
Arm® Architecture Reference Manual
Supplement

Armv8, for R-profile AArch64 architecture
Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved.
ARM DDI 0600A.d (ID120821)

Arm Architecture Reference Manual Supplement
Armv8, for R-profile AArch64 architecture

Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2019-2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

Release history

Date Issue Confidentiality Change

14 January 2020 A.a Confidential Beta release

19 June 2020 A.b Confidential Second beta release

7 September 2020 A.c Non-Confidential Initial EAC release of the PMSA
architecture, first Beta release of
the VMSA architecture

8 December 2021 A.d Non-Confidential Second EAC release of the PMSA
architecture, second Beta release of
the VMSA architecture
ii Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

In this document, where the term Arm is used to refer to the company it means “Arm or any of its affiliates as appropriate”.

Note

• The term Arm can refer to versions of the Arm architecture, for example Armv8 refers to version 8 of the Arm architecture.
The context makes it clear when the term is used in this way.

• This document describes only the Armv8-R AArch64 architecture profile. For the behaviors required by the Armv8-A
architecture, see the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

This manual covers two memory system architectures, Protected Memory System Architecture (PMSAv8-64) and Virtual Memory
System Architecture (VMSAv8-64). The information related to PMSAv8-64 as described in Chapter C1 Protected Memory System
Architecture is at EAC quality. EAC quality means that all features of the specification are described in the manual.

The information related to VMSAv8-64 as described in Chapter D1 Virtual Memory System Architecture is at Beta quality. Beta
quality means that:

• All major features of the specification are described in the manual, some details might be missing.

• Information can be used for software development at risk.

• Information should not be used for hardware development.

Web Address

http://www.arm.com

Limitations of this issue

This issue of the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R AArch64 architecture profile contains
many improvements and corrections. Validation of this document has identified the following issues that Arm will address in
future issues:

• The references to LDLAR, LDLARH, and SMC instructions are present in register descriptions.

• In Part I Architectural Pseudocode:

— The functions that address both AArch32 and AArch64 functionality might contain cases, comments, or references
that apply to only AArch32 state, EL3 Exception level, Monitor mode, Non-secure state, or other features that are
not supported in Armv8-R AArch64, and are therefore not applicable to the Armv8-R AArch64 architecture.

— Some functions and comments might contain information that is related to the short-descriptor format that is not
applicable to the Armv8-R AArch64 architecture.

• Assertions that are not applicable to Armv8-R AArch64 might be present.

• Enumerations might contain values that are not applicable to Armv8-R AArch64.

• Tests might contain clauses that always return TRUE or FALSE in AArch64 state and there could be potentially redundant
tests in the Armv8-R AArch64 architecture. For example, in Armv8-R AArch64:

— UsingAArch32() always returns FALSE.

— IsSecure always returns TRUE.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. iii
ID120821 Non-Confidential

iv Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Contents
Arm Architecture Reference Manual Supplement
Armv8, for R-profile AArch64 architecture

Preface
About this supplement ... x
Using this book ... xi
Conventions .. xiii
Additional reading ... xiv
Feedback .. xv

Part A Introduction and Architecture Overview

Chapter A1 Architecture Overview
A1.1 About the Armv8 architecture .. A1-20
A1.2 Architecture profiles .. A1-21
A1.3 The Armv8-R AArch64 architecture profile .. A1-22
A1.4 Architecture extensions ... A1-23
A1.5 Supported extensions in Armv8-R AArch64 .. A1-26

Part B Differences between the Armv8-A AArch64 and the
Armv8-R AArch64 Profiles

Chapter B1 Differences between the Armv8-A AArch64 and the Armv8-R AArch64
Profiles

B1.1 Differences from the Armv8-A AArch64 application level architecture B1-30
B1.2 Differences from the Armv8-A AArch64 system level architecture B1-31
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. v
ID120821 Non-Confidential

Part C Armv8-R AArch64 Protected Memory System Architec-
ture

Chapter C1 Protected Memory System Architecture
C1.1 About the Protected Memory System Architecture .. C1-36
C1.2 Memory Protection Unit ... C1-37
C1.3 Address translation regimes .. C1-38
C1.4 Default memory map ... C1-39
C1.5 Armv8-A memory view ... C1-40
C1.6 MPU memory translations and faults .. C1-41
C1.7 Protection region attributes and access permissions .. C1-49
C1.8 MPU fault encodings ... C1-53
C1.9 PMSAv8-64 implications for caches .. C1-54
C1.10 Address tagging and pointer authentication support .. C1-55
C1.11 Security model .. C1-56
C1.12 Virtualization .. C1-59

Part D Armv8-R AArch64 Virtual Memory System Architecture

Chapter D1 Virtual Memory System Architecture
D1.1 About the Virtual Memory System Architecture ... D1-64
D1.2 Architecture extensions in VMSAv8-64 ... D1-65
D1.3 Support for VMSAv8-64 in Armv8-R AArch64 .. D1-66
D1.4 System registers access control .. D1-67
D1.5 Virtualization .. D1-68
D1.6 System operations .. D1-69

Part E A64 Instruction Set for Armv8-R AArch64

Chapter E1 A64 Instruction Set for Armv8-R AArch64
E1.1 Instruction encodings .. E1-74
E1.2 A64 instructions in Armv8-R AArch64 ... E1-75

Part F The A64 System Instructions

Chapter F1 The A64 System Instructions
F1.1 System instructions .. F1-84

Part G Armv8-R AArch64 System Registers

Chapter G1 System Registers in a PMSA Implementation
G1.1 System register groups ... G1-88
G1.2 Accessing MPU memory region registers ... G1-91
G1.3 General system control registers ... G1-92
G1.4 Debug registers ... G1-238
G1.5 Performance Monitors registers .. G1-255

Chapter G2 System Registers in a VMSA Implementation
G2.1 General system control registers ... G2-268
vi Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part H Armv8-R AArch64 External Debug Registers

Chapter H1 External Debug Registers Descriptions
H1.1 About the external debug registers ... H1-276
H1.2 External debug registers ... H1-277

Part I Architectural Pseudocode

Chapter I1 Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations .. I1-302
I1.2 Shared pseudocode .. I1-427

Glossary
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. vii
ID120821 Non-Confidential

viii Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Preface

This preface introduces the Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R AArch64
architecture profile. It contains the following sections:

• About this supplement on page x.

• Using this book on page xi.

• Conventions on page xiii.

• Additional reading on page xiv.

• Feedback on page xv.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ix
ID120821 Non-Confidential

Preface
 About this supplement
About this supplement

This supplement describes the changes that are introduced by the Armv8-R AArch64 architecture. For a summary
of these changes, see The Armv8-R AArch64 architecture profile on page A1-22.

The supplement must be read with the most recent issue of the Arm® Architecture Reference Manual Armv8, for
Armv8-A architecture profile. Together, that manual and this supplement provide a full description of the Armv8-R
AArch64 architecture.

This manual is organized into parts as described in Using this book on page xi.
x Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Preface
 Using this book
Using this book

The purpose of this book is to describe the changes that are introduced by the Armv8-R AArch64 architecture. It
describes the Armv8-R AArch64 profile in terms of how it differs from the Armv8-A AArch64 profile.

This book is a supplement to the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile,
(ARM DDI 0487), and is intended to be used with it. There might be inconsistencies between this supplement and
the Armv8-A Architecture Reference Manual due to some late-breaking changes. Therefore, the Armv8-A
Architecture Reference Manual is the definitive source of information about Armv8-A.

It is assumed that the reader is familiar with the Armv8-A and Armv8-R architectures.

The information in this book is organized into parts, as described in this section:

Part A, Introduction and Architecture Overview

Chapter A1 Architecture Overview

Provides an introduction to the Armv8 architecture, the Armv8-R AArch64 architecture profile, and
the architecture extensions supported in Armv8-R AArch64.

Part B, Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles

Chapter B1 Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles

Describes the system level and application level architectural differences between the Armv8-A
AArch64 and the Armv8-R AArch64 profiles.

Part C, Protected Memory System Architecture

Chapter C1 Protected Memory System Architecture

Read this for a system level view of the Armv8-R AArch64 Protected Memory System Architecture.

Part D, Virtual Memory System Architecture

Chapter D1 Virtual Memory System Architecture

Read this for a system level view of the Armv8-R AArch64 Virtual Memory System Architecture.

Part E, A64 Instruction Set for Armv8-R AArch64

Chapter E1 A64 Instruction Set for Armv8-R AArch64

Read this for descriptions of the A64 instructions that are added or affected by the Armv8-R
AArch64 architecture profile.

Part F, The A64 System Instructions

Chapter F1 The A64 System Instructions

Read this for the descriptions of A64 System instructions.

Part G, Armv8-R AArch64 System Registers

Part G describes the System registers for Armv8-R AArch64. It contains the following chapters:

Chapter G1 System Registers in a PMSA Implementation

Read this for descriptions of Armv8-R AArch64 System registers in a Protected Memory System
Architecture (PMSAv8-64) implementation.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. xi
ID120821 Non-Confidential

Preface
 Using this book
Chapter G2 System Registers in a VMSA Implementation

Read this for descriptions of Armv8-R AArch64 System registers in a Virtual Memory System
Architecture (VMSAv8-64) implementation.

Part H, Armv8-R AArch64 External Debug Registers

Chapter H1 External Debug Registers Descriptions

Read this for descriptions of the External debug registers that are added or affected by the Armv8-R
AArch64 architecture profile.

Part I, Architectural Pseudocode

Chapter I1 Armv8-R AArch64 Pseudocode

Contains pseudocode that describes various features of the Armv8-R AArch64 architecture profile.

Glossary

Defines terms used in this document that have a specialized meaning.

Note

Terms that are generally well understood in the microelectronics industry are not included in the Glossary.
xii Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Preface
 Conventions
Conventions

The following sections describe conventions that this book can use:

• Typographic conventions.

• Signals.

• Numbers.

• Pseudocode descriptions.

Typographic conventions

The following table describes the typographic conventions:

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality.

Typographic conventions

Style Purpose

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in assembler
syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, and are included in the Glossary in the
Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Colored text Indicates a link. This can be:

• A URL, for example https://developer.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on the current
page, for example, Pseudocode descriptions.

• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that defines the
colored term, for example Chapter A1.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. xiii
ID120821 Non-Confidential

Preface
 Additional reading
Additional reading

This section lists relevant publications from Arm and third parties.

See Developer, https://developer.arm.com, for access to Arm documentation.

Arm publications
• Arm® Architecture Reference Manual, Armv7-A and Armv7-R edition (ARM DDI 0406).

• Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile (ARM DDI 0487).

• Arm® CoreSight™ Architecture Specification v3.0 (ARM IHI 0029).

• Arm® Embedded Trace Macrocell Architecture Specification, ETMv4.0 to ETMv4.5 (ARM IHI 0064).

• Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4
(ARM IHI 0069).

Other publications

• JEDEC Solid State Technology Association, Standard Manufacturer’s Identification Code, JEP106.
xiv Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Preface
 Feedback
Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title, Arm® Architecture Reference Manual Supplement Armv8, for Armv8-R AArch64 architecture
profile.

• The number, ARM DDI 0600A.d.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. xv
ID120821 Non-Confidential

Preface
 Feedback
xvi Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part A
Introduction and Architecture Overview

Chapter A1
Architecture Overview

This chapter introduces the Armv8 architecture, the architecture profiles it defines, and the Armv8-R AArch64
profile that this manual defines. It contains the following sections:

• About the Armv8 architecture on page A1-20.

• Architecture profiles on page A1-21.

• The Armv8-R AArch64 architecture profile on page A1-22.

• Architecture extensions on page A1-23.

• Supported extensions in Armv8-R AArch64 on page A1-26.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. A1-19
ID120821 Non-Confidential

Architecture Overview
A1.1 About the Armv8 architecture
A1.1 About the Armv8 architecture

The Arm architecture that this Architecture Reference Manual describes, defines the behavior of an abstract
machine, referred to as a processing element (PE). The implementations that are compliant with the Arm
architecture must conform to the described behavior of the PE. This manual does not describe how to build an
implementation of the PE, nor does it limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with the Arm architecture must be the same as a simple sequential execution of the program on the PE.
This programmer-visible behavior does not include the execution time of the program.

The Arm Architecture Reference Manual also describes rules for software to use the PE.

The Arm architecture includes definitions of:

• An associated debug architecture.

• Associated trace architectures, which define trace macrocells that implementers can implement with the
associated processor hardware.

The Arm architecture is a Reduced Instruction Set Computer (RISC) architecture with the following RISC
architecture features:

• A large uniform register file.

• A load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents.

• Simple addressing modes, with all load/store addresses determined from register contents and instruction
fields only.

The architecture defines the interaction of the PE with memory, including caches, and includes a memory translation
system. It also describes how multiple PEs interact with each other and with other observers in a system. This
document defines the Armv8-R AArch64 architecture profile. See The Armv8-R AArch64 architecture profile on
page A1-22 for more information.

The Arm architecture supports implementations across a wide range of performance points. Implementation size,
performance, and low power consumption are key attributes of the Arm architecture.

See Conventions on page xiii for information about conventions used in this manual, including the use of SMALL
CAPS for particular terms that have Arm-specific meanings that are defined in the Glossary.

A1.1.1 See also

In the Arm Architecture Reference Manual
• Introduction to the Armv8 Architecture.

• Armv8 architectural concepts.
A1-20 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Architecture Overview
A1.2 Architecture profiles
A1.2 Architecture profiles

The Arm architecture has evolved significantly since its introduction, and Arm continues to develop it. Eight major
versions of the architecture have been defined to date, denoted by the version numbers 1 to 8. Of these, the first three
versions are now obsolete.

Armv8 defines three architecture profiles:

A Application profile:

• Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU).

• Supports the A32, T32, and A64 instruction sets.

R Real-time profile:

• Supports the AArch64 or AArch32 Execution states.

• Supports A64, or A32 and T32 instruction sets.

• Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

• Supports a VMSA based on an MMU.

M Microcontroller profile:

• Implements a programmers’ model that is designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

• Supports a PMSA based on an MPU.

• Supports a variant of the T32 instruction set.

For more information, see Introduction to the Armv8 Architecture chapter of the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. A1-21
ID120821 Non-Confidential

Architecture Overview
A1.3 The Armv8-R AArch64 architecture profile
A1.3 The Armv8-R AArch64 architecture profile

The Armv8-R AArch64 architecture profile is described in terms of Armv8-A Exception levels. Armv8-R AArch64
implementations support EL0, EL1, and EL2 Exception levels.

The main features of the Armv8-R AArch64 profile are:

• Support for one Execution state, AArch64.

• No EL3 Exception level. Secure monitor is not supported in the Armv8-R AArch64 profile.

• A PMSA that defines memory ordering and memory management in 64-bit address space and provides:

— A model for defining protection regions at EL1 and EL2 using two 64-bit registers to specify a base
address and a limit address.

— A minimum protection region size of 64 bytes.

— No support for overlapping protection regions.

• The PE is always in Secure state.

• A programmers’ model and its interfaces to AArch64 registers with EL1 and EL2 PMSA registers that
control most PE and memory system features, and provide status information.

• Support for Advanced SIMD and floating-point instructions.

• The Armv8-R AArch64 virtualization model, which provides:

— Support for the EL2 Exception level.

— A second MPU that provides stage 1 memory protection for memory accesses from EL2 and provides
stage 2 memory protection for accesses from EL1 and EL0. These protection stages act as address
translation regimes in the Armv8-R AArch64 profile.

• ETMv4.5 with Armv8-R AArch64 extension.

The Arm architecture includes definitions of associated trace architectures, which define trace macrocells
that implementers can implement with the associated processor hardware. For more information, see Arm®
Embedded Trace Macrocell Architecture Specification, ETMv4.0 to ETMv4.5 (ARM IHI 0064).

• Support for GICv3 or GICv4. For more information, see Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3 and version 4 (ARM IHI 0069).

• The Armv8 AArch64 Debug architecture that provides software access to debug features.

• Optional support for Virtual Memory System Architecture (VMSAv8-64) extension. VMSAv8-64 provides
virtual memory addressing support.

A1.3.1 See also

In the Arm Architecture Reference Manual
• The AArch64 Application Level Programmers’ Model.

• The AArch64 Application Level Memory Model.

• The AArch64 System Level Programmers’ Model.

• AArch64 Self-hosted Debug.

• AArch64 Self-hosted Trace.

• The AArch64 System Level Memory Model.

• The AArch64 Virtual Memory System Architecture.
A1-22 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Architecture Overview
A1.4 Architecture extensions
A1.4 Architecture extensions

An implementation of the Armv8-R AArch64 architecture is based on the Armv8.4-A architecture. Table A1-1 lists
the features supported by the Armv8-R AArch64 architecture.

Table A1-1 Armv8-A features supported in Armv8-R AArch64

Feature Description

FEAT_SSBS Speculative Store Bypass Safe

FEAT_CSV2 and FEAT_CSV2_2 Cache Speculation Variant 2

FEAT_CSV2_1p1 and FEAT_CSV2_1p2 Cache Speculation Variant 2

FEAT_CSV3 Cache Speculation Variant 3

FEAT_SB Speculation Barrier

FEAT_SPECRES Speculation restriction instructions

FEAT_SHA1 Advanced SIMD SHA1 instructions

FEAT_SHA256 Advanced SIMD SHA256 instructions

FEAT_AES Advanced SIMD AES instructions

FEAT_PMULL Advanced SIMD PMULL instructions

FEAT_PCSRv8 PC Sample-based Profiling Extension

FEAT_DGH Data Gathering Hint

FEAT_LSE Large System Extensions

FEAT_RDM Advanced SIMD rounding double multiply accumulate

instructions

FEAT_PAN Privileged access never

FEAT_VMID16 16-bit VMID

FEAT_PMUv3p1 PMU Extensions v3.1

FEAT_XNX Translation table stage 2 Unprivileged Execute-never

FEAT_UAO Unprivileged Access Override control

FEAT_PAN2 AT S1E1R and AT S1E1W instruction variants affected by PSTATE.PAN

FEAT_DPB DC CVAP instruction

FEAT_Debugv8p2 Debug v8.2

FEAT_ASMv8p2 Armv8.2 changes to the A64 ISA

FEAT_IESB Implicit Error Synchronization event

FEAT_DPB2 DC CVADP instruction

FEAT_FP16 Half-precision floating-point data processing

FEAT_LVA Large VA support

FEAT_LPA Large PA and IPA support

FEAT_VPIPT VMID-aware PIPT instruction cache
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. A1-23
ID120821 Non-Confidential

Architecture Overview
A1.4 Architecture extensions
FEAT_PCSRv8p2 PC Sample-based profiling

FEAT_DotProd Advanced SIMD dot product instructions

FEAT_SHA3 Advanced SIMD SHA3 instructions

FEAT_SHA512 Advanced SIMD SHA512 instructions

FEAT_SM3 Advanced SIMD SM3 instructions

FEAT_SM4 Advanced SIMD SM4 instructions

FEAT_FHM Floating-point half-precision multiplication instructions

FEAT_PAuth and FEAT_EPAC Pointer authentication and Enhanced PAC

FEAT_JSCVT JavaScript conversion instructions

FEAT_LRCPC Load-acquire RCpc instructions

FEAT_FCMA Floating-point complex number instructions

FEAT_DoPD Debug over Powerdown

FEAT_CCIDX Extended cache index

FEAT_PAuth2 Enhancements to pointer authentication

FEAT_FPAC and FEAT_FPACCOMBINE Faulting on AUT* instructions and combined pointer authentication instructions

FEAT_PACQARMA5 QARMA5 PAC cryptographic algorithm

FEAT_PACIMP IMPLEMENTATION DEFINED PAC cryptographic algorithm

FEAT_SEL2 Secure EL2

FEAT_S2FWB Stage 2 forced Write-Back

FEAT_DIT Data Independent Timing instructions

FEAT_IDST ID space trap handling

FEAT_FlagM Flag Manipulation instructions v2

FEAT_LSE2 Large System Extensions v2

FEAT_LRCPC2 Load-acquire RCpc instructions v2

FEAT_TLBIOS TLB invalidate instructions in Outer Shareable domain

FEAT_TLBIRANGE TLB invalidate range instructions

FEAT_CNTSC Generic Counter Scaling

FEAT_RASv1p1 RAS Extension v1.1

FEAT_Debugv8p4 Debug v8.4

FEAT_PMUv3p4 PMU Extensions v3.4

FEAT_TRF Self-hosted Trace Extensions

Table A1-1 Armv8-A features supported in Armv8-R AArch64 (continued)

Feature Description
A1-24 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Architecture Overview
A1.4 Architecture extensions
The Armv8-R AArch64 architecture supports concurrent modification and execution of instructions as defined by
the Armv8-A architecture. FEAT_IDST feature is extended to include MPUIR_EL1 register.

For the architectural features supported by Armv8-R AArch64, whether a feature is mandatory or optional depends
on whether the feature is mandatory or optional in the Armv8.4-A architecture.

In a PMSAv8-64 only implementation, the FEAT_TLBIOS and FEAT_TLBIRANGE features are optional.

A1.4.1 See also

In the Arm Architecture Reference Manual
• Armv8-A Architecture Extensions.

• The Armv8.1 architecture extension.

• The Armv8.2 architecture extension.

• The Armv8.3 architecture extension.

• The Armv8.4 architecture extension.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. A1-25
ID120821 Non-Confidential

Architecture Overview
A1.5 Supported extensions in Armv8-R AArch64
A1.5 Supported extensions in Armv8-R AArch64

A1.5.1 Advanced SIMD and Floating-point extensions

The support for Advanced SIMD and floating-point instructions must conform to the Armv8-A AArch64
specifications.

A1.5.2 See also

In the Arm Architecture Reference Manual
• Advanced SIMD and floating-point support.

• A64 Advanced SIMD and Floating-point Instruction Descriptions.
A1-26 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part B
Differences between the Armv8-A AArch64 and the

Armv8-R AArch64 Profiles

Chapter B1
Differences between the Armv8-A AArch64 and the
Armv8-R AArch64 Profiles

This chapter describes the system level and application level architectural differences between Armv8-R AArch64
and Armv8-A AArch64. It contains the following sections:

• Differences from the Armv8-A AArch64 application level architecture on page B1-30.

• Differences from the Armv8-A AArch64 system level architecture on page B1-31.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. B1-29
ID120821 Non-Confidential

Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
B1.1 Differences from the Armv8-A AArch64 application level architecture
B1.1 Differences from the Armv8-A AArch64 application level architecture

B1.1.1 Differences from the Armv8-A AArch64 application level programmers’ model

The Armv8-R AArch64 application level programmers’ model differs from the Armv8-A AArch64 profile in the
following ways:

• Armv8-R AArch64 supports only a single Security state, Secure.

• EL2 is mandatory.

• EL3 is not supported.

• Armv8-R AArch64 supports the A64 ISA instruction set with some modifications.

See The AArch64 Application Level Programmers’ Model chapter of the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.

B1.1.2 Differences from the Armv8-A AArch64 application level memory model

Armv8-R AArch64 redefines DMB and DSB, and adds an instruction, DFB.

B1.1.3 See also

In the Arm Architecture Reference Manual
• Memory barriers.

• Data Memory Barrier (DMB).

• Data Synchronization Barrier (DSB).

• Use of ASIDs and VMIDs to reduce TLB maintenance requirements.
B1-30 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
B1.2 Differences from the Armv8-A AArch64 system level architecture
B1.2 Differences from the Armv8-A AArch64 system level architecture

B1.2.1 Protected Memory System Architecture, PMSAv8-64

Armv8-R AArch64 supports the Protected Memory System Architecture (PMSAv8-64) at EL1 and EL2. See
Chapter C1 Protected Memory System Architecture.

B1.2.2 Virtual Memory System Architecture, VMSAv8-64

Armv8-R AArch64 supports the Virtual Memory System Architecture (VMSAv8-64) as an optional memory
system architecture at EL1. See Chapter D1 Virtual Memory System Architecture.

B1.2.3 Differences from the Armv8-A AArch64 system level programmers’ model

Virtualization

Armv8-R AArch64 provides a PMSA-based virtualization model.

Generic Interrupt Controller

Armv8-R AArch64 supports GICv3 or GICv4. The GIC architecture is defined by the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4 (ARM IHI 0069).

B1.2.4 Differences from the Armv8-A AArch64 system level memory model

Address space

Armv8-R AArch64 can support address bits up to 52 if FEAT_LPA is enabled, otherwise 48 bits.

Address translation

In PMSAv8-64, address translation flat-maps the virtual address (VA), used by the PE, to the physical address (PA),
and determines the access permissions and memory attributes of the target PA.

System register support for IMPLEMENTATION DEFINED memory features

The type, presence, and accessibility of Tightly Coupled Memory to EL1 and EL0, or to EL2, is IMPLEMENTATION
DEFINED.

Optional VMSAv8-64

Armv8-R AArch64 supports VMSAv8-64 as an optional memory system architecture at stage 1 of the Secure
EL1&0 translation regime.

B1.2.5 See also

In the Arm Architecture Reference Manual
• The Arm Generic Interrupt Controller System registers.

• About the GIC System registers.

• Address generation.

• Address space.

• Address size configuration.

• Address translation instructions.

• A64 System instructions for address translation.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. B1-31
ID120821 Non-Confidential

Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
B1.2 Differences from the Armv8-A AArch64 system level architecture
B1-32 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part C
Armv8-R AArch64 Protected Memory System

Architecture

Chapter C1
Protected Memory System Architecture

This chapter provides a system-level view of the Protected Memory System Architecture for any implementation
that is compliant with the Armv8-R AArch64 architecture. It contains the following sections:

• About the Protected Memory System Architecture on page C1-36.

• Memory Protection Unit on page C1-37.

• Address translation regimes on page C1-38.

• Default memory map on page C1-39.

• Armv8-A memory view on page C1-40.

• MPU memory translations and faults on page C1-41.

• Protection region attributes and access permissions on page C1-49.

• MPU fault encodings on page C1-53.

• PMSAv8-64 implications for caches on page C1-54.

• Address tagging and pointer authentication support on page C1-55.

• Security model on page C1-56.

• Virtualization on page C1-59.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-35
ID120821 Non-Confidential

Protected Memory System Architecture
C1.1 About the Protected Memory System Architecture
C1.1 About the Protected Memory System Architecture

The Armv8-R AArch64 implementation supports the Protected Memory System Architecture (PMSAv8-64) at EL1
and EL2. The PMSAv8-64 is based on MPUs that provide a memory protection scheme by defining protection
regions in the address space.

The PMSAv8-64:

• Supports a unified memory protection scheme where an MPU manages instruction and data access. It does
not provide separate instruction protection regions and data protection regions in the address map.

• Defines MPU faults that are consistent with VMSAv8-64 fault definitions and reuses IFSC and DFSC fault
encodings.

• Does not support virtual addressing and flat maps input address to output address.

For general information about the Arm memory model, see The AArch64 Application Level Memory Model and The
AArch64 System Level Memory Model chapters of the Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

C1.1.1 Protection regions

An MPU defines protection regions in the address map. A protection region is a contiguous memory region for
which the MPU defines the memory attributes and the access permissions.

Protection regions:

• Are defined by a pair of registers, a Base Address Register, and a Limit Address Register, see Memory
Protection Unit on page C1-37.

• Have a minimum size of 64 bytes.

• Have a maximum size of the entire address map.

• Must not overlap.

The definition of a protection region specifies the start and the end of the region, the access permissions, and the
memory attributes for the region.

C1.1.2 Address range

The maximum supported address bit size is 48, or 52 if FEAT_LPA is enabled. A PE can choose to implement a
smaller PA range and the actual implemented physical address range is provided by the
ID_AA64MMFR0_EL1.PARange field. Any access to physical memory address outside the address range results
in a memory fault.
C1-36 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.2 Memory Protection Unit
C1.2 Memory Protection Unit

An MPU checks whether the address used by a memory access matches a defined protection region. The MPU uses
a Base Address Register and a Limit Address Register to define a protection region and its associated access
permissions and memory attributes. The minimum supported size of a protection region is 64-bytes.

The PMSAv8-64 defines two MPUs:

EL1 MPU

The EL1 MPU can be configured from EL1 or EL2. The EL1 MPU controls the stage 1 of the Secure
EL1&0 translation regime that defines the protection regions for accesses from EL1 and EL0. The
PMSAv8-64 uses SCTLR_EL1.M to enable and disable the EL1 MPU. The EL1 MPU also supports
a Background region, controlled by SCTLR_EL1.BR.

EL2 MPU

The EL2 MPU can be configured only from EL2. The EL2 MPU controls:

• Stage 1 of the Secure EL2 translation regime that defines the protection regions for accesses
from EL2.

• Stage 2 of the Secure EL1 &0 translation regime that defines the protection regions for
accesses from EL1 and EL0.

The PMSAv8-64 uses SCTLR_EL2.M to enable and disable the EL2 MPU. The EL2 MPU also
supports a Background region, controlled by SCTLR_EL2.BR.

Note

When HCR_EL2.VM is 1 and SCTLR_EL2.M is 1, then EL2 MPU modifies the access permissions
and memory attributes that are assigned by the EL1 MPU.

See Protection region attributes and access permissions on page C1-49. PMSAv8-64 supports a default memory
map as a Background region for memory region checks at both EL1 and EL2. See Default memory map on
page C1-39.

C1.2.1 MPU Default Cacheability

The PMSAv8-64 supports Default Cacheability for the stage 1 of the Secure EL1&0 translation regime access and
follows the same rule as Armv8-A.

For more information, see chapter AArch64 System Register Descriptions of the Arm® Architecture Reference
Manual Armv8, for Armv8-A architecture profile.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-37
ID120821 Non-Confidential

Protected Memory System Architecture
C1.3 Address translation regimes
C1.3 Address translation regimes

In PMSAv8-64:

• Address translation describes the process of flat mapping the VA used by the PE, to the PA accessed in the
memory system, and determining the access permissions and memory attributes of the target PA.

• A translation regime maps a VA to a PA using one or two stages of address translation to assign the access
permissions and memory attributes of the target PA. When two translation stages are used, the intermediate
address is treated as an intermediate physical address (IPA).

The Armv8-R AArch64 architecture supports two translation regimes:

• Secure EL1&0 translation regime.

• Secure EL2 translation regime.

Secure EL1&0 translation regime

The Secure EL1&0 translation regime assigns the access permissions and memory attributes for any
access from EL1 or EL0.

This translation regime has one or two stages of translation:

• All accesses from EL1 or EL0 are translated by the EL1 MPU. This translation is a stage 1
translation.

• When the value of HCR_EL2.VM is 1 and SCTLR_EL2.M is 1, the accesses are further
translated by the EL2 MPU. This translation is a stage 2 translation, and can modify the
access permissions and memory attributes that are assigned by the stage 1 translation.

For the EL1&0 stage 1 translation, an ADDRESS is in the protection region n if and only if:

PRBAR<n>_EL1.BASE:'000000' <= ADDRESS <= PRLAR<n>_EL1.LIMIT:'111111'.

Secure EL2 translation regime

The Secure EL2 translation regime assigns the access permissions and memory attributes for any
access from EL2.

This translation regime has a single stage of translation, stage 1, that is performed by the EL2 MPU.

For the EL2 stage 1 translation, an ADDRESS is in the protection region n if and only if:

PRBAR<n>_EL2.BASE:'000000' <= ADDRESS <= PRLAR<n>_EL2.LIMIT:'111111'.

The attributes for a protection region are defined by the combination of:

• The values that are programmed into the Base Address Registers and Limit Address Registers. The registers
are PRBAR_EL1, PRLAR_EL1, PRBAR_EL2, and PRLAR_EL2.

• A Memory Attributes Indirection register that is indexed by the values MAIR_EL1 and MAIR_EL2.
C1-38 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.4 Default memory map
C1.4 Default memory map

For PMSAv8-64, the Background region is enabled and disabled using SCTLR_ELx.BR. If the Background region
is enabled, then the MPU uses the default memory map as the Background region for generating the memory
attributes when MPU is disabled.

The default memory map of the Armv8-R AArch64 architecture is IMPLEMENTATION DEFINED. Therefore, the
Armv8-R AArch64 architecture defines only the condition to access the default memory map, but not the memory
map itself. The memory attributes, access permissions, and Security state of the memory regions in the default
memory map are also IMPLEMENTATION DEFINED.

Any access outside the implemented physical address range in the default memory map results in a fault.

If the IMPLEMENTATION DEFINED default memory map is discontinuous, then the implementation must also define
a generic permission and attribute to be used for memory access to all memory regions that are not covered by the
default memory map. However, an implementation can also select a default memory map so that the accesses to
these discontinuous memory regions, where no memory attributes are allocated, always result in memory faults.

Note

The default memory map is same for EL1 and EL2 MPUs.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-39
ID120821 Non-Confidential

Protected Memory System Architecture
C1.5 Armv8-A memory view
C1.5 Armv8-A memory view

The PMSAv8-64 uses same controls as VMSAv8-64 to enable and disable translation stages.

If the MPU and the Background region are not enabled for stage 1 translation, then PMSAv8-64 uses the same
memory attributes as defined by VMSAv8-64 when stage 1 translation is disabled.
C1-40 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.6 MPU memory translations and faults
C1.6 MPU memory translations and faults

This section provides information on memory attributes and the MPU faults for the stage 1 Secure EL1&0, stage 1
Secure EL2, and the stage 2 Secure EL1&0 translation regimes.

For the EL1 MPU memory translations, this section describes the following:

• Stage 1 EL1&0 memory attributes.

• Stage 1 MPU faults for EL1 access.

• Stage 1 MPU faults for EL0 access.

• EL1 MPU fault types.

• MPU fault check sequence for the stage 1 Secure EL1&0 translation.

For the EL2 MPU memory translations, this section describes the following:

• Stage 1 EL2 memory attributes.

• Stage 1 MPU faults for EL2 access.

• Stage 2 EL1&0 memory attributes.

• Stage 2 EL1&0 MPU faults.

• EL2 MPU fault types.

• MPU fault check sequence for the stage 1 Secure EL2 translation.

• MPU fault check sequence for the stage 2 Secure EL1&0 translation.

C1.6.1 EL1 MPU memory translations

The EL1 MPU controls the stage 1 of the Secure EL1&0 translation regime. Based on the values of HCR_EL2.DC
and SCTLR_EL1.{M, BR}, the stage 1 of the Secure EL1&0 translation regime can have the following
configurations for memory attributes, as described in Table C1-1.

Note

Armv8-A AArch64 memory view is the stage 1 memory attribute defined by the Armv8-A architecture for
accessing a memory location when stage 1 address translation is disabled (SCTLR_ELx.M = 0).

Table C1-1 Stage 1 EL1&0 memory attributes

HCR_EL2 SCTLR_EL1
MPU hit Memory attribute

DC M BR

1 x x - Default Cacheability

0 0 0 - Armv8-A AArch64 memory view

0 0 1 - Default memory map

0 1 0 No Not applicable, MPU Fault

0 1 0 Yes MPU memory map

0 1 1 No Default memory map

0 1 1 Yes MPU memory map
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-41
ID120821 Non-Confidential

Protected Memory System Architecture
C1.6 MPU memory translations and faults
Table C1-2 lists the configurations for the stage 1 MPU faults for EL1 access.

Table C1-3 lists the configurations for the stage 1 MPU faults for EL0 access.

Note

If HCR_EL2.{DC, TGE} is not {0, 0}, then the PE behaves as if the value of the SCTLR_EL1.BR is 0 for all
purposes other than returning the value of a direct read of the field.

C1.6.2 EL1 MPU faults

Each EL1 MPU protection region is defined using the PRBAR_EL1 and PRLAR_EL1 registers. The MPU checks
the input address with each protection region, and an address is considered to match a region if:

Address >= PRBAR_EL1.BASE:'000000' && Address <= PRLAR_EL1.LIMIT:'111111'

Table C1-2 Stage 1 MPU faults for EL1 access

HCR_EL2 SCTLR_EL1
MPU hit MPU faults

DC M BR

1 x x - No Fault or Address size fault

0 0 0 - No Fault or Address size fault

0 0 1 - No Fault, or Background region Translation fault, or Background region Permission fault

0 1 0 No Translation fault

0 1 0 Yes No Fault or Permission fault

0 1 1 No No Fault, or Background region Translation fault, or Background region Permission fault

0 1 1 Yes No Fault or Permission fault

Table C1-3 Stage 1 MPU faults for EL0 access

HCR_EL2 SCTLR_EL1
MPU hit MPU faults

DC M BR

1 x x - No Fault or Address size fault

0 0 0 - No Fault or Address size fault

0 0 1 - No Fault, or Background region Translation fault, or Background region Permission fault

0 1 x No Translation fault

0 1 x Yes No Fault or Permission fault
C1-42 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.6 MPU memory translations and faults
Based on MPU protection region checks, the EL1 MPU can raise the following responses as described in
Table C1-4.

If the EL1 MPU is disabled and the input address is larger than the implemented PA size, then a level 0 address size
fault is generated. If the EL1 MPU is enabled and the input address is larger than the implemented PA size, then a
level 0 translation fault is generated. Permitted transactions are then presented to stage 2 permission checks by the
EL2 MPU.

Depending on the configuration in the PMSAv8-64 registers, the memory attributes of an address can be defined by
an MPU protection region, a Background region, or it may have Armv8-A AArch64 memory view.

Table C1-4 EL1 MPU fault types

Protection region match Permission MPU response

No match - Translation fault

Multiple - Translation fault

Single Denied Permission fault

Allowed Valid
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-43
ID120821 Non-Confidential

Protected Memory System Architecture
C1.6 MPU memory translations and faults
C1.6.3 MPU fault check for the stage 1 Secure EL1&0 translation

Figure C1-1 shows the MPU fault check sequence for the stage 1 of the Secure EL1&0 translation regime.

Figure C1-1 MPU fault check sequence for the stage 1 Secure EL1&0 translation

Memory address

Alignment
check required? Check address alignment

Alignment fault
Y

Y

MPU
enabled?

N
N

Check for MPU region match

Aligned?

Y

Translation fault

Y

N

Matched?

Proceed to Stage 2

EL0 access?
Y

Background
region enabled?

N

Use v8-A AArch64 memory
view

Use default memory map

Y

N

Background
region enabled?

N

NY

address <
implemented PA

range

N Y

Permission fault

Address size fault

Is Default
Cacheability
 enabled?

N

Y

Use Default Cacheability attributes

Valid permission?
N

Y

Check for access
permission

Valid attributes?
N

Y

Multiple
 Matches?

Y

N

C1-44 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.6 MPU memory translations and faults
C1.6.4 EL2 MPU memory translations

Based on the values of SCTLR_EL2.{M, BR}, the stage 1 of the Secure EL2 translation regime can have the
following configurations for memory attributes, as described in Table C1-5.

Table C1-6 lists the configurations for stage 1 MPU faults for EL2 access.

Based on HCR_EL2.VM and SCTLR_EL2.{M, BR}, the stage 2 of the Secure EL1&0 translation regime can have
the following configurations for memory attributes, as described in Table C1-7.

Table C1-5 Stage 1 EL2 memory attributes

SCTLR_EL2
MPU hit Memory attributes

M BR

0 0 - Armv8-A AArch64 memory view

0 1 - Default memory map

1 0 No Not applicable. MPU Fault.

1 0 Yes MPU memory map

1 1 No Default memory map

1 1 Yes MPU memory map

Table C1-6 Stage 1 MPU faults for EL2 access

SCTLR_EL2
MPU hit MPU faults

M BR

0 0 - No Fault or Address size fault

0 1 - No Fault, or Background region Translation fault, or Background region Permission fault

1 0 No Translation fault

1 0 Yes No Fault or Permission fault

1 1 No No Fault, or Background region Translation fault, or Background region Permission fault

1 1 Yes No Fault or Permission fault

Table C1-7 Stage 2 EL1&0 memory attributes

HCR_EL2 SCTLR_EL2
MPU hit Memory attribute

VM M BR

0 x x - Stage 2 translation disabled

1 0 0 - CONSTRAINED UNPREDICTABLE

1 0 1 - Default memory map

1 1 x No Not applicable. MPU Fault.

1 1 x Yes MPU memory map
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-45
ID120821 Non-Confidential

Protected Memory System Architecture
C1.6 MPU memory translations and faults
Table C1-8 lists the configurations for MPU faults for the stage 2 of the Secure EL1&0 translation regime.

There are no separate configurations for the protection regions for the stage 1 of the Secure EL2 and the stage 2 of
the Secure EL1&0 translations. Memory accesses for both translations are controlled by the same MPU
configuration registers, PRBAR_EL2 and PRLAR_EL2.

Note

In Armv8-A, there are separate translation table base registers for the stage 1 of the Secure EL2 and the stage 2 of
the Secure EL1&0 translation regimes.

C1.6.5 EL2 MPU faults

Each EL2 MPU protection region is defined using PRBAR_EL2 and PRLAR_EL2. The MPU checks the input
address with each protection region and an address is considered to match a region if:

Address >= PRBAR_EL2.BASE:'000000' && Address <= PRLAR_EL2.LIMIT:'111111'

Based on MPU protection region checks, the EL2 MPU can raise the following responses as described in
Table C1-9.

If the EL2 MPU is disabled for the stage 1 of the Secure EL2 translation regime, then any access to an address
outside the implemented PA range raises a level 0 address size fault. If the EL2 MPU is enabled for the stage 1 of
the Secure EL2 translation regime, and the input address is larger than the implemented PA range, then a level 0
translation fault is generated.

Table C1-8 Stage 2 EL1&0 MPU faults

HCR_EL2 SCTLR_EL2
MPU hit MPU faults

VM M BR

0 x x - No Fault

1 0 0 - CONSTRAINED UNPREDICTABLE

1 0 1 - No Fault, or Background region Translation fault, or Background region Permission
fault, or Translation fault due to Secure Check, if enabled.

1 1 x No Translation fault

1 1 x Yes No Fault, or Permission fault, or Translation fault due to Secure Check, if enabled.

Table C1-9 EL2 MPU fault types

Protection region match Permission MPU response

No match - Translation fault

Multiple - Translation fault

Single Denied Permission fault

Single Allowed Valid
C1-46 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.6 MPU memory translations and faults
C1.6.6 MPU fault check for the stage 1 Secure EL2 translation

Figure C1-2 shows the MPU fault check sequence for the stage 1 of the Secure EL2 translation regime.

Figure C1-2 MPU fault check sequence for the stage 1 Secure EL2 translation

Memory address

Alignment
check required? Check address alignment

Alignment fault
Y

Y

N
N

Check for MPU region match

Aligned?

Y

Translation fault

YMatched?
Background

region enabled?

Use v8-A AArch64 memory
view

Use default memory map

Y

N

Background
region enabled?

NY

address <
implemented PA

range

N Y

Permission fault

Address size fault

MPU enabled?

N

Output address

N

Valid permission?
N

Y

Valid attributes?
N

Check for access permission

Y

Multiple
 Matches?

Y

N

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-47
ID120821 Non-Confidential

Protected Memory System Architecture
C1.6 MPU memory translations and faults
C1.6.7 MPU fault check for the stage 2 Secure EL1&0 translation

Figure C1-3 shows the MPU fault check sequence for the stage 2 of the Secure EL1&0 translation regime.

Figure C1-3 MPU fault check sequence for the stage 2 Secure EL1&0 translation

No stage-2 translation

Memory address

MPU Enabled? Check for MPU Region Match

Translation Fault

Y

N

Matched?
Background

Region Enabled?

Use Default Memory Map

Y

N

N

Y

Permission Fault

Address Size Fault

Stage-2
Translation
Enabled?

Output Address

N

Y

N

Y

Valid Permission? N

Y

Check for Access
Permission

Valid Attributes?
N

Y

address <
implemented

PA range

SecureCheck
Enabled?

NS matched?

N

Y

Translation Fault
N

Y

CONSTRAINED
UNPREDICTABLE

Y

N

Multiple
Matches?
C1-48 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.7 Protection region attributes and access permissions
C1.7 Protection region attributes and access permissions

The protection region attribute fields control the Memory type, Cacheability, and Shareability attributes of the
region. PMSAv8-64 uses the same memory types and memory attributes as VMSAv8-64 in Armv8-A.

The memory attributes and access permissions for a protection region are defined by:

• The PRBAR_EL1 and PRLAR_EL1 registers, or the PRBAR_EL2 and PRLAR_EL2 registers that define
the protection region.

• The MAIR_EL1.Attr<n> or MAIR_EL2.Attr<n> field that is indexed by PRLAR_EL1.AttrIndx or
PRLAR_EL2.AttrIndx, respectively.

See also Memory attributes and access permission mappings on page C1-51.

For the Secure EL1&0 translation regime, when HCR_EL2.VM is 1, the stage 1 memory attribute and access
permission assignments are combined with the stage 2 assignments, as described in Combining memory attributes
and access permissions on page C1-51.

C1.7.1 Protection region attributes

The PMSAv8-64 uses the same memory attributes defined by the VMSAv8-64, and the MPU enables configuration
of the attributes for each protection region using MAIR_EL1 and MAIR_EL2. The PMSAv8-64 also enables
configuration of each protection region to map to Secure or Non-secure address space using the NS bit in the EL1
and EL2 MPU configuration registers.

Note

Writes to MPU registers are only guaranteed to be visible following a Context synchronization event and DSB
operation.

If there are multiple protection regions allocated to the same coherency granule, then Armv8-R AArch64 follows
the Armv8-A mismatched memory attributes rules to access any byte within that coherency granule. If the Security
states of protection regions are different, then implementation must ensure that these regions are not allocated to the
same coherency granule.

The PMSAv8-64 uses the same memory attributes defined by the VMSAv8-64 using MAIR_EL1 and MAIR_EL2
for the stage 1 EL1&0 and EL2 translations. For the stage 2 EL1&0 translations, memory attributes encoding in the
MAIR_EL2 register is defined in Table C1-10.

Table C1-10 Meaning of Attr[7:4]

Attr [7:6] Attr [5:4] Memory type Outer cache policy

00 00 Device memory Not Applicable (NA)

00 !=00 Normal memory Write-Through (WT)

01 00 Normal memory Non Cacheable (NC)

01 !=00 Normal memory Write-Back (WB)

10 xx Normal memory Write-Through (WT)

11 xx Normal memory Write-Back (WB)
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-49
ID120821 Non-Confidential

Protected Memory System Architecture
C1.7 Protection region attributes and access permissions
When Attr[7:4] is 0b0000, Attr[3:0] defines the type of Device memory. In this case, Attr[1:0] != 0b00 gives
UNPREDICTABLE behavior as defined by Armv8-A. Table C1-11 describes the meaning of Attr<3.0> when Attr[7:4]
is 0b0000.

When Attr[7:4] is not 0b0000, Attr[3:0] defines the Inner Cache Policy, and Attr[3:0] = 0b0000 gives UNPREDICTABLE
behavior as defined by Armv8-A. Table C1-12 describes the meaning of Attr<3.0> when Attr[7:4] is not 0b0000.

For more information, see chapter The AArch64 Virtual Memory System Architecture of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

C1.7.2 Access control

The access permission and security configuration bits, such as AP, XN, and NS in the VMSAv8-64 translation table
descriptors are present in the MPU configuration registers in PMSAv8-64.

Access granted in the stage 1 of the Secure EL1&0 translation regime by the EL1 MPU is subject to further
qualification by the EL2 MPU in the stage 2 of the Secure EL1&0 translation regime.

The AP, XN, and NS bits in PMSAv8-64 are interpreted in the same way as defined by VMSAv8-64. For selecting
memory attributes and defining access permissions, PMSAv8-64 follows the same prioritization rules defined by
VMSAv8-64 in Armv8-A.

PMSAv8-64 does not support hierarchical control bits defined in the VMSAv8-64 table descriptors. PMSAv8-64
also does not support Privileged execute-never (PXN) and Unprivileged execute-never (UXN) bits. PMSAv8-64
behaves as PXN = XN and UXN = XN, and follows the same rule defined by VMSAv8-64 in combining permission
attributes.

If the value of SCTLR_EL1.{M, BR} is {0, 1}, then for the Secure EL1&0 translation regime, any memory region
that is writable at EL0, is also executable from EL1 if that address is marked as executable by the Background
region.

Armv8-R AArch64 supports FEAT_PAN as defined by the Armv8-A architecture. If the value of SCTLR_EL1.M
is 1, FEAT_PAN is applied to the stage 1 of the Secure EL1&0 translation regime.

Table C1-11 Attr<3.0> Meaning when Attr[7:4] is 0b0000

Attr [3:2] Attr [1:0] Memory type

00 00 Device-nGnRnE

01 00 Device-nGnRE

10 00 Device-nGRE

11 00 Device-GRE

Table C1-12 Attr<3.0> Meaning when Attr[7:4] is not 0b0000

Attr [3:2] Attr [1:0] Memory type Inner Cache Policy

00 !=00 Normal memory Write-Through (WT)

01 00 Normal memory Non Cacheable (NC)

01 !=00 Normal memory Write-Back (WB)

10 xx Normal memory Write-Through (WT)

11 xx Normal memory Write-Back (WB)
C1-50 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.7 Protection region attributes and access permissions
C1.7.3 Memory attributes and access permission mappings

Memory attributes, Security states, and access permission information present in the translation table descriptors of
VMSAv8-64 are mapped to MPU configuration registers in PMSAv8-64, as described in Table C1-13.

C1.7.4 Combining memory attributes and access permissions

Armv8-R AArch64 uses the same architecture rules as Armv8-A for combining stage 1 and stage 2 memory
attributes and the access permissions for the Secure EL1&0 translation regime.

Stage 2 forced Write-Back Feature

If FEAT_S2FWB is enabled (HCR_EL2.FWB=1), the Inner and Outer Memory attributes for the stage 2 of the
Secure EL1&0 translation regime must be the same with the same encoding, otherwise the combined attribute is
UNKNOWN.

• If FEAT_S2FWB is enabled and the memory attributes for the stage 2 of the Secure EL1&0 translation
regime are Write-Back (WB) with Attr[7:6] = 0b11, then the combined attribute is WB. If the memory
attribute is assigned by the MPU, the attribute encoding is derived from MAIR_EL2.Attr[7:6]. If the memory
attribute is assigned from Background region, then the encoding is derived from the memory region
configuration in the Background region.

• If FEAT_S2FWB is not enabled, then stage 1 and stage 2 memory attributes of the Secure EL1&0 translation
regime are combined using Armv8-A rule for combining memory attributes when FEAT_S2FWB is not
enabled.

Note

In Armv8-A, the memory attribute encoding that enables FEAT_S2FWB is MemAttr[4:2] = 0b110 in stage 2 block
or page descriptor of the Secure EL1&0 translation regime, while in Armv8-R AArch64, it is MAIR_EL2.Attr[7:6]
= 0b11. Therefore, FEAT_S2FWB architecture rules defined for the 0b110 encoding in Armv8-A must be applied to
the 0b11 encoding in Armv8-R AArch64.

For more information, see the Stage 2 memory region type and Cacheability attributes when Armv8.4-S2FWB is
implemented section of the Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Table C1-13 Memory attributes and access permission mappings

Attributes and permissions MPU register fields Description

Non-secure (NS) PRLAR_EL1.NS
PRLAR_EL2.NS

Specifies whether the translated address is in the Secure or Non-secure
address space.

Access Permission (AP) PRBAR_EL1.AP
PRBAR_EL2.AP

Defines the Access permissions for the protection region.

Execute Never (XN) PRBAR_EL1.XN
PRBAR_EL2.XN

Defines the Execute-never attribute for the protection region.

Shareability (SH) PRBAR_EL1.SH
PRBAR_EL2.SH

Defines the Shareability for a Normal memory region. For any type of
Device memory or Normal Non-cacheable memory, the value of the
SH[1:0] field is IGNORED.

Attribute Index (AttrIndx) PRLAR_EL1.AttrIndx
PRLAR_EL2.AttrIndx

Indexes an Attr<n> field in the MAIR_EL1 or MAIR_EL2 register,
which gives the memory type and memory attributes.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-51
ID120821 Non-Confidential

Protected Memory System Architecture
C1.7 Protection region attributes and access permissions
C1.7.5 Enabling and disabling the caching of memory accesses

The Armv8-R AArch64 architecture follows the same rule as the Armv8-A AArch64 architecture for enabling and
disabling cache, and can force all memory locations with the Normal memory type to be treated as Non-cacheable
regardless of their assigned Cacheability attribute using SCTLR_ELx.{I,C} and HCR_EL2.{ID,CD}. For a
PMSAv8-64 based address translation, Armv8-R AArch64 extends the functionality of SCTLR_ELx.{I,C} and
HCR_EL2.{ID,CD} for accesses to Background region also.

C1.7.6 Enabling and disabling stages in translation regimes

The EL1 MPU controls the stage 1 of the Secure EL1&0 translation regime. The EL2 MPU controls the stage 2 of
the Secure EL1&0 translation regime and the stage 1 of the Secure EL2 translation regime.

For the Secure EL1&0 translation regime:

• If SCTLR_EL1.{M, BR} is {0, 0}, then stage 1 translation is disabled.

• If HCR_EL2.VM is 0, then stage 2 translation is disabled.

• If HCR_EL2.VM is 1 and SCTLR_EL2.{M, BR} is {0, 0}, then the behavior is CONSTRAINED
UNPREDICTABLE with the following permitted values:

— The stage 2 memory attribute becomes UNKNOWN.

— Raise stage 2 level 0 translation fault.

For the Secure EL2 translation regime if SCTLR_EL2.{M, BR} is {0, 0}, then translation is disabled.
C1-52 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.8 MPU fault encodings
C1.8 MPU fault encodings

PMSAv8-64 defines MPU faults that are consistent with the VMSAv8-64 fault definitions and reuses IFSC and
DFSC fault encodings. Each MPU raises faults on invalid memory accesses, including accesses to memory regions
outside address ranges and the accesses without sufficient permissions. Table C1-14 describes the MPU fault
encodings mapped from VMSAv8-64.

C1.8.1 See also

In the Arm Architecture Reference Manual
• Program counter and stack pointer alignment.

• FEAT_LSE, Large System Extensions.

Table C1-14 PMSAv8-64 fault encodings

Memory faults
MPU fault encodings

mapped from VMSAv8-64
Description

Alignment fault Alignment fault Unaligned memory access.

Translation fault Translation fault, level 0 Invalid input address. There is no valid mapping or
valid memory attributes for the input address.

Permission fault Permission fault, level 0
(0b001100)

Insufficient access permissions.

Address size fault Address size fault, level 0 Generated output address is out of range of the
implemented physical address.

Access flag fault Not applicable for PMSAv8-64.

TLB conflict abort Not applicable for PMSAv8-64.

Synchronous abort
(translation table walk)

Not applicable for PMSAv8-64.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-53
ID120821 Non-Confidential

Protected Memory System Architecture
C1.9 PMSAv8-64 implications for caches
C1.9 PMSAv8-64 implications for caches

Enabling, reconfiguring, or reprogramming any memory region can result in new and different memory attributes
for a previously accessed or speculatively accessed address. In this case, the rules for mismatched memory attributes
apply. See the Mismatched memory attributes section of the Arm® Architecture Reference Manual Armv8, for the
Armv8-A architecture profile.

C1.9.1 Cache line length

The PMSAv8-64 permits the definition of memory regions that might be smaller than a cache line in the
implementation. Therefore, the following rules apply:

• If the MPU is configured so that multiple differing attributes apply to a single cache line, then for any access
to that cache line, the rules for mismatched memory attributes apply.

• Marking any part of a cache line as Write-Back permits the entire line to be treated as Write-Back.
C1-54 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.10 Address tagging and pointer authentication support
C1.10 Address tagging and pointer authentication support

The Armv8-R AArch64 architecture supports Address tagging defined in Armv8-A architecture.

The Armv8-R AArch64 architecture supports FEAT_PAuth2 feature defined in Armv8-A architecture with a
modified definition of PAC field as described below:

• When Address tagging is used, the PAC field is Xn[54:bottom_PAC_bit].

• When Address tagging is not used, the PAC field is Xn[63:56, 54:bottom_PAC_bit].

In PMSAv8-64, the bottom_PAC_bit is the maximum physical address size as indicated by
ID_AA64MMFR0_EL1.PARange.

C1.10.1 See also

In the Arm Architecture Reference Manual
• Features added to the Armv8.3 extension in later releases.

• Pointer authentication in AArch64 state.

• System register control of pointer authentication.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-55
ID120821 Non-Confidential

Protected Memory System Architecture
C1.11 Security model
C1.11 Security model

The Armv8-R AArch64 architecture defines the security model based on Armv8-A AArch64 with the following
changes:

• The Armv8-R AArch64 architecture does not support EL3.

• The Armv8-R AArch64 architecture always executes code in Secure state with EL2 as the highest Exception
level and:

— It is not possible to switch to Non-secure state.

— EL0, EL1, and EL2, all run in Secure state.

C1.11.1 Secure EL2

The Armv8-R AArch64 architecture adopts FEAT_SEL2 feature from Armv8.4-A architecture extension and
introduces it as PMSAv8-64 based architecture feature. The protection region configuration registers for EL1 and
EL2 MPUs, PRLAR_EL1 and PRLAR_EL2, are extended to include the NS bit that has the same behavior as NS
bit in the translation table descriptor of VMSAv8-64. Security controls for translation table walks are not supported
in PMSAv8-64.

The NS bit in the PRLAR_EL1 and PRLAR_EL2 specifies whether the output address is in the Secure or
Non-secure address space. Each protection region can be independently configured to the Secure or Non-secure
address space.

The configuration bits required to implement Secure and Non-secure states in VMSAv8-64 are mapped to
PMSAv8-64 as described in Table C1-15.

See also

In the Arm Architecture Reference Manual

• The VMSAv8-64 address translation system.

• VMSAv8-64 translation table format descriptors.

• Security state of translation table lookups.

• Translation tables and the translation process.

Secure EL1&0 translation

As the stage 2 of the Secure EL1&0 translation regime is controlled by the EL2 MPU and there is no page-based
address translation or translation table walk, the following modifications are added to Armv8-R AArch64
FEAT_SEL2:

• VTCR_EL2.NSW and VSTCR_EL2.SW control bits are RES0.

• VSTTBR_EL2 register is not present.

• Adds a secure check control, VSTCR_EL2.SC.

Table C1-15 VMSAv8-64 and PMSAv8-64 security configuration

VMSAv8-64 PMSAv8-64

NS bit in translation table PRLAR_EL1.NS/PRLAR_EL2.NS

NSTable bit in translation table NA

VSTCR_EL2.SW NA

VSTCR_EL2.SA VSTCR_EL2.SA

VTCR_EL2.NSW NA

VTCR_EL2.NSA VTCR_EL2.NSA
C1-56 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.11 Security model
In addition, VSTCR_EL2.SA and VTCR_EL2.NSA controls are also supported and have the same functionality as
FEAT_SEL2 but are applied to PA in the Secure EL1&0 translation regime.

VSTCR_EL2.SC has no effect on the Secure EL2 translation regime. Table C1-16 describes the behavior of
VSTCR_EL2.SC for the Secure EL1&0 translation regime.

EL1 and EL0 access is further subjected to VSTCR_EL2.SA and VTCR_EL2.NSA controls as defined by
Armv8.4-A.

Table C1-17 describes the behavior of VSTCR_EL2.SA and VTCR_EL2.NSA in the Secure EL1&0 translation
regime.

The Armv8-R AArch64 architecture follows the Armv8-A architecture rules on whether VSTCR_EL2.SA and
VTCR_EL2.NSA controls should be applied.

• If HCR_EL2.VM=1 and SCTLR_EL2.M=1 or SCTLR_EL2.BR=1, then stage 2 Secure EL1&0 translation
is enabled.

• If HCR_EL2.VM=0, then stage 2 Secure EL1&0 translation is disabled.

C1.11.2 Secure EL2 translation

The Armv8-R AArch64 architecture implements PMSAv8-64 at stage 1 of the Secure EL2 translation regime.
Therefore, there is no translation table walk and address mapping. The NS bit in the EL2 MPU protection region
register determines whether the output address must be looked in Secure or Non-secure address space.

C1.11.3 See also

In the Arm Architecture Reference Manual
• The Armv8-A security model.

Table C1-16 Secure check behavior in the Secure EL1&0 translation regime

VA
EL1 MPU
NS attribute

IPA
EL2 MPU
NS attribute

SC PA

Secure 0 Secure 0 x Secure

Secure 1 Non-secure 1 x Non-secure

Secure 0 Secure 1 0 Non-secure

Secure 0 Secure 1 1 Fault

Secure 1 Non-secure 0 0 Non-secure

Secure 1 Non-secure 0 1 Fault

Table C1-17 VSTCR_EL2.SA and VTCR_EL2.NSA behavior in the Secure EL1&0 translation
regime

PA.NS VSTCR_EL2.SA VTCR_EL2.NSA PA.NS (final)

0 0 x 0

0 1 Behaves as 1 1

1 0 0 0

1 0 1 1

1 1 x 1
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-57
ID120821 Non-Confidential

Protected Memory System Architecture
C1.11 Security model
• The AArch64 System Level Programmers’ Model.

• The Armv8.4 architecture extension.

• ARMv8.4-SecEL2, Secure EL2.
C1-58 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Protected Memory System Architecture
C1.12 Virtualization
C1.12 Virtualization

Armv8-R AArch64 implements a permission-based containerization by introducing a stage 2 translation using an
MPU controlled by a hypervisor running at EL2. The MPU does not perform address mapping and only checks
permissions. Therefore, Armv8-R AArch64 relies on hypervisor configured permission attributes of the memory
region to implement containerization.

For more information, see chapter The AArch64 System Level Programmers’ Model of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

C1.12.1 Support for Guest operating systems

The hypervisor supports Guest operating systems using PMSAv8-64 on a per guest basis. PMSAv8-64 guests have
access to the EL1 MPU for sandboxing individual tasks. Memory accesses by PMSAv8-64 guests are further
validated by the EL2 MPU, controlled by the hypervisor.

If multiple PMSAv8-64 guests are present, then these guests must be configured to use non-conflicting physical
memory addresses. Virtualization is supported by the EL2 MPU at stage 2 of the Secure EL1&0 translation regime.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. C1-59
ID120821 Non-Confidential

Protected Memory System Architecture
C1.12 Virtualization
C1-60 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part D
Armv8-R AArch64 Virtual Memory System Architecture

Chapter D1
Virtual Memory System Architecture

This chapter provides a system-level view of the Virtual Memory System Architecture (VMSAv8-64) for any
implementation that is compliant with the Armv8-R AArch64 architecture. It contains the following sections:

• About the Virtual Memory System Architecture on page D1-64.

• Architecture extensions in VMSAv8-64 on page D1-65.

• Support for VMSAv8-64 in Armv8-R AArch64 on page D1-66.

• System registers access control on page D1-67.

• Virtualization on page D1-68.

• System operations on page D1-69.

Note

The information related to VMSAv8-64 as described in this chapter is at Beta quality.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. D1-63
ID120821 Non-Confidential

Virtual Memory System Architecture
D1.1 About the Virtual Memory System Architecture
D1.1 About the Virtual Memory System Architecture

This chapter describes the Virtual Memory System Architecture (VMSAv8-64) for the Armv8-R AArch64
architecture profile.

VMSAv8-64 provides a Memory Management Unit (MMU) that controls address translation, access permissions,
and memory attribute determination and checking, for memory accesses made by the PE. The process of address
translation maps the virtual addresses (VAs) used by the PE onto the physical addresses (PAs) of the physical
memory system.

Armv8-R AArch64 supports VMSAv8-64 as an optional memory system architecture at stage 1 of the Secure
EL1&0 translation regime, and supports general purpose operating systems, such as Linux and Android at EL1.
With VMSAv8-64 supported at EL1, the Armv8-R AArch64 architecture profile can have the following memory
system configurations:

• PMSAv8-64 at EL1 and EL2.

• PMSAv8-64 or VMSAv8-64 at EL1, and PMSAv8-64 at EL2.

For more information, see The AArch64 Virtual Memory System Architecture chapter of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.
D1-64 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Virtual Memory System Architecture
D1.2 Architecture extensions in VMSAv8-64
D1.2 Architecture extensions in VMSAv8-64

Implementations of Armv8-R AArch64 with VMSAv8-64 at EL1 support the following Armv8-A features listed in
Table D1-1.

Control fields for the architecture features, which are RES0 in some contexts if the value of VTCR_EL2.MSA = 0,
are treated as RES0 in all contexts if an implementation does not support VMSAv8-64. For the architectural features
supported by Armv8-R AArch64, whether a feature is mandatory or optional depends on whether the feature is
mandatory or optional in the Armv8.4-A architecture.

Table D1-1 Armv8-A features supported for implementations with VMSAv8-64

Feature Description

FEAT_HPDS Hierarchical permission disables

FEAT_HAFDBS Hardware management of the Access flag and dirty state

FEAT_HPDS2 Translation table page-based hardware attributes

FEAT_TTCNP Translation table Common not private translations

FEAT_TTL Translation Table Level

FEAT_BBM Translation table break-before-make levels

FEAT_TTST Small translation tables

FEAT_E0PD Preventing EL0 access to halves of address maps

FEAT_TLBIOS TLB invalidate instructions in Outer Shareable domain

FEAT_TLBIRANGE TLB invalidate range instructions

FEAT_nTLBPA Intermediate caching of translation table walks
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. D1-65
ID120821 Non-Confidential

Virtual Memory System Architecture
D1.3 Support for VMSAv8-64 in Armv8-R AArch64
D1.3 Support for VMSAv8-64 in Armv8-R AArch64

The MSA and MSA_frac fields in the ID_AA64MMFR0_EL1 register identify the memory system configurations
supported at EL1.

In Armv8-R AArch64, the only permitted value for ID_AA64MMFR0_EL1.MSA is 0b1111. When
ID_AA64MMFR0_EL1.MSA_frac is 0b0010, the stage 1 of the Secure EL1&0 translation regime can enable
PMSAv8-64 or VMSAv8-64 architecture.

If PE supports both PMSAv8-64 and VMSAv8-64 at EL1, then VTCR_EL2.MSA determines the memory system
architecture enabled at stage 1 of the Secure EL1&0 translation regime. Depending on the memory system
architecture, the stage 1 of the Secure EL1&0 translation regime is controlled by either an EL1 MPU for
PMSAv8-64, or an MMU for VMSAv8-64.

The stage 2 of the Secure EL1&0 translation regime and the stage 1 of the Secure EL2 translation regime are
controlled by EL2 MPU. Armv8-R AArch64 uses the same translation table format and fault encodings as
Armv8-A.

It is IMPLEMENTATION DEFINED whether a physical location is visible to a VMSAv8-64 context and to page table
accesses, and it is permissible for an implementation to raise an External abort in this case.

For more information, see The AArch64 Virtual Memory System Architecture chapter of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.
D1-66 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Virtual Memory System Architecture
D1.4 System registers access control
D1.4 System registers access control

When EL1 is running PMSAv8-64 based Guest operating system, access to TTBR1_EL1 is UNDEFINED. When EL1
is running a VMSAv8-64 based Guest operating system, EL1 access to the PMSAv8-64 registers is UNDEFINED.

The following EL1 PMSAv8-64 registers are UNDEFINED from EL1 in a VMSA context:

• MPUIR_EL1.

• PRBAR_EL1.

• PRBAR<n>_EL1.

• PRLAR_EL1.

• PRLAR<n>_EL1.

• PRSELR_EL1.

• PRENR_EL1.

Note

TTBR1_EL1 is UNDEFINED from EL1 in a PMSA context. If an implementation supports only PMSAv8-64 at EL1,
then accessing VMSAv8-64 register, TTBR1_EL1, is UNDEFINED from both EL1 and EL2.

Both VMSAv8-64 and PMSAv8-64 registers are accessible from EL2 independent of whether a Guest operating
system at EL1 uses PMSAv8-64 or VMSAv8-64.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. D1-67
ID120821 Non-Confidential

Virtual Memory System Architecture
D1.5 Virtualization
D1.5 Virtualization

For Armv8-R AArch64, the hypervisor running at EL2 selects the memory system architecture for each Guest
operating system by configuring the VTCR_EL2.MSA bit. This enables the hypervisor to support multiple Guest
operating systems utilizing either PMSAv8-64 or VMSAv8-64 on a per guest basis. Memory accesses by both
VMSAv8-64 and PMSAv8-64 guests at EL1 are further validated at stage 2 of the Secure EL1&0 translation regime.

If multiple VMSAv8-64 or PMSAv8-64 guests are present, then these guests must be configured to use
non-conflicting physical memory addresses.

Note

Secure Check control, VSTCR_EL2.SC does not differentiate between translation table walk or memory access.

For more information, see The AArch64 Virtual Memory System Architecture chapter of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.
D1-68 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Virtual Memory System Architecture
D1.6 System operations
D1.6 System operations

D1.6.1 Address translation instructions

When executed from EL2, address translation instructions use VTCR_EL2.MSA to determine whether the EL1
context is PMSAv8-64 or VMSAv8-64.

D1.6.2 TLB maintenance instructions

Armv8-R AArch64 permits an implementation to cache stage 1 VMSAv8-64 and stage 2 PMSAv8-64 attributes as
a common entry for the Secure EL1&0 translation regime.

Stage 1 VMSAv8-64 is permitted to cache stage 2 PMSAv8-64 MPU configuration as a part of the translation
process. Visibility of stage 2 MPU updates for stage 1 VMSAv8-64 contexts requires associated TLB invalidation
for stage 2. The stage 2 TLB invalidation is not required to apply to caching structures that combine stage 1 and
stage 2 attributes.

D1.6.3 See also

In the Arm Architecture Reference Manual
• A64 Instruction Set Overview.

• The A64 System Instruction Class.

• A64 System instructions for TLB maintenance.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. D1-69
ID120821 Non-Confidential

Virtual Memory System Architecture
D1.6 System operations
D1-70 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part E
A64 Instruction Set for Armv8-R AArch64

Chapter E1
A64 Instruction Set for Armv8-R AArch64

This chapter describes the instructions in Armv8-R AArch64. It contains the following sections:

• Instruction encodings on page E1-74.

• A64 instructions in Armv8-R AArch64 on page E1-75.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. E1-73
ID120821 Non-Confidential

A64 Instruction Set for Armv8-R AArch64
E1.1 Instruction encodings
E1.1 Instruction encodings

This section contains the encodings for the Armv8-R AArch64 instructions. The encodings in this section are
decoded from the Branches, Exception Generating, and System instructions chapter of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

Table E1-1 Decode fields and Instructions

Decode fields Instruction Details

CRm op2 Rt

- 000 - Unallocated

- 001 != 11111 Unallocated

- 010 11111 CLREX

- 101 11111 DMB

- 110 11111 ISB

- 111 != 11111 Unallocated

- 111 11111 SB

!= 0x00 100 11111 DSB

0000 100 11111 SSBB

0001 011 - Unallocated

001x 011 - Unallocated

01xx 011 - Unallocated

0100 100 11111 PSSBB

1xxx 011 - Unallocated

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm op2 Rt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 5 4 0
E1-74 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64

This section describes the A64 instructions in Armv8-R AArch64.

For more information, see Definition of the Armv8 memory model in the Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. E1-75
ID120821 Non-Confidential

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64
E1.2.1 DFB

Data Full Barrier is a memory barrier that ensures the completion of memory accesses. If executed at EL2, this
instruction orders memory accesses irrespective of their Exception level or associated VMID. If executed at EL1 or
EL0, this instruction behaves as DSB SY.

This instruction is an alias of the DSB instruction. This means that:

• The encodings in this description are named to match the encodings of DSB.

• The description of DSB gives the operational pseudocode for this instruction.

Encoding

DFB

 is equivalent to

DSB #12

and is always the preferred disassembly.

Operation

The description of DSB gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

CRm opc
E1-76 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64
E1.2.2 DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier (DMB) in Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

The ordering requirements of Data Memory Barrier instruction is as follows:

• EL1 and EL0 memory accesses are ordered only with respect to memory accesses using the same VMID.

• EL2 memory accesses are ordered only with respect to other EL2 memory accesses.

Encoding

DMB <option>|#<imm>

Decode for this encoding

 case CRm<3:2> of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;
 case CRm<1:0> of
 when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
 when '01' types = MBReqTypes_Reads;
 when '10' types = MBReqTypes_Writes;
 when '11' types = MBReqTypes_All;

Assembler symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0110.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 1 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. E1-77
ID120821 Non-Confidential

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64
NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm that are not listed above are reserved, and can be encoded using the #<imm>
syntax. All unsupported and reserved options must execute as a full system barrier operation, but
software must not rely on this behavior. For more information on whether an access is before or after
a barrier instruction, see Data Memory Barrier (DMB) in Arm® Architecture Reference Manual
Armv8, for Armv8-A architecture profile or see Data Synchronization Barrier (DSB) in Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

 vmid_sensitive = (PSTATE.EL != EL2) && (CRm<1:0> != '00');
 DataMemoryBarrier(domain, types, vmid_sensitive);
E1-78 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64
E1.2.3 DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier (DSB) in Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile.

The ordering requirements of Data Synchronization Barrier instruction is as follows:

• EL1 and EL0 memory accesses are ordered only with respect to memory accesses using the same VMID.

• EL2 memory accesses are ordered only with respect to other EL2 memory accesses.

This instruction is used by the aliases DFB, PSSBB, and SSBB. See Alias conditions for details of when each alias
is preferred.

Encoding

DSB <option>|#<imm>

Decode for this encoding

 case CRm<3:2> of
 when '00' domain = MBReqDomain_OuterShareable;
 when '01' domain = MBReqDomain_Nonshareable;
 when '10' domain = MBReqDomain_InnerShareable;
 when '11' domain = MBReqDomain_FullSystem;

 case CRm<1:0> of
 when '00' types = MBReqTypes_All; domain = MBReqDomain_FullSystem;
 when '01' types = MBReqTypes_Reads;
 when '10' types = MBReqTypes_Writes;
 when '11' types = MBReqTypes_All;

Alias conditions

Assembler symbols

<option> Specifies the limitation on the barrier operation. Values are:

SY Full system is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. This option is referred to as the full
system barrier. Encoded as CRm = 0b1111.

ST Full system is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as CRm = 0b1110.

Alias is preferred when

DFB CRm == '1100'

PSSBB CRm == '0100'

SSBB CRm == '0000'

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 CRm 1 0 0 1 1 1 1 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 8 7 6 5 4 3 2 1 0

opc
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. E1-79
ID120821 Non-Confidential

A64 Instruction Set for Armv8-R AArch64
E1.2 A64 instructions in Armv8-R AArch64
LD Full system is the required shareability domain, reads are the required access type before
the barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as CRm = 0b1101.

ISH Inner Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b1011.

ISHST Inner Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b1010.

ISHLD Inner Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b1001.

NSH Non-shareable is the required shareability domain, reads and writes are the required
access, both before and after the barrier instruction. Encoded as CRm = 0b0111.

NSHST Non-shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0110.

NSHLD Non-shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0101.

OSH Outer Shareable is the required shareability domain, reads and writes are the required
access types, both before and after the barrier instruction. Encoded as CRm = 0b0011.

OSHST Outer Shareable is the required shareability domain, writes are the required access type,
both before and after the barrier instruction. Encoded as CRm = 0b0010.

OSHLD Outer Shareable is the required shareability domain, reads are the required access type
before the barrier instruction, and reads and writes are the required access types after the
barrier instruction. Encoded as CRm = 0b0001.

All other encodings of CRm, other than the values 0b0000 and 0b0100, that are not listed above are
reserved, and can be encoded using the #<imm> syntax. All unsupported and reserved options must
execute as a full system barrier operation, but software must not rely on this behavior. For more
information on whether an access is before or after a barrier instruction, see Data Memory Barrier
(DMB) in Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile or see Data
Synchronization Barrier (DSB) in Arm® Architecture Reference Manual Armv8, for Armv8-A
architecture profile.

Note

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field.

Operation

 vmid_sensitive = (PSTATE.EL != EL2) && (CRm<1:0> != '00');
 DataSynchronizationBarrier(domain, types, vmid_sensitive);
E1-80 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part F
The A64 System Instructions

Chapter F1
The A64 System Instructions

This chapter describes the A64 System instruction class, and the System instruction class encoding space, that is a
subset of the System registers encoding space. It contains the following section:

• System instructions on page F1-84.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. F1-83
ID120821 Non-Confidential

The A64 System Instructions
F1.1 System instructions
F1.1 System instructions

The Armv8-R AArch64 architecture supports all System instructions defined by Armv8-A. The behavior of these
instructions is the same as that in Armv8-A with no EL3. The MPU register updates are guaranteed to be visible to
all PMSAv8-64 translation regimes following a Context synchronization event operation.

F1.1.1 Address translation instructions

In PMSAv8-64, the VA, IPA, and PA are all the same and translation operations are reduced to memory attributes,
security checks, and permission checks. If multiple memory regions are enabled in a 4KB memory boundary, AT
instruction gives correct memory region attributes in a successful transaction and PAR_EL1 provides only 4KB
memory boundary aligned address.

For more information, see A64 Instruction Set Overview and The A64 System Instruction Class chapters of the Arm®
Architecture Reference Manual Armv8, for Armv8-A architecture profile.
F1-84 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part G
Armv8-R AArch64 System Registers

Chapter G1
System Registers in a PMSA Implementation

This chapter describes the system control registers in a PMSA implementation. The registers are described in
alphabetical order. It contains the following sections:

• System register groups on page G1-88.

• Accessing MPU memory region registers on page G1-91.

• General system control registers on page G1-92.

• Debug registers on page G1-238.

• Performance Monitors registers on page G1-255.

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-87
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.1 System register groups
G1.1 System register groups

System registers provide control and status information of architected features. Armv8-R AArch64 System registers
are grouped according to whether they only exist in the Armv8-R AArch64 profile or whether they have been
modified from the equivalent Armv8-A System registers. All other registers are described in Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.

Table G1-1 lists the Armv8-R AArch64 registers.

Table G1-2 lists the modified AArch64 registers.

Table G1-1 Alphabetical index of Armv8-R AArch64 registers

Register Description

MPUIR_EL1 MPU Type Register (EL1)

MPUIR_EL2 MPU Type Register (EL2)

PRBAR_EL1 Protection Region Base Address Register (EL1)

PRBAR_EL2 Protection Region Base Address Register (EL2)

PRBAR<n>_EL1 Protection Region Base Address Register n (EL1)

PRBAR<n>_EL2 Protection Region Base Address Register n (EL2)

PRENR_EL1 Protection Region Enable Register (EL1)

PRENR_EL2 Protection Region Enable Register (EL2)

PRLAR_EL1 Protection Region Limit Address Register (EL1)

PRLAR_EL2 Protection Region Limit Address Register (EL2)

PRLAR<n>_EL1 Protection Region Limit Address Register n (EL1)

PRLAR<n>_EL2 Protection Region Limit Address Register n (EL2)

PRSELR_EL1 Protection Region Selection Register (EL1)

PRSELR_EL2 Protection Region Selection Register (EL2)

VSCTLR_EL2 Virtualization System Control Register (EL2)

Table G1-2 Alphabetical index of modified AArch64 System registers

Register Description

CPACR_EL1 Architectural Feature Access Control Register

CPTR_EL2 Architectural Feature Trap Register (EL2)

DBGBCR<n>_EL1 Debug Breakpoint Control Registers

HCR_EL2 Hypervisor Configuration Register

ID_AA64DFR0_EL1 AArch64 Debug Feature Register 0

ID_AA64ISAR0_EL1 AArch64 Instruction Set Attribute Register 0

ID_AA64ISAR1_EL1 AArch64 Instruction Set Attribute Register 1

ID_AA64MMFR0_EL1 AArch64 Memory Model Feature Register 0
G1-88 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.1 System register groups
Note

In PMSAv8-64, only level 0 Permission faults are supported in ESR_ELx.{IFSC, DFSC} and PAR_EL1.FST.

Table G1-3 lists the external registers.

ID_AA64MMFR1_EL1 AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_EL1 AArch64 Memory Model Feature Register 2

ID_AA64PFR0_EL1 AArch64 Processor Feature Register 0

ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1

MAIR_EL1 Memory Attribute Indirection Register (EL1)

MAIR_EL2 Memory Attribute Indirection Register (EL2)

MDCR_EL2 Monitor Debug Configuration Register (EL2)

MDSCR_EL1 Monitor Debug System Control Register

PMCCFILTR_EL0 Performance Monitors Cycle Count Filter Register

PMCR_EL0 Performance Monitors Control Register

PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers

SCTLR_EL1 System Control Register (EL1)

SCTLR_EL2 System Control Register (EL2)

TCR_EL1 Translation Control Register (EL1)

TCR_EL2 Translation Control Register (EL2)

TTBR0_EL1 Translation Table Base Register 0 (EL1)

VTCR_EL2 Virtualization Translation Control Register

VSTCR_EL2 Virtualization Secure Translation Control Register

Table G1-3 Alphabetical index of modified external registers

Register Description

DBGBCR<n>_EL1 Debug Breakpoint Control Registers

EDAA32PFR External Debug Auxiliary Processor Feature Register

EDDEVARCH External Debug Device Architecture Register

EDPFR External Debug Processor Feature Register

PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register

PMCR_EL0 Performance Monitors Control Register

PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers

Table G1-2 Alphabetical index of modified AArch64 System registers (continued)

Register Description
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-89
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.1 System register groups
Table G1-4 lists the Armv8-A System registers that are not supported in Armv8-R AArch64.

Note

The exceptions caused by an EL1 register access being UNDEFINED is at priority level 18. Hence, any exception
taken to EL2 because of HCR_EL2.{TID1, TVM, TRVM} trap controls, has higher priority, priority level 16. The
VSCTLR_EL2 register reuses the encoding of TTBR0_EL2 in Armv8-A.

Table G1-5 disambiguates the general names of the PMSA memory region registers used in this chapter.

G1.1.1 See also

In the Arm Architecture Reference Manual
• AArch64 System Register Descriptions.

Table G1-4 Alphabetical index of System registers that are not supported in Armv8-R AArch64

Register Description

VSTTBR_EL2 Virtualization Secure Translation Table Base Register

VTTBR_EL2 Virtualization Translation Table Base Register

TTBR0_EL2 Translation Table Base Register 0 (EL2)

TTBR1_EL2 Translation Table Base Register 1 (EL2)

TTBR1_EL1 Translation Table Base Register 1 (EL1)a

a. TTBR1_EL1 is present only if the VMSAv8-64 extension is supported.

Table G1-5 Disambiguation of PMSA memory region registers by Exception level

General form EL0 EL1 EL2

PRBAR<n>_ELx - PRBAR<n>_EL1 PRBAR<n>_EL2

PRBAR_ELx - PRBAR_EL1 PRBAR_EL2

PRLAR<n>_ELx - PRLAR<n>_EL1 PRLAR<n>_EL2

PRLAR_ELx - PRLAR_EL1 PRLAR_EL2

PRSELR_ELx - PRSELR_EL1 PRSELR_EL2

MPUIR_ELx - MPUIR_EL1 MPUIR_EL2

SCTLR_ELx - SCTLR_EL1 SCTLR_EL2
G1-90 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.2 Accessing MPU memory region registers
G1.2 Accessing MPU memory region registers

The MPU memory region in PMSAv8-64 is defined by a set of registers, PRBAR_ELx and PRLAR_ELx. These
registers define the memory region base address, memory region size, and memory attributes. Each MPU region
can be independently configured and the MPUIR_ELx register identifies the actual number of implemented regions.

The MPU provides two register interfaces to program the MPU regions:

• Access to any of the MPU regions via PRSELR_ELx, PRBAR<n>_ELx, and PRLAR<n>_ELx.

• Access to MPU regions at offsets from the aligned value of PRSELR_ELx.REGION via PRBAR_ELx and
PRLAR_ELx.

When n=0, the encoding of PRBAR<n>_ELx and PRLAR<n>_ELx corresponds to PRBAR_ELx and
PRLAR_ELx respectively.

When n != 0, then the encoding of PRBAR<n>_ELx and PRLAR<n>_ELx corresponds to the configuration of m-th
MPU region:

 m = r: n

 where r = PRSELR_ELx.REGION<7:4> and
 n IN {0..15}

Access to MPU region registers beyond the number of implemented regions is CONSTRAINED UNPREDICTABLE. The
value of n can be between 0 and 15 and is encoded using the CRm and op2 fields.

Table G1-6 Register encoding scheme for PRBAR<n>_ELx and PRLAR<n>_ELx

Register CRm op2

PRBAR<n>_ELx 1:n<3:1> n<0>:00

PRLAR<n>_ELx 1:n<3:1> n<0>:01
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-91
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3 General system control registers

This section lists the System registers in Armv8-R AArch64 that are not part of one of the other listed groups.
G1-92 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.1 CPACR_EL1, Architectural Feature Access Control Register

The CPACR_EL1 characteristics are:

Purpose

Controls access to trace, and Advanced SIMD and floating-point functionality.

Configurations

When EL2 is implemented and enabled in the current Security state and HCR_EL2.{E2H, TGE}
== {1, 1}, the fields in this register have no effect on execution at EL0 and EL1. In this case, the
controls provided by CPTR_EL2 are used.

Attributes

CPACR_EL1 is a 64-bit register.

Field descriptions

Bits [63:29]

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers from both Execution
states to EL1, or to EL2 when it is implemented and enabled in the current Security state and
HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to trace registers are trapped, reported using ESR_ELx.EC value
0x18.

• In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using
ESR_ELx.EC value 0x05.

• In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using
ESR_ELx.EC value 0x0C.

0b0 This control does not cause any instructions to be trapped.

0b1 This control causes EL0 and EL1 System register accesses to all implemented trace
registers to be trapped.

Note
• The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit

implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than an exception that would be generated because the
value of CPACR_EL1.TTA is 1.

• The Armv8-A architecture does not provide traps on trace register accesses through the
optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not implemented, this bit is RES0.

RES0

63 32

RES0

31 29 28

RES0

27 22

FPEN

21 20

RES0

19 0

TTA
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-93
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps execution at EL1 and EL0 of instructions that access the Advanced SIMD and floating-point
registers from both Execution states to EL1, reported using ESR_ELx.EC value 0x07, or to EL2
reported using ESR_ELx.EC value 0x00 when EL2 is implemented and enabled in the current
Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers
V0-V31, including their views as D0-D31 registers or S0-31 registers.

• In AArch32 state, FPSCR, and any of the SIMD and floating-point registers Q0-15, including
their views as D0-D31 registers or S0-31 registers.

0b00 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b01 This control causes execution of these instructions at EL0 to be trapped, but does not
cause execution of any instructions at EL1 to be trapped.

0b10 This control causes execution of these instructions at EL1 and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE
and whether these accesses can be trapped by this control depends on implemented CONSTRAINED
UNPREDICTABLE behavior.

Note

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.

• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because
the value of CPACR_EL1.FPEN is not 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

Accessing CPACR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1
or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPACR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010
G1-94 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
 else
 return CPACR_EL1;
elsif PSTATE.EL == EL2 then
 return CPACR_EL1;

MSR CPACR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CPACR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 CPACR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-95
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.2 CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of accesses to CPACR, CPACR_EL1, trace, Activity Monitor, and
Advanced SIMD and floating-point functionality.

Configurations

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

CPTR_EL2 is a 64-bit register.

Field descriptions

This format applies in all Armv8.0 implementations.

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the
current Security state. The exception is reported using ESR_ELx.EC value 0x18.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current
Security state. The exception is reported using ESR_ELx.EC value 0x03.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2, when EL2 is enabled in
the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note

CPACR_EL1 and CPACR are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to all implemented trace registers from both Execution states to EL2,
when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped
to EL2, reported using EC syndrome value 0x18.

0b0 This control does not cause any instructions to be trapped.

RES0

63 32

31

RES0

30 21 20

RES0

19 14

RES1

13 12 11 10

RES1

9 0

TCPAC TTA RES0 TFP
G1-96 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
0b1 Any attempt at EL0, EL1, or EL2, to execute a System register access to an
implemented trace register is trapped to EL2, when EL2 is enabled in the current
Security state, unless it is trapped by CPACR.TRCDIS or CPACR_EL1.TTA.

Note

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit
implements FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than an exception that would be generated because the
value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped
interface.

System register accesses to the trace registers can have side-effects. When a System register access
is trapped, any side-effects that are normally associated with the access do not occur before the
exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps execution of instructions which access the Advanced SIMD and floating-point functionality,
from both Execution states to EL2, when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x07:

— FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31,
including their views as D0-D31 registers or S0-31 registers.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using
ESR_ELx.EC value 0x07:

— MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point
registers Q0-15, including their views as D0-D31 registers or S0-31 registers. For the
purposes of this trap, the architecture defines a VMSR access to FPSID from EL1 or
higher as an access to a SIMD and floating-point register. Otherwise, permitted VMSR
accesses to FPSID are ignored.

0b0 This control does not cause execution of any instructions to be trapped.

0b1 This control causes execution of these instructions at EL2, EL1, and EL0 to be trapped.

Note

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES1.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-97
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Accessing CPTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPTR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return CPTR_EL2;

MSR CPTR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 CPTR_EL2 = X[t];

MRS <Xt>, CPACR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return CPACR_EL1;
elsif PSTATE.EL == EL2 then
 return CPACR_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010
G1-98 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR CPACR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if CPTR_EL2.TCPAC == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 CPACR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 CPACR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-99
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.3 HCR_EL2, Hypervisor Configuration Register

The HCR_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various operations are
trapped to EL2.

Configurations

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register
if EL2 is not enabled in the current Security state.

Attributes

HCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:54]

Reserved, RES0.

EnSCXT, bit [53]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

EnSCXT

Enable Access to the SCXTNUM_EL1 and SCXTNUM_EL0 registers. The defined values are:

0b0 When HCR_EL2.E2H is 0 or HCR_EL2.TGE is 0, and EL2 is enabled in the current
Security state, EL1 and EL0 access to SCXTNUM_EL0 and EL1 access to
SCXTNUM_EL1 is disabled by this mechanism, causing an exception to EL2, and the
values of these registers to be treated as 0.

When HCR_EL2.{E2H, TGE} is {1, 1} and EL2 is enabled in the current Security state,
EL0 access to SCXTNUM_EL0 is disabled by this mechanism, causing an exception to
EL2, and the value of this register to be treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0 or SCXTNUM_EL1 to be
trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

RES0

63 54 53

RES0

52 48 47 46

RES0

45 42 41 40 39 38 37 36

RES0

35 34

ID

33

CD

32

EnSCXT FWB
FIEN

API
APK
RES0

TERR
TEA

MIOCNCE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

DC

12

BSU

11 10

FB

9 8

VI

7

VF

6 5 4 3 2 1

VM

0

RAO/WI
TRVM

HCD
TDZ

TGE
TVM
TTLB

TPU
TPCP

TWI
TWE

RES0
TID1

TID2
TID3

TSC
TIDCP

TACR
TSW

VSE
AMO

IMO

SWIO
PTW

FMO
G1-100 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [52:48]

Reserved, RES0.

FIEN, bit [47]

When FEAT_RASv1p1 is implemented:

FIEN

Fault Injection Enable. Unless this bit is set to 1, accesses to the ERXPFGCD<n>_EL1,
ERXPFGCTL_EL1, and ERXPFGF_EL1 registers from EL1 generate a Trap exception to EL2,
when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18.

0b0 Accesses to the specified registers from EL1 are trapped to EL2, when EL2 is enabled
in the current Security state.

0b1 This control does not cause any instructions to be trapped.

If EL2 is disabled in the current Security state, the Effective value of HCR_EL2.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record
accessible using System registers is owned by a node that implements the RAS Common Fault
Injection Model Extension, then this bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FWB, bit [46]

When FEAT_S2FWB is implemented:

FWB

Forced Write-Back. Defines the combined cacheability attributes in a 2 stage translation regime.

0b0 When this bit is 0, then:

• The combination of stage 1 and stage 2 translations on memory type and
cacheability attributes are as described in the Armv8.0 architecture. For more
information, see 'Combining the stage 1 and stage 2 attributes, EL1&0 translation
regime'.

• The encoding of the stage 2 memory type and cacheability attributes is derived
from MAIR_EL2 register, as described in the Armv8-R AArch64 architecture.

0b1 When this bit is 1, then:

• The inner and outer memory attributes for stage 2 EL1&0 translation regime
must be the same with the same encoding, otherwise, the combined attribute is
UNKNOWN.

• If stage 2 EL1&0 translation regime memory attribute is Write-Back with
MAIR_EL2.Attr[7:6] = 0b11, then the combined attribute is Normal Write-Back.
For all other encodings, the combination of stage 1 and stage 2 translations on
memory type and cacheability attributes are as described in the Armv8.0
architecture.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-101
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Otherwise:

Reserved, RES0.

Bits [45:42]

Reserved, RES0.

API, bit [41]

When FEAT_PAuth is implemented:

API

Controls the use of instructions related to Pointer Authentication:

• In EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated
SCTLR_EL1.En<N><M>==1.

• In EL1, the associated SCTLR_EL1.En<N><M>==1.

Traps are reported using EC syndrome value 0x09. The Pointer Authentication instructions trapped
are:

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ,
AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZA, AUTIZB.

• PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ,
PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB.

• RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ,
BLRABZ.

• ERETAA, ERETAB, LDRAA, and LDRAB.

0b0 The instructions related to Pointer Authentication are trapped to EL2, when EL2 is
enabled in the current Security state and the instructions are enabled for the EL1&0
translation regime, from:

• EL0 when HCR_EL2.TGE==0 or HCR_EL2.E2H==0.

• EL1.

If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence over the HCR_EL2.API
trap for the ERETAA and ERETAB instructions.

If EL2 is implemented and enabled in the current Security state and
HFGITR_EL2.ERET == 1, execution at EL1 using AArch64 of ERETAA or ERETAB
instructions is reported with EC syndrome value 0x1A with its associated ISS field, as
the fine-grained trap has higher priority than the HCR_EL2.API == 0.

0b1 This control does not cause any instructions to be trapped.

If FEAT_PAuth is implemented but EL2 is not implemented or disabled in the current Security state,
the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [40]

When FEAT_PAuth is implemented:

APK
G1-102 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following
registers from EL1 to EL2, when EL2 is enabled in the current Security state, reported using EC
syndrome value 0x18:

• APIAKEYLO_EL1, APIAKEYHI_EL1, APIBKEYLO_EL1, APIBKEYHI_EL1,
APDAKEYLO_EL1, APDAKEYHI_EL1, APDBKEYLO_EL1, APDBKEYHI_EL1,
APGAKEYLO_EL1, and APGAKEYHI_EL1.

0b0 Access to the registers holding "key" values for pointer authentication from EL1 are
trapped to EL2, when EL2 is enabled in the current Security state.

0b1 This control does not cause any instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL2 is not implemented or is disabled in the current Security
state, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [39]

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

0b0 For the EL1&0 translation regimes, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there must be
no loss of coherency if the Inner Cacheability attribute for those accesses differs from
the Outer Cacheability attribute.

0b1 For the EL1&0 translation regimes, for permitted accesses to a memory location that use
a common definition of the Shareability and Cacheability of the location, there might be
a loss of coherency if the Inner Cacheability attribute for those accesses differs from the
Outer Cacheability attribute.

For more information, see 'Mismatched memory attributes'.

This field can be implemented as RAZ/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE
ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TEA, bit [37]

When FEAT_RAS is implemented:

TEA

Route synchronous External abort exceptions to EL2.

0b0 This control does not cause exceptions to be routed from EL0 and EL1 to EL2.

0b1 Route synchronous External abort exceptions from EL0 and EL1 to EL2, when EL2 is
enabled in the current Security state, if not routed to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-103
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
TERR, bit [36]

When FEAT_RAS is implemented:

TERR

Trap Error record accesses. Trap accesses to the RAS error registers from EL1 to EL2 as follows:

• If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2,
reported using EC syndrome value 0x18:

— ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1,
ERXMISC0_EL1, ERXMISC1_EL1, and ERXSTATUS_EL1.

— When FEAT_RASv1p1 is implemented, ERXMISC2_EL1, and ERXMISC3_EL1.

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses to the specified registers from EL1 generate a Trap exception to EL2, when
EL2 is enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [35:34]

Reserved, RES0.

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is
enabled in the current Security state and HCR_EL2.VM==1, this control forces all stage 2
translations for instruction accesses to Normal memory to be Non-cacheable.

Note

The behavior is the same irrespective of whether the instruction accesses are to an MPU region or
Background region.

0b0 This control has no effect on stage 2 of the EL1&0 translation regime.

0b1 Forces all stage 2 translations for instruction accesses to Normal memory to be
Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE
ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

CD, bit [32]

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled
in the current Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for
data accesses and translation table walks to Normal memory to be Non-cacheable.

Note

The behavior is same irrespective of whether the data accesses is to MPU region or Background
region.

0b0 This control has no effect on stage 2 of the EL1&0 translation regime for data accesses
and translation table walks.

0b1 Forces all stage 2 translations for data accesses and translation table walks to Normal
memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.
G1-104 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE
ignores the value of this field for all purposes other than a direct read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [31]

Reserved, RAO/WI.

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps EL1 reads of the virtual memory control registers to
EL2, when EL2 is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using
EC syndrome value 0x18.

— SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1,
AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

— If EL1 is in PMSAv8-64 context, the following registers are also trapped to EL2 and
reported using EC syndrome value 0x18 - PRENR_EL1, PRSELR_EL1,
PRBAR_EL1, PRBAR<n>_EL1, PRLAR_EL1, PRLAR<n>_EL1.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 read accesses to the specified Virtual Memory controls are trapped to EL2, when
EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note

EL2 provides a second stage of address translation, that a hypervisor can use to remap the address
map defined by a Guest OS. In addition, a hypervisor can trap attempts by a Guest OS to write to
the registers that control the memory system. A hypervisor might use this trap as part of its
virtualization of memory management.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCD, bit [29]

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states,
when EL2 is enabled in the current Security state, reported using EC syndrome value 0x00.

0b0 HVC instruction execution is enabled at EL2 and EL1.

0b1 HVC instructions are UNDEFINED at EL2 and EL1. Any resulting exception is taken to
the Exception level at which the HVC instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDZ, bit [28]

Trap DC_ZVA instructions. Traps EL0 and EL1 execution of DC_ZVA instructions to EL2, when
EL2 is enabled in the current Security state, from AArch64 state only, reported using EC syndrome
value 0x18.

0b0 This control does not cause any instructions to be trapped.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-105
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
0b1 In AArch64 state, any attempt to execute an instruction this trap applies to at EL1, or at
EL0 when the instruction is not UNDEFINED at EL0, is trapped to EL2 when EL2 is
enabled in the current Security state.

Reading the DCZID_EL0 returns a value that indicates that the instructions this trap
applies to are not supported.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TGE, bit [27]

Trap General Exceptions, from EL0.

0b0 This control has no effect on execution at EL0.

0b1 When EL2 is not enabled in the current Security state, this control has no effect on
execution at EL0.

When EL2 is enabled in the current Security state, in all cases:

• All exceptions that would be routed to EL1 are routed to EL2.

• If EL1 is using AArch64, the SCTLR_EL1.M field is treated as being 0 for all
purposes other than returning the result of a direct read of SCTLR_EL1.

• If stage 1 EL1&0 translation regime is in PMSAv8-64 context, the
SCTLR_EL1.BR field is treated as being 0 for all purposes other than returning
the result of a direct read of SCTLR_EL1.

• All virtual interrupts are disabled.

• Any IMPLEMENTATION DEFINED mechanisms for signaling virtual interrupts are
disabled.

• An exception return to EL1 is treated as an illegal exception return.

• The MDCR_EL2.{TDRA, TDOSA, TDA, TDE} fields are treated as being 1 for
all purposes other than returning the result of a direct read of MDCR_EL2.

In addition, when EL2 is enabled in the current Security state, if:

• HCR_EL2.E2H is 0, the Effective values of the HCR_EL2.{FMO, IMO, AMO}
fields are 1.

• HCR_EL2.E2H is 1, the Effective values of the HCR_EL2.{FMO, IMO, AMO}
fields are 0.

For further information on the behavior of this bit when E2H is 1, see 'Behavior of
HCR_EL2.E2H'.

HCR_EL2.TGE must not be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TVM, bit [26]

Trap Virtual Memory controls. Traps EL1 writes to the virtual memory control registers to EL2,
when EL2 is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using
EC syndrome value 0x18:

— SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1,
AFSR0_EL1, AFSR1_EL1, MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

— If EL1 is in PMSAv8-64 context, the following registers are also trapped to EL2 and
reported using EC syndrome value 0x18 - PRENR_EL1, PRSELR_EL1,
PRBAR_EL1, PRBAR<n>_EL1, PRLAR_EL1, PRLAR<n>_EL1.

0b0 This control does not cause any instructions to be trapped.
G1-106 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
0b1 EL1 write accesses to the specified EL1 virtual memory control registers are trapped to
EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2,
when EL2 is enabled in the current Security state, as follows:

• When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x18:

— TLBI_VMALLE1, TLBI_VAE1, TLBI_ASIDE1, TLBI_VAAE1, TLBI_VALE1,
TLBI_VAALE1.

— TLBI_VMALLE1IS, TLBI_VAE1IS, TLBI_ASIDE1IS, TLBI_VAAE1IS,
TLBI_VALE1IS, TLBI_VAALE1IS.

— If FEAT_TLBIOS is implemented, this trap applies to TLBI_VMALLE1OS,
TLBI_VAE1OS, TLBI_ASIDE1OS, TLBI_VAAE1OS, TLBI_VALE1OS,
TLBI_VAALE1OS.

— If FEAT_TLBIRANGE is implemented, this trap applies to TLBI_RVAE1,
TLBI_RVAAE1, TLBI_RVALE1, TLBI_RVAALE1, TLBI_RVAE1IS,
TLBI_RVAAE1IS, TLBI_RVALE1IS, TLBI_RVAALE1IS.

— If FEAT_TLBIOS and FEAT_TLBIRANGE are implemented, this trap applies to
TLBI_RVAE1OS, TLBI_RVAAE1OS, TLBI_RVALE1OS, TLBI_RVAALE1OS.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 execution of the specified TLB maintenance instructions are trapped to EL2, when
EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note
The TLB maintenance instructions are UNDEFINED at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of
those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as
follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following
instructions are trapped to EL2 and reported with EC syndrome value 0x18:

— IC_IVAU, DC_CVAU. If the value of SCTLR_EL1.UCI is 0 these instructions are
UNDEFINED at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
with EC syndrome value 0x18:

— IC_IVAU, IC_IALLU, IC_IALLUIS, DC_CVAU.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-107
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Note

An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap
to EL2. In addition:

• IC_IALLUIS and IC_IALLU are always UNDEFINED at EL0 using AArch64.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate to the Point of Unification instruction can
be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPCP, bit [23]

When FEAT_DPB is implemented:

TPCP

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or
Persistence. Traps execution of those cache maintenance instructions to EL2, when EL2 is enabled
in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following
instructions are trapped to EL2 and reported using EC syndrome value 0x18:

— DC_CIVAC, DC_CVAC, DC_CVAP. If the value of SCTLR_EL1.UCI is 0 these
instructions are UNDEFINED at EL0 and any resulting exception is higher priority than
this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported
using EC syndrome value 0x18:

— DC_IVAC, DC_CIVAC, DC_CVAC, DC_CVAP.

If FEAT_DPB2 is implemented, this trap also applies to DC_CVADP.

Note

• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than
this trap to EL2. In addition:

— AArch64 instructions which invalidate by VA to the Point of Coherency are always
UNDEFINED at EL0 using AArch64.

• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is named TPCP.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct
read of the value of this bit.
G1-108 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

TPC

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current
Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, accesses to the
following registers are trapped and reported using EC syndrome value 0x18:

— DC_CIVAC, DC_CVAC. However, if the value of SCTLR_EL1.UCI is 0 these
instructions are UNDEFINED at EL0 and any resulting exception is higher priority than
this trap to EL2.

• If EL1 is using AArch64 state, accesses to DC_IVAC, DC_CIVAC, DC_CVAC are trapped
and reported using EC syndrome value 0x18.

Note

• An exception generated because an instruction is UNDEFINED at EL0 is higher priority than
this trap to EL2. In addition:

— AArch64 instructions which invalidate by VA to the Point of Coherency are always
UNDEFINED at EL0 using AArch64.

• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2, it is named TPCP.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, invalidate, or clean and invalidate instruction that
operates by VA to the point of coherency can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of
those cache maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security
state as follows:

• If EL1 is using AArch64 state, accesses to DC_ISW, DC_CSW, DC_CISW are trapped to
EL2, reported using EC syndrome value 0x18.

Note
An exception generated because an instruction is UNDEFINED at EL0 is higher priority than this trap
to EL2, and these instructions are always UNDEFINED at EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 Execution of the specified instructions is trapped to EL2, when EL2 is enabled in the
current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-109
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
TACR, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2,
when EL2 is enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, accesses to ACTLR_EL1 to EL2, are trapped to EL2 and
reported using EC syndrome value 0x18.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to the specified registers are trapped to EL2, when EL2 is enabled in the
current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

Note
ACTLR_EL1 is not accessible at EL0.

The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that might implement
global control bits for the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings reserved for
IMPLEMENTATION DEFINED functionality to EL2, when EL2 is enabled in the current Security state
as follows:

• In AArch64 state, access to any of the encodings in the following reserved encoding spaces
are trapped and reported using EC syndrome 0x18:

— IMPLEMENTATION DEFINED System instructions, which are accessed using SYS and
SYSL, with CRn == {11, 15}.

— IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR
with the S3_op1_cn_cm_op2 register name.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this
functionality accessed from EL0 is trapped to EL2. If it is not, then it is UNDEFINED, and any attempt
to access it from EL0 generates an exception that is taken to EL1.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to or execution of the specified encodings reserved for IMPLEMENTATION
DEFINED functionality are trapped to EL2, when EL2 is enabled in the current Security
state.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional
controls, to give finer-grained control of the trapping of IMPLEMENTATION DEFINED features.

Note
Arm expects the trapping of EL0 accesses to these functions to EL2 to be unusual, and used only
when the hypervisor is virtualizing EL0 operation. Arm strongly recommends that unless the
hypervisor must virtualize EL0 operation, an EL0 access to any of these functions is UNDEFINED, as
it would be if the implementation did not include EL2. The PE then takes any resulting exception
to EL1.

The trapping of accesses to these registers from EL1 is higher priority than an exception resulting
from the register access being UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G1-110 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
TSC, bit [19]

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the
current Security state.

If execution is in AArch64 state, the trap is reported using EC syndrome value 0x17.

Note
HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing control for the SMC
exception. Trap exceptions and SMC exceptions have different preferred return addresses.

0b0 This control does not cause any instructions to be trapped.

0b1 If EL3 is not implemented, FEAT_NV is implemented, and HCR_EL2.NV is 1, then
any attempt to execute an SMC instruction at EL1 using AArch64 is trapped to EL2,
when EL2 is enabled in the current Security state.

If EL3 is not implemented, and either FEAT_NV is not implemented or HCR_EL2.NV
is 0, then it is IMPLEMENTATION DEFINED whether:

• Any attempt to execute an SMC instruction at EL1 is trapped to EL2, when EL2
is enabled in the current Security state.

• Any attempt to execute an SMC instruction is UNDEFINED.

SMC instructions are UNDEFINED at EL0.

If EL3 is not implemented, and either FEAT_NV is not implemented or HCR_EL2.NV is 0, then it
is IMPLEMENTATION DEFINED whether this bit is:

• RES0.

• Implemented with the functionality as described in HCR_EL2.TSC.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current
Security state, as follows:

In AArch64 state:

• Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:

— ID_PFR0_EL1, ID_PFR1_EL1, ID_PFR2_EL1, ID_DFR0_EL1, ID_AFR0_EL1,
ID_MMFR0_EL1, ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1,
ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1,
ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1, MVFR1_EL1, MVFR2_EL1.

— ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1,
ID_AA64DFR1_EL1, ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1,
ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1, ID_AA64AFR0_EL1,
ID_AA64AFR1_EL1.

— ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2, unless implemented as
RAZ, when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4_EL1 or
ID_MMFR5_EL1 are trapped to EL2.

— ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2, unless implemented
as RAZ, when it is IMPLEMENTATION DEFINED whether accesses to
ID_AA64MMFR2_EL1 or ID_ISAR6_EL1 are trapped to EL2.

— Otherwise, it is IMPLEMENTATION DEFINED whether this field traps MRS accesses to
registers in the following range that are not already mentioned in this field description:
Op0 == 3, op1 == 0, CRn == c0, CRm == {c2-c7}, op2 == {0-7}.

0b0 This control does not cause any instructions to be trapped.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-111
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
0b1 The specified EL1 read accesses to ID group 3 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current
Security state, as follows:

• If EL1 is using AArch64, reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1,
and CSSELR_EL1 are trapped to EL2, reported using EC syndrome value 0x18.

• If EL0 is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_EL0 are
trapped to EL2, reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT
is 0, then EL0 reads of CTR_EL0 are trapped to EL1 and the resulting exception takes
precedence over this trap.

• If EL1 is using AArch64, writes to CSSELR_EL1 are trapped to EL2, reported using EC
syndrome value 0x18.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 and EL0 accesses to ID group 2 registers are trapped to EL2, when
EL2 is enabled in the current Security state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the
current Security state as follows:

• Accesses of MPUIR_EL1, REVIDR_EL1, AIDR_EL1, reported using EC syndrome value
0x18.

0b0 This control does not cause any instructions to be trapped.

0b1 The specified EL1 read accesses to ID group 1 registers are trapped to EL2, when EL2
is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

TWE, bit [14]

Traps EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current
Security state, from both Execution states, reported using EC syndrome value 0x01.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction at EL0 or EL1 is trapped to EL2, when EL2
is enabled in the current Security state, if the instruction would otherwise have caused
the PE to enter a low-power state and it is not trapped by SCTLR.nTWE or
SCTLR_EL1.nTWE.
G1-112 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Note

Since a WFE can complete at any time, even without a Wakeup event, the traps on WFE are not
guaranteed to be taken, even if the WFE is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state,
see 'Wait for Event mechanism and Send event'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current
Security state, from both Execution states, reported using EC syndrome value 0x01.

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFI instruction at EL0 or EL1 is trapped to EL2, when EL2
is enabled in the current Security state, if the instruction would otherwise have caused
the PE to enter a low-power state and it is not trapped by SCTLR.nTWI or
SCTLR_EL1.nTWI.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps on WFI are not
guaranteed to be taken, even if the WFI is executed when there is no Wakeup event. The only
guarantee is that if the instruction does not complete in finite time in the absence of a Wakeup event,
the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see
'Wait for Interrupt'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DC, bit [12]

Default Cacheability.

0b0 This control has no effect on the EL1&0 translation regime.

0b1 In both Security states:

• When EL1 is using AArch64, the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a
direct read of SCTLR_EL1.

• If stage 1 EL1&0 translation regime is in PMSAv8-64 context, the PE behaves as
if the value of the SCTLR_EL1.BR field is 0 for all purposes other than returning
the value of a direct read of SCTLR_EL1.

• The PE behaves as if the value of the HCR_EL2.VM field is 1 for all purposes
other than returning the value of a direct read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0 translation regime is
Normal Non-Shareable, Inner Write-Back Read-Allocate Write-Allocate, Outer
Write-Back Read-Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This bit is permitted to be cached in a TLB.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-113
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied
to any barrier instruction executed from EL1 or EL0:

0b00 No effect.

0b01 Inner Shareable.

0b10 Outer Shareable.

0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same
principles as combining the shareability attributes from two stages of address translation.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0b00 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable
domain when executed from EL1:

AArch64: TLBI_VMALLE1, TLBI_VAE1, TLBI_ASIDE1, TLBI_VAAE1, TLBI_VALE1,
TLBI_VAALE1, IC_IALLU, TLBI_RVAE1, TLBI_RVAAE1, TLBI_RVALE1, TLBI_RVAALE1.

0b0 This field has no effect on the operation of the specified instructions.

0b1 When one of the specified instruction is executed at EL1, the instruction is broadcast
within the Inner Shareable shareability domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VSE, bit [8]

Virtual SError interrupt.

0b0 This mechanism is not making a virtual SError interrupt pending.

0b1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is enabled only when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VI, bit [7]

Virtual IRQ Interrupt.

0b0 This mechanism is not making a virtual IRQ pending.

0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G1-114 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
VF, bit [6]

Virtual FIQ Interrupt.

0b0 This mechanism is not making a virtual FIQ pending.

0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AMO, bit [5]

Physical SError interrupt routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

• When the value of HCR_EL2.TGE is 0, Physical SError interrupts are not taken
to EL2.

• When the value of HCR_EL2.TGE is 1, Physical SError interrupts are taken to
EL2 unless they are routed to EL3.

• Virtual SError interrupts are disabled.

0b1 When executing at any Exception level, and EL2 is enabled in the current Security state:

• Physical SError interrupts are taken to EL2, unless they are routed to EL3.

• When the value of HCR_EL2.TGE is 0, then virtual SError interrupts are
enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the AMO bit physical asynchronous External aborts and SError
interrupts target EL2 unless they are routed to EL3.

• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for
all purposes other than a direct read of the value of this bit.

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMO, bit [4]

Physical IRQ Routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

• When the value of HCR_EL2.TGE is 0, Physical IRQ interrupts are not taken to
EL2.

• When the value of HCR_EL2.TGE is 1, Physical IRQ interrupts are taken to EL2
unless they are routed to EL3.

• Virtual IRQ interrupts are disabled.

0b1 When executing at any Exception level, and EL2 is enabled in the current Security state:

• Physical IRQ interrupts are taken to EL2, unless they are routed to EL3.

• When the value of HCR_EL2.TGE is 0, then Virtual IRQ interrupts are enabled.

If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are
routed to EL3.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-115
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for
all purposes other than a direct read of the value of this bit.

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FMO, bit [3]

Physical FIQ Routing.

0b0 When executing at Exception levels below EL2, and EL2 is enabled in the current
Security state:

• When the value of HCR_EL2.TGE is 0, Physical FIQ interrupts are not taken to
EL2.

• When the value of HCR_EL2.TGE is 1, Physical FIQ interrupts are taken to EL2
unless they are routed to EL3.

• Virtual FIQ interrupts are disabled.

0b1 When executing at any Exception level, and EL2 is enabled in the current Security state:

• Physical FIQ interrupts are taken to EL2, unless they are routed to EL3.

• When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are
routed to EL3.

• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for
all purposes other than a direct read of the value of this bit.

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [2]

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a
stage 1 translation table walk is subject to a stage 2 translation. The combining of the memory type
attributes from the two stages of translation means the access might be made to a type of Device
memory. If this occurs, then the value of this bit determines the behavior:

0b0 The translation table walk occurs as if it is to Normal Non-cacheable memory. This
means it can be made speculatively.

0b1 The memory access generates a stage 2 Permission fault.

This bit is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

In a PMSA-only implementation, this bit is permitted to be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G1-116 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way
instructions to perform a data cache clean and invalidate by set/way:

0b0 This control has no effect on the operation of data cache invalidate by set/way
instructions.

0b1 Data cache invalidate by set/way instructions perform a data cache clean and invalidate
by set/way.

When the value of this bit is 1:

AArch64: DC_ISW performs the same invalidation as a DC_CISW instruction.

This bit can be implemented as RES1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct
read of this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when
EL2 is enabled in the current Security state.

0b0 EL1&0 stage 2 address translation disabled.

0b1 EL1&0 stage 2 address translation enabled.

If HCR_EL2.VM is 1 and SCTLR_EL2.{M, BR} is {0, 0}, then the behavior is a CONSTRAINED
UNPREDICTABLE choice of:

• The memory attribute becomes UNKNOWN.

• Raise stage 2 level 0 Translation fault.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data
cache clean and invalidate. For the invalidate by set/way instruction this behavior applies regardless
of the value of the HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field
behaves as 0 for all purposes other than a direct read of the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing HCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return HCR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-117
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR HCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 HCR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b000
G1-118 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.4 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0

The ID_AA64DFR0_EL1 characteristics are:

Purpose

Provides top level information about the debug system in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

The external register EDDFR gives information from this register.

Attributes

ID_AA64DFR0_EL1 is a 64-bit register.

Field descriptions

Bits [63:44]

Reserved, RES0.

TraceFilt, bits [43:40]

Armv8.4 Self-hosted Trace Extension version. Defined values are:

0b0000 Armv8.4 Self-hosted Trace Extension not implemented.

0b0001 Armv8.4 Self-hosted Trace Extension implemented.

All other values are reserved.

FEAT_TRF implements the functionality identified by the value 0b0001.

From Armv8.4, if an Embedded Trace Macrocell Architecture PE Trace Unit is implemented, the
value 0b0000 is not permitted.

DoubleLock, bits [39:36]

OS Double Lock implemented. Defined values are:

0b0000 OS Double Lock implemented. OSDLR_EL1 is RW.

0b1111 OS Double Lock not implemented. OSDLR_EL1 is RAZ/WI.

All other values are reserved.

FEAT_DoubleLock implements the functionality identified by the value 0b0000.

In Armv8.0, the only permitted value is 0b0000.

If FEAT_Debugv8p2 is implemented and FEAT_DoPD is not implemented, the permitted values
are 0b0000 and 0b1111.

If FEAT_DoPD is implemented, the only permitted value is 0b1111.

Bits [35:32]

Reserved, RES0.

RES0

63 44 43 40 39 36

RES0

35 32

TraceFilt DoubleLock

CTX_CMPs

31 28

RES0

27 24

WRPs

23 20

RES0

19 16

BRPs

15 12

PMUVer

11 8

TraceVer

7 4

DebugVer

3 0
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-119
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
CTX_CMPs, bits [31:28]

Number of breakpoints that are context-aware, minus 1. These are the highest numbered
breakpoints.

Bits [27:24]

Reserved, RES0.

WRPs, bits [23:20]

Number of watchpoints, minus 1. The value of 0b0000 is reserved.

Bits [19:16]

Reserved, RES0.

BRPs, bits [15:12]

Number of breakpoints, minus 1. The value of 0b0000 is reserved.

PMUVer, bits [11:8]

Performance Monitors Extension version.

This field does not follow the standard ID scheme, but uses the alternative ID scheme described in
'Alternative ID scheme used for the Performance Monitors Extension version'.

Defined values are:

0b0000 Performance Monitors Extension not implemented.

0b0001 Performance Monitors Extension, PMUv3 implemented.

0b0100 PMUv3 for Armv8.1. As 0b0001, and adds support for:

• Extended 16-bit PMEVTYPER<n>_EL0.evtCount field.

• If EL2 is implemented, the MDCR_EL2.HPMD control.

0b0101 PMUv3 for Armv8.4. As 0b0100, and adds support for the PMMIR_EL1 register.

0b1111 IMPLEMENTATION DEFINED form of performance monitors supported, PMUv3 not
supported. Arm does not recommend this value for new implementations.

All other values are reserved.

FEAT_PMUv3 implements the functionality identified by the value 0b0001.

FEAT_PMUv3p1 implements the functionality identified by the value 0b0100.

FEAT_PMUv3p4 implements the functionality identified by the value 0b0101.

From Armv8.1, if FEAT_PMUv3 is implemented, the value 0b0001 is not permitted.

From Armv8.4, if FEAT_PMUv3 is implemented, the value 0b0100 is not permitted.

TraceVer, bits [7:4]

Trace support. Indicates whether System register interface to a PE trace unit is implemented.
Defined values are:

0b0000 PE trace unit System registers not implemented.

0b0001 PE trace unit System registers implemented.

All other values are reserved.

See the ETM Architecture Specification for more information.

A value of 0b0000 only indicates that no System register interface to a PE trace unit is implemented.
A PE trace unit might nevertheless be implemented without a System register interface.

DebugVer, bits [3:0]

Debug architecture version. Indicates presence of Armv8 debug architecture. Defined values are:

0b0110 Armv8 debug architecture.

0b1000 Armv8.2 debug architecture, FEAT_Debugv8p2.
G1-120 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
0b1001 Armv8.4 debug architecture, FEAT_Debugv8p4.

All other values are reserved.

FEAT_Debugv8p2 adds the functionality identified by the value 0b1000.

FEAT_Debugv8p4 adds the functionality identified by the value 0b1001.

From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

Accessing ID_AA64DFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64DFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64DFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64DFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0101 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-121
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.5 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

The ID_AA64ISAR0_EL1 characteristics are:

Purpose

Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

There are no configuration notes.

Attributes

ID_AA64ISAR0_EL1 is a 64-bit register.

Field descriptions

Bits [63:60]

Reserved, RES0.

TLB, bits [59:56]

Indicates support for Outer shareable and TLB range maintenance instructions. Defined values are:

0b0000 Outer shareable and TLB range maintenance instructions are not implemented.

0b0001 Outer shareable TLB maintenance instructions are implemented.

0b0010 Outer shareable and TLB range maintenance instructions are implemented.

All other values are reserved.

FEAT_TLBIOS implements the functionality identified by the values 0b0001 and 0b0010.

FEAT_TLBIRANGE implements the functionality identified by the value 0b0010.

From Armv8.4, the only permitted value is 0b0010.

TS, bits [55:52]

Indicates support for flag manipulation instructions. Defined values are:

0b0000 No flag manipulation instructions are implemented.

0b0001 CFINV, RMIF, SETF16, and SETF8 instructions are implemented.

All other values are reserved.

FEAT_FlagM implements the functionality identified by the value 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

In Armv8.4, the only permitted value is 0b0001.

FHM, bits [51:48]

Indicates support for FMLAL and FMLSL instructions. Defined values are:

0b0000 FMLAL and FMLSL instructions are not implemented.

0b0001 FMLAL and FMLSL instructions are implemented.

All other values are reserved.

RES0

63 60

TLB

59 56

TS

55 52

FHM

51 48

DP

47 44

SM4

43 40

SM3

39 36

SHA3

35 32

RDM

31 28

RES0

27 24

Atomic

23 20

CRC32

19 16

SHA2

15 12

SHA1

11 8

AES

7 4

RES0

3 0
G1-122 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
FEAT_FHM implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [47:44]

Indicates support for Dot Product instructions in AArch64 state. Defined values are:

0b0000 No Dot Product instructions implemented.

0b0001 UDOT and SDOT instructions implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

SM4, bits [43:40]

Indicates support for SM4 instructions in AArch64 state. Defined values are:

0b0000 No SM4 instructions implemented.

0b0001 SM4E and SM4EKEY instructions implemented.

All other values are reserved.

If FEAT_SM4 is not implemented, the value 0b0001 is reserved.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM3.

SM3, bits [39:36]

Indicates support for SM3 instructions in AArch64 state. Defined values are:

0b0000 No SM3 instructions implemented.

0b0001 SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, and
SM3PARTW2 instructions implemented.

All other values are reserved.

If FEAT_SM3 is not implemented, the value 0b0001 is reserved.

FEAT_SM3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM4.

SHA3, bits [35:32]

Indicates support for SHA3 instructions in AArch64 state. Defined values are:

0b0000 No SHA3 instructions implemented.

0b0001 EOR3, RAX1, XAR, and BCAX instructions implemented.

All other values are reserved.

If FEAT_SHA3 is not implemented, the value 0b0001 is reserved.

FEAT_SHA3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0001, ID_AA64ISAR0_EL1.SHA2 must have the value 0b0010.

RDM, bits [31:28]

Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values
are:

0b0000 No RDMA instructions implemented.

0b0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-123
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
FEAT_RDM implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Bits [27:24]

Reserved, RES0.

Atomic, bits [23:20]

Indicates support for Atomic instructions in AArch64 state. Defined values are:

0b0000 No Atomic instructions implemented.

0b0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN, LDUMAX, LDUMIN,
CAS, CASP, and SWP instructions implemented.

All other values are reserved.

FEAT_LSE implements the functionality identified by the value 0b0010.

From Armv8.1, the only permitted value is 0b0010.

CRC32, bits [19:16]

Indicates support for CRC32 instructions in AArch64 state. Defined values are:

0b0000 No CRC32 instructions implemented.

0b0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, and
CRC32CX instructions implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

Indicates support for SHA2 instructions in AArch64 state. Defined values are:

0b0000 No SHA2 instructions implemented.

0b0001 Implements instructions: SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.

0b0010 Implements instructions:

• SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.

• SHA512H, SHA512H2, SHA512SU0, and SHA512SU1.

All other values are reserved.

FEAT_SHA256 implements the functionality identified by the value 0b0001.

FEAT_SHA512 implements the functionality identified by the value 0b0010.

In Armv8, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0010, ID_AA64ISAR0_EL1.SHA3 must have the value 0b0001.

SHA1, bits [11:8]

Indicates support for SHA1 instructions in AArch64 state. Defined values are:

0b0000 No SHA1 instructions implemented.

0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1 instructions
implemented.

All other values are reserved.

FEAT_SHA1 implements the functionality identified by the value 0b0001.

From Armv8, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA2 is 0b0000, this field must have the value 0b0000.
G1-124 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
AES, bits [7:4]

Indicates support for AES instructions in AArch64 state. Defined values are:

0b0000 No AES instructions implemented.

0b0001 AESE, AESD, AESMC, and AESIMC instructions implemented.

0b0010 As for 0b0001, plus PMULL/PMULL2 instructions operating on 64-bit data quantities.

FEAT_AES implements the functionality identified by the value 0b0001.

FEAT_PMULL implements the functionality identified by the value 0b0010.

All other values are reserved.

From Armv8, the permitted values are 0b0000 and 0b0010.

Bits [3:0]

Reserved, RES0.

Accessing ID_AA64ISAR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64ISAR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-125
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.6 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

There are no configuration notes.

Attributes

ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

DGH, bits [51:48]

Indicates support for the Data Gathering Hint instruction. Defined values are:

0b0000 Data Gathering Hint is not implemented.

0b0001 Data Gathering Hint is implemented.

All other values are reserved.

FEAT_DGH implements the functionality identified by 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this
field is 0b0000.

Bits [47:44]

Reserved, RES0.

SPECRES, bits [43:40]

Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:

0b0000 CFP RCTX, DVP RCTX, and CPP RCTX instructions are not implemented.

0b0001 CFP RCTX, DVP RCTX, and CPP RCTX instructions are implemented.

All other values are reserved.

FEAT_SPECRES implements the functionality identified by 0b0001.

In Armv8-R, the permitted values are 0b0000 and 0b0001.

SB, bits [39:36]

Indicates support for SB instruction in AArch64 state. Defined values are:

0b0000 SB instruction is not implemented.

0b0001 SB instruction is implemented.

RES0

63 52

DGH

51 48

RES0

47 44

SPECRES

43 40

SB

39 36

RES0

35 32

GPI

31 28

GPA

27 24

LRCPC

23 20

FCMA

19 16

JSCVT

15 12

API

11 8

APA

7 4

DPB

3 0
G1-126 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

In Armv8-R, the permitted values are 0b0000 and 0b0001.

Bits [35:32]

Reserved, RES0.

GPI, bits [31:28]

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic
code authentication in AArch64 state. Defined values are:

0b0000 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is not
implemented.

0b0001 Generic Authentication using an IMPLEMENTATION DEFINED algorithm is implemented.
This includes the PACGA instruction.

All other values are reserved.

FEAT_PACIMP implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPA is non-zero, this field must have the value 0b0000.

GPA, bits [27:24]

Indicates whether the QARMA5 algorithm is implemented in the PE for generic code authentication
in AArch64 state. Defined values are:

0b0000 Generic Authentication using the QARMA5 algorithm is not implemented.

0b0001 Generic Authentication using the QARMA5 algorithm is implemented. This includes
the PACGA instruction.

All other values are reserved.

FEAT_PACQARMA5 implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is non-zero, this field must have the value 0b0000.

LRCPC, bits [23:20]

Indicates support for weaker release consistency, RCpc, based model. Defined values are:

0b0000 The LDAPR*, LDAPUR*, and STLUR* instructions are not implemented.

0b0001 The LDAPR* instructions are implemented.

The LDAPUR*, and STLUR* instructions are not implemented.

0b0010 The LDAPR*, LDAPUR*, and STLUR* instructions are implemented.

All other values are reserved.

FEAT_LRCPC implements the functionality identified by the value 0b0001.

FEAT_LRCPC2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

In Armv8.3, the permitted values are 0b0001 and 0b0010.

From Armv8.4, the only permitted value is 0b0010.

FCMA, bits [19:16]

Indicates support for complex number addition and multiplication, where numbers are stored in
vectors. Defined values are:

0b0000 The FCMLA and FCADD instructions are not implemented.

0b0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-127
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
FEAT_FCMA implements the functionality identified by the value 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

JSCVT, bits [15:12]

Indicates support for JavaScript conversion from double precision floating point values to integers
in AArch64 state. Defined values are:

0b0000 The FJCVTZS instruction is not implemented.

0b0001 The FJCVTZS instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is
0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value
is 0b0000.

API, bits [11:8]

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address
authentication, in AArch64 state. This applies to all Pointer Authentication instructions other than
the PACGA instruction. Defined values are:

0b0000 Address Authentication using an IMPLEMENTATION DEFINED algorithm is not
implemented.

0b0001 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC() function returning TRUE, and the HaveEnhancedPAC2()
function returning FALSE.

0b0011 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, and the HaveEnhancedPAC()
function returning FALSE.

0b0100 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function
returning TRUE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using an IMPLEMENTATION DEFINED algorithm is implemented,
with the HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function
returning TRUE, the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_EPAC implements the functionality identified by 0b0010.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality identified by 0b0100.

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is non-zero, FEAT_PACIMP is implemented.

In Armv8-R, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.
G1-128 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
If the value of ID_AA64ISAR1_EL1.APA is non-zero, this field must have the value 0b0000.

APA, bits [7:4]

Indicates whether the QARMA5 algorithm is implemented in the PE for address authentication, in
AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA
instruction. Defined values are:

0b0000 Address Authentication using the QARMA5 algorithm is not implemented.

0b0001 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC() and HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC() function returning TRUE and the HaveEnhancedPAC2() function
returning FALSE.

0b0011 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
FALSE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA5 algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_EPAC implements the functionality identified by 0b0010.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality identified by 0b0100.

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is non-zero, FEAT_PACQARMA5 is implemented.

In Armv8-R, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.API is non-zero, this field must have the value 0b0000.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC_CVAP and DC_CVADP instructions in
AArch64 state. Defined values are:

0b0000 DC_CVAP not supported.

0b0001 DC_CVAP supported.

0b0010 DC_CVAP and DC_CVADP supported.

All other values are reserved.

FEAT_DPB implements the functionality identified by the value 0b0001.

FEAT_DPB2 implements the functionality identified by the value 0b0010.

In Armv8-R, the permitted values are 0b0001 and 0b0010.

Accessing ID_AA64ISAR1_EL1

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-129
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MRS <Xt>, ID_AA64ISAR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64ISAR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b001
G1-130 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.7 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0

The ID_AA64MMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

There are no configuration notes.

Attributes

ID_AA64MMFR0_EL1 is a 64-bit register.

Field descriptions

Bits [63:56]

Reserved, RES0.

MSA_frac, bits [55:52]

Memory System Architecture fractional field. This holds the information on additional Memory
System Architectures supported. Defined values are:

0b0000 PMSAv8-64 not supported in any translation regime.

0b0001 PMSAv8-64 supported in all translation regimes. No support for VMSAv8-64.

0b0010 PMSAv8-64 supported in all translation regimes. In addition to PMSAv8-64, stage 1
EL1&0 translation regime also supports VMSAv8-64.

All other values are reserved.

The permitted values are 0b0001 and 0b0010.

This field is valid only when ID_AA64MMFR0_EL1.MSA is 0b1111.

MSA, bits [51:48]

Memory System Architecture ID field. This holds the information on Memory System
Architectures supported. Defined values are:

0b0000 VMSAv8-64 supported in all translation regimes. No support for PMSAv8-64.

0b1111 See ID_AA64MMFR0_EL1.MSA_frac for the Memory System Architectures
supported.

All other values are reserved.

In Armv8-R, the only permitted value is 0b1111.

Bits [47:32]

Reserved, RES0.

RES0

63 56

MSA_frac

55 52

MSA

51 48

RES0

47 32

TGran4

31 28

TGran64

27 24

TGran16

23 20 19 16

SNSMem

15 12

BigEnd

11 8

ASIDBits

7 4

PARange

3 0

BigEndEL0
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-131
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
TGran4, bits [31:28]

Indicates support for 4KB memory translation granule size. Defined values are:

0b0000 4KB granule supported.

0b1111 4KB granule not supported.

All other values are reserved.

TGran64, bits [27:24]

Indicates support for 64KB memory translation granule size. Defined values are:

0b0000 64KB granule supported.

0b1111 64KB granule not supported.

All other values are reserved.

TGran16, bits [23:20]

Indicates support for 16KB memory translation granule size. Defined values are:

0b0000 16KB granule not supported.

0b0001 16KB granule supported.

All other values are reserved.

BigEndEL0, bits [19:16]

Indicates support for mixed-endian at EL0 only. Defined values are:

0b0000 No mixed-endian support at EL0. The SCTLR_EL1.E0E bit has a fixed value.

0b0001 Mixed-endian support at EL0. The SCTLR_EL1.E0E bit can be configured.

All other values are reserved.

This field is invalid and is RES0 if ID_AA64MMFR0_EL1.BigEnd is not 0b0000.

SNSMem, bits [15:12]

Indicates support for a distinction between Secure and Non-secure Memory. Defined values are:

0b0000 Does not support a distinction between Secure and Non-secure Memory.

0b0001 Does support a distinction between Secure and Non-secure Memory.

Note

If EL3 is implemented, the value 0b0000 is not permitted.

All other values are reserved.

BigEnd, bits [11:8]

Indicates support for mixed-endian configuration. Defined values are:

0b0000 No mixed-endian support. The SCTLR_ELx.EE bits have a fixed value. See the
BigEndEL0 field, bits[19:16], for whether EL0 supports mixed-endian.

0b0001 Mixed-endian support. The SCTLR_ELx.EE and SCTLR_EL1.E0E bits can be
configured.

All other values are reserved.

ASIDBits, bits [7:4]

Number of ASID bits. Defined values are:

0b0000 8 bits.

0b0010 16 bits.

All other values are reserved.
G1-132 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
PARange, bits [3:0]

Physical Address range supported. Defined values are:

0b0000 32 bits, 4GB.

0b0001 36 bits, 64GB.

0b0010 40 bits, 1TB.

0b0011 42 bits, 4TB.

0b0100 44 bits, 16TB.

0b0101 48 bits, 256TB.

0b0110 52 bits, 4PB.

All other values are reserved.

The value 0b0110 is permitted only if the implementation includes FEAT_LPA, otherwise it is
reserved.

Accessing ID_AA64MMFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64MMFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64MMFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-133
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.8 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

The ID_AA64MMFR1_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

There are no configuration notes.

Attributes

ID_AA64MMFR1_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

nTLBPA, bits [51:48]

When architecture implements VMSA extension:

nTLBPA

Indicates support for intermediate caching of translation table walks. Defined values are:

0b0000 The intermediate caching of translation table walks might include non-coherent caches
of previous valid translation table entries since the last completed relevant TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the location holding the
translation table entry.

• The caching is used for stage 1 translations and is indexed by the intermediate
physical address of the location holding the translation table entry.

0b0001 The intermediate caching of translation table walks does not include non-coherent
caches of previous valid translation table entries since the last completed TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the location holding the
translation table entry.

• The caching is used for stage 1 translations and is indexed by the intermediate
physical address of the location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

In Armv8-R, the permitted values are 0b0000 and 0b0001.

Otherwise:

Reserved, RES0.

RES0

63 52

nTLBPA

51 48

RES0

47 32

XNX

31 28

SpecSEI

27 24

PAN

23 20

RES0

19 16

HPDS

15 12

RES0

11 8

VMIDBits

7 4

HAFDBS

3 0
G1-134 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Bits [47:32]

Reserved, RES0.

XNX, bits [31:28]

Indicates support for execute-never control distinction by Exception level at stage 2. Defined values
are:

0b0000 Distinction between EL0 and EL1 execute-never control at stage 2 not supported.

0b0001 Distinction between EL0 and EL1 execute-never control at stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [27:24]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of
memory, including speculative instruction fetches. The defined values of this field are:

0b0000 The PE never generates an SError interrupt due to an External abort on a speculative
read.

0b0001 The PE might generate an SError interrupt due to an External abort on a speculative
read.

All other values are reserved.

PAN, bits [23:20]

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2,
SPSR_EL3, and DSPSR_EL0. Defined values are:

0b0000 PAN not supported.

0b0001 PAN supported.

0b0010 PAN supported and AT_S1E1RP and AT_S1E1WP instructions supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

In Armv8.1, the permitted values are 0b0001, 0b0010, and 0b0011.

From Armv8.2, the permitted values are 0b0010 and 0b0011.

Bits [19:16]

Reserved, RES0.

HPDS, bits [15:12]

When architecture implements VMSA extension:

HPDS

Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation
tables. Defined values are:

0b0000 Disabling of hierarchical controls not supported.

0b0001 Disabling of hierarchical controls supported with the TCR_EL1.{HPD1, HPD0},
TCR_EL2.HPD or TCR_EL2.{HPD1, HPD0}, and TCR_EL3.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation of bits[62:59] of the
translation table descriptors from the final lookup level for IMPLEMENTATION DEFINED
use.

All other values are reserved.

FEAT_HPDS implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality identified by the value 0b0010.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-135
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
From Armv8.1, the value 0b0000 is not permitted.

Otherwise:

Reserved, RES0.

Bits [11:8]

Reserved, RES0.

VMIDBits, bits [7:4]

Number of VMID bits. Defined values are:

0b0000 8 bits

0b0010 16 bits

All other values are reserved.

FEAT_VMID16 implements the functionality identified by the value 0b0010.

From Armv8.1, the permitted values are 0b0000 and 0b0010.

HAFDBS, bits [3:0]

When architecture implements VMSA extension:

HAFDBS

Hardware updates to Access flag and Dirty state in translation tables. Defined values are:

0b0000 Hardware update of the Access flag and dirty state are not supported.

0b0001 Hardware update of the Access flag is supported.

0b0010 Hardware update of both the Access flag and dirty state is supported.

All other values are reserved.

FEAT_HAFDBS implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.1, the permitted values are 0b0000, 0b0001, and 0b0010.

Otherwise:

Reserved, RES0.

Accessing ID_AA64MMFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64MMFR1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b001
G1-136 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
elsif PSTATE.EL == EL2 then
 return ID_AA64MMFR1_EL1;

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-137
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.9 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

The ID_AA64MMFR2_EL1 characteristics are:

Purpose

Provides information about the implemented memory model and memory management support in
AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

Note

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64MMFR2_EL1 is a 64-bit register.

Field descriptions

E0PD, bits [63:60]

When architecture implements VMSA extension:

E0PD

Indicates support for the E0PD mechanism. Defined values are:

0b0000 E0PDx mechanism is not implemented.

0b0001 E0PDx mechanism is implemented.

All other values are reserved.

FEAT_E0PD implements the functionality identified by the value 0b0001.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

Otherwise:

Reserved, RES0.

Bits [59:56]

Reserved, RES0.

BBM, bits [55:52]

When architecture implements VMSA extension:

BBM

Allows identification of the requirements of the hardware to have break-before-make sequences
when changing block size for a translation.

0b0000 Level 0 support for changing block size is supported.

E0PD

63 60

RES0

59 56

BBM

55 52

TTL

51 48

RES0

47 44

FWB

43 40

IDS

39 36

AT

35 32

ST

31 28

RES0

27 24

CCIDX

23 20

VARange

19 16

IESB

15 12

RES0

11 8

UAO

7 4

CnP

3 0
G1-138 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
0b0001 Level 1 support for changing block size is supported.

0b0010 Level 2 support for changing block size is supported.

All other values are reserved.

FEAT_BBM implements the functionality identified by the values 0b0000, 0b0001, and 0b0010.

From Armv8.4, the permitted values are 0b0000, 0b0001, and 0b0010.

Otherwise:

Reserved, RES0.

TTL, bits [51:48]

When architecture implements VMSA extension:

TTL

Indicates support for TTL field in address operations. Defined values are:

0b0000 TLB maintenance instructions by address have bits[47:44] as RES0.

0b0001 TLB maintenance instructions by address have bits[47:44] holding the TTL field.

All other values are reserved.

FEAT_TTL implements the functionality identified by the value 0b0001.

This field affects TLBI_IPAS2E1, TLBI_IPAS2E1IS, TLBI_IPAS2E1OS, TLBI_IPAS2LE1,
TLBI_IPAS2LE1IS, TLBI_IPAS2LE1OS, TLBI_VAAE1, TLBI_VAAE1IS, TLBI_VAAE1OS,
TLBI_VAALE1, TLBI_VAALE1IS, TLBI_VAALE1OS, TLBI_VAE1, TLBI_VAE1IS,
TLBI_VAE1OS, TLBI_VAE2, TLBI_VAE2IS, TLBI_VAE2OS, TLBI_VAE3, TLBI_VAE3IS,
TLBI_VAE3OS,TLBI_VALE1, TLBI_VALE1IS, TLBI_VALE1OS, TLBI_VALE2,
TLBI_VALE2IS, TLBI_VALE2OS, TLBI_VALE3, TLBI_VALE3IS, TLBI_VALE3OS.

From Armv8.4, the only permitted value is 0b0001.

Otherwise:

Reserved, RES0.

Bits [47:44]

Reserved, RES0.

FWB, bits [43:40]

Indicates support for HCR_EL2.FWB. Defined values are:

0b0000 HCR_EL2.FWB bit is not supported.

0b0001 HCR_EL2.FWB is supported.

All other values reserved.

FEAT_S2FWB implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

IDS, bits [39:36]

Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the
feature ID space. Defined values are:

0b0000 An exception which is generated by a read access to the feature ID space, other than a
trap caused by HCR_EL2.TIDx, SCTLR_EL1.UCT, or SCTLR_EL2.UCT, is reported
by ESR_ELx.EC == 0x0.

0b0001 All exceptions generated by an AArch64 read access to the feature ID space are reported
by ESR_ELx.EC == 0x18.

All other values are reserved.

The Feature ID space is defined as the System register space in AArch64 with op0==3, op1=={0,
1, 3}, CRn==0, CRm=={0-7}, op2=={0-7}.

FEAT_IDST implements the functionality identified by the value 0b0001.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-139
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
From Armv8.4, the only permitted value is 0b0001.

AT, bits [35:32]

Identifies support for unaligned single-copy atomicity and atomic functions. Defined values are:

0b0000 Unaligned single-copy atomicity and atomic functions are not supported.

0b0001 Unaligned single-copy atomicity and atomic functions with a 16-byte address range
aligned to 16-bytes are supported.

All other values are reserved.

FEAT_LSE2 implements the functionality identified by the value 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

ST, bits [31:28]

When architecture implements VMSA extension:

ST

Identifies support for small translation tables. Defined values are:

0b0000 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is
39.

0b0001 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and VTCR_EL2.T0SZ fields is 48
for 4KB and 16KB granules, and 47 for 64KB granules.

All other values are reserved.

FEAT_TTST implements the functionality identified by the value 0b0001.

If FEAT_SEL2 is implemented, the only permitted value is 0b0001.

In an implementation which does not support FEAT_SEL2, the permitted values are 0b0000 and
0b0001.

Otherwise:

Reserved, RES0.

Bits [27:24]

Reserved, RES0.

CCIDX, bits [23:20]

Support for the use of revised CCSIDR_EL1 register format. Defined values are:

0b0000 32-bit format implemented for all levels of the CCSIDR_EL1.

0b0001 64-bit format implemented for all levels of the CCSIDR_EL1.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

VARange, bits [19:16]

Indicates support for a larger virtual address. Defined values are:

0b0000 VMSAv8-64 supports 48-bit VAs.

0b0001 VMSAv8-64 supports 52-bit VAs when using the 64KB translation granule. The size for
other translation granules is not defined by this field.

All other values are reserved.

FEAT_LVA implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.
G1-140 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
IESB, bits [15:12]

Indicates support for the IESB bit in the SCTLR_ELx registers. Defined values are:

0b0000 IESB bit in the SCTLR_ELx registers is not supported.

0b0001 IESB bit in the SCTLR_ELx registers is supported.

All other values are reserved.

FEAT_IESB implements the functionality identified by the value 0b0001.

Bits [11:8]

Reserved, RES0.

UAO, bits [7:4]

User Access Override. Defined values are:

0b0000 UAO not supported.

0b0001 UAO supported.

All other values are reserved.

FEAT_UAO implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

CnP, bits [3:0]

When architecture implements VMSA extension:

CnP

Indicates support for Common not Private translations. Defined values are:

0b0000 Common not Private translations not supported.

0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Otherwise:

Reserved, RES0.

Accessing ID_AA64MMFR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64MMFR2_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if (!IsZero(ID_AA64MMFR2_EL1) || boolean IMPLEMENTATION_DEFINED "ID_AA64MMFR2_EL1 trapped by
HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0111 0b010
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-141
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
 else
 return ID_AA64MMFR2_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64MMFR2_EL1;

G1-142 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.10 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose

Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

The external register EDPFR gives information from this register.

Attributes

ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions

CSV3, bits [63:60]

Speculative use of faulting data. Defined values are:

0b0000 This PE does not disclose whether data loaded under speculation with a permission or
domain fault can be used to form an address or generate condition codes or SVE
predicate values to be used by other instructions in the speculative sequence.

0b0001 Data loaded under speculation with a permission or domain fault cannot be used to form
an address, generate condition codes, or generate SVE predicate values to be used by
other instructions in the speculative sequence. The execution timing of any other
instructions in the speculative sequence is not a function of the data loaded under
speculation.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8-R, the permitted values are 0b0000 and 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

CSV2, bits [59:56]

Speculative use of out of context branch targets. Defined values are:

0b0000 This PE does not disclose whether branch targets trained in one hardware-described
context can exploitatively control speculative execution in a different
hardware-described context.

0b0001 Branch targets trained in one hardware-described context can exploitatively control
speculative execution in a different hardware-described context only in a
hard-to-determine way. Contexts do not include the SCXTNUM_ELx register contexts.
Support for the SCXTNUM_ELx registers is defined in
ID_AA64PFR1_EL1.CSV2_frac.

0b0010 Branch targets trained in one hardware-described context can exploitatively control
speculative execution in a different hardware-described context only in a
hard-to-determine way. The SCXTNUM_ELx registers are supported and the contexts
include the SCXTNUM_ELx register contexts.

CSV3

63 60

CSV2

59 56

RES0

55 52

DIT

51 48

RES0

47 40

SEL2

39 36

RES0

35 32

RAS

31 28

GIC

27 24

AdvSIMD

23 20

FP

19 16

EL3

15 12

EL2

11 8

EL1

7 4

EL0

3 0
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-143
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
All other values are reserved.

FEAT_CSV2 implements the functionality identified by the value 0b0001.

FEAT_CSV2_2implements the functionality identified by the value 0b0010.

In Armv8-R, the permitted values are 0b0000, 0b0001, and 0b0010.

Bits [55:52]

Reserved, RES0.

DIT, bits [51:48]

Data Independent Timing. Defined values are:

0b0000 AArch64 does not guarantee constant execution time of any instructions.

0b0001 AArch64 provides the PSTATE.DIT mechanism to guarantee constant execution time
of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

Bits [47:40]

Reserved, RES0.

SEL2, bits [39:36]

Secure EL2. Defined values are:

0b0000 Secure EL2 is not implemented.

0b0001 Secure EL2 is implemented.

All other values are reserved.

FEAT_SEL2 implements the functionality identified by the value 0b0001.

Bits [35:32]

Reserved, RES0.

RAS, bits [31:28]

RAS Extension version. Defined values are:

0b0000 No RAS Extension.

0b0001 RAS Extension implemented.

0b0010 FEAT_RASv1p1 implemented and, if EL3 is implemented, FEAT_DoubleFault
implemented. As 0b0001, and adds support for:

• Additional ERXMISC<m>_EL1 System registers.

• Additional System registers ERXPFGCD<n>_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS and support for the optional
RAS Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 and FEAT_DoubleFault implement the functionality identified by the value
0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, if FEAT_DoubleFault is implemented, the only permitted value is 0b0010.
G1-144 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR_EL1 is 0, the
permitted values are IMPLEMENTATION DEFINED 0b0001 or 0b0010.

Note
When the value of this field is 0b0001, ID_AA64PFR1_EL1.RAS_frac indicates whether
FEAT_RASv1p1 is implemented.

GIC, bits [27:24]

System register GIC CPU interface. Defined values are:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

0b0000 Advanced SIMD is implemented, including support for the following SISD and SIMD
operations:

• Integer byte, halfword, word and doubleword element operations.

• Single-precision and double-precision floating-point arithmetic.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with Advanced SIMD support that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without Advanced SIMD support.

FP, bits [19:16]

Floating-point. Defined values are:

0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with floating-point support that includes the FEAT_FP16
extension.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-145
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
• 0b1111 in an implementation without floating-point support.

EL3, bits [15:12]

EL3 Exception level handling. In Armv8-R, the only permitted value is 0b0000. All other values are
reserved.

0b0000 EL3 is not implemented.

EL2, bits [11:8]

EL2 Exception level handling. In Armv8-R, the only permitted value is 0b0001. All other values are
reserved.

0b0001 EL2 can be executed in AArch64 state only.

EL1, bits [7:4]

EL1 Exception level handling. In Armv8-R, the only permitted value is 0b0001. All other values are
reserved.

0b0001 EL1 can be executed in AArch64 state only.

EL0, bits [3:0]

EL0 Exception level handling. In Armv8-R, the only permitted value is 0b0001. All other values are
reserved.

0b0001 EL0 can be executed in AArch64 state only.

Accessing ID_AA64PFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR0_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64PFR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b000
G1-146 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.11 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

There are no configuration notes.

Attributes

ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions

Bits [63:36]

Reserved, RES0.

CSV2_frac, bits [35:32]

CSV2 fractional field. Defined values are:

0b0000 This PE does not disclose whether branch targets trained in one hardware-described
context can exploitatively control speculative execution in a different
hardware-described context. The SCXTNUM_ELx registers are not supported.

0b0001 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets trained in one
hardware-described context can exploitatively control speculative execution in a
different hardware-described context only in a hard-to-determine way. Within a
hardware-described context, branch targets trained for branches situated at one address
can control speculative execution of branches situated at different addresses only in a
hard-to-determine way. The SCXTNUM_ELx registers are not supported and the
contexts do not include the SCXTNUM_ELx register contexts.

0b0010 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets trained in one
hardware-described context can exploitatively control speculative execution in a
different hardware-described context only in a hard-to-determine way. Within a
hardware-described context, branch targets trained for branches situated at one address
can control speculative execution of branches situated at different addresses only in a
hard-to-determine way. The SCXTNUM_ELx registers are supported, but the contexts
do not include the SCXTNUM_ELx register contexts.

All other values are reserved.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p2 implements the functionality identified by the value 0b0010.

In Armv8-R, the permitted values are 0b0000, 0b0001, and 0b0010.

This field is valid only if ID_AA64PFR0_EL1.CSV2 is 0b0001.

RES0

63 36 35 32

CSV2_frac

RES0

31 16

RAS_frac

15 12

RES0

11 8

SSBS

7 4

RES0

3 0
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-147
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Bits [31:16]

Reserved, RES0.

RAS_frac, bits [15:12]

RAS Extension fractional field. Defined values are:

0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS Extension implemented.

0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and adds support for:

• Additional ERXMISC<m>_EL1 System registers.

• Additional System registers ERXPFGCD<n>_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1, and the SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS System Architecture
v1.1, which includes simplifications to ERR<n>STATUS, and support for the optional
RAS Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.

FEAT_RASv1p1 implements the functionality identified by the value 0b0001.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

Bits [11:8]

Reserved, RES0.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

0b0000 AArch64 provides no mechanism to control the use of Speculative Store Bypassing.

0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark regions that are Speculative
Store Bypass Safe.

0b0010 As 0b0001, and adds the MSR and MRS instructions to directly read and write the
PSTATE.SSBS field.

All other values are reserved.

FEAT_SSBS implements the functionality identified by the value 0b0001.

FEAT_SSBS2 implements the functionality identified by the value 0b0010.

Bits [3:0]

Reserved, RES0.

Accessing ID_AA64PFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR1_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b001
G1-148 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TID3 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then
 return ID_AA64PFR1_EL1;

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-149
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.12 MAIR_EL1, Memory Attribute Indirection Register (EL1)

The MAIR_EL1 characteristics are:

Purpose

If VMSAv8-64 is enabled at stage 1 of EL1&0 translation regime, this register provides the memory
attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations at EL1.

If PMSAv8-64 is enabled at stage 1 of EL1&0 translation regime, this register provides the memory
attribute encodings corresponding to the possible AttrIndx values in PRLAR_EL1 register for stage
1 translations.

Configurations

There are no configuration notes.

Attributes

MAIR_EL1 is a 64-bit register.

Field descriptions

MAIR_EL1 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

The memory attribute encoding for an AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

'dd' is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000ddxx, (xx != 00) UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of Normal Memory.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back, Outer
Write-Back, Read-Allocate, Write-Allocate Non-transient memory.
Otherwise, UNPREDICTABLE.

0bxxxx0000, (xxxx != 0000 and xxxx != 1111) UNPREDICTABLE.

dd Meaning

0b00 Device-nGnRnE memory
G1-150 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic MAIR_EL1 or
MAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate

dd Meaning
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-151
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return MAIR_EL1;
elsif PSTATE.EL == EL2 then
 return MAIR_EL1;

MSR MAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 MAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 MAIR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000
G1-152 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.13 MAIR_EL2, Memory Attribute Indirection Register (EL2)

The MAIR_EL2 characteristics are:

Purpose

Provides the memory attribute encodings corresponding to the possible AttrIndx values in
PRLAR_EL2 for stage 1 EL2 translation regime and for stage 2 EL1&0 translation regime.

For stage 2 EL1&0 translations, the memory attributes are derived from MAIR_EL2 register as
described in the Armv8-R AArch64 architecture.

Configurations

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MAIR_EL2 is a 64-bit register.

Field descriptions

MAIR_EL2 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

The memory attribute encoding for an AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

'dd' is encoded as follows:

Attr7

63 56

Attr6

55 48

Attr5

47 40

Attr4

39 32

Attr3

31 24

Attr2

23 16

Attr1

15 8

Attr0

7 0

Attr Meaning

0b0000dd00 Device memory. See encoding of 'dd' for the type of Device memory.

0b0000ddxx, (xx != 00) UNPREDICTABLE.

0booooiiii, (oooo != 0000 and iiii != 0000) Normal memory. See encoding of 'oooo' and 'iiii' for the type of Normal Memory.

0b11110000 If FEAT_MTE2 is implemented: Tagged Normal Inner Write-Back, Outer
Write-Back, Read-Allocate, Write-Allocate Non-transient memory.
Otherwise, UNPREDICTABLE.

0bxxxx0000, (xxxx != 0000 and xxxx != 1111) UNPREDICTABLE.

dd Meaning

0b00 Device-nGnRnE memory

0b01 Device-nGnRE memory

0b10 Device-nGRE memory

0b11 Device-GRE memory
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-153
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
'oooo' is encoded as follows:

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MAIR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic MAIR_EL2 or
MAIR_EL1 is not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

'oooo' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable

0b01RW, RW not 0b00 Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-transient

0b11RW Normal memory, Outer Write-Back Non-transient

'iiii' Meaning

0b0000 See encoding of Attr

0b00RW, RW not 0b00 Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable

0b01RW, RW not 0b00 Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-transient

0b11RW Normal memory, Inner Write-Back Non-transient

R or W Meaning

0b0 No Allocate

0b1 Allocate
G1-154 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
MRS <Xt>, MAIR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return MAIR_EL2;

MSR MAIR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 MAIR_EL2 = X[t];

MRS <Xt>, MAIR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return MAIR_EL1;
elsif PSTATE.EL == EL2 then
 return MAIR_EL1;

MSR MAIR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0010 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-155
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 MAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 MAIR_EL1 = X[t];

G1-156 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.14 MPUIR_EL1, MPU Type Register (EL1)

The MPUIR_EL1 characteristics are:

Purpose

Identifies the number of regions supported by the EL1 MPU.

Configurations

There are no configuration notes.

Attributes

MPUIR_EL1 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

REGION, bits [7:0]

The number of EL1 MPU regions supported.

Accessing MPUIR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPUIR_EL1

if PSTATE.EL == EL0 then
 if IsFeatureImplemented(FEAT_IDST) then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TID1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 return MPUIR_EL1;
elsif PSTATE.EL == EL2 then
 return MPUIR_EL1;

RES0

63 32

RES0

31 8

REGION

7 0

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0000 0b100
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-157
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.15 MPUIR_EL2, MPU Type Register (EL2)

The MPUIR_EL2 characteristics are:

Purpose

Identifies the number of regions supported by the EL2 MPU.

Configurations

There are no configuration notes.

Attributes

MPUIR_EL2 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

REGION, bits [7:0]

The number of EL2 MPU regions supported.

Accessing MPUIR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPUIR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return MPUIR_EL2;

RES0

63 32

RES0

31 8

REGION

7 0

op0 op1 CRn CRm op2

0b11 0b100 0b0000 0b0000 0b100
G1-158 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.16 PRBAR_EL1, Protection Region Base Address Register (EL1)

The PRBAR_EL1 characteristics are:

Purpose

Provides access to the base addresses for the EL1 MPU region. PRSELR_EL1.REGION determines
which MPU region is selected.

Configurations

All bits above implemented physical address range in this register should be treated as RES0.

Attributes

PRBAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

BASE[51:48], bits [51:48]

When FEAT_LPA is implemented:

BASE[51:48]

Extension to BASE[47:6]. When FEAT_LPA is implemented, BASE[51:48] form the upper part of
the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BASE[47:6], bits [47:6]

Bits[47:6] of the lower inclusive limit of the selected EL1 MPU memory region. This value is zero
extended to provide the base address to be checked against.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH[1:0], bits [5:4]

Shareability attribute.

0b00 Non-shareable

0b01 Reserved, CONSTRAINED UNPREDICTABLE

0b10 Outer Shareable

0b11 Inner Shareable

RES0

63 52 51 48

BASE[47:6]

47 32

BASE[51:48]

BASE[47:6]

31 6 5 4 3 2

XN

1 0

SH[1:0] RES0
AP[2:1]
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-159
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AP[2:1], bits [3:2]

Access Permission attributes.

0b00 Read/write at EL1, no access at EL0

0b01 Read/write at EL1 and EL0

0b10 Read-only at EL1, no access at EL0

0b11 Read-only at EL1 and EL0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

XN, bit [1]

Execute Never

0b0 Execution of instructions fetched from the region is permitted.

0b1 Execution of instructions fetched from the region is not permitted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing PRBAR_EL1

Any access to MPU region register PRBAR_EL1 above the number of implemented regions specified by
MPUIR_EL1.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

• Reads of unimplemented PRBAR_EL1 register return an UNKNOWN value.

• Writes to unimplemented PRBAR_EL1 register make all PRBAR_EL1 registers value UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRBAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 return PRBAR_EL1;
elsif PSTATE.EL == EL2 then
 return PRBAR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b1000 0b000
G1-160 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR PRBAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 PRBAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 PRBAR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b1000 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-161
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.17 PRBAR_EL2, Protection Region Base Address Register (EL2)

The PRBAR_EL2 characteristics are:

Purpose

Provides access to the base addresses for the EL2 MPU region. PRSELR_EL2.REGION determines
which MPU region is selected.

Configurations

All bits above implemented physical address range in this register should be treated as RES0.

Attributes

PRBAR_EL2 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

BASE[51:48], bits [51:48]

When FEAT_LPA is implemented:

BASE[51:48]

Extension to BASE[47:6]. When FEAT_LPA is implemented, BASE[51:48] form the upper part of
the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BASE[47:6], bits [47:6]

Bits[47:6] of the lower inclusive limit of the selected EL2 MPU memory region. This value is zero
extended to provide the base address to be checked against.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH[1:0], bits [5:4]

Shareability attribute.

0b00 Non-shareable

0b01 Reserved, CONSTRAINED UNPREDICTABLE

0b10 Outer Shareable

0b11 Inner Shareable

RES0

63 52 51 48

BASE[47:6]

47 32

BASE[51:48]

BASE[47:6]

31 6 5 4 3 2

XN

1 0

SH[1:0] AP[2:1]
G1-162 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AP[2:1], bits [3:2]

Access Permission attributes.

0b00 Read/write at EL2, no access at EL1 or EL0

0b01 Read/write at EL2, EL1 and EL0

0b10 Read-only at EL2, no access at EL1 or EL0

0b11 Read-only at EL2, EL1 and EL0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

XN, bits [1:0]

Execute Never. For

• Stage 1 EL2 translation regime and

• Stage 2 EL1&0 translation regime when FEAT_XNX is not implemented

XN[1] determines whether execution of the instructions fetched from the MPU memory region is
permitted. In this case, XN[0] is RES0

For stage 2 EL1&0 translation regime when FEAT_XNX is implemented, the behavior of XN[1:0]
is same as that defined by VMSAv8-64 for EL1&0 stage 2 translation table XN[1:0],bits[54:53]
field in Armv8-A architecture.

0b00 Execution of instructions fetched from the region is permitted.

0b01 Execution of instructions fetched from the region is not permitted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PRBAR_EL2

Any access to MPU region register PRBAR_EL2 above the number of implemented regions specified by
MPUIR_EL2.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

• Reads of unimplemented PRBAR_EL2 register return an UNKNOWN value.

• Writes to unimplemented PRBAR_EL2 register make all PRBAR_EL2 registers value UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRBAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return PRBAR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b1000 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-163
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR PRBAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 PRBAR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b1000 0b000
G1-164 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.18 PRBAR<n>_EL1, Protection Region Base Address Register n (EL1), n = 1 - 15

The PRBAR<n>_EL1 characteristics are:

Purpose

Provides access to the base address for the MPU region determined by the value of 'n' and
PRSELR_EL1.REGION as PRSELR_EL1.REGION<7:4>:n.

Configurations

All bits above implemented physical address range in this register should be treated as RES0.

Attributes

PRBAR<n>_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

BASE[51:48], bits [51:48]

When FEAT_LPA is implemented:

BASE[51:48]

Extension to BASE[47:6]. When FEAT_LPA is implemented, BASE[51:48] form the upper part of
the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BASE[47:6], bits [47:6]

Bits[47:6] of the lower inclusive limit of the selected EL1 MPU memory region. This value is zero
extended to provide the base address to be checked against.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH[1:0], bits [5:4]

Shareability attribute.

0b00 Non-shareable

0b01 Reserved, CONSTRAINED UNPREDICTABLE

0b10 Outer Shareable

0b11 Inner Shareable

RES0

63 52 51 48

BASE[47:6]

47 32

BASE[51:48]

BASE[47:6]

31 6 5 4 3 2

XN

1 0

SH[1:0] RES0
AP[2:1]
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-165
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AP[2:1], bits [3:2]

Access Permission attributes.

0b00 Read/write at EL1, no access at EL0

0b01 Read/write at EL1 and EL0

0b10 Read-only at EL1, no access at EL0

0b11 Read-only at EL1 and EL0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

XN, bit [1]

Execute Never

0b0 Execution of instructions fetched from the region is permitted.

0b1 Execution of instructions fetched from the region is not permitted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

Reserved, RES0.

Accessing PRBAR<n>_EL1

Any access to MPU region register PRBAR<n>_EL1 above the number of implemented regions specified by
MPUIR_EL1.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

• Reads of unimplemented PRBAR<n>_EL1 return an UNKNOWN value.

• Writes to unimplemented PRBAR<n>_EL1 register make all PRBAR_EL1 registers value UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRBAR<n>_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 return PRBAR_EL1[UInt(PRSELR_EL1.REGION<7:4>:CRm<2:0>:op2<2>)];
elsif PSTATE.EL == EL2 then
 return PRBAR_EL1[UInt(PRSELR_EL1.REGION<7:4>:CRm<2:0>:op2<2>)];

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b1:n[3:1] n[0]:0b00
G1-166 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR PRBAR<n>_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 PRBAR_EL1[UInt(PRSELR_EL1.REGION<7:4>:CRm<2:0>:op2<2>)];
elsif PSTATE.EL == EL2 then
 PRBAR_EL1[UInt(PRSELR_EL1.REGION<7:4>:CRm<2:0>:op2<2>)];

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b1:n[3:1] n[0]:0b00
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-167
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.19 PRBAR<n>_EL2, Protection Region Base Address Register n (EL2), n = 1 - 15

The PRBAR<n>_EL2 characteristics are:

Purpose

Provides access to the base address for the MPU region determined by the value of 'n' and
PRSELR_EL2.REGION as PRSELR_EL2.REGION<7:4>:n.

Configurations

All bits above implemented physical address range in this register should be treated as RES0.

Attributes

PRBAR<n>_EL2 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

BASE[51:48], bits [51:48]

When FEAT_LPA is implemented:

BASE[51:48]

Extension to BASE[47:6]. When FEAT_LPA is implemented, BASE[51:48] form the upper part of
the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BASE[47:6], bits [47:6]

Bits[47:6] of the lower inclusive limit of the selected EL2 MPU memory region. This value is zero
extended to provide the base address to be checked against.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH[1:0], bits [5:4]

Shareability attribute.

0b00 Non-shareable

0b01 Reserved, CONSTRAINED UNPREDICTABLE

0b10 Outer Shareable

0b11 Inner Shareable

RES0

63 52 51 48

BASE[47:6]

47 32

BASE[51:48]

BASE[47:6]

31 6 5 4 3 2

XN

1 0

SH[1:0] AP[2:1]
G1-168 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AP[2:1], bits [3:2]

Access Permission attributes.

0b00 Read/write at EL2, no access at EL1 or EL0

0b01 Read/write at EL2, EL1 and EL0

0b10 Read-only at EL2, no access at EL1 or EL0

0b11 Read-only at EL2, EL1 and EL0

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

XN, bits [1:0]

Execute Never. For

• Stage 1 EL2 translation regime and

• Stage 2 EL1&0 translation regime when FEAT_XNX is not implemented

XN[1] determines whether execution of the instructions fetched from the MPU memory region is
permitted. In this case, XN[0] is RES0

For stage 2 EL1&0 translation regime when FEAT_XNX is implemented, the behavior of XN[1:0]
is same as that defined by VMSAv8-64 for EL1&0 stage 2 translation table XN[1:0],bits[54:53]
field in Armv8-A architecture.

0b00 Execution of instructions fetched from the region is permitted.

0b01 Execution of instructions fetched from the region is not permitted.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PRBAR<n>_EL2

Any access to MPU region register PRBAR<n>_EL2 above the number of implemented regions specified by
MPUIR_EL2.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

• Reads of unimplemented PRBAR<n>_EL2 return an UNKNOWN value.

• Writes to unimplemented PRBAR<n>_EL2 register make all PRBAR_EL2 registers value UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRBAR<n>_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return PRBAR_EL2[UInt(PRSELR_EL2.REGION<7:4>:CRm<2:0>:op2<2>)];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b1:n[3:1] n[0]:0b00
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-169
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR PRBAR<n>_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 PRBAR_EL2[UInt(PRSELR_EL2.REGION<7:4>:CRm<2:0>:op2<2>)];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b1:n[3:1] n[0]:0b00
G1-170 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.20 PRENR_EL1, Protection Region Enable Register (EL1)

The PRENR_EL1 characteristics are:

Purpose

Provides direct access to the PRLAR_EL1.EN bits of EL1 MPU regions from 0 to 31.

Configurations

There are no configuration notes.

Attributes

PRENR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

ENABLE<n>, bit [n], for n = 31 to 0

Enable bit. Each bit, n, enables or disables the respective EL1 MPU region. The bits associated with
the unimplemented MPU regions are RAZ/WI.

0b0 Disables the EL1 MPU n region.

0b1 Enables the EL1 MPU n region.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PRENR_EL1

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE31
ENABLE30

ENABLE29
ENABLE28

ENABLE27
ENABLE26

ENABLE25
ENABLE24

ENABLE23
ENABLE22

ENABLE21
ENABLE20

ENABLE19
ENABLE18

ENABLE17
ENABLE16

ENABLE0
ENABLE1

ENABLE2
ENABLE3

ENABLE4
ENABLE5

ENABLE6
ENABLE7

ENABLE8
ENABLE9

ENABLE10
ENABLE11

ENABLE12
ENABLE13

ENABLE14
ENABLE15
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-171
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MRS <Xt>, PRENR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 return PRENR_EL1;
elsif PSTATE.EL == EL2 then
 return PRENR_EL1;

MSR PRENR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 PRENR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 PRENR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0001 0b001
G1-172 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.21 PRENR_EL2, Protection Region Enable Register (EL2)

The PRENR_EL2 characteristics are:

Purpose

Provides direct access to the PRLAR_EL2.EN bits of EL2 MPU regions from 0 to 31.

Configurations

There are no configuration notes.

Attributes

PRENR_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

ENABLE<n>, bit [n], for n = 31 to 0

Enable bit. Each bit, n, enables or disables the respective EL2 MPU region. The bits associated with
the unimplemented MPU regions are RAZ/WI.

0b0 Disables the EL2 MPU n region.

0b1 Enables the EL2 MPU n region.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PRENR_EL2

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE31
ENABLE30

ENABLE29
ENABLE28

ENABLE27
ENABLE26

ENABLE25
ENABLE24

ENABLE23
ENABLE22

ENABLE21
ENABLE20

ENABLE19
ENABLE18

ENABLE17
ENABLE16

ENABLE0
ENABLE1

ENABLE2
ENABLE3

ENABLE4
ENABLE5

ENABLE6
ENABLE7

ENABLE8
ENABLE9

ENABLE10
ENABLE11

ENABLE12
ENABLE13

ENABLE14
ENABLE15
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-173
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MRS <Xt>, PRENR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return PRENR_EL2;

MSR PRENR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 PRENR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0001 0b001
G1-174 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.22 PRLAR_EL1, Protection Region Limit Address Register (EL1)

The PRLAR_EL1 characteristics are:

Purpose

Provides access to the limit addresses for the EL1 MPU region. PRSELR_EL1.REGION determines
which MPU region is selected.

Configurations

All bits above implemented physical address range in this register should be treated as RES0.

Attributes

PRLAR_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

LIMIT[51:48], bits [51:48]

When FEAT_LPA is implemented:

LIMIT[51:48]

Extension to LIMIT[47:6]. When FEAT_LPA is implemented, LIMIT[51:48] form the upper part
of the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LIMIT[47:6], bits [47:6]

Bits[47:6] of the upper inclusive limit of the selected EL1 MPU memory region. This value is
concatenated with the value 0x3F to provide the limit address to be checked against.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

NS, bit [4]

Non-secure bit. Specifies whether the output address is in the Secure or Non-secure memory.

0b0 Output address is in Secure address space.

0b1 Output address is in Non-secure address space.

RES0

63 52 51 48

LIMIT[47:6]

47 32

LIMIT[51:48]

LIMIT[47:6]

31 6 5

NS

4 3 1

EN

0

RES0 AttrIndx[2:0]
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-175
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register.

0b000 Select the Attr0 field from MAIR_EL1.

0b001 Select the Attr1 field from MAIR_EL1.

0b010 Select the Attr2 field from MAIR_EL1.

0b011 Select the Attr3 field from MAIR_EL1.

0b100 Select the Attr4 field from MAIR_EL1.

0b101 Select the Attr5 field from MAIR_EL1.

0b110 Select the Attr6 field from MAIR_EL1.

0b111 Select the Attr7 field from MAIR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Region enable bit.

0b0 Region disabled.

0b1 Region enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PRLAR_EL1

Any access to MPU region register PRLAR_EL1 above the number of implemented regions specified by
MPUIR_EL1.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

• Reads of unimplemented PRLAR_EL1 register return an UNKNOWN value.

• Writes to unimplemented PRLAR_EL1 register make all PRLAR_EL1 registers value UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRLAR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 return PRLAR_EL1;
elsif PSTATE.EL == EL2 then
 return PRLAR_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b1000 0b001
G1-176 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR PRLAR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 PRLAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 PRLAR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b1000 0b001
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-177
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.23 PRLAR_EL2, Protection Region Limit Address Register (EL2)

The PRLAR_EL2 characteristics are:

Purpose

Provides access to the limit addresses for the EL2 MPU region. PRSELR_EL2.REGION determines
which MPU region is selected.

Configurations

All bits above implemented physical address range in this register should be treated as RES0.

Attributes

PRLAR_EL2 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

LIMIT[51:48], bits [51:48]

When FEAT_LPA is implemented:

LIMIT[51:48]

Extension to LIMIT[47:6]. When FEAT_LPA is implemented, LIMIT[51:48] form the upper part
of the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LIMIT[47:6], bits [47:6]

Bits[47:6] of the upper inclusive limit of the selected EL2 MPU memory region. This value is
concatenated with the value 0x3F to provide the limit address to be checked against.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

NS, bit [4]

Non-secure bit. Specifies whether the output address is in the Secure or Non-secure memory.

0b0 Output address is in Secure address space.

0b1 Output address is in Non-secure address space.

RES0

63 52 51 48

LIMIT[47:6]

47 32

LIMIT[51:48]

LIMIT[47:6]

31 6 5

NS

4 3 1

EN

0

RES0 AttrIndx[2:0]
G1-178 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register.

0b000 Select the Attr0 field from MAIR_EL2.

0b001 Select the Attr1 field from MAIR_EL2.

0b010 Select the Attr2 field from MAIR_EL2.

0b011 Select the Attr3 field from MAIR_EL2.

0b100 Select the Attr4 field from MAIR_EL2.

0b101 Select the Attr5 field from MAIR_EL2.

0b110 Select the Attr6 field from MAIR_EL2.

0b111 Select the Attr7 field from MAIR_EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Region enable bit.

0b0 Region disabled.

0b1 Region enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PRLAR_EL2

Any access to MPU region register PRLAR_EL2 above the number of implemented regions specified by
MPUIR_EL2.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

• Reads of unimplemented PRLAR_EL2 register return an UNKNOWN value.

• Writes to unimplemented PRLAR_EL2 register make all PRLAR_EL2 registers value UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRLAR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return PRLAR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b1000 0b001
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-179
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR PRLAR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 PRLAR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b1000 0b001
G1-180 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.24 PRLAR<n>_EL1, Protection Region Limit Address Register n (EL1), n = 1 - 15

The PRLAR<n>_EL1 characteristics are:

Purpose

Provides access to the limit address for the MPU region determined by the value of 'n' and
PRSELR_EL1.REGION as PRSELR_EL1.REGION<7:4>:n.

Configurations

All bits above implemented physical address range in this register should be treated as RES0.

Attributes

PRLAR<n>_EL1 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

LIMIT[51:48], bits [51:48]

When FEAT_LPA is implemented:

LIMIT[51:48]

Extension to LIMIT[47:6]. When FEAT_LPA is implemented, LIMIT[51:48] form the upper part
of the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LIMIT[47:6], bits [47:6]

Bits[47:6] of the upper inclusive limit of the selected EL1 MPU memory region. This value is
concatenated with the value 0x3F to provide the limit address to be checked against.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

NS, bit [4]

Non-secure bit. Specifies whether the output address is in the Secure or Non-secure memory.

0b0 Output address is in Secure address space.

0b1 Output address is in Non-secure address space.

RES0

63 52 51 48

LIMIT[47:6]

47 32

LIMIT[51:48]

LIMIT[47:6]

31 6 5

NS

4 3 1

EN

0

RES0 AttrIndx[2:0]
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-181
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register.

0b000 Select the Attr0 field from MAIR_EL1.

0b001 Select the Attr1 field from MAIR_EL1.

0b010 Select the Attr2 field from MAIR_EL1.

0b011 Select the Attr3 field from MAIR_EL1.

0b100 Select the Attr4 field from MAIR_EL1.

0b101 Select the Attr5 field from MAIR_EL1.

0b110 Select the Attr6 field from MAIR_EL1.

0b111 Select the Attr7 field from MAIR_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Region enable bit.

0b0 Region disabled.

0b1 Region enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PRLAR<n>_EL1

Any access to MPU region register PRLAR<n>_EL1 above the number of implemented regions specified by
MPUIR_EL1.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

• Reads of unimplemented PRLAR<n>_EL1 return an UNKNOWN value.

• Writes to unimplemented PRLAR<n>_EL1 register make all PRLAR_EL1 registers value UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRLAR<n>_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 return PRLAR_EL1[UInt(PRSELR_EL1.REGION<7:4>:CRm<2:0>:op2<2>)];
elsif PSTATE.EL == EL2 then
 return PRLAR_EL1[UInt(PRSELR_EL1.REGION<7:4>:CRm<2:0>:op2<2>)];

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b1:n[3:1] n[0]:0b01
G1-182 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR PRLAR<n>_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 PRLAR_EL1[UInt(PRSELR_EL1.REGION<7:4>:CRm<2:0>:op2<2>)];
elsif PSTATE.EL == EL2 then
 PRLAR_EL1[UInt(PRSELR_EL1.REGION<7:4>:CRm<2:0>:op2<2>)];

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b1:n[3:1] n[0]:0b01
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-183
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.25 PRLAR<n>_EL2, Protection Region Limit Address Register n (EL2), n = 1 - 15

The PRLAR<n>_EL2 characteristics are:

Purpose

Provides access to the limit address for the MPU region determined by the value of 'n' and
PRSELR_EL2.REGION as PRSELR_EL2.REGION<7:4>:n.

Configurations

All bits above implemented physical address range in this register should be treated as RES0.

Attributes

PRLAR<n>_EL2 is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

LIMIT[51:48], bits [51:48]

When FEAT_LPA is implemented:

LIMIT[51:48]

Extension to LIMIT[47:6]. When FEAT_LPA is implemented, LIMIT[51:48] form the upper part
of the address value. Otherwise, for implementations with fewer than 52 physical address bits, the
upper bits of this field, corresponding to address bits that are not implemented, are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LIMIT[47:6], bits [47:6]

Bits[47:6] of the upper inclusive limit of the selected EL2 MPU memory region. This value is
concatenated with the value 0x3F to provide the limit address to be checked against.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

NS, bit [4]

Non-secure bit. Specifies whether the output address is in the Secure or Non-secure memory.

0b0 Output address is in Secure address space.

0b1 Output address is in Non-secure address space.

RES0

63 52 51 48

LIMIT[47:6]

47 32

LIMIT[51:48]

LIMIT[47:6]

31 6 5

NS

4 3 1

EN

0

RES0 AttrIndx[2:0]
G1-184 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

AttrIndx[2:0], bits [3:1]

Selects attributes from within the associated Memory Attribute Indirection Register.

0b000 Select the Attr0 field from MAIR_EL2.

0b001 Select the Attr1 field from MAIR_EL2.

0b010 Select the Attr2 field from MAIR_EL2.

0b011 Select the Attr3 field from MAIR_EL2.

0b100 Select the Attr4 field from MAIR_EL2.

0b101 Select the Attr5 field from MAIR_EL2.

0b110 Select the Attr6 field from MAIR_EL2.

0b111 Select the Attr7 field from MAIR_EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [0]

Region enable bit.

0b0 Region disabled.

0b1 Region enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PRLAR<n>_EL2

Any access to MPU region register PRLAR<n>_EL2 above the number of implemented regions specified by
MPUIR_EL2.REGION is CONSTRAINED UNPREDICTABLE.

CONSTRAINED UNPREDICTABLE behavior is defined as:

• Reads of unimplemented PRLAR<n>_EL2 return an UNKNOWN value.

• Writes to unimplemented PRLAR<n>_EL2 register make all PRLAR_EL2 registers value UNKNOWN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRLAR<n>_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return PRLAR_EL2[UInt(PRSELR_EL2.REGION<7:4>:CRm<2:0>:op2<2>)];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b1:n[3:1] n[0]:0b01
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-185
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR PRLAR<n>_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 PRLAR_EL2[UInt(PRSELR_EL2.REGION<7:4>:CRm<2:0>:op2<2>)];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b1:n[3:1] n[0]:0b01
G1-186 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.26 PRSELR_EL1, Protection Region Selection Register (EL1)

The PRSELR_EL1 characteristics are:

Purpose

Selects the region number for the EL1 MPU region associated with the PRBAR_EL1 and
PRLAR_EL1 registers.

Configurations

There are no configuration notes.

Attributes

PRSELR_EL1 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

REGION, bits [7:0]

The number of the current EL1 MPU region visible in PRBAR_EL1 and PRLAR_EL1. For N
implemented MPU regions, memory region numbering starts at 0 and increments by 1 to the value
N-1.

Writing a value greater than or equal to the number of implemented MPU regions specified by
MPUIR_EL1.REGION, results in CONSTRAINED UNPREDICTABLE behavior.

CONSTRAINED UNPREDICTABLE behavior is that PRSELR_EL1 register becomes UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PRSELR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRSELR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 return PRSELR_EL1;

RES0

63 32

RES0

31 8

REGION

7 0

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0010 0b001
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-187
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
elsif PSTATE.EL == EL2 then
 return PRSELR_EL1;

MSR PRSELR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '1' then
 UNDEFINED;
 else
 PRSELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 PRSELR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0010 0b001
G1-188 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.27 PRSELR_EL2, Protection Region Selection Register (EL2)

The PRSELR_EL2 characteristics are:

Purpose

Selects the region number for the EL2 MPU region associated with the PRBAR_EL2 and
PRLAR_EL2 registers.

Configurations

There are no configuration notes.

Attributes

PRSELR_EL2 is a 64-bit register.

Field descriptions

Bits [63:8]

Reserved, RES0.

REGION, bits [7:0]

The number of the current EL2 MPU region visible in PRBAR_EL2 and PRLAR_EL2. For N
implemented MPU regions, memory region numbering starts at 0 and increments by 1 to the value
N-1.

Writing a value greater than or equal to the number of implemented MPU regions specified by
MPUIR_EL2.REGION, results in CONSTRAINED UNPREDICTABLE behavior.

CONSTRAINED UNPREDICTABLE behavior is that PRSELR_EL2 register becomes UNKNOWN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PRSELR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PRSELR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return PRSELR_EL2;

RES0

63 32

RES0

31 8

REGION

7 0

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0010 0b001
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-189
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR PRSELR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 PRSELR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0010 0b001
G1-190 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.28 SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

Configurations

There are no configuration notes.

Attributes

SCTLR_EL1 is a 64-bit register.

Field descriptions

Bits [63:45]

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

DSSBS

Default PSTATE.SSBS value on Exception Entry.

0b0 PSTATE.SSBS is set to 0 on an exception to EL1.

0b1 PSTATE.SSBS is set to 1 on an exception to EL1.

The reset behavior of this field is:

• On a Warm reset,this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

Bits [43:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

EnIA

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses
in the EL1&0 translation regime.

RES0

63 45 44

RES0

43 32

DSSBS
31 30

RES1

29 28 27 26

EE

25 24 23 22 21 20 19 18

BR

17 16 15 14 13

I

12 11 10 9

RES1

8 7 6 5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB

EnDA
UCI

E0E
SPAN

RES1
IESB
TSCXT

WXN

SA0
RES0

nAA
UMA

EnRCTX
RES1

EnDB
DZE

UCT
nTWI

nTWE
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-191
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not
enabled.

0b1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is
enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically,
when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

EnIB

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not
enabled.

0b1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is
enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

EnDA

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.
G1-192 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only,
reported using an ESR_ELx.EC value of 0x18.

This applies to DC_CVAU, DC_CIVAC, DC_CVAC, DC_CVAP, and IC_IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC_CVADP.

0b0 Execution of the specified instructions at EL0 using AArch64 is trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean, or clean and invalidate instruction that operates by
VA to the point of coherency can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether
the execution of any data or unified cache clean by VA to the Point of Unification instruction can
be trapped when the value of this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED
whether the execution of any instruction cache invalidate by VA to the Point of Unification
instruction can be trapped when the value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation
regime.

0b0 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are little-endian.

0b1 Explicit data accesses at EL1, and stage 1 translation table walks in the EL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset,this field resets to an IMPLEMENTATION DEFINED value.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-193
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
E0E, bit [24]

Endianness of data accesses at EL0.

0b0 Explicit data accesses at EL0 are little-endian.

0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option
is not permitted when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is
not permitted when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions
executed at EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

SPAN, bit [23]

When FEAT_PAN is implemented:

SPAN

Set Privileged Access Never, on taking an exception to EL1.

0b0 PSTATE.PAN is set to 1 on taking an exception to EL1.

0b1 The value of PSTATE.PAN is left unchanged on taking an exception to EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [22]

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

IESB

Implicit Error Synchronization event enable. Possible values are:

0b0 Disabled.

0b1 An implicit error synchronization event is added:

• At each exception taken to EL1.

• Before the operational pseudocode of each ERET instruction executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field
is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL1
and before each DRPS instruction executed at EL1, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.
G1-194 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Otherwise:

Reserved, RES0.

TSCXT, bit [20]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

TSCXT

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

0b0 EL0 access to SCXTNUM_EL0 is not disabled by this mechanism.

0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an exception to EL1, or to EL2
when it is implemented and enabled for the current Security state and HCR_EL2.TGE
is 1.

The value of SCXTNUM_EL0 is treated as 0.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force
all memory regions that are writable to be treated as XN.

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL1&0 translation regime is forced to XN for accesses
from software executing at EL1 or EL0.

This bit applies only when SCTLR_EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an
ESR_ELx.EC value of 0x01.

0b0 Any attempt to execute a WFE instruction at EL0 is trapped, if the instruction would
otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-195
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

BR, bit [17]

When VTCR_EL2.MSA == 0:

BR

Background region enable for EL1 MPU memory regions.

0b0 Background region disabled for stage 1 EL1&0 translation regime.

0b1 Background region enabled for stage 1 EL1&0 translation regime.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then PE behaves as if the value of the
SCTLR_EL1.BR field is 0 for all purposes other than returning the value of a direct read of the field.

If EL1 MPU is enabled, then EL0 access that does not match an EL1 MPU region always results in
a Translation fault.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

Otherwise:

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for
the current Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an
ESR_ELx.EC value of 0x01.

0b0 Any attempt to execute a WFI instruction at EL0 is trapped, if the instruction would
otherwise have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of
WFI are not guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup
event. The only guarantee is that if the instruction does not complete in finite time in the absence of
a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an
ESR_ELx.EC value of 0x18.

0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.
G1-196 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
DZE, bit [14]

Traps EL0 execution of DC_ZVA instructions to EL1, or to EL2 when it is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an
ESR_ELx.EC value of 0x18.

0b0 Any attempt to execute an instruction that this trap applies to at EL0 using AArch64 is
trapped.

Reading DCZID_EL0.DZP from EL0 returns 1, indicating that the instructions this trap
applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

EnDB, bit [13]

When FEAT_PAuth is implemented:

EnDB

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses
in the EL1&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APDBKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDBKey_EL1 key) of data addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

0b0 All instruction access to Stage 1 Normal memory from EL0 and EL1 are Stage 1
Non-cacheable.

If stage 1 EL1&0 translation is in VMSAv8-64 context and the value of SCTLR_EL1.M
is 0, then instruction accesses from stage 1 are to Normal, Outer Shareable, Inner
Non-cacheable, Outer Non-cacheable memory.

If stage 1 EL1&0 translation is in PMSAv8-64 context and the value of
SCTLR_EL1.{BR, M} = {0, 0}, then instruction accesses from stage 1 are to Normal,
Outer Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Stage 1 Cacheability of instruction access to Stage 1
Normal memory from EL0 and EL1.

If stage 1 EL1&0 translation is in VMSAv8-64 context and the value of SCTLR_EL1.M
is 0, then instruction accesses from stage 1 are to Normal, Outer Shareable, Inner
Write-Through, Outer Write-Through memory.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-197
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
If stage 1 EL1&0 translation is in PMSAv8-64 context, and the value of
SCTLR_EL1.{BR, M} = {0, 0}, then instruction accesses from stage 1 are to Normal,
Outer Shareable, Inner Write-Through, Outer Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0
and EL1 are Cacheable regardless of the value of the SCTLR_EL1.I bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

Bit [11]

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented:

EnRCTX

Enable EL0 Access to the following instructions:

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

0b0 EL0 access to these instructions is disabled, and these instructions are trapped to EL1,
or to EL2 when it is implemented and enabled for the current Security state and
HCR_EL2.TGE is 1.

0b1 EL0 access to these instructions is enabled.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D,
A, I, F} masks to EL1, or to EL2 when it is implemented and enabled for the current Security state
and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

0b0 Any attempt at EL0 using AArch64 to execute an MRS, MSR(register), or MSR(immediate)
instruction that accesses the DAIF is trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Bits [8:7]

Reserved, RES1.

nAA, bit [6]

When FEAT_LSE2 is implemented:

nAA
G1-198 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain
conditions.

0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR,
LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, and
STLURH generate an Alignment fault if all bytes being accessed are not within a single
16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH,
LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH,
STLR, STLRH, STLUR, or STLURH to generate an Alignment fault if all bytes being
accessed are not within a single 16-byte quantity, aligned to 16 bytes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [5]

Reserved, RES0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0
uses the SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment
fault exception is generated. For more information, see 'SP alignment checking'.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the
SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault
exception is generated. For more information, see 'SP alignment checking'.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

0b0 All data access to Stage 1 Normal memory from EL0 and EL1, and all Normal memory
accesses from unified cache to the EL1&0 Stage 1 translation tables, are treated as Stage
1 Non-cacheable.

0b1 This control has no effect on the Stage 1 Cacheability of:

• Data access to Normal memory from EL0 and EL1.

• Normal memory accesses to the EL1&0 Stage 1 translation tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCTLR.C. This means that Non-secure
EL0 and Non-secure EL1 data accesses to Normal memory are Cacheable.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-199
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0.

0b0 Alignment fault checking disabled when executing at EL1 or EL0.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL1 or EL0.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to an
architecturally UNKNOWN value.

M, bit [0]

MMU or MPU enable for EL1&0 stage 1 address translation.

This is the enable bit for:

• MPU, if stage 1 EL1&0 translation is in PMSAv8-64 context.

• MMU, if stage 1 EL1&0 translation is in VMSAv8-64 context.

0b0 EL1 MPU(PMSAv8-64) or MMU(VMSAv8-64) disabled

See the SCTLR_EL1.I field for the behavior of instruction accesses to Normal memory.

0b1 EL1 MPU(PMSAv8-64) or MMU(VMSAv8-64) enabled

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the
value of the SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read
of the field.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has
no effect on the PE.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

Accessing SCTLR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000
G1-200 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return SCTLR_EL1;
elsif PSTATE.EL == EL2 then
 return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 SCTLR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-201
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.29 SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

Configurations

There are no configuration notes.

Attributes

SCTLR_EL2 is a 64-bit register.

Field descriptions

Bits [63:45]

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

DSSBS

Default PSTATE.SSBS value on Exception Entry.

0b0 PSTATE.SSBS is set to 0 on an exception to EL2.

0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

The reset behavior of this field is:

• On a Warm reset,this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

Bits [43:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

EnIA

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses
in the EL2 or EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is not
enabled.

RES0

63 45 44

RES0

43 32

DSSBS
31 30

RES1

29 28 27 26

EE

25 24

RES1

23 22 21 20 19 18

BR

17 16

RES0

15 14 13

I

12 11

RES0

10 7 6

RES1

5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB

EnDA
RES0

RES0
IESB

RES1
EnDB

RES1
RES1

WXN
RES0

nAA
G1-202 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
0b1 Pointer authentication (using the APIAKey_EL1 key) of instruction addresses is
enabled.

Note
This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically,
when the field is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIA returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

EnIB

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses
in the EL2 or EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is not
enabled.

0b1 Pointer authentication (using the APIBKey_EL1 key) of instruction addresses is
enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically,
when the field is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthIB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

EnDA

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses
in the EL2 or EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APDAKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDAKey_EL1 key) of data addresses is enabled.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-203
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically,
when the field is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDA returns an authenticated copy of a pointer. When the field is 0, both
of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL2.

0b0 Explicit data accesses at EL2 are little-endian.

0b1 Explicit data accesses at EL2 are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this
bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0,
this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset,this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

IESB

Implicit Error Synchronization event enable.

0b0 Disabled.

0b1 An implicit error synchronization event is added:

• At each exception taken to EL2.

• Before the operational pseudocode of each ERET instruction executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its
Effective value might be 0 or 1 regardless of the value of the field. If the Effective value of the field
is 1, then an implicit error synchronization event is added after each DCPSx instruction taken to EL2
and before each DRPS instruction executed at EL2, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G1-204 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit
can force all memory regions that are writable to be treated as XN.

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL2 or EL2&0 translation regime is forced to XN for
accesses from software executing at EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

BR, bit [17]

Background region enable for EL2 MPU memory regions.

0b0 Background region disabled for stage 1 EL2 translation regime and stage 2 EL1&0
translation regime.

0b1 Background region enabled for stage 1 EL2 translation regime and stage 2 EL1&0
translation regime.

If EL2 MPU is enabled, then EL0 and EL1 access that does not match an EL2 MPU region always
results in a Translation fault.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

EnDB, bit [13]

When FEAT_PAuth is implemented:

EnDB

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses
in the EL2 or EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

0b0 Pointer authentication (using the APDBKey_EL1 key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDBKey_EL1 key) of data addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically,
when the field is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code
has been added, and AuthDB returns an authenticated copy of a pointer. When the field is 0, both of
these functions are NOP.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-205
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2.

0b0 All instruction accesses to Normal memory from EL2 are Non-cacheable for all levels
of instruction and unified cache.

If SCTLR_EL2.{BR, M} == {0, 0}, then instruction accesses from stage 1 of the EL2
translation regime are to Normal, Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access to Normal memory
from EL2.

If SCTLR_EL2.{BR, M} = {0, 0}, then instruction accesses from stage 1 of the EL2
translation regime are to Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:7]

Reserved, RES0.

nAA, bit [6]

When FEAT_LSE2 is implemented:

nAA

Non-aligned access. This bit controls generation of Alignment faults at EL2 under certain
conditions.

0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR,
LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, and
STLURH generate an Alignment fault if all bytes being accessed are not within a single
16-byte quantity, aligned to 16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR, LDAPURH,
LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH,
STLR, STLRH, STLUR, or STLURH to generate an Alignment fault if all bytes being
accessed are not within a single 16-byte quantity, aligned to 16 bytes.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES1.
G1-206 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the
SP as the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault
exception is generated. For more information, see 'SP alignment checking'.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

C, bit [2]

Data access Cacheability control, for accesses at EL2.

0b0 All data accesses to Normal memory from EL2 are Non-cacheable for all levels of data
and unified cache.

0b1 This control has no effect on the Cacheability of data accesses to Normal memory from
EL2.

This bit has no effect on the EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2.

0b0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than load/store exclusive and
load-acquire/store-release, do not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL2.

All instructions that load or store one or more registers have an alignment check that the
address being accessed is aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless
of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to an
architecturally UNKNOWN value.

M, bit [0]

MPU enable for EL2 stage 1 and EL1&0 stage 2 address translation.

0b0 MPU disabled for EL2 and EL1&0 stage 2 address translation.

See the SCTLR_EL2.I field for the behavior of instruction accesses to Normal memory.

0b1 MPU enabled for EL2 and EL1&0 stage 2 address translation.

The reset behavior of this field is:

• On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing SCTLR_EL2

Accesses to this register use the following encodings in the System register encoding space:
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-207
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MRS <Xt>, SCTLR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return SCTLR_EL2;

MSR SCTLR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 SCTLR_EL2 = X[t];

MRS <Xt>, SCTLR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return SCTLR_EL1;
elsif PSTATE.EL == EL2 then
 return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000
G1-208 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 SCTLR_EL1 = X[t];

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-209
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.30 TCR_EL1, Translation Control Register (EL1)

The TCR_EL1 characteristics are:

Purpose

The control register for stage 1 of the EL1&0 translation regime.

Configurations

There are no configuration notes.

Attributes

TCR_EL1 is a 64-bit register.

Field descriptions

Any of the bits in TCR_EL1, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to
be cached in a TLB.

Bits [63:57]

Reserved, RES0.

E0PD1, bit [56]

When VTCR_EL2.MSA == 1 and FEAT_E0PD is implemented:

E0PD1

Faulting control for Unprivileged access to any address translated by TTBR1_EL1.

0b0 Unprivileged access to any address translated by TTBR1_EL1 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR1_EL1 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

RES0

63 57 56 55

RES0

54 53 52 51 50 49 48 47 46 45 44 43 42 41

HD

40

HA

39 38 37

AS

36 35

IPS

34 32

E0PD1
E0PD0

TBID1
TBID0
HWU162

HWU161
HWU160

HWU159

RES0
TBI0

TBI1
HPD0

HPD1
HWU059

HWU060
HWU061

HWU062

TG1

31 30

SH1

29 28 27 26 25 24 23

A1

22

T1SZ

21 16

TG0

15 14

SH0

13 12 11 10 9 8 7 6

T0SZ

5 0

ORGN1 EPD1
IRGN1

ORGN0
IRGN0

RES0
EPD0
G1-210 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
E0PD0, bit [55]

When VTCR_EL2.MSA == 1 and FEAT_E0PD is implemented:

E0PD0

Faulting control for Unprivileged access to any address translated by TTBR0_EL1.

0b0 Unprivileged access to any address translated by TTBR0_EL1 will not generate a fault
by this mechanism.

0b1 Unprivileged access to any address translated by TTBR0_EL1 will generate a level 0
Translation fault.

Level 0 Translation faults generated as a result of this field are not counted as TLB misses for
performance monitoring. The fault should take the same time to generate, whether the address is
present in the TLB or not, to mitigate attacks that use fault timing.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [54:53]

Reserved, RES0.

TBID1, bit [52]

When VTCR_EL2.MSA == 1 and FEAT_PAuth is implemented:

TBID1

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

0b0 TCR_EL1.TBI1 applies to Instruction and Data accesses.

0b1 TCR_EL1.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

TBID0, bit [51]

When VTCR_EL2.MSA == 1 and FEAT_PAuth is implemented:

TBID0

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

0b0 TCR_EL1.TBI0 applies to Instruction and Data accesses.

0b1 TCR_EL1.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-211
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
When FEAT_PAuth is implemented and VTCR_EL2.MSA == 0:

TBID0

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

0b0 TCR_EL1.TBI0 applies to Instruction and Data accesses.

0b1 TCR_EL1.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by EL1 MPU.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU162, bit [50]

When VTCR_EL2.MSA == 1 and FEAT_HPDS2 is implemented:

HWU162

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HWU161, bit [49]

When VTCR_EL2.MSA == 1 and FEAT_HPDS2 is implemented:

HWU161

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.
G1-212 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Otherwise:

Reserved, RES0.

HWU160, bit [48]

When VTCR_EL2.MSA == 1 and FEAT_HPDS2 is implemented:

HWU160

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HWU159, bit [47]

When VTCR_EL2.MSA == 1 and FEAT_HPDS2 is implemented:

HWU159

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR1_EL1.

0b0 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HWU062, bit [46]

When VTCR_EL2.MSA == 1 and FEAT_HPDS2 is implemented:

HWU062

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-213
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HWU061, bit [45]

When VTCR_EL2.MSA == 1 and FEAT_HPDS2 is implemented:

HWU061

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HWU060, bit [44]

When VTCR_EL2.MSA == 1 and FEAT_HPDS2 is implemented:

HWU060

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[60] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HWU059, bit [43]

When VTCR_EL2.MSA == 1 and FEAT_HPDS2 is implemented:

HWU059
G1-214 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1
translation table Block or Page entry for translations using TTBR0_EL1.

0b0 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry cannot be used by hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[59] of each stage 1 translation table Block or
Page entry can be used by hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HPD1, bit [42]

When VTCR_EL2.MSA == 1 and FEAT_HPDS is implemented:

HPD1

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR1_EL1.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When VTCR_EL2.MSA == 1 and FEAT_HPDS is implemented:

HPD0

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable,
and UXNTable, except NSTable, in the translation tables pointed to by TTBR0_EL1.

0b0 Hierarchical permissions are enabled.

0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HD, bit [40]

When VTCR_EL2.MSA == 1 and FEAT_HAFDBS is implemented:

HD
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-215
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Hardware management of dirty state in stage 1 translations from EL0 and EL1.

0b0 Stage 1 hardware management of dirty state disabled.

0b1 Stage 1 hardware management of dirty state enabled, only if the HA bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

HA, bit [39]

When VTCR_EL2.MSA == 1 and FEAT_HAFDBS is implemented:

HA

Hardware Access flag update in stage 1 translations from EL0 and EL1.

0b0 Stage 1 Access flag update disabled.

0b1 Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

TBI1, bit [38]

When VTCR_EL2.MSA == 1:

TBI1

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the
TTBR1_EL1 region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBR1_EL1. It has an effect whether the EL1&0 translation
regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID1 is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then
bits[63:56] of that target address are also set to 1 before the address is stored in the PC, in the
following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.
G1-216 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
TBI0, bit [37]

When VTCR_EL2.MSA == 1:

TBI0

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the
TTBR0_EL1 region, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be
translated by tables pointed to by TTBR0_EL1. It has an effect whether the EL1&0 translation
regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID0 is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then
bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the
following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

TBI0

Top Byte ignored. Indicates whether the top byte of an address is used for an address match for the
EL1 MPU regions, or ignored and used for tagged addresses.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1, where the address would be translated by the EL1
MPU.

If FEAT_PAuth is implemented and TCR_EL1.TBID0 is 1, then this field only applies to Data
accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then
bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the
following cases:

• A branch or procedure return within EL0 or EL1.

• An exception taken to EL1.

• An exception return to EL0 or EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AS, bit [36]

When VTCR_EL2.MSA == 1:

AS

ASID Size.

0b0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored by hardware for
every purpose except reading back the register, and are treated as if they are all zeros for
when used for allocation and matching entries in the TLB.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-217
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
0b1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used for allocation and
matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

AS

ASID Size.

0b0 8 bit - the upper 8 bits of TTBR0_EL1 are ignored by hardware for every purpose except
reading back the register, and are treated as if they are all zeros when used for address
matching.

0b1 16 bit - the upper 16 bits of TTBR0_EL1 are used for address matching.

If the implementation has only 8 bits of ASID, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

When VTCR_EL2.MSA == 1:

IPS

Intermediate Physical Address Size.

0b000 32 bits, 4GB.

0b001 36 bits, 64GB.

0b010 40 bits, 1TB.

0b011 42 bits, 4TB.

0b100 44 bits, 16TB.

0b101 48 bits, 256TB.

0b110 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not
rely on this property as the behavior of the reserved values might change in a future revision of the
architecture.

If the translation granule is not 64KB, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA
supports setting the value of 0b110 for the 64KB translation granule size or whether setting this value
behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated
as 0b110, then bits[51:48] of every translation table base address for the stage of translation
controlled by TCR_EL1 are 0b0000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
G1-218 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
TG1, bits [31:30]

When VTCR_EL2.MSA == 1:

TG1

Granule size for the TTBR1_EL1.

0b01 16KB.

0b10 4KB.

0b11 64KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH1, bits [29:28]

When VTCR_EL2.MSA == 1:

SH1

Shareability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Non-shareable.

0b10 Outer Shareable.

0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ORGN1, bits [27:26]

When VTCR_EL2.MSA == 1:

ORGN1

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-219
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
IRGN1, bits [25:24]

When VTCR_EL2.MSA == 1:

IRGN1

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EPD1, bit [23]

When VTCR_EL2.MSA == 1:

EPD1

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR1_EL1. The encoding of this bit is:

0b0 Perform translation table walks using TTBR1_EL1.

0b1 A TLB miss on an address that is translated using TTBR1_EL1 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

A1, bit [22]

When VTCR_EL2.MSA == 1:

A1

Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

0b0 TTBR0_EL1.ASID defines the ASID.

0b1 TTBR1_EL1.ASID defines the ASID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

T1SZ, bits [21:16]

When VTCR_EL2.MSA == 1:

T1SZ

The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G1-220 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
Otherwise:

Reserved, RES0.

TG0, bits [15:14]

When VTCR_EL2.MSA == 1:

TG0

Granule size for the TTBR0_EL1.

0b00 4KB

0b01 64KB

0b10 16KB

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then
the hardware will treat the field as if it has been programmed to an IMPLEMENTATION DEFINED
choice of the sizes that has been implemented for all purposes other than the value read back from
this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH0, bits [13:12]

When VTCR_EL2.MSA == 1:

SH0

Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

0b00 Non-shareable

0b10 Outer Shareable

0b11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior
is CONSTRAINED UNPREDICTABLE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ORGN0, bits [11:10]

When VTCR_EL2.MSA == 1:

ORGN0

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

0b00 Normal memory, Outer Non-cacheable.

0b01 Normal memory, Outer Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Outer Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Outer Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-221
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Otherwise:

Reserved, RES0.

IRGN0, bits [9:8]

When VTCR_EL2.MSA == 1:

IRGN0

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

0b00 Normal memory, Inner Non-cacheable.

0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate Cacheable.

0b10 Normal memory, Inner Write-Through Read-Allocate No Write-Allocate Cacheable.

0b11 Normal memory, Inner Write-Back Read-Allocate No Write-Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EPD0, bit [7]

When VTCR_EL2.MSA == 1:

EPD0

Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a
translation table walk is performed on a TLB miss, for an address that is translated using
TTBR0_EL1. The encoding of this bit is:

0b0 Perform translation table walks using TTBR0_EL1.

0b1 A TLB miss on an address that is translated using TTBR0_EL1 generates a Translation
fault. No translation table walk is performed.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

When VTCR_EL2.MSA == 1:

T0SZ

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and
the memory translation granule size, as described in the AArch64 Virtual Memory System
Architecture chapter.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing TCR_EL1

Accesses to this register use the following encodings in the System register encoding space:
G1-222 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
MRS <Xt>, TCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TCR_EL1;
elsif PSTATE.EL == EL2 then
 return TCR_EL1;

MSR TCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 TCR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-223
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.31 TCR_EL2, Translation Control Register (EL2)

The TCR_EL2 characteristics are:

Purpose

The control register for stage 1 of the EL2, or EL2&0, translation regime:

• When the Effective value of HCR_EL2.E2H is 0, this register controls stage 1 of the EL2
translation regime, that supports a single VA range, translated using TTBR0_EL2.

• When the value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0 translation
regime, that supports both:

— A lower VA range, translated using TTBR0_EL2.

— A higher VA range, translated using TTBR1_EL2.

Configurations

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

TCR_EL2 is a 64-bit register.

Field descriptions

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

Bit [30]

Reserved, RES0.

TBID, bit [29]

When FEAT_PAuth is implemented:

TBID

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform
address translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

0b0 TCR_EL2.TBI applies to Instruction and Data accesses.

0b1 TCR_EL2.TBI applies to Data accesses only.

This affects addresses where the address would be translated by EL2 MPU.

RES0

63 32

31 30 29

RES0

28 24 23

RES0

22 21 20

RES0

19 0

RES1 TBID
RES0

RES1 TBI
G1-224 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [28:24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

Bits [22:21]

Reserved, RES0.

TBI, bit [20]

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the EL2
MPU regions, or ignored and used for tagged addresses.

For more information, see 'Address tagging in AArch64 state'.

0b0 Top Byte used in the address calculation.

0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by
the EL2 MPU. It has an effect whether the EL2 translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data
accesses.

If the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is
stored in the PC, in the following cases:

• A branch or procedure return within EL2.

• An exception taken to EL2.

• An exception return to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

Accessing TCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return TCR_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b010
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-225
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR TCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 TCR_EL2 = X[t];

MRS <Xt>, TCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TCR_EL1;
elsif PSTATE.EL == EL2 then
 return TCR_EL1;

MSR TCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 TCR_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b010
G1-226 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.32 TTBR0_EL1, Translation Table Base Register 0 (EL1)

The TTBR0_EL1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the lower VA range in the EL1&0 translation regime, and other information for this
translation regime.

Configurations

There are no configuration notes.

Attributes

TTBR0_EL1 is a 64-bit register.

Field descriptions

ASID, bits [63:48]

When VTCR_EL2.MSA == 1:

ASID

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

ASID

An ASID for addresses defined by the current EL1 MPU configuration.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BADDR[47:1], bits [47:1]

When VTCR_EL2.MSA == 1:

BADDR[47:1]

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-227
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Address bit x is the minimum address bit required to align the translation table to the size of the
table. The smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture
chapter describes how x is calculated based on the value of TCR_EL1.T0SZ, the translation stage,
and the translation granule size.

Note

A translation table is required to be aligned to the size of the table. If a table contains fewer than
eight entries, it must be aligned on a 64 byte address boundary.

If the value of TCR_EL1.IPS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

• When x>6, register bits[(x-1):6] are RES0.

Note

TCR_EL1.IPS==0b110 is permitted when FEAT_LPA is implemented and the 64KB translation
granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR0_EL1, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CnP, bit [0]

When VTCR_EL2.MSA == 1 and FEAT_TTCNP is implemented:

CnP

Common not Private. This bit indicates whether each entry that is pointed to by TTBR0_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR0_EL1.CnP is 1.

0b0 The translation table entries pointed to by TTBR0_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBR0_EL1
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR0_EL1.CnP on those other PEs.

• The value of the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.
G1-228 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
0b1 The translation table entries pointed to by TTBR0_EL1 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR0_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR0_EL1.

• The translation tables relate to the same translation regime.

• The ASID is the same as the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This bit is permitted to be cached in a TLB.

When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the TTBR0_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR0_EL1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When VTCR_EL2.MSA == 0:

Reserved, RES0.

Otherwise:

Reserved, RES0.

Accessing TTBR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TTBR0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return TTBR0_EL1;
elsif PSTATE.EL == EL2 then
 return TTBR0_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-229
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
MSR TTBR0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 TTBR0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 TTBR0_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b000
G1-230 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.33 VSCTLR_EL2, Virtualization System Control Register (EL2)

The VSCTLR_EL2 characteristics are:

Purpose

Provides configuration information for VMSAv8-64 and PMSAv8-64 virtualization using stage 2
of EL1&0 translation regime.

Configurations

There are no configuration notes.

Attributes

VSCTLR_EL2 is a 64-bit register.

Field descriptions

VMID[15:8], bits [63:56]

When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1:

VMID[15:8]

Extension to VMID[7:0]. For more information, see VSCTLR_EL2.VMID[7:0].

If the implementation has an 8-bit VMID, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [55:48]

The VMID for the EL1-Guest-OS.

The VMID is 8 bits when any of the following are true:

• The VTCR_EL2.VS is 0.

• FEAT_VMID16 is not implemented.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:1]

Reserved, RES0.

CnP, bit [0]

When FEAT_TTCNP is implemented and VTCR_EL2.MSA == 1:

CnP

VMID[15:8]

63 56

VMID[7:0]

55 48

RES0

47 32

RES0

31 1 0

CnP
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-231
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Common not Private. This bit indicates whether stage 2 of EL1&0 translations are a member of a
common set that can be used by every PE in the Inner Shareable domain for which the value of
VSCTLR_EL2.CnP is 1.

0b0 The stage 2 translations of the EL1&0 translation regime are permitted to differ in other
PEs in the Inner Shareable domain. This is not affected by the value of the current
VMID.

0b1 The stage 2 translations of the EL1&0 translation regime are the same for every other
PE in the Inner Shareable domain for which the value of VSCTLR_EL2.CnP is 1 and
the VMID is the same as the current VMID.

Note

If the value of VSCTLR_EL2.CnP bit is 1 on multiple PEs in the same Inner Shareable domain and
the stage 2 EL1&0 translation does not point to the same configurations when using the current
VMID, then the results of the translations are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED
UNPREDICTABLE behaviors due to caching of control or data values'.

In an implementation that does not support VMSAv8-64 at stage 1 EL1&0 translation regime this
field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing VSCTLR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSCTLR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VSCTLR_EL2;

MSR VSCTLR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VSCTLR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0000 0b000
G1-232 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.34 VSTCR_EL2, Virtualization Secure Translation Control Register

The VSTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the Secure EL1&0 translation regime.

Configurations

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to
VSTCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VSTCR_EL2 is a 64-bit register.

Field descriptions

Any of the bits in VSTCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

Bit [31]

Reserved, RES1.

SA, bit [30]

Secure stage 2 translation output address space.

0b0 All stage 2 translations for the Secure PA space access the Secure PA space.

0b1 All stage 2 translations for the Secure PA space access the Non-secure PA space.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [29:21]

Reserved, RES0.

SC, bit [20]

NS check enable bit.

0b0 Least secure NS configuration is selected from the stage 1 and stage 2 EL1&0
translation regime for the given address.

0b1 Stage 2 NS configuration is checked against stage 1 NS configuration in EL1&0
translation regime for the given address, and generate a fault if they are different.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

RES0

63 32

31

SA

30

RES0

29 21

SC

20

RES0

19 0

RES1
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-233
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
Accessing VSTCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VSTCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 return VSTCR_EL2;

MSR VSTCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if !IsSecure() then
 UNDEFINED;
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if !IsSecure() then
 UNDEFINED;
 else
 VSTCR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0110 0b010
G1-234 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
G1.3.35 VTCR_EL2, Virtualization Translation Control Register

The VTCR_EL2 characteristics are:

Purpose

The control register for stage 2 of the EL1&0 translation regime.

Configurations

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

VTCR_EL2 is a 64-bit register.

Field descriptions

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Bits [63:32]

Reserved, RES0.

MSA, bit [31]

When ID_AA64MMFR0_EL1.MSA_frac == 0b0010:

MSA

Stage 1 EL1&0 translation regime memory system architecture.

0b0 Stage 1 EL1&0 translation regime uses PMSAv8-64 memory architecture.

0b1 Stage 1 EL1&0 translation regime uses VMSAv8-64 memory architecture.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When ID_AA64MMFR0_EL1.MSA_frac == 0b0001:

Reserved, RES0.

Otherwise:

Reserved, RES1.

NSA, bit [30]

When FEAT_SEL2 is implemented:

NSA

Non-secure stage 2 translation output address space.

0b0 All stage 2 translations for the Non-secure PA space of the Secure EL1&0 translation
regime access the Secure PA space.

0b1 All stage 2 translations for the Non-secure PA space of the Secure EL1&0 translation
regime access the Non-secure PA space.

This bit behaves as 1 for all purposes other than reading back the value of the bit when the value of
VSTCR_EL2.SA is 1.

RES0

63 32

31 30

RES0

29 20

VS

19

RES0

18 0

MSA NSA
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-235
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.3 General system control registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:20]

Reserved, RES0.

VS, bit [19]

When FEAT_VMID16 is implemented:

VS

VMID Size.

0b0 8-bit VMID. The upper 8 bits of VSCTLR_EL2 are ignored by the hardware, and
treated as if they are all zeros, for every purpose except when reading back the register.

0b1 16-bit VMID. The upper 8 bits of VSCTLR_EL2 are used for allocation and matching
in the TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [18:0]

Reserved, RES0.

Accessing VTCR_EL2

Any of the bits in VTCR_EL2 are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, VTCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return VTCR_EL2;

MSR VTCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b0010 0b0001 0b010
G1-236 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.3 General system control registers
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 VTCR_EL2 = X[t];

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-237
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers
G1.4 Debug registers

This section lists the Debug System registers in Armv8-R AArch64, in alphabetical order.
G1-238 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.4 Debug registers
G1.4.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_EL1.

Configurations

AArch64 System register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to External
register DBGBCR<n>_EL1[31:0].

If breakpoint n is not implemented, accesses to this register are UNDEFINED.

Attributes

DBGBCR<n>_EL1 is a 64-bit register.

Field descriptions

Bits [63:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0b0000 Unlinked instruction address match. DBGBVR<n>_EL1 is the address of an
instruction.

0b0001 As 0b0000, but linked to a Context matching breakpoint.

0b0010 Unlinked Context ID match. When FEAT_VHE is implemented, EL2 is using
AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing
at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL2 value. Otherwise,
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL1 value

0b0011 As 0b0010, with linking enabled.

0b0110 Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1.

0b0111 As 0b0110, with linking enabled.

0b1000 Unlinked VMID match. DBGBVR<n>_EL1.VMID is a VMID compared against
VSCTLR_EL2.VMID.

0b1001 As 0b1000, with linking enabled.

0b1010 Unlinked VMID and Context ID match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a VMID
compared against VSCTLR_EL2.VMID.

0b1011 As 0b1010, with linking enabled.

0b1100 Unlinked CONTEXTIDR_EL2 match. DBGBVR<n>_EL1.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

0b1101 As 0b1100, with linking enabled.

RES0

63 32

RES0

31 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

RES1

8 5

RES0

4 3

PMC

2 1

E

0

HMC
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-239
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers
0b1110 Unlinked Full Context ID match. DBGBVR<n>_EL1.ContextID is compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110, with linking enabled.

All other values are reserved. Constraints on breakpoint programming mean other values are
reserved under some conditions.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions'.

For more information on the effect of programming the fields to a reserved value, see 'Reserved
DBGBCR<n>_EL1.BT values'.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions'.

For more information on the effect of programming the fields to a reserved set of values, see
'Execution conditions for which a breakpoint generates Breakpoint exceptions'.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions'.

For more information, see DBGBCR<n>_EL1.SSC.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.
G1-240 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.4 Debug registers
Bits [12:9]

Reserved, RES0.

Bits [8:5]

Reserved, RES1.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated.

The fields that indicate when the breakpoint can be generated are: HMC, PMC, and SSC. These
fields must be considered in combination, and the values that are permitted for these fields are
constrained.

For more information on the operation of these fields, see 'Execution conditions for which a
breakpoint generates Breakpoint exceptions'.

For more information, see DBGBCR<n>_EL1.SSC.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1.

0b0 Breakpoint disabled.

0b1 Breakpoint enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing DBGBCR<n>_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DBGBCR<n>_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 return DBGBCR_EL1[UInt(CRm<3:0>)];

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b101
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-241
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers
MSR DBGBCR<n>_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
 Halt(DebugHalt_SoftwareAccess);
 else
 DBGBCR_EL1[UInt(CRm<3:0>)] = X[t];

op0 op1 CRn CRm op2

0b10 0b000 0b0000 n[3:0] 0b101
G1-242 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.4 Debug registers
G1.4.2 MDCR_EL2, Monitor Debug Configuration Register (EL2)

The MDCR_EL2 characteristics are:

Purpose

Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.

Configurations

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MDCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:20]

Reserved, RES0.

TTRF, bit [19]

When FEAT_TRF is implemented:

TTRF

Traps use of the Trace Filter Control registers at EL1 to EL2, as follows:

• Access to TRFCR_EL1 is trapped to EL2, reported using EC syndrome value 0x18.

0b0 Accesses to TRFCR_EL1 and TRFCR at EL1 are not affected by this control.

0b1 Accesses to TRFCR_EL1 and TRFCR at EL1 generate a trap exception to EL2 when
EL2 is enabled in the current Security state.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]

When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

HPMD

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

0b0 Event counting and PMCCNTR_EL0 are not affected by this mechanism.

0b1 Event counting by some event counters is prohibited at EL2. If PMCR_EL0.DP is 1,
PMCCNTR_EL0 is disabled at EL2. Otherwise, PMCCNTR_EL0 is not affected by
this mechanism.

RES0

63 32

RES0

31 20 19 18 17

RES0

16 12 11 10 9 8 7 6 5

HPMN

4 0

TTRF HPMD
RES0

TDRA
TDOSA

TDA

TPMCR
TPM

HPME
TDE
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-243
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers
If MDCR_EL2.HPMN is not 0, this field affects the operation of event counters in the range [0 ..
(MDCR_EL2.HPMN-1)].

This field does not affect the operation of other event counters.

If PMCR_EL0.DP is 1, this field affects PMCCNTR_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When FEAT_PMUv3p1 is implemented:

HPMD

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

0b0 Event counting and PMCCNTR_EL0 are not affected by this mechanism.

0b1 If ExternalSecureNoninvasiveDebugEnabled () is FALSE, event counting by some event
counters is prohibited at EL2, and if PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled
at EL2.

If ExternalSecureNoninvasiveDebugEnabled () is TRUE, this feid does not affect the event counters
and does not affect PMCCNTR_EL0.

Otherwise:

• If MDCR_EL2.HPMN is not 0, this field affects the operation of event counters in the range
[0 .. (MDCR_EL2.HPMN-1)].

• This field does not affect the operation of other event counters.

• If PMCR_EL0.DP is 1, this field affects PMCCNTR_EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps System register accesses to the Debug ROM
registers to EL2 when EL2 is enabled in the current Security state as follows:

• If EL1 is using AArch64 state, accesses to MDRAR_EL1 are trapped to EL2, reported using
EC syndrome value 0x18.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 System register accesses to the Debug ROM registers are trapped to EL2
when EL2 is enabled in the current Security state, unless it is trapped by
DBGDSCREXT.UDCCdis or MDSCR_EL1.TDCC.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.

Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped
external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G1-244 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.4 Debug registers
TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

TDOSA

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug
registers to EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, and DBGPRCR_EL1.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 System register accesses to the powerdown debug registers are trapped to EL2
when EL2 is enabled in the current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

TDOSA

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug
registers to EL2, from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.

— Any IMPLEMENTATION DEFINED register with similar functionality that the
implementation specifies as trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 are trapped.

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 System register accesses to the powerdown debug registers are trapped to EL2
when EL2 is enabled in the current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1.

• HCR_EL2.TGE == 1.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-245
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers
Note

EL2 does not provide traps on debug register accesses through the optional memory-mapped
external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register
access is trapped to EL2, no side-effects occur before the exception is taken to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL0 and EL1 System register accesses to debug System registers that are
not trapped by MDCR_EL2.TDRA or MDCR_EL2.TDOSA, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 reported using EC
syndrome value 0x18:

— MDCCSR_EL0, MDCCINT_EL1, OSDTRRX_EL1, MDSCR_EL1,
OSDTRTX_EL1, OSECCR_EL1, DBGBVR<n>_EL1, DBGBCR<n>_EL1,
DBGWVR<n>_EL1, DBGWCR<n>_EL1, DBGCLAIMSET_EL1,
DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1.

— When not in Debug state, DBGDTR_EL0, DBGDTRRX_EL0, DBGDTRTX_EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 or EL1 System register accesses to the debug registers are trapped from both
Execution states to EL2 when EL2 is enabled in the current Security state, unless the
access generates a higher priority exception.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are
ignored in Debug state.

This field is treated as being 1 for all purposes other than a direct read when one or more of the
following are true:

• MDCR_EL2.TDE == 1

• HCR_EL2.TGE == 1

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDE, bit [8]

Trap Debug Exceptions. Controls routing of Debug exceptions, and defines the debug target
Exception level, ELD.

0b0 The debug target Exception level is EL1.

0b1 If EL2 is enabled for the current Effective value of SCR_EL3.NS, the debug target
Exception level is EL2, otherwise the debug target Exception level is EL1.

The MDCR_EL2.{TDRA, TDOSA, TDA} fields are treated as being 1 for all purposes
other than returning the result of a direct read of the register.

For more information, see 'Routing debug exceptions'.

This field is treated as being 1 for all purposes other than a direct read when HCR_EL2.TGE == 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HPME, bit [7]

When FEAT_PMUv3 is implemented:

HPME

[MDCR_EL2.HPMN..(N-1)] event counters enable.

0b0 Event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are disabled.
G1-246 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.4 Debug registers
0b1 Event counters in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are enabled by
PMCNTENSET_EL0.

If MDCR_EL2.HPMN is less than PMCR_EL0.N, this field affects the operation of event counters
in the range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

TPM

Trap Performance Monitors accesses. Traps EL0 and EL1 accesses to all Performance Monitor
registers to EL2 when EL2 is enabled in the current Security state, from both Execution states, as
follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

— PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0,
PMSWINC_EL0, PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0,
PMCCNTR_EL0, PMXEVTYPER_EL0, PMXEVCNTR_EL0, PMUSERNR_EL0,
PMINTENSET_EL1, PMINTENCLR_EL1, PMOVSSET_EL0,
PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

— If FEAT_PMUv3p4 is implemented, PMMIR_EL1

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to all Performance Monitor registers are trapped to EL2 when
EL2 is enabled in the current Security state.

Note
EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When FEAT_PMUv3 is implemented:

TPMCR

Trap PMCR_EL0 or PMCR accesses. Traps EL0 and EL1 accesses to EL2, when EL2 is enabled in
the current Security state, as follows:

• In AArch64 state, accesses to PMCR_EL0 are trapped to EL2, reported using EC syndrome
value 0x18.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 and EL1 accesses to the PMCR_EL0 or PMCR are trapped to EL2 when EL2 is
enabled in the current Security state, unless it is trapped by PMUSERENR.EN or
PMUSERNR_EL0.EN.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-247
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers
Note

EL2 does not provide traps on Performance Monitor register accesses through the optional
memory-mapped external debug interface.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]

When FEAT_PMUv3 is implemented:

HPMN

Defines the number of event counters that are accessible from EL3, EL2, EL1, and from EL0 if
permitted.

If HPMN is not 0 and is less than PMCR_EL0.N, HPMN divides the Performance Monitors into a
first range [0..(HPMN-1)], and a second range [HPMN..(PMCR_EL0.N-1)].

If HPMN is equal to PMCR_EL0.N, all event counters are in the first range and none are in the
second range.

For an event counter <n> in the first range:

• The counter is accessible from EL1, EL2, and EL3.

• The counter is accessible from EL0 if permitted by PMUSERNR_EL0 or PMUSERENR.

• PMCR_EL0.E and PMCNTENSET_EL0[n] enable the operation of event counter n.

For an event counter <n> in the second range:

• The counter is accessible from EL2 and EL3.

• If EL2 is disabled in the current Security state, the event counter is also accessible from EL1,
and from EL0 if permitted by PMUSERNR_EL0.

• MDCR_EL2.HPME and PMCNTENSET_EL0[n] enable the operation of event counter n.

If HPMN is 0, or larger than PMCR_EL0.N, the following CONSTRAINED UNPREDICTABLE
behaviors apply:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.

• Either:

— An UNKNOWN number of counters are reserved for EL2 and EL3 use. That is, the PE
behaves as if MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than or
equal to PMCR_EL0.N.

— All counters are reserved for EL2 and EL3 use, meaning no counters are accessible
from EL1 and EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to the value in PMCR_EL0.N.

Otherwise:

Reserved, RES0.

Accessing MDCR_EL2

Accesses to this register use the following encodings in the System register encoding space:
G1-248 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.4 Debug registers
MRS <Xt>, MDCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 return MDCR_EL2;

MSR MDCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 MDCR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b001
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-249
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers
G1.4.3 MDSCR_EL1, Monitor Debug System Control Register

The MDSCR_EL1 characteristics are:

Purpose

Main control register for the debug implementation.

Configurations

There are no configuration notes.

Attributes

MDSCR_EL1 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TFO, bit [31]

When FEAT_TRF is implemented:

TFO

Trace Filter override. Used for save/restore of EDSCR.TFO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this
bit are indirect accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

Used for save/restore of EDSCR.RXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this
bit are indirect accesses to EDSCR.RXfull.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

RES0

63 32

31 30 29 28 27 26

RES0

25 24 23 22 21

RES0

20 19

RAZ/WI

18 16 15 14 13 12

RES0

11 7 6

RES0

5 1

SS

0

TFO
RXfull

TXfull
RES0

TDA
INTdis

TXU
RXO

MDE
HDE

TDCC
KDE

ERR
G1-250 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.4 Debug registers
TXfull, bit [29]

Used for save/restore of EDSCR.TXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this
bit are indirect accesses to EDSCR.TXfull.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this
bit are indirect accesses to EDSCR.RXO.

When OSLSR_EL1.OSLK == 1, if bits [27,6] of the value written to MDSCR_EL1 are {1,0}, that
is, the RXO bit is 1 and the ERR bit is 0, the PE sets EDSCR.{RXO,ERR} to UNKNOWN values.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this
bit are indirect accesses to EDSCR.TXU.

When OSLSR_EL1.OSLK == 1, if bits [26,6] of the value written to MDSCR_EL1 are {1,0}, that
is, the TXU bit is 1 and the ERR bit is 0, the PE sets EDSCR.{TXU,ERR} to UNKNOWN values.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When OSLSR_EL1.OSLK == 0, and software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this field holds the value of EDSCR.INTdis. Reads and writes of
this field are indirect accesses to EDSCR.INTdis.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-251
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers
Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this
bit are indirect accesses to EDSCR.TDA.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [20:19]

Reserved, RES0.

Bits [18:16]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as
zero, and must use a read-modify-write sequence to write to the register.

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.

0b1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this
bit are indirect accesses to EDSCR.HDE.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

KDE, bit [13]

Local (kernel) debug enable. If ELD is using AArch64, enable debug exceptions within ELD.
Permitted values are:

0b0 Debug exceptions, other than Breakpoint Instruction exceptions, disabled within ELD.

0b1 All debug exceptions enabled within ELD.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.
G1-252 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.4 Debug registers
TDCC, bit [12]

Traps EL0 accesses to the Debug Communication Channel (DCC) registers to EL1, or to EL2 when
it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both
Execution states, as follows:

• In AArch64 state, MRS or MSR accesses to the following DCC registers are trapped,
reported using EC syndrome value 0x18:

— MDCCSR_EL0.

— If not in Debug state, DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0.

0b0 This control does not cause any instructions to be trapped.

0b1 EL0 using AArch64: EL0 accesses to the AArch64 DCC registers are trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this
bit are indirect accesses to EDSCR.ERR.

The reset behavior of this field is:

• The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.

• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [5:1]

Reserved, RES0.

SS, bit [0]

Software step control bit. If ELD is using AArch64, enable Software step. Permitted values are:

0b0 Software step disabled

0b1 Software step enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MDSCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDSCR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.<TDE,TDA> != '00' then

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b010
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-253
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.4 Debug registers
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return MDSCR_EL1;
elsif PSTATE.EL == EL2 then
 return MDSCR_EL1;

MSR MDSCR_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.<TDE,TDA> != '00' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 MDSCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 MDSCR_EL1 = X[t];

op0 op1 CRn CRm op2

0b10 0b000 0b0000 0b0010 0b010
G1-254 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
G1.5 Performance Monitors registers

This section lists the Performance Monitoring registers in Armv8-R AArch64, in alphabetical order.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-255
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
G1.5.1 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configurations

AArch64 System register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to External
register PMCCFILTR_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCCFILTR_EL0 are UNDEFINED.

Attributes

PMCCFILTR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

0b0 Count cycles in EL1.

0b1 Do not count cycles in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

0b0 Count cycles in EL0.

0b1 Do not count cycles in EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [29:28]

Reserved, RES0.

NSH, bit [27]

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

0b0 Do not count cycles in EL2.

0b1 Count cycles in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

P

31

U

30

RES0

29 28 27

RES0

26 0

NSH
G1-256 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
Bits [26:0]

Reserved, RES0.

Accessing PMCCFILTR_EL0

PMCCFILTR_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to 0b11111.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCCFILTR_EL0

if PSTATE.EL == EL0 then
 if PMUSERENR_EL0.EN == '0' then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return PMCCFILTR_EL0;
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return PMCCFILTR_EL0;
elsif PSTATE.EL == EL2 then
 return PMCCFILTR_EL0;

MSR PMCCFILTR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if PMUSERENR_EL0.EN == '0' then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 PMCCFILTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 PMCCFILTR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 PMCCFILTR_EL0 = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b1111 0b111

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b1111 0b111
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-257
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
G1.5.2 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

AArch64 System register PMCR_EL0 bits [7:0] are architecturally mapped to External register
PMCR_EL0[7:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMCR_EL0 are UNDEFINED.

Attributes

PMCR_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

IMP, bits [31:24]

Implementer code.

If this field is zero, then PMCR_EL0.IDCODE is RES0 and software must use MIDR_EL1 to
identify the PE.

Otherwise, this field and PMCR_EL0.IDCODE identify the PMU implementation to software. The
implementer codes are allocated by Arm. A non-zero value has the same interpretation as
MIDR_EL1.Implementer.

Use of this field is deprecated.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

IDCODE, bits [23:16]

When PMCR_EL0.IMP != 0b00000000:

IDCODE

Identification code. Use of this field is deprecated.

Each implementer must maintain a list of identification codes that are specific to the implementer.
A specific implementation is identified by the combination of the implementer code and the
identification code.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

RES0

63 32

IMP

31 24

IDCODE

23 16

N

15 11

RES0

10 7 6

DP

5

X

4 3

C

2

P

1

E

0

RES1 RES0
G1-258 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111.
If the value is 0b00000, then only PMCCNTR_EL0 is implemented. If the value is 0b11111, then
PMCCNTR_EL0 and 31 event counters are implemented.

When EL2 is implemented and enabled for the current Security state, reads of this field from EL1
and EL0 return the value of MDCR_EL2.HPMN.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Bits [10:7]

Reserved, RES0.

Bit [6]

Reserved, RES1.

DP, bit [5]

When FEAT_PMUv3p1 is implemented:

DP

Disable cycle counter when event counting is prohibited.

0b0 Cycle counting by PMCCNTR_EL0 is not affected by this mechanism.

0b1 Cycle counting by PMCCNTR_EL0 is disabled in prohibited regions:

• If FEAT_PMUv3p1 is implemented, EL2 is implemented, and
MDCR_EL2.HPMD is 1, then cycle counting by PMCCNTR_EL0 is disabled at
EL2.

• If FEAT_PMUv3p7 is implemented, EL3 is implemented and using AArch64,
and MDCR_EL3.MPMX is 1, then cycle counting by PMCCNTR_EL0 is
disabled at EL3.

• If EL3 is implemented, MDCR_EL3.SPME is 0, and either FEAT_PMUv3p7 is
not implemented or MDCR_EL3.MPMX is 0, then cycle counting by
PMCCNTR_EL0 is disabled at EL3 and in Secure state.

If MDCR_EL2.HPMN is not 0, this is when event counting by event counters in the
range [0..(MDCR_EL2.HPMN-1)] is prohibited.

For more information see 'Prohibiting event and cycle counting'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

X

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

0b0 Do not export events.

0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-259
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bit [3]

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

0b0 No action.

0b1 Reset PMCCNTR_EL0 to zero.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset.

In the description of this field:

• If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

• If EL2 is not implemented, PMN is PMCR_EL0.N.

0b0 No action.

0b1 If n is in the range of affected event counters, resets each event counter
PMEVCNTR<n>_EL0 to zero.

The effects of writing to this bit are:

• If EL2 is implemented and enabled in the current Security state, in EL0 and EL1, if PMN is
not 0, a write of 1 to this bit resets event counters in the range [0 .. (PMN-1)].

• If EL2 is disabled in the current Security state, a write of 1 to this bit resets all the event
counters.

• In EL2 and EL3, a write of 1 to this bit resets all the event counters.

• This field does not affect the operation of other event counters and PMCCNTR_EL0.

Note

Resetting the event counters does not change the event counter overflow bits.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

If EL2 is implemented and is using AArch64, PMN is MDCR_EL2.HPMN.

If EL2 is not implemented, PMN is PMCR_EL0.N.

0b0 PMCCNTR_EL0 is disabled and event counters PMEVCNTR<n>_EL0, where n is in
the range of affected event counters, are disabled.

0b1 PMCCNTR_EL0 and event counters PMEVCNTR<n>_EL0, where n is in the range of
affected event counters, are enabled by PMCNTENSET_EL0.

If PMN is not 0, this field affects the operation of event counters in the range [0 .. (PMN-1)].

This field does not affect the operation of other event counters.

The operation of this field applies even when EL2 is disabled in the current Security state.
G1-260 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing PMCR_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMCR_EL0

if PSTATE.EL == EL0 then
 if PMUSERENR_EL0.EN == '0' then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return PMCR_EL0;
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return PMCR_EL0;
elsif PSTATE.EL == EL2 then
 return PMCR_EL0;

MSR PMCR_EL0, <Xt>

if PSTATE.EL == EL0 then
 if PMUSERENR_EL0.EN == '0' then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 PMCR_EL0 = X[t];
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif MDCR_EL2.TPMCR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b000

op0 op1 CRn CRm op2

0b11 0b011 0b1001 0b1100 0b000
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-261
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
 PMCR_EL0 = X[t];
elsif PSTATE.EL == EL2 then
 PMCR_EL0 = X[t];

G1-262 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
G1.5.3 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to
External register PMEVTYPER<n>_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to
PMEVTYPER<n>_EL0 are UNDEFINED.

Attributes

PMEVTYPER<n>_EL0 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

0b0 Count events in EL1.

0b1 Do not count events in EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

0b0 Count events in EL0.

0b1 Do not count events in EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [29:28]

Reserved, RES0.

NSH, bit [27]

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

0b0 Do not count events in EL2.

0b1 Count events in EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

P

31

U

30

RES0

29 28 27 26

MT

25

RES0

24 16 15 10

evtCount[9:0]

9 0

NSH RES0 evtCount[15:10]
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-263
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
Bit [26]

Reserved, RES0.

MT, bit [25]

When an IMPLEMENTATION DEFINED multi-threaded PMU extension is implemented:

MT

Multithreading.

0b0 Count events only on controlling PE.

0b1 Count events from any PE with the same affinity at level 1 and above as this PE.

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted,
meaning if FEAT_MTPMU is not implemented, this field is RES0. See
ID_AA64DFR0_EL1.MTPMU.

This field is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and
Disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

evtCount[15:10]

Extension to evtCount[9:0]. For more information, see evtCount[9:0].

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count.

The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU
event number space'.

If PMEVTYPER<n>_EL0.evtCount is programmed to an event that is reserved or not supported by
the PE, the behavior depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted and the value returned by a direct or
external read of the PMEVTYPER<n>_EL0.evtCount field is the value written to the field.

• If FEAT_PMUv3p1 is implemented, for the range 0x4000 to 0x403F, no events are counted and
the value returned by a direct or external read of the PMEVTYPER<n>_EL0.evtCount field
is the value written to the field.

• For other values, it is UNPREDICTABLE what event, if any, is counted and the value returned
by a direct or external read of the PMEVTYPER<n>_EL0.evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.
G1-264 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
Arm recommends that for all values that represent reserved or unsupported events, no events are
counted and the value returned by a direct or external read of the PMEVTYPER<n>_EL0.evtCount
field is the value written to the field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing PMEVTYPER<n>_EL0

PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.

If <n> is greater than or equal to the number of accessible event counters, then reads and writes of
PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.

• Accesses to the register behave as RAZ/WI.

• Accesses to the register execute as a NOP.

• Accesses to the register behave as if <n> is an UNKNOWN value less-than-or-equal-to the index of the highest
accessible event counter.

• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERNR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies
the number of accessible event counters. Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, see MDCR_EL2.HPMN.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMEVTYPER<n>_EL0

if PSTATE.EL == EL0 then
 if PMUSERENR_EL0.EN == '0' then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then
 return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b11:n[4:3] n[2:0]
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G1-265
ID120821 Non-Confidential

System Registers in a PMSA Implementation
G1.5 Performance Monitors registers
MSR PMEVTYPER<n>_EL0, <Xt>

if PSTATE.EL == EL0 then
 if PMUSERENR_EL0.EN == '0' then
 if HCR_EL2.TGE == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 AArch64.SystemAccessTrap(EL1, 0x18);
 elsif MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL1 then
 if MDCR_EL2.TPM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then
 PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b11:n[4:3] n[2:0]
G1-266 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Chapter G2
System Registers in a VMSA Implementation

This chapter describes the System registers in a VMSA implementation. It contains the following section:

• General system control registers on page G2-268.

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G2-267
ID120821 Non-Confidential

System Registers in a VMSA Implementation
G2.1 General system control registers
G2.1 General system control registers

This section lists the System registers in a VMSA implementation of Armv8-R AArch64.
G2-268 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a VMSA Implementation
G2.1 General system control registers
G2.1.1 TTBR1_EL1, Translation Table Base Register 1 (EL1)

The TTBR1_EL1 characteristics are:

Purpose

Holds the base address of the translation table for the initial lookup for stage 1 of the translation of
an address from the higher VA range in the EL1&0 stage 1 translation regime, and other information
for this translation regime.

Configurations

This register is present only when architecture implements VMSA extension. Otherwise, direct
accesses to TTBR1_EL1 are UNDEFINED.

In a PMSAv8-64 only implementation, this register is UNDEFINED.

Attributes

TTBR1_EL1 is a 64-bit register.

Field descriptions

ASID, bits [63:48]

When VTCR_EL2.MSA == 1:

An ASID for the translation table base address. The TCR_EL1.A1 field selects either
TTBR0_EL1.ASID or TTBR1_EL1.ASID.

If the implementation has only 8 bits of ASID, then the upper 8 bits of this field are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BADDR, bits [47:1]

When VTCR_EL2.MSA == 1:

Translation table base address:

• Bits A[47:x] of the stage 1 translation table base address bits are in register bits[47:x].

• Bits A[(x-1):0] of the stage 1 translation table base address are zero.

Address bit x is the minimum address bit required to align the translation table to the size of the
table. The smallest permitted value of x is 6. The AArch64 Virtual Memory System Architecture
chapter describes how x is calculated based on the value of TCR_EL1.T1SZ, the translation stage,
and the translation granule size.

Note

A translation table is required to be aligned to the size of the table. If a table contains fewer than
eight entries, it must be aligned on a 64 byte address boundary.

If the value of TCR_EL1.IPS is not 0b110, then:

• Register bits[(x-1):1] are RES0.

ASID

63 48

BADDR[47:1]

47 32

BADDR[47:1]

31 1 0

CnP
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G2-269
ID120821 Non-Confidential

System Registers in a VMSA Implementation
G2.1 General system control registers
• If the implementation supports 52-bit PAs and IPAs, then bits A[51:48] of the stage 1
translation table base address are 0b0000.

If FEAT_LPA is implemented and the value of TCR_EL1.IPS is 0b110, then:

• Bits A[51:48] of the stage 1 translation table base address bits are in register bits[5:2].

• Register bit[1] is RES0.

• When x>6, register bits[(x-1):6] are RES0.

Note
TCR_EL1.IPS==0b110 is permitted when FEAT_LPA is implemented and the 64KB translation
granule is used.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the implementation does not
support a 52 bit PA size, if a translation table lookup uses this register when the Effective value of
TCR_EL1.IPS is 0b110 and the value of register bits[5:2] is nonzero, an Address size fault is
generated.

If any register bit[47:1] that is defined as RES0 has the value 1 when a translation table walk is done
using TTBR1_EL1, then the translation table base address might be misaligned, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

• Bits A[(x-1):0] of the stage 1 translation table base address are treated as if all the bits are
zero. The value read back from the corresponding register bits is either the value written to
the register or zero.

• The result of the calculation of an address for a translation table walk using this register can
be corrupted in those bits that are nonzero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CnP, bit [0]

When VTCR_EL2.MSA == 1 and FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by TBR1_EL1 is a
member of a common set that can be used by every PE in the Inner Shareable domain for which the
value of TTBR1_EL1.CnP is 1.

0b0 The translation table entries pointed to by TTBR1_EL1, for the current translation
regime and ASID, are permitted to differ from corresponding entries for TTBR1_EL1
for other PEs in the Inner Shareable domain. This is not affected by:

• The value of TTBR1_EL1.CnP on those other PEs.

• The value of the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

0b1 The translation table entries pointed to by TTBR1_EL1 are the same as the translation
table entries for every other PE in the Inner Shareable domain for which the value of
TTBR1_EL1.CnP is 1 and all of the following apply:

• The translation table entries are pointed to by TTBR1_EL1.

• The translation tables relate to the same translation regime.

• The ASID is the same as the current ASID.

• If EL2 is implemented and enabled in the current Security state, the value of the
current VMID.

This bit is permitted to be cached in a TLB.
G2-270 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

System Registers in a VMSA Implementation
G2.1 General system control registers
When a TLB combines entries from stage 1 translation and stage 2 translation into a single entry,
that entry can only be shared between different PEs if the value of the CnP bit is 1 for both stage 1
and stage 2.

Note

If the value of the TTBR1_EL1.CnP bit is 1 on multiple PEs in the same Inner Shareable domain
and those TTBR1_EL1s do not point to the same translation table entries when the other conditions
specified for the case when the value of CnP is 1 apply, then the results of translations are
CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED UNPREDICTABLE behaviors due to
caching of control or data values'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the TTBR1_EL1

Accesses to this register use the following encodings in the System instruction encoding space:

MRS <Xt>, TTBR1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if ID_AA64MMFR0_EL1.MSA == '1111' && ID_AA64MMFR0_EL1.MSA_frac == '0001' then
 UNDEFINED;
 elsif HCR_EL2.TRVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '0' then
 UNDEFINED;
 else
 return TTBR1_EL1;
elsif PSTATE.EL == EL2 then
 if ID_AA64MMFR0_EL1.MSA == '1111' && ID_AA64MMFR0_EL1.MSA_frac == '0001' then
 UNDEFINED;
 else
 return TTBR1_EL1;

MSR TTBR1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if ID_AA64MMFR0_EL1.MSA == '1111' && ID_AA64MMFR0_EL1.MSA_frac == '0001' then
 UNDEFINED;
 elsif HCR_EL2.TVM == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif VTCR_EL2.MSA == '0' then
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b0010 0b0000 0b001
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. G2-271
ID120821 Non-Confidential

System Registers in a VMSA Implementation
G2.1 General system control registers
 else
 TTBR1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if ID_AA64MMFR0_EL1.MSA == '1111' && ID_AA64MMFR0_EL1.MSA_frac == '0001' then
 UNDEFINED;
 else
 TTBR1_EL1 = X[t];

G2-272 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part H
Armv8-R AArch64 External Debug Registers

Chapter H1
External Debug Registers Descriptions

This chapter provides the information on the external debug registers that are supported in Armv8-R AArch64. It
contains the following sections:

• About the external debug registers on page H1-276.

• External debug registers on page H1-277.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-275
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.1 About the external debug registers
H1.1 About the external debug registers

Armv8-R AArch64 supports both self-hosted and external debug as defined in the Armv8.4-A debug architecture,
without the EL3 Exception level.

• Self-hosted debug: The PE hosts a debugger. The debugger programs the PE to generate debug exceptions.
Debug exceptions are accommodated in the Armv8-R AArch64 Exception model.

• External debug: The PE is controlled by an external debugger. The debugger programs the PE to generate
debug events that cause the PE to enter the debug state. In the debug state, the PE is halted.

For more information, see chapter External System Control Register Descriptions of the Arm® Architecture
Reference Manual Armv8, for Armv8-A architecture profile.
H1-276 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
H1.2 External debug registers

This section describes the modified external debug registers for Armv8-R AArch64.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-277
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
H1.2.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15

The DBGBCR<n>_EL1 characteristics are:

Purpose

Holds control information for a breakpoint. Forms breakpoint n together with value register
DBGBVR<n>_EL1.

Configurations

External register DBGBCR<n>_EL1 bits [31:0] are architecturally mapped to AArch64 System
register DBGBCR<n>_EL1[31:0].

DBGBCR<n>_EL1 is in the Core power domain.

If breakpoint n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalDebugAccess().

• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes

DBGBCR<n>_EL1 is a 32-bit register.

Field descriptions

When the E field is zero, all the other fields in the register are ignored.

Bits [31:24]

Reserved, RES0.

BT, bits [23:20]

Breakpoint Type. Possible values are:

0b0000 Unlinked instruction address match. DBGBVR<n>_EL1 is the address of an
instruction.

0b0001 As 0b0000 but linked to a Context matching breakpoint.

0b0010 Unlinked Context ID match. When FEAT_VHE is implemented, EL2 is using
AArch64, and the Effective value of HCR_EL2.E2H is 1, if either the PE is executing
at EL0 with HCR_EL2.TGE set to 1 or the PE is executing at EL2, then
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL2 value. Otherwise,
DBGBVR<n>_EL1.ContextID must match the CONTEXTIDR_EL1 value.

0b0011 As 0b0010, with linking enabled.

0b0100 Unlinked instruction address mismatch. DBGBVR<n>_EL1 is the address of an
instruction to be stepped.

0b0101 As 0b0100, with linking enabled.

0b0110 Unlinked CONTEXTIDR_EL1 match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1.

0b0111 As 0b0110, with linking enabled.

0b1000 Unlinked VMID match. DBGBVR<n>_EL1.VMID is a VMID compared against
VSCTLR_EL2.VMID.

0b1001 As 0b1000, with linking enabled.

RES0

31 24

BT

23 20

LBN

19 16

SSC

15 14 13

RES0

12 9

RES1

8 5

RES0

4 3

PMC

2 1

E

0

HMC
H1-278 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
0b1010 Unlinked VMID and Context ID match. DBGBVR<n>_EL1.ContextID is a Context ID
compared against CONTEXTIDR_EL1, and DBGBVR<n>_EL1.VMID is a VMID
compared against VSCTLR_EL2.VMID.

0b1011 As 0b1010, with linking enabled.

0b1100 Unlinked CONTEXTIDR_EL2 match. DBGBVR<n>_EL1.ContextID2 is a Context ID
compared against CONTEXTIDR_EL2.

0b1101 As 0b1100, with linking enabled.

0b1110 Unlinked Full Context ID match. DBGBVR<n>_EL1.ContextID is compared against
CONTEXTIDR_EL1, and DBGBVR<n>_EL1.ContextID2 is compared against
CONTEXTIDR_EL2.

0b1111 As 0b1110, with linking enabled.

Constraints on breakpoint programming mean some values are reserved under certain conditions.

For more information on the operation of the SSC, HMC, and PMC fields, and on the effect of
programming this field to a reserved value, see Execution conditions for which a breakpoint
generates Breakpoint exceptions' and 'Reserved DBGBCR<n>_EL1.BT values'.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

LBN, bits [19:16]

Linked breakpoint number. For Linked address matching breakpoints, this specifies the index of the
Context-matching breakpoint linked to.

For all other breakpoint types this field is ignored and reads of the register return an UNKNOWN
value.

This field is ignored when the value of DBGBCR<n>_EL1.E is 0.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

SSC, bits [15:14]

Security state control. Determines the Security states under which a Breakpoint debug event for
breakpoint n is generated. This field must be interpreted along with the HMC and PMC fields, and
there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information, including the effect of programming the fields to a reserved set of values, see 'Reserved
DBGBCR<n>_EL1.{SSC, HMC, PMC} values'.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions'.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

HMC, bit [13]

Higher mode control. Determines the debug perspective for deciding when a Breakpoint debug
event for breakpoint n is generated. This field must be interpreted along with the SSC and PMC
fields, and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions'.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [12:9]

Reserved, RES0.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-279
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
Bits [8:5]

Reserved, RES1.

Bits [4:3]

Reserved, RES0.

PMC, bits [2:1]

Privilege mode control. Determines the Exception level or levels at which a Breakpoint debug event
for breakpoint n is generated. This field must be interpreted along with the SSC and HMC fields,
and there are constraints on the permitted values of the {HMC, SSC, PMC} fields. For more
information see the DBGBCR<n>_EL1.SSC description.

For more information on the operation of the SSC, HMC, and PMC fields, see Execution conditions
for which a breakpoint generates Breakpoint exceptions'.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

E, bit [0]

Enable breakpoint DBGBVR<n>_EL1. Possible values are:

0b0 Breakpoint disabled.

0b1 Breakpoint enabled.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGBCR<n>_EL1:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalDebugAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

DBGBCR<n>_EL1 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0x408 + (16 * n) DBGBCR<n>_EL1
H1-280 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
H1.2.2 EDAA32PFR, External Debug Auxiliary Processor Feature Register

The EDAA32PFR characteristics are:

Purpose

Provides information about implemented PE features.

Note
The register mnemonic, EDAA32PFR, is derived from previous definitions of this register that
defined this register only when AArch64 was not supported.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

It is IMPLEMENTATION DEFINED whether EDAA32PFR is implemented in the Core power domain
or in the Debug power domain.

Attributes

EDAA32PFR is a 64-bit register.

Field descriptions

Bits [63:20]

Reserved, RES0.

MSA_frac, bits [19:16]

When EDAA32PFR.PMSA == 0b0000 and EDAA32PFR.VMSA == 0b1111:

MSA_frac

Memory System Architecture fractional field. This holds the information on additional Memory
System Architectures supported. Defined values are:

0b0001 PMSAv8-64 supported in all translation regimes. VMSAv8-64 not supported.

0b0010 PMSAv8-64 supported in all translation regimes. In addition to PMSAv8-64, stage 1
EL1&0 translation regime also supports VMSAv8-64.

All other values are reserved.

In Armv8-R AArch64, the only permitted values are 0b0001 and 0b0010.

Otherwise:

Reserved, RES0.

EL3, bits [15:12]

When EDPFR.EL3 == 0b0000:

EL3

AArch32 EL3 Exception level handling. Defined values are:

0b0000 EL3 is not implemented or can be executed in AArch64 state.

0b0001 EL3 can be executed in AArch32 state only.

RES0

63 32

RES0

31 20

MSA_frac

19 16

EL3

15 12

EL2

11 8

PMSA

7 4

VMSA

3 0
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-281
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
All other values are reserved.

Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

Otherwise:

Reserved, RAZ.

EL2, bits [11:8]

When EDPFR.EL2 == 0b0000:

EL2

AArch32 EL2 Exception level handling. Defined values are:

0b0000 EL2 is not implemented or can be executed in AArch64 state.

0b0001 EL2 can be executed in AArch32 state only.

All other values are reserved.

Note

EDPFR.{EL1, EL0} indicate whether EL1 and EL0 can only be executed in AArch32 state.

Otherwise:

Reserved, RAZ.

PMSA, bits [7:4]

Indicates support for a 32-bit PMSA. Defined values are:

0b0000 PMSA-32 not supported.

0b0100 PMSAv8-32 supported.

All other values are reserved.

VMSA, bits [3:0]

When EDAA32PFR.PMSA != 0b0000:

VMSA

Indicates support for a VMSA in addition to a 32-bit PMSA Defined values are:

0b0000 VMSA not supported.

All other values are reserved.

When EDAA32PFR.PMSA == 0b0000:

VMSA

Defined values are:

0b0000 VMSAv8-64 supported.

PMSAv8-64 not supported.

0b1111 Memory system architecture described by EDAA32PFR.MSA_frac.

All other values are reserved.

In Armv8-R AArch64, the only permitted value is 0b1111.

Otherwise:

Reserved, RAZ.
H1-282 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
Accessing the EDAA32PFR:

EDAA32PFR can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to this register are RO.

• Otherwise accesses to this register are IMPDEF.

Component Offset Instance

Debug 0xD60 EDAA32PFR
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-283
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
H1.2.3 EDDEVARCH, External Debug Device Architecture register

The EDDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the external debug component.

Configurations

Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Attributes

EDPFR is a 32-bit register.

Field descriptions

ARCHITECT, bits [31:21]

Defines the architecture of the component. For debug, this is Arm Limited.

Bits [31:28] are the JEP106 continuation code, 0x4.

Bits [27:21] are the JEP106 ID code, 0x3B.

Reads as 0b01000111011.

Access to this field is RO.

PRESENT, bit [20]

Indicates thae DEVARCH is present.

Reads as 0b1.

Access to this field is RO.

REVISION, bits [19:16]

Defines the architecture revision. For architectures defined by Arm this is the minor revision.

For debug, the revision defined by Armv8 is 0x0.

All other values are reserved.

Reads as 0b0000.

Access to this field is RO.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component. Defined values are:

0b0110 Armv8 debug architecture.

0b1000 Armv8.2 debug architecture, FEAT_Debugv8p2.

0b1001 Armv8.4 debug architecture, FEAT_Debugv8p4.

EDDEVARCH.ARCHVER and EDDEVARCH.ARCHPART are also defined as a single field,
EDDEVARCH.ARCHID, so that EDDEVARCH.ARCHVER is EDDEVARCH.ARCHID[15:12].

FEAT_Debugv8p2 adds the functionality identified by the value 0b1000.

FEAT_Debugv8p4 adds the functionality identified by the value 0b1001.

0 1 0 0 0 1 1 1 0 1 1

31 21

1

20

0 0 0 0

19 16

ARCHVER

15 12

1 0 1 0 0 0 0 0 0 1 0 1

11 0

ARCHITECT REVISION
PRESENT

ARCHPART
H1-284 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
From Armv8.2, the values 0b0110 and 0b0111 are not permitted.

From Armv8.4, the value 0b1000 is not permitted.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

0xA05 Armv8-R debug architecture.

EDDEVARCH.ARCHVER and EDDEVARCH.ARCHPART are also defined as a single field,
EDDEVARCH.ARCHID, so that EDDEVARCH.ARCHPART is EDDEVARCH.ARCHID[11:0].

Armv8-R debug architecture.

Access to this field is RO.

Accessing the PMEVTYPER<n>_EL0:

EDDEVARCH can be accessed through the external debug interface:

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

Debug 0xFBC EDDEVARCH
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-285
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
H1.2.4 EDPFR, External Debug Processor Feature Register

The EDPFR characteristics are:

Purpose

Provides information about implemented PE features.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme
for fields in ID registers'.

Configurations

It is IMPLEMENTATION DEFINED whether EDPFR is implemented in the Core power domain or in the
Debug power domain.

Attributes

EDPFR is a 64-bit register.

Field descriptions

Bits [63:52]

Reserved, RES0.

Bits [51:48]

From Armv8.4:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

Bits [47:44]

Reserved, RES0.

Bits [43:40]

From Armv8.2:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

SEL2, bits [39:36]

Secure EL2. Defined values are:

0b0000 Secure EL2 is not implemented.

0b0001 Secure EL2 is implemented.

All other values are reserved.

Bits [35:32]

Reserved, RES0.

RES0

63 52

UNKNOWN

51 48

RES0

47 44

UNKNOWN

43 40

SEL2

39 36

RES0

35 32

UNKNOWN

31 28

GIC

27 24

AdvSIMD

23 20

FP

19 16

EL3

15 12

EL2

11 8

EL1

7 4

EL0

3 0
H1-286 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
Bits [31:28]

From Armv8.2:

Reserved, UNKNOWN.

Otherwise:

Reserved, RES0.

GIC, bits [27:24]

System register GIC interface support. Defined values are:

0b0000 GIC CPU interface system registers not implemented.

0b0001 System register interface to versions 3.0 and 4.0 of the GIC CPU interface is supported.

0b0011 System register interface to version 4.1 of the GIC CPU interface is supported.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.GIC.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

0b0000 Advanced SIMD is implemented, including support for the following SISD and SIMD
operations:

• Integer byte, halfword, word and doubleword element operations.

• Single-precision and double-precision floating-point arithmetic.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support, that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with Advanced SIMD support, that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without Advanced SIMD support.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.AdvSIMD.

FP, bits [19:16]

Floating-point. Defined values are:

0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point types.

• Conversions between single-precision and half-precision data types, and
double-precision and half-precision data types.

0b0001 As for 0b0000, and also includes support for half-precision floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-287
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
The permitted values are:

• 0b0000 in an implementation with floating-point support, that does not include the
FEAT_FP16 extension.

• 0b0001 in an implementation with floating-point support, that includes the FEAT_FP16
extension.

• 0b1111 in an implementation without floating-point support.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.FP.

EL3, bits [15:12]

AArch64 EL3 Exception level handling. Defined values are:

0b0000 EL3 is not implemented or cannot be executed in AArch64 state.

0b0001 EL3 can be executed in AArch64 state only.

0b0010 EL3 can be executed in both Execution states.

When the value of EDAA32PFR.EL3 is non-zero, this field must be 0b0000.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL3.

EL2, bits [11:8]

AArch64 EL2 Exception level handling. Defined values are:

0b0000 EL2 is not implemented or cannot be executed in AArch64 state.

0b0001 EL2 can be executed in AArch64 state only.

0b0010 EL2 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL2.

EL1, bits [7:4]

AArch64 EL1 Exception level handling. Defined values are:

0b0000 EL1 cannot be executed in AArch64 state.

0b0001 EL1 can be executed in AArch64 state only.

0b0010 EL1 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL1.

EL0, bits [3:0]

AArch64 EL0 Exception level handling. Defined values are:

0b0000 EL0 cannot be executed in AArch64 state.

0b0001 EL0 can be executed in AArch64 state only.

0b0010 EL0 can be executed in both Execution states.

All other values are reserved.

In an Armv8-A implementation that supports AArch64, this field returns the value of
ID_AA64PFR0_EL1.EL0.
H1-288 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
Accessing the EDPFR:

EDPFR[31:0] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to EDPFR[31:0] are RO.

• Otherwise accesses to EDPFR[31:0] are IMPDEF.

EDPFR[63:32] can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered() and !DoubleLockStatus() accesses to EDPFR[63:32] are RO.

• Otherwise accesses to EDPFR[63:32] are IMPDEF.

Component Offset Instance Range

Debug 0xD20 EDPFR 31:0

Component Offset Instance Range

Debug 0xD24 EDPFR 63:32
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-289
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
H1.2.5 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configurations

External register PMCCFILTR_EL0[31:0] is architecturally mapped to AArch64 System register
PMCCFILTR_EL0[31:0].

PMCCFILTR_EL0 is in the Core power domain.

On a Warm or Cold reset, RW fields in this register reset:

• To architecturally UNKNOWN values if the reset is to an Exception level that is using
AArch64.

• To 0 if the reset is to an Exception level that is using AArch32.

The register is not affected by an External debug reset.

Attributes

PMCCFILTR_EL0 is a 32-bit register.

Field descriptions

The PMCCFILTR_EL0 bit assignments are:

 P, bit [31]

Privileged filtering bit. Controls counting in EL1.

 0b0 Count cycles in EL1.

 0b1 Do not count cycles in EL1.

 U, bit [30]

User filtering bit. Controls counting in EL0.

 0b0 Count cycles in EL0.

 0b1 Do not count cycles in EL0.

 Bits [29:28]

Reserved, RES0.

 NSH, bit [27]

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

 0b0 Do not count cycles in EL2.

 0b1 Count cycles in EL2.

P

31

U

30

RES0

29 28 27

RES0

26 0

NSH
H1-290 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
 Bits [26:25]

Reserved, RES0.

 SH, bit [24]

When ARMv8.4-SecEL2 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMCCFILTR_EL0.NSH bit, cycles in Secure
EL2 are counted.

Otherwise, cycles in Secure EL2 are not counted.

If Secure EL2 is disabled, this field is RES0.

Otherwise:

Reserved, RES0.

 Bits [23:0]

Reserved, RES0.

Accessing the PMCCFILTR_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCCFILTR_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0x47C PMCCFILTR_EL0
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-291
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
H1.2.6 PMCR_EL0, Performance Monitors Control Register

The PMCR_EL0 characteristics are:

Purpose

Provides details of the Performance Monitors implementation, including the number of counters
implemented, and configures and controls the counters.

Configurations

External register PMCR_EL0[7:0] is architecturally mapped to AArch64 System register
PMCR_EL0[7:0].

PMCR_EL0 is in the Core power domain.

Attributes

PMCR_EL0 is a 32-bit register.

Field descriptions

The PMCR_EL0 bit assignments are:

 Bits [31:11]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as
zero, and must use a read-modify-write sequence to write to the register.

 Bits [10:7]

Reserved, RES0.

 Bit [6]

Reserved, RES1.

 DP, bit [5]

When ARMv8.1-PMU is implemented :

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

 0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.

 0b1 When event counting for counters in the range [0..(MDCR_EL2.HPMN-1)] is
prohibited, cycle counting by PMCCNTR_EL0 is disabled.

For more information, see 'Prohibiting event counting'.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using
AArch64.

Otherwise:

Reserved, RES0.

RAZ/WI

31 11

RES0

10 7 6

DP

5

X

4 3

C

2

P

1

E

0

RES1 RES0
H1-292 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
 X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

 0b0 Do not export events.

 0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus
to another device, for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or
signaling to a cross-trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW
field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using
AArch64.

Otherwise:

Reserved, RAZ/WI.

 Bit [3]

Reserved, RES0.

 C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

 0b0 No action.

 0b1 Reset PMCCNTR_EL0 to zero.

This bit is always RAZ.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit.

Access to this field is WO.

 P, bit [1]

Event counter reset. The effects of writing to this bit are:

 0b0 No action.

 0b1 Reset all event counters, not including PMCCNTR_EL0, to zero.

This bit is always RAZ.

Note

Resetting the event counters does not change the event counter overflow bits.

Access to this field is WO.

 E, bit [0]

Enable.

 0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are disabled.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-293
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
 0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0, are enabled by
PMCNTENSET_EL0.

If EL2 is implemented then:

• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.

• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in
the range [PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note

The effect of the following fields on the operation of this bit applies if EL2 is implemented
regardless of whether EL2 is enabled in the current Security state:

• MDCR_EL2.HPMN. See the description of MDCR_EL2.HPMN for more information.

On a Warm reset, this field resets to 0.

Accessing the PMCR_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMCR_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0xE04 PMCR_EL0
H1-294 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
H1.2.7 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configurations

External register PMEVTYPER<n>_EL0[31:0] is architecturally mapped to AArch64 System
register PMEVTYPER<n>_EL0[31:0].

PMEVTYPER<n>_EL0 is in the Core power domain.

If event counter n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() &&
AllowExternalPMUAccess().

• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes

PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions

The PMEVTYPER<n>_EL0 bit assignments are:

 P, bit [31]

Privileged filtering bit. Controls counting in EL1.

 0b0 Count events in EL1.

 0b1 Do not count events in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

 U, bit [30]

User filtering bit. Controls counting in EL0.

 0b0 Count events in EL0.

 0b1 Do not count events in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

 Bits [29:28]

Reserved, RES0.

 NSH, bit [27]

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

 0b0 Do not count events in EL2.

 0b1 Count events in EL2.

P

31

U

30

RES0

29 28 27 26

MT

25

RES0

24 16 15 10

evtCount[9:0]

9 0

NSH RES0 evtCount[15:10]
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-295
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

 Bit [26]

Reserved, RES0.

 MT, bit [25]

When an IMPLEMENTATION DEFINED multi-threaded PMU Extension is implemented:

Multithreading.

 0b0 Count events only on controlling PE.

 0b1 Count events from any PE with the same affinity at level 1 and above as this PE.

Note

• When the lowest level of affinity consists of logical PEs that are implemented using a
multi-threading type approach, an implementation is described as multi-threaded. That is, the
performance of PEs at the lowest affinity level is highly interdependent.

• Events from a different thread of a multithreaded implementation are not Attributable to the
thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

 SH, bit [24]

When ARMv8.4-SecEL2 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in
Secure EL2 are counted.

Otherwise, events in Secure EL2 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

 Bits [23:16]

Reserved, RES0.

 evtCount[15:10], bits [15:10]

When ARMv8.1-PMU is implemented:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

 evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter
PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.
H1-296 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

External Debug Registers Descriptions
H1.2 External debug registers
The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU
event number space'.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior
depends on the value written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or
external read of the evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and
the value returned by a direct or external read of the evtCount field is the value written to the
field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted,
and the value returned by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a
given implementation does not include an event from a set of common IMPLEMENTATION DEFINED
events, then no event is counted and the value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>_EL0:

Note

SoftwareLockStatus() depends on the type of access attempted and AllowExternalPMUAccess() has a new
definition from Armv8.4. Refer to the Pseudocode definitions for more information.

PMEVTYPER<n>_EL0 can be accessed through the external debug interface:

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

Component Offset Instance

PMU 0x400 + 4n PMEVTYPER<n>_EL0
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. H1-297
ID120821 Non-Confidential

External Debug Registers Descriptions
H1.2 External debug registers
H1-298 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Part I
Architectural Pseudocode

Chapter I1
Armv8-R AArch64 Pseudocode

This chapter contains the pseudocode that describes many features of the Armv8-R AArch64 architecture. It
contains the following sections:

• Pseudocode for AArch64 operations on page I1-302.

• Shared pseudocode on page I1-427.

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-301
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
I1.1 Pseudocode for AArch64 operations

This section provides the architectural pseudocode for execution in AArch64 state. Functions that are listed in this
section are identified as AArch64.FunctionName.

This section is organized by functional groups, with the functional groups being indicated by hierarchical path
names, for example aarch64/debug/breakpoint.

The top-level sections of the AArch64 pseudocode hierarchy are:

• aarch64/debug.

• aarch64/exceptions on page I1-311.

• aarch64/functions on page I1-328.

• aarch64/instrs on page I1-363.

• aarch64/translation on page I1-394.

I1.1.1 aarch64/debug

This section includes the following pseudocode functions:

• aarch64/debug/breakpoint/AArch64.BreakpointMatch.

• aarch64/debug/breakpoint/AArch64.BreakpointValueMatch on page I1-303.

• aarch64/debug/breakpoint/AArch64.StateMatch on page I1-304.

• aarch64/debug/enables/AArch64.GenerateDebugExceptions on page I1-305.

• aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom on page I1-305.

• aarch64/debug/pmu/AArch64.CheckForPMUOverflow on page I1-306.

• aarch64/debug/pmu/AArch64.ClearEventCounters on page I1-306.

• aarch64/debug/pmu/AArch64.CountPMUEvents on page I1-306.

• aarch64/debug/pmu/AArch64.GetNumEventCountersAccessible on page I1-307.

• aarch64/debug/pmu/AArch64.IncrementEventCounter on page I1-307.

• aarch64/debug/pmu/AArch64.PMUCounterIsHyp on page I1-308.

• aarch64/debug/pmu/AArch64.PMUCycle on page I1-308.

• aarch64/debug/pmu/AArch64.PMUEvent on page I1-308.

• aarch64/debug/pmu/AArch64.PMUSwIncrement on page I1-309.

• aarch64/debug/statisticalprofiling/TimeStamp on page I1-309.

• aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState on page I1-309.

• aarch64/debug/watchpoint/AArch64.WatchpointByteMatch on page I1-310.

• aarch64/debug/watchpoint/AArch64.WatchpointMatch on page I1-311.

aarch64/debug/breakpoint/AArch64.BreakpointMatch

 // AArch64.BreakpointMatch()
 // =========================
 // Breakpoint matching in an AArch64 translation regime.

 boolean AArch64.BreakpointMatch(integer n, bits(64) vaddress,
 integer size)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert n < NumBreakpointsImplemented();

 enabled = DBGBCR_EL1[n].E == '1';
 ispriv = PSTATE.EL != EL0;
 linked = DBGBCR_EL1[n].BT == '0x01';
 isbreakpnt = TRUE;
 linked_to = FALSE;

 state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, DBGBCR_EL1[n].HMC, DBGBCR_EL1[n].PMC,
 linked, DBGBCR_EL1[n].LBN, isbreakpnt, ispriv);
I1-302 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 value_match = AArch64.BreakpointValueMatch(n, vaddress, linked_to);

 if HaveAArch32() && size == 4 then // Check second halfword
 // If the breakpoint address and BAS of an Address breakpoint match the address of the
 // second halfword of an instruction, but not the address of the first halfword, it is
 // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
 // event.
 match_i = AArch64.BreakpointValueMatch(n, vaddress + 2, linked_to);
 if !value_match && match_i then
 value_match = ConstrainUnpredictableBool();

 match = value_match && state_match && enabled;

 return match;

aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

 // AArch64.BreakpointValueMatch()
 // ==============================

 boolean AArch64.BreakpointValueMatch(integer n, bits(64) vaddress, boolean linked_to)

 // "n" is the identity of the breakpoint unit to match against.
 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
 // matching breakpoints.
 // "linked_to" is TRUE if this is a call from StateMatch for linking.

 // If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
 if n >= NumBreakpointsImplemented() then
 (c, n) = ConstrainUnpredictableInteger(0, NumBreakpointsImplemented() - 1);
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;

 // If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
 // call from StateMatch for linking).
 if DBGBCR_EL1[n].E == '0' then return FALSE;

 context_aware = (n >= (NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented()));

 // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
 dbgtype = DBGBCR_EL1[n].BT;

 if ((dbgtype IN {'011x','11xx'} && !HaveV82Debug()) || // Context matching
 dbgtype == '010x' || // Reserved
 (dbgtype != '0x0x' && !context_aware) || // Context matching
 (dbgtype == '1xxx' && !HaveEL(EL2))) then // EL2 extension
 (c, dbgtype) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 // Determine what to compare against.
 match_addr = (dbgtype == '0x0x');
 match_vmid = (dbgtype == '10xx');
 match_cid1 = (dbgtype == 'xx1x');
 match_cid2 = (dbgtype == '11xx');
 linked = (dbgtype == 'xxx1');

 // If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
 // VMID and/or context ID match, of if not context-aware. The above assertions mean that the
 // code can just test for match_addr == TRUE to confirm all these things.
 if linked_to && (!linked || match_addr) then return FALSE;

 // If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
 if !linked_to && linked && !match_addr then return FALSE;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-303
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 // Do the comparison.
 if match_addr then
 byte = UInt(vaddress<1:0>);
 assert byte == 0; // "vaddress" is word aligned
 byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1
 // If the DBGxVR<n>_EL1.RESS field bits are not a sign extension of the MSB
 // of DBGBVR<n>_EL1.VA, it is UNPREDICTABLE whether they appear to be
 // included in the match.
 // If 'vaddress' is outside of the current virtual address space, then the access
 // generates a Translation fault.
 integer top = AArch64.VAMax();
 if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then
 if ConstrainUnpredictableBool() then
 top = 63;
 BVR_match = (vaddress<top:2> == DBGBVR_EL1[n]<top:2>) && byte_select_match;

 elsif match_cid1 then
 BVR_match = (PSTATE.EL IN {EL0, EL1} && CONTEXTIDR_EL1<31:0> == DBGBVR_EL1[n]<31:0>);
 if match_vmid then
 if !Have16bitVMID() || VTCR_EL2.VS == '0' then
 vmid = ZeroExtend(VSCTLR_EL2.VMID<7:0>, 16);
 bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);
 else
 vmid = VSCTLR_EL2.VMID;
 bvr_vmid = DBGBVR_EL1[n]<47:32>;
 BXVR_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 vmid == bvr_vmid);
 elsif match_cid2 then
 BXVR_match = (PSTATE.EL != EL3 && HaveV82Debug() && EL2Enabled() &&
 DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2<31:0>);

 bvr_match_valid = (match_addr || match_cid1);
 bxvr_match_valid = (match_vmid || match_cid2);

 match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);

 return match;

aarch64/debug/breakpoint/AArch64.StateMatch

 // AArch64.StateMatch()
 // ====================
 // Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

 boolean AArch64.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
 boolean isbreakpnt, boolean ispriv)
 // "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
 // "linked" is TRUE if this is a linked breakpoint/watchpoint type.
 // "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
 // "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.

 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 (c, SSC, HMC, PxC) = CheckValidStateMatch(SSC, HMC, PxC, isbreakpnt);
 if c == Constraint_DISABLED then return FALSE;
 // Otherwise the HMC,SSC,PxC values are either valid or the values returned by
 // CheckValidStateMatch are valid.

 EL3_match = HaveEL(EL3) && HMC == '1' && SSC<0> == '0';
 EL2_match = HaveEL(EL2) && ((HMC == '1' && (SSC:PxC != '1000')) || SSC == '11');
 EL1_match = PxC<0> == '1';
 EL0_match = PxC<1> == '1';

 if !ispriv && !isbreakpnt then
 priv_match = EL0_match;
I1-304 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 else
 case PSTATE.EL of
 when EL3 priv_match = EL3_match;
 when EL2 priv_match = EL2_match;
 when EL1 priv_match = EL1_match;
 when EL0 priv_match = EL0_match;

 case SSC of
 when '00' security_state_match = TRUE; // Both
 when '01' security_state_match = !IsSecure(); // Non-secure only
 when '10' security_state_match = IsSecure(); // Secure only
 when '11' security_state_match = (HMC == '1' || IsSecure()); // HMC=1 -> Both, 0 -> Secure
only

 if linked then
 // "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
 // it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
 // UNKNOWN breakpoint that is context-aware.
 lbn = UInt(LBN);
 first_ctx_cmp = NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented();
 last_ctx_cmp = NumBreakpointsImplemented() - 1;
 if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then
 (c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE linked = FALSE; // No linking
 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

 if linked then
 vaddress = bits(64) UNKNOWN;
 linked_to = TRUE;
 linked_match = AArch64.BreakpointValueMatch(lbn, vaddress, linked_to);

 return priv_match && security_state_match && (!linked || linked_match);

aarch64/debug/enables/AArch64.GenerateDebugExceptions

 // AArch64.GenerateDebugExceptions()
 // =================================

 boolean AArch64.GenerateDebugExceptions()
 return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure(), PSTATE.D);

aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

 // AArch64.GenerateDebugExceptionsFrom()
 // =====================================

 boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from, boolean secure, bit mask)

 if OSLSR_EL1.OSLK == '1' || DoubleLockStatus() || Halted() then
 return FALSE;

 route_to_el2 = HaveEL(EL2) && (!secure || IsSecureEL2Enabled()) && (HCR_EL2.TGE == '1' ||
MDCR_EL2.TDE == '1');
 target = (if route_to_el2 then EL2 else EL1);
 enabled = TRUE;

 if from == target then
 enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';
 else
 enabled = enabled && UInt(target) > UInt(from);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-305
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 return enabled;

aarch64/debug/pmu/AArch64.CheckForPMUOverflow

 // AArch64.CheckForPMUOverflow()
 // =============================
 // Signal Performance Monitors overflow IRQ and CTI overflow events

 AArch64.CheckForPMUOverflow()
 pmuirq = PMCR_EL0.E == '1' && PMINTENSET_EL1.C == '1' && PMOVSSET_EL0.C == '1';
 for idx = 0 to GetNumEventCounters() - 1
 E = if AArch64.PMUCounterIsHyp(idx) then MDCR_EL2.HPME else PMCR_EL0.E;
 if E == '1' && PMINTENSET_EL1<idx> == '1' && PMOVSSET_EL0<idx> == '1' then pmuirq = TRUE;

 SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);

 CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);

 // The request remains set until the condition is cleared. (For example, an interrupt handler
 // or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)

aarch64/debug/pmu/AArch64.ClearEventCounters

 // AArch64.ClearEventCounters()
 // ============================
 // Zero all the event counters.

 AArch64.ClearEventCounters()
 for idx = 0 to AArch64.GetNumEventCountersAccessible() - 1
 PMEVCNTR_EL0[idx] = Zeros();

aarch64/debug/pmu/AArch64.CountPMUEvents

 // AArch64.CountPMUEvents()
 // ========================
 // Return TRUE if counter "idx" should count its event. For the cycle counter, idx == CYCLE_COUNTER_ID.

 boolean AArch64.CountPMUEvents(integer idx)
 assert idx == CYCLE_COUNTER_ID || idx < GetNumEventCounters();
 // Event counting is disabled in Debug state
 debug = Halted();

 // Software can reserve some counters for EL2
 resvd_for_el2 = AArch64.PMUCounterIsHyp(idx);

 // Main enable controls
 if idx == CYCLE_COUNTER_ID then
 enabled = PMCR_EL0.E == '1' && PMCNTENSET_EL0.C == '1';
 else
 E = if resvd_for_el2 then MDCR_EL2.HPME else PMCR_EL0.E;
 enabled = E == '1' && PMCNTENSET_EL0<idx> == '1';

 // Event counting is allowed unless it is prohibited by any rule below
 prohibited = FALSE;

 // Event counting in Secure state is permitted as EL3 is not implemented

 // Event counting at EL2 is prohibited if all of:
 // * The HPMD Extension is implemented
 // * PMNx is not reserved for EL2
 // * MDCR_EL2.HPMD == 1
 if !prohibited && PSTATE.EL == EL2 && HaveHPMDExt() && !resvd_for_el2 then
I1-306 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 prohibited = MDCR_EL2.HPMD == '1';

 // The IMPLEMENTATION DEFINED authentication interface might override software
 if prohibited && !HaveNoSecurePMUDisableOverride() then
 prohibited = !ExternalSecureNoninvasiveDebugEnabled();

 // PMCR_EL0.DP disables the cycle counter when event counting is prohibited
 if prohibited && idx == CYCLE_COUNTER_ID then
 enabled = enabled && (PMCR_EL0.DP == '0');
 prohibited = FALSE; // Otherwise whether event counting is prohibited does not affect the cycle
counter

 // Event counting can be filtered by the {P, U, NSK, NSU, NSH} bits
 filter = if idx == CYCLE_COUNTER_ID then PMCCFILTR_EL0<31:0> else PMEVTYPER_EL0[idx]<31:0>;

 P = filter<31>;
 U = filter<30>;
 NSK = if HaveEL(EL3) then filter<29> else '0';
 NSU = if HaveEL(EL3) then filter<28> else '0';
 NSH = if HaveEL(EL2) then filter<27> else '0';

 case PSTATE.EL of
 when EL0 filtered = if IsSecure() then U == '1' else U != NSU;
 when EL1 filtered = if IsSecure() then P == '1' else P != NSK;
 when EL2 filtered = NSH == '0';

 return !debug && enabled && !prohibited && !filtered;

aarch64/debug/pmu/AArch64.GetNumEventCountersAccessible

 // AArch64.GetNumEventCountersAccessible()
 // =======================================
 // Return the number of event counters that can be accessed at the current Exception level.

 integer AArch64.GetNumEventCountersAccessible()
 // Software can reserve some counters for EL2
 if PSTATE.EL IN {EL1, EL0} && EL2Enabled() then
 n = UInt(MDCR_EL2.HPMN);
 else
 n = GetNumEventCounters();

 return n;

aarch64/debug/pmu/AArch64.IncrementEventCounter

 // AArch64.IncrementEventCounter()
 // ===============================
 // Increment the specified event counter by the specified amount.

 AArch64.IncrementEventCounter(integer idx, integer increment)
 old_value = UInt(PMEVCNTR_EL0[idx]);
 new_value = old_value + increment;

 PMEVCNTR_EL0[idx] = ZeroExtend(new_value<31:0>);
 ovflw = 32;

 if old_value<64:ovflw> != new_value<64:ovflw> then
 PMOVSSET_EL0<idx> = '1';
 PMOVSCLR_EL0<idx> = '1';
 // Check for the CHAIN event from an even counter
 if idx<0> == '0' && idx + 1 < GetNumEventCounters() then
 AArch64.PMUEvent(PMU_EVENT_CHAIN, 1, idx + 1);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-307
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/debug/pmu/AArch64.PMUCounterIsHyp

 // AArch64.PMUCounterIsHyp
 // =======================
 // Returns TRUE if a counter is reserved for use by EL2, FALSE otherwise.

 boolean AArch64.PMUCounterIsHyp(integer n)
 // Software can reserve some counters for EL2
 if HaveEL(EL2) then
 resvd_for_el2 = n >= UInt(MDCR_EL2.HPMN) && n != CYCLE_COUNTER_ID;
 if MDCR_EL2.HPMN == '00000' then
 resvd_for_el2 = boolean UNKNOWN;
 else
 resvd_for_el2 = FALSE;

 return resvd_for_el2;

aarch64/debug/pmu/AArch64.PMUCycle

 // AArch64.PMUCycle()
 // ==================

 AArch64.PMUCycle()
 if !HavePMUv3() || !AArch64.CountPMUEvents(CYCLE_COUNTER_ID) then
 return;

 old_value = UInt(PMCCNTR_EL0);
 new_value = old_value + 1;
 PMCCNTR_EL0 = new_value<63:0>;

 if HaveAArch32() then
 ovflw = if PMCR_EL0.LC == '1' then 64 else 32;
 else
 ovflw = 64;

 if old_value<64:ovflw> != new_value<64:ovflw> then
 PMOVSSET_EL0.C = '1';
 PMOVSCLR_EL0.C = '1';

 AArch64.CheckForPMUOverflow();

 PMUEvent(PMU_EVENT_CPU_CYCLES);

aarch64/debug/pmu/AArch64.PMUEvent

 // AArch64.PMUEvent()
 // ==================
 // Generate a PMU Event. All the event counters are checked for the event.
 // If any of the counters overflow then an interrupt is raised.

 AArch64.PMUEvent(bits(16) event, integer increment)
 if !HavePMUv3() then
 return;

 // Count the event
 for idx = 0 to GetNumEventCounters() - 1
 if PMEVTYPER_EL0[idx].evtCount == event && AArch64.CountPMUEvents(idx) then
 AArch64.IncrementEventCounter(idx, increment);

 AArch64.CheckForPMUOverflow();

 // AArch64.PMUEvent()
 // ==================
 // Generate a PMU Event for a specific event counter.
I1-308 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 AArch64.PMUEvent(bits(16) event, integer increment, integer idx)
 if !HavePMUv3() then
 return;
 // Count the event
 if PMEVTYPER_EL0[idx].evtCount == event && AArch64.CountPMUEvents(idx) then
 AArch64.IncrementEventCounter(idx, increment);

 // This function is only called from other functions which will check for overflow later

aarch64/debug/pmu/AArch64.PMUSwIncrement

 // AArch64.PMUSwIncrement()
 // ========================
 // Generate PMU Events on a write to PMSWINC_EL0.

 AArch64.PMUSwIncrement(bits(32) sw_incr)
 for idx = 0 to AArch64.GetNumEventCountersAccessible() - 1
 if sw_incr<idx> == '1' then
 AArch64.PMUEvent(PMU_EVENT_SW_INCR, 1, idx);

 AArch64.CheckForPMUOverflow();

aarch64/debug/statisticalprofiling/TimeStamp

 enumeration TimeStamp {
 TimeStamp_None, // No timestamp
 TimeStamp_CoreSight, // CoreSight time (IMPLEMENTATION DEFINED)
 TimeStamp_Physical, // Physical counter value with no offset
 TimeStamp_Virtual }; // Physical counter value minus CNTVOFF_EL2

aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

 // AArch64.TakeExceptionInDebugState()
 // ===================================
 // Take an exception in Debug state to an Exception level using AArch64.

 AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

 if HaveIESB() then
 sync_errors = SCTLR[target_el].IESB == '1';
 // SCTLR[].IESB and/or SCR_EL3.NMEA (if applicable) might be ignored in Debug state.
 if !ConstrainUnpredictableBool() then
 sync_errors = FALSE;
 else
 sync_errors = FALSE;

 SynchronizeContext();

 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();

 AArch64.ReportException(exception, target_el);

 PSTATE.EL = target_el;
 PSTATE.nRW = '0';
 PSTATE.SP = '1';

 SPSR[] = bits(64) UNKNOWN;
 ELR[] = bits(64) UNKNOWN;

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-309
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 // PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if UNKNOWN.
 PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
 PSTATE.IL = '0';
 if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000';
 PSTATE.T = '0'; // PSTATE.J is RES0
 if HavePANExt() && PSTATE.EL == EL1 && SCTLR_EL1.SPAN == '0' then
 PSTATE.PAN = '1';
 if HaveUAOExt() then PSTATE.UAO = '0';
 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;

 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 EDSCR.ERR = '1';
 UpdateEDSCRFields(); // Update EDSCR processor state flags.

 if sync_errors then
 SynchronizeErrors();

 EndOfInstruction();

aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

 // AArch64.WatchpointByteMatch()
 // =============================

 boolean AArch64.WatchpointByteMatch(integer n, bits(64) vaddress)

 integer top = AArch64.VAMax();
 bottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
 byte_select_match = (DBGWCR_EL1[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
 mask = UInt(DBGWCR_EL1[n].MASK);

 // If DBGWCR_EL1[n].MASK is non-zero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
 // DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
 // UNPREDICTABLE.
 if mask > 0 && !IsOnes(DBGWCR_EL1[n].BAS) then
 byte_select_match = ConstrainUnpredictableBool();
 else
 LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
 if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
 byte_select_match = ConstrainUnpredictableBool();
 bottom = 3; // For the whole doubleword

 // If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
 if mask > 0 && mask <= 2 then
 (c, mask) = ConstrainUnpredictableInteger(3, 31);
 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
 case c of
 when Constraint_DISABLED return FALSE; // Disabled
 when Constraint_NONE mask = 0; // No masking
 // Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

 if mask > bottom then
 // If the DBGxVR<n>_EL1.RESS field bits are not a sign extension of the MSB
 // of DBGBVR<n>_EL1.VA, it is UNPREDICTABLE whether they appear to be
 // included in the match.
 if !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) then
 if ConstrainUnpredictableBool() then
 top = 63;
 WVR_match = (vaddress<top:mask> == DBGWVR_EL1[n]<top:mask>);
 // If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
 if WVR_match && !IsZero(DBGWVR_EL1[n]<mask-1:bottom>) then
 WVR_match = ConstrainUnpredictableBool();
 else
I1-310 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 WVR_match = vaddress<top:bottom> == DBGWVR_EL1[n]<top:bottom>;

 return WVR_match && byte_select_match;

aarch64/debug/watchpoint/AArch64.WatchpointMatch

 // AArch64.WatchpointMatch()
 // =========================
 // Watchpoint matching in an AArch64 translation regime.

 boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size, boolean ispriv,
 AccType acctype, boolean iswrite)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert n < NumWatchpointsImplemented();

 // "ispriv" is:
 // * FALSE for all loads, stores, and atomic operations executed at EL0.
 // * FALSE if the access is unprivileged.
 // * TRUE for all other loads, stores, and atomic operations.

 enabled = DBGWCR_EL1[n].E == '1';
 linked = DBGWCR_EL1[n].WT == '1';
 isbreakpnt = FALSE;

 state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,
 linked, DBGWCR_EL1[n].LBN, isbreakpnt, ispriv);
 ls_match = FALSE;
 if acctype == AccType_ATOMICRW then
 ls_match = (DBGWCR_EL1[n].LSC != '00');
 else
 ls_match = (DBGWCR_EL1[n].LSC<(if iswrite then 1 else 0)> == '1');

 value_match = FALSE;
 for byte = 0 to size - 1
 value_match = value_match || AArch64.WatchpointByteMatch(n, vaddress + byte);

 return value_match && state_match && ls_match && enabled;

I1.1.2 aarch64/exceptions

This section includes the following pseudocode functions:

• aarch64/exceptions/aborts/AArch64.Abort on page I1-312.

• aarch64/exceptions/aborts/AArch64.AbortSyndrome on page I1-312.

• aarch64/exceptions/aborts/AArch64.CheckPCAlignment on page I1-313.

• aarch64/exceptions/aborts/AArch64.DataAbort on page I1-313.

• aarch64/exceptions/aborts/AArch64.InstructionAbort on page I1-313.

• aarch64/exceptions/aborts/AArch64.PCAlignmentFault on page I1-314.

• aarch64/exceptions/aborts/AArch64.SPAlignmentFault on page I1-314.

• aarch64/exceptions/async/AArch64.TakePhysicalFIQException on page I1-314.

• aarch64/exceptions/async/AArch64.TakePhysicalIRQException on page I1-315.

• aarch64/exceptions/async/AArch64.TakePhysicalSErrorException on page I1-315.

• aarch64/exceptions/async/AArch64.TakeVirtualFIQException on page I1-316.

• aarch64/exceptions/async/AArch64.TakeVirtualIRQException on page I1-316.

• aarch64/exceptions/async/AArch64.TakeVirtualSErrorException on page I1-316.

• aarch64/exceptions/debug/AArch64.BreakpointException on page I1-316.

• aarch64/exceptions/debug/AArch64.SoftwareBreakpoint on page I1-317.

• aarch64/exceptions/debug/AArch64.SoftwareStepException on page I1-317.

• aarch64/exceptions/debug/AArch64.VectorCatchException on page I1-318.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-311
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
• aarch64/exceptions/debug/AArch64.WatchpointException on page I1-318.

• aarch64/exceptions/exceptions/AArch64.ExceptionClass on page I1-318.

• aarch64/exceptions/exceptions/AArch64.ReportException on page I1-319.

• aarch64/exceptions/exceptions/AArch64.ResetControlRegisters on page I1-320.

• aarch64/exceptions/exceptions/AArch64.TakeReset on page I1-320.

• aarch64/exceptions/ieeefp/AArch64.FPTrappedException on page I1-321.

• aarch64/exceptions/syscalls/AArch64.CallHypervisor on page I1-321.

• aarch64/exceptions/syscalls/AArch64.CallSecureMonitor on page I1-321.

• aarch64/exceptions/syscalls/AArch64.CallSupervisor on page I1-322.

• aarch64/exceptions/takeexception/AArch64.TakeException on page I1-322.

• aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap on page I1-323.

• aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps on page I1-324.

• aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled on page I1-324.

• aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap on page I1-324.

• aarch64/exceptions/traps/AArch64.CheckFPEnabled on page I1-324.

• aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap on page I1-325.

• aarch64/exceptions/traps/AArch64.CheckForWFxTrap on page I1-325.

• aarch64/exceptions/traps/AArch64.CheckIllegalState on page I1-325.

• aarch64/exceptions/traps/AArch64.MonitorModeTrap on page I1-326.

• aarch64/exceptions/traps/AArch64.SystemAccessTrap on page I1-326.

• aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome on page I1-326.

• aarch64/exceptions/traps/AArch64.UndefinedFault on page I1-327.

• aarch64/exceptions/traps/AArch64.WFxTrap on page I1-327.

• aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64 on page I1-327.

• aarch64/exceptions/traps/CheckFPEnabled64 on page I1-327.

aarch64/exceptions/aborts/AArch64.Abort

 // AArch64.Abort()
 // ===============
 // Abort and Debug exception handling in an AArch64 translation regime.

 AArch64.Abort(bits(64) vaddress, FaultRecord fault)

 if IsDebugException(fault) then
 if fault.acctype == AccType_IFETCH then
 if UsingAArch32() && fault.debugmoe == DebugException_VectorCatch then
 AArch64.VectorCatchException(fault);
 else
 AArch64.BreakpointException(fault);
 else
 AArch64.WatchpointException(vaddress, fault);
 elsif fault.acctype == AccType_IFETCH then
 AArch64.InstructionAbort(vaddress, fault);
 else
 AArch64.DataAbort(vaddress, fault);

aarch64/exceptions/aborts/AArch64.AbortSyndrome

 // AArch64.AbortSyndrome()
 // =======================
 // Creates an exception syndrome record for Abort and Watchpoint exceptions
 // from an AArch64 translation regime.

 ExceptionRecord AArch64.AbortSyndrome(Exception exceptype, FaultRecord fault, bits(64) vaddress)
 exception = ExceptionSyndrome(exceptype);

I1-312 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 d_side = exceptype IN {Exception_DataAbort, Exception_Watchpoint};

 exception.syndrome = AArch64.FaultSyndrome(d_side, fault);
 exception.vaddress = ZeroExtend(vaddress);
 if IPAValid(fault) then
 exception.ipavalid = TRUE;
 exception.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
 exception.ipaddress = fault.ipaddress.address;
 else
 exception.ipavalid = FALSE;

 return exception;

aarch64/exceptions/aborts/AArch64.CheckPCAlignment

 // AArch64.CheckPCAlignment()
 // ==========================

 AArch64.CheckPCAlignment()

 bits(64) pc = ThisInstrAddr();
 if pc<1:0> != '00' then
 AArch64.PCAlignmentFault();

aarch64/exceptions/aborts/AArch64.DataAbort

 // AArch64.DataAbort()
 // ===================

 AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)
 route_to_el3 = FALSE;
 route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR_EL2.TGE == '1' ||
 (HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
 IsSecondStage(fault)));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress);
 bits(2) target_el = EL1;
 if PSTATE.EL == EL3 || route_to_el3 then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.InstructionAbort

 // AArch64.InstructionAbort()
 // ==========================

 AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)
 route_to_el3 = FALSE;
 route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
 (HCR_EL2.TGE == '1' ||
 (HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
 IsSecondStage(fault)));

 bits(64) preferred_exception_return = ThisInstrAddr();

 vect_offset = 0x0;

 exception = AArch64.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-313
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 bits(2) target_el = EL1;
 if PSTATE.EL == EL3 || route_to_el3 then
 target_el = EL3;
 elsif PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.PCAlignmentFault

 // AArch64.PCAlignmentFault()
 // ==========================
 // Called on unaligned program counter in AArch64 state.

 AArch64.PCAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_PCAlignment);
 exception.vaddress = ThisInstrAddr();

 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/aborts/AArch64.SPAlignmentFault

 // AArch64.SPAlignmentFault()
 // ==========================
 // Called on an unaligned stack pointer in AArch64 state.

 AArch64.SPAlignmentFault()

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SPAlignment);

 bits(2) target_el = EL1;
 if UInt(PSTATE.EL) > UInt(EL1) then
 target_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
 target_el = EL2;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakePhysicalFIQException

 // AArch64.TakePhysicalFIQException()
 // ==================================

 AArch64.TakePhysicalFIQException()

 route_to_el3 = FALSE;
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.FMO == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x100;
 exception = ExceptionSyndrome(Exception_FIQ);

I1-314 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 if route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 assert PSTATE.EL != EL3;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 assert PSTATE.EL IN {EL0, EL1};
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakePhysicalIRQException

 // AArch64.TakePhysicalIRQException()
 // ==================================
 // Take an enabled physical IRQ exception.

 AArch64.TakePhysicalIRQException()

 route_to_el3 = FALSE;
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x80;

 exception = ExceptionSyndrome(Exception_IRQ);

 if route_to_el3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 elsif PSTATE.EL == EL2 || route_to_el2 then
 assert PSTATE.EL != EL3;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 assert PSTATE.EL IN {EL0, EL1};
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakePhysicalSErrorException

 // AArch64.TakePhysicalSErrorException()
 // =====================================

 AArch64.TakePhysicalSErrorException(bits(25) syndrome)

 route_to_el3 = FALSE;
 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1'));
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x180;

 bits(2) target_el;
 if PSTATE.EL == EL2 || route_to_el2 then
 target_el = EL2;
 else
 target_el = EL1;

 if IsSErrorEdgeTriggered(target_el, syndrome) then
 ClearPendingPhysicalSError();

 exception = ExceptionSyndrome(Exception_SError);
 exception.syndrome = syndrome;
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-315
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/exceptions/async/AArch64.TakeVirtualFIQException

 // AArch64.TakeVirtualFIQException()
 // =================================

 AArch64.TakeVirtualFIQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x100;

 exception = ExceptionSyndrome(Exception_FIQ);

 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakeVirtualIRQException

 // AArch64.TakeVirtualIRQException()
 // =================================

 AArch64.TakeVirtualIRQException()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x80;

 exception = ExceptionSyndrome(Exception_IRQ);

 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/async/AArch64.TakeVirtualSErrorException

 // AArch64.TakeVirtualSErrorException()
 // ====================================

 AArch64.TakeVirtualSErrorException(bits(25) syndrome)

 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
 assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x180;
 exception = ExceptionSyndrome(Exception_SError);

 if HaveRASExt() then
 exception.syndrome<24> = VSESR_EL2.IDS;
 exception.syndrome<23:0> = VSESR_EL2.ISS;
 else
 impdef_syndrome = syndrome<24> == '1';
 if impdef_syndrome then exception.syndrome = syndrome;

 ClearPendingVirtualSError();
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.BreakpointException

 // AArch64.BreakpointException()
 // =============================

 AArch64.BreakpointException(FaultRecord fault)
 assert PSTATE.EL != EL3;
I1-316 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 vaddress = bits(64) UNKNOWN;
 exception = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress);

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

 // AArch64.SoftwareBreakpoint()
 // ============================

 AArch64.SoftwareBreakpoint(bits(16) immediate)

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} &&
 EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SoftwareBreakpoint);
 exception.syndrome<15:0> = immediate;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.SoftwareStepException

 // AArch64.SoftwareStepException()
 // ===============================

 AArch64.SoftwareStepException()
 assert PSTATE.EL != EL3;

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SoftwareStep);
 if SoftwareStep_DidNotStep() then
 exception.syndrome<24> = '0';
 else
 exception.syndrome<24> = '1';
 exception.syndrome<6> = if SoftwareStep_SteppedEX() then '1' else '0';
 exception.syndrome<5:0> = '100010'; // IFSC = Debug Exception

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-317
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.VectorCatchException

 // AArch64.VectorCatchException()
 // ==============================
 // Vector Catch taken from EL0 or EL1 to EL2. This can only be called when debug exceptions are
 // being routed to EL2, as Vector Catch is a legacy debug event.

 AArch64.VectorCatchException(FaultRecord fault)
 assert PSTATE.EL != EL2;
 assert EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 vaddress = bits(64) UNKNOWN;
 exception = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress);

 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/debug/AArch64.WatchpointException

 // AArch64.WatchpointException()
 // =============================

 AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
 assert PSTATE.EL != EL3;

 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress);

 if PSTATE.EL == EL2 || route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/exceptions/AArch64.ExceptionClass

 // AArch64.ExceptionClass()
 // ========================
 // Returns the Exception Class and Instruction Length fields to be reported in ESR

 (integer,bit) AArch64.ExceptionClass(Exception exceptype, bits(2) target_el)

 il_is_valid = TRUE;
 from_32 = UsingAArch32();
 case exceptype of
 when Exception_Uncategorized ec = 0x00; il_is_valid = FALSE;
 when Exception_WFxTrap ec = 0x01;
 when Exception_CP15RTTrap ec = 0x03; assert from_32;
 when Exception_CP15RRTTrap ec = 0x04; assert from_32;
 when Exception_CP14RTTrap ec = 0x05; assert from_32;
 when Exception_CP14DTTrap ec = 0x06; assert from_32;
 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
 when Exception_FPIDTrap ec = 0x08;
 when Exception_PACTrap ec = 0x09;
I1-318 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 when Exception_CP14RRTTrap ec = 0x0C; assert from_32;
 when Exception_IllegalState ec = 0x0E; il_is_valid = FALSE;
 when Exception_SupervisorCall ec = 0x11;
 when Exception_HypervisorCall ec = 0x12;
 when Exception_MonitorCall ec = 0x13;
 when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
 when Exception_PACFail ec = 0x1C; assert !from_32;
 when Exception_InstructionAbort ec = 0x20; il_is_valid = FALSE;
 when Exception_PCAlignment ec = 0x22; il_is_valid = FALSE;
 when Exception_DataAbort ec = 0x24;
 when Exception_SPAlignment ec = 0x26; il_is_valid = FALSE; assert !from_32;
 when Exception_FPTrappedException ec = 0x28;
 when Exception_SError ec = 0x2F; il_is_valid = FALSE;
 when Exception_Breakpoint ec = 0x30; il_is_valid = FALSE;
 when Exception_SoftwareStep ec = 0x32; il_is_valid = FALSE;
 when Exception_Watchpoint ec = 0x34; il_is_valid = FALSE;
 when Exception_SoftwareBreakpoint ec = 0x38;
 when Exception_VectorCatch ec = 0x3A; il_is_valid = FALSE; assert from_32;
 otherwise Unreachable();

 if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
 ec = ec + 1;

 if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
 ec = ec + 4;
 if il_is_valid then
 il = if ThisInstrLength() == 32 then '1' else '0';
 else
 il = '1';
 assert from_32 || il == '1'; // AArch64 instructions always 32-bit

 return (ec,il);

aarch64/exceptions/exceptions/AArch64.ReportException

 // AArch64.ReportException()
 // =========================
 // Report syndrome information for exception taken to AArch64 state.

 AArch64.ReportException(ExceptionRecord exception, bits(2) target_el)

 Exception exceptype = exception.exceptype;

 (ec,il) = AArch64.ExceptionClass(exceptype, target_el);
 iss = exception.syndrome;

 // IL is not valid for Data Abort exceptions without valid instruction syndrome information
 if ec IN {0x24,0x25} && iss<24> == '0' then
 il = '1';

 ESR[target_el] = (Zeros(32) : // <63:32>
 ec<5:0> : // <31:26>
 il : // <25>
 iss); // <24:0>

 if exceptype IN {
 Exception_InstructionAbort,
 Exception_PCAlignment,
 Exception_DataAbort,
 Exception_Watchpoint
 } then
 FAR[target_el] = exception.vaddress;
 else
 FAR[target_el] = bits(64) UNKNOWN;

 if exception.ipavalid then
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-319
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 HPFAR_EL2<43:4> = exception.ipaddress<51:12>;
 if IsSecureEL2Enabled() && IsSecure() then
 HPFAR_EL2.NS = exception.NS;
 else
 HPFAR_EL2.NS = '0';
 elsif target_el == EL2 then
 HPFAR_EL2<43:4> = bits(40) UNKNOWN;

 return;

aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

 // Resets System registers and memory-mapped control registers that have architecturally-defined
 // reset values to those values.
 AArch64.ResetControlRegisters(boolean cold_reset);

aarch64/exceptions/exceptions/AArch64.TakeReset

 // AArch64.TakeReset()
 // ===================
 // Reset into AArch64 state

 AArch64.TakeReset(boolean cold_reset)
 assert HaveAArch64();

 // Enter the highest implemented Exception level in AArch64 state
 PSTATE.nRW = '0';
 if HaveEL(EL3) then
 PSTATE.EL = EL3;
 elsif HaveEL(EL2) then
 PSTATE.EL = EL2;
 else
 PSTATE.EL = EL1;

 // Reset System registers and other system components
 AArch64.ResetControlRegisters(cold_reset);

 // Reset all other PSTATE fields
 PSTATE.SP = '1'; // Select stack pointer
 PSTATE.<D,A,I,F> = '1111'; // All asynchronous exceptions masked
 PSTATE.SS = '0'; // Clear software step bit
 PSTATE.DIT = '0'; // PSTATE.DIT is reset to 0 when resetting into AArch64
 PSTATE.IL = '0'; // Clear Illegal Execution state bit

 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
 // ELR_ELx and SPSR_ELx have UNKNOWN values, so that it
 // is impossible to return from a reset in an architecturally defined way.
 AArch64.ResetGeneralRegisters();
 AArch64.ResetSIMDFPRegisters();
 AArch64.ResetSpecialRegisters();
 ResetExternalDebugRegisters(cold_reset);

 bits(64) rv; // IMPLEMENTATION DEFINED reset vector

 rv = RVBAR_EL2;

 // The reset vector must be correctly aligned
 assert IsZero(rv<63:AArch64.PAMax()>) && IsZero(rv<1:0>);

 boolean branch_conditional = FALSE;
 BranchTo(rv, BranchType_RESET, branch_conditional);
I1-320 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/exceptions/ieeefp/AArch64.FPTrappedException

 // AArch64.FPTrappedException()
 // ============================

 AArch64.FPTrappedException(boolean is_ase, bits(8) accumulated_exceptions)
 exception = ExceptionSyndrome(Exception_FPTrappedException);
 if is_ase then
 if boolean IMPLEMENTATION_DEFINED "vector instructions set TFV to 1" then
 exception.syndrome<23> = '1'; // TFV
 else
 exception.syndrome<23> = '0'; // TFV
 else
 exception.syndrome<23> = '1'; // TFV
 exception.syndrome<10:8> = bits(3) UNKNOWN; // VECITR
 if exception.syndrome<23> == '1' then
 exception.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
 else
 exception.syndrome<7,4:0> = bits(6) UNKNOWN;

 route_to_el2 = EL2Enabled() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallHypervisor

 // AArch64.CallHypervisor()
 // ========================
 // Performs a HVC call

 AArch64.CallHypervisor(bits(16) immediate)
 assert HaveEL(EL2);

 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();
 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_HypervisorCall);
 exception.syndrome<15:0> = immediate;

 if PSTATE.EL == EL3 then
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSecureMonitor

 // AArch64.CallSecureMonitor()
 // ===========================

 AArch64.CallSecureMonitor(bits(16) immediate)
 assert HaveEL(EL3) && !ELUsingAArch32(EL3);
 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();
 bits(64) preferred_exception_return = NextInstrAddr();
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-321
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_MonitorCall);
 exception.syndrome<15:0> = immediate;

 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/syscalls/AArch64.CallSupervisor

 // AArch64.CallSupervisor()
 // ========================
 // Calls the Supervisor

 AArch64.CallSupervisor(bits(16) immediate)

 if UsingAArch32() then AArch32.ITAdvance();
 SSAdvance();
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = NextInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_SupervisorCall);
 exception.syndrome<15:0> = immediate;

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/takeexception/AArch64.TakeException

 // AArch64.TakeException()
 // =======================
 // Take an exception to an Exception level using AArch64.

 AArch64.TakeException(bits(2) target_el, ExceptionRecord exception,
 bits(64) preferred_exception_return, integer vect_offset)
 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);

 if HaveIESB() then
 sync_errors = SCTLR[target_el].IESB == '1';
 if sync_errors && InsertIESBBeforeException(target_el) then
 SynchronizeErrors();
 iesb_req = FALSE;
 sync_errors = FALSE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
 else
 sync_errors = FALSE;

 SynchronizeContext();

 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
 from_32 = UsingAArch32();
 if from_32 then AArch64.MaybeZeroRegisterUppers();

 if UInt(target_el) > UInt(PSTATE.EL) then
 boolean lower_32;
 if target_el == EL3 then
 if EL2Enabled() then
 lower_32 = ELUsingAArch32(EL2);
 else
I1-322 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 lower_32 = ELUsingAArch32(EL1);
 else
 lower_32 = ELUsingAArch32(target_el - 1);
 vect_offset = vect_offset + (if lower_32 then 0x600 else 0x400);

 elsif PSTATE.SP == '1' then
 vect_offset = vect_offset + 0x200;

 bits(64) spsr = GetPSRFromPSTATE(AArch64_NonDebugState);

 if !(exception.exceptype IN {Exception_IRQ, Exception_FIQ}) then
 AArch64.ReportException(exception, target_el);

 PSTATE.EL = target_el;
 PSTATE.nRW = '0';
 PSTATE.SP = '1';

 SPSR[] = spsr;
 ELR[] = preferred_exception_return;

 PSTATE.SS = '0';
 PSTATE.<D,A,I,F> = '1111';
 PSTATE.IL = '0';
 if from_32 then // Coming from AArch32
 PSTATE.IT = '00000000';
 PSTATE.T = '0'; // PSTATE.J is RES0
 if HavePANExt() && PSTATE.EL == EL1 && SCTLR_EL1.SPAN == '0' then
 PSTATE.PAN = '1';
 if HaveUAOExt() then PSTATE.UAO = '0';
 if HaveSSBSExt() then PSTATE.SSBS = SCTLR[].DSSBS;

 boolean branch_conditional = FALSE;
 BranchTo(VBAR[]<63:11>:vect_offset<10:0>, BranchType_EXCEPTION, branch_conditional);

 CheckExceptionCatch(TRUE); // Check for debug event on exception entry

 if sync_errors then
 SynchronizeErrors();
 iesb_req = TRUE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

 EndOfInstruction();

aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

 // AArch64.AdvSIMDFPAccessTrap()
 // =============================
 // Trapped access to Advanced SIMD or FP registers due to CPACR[].

 AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 route_to_el2 = (target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1');

 if route_to_el2 then
 exception = ExceptionSyndrome(Exception_Uncategorized);
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

 return;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-323
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

 // AArch64.CheckCP15InstrCoarseTraps()
 // ===================================
 // Check for coarse-grained AArch32 traps to System registers in the
 // coproc=0b1111 encoding space by HSTR_EL2 and HCR_EL2.

 AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)
 trapped_encoding = ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
 (CRn == 10 && CRm IN {0,1, 4, 8 }) ||
 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}));

 // Check for coarse-grained Hyp traps
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 major = if nreg == 1 then CRn else CRm;
 // Check for MCR, MRC, MCRR, and MRRC disabled by HSTR_EL2<CRn/CRm>
 // and MRC and MCR disabled by HCR_EL2.TIDCP.
 if ((!(major IN {4,14}) && HSTR_EL2<major> == '1') ||
 (HCR_EL2.TIDCP == '1' && nreg == 1 && trapped_encoding)) then
 if (PSTATE.EL == EL0 &&
 boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at EL0") then
 UNDEFINED;
 AArch64.AArch32SystemAccessTrap(EL2, 0x3);

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

 // AArch64.CheckFPAdvSIMDEnabled()
 // ===============================

 AArch64.CheckFPAdvSIMDEnabled()
 AArch64.CheckFPEnabled();

aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

 // AArch64.CheckFPAdvSIMDTrap()
 // ============================
 // Check against CPTR_EL2 and CPTR_EL3.

 AArch64.CheckFPAdvSIMDTrap()
 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
 // Check if access disabled in CPTR_EL2
 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

 return;

aarch64/exceptions/traps/AArch64.CheckFPEnabled

 // AArch64.CheckFPEnabled()
 // ========================
 // Check against CPACR[]

 AArch64.CheckFPEnabled()
 if PSTATE.EL IN {EL0, EL1} then
 // Check if access disabled in CPACR_EL1
 case CPACR_EL1.FPEN of
 when 'x0' disabled = TRUE;
 when '01' disabled = PSTATE.EL == EL0;
 when '11' disabled = FALSE;
 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

 AArch64.CheckFPAdvSIMDTrap(); // Also check against CPTR_EL2 and CPTR_EL3
I1-324 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap

 // AArch64.CheckForSMCUndefOrTrap()
 // ================================
 // Check for UNDEFINED or trap on SMC instruction

 AArch64.CheckForSMCUndefOrTrap(bits(16) imm)
 if PSTATE.EL == EL0 then UNDEFINED;
 route_to_el2 = FALSE;
 if !HaveEL(EL3) || PSTATE.EL == EL0 then
 UNDEFINED;
 route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1';
 if route_to_el2 then
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;
 exception = ExceptionSyndrome(Exception_MonitorCall);
 exception.syndrome<15:0> = imm;
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.CheckForWFxTrap

 // AArch64.CheckForWFxTrap()
 // =========================
 // Check for trap on WFE or WFI instruction

 AArch64.CheckForWFxTrap(bits(2) target_el, WFxType wfxtype)
 assert HaveEL(target_el);

 boolean is_wfe = wfxtype == WFxType_WFE;
 case target_el of
 when EL1
 trap = (if is_wfe then SCTLR[].nTWE else SCTLR[].nTWI) == '0';
 when EL2
 trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';

 if trap then
 AArch64.WFxTrap(wfxtype, target_el);

aarch64/exceptions/traps/AArch64.CheckIllegalState

 // AArch64.CheckIllegalState()
 // ===========================
 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.

 AArch64.CheckIllegalState()
 if PSTATE.IL == '1' then
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_IllegalState);

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-325
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/exceptions/traps/AArch64.MonitorModeTrap

 // AArch64.MonitorModeTrap()
 // =========================
 // Trapped use of Monitor mode features in a Secure EL1 AArch32 mode

 AArch64.MonitorModeTrap()
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_Uncategorized);

 if IsSecureEL2Enabled() then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.SystemAccessTrap

 // AArch64.SystemAccessTrap()
 // ==========================
 // Trapped access to AArch64 system register or system instruction.

 AArch64.SystemAccessTrap(bits(2) target_el, integer ec)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = AArch64.SystemAccessTrapSyndrome(ThisInstr(), ec);
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome

 // AArch64.SystemAccessTrapSyndrome()
 // ==================================
 // Returns the syndrome information for traps on AArch64 MSR/MRS instructions.

 ExceptionRecord AArch64.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
 ExceptionRecord exception;
 case ec of
 when 0x0 // Trapped access due to unknown
reason.
 exception = ExceptionSyndrome(Exception_Uncategorized);
 when 0x7 // Trapped access to SVE, Advance
SIMD&FP system register.
 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
 exception.syndrome<24:20> = ConditionSyndrome();
 when 0x18 // Trapped access to system
register or system instruction.
 exception = ExceptionSyndrome(Exception_SystemRegisterTrap);
 instr = ThisInstr();
 exception.syndrome<21:20> = instr<20:19>; // Op0
 exception.syndrome<19:17> = instr<7:5>; // Op2
 exception.syndrome<16:14> = instr<18:16>; // Op1
 exception.syndrome<13:10> = instr<15:12>; // CRn
 exception.syndrome<9:5> = instr<4:0>; // Rt
 exception.syndrome<4:1> = instr<11:8>; // CRm
 exception.syndrome<0> = instr<21>; // Direction
 otherwise
 Unreachable();

 return exception;
I1-326 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/exceptions/traps/AArch64.UndefinedFault

 // AArch64.UndefinedFault()
 // ========================

 AArch64.UndefinedFault()

 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_Uncategorized);

 if UInt(PSTATE.EL) > UInt(EL1) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/AArch64.WFxTrap

 // AArch64.WFxTrap()
 // =================

 AArch64.WFxTrap(WFxType wfxtype, bits(2) target_el)
 assert UInt(target_el) > UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_WFxTrap);
 exception.syndrome<24:20> = ConditionSyndrome();

 case wfxtype of
 when WFxType_WFI
 exception.syndrome<0> = '0';
 when WFxType_WFE
 exception.syndrome<0> = '1';

 if target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1' then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

 // CheckFPAdvSIMDEnabled64()
 // =========================
 // AArch64 instruction wrapper

 CheckFPAdvSIMDEnabled64()
 AArch64.CheckFPAdvSIMDEnabled();

aarch64/exceptions/traps/CheckFPEnabled64

 // CheckFPEnabled64()
 // ==================
 // AArch64 instruction wrapper

 CheckFPEnabled64()
 AArch64.CheckFPEnabled();
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-327
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
I1.1.3 aarch64/functions

This section includes the following pseudocode functions:

• aarch64/functions/aborts/AArch64.FaultSyndrome on page I1-329.

• aarch64/functions/cache/AArch64.DataMemZero on page I1-330.

• aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass on page I1-330.

• aarch64/functions/exclusive/AArch64.IsExclusiveVA on page I1-331.

• aarch64/functions/exclusive/AArch64.MarkExclusiveVA on page I1-331.

• aarch64/functions/exclusive/AArch64.SetExclusiveMonitors on page I1-331.

• aarch64/functions/fusedrstep/FPRSqrtStepFused on page I1-331.

• aarch64/functions/fusedrstep/FPRecipStepFused on page I1-332.

• aarch64/functions/memory/AArch64.CheckAlignment on page I1-333.

• aarch64/functions/memory/AArch64.MemSingle on page I1-333.

• aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess on page I1-335.

• aarch64/functions/memory/CheckAllInAlignedQuantity on page I1-335.

• aarch64/functions/memory/CheckSPAlignment on page I1-335.

• aarch64/functions/memory/CheckSingleAccessAttributes on page I1-336.

• aarch64/functions/memory/Mem on page I1-337.

• aarch64/functions/memory/MemAtomic on page I1-339.

• aarch64/functions/memory/MemAtomicCompareAndSwap on page I1-339.

• aarch64/functions/pac/addpac/AddPAC on page I1-340.

• aarch64/functions/pac/addpacda/AddPACDA on page I1-341.

• aarch64/functions/pac/addpacdb/AddPACDB on page I1-341.

• aarch64/functions/pac/addpacga/AddPACGA on page I1-342.

• aarch64/functions/pac/addpacia/AddPACIA on page I1-342.

• aarch64/functions/pac/addpacib/AddPACIB on page I1-343.

• aarch64/functions/pac/auth/AArch64.PACFailException on page I1-343.

• aarch64/functions/pac/auth/Auth on page I1-344.

• aarch64/functions/pac/authda/AuthDA on page I1-344.

• aarch64/functions/pac/authdb/AuthDB on page I1-345.

• aarch64/functions/pac/authia/AuthIA on page I1-345.

• aarch64/functions/pac/authib/AuthIB on page I1-346.

• aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit on page I1-346.

• aarch64/functions/pac/computepac/ComputePAC on page I1-347.

• aarch64/functions/pac/computepac/PACCellInvShuffle on page I1-348.

• aarch64/functions/pac/computepac/PACCellShuffle on page I1-348.

• aarch64/functions/pac/computepac/PACInvSub on page I1-349.

• aarch64/functions/pac/computepac/PACMult on page I1-349.

• aarch64/functions/pac/computepac/PACSub on page I1-349.

• aarch64/functions/pac/computepac/RC on page I1-350.

• aarch64/functions/pac/computepac/RotCell on page I1-350.

• aarch64/functions/pac/computepac/TweakCellInvRot on page I1-350.

• aarch64/functions/pac/computepac/TweakCellRot on page I1-350.

• aarch64/functions/pac/computepac/TweakInvShuffle on page I1-351.

• aarch64/functions/pac/computepac/TweakShuffle on page I1-351.

• aarch64/functions/pac/pac/HaveEnhancedPAC on page I1-351.

• aarch64/functions/pac/pac/HaveEnhancedPAC2 on page I1-352.

• aarch64/functions/pac/pac/HaveFPAC on page I1-352.

• aarch64/functions/pac/pac/HaveFPACCombined on page I1-352.

• aarch64/functions/pac/pac/HavePACExt on page I1-352.

• aarch64/functions/pac/pac/HavePACIMP on page I1-352.
I1-328 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
• aarch64/functions/pac/pac/HavePACQARMA5 on page I1-352.

• aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges on page I1-353.

• aarch64/functions/pac/strip/Strip on page I1-353.

• aarch64/functions/pac/trappacuse/TrapPACUse on page I1-353.

• aarch64/functions/ras/AArch64.ESBOperation on page I1-353.

• aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome on page I1-354.

• aarch64/functions/ras/AArch64.ReportDeferredSError on page I1-354.

• aarch64/functions/ras/AArch64.vESBOperation on page I1-354.

• aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers on page I1-355.

• aarch64/functions/registers/AArch64.ResetGeneralRegisters on page I1-355.

• aarch64/functions/registers/AArch64.ResetSIMDFPRegisters on page I1-355.

• aarch64/functions/registers/AArch64.ResetSpecialRegisters on page I1-356.

• aarch64/functions/registers/AArch64.ResetSystemRegisters on page I1-356.

• aarch64/functions/registers/PC on page I1-356.

• aarch64/functions/registers/SP on page I1-356.

• aarch64/functions/registers/V on page I1-357.

• aarch64/functions/registers/Vpart on page I1-357.

• aarch64/functions/registers/X on page I1-358.

• aarch64/functions/sysregisters/CNTKCTL on page I1-358.

• aarch64/functions/sysregisters/CNTKCTLType on page I1-358.

• aarch64/functions/sysregisters/CPACR on page I1-358.

• aarch64/functions/sysregisters/CPACRType on page I1-359.

• aarch64/functions/sysregisters/ELR on page I1-359.

• aarch64/functions/sysregisters/ESR on page I1-359.

• aarch64/functions/sysregisters/ESRType on page I1-360.

• aarch64/functions/sysregisters/FAR on page I1-360.

• aarch64/functions/sysregisters/MAIR on page I1-360.

• aarch64/functions/sysregisters/MAIRType on page I1-361.

• aarch64/functions/sysregisters/MPUIR on page I1-361.

• aarch64/functions/sysregisters/MPUIRType on page I1-361.

• aarch64/functions/sysregisters/PRBARn on page I1-361.

• aarch64/functions/sysregisters/PRBARnType on page I1-361.

• aarch64/functions/sysregisters/PRLARn on page I1-361.

• aarch64/functions/sysregisters/PRLARnType on page I1-362.

• aarch64/functions/sysregisters/SCTLR on page I1-362.

• aarch64/functions/sysregisters/SCTLRType on page I1-362.

• aarch64/functions/sysregisters/VBAR on page I1-362.

• aarch64/functions/system/AArch64.SysInstr on page I1-362.

• aarch64/functions/system/AArch64.SysInstrWithResult on page I1-363.

• aarch64/functions/system/AArch64.SysRegRead on page I1-363.

• aarch64/functions/system/AArch64.SysRegWrite on page I1-363.

aarch64/functions/aborts/AArch64.FaultSyndrome

 // AArch64.FaultSyndrome()
 // =======================
 // Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
 // an Exception level using AArch64.

 bits(25) AArch64.FaultSyndrome(boolean d_side, FaultRecord fault)
 assert fault.statuscode != Fault_None;

 bits(25) iss = Zeros();
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-329
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 if HaveRASExt() && IsAsyncAbort(fault) then
 iss<12:11> = fault.errortype; // SET

 if d_side then
 if (IsSecondStage(fault) && !fault.s2fs1walk &&
 (!IsExternalSyncAbort(fault) ||
 (!HaveRASExt() && fault.acctype == AccType_TTW &&
 boolean IMPLEMENTATION_DEFINED "ISV on second stage translation table walk"))) then
 iss<24:14> = LSInstructionSyndrome();

 if fault.acctype IN {AccType_DC, AccType_IC, AccType_AT, AccType_ATPAN} then
 iss<8> = '1'; iss<6> = '1';
 else
 iss<6> = if fault.write then '1' else '0';

 if IsExternalAbort(fault) then iss<9> = fault.extflag;
 iss<7> = if fault.s2fs1walk then '1' else '0';
 iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

 return iss;

aarch64/functions/cache/AArch64.DataMemZero

 // AArch64.DataMemZero()
 // =====================
 // Write Zero to data memory

 AArch64.DataMemZero(bits(64) regval, bits(64) vaddress, AddressDescriptor memaddrdesc, integer size)
 iswrite = TRUE;
 for i = 0 to size-1
 accdesc = CreateAccessDescriptor(AccType_DCZVA);
 memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, Zeros());
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
 return;

aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

 // AArch64.ExclusiveMonitorsPass()
 // ===============================
 // Return TRUE if the Exclusives monitors for the current PE include all of the addresses
 // associated with the virtual address region of size bytes starting at address.
 // The immediately following memory write must be to the same addresses.

 boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusives monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give an memory abort.

 acctype = AccType_ATOMIC;
 iswrite = TRUE;

 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

 passed = AArch64.IsExclusiveVA(address, ProcessorID(), size);
 if !passed then
 return FALSE;

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
I1-330 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
 ClearExclusiveLocal(ProcessorID());

 if passed then
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 return passed;

aarch64/functions/exclusive/AArch64.IsExclusiveVA

 // An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
 // address region of size bytes starting at address.
 //
 // It is permitted (but not required) for this function to return FALSE and
 // cause a store exclusive to fail if the virtual address region is not
 // totally included within the region recorded by MarkExclusiveVA().
 //
 // It is always safe to return TRUE which will check the physical address only.
 boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

aarch64/functions/exclusive/AArch64.MarkExclusiveVA

 // Optionally record an exclusive access to the virtual address region of size bytes
 // starting at address for processorid.
 AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);

aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

 // AArch64.SetExclusiveMonitors()
 // ==============================
 // Sets the Exclusives monitors for the current PE to record the addresses associated
 // with the virtual address region of size bytes starting at address.

 AArch64.SetExclusiveMonitors(bits(64) address, integer size)
 acctype = AccType_ATOMIC;
 iswrite = FALSE;

 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 return;

 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

 AArch64.MarkExclusiveVA(address, ProcessorID(), size);

aarch64/functions/fusedrstep/FPRSqrtStepFused

 // FPRSqrtStepFused()
 // ==================

 bits(N) FPRSqrtStepFused(bits(N) op1, bits(N) op2)
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-331
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 assert N IN {16, 32, 64};
 bits(N) result;
 FPCRType fpcr = FPCR[];
 op1 = FPNeg(op1);

 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 FPRounding rounding = FPRoundingMode(fpcr);

 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPOnePointFive('0');
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 else
 // Fully fused multiply-add and halve
 result_value = (3.0 + (value1 * value2)) / 2.0;
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(sign);
 else
 result = FPRound(result_value, fpcr, rounding);

 return result;

aarch64/functions/fusedrstep/FPRecipStepFused

 // FPRecipStepFused()
 // ==================

 bits(N) FPRecipStepFused(bits(N) op1, bits(N) op2)
 assert N IN {16, 32, 64};
 bits(N) result;
 FPCRType fpcr = FPCR[];
 op1 = FPNeg(op1);

 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 FPRounding rounding = FPRoundingMode(fpcr);

 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo('0');
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 else
 // Fully fused multiply-add
 result_value = 2.0 + (value1 * value2);
 if result_value == 0.0 then
 // Sign of exact zero result depends on rounding mode
 sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(sign);
 else
I1-332 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 result = FPRound(result_value, fpcr, rounding);

 return result;

aarch64/functions/memory/AArch64.CheckAlignment

 // AArch64.CheckAlignment()
 // ========================

 boolean AArch64.CheckAlignment(bits(64) address, integer alignment, AccType acctype,
 boolean iswrite)

 aligned = (address == Align(address, alignment));
 atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,
 AccType_ORDEREDATOMICRW, AccType_A32LSMD };
 ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_ORDEREDATOMIC,
 AccType_ORDEREDATOMICRW };
 vector = acctype == AccType_VEC;
 if SCTLR[].A == '1' then check = TRUE;
 elsif HaveLSE2Ext() then
 check = (UInt(address<0+:4>) + alignment > 16) && ((ordered && SCTLR[].nAA == '0') || atomic);
 else check = atomic || ordered;

 if check && !aligned then
 secondstage = FALSE;
 AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));

 return aligned;

aarch64/functions/memory/AArch64.MemSingle

 // AArch64.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned]
 boolean ispair = FALSE;
 return AArch64.MemSingle[address, size, acctype, aligned, ispair];

 // AArch64.MemSingle[] - non-assignment (read) form
 // ==
 // Perform an atomic, little-endian read of 'size' bytes.

 bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned, boolean
ispair]
 assert size IN {1, 2, 4, 8, 16};
 constant halfsize = size DIV 2;
 if HaveLSE2Ext() then
 assert CheckAllInAlignedQuantity(address, size, 16);
 else
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 bits(size*8) value;
 iswrite = FALSE;

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-333
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 (atomic, splitpair) = CheckSingleAccessAttributes(address, memaddrdesc.memattrs, size, acctype,
iswrite, aligned, ispair);
 if atomic then
 (memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
 elsif splitpair then
 assert ispair;
 (memstatus, lowhalf) = PhysMemRead(memaddrdesc, halfsize, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, halfsize, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize;
 (memstatus, highhalf) = PhysMemRead(memaddrdesc, halfsize, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, halfsize, accdesc);

 value = highhalf:lowhalf;
 else
 for i = 0 to size-1
 (memstatus, value<8*i+7:8*i>) = PhysMemRead(memaddrdesc, 1, accdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
 return value;

 // AArch64.MemSingle[] - assignment (write) form
 // ===

 AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned] = bits(size*8) value
 boolean ispair = FALSE;
 AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;
 return;

 // AArch64.MemSingle[] - assignment (write) form
 // ===
 // Perform an atomic, little-endian write of 'size' bytes.

 AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean aligned, boolean ispair] =
bits(size*8) value
 assert size IN {1, 2, 4, 8, 16};
 constant halfsize = size DIV 2;
 if HaveLSE2Ext() then
 assert CheckAllInAlignedQuantity(address, size, 16);
 else
 assert address == Align(address, size);

 AddressDescriptor memaddrdesc;
 iswrite = TRUE;

 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 // Memory array access
 accdesc = CreateAccessDescriptor(acctype);

 (atomic, splitpair) = CheckSingleAccessAttributes(address, memaddrdesc.memattrs, size, acctype,
iswrite, aligned, ispair);
 if atomic then
 memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
 elsif splitpair then
I1-334 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 assert ispair;
 bits(halfsize*8) lowhalf, highhalf;
 <highhalf, lowhalf> = value;

 memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, lowhalf);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, halfsize, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize;
 memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, highhalf);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, halfsize, accdesc);
 else
 for i = 0 to size-1
 memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, value<8*i+7:8*i>);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);
 memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
 return;

aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess

 // AArch64.TranslateAddressForAtomicAccess()
 // ===
 // Performs an alignment check for atomic memory operations.
 // Also translates 64-bit Virtual Address into Physical Address.

 AddressDescriptor AArch64.TranslateAddressForAtomicAccess(bits(64) address, integer sizeinbits)
 boolean iswrite = FALSE;
 size = sizeinbits DIV 8;

 assert size IN {1, 2, 4, 8, 16};

 aligned = AArch64.CheckAlignment(address, size, AccType_ATOMICRW, iswrite);

 // MMU or MPU lookup
 memaddrdesc = AArch64.TranslateAddress(address, AccType_ATOMICRW, iswrite,
 aligned, size);

 // Check for aborts or debug exceptions
 if IsFault(memaddrdesc) then
 AArch64.Abort(address, memaddrdesc.fault);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareability != Shareability_NSH then
 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

 return memaddrdesc;

aarch64/functions/memory/CheckAllInAlignedQuantity

 // CheckAllInAlignedQuantity()
 // ===========================
 // Returns TRUE if all accessed bytes are within one aligned quantity, FALSE otherwise.

 boolean CheckAllInAlignedQuantity(bits(64) address, integer size, integer alignment)
 assert(size <= alignment);
 return Align(address+size-1, alignment) == Align(address, alignment);

aarch64/functions/memory/CheckSPAlignment

 // CheckSPAlignment()
 // ==================
 // Check correct stack pointer alignment for AArch64 state.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-335
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 CheckSPAlignment()
 bits(64) sp = SP[];
 if PSTATE.EL == EL0 then
 stack_align_check = (SCTLR[].SA0 != '0');
 else
 stack_align_check = (SCTLR[].SA != '0');

 if stack_align_check && sp != Align(sp, 16) then
 AArch64.SPAlignmentFault();

 return;

aarch64/functions/memory/CheckSingleAccessAttributes

 // CheckSingleAccessAttributes()
 // =============================
 //
 // When FEAT_LSE2 is implemented, a MemSingle[] access needs to be further assessed once the memory
 // attributes are determined.
 // If it was aligned to access size or targets Normal Inner Write-Back, Outer Write-Back Cacheable
 // memory then it is single copy atomic and there is no alignment fault.
 // If not, for exclusives, atomics and non atomic acquire release instructions - it is CONSTRAINED
UNPREDICTABLE
 // if they generate an alignment fault. If they do not generate an alignement fault - they are
 // single copy atomic.
 // Otherwise it is IMPLEMENTATION DEFINED - if they are single copy atomic.
 //
 // The function returns (atomic, splitpair), where
 // atomic indicates if the access is single copy atomic.
 // splitpair indicates that a load/store pair is split into 2 single copy atomic accesses.
 // when atomic and splitpair are both FALSE - the access is not single copy atomic and may be
treated
 // as byte accesses.

 (boolean, boolean) CheckSingleAccessAttributes(bits(64) address, MemoryAttributes memattrs, integer
size,
 AccType acctype, boolean iswrite, boolean aligned, boolean ispair)
 isnormalwb = (memattrs.memtype == MemType_Normal &&
 memattrs.inner.attrs == MemAttr_WB &&
 memattrs.outer.attrs == MemAttr_WB);

 atomic = TRUE;
 splitpair = FALSE;
 if isnormalwb then return (atomic, splitpair);

 accatomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,
AccType_ORDEREDATOMICRW, AccType_A32LSMD };
 ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_ORDEREDATOMIC,
AccType_ORDEREDATOMICRW };

 if !aligned && (accatomic || ordered) then
 atomic = ConstrainUnpredictableBool();
 if !atomic then
 secondstage = FALSE;
 AArch64.Abort(address, AlignmentFault(acctype, iswrite, secondstage));
 else
 return (atomic, splitpair);

 if ispair && aligned then
 // load / store pair requests that are aligned to each register access are split into 2 single
copy atomic accesses
 atomic = FALSE;
 splitpair = TRUE;
 return (atomic, splitpair);

I1-336 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 if aligned then
 return (atomic, splitpair);

 atomic = boolean IMPLEMENTATION_DEFINED "Misaligned accesses within 16 byte aligned memory but not
Normal Cacheable Writeback are Atomic";

 return (atomic, splitpair);

aarch64/functions/memory/Mem

 // Mem[] - non-assignment (read) form
 // ==================================
 // Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
 // Instruction fetches would call AArch64.MemSingle directly.

 bits(size*8) Mem[bits(64) address, integer size, AccType acctype]
 boolean ispair = FALSE;
 return Mem[address, size, acctype, ispair];

 bits(size*8) Mem[bits(64) address, integer size, AccType acctype, boolean ispair]
 assert size IN {1, 2, 4, 8, 16};
 constant halfsize = size DIV 2;
 bits(size * 8) value;
 bits(halfsize * 8) lowhalf, highhalf;
 boolean iswrite = FALSE;
 if ispair then
 // check alignment on size of element accessed, not overall access size
 aligned = AArch64.CheckAlignment(address, halfsize, acctype, iswrite);
 else
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
 if !HaveLSE2Ext() then
 atomic = aligned;
 else
 atomic = CheckAllInAlignedQuantity(address, size, 16);
 elsif acctype IN {AccType_VEC, AccType_VECSTREAM} then
 // 128-bit SIMD&FP loads are treated as a pair of 64-bit single-copy atomic accesses
 // 64-bit aligned.
 atomic = address == Align(address, 8);
 else
 // 16-byte integer access
 atomic = address == Align(address, 16);

 if !atomic && ispair && address == Align(address, halfsize) then
 single_is_pair = FALSE;
 single_is_aligned = TRUE;
 lowhalf = AArch64.MemSingle[address, halfsize, acctype, single_is_aligned, single_is_pair];
 highhalf = AArch64.MemSingle[address + halfsize, halfsize, acctype, single_is_aligned,
single_is_pair];
 value = highhalf:lowhalf;
 elsif atomic && ispair then
 value = AArch64.MemSingle[address, size, acctype, aligned, ispair];
 elsif !atomic then

 assert size > 1;
 value<7:0> = AArch64.MemSingle[address, 1, acctype, aligned];

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 if !aligned then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-337
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 value<8*i+7:8*i> = AArch64.MemSingle[address+i, 1, acctype, aligned];
 elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
 lowhalf = AArch64.MemSingle[address, halfsize, acctype, aligned, ispair];
 highhalf = AArch64.MemSingle[address + halfsize, halfsize, acctype, aligned, ispair];
 value = highhalf:lowhalf;
 else
 value = AArch64.MemSingle[address, size, acctype, aligned, ispair];

 if BigEndian(acctype) then
 value = BigEndianReverse(value);

 return value;

 // Mem[] - assignment (write) form
 // ===============================
 // Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

 Mem[bits(64) address, integer size, AccType acctype] = bits(size*8) value
 boolean ispair = FALSE;
 Mem[address, size, acctype, ispair] = value;

 Mem[bits(64) address, integer size, AccType acctype, boolean ispair] = bits(size*8) value
 boolean iswrite = TRUE;
 constant halfsize = size DIV 2;
 bits(halfsize*8) lowhalf, highhalf;
 if BigEndian(acctype) then
 value = BigEndianReverse(value);

 if ispair then
 // check alignment on size of element accessed, not overall access size
 aligned = AArch64.CheckAlignment(address, halfsize, acctype, iswrite);
 else
 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
 if ispair then
 atomic = CheckAllInAlignedQuantity(address, size, 16);
 elsif size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
 if !HaveLSE2Ext() then
 atomic = aligned;
 else
 atomic = CheckAllInAlignedQuantity(address, size, 16);
 elsif (acctype IN {AccType_VEC, AccType_VECSTREAM}) then
 // 128-bit SIMD&FP stores are treated as a pair of 64-bit single-copy atomic accesses
 // 64-bit aligned.
 atomic = address == Align(address, 8);
 else
 // 16-byte integer access
 atomic = address == Align(address, 16);

 if !atomic && ispair && address == Align(address, halfsize) then
 single_is_aligned = TRUE;
 <highhalf, lowhalf> = value;
 AArch64.MemSingle[address, halfsize, acctype, single_is_aligned, ispair] = lowhalf;
 AArch64.MemSingle[address + halfsize, halfsize, acctype, single_is_aligned, ispair] = highhalf;
 elsif atomic && ispair then
 AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;
 elsif !atomic then
 assert size > 1;
 AArch64.MemSingle[address, 1, acctype, aligned] = value<7:0>;

 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
 // access will generate an Alignment Fault, as to get this far means the first byte did
 // not, so we must be changing to a new translation page.
 if !aligned then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FAULT, Constraint_NONE};
 if c == Constraint_NONE then aligned = TRUE;

 for i = 1 to size-1
I1-338 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 AArch64.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;
 elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
 <highhalf, lowhalf> = value;
 AArch64.MemSingle[address, halfsize, acctype, aligned, ispair] = lowhalf;
 AArch64.MemSingle[address + halfsize, halfsize, acctype, aligned, ispair] = highhalf;
 else
 AArch64.MemSingle[address, size, acctype, aligned, ispair] = value;
 return;

aarch64/functions/memory/MemAtomic

 // MemAtomic()
 // ===========
 // Performs load and store memory operations for a given virtual address.

 bits(size) MemAtomic(bits(64) address, MemAtomicOp op, bits(size) value, AccType ldacctype, AccType
stacctype)
 bits(size) newvalue;
 memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
 ldaccdesc = CreateAccessDescriptor(ldacctype);
 staccdesc = CreateAccessDescriptor(stacctype);

 // All observers in the shareability domain observe the
 // following load and store atomically.
 (memstatus, oldvalue) = PhysMemRead(memaddrdesc, size DIV 8, ldaccdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size DIV 8, ldaccdesc);
 if BigEndian(ldacctype) then
 oldvalue = BigEndianReverse(oldvalue);

 case op of
 when MemAtomicOp_ADD newvalue = oldvalue + value;
 when MemAtomicOp_BIC newvalue = oldvalue AND NOT(value);
 when MemAtomicOp_EOR newvalue = oldvalue EOR value;
 when MemAtomicOp_ORR newvalue = oldvalue OR value;
 when MemAtomicOp_SMAX newvalue = if SInt(oldvalue) > SInt(value) then oldvalue else value;
 when MemAtomicOp_SMIN newvalue = if SInt(oldvalue) > SInt(value) then value else oldvalue;
 when MemAtomicOp_UMAX newvalue = if UInt(oldvalue) > UInt(value) then oldvalue else value;
 when MemAtomicOp_UMIN newvalue = if UInt(oldvalue) > UInt(value) then value else oldvalue;
 when MemAtomicOp_SWP newvalue = value;

 if BigEndian(stacctype) then
 newvalue = BigEndianReverse(newvalue);
 memstatus = PhysMemWrite(memaddrdesc, size DIV 8, staccdesc, newvalue);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size DIV 8, staccdesc);

 // Load operations return the old (pre-operation) value
 return oldvalue;

aarch64/functions/memory/MemAtomicCompareAndSwap

 // MemAtomicCompareAndSwap()
 // =========================
 // Compares the value stored at the passed-in memory address against the passed-in expected
 // value. If the comparison is successful, the value at the passed-in memory address is swapped
 // with the passed-in new_value.

 bits(size) MemAtomicCompareAndSwap(bits(64) address, bits(size) expectedvalue,
 bits(size) newvalue, AccType ldacctype, AccType stacctype)
 memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
 ldaccdesc = CreateAccessDescriptor(ldacctype);
 staccdesc = CreateAccessDescriptor(stacctype);

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-339
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 // All observers in the shareability domain observe the
 // following load and store atomically.
 (memstatus, oldvalue) = PhysMemRead(memaddrdesc, size DIV 8, ldaccdesc);
 if IsFault(memstatus) then
 HandleExternalReadAbort(memstatus, memaddrdesc, size DIV 8, ldaccdesc);
 if BigEndian(ldacctype) then
 oldvalue = BigEndianReverse(oldvalue);

 if oldvalue == expectedvalue then
 if BigEndian(stacctype) then
 newvalue = BigEndianReverse(newvalue);
 memstatus = PhysMemWrite(memaddrdesc, size DIV 8, staccdesc, newvalue);
 if IsFault(memstatus) then
 HandleExternalWriteAbort(memstatus, memaddrdesc, size DIV 8, staccdesc);
 return oldvalue;

aarch64/functions/pac/addpac/AddPAC

 // AddPAC()
 // ========
 // Calculates the pointer authentication code for a 64-bit quantity and then
 // inserts that into pointer authentication code field of that 64-bit quantity.

 bits(64) AddPAC(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data)
 bits(64) PAC;
 bits(64) result;
 bits(64) ext_ptr;
 bits(64) extfield;
 bit selbit;
 boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
 integer top_bit = if tbi then 55 else 63;

 // If tagged pointers are in use for a regime with two TTBRs, use bit<55> of
 // the pointer to select between upper and lower ranges, and preserve this.
 // This handles the awkward case where there is apparently no correct choice between
 // the upper and lower address range - ie an addr of 1xxxxxxx0... with TBI0=0 and TBI1=1
 // and 0xxxxxxx1 with TBI1=0 and TBI0=1:
 // This include EL1/EL0 in both VMSA and PMSA context.
 if PSTATE.EL == EL1 || PSTATE.EL == EL0 then
 assert S1TranslationRegime() == EL1;
 if S1TranslationRegime() == EL1 then
 // EL1 translation regime registers
 if data then
 if TCR_EL1.TBI1 == '1' || TCR_EL1.TBI0 == '1' then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else
 if ((TCR_EL1.TBI1 == '1' && TCR_EL1.TBID1 == '0') ||
 (TCR_EL1.TBI0 == '1' && TCR_EL1.TBID0 == '0')) then
 selbit = ptr<55>;
 else
 selbit = ptr<63>;
 else selbit = if tbi then ptr<55> else ptr<63>;

 integer bottom_PAC_bit = CalculateBottomPACBit(selbit);

 // The pointer authentication code field takes all the available bits in between
 extfield = Replicate(selbit, 64);

 // Compute the pointer authentication code for a ptr with good extension bits
 if tbi then
 ext_ptr = ptr<63:56>:extfield<(56-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;
 else
 ext_ptr = extfield<(64-bottom_PAC_bit)-1:0>:ptr<bottom_PAC_bit-1:0>;

I1-340 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 PAC = ComputePAC(ext_ptr, modifier, K<127:64>, K<63:0>);

 // Check if the ptr has good extension bits and corrupt the pointer authentication code if not
 if !IsZero(ptr<top_bit:bottom_PAC_bit>) && !IsOnes(ptr<top_bit:bottom_PAC_bit>) then
 if HaveEnhancedPAC() then
 PAC = 0x0000000000000000<63:0>;
 elsif !HaveEnhancedPAC2() then
 PAC<top_bit-1> = NOT(PAC<top_bit-1>);

 // preserve the determination between upper and lower address at bit<55> and insert PAC
 if !HaveEnhancedPAC2() then
 if tbi then
 result = ptr<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 else
 result = PAC<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
 else
 if tbi then
 result = ptr<63:56>:selbit:(ptr<54:bottom_PAC_bit> EOR
PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;
 else
 result = (ptr<63:56> EOR PAC<63:56>):selbit:(ptr<54:bottom_PAC_bit> EOR
 PAC<54:bottom_PAC_bit>):ptr<bottom_PAC_bit-1:0>;
 return result;

aarch64/functions/pac/addpacda/AddPACDA

 // AddPACDA()
 // ==========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of X, Y and the
 // APDAKey_EL1.

 bits(64) AddPACDA(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDAKey_EL1;

 APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
 if PSTATE.EL IN {EL0, EL1} then
 assert S1TranslationRegime() == EL1 ;
 Enable = SCTLR_EL1.EnDA;
 TrapEL2 = HCR_EL2.API == '0';
 elsif PSTATE.EL == EL2 then
 Enable = SCTLR_EL2.EnDA;
 TrapEL2 = FALSE;
 else
 Unreachable();

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 else return AddPAC(X, Y, APDAKey_EL1, TRUE);

aarch64/functions/pac/addpacdb/AddPACDB

 // AddPACDB()
 // ==========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of X, Y and the
 // APDBKey_EL1.

 bits(64) AddPACDB(bits(64) X, bits(64) Y)
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-341
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDBKey_EL1;

 APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
 if PSTATE.EL IN {EL0, EL1} then
 assert S1TranslationRegime() == EL1;
 Enable = SCTLR_EL1.EnDB;
 TrapEL2 = HCR_EL2.API == '0';
 elsif PSTATE.EL == EL2 then
 Enable = SCTLR_EL2.EnDB;
 TrapEL2 = FALSE;
 else
 Unreachable();

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 else return AddPAC(X, Y, APDBKey_EL1, TRUE);

aarch64/functions/pac/addpacga/AddPACGA

 // AddPACGA()
 // ==========
 // Returns a 64-bit value where the lower 32 bits are 0, and the upper 32 bits contain
 // a 32-bit pointer authentication code which is derived using a cryptographic
 // algorithm as a combination of X, Y and the APGAKey_EL1.

 bits(64) AddPACGA(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(128) APGAKey_EL1;

 APGAKey_EL1 = APGAKeyHi_EL1<63:0> : APGAKeyLo_EL1<63:0>;
 if PSTATE.EL IN {EL0, EL1} then
 TrapEL2 = HCR_EL2.API == '0';
 elsif PSTATE.EL == EL2 then
 TrapEL2 = FALSE;
 else
 Unreachable();

 if TrapEL2 then TrapPACUse(EL2);
 else return ComputePAC(X, Y, APGAKey_EL1<127:64>, APGAKey_EL1<63:0>)<63:32>:Zeros(32);

aarch64/functions/pac/addpacia/AddPACIA

 // AddPACIA()
 // ==========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of X, Y, and the
 // APIAKey_EL1.

 bits(64) AddPACIA(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APIAKey_EL1;

 APIAKey_EL1 = APIAKeyHi_EL1<63:0>:APIAKeyLo_EL1<63:0>;
 if PSTATE.EL IN {EL0, EL1} then
 assert S1TranslationRegime() == EL1;
 Enable = SCTLR_EL1.EnIA;
 TrapEL2 = HCR_EL2.API == '0';
I1-342 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 elsif PSTATE.EL == EL2 then
 Enable = SCTLR_EL2.EnIA;
 TrapEL2 = FALSE;
 else
 Unreachable();

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 else return AddPAC(X, Y, APIAKey_EL1, FALSE);

aarch64/functions/pac/addpacib/AddPACIB

 // AddPACIB()
 // ==========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with a pointer authentication code, where the pointer authentication
 // code is derived using a cryptographic algorithm as a combination of X, Y and the
 // APIBKey_EL1.

 bits(64) AddPACIB(bits(64) X, bits(64) Y)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APIBKey_EL1;

 APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
 if PSTATE.EL IN {EL0, EL1} then
 assert S1TranslationRegime() == EL1;
 Enable = SCTLR_EL1.EnIB;
 TrapEL2 = HCR_EL2.API == '0';
 elsif PSTATE.EL == EL2 then
 Enable = SCTLR_EL2.EnIB;
 TrapEL2 = FALSE;
 else
 Unreachable();

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 else return AddPAC(X, Y, APIBKey_EL1, FALSE);

aarch64/functions/pac/auth/AArch64.PACFailException

 // AArch64.PACFailException()
 // ==========================
 // Generates a PAC Fail Exception

 AArch64.PACFailException(bits(2) syndrome)
 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
 bits(64) preferred_exception_return = ThisInstrAddr();
 vect_offset = 0x0;

 exception = ExceptionSyndrome(Exception_PACFail);
 exception.syndrome<1:0> = syndrome;
 exception.syndrome<24:2> = Zeros(); // RES0

 if UInt(PSTATE.EL) > UInt(EL0) then
 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
 elsif route_to_el2 then
 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
 else
 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-343
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/functions/pac/auth/Auth

 // Auth()
 // ======
 // Restores the upper bits of the address to be all zeros or all ones (based on the
 // value of bit[55]) and computes and checks the pointer authentication code. If the
 // check passes, then the restored address is returned. If the check fails, the
 // second-top and third-top bits of the extension bits in the pointer authentication code
 // field are corrupted to ensure that accessing the address will give a translation fault.

 bits(64) Auth(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data, bit key_number,
 boolean is_combined)
 bits(64) PAC;
 bits(64) result;
 bits(64) original_ptr;
 bits(2) error_code;
 bits(64) extfield;

 // Reconstruct the extension field used of adding the PAC to the pointer
 boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
 integer bottom_PAC_bit = CalculateBottomPACBit(ptr<55>);
 extfield = Replicate(ptr<55>, 64);

 if tbi then
 original_ptr = ptr<63:56>:extfield<56-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;
 else
 original_ptr = extfield<64-bottom_PAC_bit-1:0>:ptr<bottom_PAC_bit-1:0>;

 PAC = ComputePAC(original_ptr, modifier, K<127:64>, K<63:0>);
 // Check pointer authentication code
 if tbi then
 if !HaveEnhancedPAC2() then
 if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> then
 result = original_ptr;
 else
 error_code = key_number:NOT(key_number);
 result = original_ptr<63:55>:error_code:original_ptr<52:0>;
 else
 result = ptr;
 result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
 if HaveFPACCombined() || (HaveFPAC() && !is_combined) then
 if result<54:bottom_PAC_bit> != Replicate(result<55>, (55-bottom_PAC_bit)) then
 error_code = (if data then '1' else '0'):key_number;
 AArch64.PACFailException(error_code);
 else
 if !HaveEnhancedPAC2() then
 if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> && PAC<63:56> == ptr<63:56> then
 result = original_ptr;
 else
 error_code = key_number:NOT(key_number);
 result = original_ptr<63>:error_code:original_ptr<60:0>;
 else
 result = ptr;
 result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
 result<63:56> = result<63:56> EOR PAC<63:56>;
 if HaveFPACCombined() || (HaveFPAC() && !is_combined) then
 if result<63:bottom_PAC_bit> != Replicate(result<55>, (64-bottom_PAC_bit)) then
 error_code = (if data then '1' else '0'):key_number;
 AArch64.PACFailException(error_code);
 return result;

aarch64/functions/pac/authda/AuthDA

 // AuthDA()
 // ========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
I1-344 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 // field bits with the extension of the address bits. The instruction checks a pointer
 // authentication code in the pointer authentication code field bits of X, using the same
 // algorithm and key as AddPACDA().

 bits(64) AuthDA(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDAKey_EL1;

 APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
 if PSTATE.EL IN {EL0, EL1} then
 assert S1TranslationRegime() == EL1;
 Enable = SCTLR_EL1.EnDA;
 TrapEL2 = HCR_EL2.API == '0';
 elsif PSTATE.EL == EL2 then
 Enable = SCTLR_EL2.EnDA;
 TrapEL2 = FALSE;
 else
 Unreachable();

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 else return Auth(X, Y, APDAKey_EL1, TRUE, '0', is_combined);

aarch64/functions/pac/authdb/AuthDB

 // AuthDB()
 // ========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a
 // pointer authentication code in the pointer authentication code field bits of X, using
 // the same algorithm and key as AddPACDB().

 bits(64) AuthDB(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APDBKey_EL1;

 APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
 if PSTATE.EL IN {EL0, EL1} then
 assert S1TranslationRegime() == EL1;
 Enable = SCTLR_EL1.EnDB;
 TrapEL2 = HCR_EL2.API == '0';
 elsif PSTATE.EL == EL2 then
 Enable = SCTLR_EL2.EnDB;
 TrapEL2 = FALSE;
 else
 Unreachable();

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 else return Auth(X, Y, APDBKey_EL1, TRUE, '1', is_combined);

aarch64/functions/pac/authia/AuthIA

 // AuthIA()
 // ========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a pointer
 // authentication code in the pointer authentication code field bits of X, using the same
 // algorithm and key as AddPACIA().

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-345
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 bits(64) AuthIA(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APIAKey_EL1;

 APIAKey_EL1 = APIAKeyHi_EL1<63:0> : APIAKeyLo_EL1<63:0>;
 if PSTATE.EL IN {EL0, EL1} then
 assert S1TranslationRegime() == EL1;
 Enable = SCTLR_EL1.EnIA;
 TrapEL2 = HCR_EL2.API == '0';
 elsif PSTATE.EL == EL2 then
 Enable = SCTLR_EL2.EnIA;
 TrapEL2 = FALSE;
 else
 Unreachable();

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 else return Auth(X, Y, APIAKey_EL1, FALSE, '0', is_combined);

aarch64/functions/pac/authib/AuthIB

 // AuthIB()
 // ========
 // Returns a 64-bit value containing X, but replacing the pointer authentication code
 // field bits with the extension of the address bits. The instruction checks a pointer
 // authentication code in the pointer authentication code field bits of X, using the same
 // algorithm and key as AddPACIB().

 bits(64) AuthIB(bits(64) X, bits(64) Y, boolean is_combined)
 boolean TrapEL2;
 boolean TrapEL3;
 bits(1) Enable;
 bits(128) APIBKey_EL1;

 APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
 if PSTATE.EL IN {EL0, EL1} then
 assert S1TranslationRegime() == EL1;
 Enable = SCTLR_EL1.EnIB;
 TrapEL2 = HCR_EL2.API == '0';
 elsif PSTATE.EL == EL2 then
 Enable = SCTLR_EL2.EnIB;
 TrapEL2 = FALSE;
 else
 Unreachable();

 if Enable == '0' then return X;
 elsif TrapEL2 then TrapPACUse(EL2);
 else return Auth(X, Y, APIBKey_EL1, FALSE, '1', is_combined);

aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit

 // CalculateBottomPACBit()
 // =======================

 integer CalculateBottomPACBit(bit top_bit)
 integer tsz_field;

 if PtrHasUpperAndLowerAddRanges() then
 assert S1TranslationRegime() == EL1;
 tsz_field = if top_bit == '1' then UInt(TCR_EL1.T1SZ) else UInt(TCR_EL1.T0SZ);
 using64k = if top_bit == '1' then TCR_EL1.TG1 == '11' else TCR_EL1.TG0 == '01';

I1-346 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 max_limit_tsz_field = (if !HaveSmallTranslationTableExt() then 39 else if using64k then 47 else
48);
 if tsz_field > max_limit_tsz_field then
 // TCR_ELx.TySZ is out of range
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_NONE};
 if c == Constraint_FORCE then tsz_field = max_limit_tsz_field;
 tszmin = if using64k && AArch64.VAMax() == 52 then 12 else 16;
 if tsz_field < tszmin then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_FORCE, Constraint_NONE};
 if c == Constraint_FORCE then tsz_field = tszmin;
 return (64-tsz_field);
 else
 // For EL2 and EL1 with PMSA context.
 return AArch64.PAMax();

aarch64/functions/pac/computepac/ComputePAC

 // ComputePAC()
 // ============

 bits(64) ComputePAC(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1)
 bits(64) workingval;
 bits(64) runningmod;
 bits(64) roundkey;
 bits(64) modk0;
 constant bits(64) Alpha = 0xC0AC29B7C97C50DD<63:0>;

 RC[0] = 0x0000000000000000<63:0>;
 RC[1] = 0x13198A2E03707344<63:0>;
 RC[2] = 0xA4093822299F31D0<63:0>;
 RC[3] = 0x082EFA98EC4E6C89<63:0>;
 RC[4] = 0x452821E638D01377<63:0>;

 modk0 = key0<0>:key0<63:2>:(key0<63> EOR key0<1>);
 runningmod = modifier;
 workingval = data EOR key0;
 for i = 0 to 4
 roundkey = key1 EOR runningmod;
 workingval = workingval EOR roundkey;
 workingval = workingval EOR RC[i];
 if i > 0 then
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = PACSub(workingval);
 runningmod = TweakShuffle(runningmod<63:0>);
 roundkey = modk0 EOR runningmod;
 workingval = workingval EOR roundkey;
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = PACSub(workingval);
 workingval = PACCellShuffle(workingval);
 workingval = PACMult(workingval);
 workingval = key1 EOR workingval;
 workingval = PACCellInvShuffle(workingval);
 workingval = PACInvSub(workingval);
 workingval = PACMult(workingval);
 workingval = PACCellInvShuffle(workingval);
 workingval = workingval EOR key0;
 workingval = workingval EOR runningmod;
 for i = 0 to 4
 workingval = PACInvSub(workingval);
 if i < 4 then
 workingval = PACMult(workingval);
 workingval = PACCellInvShuffle(workingval);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-347
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 runningmod = TweakInvShuffle(runningmod<63:0>);
 roundkey = key1 EOR runningmod;
 workingval = workingval EOR RC[4-i];
 workingval = workingval EOR roundkey;
 workingval = workingval EOR Alpha;
 workingval = workingval EOR modk0;

 return workingval;

aarch64/functions/pac/computepac/PACCellInvShuffle

 // PACCellInvShuffle()
 // ===================

 bits(64) PACCellInvShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = indata<15:12>;
 outdata<7:4> = indata<27:24>;
 outdata<11:8> = indata<51:48>;
 outdata<15:12> = indata<39:36>;
 outdata<19:16> = indata<59:56>;
 outdata<23:20> = indata<47:44>;
 outdata<27:24> = indata<7:4>;
 outdata<31:28> = indata<19:16>;
 outdata<35:32> = indata<35:32>;
 outdata<39:36> = indata<55:52>;
 outdata<43:40> = indata<31:28>;
 outdata<47:44> = indata<11:8>;
 outdata<51:48> = indata<23:20>;
 outdata<55:52> = indata<3:0>;
 outdata<59:56> = indata<43:40>;
 outdata<63:60> = indata<63:60>;
 return outdata;

aarch64/functions/pac/computepac/PACCellShuffle

 // PACCellShuffle()
 // ================

 bits(64) PACCellShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = indata<55:52>;
 outdata<7:4> = indata<27:24>;
 outdata<11:8> = indata<47:44>;
 outdata<15:12> = indata<3:0>;
 outdata<19:16> = indata<31:28>;
 outdata<23:20> = indata<51:48>;
 outdata<27:24> = indata<7:4>;
 outdata<31:28> = indata<43:40>;
 outdata<35:32> = indata<35:32>;
 outdata<39:36> = indata<15:12>;
 outdata<43:40> = indata<59:56>;
 outdata<47:44> = indata<23:20>;
 outdata<51:48> = indata<11:8>;
 outdata<55:52> = indata<39:36>;
 outdata<59:56> = indata<19:16>;
 outdata<63:60> = indata<63:60>;
 return outdata;
I1-348 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/functions/pac/computepac/PACInvSub

 // PACInvSub()
 // ===========

 bits(64) PACInvSub(bits(64) Tinput)
 // This is a 4-bit substitution from the PRINCE-family cipher
 bits(64) Toutput;
 for i = 0 to 15
 case Tinput<4*i+3:4*i> of
 when '0000' Toutput<4*i+3:4*i> = '0101';
 when '0001' Toutput<4*i+3:4*i> = '1110';
 when '0010' Toutput<4*i+3:4*i> = '1101';
 when '0011' Toutput<4*i+3:4*i> = '1000';
 when '0100' Toutput<4*i+3:4*i> = '1010';
 when '0101' Toutput<4*i+3:4*i> = '1011';
 when '0110' Toutput<4*i+3:4*i> = '0001';
 when '0111' Toutput<4*i+3:4*i> = '1001';
 when '1000' Toutput<4*i+3:4*i> = '0010';
 when '1001' Toutput<4*i+3:4*i> = '0110';
 when '1010' Toutput<4*i+3:4*i> = '1111';
 when '1011' Toutput<4*i+3:4*i> = '0000';
 when '1100' Toutput<4*i+3:4*i> = '0100';
 when '1101' Toutput<4*i+3:4*i> = '1100';
 when '1110' Toutput<4*i+3:4*i> = '0111';
 when '1111' Toutput<4*i+3:4*i> = '0011';
 return Toutput;

aarch64/functions/pac/computepac/PACMult

 // PACMult()
 // =========

 bits(64) PACMult(bits(64) Sinput)
 bits(4) t0;
 bits(4) t1;
 bits(4) t2;
 bits(4) t3;
 bits(64) Soutput;

 for i = 0 to 3
 t0<3:0> = RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 2);
 t0<3:0> = t0<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
 t1<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
 t1<3:0> = t1<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 2);
 t2<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 2) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1);
 t2<3:0> = t2<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
 t3<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 2);
 t3<3:0> = t3<3:0> EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
 Soutput<4*i+3:4*i> = t3<3:0>;
 Soutput<4*(i+4)+3:4*(i+4)> = t2<3:0>;
 Soutput<4*(i+8)+3:4*(i+8)> = t1<3:0>;
 Soutput<4*(i+12)+3:4*(i+12)> = t0<3:0>;
 return Soutput;

aarch64/functions/pac/computepac/PACSub

 // PACSub()
 // ========

 bits(64) PACSub(bits(64) Tinput)
 // This is a 4-bit substitution from the PRINCE-family cipher
 bits(64) Toutput;
 for i = 0 to 15
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-349
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 case Tinput<4*i+3:4*i> of
 when '0000' Toutput<4*i+3:4*i> = '1011';
 when '0001' Toutput<4*i+3:4*i> = '0110';
 when '0010' Toutput<4*i+3:4*i> = '1000';
 when '0011' Toutput<4*i+3:4*i> = '1111';
 when '0100' Toutput<4*i+3:4*i> = '1100';
 when '0101' Toutput<4*i+3:4*i> = '0000';
 when '0110' Toutput<4*i+3:4*i> = '1001';
 when '0111' Toutput<4*i+3:4*i> = '1110';
 when '1000' Toutput<4*i+3:4*i> = '0011';
 when '1001' Toutput<4*i+3:4*i> = '0111';
 when '1010' Toutput<4*i+3:4*i> = '0100';
 when '1011' Toutput<4*i+3:4*i> = '0101';
 when '1100' Toutput<4*i+3:4*i> = '1101';
 when '1101' Toutput<4*i+3:4*i> = '0010';
 when '1110' Toutput<4*i+3:4*i> = '0001';
 when '1111' Toutput<4*i+3:4*i> = '1010';
 return Toutput;

aarch64/functions/pac/computepac/RC

 array bits(64) RC[0..4];

aarch64/functions/pac/computepac/RotCell

 // RotCell()
 // =========

 bits(4) RotCell(bits(4) incell, integer amount)
 bits(8) tmp;
 bits(4) outcell;

 // assert amount>3 || amount<1;
 tmp<7:0> = incell<3:0>:incell<3:0>;
 outcell = tmp<7-amount:4-amount>;
 return outcell;

aarch64/functions/pac/computepac/TweakCellInvRot

 // TweakCellInvRot()
 // =================

 bits(4) TweakCellInvRot(bits(4) incell)
 bits(4) outcell;
 outcell<3> = incell<2>;
 outcell<2> = incell<1>;
 outcell<1> = incell<0>;
 outcell<0> = incell<0> EOR incell<3>;
 return outcell;

aarch64/functions/pac/computepac/TweakCellRot

 // TweakCellRot()
 // ==============

 bits(4) TweakCellRot(bits(4) incell)
 bits(4) outcell;
 outcell<3> = incell<0> EOR incell<1>;
 outcell<2> = incell<3>;
 outcell<1> = incell<2>;
I1-350 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 outcell<0> = incell<1>;
 return outcell;

aarch64/functions/pac/computepac/TweakInvShuffle

 // TweakInvShuffle()
 // =================

 bits(64) TweakInvShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = TweakCellInvRot(indata<51:48>);
 outdata<7:4> = indata<55:52>;
 outdata<11:8> = indata<23:20>;
 outdata<15:12> = indata<27:24>;
 outdata<19:16> = indata<3:0>;
 outdata<23:20> = indata<7:4>;
 outdata<27:24> = TweakCellInvRot(indata<11:8>);
 outdata<31:28> = indata<15:12>;
 outdata<35:32> = TweakCellInvRot(indata<31:28>);
 outdata<39:36> = TweakCellInvRot(indata<63:60>);
 outdata<43:40> = TweakCellInvRot(indata<59:56>);
 outdata<47:44> = TweakCellInvRot(indata<19:16>);
 outdata<51:48> = indata<35:32>;
 outdata<55:52> = indata<39:36>;
 outdata<59:56> = indata<43:40>;
 outdata<63:60> = TweakCellInvRot(indata<47:44>);
 return outdata;

aarch64/functions/pac/computepac/TweakShuffle

 // TweakShuffle()
 // ==============

 bits(64) TweakShuffle(bits(64) indata)
 bits(64) outdata;
 outdata<3:0> = indata<19:16>;
 outdata<7:4> = indata<23:20>;
 outdata<11:8> = TweakCellRot(indata<27:24>);
 outdata<15:12> = indata<31:28>;
 outdata<19:16> = TweakCellRot(indata<47:44>);
 outdata<23:20> = indata<11:8>;
 outdata<27:24> = indata<15:12>;
 outdata<31:28> = TweakCellRot(indata<35:32>);
 outdata<35:32> = indata<51:48>;
 outdata<39:36> = indata<55:52>;
 outdata<43:40> = indata<59:56>;
 outdata<47:44> = TweakCellRot(indata<63:60>);
 outdata<51:48> = TweakCellRot(indata<3:0>);
 outdata<55:52> = indata<7:4>;
 outdata<59:56> = TweakCellRot(indata<43:40>);
 outdata<63:60> = TweakCellRot(indata<39:36>);
 return outdata;

aarch64/functions/pac/pac/HaveEnhancedPAC

 // HaveEnhancedPAC()
 // =================
 // Returns TRUE if support for EnhancedPAC is implemented, FALSE otherwise.

 boolean HaveEnhancedPAC()
 return (HavePACExt()
 && boolean IMPLEMENTATION_DEFINED "Has enhanced PAC functionality");
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-351
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/functions/pac/pac/HaveEnhancedPAC2

 // HaveEnhancedPAC2()
 // ==================
 // Returns TRUE if support for EnhancedPAC2 is implemented, FALSE otherwise.

 boolean HaveEnhancedPAC2()
 return HasArchVersion(ARMv8p3) && boolean IMPLEMENTATION_DEFINED "Has enhanced PAC 2 functionality";

aarch64/functions/pac/pac/HaveFPAC

 // HaveFPAC()
 // ==========
 // Returns TRUE if support for FPAC is implemented, FALSE otherwise.

 boolean HaveFPAC()
 return HaveEnhancedPAC2() && boolean IMPLEMENTATION_DEFINED "Has FPAC functionality";

aarch64/functions/pac/pac/HaveFPACCombined

 // HaveFPACCombined()
 // ==================
 // Returns TRUE if support for FPACCombined is implemented, FALSE otherwise.

 boolean HaveFPACCombined()
 return HaveFPAC() && boolean IMPLEMENTATION_DEFINED "Has FPAC Combined functionality";

aarch64/functions/pac/pac/HavePACExt

 // HavePACExt()
 // ============
 // Returns TRUE if support for the PAC extension is implemented, FALSE otherwise.

 boolean HavePACExt()
 return HasArchVersion(ARMv8p3);

aarch64/functions/pac/pac/HavePACIMP

 // HavePACIMP()
 // ============
 // Returns TRUE if support for PAC IMP is implemented, FALSE otherwise.

 boolean HavePACIMP()
 return HavePACExt() && boolean IMPLEMENTATION_DEFINED "Has PAC IMP functionality";

aarch64/functions/pac/pac/HavePACQARMA5

 // HavePACQARMA5()
 // ===============
 // Returns TRUE if support for PAC QARMA5 is implemented, FALSE otherwise.

 boolean HavePACQARMA5()
 return HavePACExt() && boolean IMPLEMENTATION_DEFINED "Has PAC QARMA5 functionality";
I1-352 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges

 // PtrHasUpperAndLowerAddRanges()
 // ==============================
 // Returns TRUE if the pointer has upper and lower address ranges, FALSE otherwise.

 boolean PtrHasUpperAndLowerAddRanges()
 regime = TranslationRegime(PSTATE.EL);
 return HasUnprivileged(regime) && AArch64.IsStage1VMSA(regime);

aarch64/functions/pac/strip/Strip

 // Strip()
 // =======
 // Strip() returns a 64-bit value containing A, but replacing the pointer authentication
 // code field bits with the extension of the address bits. This can apply to either
 // instructions or data, where, as the use of tagged pointers is distinct, it might be
 // handled differently.

 bits(64) Strip(bits(64) A, boolean data)
 bits(64) original_ptr;
 bits(64) extfield;
 boolean tbi = EffectiveTBI(A, !data, PSTATE.EL) == '1';
 integer bottom_PAC_bit = CalculateBottomPACBit(A<55>);
 extfield = Replicate(A<55>, 64);

 if tbi then
 original_ptr = A<63:56>:extfield< 56-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;
 else
 original_ptr = extfield< 64-bottom_PAC_bit-1:0>:A<bottom_PAC_bit-1:0>;

 return original_ptr;

aarch64/functions/pac/trappacuse/TrapPACUse

 // TrapPACUse()
 // ============
 // Used for the trapping of the pointer authentication functions by higher exception
 // levels.

 TrapPACUse(bits(2) target_el)
 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

 bits(64) preferred_exception_return = ThisInstrAddr();
 ExceptionRecord exception;
 vect_offset = 0;
 exception = ExceptionSyndrome(Exception_PACTrap);
 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

aarch64/functions/ras/AArch64.ESBOperation

 // AArch64.ESBOperation()
 // ======================
 // Perform the AArch64 ESB operation, either for ESB executed in AArch64 state, or for
 // ESB in AArch32 state when SError interrupts are routed to an Exception level using
 // AArch64

 AArch64.ESBOperation()

 route_to_el3 = FALSE;
 route_to_el2 = (EL2Enabled() &&
 (HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1'));

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-353
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 target = if route_to_el3 then EL3 elsif route_to_el2 then EL2 else EL1;

 if target == EL1 then
 mask_active = PSTATE.EL IN {EL0, EL1};
 else
 mask_active = PSTATE.EL == target;

 mask_set = PSTATE.A == '1';
 intdis = Halted() || ExternalDebugInterruptsDisabled(target);
 masked = (UInt(target) < UInt(PSTATE.EL)) || intdis || (mask_active && mask_set);

 // Check for a masked Physical SError pending that can be synchronized
 // by an Error synchronization event.
 if masked && IsSynchronizablePhysicalSErrorPending() then
 // This function might be called for an interworking case, and INTdis is masking
 // the SError interrupt.
 if ELUsingAArch32(S1TranslationRegime()) then
 syndrome32 = AArch32.PhysicalSErrorSyndrome();
 DISR = AArch32.ReportDeferredSError(syndrome32.AET, syndrome32.ExT);
 else
 implicit_esb = FALSE;
 syndrome64 = AArch64.PhysicalSErrorSyndrome(implicit_esb);
 DISR_EL1 = AArch64.ReportDeferredSError(syndrome64);
 ClearPendingPhysicalSError(); // Set ISR_EL1.A to 0

 return;

aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

 // Return the SError syndrome
 bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb);

aarch64/functions/ras/AArch64.ReportDeferredSError

 // AArch64.ReportDeferredSError()
 // ==============================
 // Generate deferred SError syndrome

 bits(64) AArch64.ReportDeferredSError(bits(25) syndrome)
 bits(64) target;
 target<31> = '1'; // A
 target<24> = syndrome<24>; // IDS
 target<23:0> = syndrome<23:0>; // ISS
 return target;

aarch64/functions/ras/AArch64.vESBOperation

 // AArch64.vESBOperation()
 // =======================
 // Perform the AArch64 ESB operation for virtual SError interrupts, either for ESB
 // executed in AArch64 state, or for ESB in AArch32 state with EL2 using AArch64 state

 AArch64.vESBOperation()
 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

 // If physical SError interrupts are routed to EL2, and TGE is not set, then a virtual
 // SError interrupt might be pending
 vSEI_enabled = HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
 vSEI_pending = vSEI_enabled && HCR_EL2.VSE == '1';
 vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
 vmasked = vintdis || PSTATE.A == '1';

 // Check for a masked virtual SError pending
I1-354 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 if vSEI_pending && vmasked then
 // This function might be called for the interworking case, and INTdis is masking
 // the virtual SError interrupt.
 if ELUsingAArch32(EL1) then
 VDISR = AArch32.ReportDeferredSError(VDFSR<15:14>, VDFSR<12>);
 else
 VDISR_EL2 = AArch64.ReportDeferredSError(VSESR_EL2<24:0>);
 HCR_EL2.VSE = '0'; // Clear pending virtual SError

 return;

aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

 // AArch64.MaybeZeroRegisterUppers()
 // =================================
 // On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
 // 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.

 AArch64.MaybeZeroRegisterUppers()
 assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state

 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then
 first = 0; last = 14; include_R15 = FALSE;
 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) then
 first = 0; last = 30; include_R15 = FALSE;
 else
 first = 0; last = 30; include_R15 = TRUE;

 for n = first to last
 if (n != 15 || include_R15) && ConstrainUnpredictableBool() then
 _R[n]<63:32> = Zeros();

 return;

aarch64/functions/registers/AArch64.ResetGeneralRegisters

 // AArch64.ResetGeneralRegisters()
 // ===============================

 AArch64.ResetGeneralRegisters()

 for i = 0 to 30
 X[i] = bits(64) UNKNOWN;

 return;

aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

 // AArch64.ResetSIMDFPRegisters()
 // ==============================

 AArch64.ResetSIMDFPRegisters()

 for i = 0 to 31
 V[i] = bits(128) UNKNOWN;

 return;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-355
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/functions/registers/AArch64.ResetSpecialRegisters

 // AArch64.ResetSpecialRegisters()
 // ===============================

 AArch64.ResetSpecialRegisters()

 // AArch64 special registers
 SP_EL0 = bits(64) UNKNOWN;
 SP_EL1 = bits(64) UNKNOWN;
 SPSR_EL1 = bits(64) UNKNOWN;
 ELR_EL1 = bits(64) UNKNOWN;
 if HaveEL(EL2) then
 SP_EL2 = bits(64) UNKNOWN;
 SPSR_EL2 = bits(64) UNKNOWN;
 ELR_EL2 = bits(64) UNKNOWN;
 if HaveEL(EL3) then
 SP_EL3 = bits(64) UNKNOWN;
 SPSR_EL3 = bits(64) UNKNOWN;
 ELR_EL3 = bits(64) UNKNOWN;

 // AArch32 special registers that are not architecturally mapped to AArch64 registers
 if HaveAArch32EL(EL1) then
 SPSR_fiq<31:0> = bits(32) UNKNOWN;
 SPSR_irq<31:0> = bits(32) UNKNOWN;
 SPSR_abt<31:0> = bits(32) UNKNOWN;
 SPSR_und<31:0> = bits(32) UNKNOWN;

 // External debug special registers
 DLR_EL0 = bits(64) UNKNOWN;
 DSPSR_EL0 = bits(64) UNKNOWN;

 return;

aarch64/functions/registers/AArch64.ResetSystemRegisters

 AArch64.ResetSystemRegisters(boolean cold_reset);

aarch64/functions/registers/PC

 // PC - non-assignment form
 // ========================
 // Read program counter.

 bits(64) PC[]
 return _PC;

aarch64/functions/registers/SP

 // SP[] - assignment form
 // ======================
 // Write to stack pointer from either a 32-bit or a 64-bit value.

 SP[] = bits(width) value
 assert width IN {32,64};
 if PSTATE.SP == '0' then
 SP_EL0 = ZeroExtend(value);
 else
 case PSTATE.EL of
 when EL0 SP_EL0 = ZeroExtend(value);
 when EL1 SP_EL1 = ZeroExtend(value);
 when EL2 SP_EL2 = ZeroExtend(value);
 return;
I1-356 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 // SP[] - non-assignment form
 // ==========================
 // Read stack pointer with implicit slice of 8, 16, 32 or 64 bits.

 bits(width) SP[]
 assert width IN {8,16,32,64};
 if PSTATE.SP == '0' then
 return SP_EL0<width-1:0>;
 else
 case PSTATE.EL of
 when EL0 return SP_EL0<width-1:0>;
 when EL1 return SP_EL1<width-1:0>;
 when EL2 return SP_EL2<width-1:0>;

aarch64/functions/registers/V

 // V[] - assignment form
 // =====================
 // Write to SIMD&FP register with implicit extension from
 // 8, 16, 32, 64 or 128 bits.

 V[integer n] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64,128};
 _V[n] = ZeroExtend(value);
 return;

 // V[] - non-assignment form
 // =========================
 // Read from SIMD&FP register with implicit slice of 8, 16
 // 32, 64 or 128 bits.

 bits(width) V[integer n]
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64,128};
 return _V[n]<width-1:0>;

aarch64/functions/registers/Vpart

 // Vpart[] - non-assignment form
 // =============================
 // Reads a 128-bit SIMD&FP register in up to two parts:
 // part 0 returns the bottom 8, 16, 32 or 64 bits of a value held in the register;
 // part 1 returns the top half of the bottom 64 bits or the top half of the 128-bit
 // value held in the register.

 bits(width) Vpart[integer n, integer part]
 assert n >= 0 && n <= 31;
 assert part IN {0, 1};
 if part == 0 then
 assert width IN {8,16,32,64};
 return _V[n]<width-1:0>;
 else
 assert width IN {32,64};
 return _V[n]<(width * 2)-1:width>;

 // Vpart[] - assignment form
 // =========================
 // Writes a 128-bit SIMD&FP register in up to two parts:
 // part 0 zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
 // part 1 inserts a 64-bit value into the top half of the register.

 Vpart[integer n, integer part] = bits(width) value
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-357
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 assert n >= 0 && n <= 31;
 assert part IN {0, 1};
 if part == 0 then
 assert width IN {8,16,32,64};
 _V[n] = ZeroExtend(value);
 else
 assert width == 64;
 _V[n]<(width * 2)-1:width> = value<width-1:0>;

aarch64/functions/registers/X

 // X[] - assignment form
 // =====================
 // Write to general-purpose register from either a 32-bit or a 64-bit value.

 X[integer n] = bits(width) value
 assert n >= 0 && n <= 31;
 assert width IN {32,64};
 if n != 31 then
 _R[n] = ZeroExtend(value);
 return;

 // X[] - non-assignment form
 // =========================
 // Read from general-purpose register with implicit slice of 8, 16, 32 or 64 bits.

 bits(width) X[integer n]
 assert n >= 0 && n <= 31;
 assert width IN {8,16,32,64};
 if n != 31 then
 return _R[n]<width-1:0>;
 else
 return Zeros(width);

aarch64/functions/sysregisters/CNTKCTL

 // CNTKCTL[] - non-assignment form
 // ===============================

 CNTKCTLType CNTKCTL[]
 bits(64) r;
 r = CNTKCTL_EL1;
 return r;

aarch64/functions/sysregisters/CNTKCTLType

 type CNTKCTLType;

aarch64/functions/sysregisters/CPACR

 // CPACR[] - non-assignment form
 // =============================

 CPACRType CPACR[]
 bits(64) r;
 r = CPACR_EL1;
 return r;
I1-358 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/functions/sysregisters/CPACRType

 type CPACRType;

aarch64/functions/sysregisters/ELR

 // ELR[] - non-assignment form
 // ===========================

 bits(64) ELR[bits(2) el]
 bits(64) r;
 case el of
 when EL1 r = ELR_EL1;
 when EL2 r = ELR_EL2;
 otherwise Unreachable();
 return r;

 // ELR[] - non-assignment form
 // ===========================

 bits(64) ELR[]
 assert PSTATE.EL != EL0;
 return ELR[PSTATE.EL];

 // ELR[] - assignment form
 // =======================

 ELR[bits(2) el] = bits(64) value
 bits(64) r = value;
 case el of
 when EL1 ELR_EL1 = r;
 when EL2 ELR_EL2 = r;
 otherwise Unreachable();
 return;

 // ELR[] - assignment form
 // =======================

 ELR[] = bits(64) value
 assert PSTATE.EL != EL0;
 ELR[PSTATE.EL] = value;
 return;

aarch64/functions/sysregisters/ESR

 // ESR[] - non-assignment form
 // ===========================

 ESRType ESR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = ESR_EL1;
 when EL2 r = ESR_EL2;
 otherwise Unreachable();
 return r;

 // ESR[] - non-assignment form
 // ===========================

 ESRType ESR[]
 return ESR[S1TranslationRegime()];

 // ESR[] - assignment form
 // =======================
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-359
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 ESR[bits(2) regime] = ESRType value
 bits(64) r = value;
 case regime of
 when EL1 ESR_EL1 = r;
 when EL2 ESR_EL2 = r;
 otherwise Unreachable();
 return;

 // ESR[] - assignment form
 // =======================

 ESR[] = ESRType value
 ESR[S1TranslationRegime()] = value;

aarch64/functions/sysregisters/ESRType

 type ESRType;

aarch64/functions/sysregisters/FAR

 // FAR[] - non-assignment form
 // ===========================

 bits(64) FAR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = FAR_EL1;
 when EL2 r = FAR_EL2;
 otherwise Unreachable();
 return r;

 // FAR[] - non-assignment form
 // ===========================

 bits(64) FAR[]
 return FAR[S1TranslationRegime()];

 // FAR[] - assignment form
 // =======================

 FAR[bits(2) regime] = bits(64) value
 bits(64) r = value;
 case regime of
 when EL1 FAR_EL1 = r;
 when EL2 FAR_EL2 = r;
 otherwise Unreachable();
 return;

 // FAR[] - assignment form
 // =======================

 FAR[] = bits(64) value
 FAR[S1TranslationRegime()] = value;
 return;

aarch64/functions/sysregisters/MAIR

 // MAIR[] - non-assignment form
 // ============================

 MAIRType MAIR[bits(2) regime]
 bits(64) r;
I1-360 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 case regime of
 when EL1 r = MAIR_EL1;
 when EL2 r = MAIR_EL2;
 otherwise Unreachable();
 return r;

 // MAIR[] - non-assignment form
 // ============================

 MAIRType MAIR[]
 return MAIR[S1TranslationRegime()];

aarch64/functions/sysregisters/MAIRType

 type MAIRType;

aarch64/functions/sysregisters/MPUIR

 // MPUIR[] - non-assignment form
 // =============================

 MPUIRType MPUIR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = MPUIR_EL1;
 when EL2 r = MPUIR_EL2;
 otherwise Unreachable();
 return r;

aarch64/functions/sysregisters/MPUIRType

 type MPUIRType;

aarch64/functions/sysregisters/PRBARn

 // PRBARn[] - non-assignment form
 // ==============================

 PRBARnType PRBARn[bits(2) EL, integer index]
 bits(64) r;
 case EL of
 when EL1 r = PRBARn_EL1[index];
 when EL2 r = PRBARn_EL2[index];
 otherwise Unreachable();
 return r;

aarch64/functions/sysregisters/PRBARnType

 type PRBARnType;

aarch64/functions/sysregisters/PRLARn

 // PRLARn[] - non-assignment form
 // ==============================

 PRLARnType PRLARn[bits(2) EL, integer index]
 bits(64) r;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-361
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 case EL of
 when EL1 r = PRLARn_EL1[index];
 when EL2 r = PRLARn_EL2[index];
 otherwise Unreachable();
 return r;

aarch64/functions/sysregisters/PRLARnType

 type PRLARnType;

aarch64/functions/sysregisters/SCTLR

 // SCTLR[] - non-assignment form
 // =============================

 SCTLRType SCTLR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = SCTLR_EL1;
 when EL2 r = SCTLR_EL2;
 otherwise Unreachable();
 return r;

 // SCTLR[] - non-assignment form
 // =============================

 SCTLRType SCTLR[]
 return SCTLR[S1TranslationRegime()];

aarch64/functions/sysregisters/SCTLRType

 type SCTLRType;

aarch64/functions/sysregisters/VBAR

 // VBAR[] - non-assignment form
 // ============================

 bits(64) VBAR[bits(2) regime]
 bits(64) r;
 case regime of
 when EL1 r = VBAR_EL1;
 when EL2 r = VBAR_EL2;
 otherwise Unreachable();
 return r;

 // VBAR[] - non-assignment form
 // ============================

 bits(64) VBAR[]
 return VBAR[S1TranslationRegime()];

aarch64/functions/system/AArch64.SysInstr

 // Execute a system instruction with write (source operand).
 AArch64.SysInstr(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);
I1-362 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/functions/system/AArch64.SysInstrWithResult

 // Execute a system instruction with read (result operand).
 // Returns the result of the instruction.
 bits(64) AArch64.SysInstrWithResult(integer op0, integer op1, integer crn, integer crm, integer op2);

aarch64/functions/system/AArch64.SysRegRead

 // Read from a system register and return the contents of the register.
 bits(64) AArch64.SysRegRead(integer op0, integer op1, integer crn, integer crm, integer op2);

aarch64/functions/system/AArch64.SysRegWrite

 // Write to a system register.
 AArch64.SysRegWrite(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

I1.1.4 aarch64/instrs

This section includes the following pseudocode functions:

• aarch64/instrs/branch/eret/AArch64.ExceptionReturn on page I1-364.

• aarch64/instrs/countop/CountOp on page I1-365.

• aarch64/instrs/extendreg/DecodeRegExtend on page I1-365.

• aarch64/instrs/extendreg/ExtendReg on page I1-365.

• aarch64/instrs/extendreg/ExtendType on page I1-366.

• aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp on page I1-366.

• aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp on page I1-366.

• aarch64/instrs/float/convert/fpconvop/FPConvOp on page I1-366.

• aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred on page I1-366.

• aarch64/instrs/integer/bitmasks/DecodeBitMasks on page I1-367.

• aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp on page I1-367.

• aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred on page I1-368.

• aarch64/instrs/integer/shiftreg/DecodeShift on page I1-368.

• aarch64/instrs/integer/shiftreg/ShiftReg on page I1-368.

• aarch64/instrs/integer/shiftreg/ShiftType on page I1-369.

• aarch64/instrs/logicalop/LogicalOp on page I1-369.

• aarch64/instrs/memory/memop/MemAtomicOp on page I1-369.

• aarch64/instrs/memory/memop/MemOp on page I1-369.

• aarch64/instrs/memory/prefetch/Prefetch on page I1-369.

• aarch64/instrs/system/barriers/barrierop/MemBarrierOp on page I1-369.

• aarch64/instrs/system/hints/syshintop/SystemHintOp on page I1-370.

• aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField on page I1-370.

• aarch64/instrs/system/sysops/at/AArch64.AT on page I1-370.

• aarch64/instrs/system/sysops/at/AArch64.EncodePAR on page I1-371.

• aarch64/instrs/system/sysops/at/AArch64.PARFaultStatus on page I1-371.

• aarch64/instrs/system/sysops/dc/AArch64.DC on page I1-372.

• aarch64/instrs/system/sysops/dc/AArch64.MemZero on page I1-373.

• aarch64/instrs/system/sysops/ic/AArch64.IC on page I1-373.

• aarch64/instrs/system/sysops/predictionrestrict/RestrictPrediction on page I1-374.

• aarch64/instrs/system/sysops/sysop/SysOp on page I1-375.

• aarch64/instrs/system/sysops/sysop/SystemOp on page I1-376.

• aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ALL on page I1-376.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-363
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
• aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ASID on page I1-377.

• aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_VA on page I1-377.

• aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ALL on page I1-378.

• aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ASID on page I1-378.

• aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_VA on page I1-379.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ALL on page I1-379.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ASID on page I1-380.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_IPAS2 on page I1-380.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VA on page I1-381.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VAA on page I1-381.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALL on page I1-382.

• aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALLS12 on page I1-382.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ALL on page I1-383.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ASID on page I1-383.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_IPAS2 on page I1-384.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RIPAS2 on page I1-384.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVA on page I1-385.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVAA on page I1-386.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VA on page I1-386.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VAA on page I1-387.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALL on page I1-387.

• aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALLS12 on page I1-388.

• aarch64/instrs/system/sysops/tlbi/ASID_NONE on page I1-388.

• aarch64/instrs/system/sysops/tlbi/Broadcast on page I1-389.

• aarch64/instrs/system/sysops/tlbi/DecodeTLBITG on page I1-389.

• aarch64/instrs/system/sysops/tlbi/HasLargeAddress on page I1-389.

• aarch64/instrs/system/sysops/tlbi/SecurityStateAtEL on page I1-389.

• aarch64/instrs/system/sysops/tlbi/TLBI on page I1-389.

• aarch64/instrs/system/sysops/tlbi/TLBILevel on page I1-389.

• aarch64/instrs/system/sysops/tlbi/TLBIMatch on page I1-390.

• aarch64/instrs/system/sysops/tlbi/TLBIMemAttr on page I1-391.

• aarch64/instrs/system/sysops/tlbi/TLBIOp on page I1-391.

• aarch64/instrs/system/sysops/tlbi/TLBIRange on page I1-392.

• aarch64/instrs/system/sysops/tlbi/TLBIRecord on page I1-392.

• aarch64/instrs/system/sysops/tlbi/VMID on page I1-393.

• aarch64/instrs/system/sysops/tlbi/VMID_NONE on page I1-393.

• aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp on page I1-393.

• aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp on page I1-393.

• aarch64/instrs/vector/logical/immediateop/ImmediateOp on page I1-393.

• aarch64/instrs/vector/reduce/reduceop/Reduce on page I1-393.

• aarch64/instrs/vector/reduce/reduceop/ReduceOp on page I1-394.

aarch64/instrs/branch/eret/AArch64.ExceptionReturn

 // AArch64.ExceptionReturn()
 // =========================

 AArch64.ExceptionReturn(bits(64) new_pc, bits(64) spsr)

 if HaveIESB() then
 sync_errors = SCTLR[].IESB == '1';
 if sync_errors then
 SynchronizeErrors();
I1-364 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 iesb_req = TRUE;
 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
 SynchronizeContext();

 // Attempts to change to an illegal state will invoke the Illegal Execution state mechanism
 bits(2) source_el = PSTATE.EL;
 boolean illegal_psr_state = IllegalExceptionReturn(spsr);
 SetPSTATEFromPSR(spsr, illegal_psr_state);
 ClearExclusiveLocal(ProcessorID());
 SendEventLocal();

 if illegal_psr_state && spsr<4> == '1' then
 // If the exception return is illegal, PC[63:32,1:0] are UNKNOWN
 new_pc<63:32> = bits(32) UNKNOWN;
 new_pc<1:0> = bits(2) UNKNOWN;
 elsif UsingAArch32() then // Return to AArch32
 // ELR_ELx[1:0] or ELR_ELx[0] are treated as being 0, depending on the
 // target instruction set state
 if PSTATE.T == '1' then
 new_pc<0> = '0'; // T32
 else
 new_pc<1:0> = '00'; // A32
 else // Return to AArch64
 // ELR_ELx[63:56] might include a tag
 new_pc = AArch64.BranchAddr(new_pc);

 if UsingAArch32() then
 // 32 most significant bits are ignored.
 boolean branch_conditional = FALSE;
 BranchTo(new_pc<31:0>, BranchType_ERET, branch_conditional);
 else
 BranchToAddr(new_pc, BranchType_ERET);

 CheckExceptionCatch(FALSE); // Check for debug event on exception return

aarch64/instrs/countop/CountOp

 enumeration CountOp {CountOp_CLZ, CountOp_CLS, CountOp_CNT};

aarch64/instrs/extendreg/DecodeRegExtend

 // DecodeRegExtend()
 // =================
 // Decode a register extension option

 ExtendType DecodeRegExtend(bits(3) op)
 case op of
 when '000' return ExtendType_UXTB;
 when '001' return ExtendType_UXTH;
 when '010' return ExtendType_UXTW;
 when '011' return ExtendType_UXTX;
 when '100' return ExtendType_SXTB;
 when '101' return ExtendType_SXTH;
 when '110' return ExtendType_SXTW;
 when '111' return ExtendType_SXTX;

aarch64/instrs/extendreg/ExtendReg

 // ExtendReg()
 // ===========
 // Perform a register extension and shift

 bits(N) ExtendReg(integer reg, ExtendType exttype, integer shift)
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-365
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 assert shift >= 0 && shift <= 4;
 bits(N) val = X[reg];
 boolean unsigned;
 integer len;

 case exttype of
 when ExtendType_SXTB unsigned = FALSE; len = 8;
 when ExtendType_SXTH unsigned = FALSE; len = 16;
 when ExtendType_SXTW unsigned = FALSE; len = 32;
 when ExtendType_SXTX unsigned = FALSE; len = 64;
 when ExtendType_UXTB unsigned = TRUE; len = 8;
 when ExtendType_UXTH unsigned = TRUE; len = 16;
 when ExtendType_UXTW unsigned = TRUE; len = 32;
 when ExtendType_UXTX unsigned = TRUE; len = 64;

 // Note the extended width of the intermediate value and
 // that sign extension occurs from bit <len+shift-1>, not
 // from bit <len-1>. This is equivalent to the instruction
 // [SU]BFIZ Rtmp, Rreg, #shift, #len
 // It may also be seen as a sign/zero extend followed by a shift:
 // LSL(Extend(val<len-1:0>, N, unsigned), shift);

 len = Min(len, N - shift);
 return Extend(val<len-1:0> : Zeros(shift), N, unsigned);

aarch64/instrs/extendreg/ExtendType

 enumeration ExtendType {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
 ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp

 enumeration FPMaxMinOp {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
 FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};

aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp

 enumeration FPUnaryOp {FPUnaryOp_ABS, FPUnaryOp_MOV,
 FPUnaryOp_NEG, FPUnaryOp_SQRT};

aarch64/instrs/float/convert/fpconvop/FPConvOp

 enumeration FPConvOp {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
 FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF
 , FPConvOp_CVT_FtoI_JS
 };

aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred

 // BFXPreferred()
 // ==============
 //
 // Return TRUE if UBFX or SBFX is the preferred disassembly of a
 // UBFM or SBFM bitfield instruction. Must exclude more specific
 // aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.

 boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)
 integer S = UInt(imms);
 integer R = UInt(immr);
I1-366 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 // must not match UBFIZ/SBFIX alias
 if UInt(imms) < UInt(immr) then
 return FALSE;

 // must not match LSR/ASR/LSL alias (imms == 31 or 63)
 if imms == sf:'11111' then
 return FALSE;

 // must not match UXTx/SXTx alias
 if immr == '000000' then
 // must not match 32-bit UXT[BH] or SXT[BH]
 if sf == '0' && imms IN {'000111', '001111'} then
 return FALSE;
 // must not match 64-bit SXT[BHW]
 if sf:uns == '10' && imms IN {'000111', '001111', '011111'} then
 return FALSE;

 // must be UBFX/SBFX alias
 return TRUE;

aarch64/instrs/integer/bitmasks/DecodeBitMasks

 // DecodeBitMasks()
 // ================

 // Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure

 (bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr, boolean immediate)
 bits(M) tmask, wmask;
 bits(6) levels;

 // Compute log2 of element size
 // 2^len must be in range [2, M]
 len = HighestSetBit(immN:NOT(imms));
 if len < 1 then UNDEFINED;
 assert M >= (1 << len);

 // Determine S, R and S - R parameters
 levels = ZeroExtend(Ones(len), 6);

 // For logical immediates an all-ones value of S is reserved
 // since it would generate a useless all-ones result (many times)
 if immediate && (imms AND levels) == levels then
 UNDEFINED;

 S = UInt(imms AND levels);
 R = UInt(immr AND levels);
 diff = S - R; // 6-bit subtract with borrow

 esize = 1 << len;
 d = UInt(diff<len-1:0>);
 welem = ZeroExtend(Ones(S + 1), esize);
 telem = ZeroExtend(Ones(d + 1), esize);
 wmask = Replicate(ROR(welem, R));
 tmask = Replicate(telem);
 return (wmask, tmask);

aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp

 enumeration MoveWideOp {MoveWideOp_N, MoveWideOp_Z, MoveWideOp_K};
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-367
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred

 // MoveWidePreferred()
 // ===================
 //
 // Return TRUE if a bitmask immediate encoding would generate an immediate
 // value that could also be represented by a single MOVZ or MOVN instruction.
 // Used as a condition for the preferred MOV<-ORR alias.

 boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)
 integer S = UInt(imms);
 integer R = UInt(immr);
 integer width = if sf == '1' then 64 else 32;

 // element size must equal total immediate size
 if sf == '1' && immN:imms != '1xxxxxx' then
 return FALSE;
 if sf == '0' && immN:imms != '00xxxxx' then
 return FALSE;

 // for MOVZ must contain no more than 16 ones
 if S < 16 then
 // ones must not span halfword boundary when rotated
 return (-R MOD 16) <= (15 - S);

 // for MOVN must contain no more than 16 zeros
 if S >= width - 15 then
 // zeros must not span halfword boundary when rotated
 return (R MOD 16) <= (S - (width - 15));

 return FALSE;

aarch64/instrs/integer/shiftreg/DecodeShift

 // DecodeShift()
 // =============
 // Decode shift encodings

 ShiftType DecodeShift(bits(2) op)
 case op of
 when '00' return ShiftType_LSL;
 when '01' return ShiftType_LSR;
 when '10' return ShiftType_ASR;
 when '11' return ShiftType_ROR;

aarch64/instrs/integer/shiftreg/ShiftReg

 // ShiftReg()
 // ==========
 // Perform shift of a register operand

 bits(N) ShiftReg(integer reg, ShiftType shiftype, integer amount)
 bits(N) result = X[reg];
 case shiftype of
 when ShiftType_LSL result = LSL(result, amount);
 when ShiftType_LSR result = LSR(result, amount);
 when ShiftType_ASR result = ASR(result, amount);
 when ShiftType_ROR result = ROR(result, amount);
 return result;
I1-368 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/instrs/integer/shiftreg/ShiftType

 enumeration ShiftType {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};

aarch64/instrs/logicalop/LogicalOp

 enumeration LogicalOp {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

aarch64/instrs/memory/memop/MemAtomicOp

 enumeration MemAtomicOp {MemAtomicOp_ADD,
 MemAtomicOp_BIC,
 MemAtomicOp_EOR,
 MemAtomicOp_ORR,
 MemAtomicOp_SMAX,
 MemAtomicOp_SMIN,
 MemAtomicOp_UMAX,
 MemAtomicOp_UMIN,
 MemAtomicOp_SWP};

aarch64/instrs/memory/memop/MemOp

 enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

aarch64/instrs/memory/prefetch/Prefetch

 // Prefetch()
 // ==========

 // Decode and execute the prefetch hint on ADDRESS specified by PRFOP

 Prefetch(bits(64) address, bits(5) prfop)
 PrefetchHint hint;
 integer target;
 boolean stream;

 case prfop<4:3> of
 when '00' hint = Prefetch_READ; // PLD: prefetch for load
 when '01' hint = Prefetch_EXEC; // PLI: preload instructions
 when '10' hint = Prefetch_WRITE; // PST: prepare for store
 when '11' return; // unallocated hint
 target = UInt(prfop<2:1>); // target cache level
 stream = (prfop<0> != '0'); // streaming (non-temporal)
 Hint_Prefetch(address, hint, target, stream);
 return;

aarch64/instrs/system/barriers/barrierop/MemBarrierOp

 enumeration MemBarrierOp { MemBarrierOp_DSB // Data Synchronization Barrier
 , MemBarrierOp_DMB // Data Memory Barrier
 , MemBarrierOp_ISB // Instruction Synchronization Barrier
 , MemBarrierOp_SSBB // Speculative Synchronization Barrier to VA
 , MemBarrierOp_PSSBB // Speculative Synchronization Barrier to PA
 , MemBarrierOp_SB // Speculation Barrier
 };
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-369
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/instrs/system/hints/syshintop/SystemHintOp

 enumeration SystemHintOp {
 SystemHintOp_NOP,
 SystemHintOp_YIELD,
 SystemHintOp_WFE,
 SystemHintOp_WFI,
 SystemHintOp_SEV,
 SystemHintOp_SEVL,
 SystemHintOp_DGH,
 SystemHintOp_ESB,
 SystemHintOp_TSB,
 SystemHintOp_CSDB
 };

aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField

 enumeration PSTATEField {PSTATEField_DAIFSet, PSTATEField_DAIFClr,
 PSTATEField_PAN, // Armv8.1
 PSTATEField_UAO, // Armv8.2
 PSTATEField_DIT, // Armv8.4
 PSTATEField_SSBS,
 PSTATEField_SP
 };

aarch64/instrs/system/sysops/at/AArch64.AT

 // AArch64.AT()
 // ============
 // Perform address translation as per AT instructions.

 AArch64.AT(bits(64) address, TranslationStage stage, bits(2) el, ATAccess ataccess)

 acctype = if ataccess IN {ATAccess_Read, ATAccess_Write} then AccType_AT else AccType_ATPAN;
 iswrite = ataccess IN {ATAccess_WritePAN, ATAccess_Write};
 aligned = TRUE;
 ispriv = el != EL0;

 fault = NoFault();
 fault.acctype = acctype;
 fault.write = iswrite;

 if stage == TranslationStage_12 then
 regime = Regime_EL10;
 else
 regime = TranslationRegime(el);

 ss = SecurityStateAtEL(el);
 if (el == EL0 && ELUsingAArch32(EL1)) || (el != EL0 && ELUsingAArch32(el)) then
 if regime == Regime_EL2 || TTBCR.EAE == '1' then
 (fault, addrdesc) = AArch32.S1TranslateLD(fault, regime, ss, address<31:0>, acctype,
 aligned, iswrite, ispriv);
 else
 (fault, addrdesc, -) = AArch32.S1TranslateSD(fault, regime, ss, address<31:0>, acctype,
 aligned, iswrite, ispriv);
 else
 (fault, addrdesc) = AArch64.S1Translate(fault, regime, ss, address, acctype, aligned,
 iswrite, ispriv);

 if stage == TranslationStage_12 && fault.statuscode == Fault_None then
 if ELUsingAArch32(EL1) && regime == Regime_EL10 && EL2Enabled() then
 addrdesc.vaddress = ZeroExtend(address);
 s2fs1walk = FALSE;
 (fault, addrdesc) = AArch32.S2Translate(fault, addrdesc, ss, s2fs1walk, acctype,
I1-370 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 aligned, iswrite, ispriv);
 elsif regime == Regime_EL10 && EL2Enabled() then
 s1aarch64 = TRUE;
 s2fs1walk = FALSE;
 (fault, addrdesc) = AArch64.S2Translate(fault, addrdesc, s1aarch64, ss, s2fs1walk,
 acctype, aligned, iswrite, ispriv);

 if fault.statuscode != Fault_None then
 addrdesc = CreateFaultyAddressDescriptor(address, fault);
 // Take exception when synchronous external abort occurs on translation table walk or
 // a fault in the stage 2 translation of an address accessed in a stage 1 translation
 // table lookup
 if (IsExternalAbort(fault) ||
 (PSTATE.EL == EL1 && fault.s2fs1walk)) then
 PAR_EL1 = bits(64) UNKNOWN;
 AArch64.Abort(address, addrdesc.fault);

 is_ATS1Ex = stage != TranslationStage_12;
 AArch64.EncodePAR(regime, addrdesc);
 return;

aarch64/instrs/system/sysops/at/AArch64.EncodePAR

 // AArch64.EncodePAR()
 // ===================
 // Encode PAR register with result of translation.

 AArch64.EncodePAR(Regime regime, AddressDescriptor addrdesc)
 PAR_EL1 = Zeros();
 paspace = addrdesc.paddress.paspace;

 if !IsFault(addrdesc) then
 PAR_EL1.F = '0';
 PAR_EL1<11> = '1'; // RES1
 if SecurityStateForRegime(regime) == SS_Secure then
 PAR_EL1.NS = if paspace == PAS_Secure then '0' else '1';
 else
 PAR_EL1.NS = bit UNKNOWN;
 PAR_EL1.SH = ReportedPARShareability(PAREncodeShareability(addrdesc.memattrs));
 PAR_EL1.PA = addrdesc.paddress.address<52-1:12>;
 PAR_EL1.ATTR = ReportedPARAttrs(EncodePARAttrs(addrdesc.memattrs));
 PAR_EL1<10> = bit IMPLEMENTATION_DEFINED "Non-Faulting PAR";
 else
 PAR_EL1.F = '1';
 PAR_EL1.FST = AArch64.PARFaultStatus(addrdesc.fault);
 PAR_EL1.PTW = if addrdesc.fault.s2fs1walk then '1' else '0';
 PAR_EL1.S = if addrdesc.fault.secondstage then '1' else '0';
 PAR_EL1<11> = '1'; // RES1
 PAR_EL1<63:48> = bits(16) IMPLEMENTATION_DEFINED "Faulting PAR";
 return;

aarch64/instrs/system/sysops/at/AArch64.PARFaultStatus

 // AArch64.PARFaultStatus()
 // ========================
 // Fault status field decoding of 64-bit PAR.

 bits(6) AArch64.PARFaultStatus(FaultRecord fault)
 bits(6) fst;

 if fault.statuscode == Fault_Domain then
 // Report Domain fault
 assert fault.level IN {1,2};
 fst<1:0> = if fault.level == 1 then '01' else '10';
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-371
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 fst<5:2> = '1111';
 else
 fst = EncodeLDFSC(fault.statuscode, fault.level);
 return fst;

aarch64/instrs/system/sysops/dc/AArch64.DC

 // AArch64.DC()
 // ============
 // Perform Data Cache Operation.

 AArch64.DC(bits(64) regval, CacheType cachetype, CacheOp cacheop, CacheOpScope opscope)
 AccType acctype = AccType_DC;
 CacheRecord cache;

 cache.acctype = acctype;
 cache.cachetype = cachetype;
 cache.cacheop = cacheop;
 cache.opscope = opscope;

 if opscope == CacheOpScope_SetWay then
 ss = SecurityStateAtEL(PSTATE.EL);
 cache.cpas = CPASAtSecurityState(ss);
 cache.shareability = Shareability_NSH;
 (cache.set, cache.way, cache.level) = DecodeSW(regval, cachetype);
 if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&
 (HCR_EL2.SWIO == '1' || HCR_EL2.<DC,VM> != '00')) then
 cache.cacheop = CacheOp_CleanInvalidate;

 CACHE_OP(cache);
 return;

 if EL2Enabled() then
 if PSTATE.EL IN {EL0, EL1} then
 cache.is_vmid_valid = TRUE;
 cache.vmid = VMID[];
 else
 cache.is_vmid_valid = FALSE;
 else
 cache.is_vmid_valid = FALSE;

 if PSTATE.EL == EL0 then
 cache.is_asid_valid = TRUE;
 cache.asid = ASID[];
 else
 cache.is_asid_valid = FALSE;

 if opscope == CacheOpScope_PoDP && boolean IMPLEMENTATION_DEFINED "Memory system does not supports
PoDP" then
 opscope = CacheOpScope_PoP;
 if opscope == CacheOpScope_PoP && boolean IMPLEMENTATION_DEFINED "Memory system does not supports
PoP" then
 opscope = CacheOpScope_PoC;
 need_translate = DCInstNeedsTranslation(opscope);
 iswrite = cacheop == CacheOp_Invalidate;
 vaddress = regval;

 size = 0; // by default no watchpoint address
 if iswrite then
 size = integer IMPLEMENTATION_DEFINED "Data Cache Invalidate Watchpoint Size";
 assert size >= 4*(2^(UInt(CTR_EL0.DminLine))) && size <= 2048;
 assert (size<32:0> AND (size-1)<32:0>) == 0; // size is power of 2
 vaddress = Align(regval, size);

 cache.translated = need_translate;
 cache.vaddress = vaddress;
I1-372 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 if need_translate then
 wasaligned = TRUE;
 memaddrdesc = AArch64.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);
 if IsFault(memaddrdesc) then
 AArch64.Abort(regval, memaddrdesc.fault);

 memattrs = memaddrdesc.memattrs;
 cache.paddress = memaddrdesc.paddress;
 cache.cpas = CPASAtPAS(memaddrdesc.paddress.paspace);
 if opscope IN {CacheOpScope_PoC, CacheOpScope_PoP, CacheOpScope_PoDP} then
 cache.shareability = memattrs.shareability;
 else
 cache.shareability = Shareability_NSH;
 else
 cache.shareability = Shareability UNKNOWN;
 cache.paddress = FullAddress UNKNOWN;

 if cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.<DC,VM> != '00' then
 cache.cacheop = CacheOp_CleanInvalidate;

 CACHE_OP(cache);
 return;

aarch64/instrs/system/sysops/dc/AArch64.MemZero

 // AArch64.MemZero()
 // =================

 AArch64.MemZero(bits(64) regval, CacheType cachetype)

 AccType acctype = AccType_DCZVA;
 boolean iswrite = TRUE;
 boolean wasaligned = TRUE;

 integer size = 4*(2^(UInt(DCZID_EL0.BS)));
 bits(64) vaddress = Align(regval, size);

 memaddrdesc = AArch64.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);

 if IsFault(memaddrdesc) then
 if IsDebugException(memaddrdesc.fault) then
 AArch64.Abort(vaddress, memaddrdesc.fault);
 else
 AArch64.Abort(regval, memaddrdesc.fault);
 else
 if cachetype == CacheType_Data then
 AArch64.DataMemZero(regval, vaddress, memaddrdesc, size);
 return;

aarch64/instrs/system/sysops/ic/AArch64.IC

 // AArch64.IC()
 // ============
 // Perform Instruction Cache Operation.

 AArch64.IC(CacheOpScope opscope)
 regval = bits(64) UNKNOWN;
 AArch64.IC(regval, opscope);

 // AArch64.IC()
 // ============
 // Perform Instruction Cache Operation.

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-373
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 AArch64.IC(bits(64) regval, CacheOpScope opscope)
 CacheRecord cache;
 AccType acctype = AccType_IC;

 cache.acctype = acctype;
 cache.cachetype = CacheType_Instruction;
 cache.cacheop = CacheOp_Invalidate;
 cache.opscope = opscope;

 if opscope IN {CacheOpScope_ALLU, CacheOpScope_ALLUIS} then
 ss = SecurityStateAtEL(PSTATE.EL);
 cache.cpas = CPASAtSecurityState(ss);
 if (opscope == CacheOpScope_ALLUIS || (opscope == CacheOpScope_ALLU && PSTATE.EL == EL1
 && EL2Enabled() && HCR_EL2.FB == '1')) then
 cache.shareability = Shareability_ISH;
 else
 cache.shareability = Shareability_NSH;
 cache.regval = regval;
 CACHE_OP(cache);
 else
 assert opscope == CacheOpScope_PoU;

 if EL2Enabled() then
 if PSTATE.EL IN {EL0, EL1} then
 cache.is_vmid_valid = TRUE;
 cache.vmid = VMID[];
 else
 cache.is_vmid_valid = FALSE;
 else
 cache.is_vmid_valid = FALSE;

 if PSTATE.EL == EL0 then
 cache.is_asid_valid = TRUE;
 cache.asid = ASID[];
 else
 cache.is_asid_valid = FALSE;

 bits(64) vaddress = regval;
 need_translate = ICInstNeedsTranslation(opscope);

 cache.vaddress = regval;
 cache.shareability = Shareability_NSH;
 cache.translated = need_translate;

 if !need_translate then
 cache.paddress = FullAddress UNKNOWN;
 CACHE_OP(cache);
 return;
 iswrite = FALSE;
 wasaligned = TRUE;
 size = 0;
 memaddrdesc = AArch64.TranslateAddress(vaddress, acctype, iswrite, wasaligned, size);

 if IsFault(memaddrdesc) then
 AArch64.Abort(regval, memaddrdesc.fault);

 cache.cpas = CPASAtPAS(memaddrdesc.paddress.paspace);
 cache.paddress = memaddrdesc.paddress;
 CACHE_OP(cache);
 return;

aarch64/instrs/system/sysops/predictionrestrict/RestrictPrediction

 // RestrictPrediction()
 // ====================
 // Clear all predictions in the context.
I1-374 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 AArch64.RestrictPrediction(bits(64) val, RestrictType restriction)

 ExecutionCntxt c;
 target_el = val<25:24>;

 // If the instruction is executed at an EL lower than the specified
 // level, it is treated as a NOP.
 if UInt(target_el) > UInt(PSTATE.EL) then return;

 bit ns = val<26>;
 ss = TargetSecurityState(ns);

 c.security = ss;
 c.target_el = target_el;

 if EL2Enabled() then
 if PSTATE.EL IN {EL0, EL1} then
 c.is_vmid_valid = TRUE;
 c.all_vmid = FALSE;
 c.vmid = VMID[];

 elsif target_el IN {EL0, EL1} then
 c.is_vmid_valid = TRUE;
 c.all_vmid = val<48> == '1';
 c.vmid = val<47:32>; // Only valid if val<48> == '0';
 else
 c.is_vmid_valid = FALSE;
 else
 c.is_vmid_valid = FALSE;

 if PSTATE.EL == EL0 then
 c.is_asid_valid = TRUE;
 c.all_asid = FALSE;
 c.asid = ASID[];

 elsif target_el == EL0 then
 c.is_asid_valid = TRUE;
 c.all_asid = val<16> == '1';
 c.asid = val<15:0>; // Only valid if val<16> == '0';

 else
 c.is_asid_valid = FALSE;

 c.restriction = restriction;
 RESTRICT_PREDICTIONS(c);

aarch64/instrs/system/sysops/sysop/SysOp

 // SysOp()
 // =======

 SystemOp SysOp(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
 case op1:CRn:CRm:op2 of
 when '000 0111 1000 000' return Sys_AT; // S1E1R
 when '100 0111 1000 000' return Sys_AT; // S1E2R
 when '110 0111 1000 000' return Sys_AT; // S1E3R
 when '000 0111 1000 001' return Sys_AT; // S1E1W
 when '100 0111 1000 001' return Sys_AT; // S1E2W
 when '110 0111 1000 001' return Sys_AT; // S1E3W
 when '000 0111 1000 010' return Sys_AT; // S1E0R
 when '000 0111 1000 011' return Sys_AT; // S1E0W
 when '100 0111 1000 100' return Sys_AT; // S12E1R
 when '100 0111 1000 101' return Sys_AT; // S12E1W
 when '100 0111 1000 110' return Sys_AT; // S12E0R
 when '100 0111 1000 111' return Sys_AT; // S12E0W
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-375
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 when '011 0111 0100 001' return Sys_DC; // ZVA
 when '000 0111 0110 001' return Sys_DC; // IVAC
 when '000 0111 0110 010' return Sys_DC; // ISW
 when '011 0111 1010 001' return Sys_DC; // CVAC
 when '000 0111 1010 010' return Sys_DC; // CSW
 when '011 0111 1011 001' return Sys_DC; // CVAU
 when '011 0111 1110 001' return Sys_DC; // CIVAC
 when '000 0111 1110 010' return Sys_DC; // CISW
 when '011 0111 1101 001' return Sys_DC; // CVADP
 when '000 0111 0001 000' return Sys_IC; // IALLUIS
 when '000 0111 0101 000' return Sys_IC; // IALLU
 when '011 0111 0101 001' return Sys_IC; // IVAU
 when '100 1000 0000 001' return Sys_TLBI; // IPAS2E1IS
 when '100 1000 0000 101' return Sys_TLBI; // IPAS2LE1IS
 when '000 1000 0011 000' return Sys_TLBI; // VMALLE1IS
 when '100 1000 0011 000' return Sys_TLBI; // ALLE2IS
 when '110 1000 0011 000' return Sys_TLBI; // ALLE3IS
 when '000 1000 0011 001' return Sys_TLBI; // VAE1IS
 when '100 1000 0011 001' return Sys_TLBI; // VAE2IS
 when '110 1000 0011 001' return Sys_TLBI; // VAE3IS
 when '000 1000 0011 010' return Sys_TLBI; // ASIDE1IS
 when '000 1000 0011 011' return Sys_TLBI; // VAAE1IS
 when '100 1000 0011 100' return Sys_TLBI; // ALLE1IS
 when '000 1000 0011 101' return Sys_TLBI; // VALE1IS
 when '100 1000 0011 101' return Sys_TLBI; // VALE2IS
 when '110 1000 0011 101' return Sys_TLBI; // VALE3IS
 when '100 1000 0011 110' return Sys_TLBI; // VMALLS12E1IS
 when '000 1000 0011 111' return Sys_TLBI; // VAALE1IS
 when '100 1000 0100 001' return Sys_TLBI; // IPAS2E1
 when '100 1000 0100 101' return Sys_TLBI; // IPAS2LE1
 when '000 1000 0111 000' return Sys_TLBI; // VMALLE1
 when '100 1000 0111 000' return Sys_TLBI; // ALLE2
 when '110 1000 0111 000' return Sys_TLBI; // ALLE3
 when '000 1000 0111 001' return Sys_TLBI; // VAE1
 when '100 1000 0111 001' return Sys_TLBI; // VAE2
 when '110 1000 0111 001' return Sys_TLBI; // VAE3
 when '000 1000 0111 010' return Sys_TLBI; // ASIDE1
 when '000 1000 0111 011' return Sys_TLBI; // VAAE1
 when '100 1000 0111 100' return Sys_TLBI; // ALLE1
 when '000 1000 0111 101' return Sys_TLBI; // VALE1
 when '100 1000 0111 101' return Sys_TLBI; // VALE2
 when '110 1000 0111 101' return Sys_TLBI; // VALE3
 when '100 1000 0111 110' return Sys_TLBI; // VMALLS12E1
 when '000 1000 0111 111' return Sys_TLBI; // VAALE1
 return Sys_SYS;

aarch64/instrs/system/sysops/sysop/SystemOp

 enumeration SystemOp {Sys_AT, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};

aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ALL

 // AArch32.DTLBI_ALL()
 // ===================
 // Invalidate all data TLB entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.

 AArch32.DTLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
I1-376 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 r.op = TLBIOp_DALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ASID

 // AArch32.DTLBI_ASID()
 // ====================
 // Invalidate all data TLB stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Rt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.DTLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
 TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_DASID;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_VA

 // AArch32.DTLBI_VA()
 // ==================
 // Invalidate by VA all stage 1 data TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.DTLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-377
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 r.op = TLBIOp_DVA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ALL

 // AArch32.ITLBI_ALL()
 // ===================
 // Invalidate all instruction TLB entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.

 AArch32.ITLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_IALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ASID

 // AArch32.ITLBI_ASID()
 // ====================
 // Invalidate all instruction TLB stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Rt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.ITLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
 TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_IASID;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
I1-378 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 r.asid = Zeros(8) : Rt<7:0>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_VA

 // AArch32.ITLBI_VA()
 // ==================
 // Invalidate by VA all stage 1 instruction TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.ITLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_IVA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ALL

 // AArch32.TLBI_ALL()
 // ==================
 // Invalidate all entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_ALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-379
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ASID

 // AArch32.TLBI_ASID()
 // ===================
 // Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Rt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
 TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_ASID;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_IPAS2

 // AArch32.TLBI_IPAS2()
 // ====================
 // Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
 // domain matching the indicated VMID in the indicated regime with the indicated security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // IPA and related parameters of the are derived from Rt.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2};
 assert security == SS_NonSecure;

 TLBIRecord r;
 r.op = TLBIOp_IPAS2;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
I1-380 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 r.attr = attr;
 r.address = Zeros(24) : Rt<27:0> : Zeros(12);
 r.ipaspace = PAS_NonSecure;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VA

 // AArch32.TLBI_VA()
 // =================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Zeros(8) : Rt<7:0>;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VAA

 // AArch32.TLBI_VAA()
 // ==================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
 // with the indicated security state.
 // VA and related parameters are derived from Rt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)
 assert PSTATE.EL IN {EL3, EL2, EL1};
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-381
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 TLBIRecord r;
 r.op = TLBIOp_VAA;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.address = Zeros(32) : Rt<31:12> : Zeros(12);

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALL

 // AArch32.TLBI_VMALL()
 // ====================
 // Invalidate all stage 1 entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability
 // domain that match the indicated VMID (where applicable).
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // Note: stage 2 only entries are not in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VMALL;
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALLS12

 // AArch32.TLBI_VMALLS12()
 // =======================
 // Invalidate all stage 1 and stage 2 entries for the indicated translation
 // regime with the indicated security state for all TLBs within the indicated
 // shareability domain that match the indicated VMID.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch32.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_VMALLS12;
I1-382 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 r.from_aarch64 = FALSE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ALL

 // AArch64.TLBI_ALL()
 // ==================
 // Invalidate all entries for the indicated translation regime with the
 // the indicated security state for all TLBs within the indicated shareability domain.
 // Invalidation applies to all applicable stage 1 and stage 2 entries.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_ALL;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ASID

 // AArch64.TLBI_ASID()
 // ===================
 // Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
 // and ASID in the parameter Xt in the indicated translation regime with the
 // indicated security state for all TLBs within the indicated shareability domain.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid, Shareability shareability,
 TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_ASID;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = TLBILevel_Any;
 r.attr = attr;
 r.asid = Xt<63:48>;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-383
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_IPAS2

 // AArch64.TLBI_IPAS2()
 // ====================
 // Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
 // domain matching the indicated VMID in the indicated regime with the indicated security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // IPA and related parameters of the are derived from Xt.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_IPAS2;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.address = ZeroExtend(Xt<39:0> : Zeros(12));

 case security of
 when SS_NonSecure
 r.ipaspace = PAS_NonSecure;
 when SS_Secure
 r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RIPAS2

 // AArch64.TLBI_RIPAS2()
 // =====================
 // Range invalidate by IPA all stage 2 only TLB entries in the indicated
 // shareability domain matching the indicated VMID in the indicated regime with the indicated
 // security state.
 // Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
 // The range of IPA and related parameters of the are derived from Xt.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_RIPAS2(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
I1-384 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RIPAS2;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer baseaddr = SInt(Xt<36:0>);

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

 if !valid then return;

 case security of
 when SS_NonSecure
 r.ipaspace = PAS_NonSecure;
 when SS_Secure
 r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVA

 // AArch64.TLBI_RVA()
 // ==================
 // Range invalidate by VA range all stage 1 TLB entries in the indicated
 // shareability domain matching the indicated VMID and ASID (where regime
 // supports VMID, ASID) in the indicated regime with the indicated security state.
 // ASID, and range related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_RVA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RVA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Xt<63:48>;

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-385
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 if !valid then return;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVAA

 // AArch64.TLBI_RVAA()
 // ===================
 // Range invalidate by VA range all stage 1 TLB entries in the indicated
 // shareability domain matching the indicated VMID (where regimesupports VMID)
 // and all ASID in the indicated regime with the indicated security state.
 // VA range related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_RVAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_RVAA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer baseaddr = SInt(Xt<36:0>);

 boolean valid;

 (valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

 if !valid then return;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VA

 // AArch64.TLBI_VA()
 // =================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
 // with the indicated security state.
 // ASID, VA and related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
I1-386 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.asid = Xt<63:48>;
 r.address = ZeroExtend(Xt<43:0> : Zeros(12));

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VAA

 // AArch64.TLBI_VAA()
 // ==================
 // Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
 // matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
 // with the indicated security state.
 // VA and related parameters are derived from Xt.
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // When the indicated level is
 // TLBILevel_Any : this applies to TLB entries at all levels
 // TLBILevel_Last : this applies to TLB entries at last level only
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VAA;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.vmid = vmid;
 r.level = level;
 r.attr = attr;
 r.address = ZeroExtend(Xt<43:0> : Zeros(12));

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALL

 // AArch64.TLBI_VMALL()
 // ====================
 // Invalidate all stage 1 entries for the indicated translation regime with the
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-387
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 // the indicated security state for all TLBs within the indicated shareability
 // domain that match the indicated VMID (where applicable).
 // Note: stage 1 and stage 2 combined entries are in the scope of this operation.
 // Note: stage 2 only entries are not in the scope of this operation.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2, EL1};

 TLBIRecord r;
 r.op = TLBIOp_VMALL;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALLS12

 // AArch64.TLBI_VMALLS12()
 // =======================
 // Invalidate all stage 1 and stage 2 entries for the indicated translation
 // regime with the indicated security state for all TLBs within the indicated
 // shareability domain that match the indicated VMID.
 // The indicated attr defines the attributes of the memory operations that must be completed in
 // order to deem this operation to be completed.
 // When attr is TLBI_ExcludeXS, only operations with XS=0 within the scope of this TLB operation
 // are required to complete.

 AArch64.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
 Shareability shareability, TLBIMemAttr attr)
 assert PSTATE.EL IN {EL3, EL2};

 TLBIRecord r;
 r.op = TLBIOp_VMALLS12;
 r.from_aarch64 = TRUE;
 r.security = security;
 r.regime = regime;
 r.level = TLBILevel_Any;
 r.vmid = vmid;
 r.attr = attr;

 TLBI(r);
 if shareability != Shareability_NSH then Broadcast(shareability, r);
 return;

aarch64/instrs/system/sysops/tlbi/ASID_NONE

 constant bits(16) ASID_NONE = Zeros();
I1-388 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/instrs/system/sysops/tlbi/Broadcast

 // Broadcast()
 // ===========
 // IMPLEMENTATION DEFINED function to broadcast TLBI operation within the indicated shareability
 // domain.

 Broadcast(Shareability shareability, TLBIRecord r)
 IMPLEMENTATION_DEFINED;

aarch64/instrs/system/sysops/tlbi/DecodeTLBITG

 // DecodeTLBITG()
 // ==============
 // Decode translation granule size in TLBI range instructions

 TGx DecodeTLBITG(bits(2) tg)
 case tg of
 when '01' return TGx_4KB;
 when '10' return TGx_16KB;
 when '11' return TGx_64KB;

aarch64/instrs/system/sysops/tlbi/HasLargeAddress

 // HasLargeAddress()
 // =================
 // Returns TRUE if the regime is configured for 52 bit addresses, FALSE otherwise.

 boolean HasLargeAddress(Regime regime)
 return FALSE;

aarch64/instrs/system/sysops/tlbi/SecurityStateAtEL

 // SecurityStateAtEL()
 // ===================
 // Returns the effective security state at the exception level based off current settings.

 SecurityState SecurityStateAtEL(bits(2) EL)
 return SS_Secure;

aarch64/instrs/system/sysops/tlbi/TLBI

 // TLBI()
 // ======
 // Performs TLB maintenance of operation on TLB to invalidate the matching transition table entries.

 TLBI(TLBIRecord r)
 IMPLEMENTATION_DEFINED;

aarch64/instrs/system/sysops/tlbi/TLBILevel

 enumeration TLBILevel {
 TLBILevel_Any,
 TLBILevel_Last
 };
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-389
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/instrs/system/sysops/tlbi/TLBIMatch

 // TLBIMatch()
 // ===========
 // Determine whether the TLB entry lies within the scope of inavlidation

 boolean TLBIMatch(TLBIRecord tlbi, TLBRecord entry)
 case tlbi.op of
 when TLBIOp_DALL, TLBIOp_IALL
 match = (tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime);
 when TLBIOp_DASID, TLBIOp_IASID
 match = (entry.context.includes_s1 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid) &&
 (UseASID(entry.context) && entry.context.nG == '1' &&
 tlbi.asid == entry.context.asid));
 when TLBIOp_DVA, TLBIOp_IVA
 match = (entry.context.includes_s1 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid) &&
 (!UseASID(entry.context) || tlbi.asid == entry.context.asid ||
 entry.context.nG == '0') &&
 tlbi.address<55:entry.blocksize> == entry.context.ia<55:entry.blocksize> &&
 (tlbi.level == TLBILevel_Any || !entry.walkstate.istable));
 when TLBIOp_ALL
 match = (tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime);
 when TLBIOp_ASID
 match = (entry.context.includes_s1 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid) &&
 (UseASID(entry.context) && entry.context.nG == '1' &&
 tlbi.asid == entry.context.asid));
 when TLBIOp_IPAS2
 match = (!entry.context.includes_s1 && entry.context.includes_s2 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid) &&
 tlbi.ipaspace == entry.context.ipaspace &&
 tlbi.address<51:entry.blocksize> == entry.context.ia<51:entry.blocksize> &&
 (tlbi.level == TLBILevel_Any || !entry.walkstate.istable));
 when TLBIOp_VAA
 match = (entry.context.includes_s1 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid) &&
 tlbi.address<55:entry.blocksize> == entry.context.ia<55:entry.blocksize> &&
 (tlbi.level == TLBILevel_Any || !entry.walkstate.istable));
 when TLBIOp_VA
 match = (entry.context.includes_s1 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid) &&
 (!UseASID(entry.context) || tlbi.asid == entry.context.asid ||
 entry.context.nG == '0') &&
 tlbi.address<55:entry.blocksize> == entry.context.ia<55:entry.blocksize> &&
 (tlbi.level == TLBILevel_Any || !entry.walkstate.istable));
 when TLBIOp_VMALL
 match = (entry.context.includes_s1 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid));
 when TLBIOp_VMALLS12
 match = (tlbi.security == entry.context.ss &&
I1-390 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid));
 when TLBIOp_RIPAS2
 match = (!entry.context.includes_s1 && entry.context.includes_s2 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid) &&
 tlbi.ipaspace == entry.context.ipaspace &&
 (tlbi.tg != '00' && DecodeTLBITG(tlbi.tg) == entry.context.tg) &&
 UInt(tlbi.address) <= UInt(entry.context.ia) &&
 UInt(tlbi.end_address) > UInt(entry.context.ia));
 when TLBIOp_RVAA
 match = (entry.context.includes_s1 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid) &&
 (tlbi.tg != '00' && DecodeTLBITG(tlbi.tg) == entry.context.tg) &&
 UInt(tlbi.address) <= UInt(entry.context.ia) &&
 UInt(tlbi.end_address) > UInt(entry.context.ia));
 when TLBIOp_RVA
 match = (entry.context.includes_s1 &&
 tlbi.security == entry.context.ss &&
 tlbi.regime == entry.context.regime &&
 (!UseVMID(entry.context) || tlbi.vmid == entry.context.vmid) &&
 (!UseASID(entry.context) || tlbi.asid == entry.context.asid ||
 entry.context.nG == '0') &&
 (tlbi.tg != '00' && DecodeTLBITG(tlbi.tg) == entry.context.tg) &&
 UInt(tlbi.address) <= UInt(entry.context.ia) &&
 UInt(tlbi.end_address) > UInt(entry.context.ia));

 return match;

aarch64/instrs/system/sysops/tlbi/TLBIMemAttr

 enumeration TLBIMemAttr {
 TLBI_AllAttr,
 TLBI_ExcludeXS
 };

aarch64/instrs/system/sysops/tlbi/TLBIOp

 enumeration TLBIOp {
 TLBIOp_DALL, // AArch32 Data TLBI operations - deprecated
 TLBIOp_DASID,
 TLBIOp_DVA,
 TLBIOp_IALL, // AArch32 Instruction TLBI operations - deprecated
 TLBIOp_IASID,
 TLBIOp_IVA,
 TLBIOp_ALL,
 TLBIOp_ASID,
 TLBIOp_IPAS2,
 TLBIOp_VAA,
 TLBIOp_VA,
 TLBIOp_VMALL,
 TLBIOp_VMALLS12,
 TLBIOp_RIPAS2,
 TLBIOp_RVAA,
 TLBIOp_RVA,
 };
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-391
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/instrs/system/sysops/tlbi/TLBIRange

 // TLBIRange()
 // ===========
 // Extract the input address range information from encoded Xt.

 (boolean, bits(2), bits(64), bits(64)) TLBIRange(Regime regime, bits(64) Xt)
 boolean valid = TRUE;
 bits(64) start = Zeros(64);
 bits(64) end = Zeros(64);

 bits(2) tg = Xt<47:46>;
 integer scale = UInt(Xt<45:44>);
 integer num = UInt(Xt<43:39>);
 integer tg_bits;

 if tg == '00' then
 return (FALSE, tg, start, end);

 case tg of
 when '01' // 4KB
 tg_bits = 12;
 if HasLargeAddress(regime) then
 start<52:16> = Xt<36:0>;
 start<63:53> = Replicate(Xt<36>, 11);
 else
 start<48:12> = Xt<36:0>;
 start<63:49> = Replicate(Xt<36>, 15);
 when '10' // 16KB
 tg_bits = 14;
 if HasLargeAddress(regime) then
 start<52:16> = Xt<36:0>;
 start<63:53> = Replicate(Xt<36>, 11);
 else
 start<50:14> = Xt<36:0>;
 start<63:51> = Replicate(Xt<36>, 13);
 when '11' // 64KB
 tg_bits = 16;
 start<52:16> = Xt<36:0>;
 start<63:53> = Replicate(Xt<36>, 11);
 otherwise
 Unreachable();

 integer range = (num+1) << (5*scale + 1 + tg_bits);
 end = start + range<63:0>;

 if end<52> != start<52> then
 // overflow, saturate it
 end = Replicate(start<52>, 64-52) : Ones(52);

 return (valid, tg, start, end);

aarch64/instrs/system/sysops/tlbi/TLBIRecord

 type TLBIRecord is (
 TLBIOp op,
 boolean from_aarch64, // originated as an AArch64 operation
 SecurityState security,
 Regime regime,
 bits(16) vmid,
 bits(16) asid,
 TLBILevel level,
 TLBIMemAttr attr,
 PASpace ipaspace, // For operations that take IPA as input address
 bits(64) address, // input address, for range operations, start address
 bits(64) end_address, // for range operations, end address
I1-392 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 bits(2) tg, // for range operations, translation granule
)

aarch64/instrs/system/sysops/tlbi/VMID

 // VMID[]
 // ======
 // Effective VMID.

 bits(16) VMID[]
 return VSCTLR_EL2.VMID;

aarch64/instrs/system/sysops/tlbi/VMID_NONE

 constant bits(16) VMID_NONE = Zeros();

aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp

 enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp

 enumeration CompareOp {CompareOp_GT, CompareOp_GE, CompareOp_EQ,
 CompareOp_LE, CompareOp_LT};

aarch64/instrs/vector/logical/immediateop/ImmediateOp

 enumeration ImmediateOp {ImmediateOp_MOVI, ImmediateOp_MVNI,
 ImmediateOp_ORR, ImmediateOp_BIC};

aarch64/instrs/vector/reduce/reduceop/Reduce

 // Reduce()
 // ========
 // Perform the operation 'op' on pairs of elements from the input vector,
 // reducing the vector to a scalar result.

 bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize)
 integer half;
 bits(esize) hi;
 bits(esize) lo;
 bits(esize) result;

 if N == esize then
 return input<esize-1:0>;

 half = N DIV 2;
 hi = Reduce(op, input<N-1:half>, esize);
 lo = Reduce(op, input<half-1:0>, esize);

 case op of
 when ReduceOp_FMINNUM
 result = FPMinNum(lo, hi, FPCR[]);
 when ReduceOp_FMAXNUM
 result = FPMaxNum(lo, hi, FPCR[]);
 when ReduceOp_FMIN
 result = FPMin(lo, hi, FPCR[]);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-393
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 when ReduceOp_FMAX
 result = FPMax(lo, hi, FPCR[]);
 when ReduceOp_FADD
 result = FPAdd(lo, hi, FPCR[]);
 when ReduceOp_ADD
 result = lo + hi;

 return result;

aarch64/instrs/vector/reduce/reduceop/ReduceOp

 enumeration ReduceOp {ReduceOp_FMINNUM, ReduceOp_FMAXNUM,
 ReduceOp_FMIN, ReduceOp_FMAX,
 ReduceOp_FADD, ReduceOp_ADD};

I1.1.5 aarch64/translation

This section includes the following pseudocode functions:

• aarch64/translation/debug/AArch64.CheckBreakpoint on page I1-395.

• aarch64/translation/debug/AArch64.CheckDebug on page I1-396.

• aarch64/translation/debug/AArch64.CheckWatchpoint on page I1-396.

• aarch64/translation/pmsa_validation/AArch64.DetermineS2PASpace on page I1-397.

• aarch64/translation/pmsa_validation/AArch64.FullValidate on page I1-397.

• aarch64/translation/pmsa_validation/AArch64.IsStage1VMSA on page I1-398.

• aarch64/translation/pmsa_validation/AArch64.MPUValidate on page I1-398.

• aarch64/translation/pmsa_validation/AArch64.S1Validate on page I1-398.

• aarch64/translation/pmsa_validation/AArch64.S2Validate on page I1-400.

• aarch64/translation/vmsa_addrcalc/AArch64.BlockBase on page I1-402.

• aarch64/translation/vmsa_addrcalc/AArch64.IASize on page I1-403.

• aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase on page I1-403.

• aarch64/translation/vmsa_addrcalc/AArch64.PageBase on page I1-403.

• aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize on page I1-403.

• aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel on page I1-404.

• aarch64/translation/vmsa_addrcalc/AArch64.TTBaseAddress on page I1-404.

• aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress on page I1-405.

• aarch64/translation/vmsa_faults/AArch64.AddrTop on page I1-405.

• aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults on page I1-405.

• aarch64/translation/vmsa_faults/AArch64.DebugFault on page I1-406.

• aarch64/translation/vmsa_faults/AArch64.OAOutOfRange on page I1-406.

• aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault on page I1-406.

• aarch64/translation/vmsa_faults/AArch64.S1HasPermissionsFault_VMSA on page I1-406.

• aarch64/translation/vmsa_faults/AArch64.S1InvalidTxSZ on page I1-409.

• aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault on page I1-410.

• aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange on page I1-410.

• aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs on page I1-410.

• aarch64/translation/vmsa_tlbcontext/AArch64.GetS1TLBContext on page I1-411.

• aarch64/translation/vmsa_tlbcontext/AArch64.GetS2TLBContext on page I1-411.

• aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL10 on page I1-412.

• aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL2 on page I1-412.

• aarch64/translation/vmsa_translation/AArch64.AccessUsesEL on page I1-412.

• aarch64/translation/vmsa_translation/AArch64.FaultAllowsSetAccessFlag on page I1-413.

• aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc on page I1-413.
I1-394 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
• aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput on page I1-413.

• aarch64/translation/vmsa_translation/AArch64.S1Translate on page I1-415.

• aarch64/translation/vmsa_translation/AArch64.TranslateAddress on page I1-416.

• aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported on page I1-417.

• aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults on page I1-417.

• aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit on page I1-417.

• aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType on page I1-417.

• aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms on page I1-418.

• aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms on page I1-418.

• aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState on page I1-418.

• aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLast on page I1-419.

• aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable on page I1-420.

• aarch64/translation/vmsa_walk/AArch64.S1Walk on page I1-420.

• aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel on page I1-422.

• aarch64/translation/vmsa_walkparams/AArch64.CurrentSecurityState on page I1-422.

• aarch64/translation/vmsa_walkparams/AArch64.DecodeTG0 on page I1-422.

• aarch64/translation/vmsa_walkparams/AArch64.DecodeTG1 on page I1-422.

• aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams on page I1-423.

• aarch64/translation/vmsa_walkparams/AArch64.GetVARange on page I1-423.

• aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ on page I1-423.

• aarch64/translation/vmsa_walkparams/AArch64.PAMax on page I1-424.

• aarch64/translation/vmsa_walkparams/AArch64.S1BREnabled on page I1-424.

• aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled on page I1-424.

• aarch64/translation/vmsa_walkparams/AArch64.S1EPD on page I1-424.

• aarch64/translation/vmsa_walkparams/AArch64.S1Enabled on page I1-424.

• aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled on page I1-425.

• aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ on page I1-425.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTBR on page I1-425.

• aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10 on page I1-425.

• aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ on page I1-426.

• aarch64/translation/vmsa_walkparams/AArch64.VAMax on page I1-426.

aarch64/translation/debug/AArch64.CheckBreakpoint

 // AArch64.CheckBreakpoint()
 // =========================
 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
 // translation regime, when either debug exceptions are enabled, or halting debug is enabled
 // and halting is allowed.

 FaultRecord AArch64.CheckBreakpoint(bits(64) vaddress, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());
 assert (UsingAArch32() && size IN {2,4}) || size == 4;

 match = FALSE;

 for i = 0 to NumBreakpointsImplemented() - 1
 match_i = AArch64.BreakpointMatch(i, vaddress, size);
 match = match || match_i;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Breakpoint;
 Halt(reason);
 elsif match then
 acctype = AccType_IFETCH;
 iswrite = FALSE;
 return AArch64.DebugFault(acctype, iswrite);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-395
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 else
 return NoFault();

aarch64/translation/debug/AArch64.CheckDebug

 // AArch64.CheckDebug()
 // ====================
 // Called on each access to check for a debug exception or entry to Debug state.

 FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccType acctype, boolean iswrite, integer size)

 FaultRecord fault = NoFault();

 d_side = (acctype != AccType_IFETCH);
 generate_exception = AArch64.GenerateDebugExceptions() && MDSCR_EL1.MDE == '1';
 halt = HaltOnBreakpointOrWatchpoint();

 if generate_exception || halt then
 if d_side then
 fault = AArch64.CheckWatchpoint(vaddress, acctype, iswrite, size);
 else
 fault = AArch64.CheckBreakpoint(vaddress, size);

 return fault;

aarch64/translation/debug/AArch64.CheckWatchpoint

 // AArch64.CheckWatchpoint()
 // =========================
 // Called before accessing the memory location of "size" bytes at "address",
 // when either debug exceptions are enabled for the access, or halting debug
 // is enabled and halting is allowed.

 FaultRecord AArch64.CheckWatchpoint(bits(64) vaddress, AccType acctype,
 boolean iswrite, integer size)
 assert !ELUsingAArch32(S1TranslationRegime());

 if acctype IN {AccType_TTW, AccType_IC, AccType_AT, AccType_ATPAN} then
 return NoFault();
 if acctype == AccType_DC then
 if !iswrite then
 return NoFault();

 match = FALSE;
 match_on_read = FALSE;
 ispriv = AArch64.AccessUsesEL(acctype) != EL0;

 for i = 0 to NumWatchpointsImplemented() - 1
 if AArch64.WatchpointMatch(i, vaddress, size, ispriv, acctype, iswrite) then
 match = TRUE;
 if DBGWCR_EL1[i].LSC<0> == '1' then
 match_on_read = TRUE;

 if match && acctype == AccType_ATOMICRW then
 iswrite = !match_on_read;

 if match && HaltOnBreakpointOrWatchpoint() then
 reason = DebugHalt_Watchpoint;
 EDWAR = vaddress;
 Halt(reason);
 elsif match then
 return AArch64.DebugFault(acctype, iswrite);
I1-396 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 else
 return NoFault();

aarch64/translation/pmsa_validation/AArch64.DetermineS2PASpace

 // AArch64.DetermineS2PASpace()
 // ============================
 // Determine stage 2 Physical Address Space for EL1&0 translation regime.

 PASpace AArch64.DetermineS2PASpace(PASpace s1paspace, PASpace s2paspace)
 if s1paspace == PAS_Secure && s2paspace == PAS_Secure then
 if VSTCR_EL2.SA == '1' then
 return PAS_NonSecure;
 else
 return PAS_Secure;
 else
 if VSTCR_EL2.SA == '1' || VTCR_EL2.NSA == '1' then
 return PAS_NonSecure;
 else
 return PAS_Secure;

aarch64/translation/pmsa_validation/AArch64.FullValidate

 // AArch64.FullValidate()
 // ======================
 // Apply VMSA translation / PMSA validation on memory access subject to
 // configuration and translation regime

 AddressDescriptor AArch64.FullValidate(bits(64) va, AccType acctype,
 boolean iswrite, boolean aligned)
 // Initialise fault record in case a fault is detected down the line
 fault = NoFault();
 fault.acctype = acctype;
 fault.write = iswrite;

 regime = TranslationRegime(PSTATE.EL);
 ispriv = PSTATE.EL != EL0 && acctype != AccType_UNPRIV;

 if AArch64.IsStage1VMSA(regime) then
 // Stage 1 translation follows v8A VMSA
 ss = SS_Secure;
 (fault, ipa) = AArch64.S1Translate(fault, regime, ss, va, acctype, aligned, iswrite, ispriv);
 else
 // Stage 1 is validated by V8R PMSA
 (fault, ipa) = AArch64.S1Validate(fault, regime, va, acctype, aligned, iswrite, ispriv);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(va, fault);

 // Second Stage Validation
 if regime == Regime_EL10 then
 s2fs1walk = FALSE;
 (fault, pa) = AArch64.S2Validate(fault, ipa, s2fs1walk, acctype, aligned, iswrite, ispriv);

 if fault.statuscode != Fault_None then
 return CreateFaultyAddressDescriptor(va, fault);

 return pa;
 else
 return ipa;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-397
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/translation/pmsa_validation/AArch64.IsStage1VMSA

 // AArch64.IsStage1VMSA()
 // ======================
 // Determine whether V8A VMSA is applied to stage 1 translation

 boolean AArch64.IsStage1VMSA(Regime regime)
 return regime == Regime_EL10 && HaveEL1VMSAExt() && VTCR_EL2.MSA == '1';

aarch64/translation/pmsa_validation/AArch64.MPUValidate

 // AArch64.MPUValidate()
 // =====================
 // Attempt to match the input address with an active Memory Protection Unit (MPU) and
 // retrieve assigned permissions and memory attributes

 (FaultRecord, boolean, PRBARnType, PRLARnType) AArch64.MPUValidate(FaultRecord fault,
 Regime regime, bits(64) ia)
 matched = FALSE;
 case regime of
 when Regime_EL2 num_regions = SInt(MPUIR_EL2.REGION);
 when Regime_EL10 num_regions = SInt(MPUIR_EL1.REGION);

 for index = 0 to num_regions-1
 case regime of
 when Regime_EL2
 prbar = PRBARn[EL2, index];
 prlar = PRLARn[EL2, index];
 when Regime_EL10
 prbar = PRBARn[EL1, index];
 prlar = PRLARn[EL1, index];

 base = ZeroExtend(prbar.BASE : Zeros(6), 64);
 limit = ZeroExtend(prlar.LIMIT : Ones(6), 64);

 // Check for a matching MPU region
 if (prlar.EN == '1' &&
 UInt(ia) >= UInt(base) &&
 UInt(ia) <= UInt(limit)) then

 // Check for multiple region match
 if matched then
 fault.statuscode = Fault_Translation;
 return (fault, matched, PRBARnType UNKNOWN, PRLARnType UNKNOWN);

 matched = TRUE;
 matched_prbar = prbar;
 matched_prlar = prlar;

 return (fault, matched, matched_prbar, matched_prlar);

aarch64/translation/pmsa_validation/AArch64.S1Validate

 // AArch64.S1Validate()
 // ====================
 // Perform stage 1 PMSA validation using Memory Protection Units (MPUs).

 (FaultRecord, AddressDescriptor) AArch64.S1Validate(FaultRecord fault, Regime regime,
 bits(64) va, AccType acctype, boolean aligned, boolean iswrite, boolean ispriv)

 // Prepare fault fields if one is detected
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;
 fault.level = 0;
I1-398 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 if !(AArch64.S1BREnabled(regime) || AArch64.S1Enabled(regime)) then
 ss = SS_Secure;
 return AArch64.S1DisabledOutput(fault, regime, ss, va, acctype, aligned);

 case regime of
 when Regime_EL2 addrtop = AArch64.AddrTop(TCR_EL2.TBID, acctype, TCR_EL2.TBI);
 when Regime_EL10 addrtop = AArch64.AddrTop(TCR_EL1.TBID0, acctype, TCR_EL1.TBI0);

 if !IsZero(va<addrtop:AArch64.PAMax()>) then
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);

 // Clear out bits not part of MPU matching
 va = ZeroExtend(va<addrtop:0>, 64);

 Permissions s1_permissions;
 if AArch64.S1Enabled(regime) then
 (fault, matched, prbar, prlar) = AArch64.MPUValidate(fault, regime, va);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);
 elsif matched then
 s1_paspace = if prlar.NS == '0' then PAS_Secure else PAS_NonSecure;

 if HasUnprivileged(regime) then
 s1_permissions.ap<2:1> = prbar.AP;
 s1_permissions.pxn = prbar.XN<1>;
 s1_permissions.uxn = prbar.XN<1>;
 else
 s1_permissions.ap<2:1> = prbar.AP<1>:'1';
 s1_permissions.xn = prbar.XN<1>;

 case regime of
 when Regime_EL2 s1_mair = MAIR_EL2;
 when Regime_EL10 s1_mair = MAIR_EL1;

 s1_attr = MAIRAttr(UInt(prlar.AttrIndx), s1_mair);
 s1_sh = prbar.SH;

 elsif AArch64.S1BREnabled(regime) && ispriv then
 assert (boolean IMPLEMENTATION_DEFINED "Default Memory Map");
 (valid, s1_attr, s1_sh, s1_permissions,
 s1_paspace) = __BackgroundMemoryAttr(va, acctype);

 if !valid then
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);
 else
 // No MPU match nor background region enabled
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);

 elsif AArch64.S1BREnabled(regime) then
 assert (boolean IMPLEMENTATION_DEFINED "Default Memory Map");
 (valid, s1_attr, s1_sh, s1_permissions,
 s1_paspace) = __BackgroundMemoryAttr(va, acctype);

 if !valid then
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);

 MPURecord mpurecord;
 mpurecord.paspace = s1_paspace;
 mpurecord.permissions = s1_permissions;
 s1aarch64 = TRUE;
 mpurecord.memattrs = S1DecodeMemAttrs(s1_attr, s1_sh, s1aarch64);

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-399
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 if AArch64.S1HasAlignmentFault(acctype, aligned, mpurecord.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif IsAtomicRW(acctype) then
 if AArch64.S1HasPermissionsFault_PMSA(regime, mpurecord.memattrs, mpurecord.permissions,
 ispriv, acctype, FALSE) then
 // The permission fault was not caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif AArch64.S1HasPermissionsFault_PMSA(regime, mpurecord.memattrs, mpurecord.permissions,
 ispriv, acctype, TRUE) then
 // The permission fault _was_ caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 elsif AArch64.S1HasPermissionsFault_PMSA(regime, mpurecord.memattrs, mpurecord.permissions,
 ispriv, acctype, iswrite) then
 fault.statuscode = Fault_Permission;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 if ((acctype == AccType_IFETCH &&
 (mpurecord.memattrs.memtype == MemType_Device || !AArch64.S1ICacheEnabled(regime))) ||
 (acctype != AccType_IFETCH &&
 mpurecord.memattrs.memtype == MemType_Normal && !AArch64.S1DCacheEnabled(regime))) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 else
 memattrs = mpurecord.memattrs;

 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
 // to be either effective value or descriptor value
 if (regime == Regime_EL10 && HCR_EL2.VM == '1' &&
 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
 memattrs.shareability = mpurecord.memattrs.shareability;
 else
 memattrs.shareability = EffectiveShareability(memattrs);

 // Output Address
 FullAddress oa;
 oa.paspace = mpurecord.paspace;
 oa.address = va<51:0>;
 ipa = CreateAddressDescriptor(va, oa, memattrs);
 return (fault, ipa);

aarch64/translation/pmsa_validation/AArch64.S2Validate

 // AArch64.S2Validate()
 // ====================
 // Perform stage 2 PMSA validation using Memory Protection Units (MPUs).

 (FaultRecord, AddressDescriptor) AArch64.S2Validate(FaultRecord fault, AddressDescriptor ipa,
 boolean s2fs1walk, AccType acctype, boolean aligned, boolean iswrite, boolean ispriv)

 // Prepare fault fields in case a fault is detected
 fault.statuscode = Fault_None; // Ignore any faults from stage 1
 fault.secondstage = TRUE;
 fault.s2fs1walk = s2fs1walk;
 fault.level = 0;
 fault.ipaddress = ipa.paddress;

 Permissions s2_permissions;
 ipa_64 = ZeroExtend(ipa.paddress.address, 64);

 // Stage 2 is disabled
 if HCR_EL2.DC == '0' && HCR_EL2.VM == '0' then
 pa = ipa;
I1-400 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 return (fault, pa);

 if SCTLR_EL2.M == '1' then
 // Stage 2 set of MPUs are the exact same ones as those used for stage 1 EL2 regime
 (fault, matched, prbar, prlar) = AArch64.MPUValidate(fault, Regime_EL2, ipa_64);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);
 elsif matched then
 s2_paspace = if prlar.NS == '0' then PAS_Secure else PAS_NonSecure;

 if VSTCR_EL2.SC == '1' && ipa.paddress.paspace != s2_paspace then
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);

 s2_permissions.ap<2:1> = prbar.AP;
 s2_permissions.xn = prbar.XN<1>;
 if HaveExtendedExecuteNeverExt() then
 s2_permissions.s2xnx = prbar.XN<0>;
 else
 s2_permissions.s2xnx = '0';

 s2_attr = MAIRAttr(UInt(prlar.AttrIndx), MAIR_EL2);
 s2_sh = prbar.SH;
 else
 // No MPU match
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);

 elsif SCTLR_EL2.BR == '1' then
 assert (boolean IMPLEMENTATION_DEFINED "Default Memory Map");

 (valid, s2_attr, s2_sh, s2_permissions,
 s2_paspace) = __BackgroundMemoryAttr(ipa_64, acctype);

 if !valid then
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);
 else
 // When HCR_EL2.VM is effectively '1' and SCTLR_EL2.{M, BR} = {0,0},
 // the behavior is CONSTRAINED UNPREDICTABLE.
 c = ConstrainUnpredictable();
 assert c IN {Constraint_MPU_FAULT, Constraint_MPU_ATTR_UNKNOWN};

 if c == Constraint_MPU_FAULT then
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN);
 else
 s2_attr = bits(8) UNKNOWN;
 s2_sh = bits(2) UNKNOWN;
 s2_permissions = Permissions UNKNOWN;
 s2_paspace = ipa.paddress.paspace;

 MPURecord mpurecord;
 // Stage 2 PA space is determined from stage 2 configuration and stage 1 IPA space
 mpurecord.paspace = AArch64.DetermineS2PASpace(ipa.paddress.paspace, s2_paspace);
 mpurecord.permissions = s2_permissions;

 if HaveStage2MemAttrControl() && HCR_EL2.FWB == '1' then
 mpurecord.memattrs = AArch64.S2ApplyFWBMemAttrs(ipa.memattrs, s2_attr, s2_sh);
 else
 // V8R stage 2 memory attributes are decoded in the same fashion as stage 1
 // for the EL2 regime. The only difference is allocation hints are ignored
 s1aarch64 = TRUE;
 mpurecord.memattrs = S1DecodeMemAttrs(s2_attr, s2_sh, s1aarch64);

 if HaveCommonNotPrivateTransExt() && AArch64.IsStage1VMSA(Regime_EL10) then
 mpurecord.CnP = VSCTLR_EL2.CnP;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-401
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 if AArch64.S2HasAlignmentFault(acctype, aligned, mpurecord.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif IsAtomicRW(acctype) then
 if AArch64.S2HasPermissionsFault(s2fs1walk, mpurecord.memattrs, mpurecord.permissions,
 ispriv, acctype, FALSE) then
 // The permission fault was not caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif AArch64.S2HasPermissionsFault(s2fs1walk, mpurecord.memattrs, mpurecord.permissions,
 ispriv, acctype, TRUE) then
 // The permission fault _was_ caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 elsif AArch64.S2HasPermissionsFault(s2fs1walk, mpurecord.memattrs, mpurecord.permissions,
 ispriv, acctype, iswrite) then
 fault.statuscode = Fault_Permission;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 if ((s2fs1walk && mpurecord.memattrs.memtype == MemType_Device && HCR_EL2.PTW == '0') ||
 (acctype == AccType_IFETCH &&
 (mpurecord.memattrs.memtype == MemType_Device || HCR_EL2.ID == '1')) ||
 (acctype != AccType_IFETCH &&
 mpurecord.memattrs.memtype == MemType_Normal && HCR_EL2.CD == '1')) then
 // Treat memory attributes as Normal Non-Cacheable
 s2_memattrs = NormalNCMemAttr();
 else
 s2_memattrs = mpurecord.memattrs;

 if !HaveStage2MemAttrControl() || HCR_EL2.FWB == '0' then
 memattrs = S2CombineS1MemAttrs(ipa.memattrs, s2_memattrs);
 else
 memattrs = s2_memattrs;

 // Output Address
 FullAddress oa;
 oa.paspace = mpurecord.paspace;
 oa.address = ipa.paddress.address;
 pa = CreateAddressDescriptor(ipa.vaddress, oa, memattrs);
 return (fault, pa);

aarch64/translation/vmsa_addrcalc/AArch64.BlockBase

 // AArch64.BlockBase()
 // ===================
 // Extract the address embedded in a block descriptor pointing to the base of
 // a memory block

 bits(52) AArch64.BlockBase(bits(64) descriptor, TGx tgx, integer level)
 bits(52) blockbase = Zeros();

 if tgx == TGx_4KB && level == 2 then
 blockbase<47:21> = descriptor<47:21>;
 elsif tgx == TGx_4KB && level == 1 then
 blockbase<47:30> = descriptor<47:30>;
 elsif tgx == TGx_16KB && level == 2 then
 blockbase<47:25> = descriptor<47:25>;
 elsif tgx == TGx_64KB && level == 2 then
 blockbase<47:29> = descriptor<47:29>;
 elsif tgx == TGx_64KB && level == 1 then
 blockbase<47:42> = descriptor<47:42>;
 else
 Unreachable();

I1-402 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 if Have52BitPAExt() && tgx == TGx_64KB then
 blockbase<51:48> = descriptor<15:12>;

 return blockbase;

aarch64/translation/vmsa_addrcalc/AArch64.IASize

 // AArch64.IASize()
 // ================
 // Retrieve the number of bits containing the input address

 integer AArch64.IASize(bits(6) txsz)
 return 64 - UInt(txsz);

aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase

 // AArch64.NextTableBase()
 // =======================
 // Extract the address embedded in a table descriptor pointing to the base of
 // the next level table of descriptors

 bits(52) AArch64.NextTableBase(bits(64) descriptor, TGx tgx)
 bits(52) tablebase = Zeros();

 case tgx of
 when TGx_4KB tablebase<47:12> = descriptor<47:12>;
 when TGx_16KB tablebase<47:14> = descriptor<47:14>;
 when TGx_64KB tablebase<47:16> = descriptor<47:16>;

 if Have52BitPAExt() && tgx == TGx_64KB then
 tablebase<51:48> = descriptor<15:12>;

 return tablebase;

aarch64/translation/vmsa_addrcalc/AArch64.PageBase

 // AArch64.PageBase()
 // ==================
 // Extract the address embedded in a page descriptor pointing to the base of
 // a memory page

 bits(52) AArch64.PageBase(bits(64) descriptor, TGx tgx)
 bits(52) pagebase = Zeros();

 case tgx of
 when TGx_4KB pagebase<47:12> = descriptor<47:12>;
 when TGx_16KB pagebase<47:14> = descriptor<47:14>;
 when TGx_64KB pagebase<47:16> = descriptor<47:16>;

 if Have52BitPAExt() && tgx == TGx_64KB then
 pagebase<51:48> = descriptor<15:12>;

 return pagebase;

aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize

 // AArch64.PhysicalAddressSize()
 // =============================
 // Retrieve the number of bits bounding the physical address

 integer AArch64.PhysicalAddressSize(bits(3) encoded_ps, TGx tgx)
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-403
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 integer ps;

 case encoded_ps of
 when '000' ps = 32;
 when '001' ps = 36;
 when '010' ps = 40;
 when '011' ps = 42;
 when '100' ps = 44;
 when '101' ps = 48;
 when '110' ps = 52;
 otherwise
 ps = integer IMPLEMENTATION_DEFINED "Reserved Intermediate Physical Address size value";

 if tgx != TGx_64KB then
 max_ps = Min(48, AArch64.PAMax());
 else
 max_ps = AArch64.PAMax();

 return Min(ps, max_ps);

aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel

 // AArch64.S1StartLevel()
 // ======================
 // Compute the initial lookup level when performing a stage 1 translation
 // table walk

 integer AArch64.S1StartLevel(S1TTWParams walkparams)
 // Input Address size
 iasize = AArch64.IASize(walkparams.txsz);
 granulebits = TGxGranuleBits(walkparams.tgx);
 stride = granulebits - 3;

 return FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);

aarch64/translation/vmsa_addrcalc/AArch64.TTBaseAddress

 // AArch64.TTBaseAddress()
 // =======================
 // Retrieve the PA/IPA pointing to the base of the initial translation table

 bits(52) AArch64.TTBaseAddress(bits(64) ttb, bits(6) txsz, bits(3) ps,
 TGx tgx, integer startlevel)
 bits(52) tablebase = Zeros();

 // Input Address size
 iasize = AArch64.IASize(txsz);
 granulebits = TGxGranuleBits(tgx);
 stride = granulebits - 3;
 levels = FINAL_LEVEL - startlevel;

 // Base address is aligned to size of the initial translation table in bytes
 tsize = iasize - (levels*stride + granulebits) + 3;

 if Have52BitPAExt() && tgx == TGx_64KB && ps == '110' then
 tsize = Max(tsize, 6);
 tablebase<51:6> = ttb<5:2>:ttb<47:6>;
 else
 tablebase<47:1> = ttb<47:1>;

 tablebase = Align(tablebase, 1 << tsize);
 return tablebase;
I1-404 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress

 // AArch64.TTEntryAddress()
 // ========================
 // Compute translation table descriptor address within the table pointed to by
 // the table base

 FullAddress AArch64.TTEntryAddress(integer level, TGx tgx, bits(6) txsz,
 bits(64) ia, FullAddress tablebase)
 // Input Address size
 iasize = AArch64.IASize(txsz);
 granulebits = TGxGranuleBits(tgx);
 stride = granulebits - 3;
 levels = FINAL_LEVEL - level;

 bits(52) index;
 lsb = levels*stride + granulebits;
 msb = Min(iasize - 1, lsb + stride - 1);
 index = ZeroExtend(ia<msb:lsb>:Zeros(3));

 FullAddress descaddress;
 descaddress.address = tablebase.address OR index;
 descaddress.paspace = tablebase.paspace;

 return descaddress;

aarch64/translation/vmsa_faults/AArch64.AddrTop

 // AArch64.AddrTop()
 // =================
 // Get the top bit position of the virtual address.
 // Bits above are not accounted as part of the translation process.

 integer AArch64.AddrTop(bit tbid, AccType acctype, bit tbi)
 if tbid == '1' && acctype == AccType_IFETCH then
 return 63;

 if tbi == '1' then
 return 55;
 else
 return 63;

aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults

 // AArch64.ContiguousBitFaults()
 // =============================
 // If contiguous bit is set, returns whether the translation size exceeds the
 // input address size and if the implementation generates a fault

 boolean AArch64.ContiguousBitFaults(bits(6) txsz, TGx tgx, integer level)
 // Input Address size
 iasize = AArch64.IASize(txsz);
 // Translation size
 tsize = TranslationSize(tgx, level) + ContiguousSize(tgx, level);

 fault = boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit";

 return tsize > iasize && fault;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-405
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/translation/vmsa_faults/AArch64.DebugFault

 // AArch64.DebugFault()
 // ====================
 // Return a fault record indicating a hardware watchpoint/breakpoint

 FaultRecord AArch64.DebugFault(AccType acctype, boolean iswrite)
 FaultRecord fault;

 fault.statuscode = Fault_Debug;
 fault.acctype = acctype;
 fault.write = iswrite;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 return fault;

aarch64/translation/vmsa_faults/AArch64.OAOutOfRange

 // AArch64.OAOutOfRange()
 // ======================
 // Returns whether output address is expressed in the configured size number of bits

 boolean AArch64.OAOutOfRange(TTWState walkstate, bits(3) ps, TGx tgx, bits(64) ia)
 // Output Address size
 oasize = AArch64.PhysicalAddressSize(ps, tgx);

 if oasize < 52 then
 if walkstate.istable then
 baseaddress = walkstate.baseaddress.address;
 return !IsZero(baseaddress<51:oasize>);
 else
 // Output address
 oa = StageOA(ia, tgx, walkstate);
 return !IsZero(oa.address<51:oasize>);
 else
 return FALSE;

aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault

 // AArch64.S1HasAlignmentFault()
 // =============================
 // Returns whether stage 1 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch64.S1HasAlignmentFault(AccType acctype, boolean aligned,
 MemoryAttributes memattrs)
 if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
 return FALSE;

 return !aligned || acctype == AccType_DCZVA;

aarch64/translation/vmsa_faults/AArch64.S1HasPermissionsFault_VMSA

 // AArch64.S1HasPermissionsFault_VMSA()
 // ====================================
 // Returns whether stage 1 access violates permissions of target memory

 boolean AArch64.S1HasPermissionsFault_VMSA(Regime regime, SecurityState ss, TTWState walkstate,
 S1TTWParams walkparams, boolean ispriv, AccType acctype,
 boolean iswrite)
 permissions = walkstate.permissions;

I1-406 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 if HasUnprivileged(regime) then
 // Apply leaf permissions
 case permissions.ap<2:1> of
 when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // Privileged access
 when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // No effect
 when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // Read-only, privileged access
 when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // Read-only

 // Apply hierarchical permissions
 case permissions.ap_table of
 when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
 when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
 when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
 when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

 // Locations writable by unprivileged cannot be executed by privileged
 px = NOT(permissions.pxn OR permissions.pxn_table OR uw);
 ux = NOT(permissions.uxn OR permissions.uxn_table);

 pan_access = !(acctype IN {AccType_DC, AccType_IFETCH, AccType_AT});
 if HavePANExt() && pan_access then
 pan = PSTATE.PAN AND (ur OR uw);
 pr = pr AND NOT(pan);
 pw = pw AND NOT(pan);

 (r,w,x) = if ispriv then (pr,pw,px) else (ur,uw,ux);
 else
 // Apply leaf permissions
 case permissions.ap<2> of
 when '0' (r,w) = ('1','1'); // No effect
 when '1' (r,w) = ('1','0'); // Read-only

 // Apply hierarchical permissions
 case permissions.ap_table<1> of
 when '0' (r,w) = (r , w); // No effect
 when '1' (r,w) = (r ,'0'); // Read-only

 x = NOT(permissions.xn OR permissions.xn_table);

 // Prevent execution from writable locations if WXN is set
 x = x AND NOT(walkparams.wxn AND w);

 if acctype == AccType_IFETCH then
 if (ConstrainUnpredictable() == Constraint_FAULT &&
 walkstate.memattrs.memtype == MemType_Device) then
 return TRUE;

 return x == '0';
 elsif acctype == AccType_DC then
 if iswrite then
 return w == '0';
 else
 // DC from privileged context which do no write cannot permission fault
 return !ispriv && r == '0';
 elsif acctype == AccType_IC then
 // IC instructions do not write
 assert !iswrite;
 impdef_ic_fault = boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution";

 // IC from privileged context cannot permission fault
 return !ispriv && r == '0' && impdef_ic_fault;
 elsif iswrite then
 return w == '0';
 else
 return r == '0';

 boolean AArch64.S1HasPermissionsFault_PMSA(Regime regime, MemoryAttributes memattrs,
 Permissions permissions, boolean ispriv,
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-407
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 AccType acctype, boolean iswrite)
 if HasUnprivileged(regime) then
 // Apply MPU permissions given Translation Regime serves 2 ELs
 case permissions.ap<2:1> of
 when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // Privileged access
 when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // No effect
 when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // Read-only, privileged access
 when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // Read-only

 if AArch64.IsStage1VMSA(regime) then
 // Apply hierarchical permissions for stage 1 VMSA
 case permissions.ap_table of
 when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
 when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
 when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
 when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

 // Locations writable by unprivileged cannot be executed by privileged
 // unless SCTLR_ELx.{M,BR} is effectively '01'
 if !AArch64.S1Enabled(regime) && AArch64.S1BREnabled(regime) then
 px = NOT(permissions.pxn);
 else
 px = NOT(permissions.pxn OR uw);
 ux = NOT(permissions.uxn);

 pan_access = !(acctype IN {AccType_DC, AccType_IFETCH, AccType_AT});

 if HavePANExt() && AArch64.S1Enabled(regime) && pan_access then
 pan = PSTATE.PAN AND (ur OR uw);
 else
 pan = '0';

 pr = pr AND NOT(pan);
 pw = pw AND NOT(pan);
 (r,w,x) = if ispriv then (pr,pw,px) else (ur,uw,ux);
 else
 // Apply MPU permissions given Translation Regime serves 1 EL
 case permissions.ap<2> of
 when '0' (r,w) = ('1','1'); // No effect
 when '1' (r,w) = ('1','0'); // Read-only

 x = NOT(permissions.xn);

 // Prevent execution from writable locations if WXN is effectively set
 case regime of
 when Regime_EL2 x = x AND NOT(SCTLR_EL2.WXN AND w);
 when Regime_EL10 x = x AND NOT(SCTLR_EL1.WXN AND w);

 if acctype == AccType_IFETCH then
 if (ConstrainUnpredictable() == Constraint_FAULT &&
 memattrs.memtype == MemType_Device) then
 return TRUE;

 return x == '0';
 elsif acctype == AccType_DC then
 if iswrite then
 return w == '0';
 else
 // DC from privileged context which do no write cannot permission fault
 return !ispriv && r == '0';
 elsif acctype == AccType_IC then
 // IC instructions do not write
 assert !iswrite;
 impdef_ic_fault = boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution";

 // IC from privileged context cannot permission fault
 return !ispriv && r == '0' && impdef_ic_fault;
 elsif iswrite then
I1-408 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 return w == '0';
 else
 return r == '0';

 boolean AArch64.S2HasPermissionsFault(boolean s2fs1walk, MemoryAttributes memattrs,
 Permissions permissions, boolean ispriv,
 AccType acctype, boolean iswrite)
 // Stage 2 AP follows a similar mapping as stage 1
 // EL1 & EL0 are treated in the same way EL0 is in stage 1
 case permissions.ap<2:1> of
 when 'x0' (r,w) = ('0','0'); // No access
 when '01' (r,w) = ('1','1'); // No effect
 when '11' (r,w) = ('1','0'); // Read-only
 case (permissions.xn:permissions.s2xnx) of
 when '00' (px,ux) = ('1','1');
 when '01' (px,ux) = ('0','1');
 when '10' (px,ux) = ('0','0');
 when '11' (px,ux) = ('1','0');

 x = if ispriv then px else ux;

 if (s2fs1walk && HCR_EL2.PTW == '1' &&
 memattrs.memtype == MemType_Device) then
 return TRUE;
 elsif acctype == AccType_IFETCH then
 constraint = ConstrainUnpredictable();
 if constraint == Constraint_FAULT && memattrs.memtype == MemType_Device then
 return TRUE;
 else
 return x == '0';
 elsif acctype == AccType_DC then
 if iswrite then
 return w == '0';
 else
 // DC from privileged context which do no write cannot permission fault
 return !ispriv && r == '0';
 elsif acctype == AccType_IC then
 // IC instructions do not write
 assert !iswrite;
 impdef_ic_fault = boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution";

 // IC from privileged context cannot permission fault
 return !ispriv && r == '0' && impdef_ic_fault;
 elsif iswrite then
 return w == '0';
 else
 return r == '0';

aarch64/translation/vmsa_faults/AArch64.S1InvalidTxSZ

 // AArch64.S1InvalidTxSZ()
 // =======================
 // Detect erroneous configuration of stage 1 TxSZ field if the implementation
 // does not constrain the value of TxSZ

 boolean AArch64.S1InvalidTxSZ(S1TTWParams walkparams)
 mintxsz = AArch64.S1MinTxSZ(walkparams.tgx);
 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);

 return UInt(walkparams.txsz) < mintxsz || UInt(walkparams.txsz) > maxtxsz;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-409
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault

 // AArch64.S2HasAlignmentFault()
 // =============================
 // Returns whether stage 2 output fails alignment requirement on data accesses
 // to Device memory

 boolean AArch64.S2HasAlignmentFault(AccType acctype, boolean aligned, MemoryAttributes memattrs)
 if acctype == AccType_IFETCH || memattrs.memtype != MemType_Device then
 return FALSE;

 return !aligned || acctype == AccType_DCZVA;

aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange

 // AArch64.VAIsOutOfRange()
 // ========================
 // Check bits not resolved by translation are identical and of accepted value

 boolean AArch64.VAIsOutOfRange(bits(64) va, AccType acctype, Regime regime, S1TTWParams walkparams)
 addrtop = AArch64.AddrTop(walkparams.tbid, acctype, walkparams.tbi);
 // Input Address size
 iasize = AArch64.IASize(walkparams.txsz);

 if HasUnprivileged(regime) then
 if AArch64.GetVARange(va) == VARange_LOWER then
 return !IsZero(va<addrtop:iasize>);
 else
 return !IsOnes(va<addrtop:iasize>);
 else
 return !IsZero(va<addrtop:iasize>);

aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs

 // AArch64.S2ApplyFWBMemAttrs()
 // ============================
 // Apply stage 2 transformation on stage 1 memory attributes using FWB mapping.

 MemoryAttributes AArch64.S2ApplyFWBMemAttrs(MemoryAttributes s1_memattrs,
 bits(8) s2_attr, bits(2) s2_sh)
 MemoryAttributes memattrs;

 // If inner and outer memory attribute encoding are not identical,
 // the combined memory atributes are UNKNOWN
 if s2_attr<7:4> != s2_attr<3:0> then
 memattrs = MemoryAttributes UNKNOWN;

 elsif s2_attr<7:6> == '11' then // Force writeback
 memattrs.memtype = MemType_Normal;

 memattrs.inner.attrs = MemAttr_WB;
 if (s1_memattrs.memtype == MemType_Normal &&
 s1_memattrs.inner.attrs != MemAttr_NC) then
 memattrs.inner.hints = s1_memattrs.inner.hints;
 memattrs.inner.transient = s1_memattrs.inner.transient;
 else
 memattrs.inner.hints = MemHint_RWA;
 memattrs.inner.transient = FALSE;

 memattrs.outer.attrs = MemAttr_WB;
 if (s1_memattrs.memtype == MemType_Normal &&
 s1_memattrs.outer.attrs != MemAttr_NC) then
 memattrs.outer.hints = s1_memattrs.outer.hints;
 memattrs.outer.transient = s1_memattrs.outer.transient;
I1-410 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 else
 memattrs.outer.hints = MemHint_RWA;
 memattrs.outer.transient = FALSE;

 s2_shareability = DecodeShareability(s2_sh);
 memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability, s2_shareability);
 else
 // Follow memory decoding & combining rules as if FWB is inactive
 // V8R stage 2 memory attributes are decoded in the same fashion as stage 1
 // for the EL2 regime. The only difference is allocation hints are ignored
 s1aarch64 = TRUE;
 s2_memattrs = S1DecodeMemAttrs(s2_attr, s2_sh, s1aarch64);
 memattrs = S2CombineS1MemAttrs(s1_memattrs, s2_memattrs);

 return memattrs;

aarch64/translation/vmsa_tlbcontext/AArch64.GetS1TLBContext

 // AArch64.GetS1TLBContext()
 // =========================
 // Gather translation context for accesses with VA to match against TLB entries

 TLBContext AArch64.GetS1TLBContext(Regime regime, SecurityState ss, bits(64) va, TGx tg)
 TLBContext tlbcontext;

 case regime of
 when Regime_EL2 tlbcontext = AArch64.TLBContextEL2(ss, va, tg);
 when Regime_EL10 tlbcontext = AArch64.TLBContextEL10(ss, va, tg);

 tlbcontext.includes_s1 = TRUE;
 // The following may be amended for EL1&0 Regime if caching of stage 2 is successful
 tlbcontext.includes_s2 = FALSE;
 return tlbcontext;

aarch64/translation/vmsa_tlbcontext/AArch64.GetS2TLBContext

 // AArch64.GetS2TLBContext()
 // =========================
 // Gather translation context for accesses with IPA to match against TLB entries

 TLBContext AArch64.GetS2TLBContext(SecurityState ss, FullAddress ipa, TGx tg)
 assert EL2Enabled();

 TLBContext tlbcontext;

 tlbcontext.ss = ss;
 tlbcontext.regime = Regime_EL10;
 tlbcontext.ipaspace = ipa.paspace;
 tlbcontext.vmid = VMID[];
 tlbcontext.tg = tg;
 tlbcontext.ia = ZeroExtend(ipa.address);
 if HaveCommonNotPrivateTransExt() && VTCR_EL2.MSA == '1' then
 tlbcontext.cnp = VSCTLR_EL2.CnP;
 else
 tlbcontext.cnp = '0';

 tlbcontext.includes_s1 = FALSE;
 tlbcontext.includes_s2 = TRUE;
 return tlbcontext;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-411
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL10

 // AArch64.TLBContextEL10()
 // ========================
 // Gather translation context for accesses under EL10 regime to match against TLB entries

 TLBContext AArch64.TLBContextEL10(SecurityState ss, bits(64) va, TGx tg)
 TLBContext tlbcontext;

 tlbcontext.ss = ss;
 tlbcontext.regime = Regime_EL10;
 tlbcontext.vmid = VMID[];

 if TCR_EL1.A1 == '0' || VTCR_EL2.MSA == '0' then
 tlbcontext.asid = TTBR0_EL1.ASID;
 else
 tlbcontext.asid = TTBR1_EL1.ASID;

 tlbcontext.tg = tg;
 tlbcontext.ia = va;

 if HaveCommonNotPrivateTransExt() && VTCR_EL2.MSA == '1' then
 if AArch64.GetVARange(va) == VARange_LOWER then
 tlbcontext.cnp = TTBR0_EL1.CnP;
 else
 tlbcontext.cnp = TTBR1_EL1.CnP;
 else
 tlbcontext.cnp = '0';

 return tlbcontext;

aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL2

 // AArch64.TLBContextEL2()
 // =======================
 // Gather translation context for accesses under EL2 regime to match against TLB entries

 TLBContext AArch64.TLBContextEL2(SecurityState ss, bits(64) va, TGx tg)
 TLBContext tlbcontext;

 tlbcontext.ss = ss;
 tlbcontext.regime = Regime_EL2;
 tlbcontext.tg = tg;
 tlbcontext.ia = va;

 return tlbcontext;

aarch64/translation/vmsa_translation/AArch64.AccessUsesEL

 // AArch64.AccessUsesEL()
 // ======================
 // Returns the Exception Level of the regime that will manage the translation for a given access type.

 bits(2) AArch64.AccessUsesEL(AccType acctype)
 if acctype == AccType_UNPRIV then
 return EL0;
 else
 return PSTATE.EL;
I1-412 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/translation/vmsa_translation/AArch64.FaultAllowsSetAccessFlag

 // AArch64.FaultAllowsSetAccessFlag()
 // ==================================
 // Determine whether the access flag could be set by HW given the fault status

 boolean AArch64.FaultAllowsSetAccessFlag(FaultRecord fault)
 if fault.statuscode == Fault_None then
 return TRUE;
 elsif fault.statuscode IN {Fault_Alignment, Fault_Permission} then
 return ConstrainUnpredictable() == Constraint_TRUE;
 else
 return FALSE;

aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc

 // AArch64.MemSwapTableDesc()
 // ==========================
 // Perform HW update of table descriptor as an atomic operation

 (FaultRecord, bits(64)) AArch64.MemSwapTableDesc(FaultRecord fault, bits(64) prev_desc,
 bits(64) new_desc, bit ee,
 AddressDescriptor descupdateaddress)
 descupdateaccess = CreateAccessDescriptor(AccType_ATOMICRW);

 // All observers in the shareability domain observe the
 // following memory read and write accesses atomically.
 (memstatus, mem_desc) = PhysMemRead(descupdateaddress, 8, descupdateaccess);
 if ee == '1' then
 mem_desc = BigEndianReverse(mem_desc);

 if IsFault(memstatus) then
 iswrite = FALSE;
 fault = HandleExternalTTWAbort(memstatus, iswrite, descupdateaddress, descupdateaccess,
 8, fault);
 if IsFault(fault.statuscode) then
 fault.acctype = AccType_ATOMICRW;
 return (fault, bits(64) UNKNOWN);

 if mem_desc == prev_desc then
 ordered_new_desc = if ee == '1' then BigEndianReverse(new_desc) else new_desc;
 memstatus = PhysMemWrite(descupdateaddress, 8, descupdateaccess, ordered_new_desc);

 if IsFault(memstatus) then
 iswrite = TRUE;
 fault = HandleExternalTTWAbort(memstatus, iswrite, descupdateaddress, descupdateaccess,
 8, fault);
 fault.acctype = memstatus.acctype;
 if IsFault(fault.statuscode) then
 fault.acctype = AccType_ATOMICRW;
 return (fault, bits(64) UNKNOWN);

 // Reflect what is now in memory (in little endian format)
 mem_desc = new_desc;

 return (fault, mem_desc);

aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput

 // AArch64.S1DisabledOutput()
 // ==========================
 // Map the the VA to IPA/PA and assign default memory attributes

 (FaultRecord, AddressDescriptor) AArch64.S1DisabledOutput(FaultRecord fault, Regime regime,
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-413
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 SecurityState ss, bits(64) va,
 AccType acctype, boolean aligned)

 case regime of
 when Regime_EL2
 tbi = TCR_EL2.TBI;
 tbid = TCR_EL2.TBID;
 when Regime_EL10
 if AArch64.IsStage1VMSA(regime) then
 if AArch64.GetVARange(va) == VARange_LOWER then
 tbi = TCR_EL1.TBI0;
 tbid = TCR_EL1.TBID0;
 else
 tbi = TCR_EL1.TBI1;
 tbid = TCR_EL1.TBID1;
 else
 tbi = TCR_EL1.TBI0;
 tbid = TCR_EL1.TBID0;

 // Output Address
 FullAddress oa;
 oa.address = va<51:0>;
 if ss == SS_Secure then
 oa.paspace = PAS_Secure;
 else
 oa.paspace = PAS_NonSecure;

 MemoryAttributes memattrs;
 if regime == Regime_EL10 && EL2Enabled() && HCR_EL2.DC == '1' then
 MemAttrHints default_cacheability;
 default_cacheability.attrs = MemAttr_WB;
 default_cacheability.hints = MemHint_RWA;
 default_cacheability.transient = FALSE;

 memattrs.memtype = MemType_Normal;
 memattrs.outer = default_cacheability;
 memattrs.inner = default_cacheability;
 memattrs.shareability = Shareability_NSH;
 elsif acctype == AccType_IFETCH then
 MemAttrHints i_cache_attr;
 if AArch64.S1ICacheEnabled(regime) then
 i_cache_attr.attrs = MemAttr_WT;
 i_cache_attr.hints = MemHint_RA;
 i_cache_attr.transient = FALSE;
 else
 i_cache_attr.attrs = MemAttr_NC;

 memattrs.memtype = MemType_Normal;
 memattrs.outer = i_cache_attr;
 memattrs.inner = i_cache_attr;
 memattrs.shareability = Shareability_OSH;
 else
 memattrs.memtype = MemType_Device;
 memattrs.device = DeviceType_nGnRnE;
 memattrs.shareability = Shareability_OSH;

 fault.level = 0;
 addrtop = AArch64.AddrTop(tbid, acctype, tbi);
 if !IsZero(va<addrtop:AArch64.PAMax()>) then
 fault.statuscode = Fault_AddressSize;
 elsif AArch64.S1HasAlignmentFault(acctype, aligned, memattrs) then
 fault.statuscode = Fault_Alignment;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);
 else
I1-414 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 ipa = CreateAddressDescriptor(va, oa, memattrs);
 return (fault, ipa);

aarch64/translation/vmsa_translation/AArch64.S1Translate

 // AArch64.S1Translate()
 // =====================
 // Translate VA to IPA/PA depending on the regime

 (FaultRecord, AddressDescriptor) AArch64.S1Translate(FaultRecord fault, Regime regime,
 SecurityState ss, bits(64) va,
 AccType acctype, boolean aligned,
 boolean iswrite, boolean ispriv)
 // Prepare fault fields in case a fault is detected
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 if !AArch64.S1Enabled(regime) then
 return AArch64.S1DisabledOutput(fault, regime, ss, va, acctype, aligned);

 walkparams = AArch64.GetS1TTWParams(regime, va);

 if (AArch64.VAIsOutOfRange(va, acctype, regime, walkparams) ||
 (!ispriv && walkparams.e0pd == '1')) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN);

 repeat
 (fault, descaddress, walkstate, descriptor) = AArch64.S1Walk(fault, walkparams, va, regime,
 ss, acctype, iswrite, ispriv);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 if AArch64.S1HasAlignmentFault(acctype, aligned,
 walkstate.memattrs) then
 fault.statuscode = Fault_Alignment;
 elsif IsAtomicRW(acctype) then
 if AArch64.S1HasPermissionsFault_VMSA(regime, ss, walkstate, walkparams,
 ispriv, acctype, FALSE) then
 // The permission fault was not caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = FALSE;
 elsif AArch64.S1HasPermissionsFault_VMSA(regime, ss, walkstate, walkparams,
 ispriv, acctype, TRUE) then
 // The permission fault _was_ caused by lack of write permissions
 fault.statuscode = Fault_Permission;
 fault.write = TRUE;
 elsif AArch64.S1HasPermissionsFault_VMSA(regime, ss, walkstate, walkparams,
 ispriv, acctype, iswrite) then
 fault.statuscode = Fault_Permission;

 new_desc = descriptor;
 if walkparams.ha == '1' && AArch64.FaultAllowsSetAccessFlag(fault) then
 // Set descriptor AF bit
 new_desc<10> = '1';

 // If HW update of dirty bit is enabled, the walk state permissions
 // will already reflect a configuration permitting writes.
 // The update of the descriptor occurs only if the descriptor bits in
 // memory do not reflect that and the access instigates a write.
 if (fault.statuscode == Fault_None &&
 walkparams.ha == '1' &&
 walkparams.hd == '1' &&
 descriptor<51> == '1' && // Descriptor DBM bit
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-415
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 (IsAtomicRW(acctype) || iswrite) &&
 !(acctype IN {AccType_AT, AccType_ATPAN, AccType_IC, AccType_DC})) then
 // Clear descriptor AP[2] bit permitting stage 1 writes
 new_desc<7> = '0';

 // Either the access flag was clear or AP<2> is set
 if new_desc != descriptor then
 s2fs1walk = TRUE;
 aligned = TRUE;
 iswrite = TRUE;
 (s2fault, descupdateaddress) = AArch64.S2Validate(fault, descaddress, s2fs1walk,
 AccType_ATOMICRW, aligned,
 iswrite, ispriv);

 if s2fault.statuscode != Fault_None then
 return (s2fault, AddressDescriptor UNKNOWN);

 (fault, mem_desc) = AArch64.MemSwapTableDesc(fault, descriptor, new_desc,
 walkparams.ee, descupdateaddress);

 until new_desc == descriptor || mem_desc == new_desc;

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN);

 // Output Address
 oa = StageOA(va, walkparams.tgx, walkstate);

 if (acctype == AccType_IFETCH &&
 (walkstate.memattrs.memtype == MemType_Device || !AArch64.S1ICacheEnabled(regime))) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 elsif (acctype != AccType_IFETCH && !AArch64.S1DCacheEnabled(regime) &&
 walkstate.memattrs.memtype == MemType_Normal) then
 // Treat memory attributes as Normal Non-Cacheable
 memattrs = NormalNCMemAttr();
 else
 memattrs = walkstate.memattrs;

 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
 // to be either effective value or descriptor value
 if (regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' &&
 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
 memattrs.shareability = walkstate.memattrs.shareability;
 else
 memattrs.shareability = EffectiveShareability(memattrs);

 ipa = CreateAddressDescriptor(va, oa, memattrs);
 return (fault, ipa);

aarch64/translation/vmsa_translation/AArch64.TranslateAddress

 // AArch64.TranslateAddress()
 // ==========================
 // Main entry point for translating an address

 AddressDescriptor AArch64.TranslateAddress(bits(64) va, AccType acctype, boolean iswrite,
 boolean aligned, integer size)

 result = AArch64.FullValidate(va, acctype, iswrite, aligned);

 if !IsFault(result) then
 result.fault = AArch64.CheckDebug(va, acctype, iswrite, size);

 // Update virtual address for abort functions
 result.vaddress = ZeroExtend(va);
I1-416 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 return result;

aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported

 // AArch64.BlockDescSupported()
 // ============================
 // Determine whether a block descriptor is valid for the given granule size
 // and level

 boolean AArch64.BlockDescSupported(TGx tgx, integer level)
 case tgx of
 when TGx_4KB return level == 2 || level == 1;
 when TGx_16KB return level == 2;
 when TGx_64KB return level == 2 || (level == 1 && AArch64.PAMax() == 52);

 return FALSE;

aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults

 // AArch64.BlocknTFaults()
 // =======================
 // Identify whether the nT bit in a block descriptor is effectively set
 // causing a translation fault

 boolean AArch64.BlocknTFaults(bits(64) descriptor)
 if !HaveBlockBBM() then
 return FALSE;

 bbm_level = AArch64.BlockBBMSupportLevel();
 nT_faults = boolean IMPLEMENTATION_DEFINED "BBM level 1 or 2 support nT bit causes Translation
Fault";

 return bbm_level IN {1, 2} && descriptor<16> == '1' && nT_faults;

aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit

 // AArch64.ContiguousBit()
 // =======================
 // Get the value of the contiguous bit

 bit AArch64.ContiguousBit(TGx tgx, integer level, bits(64) descriptor)
 if tgx == TGx_64KB && level == 1 && !Have52BitVAExt() then
 return '0'; // RES0

 return descriptor<52>;

aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType

 // AArch64.DecodeDescriptorType()
 // ==============================
 // Determine whether the descriptor is a page, block or table

 DescriptorType AArch64.DecodeDescriptorType(bits(64) descriptor,
 TGx tgx, integer level)
 if descriptor<1:0> == '11' && level == FINAL_LEVEL then
 return DescriptorType_Page;
 elsif descriptor<1:0> == '11' then
 return DescriptorType_Table;
 elsif descriptor<1:0> == '01' then
 if AArch64.BlockDescSupported(tgx, level) then
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-417
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 return DescriptorType_Block;
 else
 return DescriptorType_Invalid;
 else
 return DescriptorType_Invalid;

aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms

 // AArch64.S1ApplyOutputPerms()
 // ============================
 // Apply output permissions encoded in stage 1 page/block descriptors

 Permissions AArch64.S1ApplyOutputPerms(Permissions permissions, bits(64) descriptor,
 Regime regime, S1TTWParams walkparams)
 if HasUnprivileged(regime) then
 permissions.ap<2:1> = descriptor<7:6>;
 permissions.uxn = descriptor<54>;
 permissions.pxn = descriptor<53>;
 else
 permissions.ap<2:1> = descriptor<7>:'1';
 permissions.xn = descriptor<54>;

 // Descriptors marked with DBM set have the effective value of AP[2] cleared.
 // This implies no permission faults caused by lack of write permissions are
 // reported, and the Dirty bit can be set.
 if walkparams.ha == '1' && walkparams.hd == '1' && descriptor<51> == '1' then
 permissions.ap<2> = '0';

 return permissions;

aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms

 // AArch64.S1ApplyTablePerms()
 // ===========================
 // Apply hierarchical permissions encoded in stage 1 table descriptors

 Permissions AArch64.S1ApplyTablePerms(Permissions permissions, bits(64) descriptor,
 Regime regime, S1TTWParams walkparams)
 if HasUnprivileged(regime) then
 ap_table = descriptor<62:61>;
 uxn_table = descriptor<60>;
 pxn_table = descriptor<59>;
 permissions.ap_table = permissions.ap_table OR ap_table;
 permissions.uxn_table = permissions.uxn_table OR uxn_table;
 permissions.pxn_table = permissions.pxn_table OR pxn_table;
 else
 ap_table = descriptor<62>:'0';
 xn_table = descriptor<60>;
 permissions.ap_table = permissions.ap_table OR ap_table;
 permissions.xn_table = permissions.xn_table OR xn_table;

 return permissions;

aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState

 // AArch64.S1InitialTTWState()
 // ===========================
 // Set properties of first access to translation tables in stage 1

 TTWState AArch64.S1InitialTTWState(S1TTWParams walkparams, bits(64) va, Regime regime,
 SecurityState ss)
 TTWState walkstate;
 FullAddress tablebase;
I1-418 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 Permissions permissions;

 startlevel = AArch64.S1StartLevel(walkparams);
 ttbr = AArch64.S1TTBR(regime, va);
 tablebase.paspace = PAS_Secure;

 tablebase.address = AArch64.TTBaseAddress(ttbr, walkparams.txsz, walkparams.ps,
 walkparams.tgx, startlevel);

 permissions.ap_table = Zeros();
 if HasUnprivileged(regime) then
 permissions.uxn_table = Zeros();
 permissions.pxn_table = Zeros();
 else
 permissions.xn_table = Zeros();

 walkstate.baseaddress = tablebase;
 walkstate.level = startlevel;
 walkstate.istable = TRUE;
 // In regimes that support global and non-global translations, translation
 // table entries from lookup levels other than the final level of lookup
 // are treated as being non-global
 walkstate.nG = if HasUnprivileged(regime) then '1' else '0';
 walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);
 walkstate.permissions = permissions;

 return walkstate;

aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLast

 // AArch64.S1NextWalkStateLast()
 // =============================
 // Decode stage 1 page or block descriptor as output to this stage of translation

 TTWState AArch64.S1NextWalkStateLast(TTWState currentstate, Regime regime, SecurityState ss,
 S1TTWParams walkparams, bits(64) descriptor)
 TTWState nextstate;
 FullAddress baseaddress;

 if currentstate.level == FINAL_LEVEL then
 baseaddress.address = AArch64.PageBase(descriptor, walkparams.tgx);
 else
 baseaddress.address = AArch64.BlockBase(descriptor, walkparams.tgx,
 currentstate.level);

 if currentstate.baseaddress.paspace == PAS_Secure then
 // Determine PA space of the block from NS bit
 baseaddress.paspace = if descriptor<5> == '0' then PAS_Secure else PAS_NonSecure;
 else
 baseaddress.paspace = PAS_NonSecure;

 nextstate.istable = FALSE;
 nextstate.level = currentstate.level;
 nextstate.baseaddress = baseaddress;

 attrindx = descriptor<4:2>;
 sh = descriptor<9:8>;
 attr = MAIRAttr(UInt(attrindx), walkparams.mair);
 s1aarch64 = TRUE;

 nextstate.memattrs = S1DecodeMemAttrs(attr, sh, s1aarch64);
 nextstate.permissions = AArch64.S1ApplyOutputPerms(currentstate.permissions, descriptor,
 regime, walkparams);
 nextstate.contiguous = AArch64.ContiguousBit(walkparams.tgx, currentstate.level, descriptor);

 if !HasUnprivileged(regime) then
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-419
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 nextstate.nG = '0';
 elsif ss == SS_Secure && currentstate.baseaddress.paspace == PAS_NonSecure then
 // In Secure state, a translation must be treated as non-global,
 // regardless of the value of the nG bit,
 // if NSTable is set to 1 at any level of the translation table walk
 nextstate.nG = '1';
 else
 nextstate.nG = descriptor<11>;

 return nextstate;

aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable

 // AArch64.S1NextWalkStateTable()
 // ==============================
 // Decode stage 1 table descriptor to transition to the next level

 TTWState AArch64.S1NextWalkStateTable(TTWState currentstate, Regime regime, S1TTWParams walkparams,
 bits(64) descriptor)
 TTWState nextstate;
 FullAddress tablebase;

 tablebase.address = AArch64.NextTableBase(descriptor, walkparams.tgx);
 if currentstate.baseaddress.paspace == PAS_Secure then
 // Determine PA space of the next table from NSTable bit
 tablebase.paspace = if descriptor<63> == '0' then PAS_Secure else PAS_NonSecure;
 else
 // Otherwise bit 63 is RES0 and there is no NSTable bit
 tablebase.paspace = currentstate.baseaddress.paspace;

 nextstate.istable = TRUE;
 nextstate.nG = currentstate.nG;
 nextstate.level = currentstate.level + 1;
 nextstate.baseaddress = tablebase;
 nextstate.memattrs = currentstate.memattrs;

 if walkparams.hpd == '0' then
 nextstate.permissions = AArch64.S1ApplyTablePerms(currentstate.permissions, descriptor,
 regime, walkparams);
 else
 nextstate.permissions = currentstate.permissions;

 return nextstate;

aarch64/translation/vmsa_walk/AArch64.S1Walk

 // AArch64.S1Walk()
 // ================
 // Traverse stage 1 translation tables obtaining the final descriptor
 // as well as the address leading to that descriptor

 (FaultRecord, AddressDescriptor, TTWState, bits(64)) AArch64.S1Walk(
 FaultRecord fault, S1TTWParams walkparams, bits(64) va, Regime regime, SecurityState ss,
 AccType acctype, boolean iswrite, boolean ispriv)
 if HasUnprivileged(regime) && AArch64.S1EPD(regime, va) == '1' then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(64) UNKNOWN);

 if AArch64.S1InvalidTxSZ(walkparams) then
 fault.statuscode = Fault_Translation;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(64) UNKNOWN);

I1-420 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 walkstate = AArch64.S1InitialTTWState(walkparams, va, regime, ss);

 // Detect Address Size Fault by TTB
 if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx, va) then
 fault.statuscode = Fault_AddressSize;
 fault.level = 0;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(64) UNKNOWN);

 bits(64) descriptor;
 repeat
 fault.level = walkstate.level;
 FullAddress descaddress = AArch64.TTEntryAddress(walkstate.level, walkparams.tgx,
 walkparams.txsz, va,
 walkstate.baseaddress);

 if !AArch64.S1DCacheEnabled(regime) then
 walkmemattrs = NormalNCMemAttr();
 else
 walkmemattrs = walkstate.memattrs;

 // Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
 // to be either effective value or descriptor value
 if (regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' &&
 !(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
 walkmemattrs.shareability = walkstate.memattrs.shareability;
 else
 walkmemattrs.shareability = EffectiveShareability(walkmemattrs);

 walkaddress = CreateAddressDescriptor(va, descaddress, walkmemattrs);

 s2fs1walk = TRUE;
 aligned = TRUE;
 iswrite = FALSE;
 (s2fault, s2walkaddress) = AArch64.S2Validate(fault, walkaddress, s2fs1walk,
 AccType_TTW, aligned, iswrite, ispriv);

 if s2fault.statuscode != Fault_None then
 return (s2fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(64) UNKNOWN);

 (fault, descriptor) = FetchDescriptor(walkparams.ee, s2walkaddress, fault);

 if fault.statuscode != Fault_None then
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(64) UNKNOWN);

 desctype = AArch64.DecodeDescriptorType(descriptor, walkparams.tgx,
 walkstate.level);

 case desctype of
 when DescriptorType_Table
 walkstate = AArch64.S1NextWalkStateTable(walkstate, regime, walkparams,
 descriptor);

 // Detect Address Size Fault by table descriptor
 if AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx, va) then
 fault.statuscode = Fault_AddressSize;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(64) UNKNOWN);

 when DescriptorType_Page, DescriptorType_Block
 walkstate = AArch64.S1NextWalkStateLast(walkstate, regime, ss,
 walkparams, descriptor);

 when DescriptorType_Invalid
 fault.statuscode = Fault_Translation;
 return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(64) UNKNOWN);

 otherwise
 Unreachable();

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-421
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 until desctype IN {DescriptorType_Page, DescriptorType_Block};

 if (walkstate.contiguous == '1' &&
 AArch64.ContiguousBitFaults(walkparams.txsz, walkparams.tgx, walkstate.level)) then
 fault.statuscode = Fault_Translation;
 elsif desctype == DescriptorType_Block && AArch64.BlocknTFaults(descriptor) then
 fault.statuscode = Fault_Translation;
 // Detect Address Size Fault by final output
 elsif AArch64.OAOutOfRange(walkstate, walkparams.ps, walkparams.tgx, va) then
 fault.statuscode = Fault_AddressSize;
 // Check descriptor AF bit
 elsif (descriptor<10> == '0' && walkparams.ha == '0' &&
 !(acctype IN {AccType_DC, AccType_IC} &&
 !boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC operations")) then
 fault.statuscode = Fault_AccessFlag;

 return (fault, walkaddress, walkstate, descriptor);

aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel

 // AArch64.BBMSupportLevel()
 // =========================
 // Returns the level of FEAT_BBM supported

 integer AArch64.BlockBBMSupportLevel()
 if !HaveBlockBBM() then
 return integer UNKNOWN;
 else
 return integer IMPLEMENTATION_DEFINED "Block BBM support level";

aarch64/translation/vmsa_walkparams/AArch64.CurrentSecurityState

 // AArch64.CurrentSecurityState()
 // ==============================
 // Return secutity state of current EL

 SecurityState AArch64.CurrentSecurityState()
 // V8R64 is always in Secure state
 return SS_Secure;

aarch64/translation/vmsa_walkparams/AArch64.DecodeTG0

 // AArch64.DecodeTG0()
 // ===================
 // Decode granule size configuration bits TG0

 TGx AArch64.DecodeTG0(bits(2) tg0)
 if tg0 == '11' then
 tg0 = bits(2) IMPLEMENTATION_DEFINED "Reserved TG0 encoding granule size";

 case tg0 of
 when '00' return TGx_4KB;
 when '01' return TGx_64KB;
 when '10' return TGx_16KB;

aarch64/translation/vmsa_walkparams/AArch64.DecodeTG1

 // AArch64.DecodeTG1()
 // ===================
 // Decode granule size configuration bits TG1

I1-422 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
 TGx AArch64.DecodeTG1(bits(2) tg1)
 if tg1 == '00' then
 tg1 = bits(2) IMPLEMENTATION_DEFINED "Reserved TG1 encoding granule size";

 case tg1 of
 when '10' return TGx_4KB;
 when '11' return TGx_64KB;
 when '01' return TGx_16KB;

aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams

 // AArch64.GetS1TTWParams()
 // ========================
 // Returns stage 1 translation table walk parameters from respective controlling
 // system registers.

 S1TTWParams AArch64.GetS1TTWParams(Regime regime, bits(64) va)
 S1TTWParams walkparams;

 varange = AArch64.GetVARange(va);

 case regime of
 when Regime_EL10 walkparams = AArch64.S1TTWParamsEL10(varange);

 maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
 mintxsz = AArch64.S1MinTxSZ(walkparams.tgx);
 if UInt(walkparams.txsz) > maxtxsz then
 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum") then
 walkparams.txsz = maxtxsz<5:0>;
 elsif !Have52BitVAExt() && UInt(walkparams.txsz) < mintxsz then
 if !(boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum") then
 walkparams.txsz = mintxsz<5:0>;

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.GetVARange

 // AArch64.GetVARange()
 // ====================
 // Determines if the VA that is to be translated lies in LOWER or UPPER address range.

 VARange AArch64.GetVARange(bits(64) va)
 if va<55> == '0' then
 return VARange_LOWER;
 else
 return VARange_UPPER;

aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ

 // AArch64.MaxTxSZ()
 // =================
 // Retrieve the maximum value of TxSZ indicating minimum input address size for both
 // stages of translation

 integer AArch64.MaxTxSZ(TGx tgx)
 if HaveSmallTranslationTableExt() && !UsingAArch32() then
 case tgx of
 when TGx_4KB return 48;
 when TGx_16KB return 48;
 when TGx_64KB return 47;
 return 39;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-423
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/translation/vmsa_walkparams/AArch64.PAMax

 // AArch64.PAMax()
 // ===============
 // Returns the IMPLEMENTATION DEFINED maximum number of bits capable of representing
 // physical address for this processor

 integer AArch64.PAMax()
 return integer IMPLEMENTATION_DEFINED "Maximum Physical Address Size";

aarch64/translation/vmsa_walkparams/AArch64.S1BREnabled

 // AArch64.S1BREnabled()
 // =====================
 // Determine the number of MPUs supported in PMSA stage 1 for given regime

 boolean AArch64.S1BREnabled(Regime regime)
 case regime of
 when Regime_EL2 return SCTLR_EL2.BR == '1';
 when Regime_EL10 return HCR_EL2.<DC,TGE> == '00' && VTCR_EL2.MSA == '0' && SCTLR_EL1.BR == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled

 // AArch64.S1DCacheEnabled()
 // =========================
 // Determine cacheability of stage 1 data accesses

 boolean AArch64.S1DCacheEnabled(Regime regime)
 case regime of
 when Regime_EL2 return SCTLR_EL2.C == '1';
 when Regime_EL10 return SCTLR_EL1.C == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1EPD

 // AArch64.S1EPD()
 // ===============
 // Determine whether stage 1 translation table walk is allowed for the VA range

 bit AArch64.S1EPD(Regime regime, bits(64) va)
 assert HasUnprivileged(regime);
 varange = AArch64.GetVARange(va);

 case regime of
 when Regime_EL10 return if varange == VARange_LOWER then TCR_EL1.EPD0 else TCR_EL1.EPD1;

aarch64/translation/vmsa_walkparams/AArch64.S1Enabled

 // AArch64.S1Enabled()
 // ===================
 // Determine if stage 1 for the acting translation regime is enabled

 boolean AArch64.S1Enabled(Regime regime)
 case regime of
 when Regime_EL2 return SCTLR_EL2.M == '1';
 when Regime_EL10 return HCR_EL2.<DC,TGE> == '00' && SCTLR_EL1.M == '1';
I1-424 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations
aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled

 // AArch64.S1ICacheEnabled()
 // =========================
 // Determine cacheability of stage 1 instruction fetches

 boolean AArch64.S1ICacheEnabled(Regime regime)
 case regime of
 when Regime_EL2 return SCTLR_EL2.I == '1';
 when Regime_EL10 return SCTLR_EL1.I == '1';

aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ

 // AArch64.S1MinTxSZ()
 // ===================
 // Retrieve the minimum value of TxSZ indicating maximum input address size for stage 1

 integer AArch64.S1MinTxSZ(TGx tgx)
 if Have52BitVAExt() && tgx == TGx_64KB then
 return 12;

 return 16;

aarch64/translation/vmsa_walkparams/AArch64.S1TTBR

 // AArch64.S1TTBR()
 // ================
 // Identify stage 1 table base register for the acting translation regime

 bits(64) AArch64.S1TTBR(Regime regime, bits(64) va)
 varange = AArch64.GetVARange(va);

 case regime of
 when Regime_EL10 return if varange == VARange_LOWER then TTBR0_EL1 else TTBR1_EL1;

aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10

 // AArch64.S1TTWParamsEL10()
 // =========================
 // Gather stage 1 translation table walk parameters for EL1&0 regime
 // (with EL2 enabled or disabled)

 S1TTWParams AArch64.S1TTWParamsEL10(VARange varange)
 S1TTWParams walkparams;

 if varange == VARange_LOWER then
 walkparams.tgx = AArch64.DecodeTG0(TCR_EL1.TG0);
 walkparams.txsz = TCR_EL1.T0SZ;
 walkparams.irgn = TCR_EL1.IRGN0;
 walkparams.orgn = TCR_EL1.ORGN0;
 walkparams.sh = TCR_EL1.SH0;
 walkparams.tbi = TCR_EL1.TBI0;

 walkparams.tbid = if HavePACExt() then TCR_EL1.TBID0 else '0';
 walkparams.e0pd = if HaveE0PDExt() then TCR_EL1.E0PD0 else '0';
 walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL1.HPD0 else '0';
 else
 walkparams.tgx = AArch64.DecodeTG1(TCR_EL1.TG1);
 walkparams.txsz = TCR_EL1.T1SZ;
 walkparams.irgn = TCR_EL1.IRGN1;
 walkparams.orgn = TCR_EL1.ORGN1;
 walkparams.sh = TCR_EL1.SH1;
 walkparams.tbi = TCR_EL1.TBI1;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-425
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.1 Pseudocode for AArch64 operations

 walkparams.tbid = if HavePACExt() then TCR_EL1.TBID1 else '0';
 walkparams.e0pd = if HaveE0PDExt() then TCR_EL1.E0PD1 else '0';
 walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL1.HPD1 else '0';

 walkparams.mair = MAIR_EL1;
 walkparams.wxn = SCTLR_EL1.WXN;
 walkparams.ps = TCR_EL1.IPS;
 walkparams.ee = SCTLR_EL1.EE;

 if EL2Enabled() then
 walkparams.dc = HCR_EL2.DC;

 walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL1.HA else '0';
 walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL1.HD else '0';

 return walkparams;

aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ

 // AArch64.S2MinTxSZ()
 // ===================
 // Retrieve the minimum value of TxSZ indicating maximum input address size for stage 2

 integer AArch64.S2MinTxSZ(TGx tgx, boolean s1aarch64)
 ips = AArch64.PAMax();

 if Have52BitPAExt() && tgx != TGx_64KB then
 ips = Min(48, AArch64.PAMax());

 min_txsz = 64 - ips;
 if !s1aarch64 then
 // EL1 is AArch32
 min_txsz = Min(min_txsz, 24);

 return min_txsz;

aarch64/translation/vmsa_walkparams/AArch64.VAMax

 // AArch64.VAMax()
 // ===============
 // Returns the IMPLEMENTATION DEFINED maximum number of bits capable of representing
 // the virtual address for this processor

 integer AArch64.VAMax()
 return integer IMPLEMENTATION_DEFINED "Maximum Virtual Address Size";
I1-426 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
I1.2 Shared pseudocode

This section lists the pseudocodes that are common to execution in AArch64 state and in the Armv8-R AArch64
state. Armv8-R AArch64 supports AArch64 state and this document correlates with that on the Armv8-A profile.
This document follows the structure of the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.

The functions listed in this section are identified only by a FunctionName. This section is organized by functional
groups, with the functional groups being indicated by hierarchical path names, for example
shared/debug/DebugTarget.

The top-level sections of the shared pseudocode hierarchy are:

• shared/debug.

• shared/exceptions on page I1-449.

• shared/functions on page I1-451.

• shared/translation on page I1-548.

I1.2.1 shared/debug

This section includes the following pseudocode functions:

• shared/debug/ClearStickyErrors/ClearStickyErrors on page I1-428.

• shared/debug/DebugTarget/DebugTarget on page I1-429.

• shared/debug/DebugTarget/DebugTargetFrom on page I1-429.

• shared/debug/DoubleLockStatus/DoubleLockStatus on page I1-429.

• shared/debug/OSLockStatus/OSLockStatus on page I1-429.

• shared/debug/SoftwareLockStatus/Component on page I1-430.

• shared/debug/SoftwareLockStatus/GetAccessComponent on page I1-430.

• shared/debug/SoftwareLockStatus/SoftwareLockStatus on page I1-430.

• shared/debug/authentication/AllowExternalDebugAccess on page I1-430.

• shared/debug/authentication/AllowExternalPMUAccess on page I1-431.

• shared/debug/authentication/Debug_authentication on page I1-431.

• shared/debug/authentication/ExternalInvasiveDebugEnabled on page I1-431.

• shared/debug/authentication/ExternalNoninvasiveDebugAllowed on page I1-431.

• shared/debug/authentication/ExternalNoninvasiveDebugEnabled on page I1-432.

• shared/debug/authentication/ExternalSecureInvasiveDebugEnabled on page I1-432.

• shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled on page I1-432.

• shared/debug/authentication/IsAccessSecure on page I1-432.

• shared/debug/authentication/IsCorePowered on page I1-432.

• shared/debug/breakpoint/CheckValidStateMatch on page I1-432.

• shared/debug/breakpoint/NumBreakpointsImplemented on page I1-433.

• shared/debug/breakpoint/NumContextAwareBreakpointsImplemented on page I1-433.

• shared/debug/breakpoint/NumWatchpointsImplemented on page I1-434.

• shared/debug/cti/CTI_SetEventLevel on page I1-434.

• shared/debug/cti/CTI_SignalEvent on page I1-434.

• shared/debug/cti/CrossTrigger on page I1-434.

• shared/debug/dccanditr/CheckForDCCInterrupts on page I1-434.

• shared/debug/dccanditr/DBGDTRRX_EL0 on page I1-435.

• shared/debug/dccanditr/DBGDTRTX_EL0 on page I1-435.

• shared/debug/dccanditr/DBGDTR_EL0 on page I1-436.

• shared/debug/dccanditr/DTR on page I1-437.

• shared/debug/dccanditr/EDITR on page I1-437.

• shared/debug/halting/DCPSInstruction on page I1-438.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-427
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
• shared/debug/halting/DRPSInstruction on page I1-439.

• shared/debug/halting/DebugHalt on page I1-439.

• shared/debug/halting/DisableITRAndResumeInstructionPrefetch on page I1-439.

• shared/debug/halting/ExecuteA64 on page I1-440.

• shared/debug/halting/ExecuteT32 on page I1-440.

• shared/debug/halting/ExitDebugState on page I1-440.

• shared/debug/halting/Halt on page I1-440.

• shared/debug/halting/HaltOnBreakpointOrWatchpoint on page I1-441.

• shared/debug/halting/Halted on page I1-441.

• shared/debug/halting/HaltingAllowed on page I1-442.

• shared/debug/halting/Restarting on page I1-442.

• shared/debug/halting/StopInstructionPrefetchAndEnableITR on page I1-442.

• shared/debug/halting/UpdateEDSCRFields on page I1-442.

• shared/debug/haltingevents/CheckExceptionCatch on page I1-442.

• shared/debug/haltingevents/CheckHaltingStep on page I1-443.

• shared/debug/haltingevents/CheckOSUnlockCatch on page I1-443.

• shared/debug/haltingevents/CheckPendingOSUnlockCatch on page I1-443.

• shared/debug/haltingevents/CheckPendingResetCatch on page I1-443.

• shared/debug/haltingevents/CheckResetCatch on page I1-444.

• shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters on page I1-444.

• shared/debug/haltingevents/ExternalDebugRequest on page I1-444.

• shared/debug/haltingevents/HaltingStep_DidNotStep on page I1-444.

• shared/debug/haltingevents/HaltingStep_SteppedEX on page I1-444.

• shared/debug/haltingevents/RunHaltingStep on page I1-444.

• shared/debug/interrupts/ExternalDebugInterruptsDisabled on page I1-445.

• shared/debug/pmu/GetNumEventCounters on page I1-445.

• shared/debug/pmu/HasElapsed64Cycles on page I1-445.

• shared/debug/pmu/PMUCounterMask on page I1-445.

• shared/debug/pmu/PMUEvent on page I1-446.

• shared/debug/samplebasedprofiling/CreatePCSample on page I1-446.

• shared/debug/samplebasedprofiling/PCSample on page I1-446.

• shared/debug/samplebasedprofiling/PMPCSR on page I1-447.

• shared/debug/softwarestep/CheckSoftwareStep on page I1-447.

• shared/debug/softwarestep/DebugExceptionReturnSS on page I1-448.

• shared/debug/softwarestep/SSAdvance on page I1-448.

• shared/debug/softwarestep/SoftwareStep_DidNotStep on page I1-449.

• shared/debug/softwarestep/SoftwareStep_SteppedEX on page I1-449.

shared/debug/ClearStickyErrors/ClearStickyErrors

 // ClearStickyErrors()
 // ===================

 ClearStickyErrors()
 EDSCR.TXU = '0'; // Clear TX underrun flag
 EDSCR.RXO = '0'; // Clear RX overrun flag

 if Halted() then // in Debug state
 EDSCR.ITO = '0'; // Clear ITR overrun flag

 // If halted and the ITR is not empty then it is UNPREDICTABLE whether the EDSCR.ERR is cleared.
 // The UNPREDICTABLE behavior also affects the instructions in flight, but this is not described
 // in the pseudocode.
 if Halted() && EDSCR.ITE == '0' && ConstrainUnpredictableBool() then
I1-428 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 return;
 EDSCR.ERR = '0'; // Clear cumulative error flag

 return;

shared/debug/DebugTarget/DebugTarget

 // DebugTarget()
 // =============
 // Returns the debug exception target Exception level

 bits(2) DebugTarget()
 secure = IsSecure();
 return DebugTargetFrom(secure);

shared/debug/DebugTarget/DebugTargetFrom

 // DebugTargetFrom()
 // =================

 bits(2) DebugTargetFrom(boolean secure)
 if !secure || HaveSecureEL2Ext() then
 if ELUsingAArch32(EL2) then
 route_to_el2 = (HDCR.TDE == '1' || HCR.TGE == '1');
 else
 route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1');
 else
 route_to_el2 = FALSE;

 if route_to_el2 then
 target = EL2;
 elsif HaveEL(EL3) && !HaveAArch64() && secure then
 target = EL3;
 else
 target = EL1;

 return target;

shared/debug/DoubleLockStatus/DoubleLockStatus

 // DoubleLockStatus()
 // ==================
 // Returns the state of the OS Double Lock.
 // FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
 // TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.

 boolean DoubleLockStatus()
 if !HaveDoubleLock() then
 return FALSE;
 elsif ELUsingAArch32(EL1) then
 return DBGOSDLR.DLK == '1' && DBGPRCR.CORENPDRQ == '0' && !Halted();
 else
 return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

shared/debug/OSLockStatus/OSLockStatus

 // OSLockStatus()
 // ==============
 // Returns the state of the OS Lock.

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-429
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 boolean OSLockStatus()
 return (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK) == '1';

shared/debug/SoftwareLockStatus/Component

 enumeration Component {
 Component_PMU,
 Component_Debug,
 Component_CTI
 };

shared/debug/SoftwareLockStatus/GetAccessComponent

 // Returns the accessed component.
 Component GetAccessComponent();

shared/debug/SoftwareLockStatus/SoftwareLockStatus

 // SoftwareLockStatus()
 // ====================
 // Returns the state of the Software Lock.

 boolean SoftwareLockStatus()
 Component component = GetAccessComponent();
 if !HaveSoftwareLock(component) then
 return FALSE;
 case component of
 when Component_Debug
 return EDLSR.SLK == '1';
 when Component_PMU
 return PMLSR.SLK == '1';
 when Component_CTI
 return CTILSR.SLK == '1';
 otherwise
 Unreachable();

shared/debug/authentication/AllowExternalDebugAccess

 // AllowExternalDebugAccess()
 // ==========================
 // Returns TRUE if an external debug interface access to the External debug registers
 // is allowed, FALSE otherwise.

 boolean AllowExternalDebugAccess()
 // The access may also be subject to OS Lock, power-down, etc.
 if HaveSecureExtDebugView() then
 return AllowExternalDebugAccess(IsAccessSecure());
 else
 return AllowExternalDebugAccess(ExternalSecureInvasiveDebugEnabled());

 // AllowExternalDebugAccess()
 // ==========================
 // Returns TRUE if an external debug interface access to the External debug registers
 // is allowed for the given Security state, FALSE otherwise.

 boolean AllowExternalDebugAccess(boolean allow_secure)
 // The access may also be subject to OS Lock, power-down, etc.
 if HaveSecureExtDebugView() || ExternalInvasiveDebugEnabled() then
 if allow_secure then
 return TRUE;
 else
I1-430 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 return !IsSecure();
 else
 return FALSE;

shared/debug/authentication/AllowExternalPMUAccess

 // AllowExternalPMUAccess()
 // ========================
 // Returns TRUE if an external debug interface access to the PMU registers is
 // allowed, FALSE otherwise.

 boolean AllowExternalPMUAccess()
 // The access may also be subject to OS Lock, power-down, etc.
 if HaveSecureExtDebugView() then
 return AllowExternalPMUAccess(IsAccessSecure());
 else
 return AllowExternalPMUAccess(ExternalSecureNoninvasiveDebugEnabled());

 // AllowExternalPMUAccess()
 // ========================
 // Returns TRUE if an external debug interface access to the PMU registers is
 // allowed for the given Security state, FALSE otherwise.

 boolean AllowExternalPMUAccess(boolean allow_secure)
 // The access may also be subject to OS Lock, power-down, etc.
 if HaveSecureExtDebugView() || ExternalNoninvasiveDebugEnabled() then
 if allow_secure then
 return TRUE;
 else
 return !IsSecure();
 else
 return FALSE;

shared/debug/authentication/Debug_authentication

 signal DBGEN;
 signal NIDEN;
 signal SPIDEN;
 signal SPNIDEN;

shared/debug/authentication/ExternalInvasiveDebugEnabled

 // ExternalInvasiveDebugEnabled()
 // ==============================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the DBGEN signal.

 boolean ExternalInvasiveDebugEnabled()
 return DBGEN == HIGH;

shared/debug/authentication/ExternalNoninvasiveDebugAllowed

 // ExternalNoninvasiveDebugAllowed()
 // =================================
 // Returns TRUE if Trace and PC Sample-based Profiling are allowed

 boolean ExternalNoninvasiveDebugAllowed()
 return (ExternalNoninvasiveDebugEnabled() &&
 (!IsSecure() || ExternalSecureNoninvasiveDebugEnabled() ||
 (ELUsingAArch32(EL1) && PSTATE.EL == EL0 && SDER.SUNIDEN == '1')));
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-431
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/debug/authentication/ExternalNoninvasiveDebugEnabled

 // ExternalNoninvasiveDebugEnabled()
 // =================================
 // This function returns TRUE if the FEAT_Debugv8p4 is implemented.
 // Otherwise, this function is IMPLEMENTATION DEFINED, and, in the
 // recommended interface, ExternalNoninvasiveDebugEnabled returns
 // the state of the (DBGEN OR NIDEN) signal.

 boolean ExternalNoninvasiveDebugEnabled()
 return !HaveNoninvasiveDebugAuth() || ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

 // ExternalSecureInvasiveDebugEnabled()
 // ====================================
 // The definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the (DBGEN AND SPIDEN) signal.
 // CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.

 boolean ExternalSecureInvasiveDebugEnabled()
 if !HaveEL(EL3) && !IsSecure() then return FALSE;
 return ExternalInvasiveDebugEnabled() && SPIDEN == HIGH;

shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled

 // ExternalSecureNoninvasiveDebugEnabled()
 // =======================================
 // This function returns the value of ExternalSecureInvasiveDebugEnabled() when FEAT_Debugv8p4
 // is implemented. Otherwise, the definition of this function is IMPLEMENTATION DEFINED.
 // In the recommended interface, this function returns the state of the (DBGEN OR NIDEN) AND
 // (SPIDEN OR SPNIDEN) signal.

 boolean ExternalSecureNoninvasiveDebugEnabled()
 if !HaveEL(EL3) && !IsSecure() then return FALSE;
 if HaveNoninvasiveDebugAuth() then
 return ExternalNoninvasiveDebugEnabled() && (SPIDEN == HIGH || SPNIDEN == HIGH);
 else
 return ExternalSecureInvasiveDebugEnabled();

shared/debug/authentication/IsAccessSecure

 // Returns TRUE when an access is Secure
 boolean IsAccessSecure();

shared/debug/authentication/IsCorePowered

 // Returns TRUE if the Core power domain is powered on, FALSE otherwise.
 boolean IsCorePowered();

shared/debug/breakpoint/CheckValidStateMatch

 // CheckValidStateMatch()
 // ======================
 // Checks for an invalid state match that will generate Constrained
 // Unpredictable behaviour, otherwise returns Constraint_NONE.

 (Constraint, bits(2), bit, bits(2)) CheckValidStateMatch(bits(2) SSC, bit HMC, bits(2) PxC,
 boolean isbreakpnt)
I1-432 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 boolean reserved = FALSE;

 // Match 'Usr/Sys/Svc' only valid for AArch32 breakpoints
 if (!isbreakpnt || !HaveAArch32EL(EL1)) && HMC:PxC == '000' && SSC != '11' then
 reserved = TRUE;

 // Both EL3 and EL2 are not implemented
 if !HaveEL(EL3) && !HaveEL(EL2) && (HMC != '0' || SSC != '00') then
 reserved = TRUE;

 // EL3 is not implemented
 if !HaveEL(EL3) && SSC IN {'01','10'} && HMC:SSC:PxC != '10100' then
 reserved = TRUE;

 // EL3 using AArch64 only
 if (!HaveEL(EL3) || !HaveAArch64()) && HMC:SSC:PxC == '11000' then
 reserved = TRUE;

 // EL2 is not implemented
 if !HaveEL(EL2) && HMC:SSC:PxC == '11100' then
 reserved = TRUE;

 // Secure EL2 is not implemented
 if !HaveSecureEL2Ext() && (HMC:SSC:PxC) IN {'01100','10100','x11x1'} then
 reserved = TRUE;

 // Values that are not allocated in any architecture version
 if (HMC:SSC:PxC) IN {'01110','100x0','10110','11x10'} then
 reserved = TRUE;

 if reserved then
 // If parameters are set to a reserved type, behaves as either disabled or a defined type
 (c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits();
 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
 if c == Constraint_DISABLED then
 return (c, bits(2) UNKNOWN, bit UNKNOWN, bits(2) UNKNOWN);
 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

 return (Constraint_NONE, SSC, HMC, PxC);

shared/debug/breakpoint/NumBreakpointsImplemented

 // NumBreakpointsImplemented()
 // ===========================
 // Returns the number of breakpoints implemented. This is indicated to software by
 // DBGDIDR.BRPs in AArch32 state, and ID_AA64DFR0_EL1.BRPs in AArch64 state.

 integer NumBreakpointsImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of breakpoints";

shared/debug/breakpoint/NumContextAwareBreakpointsImplemented

 // NumContextAwareBreakpointsImplemented()
 // =======================================
 // Returns the number of context-aware breakpoints implemented. This is indicated to software by
 // DBGDIDR.CTX_CMPs in AArch32 state, and ID_AA64DFR0_EL1.CTX_CMPs in AArch64 state.

 integer NumContextAwareBreakpointsImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of context-aware breakpoints";
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-433
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/debug/breakpoint/NumWatchpointsImplemented

 // NumWatchpointsImplemented()
 // ===========================
 // Returns the number of watchpoints implemented. This is indicated to software by
 // DBGDIDR.WRPs in AArch32 state, and ID_AA64DFR0_EL1.WRPs in AArch64 state.

 integer NumWatchpointsImplemented()
 return integer IMPLEMENTATION_DEFINED "Number of watchpoints";

shared/debug/cti/CTI_SetEventLevel

 // Set a Cross Trigger multi-cycle input event trigger to the specified level.
 CTI_SetEventLevel(CrossTriggerIn id, signal level);

shared/debug/cti/CTI_SignalEvent

 // Signal a discrete event on a Cross Trigger input event trigger.
 CTI_SignalEvent(CrossTriggerIn id);

shared/debug/cti/CrossTrigger

 enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
 CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
 CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1,
 CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

 enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
 CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
 CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1,
 CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

shared/debug/dccanditr/CheckForDCCInterrupts

 // CheckForDCCInterrupts()
 // =======================

 CheckForDCCInterrupts()
 commrx = (EDSCR.RXfull == '1');
 commtx = (EDSCR.TXfull == '0');

 // COMMRX and COMMTX support is optional and not recommended for new designs.
 // SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);
 // SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);

 // The value to be driven onto the common COMMIRQ signal.
 if ELUsingAArch32(EL1) then
 commirq = ((commrx && DBGDCCINT.RX == '1') ||
 (commtx && DBGDCCINT.TX == '1'));
 else
 commirq = ((commrx && MDCCINT_EL1.RX == '1') ||
 (commtx && MDCCINT_EL1.TX == '1'));
 SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then HIGH else LOW);

 return;
I1-434 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/debug/dccanditr/DBGDTRRX_EL0

 // DBGDTRRX_EL0[] (external write)
 // ===============================
 // Called on writes to debug register 0x08C.

 DBGDTRRX_EL0[boolean memory_mapped] = bits(32) value

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return;

 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

 if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
 EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
 return;

 EDSCR.RXfull = '1';
 DTRRX = value;

 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)
 if !UsingAArch32() then
 ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_EL0"
 ExecuteA64(0xB8004401<31:0>); // A64 "STR W1,[X0],#4"
 X[1] = bits(64) UNKNOWN;
 else
 ExecuteT32(0xEE10<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MRS R1,DBGDTRRXint"
 ExecuteT32(0xF840<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "STR R1,[R0],#4"
 R[1] = bits(32) UNKNOWN;
 // If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.RXfull = bit UNKNOWN;
 DBGDTRRX_EL0 = bits(64) UNKNOWN;
 else
 // "MRS X1,DBGDTRRX_EL0" calls DBGDTR_EL0[] (read) which clears RXfull.
 assert EDSCR.RXfull == '0';

 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
 return;

 // DBGDTRRX_EL0[] (external read)
 // ==============================

 bits(32) DBGDTRRX_EL0[boolean memory_mapped]
 return DTRRX;

shared/debug/dccanditr/DBGDTRTX_EL0

 // DBGDTRTX_EL0[] (external read)
 // ==============================
 // Called on reads of debug register 0x080.

 bits(32) DBGDTRTX_EL0[boolean memory_mapped]

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return bits(32) UNKNOWN;

 underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
 value = if underrun then bits(32) UNKNOWN else DTRTX;

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-435
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then // Software lock locked: no side-effects
 return value;

 if underrun then
 EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
 return value; // Return UNKNOWN

 EDSCR.TXfull = '0';
 if Halted() && EDSCR.MA == '1' then
 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

 if !UsingAArch32() then
 ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0],#4"
 else
 ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"
 // If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
 if EDSCR.ERR == '1' then
 EDSCR.TXfull = bit UNKNOWN;
 DBGDTRTX_EL0 = bits(64) UNKNOWN;
 else
 if !UsingAArch32() then
 ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_EL0,X1"
 else
 ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
 // "MSR DBGDTRTX_EL0,X1" calls DBGDTR_EL0[] (write) which sets TXfull.
 assert EDSCR.TXfull == '1';
 if !UsingAArch32() then
 X[1] = bits(64) UNKNOWN;
 else
 R[1] = bits(32) UNKNOWN;
 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)

 return value;

 // DBGDTRTX_EL0[] (external write)
 // ===============================

 DBGDTRTX_EL0[boolean memory_mapped] = bits(32) value
 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
 DTRTX = value;
 return;

shared/debug/dccanditr/DBGDTR_EL0

 // DBGDTR_EL0[] (write)
 // ====================
 // System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)

 DBGDTR_EL0[] = bits(N) value
 // For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
 // For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
 assert N IN {32,64};
 if EDSCR.TXfull == '1' then
 value = bits(N) UNKNOWN;
 // On a 64-bit write, implement a half-duplex channel
 if N == 64 then DTRRX = value<63:32>;
 DTRTX = value<31:0>; // 32-bit or 64-bit write
 EDSCR.TXfull = '1';
 return;

 // DBGDTR_EL0[] (read)
 // ===================
I1-436 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 // System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)

 bits(N) DBGDTR_EL0[]
 // For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
 // For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
 assert N IN {32,64};
 bits(N) result;
 if EDSCR.RXfull == '0' then
 result = bits(N) UNKNOWN;
 else
 // On a 64-bit read, implement a half-duplex channel
 // NOTE: the word order is reversed on reads with regards to writes
 if N == 64 then result<63:32> = DTRTX;
 result<31:0> = DTRRX;
 EDSCR.RXfull = '0';
 return result;

shared/debug/dccanditr/DTR

 bits(32) DTRRX;
 bits(32) DTRTX;

shared/debug/dccanditr/EDITR

 // EDITR[] (external write)
 // ========================
 // Called on writes to debug register 0x084.

 EDITR[boolean memory_mapped] = bits(32) value
 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return;

 if EDSCR.ERR == '1' then return; // Error flag set: ignore write

 // The Software lock is OPTIONAL.
 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write

 if !Halted() then return; // Non-debug state: ignore write

 if EDSCR.ITE == '0' || EDSCR.MA == '1' then
 EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write
 return;

 // ITE indicates whether the processor is ready to accept another instruction; the processor
 // may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
 // is no indication that the pipeline is empty (all instructions have completed). In this
 // pseudocode, the assumption is that only one instruction can be executed at a time,
 // meaning ITE acts like "InstrCompl".
 EDSCR.ITE = '0';

 if !UsingAArch32() then
 ExecuteA64(value);
 else
 ExecuteT32(value<15:0>/*hw1*/, value<31:16> /*hw2*/);

 EDSCR.ITE = '1';

 return;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-437
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/debug/halting/DCPSInstruction

 // DCPSInstruction()
 // =================
 // Operation of the DCPS instruction in Debug state

 DCPSInstruction(bits(2) target_el)

 SynchronizeContext();

 case target_el of
 when EL1
 if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then handle_el = PSTATE.EL;
 elsif EL2Enabled() && HCR_EL2.TGE == '1' then UNDEFINED;
 else handle_el = EL1;

 when EL2
 if !HaveEL(EL2) then UNDEFINED;
 elsif PSTATE.EL == EL3 && !UsingAArch32() then handle_el = EL3;
 elsif !IsSecureEL2Enabled() && IsSecure() then UNDEFINED;
 else handle_el = EL2;
 when EL3
 if EDSCR.SDD == '1' || !HaveEL(EL3) then UNDEFINED;
 handle_el = EL3;
 otherwise
 Unreachable();

 from_secure = IsSecure();
 if ELUsingAArch32(handle_el) then
 if PSTATE.M == M32_Monitor then SCR.NS = '0';
 assert UsingAArch32(); // Cannot move from AArch64 to AArch32
 case handle_el of
 when EL1
 AArch32.WriteMode(M32_Svc);
 if HavePANExt() && SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 when EL2 AArch32.WriteMode(M32_Hyp);
 when EL3
 AArch32.WriteMode(M32_Monitor);
 if HavePANExt() then
 if !from_secure then
 PSTATE.PAN = '0';
 elsif SCTLR.SPAN == '0' then
 PSTATE.PAN = '1';
 if handle_el == EL2 then
 ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;
 else
 LR = bits(32) UNKNOWN;
 SPSR[] = bits(32) UNKNOWN;
 PSTATE.E = SCTLR[].EE;
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

 else // Targeting AArch64
 if UsingAArch32() then
 AArch64.MaybeZeroRegisterUppers();
 PSTATE.nRW = '0'; PSTATE.SP = '1'; PSTATE.EL = handle_el;
 if HavePANExt() && ((handle_el == EL1 && SCTLR_EL1.SPAN == '0') ||
 (handle_el == EL2 && HCR_EL2.E2H == '1' &&
 HCR_EL2.TGE == '1' && SCTLR_EL2.SPAN == '0')) then
 PSTATE.PAN = '1';
 ELR[] = bits(64) UNKNOWN; SPSR[] = bits(64) UNKNOWN; ESR[] = bits(64) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;
 if HaveUAOExt() then PSTATE.UAO = '0';

 UpdateEDSCRFields(); // Update EDSCR PE state flags
 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
 // SCTLR[].IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool() then
I1-438 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 sync_errors = FALSE;
 if sync_errors then
 SynchronizeErrors();
 return;

shared/debug/halting/DRPSInstruction

 // DRPSInstruction()
 // =================
 // Operation of the A64 DRPS and T32 ERET instructions in Debug state

 DRPSInstruction()

 SynchronizeContext();

 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
 // SCTLR[].IESB might be ignored in Debug state.
 if !ConstrainUnpredictableBool() then
 sync_errors = FALSE;
 if sync_errors then
 SynchronizeErrors();

 bits(64) spsr = SPSR[];
 SetPSTATEFromPSR(spsr);

 // PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
 // behave as if UNKNOWN.
 if UsingAArch32() then
 PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
 // In AArch32, all instructions are T32 and unconditional.
 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;
 else
 PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
 DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;

 UpdateEDSCRFields(); // Update EDSCR PE state flags

 return;

shared/debug/halting/DebugHalt

 constant bits(6) DebugHalt_Breakpoint = '000111';
 constant bits(6) DebugHalt_EDBGRQ = '010011';
 constant bits(6) DebugHalt_Step_Normal = '011011';
 constant bits(6) DebugHalt_Step_Exclusive = '011111';
 constant bits(6) DebugHalt_OSUnlockCatch = '100011';
 constant bits(6) DebugHalt_ResetCatch = '100111';
 constant bits(6) DebugHalt_Watchpoint = '101011';
 constant bits(6) DebugHalt_HaltInstruction = '101111';
 constant bits(6) DebugHalt_SoftwareAccess = '110011';
 constant bits(6) DebugHalt_ExceptionCatch = '110111';
 constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

shared/debug/halting/DisableITRAndResumeInstructionPrefetch

 DisableITRAndResumeInstructionPrefetch();
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-439
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/debug/halting/ExecuteA64

 // Execute an A64 instruction in Debug state.
 ExecuteA64(bits(32) instr);

shared/debug/halting/ExecuteT32

 // Execute a T32 instruction in Debug state.
 ExecuteT32(bits(16) hw1, bits(16) hw2);

shared/debug/halting/ExitDebugState

 // ExitDebugState()
 // ================

 ExitDebugState()
 assert Halted();
 SynchronizeContext();

 // Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
 // detect that the PE has restarted.
 EDSCR.STATUS = '000001'; // Signal restarting
 EDESR<2:0> = '000'; // Clear any pending Halting debug events

 bits(64) new_pc;
 bits(64) spsr;

 if UsingAArch32() then
 new_pc = ZeroExtend(DLR);
 spsr = ZeroExtend(DSPSR);
 else
 new_pc = DLR_EL0;
 spsr = DSPSR_EL0;
 // If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
 if UsingAArch32() then
 SetPSTATEFromPSR(spsr<31:0>); // Can update privileged bits, even at EL0
 else
 SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0

 boolean branch_conditional = FALSE;
 if UsingAArch32() then
 if ConstrainUnpredictableBool() then new_pc<0> = '0';
 // AArch32 branch
 BranchTo(new_pc<31:0>, BranchType_DBGEXIT, branch_conditional);
 else
 // If targeting AArch32 then possibly zero the 32 most significant bits of the target PC
 if spsr<4> == '1' && ConstrainUnpredictableBool() then
 new_pc<63:32> = Zeros();
 // A type of branch that is never predicted
 BranchTo(new_pc, BranchType_DBGEXIT, branch_conditional);

 (EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
 UpdateEDSCRFields(); // Stop signalling PE state
 DisableITRAndResumeInstructionPrefetch();

 return;

shared/debug/halting/Halt

 // Halt()
 // ======

 Halt(bits(6) reason)
I1-440 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt

 bits(64) preferred_restart_address = ThisInstrAddr();
 bits(32) spsr_32;
 bits(64) spsr_64;
 if UsingAArch32() then
 spsr_32 = GetPSRFromPSTATE(DebugState);
 else
 spsr_64 = GetPSRFromPSTATE(DebugState);

 if UsingAArch32() then
 DLR = preferred_restart_address<31:0>;
 DSPSR = spsr_32;
 else
 DLR_EL0 = preferred_restart_address;
 DSPSR_EL0 = spsr_64;

 EDSCR.ITE = '1';
 EDSCR.ITO = '0';
 if IsSecure() then
 EDSCR.SDD = '0'; // If entered in Secure state, allow debug
 elsif HaveEL(EL3) then
 EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';
 else
 assert EDSCR.SDD == '1'; // Otherwise EDSCR.SDD is RES1
 EDSCR.MA = '0';

 // In Debug state:
 // * PSTATE.{SS,SSBS,D,A,I,F} are not observable and ignored so behave-as-if UNKNOWN.
 // * PSTATE.{N,Z,C,V,Q,GE,E,M,nRW,EL,SP,DIT} are also not observable, but since these
 // are not changed on exception entry, this function also leaves them unchanged.
 // * PSTATE.{IT,T} are ignored.
 // * PSTATE.IL is ignored and behave-as-if 0.
 // * PSTATE.{UAO,PAN} are observable and not changed on entry into Debug state.
 if UsingAArch32() then
 PSTATE.<IT,SS,SSBS,A,I,F,T> = bits(14) UNKNOWN;
 else
 PSTATE.<SS,SSBS,D,A,I,F> = bits(6) UNKNOWN;
 PSTATE.IL = '0';

 StopInstructionPrefetchAndEnableITR();
 EDSCR.STATUS = reason; // Signal entered Debug state
 UpdateEDSCRFields(); // Update EDSCR PE state flags.

 return;

shared/debug/halting/HaltOnBreakpointOrWatchpoint

 // HaltOnBreakpointOrWatchpoint()
 // ==============================
 // Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
 // state entry, FALSE if they should be considered for a debug exception.

 boolean HaltOnBreakpointOrWatchpoint()
 return HaltingAllowed() && EDSCR.HDE == '1' && OSLSR_EL1.OSLK == '0';

shared/debug/halting/Halted

 // Halted()
 // ========

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-441
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 boolean Halted()
 return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

shared/debug/halting/HaltingAllowed

 // HaltingAllowed()
 // ================
 // Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.

 boolean HaltingAllowed()
 if Halted() || DoubleLockStatus() then
 return FALSE;
 elsif IsSecure() then
 return ExternalSecureInvasiveDebugEnabled();
 else
 return ExternalInvasiveDebugEnabled();

shared/debug/halting/Restarting

 // Restarting()
 // ============

 boolean Restarting()
 return EDSCR.STATUS == '000001'; // Restarting

shared/debug/halting/StopInstructionPrefetchAndEnableITR

 StopInstructionPrefetchAndEnableITR();

shared/debug/halting/UpdateEDSCRFields

 // UpdateEDSCRFields()
 // ===================
 // Update EDSCR PE state fields

 UpdateEDSCRFields()

 if !Halted() then
 EDSCR.EL = '00';
 EDSCR.NS = bit UNKNOWN;
 EDSCR.RW = '1111';
 else
 EDSCR.EL = PSTATE.EL;
 EDSCR.NS = '0';
 EDSCR.RW = '1111';
 return;

shared/debug/haltingevents/CheckExceptionCatch

 // CheckExceptionCatch()
 // =====================
 // Check whether an Exception Catch debug event is set on the current Exception level

 CheckExceptionCatch(boolean exception_entry)
 // Called after an exception entry or exit, that is, such that IsSecure()
 // and PSTATE.EL are correct for the exception target. When FEAT_Debugv8p2
 // is not implemented, this function might also be called at any time.
 base = if IsSecure() then 0 else 4;
 if HaltingAllowed() then
I1-442 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 if HaveExtendedECDebugEvents() then
 exception_exit = !exception_entry;
 ctrl = EDECCR<UInt(PSTATE.EL) + base + 8>:EDECCR<UInt(PSTATE.EL) + base>;
 case ctrl of
 when '00' halt = FALSE;
 when '01' halt = TRUE;
 when '10' halt = (exception_exit == TRUE);
 when '11' halt = (exception_entry == TRUE);
 else
 halt = (EDECCR<UInt(PSTATE.EL) + base> == '1');
 if halt then Halt(DebugHalt_ExceptionCatch);

shared/debug/haltingevents/CheckHaltingStep

 // CheckHaltingStep()
 // ==================
 // Check whether EDESR.SS has been set by Halting Step

 CheckHaltingStep()
 if HaltingAllowed() && EDESR.SS == '1' then
 // The STATUS code depends on how we arrived at the state where EDESR.SS == 1.
 if HaltingStep_DidNotStep() then
 Halt(DebugHalt_Step_NoSyndrome);
 elsif HaltingStep_SteppedEX() then
 Halt(DebugHalt_Step_Exclusive);
 else
 Halt(DebugHalt_Step_Normal);

shared/debug/haltingevents/CheckOSUnlockCatch

 // CheckOSUnlockCatch()
 // ====================
 // Called on unlocking the OS Lock to pend an OS Unlock Catch debug event

 CheckOSUnlockCatch()

 if (HaveDoPD() && CTIDEVCTL.OSUCE == '1')
 then
 if !Halted() then EDESR.OSUC = '1';

shared/debug/haltingevents/CheckPendingOSUnlockCatch

 // CheckPendingOSUnlockCatch()
 // ===========================
 // Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event

 CheckPendingOSUnlockCatch()
 if HaltingAllowed() && EDESR.OSUC == '1' then
 Halt(DebugHalt_OSUnlockCatch);

shared/debug/haltingevents/CheckPendingResetCatch

 // CheckPendingResetCatch()
 // ========================
 // Check whether EDESR.RC has been set by a Reset Catch debug event

 CheckPendingResetCatch()
 if HaltingAllowed() && EDESR.RC == '1' then
 Halt(DebugHalt_ResetCatch);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-443
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/debug/haltingevents/CheckResetCatch

 // CheckResetCatch()
 // =================
 // Called after reset

 CheckResetCatch()
 if (HaveDoPD() && CTIDEVCTL.RCE == '1') then
 EDESR.RC = '1';
 // If halting is allowed then halt immediately
 if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

 // CheckSoftwareAccessToDebugRegisters()
 // =====================================
 // Check for access to Breakpoint and Watchpoint registers.

 CheckSoftwareAccessToDebugRegisters()
 os_lock = (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK);
 if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '0' then
 Halt(DebugHalt_SoftwareAccess);

shared/debug/haltingevents/ExternalDebugRequest

 // ExternalDebugRequest()
 // ======================

 ExternalDebugRequest()
 if HaltingAllowed() then
 Halt(DebugHalt_EDBGRQ);
 // Otherwise the CTI continues to assert the debug request until it is taken.

shared/debug/haltingevents/HaltingStep_DidNotStep

 // Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
 // if it was not itself stepped.
 boolean HaltingStep_DidNotStep();

shared/debug/haltingevents/HaltingStep_SteppedEX

 // Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
 // executed in the active-not-pending state.
 boolean HaltingStep_SteppedEX();

shared/debug/haltingevents/RunHaltingStep

 // RunHaltingStep()
 // ================

 RunHaltingStep(boolean exception_generated, bits(2) exception_target, boolean syscall,
 boolean reset)
 // "exception_generated" is TRUE if the previous instruction generated a synchronous exception
 // or was cancelled by an asynchronous exception.
 //
 // if "exception_generated" is TRUE then "exception_target" is the target of the exception, and
 // "syscall" is TRUE if the exception is a synchronous exception where the preferred return
 // address is the instruction following that which generated the exception.
 //
I1-444 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 // "reset" is TRUE if exiting reset state into the highest EL.

 if reset then assert !Halted(); // Cannot come out of reset halted
 active = EDECR.SS == '1' && !Halted();

 if active && reset then // Coming out of reset with EDECR.SS set
 EDESR.SS = '1';
 elsif active && HaltingAllowed() then
 if exception_generated && exception_target == EL3 then
 advance = syscall || ExternalSecureInvasiveDebugEnabled();
 else
 advance = TRUE;
 if advance then EDESR.SS = '1';

 return;

shared/debug/interrupts/ExternalDebugInterruptsDisabled

 // ExternalDebugInterruptsDisabled()
 // =================================
 // Determine whether EDSCR disables interrupts routed to 'target'.

 boolean ExternalDebugInterruptsDisabled(bits(2) target)
 if Havev8p4Debug() then
 if target == EL3 || IsSecure() then
 int_dis = (EDSCR.INTdis[0] == '1' && ExternalSecureInvasiveDebugEnabled());
 else
 int_dis = (EDSCR.INTdis[0] == '1');
 else
 case target of
 when EL3
 int_dis = (EDSCR.INTdis == '11' && ExternalSecureInvasiveDebugEnabled());
 when EL2
 int_dis = (EDSCR.INTdis == '1x' && ExternalInvasiveDebugEnabled());
 when EL1
 if IsSecure() then
 int_dis = (EDSCR.INTdis == '1x' && ExternalSecureInvasiveDebugEnabled());
 else
 int_dis = (EDSCR.INTdis != '00' && ExternalInvasiveDebugEnabled());
 return int_dis;

shared/debug/pmu/GetNumEventCounters

 // GetNumEventCounters()
 // =====================
 // Returns the number of event counters implemented. This is indicated to software at the
 // highest Exception level by PMCR.N in AArch32 state, and PMCR_EL0.N in AArch64 state.

 integer GetNumEventCounters()
 return integer IMPLEMENTATION_DEFINED "Number of event counters";

shared/debug/pmu/HasElapsed64Cycles

 // Returns TRUE if 64 cycles have elapsed between the last count, and FALSE otherwise.
 boolean HasElapsed64Cycles();

shared/debug/pmu/PMUCounterMask

 constant integer CYCLE_COUNTER_ID = 31;

 // PMUCounterMask()
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-445
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 // ================
 // Return bitmask of accessible PMU counters.

 bits(32) PMUCounterMask()
 if UsingAArch32() then
 n = AArch32.GetNumEventCountersAccessible();
 else
 n = AArch64.GetNumEventCountersAccessible();
 return '1' : ZeroExtend(Ones(n), 31);

shared/debug/pmu/PMUEvent

 constant bits(16) PMU_EVENT_SW_INCR = 0x0000<15:0>;
 constant bits(16) PMU_EVENT_INST_RETIRED = 0x0008<15:0>;
 constant bits(16) PMU_EVENT_EXC_TAKEN = 0x0009<15:0>;
 constant bits(16) PMU_EVENT_CPU_CYCLES = 0x0011<15:0>;
 constant bits(16) PMU_EVENT_INST_SPEC = 0x001B<15:0>;
 constant bits(16) PMU_EVENT_CHAIN = 0x001E<15:0>;

 // PMUEvent()
 // ==========
 // Generate a PMU event. By default, increment by 1.

 PMUEvent(bits(16) event)
 if UsingAArch32() then
 AArch32.PMUEvent(event, 1);
 else
 AArch64.PMUEvent(event, 1);

shared/debug/samplebasedprofiling/CreatePCSample

 // CreatePCSample()
 // ================

 CreatePCSample()
 // In a simple sequential execution of the program, CreatePCSample is executed each time the PE
 // executes an instruction that can be sampled. An implementation is not constrained such that
 // reads of EDPCSRlo return the current values of PC, etc.

 pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();
 pc_sample.pc = ThisInstrAddr();
 pc_sample.el = PSTATE.EL;
 pc_sample.rw = if UsingAArch32() then '0' else '1';
 pc_sample.ns = if IsSecure() then '0' else '1';
 pc_sample.contextidr = if ELUsingAArch32(EL1) then CONTEXTIDR else CONTEXTIDR_EL1<31:0>;
 pc_sample.has_el2 = PSTATE.EL != EL3 && EL2Enabled();

 if pc_sample.has_el2 then
 if !Have16bitVMID() || VTCR_EL2.VS == '0' then
 pc_sample.vmid = ZeroExtend(VSCTLR_EL2.VMID<7:0>, 16);
 else
 pc_sample.vmid = VSCTLR_EL2.VMID;

 pc_sample.contextidr_el2 = CONTEXTIDR_EL2<31:0>;
 pc_sample.el0h = FALSE;
 return;

shared/debug/samplebasedprofiling/PCSample

 type PCSample is (
 boolean valid,
 bits(64) pc,
 bits(2) el,
I1-446 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 bit rw,
 bit ns,
 boolean has_el2,
 bits(32) contextidr,
 bits(32) contextidr_el2,
 boolean el0h,
 bits(16) vmid
)

 PCSample pc_sample;

shared/debug/samplebasedprofiling/PMPCSR

 // PMPCSR[] (read)
 // ===============

 bits(32) PMPCSR[boolean memory_mapped]

 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
 IMPLEMENTATION_DEFINED "generate error response";
 return bits(32) UNKNOWN;

 // The Software lock is OPTIONAL.
 update = !memory_mapped || PMLSR.SLK == '0'; // Software locked: no side-effects

 if pc_sample.valid then
 sample = pc_sample.pc<31:0>;
 if update then
 PMPCSR<55:32> = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
 PMPCSR.EL = pc_sample.el;
 PMPCSR.NS = pc_sample.ns;

 PMCID1SR = pc_sample.contextidr;
 PMCID2SR = if pc_sample.has_el2 then pc_sample.contextidr_el2 else bits(32) UNKNOWN;

 PMVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0} && !pc_sample.el0h
 then pc_sample.vmid else bits(16) UNKNOWN);
 else
 sample = Ones(32);
 if update then
 PMPCSR<55:32> = bits(24) UNKNOWN;
 PMPCSR.EL = bits(2) UNKNOWN;
 PMPCSR.NS = bit UNKNOWN;

 PMCID1SR = bits(32) UNKNOWN;
 PMCID2SR = bits(32) UNKNOWN;

 PMVIDSR.VMID = bits(16) UNKNOWN;

 return sample;

shared/debug/softwarestep/CheckSoftwareStep

 // CheckSoftwareStep()
 // ===================
 // Take a Software Step exception if in the active-pending state

 CheckSoftwareStep()

 // Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
 // AArch32 state. However, because Software Step is only active when the debug target Exception
 // level is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().
 step_enabled = !ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() && MDSCR_EL1.SS
== '1';
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-447
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 if step_enabled && PSTATE.SS == '0' then
 AArch64.SoftwareStepException();

shared/debug/softwarestep/DebugExceptionReturnSS

 // DebugExceptionReturnSS()
 // ========================
 // Returns value to write to PSTATE.SS on an exception return or Debug state exit.

 bit DebugExceptionReturnSS(bits(N) spsr)
 if UsingAArch32() then
 assert N == 32;
 else
 assert N == 64;

 assert Halted() || Restarting() || PSTATE.EL != EL0;

 if Restarting() then
 enabled_at_source = FALSE;
 elsif UsingAArch32() then
 enabled_at_source = AArch32.GenerateDebugExceptions();
 else
 enabled_at_source = AArch64.GenerateDebugExceptions();

 if IllegalExceptionReturn(spsr) then
 dest = PSTATE.EL;
 else
 (valid, dest) = ELFromSPSR(spsr); assert valid;

 dest_is_secure = IsSecureBelowEL3() || dest == EL3;
 dest_using_32 = (if dest == EL0 then spsr<4> == '1' else ELUsingAArch32(dest));
 if dest_using_32 then
 enabled_at_dest = AArch32.GenerateDebugExceptionsFrom(dest, dest_is_secure);
 else
 mask = spsr<9>;
 enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest, dest_is_secure, mask);

 ELd = DebugTargetFrom(dest_is_secure);
 if !ELUsingAArch32(ELd) && MDSCR_EL1.SS == '1' && !enabled_at_source && enabled_at_dest then
 SS_bit = spsr<21>;
 else
 SS_bit = '0';

 return SS_bit;

shared/debug/softwarestep/SSAdvance

 // SSAdvance()
 // ===========
 // Advance the Software Step state machine.

 SSAdvance()

 // A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
 // current Software Step state machine. However, this check is made to illustrate that the
 // processor only needs to consider advancing the state machine from the active-not-pending
 // state.
 target = DebugTarget();
 step_enabled = !ELUsingAArch32(target) && MDSCR_EL1.SS == '1';
 active_not_pending = step_enabled && PSTATE.SS == '1';

 if active_not_pending then PSTATE.SS = '0';
I1-448 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 return;

shared/debug/softwarestep/SoftwareStep_DidNotStep

 // Returns TRUE if the previously executed instruction was executed in the
 // inactive state, that is, if it was not itself stepped.
 // Might return TRUE or FALSE if the previously executed instruction was an ISB
 // or ERET executed in the active-not-pending state, or if another exception
 // was taken before the Software Step exception. Returns FALSE otherwise,
 // indicating that the previously executed instruction was executed in the
 // active-not-pending state, that is, the instruction was stepped.
 boolean SoftwareStep_DidNotStep();

shared/debug/softwarestep/SoftwareStep_SteppedEX

 // Returns a value that describes the previously executed instruction. The
 // result is valid only if SoftwareStep_DidNotStep() returns FALSE.
 // Might return TRUE or FALSE if the instruction was an AArch32 LDREX or LDAEX
 // that failed its condition code test. Otherwise returns TRUE if the
 // instruction was a Load-Exclusive class instruction, and FALSE if the
 // instruction was not a Load-Exclusive class instruction.
 boolean SoftwareStep_SteppedEX();

I1.2.2 shared/exceptions

This section includes the following pseudocode functions:

• shared/exceptions/exceptions/ConditionSyndrome.

• shared/exceptions/exceptions/Exception on page I1-450.

• shared/exceptions/exceptions/ExceptionRecord on page I1-450.

• shared/exceptions/exceptions/ExceptionSyndrome on page I1-450.

shared/exceptions/exceptions/ConditionSyndrome

 // ConditionSyndrome()
 // ===================
 // Return CV and COND fields of instruction syndrome

 bits(5) ConditionSyndrome()

 bits(5) syndrome;

 if UsingAArch32() then
 cond = AArch32.CurrentCond();
 if PSTATE.T == '0' then // A32
 syndrome<4> = '1';
 // A conditional A32 instruction that is known to pass its condition code check
 // can be presented either with COND set to 0xE, the value for unconditional, or
 // the COND value held in the instruction.
 if ConditionHolds(cond) && ConstrainUnpredictableBool() then
 syndrome<3:0> = '1110';
 else
 syndrome<3:0> = cond;
 else // T32
 // When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
 // * CV set to 0 and COND is set to an UNKNOWN value
 // * CV set to 1 and COND is set to the condition code for the condition that
 // applied to the instruction.
 if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then
 syndrome<4> = '1';
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-449
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 syndrome<3:0> = cond;
 else
 syndrome<4> = '0';
 syndrome<3:0> = bits(4) UNKNOWN;
 else
 syndrome<4> = '1';
 syndrome<3:0> = '1110';

 return syndrome;

shared/exceptions/exceptions/Exception

 enumeration Exception {Exception_Uncategorized, // Uncategorized or unknown reason
 Exception_WFxTrap, // Trapped WFI or WFE instruction
 Exception_CP15RTTrap, // Trapped AArch32 MCR or MRC access,
coproc=0b1111
 Exception_CP15RRTTrap, // Trapped AArch32 MCRR or MRRC access,
coproc=0b1111
 Exception_CP14RTTrap, // Trapped AArch32 MCR or MRC access,
coproc=0b1110
 Exception_CP14DTTrap, // Trapped AArch32 LDC or STC access,
coproc=0b1110
 Exception_CP14RRTTrap, // Trapped AArch32 MRRC access, coproc=0b1110
 Exception_AdvSIMDFPAccessTrap, // HCPTR-trapped access to SIMD or FP
 Exception_FPIDTrap, // Trapped access to SIMD or FP ID register
 // Trapped BXJ instruction not supported in Armv8
 Exception_PACTrap, // Trapped invalid PAC use
 Exception_IllegalState, // Illegal Execution state
 Exception_SupervisorCall, // Supervisor Call
 Exception_HypervisorCall, // Hypervisor Call
 Exception_MonitorCall, // Monitor Call or Trapped SMC instruction
 Exception_SystemRegisterTrap, // Trapped MRS or MSR system register access
 Exception_InstructionAbort, // Instruction Abort or Prefetch Abort
 Exception_PCAlignment, // PC alignment fault
 Exception_DataAbort, // Data Abort
 Exception_PACFail, // PAC Authentication failure
 Exception_SPAlignment, // SP alignment fault
 Exception_FPTrappedException, // IEEE trapped FP exception
 Exception_SError, // SError interrupt
 Exception_Breakpoint, // (Hardware) Breakpoint
 Exception_SoftwareStep, // Software Step
 Exception_Watchpoint, // Watchpoint
 Exception_SoftwareBreakpoint, // Software Breakpoint Instruction
 Exception_VectorCatch, // AArch32 Vector Catch
 Exception_IRQ, // IRQ interrupt
 Exception_FIQ}; // FIQ interrupt

shared/exceptions/exceptions/ExceptionRecord

 type ExceptionRecord is (
 Exception exceptype, // Exception class
 bits(25) syndrome, // Syndrome record
 bits(64) vaddress, // Virtual fault address
 boolean ipavalid, // Validity of Intermediate Physical fault address
 bit NS, // Intermediate Physical fault address space
 bits(52) ipaddress) // Intermediate Physical fault address

shared/exceptions/exceptions/ExceptionSyndrome

 // ExceptionSyndrome()
 // ===================
 // Return a blank exception syndrome record for an exception of the given type.

I1-450 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 ExceptionRecord ExceptionSyndrome(Exception exceptype)

 ExceptionRecord r;

 r.exceptype = exceptype;

 // Initialize all other fields
 r.syndrome = Zeros();
 r.vaddress = Zeros();
 r.ipavalid = FALSE;
 r.NS = '0';
 r.ipaddress = Zeros();
 return r;

I1.2.3 shared/functions

This section includes the following pseudocode functions:

• shared/functions/aborts/EncodeLDFSC on page I1-458.

• shared/functions/aborts/IPAValid on page I1-458.

• shared/functions/aborts/IsAsyncAbort on page I1-459.

• shared/functions/aborts/IsDebugException on page I1-459.

• shared/functions/aborts/IsExternalAbort on page I1-459.

• shared/functions/aborts/IsExternalSyncAbort on page I1-460.

• shared/functions/aborts/IsFault on page I1-460.

• shared/functions/aborts/IsSErrorInterrupt on page I1-460.

• shared/functions/aborts/IsSecondStage on page I1-461.

• shared/functions/aborts/LSInstructionSyndrome on page I1-461.

• shared/functions/cache/CACHE_OP on page I1-461.

• shared/functions/cache/CPASAtPAS on page I1-461.

• shared/functions/cache/CPASAtSecurityState on page I1-461.

• shared/functions/cache/CacheOp on page I1-462.

• shared/functions/cache/CacheOpScope on page I1-462.

• shared/functions/cache/CachePASpace on page I1-462.

• shared/functions/cache/CacheRecord on page I1-462.

• shared/functions/cache/CacheType on page I1-463.

• shared/functions/cache/DCInstNeedsTranslation on page I1-463.

• shared/functions/cache/DecodeSW on page I1-463.

• shared/functions/cache/GetCacheInfo on page I1-463.

• shared/functions/cache/ICInstNeedsTranslation on page I1-463.

• shared/functions/common/ASR on page I1-463.

• shared/functions/common/ASR_C on page I1-464.

• shared/functions/common/Abs on page I1-464.

• shared/functions/common/Align on page I1-464.

• shared/functions/common/BitCount on page I1-464.

• shared/functions/common/CountLeadingSignBits on page I1-465.

• shared/functions/common/CountLeadingZeroBits on page I1-465.

• shared/functions/common/Elem on page I1-465.

• shared/functions/common/Extend on page I1-465.

• shared/functions/common/HighestSetBit on page I1-466.

• shared/functions/common/Int on page I1-466.

• shared/functions/common/IsOnes on page I1-466.

• shared/functions/common/IsZero on page I1-466.

• shared/functions/common/IsZeroBit on page I1-466.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-451
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
• shared/functions/common/LSL on page I1-466.

• shared/functions/common/LSL_C on page I1-467.

• shared/functions/common/LSR on page I1-467.

• shared/functions/common/LSR_C on page I1-467.

• shared/functions/common/LowestSetBit on page I1-467.

• shared/functions/common/Max on page I1-467.

• shared/functions/common/Min on page I1-468.

• shared/functions/common/Ones on page I1-468.

• shared/functions/common/ROR on page I1-468.

• shared/functions/common/ROR_C on page I1-468.

• shared/functions/common/Replicate on page I1-468.

• shared/functions/common/RoundDown on page I1-469.

• shared/functions/common/RoundTowardsZero on page I1-469.

• shared/functions/common/RoundUp on page I1-469.

• shared/functions/common/SInt on page I1-469.

• shared/functions/common/SignExtend on page I1-469.

• shared/functions/common/UInt on page I1-469.

• shared/functions/common/ZeroExtend on page I1-470.

• shared/functions/common/Zeros on page I1-470.

• shared/functions/counters/AArch32.CheckTimerConditions on page I1-470.

• shared/functions/counters/AArch64.CheckTimerConditions on page I1-471.

• shared/functions/counters/GenericCounterTick on page I1-471.

• shared/functions/counters/IsTimerConditionMet on page I1-472.

• shared/functions/counters/PhysicalCount on page I1-472.

• shared/functions/counters/SetEventRegister on page I1-472.

• shared/functions/counters/TestEventCNTP on page I1-472.

• shared/functions/counters/TestEventCNTV on page I1-472.

• shared/functions/crc/BitReverse on page I1-473.

• shared/functions/crc/HaveCRCExt on page I1-473.

• shared/functions/crc/Poly32Mod2 on page I1-473.

• shared/functions/crypto/AESInvMixColumns on page I1-473.

• shared/functions/crypto/AESInvShiftRows on page I1-474.

• shared/functions/crypto/AESInvSubBytes on page I1-474.

• shared/functions/crypto/AESMixColumns on page I1-475.

• shared/functions/crypto/AESShiftRows on page I1-475.

• shared/functions/crypto/AESSubBytes on page I1-475.

• shared/functions/crypto/FFmul02 on page I1-476.

• shared/functions/crypto/FFmul03 on page I1-476.

• shared/functions/crypto/FFmul09 on page I1-477.

• shared/functions/crypto/FFmul0B on page I1-477.

• shared/functions/crypto/FFmul0D on page I1-478.

• shared/functions/crypto/FFmul0E on page I1-478.

• shared/functions/crypto/HaveAESExt on page I1-478.

• shared/functions/crypto/HaveBit128PMULLExt on page I1-479.

• shared/functions/crypto/HaveSHA1Ext on page I1-479.

• shared/functions/crypto/HaveSHA256Ext on page I1-479.

• shared/functions/crypto/HaveSHA3Ext on page I1-479.

• shared/functions/crypto/HaveSHA512Ext on page I1-479.

• shared/functions/crypto/HaveSM3Ext on page I1-480.

• shared/functions/crypto/HaveSM4Ext on page I1-480.
I1-452 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
• shared/functions/crypto/ROL on page I1-480.

• shared/functions/crypto/SHA256hash on page I1-480.

• shared/functions/crypto/SHAchoose on page I1-481.

• shared/functions/crypto/SHAhashSIGMA0 on page I1-481.

• shared/functions/crypto/SHAhashSIGMA1 on page I1-481.

• shared/functions/crypto/SHAmajority on page I1-481.

• shared/functions/crypto/SHAparity on page I1-481.

• shared/functions/crypto/Sbox on page I1-481.

• shared/functions/exclusive/ClearExclusiveByAddress on page I1-482.

• shared/functions/exclusive/ClearExclusiveLocal on page I1-482.

• shared/functions/exclusive/ClearExclusiveMonitors on page I1-482.

• shared/functions/exclusive/ExclusiveMonitorsStatus on page I1-482.

• shared/functions/exclusive/IsExclusiveGlobal on page I1-482.

• shared/functions/exclusive/IsExclusiveLocal on page I1-482.

• shared/functions/exclusive/MarkExclusiveGlobal on page I1-482.

• shared/functions/exclusive/MarkExclusiveLocal on page I1-482.

• shared/functions/exclusive/ProcessorID on page I1-483.

• shared/functions/extension/AArch64.HaveHPDExt on page I1-483.

• shared/functions/extension/ArchHasVMSAExtension on page I1-483.

• shared/functions/extension/Have16bitVMID on page I1-483.

• shared/functions/extension/Have52BitPAExt on page I1-483.

• shared/functions/extension/Have52BitVAExt on page I1-483.

• shared/functions/extension/HaveAtomicExt on page I1-484.

• shared/functions/extension/HaveBlockBBM on page I1-484.

• shared/functions/extension/HaveCommonNotPrivateTransExt on page I1-484.

• shared/functions/extension/HaveDGHExt on page I1-484.

• shared/functions/extension/HaveDITExt on page I1-484.

• shared/functions/extension/HaveDOTPExt on page I1-484.

• shared/functions/extension/HaveDoPD on page I1-485.

• shared/functions/extension/HaveDoubleLock on page I1-485.

• shared/functions/extension/HaveE0PDExt on page I1-485.

• shared/functions/extension/HaveEL1VMSAExt on page I1-485.

• shared/functions/extension/HaveExtendedCacheSets on page I1-485.

• shared/functions/extension/HaveExtendedECDebugEvents on page I1-485.

• shared/functions/extension/HaveExtendedExecuteNeverExt on page I1-486.

• shared/functions/extension/HaveFCADDExt on page I1-486.

• shared/functions/extension/HaveFJCVTZSExt on page I1-486.

• shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext on page I1-486.

• shared/functions/extension/HaveFlagManipulateExt on page I1-486.

• shared/functions/extension/HaveHPMDExt on page I1-486.

• shared/functions/extension/HaveIDSExt on page I1-487.

• shared/functions/extension/HaveIESB on page I1-487.

• shared/functions/extension/HaveLSE2Ext on page I1-487.

• shared/functions/extension/HaveNoSecurePMUDisableOverride on page I1-487.

• shared/functions/extension/HaveNoninvasiveDebugAuth on page I1-487.

• shared/functions/extension/HavePANExt on page I1-487.

• shared/functions/extension/HavePMUv3 on page I1-487.

• shared/functions/extension/HavePageBasedHardwareAttributes on page I1-488.

• shared/functions/extension/HavePrivATExt on page I1-488.

• shared/functions/extension/HaveQRDMLAHExt on page I1-488.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-453
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
• shared/functions/extension/HaveRASExt on page I1-488.

• shared/functions/extension/HaveSBExt on page I1-488.

• shared/functions/extension/HaveSSBSExt on page I1-488.

• shared/functions/extension/HaveSecureEL2Ext on page I1-489.

• shared/functions/extension/HaveSecureExtDebugView on page I1-489.

• shared/functions/extension/HaveSelfHostedTrace on page I1-489.

• shared/functions/extension/HaveSmallTranslationTblExt on page I1-489.

• shared/functions/extension/HaveSoftwareLock on page I1-489.

• shared/functions/extension/HaveStage2MemAttrControl on page I1-490.

• shared/functions/extension/HaveTraceExt on page I1-490.

• shared/functions/extension/HaveUAOExt on page I1-490.

• shared/functions/extension/HaveV82Debug on page I1-490.

• shared/functions/extension/Havev8p4Debug on page I1-490.

• shared/functions/extension/InsertIESBBeforeException on page I1-490.

• shared/functions/externalaborts/HandleExternalAbort on page I1-491.

• shared/functions/externalaborts/HandleExternalReadAbort on page I1-491.

• shared/functions/externalaborts/HandleExternalTTWAbort on page I1-491.

• shared/functions/externalaborts/HandleExternalWriteAbort on page I1-492.

• shared/functions/externalaborts/IsExternalAbortTakenSynchronously on page I1-492.

• shared/functions/externalaborts/PEErrorState on page I1-493.

• shared/functions/externalaborts/PendSErrorInterrupt on page I1-493.

• shared/functions/float/fixedtofp/FixedToFP on page I1-493.

• shared/functions/float/fpabs/FPAbs on page I1-493.

• shared/functions/float/fpadd/FPAdd on page I1-494.

• shared/functions/float/fpcompare/FPCompare on page I1-494.

• shared/functions/float/fpcompareeq/FPCompareEQ on page I1-495.

• shared/functions/float/fpcomparege/FPCompareGE on page I1-495.

• shared/functions/float/fpcomparegt/FPCompareGT on page I1-495.

• shared/functions/float/fpconvert/FPConvert on page I1-496.

• shared/functions/float/fpconvertnan/FPConvertNaN on page I1-496.

• shared/functions/float/fpcrtype/FPCRType on page I1-497.

• shared/functions/float/fpdecoderm/FPDecodeRM on page I1-497.

• shared/functions/float/fpdecoderounding/FPDecodeRounding on page I1-497.

• shared/functions/float/fpdefaultnan/FPDefaultNaN on page I1-497.

• shared/functions/float/fpdiv/FPDiv on page I1-498.

• shared/functions/float/fpexc/FPExc on page I1-498.

• shared/functions/float/fpinfinity/FPInfinity on page I1-498.

• shared/functions/float/fpmax/FPMax on page I1-498.

• shared/functions/float/fpmaxnormal/FPMaxNormal on page I1-499.

• shared/functions/float/fpmaxnum/FPMaxNum on page I1-499.

• shared/functions/float/fpmerge/IsMerging on page I1-500.

• shared/functions/float/fpmin/FPMin on page I1-500.

• shared/functions/float/fpminnum/FPMinNum on page I1-500.

• shared/functions/float/fpmul/FPMul on page I1-501.

• shared/functions/float/fpmuladd/FPMulAdd on page I1-501.

• shared/functions/float/fpmuladdh/FPMulAddH on page I1-502.

• shared/functions/float/fpmuladdh/FPProcessNaNs3H on page I1-503.

• shared/functions/float/fpmulx/FPMulX on page I1-503.

• shared/functions/float/fpneg/FPNeg on page I1-504.

• shared/functions/float/fponepointfive/FPOnePointFive on page I1-504.
I1-454 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
• shared/functions/float/fpprocessexception/FPProcessException on page I1-504.

• shared/functions/float/fpprocessnan/FPProcessNaN on page I1-505.

• shared/functions/float/fpprocessnans/FPProcessNaNs on page I1-505.

• shared/functions/float/fpprocessnans3/FPProcessNaNs3 on page I1-506.

• shared/functions/float/fprecipestimate/FPRecipEstimate on page I1-506.

• shared/functions/float/fprecipestimate/RecipEstimate on page I1-508.

• shared/functions/float/fprecpx/FPRecpX on page I1-508.

• shared/functions/float/fpround/FPRound on page I1-509.

• shared/functions/float/fpround/FPRoundBase on page I1-509.

• shared/functions/float/fpround/FPRoundCV on page I1-511.

• shared/functions/float/fprounding/FPRounding on page I1-511.

• shared/functions/float/fproundingmode/FPRoundingMode on page I1-511.

• shared/functions/float/fproundint/FPRoundInt on page I1-511.

• shared/functions/float/fproundintn/FPRoundIntN on page I1-512.

• shared/functions/float/fprsqrtestimate/FPRSqrtEstimate on page I1-513.

• shared/functions/float/fprsqrtestimate/RecipSqrtEstimate on page I1-514.

• shared/functions/float/fpsqrt/FPSqrt on page I1-514.

• shared/functions/float/fpsub/FPSub on page I1-515.

• shared/functions/float/fpthree/FPThree on page I1-515.

• shared/functions/float/fptofixed/FPToFixed on page I1-516.

• shared/functions/float/fptofixedjs/FPToFixedJS on page I1-516.

• shared/functions/float/fptwo/FPTwo on page I1-517.

• shared/functions/float/fptype/FPType on page I1-517.

• shared/functions/float/fpunpack/FPUnpack on page I1-518.

• shared/functions/float/fpunpack/FPUnpackBase on page I1-518.

• shared/functions/float/fpunpack/FPUnpackCV on page I1-519.

• shared/functions/float/fpzero/FPZero on page I1-519.

• shared/functions/float/vfpexpandimm/VFPExpandImm on page I1-520.

• shared/functions/integer/AddWithCarry on page I1-520.

• shared/functions/interrupts/InterruptID on page I1-520.

• shared/functions/interrupts/SetInterruptRequestLevel on page I1-520.

• shared/functions/memory/AArch64.BranchAddr on page I1-520.

• shared/functions/memory/AccType on page I1-521.

• shared/functions/memory/AccessDescriptor on page I1-521.

• shared/functions/memory/AddrTop on page I1-521.

• shared/functions/memory/Allocation on page I1-521.

• shared/functions/memory/BigEndian on page I1-522.

• shared/functions/memory/BigEndianReverse on page I1-522.

• shared/functions/memory/Cacheability on page I1-522.

• shared/functions/memory/CreateAccessDescriptor on page I1-522.

• shared/functions/memory/DataMemoryBarrier on page I1-522.

• shared/functions/memory/DataSynchronizationBarrier on page I1-522.

• shared/functions/memory/DeviceType on page I1-522.

• shared/functions/memory/EffectiveTBI on page I1-523.

• shared/functions/memory/Fault on page I1-523.

• shared/functions/memory/FaultRecord on page I1-523.

• shared/functions/memory/FullAddress on page I1-524.

• shared/functions/memory/Hint_Prefetch on page I1-524.

• shared/functions/memory/MBReqDomain on page I1-524.

• shared/functions/memory/MBReqTypes on page I1-524.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-455
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
• shared/functions/memory/MPURecord on page I1-524.

• shared/functions/memory/MemAttrHints on page I1-524.

• shared/functions/memory/MemType on page I1-524.

• shared/functions/memory/MemoryAttributes on page I1-525.

• shared/functions/memory/PASpace on page I1-525.

• shared/functions/memory/Permissions on page I1-525.

• shared/functions/memory/PhysMemRead on page I1-525.

• shared/functions/memory/PhysMemRetStatus on page I1-525.

• shared/functions/memory/PhysMemWrite on page I1-525.

• shared/functions/memory/PrefetchHint on page I1-526.

• shared/functions/memory/Shareability on page I1-526.

• shared/functions/memory/SpeculativeStoreBypassBarrierToPA on page I1-526.

• shared/functions/memory/SpeculativeStoreBypassBarrierToVA on page I1-526.

• shared/functions/predictionrestrict/ASID on page I1-526.

• shared/functions/predictionrestrict/ExecutionCntxt on page I1-526.

• shared/functions/predictionrestrict/RESTRICT_PREDICTIONS on page I1-526.

• shared/functions/predictionrestrict/RestrictType on page I1-527.

• shared/functions/predictionrestrict/TargetSecurityState on page I1-527.

• shared/functions/registers/BranchTo on page I1-527.

• shared/functions/registers/BranchToAddr on page I1-527.

• shared/functions/registers/BranchType on page I1-528.

• shared/functions/registers/Hint_Branch on page I1-528.

• shared/functions/registers/NextInstrAddr on page I1-528.

• shared/functions/registers/ResetExternalDebugRegisters on page I1-528.

• shared/functions/registers/ThisInstrAddr on page I1-528.

• shared/functions/registers/_PC on page I1-528.

• shared/functions/registers/_R on page I1-528.

• shared/functions/registers/_V on page I1-529.

• shared/functions/sysregisters/SPSR on page I1-529.

• shared/functions/system/ArchVersion on page I1-529.

• shared/functions/system/ClearEventRegister on page I1-530.

• shared/functions/system/ClearPendingPhysicalSError on page I1-530.

• shared/functions/system/ClearPendingVirtualSError on page I1-530.

• shared/functions/system/ConditionHolds on page I1-530.

• shared/functions/system/ConsumptionOfSpeculativeDataBarrier on page I1-530.

• shared/functions/system/CurrentInstrSet on page I1-530.

• shared/functions/system/CurrentPL on page I1-531.

• shared/functions/system/EL0 on page I1-531.

• shared/functions/system/EL2Enabled on page I1-531.

• shared/functions/system/ELFromM32 on page I1-531.

• shared/functions/system/ELFromSPSR on page I1-532.

• shared/functions/system/ELUsingAArch32 on page I1-532.

• shared/functions/system/ELUsingAArch32K on page I1-532.

• shared/functions/system/EndOfInstruction on page I1-532.

• shared/functions/system/EnterLowPowerState on page I1-533.

• shared/functions/system/EventRegister on page I1-533.

• shared/functions/system/ExceptionalOccurrenceTargetState on page I1-533.

• shared/functions/system/FIQPending on page I1-533.

• shared/functions/system/GetAccumulatedFPExceptions on page I1-533.

• shared/functions/system/GetPSRFromPSTATE on page I1-533.
I1-456 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
• shared/functions/system/HasArchVersion on page I1-534.

• shared/functions/system/HaveAArch32 on page I1-534.

• shared/functions/system/HaveAArch32EL on page I1-534.

• shared/functions/system/HaveAArch64 on page I1-534.

• shared/functions/system/HaveEL on page I1-535.

• shared/functions/system/HaveELUsingSecurityState on page I1-535.

• shared/functions/system/HaveFP16Ext on page I1-535.

• shared/functions/system/HighestEL on page I1-535.

• shared/functions/system/Hint_DGH on page I1-536.

• shared/functions/system/Hint_WFE on page I1-536.

• shared/functions/system/Hint_WFI on page I1-536.

• shared/functions/system/Hint_Yield on page I1-536.

• shared/functions/system/IRQPending on page I1-536.

• shared/functions/system/IllegalExceptionReturn on page I1-537.

• shared/functions/system/InstrSet on page I1-537.

• shared/functions/system/InstructionSynchronizationBarrier on page I1-537.

• shared/functions/system/InterruptPending on page I1-537.

• shared/functions/system/IsASEInstruction on page I1-538.

• shared/functions/system/IsEventRegisterSet on page I1-538.

• shared/functions/system/IsHighestEL on page I1-538.

• shared/functions/system/IsPhysicalSErrorPending on page I1-538.

• shared/functions/system/IsSErrorEdgeTriggered on page I1-538.

• shared/functions/system/IsSecure on page I1-539.

• shared/functions/system/IsSecureBelowEL3 on page I1-539.

• shared/functions/system/IsSecureEL2Enabled on page I1-539.

• shared/functions/system/IsSynchronizablePhysicalSErrorPending on page I1-539.

• shared/functions/system/IsVirtualSErrorPending on page I1-539.

• shared/functions/system/Mode_Bits on page I1-539.

• shared/functions/system/PLOfEL on page I1-540.

• shared/functions/system/PSTATE on page I1-540.

• shared/functions/system/PhysicalCountInt on page I1-540.

• shared/functions/system/PrivilegeLevel on page I1-540.

• shared/functions/system/ProcState on page I1-540.

• shared/functions/system/RestoredITBits on page I1-541.

• shared/functions/system/SecurityState on page I1-541.

• shared/functions/system/SendEvent on page I1-541.

• shared/functions/system/SendEventLocal on page I1-541.

• shared/functions/system/SetAccumulatedFPExceptions on page I1-541.

• shared/functions/system/SetPSTATEFromPSR on page I1-542.

• shared/functions/system/ShouldAdvanceIT on page I1-542.

• shared/functions/system/ShouldAdvanceSS on page I1-543.

• shared/functions/system/SpeculationBarrier on page I1-543.

• shared/functions/system/SynchronizeContext on page I1-543.

• shared/functions/system/SynchronizeErrors on page I1-543.

• shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts on page I1-543.

• shared/functions/system/TakeUnmaskedSErrorInterrupts on page I1-543.

• shared/functions/system/ThisInstr on page I1-543.

• shared/functions/system/ThisInstrLength on page I1-543.

• shared/functions/system/Unreachable on page I1-543.

• shared/functions/system/UsingAArch32 on page I1-543.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-457
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
• shared/functions/system/VirtualFIQPending on page I1-544.

• shared/functions/system/VirtualIRQPending on page I1-544.

• shared/functions/system/WFxType on page I1-544.

• shared/functions/system/WaitForEvent on page I1-544.

• shared/functions/system/WaitForInterrupt on page I1-544.

• shared/functions/unpredictable/ConstrainUnpredictable on page I1-544.

• shared/functions/unpredictable/ConstrainUnpredictableBits on page I1-545.

• shared/functions/unpredictable/ConstrainUnpredictableBool on page I1-545.

• shared/functions/unpredictable/ConstrainUnpredictableInteger on page I1-545.

• shared/functions/unpredictable/Constraint on page I1-545.

• shared/functions/vector/AdvSIMDExpandImm on page I1-546.

• shared/functions/vector/PolynomialMult on page I1-546.

• shared/functions/vector/SatQ on page I1-546.

• shared/functions/vector/SignedSatQ on page I1-547.

• shared/functions/vector/UnsignedRSqrtEstimate on page I1-547.

• shared/functions/vector/UnsignedRecipEstimate on page I1-547.

• shared/functions/vector/UnsignedSatQ on page I1-547.

shared/functions/aborts/EncodeLDFSC

 // EncodeLDFSC()
 // =============
 // Function that gives the Long-descriptor FSC code for types of Fault

 bits(6) EncodeLDFSC(Fault statuscode, integer level)
 bits(6) result;

 case statuscode of
 when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {1,2,3};
 when Fault_Permission result = '0011':level<1:0>; assert level IN {0,1,2,3};
 when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncExternal result = '010000';
 when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
 when Fault_SyncParity result = '011000';
 when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
 when Fault_AsyncParity result = '011001';
 when Fault_AsyncExternal result = '010001';
 when Fault_Alignment result = '100001';
 when Fault_Debug result = '100010';
 when Fault_TLBConflict result = '110000';
 when Fault_HWUpdateAccessFlag result = '110001';
 when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
 when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
 otherwise Unreachable();

 return result;

shared/functions/aborts/IPAValid

 // IPAValid()
 // ==========
 // Return TRUE if the IPA is reported for the abort

 boolean IPAValid(FaultRecord fault)
 assert fault.statuscode != Fault_None;

 if fault.s2fs1walk then
 return fault.statuscode IN {
 Fault_AccessFlag,
I1-458 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 Fault_Permission,
 Fault_Translation,
 Fault_AddressSize
 };
 elsif fault.secondstage then
 return fault.statuscode IN {
 Fault_AccessFlag,
 Fault_Translation,
 Fault_AddressSize
 };
 else
 return FALSE;

shared/functions/aborts/IsAsyncAbort

 // IsAsyncAbort()
 // ==============
 // Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
 // otherwise.

 boolean IsAsyncAbort(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

 // IsAsyncAbort()
 // ==============

 boolean IsAsyncAbort(FaultRecord fault)
 return IsAsyncAbort(fault.statuscode);

shared/functions/aborts/IsDebugException

 // IsDebugException()
 // ==================

 boolean IsDebugException(FaultRecord fault)
 assert fault.statuscode != Fault_None;
 return fault.statuscode == Fault_Debug;

shared/functions/aborts/IsExternalAbort

 // IsExternalAbort()
 // =================
 // Returns TRUE if the abort currently being processed is an External abort and FALSE otherwise.

 boolean IsExternalAbort(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {
 Fault_SyncExternal,
 Fault_SyncParity,
 Fault_SyncExternalOnWalk,
 Fault_SyncParityOnWalk,
 Fault_AsyncExternal,
 Fault_AsyncParity
 });

 // IsExternalAbort()
 // =================

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-459
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 boolean IsExternalAbort(FaultRecord fault)
 return IsExternalAbort(fault.statuscode);

shared/functions/aborts/IsExternalSyncAbort

 // IsExternalSyncAbort()
 // =====================
 // Returns TRUE if the abort currently being processed is an external
 // synchronous abort and FALSE otherwise.

 boolean IsExternalSyncAbort(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {
 Fault_SyncExternal,
 Fault_SyncParity,
 Fault_SyncExternalOnWalk,
 Fault_SyncParityOnWalk
 });

 // IsExternalSyncAbort()
 // =====================

 boolean IsExternalSyncAbort(FaultRecord fault)
 return IsExternalSyncAbort(fault.statuscode);

shared/functions/aborts/IsFault

 // IsFault()
 // =========
 // Return TRUE if a fault is associated with an address descriptor

 boolean IsFault(AddressDescriptor addrdesc)
 return addrdesc.fault.statuscode != Fault_None;

 // IsFault()
 // =========
 // Return TRUE if a fault is associated with a memory access.

 boolean IsFault(Fault fault)
 return fault != Fault_None;

 // IsFault()
 // =========
 // Return TRUE if a fault is associated with status returned by memory.

 boolean IsFault(PhysMemRetStatus retstatus)
 return retstatus.statuscode != Fault_None;

shared/functions/aborts/IsSErrorInterrupt

 // IsSErrorInterrupt()
 // ===================
 // Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE
 // otherwise.

 boolean IsSErrorInterrupt(Fault statuscode)
 assert statuscode != Fault_None;

 return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

 // IsSErrorInterrupt()
 // ===================
I1-460 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 boolean IsSErrorInterrupt(FaultRecord fault)
 return IsSErrorInterrupt(fault.statuscode);

shared/functions/aborts/IsSecondStage

 // IsSecondStage()
 // ===============

 boolean IsSecondStage(FaultRecord fault)
 assert fault.statuscode != Fault_None;

 return fault.secondstage;

shared/functions/aborts/LSInstructionSyndrome

 // Returns the extended syndrome information for a second stage fault.
 // <10> - Syndrome valid bit. The syndrome is only valid for certain types of access instruction.
 // <9:8> - Access size.
 // <7> - Sign extended (for loads).
 // <6:2> - Transfer register.
 // <1> - Transfer register is 64-bit.
 // <0> - Instruction has acquire/release semantics.
 bits(11) LSInstructionSyndrome();

shared/functions/cache/CACHE_OP

 // CACHE_OP()
 // ==========
 // Performs Cache maintenance operations as per CacheRecord.

 CACHE_OP(CacheRecord cache)
 IMPLEMENTATION_DEFINED;

shared/functions/cache/CPASAtPAS

 // CPASAtPAS()
 // ===========
 // Get cache PA space for given PA space.

 CachePASpace CPASAtPAS(PASpace pas)
 case pas of
 when PAS_NonSecure
 return CPAS_NonSecure;
 when PAS_Secure
 return CPAS_Secure;

shared/functions/cache/CPASAtSecurityState

 // CPASAtSecurityState()
 // =====================
 // Get cache PA space for given security state.

 CachePASpace CPASAtSecurityState(SecurityState ss)
 case ss of
 when SS_NonSecure
 return CPAS_NonSecure;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-461
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 when SS_Secure
 return CPAS_SecureNonSecure;

shared/functions/cache/CacheOp

 enumeration CacheOp {
 CacheOp_Clean,
 CacheOp_Invalidate,
 CacheOp_CleanInvalidate
 };

shared/functions/cache/CacheOpScope

 enumeration CacheOpScope {
 CacheOpScope_SetWay,
 CacheOpScope_PoU,
 CacheOpScope_PoC,
 CacheOpScope_PoP,
 CacheOpScope_PoDP,
 CacheOpScope_ALLU,
 CacheOpScope_ALLUIS
 };

shared/functions/cache/CachePASpace

 enumeration CachePASpace {
 CPAS_NonSecure,
 CPAS_SecureNonSecure, // match entries from Secure or Non-Secure PAS
 CPAS_Secure
 };

shared/functions/cache/CacheRecord

 type CacheRecord is (
 AccType acctype, // Access type
 CacheOp cacheop, // Cache operation
 CacheOpScope opscope, // Cache operation type
 CacheType cachetype, // Cache type
 bits(64) regval,
 FullAddress paddress,
 bits(64) vaddress, // For VA operations
 integer set, // For SW operations
 integer way, // For SW operations
 integer level, // For SW operations
 Shareability shareability,
 boolean translated,
 boolean is_vmid_valid, // is vmid valid for current context
 bits(16) vmid,
 boolean is_asid_valid, // is asid valid for current context
 bits(16) asid,
 SecurityState security,
 // For cache operations to full cache or by set/way
 // For operations by address, PA space in paddress
 CachePASpace cpas
)
I1-462 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/cache/CacheType

 enumeration CacheType {
 CacheType_Data,
 CacheType_Instruction
 };

shared/functions/cache/DCInstNeedsTranslation

 // DCInstNeedsTranslation()
 // ========================
 // Check whether Data Cache operation needs translation.

 boolean DCInstNeedsTranslation(CacheOpScope opscope)
 if CLIDR_EL1.LoC == '000' then
 return !boolean IMPLEMENTATION_DEFINED "No fault generated for DC operations if PoC is before
any level of cache";

 if CLIDR_EL1.LoUU == '000' && opscope == CacheOpScope_PoU then
 return !boolean IMPLEMENTATION_DEFINED "No fault generated for DC operations if PoU is before
any level of cache";

 return TRUE;

shared/functions/cache/DecodeSW

 // DecodeSW()
 // ==========
 // Decode input value into set, way and level for SW instructions.

 (integer, integer, integer) DecodeSW(bits(64) regval, CacheType cachetype)
 level = UInt(regval[3:1]);
 (set, way, linesize) = GetCacheInfo(level, cachetype);
 return (set, way, level);

shared/functions/cache/GetCacheInfo

 // Returns numsets, assosciativity & linesize.
 (integer, integer, integer) GetCacheInfo(integer level, CacheType cachetype);

shared/functions/cache/ICInstNeedsTranslation

 // ICInstNeedsTranslation()
 // ========================
 // Check whether Instruction Cache operation needs translation.

 boolean ICInstNeedsTranslation(CacheOpScope opscope)
 return boolean IMPLEMENTATION_DEFINED "Instruction Cache needs translation";

shared/functions/common/ASR

 // ASR()
 // =====

 bits(N) ASR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-463
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 (result, -) = ASR_C(x, shift);
 return result;

shared/functions/common/ASR_C

 // ASR_C()
 // =======

 (bits(N), bit) ASR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = SignExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/Abs

 // Abs()
 // =====

 integer Abs(integer x)
 return if x >= 0 then x else -x;

 // Abs()
 // =====

 real Abs(real x)
 return if x >= 0.0 then x else -x;

shared/functions/common/Align

 // Align()
 // =======

 integer Align(integer x, integer y)
 return y * (x DIV y);

 // Align()
 // =======

 bits(N) Align(bits(N) x, integer y)
 return Align(UInt(x), y)<N-1:0>;

shared/functions/common/BitCount

 // BitCount()
 // ==========

 integer BitCount(bits(N) x)
 integer result = 0;
 for i = 0 to N-1
 if x<i> == '1' then
 result = result + 1;
 return result;
I1-464 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/common/CountLeadingSignBits

 // CountLeadingSignBits()
 // ======================

 integer CountLeadingSignBits(bits(N) x)
 return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

shared/functions/common/CountLeadingZeroBits

 // CountLeadingZeroBits()
 // ======================

 integer CountLeadingZeroBits(bits(N) x)
 return N - (HighestSetBit(x) + 1);

shared/functions/common/Elem

 // Elem[] - non-assignment form
 // ============================

 bits(size) Elem[bits(N) vector, integer e, integer size]
 assert e >= 0 && (e+1)*size <= N;
 return vector<e*size+size-1 : e*size>;

 // Elem[] - non-assignment form
 // ============================

 bits(size) Elem[bits(N) vector, integer e]
 return Elem[vector, e, size];

 // Elem[] - assignment form
 // ========================

 Elem[bits(N) &vector, integer e, integer size] = bits(size) value
 assert e >= 0 && (e+1)*size <= N;
 vector<(e+1)*size-1:e*size> = value;
 return;

 // Elem[] - assignment form
 // ========================

 Elem[bits(N) &vector, integer e] = bits(size) value
 Elem[vector, e, size] = value;
 return;

shared/functions/common/Extend

 // Extend()
 // ========

 bits(N) Extend(bits(M) x, integer N, boolean unsigned)
 return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);

 // Extend()
 // ========

 bits(N) Extend(bits(M) x, boolean unsigned)
 return Extend(x, N, unsigned);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-465
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/common/HighestSetBit

 // HighestSetBit()
 // ===============

 integer HighestSetBit(bits(N) x)
 for i = N-1 downto 0
 if x<i> == '1' then return i;
 return -1;

shared/functions/common/Int

 // Int()
 // =====

 integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

shared/functions/common/IsOnes

 // IsOnes()
 // ========

 boolean IsOnes(bits(N) x)
 return x == Ones(N);

shared/functions/common/IsZero

 // IsZero()
 // ========

 boolean IsZero(bits(N) x)
 return x == Zeros(N);

shared/functions/common/IsZeroBit

 // IsZeroBit()
 // ===========

 bit IsZeroBit(bits(N) x)
 return if IsZero(x) then '1' else '0';

shared/functions/common/LSL

 // LSL()
 // =====

 bits(N) LSL(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSL_C(x, shift);
 return result;
I1-466 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/common/LSL_C

 // LSL_C()
 // =======

 (bits(N), bit) LSL_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = x : Zeros(shift);
 result = extended_x<N-1:0>;
 carry_out = extended_x<N>;
 return (result, carry_out);

shared/functions/common/LSR

 // LSR()
 // =====

 bits(N) LSR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSR_C(x, shift);
 return result;

shared/functions/common/LSR_C

 // LSR_C()
 // =======

 (bits(N), bit) LSR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = ZeroExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

shared/functions/common/LowestSetBit

 // LowestSetBit()
 // ==============

 integer LowestSetBit(bits(N) x)
 for i = 0 to N-1
 if x<i> == '1' then return i;
 return N;

shared/functions/common/Max

 // Max()
 // =====

 integer Max(integer a, integer b)
 return if a >= b then a else b;

 // Max()
 // =====

 real Max(real a, real b)
 return if a >= b then a else b;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-467
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/common/Min

 // Min()
 // =====

 integer Min(integer a, integer b)
 return if a <= b then a else b;

 // Min()
 // =====

 real Min(real a, real b)
 return if a <= b then a else b;

shared/functions/common/Ones

 // Ones()
 // ======

 bits(N) Ones(integer N)
 return Replicate('1',N);

 // Ones()
 // ======

 bits(N) Ones()
 return Ones(N);

shared/functions/common/ROR

 // ROR()
 // =====

 bits(N) ROR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ROR_C(x, shift);
 return result;

shared/functions/common/ROR_C

 // ROR_C()
 // =======

 (bits(N), bit) ROR_C(bits(N) x, integer shift)
 assert shift != 0;
 m = shift MOD N;
 result = LSR(x,m) OR LSL(x,N-m);
 carry_out = result<N-1>;
 return (result, carry_out);

shared/functions/common/Replicate

 // Replicate()
 // ===========

 bits(N) Replicate(bits(M) x)
 assert N MOD M == 0;
 return Replicate(x, N DIV M);
I1-468 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 bits(M*N) Replicate(bits(M) x, integer N);

shared/functions/common/RoundDown

 integer RoundDown(real x);

shared/functions/common/RoundTowardsZero

 // RoundTowardsZero()
 // ==================

 integer RoundTowardsZero(real x)
 return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);

shared/functions/common/RoundUp

 integer RoundUp(real x);

shared/functions/common/SInt

 // SInt()
 // ======

 integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 if x<N-1> == '1' then result = result - 2^N;
 return result;

shared/functions/common/SignExtend

 // SignExtend()
 // ============

 bits(N) SignExtend(bits(M) x, integer N)
 assert N >= M;
 return Replicate(x<M-1>, N-M) : x;

 // SignExtend()
 // ============

 bits(N) SignExtend(bits(M) x)
 return SignExtend(x, N);

shared/functions/common/UInt

 // UInt()
 // ======

 integer UInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == '1' then result = result + 2^i;
 return result;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-469
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/common/ZeroExtend

 // ZeroExtend()
 // ============

 bits(N) ZeroExtend(bits(M) x, integer N)
 assert N >= M;
 return Zeros(N-M) : x;

 // ZeroExtend()
 // ============

 bits(N) ZeroExtend(bits(M) x)
 return ZeroExtend(x, N);

shared/functions/common/Zeros

 // Zeros()
 // =======

 bits(N) Zeros(integer N)
 return Replicate('0',N);

 // Zeros()
 // =======

 bits(N) Zeros()
 return Zeros(N);

shared/functions/counters/AArch32.CheckTimerConditions

 // AArch32.CheckTimerConditions()
 // ==============================
 // Checking timer conditions for all A32 timer registers

 AArch32.CheckTimerConditions()
 boolean status;
 bits(64) offset;
 offset = Zeros(64);
 assert !HaveAArch64();

 if HaveEL(EL3) then
 if CNTP_CTL_S.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTP_CVAL_S,
 CNTP_CTL_S.IMASK, InterruptID_CNTPS);
 CNTP_CTL_S.ISTATUS = if status then '1' else '0';

 if CNTP_CTL_NS.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTP_CVAL_NS,
 CNTP_CTL_NS.IMASK, InterruptID_CNTP);
 CNTP_CTL_NS.ISTATUS = if status then '1' else '0';
 else
 if CNTP_CTL.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTP_CVAL,
 CNTP_CTL.IMASK, InterruptID_CNTP);
 CNTP_CTL.ISTATUS = if status then '1' else '0';

 if HaveEL(EL2) && CNTHP_CTL.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTHP_CVAL,
 CNTHP_CTL.IMASK, InterruptID_CNTHP);
 CNTHP_CTL.ISTATUS = if status then '1' else '0';

 if CNTV_CTL_EL0.ENABLE == '1' then
 status = IsTimerConditionMet(CNTVOFF_EL2, CNTV_CVAL_EL0,
I1-470 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 CNTV_CTL_EL0.IMASK, InterruptID_CNTV);
 CNTV_CTL_EL0.ISTATUS = if status then '1' else '0';

 return;

shared/functions/counters/AArch64.CheckTimerConditions

 // AArch64.CheckTimerConditions()
 // ==============================
 // Checking timer conditions for all A64 timer registers

 AArch64.CheckTimerConditions()
 boolean status;
 bits(64) offset;
 offset = Zeros(64);

 if CNTP_CTL_EL0.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTP_CVAL_EL0,
 CNTP_CTL_EL0.IMASK, InterruptID_CNTP);
 CNTP_CTL_EL0.ISTATUS = if status then '1' else '0';
 if HaveEL(EL2) && HaveSecureEL2Ext() && CNTHPS_CTL_EL2.ENABLE == '1' then
 status = IsTimerConditionMet(Zeros(64), CNTHPS_CVAL_EL2,
 CNTHPS_CTL_EL2.IMASK, InterruptID_CNTHPS);
 CNTHPS_CTL_EL2.ISTATUS = if status then '1' else '0';

 if CNTPS_CTL_EL1.ENABLE == '1' then
 status = IsTimerConditionMet(offset, CNTPS_CVAL_EL1,
 CNTPS_CTL_EL1.IMASK, InterruptID_CNTPS);
 CNTPS_CTL_EL1.ISTATUS = if status then '1' else '0';

 if CNTV_CTL_EL0.ENABLE == '1' then
 status = IsTimerConditionMet(CNTVOFF_EL2, CNTV_CVAL_EL0,
 CNTV_CTL_EL0.IMASK, InterruptID_CNTV);
 CNTV_CTL_EL0.ISTATUS = if status then '1' else '0';

 return;

shared/functions/counters/GenericCounterTick

 // GenericCounterTick()
 // ====================
 // Increments PhysicalCount value for every clock tick.

 GenericCounterTick()
 bits(64) prev_physical_count;
 if CNTCR.EN == '0' then
 if !HaveAArch64() then
 AArch32.CheckTimerConditions();
 else
 AArch64.CheckTimerConditions();
 return;
 prev_physical_count = PhysicalCountInt();
 PhysicalCount<63:0> = PhysicalCount<63:0> + 1;
 if !HaveAArch64() then
 AArch32.CheckTimerConditions();
 else
 AArch64.CheckTimerConditions();
 TestEventCNTP(prev_physical_count, PhysicalCountInt());
 TestEventCNTV(prev_physical_count, PhysicalCountInt());
 return;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-471
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/counters/IsTimerConditionMet

 // IsTimerConditionMet()
 // =====================

 boolean IsTimerConditionMet(bits(64) offset, bits(64) compare_value,
 bits(1) imask, InterruptID intid)
 boolean conditon_met;
 signal level;
 condition_met = (UInt(PhysicalCountInt() - offset) -
 UInt(compare_value)) >= 0;
 level = if condition_met && imask == '0' then HIGH else LOW;
 SetInterruptRequestLevel(intid, level);
 return condition_met;

shared/functions/counters/PhysicalCount

 bits(64) PhysicalCount;

shared/functions/counters/SetEventRegister

 // SetEventRegister()
 // ==================
 // Sets the Event Register of this PE

 SetEventRegister()
 EventRegister = '1';
 return;

shared/functions/counters/TestEventCNTP

 // TestEventCNTP()
 // ===============
 // Generate Event stream from the physical counter

 TestEventCNTP(bits(64) prev_physical_count, bits(64) current_physical_count)
 bits(64) offset;
 bits(1) samplebit, previousbit;
 if CNTHCTL_EL2.EVNTEN == '1' then
 n = UInt(CNTHCTL_EL2.EVNTI);
 offset = Zeros(64);
 samplebit = (current_physical_count - offset)<n>;
 previousbit = (prev_physical_count - offset)<n>;
 if CNTHCTL_EL2.EVNTDIR == '0' then
 if previousbit == '0' && samplebit == '1' then SetEventRegister();
 else
 if previousbit == '1' && samplebit == '0' then SetEventRegister();
 return;

shared/functions/counters/TestEventCNTV

 // TestEventCNTV()
 // ===============
 // Generate Event stream from the virtual counter

 TestEventCNTV(bits(64) prev_physical_count, bits(64) current_physical_count)
 bits(64) offset;
 bits(1) samplebit, previousbit;
 if CNTKCTL_EL1.EVNTEN == '1' then
 n = UInt(CNTKCTL_EL1.EVNTI);
 offset = CNTVOFF_EL2;
I1-472 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 samplebit = (current_physical_count - offset)<n>;
 previousbit = (prev_physical_count - offset)<n>;
 if CNTKCTL_EL1.EVNTDIR == '0' then
 if previousbit == '0' && samplebit == '1' then SetEventRegister();
 else
 if previousbit == '1' && samplebit == '0' then SetEventRegister();
 return;

shared/functions/crc/BitReverse

 // BitReverse()
 // ============

 bits(N) BitReverse(bits(N) data)
 bits(N) result;
 for i = 0 to N-1
 result<N-i-1> = data<i>;
 return result;

shared/functions/crc/HaveCRCExt

 // HaveCRCExt()
 // ============

 boolean HaveCRCExt()
 return HasArchVersion(ARMv8p1) || boolean IMPLEMENTATION_DEFINED "Have CRC extension";

shared/functions/crc/Poly32Mod2

 // Poly32Mod2()
 // ============

 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation

 bits(32) Poly32Mod2(bits(N) data, bits(32) poly)
 assert N > 32;
 for i = N-1 downto 32
 if data<i> == '1' then
 data<i-1:0> = data<i-1:0> EOR (poly:Zeros(i-32));
 return data<31:0>;

shared/functions/crypto/AESInvMixColumns

 // AESInvMixColumns()
 // ==================
 // Transformation in the Inverse Cipher that is the inverse of AESMixColumns.

 bits(128) AESInvMixColumns(bits (128) op)
 bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
 bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
 bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
 bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

 bits(4*8) out0;
 bits(4*8) out1;
 bits(4*8) out2;
 bits(4*8) out3;

 for c = 0 to 3
 out0<c*8+:8> = FFmul0E(in0<c*8+:8>) EOR FFmul0B(in1<c*8+:8>) EOR FFmul0D(in2<c*8+:8>) EOR
FFmul09(in3<c*8+:8>);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-473
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 out1<c*8+:8> = FFmul09(in0<c*8+:8>) EOR FFmul0E(in1<c*8+:8>) EOR FFmul0B(in2<c*8+:8>) EOR
FFmul0D(in3<c*8+:8>);
 out2<c*8+:8> = FFmul0D(in0<c*8+:8>) EOR FFmul09(in1<c*8+:8>) EOR FFmul0E(in2<c*8+:8>) EOR
FFmul0B(in3<c*8+:8>);
 out3<c*8+:8> = FFmul0B(in0<c*8+:8>) EOR FFmul0D(in1<c*8+:8>) EOR FFmul09(in2<c*8+:8>) EOR
FFmul0E(in3<c*8+:8>);

 return (
 out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
 out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
 out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
 out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>
);

shared/functions/crypto/AESInvShiftRows

 // AESInvShiftRows()
 // =================
 // Transformation in the Inverse Cipher that is inverse of AESShiftRows.

 bits(128) AESInvShiftRows(bits(128) op)
 return (
 op< 24+:8> : op< 48+:8> : op< 72+:8> : op< 96+:8> :
 op<120+:8> : op< 16+:8> : op< 40+:8> : op< 64+:8> :
 op< 88+:8> : op<112+:8> : op< 8+:8> : op< 32+:8> :
 op< 56+:8> : op< 80+:8> : op<104+:8> : op< 0+:8>
);

shared/functions/crypto/AESInvSubBytes

 // AESInvSubBytes()
 // ================
 // Transformation in the Inverse Cipher that is the inverse of AESSubBytes.

 bits(128) AESInvSubBytes(bits(128) op)
 // Inverse S-box values
 bits(16*16*8) GF2_inv = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x7d0c2155631469e126d677ba7e042b17<127:0> :
 /*E*/ 0x619953833cbbebc8b0f52aae4d3be0a0<127:0> :
 /*D*/ 0xef9cc9939f7ae52d0d4ab519a97f5160<127:0> :
 /*C*/ 0x5fec8027591012b131c7078833a8dd1f<127:0> :
 /*B*/ 0xf45acd78fec0db9a2079d2c64b3e56fc<127:0> :
 /*A*/ 0x1bbe18aa0e62b76f89c5291d711af147<127:0> :
 /*9*/ 0x6edf751ce837f9e28535ade72274ac96<127:0> :
 /*8*/ 0x73e6b4f0cecff297eadc674f4111913a<127:0> :
 /*7*/ 0x6b8a130103bdafc1020f3fca8f1e2cd0<127:0> :
 /*6*/ 0x0645b3b80558e4f70ad3bc8c00abd890<127:0> :
 /*5*/ 0x849d8da75746155edab9edfd5048706c<127:0> :
 /*4*/ 0x92b6655dcc5ca4d41698688664f6f872<127:0> :
 /*3*/ 0x25d18b6d49a25b76b224d92866a12e08<127:0> :
 /*2*/ 0x4ec3fa420b954cee3d23c2a632947b54<127:0> :
 /*1*/ 0xcbe9dec444438e3487ff2f9b8239e37c<127:0> :
 /*0*/ 0xfbd7f3819ea340bf38a53630d56a0952<127:0>
);
 bits(128) out;
 for i = 0 to 15
 out<i*8+:8> = GF2_inv<UInt(op<i*8+:8>)*8+:8>;
 return out;
I1-474 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/crypto/AESMixColumns

 // AESMixColumns()
 // ===============
 // Transformation in the Cipher that takes all of the columns of the
 // State and mixes their data (independently of one another) to
 // produce new columns.

 bits(128) AESMixColumns(bits (128) op)
 bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
 bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
 bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
 bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

 bits(4*8) out0;
 bits(4*8) out1;
 bits(4*8) out2;
 bits(4*8) out3;

 for c = 0 to 3
 out0<c*8+:8> = FFmul02(in0<c*8+:8>) EOR FFmul03(in1<c*8+:8>) EOR in2<c*8+:8> EOR
in3<c*8+:8>;
 out1<c*8+:8> = in0<c*8+:8> EOR FFmul02(in1<c*8+:8>) EOR FFmul03(in2<c*8+:8>) EOR
in3<c*8+:8>;
 out2<c*8+:8> = in0<c*8+:8> EOR in1<c*8+:8> EOR FFmul02(in2<c*8+:8>) EOR
FFmul03(in3<c*8+:8>);
 out3<c*8+:8> = FFmul03(in0<c*8+:8>) EOR in1<c*8+:8> EOR in2<c*8+:8> EOR
FFmul02(in3<c*8+:8>);

 return (
 out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
 out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
 out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
 out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>
);

shared/functions/crypto/AESShiftRows

 // AESShiftRows()
 // ==============
 // Transformation in the Cipher that processes the State by cyclically
 // shifting the last three rows of the State by different offsets.

 bits(128) AESShiftRows(bits(128) op)
 return (
 op< 88+:8> : op< 48+:8> : op< 8+:8> : op< 96+:8> :
 op< 56+:8> : op< 16+:8> : op<104+:8> : op< 64+:8> :
 op< 24+:8> : op<112+:8> : op< 72+:8> : op< 32+:8> :
 op<120+:8> : op< 80+:8> : op< 40+:8> : op< 0+:8>
);

shared/functions/crypto/AESSubBytes

 // AESSubBytes()
 // =============
 // Transformation in the Cipher that processes the State using a nonlinear
 // byte substitution table (S-box) that operates on each of the State bytes
 // independently.

 bits(128) AESSubBytes(bits(128) op)
 // S-box values
 bits(16*16*8) GF2 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x16bb54b00f2d99416842e6bf0d89a18c<127:0> :
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-475
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 /*E*/ 0xdf2855cee9871e9b948ed9691198f8e1<127:0> :
 /*D*/ 0x9e1dc186b95735610ef6034866b53e70<127:0> :
 /*C*/ 0x8a8bbd4b1f74dde8c6b4a61c2e2578ba<127:0> :
 /*B*/ 0x08ae7a65eaf4566ca94ed58d6d37c8e7<127:0> :
 /*A*/ 0x79e4959162acd3c25c2406490a3a32e0<127:0> :
 /*9*/ 0xdb0b5ede14b8ee4688902a22dc4f8160<127:0> :
 /*8*/ 0x73195d643d7ea7c41744975fec130ccd<127:0> :
 /*7*/ 0xd2f3ff1021dab6bcf5389d928f40a351<127:0> :
 /*6*/ 0xa89f3c507f02f94585334d43fbaaefd0<127:0> :
 /*5*/ 0xcf584c4a39becb6a5bb1fc20ed00d153<127:0> :
 /*4*/ 0x842fe329b3d63b52a05a6e1b1a2c8309<127:0> :
 /*3*/ 0x75b227ebe28012079a059618c323c704<127:0> :
 /*2*/ 0x1531d871f1e5a534ccf73f362693fdb7<127:0> :
 /*1*/ 0xc072a49cafa2d4adf04759fa7dc982ca<127:0> :
 /*0*/ 0x76abd7fe2b670130c56f6bf27b777c63<127:0>
);
 bits(128) out;
 for i = 0 to 15
 out<i*8+:8> = GF2<UInt(op<i*8+:8>)*8+:8>;
 return out;

shared/functions/crypto/FFmul02

 // FFmul02()
 // =========

 bits(8) FFmul02(bits(8) b)
 bits(256*8) FFmul_02 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0xE5E7E1E3EDEFE9EBF5F7F1F3FDFFF9FB<127:0> :
 /*E*/ 0xC5C7C1C3CDCFC9CBD5D7D1D3DDDFD9DB<127:0> :
 /*D*/ 0xA5A7A1A3ADAFA9ABB5B7B1B3BDBFB9BB<127:0> :
 /*C*/ 0x858781838D8F898B959791939D9F999B<127:0> :
 /*B*/ 0x656761636D6F696B757771737D7F797B<127:0> :
 /*A*/ 0x454741434D4F494B555751535D5F595B<127:0> :
 /*9*/ 0x252721232D2F292B353731333D3F393B<127:0> :
 /*8*/ 0x050701030D0F090B151711131D1F191B<127:0> :
 /*7*/ 0xFEFCFAF8F6F4F2F0EEECEAE8E6E4E2E0<127:0> :
 /*6*/ 0xDEDCDAD8D6D4D2D0CECCCAC8C6C4C2C0<127:0> :
 /*5*/ 0xBEBCBAB8B6B4B2B0AEACAAA8A6A4A2A0<127:0> :
 /*4*/ 0x9E9C9A98969492908E8C8A8886848280<127:0> :
 /*3*/ 0x7E7C7A78767472706E6C6A6866646260<127:0> :
 /*2*/ 0x5E5C5A58565452504E4C4A4846444240<127:0> :
 /*1*/ 0x3E3C3A38363432302E2C2A2826242220<127:0> :
 /*0*/ 0x1E1C1A18161412100E0C0A0806040200<127:0>
);
 return FFmul_02<UInt(b)*8+:8>;

shared/functions/crypto/FFmul03

 // FFmul03()
 // =========

 bits(8) FFmul03(bits(8) b)
 bits(256*8) FFmul_03 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x1A191C1F16151013020104070E0D080B<127:0> :
 /*E*/ 0x2A292C2F26252023323134373E3D383B<127:0> :
 /*D*/ 0x7A797C7F76757073626164676E6D686B<127:0> :
 /*C*/ 0x4A494C4F46454043525154575E5D585B<127:0> :
 /*B*/ 0xDAD9DCDFD6D5D0D3C2C1C4C7CECDC8CB<127:0> :
 /*A*/ 0xEAE9ECEFE6E5E0E3F2F1F4F7FEFDF8FB<127:0> :
 /*9*/ 0xBAB9BCBFB6B5B0B3A2A1A4A7AEADA8AB<127:0> :
 /*8*/ 0x8A898C8F86858083929194979E9D989B<127:0> :
I1-476 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 /*7*/ 0x818287848D8E8B88999A9F9C95969390<127:0> :
 /*6*/ 0xB1B2B7B4BDBEBBB8A9AAAFACA5A6A3A0<127:0> :
 /*5*/ 0xE1E2E7E4EDEEEBE8F9FAFFFCF5F6F3F0<127:0> :
 /*4*/ 0xD1D2D7D4DDDEDBD8C9CACFCCC5C6C3C0<127:0> :
 /*3*/ 0x414247444D4E4B48595A5F5C55565350<127:0> :
 /*2*/ 0x717277747D7E7B78696A6F6C65666360<127:0> :
 /*1*/ 0x212227242D2E2B28393A3F3C35363330<127:0> :
 /*0*/ 0x111217141D1E1B18090A0F0C05060300<127:0>
);
 return FFmul_03<UInt(b)*8+:8>;

shared/functions/crypto/FFmul09

 // FFmul09()
 // =========

 bits(8) FFmul09(bits(8) b)
 bits(256*8) FFmul_09 = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x464F545D626B70790E071C152A233831<127:0> :
 /*E*/ 0xD6DFC4CDF2FBE0E99E978C85BAB3A8A1<127:0> :
 /*D*/ 0x7D746F6659504B42353C272E1118030A<127:0> :
 /*C*/ 0xEDE4FFF6C9C0DBD2A5ACB7BE8188939A<127:0> :
 /*B*/ 0x3039222B141D060F78716A635C554E47<127:0> :
 /*A*/ 0xA0A9B2BB848D969FE8E1FAF3CCC5DED7<127:0> :
 /*9*/ 0x0B0219102F263D34434A5158676E757C<127:0> :
 /*8*/ 0x9B928980BFB6ADA4D3DAC1C8F7FEE5EC<127:0> :
 /*7*/ 0xAAA3B8B18E879C95E2EBF0F9C6CFD4DD<127:0> :
 /*6*/ 0x3A3328211E170C05727B6069565F444D<127:0> :
 /*5*/ 0x9198838AB5BCA7AED9D0CBC2FDF4EFE6<127:0> :
 /*4*/ 0x0108131A252C373E49405B526D647F76<127:0> :
 /*3*/ 0xDCD5CEC7F8F1EAE3949D868FB0B9A2AB<127:0> :
 /*2*/ 0x4C455E5768617A73040D161F2029323B<127:0> :
 /*1*/ 0xE7EEF5FCC3CAD1D8AFA6BDB48B829990<127:0> :
 /*0*/ 0x777E656C535A41483F362D241B120900<127:0>
);
 return FFmul_09<UInt(b)*8+:8>;

shared/functions/crypto/FFmul0B

 // FFmul0B()
 // =========

 bits(8) FFmul0B(bits(8) b)
 bits(256*8) FFmul_0B = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0xA3A8B5BE8F849992FBF0EDE6D7DCC1CA<127:0> :
 /*E*/ 0x1318050E3F3429224B405D56676C717A<127:0> :
 /*D*/ 0xD8D3CEC5F4FFE2E9808B969DACA7BAB1<127:0> :
 /*C*/ 0x68637E75444F5259303B262D1C170A01<127:0> :
 /*B*/ 0x555E434879726F640D061B10212A373C<127:0> :
 /*A*/ 0xE5EEF3F8C9C2DFD4BDB6ABA0919A878C<127:0> :
 /*9*/ 0x2E2538330209141F767D606B5A514C47<127:0> :
 /*8*/ 0x9E958883B2B9A4AFC6CDD0DBEAE1FCF7<127:0> :
 /*7*/ 0x545F424978736E650C071A11202B363D<127:0> :
 /*6*/ 0xE4EFF2F9C8C3DED5BCB7AAA1909B868D<127:0> :
 /*5*/ 0x2F2439320308151E777C616A5B504D46<127:0> :
 /*4*/ 0x9F948982B3B8A5AEC7CCD1DAEBE0FDF6<127:0> :
 /*3*/ 0xA2A9B4BF8E859893FAF1ECE7D6DDC0CB<127:0> :
 /*2*/ 0x1219040F3E3528234A415C57666D707B<127:0> :
 /*1*/ 0xD9D2CFC4F5FEE3E8818A979CADA6BBB0<127:0> :
 /*0*/ 0x69627F74454E5358313A272C1D160B00<127:0>
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-477
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
);
 return FFmul_0B<UInt(b)*8+:8>;

shared/functions/crypto/FFmul0D

 // FFmul0D()
 // =========

 bits(8) FFmul0D(bits(8) b)
 bits(256*8) FFmul_0D = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x979A8D80A3AEB9B4FFF2E5E8CBC6D1DC<127:0> :
 /*E*/ 0x474A5D50737E69642F2235381B16010C<127:0> :
 /*D*/ 0x2C21363B1815020F44495E53707D6A67<127:0> :
 /*C*/ 0xFCF1E6EBC8C5D2DF94998E83A0ADBAB7<127:0> :
 /*B*/ 0xFAF7E0EDCEC3D4D9929F8885A6ABBCB1<127:0> :
 /*A*/ 0x2A27303D1E130409424F5855767B6C61<127:0> :
 /*9*/ 0x414C5B5675786F622924333E1D10070A<127:0> :
 /*8*/ 0x919C8B86A5A8BFB2F9F4E3EECDC0D7DA<127:0> :
 /*7*/ 0x4D40575A7974636E25283F32111C0B06<127:0> :
 /*6*/ 0x9D90878AA9A4B3BEF5F8EFE2C1CCDBD6<127:0> :
 /*5*/ 0xF6FBECE1C2CFD8D59E938489AAA7B0BD<127:0> :
 /*4*/ 0x262B3C31121F08054E4354597A77606D<127:0> :
 /*3*/ 0x202D3A3714190E034845525F7C71666B<127:0> :
 /*2*/ 0xF0FDEAE7C4C9DED39895828FACA1B6BB<127:0> :
 /*1*/ 0x9B96818CAFA2B5B8F3FEE9E4C7CADDD0<127:0> :
 /*0*/ 0x4B46515C7F726568232E3934171A0D00<127:0>
);
 return FFmul_0D<UInt(b)*8+:8>;

shared/functions/crypto/FFmul0E

 // FFmul0E()
 // =========

 bits(8) FFmul0E(bits(8) b)
 bits(256*8) FFmul_0E = (
 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
 /*F*/ 0x8D83919FB5BBA9A7FDF3E1EFC5CBD9D7<127:0> :
 /*E*/ 0x6D63717F555B49471D13010F252B3937<127:0> :
 /*D*/ 0x56584A446E60727C26283A341E10020C<127:0> :
 /*C*/ 0xB6B8AAA48E80929CC6C8DAD4FEF0E2EC<127:0> :
 /*B*/ 0x202E3C321816040A505E4C426866747A<127:0> :
 /*A*/ 0xC0CEDCD2F8F6E4EAB0BEACA28886949A<127:0> :
 /*9*/ 0xFBF5E7E9C3CDDFD18B859799B3BDAFA1<127:0> :
 /*8*/ 0x1B150709232D3F316B657779535D4F41<127:0> :
 /*7*/ 0xCCC2D0DEF4FAE8E6BCB2A0AE848A9896<127:0> :
 /*6*/ 0x2C22303E141A08065C52404E646A7876<127:0> :
 /*5*/ 0x17190B052F21333D67697B755F51434D<127:0> :
 /*4*/ 0xF7F9EBE5CFC1D3DD87899B95BFB1A3AD<127:0> :
 /*3*/ 0x616F7D735957454B111F0D032927353B<127:0> :
 /*2*/ 0x818F9D93B9B7A5ABF1FFEDE3C9C7D5DB<127:0> :
 /*1*/ 0xBAB4A6A8828C9E90CAC4D6D8F2FCEEE0<127:0> :
 /*0*/ 0x5A544648626C7E702A243638121C0E00<127:0>
);
 return FFmul_0E<UInt(b)*8+:8>;

shared/functions/crypto/HaveAESExt

 // HaveAESExt()
 // ============
 // TRUE if AES cryptographic instructions support is implemented,
 // FALSE otherwise.
I1-478 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 boolean HaveAESExt()
 return boolean IMPLEMENTATION_DEFINED "Has AES Crypto instructions";

shared/functions/crypto/HaveBit128PMULLExt

 // HaveBit128PMULLExt()
 // ====================
 // TRUE if 128 bit form of PMULL instructions support is implemented,
 // FALSE otherwise.

 boolean HaveBit128PMULLExt()
 return boolean IMPLEMENTATION_DEFINED "Has 128-bit form of PMULL instructions";

shared/functions/crypto/HaveSHA1Ext

 // HaveSHA1Ext()
 // =============
 // TRUE if SHA1 cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSHA1Ext()
 return boolean IMPLEMENTATION_DEFINED "Has SHA1 Crypto instructions";

shared/functions/crypto/HaveSHA256Ext

 // HaveSHA256Ext()
 // ===============
 // TRUE if SHA256 cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSHA256Ext()
 return boolean IMPLEMENTATION_DEFINED "Has SHA256 Crypto instructions";

shared/functions/crypto/HaveSHA3Ext

 // HaveSHA3Ext()
 // =============
 // TRUE if SHA3 cryptographic instructions support is implemented,
 // and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSHA3Ext()
 if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SHA3 Crypto instructions";

shared/functions/crypto/HaveSHA512Ext

 // HaveSHA512Ext()
 // ===============
 // TRUE if SHA512 cryptographic instructions support is implemented,
 // and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSHA512Ext()
 if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-479
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SHA512 Crypto instructions";

shared/functions/crypto/HaveSM3Ext

 // HaveSM3Ext()
 // ============
 // TRUE if SM3 cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSM3Ext()
 if !HasArchVersion(ARMv8p2) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SM3 Crypto instructions";

shared/functions/crypto/HaveSM4Ext

 // HaveSM4Ext()
 // ============
 // TRUE if SM4 cryptographic instructions support is implemented,
 // FALSE otherwise.

 boolean HaveSM4Ext()
 if !HasArchVersion(ARMv8p2) then
 return FALSE;
 return boolean IMPLEMENTATION_DEFINED "Has SM4 Crypto instructions";

shared/functions/crypto/ROL

 // ROL()
 // =====

 bits(N) ROL(bits(N) x, integer shift)
 assert shift >= 0 && shift <= N;
 if (shift == 0) then
 return x;
 return ROR(x, N-shift);

shared/functions/crypto/SHA256hash

 // SHA256hash()
 // ============

 bits(128) SHA256hash(bits (128) X, bits(128) Y, bits(128) W, boolean part1)
 bits(32) chs, maj, t;

 for e = 0 to 3
 chs = SHAchoose(Y<31:0>, Y<63:32>, Y<95:64>);
 maj = SHAmajority(X<31:0>, X<63:32>, X<95:64>);
 t = Y<127:96> + SHAhashSIGMA1(Y<31:0>) + chs + Elem[W, e, 32];
 X<127:96> = t + X<127:96>;
 Y<127:96> = t + SHAhashSIGMA0(X<31:0>) + maj;
 <Y, X> = ROL(Y : X, 32);
 return (if part1 then X else Y);
I1-480 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/crypto/SHAchoose

 // SHAchoose()
 // ===========

 bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
 return (((y EOR z) AND x) EOR z);

shared/functions/crypto/SHAhashSIGMA0

 // SHAhashSIGMA0()
 // ===============

 bits(32) SHAhashSIGMA0(bits(32) x)
 return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

shared/functions/crypto/SHAhashSIGMA1

 // SHAhashSIGMA1()
 // ===============

 bits(32) SHAhashSIGMA1(bits(32) x)
 return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

shared/functions/crypto/SHAmajority

 // SHAmajority()
 // =============

 bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
 return ((x AND y) OR ((x OR y) AND z));

shared/functions/crypto/SHAparity

 // SHAparity()
 // ===========

 bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
 return (x EOR y EOR z);

shared/functions/crypto/Sbox

 // Sbox()
 // ======
 // Used in SM4E crypto instruction

 bits(8) Sbox(bits(8) sboxin)
 bits(8) sboxout;
 bits(2048) sboxstring =
0xd690e9fecce13db716b614c228fb2c052b679a762abe04c3aa441326498606999c4250f491ef987a33540b43edcfac62e4b31ca
9c908e89580df94fa758f3fa64707a7fcf37317ba83593c19e6854fa8686b81b27164da8bf8eb0f4b70569d351e240e5e6358d1a2
25227c3b01217887d40046579fd327524c3602e7a0c4c89eeabf8ad240c738b5a3f7f2cef96115a1e0ae5da49b341a55ad933230f
58cb1e31df6e22e8266ca60c02923ab0d534e6fd5db3745defd8e2f03ff6a726d6c5b518d1baf92bbddbc7f11d95c411f105ad80a
c13188a5cd7bbd2d74d012b8e5b4b08969974a0c96777e65b9f109c56ec68418f07dec3adc4d2079ee5f3ed7cb3948<2047:0>;

 sboxout = sboxstring<(255-UInt(sboxin))*8+7:(255-UInt(sboxin))*8>;
 return sboxout;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-481
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/exclusive/ClearExclusiveByAddress

 // Clear the global Exclusives monitors for all PEs EXCEPT processorid if they
 // record any part of the physical address region of size bytes starting at paddress.
 // It is IMPLEMENTATION DEFINED whether the global Exclusives monitor for processorid
 // is also cleared if it records any part of the address region.
 ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/ClearExclusiveLocal

 // Clear the local Exclusives monitor for the specified processorid.
 ClearExclusiveLocal(integer processorid);

shared/functions/exclusive/ClearExclusiveMonitors

 // ClearExclusiveMonitors()
 // ========================
 // Clear the local Exclusives monitor for the executing PE.

 ClearExclusiveMonitors()
 ClearExclusiveLocal(ProcessorID());

shared/functions/exclusive/ExclusiveMonitorsStatus

 // Returns '0' to indicate success if the last memory write by this PE was to
 // the same physical address region endorsed by ExclusiveMonitorsPass().
 // Returns '1' to indicate failure if address translation resulted in a different
 // physical address.
 bit ExclusiveMonitorsStatus();

shared/functions/exclusive/IsExclusiveGlobal

 // Return TRUE if the global Exclusives monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/IsExclusiveLocal

 // Return TRUE if the local Exclusives monitor for processorid includes all of
 // the physical address region of size bytes starting at paddress.
 boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveGlobal

 // Record the physical address region of size bytes starting at paddress in
 // the global Exclusives monitor for processorid.
 MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

shared/functions/exclusive/MarkExclusiveLocal

 // Record the physical address region of size bytes starting at paddress in
 // the local Exclusives monitor for processorid.
 MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);
I1-482 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/exclusive/ProcessorID

 // Return the ID of the currently executing PE.
 integer ProcessorID();

shared/functions/extension/AArch64.HaveHPDExt

 // AArch64.HaveHPDExt()
 // ====================

 boolean AArch64.HaveHPDExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/ArchHasVMSAExtension

 // ArchHasVMSAExtension()
 // ======================

 boolean ArchHasVMSAExtension()
 return HaveEL1VMSAExt();

shared/functions/extension/Have16bitVMID

 // Have16bitVMID()
 // ===============
 // Returns TRUE if EL2 and support for a 16-bit VMID are implemented.

 boolean Have16bitVMID()
 return (HasArchVersion(ARMv8p1) && HaveEL(EL2) &&
 boolean IMPLEMENTATION_DEFINED "Has 16-bit VMID");

shared/functions/extension/Have52BitPAExt

 // Have52BitPAExt()
 // ================
 // Returns TRUE if Large Physical Address extension
 // support is implemented and FALSE otherwise.

 boolean Have52BitPAExt()
 return (HasArchVersion(ARMv8p2) &&
 boolean IMPLEMENTATION_DEFINED "Has large 52-bit PA/IPA support");

shared/functions/extension/Have52BitVAExt

 // Have52BitVAExt()
 // ================
 // Returns TRUE if Large Virtual Address extension
 // support is implemented and FALSE otherwise.

 boolean Have52BitVAExt()
 return (HasArchVersion(ARMv8p2) &&
 boolean IMPLEMENTATION_DEFINED "Has large 52-bit VA support");
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-483
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/extension/HaveAtomicExt

 // HaveAtomicExt()
 // ===============

 boolean HaveAtomicExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveBlockBBM

 // HaveBlockBBM()
 // ==============
 // Returns TRUE if support for changing block size without requiring
 // break-before-make is implemented.

 boolean HaveBlockBBM()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveCommonNotPrivateTransExt

 // HaveCommonNotPrivateTransExt()
 // ==============================

 boolean HaveCommonNotPrivateTransExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveDGHExt

 // HaveDGHExt()
 // ============
 // Returns TRUE if Data Gathering Hint instruction support is implemented, and
 // FALSE otherwise.

 boolean HaveDGHExt()
 return boolean IMPLEMENTATION_DEFINED "Has AArch64 DGH extension";

shared/functions/extension/HaveDITExt

 // HaveDITExt()
 // ============

 boolean HaveDITExt()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveDOTPExt

 // HaveDOTPExt()
 // =============
 // Returns TRUE if Dot Product feature support is implemented, and FALSE otherwise.

 boolean HaveDOTPExt()
 return (HasArchVersion(ARMv8p4) ||
 (HasArchVersion(ARMv8p2) &&
 boolean IMPLEMENTATION_DEFINED "Has Dot Product extension"));
I1-484 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/extension/HaveDoPD

 // HaveDoPD()
 // ==========
 // Returns TRUE if Debug Over Power Down extension
 // support is implemented and FALSE otherwise.

 boolean HaveDoPD()
 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has DoPD extension";

shared/functions/extension/HaveDoubleLock

 // HaveDoubleLock()
 // ================
 // Returns TRUE if support for the OS Double Lock is implemented.

 boolean HaveDoubleLock()
 return (!HasArchVersion(ARMv8p4) ||
 boolean IMPLEMENTATION_DEFINED "OS Double Lock is implemented");

shared/functions/extension/HaveE0PDExt

 // HaveE0PDExt()
 // =============
 // Returns TRUE if support for constant fault times for unprivileged accesses
 // to the memory map is implemented.

 boolean HaveE0PDExt()
 return HasArchVersion(ARMv8p5);

shared/functions/extension/HaveEL1VMSAExt

 // HaveEL1VMSAExt()
 // ================
 // Returns TRUE if VMSA is supported at stage1 EL1&0 translation regime, FALSE otherwise.

 boolean HaveEL1VMSAExt()
 return ID_AA64MMFR0_EL1.MSA == '1111' && ID_AA64MMFR0_EL1.MSA_frac == '0010';

shared/functions/extension/HaveExtendedCacheSets

 // HaveExtendedCacheSets()
 // =======================

 boolean HaveExtendedCacheSets()
 return HasArchVersion(ARMv8p3);

shared/functions/extension/HaveExtendedECDebugEvents

 // HaveExtendedECDebugEvents()
 // ===========================

 boolean HaveExtendedECDebugEvents()
 return HasArchVersion(ARMv8p2);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-485
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/extension/HaveExtendedExecuteNeverExt

 // HaveExtendedExecuteNeverExt()
 // =============================

 boolean HaveExtendedExecuteNeverExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveFCADDExt

 // HaveFCADDExt()
 // ==============

 boolean HaveFCADDExt()
 return HasArchVersion(ARMv8p3);

shared/functions/extension/HaveFJCVTZSExt

 // HaveFJCVTZSExt()
 // ================

 boolean HaveFJCVTZSExt()
 return HasArchVersion(ARMv8p3);

shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext

 // HaveFP16MulNoRoundingToFP32Ext()
 // ================================
 // Returns TRUE if has FP16 multiply with no intermediate rounding accumulate
 // to FP32 instructions, and FALSE otherwise

 boolean HaveFP16MulNoRoundingToFP32Ext()
 if !HaveFP16Ext() then return FALSE;
 if HasArchVersion(ARMv8p4) then return TRUE;
 return (HasArchVersion(ARMv8p2) &&
 boolean IMPLEMENTATION_DEFINED "Has accumulate FP16 product into FP32 extension");

shared/functions/extension/HaveFlagManipulateExt

 // HaveFlagManipulateExt()
 // =======================
 // Returns TRUE if flag manipulate instructions are implemented.

 boolean HaveFlagManipulateExt()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveHPMDExt

 // HaveHPMDExt()
 // =============

 boolean HaveHPMDExt()
 return HasArchVersion(ARMv8p1);
I1-486 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/extension/HaveIDSExt

 // HaveIDSExt()
 // ============
 // Returns TRUE if ID register handling feature is implemented.

 boolean HaveIDSExt()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveIESB

 // HaveIESB()
 // ==========

 boolean HaveIESB()
 return (HaveRASExt() &&
 boolean IMPLEMENTATION_DEFINED "Has Implicit Error Synchronization Barrier");

shared/functions/extension/HaveLSE2Ext

 // HaveLSE2Ext()
 // =============
 // Returns TRUE if LSE2 is implemented, and FALSE otherwise.

 boolean HaveLSE2Ext()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveNoSecurePMUDisableOverride

 // HaveNoSecurePMUDisableOverride()
 // ================================

 boolean HaveNoSecurePMUDisableOverride()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveNoninvasiveDebugAuth

 // HaveNoninvasiveDebugAuth()
 // ==========================
 // Returns TRUE if the Non-invasive debug controls are implemented.

 boolean HaveNoninvasiveDebugAuth()
 return !HasArchVersion(ARMv8p4);

shared/functions/extension/HavePANExt

 // HavePANExt()
 // ============

 boolean HavePANExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HavePMUv3

 // HavePMUv3()
 // ===========
 // Returns TRUE if the Performance Monitors extension is implemented, and FALSE otherwise.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-487
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 boolean HavePMUv3()
 return boolean IMPLEMENTATION_DEFINED "Has Performance Monitors extension";

shared/functions/extension/HavePageBasedHardwareAttributes

 // HavePageBasedHardwareAttributes()
 // =================================

 boolean HavePageBasedHardwareAttributes()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HavePrivATExt

 // HavePrivATExt()
 // ===============

 boolean HavePrivATExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveQRDMLAHExt

 // HaveQRDMLAHExt()
 // ================

 boolean HaveQRDMLAHExt()
 return HasArchVersion(ARMv8p1);

 boolean HaveAccessFlagUpdateExt()
 return HasArchVersion(ARMv8p1);

 boolean HaveDirtyBitModifierExt()
 return HasArchVersion(ARMv8p1);

shared/functions/extension/HaveRASExt

 // HaveRASExt()
 // ============

 boolean HaveRASExt()
 return (HasArchVersion(ARMv8p2) ||
 boolean IMPLEMENTATION_DEFINED "Has RAS extension");

shared/functions/extension/HaveSBExt

 // HaveSBExt()
 // ===========
 // Returns TRUE if support for SB is implemented, and FALSE otherwise.

 boolean HaveSBExt()
 return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SB extension";

shared/functions/extension/HaveSSBSExt

 // HaveSSBSExt()
 // =============
 // Returns TRUE if support for SSBS is implemented, and FALSE otherwise.
I1-488 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 boolean HaveSSBSExt()
 return HasArchVersion(ARMv8p5) || boolean IMPLEMENTATION_DEFINED "Has SSBS extension";

shared/functions/extension/HaveSecureEL2Ext

 // HaveSecureEL2Ext()
 // ==================
 // Returns TRUE if Secure EL2 is implemented.

 boolean HaveSecureEL2Ext()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSecureExtDebugView

 // HaveSecureExtDebugView()
 // ========================
 // Returns TRUE if support for Secure and Non-secure views of debug peripherals
 // is implemented.

 boolean HaveSecureExtDebugView()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSelfHostedTrace

 // HaveSelfHostedTrace()
 // =====================

 boolean HaveSelfHostedTrace()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveSmallTranslationTblExt

 // HaveSmallTranslationTblExt()
 // ============================
 // Returns TRUE if Small Translation Table Support is implemented.

 boolean HaveSmallTranslationTableExt()
 return (HasArchVersion(ARMv8p4) &&
 boolean IMPLEMENTATION_DEFINED "Has Small Translation Table extension");

shared/functions/extension/HaveSoftwareLock

 // HaveSoftwareLock()
 // ==================
 // Returns TRUE if Software Lock is implemented.

 boolean HaveSoftwareLock(Component component)
 if Havev8p4Debug() then
 return FALSE;
 if HaveDoPD() && component != Component_CTI then
 return FALSE;
 case component of
 when Component_Debug
 return boolean IMPLEMENTATION_DEFINED "Debug has Software Lock";
 when Component_PMU
 return boolean IMPLEMENTATION_DEFINED "PMU has Software Lock";
 when Component_CTI
 return boolean IMPLEMENTATION_DEFINED "CTI has Software Lock";
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-489
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 otherwise
 Unreachable();

shared/functions/extension/HaveStage2MemAttrControl

 // HaveStage2MemAttrControl()
 // ==========================
 // Returns TRUE if support for Stage2 control of memory types and cacheability
 // attributes is implemented.

 boolean HaveStage2MemAttrControl()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/HaveTraceExt

 // HaveTraceExt()
 // ==============
 // Returns TRUE if Trace functionality as described by the Trace Architecture
 // is implemented.

 boolean HaveTraceExt()
 return boolean IMPLEMENTATION_DEFINED "Has Trace Architecture functionality";

shared/functions/extension/HaveUAOExt

 // HaveUAOExt()
 // ============

 boolean HaveUAOExt()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/HaveV82Debug

 // HaveV82Debug()
 // ==============

 boolean HaveV82Debug()
 return HasArchVersion(ARMv8p2);

shared/functions/extension/Havev8p4Debug

 // Havev8p4Debug()
 // ===============
 // Returns TRUE if support for the Debugv8p4 feature is implemented and FALSE otherwise.

 boolean Havev8p4Debug()
 return HasArchVersion(ARMv8p4);

shared/functions/extension/InsertIESBBeforeException

 // If SCTLR_ELx.IESB is 1 when an exception is generated to ELx, any pending Unrecoverable
 // SError interrupt must be taken before executing any instructions in the exception handler.
 // However, this can be before the branch to the exception handler is made.
 boolean InsertIESBBeforeException(bits(2) el);
I1-490 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/externalaborts/HandleExternalAbort

 // HandleExternalAbort()
 // =====================
 // Takes a Synchronous/Asynchronous abort based on fault.

 HandleExternalAbort(PhysMemRetStatus memretstatus, boolean iswrite,
 AddressDescriptor memaddrdesc, integer size,
 AccessDescriptor accdesc)
 assert (memretstatus.statuscode IN {Fault_SyncExternal, Fault_AsyncExternal} ||
 (!HaveRASExt() && memretstatus.statuscode IN {Fault_SyncParity,
 Fault_AsyncParity}));

 fault = NoFault();
 fault.statuscode = memretstatus.statuscode;
 fault.write = iswrite;
 fault.extflag = memretstatus.extflag;
 fault.acctype = memretstatus.acctype;
 // It is implementation specific whether external aborts signaled
 // in-band synchronously are taken synchronously or asynchronously
 if (IsExternalSyncAbort(fault) &&
 !IsExternalAbortTakenSynchronously(memretstatus, iswrite, memaddrdesc,
 size, accdesc)) then
 if fault.statuscode == Fault_SyncParity then
 fault.statuscode = Fault_AsyncParity;
 else
 fault.statuscode = Fault_AsyncExternal;

 if HaveRASExt() then
 fault.errortype = PEErrorState(memretstatus);
 else
 fault.errortype = bits(2) UNKNOWN;

 if IsExternalSyncAbort(fault) then
 if UsingAArch32() then
 AArch32.Abort(memaddrdesc.vaddress<31:0>, fault);
 else
 AArch64.Abort(memaddrdesc.vaddress, fault);

 else
 PendSErrorInterrupt(fault);

shared/functions/externalaborts/HandleExternalReadAbort

 // HandleExternalReadAbort()
 // =========================
 // Wrapper function for HandleExternalAbort function in case of an External
 // Abort on memory read.

 HandleExternalReadAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
 integer size, AccessDescriptor accdesc)
 iswrite = FALSE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

shared/functions/externalaborts/HandleExternalTTWAbort

 // HandleExternalTTWAbort()
 // ========================
 // Take Asynchronous abort or update FaultRecord for Translation Table Walk
 // based on PhysMemRetStatus.

 FaultRecord HandleExternalTTWAbort(PhysMemRetStatus memretstatus, boolean iswrite,
 AddressDescriptor memaddrdesc,
 AccessDescriptor accdesc, integer size,
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-491
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 FaultRecord input_fault)
 output_fault = input_fault;
 output_fault.extflag = memretstatus.extflag;
 output_fault.statuscode = memretstatus.statuscode;
 if (IsExternalSyncAbort(output_fault) &&
 !IsExternalAbortTakenSynchronously(memretstatus, iswrite,
 memaddrdesc,
 size, accdesc)) then
 if output_fault.statuscode == Fault_SyncParity then
 output_fault.statuscode = Fault_AsyncParity;
 else
 output_fault.statuscode = Fault_AsyncExternal;

 // If a synchronous fault is on a translation table walk, then update
 // the fault type
 if IsExternalSyncAbort(output_fault) then
 if output_fault.statuscode == Fault_SyncParity then
 output_fault.statuscode = Fault_SyncParityOnWalk;
 else
 output_fault.statuscode = Fault_SyncExternalOnWalk;
 if HaveRASExt() then
 output_fault.errortype = PEErrorState(memretstatus);
 else
 output_fault.errortype = bits(2) UNKNOWN;
 if !IsExternalSyncAbort(output_fault) then
 PendSErrorInterrupt(output_fault);
 output_fault.statuscode = Fault_None;
 return output_fault;

shared/functions/externalaborts/HandleExternalWriteAbort

 // HandleExternalWriteAbort()
 // ==========================
 // Wrapper function for HandleExternalAbort function in case of an External
 // Abort on memory write.

 HandleExternalWriteAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
 integer size, AccessDescriptor accdesc)
 iswrite = TRUE;
 HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

shared/functions/externalaborts/IsExternalAbortTakenSynchronously

 // Return an implementation specific value:
 // TRUE if the fault returned for the access can be taken synchronously,
 // FALSE otherwise.
 //
 // This might vary between accesses, for example depending on the error type
 // or memory type being accessed.
 // External aborts on data accesses and translation table walks on data accesses
 // can be either synchronous or asynchronous.
 //
 // When FEAT_DoubleFault is not implemented, External aborts on instruction
 // fetches and translation table walks on instruction fetches can be either
 // synchronous or asynchronous.
 // When FEAT_DoubleFault is implemented, all External abort exceptions on
 // instruction fetches and translation table walks on instruction fetches
 // must be synchronous.
 boolean IsExternalAbortTakenSynchronously(PhysMemRetStatus memstatus,
 boolean iswrite,
 AddressDescriptor desc,
 integer size,
 AccessDescriptor accdesc);
I1-492 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/externalaborts/PEErrorState

 constant bits(2) Sync_UC = '10'; // Synchronous Uncontainable
 constant bits(2) Sync_UER = '00'; // Synchronous Recoverable
 constant bits(2) Sync_UEO = '11'; // Synchronous Restartable
 constant bits(2) ASync_UC = '00'; // ASynchronous Uncontainable
 constant bits(2) ASync_UEU = '01'; // ASynchronous Unrecoverable
 constant bits(2) ASync_UER = '11'; // ASynchronous Recoverable
 constant bits(2) ASync_UEO = '10'; // ASynchronous Restartable

 bits(2) PEErrorState(PhysMemRetStatus memstatus);

shared/functions/externalaborts/PendSErrorInterrupt

 // Pend the SError.
 PendSErrorInterrupt(FaultRecord fault);

shared/functions/float/fixedtofp/FixedToFP

 // FixedToFP()
 // ===========

 // Convert M-bit fixed point OP with FBITS fractional bits to
 // N-bit precision floating point, controlled by UNSIGNED and ROUNDING.

 bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(N) result;
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // Correct signed-ness
 int_operand = Int(op, unsigned);

 // Scale by fractional bits and generate a real value
 real_operand = Real(int_operand) / 2.0^fbits;

 if real_operand == 0.0 then
 result = FPZero('0');
 else
 result = FPRound(real_operand, fpcr, rounding);

 return result;

shared/functions/float/fpabs/FPAbs

 // FPAbs()
 // =======

 bits(N) FPAbs(bits(N) op)

 assert N IN {16,32,64};

 return '0' : op<N-2:0>;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-493
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/float/fpadd/FPAdd

 // FPAdd()
 // =======

 bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 rounding = FPRoundingMode(fpcr);

 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
 if inf1 && inf2 && sign1 == NOT(sign2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == sign2 then
 result = FPZero(sign1);
 else
 result_value = value1 + value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding);

 return result;

shared/functions/float/fpcompare/FPCompare

 // FPCompare()
 // ===========

 bits(4) FPCompare(bits(N) op1, bits(N) op2, boolean signal_nans, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = '0011';
 if type1 == FPType_SNaN || type2 == FPType_SNaN || signal_nans then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 if value1 == value2 then
 result = '0110';
 elsif value1 < value2 then
 result = '1000';
 else // value1 > value2
 result = '0010';

 return result;
I1-494 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/float/fpcompareeq/FPCompareEQ

 // FPCompareEQ()
 // =============

 boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = FALSE;
 if type1 == FPType_SNaN || type2 == FPType_SNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 == value2);

 return result;

shared/functions/float/fpcomparege/FPCompareGE

 // FPCompareGE()
 // =============

 boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 >= value2);

 return result;

shared/functions/float/fpcomparegt/FPCompareGT

 // FPCompareGT()
 // =============

 boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then
 result = FALSE;
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
 result = (value1 > value2);

 return result;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-495
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/float/fpconvert/FPConvert

 // FPConvert()
 // ===========

 // Convert floating point OP with N-bit precision to M-bit precision,
 // with rounding controlled by ROUNDING.
 // This is used by the FP-to-FP conversion instructions and so for
 // half-precision data ignores FZ16, but observes AHP.

 bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding)

 assert M IN {16,32,64};
 assert N IN {16,32,64};
 bits(M) result;

 // Unpack floating-point operand optionally with flush-to-zero.
 (fptype,sign,value) = FPUnpackCV(op, fpcr);

 alt_hp = (M == 16) && (fpcr.AHP == '1');

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 if alt_hp then
 result = FPZero(sign);
 elsif fpcr.DN == '1' then
 result = FPDefaultNaN();
 else
 result = FPConvertNaN(op);
 if fptype == FPType_SNaN || alt_hp then
 FPProcessException(FPExc_InvalidOp,fpcr);
 elsif fptype == FPType_Infinity then
 if alt_hp then
 result = sign:Ones(M-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 result = FPRoundCV(value, fpcr, rounding);

 return result;

 // FPConvert()
 // ===========

 bits(M) FPConvert(bits(N) op, FPCRType fpcr)
 return FPConvert(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/fpconvertnan/FPConvertNaN

 // FPConvertNaN()
 // ==============
 // Converts a NaN of one floating-point type to another

 bits(M) FPConvertNaN(bits(N) op)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 bits(M) result;
 bits(51) frac;

 sign = op<N-1>;

 // Unpack payload from input NaN
 case N of
I1-496 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 when 64 frac = op<50:0>;
 when 32 frac = op<21:0>:Zeros(29);
 when 16 frac = op<8:0>:Zeros(42);

 // Repack payload into output NaN, while
 // converting an SNaN to a QNaN.
 case M of
 when 64 result = sign:Ones(M-52):frac;
 when 32 result = sign:Ones(M-23):frac<50:29>;
 when 16 result = sign:Ones(M-10):frac<50:42>;

 return result;

shared/functions/float/fpcrtype/FPCRType

 type FPCRType;

shared/functions/float/fpdecoderm/FPDecodeRM

 // FPDecodeRM()
 // ============

 // Decode most common AArch32 floating-point rounding encoding.

 FPRounding FPDecodeRM(bits(2) rm)

 case rm of
 when '00' result = FPRounding_TIEAWAY; // A
 when '01' result = FPRounding_TIEEVEN; // N
 when '10' result = FPRounding_POSINF; // P
 when '11' result = FPRounding_NEGINF; // M

 return result;

shared/functions/float/fpdecoderounding/FPDecodeRounding

 // FPDecodeRounding()
 // ==================

 // Decode floating-point rounding mode and common AArch64 encoding.

 FPRounding FPDecodeRounding(bits(2) rmode)
 case rmode of
 when '00' return FPRounding_TIEEVEN; // N
 when '01' return FPRounding_POSINF; // P
 when '10' return FPRounding_NEGINF; // M
 when '11' return FPRounding_ZERO; // Z

shared/functions/float/fpdefaultnan/FPDefaultNaN

 // FPDefaultNaN()
 // ==============

 bits(N) FPDefaultNaN()

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 bit sign = '0';

 bits(E) exp = Ones(E);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-497
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 bits(F) frac = '1':Zeros(F-1);

 return sign : exp : frac;

shared/functions/float/fpdiv/FPDiv

 // FPDiv()
 // =======

 bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

 if !done then
 inf1 = type1 == FPType_Infinity;
 inf2 = type2 == FPType_Infinity;
 zero1 = type1 == FPType_Zero;
 zero2 = type2 == FPType_Zero;

 if (inf1 && inf2) || (zero1 && zero2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || zero2 then
 result = FPInfinity(sign1 EOR sign2);
 if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);
 elsif zero1 || inf2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1/value2, fpcr);

 return result;

shared/functions/float/fpexc/FPExc

 enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

shared/functions/float/fpinfinity/FPInfinity

 // FPInfinity()
 // ============

 bits(N) FPInfinity(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 bits(E) exp = Ones(E);
 bits(F) frac = Zeros(F);

 return sign : exp : frac;

shared/functions/float/fpmax/FPMax

 // FPMax()
 // =======
 // Compare two inputs and return the greater value after rounding. The
 // 'fpcr' argument supplies the FPCR control bits.
I1-498 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

 if !done then
 if value1 > value2 then
 (fptype,sign,value) = (type1,sign1,value1);
 else
 (fptype,sign,value) = (type2,sign2,value2);
 if fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 sign = sign1 AND sign2; // Use most positive sign
 result = FPZero(sign);
 else
 // The use of FPRound() covers the case where there is a trapped underflow exception
 // for a denormalized number even though the result is exact.
 rounding = FPRoundingMode(fpcr);
 result = FPRound(value, fpcr, rounding);

 return result;

shared/functions/float/fpmaxnormal/FPMaxNormal

 // FPMaxNormal()
 // =============

 bits(N) FPMaxNormal(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = Ones(E-1):'0';
 frac = Ones(F);

 return sign : exp : frac;

shared/functions/float/fpmaxnum/FPMaxNum

 // FPMaxNum()
 // ==========

 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);

 // Treat a single quiet-NaN as -Infinity.
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('1');
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('1');

 result = FPMax(op1, op2, fpcr);

 return result;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-499
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/float/fpmerge/IsMerging

 // IsMerging()
 // ===========
 // Returns TRUE if the output elements other than the lowest are taken from
 // the destination register.

 boolean IsMerging(FPCRType fpcr)
 return FALSE;

shared/functions/float/fpmin/FPMin

 // FPMin()
 // =======
 // Compare two operands and return the smaller operand after rounding. The
 // 'fpcr' argument supplies the FPCR control bits.

 bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

 if !done then
 if value1 < value2 then
 (fptype,sign,value) = (type1,sign1,value1);
 else
 (fptype,sign,value) = (type2,sign2,value2);
 if fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 sign = sign1 OR sign2; // Use most negative sign
 result = FPZero(sign);
 else
 // The use of FPRound() covers the case where there is a trapped underflow exception
 // for a denormalized number even though the result is exact.
 rounding = FPRoundingMode(fpcr);
 result = FPRound(value, fpcr, rounding);

 return result;

shared/functions/float/fpminnum/FPMinNum

 // FPMinNum()
 // ==========

 bits(N) FPMinNum(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,-,-) = FPUnpack(op1, fpcr);
 (type2,-,-) = FPUnpack(op2, fpcr);

 // Treat a single quiet-NaN as +Infinity.
 if type1 == FPType_QNaN && type2 != FPType_QNaN then
 op1 = FPInfinity('0');
 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
 op2 = FPInfinity('0');

 result = FPMin(op1, op2, fpcr);

 return result;
I1-500 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/float/fpmul/FPMul

 // FPMul()
 // =======

 bits(N) FPMul(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1*value2, fpcr);

 return result;

shared/functions/float/fpmuladd/FPMulAdd

 // FPMulAdd()
 // ==========
 //
 // Calculates addend + op1*op2 with a single rounding. The 'fpcr' argument
 // supplies the FPCR control bits.

 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
 assert N IN {16,32,64};

 (typeA,signA,valueA) = FPUnpack(addend, fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 rounding = FPRoundingMode(fpcr);
 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpcr);

 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);

 if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an
 // Invalid Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero
 // by infinity and additions of opposite-signed infinities.
 invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-501
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 if invalidop then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
 result = FPInfinity('0');
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1');

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr);

 return result;

shared/functions/float/fpmuladdh/FPMulAddH

 // FPMulAddH()
 // ===========
 // Calculates addend + op1*op2.

 bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr)

 assert N == 32;
 rounding = FPRoundingMode(fpcr);
 (typeA,signA,valueA) = FPUnpack(addend, fpcr);
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);
 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

 (done,result) = FPProcessNaNs3H(typeA, type1, type2, addend, op1, op2, fpcr);

 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);

 if !done then
 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

 // Determine sign and type product will have if it does not cause an
 // Invalid Operation.
 signP = sign1 EOR sign2;
 infP = inf1 || inf2;
 zeroP = zero1 || zero2;

 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
 // additions of opposite-signed infinities.
 invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

 if invalidop then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);

 // Other cases involving infinities produce an infinity of the same sign.
 elsif (infA && signA == '0') || (infP && signP == '0') then
I1-502 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 result = FPInfinity('0');
 elsif (infA && signA == '1') || (infP && signP == '1') then
 result = FPInfinity('1');

 // Cases where the result is exactly zero and its sign is not determined by the
 // rounding mode are additions of same-signed zeros.
 elsif zeroA && zeroP && signA == signP then
 result = FPZero(signA);

 // Otherwise calculate numerical result and round it.
 else
 result_value = valueA + (value1 * value2);
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr);

 return result;

shared/functions/float/fpmuladdh/FPProcessNaNs3H

 // FPProcessNaNs3H()
 // =================

 (boolean, bits(N)) FPProcessNaNs3H(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
 FPCRType fpcr)

 assert N IN {32,64};

 bits(N) result;
 if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));
 else
 done = FALSE; result = Zeros(); // 'Don't care' result

 return (done, result);

shared/functions/float/fpmulx/FPMulX

 // FPMulX()
 // ========

 bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 bits(N) result;
 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-503
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if (inf1 && zero2) || (zero1 && inf2) then
 result = FPTwo(sign1 EOR sign2);
 elsif inf1 || inf2 then
 result = FPInfinity(sign1 EOR sign2);
 elsif zero1 || zero2 then
 result = FPZero(sign1 EOR sign2);
 else
 result = FPRound(value1*value2, fpcr);

 return result;

shared/functions/float/fpneg/FPNeg

 // FPNeg()
 // =======

 bits(N) FPNeg(bits(N) op)

 assert N IN {16,32,64};

 return NOT(op<N-1>) : op<N-2:0>;

shared/functions/float/fponepointfive/FPOnePointFive

 // FPOnePointFive()
 // ================

 bits(N) FPOnePointFive(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '0':Ones(E-1);
 frac = '1':Zeros(F-1);
 result = sign : exp : frac;

 return result;

shared/functions/float/fpprocessexception/FPProcessException

 // FPProcessException()
 // ====================
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 FPProcessException(FPExc exception, FPCRType fpcr)

 // Determine the cumulative exception bit number
 case exception of
 when FPExc_InvalidOp cumul = 0;
 when FPExc_DivideByZero cumul = 1;
 when FPExc_Overflow cumul = 2;
 when FPExc_Underflow cumul = 3;
 when FPExc_Inexact cumul = 4;
 when FPExc_InputDenorm cumul = 7;
 enable = cumul + 8;
 if fpcr<enable> == '1' then
 // Trapping of the exception enabled.
I1-504 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 // It is IMPLEMENTATION DEFINED whether the enable bit may be set at all,
 // and if so then how exceptions and in what order that they may be
 // accumulated before calling FPTrappedException().
 bits(8) accumulated_exceptions = GetAccumulatedFPExceptions();
 accumulated_exceptions<cumul> = '1';
 if boolean IMPLEMENTATION_DEFINED "Process floating-point exception" then
 if UsingAArch32() then
 AArch32.FPTrappedException(accumulated_exceptions);
 else
 is_ase = IsASEInstruction();
 AArch64.FPTrappedException(is_ase, accumulated_exceptions);
 else
 // The exceptions generated by this instruction are accumulated by the PE and
 // FPTrappedException is called later during its execution, before the next
 // instruction is executed. This field is cleared at the start of each FP instruction.
 SetAccumulatedFPExceptions(accumulated_exceptions);
 elsif UsingAArch32() then
 // Set the cumulative exception bit
 FPSCR<cumul> = '1';
 else
 // Set the cumulative exception bit
 FPSR<cumul> = '1';

 return;

shared/functions/float/fpprocessnan/FPProcessNaN

 // FPProcessNaN()
 // ==============
 // Handle NaN input operands, returning the operand or default NaN value
 // if fpcr.DN is selected. The 'fpcr' argument supplies the FPCR control bits.

 bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr)
 assert N IN {16,32,64};
 assert fptype IN {FPType_QNaN, FPType_SNaN};

 case N of
 when 16 topfrac = 9;
 when 32 topfrac = 22;
 when 64 topfrac = 51;

 result = op;
 if fptype == FPType_SNaN then
 result<topfrac> = '1';
 FPProcessException(FPExc_InvalidOp, fpcr);
 if fpcr.DN == '1' then // DefaultNaN requested
 result = FPDefaultNaN();

 return result;

shared/functions/float/fpprocessnans/FPProcessNaNs

 // FPProcessNaNs()
 // ===============
 //
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1,
 bits(N) op2, FPCRType fpcr)
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-505
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 assert N IN {16,32,64};
 if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 else
 done = FALSE; result = Zeros(); // 'Don't care' result
 return (done, result);

shared/functions/float/fpprocessnans3/FPProcessNaNs3

 // FPProcessNaNs3()
 // ================
 //
 // The boolean part of the return value says whether a NaN has been found and
 // processed. The bits(N) part is only relevant if it has and supplies the
 // result of the operation.
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
 bits(N) op1, bits(N) op2, bits(N) op3,
 FPCRType fpcr)
 assert N IN {16,32,64};

 if type1 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 elsif type3 == FPType_SNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
 elsif type1 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
 elsif type2 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
 elsif type3 == FPType_QNaN then
 done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
 else
 done = FALSE; result = Zeros(); // 'Don't care' result
 return (done, result);

shared/functions/float/fprecipestimate/FPRecipEstimate

 // FPRecipEstimate()
 // =================

 bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr)

 assert N IN {16,32,64};
 (fptype,sign,value) = FPUnpack(operand, fpcr);

 FPRounding rounding = FPRoundingMode(fpcr);
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, operand, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPZero(sign);
 elsif fptype == FPType_Zero then
 result = FPInfinity(sign);
 FPProcessException(FPExc_DivideByZero, fpcr);
I1-506 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 elsif (
 (N == 16 && Abs(value) < 2.0^-16) ||
 (N == 32 && Abs(value) < 2.0^-128) ||
 (N == 64 && Abs(value) < 2.0^-1024)
) then
 case rounding of
 when FPRounding_TIEEVEN
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO
 overflow_to_inf = FALSE;
 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
 FPProcessException(FPExc_Overflow, fpcr);
 FPProcessException(FPExc_Inexact, fpcr);
 elsif ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16))
 && (
 (N == 16 && Abs(value) >= 2.0^14) ||
 (N == 32 && Abs(value) >= 2.0^126) ||
 (N == 64 && Abs(value) >= 2.0^1022)
) then
 // Result flushed to zero of correct sign
 result = FPZero(sign);

 // Flush-to-zero never generates a trapped exception.
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 FPSR.UFC = '1';
 else
 // Scale to a fixed point value in the range 0.5 <= x < 1.0 in steps of 1/512, and
 // calculate result exponent. Scaled value has copied sign bit,
 // exponent = 1022 = double-precision biased version of -1,
 // fraction = original fraction
 case N of
 when 16
 fraction = operand<9:0> : Zeros(42);
 exp = UInt(operand<14:10>);
 when 32
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 when 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

 if exp == 0 then
 if fraction<51> == '0' then
 exp = -1;
 fraction = fraction<49:0>:'00';
 else
 fraction = fraction<50:0>:'0';

 integer scaled = UInt('1':fraction<51:44>);

 case N of
 when 16 result_exp = 29 - exp; // In range 29-30 = -1 to 29+1 = 30
 when 32 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
 when 64 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046

 // Scaled is in range 256 .. 511 representing a fixed-point number in range [0.5 .. 1.0].
 estimate = RecipEstimate(scaled);

 // Estimate is in the range 256 .. 511 representing a fixed-point
 // result in the range [1.0 .. 2.0].
 // Convert to scaled floating point result with copied sign bit,
 // high-order bits from estimate, and exponent calculated above.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-507
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 fraction = estimate<7:0> : Zeros(44);

 if result_exp == 0 then
 fraction = '1' : fraction<51:1>;
 elsif result_exp == -1 then
 fraction = '01' : fraction<51:2>;
 result_exp = 0;

 case N of
 when 16 result = sign : result_exp<N-12:0> : fraction<51:42>;
 when 32 result = sign : result_exp<N-25:0> : fraction<51:29>;
 when 64 result = sign : result_exp<N-54:0> : fraction<51:0>;

 return result;

shared/functions/float/fprecipestimate/RecipEstimate

 // RecipEstimate()
 // ===============
 // Compute estimate of reciprocal of 9-bit fixed-point number.
 //
 // a is in range 256 .. 511 representing a number in the range 0.5 <= x < 1.0.
 // result is in the range 256 .. 511 representing a number in the range 1.0 to 511/256.

 integer RecipEstimate(integer a)
 assert 256 <= a && a < 512;
 a = a*2+1; // Round to nearest
 integer b = (2 ^ 19) DIV a;
 r = (b+1) DIV 2; // Round to nearest
 assert 256 <= r && r < 512;
 return r;

shared/functions/float/fprecpx/FPRecpX

 // FPRecpX()
 // =========

 bits(N) FPRecpX(bits(N) op, FPCRType fpcr)

 assert N IN {16,32,64};

 case N of
 when 16 esize = 5;
 when 32 esize = 8;
 when 64 esize = 11;

 bits(N) result;
 bits(esize) exp;
 bits(esize) max_exp;
 bits(N-(esize+1)) frac = Zeros();

 (fptype,sign,value) = FPUnpack(op, fpcr);

 case N of
 when 16 exp = op<10+esize-1:10>;
 when 32 exp = op<23+esize-1:23>;
 when 64 exp = op<52+esize-1:52>;

 max_exp = Ones(esize) - 1;

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
 else
 if IsZero(exp) then // Zero and denormals
I1-508 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 result = sign:max_exp:frac;
 else // Infinities and normals
 result = sign:NOT(exp):frac;

 return result;

shared/functions/float/fpround/FPRound

 // FPRound()
 // =========
 // Used by data processing and int/fixed <-> FP conversion instructions.
 // For half-precision data it ignores AHP, and observes FZ16.

 bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding)
 fpcr.AHP = '0';
 return FPRoundBase(op, fpcr, rounding);

 // FPRound()
 // =========

 bits(N) FPRound(real op, FPCRType fpcr)
 return FPRound(op, fpcr, FPRoundingMode(fpcr));

shared/functions/float/fpround/FPRoundBase

 // FPRoundBase()
 // =============
 // Convert a real number OP into an N-bit floating-point value using the
 // supplied rounding mode RMODE.

 bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding)
 assert N IN {16,32,64};
 assert op != 0.0;
 assert rounding != FPRounding_TIEAWAY;
 bits(N) result;

 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
 if N == 16 then
 minimum_exp = -14; E = 5; F = 10;
 elsif N == 32 then
 minimum_exp = -126; E = 8; F = 23;
 else // N == 64
 minimum_exp = -1022; E = 11; F = 52;

 // Split value into sign, unrounded mantissa and exponent.
 if op < 0.0 then
 sign = '1'; mantissa = -op;
 else
 sign = '0'; mantissa = op;
 exponent = 0;
 while mantissa < 1.0 do
 mantissa = mantissa * 2.0; exponent = exponent - 1;
 while mantissa >= 2.0 do
 mantissa = mantissa / 2.0; exponent = exponent + 1;

 if (((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) &&
 exponent < minimum_exp) then
 // Flush-to-zero never generates a trapped exception.
 if UsingAArch32() then
 FPSCR.UFC = '1';
 else
 FPSR.UFC = '1';
 return FPZero(sign);

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-509
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 // Start creating the exponent value for the result. Start by biasing the actual exponent
 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
 biased_exp = Max(exponent - minimum_exp + 1, 0);
 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
 error = mantissa * 2.0^F - Real(int_mant);

 // Underflow occurs if exponent is too small before rounding, and result is inexact or
 // the Underflow exception is trapped.
 if biased_exp == 0 && (error != 0.0 || fpcr.UFE == '1') then
 FPProcessException(FPExc_Underflow, fpcr);

 // Round result according to rounding mode.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
 overflow_to_inf = TRUE;
 when FPRounding_POSINF
 round_up = (error != 0.0 && sign == '0');
 overflow_to_inf = (sign == '0');
 when FPRounding_NEGINF
 round_up = (error != 0.0 && sign == '1');
 overflow_to_inf = (sign == '1');
 when FPRounding_ZERO, FPRounding_ODD
 round_up = FALSE;
 overflow_to_inf = FALSE;

 if round_up then
 int_mant = int_mant + 1;
 if int_mant == 2^F then // Rounded up from denormalized to normalized
 biased_exp = 1;
 if int_mant == 2^(F+1) then // Rounded up to next exponent
 biased_exp = biased_exp + 1;
 int_mant = int_mant DIV 2;

 // Handle rounding to odd
 if error != 0.0 && rounding == FPRounding_ODD then
 int_mant<0> = '1';

 // Deal with overflow and generate result.
 if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision
 if biased_exp >= 2^E - 1 then
 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
 FPProcessException(FPExc_Overflow, fpcr);
 error = 1.0; // Ensure that an Inexact exception occurs
 else
 result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;
 else // Alternative half precision
 if biased_exp >= 2^E then
 result = sign : Ones(N-1);
 FPProcessException(FPExc_InvalidOp, fpcr);
 error = 0.0; // Ensure that an Inexact exception does not occur
 else
 result = sign : biased_exp<N-F-2:0> : int_mant<F-1:0>;

 // Deal with Inexact exception.
 if error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;
I1-510 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/float/fpround/FPRoundCV

 // FPRoundCV()
 // ===========
 // Used for FP <-> FP conversion instructions.
 // For half-precision data ignores FZ16 and observes AHP.

 bits(N) FPRoundCV(real op, FPCRType fpcr, FPRounding rounding)
 fpcr.FZ16 = '0';
 return FPRoundBase(op, fpcr, rounding);

shared/functions/float/fprounding/FPRounding

 enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
 FPRounding_NEGINF, FPRounding_ZERO,
 FPRounding_TIEAWAY, FPRounding_ODD};

shared/functions/float/fproundingmode/FPRoundingMode

 // FPRoundingMode()
 // ================
 // Return the current floating-point rounding mode.

 FPRounding FPRoundingMode(FPCRType fpcr)
 return FPDecodeRounding(fpcr.RMode);

shared/functions/float/fproundint/FPRoundInt

 // FPRoundInt()
 // ============

 // Round op to nearest integral floating point value using rounding mode in FPCR/FPSCR.
 // If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to op.

 bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)

 assert rounding != FPRounding_ODD;
 assert N IN {16,32,64};

 // Unpack using FPCR to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPInfinity(sign);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 // Extract integer component.
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-511
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;

 // Convert integer value into an equivalent real value.
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact.
 if real_result == 0.0 then
 result = FPZero(sign);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO);

 // Generate inexact exceptions.
 if error != 0.0 && exact then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fproundintn/FPRoundIntN

 // FPRoundIntN()
 // =============

 bits(N) FPRoundIntN(bits(N) op, FPCRType fpcr, FPRounding rounding, integer intsize)
 assert rounding != FPRounding_ODD;
 assert N IN {32,64};
 assert intsize IN {32, 64};
 integer exp;
 constant integer E = (if N == 32 then 8 else 11);
 constant integer F = N - (E + 1);

 // Unpack using FPCR to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr);

 if fptype IN {FPType_SNaN, FPType_QNaN, FPType_Infinity} then
 if N == 32 then
 exp = 126 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 else
 exp = 1022+intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 else
 // Extract integer component.
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = error > 0.5 || (error == 0.5 && int_result<0> == '1');
 when FPRounding_POSINF
 round_up = error != 0.0;
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = error != 0.0 && int_result < 0;
 when FPRounding_TIEAWAY
 round_up = error > 0.5 || (error == 0.5 && int_result >= 0);

 if round_up then int_result = int_result + 1;
 overflow = int_result > 2^(intsize-1)-1 || int_result < -1*2^(intsize-1);
I1-512 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 if overflow then
 if N == 32 then
 exp = 126 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 else
 exp = 1022 + intsize;
 result = '1':exp<(E-1):0>:Zeros(F);
 FPProcessException(FPExc_InvalidOp, fpcr);
 // This case shouldn't set Inexact.
 error = 0.0;

 else
 // Convert integer value into an equivalent real value.
 real_result = Real(int_result);

 // Re-encode as a floating-point value, result is always exact.
 if real_result == 0.0 then
 result = FPZero(sign);
 else
 result = FPRound(real_result, fpcr, FPRounding_ZERO);

 // Generate inexact exceptions.
 if error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

 // FPRSqrtEstimate()
 // =================

 bits(N) FPRSqrtEstimate(bits(N) operand, FPCRType fpcr)

 assert N IN {16,32,64};

 (fptype,sign,value) = FPUnpack(operand, fpcr);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, operand, fpcr);
 elsif fptype == FPType_Zero then
 result = FPInfinity(sign);
 FPProcessException(FPExc_DivideByZero, fpcr);
 elsif sign == '1' then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif fptype == FPType_Infinity then
 result = FPZero('0');
 else
 // Scale to a fixed-point value in the range 0.25 <= x < 1.0 in steps of 512, with the
 // evenness or oddness of the exponent unchanged, and calculate result exponent.
 // Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
 // biased version of -1 or -2, fraction = original fraction extended with zeros.

 case N of
 when 16
 fraction = operand<9:0> : Zeros(42);
 exp = UInt(operand<14:10>);
 when 32
 fraction = operand<22:0> : Zeros(29);
 exp = UInt(operand<30:23>);
 when 64
 fraction = operand<51:0>;
 exp = UInt(operand<62:52>);

ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-513
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 if exp == 0 then
 while fraction<51> == '0' do
 fraction = fraction<50:0> : '0';
 exp = exp - 1;
 fraction = fraction<50:0> : '0';

 if exp<0> == '0' then
 scaled = UInt('1':fraction<51:44>);
 else
 scaled = UInt('01':fraction<51:45>);

 case N of
 when 16 result_exp = (44 - exp) DIV 2;
 when 32 result_exp = (380 - exp) DIV 2;
 when 64 result_exp = (3068 - exp) DIV 2;

 estimate = RecipSqrtEstimate(scaled);

 // Estimate is in the range 256 .. 511 representing a fixed point
 // result in the range [1.0 .. 2.0].
 // Convert to scaled floating point result with copied sign bit and high-order
 // fraction bits, and exponent calculated above.
 case N of
 when 16 result = '0' : result_exp<N-12:0> : estimate<7:0>:Zeros(2);
 when 32 result = '0' : result_exp<N-25:0> : estimate<7:0>:Zeros(15);
 when 64 result = '0' : result_exp<N-54:0> : estimate<7:0>:Zeros(44);

 return result;

shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

 // RecipSqrtEstimate()
 // ===================
 // Compute estimate of reciprocal square root of 9-bit fixed-point number.
 //
 // a is in range 128 .. 511 representing a number in the range 0.25 <= x < 1.0.
 // result is in the range 256 .. 511 representing a number in the range in the range 1.0 to 511/256.

 integer RecipSqrtEstimate(integer a)
 assert 128 <= a && a < 512;
 if a < 256 then // 0.25 .. 0.5
 a = a*2+1; // a in units of 1/512 rounded to nearest
 else // 0.5 .. 1.0
 a = (a >> 1) << 1; // Discard bottom bit
 a = (a+1)*2; // a in units of 1/256 rounded to nearest
 integer b = 512;
 while a*(b+1)*(b+1) < 2^28 do
 b = b+1; // b = largest b such that b < 2^14 / sqrt(a)
 r = (b+1) DIV 2; // Round to nearest
 assert 256 <= r && r < 512;
 return r;

shared/functions/float/fpsqrt/FPSqrt

 // FPSqrt()
 // ========

 bits(N) FPSqrt(bits(N) op, FPCRType fpcr)

 assert N IN {16,32,64};
 (fptype,sign,value) = FPUnpack(op, fpcr);

 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 result = FPProcessNaN(fptype, op, fpcr);
I1-514 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 elsif fptype == FPType_Zero then
 result = FPZero(sign);
 elsif fptype == FPType_Infinity && sign == '0' then
 result = FPInfinity(sign);
 elsif sign == '1' then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 else
 result = FPRound(Sqrt(value), fpcr);

 return result;

shared/functions/float/fpsub/FPSub

 // FPSub()
 // =======

 bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr)

 assert N IN {16,32,64};
 rounding = FPRoundingMode(fpcr);

 (type1,sign1,value1) = FPUnpack(op1, fpcr);
 (type2,sign2,value2) = FPUnpack(op2, fpcr);

 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
 if !done then
 inf1 = (type1 == FPType_Infinity);
 inf2 = (type2 == FPType_Infinity);
 zero1 = (type1 == FPType_Zero);
 zero2 = (type2 == FPType_Zero);

 if inf1 && inf2 && sign1 == sign2 then
 result = FPDefaultNaN();
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
 result = FPInfinity('0');
 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
 result = FPInfinity('1');
 elsif zero1 && zero2 && sign1 == NOT(sign2) then
 result = FPZero(sign1);
 else
 result_value = value1 - value2;
 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
 result = FPZero(result_sign);
 else
 result = FPRound(result_value, fpcr, rounding);

 return result;

shared/functions/float/fpthree/FPThree

 // FPThree()
 // =========

 bits(N) FPThree(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '1':Zeros(E-1);
 frac = '1':Zeros(F-1);
 result = sign : exp : frac;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-515
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 return result;

shared/functions/float/fptofixed/FPToFixed

 // FPToFixed()
 // ===========

 // Convert N-bit precision floating point OP to M-bit fixed point with
 // FBITS fractional bits, controlled by UNSIGNED and ROUNDING.

 bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)

 assert N IN {16,32,64};
 assert M IN {16,32,64};
 assert fbits >= 0;
 assert rounding != FPRounding_ODD;

 // Unpack using fpcr to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr);

 // If NaN, set cumulative flag or take exception.
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);

 // Scale by fractional bits and produce integer rounded towards minus-infinity.
 value = value * 2.0^fbits;
 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.
 case rounding of
 when FPRounding_TIEEVEN
 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
 when FPRounding_POSINF
 round_up = (error != 0.0);
 when FPRounding_NEGINF
 round_up = FALSE;
 when FPRounding_ZERO
 round_up = (error != 0.0 && int_result < 0);
 when FPRounding_TIEAWAY
 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

 if round_up then int_result = int_result + 1;

 // Generate saturated result and exceptions.
 (result, overflow) = SatQ(int_result, M, unsigned);
 if overflow then
 FPProcessException(FPExc_InvalidOp, fpcr);
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);

 return result;

shared/functions/float/fptofixedjs/FPToFixedJS

 // FPToFixedJS()
 // =============

 // Converts a double precision floating point input value
 // to a signed integer, with rounding to zero.

 (bits(N), bit) FPToFixedJS(bits(M) op, FPCRType fpcr, boolean Is64)

I1-516 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 assert M == 64 && N == 32;

 // Unpack using fpcr to determine if subnormals are flushed-to-zero.
 (fptype,sign,value) = FPUnpack(op, fpcr);

 Z = '1';
 // If NaN, set cumulative flag or take exception.
 if fptype == FPType_SNaN || fptype == FPType_QNaN then
 FPProcessException(FPExc_InvalidOp, fpcr);
 Z = '0';

 int_result = RoundDown(value);
 error = value - Real(int_result);

 // Determine whether supplied rounding mode requires an increment.

 round_it_up = (error != 0.0 && int_result < 0);
 if round_it_up then int_result = int_result + 1;

 if int_result < 0 then
 result = int_result - 2^32*RoundUp(Real(int_result)/Real(2^32));
 else
 result = int_result - 2^32*RoundDown(Real(int_result)/Real(2^32));

 // Generate exceptions.
 if int_result < -(2^31) || int_result > (2^31)-1 then
 FPProcessException(FPExc_InvalidOp, fpcr);
 Z = '0';
 elsif error != 0.0 then
 FPProcessException(FPExc_Inexact, fpcr);
 Z = '0';
 elsif sign == '1' && value == 0.0 then
 Z = '0';
 elsif sign == '0' && value == 0.0 && !IsZero(op<51:0>) then
 Z = '0';

 if fptype == FPType_Infinity then result = 0;

 return (result<N-1:0>, Z);

shared/functions/float/fptwo/FPTwo

 // FPTwo()
 // =======

 bits(N) FPTwo(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = '1':Zeros(E-1);
 frac = Zeros(F);
 result = sign : exp : frac;

 return result;

shared/functions/float/fptype/FPType

 enumeration FPType {FPType_Zero,
 FPType_Denormal,
 FPType_Nonzero,
 FPType_Infinity,
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-517
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 FPType_QNaN,
 FPType_SNaN};

shared/functions/float/fpunpack/FPUnpack

 // FPUnpack()
 // ==========
 //
 // Used by data processing and int/fixed <-> FP conversion instructions.
 // For half-precision data it ignores AHP, and observes FZ16.

 (FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr)
 fpcr.AHP = '0';
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr);
 return (fp_type, sign, value);

shared/functions/float/fpunpack/FPUnpackBase

 // FPUnpackBase()
 // ==============
 //
 // Unpack a floating-point number into its type, sign bit and the real number
 // that it represents. The real number result has the correct sign for numbers
 // and infinities, is very large in magnitude for infinities, and is 0.0 for
 // NaNs. (These values are chosen to simplify the description of comparisons
 // and conversions.)
 //
 // The 'fpcr' argument supplies FPCR control bits. Status information is
 // updated directly in the FPSR where appropriate.

 (FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr)
 assert N IN {16,32,64};

 if N == 16 then
 sign = fpval<15>;
 exp16 = fpval<14:10>;
 frac16 = fpval<9:0>;
 if IsZero(exp16) then
 // Produce zero if value is zero or flush-to-zero is selected
 if IsZero(frac16) || fpcr.FZ16 == '1' then
 fptype = FPType_Zero; value = 0.0;
 else
 fptype = FPType_Denormal; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
 elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format
 if IsZero(frac16) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);

 elsif N == 32 then
 sign = fpval<31>;
 exp32 = fpval<30:23>;
 frac32 = fpval<22:0>;

 if IsZero(exp32) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac32) || fpcr.FZ == '1' then
 fptype = FPType_Zero; value = 0.0;
 if !IsZero(frac32) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpcr);
I1-518 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 else
 fptype = FPType_Denormal; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
 elsif IsOnes(exp32) then
 if IsZero(frac32) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);

 else // N == 64
 sign = fpval<63>;
 exp64 = fpval<62:52>;
 frac64 = fpval<51:0>;

 if IsZero(exp64) then
 // Produce zero if value is zero or flush-to-zero is selected.
 if IsZero(frac64) || fpcr.FZ == '1' then
 fptype = FPType_Zero; value = 0.0;
 if !IsZero(frac64) then // Denormalized input flushed to zero
 FPProcessException(FPExc_InputDenorm, fpcr);
 else
 fptype = FPType_Denormal; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
 elsif IsOnes(exp64) then
 if IsZero(frac64) then
 fptype = FPType_Infinity; value = 2.0^1000000;
 else
 fptype = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
 value = 0.0;
 else
 fptype = FPType_Nonzero;
 value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);

 if sign == '1' then value = -value;

 return (fptype, sign, value);

shared/functions/float/fpunpack/FPUnpackCV

 // FPUnpackCV()
 // ============
 //
 // Used for FP <-> FP conversion instructions.
 // For half-precision data ignores FZ16 and observes AHP.

 (FPType, bit, real) FPUnpackCV(bits(N) fpval, FPCRType fpcr)
 fpcr.FZ16 = '0';
 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr);
 return (fp_type, sign, value);

shared/functions/float/fpzero/FPZero

 // FPZero()
 // ========

 bits(N) FPZero(bit sign)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - (E + 1);
 exp = Zeros(E);
 frac = Zeros(F);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-519
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 result = sign : exp : frac;

 return result;

shared/functions/float/vfpexpandimm/VFPExpandImm

 // VFPExpandImm()
 // ==============

 bits(N) VFPExpandImm(bits(8) imm8)

 assert N IN {16,32,64};
 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
 constant integer F = N - E - 1;
 sign = imm8<7>;
 exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
 frac = imm8<3:0>:Zeros(F-4);
 result = sign : exp : frac;

 return result;

shared/functions/integer/AddWithCarry

 // AddWithCarry()
 // ==============
 // Integer addition with carry input, returning result and NZCV flags

 (bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
 integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
 integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
 bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
 bit n = result<N-1>;
 bit z = if IsZero(result) then '1' else '0';
 bit c = if UInt(result) == unsigned_sum then '0' else '1';
 bit v = if SInt(result) == signed_sum then '0' else '1';
 return (result, n:z:c:v);

shared/functions/interrupts/InterruptID

 enumeration InterruptID {InterruptID_PMUIRQ, InterruptID_COMMIRQ, InterruptID_CTIIRQ,
 InterruptID_COMMRX, InterruptID_COMMTX, InterruptID_CNTP,
 InterruptID_CNTHP, InterruptID_CNTHPS, InterruptID_CNTPS,
 InterruptID_CNTV, InterruptID_CNTHV, InterruptID_CNTHVS};

shared/functions/interrupts/SetInterruptRequestLevel

 // Set a level-sensitive interrupt to the specified level.
 SetInterruptRequestLevel(InterruptID id, signal level);

shared/functions/memory/AArch64.BranchAddr

 // AArch64.BranchAddr()
 // ====================
 // Return the virtual address with tag bits removed for storing to the program counter.

 bits(64) AArch64.BranchAddr(bits(64) vaddress)
 assert !UsingAArch32();
 msbit = AddrTop(vaddress, TRUE, PSTATE.EL);
 if msbit == 63 then
I1-520 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 return vaddress;
 elsif PSTATE.EL IN {EL0, EL1} && vaddress<msbit> == '1' then
 return SignExtend(vaddress<msbit:0>);
 else
 return ZeroExtend(vaddress<msbit:0>);

shared/functions/memory/AccType

 enumeration AccType {AccType_NORMAL, // Normal loads and stores
 AccType_VEC,
 AccType_STREAM, // Streaming loads and stores
 AccType_VECSTREAM,
 AccType_A32LSMD, // Load and store multiple
 AccType_ATOMIC, // Atomic loads and stores
 AccType_ATOMICRW,
 AccType_ORDERED, // Load-Acquire and Store-Release
 AccType_ORDEREDRW,
 AccType_ORDEREDATOMIC, // Load-Acquire and Store-Release with atomic access
 AccType_ORDEREDATOMICRW,
 AccType_UNPRIV, // Load and store unprivileged
 AccType_IFETCH, // Instruction fetch
 AccType_TTW, // Translation table walk
 // Other operations
 AccType_DC, // Data cache maintenance
 AccType_IC, // Instruction cache maintenance
 AccType_DCZVA, // DC ZVA instructions
 AccType_ATPAN, // Address translation with PAN permission checks
 AccType_AT}; // Address translation

shared/functions/memory/AccessDescriptor

 type AccessDescriptor is (
 AccType acctype)

shared/functions/memory/AddrTop

 // AddrTop()
 // =========
 // Return the MSB number of a virtual address in the stage 1 translation regime for "el".
 // If EL1 is using AArch64 then addresses from EL0 using AArch32 are zero-extended to 64 bits.

 integer AddrTop(bits(64) address, boolean IsInstr, bits(2) el)
 assert HaveEL(el);
 regime = S1TranslationRegime(el);
 if ELUsingAArch32(regime) then
 // AArch32 translation regime.
 return 31;
 else
 if EffectiveTBI(address, IsInstr, el) == '1' then
 return 55;
 else
 return 63;

shared/functions/memory/Allocation

 constant bits(2) MemHint_No = '00'; // No Read-Allocate, No Write-Allocate
 constant bits(2) MemHint_WA = '01'; // No Read-Allocate, Write-Allocate
 constant bits(2) MemHint_RA = '10'; // Read-Allocate, No Write-Allocate
 constant bits(2) MemHint_RWA = '11'; // Read-Allocate, Write-Allocate
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-521
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/memory/BigEndian

 // BigEndian()
 // ===========

 boolean BigEndian(AccType acctype)
 boolean bigend;

 if UsingAArch32() then
 bigend = (PSTATE.E != '0');
 elsif PSTATE.EL == EL0 then
 bigend = (SCTLR[].E0E != '0');
 else
 bigend = (SCTLR[].EE != '0');
 return bigend;

shared/functions/memory/BigEndianReverse

 // BigEndianReverse()
 // ==================

 bits(width) BigEndianReverse (bits(width) value)
 assert width IN {8, 16, 32, 64, 128};
 integer half = width DIV 2;
 if width == 8 then return value;
 return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

shared/functions/memory/Cacheability

 constant bits(2) MemAttr_NC = '00'; // Non-cacheable
 constant bits(2) MemAttr_WT = '10'; // Write-through
 constant bits(2) MemAttr_WB = '11'; // Write-back

shared/functions/memory/CreateAccessDescriptor

 // CreateAccessDescriptor()
 // ========================

 AccessDescriptor CreateAccessDescriptor(AccType acctype)
 AccessDescriptor accdesc;
 accdesc.acctype = acctype;
 return accdesc;

shared/functions/memory/DataMemoryBarrier

 DataMemoryBarrier(MBReqDomain domain, MBReqTypes types, boolean vmid_sensitive);

shared/functions/memory/DataSynchronizationBarrier

 DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types, boolean vmid_sensitive);

shared/functions/memory/DeviceType

 enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};
I1-522 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/memory/EffectiveTBI

 // EffectiveTBI()
 // ==============
 // Returns the effective TBI in the AArch64 stage 1 translation regime for "el".

 bit EffectiveTBI(bits(64) address, boolean IsInstr, bits(2) el)
 assert HaveEL(el);
 regime = TranslationRegime(el);

 case regime of
 when Regime_EL2
 tbi = TCR_EL2.TBI;
 tbid = TCR_EL2.TBID;
 when Regime_EL10
 if AArch64.GetVARange(address) == VARange_LOWER then
 tbi = TCR_EL1.TBI0;
 tbid = TCR_EL1.TBID0;
 else
 tbi = TCR_EL1.TBI1;
 tbid = TCR_EL1.TBID1;

 return (if tbi == '1' && (!HavePACExt() || tbid == '0' || !IsInstr) then '1' else '0');

shared/functions/memory/Fault

 enumeration Fault {Fault_None,
 Fault_AccessFlag,
 Fault_Alignment,
 Fault_Background,
 Fault_Domain,
 Fault_Permission,
 Fault_Translation,
 Fault_AddressSize,
 Fault_SyncExternal,
 Fault_SyncExternalOnWalk,
 Fault_SyncParity,
 Fault_SyncParityOnWalk,
 Fault_AsyncParity,
 Fault_AsyncExternal,
 Fault_Debug,
 Fault_TLBConflict,
 Fault_HWUpdateAccessFlag,
 Fault_Lockdown,
 Fault_Exclusive,
 Fault_ICacheMaint};

shared/functions/memory/FaultRecord

 type FaultRecord is (Fault statuscode, // Fault Status
 AccType acctype, // Type of access that faulted
 FullAddress ipaddress, // Intermediate physical address
 boolean s2fs1walk, // Is on a Stage 1 translation table walk
 boolean write, // TRUE for a write, FALSE for a read
 integer level, // For translation, access flag and permission faults
 bit extflag, // IMPLEMENTATION DEFINED syndrome for External aborts
 boolean secondstage, // Is a Stage 2 abort
 bits(4) domain, // Domain number, AArch32 only
 bits(2) errortype, // [Armv8.2 RAS] AArch32 AET or AArch64 SET
 bits(4) debugmoe) // Debug method of entry, from AArch32 only
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-523
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/memory/FullAddress

 type FullAddress is (
 PASpace paspace,
 bits(52) address
)

shared/functions/memory/Hint_Prefetch

 // Signals the memory system that memory accesses of type HINT to or from the specified address are
 // likely in the near future. The memory system may take some action to speed up the memory
 // accesses when they do occur, such as pre-loading the the specified address into one or more
 // caches as indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint
 // stream. Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a
 // synchronous abort due to Alignment or Translation faults and the like. Its only effect on
 // software-visible state should be on caches and TLBs associated with address, which must be
 // accessible by reads, writes or execution, as defined in the translation regime of the current
 // Exception level. It is guaranteed not to access Device memory.
 // A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
 // instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
 // memory location that cannot be accessed by instruction fetches.
 Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

shared/functions/memory/MBReqDomain

 enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
 MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

shared/functions/memory/MBReqTypes

 enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

shared/functions/memory/MPURecord

 type MPURecord is (
 bit CnP, // [Armv8.2] TLB entry can be shared between different PEs
 Permissions permissions,
 MemoryAttributes memattrs,
 PASpace paspace
)

shared/functions/memory/MemAttrHints

 type MemAttrHints is (
 bits(2) attrs, // See MemAttr_*, Cacheability attributes
 bits(2) hints, // See MemHint_*, Allocation hints
 boolean transient
)

shared/functions/memory/MemType

 enumeration MemType {MemType_Normal, MemType_Device};
I1-524 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/memory/MemoryAttributes

 type MemoryAttributes is (
 MemType memtype,
 DeviceType device, // For Device memory types
 MemAttrHints inner, // Inner hints and attributes
 MemAttrHints outer, // Outer hints and attributes
 Shareability shareability, // Shareability attribute
)

shared/functions/memory/PASpace

 enumeration PASpace {
 PAS_NonSecure,
 PAS_Secure,
 };

shared/functions/memory/Permissions

 type Permissions is (
 bits(2) ap_table, // Stage 1 hierarchical access permissions
 bit xn_table, // Stage 1 hierarchical execute-never for single EL regimes
 bit pxn_table, // Stage 1 hierarchical privileged execute-never
 bit uxn_table, // Stage 1 hierarchical unprivileged execute-never
 bits(3) ap, // Stage 1 access permissions
 bit xn, // Stage 1 execute-never for single EL regimes
 bit uxn, // Stage 1 unprivileged execute-never
 bit pxn, // Stage 1 privileged execute-never
 bits(2) s2ap, // Stage 2 access permissions
 bit s2xnx, // Stage 2 extended execute-never
 bit s2xn // Stage 2 execute-never
)

shared/functions/memory/PhysMemRead

 // Returns the value read from memory, and a status.
 // Returned value is UNKNOWN if an external abort occurred while reading the
 // memory.
 // Otherwise the PhysMemRetStatus statuscode is Fault_None.
 (PhysMemRetStatus, bits(8*size)) PhysMemRead(AddressDescriptor desc, integer size,
 AccessDescriptor accdesc);

shared/functions/memory/PhysMemRetStatus

 type PhysMemRetStatus is (Fault statuscode, // Fault Status
 bit extflag, // IMPLEMENTATION DEFINED
 // syndrome for External aborts
 bits(2) errortype, // optional error state
 // returned on a physical
 // memory access
 AccType acctype) // Type of access that faulted

shared/functions/memory/PhysMemWrite

 // Writes the value to memory, and returns the status of the write.
 // If there is an external abort on the write, the PhysMemRetStatus indicates this.
 // Otherwise the statuscode of PhysMemRetStatus is Fault_None.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-525
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 PhysMemRetStatus PhysMemWrite(AddressDescriptor desc, integer size, AccessDescriptor accdesc,
 bits(8*size) value);

shared/functions/memory/PrefetchHint

 enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

shared/functions/memory/Shareability

 enumeration Shareability {
 Shareability_NSH,
 Shareability_ISH,
 Shareability_OSH
 };

shared/functions/memory/SpeculativeStoreBypassBarrierToPA

 SpeculativeStoreBypassBarrierToPA();

shared/functions/memory/SpeculativeStoreBypassBarrierToVA

 SpeculativeStoreBypassBarrierToVA();

shared/functions/predictionrestrict/ASID

 // ASID[]
 // ======
 // Effective ASID.

 bits(16) ASID[]
 if TCR_EL1.A1 == '1' then
 return TTBR1_EL1.ASID;
 else
 return TTBR0_EL1.ASID;

shared/functions/predictionrestrict/ExecutionCntxt

 type ExecutionCntxt is (
 boolean is_vmid_valid, // is vmid valid for current context
 boolean all_vmid, // should the operation be applied for all vmids
 bits(16) vmid, // if all_vmid = FALSE, vmid to which operation is applied
 boolean is_asid_valid, // is asid valid for current context
 boolean all_asid, // should the operation be applied for all asids
 bits(16) asid, // if all_asid = FALSE, ASID to which operation is applied
 bits(2) target_el, // target EL at which operation is performed
 SecurityState security,
 RestrictType restriction // type of restriction operation
)

shared/functions/predictionrestrict/RESTRICT_PREDICTIONS

 // RESTRICT_PREDICTIONS()
 // ======================
 // Clear all speculated values.

I1-526 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 RESTRICT_PREDICTIONS(ExecutionCntxt c)
 IMPLEMENTATION_DEFINED;

shared/functions/predictionrestrict/RestrictType

 enumeration RestrictType {
 RestrictType_DataValue,
 RestrictType_ControlFlow,
 RestrictType_CachePrefetch
 };

shared/functions/predictionrestrict/TargetSecurityState

 // TargetSecurityState()
 // =====================
 // Decode the target security state for the prediction context.

 SecurityState TargetSecurityState(bit NS)
 curr_ss = SecurityStateAtEL(PSTATE.EL);
 if curr_ss == SS_NonSecure then
 return SS_NonSecure;
 elsif curr_ss == SS_Secure then
 case NS of
 when '0' return SS_Secure;
 when '1' return SS_NonSecure;

shared/functions/registers/BranchTo

 // BranchTo()
 // ==========
 // Set program counter to a new address, with a branch type.
 // Parameter branch_conditional indicates whether the executed branch has a conditional encoding.
 // In AArch64 state the address might include a tag in the top eight bits.

 BranchTo(bits(N) target, BranchType branch_type, boolean branch_conditional)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
 assert N == 64 && !UsingAArch32();
 bits(64) target_vaddress = AArch64.BranchAddr(target<63:0>);
 _PC = target_vaddress;
 return;

shared/functions/registers/BranchToAddr

 // BranchToAddr()
 // ==============
 // Set program counter to a new address, with a branch type.
 // In AArch64 state the address does not include a tag in the top eight bits.

 BranchToAddr(bits(N) target, BranchType branch_type)
 Hint_Branch(branch_type);
 if N == 32 then
 assert UsingAArch32();
 _PC = ZeroExtend(target);
 else
 assert N == 64 && !UsingAArch32();
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-527
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 _PC = target<63:0>;
 return;

shared/functions/registers/BranchType

 enumeration BranchType {
 BranchType_DIRCALL, // Direct Branch with link
 BranchType_INDCALL, // Indirect Branch with link
 BranchType_ERET, // Exception return (indirect)
 BranchType_DBGEXIT, // Exit from Debug state
 BranchType_RET, // Indirect branch with function return hint
 BranchType_DIR, // Direct branch
 BranchType_INDIR, // Indirect branch
 BranchType_EXCEPTION, // Exception entry
 BranchType_RESET, // Reset
 BranchType_UNKNOWN}; // Other

shared/functions/registers/Hint_Branch

 // Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
 // the next instruction.
 Hint_Branch(BranchType hint);

shared/functions/registers/NextInstrAddr

 // Return address of the sequentially next instruction.
 bits(N) NextInstrAddr();

shared/functions/registers/ResetExternalDebugRegisters

 // Reset the External Debug registers in the Core power domain.
 ResetExternalDebugRegisters(boolean cold_reset);

shared/functions/registers/ThisInstrAddr

 // ThisInstrAddr()
 // ===============
 // Return address of the current instruction.

 bits(N) ThisInstrAddr()
 assert N == 64 || (N == 32 && UsingAArch32());
 return _PC<N-1:0>;

shared/functions/registers/_PC

 bits(64) _PC;

shared/functions/registers/_R

 array bits(64) _R[0..30];
I1-528 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/registers/_V

 array bits(128) _V[0..31];

shared/functions/sysregisters/SPSR

 // SPSR[] - non-assignment form
 // ============================

 bits(N) SPSR[]
 bits(N) result;
 if UsingAArch32() then
 assert N == 32;
 case PSTATE.M of
 when M32_FIQ result = SPSR_fiq<N-1:0>;
 when M32_IRQ result = SPSR_irq<N-1:0>;
 when M32_Svc result = SPSR_svc<N-1:0>;
 when M32_Monitor result = SPSR_mon<N-1:0>;
 when M32_Abort result = SPSR_abt<N-1:0>;
 when M32_Hyp result = SPSR_hyp<N-1:0>;
 when M32_Undef result = SPSR_und<N-1:0>;
 otherwise Unreachable();
 else
 assert N == 64;
 case PSTATE.EL of
 when EL1 result = SPSR_EL1<N-1:0>;
 when EL2 result = SPSR_EL2<N-1:0>;
 when EL3 result = SPSR_EL3<N-1:0>;
 otherwise Unreachable();
 return result;

 // SPSR[] - assignment form
 // ========================

 SPSR[] = bits(N) value
 if UsingAArch32() then
 assert N == 32;
 case PSTATE.M of
 when M32_FIQ SPSR_fiq = ZeroExtend(value);
 when M32_IRQ SPSR_irq = ZeroExtend(value);
 when M32_Svc SPSR_svc = ZeroExtend(value);
 when M32_Monitor SPSR_mon = ZeroExtend(value);
 when M32_Abort SPSR_abt = ZeroExtend(value);
 when M32_Hyp SPSR_hyp = ZeroExtend(value);
 when M32_Undef SPSR_und = ZeroExtend(value);
 otherwise Unreachable();
 else
 assert N == 64;
 case PSTATE.EL of
 when EL1 SPSR_EL1 = ZeroExtend(value);
 when EL2 SPSR_EL2 = ZeroExtend(value);
 when EL3 SPSR_EL3 = ZeroExtend(value);
 otherwise Unreachable();
 return;

shared/functions/system/ArchVersion

 enumeration ArchVersion {
 ARMv8p0
 , ARMv8p1
 , ARMv8p2
 , ARMv8p3
 , ARMv8p4
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-529
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 , ARMv8p5
 };

shared/functions/system/ClearEventRegister

 // ClearEventRegister()
 // ====================
 // Clear the Event Register of this PE.

 ClearEventRegister()
 EventRegister = '0';
 return;

shared/functions/system/ClearPendingPhysicalSError

 // Clear a pending physical SError interrupt.
 ClearPendingPhysicalSError();

shared/functions/system/ClearPendingVirtualSError

 // Clear a pending virtual SError interrupt.
 ClearPendingVirtualSError();

shared/functions/system/ConditionHolds

 // ConditionHolds()
 // ================
 // Return TRUE iff COND currently holds

 boolean ConditionHolds(bits(4) cond)
 // Evaluate base condition.
 case cond<3:1> of
 when '000' result = (PSTATE.Z == '1'); // EQ or NE
 when '001' result = (PSTATE.C == '1'); // CS or CC
 when '010' result = (PSTATE.N == '1'); // MI or PL
 when '011' result = (PSTATE.V == '1'); // VS or VC
 when '100' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
 when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
 when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
 when '111' result = TRUE; // AL

 // Condition flag values in the set '111x' indicate always true
 // Otherwise, invert condition if necessary.
 if cond<0> == '1' && cond != '1111' then
 result = !result;

 return result;

shared/functions/system/ConsumptionOfSpeculativeDataBarrier

 ConsumptionOfSpeculativeDataBarrier();

shared/functions/system/CurrentInstrSet

 // CurrentInstrSet()
 // =================

I1-530 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 InstrSet CurrentInstrSet()
 if UsingAArch32() then
 result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
 // PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.
 else
 result = InstrSet_A64;
 return result;

shared/functions/system/CurrentPL

 // CurrentPL()
 // ===========

 PrivilegeLevel CurrentPL()
 return PLOfEL(PSTATE.EL);

shared/functions/system/EL0

 constant bits(2) EL3 = '11';
 constant bits(2) EL2 = '10';
 constant bits(2) EL1 = '01';
 constant bits(2) EL0 = '00';

shared/functions/system/EL2Enabled

 // EL2Enabled()
 // ============
 // Returns TRUE if EL2 is present and executing
 // - with SCR_EL3.NS==1 when Non-secure EL2 is implemented, or
 // - with SCR_EL3.NS==0 when Secure EL2 is implemented and enabled, or
 // - when EL3 is not implemented.

 boolean EL2Enabled()
 return TRUE;

shared/functions/system/ELFromM32

 // ELFromM32()
 // ===========

 (boolean,bits(2)) ELFromM32(bits(5) mode)
 // Convert an AArch32 mode encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'mode<4:0>' encodes a mode that is both valid for this implementation
 // and the current value of SCR.NS/SCR_EL3.NS.
 // 'EL' is the Exception level decoded from 'mode'.
 bits(2) el;
 boolean valid = !BadMode(mode); // Check for modes that are not valid for this implementation
 case mode of
 when M32_Monitor
 el = EL3;
 when M32_Hyp
 el = EL2;
 valid = valid && (!HaveEL(EL3) || SCR_GEN[].NS == '1');
 when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
 // If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
 // state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
 // AArch64, then these modes are EL1 modes.
 el = (if HaveEL(EL3) && !HaveAArch64() && SCR.NS == '0' then EL3 else EL1);
 when M32_User
 el = EL0;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-531
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 otherwise
 valid = FALSE; // Passed an illegal mode value
 if !valid then el = bits(2) UNKNOWN;
 return (valid, el);

shared/functions/system/ELFromSPSR

 // ELFromSPSR()
 // ============

 // Convert an SPSR value encoding to an Exception level.
 // Returns (valid,EL):
 // 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
 // 'EL' is the Exception level decoded from 'spsr'.

 (boolean,bits(2)) ELFromSPSR(bits(N) spsr)
 if spsr<4> == '0' then // AArch64 state
 el = spsr<3:2>;
 if !HaveAArch64() then // No AArch64 support
 valid = FALSE;
 elsif !HaveEL(el) then // Exception level not implemented
 valid = FALSE;
 elsif spsr<1> == '1' then // M[1] must be 0
 valid = FALSE;
 elsif el == EL0 && spsr<0> == '1' then // for EL0, M[0] must be 0
 valid = FALSE;
 else
 valid = TRUE;
 elsif HaveAArch32() then // AArch32 state
 (valid, el) = ELFromM32(spsr<4:0>);
 else
 valid = FALSE;

 if !valid then el = bits(2) UNKNOWN;
 return (valid,el);

shared/functions/system/ELUsingAArch32

 // ELUsingAArch32()
 // ================

 boolean ELUsingAArch32(bits(2) el)
 return FALSE;

shared/functions/system/ELUsingAArch32K

 // ELUsingAArch32K()
 // =================

 (boolean,boolean) ELUsingAArch32K(bits(2) el)
 return (TRUE, FALSE);

shared/functions/system/EndOfInstruction

 // Terminate processing of the current instruction.
 EndOfInstruction();
I1-532 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/system/EnterLowPowerState

 // PE enters a low-power state.
 EnterLowPowerState();

shared/functions/system/EventRegister

 bits(1) EventRegister;

shared/functions/system/ExceptionalOccurrenceTargetState

 enumeration ExceptionalOccurrenceTargetState {
 AArch32_NonDebugState,
 AArch64_NonDebugState,
 DebugState
 };

shared/functions/system/FIQPending

 // Returns TRUE if there is any pending physical FIQ.
 boolean FIQPending();

shared/functions/system/GetAccumulatedFPExceptions

 // Returns FP exceptions accumulated by the PE.
 bits(8) GetAccumulatedFPExceptions();

shared/functions/system/GetPSRFromPSTATE

 // GetPSRFromPSTATE()
 // ==================
 // Return a PSR value which represents the current PSTATE

 bits(N) GetPSRFromPSTATE(ExceptionalOccurrenceTargetState targetELState)
 if UsingAArch32() && (targetELState IN {AArch32_NonDebugState, DebugState}) then
 assert N == 32;
 else
 assert N == 64;
 bits(N) spsr = Zeros();
 spsr<31:28> = PSTATE.<N,Z,C,V>;
 if HavePANExt() then spsr<22> = PSTATE.PAN;
 spsr<20> = PSTATE.IL;
 if PSTATE.nRW == '1' then // AArch32 state
 spsr<27> = PSTATE.Q;
 spsr<26:25> = PSTATE.IT<1:0>;
 if HaveSSBSExt() then spsr<23> = PSTATE.SSBS;
 if HaveDITExt() then
 if targetELState == AArch32_NonDebugState then
 spsr<21> = PSTATE.DIT;
 else //AArch64_NonDebugState or DebugState
 spsr<24> = PSTATE.DIT;
 if targetELState IN {AArch64_NonDebugState, DebugState} then
 spsr<21> = PSTATE.SS;
 spsr<19:16> = PSTATE.GE;
 spsr<15:10> = PSTATE.IT<7:2>;
 spsr<9> = PSTATE.E;
 spsr<8:6> = PSTATE.<A,I,F>; // No PSTATE.D in AArch32 state
 spsr<5> = PSTATE.T;
 assert PSTATE.M<4> == PSTATE.nRW; // bit [4] is the discriminator
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-533
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 spsr<4:0> = PSTATE.M;
 else // AArch64 state
 if HaveDITExt() then spsr<24> = PSTATE.DIT;
 if HaveUAOExt() then spsr<23> = PSTATE.UAO;
 spsr<21> = PSTATE.SS;
 if HaveSSBSExt() then spsr<12> = PSTATE.SSBS;
 spsr<9:6> = PSTATE.<D,A,I,F>;
 spsr<4> = PSTATE.nRW;
 spsr<3:2> = PSTATE.EL;
 spsr<0> = PSTATE.SP;
 return spsr;

shared/functions/system/HasArchVersion

 // HasArchVersion()
 // ================
 // Returns TRUE if the implemented architecture includes the extensions defined in the specified
 // architecture version.

 boolean HasArchVersion(ArchVersion version)
 return version == ARMv8p0 || boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAArch32

 // HaveAArch32()
 // =============
 // Return TRUE if AArch32 state is supported at at least EL0.

 boolean HaveAArch32()
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAArch32EL

 // HaveAArch32EL()
 // ===============

 boolean HaveAArch32EL(bits(2) el)
 // Return TRUE if Exception level 'el' supports AArch32 in this implementation
 if !HaveEL(el) then
 return FALSE; // The Exception level is not implemented
 elsif !HaveAArch32() then
 return FALSE; // No Exception level can use AArch32
 elsif !HaveAArch64() then
 return TRUE; // All Exception levels are using AArch32
 elsif el == HighestEL() then
 return FALSE; // The highest Exception level is using AArch64
 elsif el == EL0 then
 return TRUE; // EL0 must support using AArch32 if any AArch32
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HaveAArch64

 // HaveAArch64()
 // =============
 // Return TRUE if AArch64 state is supported at the highest Exception level.

 boolean HaveAArch64()
 return boolean IMPLEMENTATION_DEFINED "Highest EL using AArch64";
I1-534 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/system/HaveEL

 // HaveEL()
 // ========
 // Return TRUE if Exception level 'el' is supported

 boolean HaveEL(bits(2) el)
 if el IN {EL2,EL1,EL0} then
 return TRUE; // EL2, EL1 and EL0 must exist
 else
 return FALSE;

shared/functions/system/HaveELUsingSecurityState

 // HaveELUsingSecurityState()
 // ==========================
 // Returns TRUE if Exception level 'el' with Security state 'secure' is supported,
 // FALSE otherwise.

 boolean HaveELUsingSecurityState(bits(2) el, boolean secure)

 case el of
 when EL3
 assert secure;
 return HaveEL(EL3);
 when EL2
 if secure then
 return HaveEL(EL2) && HaveSecureEL2Ext();
 else
 return HaveEL(EL2);
 otherwise
 return (HaveEL(EL3) ||
 (secure == boolean IMPLEMENTATION_DEFINED "Secure-only implementation"));

shared/functions/system/HaveFP16Ext

 // HaveFP16Ext()
 // =============
 // Return TRUE if FP16 extension is supported

 boolean HaveFP16Ext()
 return boolean IMPLEMENTATION_DEFINED;

shared/functions/system/HighestEL

 // HighestEL()
 // ===========
 // Returns the highest implemented Exception level.

 bits(2) HighestEL()
 if HaveEL(EL3) then
 return EL3;
 elsif HaveEL(EL2) then
 return EL2;
 else
 return EL1;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-535
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/system/Hint_DGH

 // Provides a hint to close any gathering occurring within the micro-architecture.
 Hint_DGH();

shared/functions/system/Hint_WFE

 // Hint_WFE()
 // ==========
 // Provides a hint indicating that the PE can enter a low-power state and
 // remain there until a wakeup event occurs.

 Hint_WFE(WFxType wfxtype)
 if IsEventRegisterSet() then
 ClearEventRegister();
 else
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS.
 AArch64.CheckForWFxTrap(EL1, wfxtype);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 // Check for traps described by the Hypervisor.
 AArch64.CheckForWFxTrap(EL2, wfxtype);
 if HaveEL(EL3) && PSTATE.EL != EL3 then
 // Check for traps described by the Secure Monitor.
 AArch64.CheckForWFxTrap(EL3, wfxtype);
 WaitForEvent();

shared/functions/system/Hint_WFI

 // Hint_WFI()
 // ==========
 // Provides a hint indicating that the PE can enter a low-power state and
 // remain there until a wakeup event occurs.

 Hint_WFI(WFxType wfxtype)
 if !InterruptPending() then
 if PSTATE.EL == EL0 then
 // Check for traps described by the OS.
 AArch64.CheckForWFxTrap(EL1, wfxtype);
 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
 // Check for traps described by the Hypervisor.
 AArch64.CheckForWFxTrap(EL2, wfxtype);
 if HaveEL(EL3) && PSTATE.EL != EL3 then
 // Check for traps described by the Secure Monitor.
 AArch64.CheckForWFxTrap(EL3, wfxtype);
 WaitForInterrupt();

shared/functions/system/Hint_Yield

 // Provides a hint that the task performed by a thread is of low
 // importance so that it could yield to improve overall performance.
 Hint_Yield();

shared/functions/system/IRQPending

 // Returns TRUE if there is any pending physical IRQ.
 boolean IRQPending();
I1-536 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/system/IllegalExceptionReturn

 // IllegalExceptionReturn()
 // ========================

 boolean IllegalExceptionReturn(bits(N) spsr)

 // Check for illegal return:
 // * To an unimplemented Exception level.
 // * To EL2 in Secure state, when SecureEL2 is not enabled.
 // * To EL0 using AArch64 state, with SPSR.M[0]==1.
 // * To AArch64 state with SPSR.M[1]==1.
 // * To AArch32 state with an illegal value of SPSR.M.
 (valid, target) = ELFromSPSR(spsr);
 if !valid then return TRUE;

 // Check for return to higher Exception level
 if UInt(target) > UInt(PSTATE.EL) then return TRUE;

 spsr_mode_is_aarch32 = (spsr<4> == '1');

 // Check for illegal return:
 // * To EL1, EL2 or EL3 with register width specified in the SPSR different from the
 // Execution state used in the Exception level being returned to, as determined by
 // the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
 // * To EL0 using AArch64 state when EL1 is using AArch32 state as determined by the
 // SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.
 // * To AArch64 state from AArch32 state (should be caught by above)
 (known, target_el_is_aarch32) = ELUsingAArch32K(target);
 assert known || (target == EL0 && !ELUsingAArch32(EL1));
 if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;

 // Check for illegal return from AArch32 to AArch64
 if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;

 // Check for illegal return to EL1 when HCR.TGE is set and when either of
 // * SecureEL2 is enabled.
 // * SecureEL2 is not enabled and EL1 is in Non-secure state.
 if HaveEL(EL2) && target == EL1 && HCR_EL2.TGE == '1' then
 if (!IsSecureBelowEL3() || IsSecureEL2Enabled()) then return TRUE;
 return FALSE;

shared/functions/system/InstrSet

 enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

shared/functions/system/InstructionSynchronizationBarrier

 InstructionSynchronizationBarrier(boolean vmid_sensitive);

shared/functions/system/InterruptPending

 // InterruptPending()
 // ==================
 // Returns TRUE if there are any pending physical or virtual
 // interrupts, and FALSE otherwise.

 boolean InterruptPending()
 boolean pending_virtual_interrupt = FALSE;
 boolean pending_physical_interrupt = (IRQPending() || FIQPending() ||
 IsPhysicalSErrorPending());

 if EL2Enabled() && PSTATE.EL IN {EL0, EL1} && HCR_EL2.TGE == '0' then
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-537
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 boolean virq_pending = HCR_EL2.IMO == '1' && (VirtualIRQPending() || HCR_EL2.VI == '1') ;
 boolean vfiq_pending = HCR_EL2.FMO == '1' && (VirtualFIQPending() || HCR_EL2.VF == '1');
 boolean vsei_pending = HCR_EL2.AMO == '1' && (IsVirtualSErrorPending() || HCR_EL2.VSE == '1');
 pending_virtual_interrupt = vsei_pending || virq_pending || vfiq_pending;

 return pending_physical_interrupt || pending_virtual_interrupt;

shared/functions/system/IsASEInstruction

 // Returns TRUE if the current instruction is an ASIMD or SVE vector instruction.
 boolean IsASEInstruction();

shared/functions/system/IsEventRegisterSet

 // IsEventRegisterSet()
 // ====================
 // Return TRUE if the Event Register of this PE is set, and FALSE if it is clear.

 boolean IsEventRegisterSet()
 return EventRegister == '1';

shared/functions/system/IsHighestEL

 // IsHighestEL()
 // =============
 // Returns TRUE if given exception level is the highest exception level implemented

 boolean IsHighestEL(bits(2) el)
 return HighestEL() == el;

shared/functions/system/IsPhysicalSErrorPending

 // Returns TRUE if a physical SError interrupt is pending.
 boolean IsPhysicalSErrorPending();

shared/functions/system/IsSErrorEdgeTriggered

 // IsSErrorEdgeTriggered()
 // =======================
 // Returns TRUE if the physical SError interrupt is edge-triggered
 // and FALSE otherwise.

 boolean IsSErrorEdgeTriggered(bits(2) target_el, bits(25) syndrome)
 if HaveRASExt() then
 if ELUsingAArch32(target_el) then
 if syndrome<11:10> != '00' then
 // AArch32 and not Uncontainable.
 return TRUE;
 else
 if syndrome<24> == '0' && syndrome<5:0> != '000000' then
 // AArch64 and neither IMPLEMENTATION DEFINED syndrome nor Uncategorized.
 return TRUE;
 return boolean IMPLEMENTATION_DEFINED "Edge-triggered SError";
I1-538 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/system/IsSecure

 // IsSecure()
 // ==========
 // Returns TRUE if current Exception level is in Secure state.

 boolean IsSecure()
 if HaveEL(EL3) && !UsingAArch32() && PSTATE.EL == EL3 then
 return TRUE;
 elsif HaveEL(EL3) && UsingAArch32() && PSTATE.M == M32_Monitor then
 return TRUE;
 return IsSecureBelowEL3();

 return TRUE;

shared/functions/system/IsSecureBelowEL3

 // IsSecureBelowEL3()
 // ==================
 // Return TRUE if an Exception level below EL3 is in Secure state
 // or would be following an exception return to that level.
 //
 // Differs from IsSecure in that it ignores the current EL or Mode
 // in considering security state.
 // That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
 // exception return would pass to Secure or Non-secure state.

 boolean IsSecureBelowEL3()
 return TRUE;

shared/functions/system/IsSecureEL2Enabled

 // IsSecureEL2Enabled()
 // ====================
 // Returns TRUE if Secure EL2 is enabled, FALSE otherwise.

 boolean IsSecureEL2Enabled()
 return TRUE;

shared/functions/system/IsSynchronizablePhysicalSErrorPending

 // Returns TRUE if a synchronizable physical SError interrupt is pending.
 boolean IsSynchronizablePhysicalSErrorPending();

shared/functions/system/IsVirtualSErrorPending

 // Returns TRUE if a virtual SError interrupt is pending.
 boolean IsVirtualSErrorPending();

shared/functions/system/Mode_Bits

 constant bits(5) M32_User = '10000';
 constant bits(5) M32_FIQ = '10001';
 constant bits(5) M32_IRQ = '10010';
 constant bits(5) M32_Svc = '10011';
 constant bits(5) M32_Monitor = '10110';
 constant bits(5) M32_Abort = '10111';
 constant bits(5) M32_Hyp = '11010';
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-539
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 constant bits(5) M32_Undef = '11011';
 constant bits(5) M32_System = '11111';

shared/functions/system/PLOfEL

 // PLOfEL()
 // ========

 PrivilegeLevel PLOfEL(bits(2) el)
 case el of
 when EL3 return if !HaveAArch64() then PL1 else PL3;
 when EL2 return PL2;
 when EL1 return PL1;
 when EL0 return PL0;

shared/functions/system/PSTATE

 ProcState PSTATE;

shared/functions/system/PhysicalCountInt

 // PhysicalCountInt()
 // ==================
 // Returns the integral part of physical count value of the System counter.

 bits(64) PhysicalCountInt()
 return PhysicalCount<63:0>;

shared/functions/system/PrivilegeLevel

 enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};

shared/functions/system/ProcState

 type ProcState is (
 bits (1) N, // Negative condition flag
 bits (1) Z, // Zero condition flag
 bits (1) C, // Carry condition flag
 bits (1) V, // Overflow condition flag
 bits (1) D, // Debug mask bit [AArch64 only]
 bits (1) A, // SError interrupt mask bit
 bits (1) I, // IRQ mask bit
 bits (1) F, // FIQ mask bit
 bits (1) PAN, // Privileged Access Never Bit [v8.1]
 bits (1) UAO, // User Access Override [v8.2]
 bits (1) DIT, // Data Independent Timing [v8.4]
 bits (1) SS, // Software step bit
 bits (1) IL, // Illegal Execution state bit
 bits (2) EL, // Exception level
 bits (1) nRW, // not Register Width: 0=64, 1=32
 bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
 bits (1) Q, // Cumulative saturation flag [AArch32 only]
 bits (4) GE, // Greater than or Equal flags [AArch32 only]
 bits (1) SSBS, // Speculative Store Bypass Safe
 bits (8) IT, // If-then bits, RES0 in CPSR [AArch32 only]
 bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
 bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
 bits (1) E, // Endianness bit [AArch32 only]
I1-540 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 bits (5) M // Mode field [AArch32 only]
)

shared/functions/system/RestoredITBits

 // RestoredITBits()
 // ================
 // Get the value of PSTATE.IT to be restored on this exception return.

 bits(8) RestoredITBits(bits(N) spsr)
 it = spsr<15:10,26:25>;

 // When PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the IT bits are each set
 // to zero or copied from the SPSR.
 if PSTATE.IL == '1' then
 if ConstrainUnpredictableBool() then return '00000000';
 else return it;

 // The IT bits are forced to zero when they are set to a reserved value.
 if !IsZero(it<7:4>) && IsZero(it<3:0>) then
 return '00000000';

 // The IT bits are forced to zero when returning to A32 state, or when returning to an EL
 // with the ITD bit set to 1, and the IT bits are describing a multi-instruction block.
 itd = if PSTATE.EL == EL2 then HSCTLR.ITD else SCTLR.ITD;
 if (spsr<5> == '0' && !IsZero(it)) || (itd == '1' && !IsZero(it<2:0>)) then
 return '00000000';
 else
 return it;

shared/functions/system/SecurityState

 enumeration SecurityState {
 SS_NonSecure,
 SS_Secure
 };

shared/functions/system/SendEvent

 // Signal an event to all PEs in a multiprocessor system to set their Event Registers.
 // When a PE executes the SEV instruction, it causes this function to be executed.
 SendEvent();

shared/functions/system/SendEventLocal

 // SendEventLocal()
 // ================
 // Set the local Event Register of this PE.
 // When a PE executes the SEVL instruction, it causes this function to be executed.

 SendEventLocal()
 EventRegister = '1';
 return;

shared/functions/system/SetAccumulatedFPExceptions

 // Stores FP Exceptions accumulated by the PE.
 SetAccumulatedFPExceptions(bits(8) accumulated_exceptions);
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-541
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/system/SetPSTATEFromPSR

 // SetPSTATEFromPSR()
 // ==================

 SetPSTATEFromPSR(bits(N) spsr)
 boolean illegal_psr_state = IllegalExceptionReturn(spsr);
 SetPSTATEFromPSR(spsr, illegal_psr_state);

 // SetPSTATEFromPSR()
 // ==================
 // Set PSTATE based on a PSR value

 SetPSTATEFromPSR(bits(N) spsr, boolean illegal_psr_state)
 boolean from_aarch64 = !UsingAArch32();
 assert N == (if from_aarch64 then 64 else 32);
 PSTATE.SS = DebugExceptionReturnSS(spsr);
 ShouldAdvanceSS = FALSE;
 if illegal_psr_state then
 PSTATE.IL = '1';
 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
 if HaveUAOExt() then PSTATE.UAO = bit UNKNOWN;
 if HaveDITExt() then PSTATE.DIT = bit UNKNOWN;
 else
 // State that is reinstated only on a legal exception return
 PSTATE.IL = spsr<20>;
 if spsr<4> == '1' then // AArch32 state
 AArch32.WriteMode(spsr<4:0>); // Sets PSTATE.EL correctly
 if HaveSSBSExt() then PSTATE.SSBS = spsr<23>;
 else // AArch64 state
 PSTATE.nRW = '0';
 PSTATE.EL = spsr<3:2>;
 PSTATE.SP = spsr<0>;
 if HaveSSBSExt() then PSTATE.SSBS = spsr<12>;
 if HaveUAOExt() then PSTATE.UAO = spsr<23>;
 if HaveDITExt() then PSTATE.DIT = spsr<24>;

 // If PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the T bit is set to zero or
 // copied from SPSR.
 if PSTATE.IL == '1' && PSTATE.nRW == '1' then
 if ConstrainUnpredictableBool() then spsr<5> = '0';

 // State that is reinstated regardless of illegal exception return
 PSTATE.<N,Z,C,V> = spsr<31:28>;
 if HavePANExt() then PSTATE.PAN = spsr<22>;
 if PSTATE.nRW == '1' then // AArch32 state
 PSTATE.Q = spsr<27>;
 PSTATE.IT = RestoredITBits(spsr);
 ShouldAdvanceIT = FALSE;
 if HaveDITExt() then PSTATE.DIT = (if (Restarting() || from_aarch64) then spsr<24> else
spsr<21>);
 PSTATE.GE = spsr<19:16>;
 PSTATE.E = spsr<9>;
 PSTATE.<A,I,F> = spsr<8:6>; // No PSTATE.D in AArch32 state
 PSTATE.T = spsr<5>; // PSTATE.J is RES0
 else // AArch64 state
 PSTATE.<D,A,I,F> = spsr<9:6>; // No PSTATE.<Q,IT,GE,E,T> in AArch64 state
 return;

shared/functions/system/ShouldAdvanceIT

 boolean ShouldAdvanceIT;
I1-542 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/system/ShouldAdvanceSS

 boolean ShouldAdvanceSS;

shared/functions/system/SpeculationBarrier

 SpeculationBarrier();

shared/functions/system/SynchronizeContext

 SynchronizeContext();

shared/functions/system/SynchronizeErrors

 // Implements the error synchronization event.
 SynchronizeErrors();

shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts

 // Take any pending unmasked physical SError interrupt.
 TakeUnmaskedPhysicalSErrorInterrupts(boolean iesb_req);

shared/functions/system/TakeUnmaskedSErrorInterrupts

 // Take any pending unmasked physical SError interrupt or unmasked virtual SError
 // interrupt.
 TakeUnmaskedSErrorInterrupts();

shared/functions/system/ThisInstr

 bits(32) ThisInstr();

shared/functions/system/ThisInstrLength

 integer ThisInstrLength();

shared/functions/system/Unreachable

 Unreachable()
 assert FALSE;

shared/functions/system/UsingAArch32

 // UsingAArch32()
 // ==============
 // Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

 boolean UsingAArch32()
 boolean aarch32 = (PSTATE.nRW == '1');
 if !HaveAArch32() then assert !aarch32;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-543
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 if !HaveAArch64() then assert aarch32;
 return aarch32;

shared/functions/system/VirtualFIQPending

 // Returns TRUE if there is any pending virtual FIQ.
 boolean VirtualFIQPending();

shared/functions/system/VirtualIRQPending

 // Returns TRUE if there is any pending virtual IRQ.
 boolean VirtualIRQPending();

shared/functions/system/WFxType

 enumeration WFxType {WFxType_WFE, WFxType_WFI};

shared/functions/system/WaitForEvent

 // WaitForEvent()
 // ==============
 // PE optionally suspends execution until one of the following occurs:
 // - A WFE wake-up event.
 // - A reset.
 // - The implementation chooses to resume execution.
 // It is IMPLEMENTATION DEFINED whether restarting execution after the period of
 // suspension causes the Event Register to be cleared.

 WaitForEvent()
 if !IsEventRegisterSet() then
 EnterLowPowerState();
 return;

shared/functions/system/WaitForInterrupt

 // WaitForInterrupt()
 // ==================
 // PE optionally suspends execution until one of the following occurs:
 // - A WFI wake-up event.
 // - A reset.
 // - The implementation chooses to resume execution.

 WaitForInterrupt()
 EnterLowPowerState();
 return;

shared/functions/unpredictable/ConstrainUnpredictable

 // Return the appropriate Constraint result to control the caller's behavior. The return value
 // is IMPLEMENTATION DEFINED within a permitted list for each UNPREDICTABLE case.
 // (The permitted list is determined by an assert or case statement at the call site.)
 Constraint ConstrainUnpredictable();
I1-544 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/unpredictable/ConstrainUnpredictableBits

 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
 // If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
 // value is always an allocated value; that is, one for which the behavior is not itself
 // CONSTRAINED.
 (Constraint,bits(width)) ConstrainUnpredictableBits();

shared/functions/unpredictable/ConstrainUnpredictableBool

 // ConstrainUnpredictableBool()
 // ============================

 // This is a simple wrapper function for cases where the constrained result is either TRUE or FALSE.

 boolean ConstrainUnpredictableBool()

 c = ConstrainUnpredictable();
 assert c IN {Constraint_TRUE, Constraint_FALSE};
 return (c == Constraint_TRUE);

shared/functions/unpredictable/ConstrainUnpredictableInteger

 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN. If
 // the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in the range
 // low to high, inclusive.
 (Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high);

shared/functions/unpredictable/Constraint

 enumeration Constraint {// General
 Constraint_NONE, // Instruction executes with
 // no change or side-effect to its described
behavior
 Constraint_UNKNOWN, // Destination register has UNKNOWN value
 Constraint_UNDEF, // Instruction is UNDEFINED
 Constraint_UNDEFEL0, // Instruction is UNDEFINED at EL0 only
 Constraint_NOP, // Instruction executes as NOP
 Constraint_TRUE,
 Constraint_FALSE,
 Constraint_DISABLED,
 Constraint_UNCOND, // Instruction executes unconditionally
 Constraint_COND, // Instruction executes conditionally
 Constraint_ADDITIONAL_DECODE, // Instruction executes with additional decode
 // Load-store
 Constraint_WBSUPPRESS,
 Constraint_FAULT,
 Constraint_MPU_FAULT, // Raise MPU fault
 Constraint_MPU_ATTR_UNKNOWN, // MPU Attribute is UNKNOWN
 Constraint_OSH, // Constrain to Outer shareable
 Constraint_ISH, // Constrain to Inner shareable
 Constraint_NSH, // Constrain to Nonshareable

 Constraint_NC, // Constrain to Noncacheable
 Constraint_WT, // Constrain to Writethrough
 Constraint_WB, // Constrain to Writeback

 // IPA too large
 Constraint_FORCE, Constraint_FORCENOSLCHECK,
 // PMSCR_PCT reserved values select Virtual timestamp
 Constraint_PMSCR_PCT_VIRT};
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-545
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/vector/AdvSIMDExpandImm

 // AdvSIMDExpandImm()
 // ==================

 bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
 case cmode<3:1> of
 when '000'
 imm64 = Replicate(Zeros(24):imm8, 2);
 when '001'
 imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);
 when '010'
 imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
 when '011'
 imm64 = Replicate(imm8:Zeros(24), 2);
 when '100'
 imm64 = Replicate(Zeros(8):imm8, 4);
 when '101'
 imm64 = Replicate(imm8:Zeros(8), 4);
 when '110'
 if cmode<0> == '0' then
 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
 else
 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
 when '111'
 if cmode<0> == '0' && op == '0' then
 imm64 = Replicate(imm8, 8);
 if cmode<0> == '0' && op == '1' then
 imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
 imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
 imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
 imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
 imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
 if cmode<0> == '1' && op == '0' then
 imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
 imm64 = Replicate(imm32, 2);
 if cmode<0> == '1' && op == '1' then
 if UsingAArch32() then ReservedEncoding();
 imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

 return imm64;

shared/functions/vector/PolynomialMult

 // PolynomialMult()
 // ================

 bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
 result = Zeros(M+N);
 extended_op2 = ZeroExtend(op2, M+N);
 for i=0 to M-1
 if op1<i> == '1' then
 result = result EOR LSL(extended_op2, i);
 return result;

shared/functions/vector/SatQ

 // SatQ()
 // ======

 (bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
 return (result, sat);
I1-546 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/functions/vector/SignedSatQ

 // SignedSatQ()
 // ============

 (bits(N), boolean) SignedSatQ(integer i, integer N)
 if i > 2^(N-1) - 1 then
 result = 2^(N-1) - 1; saturated = TRUE;
 elsif i < -(2^(N-1)) then
 result = -(2^(N-1)); saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

shared/functions/vector/UnsignedRSqrtEstimate

 // UnsignedRSqrtEstimate()
 // =======================

 bits(N) UnsignedRSqrtEstimate(bits(N) operand)
 assert N == 32;
 if operand<N-1:N-2> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF
 result = Ones(N);
 else
 // input is in the range 0x40000000 .. 0xffffffff representing [0.25 .. 1.0)
 // estimate is in the range 256 .. 511 representing [1.0 .. 2.0)
 estimate = RecipSqrtEstimate(UInt(operand<31:23>));
 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
 result = estimate<8:0> : Zeros(N-9);

 return result;

shared/functions/vector/UnsignedRecipEstimate

 // UnsignedRecipEstimate()
 // =======================

 bits(N) UnsignedRecipEstimate(bits(N) operand)
 assert N == 32;
 if operand<N-1> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF
 result = Ones(N);
 else
 // input is in the range 0x80000000 .. 0xffffffff representing [0.5 .. 1.0)

 // estimate is in the range 256 to 511 representing [1.0 .. 2.0)
 estimate = RecipEstimate(UInt(operand<31:23>));

 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
 result = estimate<8:0> : Zeros(N-9);

 return result;

shared/functions/vector/UnsignedSatQ

 // UnsignedSatQ()
 // ==============

 (bits(N), boolean) UnsignedSatQ(integer i, integer N)
 if i > 2^N - 1 then
 result = 2^N - 1; saturated = TRUE;
 elsif i < 0 then
 result = 0; saturated = TRUE;
 else
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-547
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

I1.2.4 shared/translation

This section includes the following pseudocode functions:

• shared/translation/at/ATAccess on page I1-549.

• shared/translation/at/EncodePARAttrs on page I1-549.

• shared/translation/at/PAREncodeShareability on page I1-549.

• shared/translation/at/TranslationStage on page I1-550.

• shared/translation/attrs/DecodeDevice on page I1-550.

• shared/translation/attrs/DecodeLDFAttr on page I1-550.

• shared/translation/attrs/DecodeSDFAttr on page I1-550.

• shared/translation/attrs/DecodeShareability on page I1-551.

• shared/translation/attrs/EffectiveShareability on page I1-551.

• shared/translation/attrs/MAIRAttr on page I1-551.

• shared/translation/attrs/NormalNCMemAttr on page I1-552.

• shared/translation/attrs/S1ConstrainUnpredictableRESMAIR on page I1-552.

• shared/translation/attrs/S1DecodeMemAttrs on page I1-552.

• shared/translation/attrs/S2CombineS1AttrHints on page I1-552.

• shared/translation/attrs/S2CombineS1Device on page I1-553.

• shared/translation/attrs/S2CombineS1MemAttrs on page I1-553.

• shared/translation/attrs/S2CombineS1Shareability on page I1-554.

• shared/translation/attrs/WalkMemAttrs on page I1-554.

• shared/translation/faults/AlignmentFault on page I1-554.

• shared/translation/faults/AsyncExternalAbort on page I1-554.

• shared/translation/faults/NoFault on page I1-555.

• shared/translation/translation/S1TranslationRegime on page I1-555.

• shared/translation/vmsa/AddressDescriptor on page I1-555.

• shared/translation/vmsa/ContiguousSize on page I1-555.

• shared/translation/vmsa/CreateAddressDescriptor on page I1-556.

• shared/translation/vmsa/CreateFaultyAddressDescriptor on page I1-556.

• shared/translation/vmsa/DescriptorType on page I1-556.

• shared/translation/vmsa/Domains on page I1-556.

• shared/translation/vmsa/FetchDescriptor on page I1-557.

• shared/translation/vmsa/HasUnprivileged on page I1-557.

• shared/translation/vmsa/IsAtomicRW on page I1-557.

• shared/translation/vmsa/Regime on page I1-557.

• shared/translation/vmsa/RegimeUsingAArch32 on page I1-558.

• shared/translation/vmsa/S1TTWParams on page I1-558.

• shared/translation/vmsa/SDFType on page I1-558.

• shared/translation/vmsa/SecurityStateForRegime on page I1-558.

• shared/translation/vmsa/StageOA on page I1-559.

• shared/translation/vmsa/TGx on page I1-559.

• shared/translation/vmsa/TGxGranuleBits on page I1-559.

• shared/translation/vmsa/TLBContext on page I1-559.

• shared/translation/vmsa/TLBRecord on page I1-560.

• shared/translation/vmsa/TTWState on page I1-560.

• shared/translation/vmsa/TranslationRegime on page I1-560.

• shared/translation/vmsa/TranslationSize on page I1-560.
I1-548 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
• shared/translation/vmsa/UseASID on page I1-561.

• shared/translation/vmsa/UseVMID on page I1-561.

• shared/translation/vmsa/VARange on page I1-561.

shared/translation/at/ATAccess

 enumeration ATAccess {
 ATAccess_Read,
 ATAccess_Write,
 ATAccess_ReadPAN,
 ATAccess_WritePAN
 };

shared/translation/at/EncodePARAttrs

 // EncodePARAttrs()
 // ================
 // Convert orthogonal attributes and hints to 64-bit PAR ATTR field.

 bits(8) EncodePARAttrs(MemoryAttributes memattrs)
 bits(8) result;

 if memattrs.memtype == MemType_Device then
 result<7:4> = '0000';
 if memattrs.device == DeviceType_nGnRnE then
 result<3:0> = '0000';
 elsif memattrs.device == DeviceType_nGnRE then
 result<3:0> = '0100';
 elsif memattrs.device == DeviceType_nGRE then
 result<3:0> = '1000';
 else // DeviceType_GRE
 result<3:0> = '1100';
 else
 if memattrs.outer.attrs == MemAttr_WT then
 result<7:6> = if memattrs.outer.transient then '00' else '10';
 result<5:4> = memattrs.outer.hints;
 elsif memattrs.outer.attrs == MemAttr_WB then
 result<7:6> = if memattrs.outer.transient then '01' else '11';
 result<5:4> = memattrs.outer.hints;
 else // MemAttr_NC
 result<7:4> = '0100';

 if memattrs.inner.attrs == MemAttr_WT then
 result<3:2> = if memattrs.inner.transient then '00' else '10';
 result<1:0> = memattrs.inner.hints;
 elsif memattrs.inner.attrs == MemAttr_WB then
 result<3:2> = if memattrs.inner.transient then '01' else '11';
 result<1:0> = memattrs.inner.hints;
 else // MemAttr_NC
 result<3:0> = '0100';

 return result;

shared/translation/at/PAREncodeShareability

 // PAREncodeShareability()
 // =======================
 // Derive 64-bit PAR SH field.

 bits(2) PAREncodeShareability(MemoryAttributes memattrs)
 if (memattrs.memtype == MemType_Device ||
 (memattrs.inner.attrs == MemAttr_NC &&
 memattrs.outer.attrs == MemAttr_NC)) then
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-549
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 // Force Outer-Shareable on Device and Normal Non-Cacheable memory
 return '10';

 case memattrs.shareability of
 when Shareability_NSH return '00';
 when Shareability_ISH return '11';
 when Shareability_OSH return '10';

shared/translation/at/TranslationStage

 enumeration TranslationStage {
 TranslationStage_1,
 TranslationStage_12
 };

shared/translation/attrs/DecodeDevice

 // DecodeDevice()
 // ==============
 // Decode output Device type

 DeviceType DecodeDevice(bits(2) device)
 case device of
 when '00' return DeviceType_nGnRnE;
 when '01' return DeviceType_nGnRE;
 when '10' return DeviceType_nGRE;
 when '11' return DeviceType_GRE;

shared/translation/attrs/DecodeLDFAttr

 // DecodeLDFAttr()
 // ===============
 // Decode memory attributes using LDF (Long Descriptor Format) mapping

 MemAttrHints DecodeLDFAttr(bits(4) attr)
 MemAttrHints ldfattr;

 if attr == 'x0xx' then ldfattr.attrs = MemAttr_WT; // Write-through
 elsif attr == '0100' then ldfattr.attrs = MemAttr_NC; // Non-cacheable
 elsif attr == 'x1xx' then ldfattr.attrs = MemAttr_WB; // Write-back
 else Unreachable();

 // Allocation hints are applicable only to cacheable memory.
 if ldfattr.attrs != MemAttr_NC then
 case attr<1:0> of
 when '00' ldfattr.hints = MemHint_No; // No allocation hints
 when '01' ldfattr.hints = MemHint_WA; // Write-allocate
 when '10' ldfattr.hints = MemHint_RA; // Read-allocate
 when '11' ldfattr.hints = MemHint_RWA; // Read/Write allocate

 // The Transient hint applies only to cacheable memory with some allocation hints.
 if ldfattr.attrs != MemAttr_NC && ldfattr.hints != MemHint_No then
 ldfattr.transient = attr<3> == '0';

 return ldfattr;

shared/translation/attrs/DecodeSDFAttr

 // DecodeSDFAttr()
 // ===============
 // Decode memory attributes using SDF (Short Descriptor Format) mapping
I1-550 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 MemAttrHints DecodeSDFAttr(bits(2) rgn)
 MemAttrHints sdfattr;

 case rgn of
 when '00' // Non-cacheable (no allocate)
 sdfattr.attrs = MemAttr_NC;
 when '01' // Write-back, Read and Write allocate
 sdfattr.attrs = MemAttr_WB;
 sdfattr.hints = MemHint_RWA;
 when '10' // Write-through, Read allocate
 sdfattr.attrs = MemAttr_WT;
 sdfattr.hints = MemHint_RA;
 when '11' // Write-back, Read allocate
 sdfattr.attrs = MemAttr_WB;
 sdfattr.hints = MemHint_RA;

 sdfattr.transient = FALSE;

 return sdfattr;

shared/translation/attrs/DecodeShareability

 // DecodeShareability()
 // ====================
 // Decode shareability of target memory region

 Shareability DecodeShareability(bits(2) sh)
 case sh of
 when '10' return Shareability_OSH;
 when '11' return Shareability_ISH;
 when '00' return Shareability_NSH;
 otherwise
 case ConstrainUnpredictable() of
 when Constraint_OSH return Shareability_OSH;
 when Constraint_ISH return Shareability_ISH;
 when Constraint_NSH return Shareability_NSH;

shared/translation/attrs/EffectiveShareability

 // EffectiveShareability()
 // =======================
 // Force Outer Shareability on Device and Normal iNCoNC memory

 Shareability EffectiveShareability(MemoryAttributes memattrs)
 if (memattrs.memtype == MemType_Device ||
 (memattrs.inner.attrs == MemAttr_NC &&
 memattrs.outer.attrs == MemAttr_NC)) then
 return Shareability_OSH;
 else
 return memattrs.shareability;

shared/translation/attrs/MAIRAttr

 // MAIRAttr()
 // ==========
 // Retrieve the memory attribute encoding indexed in the given MAIR

 bits(8) MAIRAttr(integer index, MAIRType mair)
 bit_index = 8 * index;
 return mair<bit_index+7:bit_index>;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-551
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/translation/attrs/NormalNCMemAttr

 // NormalNCMemAttr()
 // =================
 // Normal Non-cacheable memory attributes

 MemoryAttributes NormalNCMemAttr()
 MemAttrHints non_cacheable;
 non_cacheable.attrs = MemAttr_NC;

 MemoryAttributes nc_memattrs;
 nc_memattrs.memtype = MemType_Normal;
 nc_memattrs.outer = non_cacheable;
 nc_memattrs.inner = non_cacheable;
 nc_memattrs.shareability = Shareability_OSH;

 return nc_memattrs;

shared/translation/attrs/S1ConstrainUnpredictableRESMAIR

 // S1ConstrainUnpredictableRESMAIR()
 // =================================
 // Determine whether a reserved value occupies MAIR_ELx.AttrN

 boolean S1ConstrainUnpredictableRESMAIR(bits(8) attr, boolean s1aarch64)
 case attr of
 when '0000xxxx' return attr<1:0> != '00';
 when 'xxxx0000' return TRUE;
 otherwise return FALSE;

shared/translation/attrs/S1DecodeMemAttrs

 // S1DecodeMemAttrs()
 // ==================
 // Decode MAIR-format memory attributes assigned in stage 1

 MemoryAttributes S1DecodeMemAttrs(bits(8) attr, bits(2) sh, boolean s1aarch64)
 if S1ConstrainUnpredictableRESMAIR(attr, s1aarch64) then
 (-, attr) = ConstrainUnpredictableBits();

 MemoryAttributes memattrs;
 case attr of
 when '0000xxxx' // Device memory
 memattrs.memtype = MemType_Device;
 memattrs.device = DecodeDevice(attr<3:2>);
 otherwise
 memattrs.memtype = MemType_Normal;
 memattrs.outer = DecodeLDFAttr(attr<7:4>);
 memattrs.inner = DecodeLDFAttr(attr<3:0>);

 memattrs.shareability = DecodeShareability(sh);

 return memattrs;

shared/translation/attrs/S2CombineS1AttrHints

 // S2CombineS1AttrHints()
 // ======================
 // Determine resultant Normal memory cacheability and allocation hints from
 // combining stage 1 Normal memory attributes and stage 2 cacheability attributes.

 MemAttrHints S2CombineS1AttrHints(MemAttrHints s1_attrhints, MemAttrHints s2_attrhints)
 MemAttrHints attrhints;
I1-552 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode

 if s1_attrhints.attrs == MemAttr_NC || s2_attrhints.attrs == MemAttr_NC then
 attrhints.attrs = MemAttr_NC;
 elsif s1_attrhints.attrs == MemAttr_WT || s2_attrhints.attrs == MemAttr_WT then
 attrhints.attrs = MemAttr_WT;
 else
 attrhints.attrs = MemAttr_WB;

 // Stage 2 does not assign any allocation hints
 // Instead, they are inherited from stage 1
 if attrhints.attrs != MemAttr_NC then
 attrhints.hints = s1_attrhints.hints;
 attrhints.transient = s1_attrhints.transient;

 return attrhints;

shared/translation/attrs/S2CombineS1Device

 // S2CombineS1Device()
 // ===================
 // Determine resultant Device type from combining output memory attributes
 // in stage 1 and Device attributes in stage 2

 DeviceType S2CombineS1Device(DeviceType s1_device, DeviceType s2_device)
 if s1_device == DeviceType_nGnRnE || s2_device == DeviceType_nGnRnE then
 return DeviceType_nGnRnE;
 elsif s1_device == DeviceType_nGnRE || s2_device == DeviceType_nGnRE then
 return DeviceType_nGnRE;
 elsif s1_device == DeviceType_nGRE || s2_device == DeviceType_nGRE then
 return DeviceType_nGRE;
 else
 return DeviceType_GRE;

shared/translation/attrs/S2CombineS1MemAttrs

 // S2CombineS1MemAttrs()
 // =====================
 // Combine stage 2 with stage 1 memory attributes

 MemoryAttributes S2CombineS1MemAttrs(MemoryAttributes s1_memattrs,
 MemoryAttributes s2_memattrs)
 MemoryAttributes memattrs;

 if s1_memattrs.memtype == MemType_Device && s2_memattrs.memtype == MemType_Device then
 memattrs.memtype = MemType_Device;
 memattrs.device = S2CombineS1Device(s1_memattrs.device, s2_memattrs.device);
 elsif s1_memattrs.memtype == MemType_Device then // S2 Normal, S1 Device
 memattrs = s1_memattrs;
 elsif s2_memattrs.memtype == MemType_Device then // S2 Device, S1 Normal
 memattrs = s2_memattrs;
 else // S2 Normal, S1 Normal
 memattrs.memtype = MemType_Normal;
 memattrs.inner = S2CombineS1AttrHints(s1_memattrs.inner, s2_memattrs.inner);
 memattrs.outer = S2CombineS1AttrHints(s1_memattrs.outer, s2_memattrs.outer);

 memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability,
 s2_memattrs.shareability);

 memattrs.shareability = EffectiveShareability(memattrs);
 return memattrs;
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-553
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/translation/attrs/S2CombineS1Shareability

 // S2CombineS1Shareability()
 // =========================
 // Combine stage 2 shareability with stage 1

 Shareability S2CombineS1Shareability(Shareability s1_shareability,
 Shareability s2_shareability)

 if (s1_shareability == Shareability_OSH ||
 s2_shareability == Shareability_OSH) then
 return Shareability_OSH;
 elsif (s1_shareability == Shareability_ISH ||
 s2_shareability == Shareability_ISH) then
 return Shareability_ISH;
 else
 return Shareability_NSH;

shared/translation/attrs/WalkMemAttrs

 // WalkMemAttrs()
 // ==============
 // Retrieve memory attributes of translation table walk

 MemoryAttributes WalkMemAttrs(bits(2) sh, bits(2) irgn, bits(2) orgn)
 MemoryAttributes walkmemattrs;

 walkmemattrs.memtype = MemType_Normal;
 walkmemattrs.shareability = DecodeShareability(sh);
 walkmemattrs.inner = DecodeSDFAttr(irgn);
 walkmemattrs.outer = DecodeSDFAttr(orgn);

 return walkmemattrs;

shared/translation/faults/AlignmentFault

 // AlignmentFault()
 // ================

 FaultRecord AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)
 FaultRecord fault;

 fault.statuscode = Fault_Alignment;
 fault.acctype = acctype;
 fault.write = iswrite;
 fault.secondstage = secondstage;

 return fault;

shared/translation/faults/AsyncExternalAbort

 // AsyncExternalAbort()
 // ====================
 // Return a fault record indicating an asynchronous external abort

 FaultRecord AsyncExternalAbort(boolean parity, bits(2) errortype, bit extflag)
 FaultRecord fault;

 fault.statuscode = if parity then Fault_AsyncParity else Fault_AsyncExternal;
 fault.extflag = extflag;
 fault.errortype = errortype;
 fault.acctype = AccType_NORMAL;
 fault.secondstage = FALSE;
I1-554 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 fault.s2fs1walk = FALSE;

 return fault;

shared/translation/faults/NoFault

 // NoFault()
 // =========
 // Return a clear fault record indicating no faults have occured

 FaultRecord NoFault()
 FaultRecord fault;

 fault.statuscode = Fault_None;
 fault.acctype = AccType_NORMAL;
 fault.secondstage = FALSE;
 fault.s2fs1walk = FALSE;

 return fault;

shared/translation/translation/S1TranslationRegime

 // S1TranslationRegime()
 // =====================
 // Stage 1 translation regime for the given Exception level

 bits(2) S1TranslationRegime(bits(2) el)
 if el != EL0 then
 return el;
 else
 return EL1;

 // S1TranslationRegime()
 // =====================
 // Returns the Exception level controlling the current Stage 1 translation regime. For the most
 // part this is unused in code because the system register accessors (SCTLR[], etc.) implicitly
 // return the correct value.

 bits(2) S1TranslationRegime()
 return S1TranslationRegime(PSTATE.EL);

shared/translation/vmsa/AddressDescriptor

 type AddressDescriptor is (
 FaultRecord fault, // fault.statuscode indicates whether the address is valid
 MemoryAttributes memattrs,
 FullAddress paddress,
 bits(64) vaddress
)

 constant integer FINAL_LEVEL = 3;

shared/translation/vmsa/ContiguousSize

 // ContiguousSize()
 // ================
 // Return the number of entries log 2 marking a contiguous output range

 integer ContiguousSize(TGx tgx, integer level)
 case tgx of
 when TGx_4KB
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-555
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 assert level IN {1, 2, 3};
 return 4;
 when TGx_16KB
 assert level IN {2, 3};
 return if level == 2 then 5 else 7;
 when TGx_64KB
 assert level IN {2, 3};
 return 5;

shared/translation/vmsa/CreateAddressDescriptor

 // CreateAddressDescriptor()
 // =========================
 // Set internal members for address descriptor type to valid values

 AddressDescriptor CreateAddressDescriptor(bits(64) va, FullAddress pa,
 MemoryAttributes memattrs)
 AddressDescriptor addrdesc;

 addrdesc.paddress = pa;
 addrdesc.vaddress = va;
 addrdesc.memattrs = memattrs;
 addrdesc.fault = NoFault();

 return addrdesc;

shared/translation/vmsa/CreateFaultyAddressDescriptor

 // CreateFaultyAddressDescriptor()
 // ===============================
 // Set internal members for address descriptor type with values indicating error

 AddressDescriptor CreateFaultyAddressDescriptor(bits(64) va, FaultRecord fault)
 AddressDescriptor addrdesc;

 addrdesc.vaddress = va;
 addrdesc.fault = fault;

 return addrdesc;

shared/translation/vmsa/DescriptorType

 enumeration DescriptorType {
 DescriptorType_Table,
 DescriptorType_Block,
 DescriptorType_Page,
 DescriptorType_Invalid
 };

shared/translation/vmsa/Domains

 constant bits(2) Domain_NoAccess = '00';
 constant bits(2) Domain_Client = '01';
 constant bits(2) Domain_Manager = '11';
I1-556 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/translation/vmsa/FetchDescriptor

 // FetchDescriptor()
 // =================
 // Fetch a translation table descriptor

 (FaultRecord, bits(N)) FetchDescriptor(bit ee, AddressDescriptor walkaddress,
 FaultRecord fault)
 // 32-bit descriptors for AArch32 Short-descriptor format
 // 64-bit descriptors for AArch64 or AArch32 Long-descriptor format
 assert N == 32 || N == 64;
 bits(N) descriptor;

 walkacc = CreateAccessDescriptor(AccType_TTW);
 (memstatus, descriptor) = PhysMemRead(walkaddress, N DIV 8, walkacc);
 if IsFault(memstatus) then
 fault = HandleExternalTTWAbort(memstatus, fault.write, walkaddress,
 walkacc, N DIV 8, fault);
 if IsFault(fault.statuscode) then
 return (fault, bits(N) UNKNOWN);

 if ee == '1' then
 descriptor = BigEndianReverse(descriptor);

 return (fault, descriptor);

shared/translation/vmsa/HasUnprivileged

 // HasUnprivileged()
 // =================
 // Returns whether a translation regime serves EL0 as well as a higher EL

 boolean HasUnprivileged(Regime regime)
 return (regime IN {
 Regime_EL30,
 Regime_EL10
 });

shared/translation/vmsa/IsAtomicRW

 // IsAtomicRW()
 // ============
 // Is the access an atomic operation?

 boolean IsAtomicRW(AccType acctype)
 return acctype IN {
 AccType_ATOMICRW,
 AccType_ORDEREDRW,
 AccType_ORDEREDATOMICRW
 };

shared/translation/vmsa/Regime

 enumeration Regime {
 Regime_EL2, // EL2
 Regime_EL10 // EL1&0
 };
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-557
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/translation/vmsa/RegimeUsingAArch32

 // RegimeUsingAArch32()
 // ====================
 // Determine if the EL controlling the regime executes in AArch32 state

 boolean RegimeUsingAArch32(Regime regime)
 case regime of
 when Regime_EL10 return ELUsingAArch32(EL1);
 when Regime_EL30 return TRUE;
 when Regime_EL2 return ELUsingAArch32(EL2);
 when Regime_EL3 return FALSE;

shared/translation/vmsa/S1TTWParams

 type S1TTWParams is (
 // A64-VMSA exclusive parameters
 bit ha, // TCR_ELx.HA
 bit hd, // TCR_ELx.HD
 bit tbi, // TCR_ELx.TBI{x}
 bit tbid, // TCR_ELx.TBID{x}
 bit e0pd, // TCR_EL1.E0PDx or TCR_EL2.E0PDx when HCR_EL2.E2H == '1'
 bits(3) ps, // TCR_ELx.{I}PS
 bits(6) txsz, // TCR_ELx.TxSZ

 // A32-VMSA exclusive parameters
 bits(3) t0sz, // TTBCR.T0SZ
 bits(3) t1sz, // TTBCR.T1SZ
 bit uwxn, // SCTLR.UWXN

 // Parameters common to both A64-VMSA & A32-VMSA (A64/A32)
 TGx tgx, // TCR_ELx.TGx / Always TGx_4KB
 bits(2) irgn, // TCR_ELx.IRGNx / TTBCR.IRGNx or HTCR.IRGN0
 bits(2) orgn, // TCR_ELx.ORGNx / TTBCR.ORGNx or HTCR.ORGN0
 bits(2) sh, // TCR_ELx.SHx / TTBCR.SHx or HTCR.SH0
 bit hpd, // TCR_ELx.HPD{x} / TTBCR2.HPDx or HTCR.HPD
 bit ee, // SCTLR_ELx.EE / SCTLR.EE or HSCTLR.EE
 bit wxn, // SCTLR_ELx.WXN / SCTLR.WXN or HSCTLR.WXN
 bit dc, // HCR_EL2.DC / HCR.DC
 MAIRType mair // MAIR_ELx / MAIR1:MAIR0 or HMAIR1:HMAIR0
)

shared/translation/vmsa/SDFType

 enumeration SDFType {
 SDFType_Table,
 SDFType_Invalid,
 SDFType_Supersection,
 SDFType_Section,
 SDFType_LargePage,
 SDFType_SmallPage
 };

shared/translation/vmsa/SecurityStateForRegime

 // SecurityStateForRegime()
 // ========================
 // Return the Security State of the given translation regime

 SecurityState SecurityStateForRegime(Regime regime)
 case regime of
 when Regime_EL30 return SS_Secure; // A32 EL3 is always Secure
I1-558 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 when Regime_EL2 return SecurityStateAtEL(EL2);
 when Regime_EL10 return SecurityStateAtEL(EL1);

shared/translation/vmsa/StageOA

 // StageOA()
 // =========
 // Given the final walk state (a page or block descriptor), map the untranslated
 // input address bits to the output address

 FullAddress StageOA(bits(64) ia, TGx tgx, TTWState walkstate)
 // Output Address
 FullAddress oa;

 tsize = TranslationSize(tgx, walkstate.level);
 if walkstate.contiguous == '1' then
 csize = ContiguousSize(tgx, walkstate.level);
 else
 csize = 0;

 ia_msb = tsize + csize;
 oa.paspace = walkstate.baseaddress.paspace;
 oa.address = walkstate.baseaddress.address<51:ia_msb>:ia<ia_msb-1:0>;

 return oa;

shared/translation/vmsa/TGx

 enumeration TGx {
 TGx_4KB,
 TGx_16KB,
 TGx_64KB
 };

shared/translation/vmsa/TGxGranuleBits

 // TGxGranuleBits()
 // ================
 // Retrieve the address size, in bits, of a granule

 integer TGxGranuleBits(TGx tgx)
 case tgx of
 when TGx_4KB return 12;
 when TGx_16KB return 14;
 when TGx_64KB return 16;

shared/translation/vmsa/TLBContext

 type TLBContext is (
 SecurityState ss,
 Regime regime,
 bits(16) vmid,
 bits(16) asid,
 bit nG,
 PASpace ipaspace, // Used in stage 2 lookups & invalidations only
 boolean includes_s1,
 boolean includes_s2,
 bits(64) ia, // Input Address
 TGx tg,
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-559
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
 bit cnp,
)

shared/translation/vmsa/TLBRecord

 type TLBRecord is (
 TLBContext context,
 TTWState walkstate,
 integer blocksize, // Number of bits directly mapped from IA to OA
 integer contigsize, // Number of entries log 2 marking a contiguous output range
 bits(64) s1descriptor, // Stage 1 leaf descriptor in memory (valid if the TLB caches stage 1)
 bits(64) s2descriptor // Stage 2 leaf descriptor in memory (valid if the TLB caches stage 2)
)

shared/translation/vmsa/TTWState

 type TTWState is (
 boolean istable,
 integer level,
 FullAddress baseaddress,
 bit contiguous,
 bit nG,
 SDFType sdftype, // AArch32 Short-descriptor format walk only
 bits(4) domain, // AArch32 Short-descriptor format walk only
 MemoryAttributes memattrs,
 Permissions permissions
)

shared/translation/vmsa/TranslationRegime

 // TranslationRegime()
 // ===================
 // Select the translation regime given the target EL and PE state

 Regime TranslationRegime(bits(2) el)
 if el == EL2 then
 return Regime_EL2;
 elsif (el == EL1 || el == EL0) then
 return Regime_EL10;
 else
 Unreachable();

shared/translation/vmsa/TranslationSize

 // TranslationSize()
 // =================
 // Compute the number of bits directly mapped from the input address
 // to the output address

 integer TranslationSize(TGx tgx, integer level)
 granulebits = TGxGranuleBits(tgx);
 blockbits = (FINAL_LEVEL - level) * (granulebits - 3);

 return granulebits + blockbits;
I1-560 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
shared/translation/vmsa/UseASID

 // UseASID()
 // =========
 // Determine whether the translation context for the access requires ASID or is a global entry

 boolean UseASID(TLBContext access)
 return HasUnprivileged(access.regime);

shared/translation/vmsa/UseVMID

 // UseVMID()
 // =========
 // Determine whether the translation context for the access requires VMID to match a TLB entry

 boolean UseVMID(TLBContext access)
 return access.regime == Regime_EL10 && EL2Enabled();

shared/translation/vmsa/VARange

 enumeration VARange {
 VARange_LOWER,
 VARange_UPPER
 };

I1.2.5 See also

In the Arm Architecture Reference Manual
• Pseudocode for AArch64 operation.

• Pseudocode description of debug exceptions.

• Pseudocode description of general memory System instructions.

• Appendix K13 Arm Pseudocode Definition.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. I1-561
ID120821 Non-Confidential

Armv8-R AArch64 Pseudocode
I1.2 Shared pseudocode
I1-562 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Glossary

A64 instruction A word that specifies an operation to be performed by a PE that is executing in an Exception level that is using
AArch64. A64 instructions must be word-aligned.

Advanced SIMD A feature of the Arm architecture that provides SIMD operations on a register file of SIMD and floating-point
registers. Where an implementation supports both Advanced SIMD and floating-point instructions, these
instructions operate on the same register file.

Architecturally mapped
Where this manual describes a register as being architecturally mapped to another register, this indicates that, in an
implementation that supports both of the registers, the two registers access the same state.

Architecturally UNKNOWN
An architecturally UNKNOWN value is a value that is not defined by the architecture but must meet the requirements
of the definition of UNKNOWN. Implementations can define the value of the field, but are not required to do so.

See also IMPLEMENTATION DEFINED.

CONSTRAINED UNPREDICTABLE
Where an instruction can result in UNPREDICTABLE behavior, the Armv8 architecture specifies a narrow range of
permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that
are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Execution at Non-secure EL1 or EL0 of an instruction that is CONSTRAINED UNPREDICTABLE can be implemented
as generating a trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE
and is not CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.

See also UNPREDICTABLE.

Armv8-R AArch64
Architecture described in this supplement.

EL1 MPU Memory Protection Unit that can be configured from EL1 or EL2. EL1 MPU is used by software running at EL1.

EL2 MPU Memory Protection Unit that can be configured only from EL2. EL2 MPU is used by software running at EL2.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. Glossary-563
ID120821 Non-Confidential

Glossary

Flat address mapping
Is where the physical address for every access is equal to its virtual address.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but must be defined and documented by individual
implementations.

In body text, the term IMPLEMENTATION DEFINED is shown in SMALL CAPITALS.

Intermediate physical address (IPA)
An implementation of virtualization, the address to which a Guest OS maps a VA. A hypervisor might then map the
IPA to a PA. Typically, the Guest OS is unaware of the translation from IPA to PA.

See also Physical address (PA), Virtual address (VA).

Load/Store architecture
An architecture where data-processing operations only operate on register contents, not directly on memory
contents.

Memory Protection Unit (MPU)
A hardware unit whose registers provide simple control of a limited number of protection regions in memory.

MPU See Memory Protection Unit (MPU).

PA See Physical address (PA).

PE See Processing element (PE).

Physical address (PA)
An address that identifies a location in the physical memory map.

See also Intermediate physical address (IPA), Virtual address (VA).

PMSA
Protected Memory System Architecture - implementing an MPU

Processing element (PE)
The abstract machine defined in the Arm architecture, as documented in an Arm Architecture Reference Manual. A
PE implementation compliant with the Arm architecture must conform with the behaviors described in the
corresponding Arm Architecture Reference Manual.

Protection region
A memory region whose position, size, and other properties are defined by Memory Protection Unit registers.

Protection Unit See Memory Protection Unit (MPU).

RES0 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note

• RES0 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES0 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.
Glossary-564 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Glossary

This means the definition of RES0 for fields in read/write registers is:

If a bit is RES0 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:

• Reads of the bit always return 0.

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.

If a bit is RES0 only in some contexts

For a bit in a read/write register, when the bit is described as RES0:

• An indirect write to the register sets the bit to 0.

• A read of the bit must return the value last successfully written to the bit, by either a direct or
an indirect write, regardless of the use of the register when the bit was written.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES0 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

A bit that is RES0 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 0.

• Must use an SBZP policy to write to the bit.

This RES0 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES0.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), RES1, Should-Be-Zero-or-Preserved (SBZP), UNKNOWN.

RES1 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. Glossary-565
ID120821 Non-Confidential

Glossary

Within the architecture, there are some cases where a register bit or field:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note

• RES1 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES1 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES1 for fields in read/write registers is:

If a bit is RES1 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:

• Reads of the bit always return 1.

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.

If a bit is RES1 only in some contexts

For a bit in a read/write register, when the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES1 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.
Glossary-566 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Glossary

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 1.

• Must use an SBOP policy to write to the bit.

This RES1 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES1.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also Read-As-One (RAO), RES0, Should-Be-One-or-Preserved (SBOP), UNKNOWN.

RAZ See Read-As-Zero (RAZ).

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s.

Software:

• Can rely on the field reading as all 0s

• Must use a SBZP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

Read-As-One (RAO)
Hardware must implement the field as reading as all 1s.

Software:

• Can rely on the field reading as all 1s.

• Must use a SBOP policy to write to the field.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

Should-Be-Zero-or-Preserved (SBZP)
From the introduction of the Armv8 architecture, the description Should-Be-Zero-or-Preserved (SBZP) is
superseded by RES0.

Note

The Armv7 Large Physical Address Extension modified the definition of SBZP for register bits that are SBZP in
some but not all contexts. The behavior of these bits is covered by the RES0 definition, but not by the generic
definition of SBZP given here.

Hardware must ignore writes to the field.

When writing this field, software must either write all 0s to this field or, if the register is being restored from a
previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Should-Be-One (SBO)
Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 1s. If software writes a value that is not all 1s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be written as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. Glossary-567
ID120821 Non-Confidential

Glossary

Should-Be-One-or-Preserved (SBOP)
From the introduction of the Armv8 architecture, the description Should-Be-One-or-Preserved (SBOP) is
superseded by RES1.

Note

The Armv7 Large Physical Address Extension modified the definition of SBOP for register bits that are SBOP in
some but not all contexts. The behavior of these bits is covered by the RES1 definition, but not by the generic
definition of SBOP given here.

Hardware must ignore writes to the field.

When writing this field, software must either write all 1s to this field or, if the register is being restored from a
previously read state, write the previously read value to this field. If this is not done, then the result is unpredictable.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

RISC Reduced Instruction Set Computer.

SBZP See Should-Be-Zero-or-Preserved (SBZP).

SBZ See Should-Be-Zero (SBZ).

Should-Be-Zero (SBZ)
Hardware must ignore writes to the field.

Arm strongly recommends that software writes the field as all 0s. If software writes a value that is not all 0s, it must
expect an UNPREDICTABLE or CONSTRAINED UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be written as all 0s.

See also CONSTRAINED UNPREDICTABLE, UNPREDICTABLE.

Simple sequential execution
The behavior of an implementation that fetches, decodes and completely executes each instruction before
proceeding to the next instruction. Such an implementation performs no speculative accesses to memory, including
to instruction memory. The implementation does not pipeline any phase of execution. In practice, this is the
theoretical execution model that the architecture is based on, and Arm does not expect this model to correspond to
a realistic implementation of the architecture.

Translation Defines the process of generating a valid output memory address from an input address. It also defines the behavior
when it is not possible to generate a valid output address. Translation can be implemented using an MMU or an
MPU.

Translation table
A table held in memory that defines the properties of memory areas of various sizes from 1KB to 1MB.

Translation table walk
The process of doing a full translation table lookup. It is performed automatically by hardware.

UNDEFINED Indicates cases where an attempt to execute a particular encoding bit pattern generates an exception, that is taken to
the current Exception level, or to the default Exception level for taking exceptions if the UNDEFINED encoding was
executed at EL0. This applies to:

• Any encoding that is not allocated to any instruction.

• Any encoding that is defined as never accessible at the current Exception level.

• Some cases where an enable, disable, or trap control means an encoding is not accessible at the current
Exception level.

If the generated exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined
Instruction exception.
Glossary-568 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

Glossary

Note

On reset, the default Exception level for taking exceptions from EL0 is EL1. However, an implementation might
include controls that can change this, effectively making EL1 inactive.

In body text, the term UNDEFINED is shown in SMALL CAPITALS.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from implementation to implementation. An
UNKNOWN value must not return information that cannot be accessed at the current or a lower level of privilege using
instructions that are not UNPREDICTABLE, are not CONSTRAINED UNPREDICTABLE, and do not return UNKNOWN
values.

An UNKNOWN value can vary from moment to moment, and instruction to instruction, unless it has previously been
assigned, other than at reset, to one of the following registers:

• Any of the general-purpose registers.

• Any of the Advanced SIMD and floating-point registers.

• Any of the Scalable Vector Extension registers.

• Any of the PSTATE N, Z, C, or V flags.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

In body text, the term UNKNOWN is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNPREDICTABLE.

UNPREDICTABLE
Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

Execution at Non-secure EL1 or EL0 of an instruction that is UNPREDICTABLE can be implemented as generating a
trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE and is not
CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term UNPREDICTABLE is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

Validation
In an address translation context, validation refers to translation that is implemented by the MPU in which the input
address and output address are always the same.

Virtual address (VA)
An address generated by an Arm PE. This means it is an address that might be held in the program counter of the
PE. For a PMSA implementation, the virtual address is identical to the physical address.

See also Intermediate physical address (IPA), Physical address (PA).
ARM DDI 0600A.d Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. Glossary-569
ID120821 Non-Confidential

Glossary

Glossary-570 Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0600A.d
Non-Confidential ID120821

	Arm Architecture Reference Manual Supplement Armv8, for Armv8-R AArch64 architecture profile
	Contents
	Preface
	About this supplement
	Using this book
	Part A, Introduction and Architecture Overview
	Part B, Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles
	Part C, Protected Memory System Architecture
	Part D, Virtual Memory System Architecture
	Part E, A64 Instruction Set for Armv8-R AArch64
	Part F, The A64 System Instructions
	Part G, Armv8-R AArch64 System Registers
	Part H, Armv8-R AArch64 External Debug Registers
	Part I, Architectural Pseudocode
	Glossary

	Conventions
	Typographic conventions
	Signals
	Numbers
	Pseudocode descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this book

	Part A: Introduction and Architecture Overview�
	A1: Architecture Overview�
	A1.1 About the Armv8 architecture
	A1.1.1 See also

	A1.2 Architecture profiles
	A1.3 The Armv8-R AArch64 architecture profile
	A1.3.1 See also

	A1.4 Architecture extensions
	A1.4.1 See also

	A1.5 Supported extensions in Armv8-R AArch64
	A1.5.1 Advanced SIMD and Floating-point extensions
	A1.5.2 See also

	Part B: Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles�
	B1: Differences between the Armv8-A AArch64 and the Armv8-R AArch64 Profiles�
	B1.1 Differences from the Armv8-A AArch64 application level architecture
	B1.1.1 Differences from the Armv8-A AArch64 application level programmers’ model
	B1.1.2 Differences from the Armv8-A AArch64 application level memory model
	B1.1.3 See also

	B1.2 Differences from the Armv8-A AArch64 system level architecture
	B1.2.1 Protected Memory System Architecture, PMSAv8-64
	B1.2.2 Virtual Memory System Architecture, VMSAv8-64
	B1.2.3 Differences from the Armv8-A AArch64 system level programmers’ model
	B1.2.4 Differences from the Armv8-A AArch64 system level memory model
	B1.2.5 See also

	Part C: Armv8-R AArch64 Protected Memory System Architecture�
	C1: Protected Memory System Architecture�
	C1.1 About the Protected Memory System Architecture
	C1.1.1 Protection regions
	C1.1.2 Address range

	C1.2 Memory Protection Unit
	C1.2.1 MPU Default Cacheability

	C1.3 Address translation regimes
	C1.4 Default memory map
	C1.5 Armv8-A memory view
	C1.6 MPU memory translations and faults
	C1.6.1 EL1 MPU memory translations
	C1.6.2 EL1 MPU faults
	C1.6.3 MPU fault check for the stage 1 Secure EL1&0 translation
	C1.6.4 EL2 MPU memory translations
	C1.6.5 EL2 MPU faults
	C1.6.6 MPU fault check for the stage 1 Secure EL2 translation
	C1.6.7 MPU fault check for the stage 2 Secure EL1&0 translation

	C1.7 Protection region attributes and access permissions
	C1.7.1 Protection region attributes
	C1.7.2 Access control
	C1.7.3 Memory attributes and access permission mappings
	C1.7.4 Combining memory attributes and access permissions
	C1.7.5 Enabling and disabling the caching of memory accesses
	C1.7.6 Enabling and disabling stages in translation regimes

	C1.8 MPU fault encodings
	C1.8.1 See also

	C1.9 PMSAv8-64 implications for caches
	C1.9.1 Cache line length

	C1.10 Address tagging and pointer authentication support
	C1.10.1 See also

	C1.11 Security model
	C1.11.1 Secure EL2
	C1.11.2 Secure EL2 translation
	C1.11.3 See also

	C1.12 Virtualization
	C1.12.1 Support for Guest operating systems

	Part D: Armv8-R AArch64 Virtual Memory System Architecture�
	D1: Virtual Memory System Architecture�
	D1.1 About the Virtual Memory System Architecture
	D1.2 Architecture extensions in VMSAv8-64
	D1.3 Support for VMSAv8-64 in Armv8-R AArch64
	D1.4 System registers access control
	D1.5 Virtualization
	D1.6 System operations
	D1.6.1 Address translation instructions
	D1.6.2 TLB maintenance instructions
	D1.6.3 See also

	Part E: A64 Instruction Set for Armv8-R AArch64�
	E1: A64 Instruction Set for Armv8-R AArch64�
	E1.1 Instruction encodings
	E1.2 A64 instructions in Armv8-R AArch64
	E1.2.1 DFB
	Operation

	E1.2.2 DMB
	Assembler symbols
	Operation

	E1.2.3 DSB
	Alias conditions
	Assembler symbols
	Operation

	Part F: The A64 System Instructions �
	F1: The A64 System Instructions�
	F1.1 System instructions
	F1.1.1 Address translation instructions

	Part G: Armv8-R AArch64 System Registers�
	G1: System Registers in a PMSA Implementation�
	G1.1 System register groups
	G1.1.1 See also
	In the Arm Architecture Reference Manual

	G1.2 Accessing MPU memory region registers
	G1.3 General system control registers
	G1.3.1 CPACR_EL1, Architectural Feature Access Control Register
	Field descriptions
	Accessing CPACR_EL1

	G1.3.2 CPTR_EL2, Architectural Feature Trap Register (EL2)
	Field descriptions
	Accessing CPTR_EL2

	G1.3.3 HCR_EL2, Hypervisor Configuration Register
	Field descriptions
	Accessing HCR_EL2

	G1.3.4 ID_AA64DFR0_EL1, AArch64 Debug Feature Register 0
	Field descriptions
	Accessing ID_AA64DFR0_EL1

	G1.3.5 ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	Field descriptions
	Accessing ID_AA64ISAR0_EL1

	G1.3.6 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	Field descriptions
	Accessing ID_AA64ISAR1_EL1

	G1.3.7 ID_AA64MMFR0_EL1, AArch64 Memory Model Feature Register 0
	Field descriptions
	Accessing ID_AA64MMFR0_EL1

	G1.3.8 ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	Field descriptions
	Accessing ID_AA64MMFR1_EL1

	G1.3.9 ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2
	Field descriptions
	Accessing ID_AA64MMFR2_EL1

	G1.3.10 ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	Field descriptions
	Accessing ID_AA64PFR0_EL1

	G1.3.11 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	Field descriptions
	Accessing ID_AA64PFR1_EL1

	G1.3.12 MAIR_EL1, Memory Attribute Indirection Register (EL1)
	Field descriptions
	Accessing MAIR_EL1

	G1.3.13 MAIR_EL2, Memory Attribute Indirection Register (EL2)
	Field descriptions
	Accessing MAIR_EL2

	G1.3.14 MPUIR_EL1, MPU Type Register (EL1)
	Field descriptions
	Accessing MPUIR_EL1

	G1.3.15 MPUIR_EL2, MPU Type Register (EL2)
	Field descriptions
	Accessing MPUIR_EL2

	G1.3.16 PRBAR_EL1, Protection Region Base Address Register (EL1)
	Field descriptions
	Accessing PRBAR_EL1

	G1.3.17 PRBAR_EL2, Protection Region Base Address Register (EL2)
	Field descriptions
	Accessing PRBAR_EL2

	G1.3.18 PRBAR<n>_EL1, Protection Region Base Address Register n (EL1), n = 1 - 15
	Field descriptions
	Accessing PRBAR<n>_EL1

	G1.3.19 PRBAR<n>_EL2, Protection Region Base Address Register n (EL2), n = 1 - 15
	Field descriptions
	Accessing PRBAR<n>_EL2

	G1.3.20 PRENR_EL1, Protection Region Enable Register (EL1)
	Field descriptions
	Accessing PRENR_EL1

	G1.3.21 PRENR_EL2, Protection Region Enable Register (EL2)
	Field descriptions
	Accessing PRENR_EL2

	G1.3.22 PRLAR_EL1, Protection Region Limit Address Register (EL1)
	Field descriptions
	Accessing PRLAR_EL1

	G1.3.23 PRLAR_EL2, Protection Region Limit Address Register (EL2)
	Field descriptions
	Accessing PRLAR_EL2

	G1.3.24 PRLAR<n>_EL1, Protection Region Limit Address Register n (EL1), n = 1 - 15
	Field descriptions
	Accessing PRLAR<n>_EL1

	G1.3.25 PRLAR<n>_EL2, Protection Region Limit Address Register n (EL2), n = 1 - 15
	Field descriptions
	Accessing PRLAR<n>_EL2

	G1.3.26 PRSELR_EL1, Protection Region Selection Register (EL1)
	Field descriptions
	Accessing PRSELR_EL1

	G1.3.27 PRSELR_EL2, Protection Region Selection Register (EL2)
	Field descriptions
	Accessing PRSELR_EL2

	G1.3.28 SCTLR_EL1, System Control Register (EL1)
	Field descriptions
	Accessing SCTLR_EL1

	G1.3.29 SCTLR_EL2, System Control Register (EL2)
	Field descriptions
	Accessing SCTLR_EL2

	G1.3.30 TCR_EL1, Translation Control Register (EL1)
	Field descriptions
	Accessing TCR_EL1

	G1.3.31 TCR_EL2, Translation Control Register (EL2)
	Field descriptions
	Accessing TCR_EL2

	G1.3.32 TTBR0_EL1, Translation Table Base Register 0 (EL1)
	Field descriptions
	Accessing TTBR0_EL1

	G1.3.33 VSCTLR_EL2, Virtualization System Control Register (EL2)
	Field descriptions
	Accessing VSCTLR_EL2

	G1.3.34 VSTCR_EL2, Virtualization Secure Translation Control Register
	Field descriptions
	Accessing VSTCR_EL2

	G1.3.35 VTCR_EL2, Virtualization Translation Control Register
	Field descriptions
	Accessing VTCR_EL2

	G1.4 Debug registers
	G1.4.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing DBGBCR<n>_EL1

	G1.4.2 MDCR_EL2, Monitor Debug Configuration Register (EL2)
	Field descriptions
	Accessing MDCR_EL2

	G1.4.3 MDSCR_EL1, Monitor Debug System Control Register
	Field descriptions
	Accessing MDSCR_EL1

	G1.5 Performance Monitors registers
	G1.5.1 PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register
	Field descriptions
	Accessing PMCCFILTR_EL0

	G1.5.2 PMCR_EL0, Performance Monitors Control Register
	Field descriptions
	Accessing PMCR_EL0

	G1.5.3 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	Field descriptions
	Accessing PMEVTYPER<n>_EL0

	G2: System Registers in a VMSA Implementation�
	G2.1 General system control registers
	G2.1.1 TTBR1_EL1, Translation Table Base Register 1 (EL1)

	Part H: Armv8-R AArch64 External Debug Registers�
	H1: External Debug Registers Descriptions�
	H1.1 About the external debug registers
	H1.2 External debug registers
	H1.2.1 DBGBCR<n>_EL1, Debug Breakpoint Control Registers, n = 0 - 15
	Field descriptions
	Accessing the DBGBCR<n>_EL1:

	H1.2.2 EDAA32PFR, External Debug Auxiliary Processor Feature Register
	Field descriptions
	Accessing the EDAA32PFR:

	H1.2.3 EDDEVARCH, External Debug Device Architecture register
	Field descriptions
	Accessing the PMEVTYPER<n>_EL0:

	H1.2.4 EDPFR, External Debug Processor Feature Register
	Field descriptions
	Accessing the EDPFR:

	H1.2.5 PMCCFILTR_EL0, Performance Monitors Cycle Counter Filter Register
	Field descriptions
	Accessing the PMCCFILTR_EL0:

	H1.2.6 PMCR_EL0, Performance Monitors Control Register
	Field descriptions
	Accessing the PMCR_EL0:

	H1.2.7 PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	Field descriptions
	Accessing the PMEVTYPER<n>_EL0:

	Part I: Architectural Pseudocode�
	I1: Armv8-R AArch64 Pseudocode�
	I1.1 Pseudocode for AArch64 operations
	I1.1.1 aarch64/debug
	aarch64/debug/breakpoint/AArch64.BreakpointMatch
	aarch64/debug/breakpoint/AArch64.BreakpointValueMatch
	aarch64/debug/breakpoint/AArch64.StateMatch
	aarch64/debug/enables/AArch64.GenerateDebugExceptions
	aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom
	aarch64/debug/pmu/AArch64.CheckForPMUOverflow
	aarch64/debug/pmu/AArch64.ClearEventCounters
	aarch64/debug/pmu/AArch64.CountPMUEvents
	aarch64/debug/pmu/AArch64.GetNumEventCountersAccessible
	aarch64/debug/pmu/AArch64.IncrementEventCounter
	aarch64/debug/pmu/AArch64.PMUCounterIsHyp
	aarch64/debug/pmu/AArch64.PMUCycle
	aarch64/debug/pmu/AArch64.PMUEvent
	aarch64/debug/pmu/AArch64.PMUSwIncrement
	aarch64/debug/statisticalprofiling/TimeStamp
	aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState
	aarch64/debug/watchpoint/AArch64.WatchpointByteMatch
	aarch64/debug/watchpoint/AArch64.WatchpointMatch

	I1.1.2 aarch64/exceptions
	aarch64/exceptions/aborts/AArch64.Abort
	aarch64/exceptions/aborts/AArch64.AbortSyndrome
	aarch64/exceptions/aborts/AArch64.CheckPCAlignment
	aarch64/exceptions/aborts/AArch64.DataAbort
	aarch64/exceptions/aborts/AArch64.InstructionAbort
	aarch64/exceptions/aborts/AArch64.PCAlignmentFault
	aarch64/exceptions/aborts/AArch64.SPAlignmentFault
	aarch64/exceptions/async/AArch64.TakePhysicalFIQException
	aarch64/exceptions/async/AArch64.TakePhysicalIRQException
	aarch64/exceptions/async/AArch64.TakePhysicalSErrorException
	aarch64/exceptions/async/AArch64.TakeVirtualFIQException
	aarch64/exceptions/async/AArch64.TakeVirtualIRQException
	aarch64/exceptions/async/AArch64.TakeVirtualSErrorException
	aarch64/exceptions/debug/AArch64.BreakpointException
	aarch64/exceptions/debug/AArch64.SoftwareBreakpoint
	aarch64/exceptions/debug/AArch64.SoftwareStepException
	aarch64/exceptions/debug/AArch64.VectorCatchException
	aarch64/exceptions/debug/AArch64.WatchpointException
	aarch64/exceptions/exceptions/AArch64.ExceptionClass
	aarch64/exceptions/exceptions/AArch64.ReportException
	aarch64/exceptions/exceptions/AArch64.ResetControlRegisters
	aarch64/exceptions/exceptions/AArch64.TakeReset
	aarch64/exceptions/ieeefp/AArch64.FPTrappedException
	aarch64/exceptions/syscalls/AArch64.CallHypervisor
	aarch64/exceptions/syscalls/AArch64.CallSecureMonitor
	aarch64/exceptions/syscalls/AArch64.CallSupervisor
	aarch64/exceptions/takeexception/AArch64.TakeException
	aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap
	aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps
	aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled
	aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap
	aarch64/exceptions/traps/AArch64.CheckFPEnabled
	aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap
	aarch64/exceptions/traps/AArch64.CheckForWFxTrap
	aarch64/exceptions/traps/AArch64.CheckIllegalState
	aarch64/exceptions/traps/AArch64.MonitorModeTrap
	aarch64/exceptions/traps/AArch64.SystemAccessTrap
	aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome
	aarch64/exceptions/traps/AArch64.UndefinedFault
	aarch64/exceptions/traps/AArch64.WFxTrap
	aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64
	aarch64/exceptions/traps/CheckFPEnabled64

	I1.1.3 aarch64/functions
	aarch64/functions/aborts/AArch64.FaultSyndrome
	aarch64/functions/cache/AArch64.DataMemZero
	aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass
	aarch64/functions/exclusive/AArch64.IsExclusiveVA
	aarch64/functions/exclusive/AArch64.MarkExclusiveVA
	aarch64/functions/exclusive/AArch64.SetExclusiveMonitors
	aarch64/functions/fusedrstep/FPRSqrtStepFused
	aarch64/functions/fusedrstep/FPRecipStepFused
	aarch64/functions/memory/AArch64.CheckAlignment
	aarch64/functions/memory/AArch64.MemSingle
	aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess
	aarch64/functions/memory/CheckAllInAlignedQuantity
	aarch64/functions/memory/CheckSPAlignment
	aarch64/functions/memory/CheckSingleAccessAttributes
	aarch64/functions/memory/Mem
	aarch64/functions/memory/MemAtomic
	aarch64/functions/memory/MemAtomicCompareAndSwap
	aarch64/functions/pac/addpac/AddPAC
	aarch64/functions/pac/addpacda/AddPACDA
	aarch64/functions/pac/addpacdb/AddPACDB
	aarch64/functions/pac/addpacga/AddPACGA
	aarch64/functions/pac/addpacia/AddPACIA
	aarch64/functions/pac/addpacib/AddPACIB
	aarch64/functions/pac/auth/AArch64.PACFailException
	aarch64/functions/pac/auth/Auth
	aarch64/functions/pac/authda/AuthDA
	aarch64/functions/pac/authdb/AuthDB
	aarch64/functions/pac/authia/AuthIA
	aarch64/functions/pac/authib/AuthIB
	aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit
	aarch64/functions/pac/computepac/ComputePAC
	aarch64/functions/pac/computepac/PACCellInvShuffle
	aarch64/functions/pac/computepac/PACCellShuffle
	aarch64/functions/pac/computepac/PACInvSub
	aarch64/functions/pac/computepac/PACMult
	aarch64/functions/pac/computepac/PACSub
	aarch64/functions/pac/computepac/RC
	aarch64/functions/pac/computepac/RotCell
	aarch64/functions/pac/computepac/TweakCellInvRot
	aarch64/functions/pac/computepac/TweakCellRot
	aarch64/functions/pac/computepac/TweakInvShuffle
	aarch64/functions/pac/computepac/TweakShuffle
	aarch64/functions/pac/pac/HaveEnhancedPAC
	aarch64/functions/pac/pac/HaveEnhancedPAC2
	aarch64/functions/pac/pac/HaveFPAC
	aarch64/functions/pac/pac/HaveFPACCombined
	aarch64/functions/pac/pac/HavePACExt
	aarch64/functions/pac/pac/HavePACIMP
	aarch64/functions/pac/pac/HavePACQARMA5
	aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges
	aarch64/functions/pac/strip/Strip
	aarch64/functions/pac/trappacuse/TrapPACUse
	aarch64/functions/ras/AArch64.ESBOperation
	aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome
	aarch64/functions/ras/AArch64.ReportDeferredSError
	aarch64/functions/ras/AArch64.vESBOperation
	aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers
	aarch64/functions/registers/AArch64.ResetGeneralRegisters
	aarch64/functions/registers/AArch64.ResetSIMDFPRegisters
	aarch64/functions/registers/AArch64.ResetSpecialRegisters
	aarch64/functions/registers/AArch64.ResetSystemRegisters
	aarch64/functions/registers/PC
	aarch64/functions/registers/SP
	aarch64/functions/registers/V
	aarch64/functions/registers/Vpart
	aarch64/functions/registers/X
	aarch64/functions/sysregisters/CNTKCTL
	aarch64/functions/sysregisters/CNTKCTLType
	aarch64/functions/sysregisters/CPACR
	aarch64/functions/sysregisters/CPACRType
	aarch64/functions/sysregisters/ELR
	aarch64/functions/sysregisters/ESR
	aarch64/functions/sysregisters/ESRType
	aarch64/functions/sysregisters/FAR
	aarch64/functions/sysregisters/MAIR
	aarch64/functions/sysregisters/MAIRType
	aarch64/functions/sysregisters/MPUIR
	aarch64/functions/sysregisters/MPUIRType
	aarch64/functions/sysregisters/PRBARn
	aarch64/functions/sysregisters/PRBARnType
	aarch64/functions/sysregisters/PRLARn
	aarch64/functions/sysregisters/PRLARnType
	aarch64/functions/sysregisters/SCTLR
	aarch64/functions/sysregisters/SCTLRType
	aarch64/functions/sysregisters/VBAR
	aarch64/functions/system/AArch64.SysInstr
	aarch64/functions/system/AArch64.SysInstrWithResult
	aarch64/functions/system/AArch64.SysRegRead
	aarch64/functions/system/AArch64.SysRegWrite

	I1.1.4 aarch64/instrs
	aarch64/instrs/branch/eret/AArch64.ExceptionReturn
	aarch64/instrs/countop/CountOp
	aarch64/instrs/extendreg/DecodeRegExtend
	aarch64/instrs/extendreg/ExtendReg
	aarch64/instrs/extendreg/ExtendType
	aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp
	aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp
	aarch64/instrs/float/convert/fpconvop/FPConvOp
	aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred
	aarch64/instrs/integer/bitmasks/DecodeBitMasks
	aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp
	aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred
	aarch64/instrs/integer/shiftreg/DecodeShift
	aarch64/instrs/integer/shiftreg/ShiftReg
	aarch64/instrs/integer/shiftreg/ShiftType
	aarch64/instrs/logicalop/LogicalOp
	aarch64/instrs/memory/memop/MemAtomicOp
	aarch64/instrs/memory/memop/MemOp
	aarch64/instrs/memory/prefetch/Prefetch
	aarch64/instrs/system/barriers/barrierop/MemBarrierOp
	aarch64/instrs/system/hints/syshintop/SystemHintOp
	aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField
	aarch64/instrs/system/sysops/at/AArch64.AT
	aarch64/instrs/system/sysops/at/AArch64.EncodePAR
	aarch64/instrs/system/sysops/at/AArch64.PARFaultStatus
	aarch64/instrs/system/sysops/dc/AArch64.DC
	aarch64/instrs/system/sysops/dc/AArch64.MemZero
	aarch64/instrs/system/sysops/ic/AArch64.IC
	aarch64/instrs/system/sysops/predictionrestrict/RestrictPrediction
	aarch64/instrs/system/sysops/sysop/SysOp
	aarch64/instrs/system/sysops/sysop/SystemOp
	aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ALL
	aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_ASID
	aarch64/instrs/system/sysops/tlbi/AArch32.DTLBI_VA
	aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ALL
	aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_ASID
	aarch64/instrs/system/sysops/tlbi/AArch32.ITLBI_VA
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ALL
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_ASID
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_IPAS2
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VA
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VAA
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALL
	aarch64/instrs/system/sysops/tlbi/AArch32.TLBI_VMALLS12
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ALL
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_ASID
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_IPAS2
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RIPAS2
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVA
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_RVAA
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VA
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VAA
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALL
	aarch64/instrs/system/sysops/tlbi/AArch64.TLBI_VMALLS12
	aarch64/instrs/system/sysops/tlbi/ASID_NONE
	aarch64/instrs/system/sysops/tlbi/Broadcast
	aarch64/instrs/system/sysops/tlbi/DecodeTLBITG
	aarch64/instrs/system/sysops/tlbi/HasLargeAddress
	aarch64/instrs/system/sysops/tlbi/SecurityStateAtEL
	aarch64/instrs/system/sysops/tlbi/TLBI
	aarch64/instrs/system/sysops/tlbi/TLBILevel
	aarch64/instrs/system/sysops/tlbi/TLBIMatch
	aarch64/instrs/system/sysops/tlbi/TLBIMemAttr
	aarch64/instrs/system/sysops/tlbi/TLBIOp
	aarch64/instrs/system/sysops/tlbi/TLBIRange
	aarch64/instrs/system/sysops/tlbi/TLBIRecord
	aarch64/instrs/system/sysops/tlbi/VMID
	aarch64/instrs/system/sysops/tlbi/VMID_NONE
	aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp
	aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp
	aarch64/instrs/vector/logical/immediateop/ImmediateOp
	aarch64/instrs/vector/reduce/reduceop/Reduce
	aarch64/instrs/vector/reduce/reduceop/ReduceOp

	I1.1.5 aarch64/translation
	aarch64/translation/debug/AArch64.CheckBreakpoint
	aarch64/translation/debug/AArch64.CheckDebug
	aarch64/translation/debug/AArch64.CheckWatchpoint
	aarch64/translation/pmsa_validation/AArch64.DetermineS2PASpace
	aarch64/translation/pmsa_validation/AArch64.FullValidate
	aarch64/translation/pmsa_validation/AArch64.IsStage1VMSA
	aarch64/translation/pmsa_validation/AArch64.MPUValidate
	aarch64/translation/pmsa_validation/AArch64.S1Validate
	aarch64/translation/pmsa_validation/AArch64.S2Validate
	aarch64/translation/vmsa_addrcalc/AArch64.BlockBase
	aarch64/translation/vmsa_addrcalc/AArch64.IASize
	aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase
	aarch64/translation/vmsa_addrcalc/AArch64.PageBase
	aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize
	aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel
	aarch64/translation/vmsa_addrcalc/AArch64.TTBaseAddress
	aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress
	aarch64/translation/vmsa_faults/AArch64.AddrTop
	aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults
	aarch64/translation/vmsa_faults/AArch64.DebugFault
	aarch64/translation/vmsa_faults/AArch64.OAOutOfRange
	aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault
	aarch64/translation/vmsa_faults/AArch64.S1HasPermissionsFault_VMSA
	aarch64/translation/vmsa_faults/AArch64.S1InvalidTxSZ
	aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault
	aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange
	aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs
	aarch64/translation/vmsa_tlbcontext/AArch64.GetS1TLBContext
	aarch64/translation/vmsa_tlbcontext/AArch64.GetS2TLBContext
	aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL10
	aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL2
	aarch64/translation/vmsa_translation/AArch64.AccessUsesEL
	aarch64/translation/vmsa_translation/AArch64.FaultAllowsSetAccessFlag
	aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc
	aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput
	aarch64/translation/vmsa_translation/AArch64.S1Translate
	aarch64/translation/vmsa_translation/AArch64.TranslateAddress
	aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported
	aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults
	aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit
	aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType
	aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms
	aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms
	aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState
	aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLast
	aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable
	aarch64/translation/vmsa_walk/AArch64.S1Walk
	aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel
	aarch64/translation/vmsa_walkparams/AArch64.CurrentSecurityState
	aarch64/translation/vmsa_walkparams/AArch64.DecodeTG0
	aarch64/translation/vmsa_walkparams/AArch64.DecodeTG1
	aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams
	aarch64/translation/vmsa_walkparams/AArch64.GetVARange
	aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ
	aarch64/translation/vmsa_walkparams/AArch64.PAMax
	aarch64/translation/vmsa_walkparams/AArch64.S1BREnabled
	aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled
	aarch64/translation/vmsa_walkparams/AArch64.S1EPD
	aarch64/translation/vmsa_walkparams/AArch64.S1Enabled
	aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled
	aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ
	aarch64/translation/vmsa_walkparams/AArch64.S1TTBR
	aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10
	aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ
	aarch64/translation/vmsa_walkparams/AArch64.VAMax

	I1.2 Shared pseudocode
	I1.2.1 shared/debug
	shared/debug/ClearStickyErrors/ClearStickyErrors
	shared/debug/DebugTarget/DebugTarget
	shared/debug/DebugTarget/DebugTargetFrom
	shared/debug/DoubleLockStatus/DoubleLockStatus
	shared/debug/OSLockStatus/OSLockStatus
	shared/debug/SoftwareLockStatus/Component
	shared/debug/SoftwareLockStatus/GetAccessComponent
	shared/debug/SoftwareLockStatus/SoftwareLockStatus
	shared/debug/authentication/AllowExternalDebugAccess
	shared/debug/authentication/AllowExternalPMUAccess
	shared/debug/authentication/Debug_authentication
	shared/debug/authentication/ExternalInvasiveDebugEnabled
	shared/debug/authentication/ExternalNoninvasiveDebugAllowed
	shared/debug/authentication/ExternalNoninvasiveDebugEnabled
	shared/debug/authentication/ExternalSecureInvasiveDebugEnabled
	shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled
	shared/debug/authentication/IsAccessSecure
	shared/debug/authentication/IsCorePowered
	shared/debug/breakpoint/CheckValidStateMatch
	shared/debug/breakpoint/NumBreakpointsImplemented
	shared/debug/breakpoint/NumContextAwareBreakpointsImplemented
	shared/debug/breakpoint/NumWatchpointsImplemented
	shared/debug/cti/CTI_SetEventLevel
	shared/debug/cti/CTI_SignalEvent
	shared/debug/cti/CrossTrigger
	shared/debug/dccanditr/CheckForDCCInterrupts
	shared/debug/dccanditr/DBGDTRRX_EL0
	shared/debug/dccanditr/DBGDTRTX_EL0
	shared/debug/dccanditr/DBGDTR_EL0
	shared/debug/dccanditr/DTR
	shared/debug/dccanditr/EDITR
	shared/debug/halting/DCPSInstruction
	shared/debug/halting/DRPSInstruction
	shared/debug/halting/DebugHalt
	shared/debug/halting/DisableITRAndResumeInstructionPrefetch
	shared/debug/halting/ExecuteA64
	shared/debug/halting/ExecuteT32
	shared/debug/halting/ExitDebugState
	shared/debug/halting/Halt
	shared/debug/halting/HaltOnBreakpointOrWatchpoint
	shared/debug/halting/Halted
	shared/debug/halting/HaltingAllowed
	shared/debug/halting/Restarting
	shared/debug/halting/StopInstructionPrefetchAndEnableITR
	shared/debug/halting/UpdateEDSCRFields
	shared/debug/haltingevents/CheckExceptionCatch
	shared/debug/haltingevents/CheckHaltingStep
	shared/debug/haltingevents/CheckOSUnlockCatch
	shared/debug/haltingevents/CheckPendingOSUnlockCatch
	shared/debug/haltingevents/CheckPendingResetCatch
	shared/debug/haltingevents/CheckResetCatch
	shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters
	shared/debug/haltingevents/ExternalDebugRequest
	shared/debug/haltingevents/HaltingStep_DidNotStep
	shared/debug/haltingevents/HaltingStep_SteppedEX
	shared/debug/haltingevents/RunHaltingStep
	shared/debug/interrupts/ExternalDebugInterruptsDisabled
	shared/debug/pmu/GetNumEventCounters
	shared/debug/pmu/HasElapsed64Cycles
	shared/debug/pmu/PMUCounterMask
	shared/debug/pmu/PMUEvent
	shared/debug/samplebasedprofiling/CreatePCSample
	shared/debug/samplebasedprofiling/PCSample
	shared/debug/samplebasedprofiling/PMPCSR
	shared/debug/softwarestep/CheckSoftwareStep
	shared/debug/softwarestep/DebugExceptionReturnSS
	shared/debug/softwarestep/SSAdvance
	shared/debug/softwarestep/SoftwareStep_DidNotStep
	shared/debug/softwarestep/SoftwareStep_SteppedEX

	I1.2.2 shared/exceptions
	shared/exceptions/exceptions/ConditionSyndrome
	shared/exceptions/exceptions/Exception
	shared/exceptions/exceptions/ExceptionRecord
	shared/exceptions/exceptions/ExceptionSyndrome

	I1.2.3 shared/functions
	shared/functions/aborts/EncodeLDFSC
	shared/functions/aborts/IPAValid
	shared/functions/aborts/IsAsyncAbort
	shared/functions/aborts/IsDebugException
	shared/functions/aborts/IsExternalAbort
	shared/functions/aborts/IsExternalSyncAbort
	shared/functions/aborts/IsFault
	shared/functions/aborts/IsSErrorInterrupt
	shared/functions/aborts/IsSecondStage
	shared/functions/aborts/LSInstructionSyndrome
	shared/functions/cache/CACHE_OP
	shared/functions/cache/CPASAtPAS
	shared/functions/cache/CPASAtSecurityState
	shared/functions/cache/CacheOp
	shared/functions/cache/CacheOpScope
	shared/functions/cache/CachePASpace
	shared/functions/cache/CacheRecord
	shared/functions/cache/CacheType
	shared/functions/cache/DCInstNeedsTranslation
	shared/functions/cache/DecodeSW
	shared/functions/cache/GetCacheInfo
	shared/functions/cache/ICInstNeedsTranslation
	shared/functions/common/ASR
	shared/functions/common/ASR_C
	shared/functions/common/Abs
	shared/functions/common/Align
	shared/functions/common/BitCount
	shared/functions/common/CountLeadingSignBits
	shared/functions/common/CountLeadingZeroBits
	shared/functions/common/Elem
	shared/functions/common/Extend
	shared/functions/common/HighestSetBit
	shared/functions/common/Int
	shared/functions/common/IsOnes
	shared/functions/common/IsZero
	shared/functions/common/IsZeroBit
	shared/functions/common/LSL
	shared/functions/common/LSL_C
	shared/functions/common/LSR
	shared/functions/common/LSR_C
	shared/functions/common/LowestSetBit
	shared/functions/common/Max
	shared/functions/common/Min
	shared/functions/common/Ones
	shared/functions/common/ROR
	shared/functions/common/ROR_C
	shared/functions/common/Replicate
	shared/functions/common/RoundDown
	shared/functions/common/RoundTowardsZero
	shared/functions/common/RoundUp
	shared/functions/common/SInt
	shared/functions/common/SignExtend
	shared/functions/common/UInt
	shared/functions/common/ZeroExtend
	shared/functions/common/Zeros
	shared/functions/counters/AArch32.CheckTimerConditions
	shared/functions/counters/AArch64.CheckTimerConditions
	shared/functions/counters/GenericCounterTick
	shared/functions/counters/IsTimerConditionMet
	shared/functions/counters/PhysicalCount
	shared/functions/counters/SetEventRegister
	shared/functions/counters/TestEventCNTP
	shared/functions/counters/TestEventCNTV
	shared/functions/crc/BitReverse
	shared/functions/crc/HaveCRCExt
	shared/functions/crc/Poly32Mod2
	shared/functions/crypto/AESInvMixColumns
	shared/functions/crypto/AESInvShiftRows
	shared/functions/crypto/AESInvSubBytes
	shared/functions/crypto/AESMixColumns
	shared/functions/crypto/AESShiftRows
	shared/functions/crypto/AESSubBytes
	shared/functions/crypto/FFmul02
	shared/functions/crypto/FFmul03
	shared/functions/crypto/FFmul09
	shared/functions/crypto/FFmul0B
	shared/functions/crypto/FFmul0D
	shared/functions/crypto/FFmul0E
	shared/functions/crypto/HaveAESExt
	shared/functions/crypto/HaveBit128PMULLExt
	shared/functions/crypto/HaveSHA1Ext
	shared/functions/crypto/HaveSHA256Ext
	shared/functions/crypto/HaveSHA3Ext
	shared/functions/crypto/HaveSHA512Ext
	shared/functions/crypto/HaveSM3Ext
	shared/functions/crypto/HaveSM4Ext
	shared/functions/crypto/ROL
	shared/functions/crypto/SHA256hash
	shared/functions/crypto/SHAchoose
	shared/functions/crypto/SHAhashSIGMA0
	shared/functions/crypto/SHAhashSIGMA1
	shared/functions/crypto/SHAmajority
	shared/functions/crypto/SHAparity
	shared/functions/crypto/Sbox
	shared/functions/exclusive/ClearExclusiveByAddress
	shared/functions/exclusive/ClearExclusiveLocal
	shared/functions/exclusive/ClearExclusiveMonitors
	shared/functions/exclusive/ExclusiveMonitorsStatus
	shared/functions/exclusive/IsExclusiveGlobal
	shared/functions/exclusive/IsExclusiveLocal
	shared/functions/exclusive/MarkExclusiveGlobal
	shared/functions/exclusive/MarkExclusiveLocal
	shared/functions/exclusive/ProcessorID
	shared/functions/extension/AArch64.HaveHPDExt
	shared/functions/extension/ArchHasVMSAExtension
	shared/functions/extension/Have16bitVMID
	shared/functions/extension/Have52BitPAExt
	shared/functions/extension/Have52BitVAExt
	shared/functions/extension/HaveAtomicExt
	shared/functions/extension/HaveBlockBBM
	shared/functions/extension/HaveCommonNotPrivateTransExt
	shared/functions/extension/HaveDGHExt
	shared/functions/extension/HaveDITExt
	shared/functions/extension/HaveDOTPExt
	shared/functions/extension/HaveDoPD
	shared/functions/extension/HaveDoubleLock
	shared/functions/extension/HaveE0PDExt
	shared/functions/extension/HaveEL1VMSAExt
	shared/functions/extension/HaveExtendedCacheSets
	shared/functions/extension/HaveExtendedECDebugEvents
	shared/functions/extension/HaveExtendedExecuteNeverExt
	shared/functions/extension/HaveFCADDExt
	shared/functions/extension/HaveFJCVTZSExt
	shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext
	shared/functions/extension/HaveFlagManipulateExt
	shared/functions/extension/HaveHPMDExt
	shared/functions/extension/HaveIDSExt
	shared/functions/extension/HaveIESB
	shared/functions/extension/HaveLSE2Ext
	shared/functions/extension/HaveNoSecurePMUDisableOverride
	shared/functions/extension/HaveNoninvasiveDebugAuth
	shared/functions/extension/HavePANExt
	shared/functions/extension/HavePMUv3
	shared/functions/extension/HavePageBasedHardwareAttributes
	shared/functions/extension/HavePrivATExt
	shared/functions/extension/HaveQRDMLAHExt
	shared/functions/extension/HaveRASExt
	shared/functions/extension/HaveSBExt
	shared/functions/extension/HaveSSBSExt
	shared/functions/extension/HaveSecureEL2Ext
	shared/functions/extension/HaveSecureExtDebugView
	shared/functions/extension/HaveSelfHostedTrace
	shared/functions/extension/HaveSmallTranslationTblExt
	shared/functions/extension/HaveSoftwareLock
	shared/functions/extension/HaveStage2MemAttrControl
	shared/functions/extension/HaveTraceExt
	shared/functions/extension/HaveUAOExt
	shared/functions/extension/HaveV82Debug
	shared/functions/extension/Havev8p4Debug
	shared/functions/extension/InsertIESBBeforeException
	shared/functions/externalaborts/HandleExternalAbort
	shared/functions/externalaborts/HandleExternalReadAbort
	shared/functions/externalaborts/HandleExternalTTWAbort
	shared/functions/externalaborts/HandleExternalWriteAbort
	shared/functions/externalaborts/IsExternalAbortTakenSynchronously
	shared/functions/externalaborts/PEErrorState
	shared/functions/externalaborts/PendSErrorInterrupt
	shared/functions/float/fixedtofp/FixedToFP
	shared/functions/float/fpabs/FPAbs
	shared/functions/float/fpadd/FPAdd
	shared/functions/float/fpcompare/FPCompare
	shared/functions/float/fpcompareeq/FPCompareEQ
	shared/functions/float/fpcomparege/FPCompareGE
	shared/functions/float/fpcomparegt/FPCompareGT
	shared/functions/float/fpconvert/FPConvert
	shared/functions/float/fpconvertnan/FPConvertNaN
	shared/functions/float/fpcrtype/FPCRType
	shared/functions/float/fpdecoderm/FPDecodeRM
	shared/functions/float/fpdecoderounding/FPDecodeRounding
	shared/functions/float/fpdefaultnan/FPDefaultNaN
	shared/functions/float/fpdiv/FPDiv
	shared/functions/float/fpexc/FPExc
	shared/functions/float/fpinfinity/FPInfinity
	shared/functions/float/fpmax/FPMax
	shared/functions/float/fpmaxnormal/FPMaxNormal
	shared/functions/float/fpmaxnum/FPMaxNum
	shared/functions/float/fpmerge/IsMerging
	shared/functions/float/fpmin/FPMin
	shared/functions/float/fpminnum/FPMinNum
	shared/functions/float/fpmul/FPMul
	shared/functions/float/fpmuladd/FPMulAdd
	shared/functions/float/fpmuladdh/FPMulAddH
	shared/functions/float/fpmuladdh/FPProcessNaNs3H
	shared/functions/float/fpmulx/FPMulX
	shared/functions/float/fpneg/FPNeg
	shared/functions/float/fponepointfive/FPOnePointFive
	shared/functions/float/fpprocessexception/FPProcessException
	shared/functions/float/fpprocessnan/FPProcessNaN
	shared/functions/float/fpprocessnans/FPProcessNaNs
	shared/functions/float/fpprocessnans3/FPProcessNaNs3
	shared/functions/float/fprecipestimate/FPRecipEstimate
	shared/functions/float/fprecipestimate/RecipEstimate
	shared/functions/float/fprecpx/FPRecpX
	shared/functions/float/fpround/FPRound
	shared/functions/float/fpround/FPRoundBase
	shared/functions/float/fpround/FPRoundCV
	shared/functions/float/fprounding/FPRounding
	shared/functions/float/fproundingmode/FPRoundingMode
	shared/functions/float/fproundint/FPRoundInt
	shared/functions/float/fproundintn/FPRoundIntN
	shared/functions/float/fprsqrtestimate/FPRSqrtEstimate
	shared/functions/float/fprsqrtestimate/RecipSqrtEstimate
	shared/functions/float/fpsqrt/FPSqrt
	shared/functions/float/fpsub/FPSub
	shared/functions/float/fpthree/FPThree
	shared/functions/float/fptofixed/FPToFixed
	shared/functions/float/fptofixedjs/FPToFixedJS
	shared/functions/float/fptwo/FPTwo
	shared/functions/float/fptype/FPType
	shared/functions/float/fpunpack/FPUnpack
	shared/functions/float/fpunpack/FPUnpackBase
	shared/functions/float/fpunpack/FPUnpackCV
	shared/functions/float/fpzero/FPZero
	shared/functions/float/vfpexpandimm/VFPExpandImm
	shared/functions/integer/AddWithCarry
	shared/functions/interrupts/InterruptID
	shared/functions/interrupts/SetInterruptRequestLevel
	shared/functions/memory/AArch64.BranchAddr
	shared/functions/memory/AccType
	shared/functions/memory/AccessDescriptor
	shared/functions/memory/AddrTop
	shared/functions/memory/Allocation
	shared/functions/memory/BigEndian
	shared/functions/memory/BigEndianReverse
	shared/functions/memory/Cacheability
	shared/functions/memory/CreateAccessDescriptor
	shared/functions/memory/DataMemoryBarrier
	shared/functions/memory/DataSynchronizationBarrier
	shared/functions/memory/DeviceType
	shared/functions/memory/EffectiveTBI
	shared/functions/memory/Fault
	shared/functions/memory/FaultRecord
	shared/functions/memory/FullAddress
	shared/functions/memory/Hint_Prefetch
	shared/functions/memory/MBReqDomain
	shared/functions/memory/MBReqTypes
	shared/functions/memory/MPURecord
	shared/functions/memory/MemAttrHints
	shared/functions/memory/MemType
	shared/functions/memory/MemoryAttributes
	shared/functions/memory/PASpace
	shared/functions/memory/Permissions
	shared/functions/memory/PhysMemRead
	shared/functions/memory/PhysMemRetStatus
	shared/functions/memory/PhysMemWrite
	shared/functions/memory/PrefetchHint
	shared/functions/memory/Shareability
	shared/functions/memory/SpeculativeStoreBypassBarrierToPA
	shared/functions/memory/SpeculativeStoreBypassBarrierToVA
	shared/functions/predictionrestrict/ASID
	shared/functions/predictionrestrict/ExecutionCntxt
	shared/functions/predictionrestrict/RESTRICT_PREDICTIONS
	shared/functions/predictionrestrict/RestrictType
	shared/functions/predictionrestrict/TargetSecurityState
	shared/functions/registers/BranchTo
	shared/functions/registers/BranchToAddr
	shared/functions/registers/BranchType
	shared/functions/registers/Hint_Branch
	shared/functions/registers/NextInstrAddr
	shared/functions/registers/ResetExternalDebugRegisters
	shared/functions/registers/ThisInstrAddr
	shared/functions/registers/_PC
	shared/functions/registers/_R
	shared/functions/registers/_V
	shared/functions/sysregisters/SPSR
	shared/functions/system/ArchVersion
	shared/functions/system/ClearEventRegister
	shared/functions/system/ClearPendingPhysicalSError
	shared/functions/system/ClearPendingVirtualSError
	shared/functions/system/ConditionHolds
	shared/functions/system/ConsumptionOfSpeculativeDataBarrier
	shared/functions/system/CurrentInstrSet
	shared/functions/system/CurrentPL
	shared/functions/system/EL0
	shared/functions/system/EL2Enabled
	shared/functions/system/ELFromM32
	shared/functions/system/ELFromSPSR
	shared/functions/system/ELUsingAArch32
	shared/functions/system/ELUsingAArch32K
	shared/functions/system/EndOfInstruction
	shared/functions/system/EnterLowPowerState
	shared/functions/system/EventRegister
	shared/functions/system/ExceptionalOccurrenceTargetState
	shared/functions/system/FIQPending
	shared/functions/system/GetAccumulatedFPExceptions
	shared/functions/system/GetPSRFromPSTATE
	shared/functions/system/HasArchVersion
	shared/functions/system/HaveAArch32
	shared/functions/system/HaveAArch32EL
	shared/functions/system/HaveAArch64
	shared/functions/system/HaveEL
	shared/functions/system/HaveELUsingSecurityState
	shared/functions/system/HaveFP16Ext
	shared/functions/system/HighestEL
	shared/functions/system/Hint_DGH
	shared/functions/system/Hint_WFE
	shared/functions/system/Hint_WFI
	shared/functions/system/Hint_Yield
	shared/functions/system/IRQPending
	shared/functions/system/IllegalExceptionReturn
	shared/functions/system/InstrSet
	shared/functions/system/InstructionSynchronizationBarrier
	shared/functions/system/InterruptPending
	shared/functions/system/IsASEInstruction
	shared/functions/system/IsEventRegisterSet
	shared/functions/system/IsHighestEL
	shared/functions/system/IsPhysicalSErrorPending
	shared/functions/system/IsSErrorEdgeTriggered
	shared/functions/system/IsSecure
	shared/functions/system/IsSecureBelowEL3
	shared/functions/system/IsSecureEL2Enabled
	shared/functions/system/IsSynchronizablePhysicalSErrorPending
	shared/functions/system/IsVirtualSErrorPending
	shared/functions/system/Mode_Bits
	shared/functions/system/PLOfEL
	shared/functions/system/PSTATE
	shared/functions/system/PhysicalCountInt
	shared/functions/system/PrivilegeLevel
	shared/functions/system/ProcState
	shared/functions/system/RestoredITBits
	shared/functions/system/SecurityState
	shared/functions/system/SendEvent
	shared/functions/system/SendEventLocal
	shared/functions/system/SetAccumulatedFPExceptions
	shared/functions/system/SetPSTATEFromPSR
	shared/functions/system/ShouldAdvanceIT
	shared/functions/system/ShouldAdvanceSS
	shared/functions/system/SpeculationBarrier
	shared/functions/system/SynchronizeContext
	shared/functions/system/SynchronizeErrors
	shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts
	shared/functions/system/TakeUnmaskedSErrorInterrupts
	shared/functions/system/ThisInstr
	shared/functions/system/ThisInstrLength
	shared/functions/system/Unreachable
	shared/functions/system/UsingAArch32
	shared/functions/system/VirtualFIQPending
	shared/functions/system/VirtualIRQPending
	shared/functions/system/WFxType
	shared/functions/system/WaitForEvent
	shared/functions/system/WaitForInterrupt
	shared/functions/unpredictable/ConstrainUnpredictable
	shared/functions/unpredictable/ConstrainUnpredictableBits
	shared/functions/unpredictable/ConstrainUnpredictableBool
	shared/functions/unpredictable/ConstrainUnpredictableInteger
	shared/functions/unpredictable/Constraint
	shared/functions/vector/AdvSIMDExpandImm
	shared/functions/vector/PolynomialMult
	shared/functions/vector/SatQ
	shared/functions/vector/SignedSatQ
	shared/functions/vector/UnsignedRSqrtEstimate
	shared/functions/vector/UnsignedRecipEstimate
	shared/functions/vector/UnsignedSatQ

	I1.2.4 shared/translation
	shared/translation/at/ATAccess
	shared/translation/at/EncodePARAttrs
	shared/translation/at/PAREncodeShareability
	shared/translation/at/TranslationStage
	shared/translation/attrs/DecodeDevice
	shared/translation/attrs/DecodeLDFAttr
	shared/translation/attrs/DecodeSDFAttr
	shared/translation/attrs/DecodeShareability
	shared/translation/attrs/EffectiveShareability
	shared/translation/attrs/MAIRAttr
	shared/translation/attrs/NormalNCMemAttr
	shared/translation/attrs/S1ConstrainUnpredictableRESMAIR
	shared/translation/attrs/S1DecodeMemAttrs
	shared/translation/attrs/S2CombineS1AttrHints
	shared/translation/attrs/S2CombineS1Device
	shared/translation/attrs/S2CombineS1MemAttrs
	shared/translation/attrs/S2CombineS1Shareability
	shared/translation/attrs/WalkMemAttrs
	shared/translation/faults/AlignmentFault
	shared/translation/faults/AsyncExternalAbort
	shared/translation/faults/NoFault
	shared/translation/translation/S1TranslationRegime
	shared/translation/vmsa/AddressDescriptor
	shared/translation/vmsa/ContiguousSize
	shared/translation/vmsa/CreateAddressDescriptor
	shared/translation/vmsa/CreateFaultyAddressDescriptor
	shared/translation/vmsa/DescriptorType
	shared/translation/vmsa/Domains
	shared/translation/vmsa/FetchDescriptor
	shared/translation/vmsa/HasUnprivileged
	shared/translation/vmsa/IsAtomicRW
	shared/translation/vmsa/Regime
	shared/translation/vmsa/RegimeUsingAArch32
	shared/translation/vmsa/S1TTWParams
	shared/translation/vmsa/SDFType
	shared/translation/vmsa/SecurityStateForRegime
	shared/translation/vmsa/StageOA
	shared/translation/vmsa/TGx
	shared/translation/vmsa/TGxGranuleBits
	shared/translation/vmsa/TLBContext
	shared/translation/vmsa/TLBRecord
	shared/translation/vmsa/TTWState
	shared/translation/vmsa/TranslationRegime
	shared/translation/vmsa/TranslationSize
	shared/translation/vmsa/UseASID
	shared/translation/vmsa/UseVMID
	shared/translation/vmsa/VARange

	I1.2.5 See also
	In the Arm Architecture Reference Manual

	Glossary

