

 Advanced Micro Devices

[AMD Public Use]

SEV-ES Guest-Hypervisor

Communication Block

Standardization

 Publication # 56421 Revision: 1.00
 Issue Date: August 2020

[AMD Public Use]

© 2018-2020 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While

every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions

and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced

Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the

contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,

merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software

or other products described herein. No license, including implied or arising by estoppel, to any intellectual property

rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD EPYC, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their

respective companies.

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 3

[AMD Public Use]

Specification Agreement

This Specification Agreement (this “Agreement”) is a legal agreement between Advanced Micro Devices, Inc.

(“AMD”) and “You” as the recipient of the attached AMD Specification (the “Specification”). If you are accessing the

Specification as part of your performance of work for another party, you acknowledge that you have authority to bind

such party to the terms and conditions of this Agreement. If you accessed the Specification by any means or otherwise

use or provide Feedback (defined below) on the Specification, You agree to the terms and conditions set forth in this

Agreement. If You do not agree to the terms and conditions set forth in this Agreement, you are not licensed to use the

Specification; do not use, access or provide Feedback about the Specification.

In consideration of Your use or access of the Specification (in whole or in part), the receipt and sufficiency of which

are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and designing Your product,

service or technology (“Product”) to interface with an AMD product in compliance with the requirements as set

forth in the Specification and (b) to provide Feedback about the information disclosed in the Specification to

AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are retained by AMD. This

Agreement does not give You any rights under any AMD patents, copyrights, trademarks or other intellectual

property rights. You may not (i) duplicate any part of the Specification; (ii) remove this Agreement or any

notices from the Specification, or (iii) give any part of the Specification, or assign or otherwise provide Your

rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not include certain

necessary information. Additionally, AMD reserves the right to discontinue or make changes to the Specification

and its products at any time without notice. The Specification is provided entirely “AS IS.” AMD MAKES NO

WARRANTY OF ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY

WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, TITLE OR

THOSE WARRANTIES ARISING AS A COURSE OF DEALING OR CUSTOM OF TRADE. AMD SHALL

NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE OR

EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS OF BUSINESS, LOSS OF INFORMATION

OR DATA, LOST PROFITS, LOSS OF CAPITAL, LOSS OF GOODWILL) REGARDLESS OF THE FORM

OF ACTION WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT PRODUCT

LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for use as components in

systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or

in any other application in which the failure of AMD’s product could create a situation where personal injury,

death, or severe property or environmental damage may occur.

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

4

5. You have no obligation to give AMD any suggestions, comments or feedback (“Feedback”) relating to the

Specification. However, any Feedback You voluntarily provide may be used by AMD without restriction, fee or

obligation of confidentiality. Accordingly, if You do give AMD Feedback on any version of the Specification,

You agree AMD may freely use, reproduce, license, distribute, and otherwise commercialize Your Feedback in

any product, as well as has the right to sublicense third parties to do the same. Further, You will not give AMD

any Feedback that You may have reason to believe is (i) subject to any patent, copyright or other intellectual

property claim or right of any third party; or (ii) subject to license terms which seek to require any product or

intellectual property incorporating or derived from Feedback or any Product or other AMD intellectual property

to be licensed to or otherwise provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not limited to the U.S.

Export Administration Regulations (“EAR”), (15 C.F.R. Sections 730 through 774), and E.U. Council

Regulation (EC) No 428/2009 of 5 May 2009. Further, pursuant to Section 740.6 of the EAR, You hereby

certifies that, except pursuant to a license granted by the United States Department of Commerce Bureau of

Industry and Security or as otherwise permitted pursuant to a License Exception under the U.S. Export

Administration Regulations ("EAR"), You will not (1) export, re-export or release to a national of a country in

Country Groups D:1, E:1 or E:2 any restricted technology, software, or source code You receive hereunder, or

(2) export to Country Groups D:1, E:1 or E:2 the direct product of such technology or software, if such foreign

produced direct product is subject to national security controls as identified on the Commerce Control List

(currently found in Supplement 1 to Part 774 of EAR). For the most current Country Group listings, or for

additional information about the EAR or Your obligations under those regulations, please refer to the U.S.

Bureau of Industry and Security’s website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with “RESTRICTED RIGHTS” as

set forth in subparagraphs (c) (1) and (2) of the Commercial Computer Software-Restricted Rights clause at FAR

52.227-14 or subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS

252.277-7013, as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its choice of law principles.

Any dispute involving it must be brought in a court having jurisdiction of such dispute in Santa Clara County,

California, and You waive any defenses and rights allowing the dispute to be litigated elsewhere. If any part of

this agreement is unenforceable, it will be considered modified to the extent necessary to make it enforceable,

and the remainder shall continue in effect. The failure of AMD to enforce any rights granted hereunder or to take

action against You in the event of any breach hereunder shall not be deemed a waiver by AMD as to subsequent

enforcement of rights or subsequent actions in the event of future breaches. This Agreement is the entire

agreement between You and AMD concerning the Specification; it may be changed only by a written document

signed by both You and an authorized representative of AMD.

http://www.bis.doc.gov/

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 5

[AMD Public Use]

Contents

Specification Agreement .. 3

1 Introduction .. 8

1.1 Overview .. 8

1.2 Purpose ... 8

2 Guest-Hypervisor Communication Block (GHCB) .. 9

2.1 Establishing the GHCB .. 9

2.2 GHCB Negotiation Example ... 12

2.3 GHCB/VMGEXIT Example .. 13

2.4 GHCB Layout .. 15

3 Guest Exits .. 17

3.1 Automatic Exits (AE) .. 17

3.2 Guest Non-Automatic Exits (NAE) ... 17

4 SEV-ES/GHCB Protocol Version 1 .. 19

4.1 Invoking VMGEXIT .. 23

4.1.1 Standard VMGExit .. 24

4.1.2 IOIO_PROT (0x7b) ... 24

4.1.3 MSR_PROT (0x7c) ... 25

4.1.4 VMMCALL (0x81) ... 25

4.1.5 #NPF/MMIO Access ... 25

4.1.6 Unsupported Non-Automatic Exits .. 26

4.2 Guest Identification of SEV-ES Support ... 26

4.3 SMP Booting .. 26

4.3.1 vCPU Parking .. 28

4.3.2 vCPU Hotplug .. 29

4.4 Non-maskable Interrupts .. 29

4.5 Debug Register Support ... 29

4.6 System Management Mode (SMM) .. 30

4.7 Nested Virtualization ... 30

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

6

List of Tables

Table 1. GHCB Address Destination .. 10

Table 2. GHCB Layout ... 15

Table 3. List of Automatic Exits ... 17

Table 4. List of Supported Non-Automatic Events ... 19

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 7

[AMD Public Use]

Revision History

Date Revision Description

August 2020 1.00 • Added examples of how to obtain the encryption bit position.

• Clarifications related to the supported NAE event list in regard to

hypervisor and guest expectations.

• Clarification of how a VALID_BITMAP bit position for a GHCB

quad word is calculated.

• Added an example of how to trigger MMIO #NPF using reserved

bits.

• Added an example of how to set the starting vector (CS:IP) of an

AP.

January 2020 0.85 • Added a statement of the CPUID settings that are required to be set

for an SEV-ES guest (beyond normal settings)

• Updated the SMP Booting documentation and introduced an AP

Jump Table set/get functionality to the list of VMGEXIT software

definitions.

June 2019 0.80 • Added a CPUID request / response protocol using the GHCB MSR

for use before GHCB page is available.

• Updated how NMIs are handled under SEV-ES.

• Added a statement that the hypervisor must not intercept read and

write access to the GHCB MSR.

• Updated guest termination codes.

• Added a section regarding hypervisor/VMMCALL exit

requirements.

• Minor formatting changes and spelling corrections.

March 2019 0.71 • Updated to the GHCB layout for improved hypercall usage.

• Added a way for a guest to request termination through

VMGEXIT.

• Clarified GHCB Negotiation Example section.

• Added documentation about ensuring exclusive access to the

GHCB during VMGEXIT usage.

• Added documentation about GHCB usage in NMI context.

October 2018 0.70 • Initial public release.

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

8

1 Introduction

1.1 Overview

The Secure Encrypted Virtualization - Encrypted State (SEV-ES) feature provides protection of

the virtual machine, or guest, register state from the hypervisor. An SEV-ES guest’s register state

is encrypted during world switches and cannot be directly accessed or modified by the hypervisor.

SEV-ES is documented in the AMD64 Architecture Programmer’s Manual Volume 2: System

Programming, Section 15.35.

SEV-ES includes architectural support for notifying a guest operating system (OS) when certain

types of world switches are about to occur, these are called Non-Automatic Exits. This allows the

guest OS to selectively share information with the hypervisor through the Guest-Hypervisor

Communication Block (GHCB).

When SEV-ES is enabled, VMEXITs are classified as either an Automatic Exit (AE) or a Non-

Automatic Exit (NAE) as documented in the AMD64 Architecture Programmer’s Manual Volume

2: System Programming, Section 15.35.4. AE events are well defined and are events that do not

involve or require exposing any guest register state. All other exit events are considered NAE

events. For these NAE events, the guest controls what register state to expose in the GHCB.

1.2 Purpose

The purpose of this document is to standardize the GHCB memory area so that a guest OS can

interoperate with any hypervisor that supports SEV-ES, to standardize on the Non-Automatic

Exits that are required to be supported along with the minimum guest state to expose in the GHCB

and to standardize on specific actions that might require unique support when running as an SEV-

ES guest (i.e. NMI handling, SMP booting, etc.).

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 9

[AMD Public Use]

2 Guest-Hypervisor Communication Block (GHCB)

The GHCB must be mapped decrypted by the guest so that the guest and the hypervisor can

communicate. For that reason, the GHCB is defined to be 4,096 bytes (4KB) in size so that it can

be contained in a single decrypted page. The format of the GHCB must correspond to the SEV-

ES VMCB save state area as documented in the AMD64 Architecture Programmer’s Manual

Volume 2: System Programming, Appendix B, Table B-4 (this information is represented in Table

2 within this document) through offset 0x3ff. The SEV-ES VMCB save state area extends the

traditional VMCB save state area to include additional guest state information. By using this

format, hypervisors that support SEV-ES can map the VMCB save state area to the GHCB and

limit the amount of changes required to support interacting with an SEV-ES guest. The GHCB

fields that are not defined in the SEV-ES save state area are mapped at the end of the GCHB. This

allows for SEV-ES save state area expansion in the future. Not all the data from the VMCB save

state area will be required by the hypervisor, so this document proposes the required VMCB save

state information that is to be provided in the GHCB during a VMGEXIT. For brevity, only the

fields of the SEV-ES save state area that are used in this version of the document will be listed.

However, should future versions need to expose new fields, they will correspond to the SEV-ES

save area definition. By providing only the information required for the hypervisor to successfully

handle the VMGEXIT, the amount of guest state exposed to the hypervisor is limited.

2.1 Establishing the GHCB

The GHCB location in the guest physical address space is chosen by the guest. This location is

made available to the hypervisor by mapping the memory as decrypted, or shared, allowing the

hypervisor direct access to the memory.

The guest physical address of the GHCB is saved and restored by hardware on VMRUN/VMEXIT

through the VMCB (offset 0xa0). The guest can read and write the GHCB value through MSR

0xc001_0130. The hypervisor must not intercept access to MSR 0xc001_0130, otherwise the

guest will not be able to successfully establish the GHCB. The GHCB address must be 4K (page)

aligned, allowing the 12 LSB bits of the GHCB address to be used for providing or requesting

information between the hypervisor and the guest related to the GHCB and SEV-ES.

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

10

Table 1. GHCB Address Destination

Field Name Bit Position Definition

GHCBInfo 11:0

• 0x000 – GHCB guest physical address (from guest)

• 0x001 – SEV Information (from hypervisor)

• 0x002 – Request for SEV Information (from guest)

• 0x003 – Reserved

• 0x004 – CPUID request (from guest)

• 0x005 – CPUID response (from hypervisor)

• 0x100 – Guest has requested termination

GHCBData 63:12 Value dependent upon GHCBInfo

• GHCBInfo:

o 0x000

▪ GHCBData[63:12] specifies bits [63:12] of the guest physical address of the

GHCB (this implies that the GHCB must be 4K aligned).

o 0x001

▪ GHCBData[63:48] specifies the maximum SEV-ES/GHCB protocol version

supported

▪ GHCBData[47:32] specifies the minimum SEV-ES/GHCB protocol version

supported

▪ GHCBData[31:24] specifies the SEV page table encryption bit number

Written by the hypervisor before the GHCB address is established (such as on

vCPU creation) in order to present the guest with the capabilities of the

hypervisor. The guest will choose an appropriate version, within the range

supplied by the hypervisor, and set the SEV-ES/GHCB Protocol Version field

of the GHCB. If the guest cannot support the protocol range supplied by the

hypervisor, it should terminate.

The SEV page table encryption bit number is required by the guest when

building the page tables before entering long mode. Normally, the SEV page

table encryption bit number is obtained using the CPUID instruction, which

will now result in a VMM Communication exception. Without knowing the

position of the encryption bit, the GHCB page cannot be marked as decrypted

to allow for communication with the hypervisor. Because of this, the

hypervisor must supply the page table bit encryption bit number to the guest.

This value can be obtained by the hypervisor from CPUID function

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 11

[AMD Public Use]

0x8000_001f, register EBX[5:0]. Alternatively, for CPUID instructions that are

required before the GHCB can be established, the guest can use the CPUID

request protocol documented below.

o 0x002

▪ Written by the guest to request the hypervisor provide the SEV information

(GHCBInfo = 0x001) needed to perform protocol negotiation.

o 0x004

▪ GHCBData[63:32] – CPUID function

▪ GHCBData[31:30] – Requested CPUID register value

• 0b00 – EAX

• 0b01 – EBX

• 0b10 – ECX

• 0b11 – EDX

▪ GHCBData[29:12] – Reserved, must be zero

Written by the guest to request a CPUID function register value from the

hypervisor. This is useful if CPUID information is required before the GHCB

can be established by the guest. Since only a single register value can be

returned at a time, multiple VMGEXIT invocations are required to obtain all

register values.

The CPUID request protocol does not support CPUID functions that require

non-zero sub-leafs. Additionally, CPUID function 0x0000_000D is not

supported as it requires the value of XCR0.

o 0x005

▪ GHCBData[63:32] – CPUID function register value

▪ GHCBData[31:30] – Returned CPUID register value

• 0b00 – EAX

• 0b01 – EBX

• 0b10 – ECX

• 0b11 – EDX

▪ GHCBData[29:12] – Reserved, must be zero

Written by the hypervisor in response to a CPUID request to return the

requested CPUID function register value.

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

12

o 0x100

▪ Written by the guest to communicate to the hypervisor that the guest is

requesting termination. The guest should expect the hypervisor to comply with

the request for termination. As a safeguard, it is recommended that the guest

incorporate a HLT loop or SHUTDOWN following the VMGEXIT.

GHCBData contains the termination reason code where GHCBData[15:12]

specifies the reason code set and GHCBData[23:16] contains the reason code

from that reason code set.

The reason code set is meant to provide hypervisors with their own termination

reason codes. This document defines and owns reason code set 0x0 and the

following reason codes (GHCBData[23:16]):

• 0x00 – General termination request

• 0x01 – SEV-ES / GHCB Protocol range is not supported.

2.2 GHCB Negotiation Example

The guest will ultimately provide the GPA of the GHCB page via the GHCB MSR. The

hypervisor will obtain this GPA value by reading offset 0x00a0 of the VMCB. Initially, however,

the hypervisor can set the GHCB MSR to allow for the GHCB protocol to be negotiated. This

example assumes that the hypervisor performs its current steps when preparing to create and start

a vCPU. The following additional steps document an example for the GHCB negotiation.

• Hypervisor sets VMCB offset 0x00a0 before launching the vCPU for the first time:

o The value is used by the guest to negotiate the SEV-ES/GHCB protocol version and

establish the page table encryption bit.

o Let’s say that the hypervisor supports only the current version (1) and that the SEV

page table encryption bit number is 47 (0x2f). The hypervisor will use GHCBInfo

value of 0x001 and set VMCB offset 0x00a0 to:

▪ 0x0001_0001_2f00_0001

• Hypervisor launches the guest vCPU (VMRUN).

• Guest determines the encryption bit position in order to be able to properly set up the page

tables and mark the GHCB as shared.

o Guest establishes an exception handler for #VC exceptions

▪ Guest will perform a series of CPUID instructions in order to obtain the SEV

data. For an SEV-ES guest, these CPUID instructions result in a #VC

exception, where the CPUID instructions will be emulated.

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 13

[AMD Public Use]

o Guest issues CPUID for leaf 0x80000000:

▪ EAX is set to 0x8000001f

▪ #VC handler returns

o Guest issues CPUID for leaf 0x8000001f:

▪ Guest #VC exception handler reads MSR 0xC001_0130

▪ If GHCBInfo != 0x001:

• Guest requests termination

▪ Guest extracts the maximum SEV-ES/GHCB protocol version,

GHCBData[63:48], and minimum SEV-ES/GHCB protocol version,

GHCBData[47:32]. If the guest cannot support a protocol in the range:

• Guest requests termination

▪ Guest extracts the SEV page table encryption bit number, GHCBData[31:24]

▪ EAX is set to 0x0000000a

• SEV and SEV-ES supported

▪ EBX is set to the SEV page table encryption bit

▪ #VC handler returns

• Guest continues initialization, which, among other things, includes:

o Ensuring that 64-bit long mode is established

o Page tables are configured with the encryption bit as required

o GHCB page is allocated and marked shared in the page tables:

▪ Guest writes MSR 0xC001_0130 with the GPA of the allocated GHCB page

(GHCBInfo == 0x000)

▪ Must be done before a VMGEXIT instruction is issued that uses the GHCB

page

The above example is just one way to perform the GHCB negotiation. For example, you could use

the GHCBInfo = 0x004 CPUID Request to obtain the actual values for the CPUID instructions

executed by the guest. Or you could use the GHCBInfo = 0x002 Request for SEV Information if

MSR 0xC001_0130 does not contain the GHCBInfo = 0x001 SEV Information.

2.3 GHCB/VMGEXIT Example

• Guest executes an instruction resulting in a #VC exception

o Guest #VC handler is invoked

o Guest #VC handler disables preemption and interrupts

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

14

o Guest #VC handler ensures that the physical address of the GHCB is set in MSR

0xC001_0130

o Guest #VC handler clears any previous GHCB field invocation data

o Guest #VC handler sets the GHCB fields as required for the instruction

o Guest #VC handler issues VMGEXIT

• Hypervisor resumes with a VMEXIT code of VMEXIT_VMGEXIT

o Hypervisor reads VMCB offset 0x00a0 to obtain the guest physical address of the

GHCB

o If GHCBInfo == 0x000

▪ Hypervisor translates GHCB guest physical address into a GHCB hypervisor

virtual address, handles the exit based on the GHCB SW_EXITCODE, updates

the GHCB save state area and resumes the guest.

o If GHCBInfo == 0x002

▪ Hypervisor recreates the GHCB protocol versioning value, sets this value in the

VMCB at offset 0x00a0 and resumes the guest.

o If GHCBInfo == 0x004

▪ Hypervisor creates a CPUID response to the CPUID request, sets this value in

the VMCB at offset 0x00a0 and resumes the guest.

o If GHCBInfo == 0x100

▪ Hypervisor terminates the guest, optionally displaying the associated

GHCBData value.

o If GHCBInfo is any other value

▪ Hypervisor will be unable to process the VMGEXIT and should terminate the

guest.

• Guest #VC handler resumes processing

o Guest copies the GHCB save state information to the guest register state

o Guest enables interrupts and preemption

o Guest exits the #VC handler

When a guest is running as an SEV-ES guest, it is important that the guest not do anything that

would result in an unplanned NAE event before entering long mode or 32-bit PAE. When not in

one of these modes, all memory accesses by the guest are forced to use encryption under the key

associated with the guest. As a result, the guest and hypervisor would not be able to communicate

through the GHCB since the hypervisor would see encrypted data. The guest should determine

the position of encryption bit so that the GHCB can be properly established. One way to perform

this would be:

o Issue CPUID for function 0x8000_0000 and verify CPUID function 0x8000_001F is

available.

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 15

[AMD Public Use]

▪ If the CPUID instruction is being intercepted, this will result in a #VC, where

the CPUID exchange protocol can be used to obtain the CPUID results.

o Issue CPUID for function 0x8000_001F and obtain the encryption bit position.

▪ If the CPUID instruction is being intercepted, this will result in a #VC, where

the CPUID exchange protocol can be used to obtain the CPUID results.

This is not the only way this can be done. If a #VC is encountered, then software would know that

it is running as an SEV-ES guest and could use GHCBInfo 0x002 to request the SEV information

to obtain the encryption bit position.

2.4 GHCB Layout

Table 2. GHCB Layout

Offset Size Contents Notes

0x0000 0xcb RESERVED

0x00cb 0x01 CPL

0x00cc 0x94 RESERVED

0x0160 0x08 DR7

0x0168 0x90 RESERVED

0x01f8 0x08 RAX

0x0200 0x100 RESERVED

0x0300 0x08 RESERVED (RAX already available at 0x01f8)

0x0308 0x08 RCX

0x0310 0x08 RDX

0x0318 0x08 RBX

0x0320 0x70 RESERVED

0x0390 0x08 SW_EXITCODE Guest controlled exit code

0x0398 0x08 SW_EXITINFO1 Guest controlled exit information 1

0x03a0 0x08 SW_EXITINFO2 Guest controlled exit information 2

0x03a8 0x08 SW_SCRATCH Guest controlled additional information

0x03b0 0x38 RESERVED

0x03e8 0x08 XCR0

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

16

Offset Size Contents Notes

0x03f0 0x10 VALID_BITMAP Bitmap to indicate valid qwords in the save state area

starting from offset 0x000 through offset 0x3ef (126

qwords)

0x0400 0x08 X87_STATE_GPA Guest physical address of a page containing X87

related state information conforming to the format

produced by the XSAVE instruction.

0x0408 0x3f8 RESERVED

0x0800 0x7f0 RESERVED / Shared

Buffer

Can be used as a shared buffer area. Future versions

of the GHCB specification will not alter this area

definition.

0x0ff0 0x0a RESERVED

0x0ffa 0x02 SEV-ES/GHCB

Protocol Version

Version of the SEV-ES/GHCB communication

protocol used by the guest

• 0x0001 – SEV-ES/GHCB Protocol Version 1

0x0ffc 0x04 GHCB Usage Provides an indicator of the usage and format of the

GHCB:

• 0x00000000 – The GHCB page follows the

format as documented here

• Any other value can be used by the hypervisor,

which can determine its own format (e.g. for

hypercall usage)

On VMGEXIT, the hypervisor should check the

GHCB Usage field and validate that is a supported

value. A hypervisor must support the GHCB Usage

value 0x0000 and may support other values. For any

unsupported value, the hypervisor can either

terminate the guest or resume the guest indicating an

exception should be raised.

The details of how hypervisors communicate support

for additional GHCB Usage values is beyond the

scope of this document.

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 17

[AMD Public Use]

3 Guest Exits

3.1 Automatic Exits (AE)

Table 3. List of Automatic Exits

Code Name Description

0x52 VMEXIT_MC Machine check exception

0x60 VMEXIT_INTR Physical interrupt

0x61 VMEXIT_NMI Physical NMI

0x63 VMEXIT_INIT Physical INIT

0x64 VMEXIT_VINTR Virtual INTR

0x77 VMEXIT_PAUSE PAUSE instruction

0x78 VMEXIT_HLT HLT instruction

0x7f VMEXIT_SHUTDOWN Shutdown

0x8f VMEXIT_EFER_WRITE_TRAP

0x90 – 0x9f VMEXIT_CR[0-15]_WRITE_TRAP

0x400 VMEXIT_NPF Only if PFCODE[3] == 0 (no reserved bit

error)

0x403 VMEXIT_VMGEXIT VMGEXIT instruction

-1 VMEXIT_INVALID Invalid guest state

Refer to AMD64 Architecture Programmer’s Manual Volume 2: System Programming, Section

15.35.4 for information on how the guest RIP is advanced when an AE exit is encountered.

3.2 Guest Non-Automatic Exits (NAE)

NAE events are all exit events that are not AE events. When an NAE event occurs, the VMM

Communication Exception (#VC) is always thrown by the hardware when an SEV-ES guest is

running. The error code of the #VC exception is equal to the VMEXIT code of the event that

caused the NAE.

The guest should inspect the error code to determine the cause of the exception, decide what

register state needs to be copied to the GHCB and then invoke the VMGEXIT instruction to

generate an AE event. After a subsequent VMRUN instruction by the hypervisor the guest will

resume at the next instruction following the VMGEXIT instruction. This provides the guest an

opportunity to examine the results provided from the hypervisor in the GHCB and copy them back

http://support.amd.com/TechDocs/24593.pdf

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

18

to its internal state. The #VC handler exits using the IRET instruction, therefore the IRET

instruction should not be intercepted (with exception for an NMI which is discussed in a

subsequent section).

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 19

[AMD Public Use]

4 SEV-ES/GHCB Protocol Version 1

This document will provide the definition for version 1 of the SEV-ES/GHCB protocol that will

establish the guest and hypervisor requirements. This will consist of the list of required NAE

events that the guest and the hypervisor must support, as well as the required guest state that will

be provided by the guest and returned by the hypervisor during a VMGEXIT. In general, the

SW_EXITCODE will map to the SVM intercept exit codes. There are some exceptions where a

user-defined SW_EXITCODE will be used to provide additional needed information to the

hypervisor.

The following table lists the NAE events that are valid for GHCB protocol version 1. A hypervisor

is not required to intercept the instructions that generate all the listed NAE events, but since a

guest can invoke VMGEXIT without having taken a #VC, the hypervisor must be able to handle a

VMGEXIT from the guest for the listed NAE events. The hypervisor can decide if the VMGEXIT

event is valid and respond appropriately. A guest must be able to handle a #VC exception for all

the NAE events listed. It is up to the guest to decide how to handle the NAE event. For example, a

guest may decide that it should never receive a particular NAE event and, instead of performing

VMGEXIT processing, can perform some alternate processing. The state to and from the

hypervisor is the minimum state information required. Each entry supplied by the guest must set

the appropriate bit in the GHCB VALID_BITMAP field. The VALID_BITMAP bit position is

calculated by taking the offset of the field in bytes and dividing by 8, giving the qword offset.

Given the qword offset, the byte offset and bit position within the VALID_BITMAP are

calculated. The byte offset is the qword offset divided by 8, while the bit position within the byte

offset is the qword offset mod 8, e.g.:

• RAX is offset 0x01f8, 0x01f8 / 8 = 0x3f or 63

• VALID_BITMAP byte offset is 63 / 8 = 7

• VALID_BITMAP bit position within the byte offset is 63 % 8 = 7

The guest and hypervisor can supply additional state if desired but must not rely on that additional

state being provided.

Table 4. List of Supported Non-Automatic Events

NAE Event State to Hypervisor State from

Hypervisor

Notes

DR7 Read SW_EXITCODE = 0x27 See Debug Register
Support

DR7 Write RAX

SW_EXITCODE = 0x37

SW_EXITINFO1

 See Debug Register
Support

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

20

NAE Event State to Hypervisor State from

Hypervisor

Notes

SW_EXITINFO2 = 0 • SW_EXITINFO1 will

be set as documented

in AMD64

Architecture

Programmer’s Manual

Volume 2: System

Programming, Section

15.8.1

RDTSC SW_EXITCODE = 0x6e

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

RAX

RDX

RDPMC RCX

SW_EXITCODE = 0x6f

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

RAX

RDX

CPUID RAX

RCX

XCR0 (for RAX == 0xd)

SW_EXITCODE = 0x72

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

RAX

RBX

RCX

RDX

• XCR0 is only required

to be supplied when a

request for CPUID

0000_000D is made.

INVD SW_EXITCODE = 0x76

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

IOIO_PROT RAX (for OUT)

SW_EXITCODE = 0x7b

SW_EXITINFO1

SW_EXITINFO2

SW_SCRATCH = <ADDR>

RAX (for IN) • SW_EXITINFO1 will

be set as documented

in AMD64

Architecture

Programmer’s Manual

Volume 2: System

Programming, Section

15.10.2

• If string-based port

access is indicated in

SW_EXITINFO1,

SW_EXITINFO2 will

contain the REP count,

otherwise 0

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 21

[AMD Public Use]

NAE Event State to Hypervisor State from

Hypervisor

Notes

• If string-based port

access is indicated in

SW_EXITINFO1,

SW_SCRATCH will

have the SRC (OUTS)

or DST (INS) guest

physical address of

shared memory.

MSR_PROT

(RDMSR)

RCX

SW_EXITCODE = 0x7c

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

RAX

RDX

MSR_PROT

(WRMSR)

RAX

RCX

RDX

SW_EXITCODE = 0x7c

SW_EXITINFO1 = 1

SW_EXITINFO2 = 0

VMMCALL RAX

CPL

SW_EXITCODE = 0x81

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

RAX • RAX and CPL are the

minimum required

state to be provided to

the hypervisor.

• The guest can supply

additional information

as required by the

hypercall and indicate

that in

VALID_BITMAP.

RDTSCP SW_EXITCODE = 0x87

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

RAX

RCX

RDX

WBINVD SW_EXITCODE = 0x89

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

MONITOR/

MONITORX

RAX

RCX

RDX

SW_EXITCODE = 0x8a

 • RAX will contain the

guest physical address

of the

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

22

NAE Event State to Hypervisor State from

Hypervisor

Notes

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

MONITOR/MONITO

RX memory range.

MWAIT/

MWAITX

RAX

RCX

SW_EXITCODE = 0x8b

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

#AC • The #VC handler

should forword this

exception on to the

#AC handler.

#NPF/

MMIO_READ

SW_EXITCODE = 0x8000_0001

SW_EXITINFO1 = <SRC>

SW_EXITINFO2 = <LEN>

SW_SCRATCH = <DST>

 • SW_EXITINFO1 will

have the SRC guest

physical address

• SW_EXITINFO2

must be less than or

equal to 0x7fffffff

• SW_SCRATCH will

have the DST guest

physical address of

shared memory

#NPF/

MMIO_WRITE

SW_EXITCODE = 0x8000_0002

SW_EXITINFO1 = <DST>

SW_EXITINFO2 = <LEN>

SW_SCRATCH = <SRC>

 • SW_EXITINFO1 will

have the DST guest

physical address

• SW_EXITINFO2

must be less than or

equal to 0x7fffffff

• SW_SCRATCH will

have the SRC guest

physical address of

shared memory

NMI Complete SW_EXITCODE = 0x8000_0003

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

AP Reset Hold SW_EXITCODE = 0x8000_0004

SW_EXITINFO1 = 0

SW_EXITINFO2 = 0

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 23

[AMD Public Use]

NAE Event State to Hypervisor State from

Hypervisor

Notes

AP Jump Table SW_EXITCODE = 0x8000_0005

SW_EXITINFO1

SW_EXITINFO2

SW_EXITINFO2 • SW_EXITINFO1 = 0

(SET)

SW_EXITINFO2 =

(State to Hypervisor)

the guest physical

address to be SET

(State from

Hypervisor) 0

• SW_EXITINFO1 = 1

(GET)

SW_EXITINFO2 =

(State to Hypervisor) 0

(State from

Hypervisor) the guest

physical address as

previously SET (or

zero if not previously

SET)

Unsupported

Event

SW_EXITCODE = 0x8000_FFFF

SW_EXITINFO1 =

<ERR_CODE>

SW_EXITINFO2 = 0

 • SW_EXITINFO1 will

have the error code on

entry to the VMM

Communication

exception

4.1 Invoking VMGEXIT

In general, all NAE events are handled in a standard fashion, except for a few. The standard

method is documented in Section 4.1.1. The exceptions are documented following the standard

method. The guest has the option of using the #VC handler to trigger VMGEXIT processing or it

can para-virtualize the instructions that would cause a #VC and, instead, invoke VMGEXIT

processing directly.

Software should ensure that an invocation of VMGEXIT is protected on the vCPU that it will be

issued from. For that reason, software should disable interrupts and disable preemption before

updating the GHCB and setting the GHCB MSR as well as when accessing the contents of the

GHCB following the return from VMGEXIT.

In NMI context, it is recommended to have a separate GHCB for use within NMI context or that

the NMI context save on entry and restore on exit the active GHCB information.

The hypervisor can communicate back to the guest in the event of an error during VMGEXIT

processing. The SW_EXITINFO1 and SW_EXITINFO2 fields are used for this purpose.

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

24

SW_EXITINFO1[31:0] defines the action requested by the hypervisor:

• 0x0000

o No action requested by the hypervisor.

• 0x0001

o The hypervisor has requested an exception be issued. The SW_EXITINFO2

field contains the Event Injection (EVENTINJ) value as documented in AMD64

Architecture Programmer’s Manual Volume 2: System Programming, Section 15.20.
The currently supported exceptions that can be requested are:

▪ #GP

▪ #UD

4.1.1 Standard VMGExit

• Before issuing the VMGEXIT instruction:

o Disable interrupts and preemption

o Copy the register contents of the faulting context documented in the “State to

Hypervisor” column into the corresponding location in the GHCB.

o Set the bits in the GHCB VALID_BITMAP field that correspond to the registers

documented in the “State to Hypervisor” column.

o Set the GHCB SW_EXITCODE, SW_EXITINFO1 and SW_EXITINFO2 to the

values documented in the “State to Hypervisor” column.

o Verify or set the GHCB MSR to the guest physical address of the GHCB being

used

• Issue the VMGEXIT instruction.

• After return from the VMGEXIT instruction:

o Advance the RIP over the instruction that generated the #VC

o GHCB SW_EXITINFO1[31:0] == 0

▪ Copy the contents of the GHCB registers documented in the “State from

Hypervisor” into the corresponding registers to be made available to the

faulting context upon completion of the #VC handler.

o GHCB SW_EXITINFO1[31:0] == 1

▪ Invoke the requested exception handling routine, providing as the error

code the value contained in GHCB SW_EXITINFO2.

o Enable preemption and interrupts

4.1.2 IOIO_PROT (0x7b)

The guest #VC handler will be required to parse and decode the instruction that caused the

IOIO_PROT fault (a type of IN/OUT instruction) or it can para-virtualize the instruction to avoid

the #VC. In either case, the guest will construct the SW_EXITINFO1 field as defined in AMD64

Architecture Programmer’s Manual Volume 2: System Programming, Section 15.10.2. If the

instruction is a string-based operation, the guest must supply a decrypted buffer for the string

operation. The RESERVED shared buffer area within the GHCB (offset 0x800) can be used for

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 25

[AMD Public Use]

this purpose. The guest physical address of the buffer area must be set in the SW_SCRATCH

field. The guest can issue multiple VMGEXIT calls to read or write all the string data.

4.1.3 MSR_PROT (0x7c)

The guest #VC handler will be required to parse and decode the instruction that caused the

MSR_PROT fault to determine whether the fault is for a RDMSR or WRMSR or the guest can

para-virtualize the instruction to avoid the #VC. In either case, the guest must use the appropriate

entry in the NAE Event table for determining the state to supply in the GHCB.

4.1.4 VMMCALL (0x81)

Hypercalls are specific to the hypervisor under which the guest is running. It is up to the

hypervisor to provide support in the guest OS to supply the registers that are required for that

specific hypercall. Should the hypervisor not provide support within the guest OS, then only those

registers documented in Table 4, will be provided.

4.1.5 #NPF/MMIO Access

To properly determine an MMIO access, MMIO ranges must have a reserved bit set in the nested

page tables such that an #NPF will be generated with the page fault error code RSV bit set to 1.

This type of #NPF will cause the #VC handler to execute. This can be accomplished by setting

bits 51:n in the nested page table entry, where n is equal to the physical address size (CPUID

Fn_8000_0008_EAX[7:0]) minus the reduction in physical address size when memory encryption

is enabled (CPUID Fn_8000_001F_EBX[11:6]).

The guest will be required to parse and decode the instruction that caused the #NPF fault or the

guest can para-virtualize the MMIO access. If either the destination, for an MMIO read, or the

source, for an MMIO write, is a memory location, the guest will need to use either the

#NPF/MMIO_READ or #NPF/MMIO_WRITE NAE events. Based on the instruction, the guest

will construct the SW_EXITCODE, SW_EXITINFO1, SW_EXITINFO2 fields. The guest must

supply a decrypted buffer for the MMIO operation source/destination. The RESERVED shared

buffer area within the GHCB (offset 0x800) can be used for this purpose. The guest physical

address of the buffer area must be set in the SW_SCRATCH field. The guest can issue multiple

VMGEXIT calls to read or write all the data:

• MMIO Read:

o SW_EXITCODE is set to 0x8000_0001

o SW_EXITINFO1 is the guest physical address of the MMIO source address

o SW_EXITINFO2 is the number of bytes to read

o SW_SCRATCH is the guest physical address of the decrypted buffer area

▪ If the number of bytes to read is greater than the size of the decrypted buffer

area, the VMGEXIT can be called multiple times with SW_EXITINFO2

adjusted to match the actual amount of data to be transferred in the

VMGEXIT.

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

26

o Upon return from the VMGEXIT, the contents of the decrypted buffer area are

copied to the true destination address of the MMIO instruction.

• MMIO Write:

o SW_EXITCODE is set to 0x8000_0002

o SW_EXITINFO1 is the guest physical address of the MMIO destination address

o SW_EXITINFO2 is the number of bytes to write

o SW_SCRATCH is the guest physical address of the decrypted buffer area

▪ If the number of bytes to write is greater than the size of the decrypted

buffer area, the VMGEXIT can be called multiple times with

SW_EXITINFO2 adjusted to match the actual amount of data to be

transferred in the VMGEXIT.

o Before issuing the VMGEXIT, the contents of the true source address of the MMIO

instruction are copied to the decrypted buffer area.

4.1.6 Unsupported Non-Automatic Exits

Should the #VC handler be invoked for a NAE that is not part of the negotiated protocol version, it

should perform a VMGEXIT using the “Unsupported Event” exit code.

4.2 Guest Identification of SEV-ES Support

A guest must be able to determine that it is running as an SEV-ES guest. In order to accomplish

this, the hypervisor must provide additional CPUID properties to an SEV-ES guest. These

properties allow the SEV-ES guest to determine that it is safe to issue the required CPUID and

RDMSR instructions, as well as provide required information. The hypervisor must be sure that

the following CPUID information is set:

• CPUID leaf 0x0000_0001:

o ECX[31] must be set to indicate running under a hypervisor

• CPUID leaf 0x8000_001f:

o EAX[1] must be set to indicate SEV support

o EBX[5:0] must be the encryption bit position as discovered by the hypervisor

o EBX[11:6] must be the reduction in physical address space bits for the guest

4.3 SMP Booting

SMP booting under SEV-ES presents new challenges. Traditionally, the INIT-SIPI-SIPI sequence

is used to boot an AP. Under virtualization, the SIPI request results in the hypervisor setting the

vCPU CS segment register and IP register. The challenge here is that the hypervisor is not

allowed to set the vCPU registers once they have been measured and encrypted, which occurs

before the guest is started. A new way of booting an AP must be performed. The very first time

an AP is started, it must use the register values that were initially set and measured when

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 27

[AMD Public Use]

LAUNCH_UPDATE_VMSA was invoked. The following are examples of setting the initial CS

segment register and IP register for the APs first boot:

• Using the standard reset vector location:

o Update the code mapped at the reset vector to check a memory location. This

memory location, if non-zero, will contain the target address (SIPI vector) for the

CPU that is booting.

▪ On initial BSP boot, the value will be zero so normal BSP initialization will

be performed.

▪ When the BSP attempts to start an AP, it will place the AP target address

into the memory location. The AP will see a non-zero value and jump to

that location.

• Using a supplied reset vector location:

o Provide a pre-determined location to the hypervisor as the initial CS segment

register value and IP register value.

▪ For example, the UEFI firmware used to initialize the guest can have a

compiled-in location consisting of a CS segment register value and an IP

register value that can be discovered by the hypervisor prior to guest

execution. These values can be used as the initial values for the guest APs.

▪ When the BSP attempts to start an AP, it will place code into this initial

location to direct the AP to the desired target address.

The hypervisor is then required to do the following:

• For the first reset of the AP, the following is required:

o The hypervisor must not update any register values and, instead, run the vCPU with

the initial register values.

• For subsequent resets of the AP, the following is required:

o When a guest AP reaches its HLT loop (or similar method for parking the AP), it

instead issues a VMGEXIT with SW_EXITCODE of 0x8000_0004.

▪ This requires the AP to be in PAE or long mode to write decrypted values to

the GHCB. The AP does not have to remain in PAE or long mode once the

GHCB has been updated.

o The hypervisor treats SW_EXITCODE 0x8000_0004 like the guest issued a HLT

instruction and marks the vCPU as halted.

o When the hypervisor receives a SIPI request for the vCPU, it will not update any

register values and, instead, it will set the GHCB SW_EXITINFO2 field to a non-

zero value and mark the vCPU as active, allowing the VMGEXIT to complete.

o Upon return from the VMGEXIT, the AP must transition from its current execution

mode into real mode and begin executing at the reset vector supplied in the SIPI

request.

▪ The AP should verify that the SW_EXITINFO2 field is non-zero

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

28

▪ The following registers must be set to the Initial Processor State after INIT

(see AMD64 Architecture Programmer’s Manual Volume 2: System

Programming, Table 14-1):

• RAX, RBX, RCX, RDX, RSI, RDI, RBP, R8 – R15, RFLAGS

▪ The remaining registers are not required to be set to the Initial Processor

State after INIT.

4.3.1 vCPU Parking

Another challenge that arises is transferring control from one environment to the next, for example

from UEFI to an OS. Using the UEFI to OS as an example, before control is handed to the OS,

UEFI will park all APs using a HLT loop or similar. This code will be in reserved memory and be

running in 32-bit protected mode with paging disabled. This allows the AP HLT loop to execute

should a signal bring the AP out of the HLT instruction. However, instead of issuing a HLT

instruction, the AP will issue a VMGEXIT with SW_EXITCODE of 0x8000_0004 ((this implies

that the GHCB was updated prior to leaving 64-bit long mode).

When the OS attempts to boot the AP, the code that will execute will be that of UEFI. At this

point, the AP needs to have been told by the OS where to execute. To this end, UEFI needs to

supply an AP jump table to the OS. The OS will use this memory to set the address of the AP

reset vector:

• Upon return from the VMGEXIT, the AP must transition from its current execution mode into

real mode and begin executing at the reset vector supplied by the OS in the AP jump table.

The four-byte value from the AP jump table will be in the first 4-bytes of the page and match

the following format:

struct Ap_Reset_Address {

 uint16 reset_ip;

 uint16 reset_cs;

};

For example, to begin executing at physical address 0x9f000, the value 0x0000 would be

stored at offset 0x00 of the AP jump table and the value 0x9f00 would be store at offset 0x02

of the AP jump table. The UEFI code could push RFLAGS on to the stack, followed by the

CS value of 0x9f00 and finally the RIP value of 0x0000 and then issue an IRET to begin

executing at 0x9f000. An alternative is to use a far jump to load the new CS / RIP value.

• If the same reset vector is used for all AP’s there is no need for serialization of the AP jump

table entry. However, if different values are used for different AP’s or different situations,

then the use of the AP reset address field must be serialized.

The AP jump table must be communicated by UEFI to the OS. UEFI must use the AP Jump Table

SET software NAE Event to tell the hypervisor to set/save the AP startup jump table guest

physical address. The AP jump table must be 4K in size, in encrypted memory and it must be 4K

(page) aligned. There can only be one AP jump table and it should reside in memory that has been

http://support.amd.com/TechDocs/24593.pdf
http://support.amd.com/TechDocs/24593.pdf

56421 Rev. 1.00 August 2020 SEV-ES Guest-Hypervisor Communication Block

Standardization

 29

[AMD Public Use]

marked as reserved by UEFI. The OS must use the AP Jump Table GET software NAE Event to

retrieve the location of the AP startup jump table before starting the first AP.

4.3.2 vCPU Hotplug

Because of the requirements to measure and encrypt the VM register state before launching the

guest, vCPU hot-plug cannot be supported at this time.

4.4 Non-maskable Interrupts

When injecting an NMI, the hypervisor must not intercept IRET, but must intercept #DB. The

hypervisor must use the "NMI Complete" message from the guest as the indicator of when another

NMI can be injected. Intercepting #DB (which a hypervisor typically already does today) provides

the guest with flexibility in determining when to send the "NMI Complete" message.

The benefit of this method is that the guest processing does not need to be documented in the

GHCB specification, just the requirement that the guest only issue the "NMI Complete" message

when it can safely handle another NMI. This allows a guest OS to do what is easiest/best for it.

Here is one example of how the guest OS could do this:

• Use the #DB exception

o NMI handler sets a per-CPU variable to indicate in NMI

o Just before the actual NMI IRET, the TF flag is set:

▪ PUSHF, OR flags on stack to set TF, POPF

▪ The IRET must be the next instruction after the POPF

o Execute IRET

▪ #VC is triggered with an error code for a #DB intercept (0x41)

o #VC handler is invoked and checks for NMI scenario:

▪ Checks for error code of #DB intercept (0x41)

▪ Checks per-CPU variable to ensure that an NMI was running

▪ Clears per-CPU variable

▪ Issues "NMI Complete" message using VMGEXIT

▪ Exits the #VC handler

4.5 Debug Register Support

Currently, hardware debug traps aren’t supported for an SEV-ES guest. The hypervisor must set

the intercept for both read and write of the debug control register (DR7). With the intercepts in

place, the #VC handler will be invoked when the guest accesses DR7. For a write to DR7, the

#VC handler should perform Standard VMGExit processing. The #VC handler must not update

the actual DR7 register, but rather it should cache the DR7 value being written. For a read of

DR7, the #VC handler should return the cached value of the DR7 register.

SEV-ES Guest-Hypervisor Communication

Block Standardization

56421 Rev. 1.00 August 2020

30

4.6 System Management Mode (SMM)

SMM will not be supported in this version of the specification.

4.7 Nested Virtualization

Nested virtualization is not supported under SEV-ES.

	Specification Agreement
	1 Introduction
	1.1 Overview
	1.2 Purpose

	2 Guest-Hypervisor Communication Block (GHCB)
	2.1 Establishing the GHCB
	2.2 GHCB Negotiation Example
	2.3 GHCB/VMGEXIT Example
	2.4 GHCB Layout

	3 Guest Exits
	3.1 Automatic Exits (AE)
	3.2 Guest Non-Automatic Exits (NAE)

	4 SEV-ES/GHCB Protocol Version 1
	4.1 Invoking VMGEXIT
	4.1.1 Standard VMGExit
	4.1.2 IOIO_PROT (0x7b)
	4.1.3 MSR_PROT (0x7c)
	4.1.4 VMMCALL (0x81)
	4.1.5 #NPF/MMIO Access
	4.1.6 Unsupported Non-Automatic Exits

	4.2 Guest Identification of SEV-ES Support
	4.3 SMP Booting
	4.3.1 vCPU Parking
	4.3.2 vCPU Hotplug

	4.4 Non-maskable Interrupts
	4.5 Debug Register Support
	4.6 System Management Mode (SMM)
	4.7 Nested Virtualization

