

Arm® Platform Security Architecture
Trusted Base System Architecture for

Arm®v6-M, Arm®v7-M and Arm®v8-M
1.0

Architecture & Technology Group

Document number: DEN 0083

Release Quality: Beta

Release Number: 1

Confidentiality Non-Confidential

Date of Issue: 20/02/2019

© Copyright Arm Limited 2017-2018. All rights reserved.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page ii
1.0 Beta Release 1 Non-Confidential

Contents

About this document v

Release Information v

Arm Non-Confidential Document Licence (“Licence”) vi

References viii

Terms and abbreviations ix

Feedback xi
Feedback on this book xi

1 Introduction [Informative] 12

1.1 Scope 12

1.2 Organization of the document 13

1.3 Target Platforms 13
1.3.1 Level of protection 14
1.3.2 Security Analysis 14

2 Trustworthy networked devices [Informative] 15

2.1 Use Cases 15
2.1.1 Secure machine to machine communication 16
2.1.2 Secure firmware update 16

2.2 Security goal 17

2.3 Security analysis 17

3 Platform Security Architecture concepts [Informative] 17

3.1 Security by separation 17

3.2 Trusted and Non-Trusted worlds 18

3.3 PSA software architecture 18

4 Hardware supported isolation [Informative] 20

4.1 TrustZone-based isolation 20

4.2 MPU-based isolation 23

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page iii
1.0 Beta Release 1 Non-Confidential

4.3 Dual PE-based isolation 24

4.4 Custom logic based isolation 26

4.5 Trusted subsystems 27

4.6 PSA isolation levels 31

4.7 Basic architecture 32

4.8 Assisted architecture 33

5 TBSA-M security requirements [Normative] 33

5.1 System view 34

5.2 Infrastructure 35
5.2.1 Memory system 35
5.2.2 Shared volatile storage 37
5.2.3 Interrupts 38
5.2.4 Secure RAM 39
5.2.5 Power and clock management 39
5.2.6 Peripherals 40

5.3 Fuses 42

5.4 Cryptographic keys 44
5.4.1 Cryptographic schemes 44
5.4.2 Static and ephemeral keys 45
5.4.3 Device unique and common keys 46
5.4.4 Source 46
5.4.5 Root keys 47

5.5 Trusted boot 48
5.5.1 Overview 48
5.5.2 Boot types 48
5.5.3 Boot configuration 49
5.5.4 Stored configuration 50
5.5.5 Secure lockdown 50
5.5.6 Assisted architecture 50

5.6 Trusted timers 51
5.6.1 Trusted clock source 51
5.6.2 General Trusted timer 51
5.6.3 Watchdog 51
5.6.4 Trusted time 52

5.7 Version counters 53

5.8 Entropy source 54

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page iv
1.0 Beta Release 1 Non-Confidential

5.9 Cryptographic acceleration 56

5.10 Debug 57
5.10.1 Protection mechanisms 57
5.10.2 Debug Protection Mechanism overlap 58
5.10.3 Debug Protection Mechanism states 58
5.10.4 Unlock operations 60
5.10.5 Other debug functionality 62
5.10.6 Arm debug implementation 62
5.10.7 Basic architecture 62
5.10.8 Assisted architecture 63

5.11 External interface peripherals 63

5.12 DRAM protection 64

6 Device lifecycle management [Normative] 64

7 Approved algorithms and key sizes [Normative] 66

8 Related documents 67

Appendix: TBSA-M checklist [Normative] 67

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page v
1.0 Beta Release 1 Non-Confidential

About this document

Release Information
The change history table lists the changes that have been made to this document.

Date Version Confidentiality Change

February 2019 1.1 Beta Non-Confidential Several re-wordings and fixing of typographical errors.

June 2018 1.0 Dev 0 Confidential Fork from TBSA Armv8-M (DEN 0062A)

Adding:
non-TrustZone isolation mechanisms (Chapter 4)

Use of Hardware Anchors,for example secure elements
and secure enclaves (Section 4.5)
2 new requirements (R001_TBSA_BASE and
R002_TBSA_BASE)

Modifying:

Context referring to PSA firmware framework and
security model
Existing text (in requirements) so that it does not rely
solely on TrustZone for Armv8-M

Removed PSA Readiness chapter

September 2018 1.0 Alpha 0 Confidential Aligned document context with other PSA documents
Removed most threat modelling description (PSA-SM
to cover this)
Modified many sentences to clarify based on internal
feedback

Added Labelling of each chapter as either [Informative]
or [normative]
Added section 1.2 which describes the document
organization

Removed PSA readiness chapter (out of line with
current PSA intentions)

October 2018 1.0 Beta 0 Non-Confidential Updated cryptographic References
Added support for Ed25519

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page vi
1.0 Beta Release 1 Non-Confidential

Arm® Platform Security Architecture Trusted Base System Architecture for Arm®v6-M,
Arm®v7-M and Arm®v8-M
Copyright ©2017-2018 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact
that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document Licence (“Licence”)
This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of the document accompanying
this Licence (“Document”). Arm is only willing to license the Document to you on condition that you agree to the
terms of this Licence. By using or copying the Document you indicate that you agree to be bound by the terms of
this Licence. If you do not agree to the terms of this Licence, Arm is unwilling to license this Document to you and
you may not use or copy the Document.

This Document is NON-CONFIDENTIAL and any use by you is subject to the terms of this Licence between you and
Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to you under the intellectual property in
the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free,
worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the

Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i)

above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

You hereby agree that the licences granted above shall not extend to any portion or function of a product that
is not itself compliant with part of the Document.

Except as expressly licensed above, you acquire no right, title or interest in any Arm technology or any intellectual
property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt,
Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope
and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,
IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S
USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY
LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR
EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS
OF THIS LIMITATION.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page vii
1.0 Beta Release 1 Non-Confidential

This Licence shall remain in force until terminated by you or by Arm. Without prejudice to any of its other rights,
if you are in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence
immediately upon giving written notice to you. You may terminate this Licence at any time. Upon termination of
this Licence by you or by Arm, you shall stop using the Document and destroy all copies of the Document in your
possession. Upon termination of this Licence, all terms shall survive except for the licence grants.

The Document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication
or disclosure of the Document complies fully with any relevant export laws and regulations to assure that the
Document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.

If any of the provisions contained in this Licence conflict with any of the provisions of any click-through or signed
written agreement with Arm relating to the Document, then the click-through or signed written agreement
prevails over and supersedes the conflicting provisions of this Licence. This Licence may be translated into other
languages for convenience, and you agree that if there is any conflict between the English version of this Licence
and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm (or its
subsidiaries) in the EU, US and/or elsewhere. All rights reserved. No licence, express, implied or otherwise, is
granted to you under this Licence, to use the ARM trade marks in connection with the Document or any products
based thereon.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page viii
1.0 Beta Release 1 Non-Confidential

References
This document refers to the following documents.

Ref Document
Number

Title

[1] PRD29
GENC
009492C

ArmSecurity Technology - Building a Secure System using
TrustZoneTechnology.

[2] ARM DDI
00553A.b

Armv8-M Architecture Reference Manual.

[3] ARM DEN
0006B

Arm Trusted Board Boot Requirements.

[4] Trusted Firmware-A

[5] ARM ECM
0437502

TrustZone Technology Microcontroller System Hardware Design
Concepts

[6] ARM DEN
0021C

Arm Trusted Base System Architecture, CLIENT.

[7] ARM DEN
0063

PSA Firmware Framework – M-profile

[8] ARM DEN
0072

PSA Trusted Boot and Firmware Update

[9] ARM ECM
0390891

PSA: Device Security Model

[10] ARM DEN
0073

Network Camera Threat Model and Security Analysis (English language
Protection Profile)

[11] ARM DEN
0074

Water Meter Threat Model and Security Analysis (English language
Protection Profile)

[12] ARM DEN
0075

Asset Tracker Threat Model and Security Analysis (English language
Protection Profile)

[13] NIST Special Publication 800-90C Recommendation for Random Bit
Generator (RBG) Constructions
https://csrc.nist.gov/publications/detail/sp/800-90c/draft

[14] NIST Special Publication 800-22rev1a: A Statistical Test Suite for the
Validation of Random Number Generators and Pseudo Random Number
Generators for Cryptographic Applications
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-
22rev1a.pdf

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page ix
1.0 Beta Release 1 Non-Confidential

[15] Commercial National Security Algorithm Suite. (superseding NSA Suite B
Cryptography)
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm

[16] SEC - Recommended Elliptic Curve Domain Parameters
http://www.secg.org/sec2-v2.pdf

[17] GlobalPlatform TEE Protection Profile Specification v1.2
http://www.globalplatform.org/specificationsdevice.asp

[18] NIST Special Publication 800-108 Recommendation for Key Derivation
Using Pseudorandom Functions
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
108.pdf

[19] NIST Special Publication 800-57 Part 1 Revision 4 Recommendation for
Key Management
 https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final

[20] NIST Special Publication 800-107 Recommendation for Applications
Using Approved Hash Algorithms
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
107r1.pdf

[21] Common Methodology for Information Technology Security Evaluation
3.1
https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R3.pdf

[22] NIST FIPS PUB 202 SHA-3 Standard
http://dx.doi.org/10.6028/NIST.FIPS.202

[23] IETF RFC 8032 Edwards-Curve Digital Signature Algorithm (EdDSA)
Algorithms
https://tools.ietf.org/html/rfc8032

Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning

ACL Access Control List

AES Advanced Encryption Standard

APB Advanced Peripheral Bus

API Application Programming Interface

AXI Advanced eXtensible Interface

CMAC Cipher-based Message Authentication Code

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page x
1.0 Beta Release 1 Non-Confidential

DMA Direct Memory Access

DPM Debug Protection Mechanism

ECC Elliptic-Curve Cryptography

ECU Electronic Control Unit

EIP External Interface Peripheral

HMAC Hash-based Message Authentication Code

HUK Hardware Unique Key.

IDAU Implementation Defined Attribution Unit.

IPC Inter-process communication

JTAG Joint Test Action Group

MCU MicroController Unit

MPU Memory Protection Unit

MTP Multiple-Time Programmable

NSC Non-Secure Callable

NSPE Non-Secure Processing Environment

NVM Non-volatile memory

OEM Original-Equipment Manufacturer

OTP One Time Programmable

OWF One-way Function

PE Processing Element

PSA Platform Security Architecture

RMA Return Material Authorization

RoT Root of Trust

ROTPK Root Of Trust Public Key

RSA Rivest-Shamir-Adleman

SAU Security attribution unit.

SHA Secure Hash Algorithm

SM Security Model

SoC System-on-Chip

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page xi
1.0 Beta Release 1 Non-Confidential

SPE Secure Processing Environment

SPM Secure Partition Manager

SWD Single Wire Debug

TA Trusted Application

TDES Triple Data Encryption Standard

TEE Trusted Execution Environment

TLS Transport Layer Security

TMSA Threat Model and Security Analysis

TRNG True Random Number Generator

TRTC Trusted Real-Time Clock

Feedback
Arm welcomes feedback on its documentation.

Feedback on this book
If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com. Give:

• The title (Arm® Platform Security Architecture Trusted Base System Architecture for Arm®v6-M, Arm®v7-
M and Arm®v8-M).

• The number and release (DEN 0083 1.0 Beta 1).

• The page numbers to which your comments apply.

• The rule identifiers to which your comments apply, if applicable.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 12
1.0 Beta Release 1 Non-Confidential

1 Introduction [Informative]
Arm Trusted Base System Architecture for Armv8-M (TBSA-M) is an architecture for the design and
implementation of secure devices.

The design of a secure product depends on analysis of threats to its assets through application use cases. The
number and diversity of -M based products means that, in practice, this approach might not scale. To address
this, TBSA-M encapsulates best practice security principles when designing systems around Armv8-M processing
elements (PEs).

These principles support the design and integration of the following features rooted in hardware:

• A Root of Trust (RoT).
• A Protected keystore.
• Isolation between Trusted and Non-Trusted software components.
• A Secure firmware update mechanism.
• A lifecycle management mechanism, for secure control of debug, test, and access to provisioned secrets.
• A high-entropy random number generator, for reliable cryptography.
• Cryptographic acceleration, so that real-time functionality can be maintained with the correct security

properties.

TBSA-M is part of Arm Platform Security Architecture (PSA). PSA can be used to define a secure processing
environment that isolates security-critical functionality and data from application software. This increases
confidence in the trustworthiness of the device, even in the presence of exploitable software vulnerabilities. Arm
PSA defines Application Programming Interfaces (APIs) for fundamental security functions. The APIs support the
development of secure functionality that is more easily ported to other Arm-based platforms.

The goal of this document is to support the creation of platforms that support Trusted services. Trusted services
are collections of operations and assets that require protection from the wider system, and from each other.
This ensures their confidentiality, authenticity, and integrity.

This document aims to provide information that is useful to designers and implementers of secure platforms.
This does not eliminate the requirement for security analysis during system design, despite the intention to
reduce it. In addition, following the requirements and recommendations of this document does not guarantee
that vulnerabilities will not exist in any compliant design.

1.1 Scope
This version of the TBSA-M specification is targeted at connected microcontroller SoCs (MCUs) and their product
use cases, for example IoT. The MCUs have an Armv8-M processor as its host, with integrated flash and
integrated security features.

It is expected that other platform types will be covered in future PSA hardware specifications, for example
Secure platforms which are based on Armv7-M or Armv6-M processors, or less integrated platforms which make
use of external security elements.

Implementations compliant with TBSA-M are sufficient to operate within the PSA Security Model (SM), which
allows deployment of secure services using devices with known security properties

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 13
1.0 Beta Release 1 Non-Confidential

1.2 Organization of the document
The document is organized in eight chapters in addition to this Introduction. Chapters 2, 3 and 4 describe the
context in which subsequent requirements should be understood. Chapter 5 provides a set of requirements that
TBSA-M compliant devices are expected to meet, together with a short discussion about each requirement.
Chapter 6 contains recommendations for how lifecycle management may be implemented and Chapter 7 lists
approved cryptographic algorithms for which hardware support is prescribed in Chapter 5. Chapter 8 describes a
scheme for scoring the robustness of the mechanisms which a device uses to meet TBSA-M requirements. The
Appendix tabulates the requirements in Chapter 5 for ease of access.

Some chapters are labelled Normative. These chapters are prescriptive, and must be followed in order to comply
with the architecture. Other chapters are labelled Informative. These chapters are descriptive, and are intended
to help the reader understand the concepts presented in the normative chapters.

1.3 Target Platforms
The target platforms that are addressed by this document are primarily IoT devices and automotive ECUs. These
devices typically have several of the following product features:

• A long active lifespan.
• Resource constrained.
• A location that makes secure manual updates difficult.
• Potentially good physical access for untrusted third parties.
• Deployment in vast quantities.

This document concerns SoCs that are centered on Armv6-M, Armv7-M and Armv8-M PEs and embed non-
volatile storage.

In general, these SoCs:
• Are closed systems so that the software running on them can be controlled.
• Have wired or wireless network connectivity.
• Support internal non-volatile bulk storage, most commonly embedded flash (eFlash).
• Integrate One Time Programmable (OTP) non-volatile storage for storage of assets provisioned at

manufacture and later.
Given the variety of platforms and products that are covered by the scope of this document, each with a specific
set of use cases, assets and threats, several aspects of this document are necessarily high-level.
However, the resulting collection of use cases, assets, threats, and necessary security measures cannot be
reduced to a single, simple checklist of security requirements. Each platform and product requires specific
analysis to determine the appropriate use of security features and will need to consider the specification and
certification requirements of the target market.

Attacks on systems continuously evolve, with the effect that old security defenses must be strengthened, and
new security defenses must be implemented to maintain the required level of security. The requirements
described in this document represent best practice at the time of writing. Some requirements are intended to
strengthen the security guidance when compared to previous versions of this document and its predecessors. In
all cases, the differences are in the degree of security that is provided, or that is demanded by other market
specifications. The newer requirements described here are more resilient to certain types of attack.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 14
1.0 Beta Release 1 Non-Confidential

1.3.1 Level of protection
The types of attack that this document addresses are primarily data stealing and injection attacks, in which the
attacker is only capable of executing attacks using unsigned software, possibly remotely. The motivation behind
data stealing and injection attacks is to steal proprietary information, disrupt device functionality, or both.
Although hardware protection technologies can protect against direct access to sensitive information, it is still
possible to acquire sensitive information from statistical analysis attacks. Therefore, for certain applications it
might be necessary to design software in such a way that visibility of such information outside the device is
restricted.

Lightweight hardware attacks are those achieved using commonly available consumer or hobbyist equipment.
Attackers obtain physical access to the device, but do not have the equipment or expertise to attack within the
integrated circuit package. For example, an attacker might attempt to attack the system by:

• Probing the signals around the SoC to:
o Read, modify or substitute external memory contents.
o Read, modify or substitute information on communications channels.

• Tampering with how the device is clocked, powered or reset so as to corrupt programmable states
within the system.

• Tampering with the device pins, for example debug pins, to attempt to read, modify or substitute
internal states or internal memory contents.

• Tampering with manufacturing-related test pins to attempt to read, modify or substitute internal states
or internal memory contents.

TBSA-M requirements focus on protecting easily-accessible interfaces, discouraging the use of class keys, and
supporting software countermeasures to low-cost side channel attacks.

Finally, advanced hardware invasive attacks, in which the attacker has access to laboratory equipment that
probes on to silicon metal layers, infers fuse settings, or performs differential power analysis, are out of scope
for this architecture.

1.3.2 Security Analysis
Security requirements can be derived from an analysis of the assets and services that the device must protect,
and an analysis of the threats from which these assets and services must be protected.

A common application for an IoT device might involve sending sensor information to a cloud agent that
processes the information to provide a service. To achieve this securely, an architect might specify security use
cases:

• To control access in terms of identification, authentication, and authorisation.
• To ensure confidentiality of data and communications.
• To ensure integrity of data and communications.
• To ensure the availability of sensor information to the cloud agent.

It is from these security use cases that the architectural requirements are derived, as shown in Figure 1.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 15
1.0 Beta Release 1 Non-Confidential

Figure 1: Relationship of TBSA-M to Threat Modelling and Security Analyses

2 Trustworthy networked devices [Informative]

Threat modeling and security analysis often requires detailed and expert evaluation of devices and the context in
which they operate. This includes their use-cases, the assets they protect, and the threats they may face. The
quantity and diversity of IoT, and other areas in which TBSA-M will be used, means that this approach does not
scale well for cost-optimized devices.
A common feature of TBSA-M systems is that their context is a network of devices connected via insecure links.
TBSA-M focuses on support for Trusted devices engaging in authenticated communications using cryptographic
protocols, for example Transport Layer Security (TLS).

The complexity of software deployed on such devices requires that software is renewable to patch exploitable
vulnerabilities, reliability, or performance issues and to manage the available functions of the device.
Fundamental to the security model is hardware support for security by separation of software components.

2.1 Use Cases

TBSA-M requirements are driven by two classes of use cases.

Identifies

Identifies

Application
Assets & Services

Threats & Attackers

Security
Mechanisms

Protect

Counter

Vulnerable
to

Necessitate

Require

Security
 Use Cases

Security
Analysis

Software
Security

 Requirements

Hardware
Security

 Requirements

Focus of TBSA-M

Derives

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 16
1.0 Beta Release 1 Non-Confidential

2.1.1 Secure machine to machine communication

A trustworthy network must be able to establish and maintain secure communications between devices that
have mutually verified the identity and state of each other over physically insecure channels. In general, this can
be achieved with hardware support for a number of basic functions:

• Secure boot
o To ensure that only authenticated software can run on the device.

• Secure debug and test
o To ensure that only authenticated entities are able to debug the software and test the hardware.

• Control of device lifecycle
o To ensure that the protection of assets and the availability of device functions follows a

prescribed and constrained path from manufacture to device disposal.
• Attestation

o To ensure that devices present reliable evidence to other parties about the software it is
running. These require provision of an attestation identity.

• Isolation
o To ensure that accessibility of the most Trusted assets is in proportion to the level of trust in the

software that can access it, and also to provide hardware support for management of the
confidentiality of assets between different device stakeholders.

• Cryptographic algorithms
o To provide secure storage, computation and communication at a performance level appropriate

for the device. Many cryptographic algorithms require support for true random number
generation, provision of Trusted time and the secure provision of device credentials and
certificates.

• Unique binding
o To ensure that application level keys, credentials, and other secret or sensitive data is uniquely

accessible to a specific device when in a specific state.
In addition, most devices will need to provide some protection from hardware attacks, including
countermeasures to probing of accessible interfaces or other low-cost physical tampering.

2.1.2 Secure firmware update

Significant device firmware should have updateable components which encompass parts of the device RoT all
the way up to application software. The location and quantity of deployed TBSA-M devices means that updates
should be achievable over a network without requiring physical intervention. This requires the following
hardware resources, to ensure that update is performed securely:

• Provision of firmware integrity and authenticity keys.
• Support for approved cryptographic protocols for reception, validation, and installation of new firmware,

including monotonic version counters and support for trusted time.
• Provision of non-volatile memory to hold new firmware images and audit logs.
• Resources to remain secure in the event of a failed update, for example a failsafe backup or a

mechanism of removal from Trusted services.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 17
1.0 Beta Release 1 Non-Confidential

2.2 Security goal
The goal of the TBSA is to protect the Trusted services on a device from attackers who would benefit from a
compromise.

No security implementation is flawless. The goal is to ensure that attacks are not worth the time and money
required. TBSA-M aims to protect against the most common general attacks. TBSA-M does not protect against all
types of attack. Depending on its target market, a device implementing the TBSA-M architecture might be
required to meet stricter security requirements.

TBSA-M does not to prevent the Non-Trusted World from being compromised, and does not prevent malware
from executing in a rich execution environment that attempts to acquire sensitive user information by acting as
a trustworthy entity.

TBSA-M does not address laboratory attacks in which devices are unpackaged and probed, or power analysis
attacks in which the power consumption of the device is correlated with its processing activity to extract assets.

2.3 Security analysis
Security analysis is the process of looking at assets and their value, alongside attackers and their capabilities. A
threat model identifies and classifies threats within the context of the attacker and asset models,
to systematically enumerate and analyze the system's attack vectors.
A number of threat modeling methodologies are suitable for TBSA-M devices. Within PSA, the Threat Models
and Security Analyses (TMSA) specifications provide some examples of best practice (see [10],[11],[12]).

3 Platform Security Architecture concepts [Informative]

3.1 Security by separation
All use cases rely on the protection of the sensitive assets, for example private data, cryptographic keys,
credentials, and firmware, from disclosure or modification. This is best achieved by limiting the firmware and
hardware that has access to them, and separating these assets from the application firmware and hardware.

PSA comprises multiple building blocks to meet security objectives. The foundation of PSA is a separation of the
system into a secure processing environment (SPE) for the sensitive assets and the code that manages them. The
SPE is isolated from the Non-secure Processing Environment (NSPE), in which the main application and
communication firmware executes. The secure partition manager (SPM) is the Trusted component within the
SPE that is responsible for the isolation of the SPE and providing communication between the SPE and NSPE.
Faults or malicious activity within the NSPE should not compromise the behavioral integrity of the SPE.

Figure 2 provides a high level view of the structure defined by PSA:

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 18
1.0 Beta Release 1 Non-Confidential

Figure 2: Separation of the Secure Processing Environment

3.2 Trusted and Non-Trusted worlds
For Armv8-M-based devices, the separation provided by TrustZone into Secure state execution and Non-secure
State execution gives rise to two worlds: the Trusted world, and the Non-Trusted world, respectively. The
Trusted world is used by PEs executing in their Secure state or by peripherals acting on their behalf. Non-
TrustZone processors are fixed to operate in one of the worlds. TrustZone processors can use secure transitions
to operate in both worlds.

This document will use the term Trusted world to refer to hardware resources whose state supports the SPE and
the term Non-Trusted world to refer to those hardware resources whose state supports the NSPE.

3.3 PSA software architecture
For many devices, secure remote device management services and application network management services
will be provided by different organizations. Thus, adding secure device management services to a system not
only increases the firmware complexity, but also adds another vendor whose product needs to be integrated in
the device. This vendor’s presence will increase integration complexity and cost.
Isolation of the sensitive assets further increases integration complexity. The secure device management
firmware depends on the SPE design to execute the security-critical functionality in an isolated environment, and
on the communication firmware used in the NSPE by the application.

PSA addresses some of this complexity by providing a standard SPE architecture and API for developing and
communicating with firmware that runs within the SPE. PSA provides the specification of SPM and SPE, but not
the implementation. Arm provides an open-source reference to implement these components as a separate
product.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 19
1.0 Beta Release 1 Non-Confidential

As an architecture, PSA enables alternative implementations of the SPE that address different quality-of-
implementation requirements for different parts of the IoT device market, while retaining the same
programming model for securely isolated device functionality. For example, lighter-weight implementations are
needed for more constrained MCUs and Partition Managers based on proven separation kernels for products
that demand formal verification.

Figure 3 illustrates the mapping of the Non-Secure and Secure processing environments to the Non-Trusted and
Trusted Worlds.

Figure 3: PSA Secure Processing Environment mapped to TBSA-M Trusted world

As described in Section 3.1, the PSA Security Model separates system processing into two domains: the NSPE and
the SPE. The NSPE is typically much larger and includes the application firmware and OS kernel and libraries, and
usually controls most I/O peripherals. The SPE includes the security firmware and those hardware resources that
need to be isolated from NSPE firmware and hardware resources. A fundamental requirement of the Security
Model is that NSPE firmware or hardware cannot inspect or modify any SPE hardware, code or data.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 20
1.0 Beta Release 1 Non-Confidential

The PSA Security Model sub-divides the SPE into two sub-domains: the PSA RoT and the Application RoT (ARoT).
The PSA RoT provides the fundamental secure services to the system, and manages the isolated execution
environment for the Application RoT secure services.

The PSA RoT comprises:

• A Security Lifecycle, which identifies the current phase of the device and controls the availability of
device secrets and invasive capabilities, for example secure debug.

• An Immutable RoT, which is the combination of hardware and non-modifiable firmware and data
installed during manufacturing.

• A Trusted Boot and Firmware Update, which ensures the integrity and authenticity of all secure firmware
that runs on the device.

• An SPM, which implements the required isolation of the secure services, the Inter-Process
Communication (IPC) mechanism that allows software in one partition to make requests of another, and
scheduling logic to ensure that Partitions with requests to service are given execution time.

• A set of RoT services, which provides essential cryptographic functionality and manages access to the
immutable RoTs for Application RoT services.

The PSA firmware framework [7] specifies the SPM, defines the runtime environment for RoT services and
defines the standard interfaces for PSA RoT services.

4 Hardware supported isolation [Informative]
TBSA-compliant devices implement hardware to support the PSA isolation model.
Supporting the PSA isolation model gives rise to a large number of architectural choices. For informative
purposes, some of these are outlined in the following sections. Arm recommends that, where possible, a
TrustZone-based system is implemented. TrustZone is known to provide a robust hardware framework when
supported by a small amount of Trusted firmware. In addition, Arm provides significant design support for
TrustZone-based systems that may not be available for other architectural choices.

4.1 TrustZone-based isolation
Processing Elements based on certain Arm architectures may support intrinsic isolation between secure and
non-secure environments.
TrustZone for Armv8-M is a hardware-based security infrastructure that includes:

• An additional secure execution state of the processor including an MPU dedicated to this secure state.

• Secure interrupts.

• Secure debug.

• Infrastructure for propagating the security state of the processor to memory and peripherals, so that
memory and peripherals are effectively isolated into secure and non-secure partitions.

TrustZone for Armv8-M recognizes software as running in either the Secure or Non-secure state. These Security
states are orthogonal to the existing Thread and Handler modes, and there is both a Thread mode and a Handler

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 21
1.0 Beta Release 1 Non-Confidential

mode in both Secure and Non-secure state. Thread mode can also be either privileged or unprivileged. Figure 4
illustrates these states.

Figure 4: TrustZone for Armv8-M adds Secure and Non-secure states to the operation of a PE

Similar to TrustZone in Cortex-A processors, code running in Secure state can access both Secure and Non-secure
information, but Non-secure programs can only access Non-secure information.

TrustZone for Armv8-M is an optional architecture extension. By default, the system starts up in Secure state if
the TrustZone Security Extension is implemented, as is required for TBSA-M.

TrustZone for Armv8-M is designed with small energy-efficient systems in mind. Unlike TrustZone in Cortex-A
processors, the division of Secure and Non-secure states is memory-map based, and the transitions take place
automatically, without the requirement for a Secure Monitor exception handler. This eliminates switching
overhead.

The designer of a microcontroller or SoC device must partition the memory spaces into Secure and Non-secure
regions. Some regions are defined by software using a new unit defined by the Armv8-M architecture called the
Security Attribution Unit (SAU), or by a device-specific controller logic connected to a special Implementation
Defined Attribution Unit (IDAU) interface on the PE. The relationship between the attribution units is shown in
Figure 5.

Figure 5: Security attribution defined by SAU and IDAU

Handler mode

Thread mode

Handler mode

Thread mode

Secure State
Non-Secure

State

Address

Compare
Secure/Non-Secure

Secure
Attribution
Unit (SAU)

IDAU
Interface

Implementation
Attribution Unit

(IDAU)

Processor
Boundary

Address

Attribution

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 22
1.0 Beta Release 1 Non-Confidential

The SAU is programmable in Secure state and has a programmers’ model that is similar to the MPU. The SAU
implementation is configurable by chip designers. The SAU should always be present, but the number of regions
is defined by the chip designer. Alternatively, chip designers can use an IDAU to define a fixed memory map, and
use an SAU optionally to override the security attributes for some parts of the memory. This is the
recommended approach for TBSA-M devices.

The Processing Element (PE) state is dependent on the memory space definition. When the PE is running code in
a Secure region, it is in the Secure state. Otherwise, it is in the Non-secure state. Application code can branch to,
and call, code in the other Security domain, and the PE detects these switches automatically. Because an
application can access functions in the other domain directly, TrustZone for Armv8-M is both flexible and simple
to use.

The Secure memory space is further divided into two types:
• Secure: contains secure program code or data. This includes Secure stack, heap and any other Secure

data.
• Non-Secure Callable (NSC): contains entry functions, for example, entry point for APIs, for Non-secure

programs to access Secure functions.
Typically, NSC memory regions contain tables of small branch veneers. These are entry points. To prevent Non-
secure applications from branching into invalid entry points, a new instruction called Secure Gateway (SG) has
been introduced. When a Non-secure program calls a function in the Secure side:

• The first instruction in the API must be an SG instruction.
• The SG instruction must be in a region attributed as secure and NSC by the SAU or IDAU.

There are many other security checking mechanisms within the Armv8-M architecture. Arm recommends the
Arm Architecture Reference Manual, Armv8, for Armv8-M architecture profile for details.

In a typical TBSA-M compliant device, the host PE is only one part of the security system. Additional hardware is
required to meet security requirements at a system level, to allow memory blocks to be partitioned into Secure
memory regions and Non-secure memory regions. Similarly, access permission control logic is required to
manage access permission of peripherals. Legacy peripherals and legacy bus masters are reused with
appropriate bus wrapper logic.

Figure 6 shows a typical SoC architecture based on TrustZone technology. The processor cluster is supported by a
number of security hardware IPs that utilize TrustZone technology, for example the NS-bit, to work within the
Trusted world.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 23
1.0 Beta Release 1 Non-Confidential

Figure 6: Example TBSA-M system using TrustZone for Armv8-M

In a TBSA-M system using TrustZone for Armv8-M, TrustZone isolates the Trusted world from the non-Trusted
world and provides the level-1 isolation (see Section 4.6).
Arm recommends deploying TrustZone for Armv8-M based solutions early in the design process, because PSA
implementations using TrustZone for Armv8-M commonly provide robust and performant low-cost solutions
with wide applicability.

4.2 MPU-based isolation
In a SoC that relies on MPU-based isolation, control of the Memory Protection Unit (MPU), is the primary means
of isolation on an SoC, together with support for privileged execution on the processor. The separation of the
Non-Trusted world and the Trusted world is provided by appropriate configuration of the MPU.

RAM

Security Peripherals

ROM

CoreSight
Debug

Sub-System

External Flash
(optional)

OTP NVM
eFlash/eFuses

NV Counter

Entropy Source

Security Test
Manufacturing

External Interface such as
IEEE1149.1(JTAG)

Serial Wire Debug (SWD)

External Interface such as
IEEE1500 (SECT)

Other
Masters

Other
Masters

RAM

NVM
(eFlash)

R/W

Security
Configuration

Registers

Platform I/O
Device(s)

Application Peripherals

Power, Clock,
Safety

Timers

Sensor I/F

Analog

Actuator I/F

Serial I/F

Network I/F

INTERCONNECT Configuration registers

ARMv8-M
CPU

Interrupt HandlerInterrupt Handler

MPU SAU

I
D
A
U

I
D
A
U

TZF TZF TZF TZF

IDAU

Flash Controller

TZF

Security
Assistance
(TBSA-M

Assisted Profile
Only)

TZF

TZF : TrustZone Filter
SAU: Secure Attribution Unit
IDAU: Implementation Defined Attribution Unit
MPU: Memory Protection Unit

NVM : Non-Volatile Memory
OTP: One-Time Programmable memory

Processing Elements

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 24
1.0 Beta Release 1 Non-Confidential

On this sort of platform, the PSA firmware framework uses a self-contained Secure Partition Manager (SPM) that
creates independent secure domains and provides hardware-enforced compartments, called sandboxes, for
individual code blocks by limiting access to memories and peripherals. The SPM:

• Is initialized right after secure boot.
• Runs in the privileged mode of the processor.
• Sets up a protected environment using an MPU, for example the Arm Cortex-M MPU or a vendor-specific

alternative. In particular:
o Its own memories and the security-critical peripherals are protected from the unprivileged code.
o Access Control Lists (ACLs) limit unprivileged access to selected hardware peripherals and

memories.
• Allows interaction from the unprivileged code by exposing Supervisor Call-based APIs.
• Forwards and deprivileges interrupts to the unprivileged handler that has been registered for them.
• Prevents register leakage when switching execution between privileged and unprivileged code, and

between mutually untrusted unprivileged modules.
• Forces access to some security-critical peripherals, for example Direct Memory Access (DMA), through

Supervisor call-based APIs.

When using MPU-based isolation, the application and other parts of the NSPE run in the unprivileged processor
execution mode and:

• Have direct memory access to unrestricted unprivileged peripherals.
• Can require exclusive access to memories and peripherals.
• Can register for unprivileged interrupts.
• Cannot access privileged memories and peripherals.

It is often difficult to run an application entirely in unprivileged state, because of restrictions on programs
executing in this state. This means that significant parts of an application, with their accompanying
vulnerabilities, might execute in a privileged state. Therefore, devices which rely solely on MPU and privileged
execution for isolation afford the least robust implementations of PSA.

4.3 Dual PE-based isolation
It is sometimes convenient to dedicate one processing element to execute Trusted world firmware and to
dedicate a second, different PE to execute Non-Trusted world firmware. This kind of design can provide
sufficient isolation for a robust PSA implementation, together with suitable separation of requests, separate
routing of interrupts and separation of debug.
Figure 7 illustrates this approach:

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 25
1.0 Beta Release 1 Non-Confidential

Figure 7: Example of a dual-CPU TBSA-M architecture

The separation between the worlds using dual PEs is supported by hardware in a number of ways. For example,
a TrustZone-based system is functionally emulated by tagging bus requests and filtering them to ensure isolation
between the Trusted and Non-Trusted worlds. Interrupts are statically hardwired to the core of the appropriate
world. If more flexibility is required, then use a structure that routes some interrupts through a trusted interrupt
controller first.

This arrangement allows more flexibility in deploying CPU performance. However, it typically uses more area and
power than an equivalent single TrustZone-based CPU approach. Also, calls between firmware in the Trusted and
Non-Trusted worlds will typically suffer higher latency in a dual-CPU approach.

RAM

Security Peripherals

Boot
ROM

OTP NVM
eFlash/eFuses

NV Counter

Entropy Source

DMA

RAM

NVM
(eFlash)

R/W
Watchdog

Platform I/O
Device(s)

Application Peripherals

Power, Clock,
Safety

Timers

Sensor I/F

Analog

Actuator I/F

Serial I/F

Network I/F

INTERCONNECT Configuration registers

Processing Element-1

MPU

SAFSAFSAF SAF

MPU : Memory Protection Unit
SMPU : System Memory Protection Unit
SAF : Slave Side Access Filter

NVM : Non-Volatile Memory
OTP : One-Time Programmable Memory

Processing Element-2

MPU

SAF

SMPUSMPU SMPU

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 26
1.0 Beta Release 1 Non-Confidential

4.4 Custom logic based isolation
Custom isolation logic is used to create generalized protection zones for SoC resources. In a protection zone, no
access is granted to address regions, interrupts and debug for CPU execution contexts outside the zone. This
mechanism can be used to separate the Non-Trusted world from the Trusted world and to provide a hardware
foundation for PSA.
For example, custom logic is used to restrict memory access dependent on the PC of the instruction that made
the access. Such logic is supplemented to isolate interrupts and debug access using master or slave-side filters
that are configured by the Boot ROM prior to loading of the application firmware.

This arrangement allows PSA isolation to be built on top of the mechanism, provided the mechanism meets the
security requirements outlined in Section 4.6. Figure 8 illustrates this SoC design:

Figure 8: Example of a TBSA-M architecture using custom isolation logic

RAM

Security Peripherals

ROM
OTP NVM

eFlash/eFuses

NV Counter

Entropy Source

DMA

RAM

NVM
(eFlash)

R/W

Watchdog

Platform I/O
Device(s)

Application Peripherals

Power, Clock,
Safety

Timers

Sensor I/F

Analog
(ADC, opAmps, DAC,

Comparators, LDO, OSC)

Actuator I/F

Serial I/F

Network I/F

INTERCONNECT Configuration registers

Host Processing
Element

MPU

SAF SAF SAFSAF

MPU : Memory Protection Unit
SAF : Slave side access filter

NVM : Non-Volatile Memory
OTP: One-Time Programmable
Memory

SAF

Custom Isolation Logic

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 27
1.0 Beta Release 1 Non-Confidential

Well-designed custom isolation logic can be very robust in protecting read-out of firmware IP by application
software that is outside the firmware’s protected zone. However, in general, care must be taken in the
integration and security verification of such schemes within the firmware ecosystem and the extent to which
such designs are re-used.

4.5 Trusted subsystems

Trusted subsystems are re-usable blocks of security IP that sit within the trust boundary of the PSA RoT. They
provide RoT security services to the device. The PSA RoT attests their implementation and configuration. They
may be integrated, or external and bound to the SoC. Examples include IP, for example DRAM protection
systems, or Trusted Peripherals that support cryptographic operations, and Secure elements and Security
Enclaves. In the case of Secure Elements and Security Enclaves, the subsystem implements its own local RoT and
its own local security life cycle.
Security Elements are independent subsystems that provide a large set of RoT services for the device. Security
Enclaves additionally integrate a processor on which it is possible to run application-specific firmware.

Figure 9 illustrates a TBSA system in which a Trusted subsystem, in the form of a security enclave, combines
hardware accelerators, RoT control hardware with a layer of security middleware, and software tools for the IC
and device production process.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 28
1.0 Beta Release 1 Non-Confidential

Figure 9: Example of a TBSA SoC with an integrated security element/secure enclave

The security enclave provides:

• Cryptographic acceleration for the protection of data-in-transit and data-at-rest.

• Protection of various assets belonging to different, optional, stakeholders, for example IC vendors,
device manufacturers, service operator or users). These asset protection features include:

o Image verification at boot/during runtime.

o Authenticated debug.
o Random number generation.

o Lifecycle management.
o Provisioning of assets.

RAM

BooT
ROM

DMA

RAM

NVM
(eFlash)

R/W

Platform I/O
Device(s)

Application Peripherals

Power, Clock,
Safety

Timers

Sensor I/F

Analog

Actuator I/F

Serial I/F

Network I/F

INTERCONNECT

Processing
Element

MPU

NVM:
OTP+MTP

SRAM

Crypto Accel

TRNG

Security Element /
Security Enclave*

Processor*

MPU: Memory Protection Unit
NVM: Non-Volatile Memory
OTP: One-Time Programmable
MTP: Multiple-Time Programmable

TRNG: True Random Number Generator

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 29
1.0 Beta Release 1 Non-Confidential

Trusted subsystems combine with one of the isolation mechanisms described in 4.1, 4.3 and 4.4 to make the
divide more robust. See Section 4.8 for details.

TBSA systems can also pair an SoC with an external Security element. Figure 10 illustrates such a system.
Depending on the application, a secure elements may be used to:

• Support signature verification (for secure boot and firmware upgrade).

• Key storage and wrapping and unwrapping of local or remote keys.

• Generate on-chip key pairs.

• Establish of a secure channel with remote host including transport layer security (TLS) handshake.

• Application usage monitoring with secure counters.

• Authenticate peripherals.

• Attestation.

It is essential to TBSA compliance that external secure elements robustly pair and create a secure channel with
the host SoC. The Secure Element should reside within the Trusted world. See Section 4.6 for requirements.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 30
1.0 Beta Release 1 Non-Confidential

Figure 10: Example of a simple TBSA-M SoC with an external security element

RAMROM

NVM:
OTP+MTP

SRAM

Crypto Accel

DMA

RAM

NVM
(eFlash)

R/W

TRNG

Platform I/O
Device(s)

Application Peripherals

Power, Clock,
Safety

Timers

Sensor I/F

Analog

Actuator I/F

Serial I/F

Network I/F

INTERCONNECT

Processing
Element

MPU

Serial I/F

Secure Element

Processor

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 31
1.0 Beta Release 1 Non-Confidential

4.6 PSA isolation levels

TBSA-M requires hardware support for isolation of software in accordance with the PSA firmware framework.
Figure 11 illustrates the isolation levels:

Figure 11: PSA isolation boundaries

In PSA, the SPM is responsible for the isolation of the SPE from the NSPE, the PSA RoT from the Application RoT
and secure partitions within the SPE.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 32
1.0 Beta Release 1 Non-Confidential

The isolation must be enforced by platform hardware throughout the system using master-side or slave-side
filters, for example, the SAU and MPU in an Armv8-M CPU. This enforcement prevents other bus masters from
bypassing the isolation, and prevents software errors that could have the same effect.

The hardware filters that enforce isolation must be configured by the SPM or the secure boot firmware before
the SPM runs. The filters must not be accessible to the NSPE or any Secure Partitions that are isolated from the
SPM.

A PSA implementation fully isolates every secure partition, so that each partition only accesses its own data and
peripherals, and only the SPM accesses the whole system.
Increased isolation improves the security and robustness of the system, by reducing its vulnerability to software
defects. However, these benefits come at the expense of additional hardware, memory, performance or energy.
The PSA Security Model specifies multiple levels of isolation, in order to support implementations with different
security, performance and cost trade-offs. Table 1 provides a summary of the three supported isolation levels:

Table 1: PSA isolation security levels

Isolation level Description

Level 1 SPE isolation
Two security domains
SPE is protected from access by Non-secure application firmware and hardware

Level 2 PSA RoT isolation
Three security domains
In addition to Level 1, the PSA RoT is also protected from access by the Application RoT

Level 3 Maximum firmware isolation
Three or more security domains
In addition to Level 2, each Secure Partition is sandboxed and only permitted to access its own
resources. This protects each Secure Partition from access by other Secure Partitions and
protects the SPM from access by any Secure Partition.

Arm recommends that Secure Partition firmware is designed to run with Level 3 isolation and does not assume
that data is shared with another Secure Partition or the NSPE. This design increases the portability of firmware to
run on multiple PSA implementations and reduces the risk of introducing vulnerabilities related to the sharing of
data.

Although the PSA firmware isolation levels are a useful indicator of the platform’s security capability, it does not
include all forms of isolation that the platform provides. Many platforms also use temporal isolation, in which
resources are only available within a specific time window, for example, during boot. The additional security
provided by Trusted Subsystems does not form part of the specification of TBSA-M, but may be used as
countermeasure for a threat model posted by a particular application (see Section 4.5).

4.7 Basic architecture
The Basic architecture performs most of the security functions within Trusted world software on the host
processor. It is supported by a minimum set of required security hardware, for example:

• Trusted Boot ROM.
• Trusted RAM, Trusted External Memory Partitioning, or both.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 33
1.0 Beta Release 1 Non-Confidential

• Trusted peripherals:
o OTP Fuses, for secrets, counters, lifecycle states, etc.
o Entropy source.
o Timer.
o Watchdog.

The Basic architecture ensures that the Trusted world software has access to all the assets it requires, and has
the underlying mechanisms to protect the integrity, confidentiality, and authenticity of the Trusted world. The
Trusted world software exports cryptographic services to the Non-Trusted world, and supports the execution of
Trusted services by, for example, implementing an environment that can run Trusted applications.

4.8 Assisted architecture

An Assisted architecture is a basic system that is supplemented with one or more Trusted subsystems.
An Assisted architecture builds on the Basic architecture by adding hardware to accelerate and offload some of
the cryptographic operations from the Trusted world software, and to provide increased protection to high value
assets, for example root keys.

The cryptographic accelerators support the most commonly used algorithms for encryption, decryption, and
authentication, for example AES, TDES, SHA, RSA, and ECC.

Arm recommends increasing protection for the keys in the system by implementing a hardware Key Store. The
Key Store enables use of the keys by cryptographic accelerators, but prevents the keys from being read by both
Non-Trusted and Trusted software.

Assisted architectures can also contain hardware for governing life-cycle state transitions and enforcing lifecycle
state policies.

An assisted architecture provides a hardware-initiated response to detect tamper events, as well as hardware
countermeasures for:

• Invasive attacks, for example probing.

• Side channel attacks, for example power and electromagnetic emission analysis.
• Perturbation attacks, for example clock or voltage manipulation.

5 TBSA-M security requirements [Normative]
In order for a device to be compliant with TBSA-M, all applicable requirements must be met. This document
covers a variety of IP types, and some will not be present on a particular SoC. The term applicable requirements
describes those which relate to IP present on a particular SoC.

Although current technologies are sometimes used for illustrative purposes, the following requirements are not
technologically restrictive. In general, the requirements specify security objectives, rather than particular
solutions.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 34
1.0 Beta Release 1 Non-Confidential

TBSA-M devices require support for the essential PSA isolation levels.

R001_TBSA_BASE The SoC must provide a hardware-based mechanism for separating the Trusted
world from the Non-Trusted world.

This requirement supports PSA level 1 isolation (see section 4.6).

R002_TBSA_BASE The SoC must provide a hardware-based mechanism which is able to separate
partitions within the Trusted world.

This requirement supports PSA levels 2 and 3 isolation (see Section 4.6).

Arm recommends that SoCs provide a hardware-based mechanism so that secure partitions within the
Application RoT is isolated from each other. This recommendation addresses PSA level 3 isolation.
Examples of how R001_TBSA_BASE and R002_TBSA_BASE may be met are given in Chapter 4.

5.1 System view
At an abstract level, the TBSA-M is a system that comprises a collection of assets, together with operations that
act on those assets.

In this context, an asset is a data set that has an owner and a particular intrinsic value, for example a monetary
value. All data sets are assets associated with a value, even if that value is notionally zero. A data set is any
stored or processed information, including executable code as well as the data on which it operates.
High value assets that require protection belong to the Trusted world, while lower value assets that do not
require protection belong to the Non-Trusted world. The actual classification, ranking, and mapping of assets to
worlds depends on the target specifications, and is outside the scope of this document.

Similarly, an operation belongs to a world and is therefore classified as either Trusted or Non-Trusted.
R010_TBSA_BASE A Non-Trusted world operation must only access Non-Trusted world assets.

R020_TBSA_BASE A Trusted world operation may optionally access both Trusted and Non-Trusted
world assets.

As described in Chapter 4, some TBSA-M architectures will be built around TrustZone for Armv8-M. In this case,
code executing on an Armv8-M PE with the security extension exists in one of two Security states, Secure state
or Non-secure state. Secure state corresponds to Trusted world operations, and the Non-secure state
corresponds to Non-Trusted world operations.

R030_TBSA_BASE A SoC using TrustZone Isolation must be based on an Armv8-M architecture PE with
the Security Extension and MPUs implemented.

In order to support common embedded OSs in a convenient manner, Arm recommends implementing both
secure and non-secure MPUs, with each supporting a minimum of eight regions. Arm also recommends that the
SAU is implemented, with a minimum of four regions.
Arm recognizes that the security features of a TBSA-M device are entirely implemented in hardware, and that
the hardware might be configurable by software.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 35
1.0 Beta Release 1 Non-Confidential

R040_TBSA_BASE The hardware and software of a TBSA-M device must work together to ensure that
all the security requirements are met.

5.2 Infrastructure
The TBSA-M is underpinned by a hardware infrastructure that provides strong isolation between the operations
and assets of the Trusted and Non-Trusted worlds.
The processor is not the only key component of a larger SoC design that performs operations on stored assets
within the wider system. In such a system, storage comprises registers, random access memory, and non-volatile
memory. To provide the required protection for assets, the storage is divided, either physically or virtually, into
two types: Secure and Non-secure. These types correspond to the Trusted and Non-Trusted worlds, respectively.

5.2.1 Memory system
Operations and assets are connected by transactions, in which a transaction represents read or write access to
storage containing the asset. Each transaction originates from either the Trusted world or Non-Trusted world.

As described in Chapter 4, the processor sees the memory map as into two spaces, Secure and Non-secure
storage, in which Trusted world assets are held in Secure storage and Non-Trusted world assets are held in Non-
secure storage.

To build a useful system, it is necessary to facilitate communication between the two worlds through shared
memory. In the TBSA-M, this permits a Trusted operation to issue both Secure and Non-secure transactions. The
opposite, however, is not true. A Non-Trusted operation can only issue Non-secure transactions.

R010_TBSA_INFRA A Trusted operation can issue Secure or Non-secure transactions.
R020_TBSA_INFRA A Non-Trusted operation must only issue Non-secure transactions.

Note: There are special cases in TrustZone for Armv8-M systems which do not comply with the
above equirements:

Non-secure code calling a Secure API requires secure instruction fetches
If cache memory is present, Non-secure operations might lead to cache eviction of Secure data.

The data will not be accessible from Non-trusted world.

As described in Chapter	4, Arm recommends adopting a consistent system-wide approach, so that Secure
transactions only access Secure storage, and Non-secure transactions only access Non-secure storage. A
recommended memory system design is described in [5].
R030_TBSA_INFRA A Non-secure transaction must only access Non-secure storage.

The following requirements summarize the link between operations, transactions and storage:
• A Non-Trusted operation operates in a Non-secure state and only issues Non-secure transactions

targeting Non-secure storage locations. It must not issue Secure transactions, and therefore cannot
access Trusted assets.

• A Trusted operation operates in a Secure state and can issue either Secure or Non-secure transactions.
As such, it can access both Secure and Non-secure storage. However, Arm recommends that a Secure
transaction only access Trusted assets and that a Non-secure transaction only access Non-Trusted assets.

In practice, memory modules (RAM or DRAM) are often split into only two regions, Secure and Non-secure. To
map the regions correctly into the larger physical address map, remapping logic is implemented. In simple
implementations, this is fixed logic, but it can also be programmable logic, which offers greater flexibility if

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 36
1.0 Beta Release 1 Non-Confidential

software is updated. In the latter case, the relevant configuration registers must only be accessible to Secure
transactions and belong to the Trusted World.

R040_TBSA_INFRA If programmable address remapping logic is implemented in the interconnect, then
its configuration must be possible only from the Trusted world.

Arm recommends that any programmable address remapping logic be programmable in secure privileged state.
In TrustZone for Armv8-M systems, the mapping of resources into Secure or Non-secure memory is achieved
using either fixed or programmable logic. However, a more optimal solution uses a target-based filter. Such a
filter divides the memory into many regions and enables each memory region to be defined by software
configuration as either Secure or Non-secure. Access is only permitted to a region if:

• The region is Secure and ADDRESS.NS = 0.
• The region is Non-secure and ADDRESS.NS = 1.

The physical address space after the filter, which does not consider ADDRESS.NS, is consequently halved in size.
Figure 12 shows the resulting address map:

Figure 12: Filter aliasing

The aliasing in the address map after filtering constrains the memory layout from the point of view of a bus
master, for example an Arm processor.
R050_TBSA_INFRA A unified address map that uses target side filtering to disambiguate Non-secure and

Secure transactions must only permit all Secure or all Non-secure transactions to any
one region. Secure and Non-secure aliased accesses to the same address region are
not permitted.

R060_TBSA_INFRA The target transaction filters configuration space must only be accessed from the
Trusted world.

At the interconnect level, before filtering, ADDRESS.NS forms an additional address bit. Each memory transaction
must transport this bit, together with all other address bits, to the point at which the filter constraints are
applied.

Note: When using legacy interconnects for example the Advanced Peripheral Bus (APB) v3 or
earlier, the peripheral bus does not support an ADDRESS.NS bit. In this case, it is necessary
to perform filtering before a transaction reaches the bus. An example is a bus bridge
joining Advanced eXtensible Interface (AXI) and APB.

{ADDRESS, ADDRESS.NS}

Secure Illegal

Illegal Non-secureFilter

Secure Non-secure
ADDRESS only

Secure region

Non-secure
region

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 37
1.0 Beta Release 1 Non-Confidential

The Arm TrustZone protection controller components of Arm CoreLink SIE-200 contain implementations of
highly flexible target-based filters.

Arm TrustZone protection controllers are configured to silently block illegal transactions, or to block and signal a
security exception through a bus error or interrupt. If an interrupt is generated, it is classified as a Trusted
interrupt, as described in Section 5.2.3. In any event, illegal transactions must be prevented from reading or
writing to memory.

R070_TBSA_INFRA Security exception interrupts must be wired or configured as Secure interrupt
sources.

For an Arm processor with TrustZone for Armv8-M, the Security state of the transaction is available at the
boundary of the processor so that it is propagated through the on-chip interconnect. For example, in an AXI bus
implementation, the Security state of the transaction, ADDRESS.NS, is mapped to the ARPROT[1] and
AWPROT[1] signals so that:

• ARPROT[1] indicates a Trusted read when low.
• AWPROT[1] indicates a Trusted write when low.
• An AXI bus master will generate the same signals to indicate the Security state of each transaction.

In some interconnect designs, it is possible to re-configure the routing of packets to arrive at a different
interface. Although the access address remains unchanged, this is dangerous and can lead to an exploitation
mechanism. Such configuration a is only possible from the Trusted World using Secure transactions.
R080_TBSA_INFRA Configuration of the on-chip interconnect that modifies routing or the memory map

must only be possible from the Trusted world, unless it is not possible for such
modifications to affect secure transactions.

These techniques for address remapping and filtering are methods of constraint that bind storage locations to
worlds.
It is possible to have world-aware peripherals, in which the peripheral is visible in both Trusted World and Non-
Trusted World address aliases at the same time. It is also possible for that peripheral to use security attribute
signals to determine if the access is from Trusted World, using a Trusted address alias, or from Non-Trusted
world, using a Non-Trusted address alias. This arrangement does not use filters, but the Secure aliases of the
peripheral address space must be in an XN (execute never) region.

Whatever the method of constraint, a memory transaction must not be able to bypass it.
One example is in TBSA-M systems which implement multiple caches that are upstream from a target filter, and
are synchronized through a coherency mechanism. If such a mechanism, for example bus snooping, is
implemented, then the mechanism must force a coherency transaction to pass through the target filter.

R090_TBSA_INFRA All transactions must be constrained; it must not be possible for a transaction to
bypass a constraining mechanism.

5.2.2 Shared volatile storage
Sometimes assets from different worlds occupy the same physical volatile storage location. In this case, the
underlying storage, for example internal RAM, external RAM, or peripheral space, is called shared volatile
storage. Because of the requirement to mitigate the leakage of assets, Arm recommends avoiding shared volatile
storage whenever possible.

A shared volatile storage implementation enables a storage location or region, which previously held a Trusted
asset, to hold a Non-Trusted asset. Before such a storage location or region is reallocated from Trusted to Non-
Trusted, the Trusted asset must be securely removed. This is achieved using scrubbing.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 38
1.0 Beta Release 1 Non-Confidential

Scrubbing is the atomic process of overwriting a Trusted asset with an unrelated value, which is either a
constant, a Non-Trusted asset value, or a randomly generated number of the same size. In this situation, the
term atomic indicates that the process must not be interrupted by the Non-Trusted world.

R100_TBSA_INFRA If shared volatile storage is implemented, then the associated location or region
must be scrubbed, before it can be reallocated from Trusted to Non-Trusted.

Conversely, a shared volatile storage implementation enables a storage location or region. which previously held
a Non-Trusted asset, to hold a Trusted asset. Take care to mitigate the threat of escalation of privilege. Before
such a storage location or region is reallocated from Non-Trusted to Trusted, the storage must not be marked as
executable by a PE in the Secure state. If an Armv8-M processor is used, this is achieved by ensuring that the
storage is not attributed as NSC, and that it is marked as execute-never (XN) by the secure MPU when it is
reallocated. If the storage is subsequently scrubbed, it might be made executable and attributed NSC.

R110_TBSA_INFRA If shared volatile storage is implemented in a TrustZone for Armv8-M based system,
then the associated location must not be executable or NSC immediately after it is
reallocated from Non-Trusted to Trusted.

Note: When a copy of Trusted data is held in a cache, the implementation must not permit any
mechanism that provides the Non-Trusted world with access to that data. If a hardware engine is
used for scrubbing, pay careful attention to the sequencing of operations, to ensure that the
relevant cached data is flushed and invalidated before the scrubbing operation. This situation
also applies to all hardware registers of any shared device. Even if there are no shared registers,
the hardware must ensure there are no leaks between worlds. If the changing of some state of
one world caused a changing in the state of another, secrets might be inferred.

5.2.3 Interrupts
In most cases, a Trusted interrupt must not be visible to a Non-Trusted operation, in order to prevent
information leaks that might be useful to an attacker. Consequently, the on-chip interrupt network must be able
to route any interrupt to any world. However, the routing of Trusted interrupts must only be configured from
the Trusted world.
The number of interrupts to be supported in each world depends on the target requirements and is not specified
in this document.

R120_TBSA_INFRA An interrupt originating from a Trusted operation must by default be mapped only to
a Trusted target. By default, this must be the case following a system reset.

R130_TBSA_INFRA Any configuration to mask or route a Trusted interrupt must only be carried out from
the Trusted world.

R140_TBSA_INFRA The interrupt network might be configured to route an interrupt originating from a
Trusted operation to a Non-Trusted target.

R150_TBSA_INFRA Any status flags recording Trusted interrupt events must only be read from the
Trusted world, unless specifically configured by the Trusted world to be readable by
the Non-Trusted world.

These requirements permit a Non-Trusted world request to a Trusted operation to deliver a Trusted Interrupt to
a Non-Trusted target, which signals the end of the operation.

This Configuration of the interrupt is done by the Trusted world before or during the Trusted operation.
Handle these operations carefully. Arm recommends that designs compliant with TBSA-M ensure that, if a
requirement allows the Non-trusted world to trigger Secure interrupts, the hardware arrangement only allows
the dedicated Secure interrupt to be triggered from the Non-Secure side. The Secure interrupt handler must be
written carefully, in order to avoid denial of service attacks.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 39
1.0 Beta Release 1 Non-Confidential

In the Arm architecture, these requirements are supported using the NVIC interrupt controller block.

5.2.4 Secure RAM
In a TBSA-M system, some Trusted code will execute from Secure RAM. The Trusted code might also store high
value assets within the Secure RAM. In this document, Secure RAM refers to one or more dedicated regions that
are mapped onto one or more physical RAMs. When a physical RAM is not entirely dedicated to Secure storage,
it is shared between worlds. However, the underlying locations are not classified as shared volatile storage,
unless they are re-allocated from Secure to Non-trusted worlds. The mapping of Secure regions is static and fixed
by design, programmable at boot time, or even run time, although with more difficulty.

A flexible implementation of Secure RAM consists of blocks of RAM that all default to being mapped into the
Trusted world at boot, until Trusted software partitions it between secure and non-secure use.
Arm recommends the use of on-chip RAM. However, SRAM can be used on a separate die, if it is within the same
package as the main SoC.

Example Secure RAM use cases are:
• Secure boot code and data.
• Monitor code.
• A Secure OS.
• Cryptographic services.
• Trusted services, execution environments which conform to particular security standards and Trusted

Applications (TAs).
The Secure RAM size depends on the target requirements and is not specified in this document. Many TBSA-M
systems will integrate all of their RAM requirements on-chip, using one or more independent banks.

R160_TBSA_INFRA A TBSA-M system must integrate a Secure RAM.
R170_TBSA_INFRA Secure RAM must be mapped into the Trusted world only.

R180_TBSA_INFRA If the mapping of Secure RAM into regions is programmable, then configuration of
the regions must only be possible from the Trusted world.

Note: If Secure RAM is re-mapped from the Trusted world to the Non-Trusted world, it is classified
as shared volatile storage, and it must meet the requirements of shared volatile storage.

Many TBSA-M devices use embedded resources for both RAM and non-volatile memory (NVM). However, some
devices might use DRAM, and some might use external NVM, for example serial flash.

5.2.5 Power and clock management
Modern battery-powered platforms have a high degree of power control and might integrate an advanced
power management subsystem using dedicated hardware, and execute a small software stack from local RAM.
In such cases, the management subsystem has control over a number of Trusted assets, for example:

• Clock generation and selection. Examples include:
o Phase-locked loops (PLLs).
o Clock dividers.
o Glitch-less clock switching.
o High-level clock gating.

• Reset generation. Examples include:
o Registers to enable or disable clocks.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 40
1.0 Beta Release 1 Non-Confidential

o State machines to sequence the assertion and de-assertion of resets in relation to clocks and power
states.

o Re-synchronization of resets.
• Power control. Examples include:

o Access to an off-chip power controller, switch, or regulator.
o State machines for sequencing when changing power states.
o Logic or processing to intelligently apply power states either on request, or dynamically.

• State saving and restoration. To dynamically apply power states, some subsystems can also perform
saving and restoration of system states without the involvement of the main application processor.

Unrestricted access to this functionality is dangerous, because it could be used by an attacker to induce a fault
that targets a Trusted service by, for example, perturbing a system clock. To mitigate this threat, the advanced
power mechanism belongs in the Trusted world. The system must also integrate a Trusted management
function, to perform policy checks on any requests from the Non-Trusted World, before they are applied.
This approach still permits execution of most Non-Trusted complex peripheral wake up code from the Non-
Trusted world.

R190_TBSA_INFRA The advanced power mechanism must integrate a Trusted management function to
control clocks and power. It must not be possible to directly access clock and power
functionality from the Non-Trusted world.

The power and clock status are made available to the Non-Trusted world through APIs that exist in the Trusted
world.

Note: All system clocks are classified as Trusted because they can only be configured using the
Trusted manager.

Non-secure peripherals can have their own local clock and power control accessible to the Non-Trusted world, if
such control is independent from the system clocks and power.

5.2.6 Peripherals
A peripheral is a hardware block with an operation supervised by a processor. It does not execute modifiable
firmware. A peripheral implements one or more operations that act on assets. It has an interface to receive
commands and data from one or more processors. Some peripherals are capable of direct memory access.
Depending on the role of a simple peripheral in a particular use case, the wider system can map the operations
of that peripheral into one world or the other.

R210_TBSA_INFRA If access to a peripheral, or a subset of its operations, is dynamically switched

between Trusted world and Non-Trusted world, then this must only be done under
the control of the Trusted world.

A Non-Trusted peripheral acts only on Non-Trusted assets. A Trusted peripheral can act on assets in both worlds.
Complex peripherals act in both worlds, supporting both Trusted and Non-Trusted operations, as illustrated in
Figure 13:

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 41
1.0 Beta Release 1 Non-Confidential

Figure 13: Peripheral operations

A Trusted peripheral is a hardware block that implements at least one Trusted operation. Each operation has an
interface that is mapped into the Trusted or Non-Trusted world, or into both worlds.
A Trusted peripheral identifies the world in which a request originates. This identification ensures compliance
with the general requirement that operations originating from the Non-Trusted world cannot access Trusted
world resources (see Section 5.1).

Non-Trusted world software must not bypass Trusted world policies by using peripherals to access Trusted world
assets on its behalf. Some designs are subject to threat models in which particular hardware IP blocks may have
unknown or undesirable behaviors. In these cases, use additional master side filters under sole control of the
Trusted world to ensure that such IP cannot access Trusted world assets beyond that authorized by a Trusted
world policy.
The implementation of the operations is a design choice. The operations are built using fully separate hardware,
or using the multiplexing of shared functions and resources.

A Trusted peripheral must meet the following requirements, which are framed in terms of its operations:
R220_TBSA_INFRA If the peripheral stores assets in local embedded storage, a Non-Trusted operation

must not be able to access the local assets of a Trusted operation.

R230_TBSA_INFRA A Trusted operation must be able to distinguish whether commands and data were
received at an interface accessible to the Trusted world only, or at an interface
accessible to the Non-Trusted world.

R240_TBSA_INFRA A Trusted operation that exposes a Non-secure interface must apply a policy check
to the Non-Trusted commands and data before acting on them. The policy check
must be atomic and, following the check, it must not be possible to modify the
checked commands or data.

An example policy for a cryptographic accelerator peripheral would cover at least:
• The world the input data can be read from.
• The world the output data can be written to.
• Whether encryption is permitted.
• Whether decryption is permitted.

Trusted

Non-
trusted

Operation Target resourceInterface

Secure

Non-
secure

Secure

Non-secure Policy

Secure

Non-secure

Distinguish origin

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 42
1.0 Beta Release 1 Non-Confidential

A specific example is a DMA engine that is shared between worlds. When configured from the Trusted world, the
DMA can operate on Trusted and Non-Trusted memory, by appropriate use of the NS bit. However, when
configured from the Non-Trusted world, the DMA must only operate on Non-Trusted memory, using an NS value
of 1.

5.3 Fuses
TBSA-M devices require non-volatile storage to store a range of data across power cycles. These devices vary
from device firmware to cryptographic keys and system configuration parameters. Fuses often control life cycle
state management and the debuggability of the device.
Non-volatile storage can use a variety of technologies, including floating gate memories or oxide-breakdown
antifuse cells. These technologies vary with respect to certain properties, most notably whether they are OTP or
Many Time Programmable (MTP).

All types of non-volatile storage technologies are not available in all semiconductor processes. For example,
floating gate memories are not economic in some bulk CMOS processes. Where required, off-chip non-volatile
memory can augment the available on-chip non-volatile storage.
Non-volatile storage technologies sometimes require error correction mechanisms, in order to ensure the
correct storage of data during the lifespan of the device.

R010_TBSA_FUSE A non-volatile storage technology must meet the lifetime requirements of the device,
either through its intrinsic characteristics, or through the use of error correction
mechanisms.

Most security assets and settings that need to be stored on-chip require OTP non-volatile storage, in order to
ensure that values cannot be changed. Following the industry norm, this document uses the term fuse to refer to
on-chip OTP non-volatile storage. A fuse is implemented using an antifuse or an MTP technology with controlling
logic to make it OTP.

These are the fundamental requirements for implementing fuses in a TBSA-M device:
R020_TBSA_FUSE A fuse is permitted to transition in one direction only, from its un-programmed state

to its programmed state. The reverse operation must be prevented.

R030_TBSA_FUSE A fuse must only be programmed in accordance with its specified mechanism so
that its reliable operation is not at risk.

R040_TBSA_FUSE It must be possible to blow at least a subset of the fuses when the device has left the
silicon manufacturing facility.

R050_TBSA_FUSE All fuse values must be stable before any parts of the SoC that depend on them are
released from reset.

R060_TBSA_FUSE Fuses that configure the security features of the device must be configured so that
the programmed state of the fuse enables the feature. That is, the programming of a
security configuration fuse always increases security within the SoC.

Note that R060_TBSA_FUSE is intended to ensure that a security feature cannot be deactivated after it is
enabled.

R070_TBSA_FUSE Lifetime guarantee mechanisms to correct for in-field failures must not indicate
which fuses have had errors detected or corrected, just that an error has been
detected or corrected. This indicator must only be available after all fuses have been
checked.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 43
1.0 Beta Release 1 Non-Confidential

Full error information is available to the lifetime guarantee mechanism itself, but Arm recommends not
disclosing this full information, because it might assist an attacker. The security of the mechanism
implementation must be considered. Arm recommends implementing the mechanism in hardware, but this
might not be practical in some cases. Arm recommends performing software lifetime guarantee mechanisms
soon after boot, so that the error indications are set. Arm also recommends disabling the visibility of the full
error information until the next boot.

Assets stored in fuses have a variety of characteristics that determine how they are accessed. The main types of
fuses and their characteristics are summarized as follows:

• Confidential fuses: only read by the intended recipient, or a particular hardware module or software
process.

• Public fuses: can be accessed by any piece of software or hardware.

• Lockable fuse: must comply with one of the following requirements:
o They must prevent re-writing of a locked value.
o A mechanism that prevents the programming of a fuse bit or group of fuse bits is implemented

by reserving an additional fuse bit to act as a lock bit.
o Writing the value is followed by its lock bit being set. Glue logic ensures that no further

programming is possible.
o Writing zero, which corresponds to the un-programmed fuse state, causes no value to be

written. It causes only the lock bit to be set.
o Tamper detection used to detect that the value has been modified.
o A tamper protection mechanism is implemented by storing a code in additional fuses that are

sufficient to detect any modification to the value:
§ Writing the value is followed by storing the detection code.
§ When the value is read by the system, a mechanism must recalculate the code from

the value and compare it with the stored code.
§ If the codes do not match, the value must not be returned to the system.
§

• Open fuse: programmed only once, at any point in the device lifetime.

• Bitwise fuse: programmed one logical fuse at a time, regardless of the number of fuses required to store
the value.

• Bulk fuse: stores multi-bit values that must be programmed at the same time and are treated as an
atomic unit.

In the deployed lifecycle state, bitwise and bulk fuses must also comply with the following requirements:
R080_TBSA_FUSE A confidential fuse whose recipient is a hardware IP must not be readable by any

software process.

R090_TBSA_FUSE A confidential fuse whose recipient is a hardware IP must be connected to the IP
using a path that is not visible to software or any other hardware IP.

Usually, this is implemented as a direct wire connection.
R100_TBSA_FUSE A confidential fuse whose recipient is a software process might be readable by that

process and must be readable by privileged software.

R100_TBSA_FUSE permits a kernel level driver to access fuses for a user space process. The confidentiality relies
on the kernel level driver only passing fuse values to the correct user space process.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 44
1.0 Beta Release 1 Non-Confidential

R110_TBSA_FUSE A confidential fuse whose recipient is a Trusted world software process must be
protected by a hardware filtering mechanism that can only be configured by secure
software, for example an NS-bit filter.

R120_TBSA_FUSE It must be possible to fix a lockable fuse in its current state, regardless of whether it
is programmed or un-programmed.

R130_TBSA_FUSE The locking mechanism for a lockable fuse can be shared with other lockable fuses,
depending on the functional requirements.

An example of R130_TBSA_FUSE is a single locking mechanism for all fuses that are programmed by the silicon
vendor.

R140_TBSA_FUSE A bulk fuse must also be a lockable fuse to ensure that any unprogrammed bits
cannot be programmed later.

R150_TBSA_FUSE Additional fuses that implement lifetime guarantee mechanisms must have the
same confidential and write lock characteristics as the logical fuse itself.

5.4 Cryptographic keys
Fundamental to the security of a system are the cryptographic keys that provide the authenticity and
confidentiality of the assets that the system uses.
It is important to treat a key as an atomic unit when it is created, updated, or destroyed. This principle applies at
the level of the requesting entity. Replacing part of a key with a known value, and then using that key in a
cryptographic operation, makes it much easier for an attacker to discover the key using a divide and conquer
brute-force attack. This is especially relevant when a key is stored in memory units that are smaller than the key.
An example of this principle is a 128-bit key that is stored in four 32-bit memory locations. Entities, for example
Trusted firmware functions, that implement key creation, updating or destruction services should ensure that
their clients cannot observe or use keys in a way that breaks the assumption of atomicity.

R010_TBSA_KEY A key must be treated as an atomic unit. It must not be possible to use a key in a

cryptographic operation before it has been fully created, during an update
operation, or during its destruction.

R020_TBSA_KEY Any operations on a key must be atomic. It must not be possible to interrupt the
creation, update, or destruction of a key.

R030_TBSA_KEY When a key is no longer required by the system, it must be put beyond use to
prevent a hack at a later time from revealing it.

If a key is put beyond use, it must be impossible to use or access it. This is achieved either by hiding the key
through blocking access to it, or by removing the key from the system through scrubbing the storage location
that contains the key.
Keys have a range of characteristics that influence the level of protection to be applied, and how a keys is used.

5.4.1 Cryptographic schemes
A cryptographic scheme provides one or more security services, and is based on a purpose and an algorithm
requiring specific key properties and key management.

Keys are characterized as private, public or symmetric, according to their classification and use.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 45
1.0 Beta Release 1 Non-Confidential

Broadly, each key should be used for a single purpose, for example encryption, digital signature, integrity, or key
wrapping. The main motivations for this principle are:

• Limiting the uses of a key limits the potential harm if the key is compromised.
• The use of a single key for two or more different cryptographic schemes reduces the security provided

by one or more of the processes.
• Different uses of a single key can cause conflicts in how each key is managed. For example, keys used

in different cryptographic processes may have different lifetimes. In this case, a key may be retained
longer than is best practice for one or more uses of that key.

If a scheme can provide more than one cryptographic service, this principle does not prevent use of a single key.
An example is use of a symmetric key both to encrypt and to authenticate data in a single operation. Another
example is use of a digital signature to provide both authentication and integrity.

Re-using part of a larger key in a scheme that uses a shorter key, or using a shorter key in a larger algorithm and
padding the key input, can leak information about the key, so these practices, too, are prohibited.
R035_TBSA_KEY A key must only be used by the cryptographic scheme for which it was created.

5.4.2 Static and ephemeral keys
Different keys in the same the system can have very different lifespans. These lifespans are also known as
cryptoperiods. Some keys are programmed during SoC manufacture and never change, while others will exist
only during a communication session.

A static key is a key that cannot change after it is introduced to the device. It is stored in an immutable structure
like a ROM, or in a set of fuses. Although a static key cannot have its value changed, this does not preclude it
from being revoked or made inaccessible by the system.

R070_TBSA_KEY A static key must be stored in an immutable structure, for example a ROM or a set of
bulk-lockable fuses.

Ephemeral keys have a short lifespan. In many cases, they only exist between power cycles of the device.
Ephemeral keys are created in the device in a number of ways.

• Derivation: sometimes it is useful to create one or more keys from a source key. This method is called
key derivation. Derivation is usually used to create ephemeral keys from static keys.

A key derivation operation must use a cryptographic one-way function that preserves the entropy of the
source key, and the operation must be unique for each derived key. Common derivation constructions are
based on use a keyed Hash Message Authentication Code (HMAC) or a Cipher-based Message
Authentication Code (CMAC). Refer to the recommendations for key derivation in [18] for a detailed
treatment.

Collectively, the inputs to the one-way derivation function are referred to as source material.

R080_TBSA_KEY To prevent the re-derivation of previously used keys, only Trusted code can have
access to all of the source material.

This requirement allows Non-Trusted code access to part of the source material, provided that this is
insufficient to re-derive previously used keys.

• Injection: A key is introduced into the system from storage or through a communication link. One
example is the key in a license certificate. To ensure that the key is encrypted during transit, the
injection is often protected by another key.

• Generation: Ephemeral keys are generated on the device by simply sampling random numbers or by
using random numbers to create a key, for example in a Diffie-Hellman key exchange protocol.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 46
1.0 Beta Release 1 Non-Confidential

When an ephemeral key is no longer required, it must be removed securely from the system. This must happen
even if the event that makes the key redundant is unexpected.

R090_TBSA_KEY If an ephemeral key is stored in memory or in a register in clear text form, the
storage location must be scrubbed before being used for another purpose.

5.4.3 Device unique and common keys

It is important to distinguish two types of keys.

Device unique: A device unique key is statistically unique for each device, so the probability of another device
having the same key value is insignificant. For TBSA-M systems, a key with at least 128-bits of entropy is
considered to be sufficient for device uniqueness.

Common - A common key is present on multiple devices. Common keys are sometimes referred to as class keys.

5.4.4 Source
Different keys in the same the system are restricted in their domain of operation in order to further isolate
Trusted world assets from those in the Non-Trusted world.
Non-Trusted world:

R100_TBSA_KEY A key that is accessible to, or generated by, the Non-Trusted world must only be
used for Non-Trusted world cryptographic operations, which are operations that are
either implemented in the Non-Trusted world, or have both operands and results in
the Non-Trusted world.

Trusted world:

R110_TBSA_KEY A key that is accessible to, or generated by, the Trusted world can be used for
operations in both Non-Trusted and Trusted worlds, and even across worlds,
provided that:

• The Non-Trusted world cannot access the key directly.

• The Trusted world can control the use of the key through a policy.

An example key usage policy would cover at least the following:
• The world the input data is permitted to be read from.
• The world the output data is permitted to be written to.
• Permitted operations.

In the Assisted architecture, the Source key characteristic is extended to include Trusted hardware, when the key
is derived or generated solely by hardware.

R140_TBSA_KEY A Trusted hardware key must not be directly accessible by any software.

A Trusted hardware key is used for Trusted world cryptographic operations, but its usage in a Non-Trusted world
must be subject to a policy.
R150_TBSA_KEY The Trusted world must be able to enforce a usage policy for any Trusted hardware

key that can be used for Non-Trusted world cryptographic operations.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 47
1.0 Beta Release 1 Non-Confidential

5.4.5 Root keys
A TBSA-M-compliant SoC must provide authentication and encryption services through the use of embedded
cryptographic keys. The exact number of embedded keys and their type depends on the target requirements,
and is not specified in this document.

However, a TBSA-compliant device must embed at least two root keys, one for confidentiality and one for
authentication. Other keys can be derived from these keys:

• A Hardware Unique Key (HUK), which provides the RoT for confidentiality.
• A root authentication key, which is the public key half of an asymmetric key pair. This key might belong

to an RSA or to an elliptic curve cryptosystem (ECC), and is referred to as the RoT Public Key (ROTPK).
Examples of other embedded root keys are:

• Endorsement keys: these asymmetric key pairs prove identity, and therefore trustworthiness, to the
external world.

• Additional symmetric keys for firmware decryption and provisioning. These keys are either unique to the
device, or are class keys that are common across a family of devices.

The use of ECC for asymmetric cryptography is often beneficial, because its smaller key sizes lessens storage and
transmission requirements. For example, depending on the algorithm and parameters chosen, the RSA algorithm
of key size 3072 bits gives comparable security to an ECC algorithm of key size in the range 256-383 bits [19].

System architects should also review the comparative performance of RSA and ECC implementations in terms of
throughput for each relevant key use case.

R160_TBSA_KEY A TBSA-M device must either entirely embed an ROTPK, or the information that is
needed to securely identify it.

When no longer in use, Arm recommends hiding the ROTPK using a non-reversible mechanism, for example a
sticky register bit that is activated by the boot software.

An ROTPK key size appropriate for a security strength of 128-bits as recommended by NIST [19] must be used.
The reason for this is to support the longevity of the device beyond the year 2030.
R180_TBSA_KEY An elliptic-curve-based ROTPK must be at least 256 bits in size.

R190_TBSA_KEY An RSA-based ROTPK must be at least 3072 bits in size.

If an asymmetric cryptosystem is implemented, the following approach is permitted to reduce the ROTPK
storage footprint.

Instead of the key itself, a cryptographic hash of the key is stored in on-chip non-volatile storage. The public key
can then be stored in external non-volatile memory. When required, the key must be retrieved from external
memory before it is used, and successfully compared with the stored hash by Trusted hardware or software. This
approach is known as hash locking. Because this approach is not susceptible to a second pre-image attack, only
half of the digest bits from an approved hash algorithm need to be stored. For example, a common truncation
mode is for the leftmost 128 bits from a SHA-256 digest to be used [19].

R200_TBSA_KEY If a cryptographic hash of the ROTPK is stored in on chip non-volatile memory, rather
than the key itself, it must be immutable.

R220_TBSA_KEY A TBSA-M device must embed an HUK in confidential-lockable-bulk fuses.
R230_TBSA_KEY The HUK must have at least 128 bits of entropy.

R240_TBSA_KEY The HUK must only be accessible by Trusted code or Trusted hardware that act on
behalf of Trusted code.

The storage size and accessibility options for root keys are summarized in Table 2.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 48
1.0 Beta Release 1 Non-Confidential

Table 2: Root key summary

Name On-Chip Data Size Off-Chip Data Size Access to On-Chip Data

ROTPK – RSA 3072 bits (Key) 0 bits During boot ROM execution.
Only

128 bits (Digest) 3072 bits (Key) During boot ROM execution
only.

ROTPK – ECC 256 bits (Key) 0 bits During boot ROM execution
only.

HUK 128 bits (key) 0 bits Trusted code/Trusted hardware
only.

5.5 Trusted boot

5.5.1 Overview
The secure configuration of a TBSA-M device depends on Trusted software that forms part of a chain of trust,
beginning with the Trusted boot of the SoC. TBSA-M security is not possible without a Trusted boot mechanism.

Trusted boot is based on a fixed and immutable Trusted boot image. It is the first code to run on the Arm
processor, and is responsible for verifying and launching the next stage boot. The Trusted boot image must be
fixed within the SoC at manufacture time and is stored in an embedded ROM. This ROM is referred to as the
Boot ROM. Boot ROMs are typically implemented as either mask ROM, or by embedded flash with hardware
support to ensure that, once programmed, the Boot ROM cannot be subsequently altered. The Boot ROM
contains both the boot vectors for all processors, and the Trusted boot image.

R010_TBSA_BOOT A TBSA-M device must embed a Boot ROM with the initial code that is needed to
perform a Trusted system boot.

The immutability of the initial Boot ROM is critical to the security of the device. If write-disabled embedded flash
is used, then consider use of fuses or Trusted Subsystems or special write-once registers to disable writes to the
boot partition. The robustness of the Boot ROM implementation depends on how strongly the design can
demonstrate that vulnerabilities in code running on the host cannot lead to mutability of the Boot ROM. When
the underlying storage technology is mutable with, for example, embedded flash, Arm recommends using OTP
fuses or a controlling Trusted subsystem (e.g. Arm CryptoCell) to provide the necessary robustness guarantees.

Typically, the boot loader is divided into several stages. The first stage is the Boot ROM. Later stages might be
loaded from non-volatile storage into Secure RAM and executed there, or executed directly from eFlash. In this
document, the second stage boot loader is referred to as Trusted Boot Firmware. The firmware that is loaded by
the Trusted Boot Firmware is called Trusted Runtime Firmware.

5.5.2 Boot types
There are two classes of boot: a cold boot and a warm boot. A cold boot is not based on a previous system state.
Normally, a cold boot occurs when the platform is powered up, and a hard-reset signal is generated by a power-
up reset circuit. However, if the design includes a software lock-up, a hard-reset option that triggers a cold boot
might also be available to the user.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 49
1.0 Beta Release 1 Non-Confidential

A warm boot can deploy one of the following methods to reuse the stored system state, on resuming from sleep,
for example:

• The Boot ROM can use a platform-specific mechanism that is designed into the Boot ROM to distinguish
between a warm boot and a cold boot.

• The SoC can use platform-specific registers to support an alternate reset vector for a warm boot.
R020_TBSA_BOOT If the device supports warm boot, a flag or register that survives warm boot must

exist to enable distinguishing between warm and cold boots. This register or flag
must be programmable only by the Trusted world and must be reset after a cold
boot.

Typically, any storage that is required to support these mechanisms is implemented within a power domain that
is always powered up.

5.5.3 Boot configuration
If the SoC implements multiple processor cores, then the designated boot processor core is called the primary
processor core. After the de-assertion of a reset, the primary processor core executes the Boot ROM code, and
the remaining cores are held in reset, or a safe platform-specific state, until the primary processor core initializes
and boots them.
R030_TBSA_BOOT On a cold boot, the primary processor must boot from the Boot ROM. It must not be

possible to boot from any other storage unless Trusted kernel debug is enabled. For
more information about Trusted kernel debug, see section 5.10.

In one possible implementation, the platform power controller holds all secondary processors in a reset state,
while the primary processor executes the Boot ROM until it requests the secondary processors to be released. In
an alternative implementation, all processors execute from the generic boot vector in the Boot ROM after a cold
boot. However, the Boot ROM identifies the primary processor and permits it to boot using the Trusted boot
image, while the secondary processors are made inactive.
The Armv8-M architecture, when implemented with the Security Extension, will boot into Secure Thread mode
for both warm and cold boot.

The Trusted Boot ROM contains sensitive code that verifies and decrypts the next stage of the boot. If an
attacker read and disassembled the ROM image, they would gain valuable information that could be used to
target an attack that circumvents the verification mechanism. For example, timing information is used to target a
fault injection attack.
Arm recommends making the Trusted boot image within the Boot ROM accessible only during boot. Device
designers must consider implementing a non-reversible mechanism which prevents access by, for example,
hiding the Trusted boot image using a sticky register bit that is activated by the boot software. This
recommendation excludes the initial code that supports warm boot.

Arm recommends that the Trusted Boot Firmware image should be stored encrypted using an approved
algorithm, when the image is stored in external NVM. This practice deters the acquisition of the image by an
attacker to inspect for vulnerabilities.
The Trusted Boot Firmware image is encrypted either by using a HUK-derived key or by using a common static
key. Using a HUK-derived key requires a unique image for each device. Using a common static key enables the
same image to be used across a set of devices. Arm recommends authenticating externally held Firmware using
an approved algorithm.

Arm also recommends protecting the key that decrypts Trusted boot firmware from being accessed or re-derived
after boot, in order to mitigate the threat of attacks revealing the plaintext of Trusted Boot Firmware image. The
key and its source material must be either inaccessible or accessible only by the Trusted world.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 50
1.0 Beta Release 1 Non-Confidential

The Trusted Boot Firmware code verifies and, if successful, launches the next stage boot, which is Trusted
Runtime Firmware. For TBSA-M devices, this firmware might be held in either on-chip or off-chip non-volatile
memory. When the Trusted Runtime firmware is held in on-chip NVM, then this may be executed in place
following verification. However, if this firmware is held in off-chip NVM, its launch is a non-trivial operation. This
is because portions of the image must be copied to RAM before authentication. When loaded into RAM, the
image is optionally decrypted before it is verified. If verification is successful, the image is executed. Verification
is based on public key cryptography, which uses a digital signature scheme. Arm recommends using different
keys for decryption and for Trusted Boot Firmware.

A boot status register is implemented to indicate the boot state of each Trusted processor. For example, the
boot status register enables the application processor to check whether other Trusted processors are booted up
correctly. The register must be made available to secure debug. The register can also be used as a general boot
status register.
R090_TBSA_BOOT If a boot status register is implemented, then it must be accessible only by the

Trusted world.

5.5.4 Stored configuration
Some aspects of the secure boot behavior, which are governed by the Trusted ROM, might depend on stored
configuration information. For example, in the case of a warm boot, configuration information might be stored
in Trusted registers that are immutable between secure boot executions. This is implemented using a sticky
register bit to prevent access to the data. The sticky bit is set by the secure boot code when the necessary
operations of a cold or warm boot have been performed. The stick bit is then reset by triggering a warm or a cold
boot.
In the case of a cold boot, the Trusted ROM behavior might be entirely fixed in the implementation. However, it
can also be influenced by additional configuration information stored in fuses.

Fuse configuration information is used for the following purposes:
• Selection of the boot device.
• Storage of the root public authentication key.
• Storage of a root key for boot image decryption.
• Storage of other boot specific parameters.

5.5.5 Secure lockdown
For certain applications, Arm recommends that the Boot ROM fixes certain registers soon after reset, so that
they cannot be subsequently changed until the next reset. This is because boot ROM firmware, in practice, is
smaller, and more tightly audited, than the secure software that follows. Examples of state which the Boot ROM
might want to fix are:

• Secure Vector Table Offset Register (VTOR_S).
• Secure MPU.
• Non-secure MPU.
• Security Attribution Unit.

Armv8-M Cortex implementations present signals at the processor boundary. These might be wired into a write-
once register to facilitate lockdown.

5.5.6 Assisted architecture
At each step in the boot chain, each stage must verify the next. If the Trusted Boot Firmware is encrypted, a
decryption step is also required. Verification of an image is based on a cryptographic hash function and
asymmetric cryptography. Decryption of an image is based on symmetric cryptography. As the underlying

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 51
1.0 Beta Release 1 Non-Confidential

cryptographic algorithms are CPU-intensive, the Assisted architecture implements hardware acceleration. See
Section 4.8.

In an Assisted architecture, the symmetric key that decrypts the Trusted Boot Firmware is used only by the
accelerator peripheral, and is not visible to software.

R100_TBSA_BOOT In an Assisted architecture, the key to decrypt the Trusted Boot Firmware image
must be visible only to the acceleration peripheral.

5.6 Trusted timers

5.6.1 Trusted clock source
Trusted clock sources are required to implement Trusted watchdog timers and Trusted time. Any clock source
that the Trusted world depends on is classified as a Trusted clock source, and can only be configured from the
Trusted world.
In addition to this, a Trusted clock source must be robust against tampering that happens outside the control of
the associated Trusted manager. Two recommended protection strategies are possible:

• Internal clock source: The clock source is an integrated autonomous oscillator within the die and cannot
be easily altered or stopped without deploying invasive techniques.

• External clock source: The clock source is an external XTAL or clock module and connects to the main
SoC through an I/O pin. In this case, an attacker can easily stop the clock or alter its frequency. If this is
the case, then the main SoC must implement monitoring hardware that can detect when the clock
frequency is outside its acceptable range.

Arm recommends that, if clock monitoring hardware is implemented, the hardware must expose a status
register indicating whether the associated clock source is compromised. This register must be readable only from
the Trusted world, in order to prevent leakage or modification of information that may assist an attacker.
To signal a clock frequency violation, it might be useful to add a Trusted interrupt to any Trusted clock
monitoring hardware.

5.6.2 General Trusted timer
Trusted timers are required to provide time-based triggers to Trusted world services. A TBSA-M system must
support one or more Trusted timers.

R030_TBSA_TIME At least one Trusted timer must exist.
R040_TBSA_TIME A Trusted timer must only be modified by a Trusted access. Examples of

modifications are the timer being refreshed, suspended, or reset.

R050_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted clock source.

5.6.3 Watchdog
A TBSA-M system must support one or more Trusted watchdog timers.

Trusted watchdog timers are required to protect against denial of service, which could occur when, for example
secure services depend on the RTOS scheduler. In such cases, if the Trusted world is not entered before a pre-
defined time limit, a reset is issued and the SoC is restarted.
A Trusted watchdog timer might need to signal an interrupt in advance of the reset, permitting some state save
before a reboot. The watchdog timer must use a mechanism that can indicate to boot software whether the
expiry of the watchdog timer is the reason for the reboot.

R060_TBSA_TIME At least one Trusted watchdog timer must exist.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 52
1.0 Beta Release 1 Non-Confidential

R070_TBSA_TIME After a system reset, a Trusted watchdog timer must be started before execution of
the immutable boot code transfers control to the next firmware stage.

R080_TBSA_TIME A Trusted watchdog timer must only be modified by a Trusted access. Examples of
modifications are the timer being refreshed, suspended, or reset.*

Following a reset, a Trusted system timer must be initiated prior to execution of the handover from the
immutable boot ROM to the first part of the boot process which executes from mutable code. If mitigation
against manipulation of embedded flash or RAM at reset is part of the device threat model, then Arm
recommends initiating the watchdog by hardware before any code execution starts.

*Note For reasons of practicality, compliance with R080_TBSA_TIME is preferred, but not mandatory, during
debug. Allowing invasive (halting) debug of the Non-Trusted world in the deployed state may also affect
the Trusted world timers in many implementations. System designers should consider whether allowing
invasive debug of the Non-Trusted world creates exploitable vulnerabilities in the operation of Trusted
timers, including Trusted Watchdog timers, and should take measures to mitigate this possibility.

Arm recommends using a clock speed of at least 1 Hz when the device is not in a power saving cycle.

R090_TBSA_TIME Before needing a refresh, a Trusted watchdog timer must be capable of running for a
time period that is long enough for the Non-Trusted re-flashing of early boot loader
code.

R100_TBSA_TIME A Trusted watchdog timer must be able to trigger a reset of the SoC, after a pre-
defined period of time. This value is fixed in hardware or programmed by a Trusted
access.

R110_TBSA_TIME A Trusted watchdog timer must implement a flag that indicates the occurrence of a
timeout event that causes a warm reset, to allow post-reset software to distinguish
this from a power-up cold boot.

R120_TBSA_TIME The clock source driving a Trusted watchdog timer must be a Trusted clock source.

5.6.4 Trusted time
Many Trusted services, for example feature enablement, rely on the availability of Trusted time. Typically,
Trusted time is implemented using an on-chip real-time counter that is synchronized securely with a remote
time server.

An ideal implementation of a Trusted real-time clock (TRTC) consists of a continuously powered counter driven
by a continuous and accurate clock source, with Trusted time programmable only from the Trusted world.
However, devices that contain a removable battery must deal with power outages.
A suitable solution for dealing with power outages is realized by implementing a counter together with a validity
mechanism, for example a status flag, that indicates whether a valid time has been loaded.

A TBSA-M system deploying this solution implements Trusted time using a TRTC that consists of a Trusted
hardware timer. The Trusted hardware timer is associated with a mechanism indicating whether the current
time is valid, and receives a Trusted clock source. The mechanism indicates when the Trusted timer has been
updated by a Trusted service, and indicates when power is removed from the timer. Arm recommends that the
Trusted timer and its validity mechanism reside in a power domain that remains powered up as much as
possible.
When Trusted time is lost because of a power outage, the response depends on the target specifications. For
example, it might be acceptable to restrict specific Trusted services until the TRTC has been updated by the
appropriate Trusted service.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 53
1.0 Beta Release 1 Non-Confidential

R130_TBSA_TIME A TRTC must be configured only by a Trusted world access.
R140_TBSA_TIME All components of a TRTC must be implemented within the same power domain.

R150_TBSA_TIME On initial power up, and following any other outage of power to the TRTC, a validity
mechanism must indicate that the TRTC is not Trusted.

R160_TBSA_TIME The TRTC must be driven by a Trusted clock source.

5.7 Version counters
A compliant TBSA-M system must implement a core set of Trusted non-volatile counters, which are required for
version control of firmware and Trusted data held in external storage. In order to prevent replay attacks, it is
important that these counters cannot be rolled back.
The following counters are mandatory:

• A Trusted firmware version counter.
• A Non-Trusted firmware version counter.

Ideally, an SoC implements version counters using on-chip MTP storage, for example embedded flash
technology.
OTP storage, based on anti-fuse technology, is widely available and cost effective. A non-volatile counter is
implemented by mapping each possible value that is greater than one onto a separate fuse bit. Each counter
increment is achieved by programming a further bit. As one bit is required for each value, this is costly for large
counters. For example, a 10-bit counter requires 1024 bits of storage. For this reason, practical limitations must
be imposed on the maximum count values for fuse-based implementations.

The size requirement for a version counter depends on the target specification. For a TBSA-M system, the
minimum requirements are:
R010_TBSA_COUNT An on-chip non-volatile Trusted firmware version counter implementation must

provide a counter range of at least 0 to 63.

R020_TBSA_COUNT An on-chip non-volatile Non-Trusted firmware version counter implementation must
provide a counter range of at least 0 to 255.

All on-chip non-volatile version counters must also meet the following requirements:

R030_TBSA_COUNT It must only be possible to increment a version counter through a Trusted access.

R040_TBSA_COUNT It must only be possible to increment a version counter. It must not be possible to
decrement it.

R050_TBSA_COUNT When a version counter reaches its maximum value, it must not roll over, and no
further changes must be possible.

R060_TBSA_COUNT A version counter must be non-volatile, and the stored value must survive a power
down period up to the lifetime of the device.

Furthermore, Trusted version counters might also be required to support version control of other platform
software. A suitable implementation might employ one counter per software instance, or group together a list of
version numbers inside a database file, which is itself versioned using a single counter.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 54
1.0 Beta Release 1 Non-Confidential

5.8 Entropy source
Many cryptographic protocols depend on challenge response mechanisms that utilize truly random numbers.
This means that an embedded true random number generator (TRNG) is an important element of a TBSA-M
system.

When platform requirements demand a TRNG, there is normally an associated requirement specifying the
quality of the source. More commonly, a set of tests must be passed by a compliant source.
The quality of a random source is normally described in terms of entropy. In information theory, entropy is
measured on a logarithmic scale in the range [0,1]. For a given string of bits provided by a TRNG, the maximum
entropy of 1 is achieved if all bit combinations are equally probable.

A formal treatment of entropy is found in [13].
A hardware realization of a TRNG consists of two main components: an entropy source and a digital post
processing block, as shown in Figure 14:

Figure 14: Entropy source top level

The entropy (noise) source incorporates the non-deterministic, entropy-providing circuitry that provides the
uncertainty associated with the digital output by the entropy source.
Most techniques for constructing an on-chip entropy source exploit thermal noise on the die.

The digital post-processing block collects entropy from the analog source through sampling, to monitor the
quality of the source, and to filter it appropriately, to ensure a high level of gathered entropy. For example,
repeated periodic sequences are clearly predictable and must be rejected. This is important because fault
injection techniques can induce predictable behavior into a TRNG and attack the protocols that use it.

For any entropy source design, the quality of the entropy is reduced as the sample rate increases. Any design has
a maximum safe ceiling for the sample rate, and this sample rate might not be high enough to meet the overall
system requirements.

Although it is possible to design a filtering scheme removing common and predictable patterns that can occur in
an entropy source, other, more complex patterns might persist, which degrade the available entropy. The extent
of any such degradation depends on the quality of the source, and in some cases additional digital processing
might be required to compensate for it.
A common compensation technique utilizes a cryptographic hash function to compress a large bit string of lower
entropy into a smaller bit string of higher entropy. However, this function comes at the expense of available
bandwidth.

Digital post processing

FIFO

FIFO

FIFO

Entropy
source Filter Compress Expand

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 55
1.0 Beta Release 1 Non-Confidential

To counter this situation, the digital post processing stage expands the entropy source to provide a greater
number of bits per second, by using the filtered or compressed source to seed a cryptographically strong pseudo
random sequence generator with a very large period.

A definitive treatment of these steps is found in the NIST Draft Special Publication 800-90b.

R010_TBSA_ENTROPY The entropy source must be an integrated hardware block.
Although some or all of the digital post processing can be performed in software by a Trusted Service, Arm
recommends a full hardware design.

It is not possible to construct a TRNG that yields exactly one bit of entropy per output bit, so it is permissible to
provide output samples together with their assessed entropy in bits. For example, the TRNG might provide 32-bit
samples that contain only 24 bits of entropy. If the assessed entropy of each sample is variable, the TRNG must
provide an assessed entropy value with each sample, unless the assessed entropy is a fixed and known constant.
R020_TBSA_ENTROPY The TRNG must produce samples of known entropy.
There are many possible choices for measuring entropy. Following the guidance in NIST SP 800-90 [13], Arm
recommends using a conservative measure called min-entropy. Min-entropy is used as a worst-case measure of the
uncertainty associated with observations of X. If X has min-entropy m, then the probability of observing any
particular value is no greater than 2-m.

A number of test suites exist to ensure the quality of a TRNG source. Arm recommends that the TRNG design
passes the following test suits:

Table 3: Entropy test suites

Name Details

NIST 800-22 A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications, April 2010
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.ht
ml

DieHard http://www.stat.fsu.edu/pub/diehard/
https://wayback.archive.org/web/20160125103112/http://stat.fsu.edu/
pub/diehard/

DieHarder http://www.phy.duke.edu/~rgb/General/dieharder.php

ENT http://www.fourmilab.ch/random/

R030_TBSA_ENTROPY The TRNG must pass the NIST 800-22 test suite.
Details of the NIST 800-22 test suite can be found at [14].

R040_TBSA_ENTROPY On production parts, it must not be possible to monitor the analog entropy
source using an external pin.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 56
1.0 Beta Release 1 Non-Confidential

5.9 Cryptographic acceleration
In the Assisted architecture, the hardware offers acceleration of some of the cryptographic operations to meet
the performance requirements of the system. This permits hardware management of the cryptographic keys,
which are the most valuable assets in the system. By managing the keys in hardware, the threat space is
drastically reduced.
If large amounts of data must be processed, cryptographic algorithms are often accelerated, which makes
symmetric and hashing algorithms the most commonly accelerated. Asymmetric algorithms are complex, so full
accelerators are also complex and often large. A common trade-off is to accelerate only the most computing-
intensive parts, for example big integer modulo arithmetic.

Figure 15 shows an example architecture for symmetric algorithm acceleration and an associated Key Store:

Figure 15: Example of a symmetric crypto acceleration architecture

The accelerators and the Key Store are peripherals within a TBSA-M SoC, and must meet the associated
requirements.
The Key Store contains entries of keys and their associated metadata. The keys might have been injected
through the secure peripheral interface, from Trusted software, or directly from OTP. The metadata associated
with a key can include policy restrictions, by indicating which accelerator engines can access the key, exactly
what operation is permitted, and which worlds the input and outputs must be in. By storing keys in a Key Store,
the period of time that the keys are directly readable by software is significantly reduced.

The accelerators are used by both the Trusted and Non-Trusted worlds, and have both Secure and Non-secure
interfaces. These interfaces permit software to request cryptographic operations on data that is stored in
memory, and either supply a key directly, or index a key and its metadata in the Key Store. When programmed,
the accelerator reads data using its DMA interface, performs the operation, and writes the resultant data.

TDES

AES

SHA-256 / HMAC

Secure

Non-Secure

Secure

Non-Secure

Secure

Non-Secure

Key store

Secure

In
te

rc
on

ne
ct

DMA

DMA

DMA

Peripheral interfaces Accelerators

OTP

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 57
1.0 Beta Release 1 Non-Confidential

More advanced versions of this acceleration architecture might support key derivation functions, for instance if
the resultant data from a decryption is not written to memory using DMA, but is instead placed into the Key
Store.

5.10 Debug
As SoCs have become increasingly complex, the mechanisms for debugging the hardware and software have also
increased in complexity. The fundamental principles of debugging, which require access to the system state and
system information, conflict with the principles of security, which require the restriction of access to assets. This
section brings together the high-level security requirements for all debug mechanisms in the SoC.
Armv8-M supports the following debug modes:

• Self-hosted debug: The processor itself hosts a debugger. Developer software and a debug kernel run on
the same processor. For more information, see the Armv8-M Architecture Reference Manual, Section
B11.

• External debug: The debugger is external to the processor. The debugging might be either on-chip, for
example in a second processor, or off-chip, for example a JTAG debugger. External debug is particularly
useful for:

o Hardware bring-up. That is, debugging during development when a system is first powered up
and not all of the software functionality is available.

o Processors that are deeply embedded inside systems.
For more information, see the Armv8-M Architecture Reference Manual.

The Armv8-M architecture also includes definitions for invasive and non-invasive debug. From a security
perspective, there is no need to distinguish between these, because non-invasive debug can leak any assets
accessed by that processor.

5.10.1 Protection mechanisms

Debug mechanisms give an external entity access to system assets, so protection mechanisms must be in place
to ensure that the external entity is permitted access to those assets. These are called Debug Protection
Mechanisms (DPMs).

R010_TBSA_DEBUG All debug functionality must be protected by a DPM so that only an authorized
external entity can access the debug functionality. There might be scenarios in which
all external entities can access the debug functionality.

In devices which share JTAG/SWD with functional I/O, this requirement must be interpreted as prohibiting Non-
secure software observing or influencing secure debug activities.

R020_TBSA_DEBUG A DPM must be implemented either solely in hardware or together with software
running in the Trusted world.

Non-Trusted and Trusted system assets are partitioned according to the worlds in which they are accessible.

R030_TBSA_DEBUG There must be a DPM to permit access to all assets (Trusted).

R040_TBSA_DEBUG There must be a DPM to permit access to all Non-Trusted world assets (Non-
Trusted). This mechanism must not permit access to Trusted world assets.

Arm recommends making DPMs lifecycle-aware. The requirements described in this section apply to the
deployed lifecycle state. See Section 6.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 58
1.0 Beta Release 1 Non-Confidential

5.10.2 Debug Protection Mechanism overlap

The DPM requirements lead to an overlap of the worlds or spaces that each DPM unlocks, as shown in Figure 16
and Table 4.

Figure 16: DPM overlap

Table 4: DPM overlap

Master DPM Unlock opens

DPM_T Trusted world spaces

Non-Trusted world spaces

DPM_NT Non-Trusted world spaces

For some applications, it may be desirable to implement further DPMs to give a finer grain control of debug
access for Armv8-M. DPMs can control according to whether access is privileged or not, and whether it accesses
Trusted or Non-Trusted spaces.

5.10.3 Debug Protection Mechanism states
Each DPM must have states that reflect access to the debug mechanisms. These states must be controlled by
fuses and the unlock mechanism. This is captured in the following requirements:

R050_TBSA_DEBUG All DPMs must implement the following fuse controlled states:

• Default: Debug is permitted.

• Closed: Only an unlock operation is permitted, to transition to Open.

 These must be determined by a Boolean value (dpm_enable) that is stored in a
public-open-bitwise fuse or derived from the Device Lifecycle state stored in fuses,
see Figure 17.

Non-trusted world
(NT)

Trusted world
(T)

DPM_TDPM_NT

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 59
1.0 Beta Release 1 Non-Confidential

R090_TBSA_DEBUG The DPM controlling Trusted world functionality must also have another fuse
controlled state:

• Locked - The unlock operation is disabled (no state transition is possible).

 These must be determined by a Boolean value (dpm_lock) that is stored in a Public-
Open-Bitwise fuse or derived from the Device Lifecycle state stored in fuses, see
Figure 17.

R120_TBSA_DEBUG All DPMs must have the following state:

• Open - Debug is permitted.

 The Open state can only be entered from the Closed state after a successful unlock
operation.

Note: The fuses and unlock mechanisms for each DPM do not have to be unique. For example, one
fuse can be used as the dpm_enable for both DPMs, and one unlock mechanism can
unlock both DPMs.

Table 5 shows the DPM states and their allowable transitions.

Table 5: DPM states

DPM state Debug access Transition(s) Notes

Default Yes None except through Reset

Closed No Open – after a successful
unlock operation

Open Yes None except through Reset

Locked No None Only required for
Trusted world

Optional in Non-
Trusted world

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 60
1.0 Beta Release 1 Non-Confidential

Figure 17: DPM states

Note: The power domain and reset of the DPM state must be carefully considered to ensure that
all operations of the SoC are debugged. For example, debugging of the Secure Boot ROM
during cold and warm boots might require the state to be stored in a domain that is
permanently powered up, and has an independent reset.

The DPMs are required to protect the system assets, which necessitates the following requirement:
R150_TBSA_DEBUG The Trusted world DPM must be enabled, using the respective dpm_enable fuses, or

locked, using the respective dpm_lock fuses, before any Trusted world assets are
provisioned to the system.

5.10.4 Unlock operations
To perform the state transition from Closed to Open, the debug protection mechanism must perform an unlock
operation to ensure that the external entity has access to a token authorizing access to the associated assets.
The token might be a simple device-unique password, a cryptographically signed certificate, or a response to a
challenge. Which form to use often depends on the trade-off between complexity on the device and complexity
on an external server. For example, it is more complicated to implement signature checking on a device than to
compare passwords, but managing a database of unique passwords is more complicated than one or two private
keys on a server.
To prevent the leak of an unlock token that affects multiple devices, Arm recommends unique unlock tokens for
each device. Device manufacturers should consider the point in the supply chain that is appropriate to provision
unlock tokens, by taking the security model of the device into account.

To ensure that the external entity knows which unlock token to use, Arm recommends either that the device
stores a unique ID in Public-Lockable fuses, or that the Unique ID is derivable from a value in public-lockable
fuses.
Arm also recommends that devices deploy other additional protection for the unlock token, depending on the
type of token, and the threat model. Protection mechanisms include the use of non-volatile unlock failure
counters managed by Trusted firmware, and a nonce to protect against replay attacks.

Reset

Default ClosedOpen

Locked dpm_lock=1

dpm_lock=0
&

dpm_enable=0

dpm_lock=0
&

dpm_enable=1

Unlock=True

No debug access
No unlock

No debug access
Unlock available

Debug access
Unlock N/A

Debug access
Unlock N/A

The existence of this state
is mandatory in Trusted
world DPMs

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 61
1.0 Beta Release 1 Non-Confidential

Unlock token:password

Password-based unlock operations are implemented as a simple comparison. However, Arm recommends not
storing a copy of the password on the device itself. Instead, Arm recommends storing a cryptographically-strong
hash of the password that is created using a one-way function (OWF). When the password token is injected using
an interface from the external entity, it is passed through the same OWF and compared with the stored hash.
Because the comparison is simple, it must be protected from brute force attacks, by making the password
sufficiently large:

R200_TBSA_DEBUG A password unlock token must be at least 128bits in length.
For password-based unlock tokens in particular, Arm recommends that devices deploy other additional
countermeasures, for example non-volatile unlock failure counters managed by Trusted firmware.

This recommendation ensures that different external entities are given different tokens for a device, depending
on their ownership of assets in the system:

R210_TBSA_DEBUG Each debug protection mechanism must use a unique password unlock token.

Unlock token: private key

Private key-based unlock operations require the injection of a certificate that has been cryptographically signed
by a private key. The certificate should be paired with the device.
R220_TBSA_DEBUG The unique ID must be included in a certificate unlock token.

The debug protection mechanism must check the signature of the certificate:

R230_TBSA_DEBUG An unlock operation using a certificate unlock token must use an approved
asymmetric algorithm to check the certificate signature.

R240_TBSA_DEBUG An unlock operation using a certificate unlock token must have access to an
asymmetric public key stored on the device. The asymmetric public key that is used
to authenticate the certificate unlock token must be immutably stored on the device,
or have been loaded as a certificate during secure boot and authenticated by a chain
of certificates that begins with the ROTPK.

R250_TBSA_DEBUG A certificate unlock token must indicate which DPM(s) it is able to unlock using an
authenticated field.

R260_TBSA_DEBUG A loadable public key for certificate unlock token authentication must include an
authenticated field indicating which DPM(s) it is authorized to unlock.

R270_TBSA_DEBUG A certificate unlock token must only unlock a DPM that its public key is authorized to
unlock.

In the simplest case, the chain of certificates is of length one, and the ROTPK and the public key used to
authenticate the unlock token are one and the same. For more details on this functionality, see TBBR [3].

Unlock token: challenge/response

If the communication channel between the TBSA-M device and the external entity is not secure, then a
challenge/response-based unlock operation may be preferred over a simple password unlock operation. The
unique device ID is used as the challenge and a key stored in fuses as the response. Arm recommends using a
cryptographic nonce to accompany the challenge, and that the external entity hashes the response key with the
nonce.

The response key follows the size and uniqueness requirements for unlock token passwords described above.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 62
1.0 Beta Release 1 Non-Confidential

5.10.5 Other debug functionality
Complex SoCs often include extra debug functionality beyond the main processor. Examples of this are initiators
on the interconnect, which are controlled directly from an external debug interface, and system trace modules.
Care must be taken to ensure that any extra debug functionality is controlled by the correct DPM. They must be
evaluated based on their access to assets that belong to each world, and assigned the appropriate DPM.

5.10.6 Arm debug implementation
The Arm processor and CoreSight IPs include an Authentication Interface with the signals shown in Table 6:

Table 6: Arm authentication interface

Signal Name Action

DBGEN Debug Enable Enables invasive and non-invasive
debug of Non-secure state.
Debug components are disabled but
accessible.

NIDEN Non-invasive Debug Enable Enables non-invasive debug of Non-
secure state.

SPIDEN Secure Privileged Invasive
Debug Enable

When asserted with DBGEN enables
invasive & non-invasive debug of Secure
state.

SPNIDEN Secure Privileged Non-
Invasive Debug Enable

When asserted with NIDEN, enables
non-invasive debug of Secure state.

These signals can be mapped to the debug protection mechanisms, as shown in Table 7:

Table 7: DPM mapping to authentication interface

World Debug Functionality Equation
Non-secure Non-secure Invasive debug DBGEN

Non-secure Non-invasive debug DBGEN | NIDEN
Secure Secure Invasive debug DBGEN & SPIDEN

Secure Non-invasive debug (SPIDEN | SPNIDEN) & (DBGEN |
NIDEN)

5.10.7 Basic architecture
In the TBSA-M Basic architecture, DPMs might be implemented in software, including the unlocking of any
external debug interfaces. There are two commonly used implementations:

• Space is reserved in the non-volatile memory map for the unlock token, and the unlock operation is
performed by the secure boot process.

• The external debug interface receives an unlock token, and requests processing by the Trusted world.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 63
1.0 Beta Release 1 Non-Confidential

In both cases, software must read the relevant fuses to understand the state of the DPM, and have target
registers that unlock the relevant debug features of the device.

R280_TBSA_DEBUG The device must implement registers that, when written to by software, unlock the
associated hardware debug features. Access to the secure DPM registers must be
restricted to privileged Trusted world software.

5.10.8 Assisted architecture
In the Assisted architecture, both the Trusted and Non-Trusted DPMs are implemented in discrete hardware
connected to the external debug interface. The unlock tokens are injected via the external debug interface. The
tokens are then verified by the hardware that asserts the required signals to the rest of the device, or by
firmware the boot ROM.
R290_TBSA_DEBUG The DPM_T and DPM_NT must be implemented solely in hardware or together with

firmware in immutable boot ROM.

5.11 External interface peripherals
TBSA-M based SoCs contain many of the functions of the final consumer device, but they are often required to
talk to other electronic peripherals in order to receive and transmit data. Examples of these External Interface
Peripherals (EIPs) include sensors, actuators and communication devices, for example WiFi or Bluetooth Low
energy modules. Some interfaces are simply connections through SPI or UART, whereas others can embed the
controllers within the SoC itself.

Because these interfaces often receive Trusted user data, thought must be given to assets that are transferred
across these interfaces. The following questions can aid this thought process:

• Which on-chip world do the assets belong to?
• Are the assets entering or leaving the device?
• Are the assets encrypted or not?
• Are the assets authenticated?
• If the assets are encrypted or authenticated, how was the key exchanged?
• What is the impact if the assets are modified?
• Can commands be received from an external device?

Often the easiest approach is to let the Non-Trusted world manage the interface, and to let the Trusted world
supply the data to be transferred. This is acceptable when the Non-Trusted world is no more of a security risk
than the external connection. For example, non-authenticated encrypted content is sent through the Non-
Trusted world, because changing the encrypted content does not compromise the security of any assets.
However, if the assets being transferred include user data and are not authenticated, the Non-Trusted world can
perform a man-in-the-middle attack in the same way as an attacker with access to the external interface.
Therefore, if any secret values are not encrypted, the Non-Trusted world must not be able to access them and
the external interface must be correspondingly protected.

R010_TBSA_EIP If an EIP is used to send or receive clear or unauthenticated Trusted world assets, it is
implementing a Trusted operation and must meet the requirements of a Trusted
peripheral.

R020_TBSA_EIP When an EIP can receive commands from an external device, for example PCIe, then
the system must enforce a policy to check that those commands do not breach the
security of the TBSA-M device.

The requirement R020_TBSA_EIP does not only apply to the commands that can affect the Trusted world.
Unrestricted access to the Non-Trusted world by an external device is still a security risk.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 64
1.0 Beta Release 1 Non-Confidential

R040_TBSA_EIP Any sensitive user data that is stored must be stored in Secure storage.
Threat analysis of biometric sensors used in particular applications might indicate that they must be under the
control of the Trusted world.

R050_TBSA_EIP When a sensor has modes that allow it to be used for the acquisition of assets in
both the Trusted world and the Non-Trusted world, activating features for Trusted
world sensing must be under the control of the Trusted world.

5.12 DRAM protection
Some TBSA-M designs might also deploy external DRAM to store assets. In this case, Arm recommends following
the advice given in reference [6].

6 Device lifecycle management [Normative]
Designs compliant with TBSA-M architecture must have a mechanism to manage the security lifecycle of the
device. This mechanism governs the behavior of the device, in both hardware and firmware, in each stage of the
lifecycle, protecting any security assets introduced into the device and reducing the risk of IP theft and reverse
engineering.
Device lifecycle management is implemented either by a state machine in Trusted firmware which controls the
introduction of OTP assets and fuses, or by an equivalent state machine implemented in hardware. Lifecycle
state transitions should be atomic: it should not be possible for firmware outside the RoT to observe a partially
completed transition. Also, state transitions should be robust against external events, for example power loss.

Details of how the device life manages the progression from device manufacture, provisioning of assets through
deployment, including any changes of ownership through to discontinuation, are described in the PSA SM, and
PSA Firmware Framework documents.
The PSA lifecycle tracks the state of the PSA RoT through its life time, from development and manufacturing,
through use in the field, to debug and repair states. Depending on its lifecycle state, the PSA RoT will have
different security properties. For example:

• In early development and manufacture states, secrets and identities may not have been provisioned and
debug ports may not yet have been locked down.

• In some debug and repair states, secrets could potentially be compromised, or boot state and
attestation might not be trustworthy any more.

On a device compliant with TBSA-M, many objects may have their own lifecycles. For example:

• Some Trusted subsystems, for example Secure Element and Security Element style devices, may have
their own local life cycles and provisioning processes.

• The application itself may have an application lifecycle, tracking whether the device has been enrolled
into a Trusted service, or securely associated with a particular set of credentials.

The PSA lifecycle states indicate the RoT assets present in the device, and the functionality available or disabled
in each state (e.g. debug, boot options, the writability of eFlash partitions). Figure 18 shows a generic example
TBSA-M device lifecycle:

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 65
1.0 Beta Release 1 Non-Confidential

Figure 18: Illustration of a device lifecycle
This device lifecycle begins in the chip manufacturing state, which is completely open and contains only the
assets that are fixed in hardware. At this point, the device must be fully testable, in order to permit checking for
manufacturing defects. The device is then configured in multiple steps by the silicon vendor and the purchasing
Original Equipment Manufacturer (OEM) through the programming of fuses.

Note: In the automotive industry, the OEM refers to the car maker, and Tier 1 supplier refers to device (ECU)
manufacturer. Here the term OEM means either of these entities, depending on the particular
application and supply chain.

Configuration includes personalization, which is the injection of cryptographic assets, for example unique keys.
These assets are broadly grouped into two categories:

• Production assets: These are highly sensitive values that must be protected as soon as it is verified that
they have been correctly programmed.

Chip Manufacturing

Test &
Manufacturing

Silicon Vendor
Configuration

OEM Production
Configuration

Device
Manufacturing

Deployed / Secure
Enabled

RMA

In-field
Configuration

Return
De-Personalization

SI
LI

CO
N

 V
EN

DO
R

O
EM

O
EM

 /
SI

LI
CO

N

VE
N

DO
R

DE
PL

O
YE

D

Development
Personalization

OEM Development
Configuration

Development

Production
Personalization

Personalization
may be done at
Silicon Vendor,
OEM or both.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 66
1.0 Beta Release 1 Non-Confidential

• Development assets: These are values known to the OEM or silicon vendor, or both, and are used during
the development of the system.

Devices that are destined for sale to consumers are personalized with production assets by the silicon vendor
and OEM. Such devices are configured to enable the security mechanisms required to protect those assets, and
any other assets that are accessible to the device, for example in flash memory. When this configuration is
complete, the device enters the Deployed state.
A device that is in the Development state has a subtly different configuration from the production parts, because
features, for example debug can still be enabled. These parts are not intended to leave the OEM.

A device that is in the Deployed state only permits configuration operations that support the required use cases
and has access to the security functions of the device. Its debugging and testing features are disabled and secure
boot is mandatory.
The Return Material Authorization (RMA) lifecycle state is a terminal state used for devices that are returned to
the manufacturer for failure analysis. When a device is put into the RMA state, it loses access to its secret keys
and the ability to operate securely. The device should regain access to all debugging and testing capabilities, in
order to perform reliability, warranty and liability investigations.

As a minimum, Arm recommends that a device compliant with TBSA-M provides a lifecycle control mechanism in
which:

• The lifecycle state is held in, or derivable from, the state of fuses.
• All lifecycle state transitions are restricted to a designated set, as outlined in the example shown in

Figure 18, in which there is at least:
o A designated initial state from which all devices start.
o A designated deployed state which mandates the use of the device’s security features.
o A designated terminal state (RMA) from which no further transitions are allowed.

• A transition into the RMA state should be authorized by the RoT owners, and should atomically zeroize,
or otherwise put beyond use, all secret keys in the manner described by FIPS 140-2.

• Booting, debugging and scan access are governed by a secure lifecycle policy.

7 Approved algorithms and key sizes [Normative]
In TBSA, the core set of approved algorithms is drawn from NIST suite B or its [15], together with SHA-3 [22]. In
addition the elliptic curve signature scheme known as Edwards-curve Digital Signature Algorithm (EdDSA) with
recommended parameters (e.g. edwards25519) may be used. See [23] for details.

For keyed algorithms, Arm recommends the following key sizes:
• For symmetric keys used in encryption and MAC generation, a minimum of 128 bits.
• For asymmetric keys, a minimum of 256 bits for ECC, and a minimum of 3072 bits for RSA.

These algorithms are implemented in Trusted software if sufficient processor capacity is available to meet
performance targets.

The full list of cryptographic algorithms required in a given TBSA-M system depends on the target requirements,
which are outside the scope of this document.

Note: NIST has recently announced a transitional period during which new algorithms will be identified that are
resistant to a threat that arises from advances in quantum computing, which is anticipated to become
important in thirty to forty years. The NSA has made some recommendations on algorithm selection
during this time of transition, which will last for several years. The reader is encouraged to refer to these,
particularly if the product and assets to be protected are covered by to this time frame.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 67
1.0 Beta Release 1 Non-Confidential

8 Related documents
A detailed description of Trusted Boot and Firmware Update requirements is found in [8]

A good treatment of how to design an address map to use TrustZone for Armv8-M and several types of
TrustZone Filters to protect memory and peripherals is found [5].
The Arm Platform Security Architecture software framework and set of API specifications, providing fundamental
security functions within a common security model is described in [7].

Appendix: TBSA-M checklist [Normative]
Below is a complete list of mandatory requirements for TBSA-M. Users of this architecture should also consider
Arm recommendations that might accompany the requirements included in this document.

Ref name Base System Requirements (Section 5, Section 5.1)

R001_TBSA_BASE The SoC must provide a hardware-based mechanism for separating the Trusted
World from the Non-Trusted world.

R002_TBSA_BASE The SoC must provide a hardware-based mechanism which is able to separate
partitions within the Trusted world.

R010_TBSA_BASE A Non-Trusted world operation must only access Non-Trusted world assets.

R020_TBSA_BASE A Trusted world operation can access both Trusted and Non-Trusted world
assets.

R030_TBSA_BASE An SoC using TrustZone Isolation must be based on an Armv8-M architecture PE
with the Security Extension and MPUs implemented.

R040_TBSA_BASE The hardware and software of a TBSA-M device must work together to ensure
that all the security requirements are met.

Ref name Infrastructure Requirements (Section 5.2)

R010_TBSA_INFRA A Trusted operation can issue Secure or Non-secure transactions.

R020_TBSA_INFRA A Non-Trusted operation must only issue Non-secure transactions.

R030_TBSA_INFRA A Non-secure transaction must only access Non-secure storage.

R040_TBSA_INFRA If programmable address remapping logic is implemented in the interconnect
then its configuration must be possible only from the Trusted world.

R050_TBSA_INFRA A unified address map that uses target side filtering to disambiguate Non-
secure and Secure transactions must only permit all Secure or all Non-secure

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 68
1.0 Beta Release 1 Non-Confidential

transactions to any one region. Secure and Non-secure aliased accesses to the
same address region are not permitted.

R060_TBSA_INFRA The target transaction filters configuration space must only be accessed from
the Trusted world.

R070_TBSA_INFRA Security exception Interrupts must be wired or configured as Secure interrupt
sources.

R080_TBSA_INFRA Configuration of the on-chip interconnect that modifies routing or the memory
map must only be possible from the Trusted world, unless it is not possible for
such modifications to affect secure transactions.

R090_TBSA_INFRA All transactions must be constrained; it must not be possible for a transaction
to bypass a constraining mechanism.

R100_TBSA_INFRA If shared volatile storage is implemented, then the associated location or region
must be scrubbed, before it can be reallocated from Trusted to Non-Trusted.

R110_TBSA_INFRA If shared volatile storage is implemented in a TrustZone for Armv8-M based
system, then the associated location must not be executable or NSC
immediately after it is reallocated from Non-Trusted to Trusted.

R120_TBSA_INFRA An interrupt originating from a Trusted operation must by default be mapped
only to a Trusted target. By default, this must be the case following a system
reset.

R130_TBSA_INFRA Any configuration to mask or route a Trusted interrupt must only be carried out
from the Trusted world.

R140_TBSA_INFRA The interrupt network might be configured to route an interrupt originating
from a Trusted operation to a Non-Trusted target.

R150_TBSA_INFRA Any status flags recording Trusted interrupt events must only be read from the
Trusted world, unless specifically configured by the Trusted world to be
readable by the Non-Trusted world.

R160_TBSA_INFRA A TBSA-M system must integrate a Secure RAM.

R170_TBSA_INFRA Secure RAM must be mapped into the Trusted world only.

R180_TBSA_INFRA If the mapping of Secure RAM into regions is programmable, then configuration
of the regions must only be possible from the Trusted world.

R190_TBSA_INFRA The advanced power mechanism must integrate a Trusted management
function to control clocks and power. It must not be possible to directly access
clock and power functionality from the Non-Trusted world.

R210_TBSA_INFRA If access to a peripheral, or a subset of its operations, is dynamically switched
between Trusted world and Non-Trusted world, then this must only be done
under the control of the Trusted world.

R220_TBSA_INFRA If the peripheral stores assets in local embedded storage, a Non-Trusted
operation must not be able to access the local assets of a Trusted operation.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 69
1.0 Beta Release 1 Non-Confidential

R230_TBSA_INFRA A Trusted operation must be able to distinguish whether commands and data
were received at an interface accessible to the Trusted world only, or at an
interface accessible to the Non-Trusted world.

R240_TBSA_INFRA A Trusted operation that exposes a Non-secure interface must apply a policy
check to the Non-Trusted commands and data before acting on them. The
policy check must be atomic and, following the check, it must not be possible to
modify the checked commands or data.

Ref name Fuse Requirements (Section 5.3)

R010_TBSA_FUSE A non-volatile storage technology must meet the lifetime requirements of the
device, either through its intrinsic characteristics, or through the use of error
correction mechanisms.

R020_TBSA_FUSE A fuse is permitted to transition in one direction only, from its un-programmed
state to its programmed state. The reverse operation must be prevented.

R030_TBSA_FUSE A fuse must only be programmed in accordance with its specified mechanism
so that its reliable operation is not at risk.

R040_TBSA_FUSE It must be possible to blow at least a subset of the fuses when the device has
left the silicon manufacturing facility.

R050_TBSA_FUSE All fuse values must be stable before any parts of the SoC that depend on them
are released from reset.

R060_TBSA_FUSE Fuses that configure the security features of the device must be configured so
that the programmed state of the fuse enables the feature. That is, the
programming of a security configuration fuse always increases security within
the SoC.

R070_TBSA_FUSE Lifetime guarantee mechanisms to correct for in-field failures must not indicate
which fuses have had errors detected or corrected, just that an error has been
detected or corrected. This indicator must only be available after all fuses have
been checked.

R080_TBSA_FUSE A confidential fuse whose recipient is a hardware IP must not be readable by
any software process.

R090_TBSA_FUSE A confidential fuse whose recipient is a hardware IP must be connected to the
IP using a path that is not visible to software or any other hardware IP.

R100_TBSA_FUSE A confidential fuse whose recipient is a software process might be readable by
that process and must be readable by privileged software.

R110_TBSA_FUSE A confidential fuse whose recipient is a Trusted world software process must be
protected by a hardware filtering mechanism that can only be configured by
secure software, for example an NS-bit filter.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 70
1.0 Beta Release 1 Non-Confidential

R120_TBSA_FUSE It must be possible to fix a lockable fuse in its current state, regardless of
whether it is programmed or un-programmed.

R130_TBSA_FUSE The locking mechanism for a lockable fuse can be shared with other lockable
fuses, depending on the functional requirements.

R140_TBSA_FUSE A bulk fuse must also be a lockable fuse to ensure that any unprogrammed bits
cannot be programmed later.

R150_TBSA_FUSE Additional fuses that implement lifetime guarantee mechanisms must have the
same confidential and write lock characteristics as the logical fuse itself.

Ref name Cryptographic Keys (Section 5.4)

R010_TBSA_KEY A key must be treated as an atomic unit. It must not be possible to use a key in
a cryptographic operation before it has been fully created, during an update
operation, or during its destruction.

R020_TBSA_KEY Any operations on a key must be atomic. It must not be possible to interrupt
the creation, update, or destruction of a key.

R030_TBSA_KEY When a key is no longer required by the system, it must be put beyond use to
prevent a hack at a later time from revealing it.

R035_TBSA_KEY A key must only be used by the cryptographic scheme for which it was created.
R070_TBSA_KEY A static key must be stored in an immutable structure, for example a ROM or a

set of bulk-lockable fuses.

R080_TBSA_KEY To prevent the re-derivation of previously used keys, only Trusted code can
have access to all of the source material.

R090_TBSA_KEY If an ephemeral key is stored in memory or in a register in clear text form, the
storage location must be scrubbed before being used for another purpose.

R100_TBSA_KEY A key that is accessible to, or generated by, the Non-Trusted world must only
be used for Non-Trusted world cryptographic operations, which are operations
that are either implemented in Non-Trusted world software, or have both clear
text and cipher text in the Non-Trusted world.

R110_TBSA_KEY A key that is accessible to, or generated by, the Trusted world can be used for
operations in both Non-Trusted and Trusted worlds, and even across worlds,
provided that:
The Non-Trusted world cannot access the key directly.

The Trusted world can control the use of the key through a policy.

R140_TBSA_KEY A Trusted hardware key must not be directly accessible by any software.

R150_TBSA_KEY The Trusted world must be able to enforce a usage policy for any Trusted
hardware key that can be used for Non-Trusted world cryptographic
operations.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 71
1.0 Beta Release 1 Non-Confidential

R160_TBSA_KEY A TBSA-M device must either entirely embed an ROTPK, or the information that
is needed to securely identify it.

R180_TBSA_KEY An elliptic-curve-based ROTPK must be at least 256 bits in size.

R190_TBSA_KEY An RSA-based ROTPK must be at least 3072 bits in size.

R200_TBSA_KEY If a cryptographic hash of the ROTPK is stored in on chip non-volatile memory,
rather than the key itself, it must be immutable.

R220_TBSA_KEY A TBSA-M device must embed an HUK in confidential-lockable-bulk fuses.

R230_TBSA_KEY The HUK must have at least 128 bits of entropy.

R240_TBSA_KEY The HUK must only be accessible by Trusted code or Trusted hardware that act
on behalf of Trusted code.

Ref name Trusted Boot Requirements (Section 5.5)

R010_TBSA_BOOT A TBSA-M device must embed a Boot ROM with the initial code that is needed
to perform a Trusted system boot.

R020_TBSA_BOOT If the device supports warm boot, a flag or register that survives warm boot
must exist to enable distinguishing between warm and cold boots. This register
or flag must be programmable only by the Trusted world and must be reset
after a cold boot.

R030_TBSA_BOOT On a cold boot, the primary processor must boot from the Boot ROM. It must
not be possible to boot from any other storage unless Trusted Kernel debug is
enabled For detailed information about Trusted Kernel debug, see Section 6.10.

R090_TBSA_BOOT If a boot status register is implemented, then it must be accessible only by the
Trusted world.

R100_TBSA_BOOT In an Assisted architecture, the key to decrypt the Trusted Boot Firmware
image must be visible only to the acceleration peripheral.

Ref name Trusted Timers Requirement (Section 5.6)

R030_TBSA_TIME At least one Trusted timer must exist.

R040_TBSA_TIME A Trusted timer must only be modified by a Trusted access. Examples of
modifications are the timer being refreshed, suspended, or reset.

R050_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted clock source.

R060_TBSA_TIME At least one Trusted watchdog timer must exist.

R070_TBSA_TIME After a system reset, a Trusted watchdog timer must be started before
execution of the immutable boot code transfers control to the next firmware
stage.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 72
1.0 Beta Release 1 Non-Confidential

R080_TBSA_TIME A Trusted watchdog timer must only be modified by a Trusted access. Examples
of modifications are the timer being refreshed, suspended, or reset.

R090_TBSA_TIME Before needing a refresh, a Trusted watchdog timer must be capable of running
for a time period that is long enough for the Non-Trusted re-flashing of early
boot loader code.

R100_TBSA_TIME A Trusted watchdog timer must be able to trigger a reset of the SoC, after a
pre-defined period of time. This value is fixed in hardware or programmed by a
Trusted access.

R110_TBSA_TIME A Trusted watchdog timer must implement a flag that indicates the occurrence
of a timeout event that causes a warm reset, to allow post-reset software to
distinguish this from a powerup cold boot.

R120_TBSA_TIME The clock source driving a Trusted watchdog timer must be a Trusted clock
source.

R130_TBSA_TIME A TRTC must be configured only by a Trusted world access.

R140_TBSA_TIME All components of a TRTC must be implemented within the same power
domain.

R150_TBSA_TIME On initial power up, and following any other outage of power to the TRTC, a
validity mechanism must indicate that the TRTC is not Trusted.

R160_TBSA_TIME The TRTC must be driven by a Trusted clock source.

Ref name Version Counter Requirements (Section 5.7)

R010_TBSA_COUNT An on-chip non-volatile Trusted firmware version counter implementation
must provide a counter range of at least 0 to 63.

R020_TBSA_COUNT An on-chip non-volatile Non-Trusted firmware version counter implementation
must provide a counter range of at least 0 to 255.

R030_TBSA_COUNT It must only be possible to increment a version counter through a Trusted
access.

R040_TBSA_COUNT It must only be possible to increment a version counter. It must not be
possible to decrement it.

R050_TBSA_COUNT When a version counter reaches its maximum value, it must not roll over, and
no further changes must be possible.

R060_TBSA_COUNT A version counter must be non-volatile, and the stored value must survive a
power down period up to the lifetime of the device.

Ref name Entropy Source Requirements (Section 5.8)

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 73
1.0 Beta Release 1 Non-Confidential

R010_TBSA_ENTROPY The entropy source must be an integrated hardware block.

R020_TBSA_ENTROPY The TRNG must produce samples of known entropy.

R030_TBSA_ENTROPY The TRNG must pass the NIST 800-22 test suite.
R040_TBSA_ENTROPY On production parts, it must not be possible to monitor the analog entropy

source using an external pin.

Ref name Debug Requirements (Section 5.10)

R010_TBSA_DEBUG All debug functionality must be protected by a DPM so that only an authorized
external entity can access the debug functionality. There might be scenarios in
which all external entities can access the debug functionality.

R020_TBSA_DEBUG A DPM must be implemented either solely in hardware or together with
software running in the Trusted world.

R030_TBSA_DEBUG There must be a DPM to permit access to all assets (Trusted).

R040_TBSA_DEBUG There must be a DPM to permit access to all Non-Trusted world assets. This
mechanism must not permit access to Trusted world assets.

R050_TBSA_DEBUG All DPMs must implement the following fuse controlled states:
• Default: Debug is permitted.

• Closed: Only an unlock operation is permitted, (to transition to Open).

 These must be determined by a Boolean value (dpm_enable) that is
stored in a public-open-bitwise fuse or derived from the Device Lifecycle state
stored in fuses, see Figure 17

R090_TBSA_DEBUG The DPM controlling Trusted world functionality must also have another fuse
controlled state:
• Locked: The unlock operation is disabled (no state transition is
possible).

 These must be determined by a Boolean value (dpm_lock) that is
stored in a Public-Open-Bitwise fuse or derived from the Device Lifecycle state
stored in fuses, see Figure 17.

R120_TBSA_DEBUG All DPMs must have the following state:
Open - debug is permitted.
The Open state can only be entered from the Closed state after a successful
unlock operation.

R150_TBSA_DEBUG The Trusted world DPM must be enabled, using the respective dpm_enable
fuses, or locked, using the respective dpm_lock fuses, before any Trusted
world assets are provisioned to the system.

R200_TBSA_DEBUG A password unlock token must be at least 128bits in length.

DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved. Page 74
1.0 Beta Release 1 Non-Confidential

R210_TBSA_DEBUG Each debug protection mechanism must use a unique password unlock token.

R220_TBSA_DEBUG The unique ID must be included in a certificate unlock token.

R230_TBSA_DEBUG An unlock operation using a certificate unlock token must use an approved
asymmetric algorithm to check the certificate signature.

R240_TBSA_DEBUG An unlock operation using a certificate unlock token must have access to an
asymmetric public key stored on the device. The asymmetric public key that is
used to authenticate the certificate unlock token must be immutably stored on
the device, or have been loaded as a certificate during secure boot and
authenticated by a chain of certificates that begins with the ROTPK.

R250_TBSA_DEBUG A certificate unlock token must indicate which DPM(s) it is able to unlock using
an authenticated field.

R260_TBSA_DEBUG A loadable public key for certificate unlock token authentication must include
an authenticated field indicating which DPM(s) it is authorized to unlock.

R270_TBSA_DEBUG A certificate unlock token must only unlock a DPM that its public key is
authorized to unlock.

R280_TBSA_DEBUG The device must implement registers that, when written to by software,
unlock the associated hardware debug features. Access to the secure DPM
registers must be restricted to privileged trusted world software.

R290_TBSA_DEBUG The DPM_T and DPM_NT must be implemented solely in hardware or together
with firmware in immutable boot ROM.

Ref name External Interface Peripherals Requirements (Section 5.11)

R010_TBSA_EIP If an EIP is used to send or receive clear or unauthenticated Trusted world
assets, it is implementing a Trusted operation and must meet the requirements
of a Trusted peripheral.

R020_TBSA_EIP When an EIP can receive commands from an external device, for example PCIe,
then the system must enforce a policy to check that those commands do not
breach the security of the TBSA-M device.

R040_TBSA_EIP Any sensitive user data that is stored must be stored in Secure storage.

R050_TBSA_EIP When a sensor has modes that allow it to be used for the acquisition of assets
in both the Trusted world and the Non-Trusted world, activating features for
Trusted world sensing must be under the control of the Trusted world.

