

[Public]

AMD SEV-TIO: Trusted I/O for Secure
Encrypted Virtualization
March 2023

This white paper is a technical explanation of what the discussed technology has been designed to accomplish. The actual

technology or feature(s) in the resultant products may differ or may not meet these aspirations. Each description of the

technology must be interpreted as a goal that AMD strived to achieve and not interpreted to mean that any such performance

is guaranteed to be fully achieved. Any computer system has risks of security vulnerabilities that cannot be completely

prevented or mitigated

[Public]

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without

notice. While every precaution has been tak en in the preparation of this document, it may contain

technical inaccuracies, omissions and typographical errors, and AMD is under no obl igation to update or

otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warr anties

with respect to the accuracy or completeness of the contents of this document, and assumes no liabi li ty

of any kind, including the implied warranties of noninfringement, merchantabil ity or f itness for part icular

purposes, with respect to the operati on or use of AMD hardware, software or other products described

herein. Any computer system has r isks of security vulnerabi lities that cannot be completely prevented or

mitigated. No l icense, inc luding implied or aris ing by estoppel, to any intel lectual pr operty rights is

granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are

as set forth in a signed agreement between the part ies or in AMD's Standard Terms and Condit ions of

Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Other product names used in this publication are for identif icat ion purposes only and may be trademarks

of their respective companies.

© 2023 Advanced Micro Devices, Inc. Al l r ights reserv ed.

[Public]

Introduction
Data confidentiality and integrity are two of the top security concerns in the modern datacenter. AMD

is working to address this challenge with the Secure Encrypted Virtualization (SEV) [1] technologies

which utilize hardware to isolate virtual machines from each other and from the hypervisor. These

technologies provide guests a confidential computing environment which helps mitigate the risks that

guests are exposed to from shared infrastructure environments like public cloud.

In 2016 AMD introduced the first generation of SEV and has since developed subsequent generations

which introduced additional features and new SEV technologies that improved the confidentiality and

integrity protection of guest VMs. SEV, SEV with Encrypted State (SEV-ES) [2], and Secure Nested Paging

(SEV-SNP) [3] combine to deliver a layered and integrated confidential compute solution focused on

hardware isolation primarily within the CPU.

The industry has quickly seized onto the value of confidential compute technologies and has sought new

avenues to improve robustness, scalability, and performance in the evolving modern datacenter. One

area of particular interest is the inclusion of trusted devices in the trust boundary of guests. Device I/O

is central to important applications such as transaction processing, data analytics, artificial intelligence,

and to applications that require large-scale data movement such as extract transform and load (ETL),

snapshot, and backups, each of which underline the need for a secure yet performant device model that

integrates with confidential guests.

As an example, cloud providers are increasing their use of SmartNICs for computational offload in

guests. A SmartNIC is a guest programmable device that provides both network connectivity, storage,

and programmable computational operations on the data it stores and transfers over the network.

Financial institutions, health care providers, and research benefit greatly by this offload, but because

their data has stringent confidentiality and integrity requirements, they have a responsibility to keep the

data and the results of their workloads confidential. By expanding the trust boundary of a confidential

guest to include a SmartNIC, the guest can better take advantage of their cloud provider’s SmartNICs

while also keeping their data and workloads protected.

Extending guests’ trust boundaries to include devices requires adding new protection mechanisms to

both host hardware and the device to help maintain guest confidentiality and integrity already provided

by confidential compute technologies. On the host, the guest must be provided a means in which to

establish trust with the device before the host includes the device in the guest’s trust boundary. On the

device, the workloads and the data of the guests must be sufficiently isolated from controls available to

host software.

For the host-side support, AMD has developed SEV Trusted I/O (SEV-TIO), a new SEV technology.

Through SEV-TIO, a guest can securely retrieve device identity and configuration information to

establish trust in a device and its configuration. Once the guest establishes trust in the device, guests

and devices can interact directly in private memory that can lead to I/O performance improvements.

To help advance the development of high-performance I/O in confidential guests, AMD has worked

closely with industry partners over the past several years to develop and ratify the PCI TEE Device

Interface Security Protocol (TDISP) specification [4]. The TDISP specification places requirements on

devices to isolate guest data and workloads from host software, and it standardizes the way in which

devices interact with confidential compute technologies in the host, such as the means to which guests

[Public]

retrieve device identity and configuration information. Through SEV-TIO, any device that is TDISP

capable can be securely bound to an SEV-SNP guest.

This whitepaper overviews the TDISP specification and describes how SEV-TIO integrates with the SEV-

SNP technology and is designed to securely bind TDISP capable devices to guests.

Benefits of Trusted Devices
SEV-SNP allows a guest to separate its memory into shared and private memory. Shared memory is

accessible to host software and is marked as hypervisor-owned in the Reverse Map Table (RMP), a data

structure that stores the SEV-SNP security attributes of each page of memory in the system. Private

memory is assigned to the guest in the RMP, writeable only by the guest, and encrypted with the guest’s

unique memory encryption keys. The guest uses private memory to store sensitive data and its

executable code. The CPU and IOMMU both enforce the access control policy for guest private memory

by checking the RMP as required during address translation to ensure that the software or device

accessing memory has sufficient privileges.

The existing SEV-SNP architecture helps protect guests from maliciously programmed devices by

treating all device accesses as if they originated from host software and are therefore untrusted. While

direct device assignment to guests can be enabled by host software, this comes with limitations as the

device can only operate within the shared memory space of the guest and cannot access the private

memory of the guest.

Untrusted
Device

Guest

Shared
Memory

Private
Memory

Bounce Buffer

Destination

DMA to
bounce buffer

Guest copies to
private memory

Guest uses data
in private memory

Trusted
Device

Guest

Shared
Memory

Private
Memory

Bounce Buffer

Destination

DMA directly
to destination

Guest uses data
in private memory

Non-Trusted Device Access Trusted Device Access

Figure 1: Diagram depicting bounce buffering required for a non-trusted device (left) and direct access to private memory by a
trusted device (right).

If the guest needs data to flow between its private memory and the assigned device, the guest must

copy the data in and out of a shared buffer that is accessible by both the guest and assigned devices.

This method is called bounce buffering, depicted on the left portion of Figure 1, because the data

bounces to and from the shared memory buffer. This may have performance impacts on I/O due to the

extra memory movement required.

[Public]

Further, because all communication between the guest and the device, including device register access,

must occur through shared memory, all traffic is visible to host software. To protect the confidentiality

and integrity of device communication with the guest, device specific protocols must be established

between the guest and device. In some cases, this may leverage existing protocols such as software-

encrypted encrypted storage, or network interface cards where all network traffic is encrypted between

the software endpoints that are communicating and requires no additional support by the device. In

other cases, protecting device communication is more complex such as graphic processing units (GPUs)

or machine learning accelerator cards where the device must be involved in the protocol because it is

processing plaintext data.

The new SEV-TIO technology can improve both performance and the security posture of device-guest

communications. Fundamentally, SEV-TIO lets the guest choose whether it trusts a device enough to

allow the device access to guest private memory. This has the potential to improve I/O performance by

eliminating the need for bounce buffering device traffic within the guest, depicted in the right portion of

Figure 1, and it limits the ability of host software to observe device-guest traffic.

Standardizing Trust in Devices
Over the last few years, AMD has worked with PCI SIG and industry partners to develop and ratify the

TEE Device Interface Security Protocol (TDISP), a standard intended to address the need for trust in

devices by guests in confidential compute environments. TDISP defines new protocols and functions of

devices that enable them to authenticate themselves, prevent traffic interception or masquerading on

the PCIe fabric, attest to their configuration, and isolate guest workloads from device controls available

to host drivers.

TDI

TDI

TDI

TDISP State
Machine

TDISP State
Machine

TDISP State
Machine

DOE
Registers

DSM

TDI
TDISP State

Machine

Transitions TDISP
state machines

TSM

VMM

TVM

Security policy
configuration

TVM

SPDM

Isolation ControlsID
E

ID
E

IDE keying

DMA & MMIO

DMA & MMIO

SPDM Secure
Channel

IDE Selective
Stream

TDISP Device Host with TDISP Support

IDE Keying

Figure 2: System diagram of a TDISP device connected to a host capable of supporting TDISP devices.

As depicted in Figure 2, the TDISP architecture describes a device as comprising a Device Security

Module (DSM) and one or more TEE Device Interfaces (TDIs) that can be securely assigned to Trusted

Virtual Machines (TVMs), referred to as guests throughout this white paper. The DSM is responsible for

managing the TDISP security configuration of the device overall and of the security state of each TDI.

The DSM communicates with the host TEE Security Module (TSM) which is responsible for configuration

[Public]

of the host isolation controls protecting guests from the Virtual Machine Monitor (VMM) and other host

software. The TSM also drives the lifecycle of a TDISP enabled device through the configuration, binding,

and unbinding of TDIs to guests.

A natural implementation of TDISP is with an SR-IOV capable device. The host driver controls the

Physical Function (PF) of the device, and each of the Virtual Functions (VFs) assigned to guests are the

TDIs of the device. In this configuration, the TSM manages the TDISP states of each of the VFs and is

responsible for programming the host hardware on behalf of the guest to allow the device to access

guest private data.

The TSM and the DSM communicate via the Secure Protocol and Data Model (SPDM) protocol defined

by the DMTF [5]. SPDM is a request-response message protocol and is the control path through which

the TSM queries and manage the TDISP feature on the device. The TSM and DSM protect the SPDM

connection by negotiating keys and establishing a SPDM Secure Messages [6] session which encrypts

and authenticates all SPDM messages.

While the TDISP control path between the DSM and TSM is protected by SPDM Secure Messages, the

data path of a TDISP device to the guests it serves is protected with the PCI Integrity and Data

Encryption (IDE) protocol [7]. IDE encrypts and authenticates all device traffic in an end-to-end stream

where only the root port and the TDISP device possess the IDE stream keys which prevents intervening

PCIe switches, physical attackers, and maliciously designed devices on the PCIe fabric from mounting

man-in-the middle or masquerading attacks on fabric traffic. Any bad actors in the fabric will only see

ciphertext and cannot alter the stream without detection by the device and root port. The TSM and the

DSM negotiate the keys of the IDE stream through their shared SPDM channel.

TDISP defines isolation requirements that ensure devices protect guest data and workloads while within

the devices themselves. The most prominent of these requirements is the TDISP state machine that each

TDI implements. The TDISP state machine places restrictions on TDIs based on the state that they are in.

For instance, the configuration of a TDI, such as its Base Address Registers (BARs), cannot be altered

while the TDI is in the Locked state. This gives the guest an opportunity to examine the configuration of

the TDI to establish trust without interference by host software. The TDISP state machine is discussed in

greater detail in the following sections.

Finally, TDISP defines several data objects that may be consumed by the guest to help establish trust in

the device. First, the guest can retrieve the certificate chain of the device which securely identifies the

device and its manufacturer. Second, the device offers an attestation report that contains device specific

measurements of its configuration. The guest can examine the attestation report to, for instance,

determine whether the firmware loaded into the device is a sufficiently new version. Finally, each TDI

has an interface report that describes the configuration of the TDI including information about where its

memory mapped I/O (MMIO) registers are mapped into memory. The sections below discuss in further

detail how each of these objects are used by the guest.

Overall, TDISP provides a standard interface between the host and devices to accomplish the security

goals of confidential compute. With this standard interface, host implementations can support trusted

I/O for any device that implements TDISP which AMD believes will help accelerate the adoption of

secure I/O in confidential compute environments within the hardware and software ecosystems.

[Public]

SEV-TIO leverages both the security controls of SEV-SNP and the standardized interfaces of TDISP to

provide a comprehensive trusted I/O solution to confidential compute guests. In SEV-TIO, the AMD

Secure Processor (ASP) serves as the TSM of the host and is responsible for managing the lifecycle of

TDISP devices as they operate with SEV-SNP guests.

SEV-TIO Architectural Overview
Multiple hardware and firmware components are involved in SEV-TIO, including the ASP, IOMMU, and

PCI root complex. Figure 3 illustrates the overall architecture of these components and their

relationships with one another.

AMD SoC

Hypervisor

TDISP Device

System Memory

CPU IOMMU
PCIe

Controller ID
E

ASP

Guest
Private

Page

Guest
Private

Page

Memory Controller

ID
E PCIe

Controller

Non-
Secure
Guest

SEV-SNP
Guest

Legend

Unencrypted Channel

Encrypted Channel

Configuration Path

Figure 3: High level illustration of the system components that comprises SEV-TIO.

The AMD Secure Processor (ASP) hosts the SEV firmware which plays a central role in orchestrating the

lifecycle of secure guests. SEV-TIO brings new commands and guest request messages to configure the

IOMMU, the PCIe root complex, and the architectural data structures necessary to bring TDIs into the

trust boundary of guests. Further, to serve the role of TSM, the ASP also implements an SPDM

responder which communicates with the DSMs of TDISP devices.

As with SEV-SNP today, the IOMMU is responsible for address translation and performing RMP checks

on DMA to protect the confidentiality and integrity of SEV-SNP guests. SEV-TIO enriches the RMP checks

[Public]

performed by the IOMMU to allow devices to access guest private memory directly after the guest

indicates that it trusts the device and its configuration.

Finally, SEV-TIO adds support to the PCIe controller to construct IDE streams for the purpose of

protecting the confidentiality and integrity of guest data over the PCIe fabric between the root complex

and the TDISP device. IDE streams also authenticate traffic to detect malicious agents on the PCIe fabric

attempting to masquerade as a trusted device or as the root complex.

The following sections describe in greater detail how the ASP, IOMMU, and IDE streams in the PCIe

controller work together with guests and TDISP devices to bring the device securely into the trust

boundary of the guest.

Trusted Devices in Guest Private Memory
Guests interact with TDIs through two major data paths: Direct Memory Access (DMA) by the device to

guest memory, and memory mapped I/O (MMIO) accesses by the guest to device registers. SEV-TIO

provides a means to isolate DMA and MMIO which helps provide confidentiality and integrity protection

of I/O traffic between the guest and its TDIs.

TDIs access memory via either guest virtual address (GVA) space or guest physical address (GPA) space.

The I/O Memory Management Unit (IOMMU) in the host hardware is responsible for translating the

provided GVAs or GPAs into system physical addresses (SPAs). Because SEV-SNP enforces access control

at the time of translation, the IOMMU performs RMP entry lookups on translation.

SDTE

DTE

GVA GPA SPA

ASID

VMPL

GPT HPT

GPA

RMP
RMP

Check

Figure 4: RMP check on DMA performed by the IOMMU during translation.

In SEV-TIO, The IOMMU tracks the security attributes of each TDI in a new data structure called the

Secure Device Table (SDT) which is an array of SDT entries (SDTEs) indexed by the Requester ID (RID) of

the TDI. When the IOMMU receives a request from a device, it looks up the ownership information in

[Public]

the SDT based on the RID of the request. The SDT is not writeable by the hypervisor and is configured

instead by the ASP.

The SDTE of a TDI contains security attributes necessary for the IOMMU to determine whether the TDI is

allowed to access guest private memory. The security attributes include the guest and the Virtual

Machine Privilege Level (VMPL) which is a privilege hierarchy within guests to support SEV-SNP

functionality. On translation, the IOMMU performs the same RMP checks that CPU performs. It looks up

the RMP entry of the SPA and performs an RMP check where bound TDIs are treated as guest accesses

from the guest and VMPL as specified in the SDTE for the TDI.

The SDTE additionally contains guest-provided configuration for the IOMMU including the paging mode

and location of the guest’s page tables (GPTs) for the TDI. The guest programs the fields of the SDTE for

its bound TDI through an SEV-SNP guest request message, which is a cryptographically protected

interface between the guest and the ASP. Note that host software still uses the existing Device Table for

host-controlled configuration of the TDI, such as the location of the host page tables (HPTs) for the TDI.

Guests can interact with TDIs via their memory mapped I/O (MMIO) registers, which in SEV-TIO are

mapped into the guest as private memory. Like any guest private memory access, the CPU table walker

consults the RMP to determine whether the access originated from the guest that is bound to the TDI.

When an MMIO access to a guest private page passes the RMP checks, the access is routed to the TDI

via the PCIe fabric.

An important security control of SEV-SNP is the Validated bit in the RMP. Each page tracked by the RMP

has a Validated bit that can be set by the guest to indicate that it has started using the page. If the

hypervisor alters the RMP entry for the page, the Validated bit is cleared and the hypervisor cannot set

it back. Any guest access to a page with the Validated bit clear will cause an exception in the guest. This

ensures that once the guest sets the Validated bit and begins using the page, the hypervisor cannot alter

the RMP entry of the page.

Today, guests do not have a means for setting the Validated bit on MMIO ranges like they can with the

PVALIDATE instruction for data pages. SEV-TIO introduces an interface to the ASP that requests the ASP

to set the Validated bit on behalf of the guest. Once the MMIO pages have the Validated bit set, the CPU

performs the RMP checks as usual.

Before the guest asks the ASP to set the Validated bit, the guest must be certain that the pages map to

the registers of the TDI. This is accomplished as part of device attestation discussed below.

Hardware Accelerated Virtualized IOMMU
Conventionally, the hypervisor is responsible for emulating IOMMU behavior to a guest. When a guest

needs to send a command to the IOMMU, the hypervisor intercepts that access and submits the request

to the IOMMU on behalf of the guest. To improve performance of the guest IOMMU access path, AMD

offers a Virtualized IOMMU (vIOMMU). A vIOMMU is a virtual interface to the IOMMU’s command

buffers, event log, and Peripheral Page Request (PPR) log. Through this interface, the guest interacts

directly with the IOMMU instead of relying on hypervisor emulation.

In SEV-TIO, guests are required to use the vIOMMU because removing the hypervisor from the

communication path between guest and IOMMU is necessary for the isolation of I/O device

[Public]

management within a confidential compute environment. For instance, when a guest needs to

invalidate the IOMMU address translation cache, which may be a sensitive security operation, the guest

can directly use the vIOMMU command buffer to ensure the invalidation occurs.

Because the guest interacts with the vIOMMU via MMIO, the guest needs assurance that the MMIO

ranges given to it by the hypervisor are in fact the vIOMMU that was assigned to the guest. To

accomplish this, the hypervisor and guests use a protocol to bind a vIOMMU to a guest that is similar to

how TDIs are bound to guests.

Device Attestation
Before guests configure the IOMMU to allow a TDI to access their private memory, they must establish

trust in the identity and configuration of the device. SEV-TIO provides three data objects used by the

guest for attestation: the certificate chain of the device, the attestation report of the device, and the

interface report of the TDI.

The certificate chain of the device consists of one or more documents called certificates that contain a

public key and metadata about the owner of the key. Each key represented in the chain signs the

certificate of the next key in the chain which confers trust. The first certificate in the chain, the root

certificate, represents the identity of a root Certificate Authority (CA). When a guest validates a

certificate chain, it starts with the certificate of the root CA. If the guest trusts the root CA, then the

guest verifies that the signatures on each of the chain certificates are valid.

Manufacturer
Root CA Certificate

Certifies

SPDM
Secure Channel

Device
Attestation Report

Interface Report

Manufacturer
Sub CA Certificate

Device Identity Key
Certificate

Certifies Authenticates

Figure 5: An example of a certificate chain where the manufacturer maintains a two-level certificate authority that certifies the
device identity keys of each of its devices.

TDISP uses certificate chains to authenticate device identity. The ASP and DSM establish the secure

SPDM connection by using the identity key in the device’s certificate chain. The ASP gives the guest the

certificate chain who then validates the chain to ensure it trusts the device. It is up to the guest to

determine how to validate the certificate chain. For instance, a device manufacturer can maintain its

own CA that signs device keys, and then guests could trust the manufacturer’s CA to authenticate

devices by placing the root CA certificate in the guest’s trust store. Alternatively, the guest can delegate

the validation of certificates to a remote party who has the authority to approve which devices the guest

trusts.

[Public]

Once the guest has authenticated the device, it must determine if the device is securely configured.

Through SPDM, TDISP provides a means for a device to present to the guest an attestation report which

is a collection of measurements of device configuration. The attestation report format is defined by

SPDM and by the device vendor. Measurements contained within the attestation report may include

cryptographic digests of currently loaded firmware and manifests of configuration data that affect the

security of guest workloads and private data on the device. In SEV-TIO, the ASP provides an interface for

the guest to securely retrieve the attestation report of the device.

Finally, the guest needs to determine whether the hypervisor has configured the TDI correctly. TDISP

defines a data object called the interface report that contains MMIO mapping information, security

attributes of MMIO ranges, and optionally device specific information. In SEV-TIO, the guest may use the

interface report to determine whether the hypervisor mapped the MMIO ranges into guest private

memory correctly.

For instance, the interface report could help the guest detect that the MMIO ranges were mapped out

of order, mapped with gaps, or mapped to completely different devices. Once the guest has concluded

that the MMIO ranges are configured as expected, the guest sets the Validated bit on each page of the

TDI’s MMIO ranges via the ASP as described above.

Critically, the above attestation steps are not useful to a guest if the configuration of the TDI can be

altered during the attestation process. To address this, TDISP enforces restrictions on what

configuration can change according to the current state of the TDI. This state machine and its related

security controls are described in the next section.

TDISP State Machine
One of the fundamental aspects of the TDISP design is the TDISP state machine. Each TDI has its own

state machine that governs its behavior. The TDISP state machine comprises the following states:

Unlocked, Locked, Run, and Error. The TDISP state machine is depicted in Figure 6 below.

[Public]

Unlocked Locked Run

Error

ASP requests
to lock TDI

ASP requests to
enable DMA

and MMIO in TDI

ASP requests to
unlock TDI

ASP requests to
 unlock TDI

ASP requests to
recover from error

Error detected
by device

Error detected
by device

Figure 6: Diagram of the TDISP state machine that controls the behavior of each TDI.

A TDI begins in the Unlocked state. While a TDI in the Unlocked state can be arbitrarily configured and

reconfigured, the TDI cannot be bound to a guest or access guest private memory. However, TDIs in the

Unlocked state can be assigned to guests that cannot or do not want to support TDISP, including legacy

guests that do not support SEV-SNP at all.

To prepare a TDI for guest binding, host software can ask the ASP to request the DSM to transition the

TDI to the Locked state. In this state, any configuration that could impact the security of guest private

data is either made read-only or will cause a transition to the Error state if changed. This allows the

guest to review that configuration through the device attestation process described above and make the

determination of whether the device is known to the guest and is trusted. While in the Locked state, the

TDI cannot be used and cannot perform DMA requests.

Once the guest establishes trust in the device, the ASP asks the DSM to transition the TDI to the Run

state. Like the Locked state, the security sensitive configuration of the TDI cannot be altered. However,

now that the TDI is in the Run state, the guest can interact with it by programming its registers and

performing reads and writes via DMA.

Finally, the TDI may transition to the Error state if an error condition is detected that impacts the TDIs

ability to protect the guest’s private data. TDISP also defines several error conditions, such as

reprogramming the Base Address Registers (BARs) of the TDIs that affect the location of device registers

in system physical address space. TDISP also allows the device vendor to define other error conditions

that would send the TDI into the Error state.

To unbind a TDI after a guest is finished with it, or to recover from a TDI in the error state, host software

can ask the ASP to unbind the TDI from the guest which performs the necessary cleanup of system

resources and ask the DSM to return the TDI safely to the Unlocked state. If the TDI contains any guest

[Public]

private data on this transition, the TDI is required by TDISP to purge it from the device before

transitioning to the Unlocked state. Once in the Unlocked state, the TDI can be reassigned and bound

once more.

Device Communication with AMD Secure Processor
The TDISP specification requires that the TSM of the host communicate with the DSM of the device

using the SPDM protocol over the PCI Data Object Exchange (DOE) mailbox protocol. The DOE mailbox is

part of the PCI configuration space of function 0 of the device which is controlled by host software.

ASPDSM
Host

Software

SEV-TIO command

Status, (SPDM Request)?

loop

[Status == SPDM_REQUEST]

SPDM Request

SPDM Response

Reinvoked SEV-TIO command,
SPDM Response

Status, {SPDM Request}?

Figure 7: Host software initiating SEV-TIO commands and transporting subsequent SPDM messages to the DSM until the
command completes.

In SEV-TIO, the ASP shares the DOE mailbox registers with host software by requiring host software to

transport SPDM packets on its behalf as depicted in Figure 7. The ASP constructs SPDM request packets

and provides them to host software. Host software writes the packets into the DOE registers and returns

the device’s SPDM response back to the ASP.

The security of the SPDM connection between the ASP and DSM is assured by the SPDM Secure

Messages protocol. Before performing any actions on the device, the ASP negotiates SPDM Secure

Messages keys with the device.

The new ASP commands introduced in SEV-TIO may need to generate one or more SPDM requests to

complete the command. Host software does not need to know anything about which commands might

generate SPDM requests and instead transports request packets until the ASP informs software that the

command has completed.

[Public]

Lifecycle of a Trusted Device
TDISP devices proceed through a common SEV-TIO lifecycle as they are enumerated and initialized,

assigned and unassigned, and reset. Host software and guests communicate with the ASP to drive a

TDISP device and its TDIs through the SEV-TIO lifecycle. Figure 8 depicts this lifecycle flow.

TDISP Capability
Discovery

TDISP Device
initialization

TDI Binding
to Guest

TDI Unbinding
from Guest

TDISP Device
Reclaim

Device
Authentication
& Attestation

MMIO
Validation

IOMMU
Programming

Usage

Each TDI progresses through
its own lifecycle

Host

Guest

Figure 8: SEV-TIO lifecycle of a TDISP device and each of its TDIs.

During host device enumeration, host software detects that a device supports TDISP through the

device’s capability registers. At this point, the host software can ask the ASP to enable TDISP on the

device by establishing an SPDM connection with the device and construct the IDE streams. The host

then initializes the device to the desired configuration, such as by using an SR-IOV device’s PF to

construct VFs and assigning them device resources.

At TDI assignment, SEV-TIO requires host software to bind the TDI to the guest through the ASP which

prepares the TDI for device attestation by transitioning the TDI to the TDISP Locked state. In the Locked

state, any configuration that alters the security posture of the TDI is locked and cannot be altered

without causing the TDI to transition to the Error state. As discussed in previous sections, when the TDI

is in the Locked state, the guest can securely retrieve device attestation information from the ASP and

establish trust in the TDI. Once trust is established, the guest can send guest requests to the ASP to

grant the TDI access to private memory by programming the SDTE of the TDI and setting the Validated

bit in the RMP entries of the MMIO ranges of the TDI.

Next, the ASP asks the DSM to transition the TDI to the TDISP Run state. In this state, the TDI is now

allowed to accept MMIO requests and send DMA requests. Note that while in the Run state, the TDI still

prevents configuration changes by host software that would alter the security posture of the device.

Finally, the guest sends a guest request to the ASP to program the SDTE of the TDI with its configuration

such as the VMPL that the TDI has access to, IOMMU paging modes, and pointers to the guest’s page

tables. After this completes, the TDI has access to the guest private memory granted to it by the guest.

The hypervisor may choose to unbind a TDI from a guest at any time for several reasons. The guest may

have finished using the TDI and requested that the TDI be unbound, or the guest may be shutting down

and the hypervisor is reclaiming the guest’s resources. The hypervisor may also choose to reclaim the

TDI because the guest or device is hung or misbehaving. In these cases, the hypervisor may ask the ASP

to unbind the TDI from the guest. To do this, the ASP unwinds the binding configuration within the

[Public]

hardware and sends a TDISP command to the DSM to transition the TDI back to the Unlocked state.

Once the TDI is in the Unlocked state, the host can assign and bind the TDI to other guests in the same

manner as above.

The unbinding operation is designed to robustly address several error conditions. For instance, it

requires no interaction with the guest to unbind a TDI in case the guest is unresponsive. Also, the unbind

operation will still free system resources if the TDI is not responsive or even if the device is no longer

physically present. Finally, if the TDI is in the Error state due to an irrecoverable error condition, the

unbind operation transitions the TDI to the TDISP Unlocked state.

Finally, all system resources associated with the TDISP device itself, such as the SPDM session context

and tracking of all its TDI state, can be reclaimed with a request to the ASP. After reclamation of the

TDISP resources, the IDE stream and SPDM session will be closed. To use the device with SEV-TIO again,

the ASP must reconnect to the device and reestablish SPDM and IDE.

Conclusion
SEV-TIO enables support for trusted TDISP capable devices with AMD SEV-SNP guests, allowing directly

assigned devices to access guest private memory. Through SEV-TIO, a guest can establish trust in the

identity and configuration of a device before bringing the device into the trust boundary of the guest.

As a result, SEV-TIO creates a direct path between a guest and device which has the potential to improve

I/O performance for a variety of workloads. AMD looks forward to working with our ecosystem partners

to enable this new technology and expand the potential of confidential computing with AMD SEV.

References

[1] Advanced Micro Devices, "AMD Memory Encryption," 2021.

[2] Advanced Micro Devices, "Protecting VM Register State with SEV-ES," 2017.

[3] Advanced Micro Devices, "AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and

Mode," 2020.

[4] PCI-SIG, "TEE Device Interface Security Protocol (TDISP)," 2022.

[5] DMTF, "Security Protocol and Data Model (SPDM) Specification," 2022.

[6] DMTF, "Secured Messages using SPDM Specification," 2022.

[7] PCI-SIG, "Integrity and Data Encryption (IDE)," 2022.

	Introduction
	Benefits of Trusted Devices
	Standardizing Trust in Devices
	SEV-TIO Architectural Overview
	Trusted Devices in Guest Private Memory
	Hardware Accelerated Virtualized IOMMU
	Device Attestation
	TDISP State Machine
	Device Communication with AMD Secure Processor
	Lifecycle of a Trusted Device
	Conclusion
	References

