
AMD-K6
MMX Enhanced

Processor

Multimedia Technology

Preliminary Information

TM

TM

Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

RISC86 is a registered trademark, and K86, AMD-K5, AMD-K6, and the AMD-K6 logo are trademarks of Advanced
Micro Devices, Inc.

Windows NT is a trademark of Microsoft Corporation.

MMX is a trademark of the Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

© 2000 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its
products without notice in order to improve design or performance characteristics.

The information in this publication is believed to be accurate at the time of
publication, but AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication or the information
contained herein, and reserves the right to make changes at any time, without
notice. AMD disclaims responsibility for any consequences resulting from the use
of the information included in this publication.

This publication neither states nor implies any representations or warranties of any
kind, including but not limited to, any implied warranty of merchantability or
fitness for a particular purpose. AMD products are not authorized for use as critical
components in life support devices or systems without AMD’s written approval.
AMD assumes no liability whatsoever for claims associated with the sale or use
(including the use of engineering samples) of AMD products except as provided in
AMD’s Terms and Conditions of Sale for such product.

Preliminary Information

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Contents

1 AMD-K6™ Processor Multimedia Technology

Introduction . 1

Multimedia Technology Architecture. 2

Key Functionality. 2

Register Set. 4

Data Types . 6

Instructions . 7

Instruction Formats . 8

2 Programming Considerations

Feature Detection . 9

Task Switching . 11

Exceptions. 13

Mixing MMX™ and Floating-Point Instructions 14

Prefixes . 14

3 MMX™ Instruction Set

EMMS . 18

MOVD . 19

MOVQ . 20

PACKSSDW . 21

PACKSSWB. 23

PACKUSWB . 26

PADDB. 29

PADDD . 31

PADDSB . 33

PADDSW . 35

PADDUSB . 37

PADDUSW . 39

PADDW . 41
Contents iii

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
PAND . 43

PANDN . 45

PCMPEQB . 47

PCMPEQD. 49

PCMPEQW . 51

PCMPGTB . 53

PCMPGTD . 55

PCMPGTW . 57

PMADDWD . 59

PMULHW . 61

PMULLW. 63

POR . 65

PSLLD . 67

PSLLQ . 69

PSLLW. 71

PSRAD. 73

PSRAW . 75

PSRLD . 77

PSRLQ . 79

PSRLW . 81

PSUBB . 83

PSUBD . 85

PSUBSB . 87

PSUBSW . 89

PSUBUSB . 91

PSUBUSW . 93

PSUBW . 95

PUNPCKHBW. 97

PUNPCKHDQ . 99

PUNPCKHWD . 101

PUNPCKLBW . 103

PUNPCKLDQ . 105

PUNPCKLWD . 107

PXOR . 109
iv Contents

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Revision History

Date Rev Description

July 1996 A Initial release.

March 1997 B Removed paragraph from “Mixing MMX™ and Floating-Point Instructions” on page 14 that
contained inaccuracies pertaining to floating-point tag words.

June 1997 C Revised stack exception entry in Table 1, “MMX™ Instruction Exceptions,” on page 13 to include
Real mode and Virtual-8086 mode.

June 1997 C Revised note 2 on page 13 regarding floating-point exceptions.

June 1997 C Replaced overbar with # to indicate active-Low signals.

June 1997 C Revised document to comply with MMX trademark.

June 1997 C Revised description of EMMS instruction on page 18.

Jan 2000 D Changed mem64 to mem32 for PUNPCKLBW, PUNPCKLWD, and PUNPCKLDQ.
Revision History v

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
vi Revision History

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
1
AMD-K6™ Processor
Multimedia Technology

Introduction

Next generation PC performance requirements are being
driven by emerging multimedia and communications software.
3D graphics, video, audio, and telephony capabilities are
evolving across education, entertainment, and internet
applications. As multimedia applications continue to
proliferate in the marketplace, PC systems suppliers are being
challenged to deliver multimedia-enabled PC solutions
covering all mainstream price/performance points.

In response to the growing need to provide improved PC
multimedia capabilities, the AMD-K6™ MMX™ enhanced
processor is the first member in the AMD family of processors
to incorporate a robust multimedia technology that is fully
software compatible with the MMX™ technology as defined by
Intel . This multimedia technology enables scaleable
multimedia capabilities across a broad range of PC system
price/performance points.

The AMD-K6 processor features a decode-decoupled
superscalar microarchitecture and state-of-the-art design
techniques to deliver true sixth-generation performance while
maintaining full x86 binary software compatibility. An x86
binary-compatible processor implements the industry-standard
x86 instruction set by decoding and executing the x86
AMD-K6™ Processor Multimedia Technology 1

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
instruction set as its native mode of operation. Only this native
mode enables delivery of maximum performance when running
PC software.

The AMD-K6 processor delivers leading-edge performance to
mainstream PC systems running industry-standard x86
software. The AMD-K6 processor implements advanced design
techniques like instruction pre-decoding, dual x86 opcode
decoding, single-cycle internal RISC operations, parallel
execution units, out-of-order execution, data forwarding,
register renaming, and dynamic branch prediction. In other
words, the AMD-K6 is capable of issuing, executing, and
retiring multiple x86 instructions per cycle, resulting in
superior scaleable performance.

This document describes the multimedia technology of the
AMD-K6 processor, including data types, instructions, and
programming considerations.

Multimedia Technology Architecture

The multimedia technology in the AMD-K6 MMX enhanced
processor is designed to accelerate media and communication
applications. Specialized applications that use music synthesis,
speech synthesis, speech recognition, audio and video
compression and decompression, full motion video, 2D and 3D
graphics, and video conferencing, can take advantage of the
AMD-K6 processor multimedia technology. The multimedia
technology implements new instructions, new data types, and
powerful parallel processing (Single Instruction Multiple Data,
SIMD) techniques that can significantly increase the
performance of these applications.

Key Functionality

At the lowest levels, multimedia applications (audio, video, 3D
graphics, and telephony, etc.) contain many similar functions.
When these functions are performed on a processor that does
not have MMX capability, the processor is heavily burdened by
the computational requirements of this information. Processors
executing the MMX instructions increase the performance of
2 AMD-K6™ Processor Multimedia Technology

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
multimedia applications. This performance increase is a direct
result of the increased multimedia bandwidth of the processor.

Multimedia applications must process large amounts of data.
Parallel data computing is exemplified by applications that
manipulate screen pixel information. Instead of acting on one
pixel at a time, multimedia technology enables the system to
act on multiple pixels simultaneously. This Single Instruction
Multiple Data (SIMD) model is a key feature of MMX
technology.

The AMD-K6 processor multimedia technology architecture
includes four new MMX data types, 57 new MMX instructions,
eight new 64-bit MMX registers, and an SIMD processing
pipeline. The multimedia technology is compatible with
existing x86 applications.

The 57 new MMX instructions include arithmetic functions,
packing and unpacking functions, logical operations, and
moves. These are the basic functions that are most commonly
used in repetitive computational multimedia programs.

Multimedia applications often use smaller operands—8-bit data
is commonly used for pixel information and 16-bit data is used
for audio samples. The new MMX registers allow data to be
packed into 64-bit operands. For example, 8-bit data (1 byte)
can be packed in sets of eight in a single 64-bit register, and all
eight bytes can be operated on simultaneously by a single MMX
instruction.

For 256-color video modes, this translates to computing eight
pixels per instruction. When an entire screen is being re-drawn,
these pixel manipulation routines often use highly repetitive
loops. Parallel processing of eight pieces of data can reduce the
processing time of a code loop by up to a factor of eight.

Multimedia applications frequently multiply and accumulate
data. The multimedia technology provides instructions that
add, multiply, and even combine these operations. For example,
the PMADDWD instruction can multiply and then add words of
data in a single instruction that uses far less processor cycles
than the equivalent x86 operations.
AMD-K6™ Processor Multimedia Technology 3

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Executing MMX™
Instructions

A programmer must approach the use of MMX instructions
differently, based on whether the code being developed is at
the system level or at the application level. The details of these
differences are discussed in “Programming Considerations” on
page 9.

Before using the MMX instructions, the programmer must use
the CPUID instruction to determine if the processor supports
multimedia technology. See the AMD Processor Recognition
Application Note, order# 20734, for more information.

Function 1 (EAX=1) of the AMD-K6 processor CPUID
instruction returns the processor feature bits in the EDX
register. Software can then test bit 23 of the feature bits to
determine if the processor supports the multimedia technology.
If bit 23 is set to 1, MMX instructions are supported. All
AMD-K6 processors have bit 23 set. Once it is determined that
multimedia technology is supported, subsequent code can use
the MMX instructions. Alternatively, the AMD 8000_0001h
extended CPUID function can be used to test whether the
processor supports multimedia technology.

After a module of MMX code has executed, the programmer
must empty the MMX state by executing the EMMS command.
Because the MMX registers share the floating-point registers,
an instruction is needed to prevent MMX code from interfering
with floating-point. The EMMS command clears the multimedia
state and resets all the floating-point tag bits. Emptying the
MMX state sets the floating-point tag bits to empty (all ones),
which marks the MMX/FP registers as invalid and available.

Register Set

The AMD-K6 processor implements eight new 64-bit MMX
registers. These registers are mapped on the floating-point
registers. As shown in Figure 1 on page 5, the new MMX
instructions refer to these registers as mmreg0 to mmreg7.
Mapping the new MMX registers on the floating-point stack
enables backwards compatibility for the register saving that
must occur as a result of task switching.
4 AMD-K6™ Processor Multimedia Technology

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Figure 1. MMX™ Registers

Aliasing the MMX registers onto the floating-point stack
registers provides a safe way to introduce this new technology.
Instead of needing to modify operating systems, new MMX
applications can be supported through device drivers, MMX
libraries, or DLL files. See the Programming Considerations
section of this document for more information.

Current operating systems have support for floating-point
operations. Using the floating-point registers for MMX code is
an ingenious way of implementing automatic support for MMX
instructions. Every time the processor executes an MMX
instruction, all the floating-point register tag bits are set to zero
(00b=valid). Setting the tag bits after every MMX instruction
prevents the processor from having to perform extra tasks.
These extra tasks are normally executed on floating-point
registers when the Tag field is something other than 00b.

If a task switch occurs during an MMX or floating-point
instruction, the Control Register (CR0) Task Switch (TS) bit is
set to 1. The processor then generates an interrupt 7 (int 7
Device Not Avai lable) when i t encounters the next
floating-point or MMX instruction, allowing the operating
system to save the state of the MMX/FP registers.

TAG BITS 63 0

mmreg0

mmreg7

mmreg1

mmreg6

mmreg5

mmreg2

mmreg3

mmreg4

xx

xx

xx

xx

xx

xx

xx

xx
AMD-K6™ Processor Multimedia Technology 5

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
If there is a task switch when MMX applications are running
with older applications that do not include MMX instructions,
the MMX/FP register state is still saved automatically through
the int 7 handler.

Data Types

The AMD-K6 processor multimedia technology uses a packed
data format. The data is packed in a single, 64-bit MMX register
or memory operand as eight bytes, four words, or two double
words. Each byte, word, doubleword, or quadword is an integer
data type.

The form of an instruction determines the data type. For
example, the MOV instruction comes in two different forms—
MOVD moves 32 bits of data and MOVQ moves 64 bits of data.

The four new data types are defined as follows:

Packed byte Eight 8-bit bytes packed into 64 bits
Signed integer range(–27 to 27–1)
Unsigned integer range(0 to 28–1)

Packed word Four 16-bit words packed into 64-bits
Signed integer range(–215to 215–1)
Unsigned integer range(0 to 216–1)

Packed Two 32-bit doublewords packed into 64 bits
doubleword Signed integer range(–231 to 231–1)

Unsigned integer range(0 to 232–1)

Quadword One 64-bit quadword
Signed integer range(–263 to 263–1)
Unsigned integer range(0 to 264–1)

Figure 2 on page 7 shows the four new data types.
6 AMD-K6™ Processor Multimedia Technology

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Figure 2. MMX™ Data Types

Instructions

The AMD-K6 processor multimedia technology includes 57 new
MMX instructions. These new instructions are organized into
the following groups:

■ Arithmetic

■ Empty MMX registers

■ Compare

■ Convert (pack/unpack)

■ Logical

■ Move

■ Shift

The following mnemonics are used in the instructions:

■ P—Packed data

■ B—Byte

■ W—Word

■ D—Doubleword

■ Q—Quadword

■ S—Signed

63 56 55 47

63

39 31 23 15 7

47

63

63

31 15

48 40 32 24 16

0

032

48 32 16 0

08

31

(8 bits x 8) Packed bytes

(16 bits x 4) Packed words

(32 bits x 2) Packed double words

(64 bits x 1) Quadword

B2 B1B4 B3B5 B0B6B7

W0W1W2W3

D0D1

Q0
AMD-K6™ Processor Multimedia Technology 7

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
■ U—Unsigned

■ SS—Signed Saturation

■ US—Unsigned Saturation

For example, the mnemonic for the PACK instruction that packs
four words into eight unsigned bytes is PACKUSWB. In this
mnemonic, the US designates an unsigned result with
saturation, and the WB means that the source is packed words
and the result is packed bytes.

The term saturation is commonly used in multimedia
applications. Saturation allows mathematical limits to be
placed on the data elements. If a result exceeds the boundary of
that data type, the result is set to the defined limit for that
instruction. A common use of saturation is to prevent color
wraparound.

Instruction Formats
All MMX instructions, except the EMMS instruction that uses
no operands, are formatted as follows:

INSTRUCTION mmreg1, mmreg2/mem64

The source operand (mmreg2/mem64) can be either an MMX
register or a memory location. The destination operand
(mmreg1) can only be an MMX register.

The MOVD and MOVQ instructions also have the following
acceptable formats:

MOVD mmreg1, mreg32/mem32
MOVD mreg32/mem32, mmreg1
MOVQ mem64, mmreg1

In the first example, the source operand (mreg32/mem32) can
be either an integer register or a 32-bit memory address. The
destination operand (mmreg1) can only be an MMX register.
The second example has the source operand as an MMX
register. The destination operand (mreg32/mem32) can be
either an integer register or a 32-bit memory address. The third
example has the source operand as an MMX register and the
destination operand as a 64-bit memory location

The SHIFT instructions can also utilize an immediate source
operand. It is designated as imm8.

PSRLW mmreg1, imm8
8 AMD-K6™ Processor Multimedia Technology

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
2
Programming
Considerations
This chapter describes considerations for programmers writing
operating systems, compilers, and applications that utilize
MMX instructions as implemented in the AMD-K6 MMX
enhanced processor.

Feature Detection

To use the AMD-K6 processor multimedia technology, the
programmer must determine if the processor supports them.
The CPUID instruction gives programmers the ability to
determine the presence of multimedia technology on the
processor. Software must first test to see if the CPUID
instruction is supported. For a detailed description of the
CPUID instruction, see the AMD Processor Recognition
Application Note, order# 20734.

The presence of the CPUID instruction is indicated by the ID
bit (21) in the EFLAGS register. If this bit is writable, the
CPUID instruction is supported. The following code sample
shows how to test for the presence of the CPUID instruction.
9

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for later testing
xor eax, 00200000h ; toggle bit 21
push eax ; put to stack
popfd ; save changed EAX to EFLAGS
pushfd ; push EFLAGS to TOS
pop eax ; store EFLAGS in EAX
cmp eax, ebx ; see if bit 21 has changed
jz NO_CPUID ; if no change, no CPUID

If the processor supports the CPUID instruction, the
programmer must execute the standard function, EAX=0. The
CPUID function returns a 12-character string that identifies the
processor’s vendor. For AMD processors, standard function 0
returns a vendor string of “Authentic AMD”. This string
requires the software to follow the AMD definitions for
subsequent CPUID functions and the values returned for those
functions.

The next step is for the programmer to determine if MMX
instructions are supported. Function 1 of the CPUID
instruction provides this information. Function 1 (EAX=1) of
the AMD CPUID instruction returns the feature bits in the EDX
register. If bit 23 in the EDX register is set to 1, MMX
instructions are supported. The following code sample shows
how to test for MMX instruction support.

mov eax,1 ; setup function 1
CPUID ; call the function
test edx, 800000 ; test 23rd bit
jnz YES_MM ; multimedia technology supported

Alternatively, the extended function 1 (EAX=8000_0001h) can
be used to determine if MMX instructions are supported.

mov eax,8000_0001h ; setup extended function 1
CPUID ; call the function
test edx, 800000 ; test 23rd bit
jnz YES_MM ; multimedia technology supported
10 Programming Considerations

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Task Switching
A task switch is an event that occurs within operating systems
that allows multiple programs to be executed in parallel. Most
modern operating systems utilizing task switching, are called
multitasking operating systems.

There are two types of multitasking operating systems—
cooperative and preemptive.

Cooperative
Multitasking

In cooperative multitasking operating systems, applications do
not care about other tasks that may be running. Each task
assumes that it owns the machine state (processor, registers, I/O,
memory, etc.). In addition, these tasks must take care of saving
their own information (i.e., registers, stacks, states) in their own
memory areas. The cooperative multitasking operating system
does not save operating state information for the applications.

There are different types of cooperative multitasking operating
systems. Some of these operating systems perform some level of
state saves, but this state saving is not always reliable. All
software engineers programming for a cooperative multitasking
environment must save the MMX or floating-point states before
relinquishing control to another task or to the operating
system. The FSAVE and FRSTOR commands are used to
perform this task. Figure 4 illustrates this task switching
process.

Note: Some cooperative operating systems may have API calls to
perform these tasks for the application.

Figure 3. Cooperative Task Switching

PROGRAM MUST
RESTORE STATES

FRSTOR
code executing
code module

finished
PROGRAM MUST

SAVE STATES

FSAVE
goto TASK 1

executing
MMX™/FP code PROGRAM MUST RESTORE

STATES

FRSTOR
executing code

TASK 1 TASK 2 TASK 1

Task Switch
to TASK 2

PROGRAM MUST

SAVE STATES

FSAVE
Programming Considerations 11

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Preemptive
Multitasking

In preemptive multitasking operating systems like OS/2,
Windows NT™, and UNIX, the operating system handles all
state and register saves. The application programmer does not
need to save states when programming within a preemptive
multitasking environment. The preemptive multitasking
operating system sets aside a save area for each task.

In a preemptive multitasking operating system, if a task switch
occurs, the operating system sets the Control Register 0 (CR0)
Task Switch (TS) bit to 1. If the new task encounters a
floating-point or MMX instruction, an interrupt 7 (int 7, Device
Not Available) is generated. The int7 handler saves the state of
the first task and restores the state of the second task. The int7
handler sets the CR0.TS to 0 and returns to the original
floating-point or MMX instruction in the second task. Figure 4
illustrates this task switching process.

Figure 4. Preemptive Task Switching

executing
MMX™/FP code

executing code Save Task 1 State

Restore Task 2

Set CR0.TS=0

Return to Task 2
MMX/FP code

TASK 1 TASK 2 INT 7 handler

Task Switch
to TASK 2

Set CR0.TS=1

Encounter
MMX/FP code

Because TS=1
goto INT 7

handler
12 Programming Considerations

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Exceptions

Table 1 contains a list of exceptions that MMX instructions can
generate.

The rules for except ions have not changed in the
implementation of MMX instructions. None of the exception
handlers need to be modified.

Note:

1. An invalid opcode exception interrupt 6 occurs if an MMX
instruction is executed on a processor that does not
support MMX instructions.

2. If a floating-point exception is pending and the processor
encounters an MMX instruction, FERR# is asserted and, if
CR0.NE = 1, an interrupt 16 is generated.

Table 1. MMX™ Instruction Exceptions

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control
register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch
bit (TS) of the control register (CR0) is set to 1.

Stack exception (12) X X X During instruction execution, the stack segment limit
was exceeded.

General protection (13) X During instruction execution, the effective address of
one of the segment registers used for the operand
points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the
address range 00000h to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the
instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point
execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the
instruction execution, and the alignment mask bit
(AM) of the control register (CR0) is set to 1. (In
Protected Mode, CPL = 3.)
Programming Considerations 13

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Mixing MMX™ and Floating-Point Instructions

The programmer must take care when writing code that
contains both MMX and floating-point instructions. The MMX
code modules should be separated from the floating-point code
modules. All code of one type (MMX or floating-point code)
should be grouped together as often as possible. To obtain the
highest performance, routines should not contain any
conditional branches at the end of loops that jump to code of a
different type than the code that is currently being executed.

In certain multimedia environments, floating-point and MMX
instructions may be mixed. For example, if a programmer wants
to change the viewing perspective of a three-dimensional scene,
the perspective can be changed through transformation
matrices using floating-point registers. The picture/pixel
information is integer-based and requires MMX instructions to
manipulate this information. Both MMX and floating-point
instructions are required to perform this task.

The software must clean up after itself at the end of an MMX
code module. The EMMS instruction must be used at the end of
an MMX code module to mark all floating-point registers as
empty (11=empty/invalid). In cooperative multitasking
operating systems, the EMMS instruction must be used when
switching between tasks.

Note: In some situations, experienced programmers can utilize the
MMX registers to pass information between tasks. In these
situations, the EMMS instruction is not required.

The tag bits are affected by every MMX and floating-point
instruction. After every MMX instruction except EMMS, all the
tag bits in the floating-point tag word are set to 0. When the
EMMS instruction is executed, all the tag bits in the tag word
are set to 1.

Prefixes

All instructions in the x86 architecture translate to a binary
value or opcode. This 1 or 2 byte opcode value is different for
each instruction. If an instruction is two bytes long, the second
byte is called the Mod R/M byte. The Mod R/M byte is used to
further describe the type of instruction that is used.
14 Programming Considerations

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
The x86 opcode and the Mod R/M byte can also be followed by
an SIB byte. This byte is used to describe the Scale, Index and
Base forms of 32-bit addressing.

The format of the x86 instruction allows for certain prefixes to
be placed before each instruction. These prefixes indicate
different types of command overrides.

The MMX instructions follow these rules just like all the
current existing instructions. This allows for an easy
implementation into the x86 architecture. All of the rules that
apply to the x86 architecture apply to MMX instructions,
including accessing registers, memory, and I/O.

Most opcode prefixes can be utilized while using MMX
instructions. The following prefixes can be used with MMX
instructions:

■ The Segment Override prefixes (2Eh/CS, 36h/SS, 3Eh/DS,
26h/ES, 64h/FS, and 65h/GS) affect MMX instructions that
contain a memory operand.

■ The LOCK prefix (F0h) triggers an invalid opcode exception
(interrupt 6).

■ The Address Size Override prefix (67h) affects MMX
instructions that contain a memory operand.
Programming Considerations 15

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
16 Programming Considerations

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
3
MMX™ Instruction Set
The following MMX instruction definitions are in alphabetical
order according to the instruction mnemonics.
17

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
EMMS

mnemonic opcode description

EMMS 0F 77h Clear the MMX state

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The EMMS instruction is used to clear the MMX state following the execution of a
block of code using MMX instructions. Because the MMX registers and tag words are
shared with the floating-point unit, it is necessary to clear the state before executing
code that includes floating-point instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the con-
trol register (CR0) is set to 1.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.
18 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
MOVD

mnemonic opcode description

MOVD mmreg1, reg32/mem32 0F 6Eh Copy a 32-bit value from the general purpose register or
memory location into the MMX register

MOVD reg32/mem32, mmreg1 0F 7Eh Copy a 32-bit value from the MMX register into the general
purpose register or memory location

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The MOVD instruction moves a 32-bit data value from an MMX register to a general
purpose register or memory, or it moves the 32-bit data from a general purpose
register or memory into an MMX register. If the 32-bit data to be moved is provided by
an MMX register, the instruction moves bits 31–0 of the MMX register into the
specified register or memory location. If the 32-bit data is being moved into an MMX
register, the instruction moves the 32-bits of data into bits 31–0 of the MMX register
and fills bits 63–32 with zeros.

Related Instructions See the MOVQ instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 19

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
MOVQ

mnemonic opcode description

MOVQ mmreg1, mmreg2/mem64 0F 6Fh Copy a 64-bit value from an MMX register or memory location
into an MMX register

MOVQ mmreg2/mem64, mmreg1 0F 7Fh Copy a 64-bit value from an MMX register into an MMX register
or memory location

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The MOVQ instruction moves a 64-bit data value from one MMX register to another
MMX register or memory, or it moves the 64-bit data from one MMX register or
memory to another MMX register. Copying data from one memory location to another
memory location cannot be accomplished with the MOVQ instruction.

Related Instructions See the MOVD instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
20 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PACKSSDW

mnemonic opcode description

PACKSSDW mmreg1, mmreg2/mem64 0F 6Bh Pack with saturation signed 32-bit operands into signed
16-bit results

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PACKSSDW instruction performs a pack and saturate operation on two signed
32-bit values in the first operand and two signed 32-bit values in the second operand.
The four signed 16-bit results are placed in the specified MMX register.

The pack operation is a data conversion. The PACKSSDW instruction converts or
packs the four signed 32-bit values into four signed 16-bit values, applying saturating
arithmetic. If the signed 32-bit value is less than –32768 (8000h), it saturates to –32768
(8000h). If the signed 32-bit value is greater than 32767 (7FFFh), it saturates to 32767
(7FFFh). All values between –32768 and 32767 are represented with their signed
16-bit value.

The first operand must be an MMX register. In addition to providing the first operand,
this MMX register is the location where the result of the pack and saturate operation
is stored. The second operand can be an MMX register or a 64-bit memory location.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 21

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PACKSSDW Instruction

The following list explains the functional illustration of the PACKSSDW instruction:

■ Bits 63–32 of the source operand (mmreg2/mem64) are packed into bits 63–48 of
the destination operand (mmreg1). The result is saturated to the largest possible
16-bit negative number because the 32-bit negative source operand (8000_0002h)
exceeds the capacity of the signed 16-bit destination operand.

■ Bits 31–0 of the source operand are packed into bits 47–32 of the destination
operand. The result is saturated to the largest possible 16-bit positive number
because the 32-bit positive source operand (0000_8000h) exceeds the capacity of
the 16-bit destination operand.

■ Bits 63–32 of the destination operand are packed into bits 31–16 of the destination
operand. The results are not saturated because the 32-bit negative source operand
(FFFF_8002h) does not exceed the capacity of the 16-bit destination operand.

■ Bits 31–0 of the destination operand are packed into bits 15–0 of the destination
operand. The results are not saturated because the 32-bit positive source operand
(0000_01FCh) does not exceed the capacity of the 16-bit destination operand.

Related Instructions See the PACKSSWB instruction.

See the PACKUSWB instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLWD instruction.

00008000

8000h 7FFFh 8002h 01FCh

mmreg1

mmreg2/mem64 mmreg1

00

063

6363

0002h 8000h

3132 3132

31324748 1516

0000FFFF 8002h 01FCh

Indicates a saturated value
22 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PACKSSWB

mnemonic opcode description

PACKSSWB mmreg1, mmreg2/mem64 0F 63h Pack with saturation signed 16-bit operands into signed 8-bit
results

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PACKSSWB instruction performs a pack and saturate operation on four signed
16-bit values in the first operand and four signed 16-bit values in the second operand.
The eight signed 8-bit results are placed in the specified MMX register.

The pack operation is a data conversion. The PACKSSWB instruction converts or
packs the eight signed 16-bit values into eight signed 8-bit values, applying saturating
arithmetic. If the signed 16-bit value is less than –128 (80h), it saturates to –128 (80h).
If the signed 16-bit value is greater than 127 (7Fh), it saturates to 127 (7Fh). All values
between –128 and 127 are represented by their signed 8-bit value.

The first operand must be an MMX register. In addition to providing the first operand,
this MMX register is the location where the result of the pack and saturate operation
is stored. The second operand can be an MMX register or a 64-bit memory location.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 23

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PACKSSWB Instruction

The following list explains the functional illustration of the PACKSSWB instruction:

■ Bits 63–48 of the source operand (mmreg2/mem64) are packed into bits 63–56 of
the destination operand (mmreg1). The result is not saturated because the 16-bit
positive source operand (007Eh) does not exceed the capacity of a signed 8-bit
destination operand.

■ Bits 47–32 of the source operand are packed into bits 55–48 of the destination
operand. The result is saturated to the largest possible 8-bit positive number
because the 16-bit positive source operand (7F00h) exceeds the capacity of a
signed 8-bit destination operand.

■ Bits 31–16 of the source operand are packed into bits 47–40 of the destination
operand. The result is saturated to the largest possible 8-bit negative number
because the 16-bit negative source operand (EF9Dh) exceeds the capacity of a
signed 8-bit destination operand.

■ Bits 15–0 of the source operand are packed into bits 39–32 of the destination
operand. The result is not saturated because the 16-bit negative source operand
(FF88h) does not exceed the capacity of the 8-bit destination operand.

■ Bits 63–48 of the destination operand are packed into bits 31–24 of the destination
operand. The result is saturated to the largest possible 8-bit negative number
because the 16-bit negative source operand (FF02h) exceeds the capacity of a
signed 8-bit destination operand.

00

mmreg1

mmreg2/mem64 mmreg1

00

063

6363

7Eh

3132 3132

31324748 1516

4748 1516 4748 1516

78232439405556

7F 00h EF 9Dh FF 88h FF 02h 00 85h 00 7Eh 81 CFh

7Eh 80h 80h 7Eh7Fh 88h 7Fh 80h

Indicates a saturated value
24 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
■ Bits 47–32 of the destination operand are packed into bits 23–16 of the destination
operand. The result is saturated to the largest possible 8-bit positive number
because the 16-bit positive source operand (0085h) exceeds the capacity of a
signed 8-bit destination operand.

■ Bits 31–16 of the destination operand are packed into bits 15–8 of the destination
operand. The result is not saturated because the 16-bit positive source operand
(007Eh) does not exceed the capacity of a signed 8-bit destination operand.

■ Bits 15–0 of the destination operand are packed into bits 7–0 of the destination
operand. The result is saturated to the largest possible 8-bit negative number
because the 16-bit negative source operand (81CFh) exceeds the capacity of a
signed 8-bit destination operand.

Related Instructions See the PACKSSDW instruction.

See the PACKUSWB instruction.

See the PUNPCKHBW instruction.

See the PUNPCKLBW instruction.
MMX™ Instruction Set 25

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
PACKUSWB

mnemonic opcode description

PACKUSWB mmreg1, mmreg2/mem64 0F 67h Pack with saturation signed16-bit operands into unsigned
8-bit results

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PACKUSWB instruction performs a pack and saturate operation on four signed
16-bit values in the first operand and four signed 16-bit values in the second operand.
The eight unsigned 8-bit results are placed in the specified MMX register.

The pack operation is a data conversion. The PACKUSWB instruction converts or
packs the eight signed 16-bit values into eight unsigned 8-bit values, applying
saturating arithmetic. If the signed 16-bit value is a negative number, it saturates to 0
(00h). If the signed 16-bit value is greater than 255 (FFh), it saturates to 255 (FFh). All
values between 0 and 255 are represented with their unsigned 8-bit value.

The first operand must be an MMX register. In addition to providing the first operand,
this MMX register is the location where the result of the pack and saturate operation
is stored. The second operand can be an MMX register or a 64-bit memory location.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
26 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Functional Illustration of the PACKUSWB Instruction

The following list explains the functional illustration of the PACKUSWB instruction:

■ Bits 63–48 of the source operand (mmreg2/mem64) are packed into bits 63–56 of
the destination operand (mmreg1). The result is saturated to the largest possible
8-bit positive number because the 16-bit positive source operand (0112h) exceeds
the capacity of an unsigned 8-bit destination operand.

■ Bits 47–32 of the source operand are packed into bits 55–48 of the destination
operand. The result is not saturated because the 16-bit positive source operand
(008Bh) does not exceed the capacity of an unsigned 8-bit destination operand.

■ Bits 31–16 of the source operand are packed into bits 47–40 of the destination
operand. The result is saturated to the largest possible 8-bit positive number
because the 16-bit positive source operand exceeds the capacity of an unsigned
8-bit destination operand.

■ Bits 15–0 of the source operand are packed into bits 39–32 of the destination
operand. The result is saturated to 00h because the source operand (FF88h) is a
negative value.

■ Bits 63–48 of the destination operand are packed into bits 31–24 of the destination
operand (mmreg1). The result is not saturated because the 16-bit positive source
operand (0002h) does not exceed the capacity of an unsigned 8-bit destination
operand.

■ Bits 47–32 of the destination operand are packed into bits 23–16 of the destination
operand. The result is saturated to the largest possible 8-bit positive number

01

mmreg1

mmreg2/mem64 mmreg1

00

063

6363

12h

3132 3132

31324748 1516

4748 1516 4748 1516

78232439405556

00 8Bh 0F 80h FF 88h 00 02h 02 3Ah 00 7Eh FF F8h

FFh FFh 02h 7Eh8Bh 00h FFh 00h

Indicates a saturated value

(Signed) (Signed)

(Unsigned)
MMX™ Instruction Set 27

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
because the 16-bit positive source operand (023Ah) exceeds the capacity of an
unsigned 8-bit destination operand.

■ Bits 31–16 of the destination operand are packed into bits 15–8 of the destination
operand. The result is not saturated because the 16-bit positive source operand
(007Eh) does not exceed the capacity of an unsigned 8-bit destination operand.

■ Bits 15–0 of the destination operand are packed into bits 7–0 of the destination
operand. The result is saturated to 00h because the source operand (FFF8h) is a
negative value.

Related Instructions See the PACKSSDW instruction.

See the PACKSSWB instruction.

See the PUNPCKHBW instruction.

See the PUNPCKLBW instruction.
28 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PADDB

mnemonic opcode description

PADDB mmreg1, mmreg2/mem64 0F FCh Add unsigned packed 8-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PADDB instruction adds eight unsigned 8-bit values from the source operand (an
MMX register or a 64-bit memory location) to the eight corresponding unsigned 8-bit
values in the destination operand (an MMX register). If any of the eight results is
greater than the capacity of its 8-bit destination, the value wraps around with no carry
into the next location. The eight 8-bit results are stored in the MMX register that is
specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 29

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PADDB Instruction

The following list explains the functional illustration of the PADDB instruction:

■ The value 53h is added to ECh and wraps around to 3Fh.

■ The value FCh is added to 14h and wraps around to 10h.

■ The remaining addition operations are simple unsigned operations with no
wraparound.

Related Instructions See the PADDD instruction.

See the PADDW instruction.

See the PADDSB instruction.

See the PADDSW instruction.

See the PADDUSB instruction.

See the PADDUSW instruction.

+ + + + + + ++

= = = = = = ==

63 0

63 0

63 0

mmreg2/mem64

mmreg1

mmreg1

00h

00h

00h E2h

00h D0h

12h 1Ah07h

F7h

FEh10h

FCh

14h

3Fh

ECh

53h

42h

42h

FAh

08h

F2h

08h

22h
30 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PADDD

mnemonic opcode description

PADDD mmreg1, mmreg2/mem64 0F FEh Add unsigned packed 32-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PADDD instruction adds two unsigned 32-bit values from the source operand (an
MMX register or a 64-bit memory location) to the two corresponding unsigned 32-bit
values in the destination operand (an MMX register). If any of the two results is
greater than the capacity of its 32-bit destination, the value wraps around with no
carry into the next location. The two 32-bit results are stored in the MMX register
specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 31

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PADDD Instruction

The following list explains the functional illustration of the PADDD instruction:

■ The value FFF0_5C43h is added to 000F_A3BEh and wraps around to 0000_0001h.

■ The second addition is a simple unsigned add operation with no wraparound.

Related Instructions See the PADDB instruction.

See the PADDW instruction.

See the PADDSB instruction.

See the PADDSW instruction.

+ +

= =

mmreg2/mem64

mmreg1

mmreg1

0123_4567h

8000_0000h

8123_4567h0000_0001h

000F_A3BEh

FFF0_5C43h

63 0

63

63

0

0

32 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PADDSB

mnemonic opcode description

PADDSB mmreg1, mmreg2/mem64 0F ECh Add signed packed 8-bit values and saturate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PADDSB instruction adds eight signed 8-bit values from the source operand (an
MMX register or a 64-bit memory location) to the eight corresponding signed 8-bit
values in the destination operand (an MMX register). If the sum of any two 8-bit values
is less than –128 (80h), it saturates to –128 (80h). If the sum of any two 8-bit values is
greater than 127 (7Fh), it saturates to 127 (7Fh). The eight signed 8-bit results are
stored in the MMX register specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 33

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PADDSB Instruction

The following list explains the functional illustration of the PADDSB instruction:

■ The signed 8-bit positive value 00h is added to the signed 8-bit positive value 01h
with a signed 8-bit positive result of 01h.

■ The signed 8-bit negative value D2h (–46) is added to the signed 8-bit negative
value 88h (–120) and saturates to 80h (–128), the largest possible signed 8-bit
negative value.

■ The signed 8-bit positive value 53h (+83) is added to the signed 8-bit negative value
ECh (–20) with a signed 8-bit positive result of 3Fh (+63).

■ The signed 8-bit positive value 42h is added to the signed 8-bit positive value 00h
with a signed 8-bit positive result of 42h.

■ The signed 8-bit positive value 77h (+119) is added to the signed 8-bit positive
value 14h (+20) and saturates to 7Fh (+127), the largest possible positive value.

■ The signed 8-bit positive value 70h (+112) is added to the signed 8-bit positive
value 44h (+68) and saturates to 7Fh (+127), the largest possible positive value.

■ The signed 8-bit positive value 07h (+7) is added to the signed 8-bit negative value
F7h (–9) with a signed 8-bit negative result of FEh (–2).

■ The signed 8-bit negative value 9Ah (–102) is added to the signed 8-bit negative
value A8h (–88) and saturates to 80h (–128), the largest possible signed 8-bit
negative value.

Related Instructions See the PADDB instruction.

See the PADDD instruction.

See the PADDW instruction.

See the PADDSW instruction.

+ + + + + + ++

= = = = = = ==

mmreg2/mem64

mmreg1

mmreg1

00h

01h

01h

9Ah

A8h

80h

70h 07h

F7h

FEh

44h

7Fh

77h

14h

7Fh

42h

00h

42h

53h

ECh

3Fh

D2h

88h

80h

63

63

63

0

0

0

Indicates a saturated value
34 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PADDSW

mnemonic opcode description

PADDSW mmreg1, mmreg2/mem64 0F EDh Add signed packed 16-bit values and saturate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PADDSW instruction adds four signed 16-bit values from the source operand (an
MMX register or a 64-bit memory location) to the four corresponding signed 16-bit
values in the destination operand (an MMX register). If the sum of any two 16-bit
values is less than –32768 (8000h), it saturates to –32768 (8000h). If the sum of any two
16-bit values is greater than 32767 (7FFFh), it saturates to 32767 (7FFFh). The four
signed 16-bit results are stored in the MMX register specified as the destination
operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 35

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PADDSW Instruction

The following list explains the functional illustration of the PADDSW instruction:

■ The signed 16-bit negative value D250h (–11696) is added to the signed 16-bit
negative value 8807h (–30713) and saturates to 8000h (–32768), the largest possible
signed 16-bit negative value.

■ The signed 16-bit positive value 5321h (+21281) is added to the signed 16-bit
negative value EC22h (–5086) with a signed 16-bit positive result of 3F43h
(+16195).

■ The signed 16-bit positive value 7007h (+28679) is added to the signed 16-bit
positive value 0FF9h (+4089) and saturates to 7FFFh (+32767), the largest possible
positive value.

■ The signed 16-bit negative value FFFFh (–1) is added to the signed 16-bit negative
value FFFFh (–1) with the negative 16-bit result of FFFEh (–2).

Related Instructions See the PADDB instruction.

See the PADDD instruction.

See the PADDW instruction.

See the PADDSB instruction.

See the PADDUSB instruction.

See the PADDUSW instruction.

+ + + +

= = = =

mmreg2/mem64

mmreg1

mmreg1

FFFFhD250h

FFFFh

FFFEh

7007h

0FF9h

7FFFh

5321h

EC22h

3F43h

8807h

8000h

63

63

63

0

0

0

Indicates a saturated value
36 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PADDUSB

mnemonic opcode description

PADDUSB mmreg1, mmreg2/mem64 0F DCh Add unsigned packed 8-bit values and saturate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PADDUSB instruction adds eight unsigned 8-bit values from the source operand
(an MMX register or a 64-bit memory location) to the eight corresponding unsigned
8-bit values in the destination operand (an MMX register). The eight unsigned 8-bit
results are stored in the MMX register specified as the destination operand.

If the sum of any two unsigned 8-bit values is greater than 255 (FFh), it saturates to
255 (FFh).

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 37

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PADDUSB Instruction

The following list explains the functional illustration of the PADDUSB instruction:

■ The sum of 7Fh and 81h is 100h. This value is greater than FFh, so the result
saturates to FFh.

■ The sum of D2h and 88h is 15Ah. This value is greater than FFh, so the result
saturates to FFh.

■ The sum of 53h and ECh is 13Fh. This value is greater than FFh, so the result
saturates to FFh.

■ The sum of 42h and 0Eh is 50h. This value is not greater than FFh, so the result
does not saturate.

■ The sum of 77h and 14h is 8Bh. This value is not greater than FFh, so the result
does not saturate.

■ The sum of 70h and 44h is B4h. This value is not greater than FFh, so the result
does not saturate.

■ The sum of 07h and F7h is FEh. This value is not greater than FFh, so the result
does not saturate.

■ The sum of 9Ah and A8h is 142h. This value is greater than FFh, so the result
saturates to FFh.

Related Instructions See the PADDB instruction.

See the PADDD instruction.

See the PADDW instruction.

See the PADDSB instruction.

See the PADDSW instruction.

See the PADDUSW instruction.

7Fh D2h 53h 42h 9Ah77h 70h 07hmmreg2/mem64

mmreg1

+ + + + + + ++

= = = = = = ==

FFh FFh FFh 50h FFh8Bh B4h FEhmmreg1

81h 88h ECh 0Eh A8h14h 44h F7h

063

063

063

Indicates a saturated value
38 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PADDUSW

mnemonic opcode description

PADDUSW mmreg1, mmreg2/mem64 0F DDh Add unsigned packed 16-bit values and saturate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PADDUSW instruction adds four unsigned 16-bit values from the source operand
(an MMX register or a 64-bit memory location) to the four corresponding unsigned
16-bit values in the destination operand (an MMX register). The four unsigned 16-bit
results are stored in the MMX register specified as the destination operand.

If the sum of any two unsigned 16-bit values is greater than 65,535 (FFFFh), it
saturates to 65,535 (FFFFh).

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 39

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PADDUSW Instruction

The following list explains the functional illustration of the PADDUSW instruction:

■ The sum of 7E10h and 7000h is EE10h. This value is not greater than FFFFh, so the
result does not saturate.

■ The sum of 8000h and 8000h is 10000h. This value is greater than FFFFh, so the
result saturates to FFFFh.

■ The sum of FFFEh and 0015h is 10013h. This value is greater than FFFFh, so the
result saturates to FFFFh.

■ The sum of 1234h and 4567h is 579Bh. This value is not greater than FFFFh, so the
result does not saturate.

Related Instructions See the PADDB instruction.

See the PADDD instruction.

See the PADDW instruction.

See the PADDSB instruction.

See the PADDSW instruction.

See the PADDUSB instruction.

7E10h 8000h FFFEh 1234hmmreg2/mem64

mmreg1 7000h 8000h 0015h 4567h

EE10h FFFFh FFFFh 579Bhmmreg1

+ + + +

= = = =

063

063

063

Indicates a saturated value
40 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PADDW

mnemonic opcode description

PADDW mmreg1, mmreg2/mem64 0F FDh Add unsigned packed 16-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PADDW instruction adds four unsigned 16-bit values from the source operand (an
MMX register or a 64-bit memory location) to the four corresponding unsigned 16-bit
values in the destination operand (an MMX register). If any of the four results is
greater than the capacity of its 16-bit destination, the value wraps around with no
carry into the next location. The four 16-bit results are stored in the MMX register
specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 41

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PADDW Instruction

The following list explains the functional illustration of the PADDW instruction:

■ The value 8000h is added to 0123h with a normal unsigned result of 8123h.

■ The value FF00h is added to 01ECh and wraps around to 00ECh.

■ The value 00FCh is added to 8014h with a normal signed result of 8110h.

■ The value FFFFh is added to FFFFh and wraps around to FFFEh.

Related Instructions See the PADDB instruction.

See the PADDD instruction.

See the PADDSB instruction.

See the PADDSW instruction.

See the PADDUSB instruction.

See the PADDUSW instruction.

63

+ + + +

= = = =

mmreg2/mem64

mmreg1

mmreg1

FFFFh

FFFFh

FFFEh

00FCh

8014h

8110h

FF00h

01ECh

8000h

0123h

8123h 00ECh

63

63

0

0

0

42 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PAND

mnemonic opcode description

PAND mmreg1, mmreg2/mem64 0F DBh AND 64-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PAND instruction operates on the 64-bit source and destination operands to
complete a bitwise logical AND. The results are stored in the destination operand. If
the corresponding bits in the source and destination operands both equal 1, the
resulting bit is 1 in the destination. If either bit in the source or destination operands
equals 0, the resulting bit is 0 in the destination.

The PAND instruction can be used to extract operands from packed fields based on
the masks that are produced by the compare instructions—PCMPEQ and PCMPGT.
This technique can eliminate branch prediction overhead in MMX routines.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 43

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PAND Instruction

Related Instructions See the PANDN instruction.

See the POR instruction.

See the PXOR instruction.

1010_1111_0000_1101 0000_1111_0000_1111 1100_0001_0011_0001 1000_1100_1101_0011

0101_1100_1100_0011 1100_1101_0100_1110 1011_0001_0011_1001 0110_0011_0101_1001

0000_1100_0000_0001 0000_1101_0000_1110 1000_0001_0011_0001 0000_0000_0101_0001

mmreg1

032 3163 4748 1516

032 3163 4748 1516

mmreg2/mem64

Logical AND Logical AND Logical AND Logical AND

mmreg1

032 3163 4748 1516

Result
44 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PANDN

mnemonic opcode description

PANDN mmreg1, mmreg2/mem64 0F DFh Invert a 64-bit value, then AND the inverted value and a 64-bit
value in memory or an MMX register

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PANDN instruction first operates on the 64-bit destination operand (an MMX
register) to complete a bitwise logical NOT, inverting each bit. This operation changes
1 bits to 0 bits and 0 bits to 1 bits, storing the results in the destination operand. The
inverted 64-bit destination operand is then logically AND’d with the 64-bit source
operand (an MMX register or a 64-bit memory operand) to complete the PANDN
operation.

If corresponding bits in the source operand and the inverted destination operand are
both 1, the resulting bit is 1 in the destination. If either bit in the source operand or
the inverted destination operand is 0, the resulting bit is 0 in the destination.

The PANDN instruction can be used to extract alternate operands from packed fields
based on the inverse of the masks that are produced by the compare instructions—
PCMPEQ and PCMPGT. This technique can eliminate branch prediction overhead in
MMX routines.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 45

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PANDN Instruction

Related Instructions See the PAND instruction.

See the POR instruction.

See the PXOR instruction.

1010_1111_0000_1101 0000_1111_0000_1111 1100_0001_0011_0001 1000_1100_1101_0011

0101_1100_1100_0011 1100_1101_0100_1110 1011_0001_0011_1001 0110_0011_0101_1001

0101_0000_1111_0010 1111_0000_1111_0000 0011_1110_1100_1110 0111_0011_0010_1100

0101_0000_1100_0010 1100_0000_0100_0000 0011_0000_0000_1000 0110_0011_0000_1000

mmreg1

032 3163 4748 1516

mmreg1

032 3163 4748 1516

Invert Invert InvertInvert

032 3163 4748 1516

mmreg2/mem64

Logical AND Logical AND Logical AND Logical AND

mmreg1

032 3163 4748 1516

Result
46 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PCMPEQB

mnemonic opcode description

PCMPEQB mmreg1, mmreg2/mem64 0F 74h Compare packed 8-bit values for equality

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PCMPEQB instruction operates on 8-bit data values. The instruction compares
two 8-bit values to determine if they are equal.

If the corresponding bits in the two operands are equal, all the bits in that 8 bits of the
destination operand are set to 1. If any of the corresponding bits in the two operands
are not equal, all the bits in that 8 bits of the destination operand are set to 0.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 47

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PCMPEQB Instruction

Related Instructions See the PCMPEQD instruction.

See the PCMPEQW instruction.

See the PCMPGTB instruction.

See the PCMPGTD instruction.

See the PCMPGTW instruction.

DBh 15h 43h FFhmmreg2/mem64

mmreg1

mmreg1

Compare CompareCompare Compare

FalseTrue True False

3163

80h CEh A1h 04h

Compare Compare Compare Compare

032

DDh 15h 42h FFh

3163

80h EEh A1h 14h

032

00h FFh 00h FFh

3163

00hFFh FFh 00h

032

Result ResultResult Result Result Result Result Result

False True False True
48 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PCMPEQD

mnemonic opcode description

PCMPEQD mmreg1, mmreg2/mem64 0F 76h Compare packed 32-bit values for equality

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PCMPEQD instruction operates on 32-bit data values. The instruction compares
two 32-bit values to determine if they are equal.

If the corresponding bits in the two operands are equal, all the bits in that 32 bits of the
destination operand are set to 1. If any of the corresponding bits in the two operands
are not equal, all the bits in that 32 bits of the destination operand are set to 0.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 49

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PCMPEQD Instruction

Related Instructions See the PCMPEQB instruction.

See the PCMPEQW instruction.

See the PCMPGTB instruction.

See the PCMPGTD instruction.

See the PCMPGTW instruction.

0000BA14h EF031243hmmreg2/mem64

mmreg1 0000BA13h EF031243h

00000000h FFFFFFFFhmmreg1

Compare Compare

Result Result

False True

063

063

063
50 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PCMPEQW

mnemonic opcode description

PCMPEQW mmreg1, mmreg2/mem64 0F 75h Compare packed 16-bit values for equality

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated

The PCMPEQW instruction operates on 16-bit data values. The instruction compares
two 16-bit values to determine if they are equal.

If the corresponding bits in the two operands are equal, all the bits in that 16 bits of the
destination operand are set to 1. If any of the corresponding bits in the two operands
are not equal, all the bits in that 16 bits of the destination operand are set to 0.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 51

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PCMPEQW Instruction

Related Instructions See the PCMPEQB instruction.

See the PCMPEQD instruction.

See the PCMPGTB instruction.

See the PCMPGTD instruction.

See the PCMPGTW instruction.

DA14h 8000h 1243h 1234hmmreg2/mem64

mmreg1 DA24h 8000h 1243h 1243h

0000h FFFFh FFFFh 0000hmmreg1

Compare Compare Compare Compare

Result Result Result Result

False True True False

063

063

063
52 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PCMPGTB

mnemonic opcode description

PCMPGTB mmreg1, mmreg2/mem64 0F 64h Compare signed packed 8-bit values for magnitude

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PCMPGTB instruction operates on signed 8-bit data values. The instruction
compares two signed 8-bit values to determine if the value in the destination operand
is greater than the corresponding signed 8-bit data value in the source operand.

If the value in the destination operand is greater than the value in the source operand,
all the bits in that 8 bits of the destination operand are set to 1. If the value in the
destination operand is equal to or less than the value in the source operand, all the
bits in that 8 bits of the destination operand are set to 0.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 53

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PCMPGTB Instruction

The following list explains the functional illustration of the PCMPGTB instruction:

■ The negative value DDh (–35) is greater than the negative value DCh (–36), so the
result is true (FFh).

■ The positive value 24h (+36) is not greater than the positive value 25h (+37), so the
result is false (00h).

■ The positive value 42h (+66) is greater than the positive value 41h (+65), so the
result is true (FFh).

■ The positive value 01h (+1) is greater than the negative value FFh (–1), so the
result is true (FFh).

■ The negative value 80h (–128) is not greater than the negative value 80h (–128), so
the result is false (00h).

■ The negative value 80h (–128) is not greater than the positive value 7Fh (+127), so
the result is false (00h).

■ The negative value A3h (–93) is not greater than the negative value A6h (–90), so
the result is false (00h).

■ The positive value 14h (+20) is greater than the positive value 04h (+4), so the
result is true (FFh).

Related Instructions See the PCMPEQB instruction.

See the PCMPEQD instruction.

See the PCMPEQW instruction.

See the PCMPGTD instruction.

See the PCMPGTW instruction.

DCh 25h 41h FFhmmreg2/mem64

mmreg1

mmreg1

Greater? Greater?Greater? Greater?

FalseTrue TrueFalse

3163

80h 7Fh A6h 04h

Greater? Greater? Greater? Greater?

032

DDh 24h 42h 01h

3163

80h 80h A3h 14h

032

FFh 00h FFh FFh

3163

00h 00h 00h FFh

032

Result ResultResult Result Result Result Result Result

FalseTrue FalseTrue
54 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PCMPGTD

mnemonic opcode description

PCMPGTD mmreg1, mmreg2/mem64 0F 66h Compare signed packed 32-bit values for magnitude

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated

The PCMPGTB instruction operates on signed 32-bit data values. The instruction
compares two signed 32-bit values to determine if the value in the destination operand
is greater than the corresponding signed 32-bit data value in the source operand.

If the value in the destination operand is greater than the value in the source operand,
all the bits in that 32 bits of the destination operand are set to 1. If the value in the
destination operand is equal to or less than the value in the source operand, all the bits
in that 32 bits of the destination operand are set to 0.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 55

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PCMPGTD Instruction

The following list explains the functional illustration of the PCMPGTD instruction:

■ The positive value 0000_BA15h (+47637) is greater than the positive value
0000_BA14h (+47636), so the result is true (FFFF_FFFFh).

■ The positive value 0000_0001h (+1) is greater than the negative value
FFFF_FFFFh (–1), so the result is true (FFFF_FFFFh).

Related Instructions See the PCMPEQB instruction.

See the PCMPEQD instruction.

See the PCMPEQW instruction.

See the PCMPGTB instruction.

See the PCMPGTW instruction.

0000_BA14h FFFF_FFFFhmmreg2/mem64

mmreg1 0000_BA15h 0000_0000h

FFFF_FFFFh FFFF_FFFFhmmreg1

Greater? Greater?

Result Result

True True

063

063

063
56 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PCMPGTW

mnemonic opcode description

PCMPGTW mmreg1, mmreg2/mem64 0F 65h Compare signed packed 16-bit values for magnitude

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PCMPGTW instruction operates on signed 16-bit data values. The instruction
compares two signed 16-bit values to determine if the value in the destination operand
is greater than the corresponding signed 16-bit data value in the source operand.

If the value in the destination operand is greater than the value in the source operand,
all the bits in that 16 bits of the destination operand are set to 1. If the value in the
destination operand is equal to or less than the value in the source operand, all the bits
in that 16 bits of the destination operand are set to 0.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 57

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PCMPGTW Instruction

The following list explains the functional illustration of the PCMPGTB instruction:

■ The negative value DA14h (–9708) is not greater than the positive value 0001h (+1),
so the result is false (0000h).

■ The negative value 8000h (–32768) is not greater than the negative value 8000h
(–32768), so the result is false (0000h).

■ The positive value 0001h (+1) is greater than the negative value FFFFh (–1), so the
result is true (FFFFh).

■ The positive value 1243h (+4675) is greater than the positive value 1234h (+4660),
so the result is true (FFFFh).

Related Instructions See the PCMPEQB instruction.

See the PCMPEQD instruction.

See the PCMPEQW instruction.

See the PCMPGTB instruction.

See the PCMPGTD instruction.

0001h 8000h FFFFh 1234hmmreg2/mem64

mmreg1 DA14h 8000h 0001h 1243h

0000h 0000h FFFFh FFFFhmmreg1

Greater? Greater? Greater? Greater?

Result Result Result Result

False False True True

063

063

063
58 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PMADDWD

mnemonic opcode description

PMADDWD mmreg1, mmreg2/mem64 0F F5h Multiply signed packed 16-bit values and add the 32-bit
results

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PMADDWD instruction multiplies signed 16-bit values from the source operand
(an MMX register or a 64-bit memory location) by the corresponding signed 16-bit
values in the destination operand (an MMX register), adds the resulting 32-bit values
from the left and right halves of the 64-bit work space, and stores the 32-bit sums in
the MMX destination register.

Note: If all four of the 16-bit operands are 8000h, the result wraps around to 8000_0000h
because the maximum negative 16-bit value of 8000h multiplied by itself equals
4000_0000h, and 4000_0000h added to 4000_0000h equals 8000_0000h. The result
of multiplying two negative numbers should be a positive number, but 8000_0000h
is the maximum possible 32-bit negative number rather than a positive number.
This is the only instance of wraparound that can occur as a result of the
PMADDWD instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 59

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PMADDWD Instruction

The following list explains the functional illustration of the PMADDWD instruction:

■ The signed 16-bit negative value FFFEh (–2) is multiplied by the signed 16-bit
positive value 0002h to produce a signed 32-bit negative intermediate result of
FFFF_FFFCh (–4).

■ The signed 16-bit positive value 7FFFh is multiplied by the signed 16-bit positive
value 7FFFh to produce a signed 32-bit positive intermediate result of
3FFF_0001h.

■ The two 32-bit intermediate results are added together to produce the final signed
32-bit positive result of 3FFE_FFFDh.

■ The signed 16-bit positive value 7007h is multiplied by the signed 16-bit positive
value 0FF9h to produce a signed 32-bit intermediate result of 06FD_5FCFh.

■ The signed 16-bit negative value FFFFh (–1) is multiplied by the signed 16-bit
negative value FFFFh (–1) to produce a signed 32-bit positive intermediate result
of 0000_0001h.

■ The two 32-bit intermediate results are added together to produce the final signed
32-bit positive result of 06FD_5FD0h.

Related Instructions See the PMULHW instruction.

See the PMULLW instruction.

06FD_5FCFh 0000_0001h

∗ ∗ ∗ ∗

= = = =

mmreg2/mem64

mmreg1 FFFFh0FF9h7FFFh0002h

63 0

mmreg1 06FD_5FD0h

63 0

3FFE_FFFDh

FFFF_FFFCh 3FFF_0001h

48 47 32 31 16 15

FFFFh7007h7FFFhFFFEh

63 048 47 32 31 16 15

intermediate results

FFFF_FFFCh

+

==

+

0000_0001h
60 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PMULHW

mnemonic opcode description

PMULHW mmreg1, mmreg2/mem64 0F E5h Multiply signed packed 16-bit values and store the high 16
bits

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PMULHW instruction multiplies four signed 16-bit values from the source
operand (an MMX register or a 64-bit memory location) by the four corresponding
signed 16-bit values in the destination operand (an MMX register) and then stores the
high-order 16 bits of the result (including the sign bit) in the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 61

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PMULHW Instruction

The following list explains the functional illustration of the PMULHW instruction:

■ The signed 16-bit negative value D250h (–2DB0h) is multiplied by the signed 16-bit
negative value 8807h (–77F9h) to produce the signed 32-bit positive result of
1569_4030h. The signed high-order 16-bits of the result are stored in the
destination operand.

■ The signed 16-bit positive value 5321h is multiplied by the signed 16-bit negative
value EC22h (–13DEh) to produce the signed 32-bit negative result of F98C_7662h
(–0673_899Eh). The signed high-order 16-bits of the result are stored in the
destination operand.

■ The signed 16-bit positive value 7007h is multiplied by the signed 16-bit positive
value 0FF9h to produce the signed 32-bit positive result of 06FD_5FCFh. The
signed high-order 16-bits of the result are stored in the destination operand.

■ The signed 16-bit negative value FFFFh (–1) is multiplied by the signed 16-bit
negative value FFFFh (–1) to produce the signed 32-bit positive result of
0000_0001h. The signed high-order 16-bits of the result are stored in the
destination operand.

Related Instructions See the PMADDWD instruction.

See the PMULLW instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLWD instruction.

∗ ∗ ∗ ∗

= = = =

mmreg2/mem64

mmreg1

mmreg1

FFFFhD250h

FFFFh

0000h

7007h

0FF9h

06FDh

5321h

EC22h

F98Ch

8807h

1569h

63

63

63

0

0

0

62 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PMULLW

mnemonic opcode description

PMULLW mmreg1, mmreg2/mem64 0F D5h Multiply signed packed 16-bit values and store the low 16
bits

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PMULLW instruction multiplies four signed 16-bit values from the source
operand (an MMX register or a 64-bit memory location) by the four corresponding
signed 16-bit values in the destination operand (an MMX register) and then stores the
low-order 16 bits of the result (unsigned) in the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 63

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PMULLW Instruction

The following list explains the functional illustration of the PMULLW instruction:

■ The signed 16-bit negative value D250h (–2DB0h) is multiplied by the signed 16-bit
negative value 8807h (–77F9h) to produce the signed 32-bit positive result of
1569_4030h. The unsigned low-order 16-bits of the result are stored in the
destination operand.

■ The signed 16-bit positive value 5321h is multiplied by the signed 16-bit negative
value EC22h (–13DEh) to produce the signed 32-bit negative result of F98C_7662h
(–0673_899Eh). The unsigned low-order 16-bits of the result are stored in the
destination operand.

■ The signed 16-bit positive value 7007h is multiplied by the signed 16-bit positive
value 0FF9h to produce the signed 32-bit positive result of 06FD_5FCFh. The
unsigned low-order 16-bits of the result are stored in the destination operand.

■ The signed 16-bit negative value FFFFh (–1) is multiplied by the signed 16-bit
negative value FFFFh (–1) to produce the signed 32-bit positive result of
0000_0001h. The unsigned low-order 16-bits of the result are stored in the
destination operand.

Related Instructions See the PMADDWD instruction.

See the PMULHW instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLWD instruction.

= = = =

mmreg2/mem64

mmreg1

mmreg1

FFFFhD250h

FFFFh

0001h

7007h

0FF9h

5FCFh

5321h

EC22h

7662h

8807h

4030h

63

63

63

0

0

0

∗ ∗ ∗ ∗
64 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
POR

mnemonic opcode description

POR mmreg1, mmreg2/mem64 0F EBh OR 64-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The POR instruction logically ORs the 64 bits of the source operand (an MMX register
or a 64-bit memory location) with the 64 bits of the destination operand (an MMX
register) and stores the result in the destination register.

A logical OR produces a 1 bit if either or both input bits is a 1. If both input bits are 0,
a logical OR produces a 0 bit.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 65

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the POR Instruction

In the functional illustration of the POR instruction, the 64-bit source value is
logically OR’d to the 64-bit destination value, and the result is stored in the
destination register.

Related Instructions See the PAND instruction.

See the PANDN instruction.

See the PXOR instruction.

0101_1100_1100_0011 1100_1101_0100_1110 1011_0001_0011_1001 0110_0011_0101_1001

1111_1111_1100_1111 1100_1111_0100_1111 1111_0001_0011_1001 1110_1111_1101_1011

mmreg1

032 3163 4748 1516

032 3163 4748 1516

mmreg2/mem64

Logical OR Logical OR Logical OR Logical OR

mmreg1

032 3163 4748 1516

Result

1010_1111_0000_1101 0000_1111_0000_1111 1100_0001_0011_0001 1000_1100_1101_0011
66 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSLLD

mnemonic opcode description

PSLLD mmreg1, mmreg2/mem64 0F F2h Shift left logical packed 32-bit values in mmreg1 the number of
positions in mmreg2/mem64 with zero fill from the right

PSLLD mmreg1, imm8 0F 72h /6 Shift left logical packed 32-bit values in mmreg1 the number of
positions in imm8 with zero fill from the right

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSLLD instruction shifts the two 32-bit operands in the destination operand (an
MMX register) to the left by the number of bit positions indicated by mmreg2/mem64
or by imm8, the 8-bit immediate operand. The shifted values are zero filled from the
right. The two 32-bit results are stored in the MMX register specified as the
destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 67

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSLLD Instruction

The following list explains the functional illustration of the PSLLD instruction:

■ The value 0000_0000_0000_0008h in mmreg2/mem64 indicates a shift of 8 bit
positions to the left.

■ The 32-bit value 000F_A3BEh in mmreg1 is shifted 8 bit positions to the left and
stored in mmreg1 as 0FA3_BE00h.

■ The 32-bit value 0123_4567h in mmreg1 is shifted 8 bit positions to the left and
stored in mmreg1 as 2345_6700h.

Related Instructions See the PSLLQ instruction.

See the PSLLW instruction.

See the PSRAD instruction.

See the PSRAW instruction.

See the PSRLD instruction.

See the PSRLQ instruction.

See the PSRLW instruction.

= =

mmreg2/mem64

mmreg1

mmreg1 2345_6700h0FA3_BE00h

000F_A3BEh

0000_0000_0000_0008h

63 0

63

63

0

0

0123_4567h
68 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSLLQ

mnemonic opcode description

PSLLQ mmreg1, mmreg2/mem64 0F F3h Shift left logical 64-bit values in mmreg1 the number of positions
in mmreg2/mem64 with zero fill from the right

PSLLQ mmreg1, imm8 0F 73h /6 Shift left logical 64-bit values in mmreg1 the number of positions
in imm8 with zero fill from the right

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSLLQ instruction shifts the 64-bit operand in the destination operand (an MMX
register) to the left by the number of bit positions indicated by mmreg2/mem64 or by
imm8, the 8-bit immediate operand. The shifted value is zero filled from the right. The
64-bit result is stored in the MMX register specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 69

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSLLQ Instruction

The following list explains the functional illustration of the PSLLQ instruction:

■ The value 0000_0000_0000_0008h in mmreg2/mem64 indicates a shift of 8 bit
positions to the left.

■ The 64-bit value 000F_A3BE_0123_4567h in mmreg1 is shifted 8 bit positions to the
left and stored in mmreg1 as 0FA3_BE01_2345_6700h.

Related Instructions See the PSLLD instruction.

See the PSLLW instruction.

See the PSRAD instruction.

See the PSRAW instruction.

See the PSRLD instruction.

See the PSRLQ instruction.

See the PSRLW instruction.

=

mmreg2/mem64

mmreg1

mmreg1 0FA3_BE01_2345_6700h

000F_A3BE_0123_4567h

0000_0000_0000_0008h

63 0

63

63

0

0

70 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSLLW

mnemonic opcode description

PSLLW mmreg1, mmreg2/mem64 0F F1h Shift left logical packed 16-bit values in mmreg1 the number of
positions in mmreg2/mem64 with zero fill from the right

PSLLW mmreg1, imm8 0F 71h /6 Shift left logical packed 16-bit values in mmreg1 the number of
positions in imm8 with zero fill from the right

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSLLW instruction shifts the four 16-bit operands in the destination operand (an
MMX register) to the left by the number of bit positions indicated by mmreg2/mem64
or by imm8, the 8-bit immediate operand. The shifted values are zero filled from the
right. The four 16-bit results are stored in the MMX register specified as the
destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 71

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSLLW Instruction

The following list explains the functional illustration of the PSLLW instruction:

■ The value 0000_0000_0000_0008h in mmreg2/mem64 indicates a shift of 8 bit
positions to the left.

■ The 16-bit value 8807h in mmreg1 is shifted 8 bit positions to the left and stored in
mmreg1 as 0700h.

■ The 16-bit value EC22h in mmreg1 is shifted 8 bit positions to the left and stored in
mmreg1 as 2200h.

■ The 16-bit value 0FF9h in mmreg1 is shifted 8 bit positions to the left and stored in
mmreg1 as F900h.

■ The 16-bit value FFFFh in mmreg1 is shifted 8 bit positions to the left and stored in
mmreg1 as FF00h.

Related Instructions See the PSLLD instruction.

See the PSLLQ instruction.

See the PSRAD instruction.

See the PSRAW instruction.

See the PSRLD instruction.

See the PSRLQ instruction.

See the PSRLW instruction.

= = = =

mmreg2/mem64

mmreg1

mmreg1

0000_0000_0000_0008h

FFFFh

FF00h

0FF9h

F900h

EC22h

2200h

8807h

0700h

63

63

63

0

0

0

72 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSRAD

mnemonic opcode description

PSRAD mmreg1, mmreg2/mem64 0F E2h Shift right arithmetic packed signed 32-bit values in mmreg1 the
number of positions in mmreg2/mem64 with sign fill from the
left

PSRAD mmreg1, imm8 0F 72h /4 Shift right arithmetic packed signed 32-bit values in mmreg1 the
number of positions in imm8 with sign fill from the left

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSRAD instruction shifts the two signed 32-bit operands in the destination
operand (an MMX register) to the right by the number of bit positions indicated by
mmreg2/mem64 or by imm8, the 8-bit immediate operand. The shifted values are sign
filled from the left. The two signed 32-bit results are stored in the MMX register
specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 73

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSRAD Instruction

The following list explains the functional illustration of the PSRAD instruction:

■ The value 0000_0000_0000_0010h in mmreg2/mem64 indicates a shift of 16 bit
positions to the right.

■ The 32-bit negative value FFF0_0000h in mmreg1 is shifted 16 bit positions to the
right with sign fill from the left and stored in mmreg1 as FFFF_FFF0h.

■ The 32-bit positive value 0123_0000h in mmreg1 is shifted 16 bit positions to the
right with sign fill from the left and stored in mmreg1 as 0000_0123h.

Related Instructions See the PSLLD instruction.

See the PSLLQ instruction.

See the PSLLW instruction.

See the PSRAW instruction.

See the PSRLD instruction.

See the PSRLQ instruction.

See the PSRLW instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLWD instruction.

= =

mmreg2/mem64

mmreg1

mmreg1

0123_0000h

0000_0000_0000_0010h

0000_0123hFFFF_FFF0h

FFF0_0000h

63 0

63

63

0

0

74 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSRAW

mnemonic opcode description

PSRAW mmreg1, mmreg2/mem64 0F E1h Shift right arithmetic packed signed 16-bit values in mmreg1 the
number of positions in mmreg2/mem64 with sign fill from the
left

PSRAW mmreg1, imm8 0F 71h /4 Shift right arithmetic packed signed 16-bit values in mmreg1 the
number of positions in imm8 with sign fill from the left

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSRAW instruction shifts the four signed 16-bit operands in the destination
operand (an MMX register) to the right by the number of bit positions indicated by
mmreg2/mem64 or by imm8, the 8-bit immediate operand. The shifted values are sign
filled from the left. The four signed 16-bit results are stored in the MMX register
specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 75

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSRAW Instruction

The following list explains the functional illustration of the PSRAW instruction:

■ The value 0000_0000_0000_0008h in mmreg2/mem64 indicates a shift of 8 bit
positions to the right.

■ The 16-bit negative value 8800h in mmreg1 is shifted 8 bit positions to the right
with sign fill from the left and stored in mmreg1 as FF88h.

■ The 16-bit negative value EC00h in mmreg1 is shifted 8 bit positions to the right
with sign fill from the left and stored in mmreg1 as FFECh.

■ The 16-bit positive value 0F00h in mmreg1 is shifted 8 bit positions to the right
with sign fill from the left and stored in mmreg1 as 000Fh.

■ The 16-bit positive value 7F00h in mmreg1 is shifted 8 bit positions to the right
with sign fill from the left and stored in mmreg1 as 007Fh.

Related Instructions See the PSLLD instruction.

See the PSLLQ instruction.

See the PSLLW instruction.

See the PSRAD instruction.

See the PSRLD instruction.

See the PSRLQ instruction.

See the PSRLW instruction.

See the PUNPCKHBW instruction.

See the PUNPCKLBW instruction.

= = = =

mmreg2/mem64

mmreg1

mmreg1

0000_0000_0000_0008h

7F00h

007Fh

0F00h

000Fh

EC00h

FFECh

8800h

FF88h

63

63

63

0

0

0

76 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSRLD

mnemonic opcode description

PSRLD mmreg1, mmreg2/mem64 0F D2h Shift right logical packed 32-bit values in mmreg1 the number of
positions in mmreg2/mem64 with zero fill from the left

PSRLD mmreg1, imm8 0F 72h /2 Shift right logical packed 32-bit values in mmreg1 the number of
positions in imm8 with zero fill from the left

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSRLD instruction shifts the two 32-bit operands in the destination operand (an
MMX register) to the right by the number of bit positions indicated by
mmreg2/mem64 or by imm8, the 8-bit immediate operand. The shifted values are zero
filled from the left. The two 32-bit results are stored in the MMX register specified as
the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 77

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSRLD Instruction

The following list explains the functional illustration of the PSRLD instruction:

■ The value 0000_0000_0000_0010h in mmreg2/mem64 indicates a shift of 16 bit
positions to the right.

■ The 32-bit value FFF0_0000h in mmreg1 is shifted 16 bit positions to the right and
stored in mmreg1 as 0000_FFF0h

■ The 32-bit value 0123_4567h in mmreg1 is shifted 16 bit positions to the right and
stored in mmreg1 as 0000_0123h.

Related Instructions See the PSLLD instruction.

See the PSLLQ instruction.

See the PSLLW instruction.

See the PSRAD instruction.

See the PSRAW instruction.

See the PSRLQ instruction.

See the PSRLW instruction.

= =

mmreg2/mem64

mmreg1

mmreg1

0123_4567h

0000_0000_0000_0010h

0000_0123h0000_FFF0h

FFF0_0000h

63 0

63

63

0

0

78 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSRLQ

mnemonic opcode description

PSRLQ mmreg1, mmreg2/mem64 0F D3h Shift right logical 64-bit values in mmreg1 the number of
positions in mmreg2/mem64 with zero fill from the left

PSRLQ mmreg1, imm8 0F 73h /2 Shift right logical 64-bit values in mmreg1 the number of
positions in imm8 with zero fill from the left

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSRLQ instruction shifts the 64-bit operand in the destination operand (an MMX
register) to the right by the number of bit positions indicated by mmreg2/mem64 or by
imm8, the 8-bit immediate operand. The shifted value is zero filled from the left. The
result is stored in the MMX register specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 79

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSRLQ Instruction

The following list explains the functional illustration of the PSRLQ instruction:

■ The value 0000_0000_0000_0010h in mmreg2/mem64 indicates a shift of 16 bit
positions to the right.

■ The 64-bit value 000F_A3BE_0123_4567h in mmreg1 is shifted 16 bit positions to
the right and stored in mmreg1 as 0000_000F_A3BE_0123h.

Related Instructions See the PSLLD instruction.

See the PSLLQ instruction.

See the PSLLW instruction.

See the PSRAD instruction.

See the PSRAW instruction.

See the PSRLD instruction.

See the PSRLW instruction.

=

mmreg2/mem64

mmreg1

mmreg1 0000_000F_A3BE_0123h

000F_A3BE_0123_4567h

0000_0000_0000_0010h

63 0

63

63

0

0

80 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSRLW

mnemonic opcode description

PSRLW mmreg1, mmreg2/mem64 0F D1h Shift right logical packed 16-bit values in mmreg1 the number of
positions in mmreg2/mem64 with zero fill from the left

PSRLW mmreg1, imm8 0F 71h /2 Shift right logical packed 16-bit values in mmreg1 the number of
positions in imm8 with zero fill from the left

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSRLW instruction shifts the four 16-bit operands in the destination operand (an
MMX register) to the right by the number of bit positions indicated by
mmreg2/mem64 or by imm8, the 8-bit immediate operand. The shifted values are zero
filled from the left. The four 16-bit results are stored in the MMX register specified as
the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 81

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSRLW Instruction

The following list explains the functional illustration of the PSRLW instruction:

■ The value 0000_0000_0000_0008h in mmreg2/mem64 indicates a shift of 8 bit
positions to the right.

■ The 16-bit value 8800h in mmreg1 is shifted 8 bit positions to the right and stored
in mmreg1 as 0088h.

■ The 16-bit value EC22h in mmreg1 is shifted 8 bit positions to the right and stored
in mmreg1 as 00ECh.

■ The 16-bit value 0FF9h in mmreg1 is shifted 8 bit positions to the right and stored
in mmreg1 as 000Fh.

■ The 16-bit value FF00h in mmreg1 is shifted 8 bit positions to the right and stored
in mmreg1 as 00FFh.

Related Instructions See the PSLLD instruction.

See the PSLLQ instruction.

See the PSLLW instruction.

See the PSRAD instruction.

See the PSRAW instruction.

See the PSRLD instruction.

See the PSRLQ instruction.

= = = =

mmreg2/mem64

mmreg1

mmreg1

0000_0000_0000_0008h

FF00h

00FFh

0FF9h

000Fh

EC22h

00ECh

8800h

0088h

63

63

63

0

0

0

82 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSUBB

mnemonic opcode description

PSUBB mmreg1, mmreg2/mem64 0F F8h Subtract unsigned packed 8-bit values with wraparound

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSUBB instruction subtracts eight unsigned 8-bit values in the source operand (an
MMX register or a 64-bit memory location) from the eight corresponding unsigned
8-bit values in the destination operand (an MMX register). If the source operand is
larger than the destination operand, the result wraps around.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 83

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSUBB Instruction

The following list explains the functional illustration of the PSUBB instruction:

■ The unsigned 8-bit value ECh is subtracted from the unsigned 8-bit value 53h and
wraps around to 67h.

■ The unsigned 8-bit value F7h is subtracted from the unsigned 8-bit value 07h and
wraps around to 10h.

■ The unsigned 8-bit value A8h is subtracted from the unsigned 8-bit value 9Ah and
wraps around to F2h.

■ All the remaining operations are simple subtraction with no wraparound.

Related Instructions See the PSUBD instruction.

See the PSUBW instruction.

See the PSUBSB instruction.

See the PSUBSW instruction.

See the PSUBUSB instruction.

See the PSUBUSW instruction.

− − − − − − −−

= = = = = = ==

mmreg2/mem64

mmreg1

mmreg1

00h

00h

00h

9Ah

A8h

F2h

70h 07h

F7h

10h

44h

2Ch

77h

14h

63h

42h

00h

42h

53h

ECh

67h

D2h

88h

4Ah

63

63

63

0

0

0

84 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSUBD

mnemonic opcode description

PSUBD mmreg1, mmreg2/mem64 0F FAh Subtract unsigned packed 32-bit values with wraparound

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSUBD instruction subtracts two unsigned 32-bit values in the source operand (an
MMX register or a 64-bit memory location) from the two corresponding unsigned
32-bit values in the destination operand (an MMX register). If the source operand is
larger than the destination operand, the result wraps around.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 85

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSUBD Instruction

The following list explains the functional illustration of the PSUBD instruction:

■ The unsigned 32-bit value 8000_0000h is subtracted from the unsigned 32-bit value
0123_4567h and wraps around to 8123_4567h.

■ The remaining operation is a simple subtraction with no wraparound.

Related Instructions See the PSUBB instruction.

See the PSUBW instruction.

See the PSUBSB instruction.

See the PSUBSW instruction.

See the PSUBUSB instruction.

See the PSUBUSW instruction.

− −

= =

mmreg2/mem64

mmreg1

mmreg1

0123_4567h

8000_0000h

8123_4567hFFE0_B885h

000F_A3BEh

FFF0_5C43h

63 0

63

63

0

0

86 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSUBSB

mnemonic opcode description

PSUBSB mmreg1, mmreg2/mem64 0F E8h Subtract signed packed 8-bit values and saturate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSUBSB instruction subtracts eight signed 8-bit values in the source operand (an
MMX register or a 64-bit memory location) from the eight corresponding signed 8-bit
values in the destination operand (an MMX register). If a result is less than –128 (80h),
it saturates to –128 (80h). If a result is greater than 127 (7Fh), it saturates to 127 (7Fh).
The eight signed 8-bit results are stored in the MMX register specified as the
destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 87

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSUBSB Instruction

The following list explains the functional illustration of the PSUBSB instruction:

■ The signed 8-bit positive value 0Fh is subtracted from the signed 8-bit negative
value 82h, and the result saturates to 80h because it is less than 80h, the smallest
possible signed 8-bit value.

■ The signed 8-bit negative value C1h is subtracted from the signed 8-bit positive
value 42h, and the result saturates to 7Fh because it is greater than 7Fh, the
largest possible signed 8-bit value.

■ All the remaining operations are simple signed subtraction with no saturation.

Related Instructions See the PSUBB instruction.

See the PSUBD instruction.

See the PSUBW instruction.

See the PSUBSW instruction.

See the PSUBUSB instruction.

See the PSUBUSW instruction.

− − − − − − −−

= = = = = = ==

mmreg2/mem64

mmreg1

mmreg1

82h

0Fh

80h

9Ah

A8h

F2h

70h 07h

F7h

10h

44h

2Ch

77h

14h

63h

42h

C1h

7Fh

53h

ECh

67h

D2h

88h

4Ah

63

63

63

0

0

0

Indicates a saturated value
88 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSUBSW

mnemonic opcode description

PSUBSW mmreg1, mmreg2/mem64 0F E9h Subtract signed packed 16-bit values and saturate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSUBSW instruction subtracts four signed 16-bit values in the source operand (an
MMX register or a 64-bit memory location) from the four corresponding signed 16-bit
values in the destination operand (an MMX register). If a result is less than –32768
(8000h), it saturates to –32768 (8000h). If a result is greater than 32767 (7FFFh), it
saturates to 32767 (7FFFh). The four signed 16-bit results are stored in the MMX
register specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 89

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSUBSW Instruction

The following list explains the functional illustration of the PSUBSW instruction:

■ The signed 16-bit negative value D320h is subtracted from the signed 16-bit
positive value 5321h, and the result saturates to 7FFFh because it is greater than
7FFFh, the largest possible signed 16-bit value.

■ The signed 16-bit positive value 0FF9h is subtracted from the signed 16-bit
negative value 8007h, and the result saturates to 8000h because it is less than
8000h, the smallest possible signed 16-bit value.

■ The remaining operations are simple signed subtraction with no saturation.

Related Instructions See the PSUBB instruction.

See the PSUBD instruction.

See the PSUBW instruction.

See the PSUBSB instruction.

See the PSUBUSB instruction.

See the PSUBUSW instruction.

− − − −

= = = =

mmreg2/mem64

mmreg1

mmreg1

FFFFhD250h

FFFFh

0000h

8007h

0FF9h

8000h

5321h

D320h

7FFFh

8807h

4A49h

63

63

63

0

0

0

Indicates a saturated value
90 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSUBUSB

mnemonic opcode description

PSUBUSB mmreg1, mmreg2/mem64 0F D8h Subtract unsigned packed 8-bit values and saturate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSUBUSB instruction subtracts eight unsigned 8-bit values in the source operand
(an MMX register or a 64-bit memory location) from the eight corresponding unsigned
8-bit values in the destination operand (an MMX register). If any 8-bit source value is
greater than its corresponding 8-bit destination value, the result saturates to 00h. The
eight unsigned 8-bit results are stored in the MMX register specified as the
destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 91

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSUBUSB Instruction

The following list explains the functional illustration of the PSUBUSB instruction:

■ The unsigned 8-bit value ECh is subtracted from the unsigned 8-bit value 53h, and
the result saturates to 00h because the source operand is greater than the
destination operand.

■ The unsigned 8-bit value C1h is subtracted from the unsigned 8-bit value 42h, and
the result saturates to 00h because the source operand is greater than the
destination operand.

■ The unsigned 8-bit value F7h is subtracted from the unsigned 8-bit value 07h, and
the result saturates to 00h because the source operand is greater than the
destination operand.

■ All the remaining operations are simple unsigned subtraction with no saturation.

Related Instructions See the PSUBB instruction.

See the PSUBD instruction.

See the PSUBW instruction.

See the PSUBSB instruction.

See the PSUBSW instruction.

See the PSUBUSW instruction.

− − − − − − −−

= = = = = = ==

mmreg2/mem64

mmreg1

mmreg1

82h

0Fh

73h

9Ah

98h

02h

70h 07h

F7h

00h

44h

2Ch

77h

14h

63h

42h

C1h

00h

53h

ECh

00h

D2h

88h

4Ah

63

63

63

0

0

0

Indicates a saturated value
92 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSUBUSW

mnemonic opcode description

PSUBUSW mmreg1, mmreg2/mem64 0F D9h Subtract unsigned packed 16-bit values and saturate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSUBUSW instruction subtracts four unsigned 16-bit values in the source
operand (an MMX register or a 64-bit memory location) from the four corresponding
unsigned 16-bit values in the destination operand (an MMX register). If any 16-bit
source value is greater than its corresponding 16-bit destination value, the result
saturates to 0000h. The four unsigned 16-bit results are stored in the MMX register
specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 93

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSUBUSW Instruction

The following list explains the functional illustration of the PSUBUSW instruction:

■ The unsigned 16-bit value EC22h is subtracted from the unsigned 16-bit value
5321h, and the result saturates to 0000h because the source operand is greater
than the destination operand.

■ The remaining operations are simple unsigned subtraction with no saturation.

Related Instructions See the PSUBB instruction.

See the PSUBD instruction.

See the PSUBW instruction.

See the PSUBSB instruction.

See the PSUBSW instruction.

See the PSUBUSB instruction.

− − − −

= = = =

mmreg2/mem64

mmreg1

mmreg1

FFFFhD250h

FFFFh

0000h

7007h

0FF9h

600Eh

5321h

EC22h

0000h

8807h

4A49h

63

63

63

0

0

0

Indicates a saturated value
94 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PSUBW

mnemonic opcode description

PSUBW mmreg1, mmreg2/mem64 0F F9h Subtract unsigned packed 16-bit values with wraparound

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PSUBW instruction subtracts four unsigned 16-bit values in the source operand
(an MMX register or a 64-bit memory location) from the four corresponding unsigned
16-bit values in the destination operand (an MMX register). If the source operand is
larger than the destination operand, the result wraps around.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 95

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PSUBW Instruction

The following list explains the functional illustration of the PSUBW instruction:

■ The unsigned 16-bit value EC22h is subtracted from the unsigned 16-bit value
5321h and the result wraps around to 66FFh.

■ The remaining operations are simple unsigned subtraction with no saturation.

Related Instructions See the PSUBB instruction.

See the PSUBD instruction.

See the PSUBSB instruction.

See the PSUBSW instruction.

See the PSUBUSB instruction.

See the PSUBUSW instruction.

− − − −

= = = =

mmreg2/mem64

mmreg1

mmreg1

FFFFhD250h

FFFFh

0000h

7007h

0FF9h

600Eh

5321h

EC22h

66FFh

8807h

4A49h

63

63

63

0

0

0

96 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PUNPCKHBW

mnemonic opcode description

PUNPCKHBW mmreg1, mmreg2/mem64 0F 68h Unpack the high 32 bits of packed 8-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PUNPCKHBW instruction unpacks and interleaves four 8-bit values from the high
32 bits of the source operand (an MMX register or a 64-bit memory location) and four
8-bit values from the high 32 bits of the destination operand (an MMX register). The
8-bit values from the source operand become the high 8 bits of the 16-bit results, and
the 8-bit values from the destination operand become the low 8 bits of the 16-bit
results. The eight interleaved 8-bit values are stored in the MMX register specified as
the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 97

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PUNPCKHBW Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

In the functional illustration of the PUNPCKHBW instruction, the 8-bit values from
mmreg1 are stored in the low-order 8 bits of the 16-bit result. The mmreg2/mem64
source operand is set to all zero bits so it can provide zero fill in the high-order 8 bits of
the 16-bit result. This is a method that can be used to expand unsigned 8-bit values
into unsigned 16-bit operands for subsequent processing that requires higher
precision.

Related Instructions See the PACKSSWB instruction.

See the PACKUSWB instruction.

See the PSRAW instruction.

See the PUNPCKHDQ instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLBW instruction.

See the PUNPCKLDQ instruction.

See the PUNPCKLWD instruction.

source mmreg2/mem64

destination mmreg1

source mmreg1

00h

00h

88h

00h

A8h

80h

00h 00h

00h

FEh

44h

06h

00h

00h

7Fh

00h

80h

A8h

00h

00h

44h

00h

88h

80h

63

63

63

0

0

98 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PUNPCKHDQ

mnemonic opcode description

PUNPCKHDQ mmreg1, mmreg2/mem64 0F 6Ah Unpack the high 32 bits of packed 32-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PUNPCKHDQ instruction unpacks and interleaves the high 32 bits of the source
operand (an MMX register or a 64-bit memory location) and the high 32 bits of the
destination operand (an MMX register). The 32-bit value from the source operand
becomes the high 32 bits of the 64-bit result, and the 32-bit value from the destination
operand becomes the low 32 bits of the 64-bit result. The interleaved 32-bit values are
stored in the MMX register specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 99

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PUNPCKHDQ Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

In the functional illustration of the PUNPCKHDQ instruction, the 32-bit value from
mmreg1 is stored in the low-order 32 bits of the 64-bit result. The mmreg2/mem64
source operand is set to all zero bits so it can provide zero fill in the high-order 32 bits
of the 64-bit result. This is a method that can be used to expand unsigned 32-bit values
into unsigned 64-bit operands for subsequent processing that requires higher
precision.

Related Instructions See the PUNPCKHBW instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLBW instruction.

See the PUNPCKLDQ instruction.

See the PUNPCKLWD instruction.

source mmreg2/mem64

destination mmreg1

source mmreg1

0000_0000h

0000_0000h

8880_44A8h

0000_0000h

8880_44A8h

7F06_FE80h

63

63 0

0

100 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PUNPCKHWD

mnemonic opcode description

PUNPCKHWD mmreg1, mmreg2/mem64 0F 69h Unpack the high 32 bits of packed 16-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PUNPCKHWD instruction unpacks and interleaves two 16-bit values from the
high 32 bits of the source operand (an MMX register or a 64-bit memory location) and
two 16-bit values from the high 32 bits of the destination operand (an MMX register).
The 16-bit values from the source operand become the high 16 bits of the 32-bit
results, and the 16-bit values from the destination operand become the low 16 bits of
the 32-bit results. The four interleaved 16-bit values are stored in the MMX register
specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 101

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PUNPCKHWD Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

In the functional illustration of the PUNPCKHWD instruction, the 16-bit values from
mmreg1 are stored in the low-order 16 bits of the 32-bit result. The 16-bit values from
the mmreg2/mem64 source operand are stored in the high-order 16 bits of the 32-bit
result. This is an example of the use of the PUNPCKHWD instruction to assemble
32-bit operands from the high and low 16-bit results produced by the PMULHW and
PMULLW instructions. In this example, the high and low 16-bit results are interleaved
to produce the signed 32-bit results 1569_4030h and F98C_7662h.

Related Instructions See the PACKSSDW instruction.

See the PSRAD instruction.

See the PMULHW instruction.

See the PMULLW instruction.

See the PUNPCKHBW instruction.

See the PUNPCKHDQ instruction.

See the PUNPCKLBW instruction.

See the PUNPCKLDQ instruction.

See the PUNPCKLWD instruction.

source mmreg2/mem64

destination mmreg1

source mmreg1

1569h

1569h

4030h

0000h

7662h

0001h

06FDh

F98Ch

5FCFh

F98Ch

4030h

7662h

63

63 0

0

102 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PUNPCKLBW

mnemonic opcode description

PUNPCKLBW mmreg1, mmreg2/mem32 0F 60h Unpack the low 32-bits of packed 8-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PUNPCKLBW instruction unpacks and interleaves four 8-bit values from the low
32 bits of the source operand (an MMX register or a 32-bit memory location) and four
8-bit values from the low 32 bits of the destination operand (an MMX register). The
8-bit values from the source operand become the high 8 bits of the 16-bit results, and
the 8-bit values from the destination operand become the low 8 bits of the 16-bit
results. The eight interleaved 8-bit values are stored in the MMX register specified as
the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 103

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PUNPCKLBW Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

In the functional illustration of the PUNPCKLBW instruction, the 8-bit values from
mmreg1 are stored in the low-order 8 bits of the 16-bit result. The mmreg2/mem32
source operand is set to all zero bits so it can provide zero fill in the high-order 8 bits of
the 16-bit result. This is a method that can be used to expand unsigned 8-bit values

source mmreg2

destination mmreg1

source mmreg1

00h

00h

88h

00h

80h

80h

00h 00h

00h

FEh

FEh

06h

00h

00h

7Fh

00h

06h

A8h

00h

00h

44h

00h

7Fh

80h

63

63 0

0

00h00h 00h00h

0

source mem32

destination mmreg1

source mmreg1

00h 80h00hFEh00h06h00h7Fh

31

88h 80hFEh06h7FhA8h44h80h

63 0
104 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
into unsigned 16-bit operands for subsequent processing that requires higher
precision.

Related Instructions See the PACKSSWB instruction.

See the PACKUSWB instruction.

See the PSRAW instruction.

See the PUNPCKHBW instruction

See the PUNPCKHDQ instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLDQ instruction.

See the PUNPCKLWD instruction.
MMX™ Instruction Set 105

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
PUNPCKLDQ

mnemonic opcode description

PUNPCKLDQ mmreg1, mmreg2/mem32 0F 62h Unpack the low 32 bits of packed 32-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PUNPCKLDQ instruction unpacks and interleaves the low 32 bits of the source
operand (an MMX register or a 32-bit memory location) and the low 32 bits of the
destination operand (an MMX register). The 32-bit value from the source operand
becomes the high 32 bits of the 64-bit result, and the 32-bit value from the destination
operand becomes the low 32 bits of the 64-bit result. The interleaved 32-bit values are
stored in the MMX register specified as the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
106 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Functional Illustration of the PUNPCKLDQ Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

In the functional illustration of the PUNPCKLDQ instruction, the 32-bit value from
mmreg1 is stored in the low-order 32 bits of the 64-bit result. The mmreg2/mem32
source operand is set to all zero bits so it can provide zero fill in the high-order 32 bits
of the 64-bit result. This is a method that can be used to expand unsigned 32-bit values
into unsigned 64-bit operands for subsequent processing that requires higher
precision.

source mmreg2

destination mmreg1

source mmreg1

0000_0000h

0000_0000h

8880_44A8h

0000_0000h

7F06_FE80h

7F06_FE80h

63

63 0

0

source mem32

destination mmreg1

source mmreg1

0000_0000h

0000_0000h

7F06_FE80h

31 0

8880_44A8h 7F06_FE80h

63 0
MMX™ Instruction Set 107

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Related Instructions See the PUNPCKHBW instruction.

See the PUNPCKHDQ instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLBW instruction.

See the PUNPCKLWD instruction.
108 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
PUNPCKLWD

mnemonic opcode description

PUNPCKLWD mmreg1, mmreg2/mem32 0F 61h Unpack the low 32 bits of packed 16-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PUNPCKLWD instruction unpacks and interleaves two 16-bit values from the low
32 bits of the source operand (an MMX register or a 32-bit memory location) and two
16-bit values from the low 32 bits of the destination operand (an MMX register). The
16-bit values from the source operand become the high 16 bits of the 32-bit results,
and the 16-bit values from the destination operand become the low 16 bits of the 32-bit
results. The four interleaved 16-bit values are stored in the MMX register specified as
the destination operand.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
MMX™ Instruction Set 109

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
Functional Illustration of the PUNPCKLWD Instruction

In the following figure, the destination register is shown at the center to illustrate the
flow of data from the two source operands.

In the functional illustration of the PUNPCKLWD instruction, the 16-bit values from
mmreg1 are stored in the low-order 16 bits of the 32-bit result. The 16-bit values from
the mmreg2/mem32 source operand are stored in the high-order 16 bits of the 32-bit
result. This is an example of the use of the PUNPCKLWD instruction to assemble
32-bit operands from the high and low 16-bit results produced by the PMULHW and
PMULLW instructions. In this example, the high and low 16-bit results are interleaved
to produce the signed 32-bit results 06FD_5FCFh and 0000_0001h.

source mmreg2

destination mmreg1

source mmreg1

1569h

06FDh

4030h

0000h

0001h

0001h

06FDh

0000h

5FCFh

F98Ch

5FCFh

7662h

63

63 0

0

0000h06FDh

0

source mem32

destination mmreg1

source mmreg1

06FDh 0001h0000h5FCFh

31

31

4030h 0001h5FCFh7662h

63 0
110 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Related Instructions See the PACKSSWD instruction.

See the PSRAD instruction.

See the PMULHW instruction.

See the PMULLW instruction.

See the PUNPCKHBW instruction.

See the PUNPCKHDQ instruction.

See the PUNPCKHWD instruction.

See the PUNPCKLBW instruction.

See the PUNPCKLDQ instruction.
MMX™ Instruction Set 111

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
PXOR

mnemonic opcode description

PXOR mmreg1, mmreg2/mem64 0F EFh XOR 64-bit values

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

The PXOR instruction logically XORs the 64 bits of the source operand (an MMX
register or a 64-bit memory location) with the 64 bits of the destination operand (an
MMX register) and stores the result in the destination register.

A logical XOR produces a 1 bit if only one of the two input bits is a 1. If both input bits
are 0 or both input bits are 1, a logical XOR produces a 0 bit.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
112 MMX™ Instruction Set

20726D/0—January 2000 AMD-K6™ MMX™ Enhanced Processor Multimedia Technology

Preliminary Information
Functional Illustration of the PXOR Instruction

In the functional illustration of the PXOR instruction, the 64-bit source value is
logically XOR’d to the 64-bit destination value, and the result is stored in the
destination register.

Related Instructions See the PAND instruction.

See the PANDN instruction.

See the POR instruction.

0101_1100_1100_0011 1100_1101_0100_1110 1011_0001_0011_1001 0110_0011_0101_1001

1111_0011_1100_1110 1100_0010_0100_0001 0111_0000_0000_1000 1110_1111_1000_1000

mmreg1

032 3163 4748 1516

032 3163 4748 1516

mmreg2/mem64

Logical OR Logical OR Logical OR Logical OR

mmreg1

032 3163 4748 1516

Result

1010_1111_0000_1101 0000_1111_0000_1111 1100_0001_0011_0001 1000_1100_1101_0011
MMX™ Instruction Set 113

AMD-K6™ MMX™ Enhanced Processor Multimedia Technology 20726D/0—January 2000

Preliminary Information
114 MMX™ Instruction Set

	DOCUMENT MENU
	Contents
	Revision History
	AMD�K6™ Processor Multimedia Technology
	Introduction
	Multimedia Technology Architecture
	Key Functionality
	Register Set
	Figure 1. MMX™ Registers

	Data Types
	Figure 2. MMX™ Data Types

	Instructions
	Instruction Formats

	Programming Considerations
	Feature Detection
	Task Switching
	Figure 3. Cooperative Task Switching
	Figure 4. Preemptive Task Switching

	Exceptions
	Mixing MMX™ and Floating�Point Instructions
	Prefixes

	MMX™ Instruction Set
	EMMS
	MOVD
	MOVQ
	PACKSSDW
	PACKSSWB
	PACKUSWB
	PADDB
	PADDD
	PADDSB
	PADDSW
	PADDUSB
	PADDUSW
	PADDW
	PAND
	PANDN
	PCMPEQB
	PCMPEQD
	PCMPEQW
	PCMPGTB
	PCMPGTD
	PCMPGTW
	PMADDWD
	PMULHW
	PMULLW
	POR
	PSLLD
	PSLLQ
	PSLLW
	PSRAD
	PSRAW
	PSRLD
	PSRLQ
	PSRLW
	PSUBB
	PSUBD
	PSUBSB
	PSUBSW
	PSUBUSB
	PSUBUSW
	PSUBW
	PUNPCKHBW
	PUNPCKHDQ
	PUNPCKHWD
	PUNPCKLBW
	PUNPCKLDQ
	PUNPCKLWD
	PXOR

