mode Segmentation
	4.3 Protected Mode Segmented-Memory Models
	4.3.1 Multi- Segmented Model
	4.3.2 Flat-Memory Model
	4.3.3 Segmentation in 64-bit mode

	4.4 Segmentation Data Structures and Registers
	4.5 Segment Selectors and Registers
	4.5.1 Segment Selectors
	Selector Index Field
	Table Indicator (TI) Bit
	Requestor Privilege-Level (RPL) Field
	Null Selector

	4.5.2 Segment Registers
	CS Register
	Data-Segment Registers

	4.5.3 Segment Registers in 64-bit Mode
	CS Register in 64-Bit Mode
	DS, ES, and SS Registers in 64-Bit Mode
	FS and GS Registers in 64-Bit Mode

	4.6 Descriptor Tables
	4.6.1 Global Descriptor Table
	4.6.2 Global Descriptor-Table Register
	Limit
	Base Address

	4.6.3 Local Descriptor Table
	4.6.4 Local Descriptor-Table Register
	LDT Selector.
	Base Address
	Limit
	Attributes

	4.6.5 Interrupt Descriptor Table
	4.6.6 Interrupt Descriptor-Table Register

	4.7 Legacy Segment Descriptors
	4.7.1 Descriptor Format
	Segment Limit
	Base Address
	S Bit and Type Field
	Descriptor Privilege-Level (DPL) Field
	Present (P) Bit
	Available To Software (AVL) Bit
	Default Operand Size (D/B) Bit
	Granularity (G) Bit
	Reserved Bits

	4.7.2 Code-Segment Descriptors
	Conforming (C) Bit
	Readable (R) Bit
	Accessed (A) Bit
	Code-Segment Default-Operand Size (D) Bit

	4.7.3 Data-Segment Descriptors
	Expand-Down (E) Bit
	Writable (W) Bit
	Accessed (A) Bit
	Data-Segment Default Operand Size (D/B) Bit

	4.7.4 System Descriptors
	4.7.5 Gate Descriptors
	Target Code-Segment Offset
	Target Code-Segment Selector
	TSS Selector
	Parameter Count (Call Gates Only)

	4.8 Long-Mode Segment Descriptors
	4.8.1 Code-Segment Descriptors
	Fields Ignored in 64-Bit Mode
	Long (L) Attribute Bit

	4.8.2 Data-Segment Descriptors
	Fields Ignored in 64-Bit Mode

	4.8.3 System Descriptors
	4.8.4 Gate Descriptors
	IST Field (Interrupt and Trap Gates)
	Count Field (Call Gates)

	4.8.5 Long Mode Descriptor Summary

	4.9 Segment-Protection Overview
	4.9.1 Privilege-Level Concept
	4.9.2 Privilege-Level Types
	Current Privilege-Level
	Descriptor Privilege-Level
	Requestor Privilege-Level

	4.10 Data-Access Privilege Checks
	4.10.1 Accessing Data Segments
	4.10.2 Accessing Stack Segments

	4.11 Control-Transfer Privilege Checks
	4.11.1 Direct Control Transfers
	Nonconforming Code Segments
	Conforming Code Segments

	4.11.2 Control Transfers Through Call Gates
	Transfer Mechanism
	Privilege Checks
	Stack Switching

	4.11.3 Return Control Transfers
	Stack Switching
	Nested Returns to 64-Bit Mode Procedures

	4.12 Limit Checks
	4.12.1 Determining Limit Violations
	Expand-down segments.

	4.13 Type Checks
	4.13.1 Type Checks in Legacy and Compatibility Modes
	Descriptor-Table Register Loads
	Segment Register Loads
	Control Transfers
	Segment Access

	4.13.2 Long Mode Type Check Differences
	Compatibility Mode and 64-bit Mode
	64-bit Mode

	5 Page Translation and Protection
	5.1 Page Translation Overview
	5.1.1 Page-Translation Options
	5.1.2 Page-Translation Enable (PG) Bit
	5.1.3 Physical-Address Extensions (PAE) Bit
	5.1.4 Page-Size Extensions (PSE) Bit
	5.1.5 Page-Directory Page Size (PS) Bit

	5.2 Legacy-Mode Page Translation
	5.2.1 CR3 Register
	5.2.2 Normal (Non- PAE) Paging
	4-Kbyte Page Translation
	4-Mbyte Page Translation

	5.2.3 PAE Paging
	4-Kbyte Page Translation
	2-Mbyte Page Translation

	5.3 Long-Mode Page Translation
	5.3.1 Canonical Address Form
	5.3.2 CR3
	5.3.3 4-Kbyte Page Translation
	5.3.4 2-Mbyte Page Translation

	5.4 Page-Translation-Table Entry Fields
	5.4.1 Field Definitions
	Translation-Table Base Address Field
	Physical-Page Base Address Field
	Present (P) Bit
	Read/Write (R/W) Bit
	User/Supervisor (U/S) Bit
	Page-Level Writethrough (PWT) Bit
	Page-Level Cache Disable (PCD) Bit
	Accessed (A) Bit
	Dirty (D) Bit
	Page Size (PS) Bit
	Global Page (G) Bit
	Available to Software (AVL) Bit
	Page-Attribute Table (PAT) Bit
	No Execute (NX) Bit
	Reserved Bits

	5.5 Translation-Lookaside Buffer (TLB)
	5.5.1 Global Pages
	5.5.2 TLB Management
	Explicit Invalidations
	Implicit Invalidations

	5.6 Page-Protection Checks
	5.6.1 No Execute (NX) Bit
	5.6.2 User/Supervisor (U/S) Bit
	5.6.3 Read/Write (R/W) Bit
	5.6.4 Write Protect (CR0.WP) Bit

	5.7 Protection Across Paging Hierarchy
	5.7.1 Access to User Pages when CR0.WP=1

	5.8 Effects of Segment Protection

	6 System-Management Instructions
	6.1 Fast System Call and Return
	6.1.1 SYSCALL and SYSRET
	SYSCALL and SYSRET Instructions
	SYSCALL and SYSRET MSRs

	6.1.2 SYSENTER and SYSEXIT (Legacy Mode Only)
	SYSENTER and SYSEXIT Instructions
	SYSENTER and SYSEXIT MSRs

	6.1.3 SWAPGS Instruction

	6.2 System Status and Control
	6.2.1 Processor Feature Identification (CPUID)
	CPUID Instruction

	6.2.2 Accessing Control Registers
	MOV CRn Instructions
	LMSW and SMSW Instructions
	CLTS Instruction

	6.2.3 Accessing the RFLAGs Register
	POPF and PUSHF Instructions
	CLI and STI Instructions

	6.2.4 Accessing Debug Registers
	6.2.5 Accessing Model-Specific Registers
	RDMSR and WRMSR Instructions
	RDPMC Instruction
	RDTSC Instruction

	6.3 Segment Register and Descriptor Register Access
	6.3.1 Accessing Segment Registers
	MOV, POP, and PUSH Instructions

	6.3.2 Accessing Descriptor-Table Registers
	LGDT and LIDT Instructions
	LLDT and LTR Instructions
	SGDT and SIDT Instructions
	SLDT and STR Instructions

	6.4 Protection Checking
	6.4.1 Checking Access Rights
	LAR Instruction

	6.4.2 Checking Segment Limits
	LSL Instruction

	6.4.3 Checking Read/Write Rights
	VERR and VERW Instructions

	6.4.4 Adjusting Access Rights
	ARPL Instruction

	6.5 Processor Halt
	6.6 Cache and TLB Management
	6.6.1 Cache Management
	WBINVD Instruction
	INVD Instruction

	6.6.2 TLB Invalidation
	INVLPG Instruction

	7 Memory System
	7.1 Memory-Access Ordering
	7.1.1 Read Ordering
	7.1.2 Write Ordering
	7.1.3 Read/Write Barriers

	7.2 Memory Coherency and Protocol
	7.2.1 Special Coherency Considerations

	7.3 Memory Types
	7.4 Buffering and Combining Memory Writes
	7.4.1 Write Buffering
	7.4.2 Write Combining

	7.5 Memory Caches
	7.5.1 Cache Organization and Operation
	Self-Modifying Code

	7.5.2 Cache Control Mechanisms
	Cache Disable
	Writethrough Disable
	Page-Level Cache Disable
	Page-Level Writethrough Enable
	Memory Typing
	Cache Control Precedence

	7.5.3 Cache and Memory Management Instructions
	Data Prefetch
	Memory Ordering
	Cache Line Flush
	Cache Writeback and Invalidate
	Cache Invalidate

	7.5.4 Serializing Instructions

	7.6 Memory-Type Range Registers
	7.6.1 MTRR Type Fields
	7.6.2 MTRRs
	Fixed-Range MTRRs
	Variable-Range MTRRs
	MTRRphysBasen Registers
	MTRRphysMaskn Registers
	Variable Range Size and Alignment
	PhysMask and PhysBase Values
	Default-Range MTRRs

	7.6.3 Using MTRRs
	Identifying MTRR Features

	7.6.4 MTRRs and Page Cache Controls
	Large Page Sizes
	Overlapping MTRR Registers

	7.6.5 MTRRs in Multi- Processing Environments

	7.7 Page-Attribute Table Mechanism
	7.7.1 PAT Register
	7.7.2 PAT Indexing
	7.7.3 Identifying PAT Support
	7.7.4 PAT Accesses
	Page-Translation Table Access

	7.7.5 Combined Effect of MTRRs and PAT

	7.8 Memory-Mapped I/O
	7.8.1 Extended Fixed- Range MTRR Type- Field Encodings
	7.8.2 IORRs
	IORRBasen Registers
	IORRMaskn Registers

	7.8.3 IORR Overlapping
	7.8.4 Top of Memory

	8 Exceptions and Interrupts
	8.1 Overview
	8.2 General Characteristics
	8.2.1 Precision
	8.2.2 Instruction Restart
	8.2.3 Types of Exceptions
	8.2.4 Masking External Interrupts
	General Masking Capabilities
	Masking During Stack Switches

	8.2.5 Masking Floating-Point and Media Instructions
	8.2.6 Disabling Exceptions

	8.3 Vectors
	8.3.1 #DE—Divide-By- Zero-Error Exception (Vector 0)
	Error Code Returned
	Program Restart

	8.3.2 #DB—Debug Exception (Vector 1)
	Error Code Returned
	Program Restart

	8.3.3 NMI—Non- Maskable-Interrupt Exception (Vector 2)
	Error Code Returned
	Program Restart
	Masking

	8.3.4 #BP— Breakpoint Exception (Vector 3)
	Error Code Returned
	Program Restart

	8.3.5 #OF—Overflow Exception (Vector 4)
	Error Code Returned
	Program Restart

	8.3.6 #BR—Bound- Range Exception (Vector 5)
	Error Code Returned
	Program Restart

	8.3.7 #UD—Invalid- Opcode Exception (Vector 6)
	Error Code Returned
	Program Restart

	8.3.8 #NM—Device- Not-Available Exception (Vector 7)
	Error Code Returned
	Program Restart

	8.3.9 #DF—Double- Fault Exception (Vector 8)
	Error Code Returned
	Program Restart

	8.3.10 Coprocessor- Segment-Overrun Exception (Vector 9)
	Error Code Returned
	Program Restart

	8.3.11 #TS—Invalid- TSS Exception (Vector 10)
	Error Code Returned
	Program Restart

	8.3.12 #NP—Segment- Not-Present Exception (Vector 11)
	Error Code Returned
	Program Restart

	8.3.13 #SS—Stack Exception (Vector 12)
	Error Code Returned
	Program Restart

	8.3.14 #GP—General- Protection Exception (Vector 13)
	Error Code Returned
	Program Restart

	8.3.15 #PF—Page-Fault Exception (Vector 14)
	CR2 Register
	Error Code Returned
	Program Restart

	8.3.16 #MF—x87 Floating-Point Exception-Pending (Vector 16)
	Error Code Returned
	Program Restart
	Masking

	8.3.17 #AC— Alignment-Check Exception (Vector 17)
	Error Code Returned
	Program Restart

	8.3.18 #MC—Machine- Check Exception (Vector 18)
	Error Code Returned
	Program Restart

	8.3.19 #XF—SIMD Floating-Point Exception (Vector 19)
	Error Code Returned
	Program Restart

	8.3.20 User-Defined Interrupts (Vectors 32–255)
	Error Code Returned
	Program Restart
	Masking

	8.4 Exceptions During a Task Switch
	8.5 Error Codes
	8.5.1 Selector-Error Code
	8.5.2 Page-Fault Error Code

	8.6 Priorities
	8.6.1 Floating-Point Exception Priorities
	8.6.2 External Interrupt Priorities
	Effect of IC on TPR

	8.7 Real-Mode Interrupt Control Transfers
	8.8 Legacy Protected-Mode Interrupt Control Transfers
	8.8.1 Locating the Interrupt Handler
	8.8.2 Interrupt To Same Privilege
	8.8.3 Interrupt To Higher Privilege
	8.8.4 Privilege Checks
	8.8.5 Returning From Interrupt Procedures
	IRET, Same Privilege
	IRET, Less Privilege

	8.9 Virtual-8086 Mode Interrupt Control Transfers
	8.9.1 Protected-Mode Handler Control Transfer
	8.9.2 Virtual-8086 Handler Control Transfer

	8.10 Long-Mode Interrupt Control Transfers
	8.10.1 Interrupt Gates and Trap Gates
	8.10.2 Locating the Interrupt Handler
	8.10.3 Interrupt Stack Frame
	Interrupt-Stack Alignment
	Stack Switch

	8.10.4 Interrupt-Stack Table
	8.10.5 Returning From Interrupt Procedures
	Nested IRETs to 64-Bit Mode Procedures

	8.11 Virtual Interrupts
	8.11.1 Virtual-8086 Mode Extensions
	Background
	VIF and VIP Extensions for External Interrupts
	Interrupt Redirection of Software Interrupts

	8.11.2 Protected Mode Virtual Interrupts
	8.11.3 Effect of Instructions that Modify EFLAGS.IF

	9 Machine Check Mechanism
	9.1 Determining Machine-Check Support
	9.2 Machine-Check Errors
	9.2.1 Error Sources

	9.3 Machine Check MSRs
	9.3.1 Global Status and Control Registers
	Machine-Check Global-Capabilities Register
	Machine-Check Global-Status Register
	Machine-Check Global-Control Register

	9.3.2 Error-Reporting Register Banks
	Machine-Check Control Registers
	Machine-Check Status Registers

	9.3.3 Error Codes
	Machine-Check Address Registers
	Machine-Check Miscellaneous-Error Information Registers

	9.4 Initializing the Machine-Check Mechanism
	9.5 Using Machine Check Features
	9.5.1 Handling Machine Check Exceptions
	9.5.2 Reporting Correctable Machine Check Errors

	10 System-Management Mode
	10.0.1 SMM Differences
	10.1 SMM Resources
	10.1.1 SMRAM
	10.1.2 SMBASE Register
	10.1.3 SMRAM State- Save Area
	10.1.4 SMM-Revision Identifier

	10.2 Using SMM
	10.2.1 System- Management Interrupt (SMI)
	10.2.2 SMM Operating- Environment
	10.2.3 Exceptions and Interrupts
	10.2.4 Invalidating the Caches
	10.2.5 Saving Additional Processor State
	10.2.6 Operating in Protected Mode and Long Mode
	10.2.7 Auto-Halt Restart
	10.2.8 I/O Instruction Restart

	10.3 Leaving SMM

	11 128-Bit, 64-Bit, and x87 Programming
	11.1 Overview of System-Software Considerations
	11.2 Determining Media and x87 Feature Support
	11.3 Enabling 128-Bit Media Instructions
	11.4 Media and x87 Processor State
	11.4.1 128-Bit Media State
	11.4.2 64-Bit Media State
	11.4.3 x87 State
	11.4.4 Saving Media and x87 Processor State
	FSAVE/FNSAVE and FRSTOR Instructions
	FLDENV/FNLDENV and FSTENV Instructions
	FXSAVE and FXRSTOR Instructions
	FXSAVE Format for x87 Tag Word
	Performance Considerations

	12 Task Management
	12.1 Hardware Multitasking Overview
	12.2 Task-Management Resources
	12.2.1 TSS Selector
	Selector Index
	Table Indicator (TI) Bit
	Requestor Privilege-Level (RPL) Field

	12.2.2 TSS Descriptor
	12.2.3 Task Register
	12.2.4 Legacy Task- State Segment
	I/O-Permission Bitmap

	12.2.5 64-Bit Task State Segment
	12.2.6 Task Gate Descriptor (Legacy Mode Only)

	12.3 Hardware Task-Management in Legacy Mode
	12.3.1 Task Memory- Mapping
	Segmented Memory
	Paged Memory

	12.3.2 Switching Tasks
	Saving Other Processor State

	12.3.3 Task Switches Using Task Gates
	12.3.4 Nesting Tasks
	Preventing Recursion

	13 Debug and Performance Resources
	13.1 Software-Debug Resources
	13.1.1 Debug Registers
	Address-Breakpoint Registers (DR0-DR3)
	Reserved Debug Registers (DR4, DR5)
	Debug-Status Register (DR6)
	Debug-Control Register (DR7)
	64-Bit-Mode Extended Debug Registers
	Debug-Control MSR (DebugCtlMSR)
	Control-Transfer Recording MSRs

	13.2 Breakpoints
	13.2.1 Setting Breakpoints
	13.2.2 Using Breakpoints
	Instruction Breakpoints
	Data Breakpoints
	I/O Breakpoints
	Single Stepping
	Task-Switch Breakpoints
	General-Detect Condition

	13.2.3 Breakpoint Instruction (INT3)
	13.2.4 Control- Transfer Breakpoint Features
	Recording Control Transfers
	Single Stepping Control Transfers

	13.3 Performance Optimization
	13.3.1 Performance Counters
	13.3.2 Performance Event-Select Registers
	13.3.3 Using Performance Counters
	Starting and Stopping
	Counter Overflow

	13.3.4 Time-Stamp Counter

	14 Processor Initialization and Long-Mode Activation
	14.1 Reset and Initialization
	14.1.1 Built-In Self Test (BIST)
	14.1.2 Clock Multiplier Selection
	14.1.3 Processor Initialization State
	14.1.4 Multiple Processor Initialization
	14.1.5 Fetching the First Instruction

	14.2 Hardware Configuration
	14.2.1 Processor Implementation Information
	14.2.2 Enabling Internal Caches
	Memory-Type Range Registers (MTRRs)

	14.2.3 Initializing Media and x87 Processor State
	x87 Floating-Point State Initialization
	64-Bit Media State Initialization
	128-Bit Media State Initialization

	14.2.4 Model-Specific Initialization

	14.3 Initializing Real Mode
	14.4 Initializing Protected Mode
	14.5 Initializing Long Mode
	14.6 Enabling and Activating Long Mode
	14.6.1 Activating Long Mode
	14.6.2 Consistency Checks
	14.6.3 Updating System Descriptor Table References
	14.6.4 Relocating Page-Translation Tables

	14.7 Leaving Long Mode
	14.8 Long-Mode Initialization Example

	Appendix A MSR Cross-Reference
	A.1 MSR Cross-Reference by MSR Address
	A.2 System-Software MSRs
	A.3 Memory-Typing MSRs
	A.4 Machine-Check MSRs
	A.5 Software-Debug MSRs
	A.6 Performance-Monitoring MSRs

	Index

