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1 Introduction [Informative] 
Arm Trusted Base System Architecture for Armv8-M (TBSA-M) is an architecture for the design and 
implementation of secure devices.  
 
The design of a secure product depends on analysis of threats to its assets through application use cases. The 
number and diversity of -M based products means that, in practice, this approach might not scale. To address 
this, TBSA-M encapsulates best practice security principles when designing systems around Armv8-M processing 
elements (PEs). 
  
These principles support the design and integration of the following features rooted in hardware: 

 
• A Root of Trust (RoT).  
• A Protected keystore. 
• Isolation between Trusted and Non-Trusted software components. 
• A Secure firmware update mechanism. 
• A lifecycle management mechanism, for secure control of debug, test, and access to provisioned secrets. 
• A high-entropy random number generator, for reliable cryptography. 
• Cryptographic acceleration, so that real-time functionality can be maintained with the correct security 

properties. 
  
TBSA-M is part of Arm Platform Security Architecture (PSA). PSA can be used to define a secure processing 
environment that isolates security-critical functionality and data from application software. This increases 
confidence in the trustworthiness of the device, even in the presence of exploitable software vulnerabilities. Arm 
PSA defines Application Programming Interfaces (APIs) for fundamental security functions. The APIs support the 
development of secure functionality that is more easily ported to other Arm-based platforms. 
  
The goal of this document is to support the creation of platforms that support Trusted services. Trusted services 
are collections of operations and assets that require protection from the wider system, and from each other. 
This ensures their confidentiality, authenticity, and integrity. 
  
This document aims to provide information that is useful to designers and implementers of secure platforms. 
This does not eliminate the requirement for security analysis during system design, despite the intention to 
reduce it. In addition, following the requirements and recommendations of this document does not guarantee 
that vulnerabilities will not exist in any compliant design. 

1.1 Scope 
This version of the TBSA-M specification is targeted at connected microcontroller SoCs (MCUs) and their product 
use cases, for example IoT.  The MCUs have an Armv8-M processor as its host, with integrated flash and 
integrated security features. 
  
It is expected that other platform types will be covered in future PSA hardware specifications, for example 
Secure platforms which are based on Armv7-M or Armv6-M processors, or less integrated platforms which make 
use of external security elements. 
  
Implementations compliant with TBSA-M are sufficient to operate within the PSA Security Model (SM), which 
allows deployment of secure services using devices with known security properties  
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1.2 Organization of the document 
The document is organized in eight chapters in addition to this Introduction. Chapters 2, 3 and 4 describe the 
context in which subsequent requirements should be understood. Chapter 5 provides a set of requirements that 
TBSA-M compliant devices are expected to meet, together with a short discussion about each requirement. 
Chapter 6 contains recommendations for how lifecycle management may be implemented and Chapter 7 lists 
approved cryptographic algorithms for which hardware support is prescribed in Chapter 5. Chapter 8 describes a 
scheme for scoring the robustness of the mechanisms which a device uses to meet TBSA-M requirements. The 
Appendix tabulates the requirements in Chapter 5 for ease of access.   
 
Some chapters are labelled Normative. These chapters are prescriptive, and must be followed in order to comply 
with the architecture. Other chapters are labelled Informative. These chapters are descriptive, and are intended 
to help the reader understand the concepts presented in the normative chapters. 

1.3 Target Platforms 
The target platforms that are addressed by this document are primarily IoT devices and automotive ECUs. These 
devices typically have several of the following product features: 

• A long active lifespan. 
• Resource constrained. 
• A location that makes secure manual updates difficult. 
• Potentially good physical access for untrusted third parties. 
• Deployment in vast quantities. 

This document concerns SoCs that are centered on Armv6-M, Armv7-M and Armv8-M PEs and embed non-
volatile storage.  

In general, these SoCs:  
• Are closed systems so that the software running on them can be controlled. 
• Have wired or wireless network connectivity. 
• Support internal non-volatile bulk storage, most commonly embedded flash (eFlash). 
• Integrate One Time Programmable (OTP) non-volatile storage for storage of assets provisioned at 

manufacture and later. 
Given the variety of platforms and products that are covered by the scope of this document, each with a specific 
set of use cases, assets and threats, several aspects of this document are necessarily high-level.  
However, the resulting collection of use cases, assets, threats, and necessary security measures cannot be 
reduced to a single, simple checklist of security requirements. Each platform and product requires specific 
analysis to determine the appropriate use of security features and will need to consider the specification and 
certification requirements of the target market. 

Attacks on systems continuously evolve, with the effect that old security defenses must be strengthened, and 
new security defenses must be implemented to maintain the required level of security. The requirements 
described in this document represent best practice at the time of writing. Some requirements are intended to 
strengthen the security guidance when compared to previous versions of this document and its predecessors. In 
all cases, the differences are in the degree of security that is provided, or that is demanded by other market 
specifications. The newer requirements described here are more resilient to certain types of attack. 
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1.3.1 Level of protection 
The types of attack that this document addresses are primarily data stealing and injection attacks, in which the 
attacker is only capable of executing attacks using unsigned software, possibly remotely. The motivation behind 
data stealing and injection attacks is to steal proprietary information, disrupt device functionality, or both. 
Although hardware protection technologies can protect against direct access to sensitive information, it is still 
possible to acquire sensitive information from statistical analysis attacks. Therefore, for certain applications it 
might be necessary to design software in such a way that visibility of such information outside the device is 
restricted. 

 
Lightweight hardware attacks are those achieved using commonly available consumer or hobbyist equipment. 
Attackers obtain physical access to the device, but do not have the equipment or expertise to attack within the 
integrated circuit package. For example, an attacker might attempt to attack the system by: 

• Probing the signals around the SoC to: 
o Read, modify or substitute external memory contents. 
o Read, modify or substitute information on communications channels. 

• Tampering with how the device is clocked, powered or reset so as to corrupt programmable states 
within the system. 

• Tampering with the device pins, for example debug pins, to attempt to read, modify or substitute 
internal states or internal memory contents. 

• Tampering with manufacturing-related test pins to attempt to read, modify or substitute internal states 
or internal memory contents. 

TBSA-M requirements focus on protecting easily-accessible interfaces, discouraging the use of class keys, and 
supporting software countermeasures to low-cost side channel attacks. 

Finally, advanced hardware invasive attacks, in which the attacker has access to laboratory equipment that 
probes on to silicon metal layers, infers fuse settings, or performs differential power analysis, are out of scope 
for this architecture. 

1.3.2 Security Analysis 
Security requirements can be derived from an analysis of the assets and services that the device must protect, 
and an analysis of the threats from which these assets and services must be protected.  

A common application for an IoT device might involve sending sensor information to a cloud agent that 
processes the information to provide a service. To achieve this securely, an architect might specify security use 
cases: 

• To control access in terms of identification, authentication, and authorisation. 
• To ensure confidentiality of data and communications.  
• To ensure integrity of data and communications. 
• To ensure the availability of sensor information to the cloud agent. 

It is from these security use cases that the architectural requirements are derived, as shown in Figure 1.  
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Figure 1: Relationship of TBSA-M to Threat Modelling and Security Analyses 

2 Trustworthy networked devices [Informative] 
 
Threat modeling and security analysis often requires detailed and expert evaluation of devices and the context in 
which they operate. This includes their use-cases, the assets they protect, and the threats they may face. The 
quantity and diversity of IoT, and other areas in which TBSA-M will be used, means that this approach does not 
scale well for cost-optimized devices.  
A common feature of TBSA-M systems is that their context is a network of devices connected via insecure links. 
TBSA-M focuses on support for Trusted devices engaging in authenticated communications using cryptographic 
protocols, for example Transport Layer Security (TLS). 

 
The complexity of software deployed on such devices requires that software is renewable to patch exploitable 
vulnerabilities, reliability, or performance issues and to manage the available functions of the device. 
Fundamental to the security model is hardware support for security by separation of software components. 
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2.1.1 Secure machine to machine communication 
 
A trustworthy network must be able to establish and maintain secure communications between devices that 
have mutually verified the identity and state of each other over physically insecure channels. In general, this can 
be achieved with hardware support for a number of basic functions: 

• Secure boot 
o To ensure that only authenticated software can run on the device. 

• Secure debug and test 
o To ensure that only authenticated entities are able to debug the software and test the hardware. 

• Control of device lifecycle 
o To ensure that the protection of assets and the availability of device functions follows a 

prescribed and constrained path from manufacture to device disposal.  
• Attestation 

o To ensure that devices present reliable evidence to other parties about the software it is 
running. These require provision of an attestation identity. 

• Isolation 
o To ensure that accessibility of the most Trusted assets is in proportion to the level of trust in the 

software that can access it, and also to provide hardware support for management of the 
confidentiality of assets between different device stakeholders. 

• Cryptographic algorithms  
o To provide secure storage, computation and communication at a performance level appropriate 

for the device. Many cryptographic algorithms require support for true random number 
generation, provision of Trusted time and the secure provision of device credentials and 
certificates. 

• Unique binding  
o To ensure that application level keys, credentials, and other secret or sensitive data is uniquely 

accessible to a specific device when in a specific state. 
In addition, most devices will need to provide some protection from hardware attacks, including 
countermeasures to probing of accessible interfaces or other low-cost physical tampering. 

2.1.2 Secure firmware update 
 
Significant device firmware should have updateable components which encompass parts of the device RoT all 
the way up to application software. The location and quantity of deployed TBSA-M devices means that updates 
should be achievable over a network without requiring physical intervention. This requires the following 
hardware resources, to ensure that update is performed securely: 

 

• Provision of firmware integrity and authenticity keys. 
• Support for approved cryptographic protocols for reception, validation, and installation of new firmware, 

including monotonic version counters and support for trusted time. 
• Provision of non-volatile memory to hold new firmware images and audit logs. 
• Resources to remain secure in the event of a failed update, for example a failsafe backup or a 

mechanism of removal from Trusted services. 
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2.2 Security goal 
The goal of the TBSA is to protect the Trusted services on a device from attackers who would benefit from a 
compromise. 

No security implementation is flawless. The goal is to ensure that attacks are not worth the time and money 
required. TBSA-M aims to protect against the most common general attacks. TBSA-M does not protect against all 
types of attack. Depending on its target market, a device implementing the TBSA-M architecture might be 
required to meet stricter security requirements. 

TBSA-M does not to prevent the Non-Trusted World from being compromised, and does not prevent malware 
from executing in a rich execution environment that attempts to acquire sensitive user information by acting as 
a trustworthy entity. 

TBSA-M does not address laboratory attacks in which devices are unpackaged and probed, or power analysis 
attacks in which the power consumption of the device is correlated with its processing activity to extract assets. 

2.3  Security analysis 
Security analysis is the process of looking at assets and their value, alongside attackers and their capabilities. A 
threat model identifies and classifies threats within the context of the attacker and asset models, 
to systematically enumerate and analyze the system's attack vectors. 
A number of threat modeling methodologies are suitable for TBSA-M devices. Within PSA, the Threat Models 
and Security Analyses (TMSA) specifications provide some examples of best practice (see  [10],[11],[12]).  

 

3 Platform Security Architecture concepts [Informative] 

3.1 Security by separation 
All use cases rely on the protection of the sensitive assets, for example private data, cryptographic keys, 
credentials, and firmware, from disclosure or modification. This is best achieved by limiting the firmware and 
hardware that has access to them, and separating these assets from the application firmware and hardware. 

PSA comprises multiple building blocks to meet security objectives. The foundation of PSA is a separation of the 
system into a secure processing environment (SPE) for the sensitive assets and the code that manages them. The 
SPE is isolated from the Non-secure Processing Environment (NSPE), in which the main application and 
communication firmware executes. The secure partition manager (SPM) is the Trusted component within the 
SPE that is responsible for the isolation of the SPE and providing communication between the SPE and NSPE. 
Faults or malicious activity within the NSPE should not compromise the behavioral integrity of the SPE.   

Figure 2 provides a high level view of the structure defined by PSA: 
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Figure 2: Separation of the Secure Processing Environment 
 

3.2 Trusted and Non-Trusted worlds 
For Armv8-M-based devices, the separation provided by TrustZone into Secure state execution and Non-secure 
State execution gives rise to two worlds: the Trusted world, and the Non-Trusted world, respectively. The 
Trusted world is used by PEs executing in their Secure state or by peripherals acting on their behalf. Non-
TrustZone processors are fixed to operate in one of the worlds. TrustZone processors can use secure transitions 
to operate in both worlds.  
 
This document will use the term Trusted world to refer to hardware resources whose state supports the SPE and 
the term Non-Trusted world to refer to those hardware resources whose state supports the NSPE.  

 

 
 

3.3 PSA software architecture 
For many devices, secure remote device management services and application network management services 
will be provided by different organizations. Thus, adding secure device management services to a system not 
only increases the firmware complexity, but also adds another vendor whose product needs to be integrated in 
the device. This vendor’s presence will increase integration complexity and cost. 
Isolation of the sensitive assets further increases integration complexity. The secure device management 
firmware depends on the SPE design to execute the security-critical functionality in an isolated environment, and 
on the communication firmware used in the NSPE by the application. 

PSA addresses some of this complexity by providing a standard SPE architecture and API for developing and 
communicating with firmware that runs within the SPE. PSA provides the specification of SPM and SPE, but not 
the implementation. Arm provides an open-source reference to implement these components as a separate 
product. 
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As an architecture, PSA enables alternative implementations of the SPE that address different quality-of-
implementation requirements for different parts of the IoT device market, while retaining the same 
programming model for securely isolated device functionality. For example, lighter-weight implementations are 
needed for more constrained MCUs and Partition Managers based on proven separation kernels for products 
that demand formal verification. 

Figure 3 illustrates the mapping of the Non-Secure and Secure processing environments to the Non-Trusted and 
Trusted Worlds. 

 
Figure 3: PSA Secure Processing Environment mapped to TBSA-M Trusted world 
 

 

As described in Section 3.1, the PSA Security Model separates system processing into two domains: the NSPE and 
the SPE. The NSPE is typically much larger and includes the application firmware and OS kernel and libraries, and 
usually controls most I/O peripherals. The SPE includes the security firmware and those hardware resources that 
need to be isolated from NSPE firmware and hardware resources. A fundamental requirement of the Security 
Model is that NSPE firmware or hardware cannot inspect or modify any SPE hardware, code or data.  
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The PSA Security Model sub-divides the SPE into two sub-domains: the PSA RoT and the Application RoT (ARoT). 
The PSA RoT provides the fundamental secure services to the system, and manages the isolated execution 
environment for the Application RoT secure services. 

The PSA RoT comprises: 

• A Security Lifecycle, which identifies the current phase of the device and controls the availability of 
device secrets and invasive capabilities, for example secure debug. 

• An Immutable RoT, which is the combination of hardware and non-modifiable firmware and data 
installed during manufacturing. 

• A Trusted Boot and Firmware Update, which ensures the integrity and authenticity of all secure firmware 
that runs on the device. 

• An SPM, which implements the required isolation of the secure services, the Inter-Process 
Communication (IPC) mechanism that allows software in one partition to make requests of another, and 
scheduling logic to ensure that Partitions with requests to service are given execution time. 

• A set of RoT services, which provides essential cryptographic functionality and manages access to the 
immutable RoTs for Application RoT services. 

The PSA firmware framework [7] specifies the SPM, defines the runtime environment for RoT services and 
defines the standard interfaces for PSA RoT services. 
 

 

4 Hardware supported isolation [Informative] 
TBSA-compliant devices implement hardware to support the PSA isolation model.  
Supporting the PSA isolation model gives rise to a large number of architectural choices. For informative 
purposes, some of these are outlined in the following sections. Arm recommends that, where possible, a 
TrustZone-based system is implemented. TrustZone is known to provide a robust hardware framework when 
supported by a small amount of Trusted firmware. In addition, Arm provides significant design support for 
TrustZone-based systems that may not be available for other architectural choices. 

4.1 TrustZone-based isolation 
Processing Elements based on certain Arm architectures may support intrinsic isolation between secure and 
non-secure environments. 
TrustZone for Armv8-M is a hardware-based security infrastructure that includes: 

• An additional secure execution state of the processor including an MPU dedicated to this secure state. 

• Secure interrupts. 

• Secure debug. 

• Infrastructure for propagating the security state of the processor to memory and peripherals, so that 
memory and peripherals are effectively isolated into secure and non-secure partitions. 

 

TrustZone for Armv8-M recognizes software as running in either the Secure or Non-secure state. These Security 
states are orthogonal to the existing Thread and Handler modes, and there is both a Thread mode and a Handler 
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mode in both Secure and Non-secure state. Thread mode can also be either privileged or unprivileged. Figure 4 
illustrates these states. 

 

Figure 4: TrustZone for Armv8-M adds Secure and Non-secure states to the operation of a PE 
 
Similar to TrustZone in Cortex-A processors, code running in Secure state can access both Secure and Non-secure 
information, but Non-secure programs can only access Non-secure information. 

TrustZone for Armv8-M is an optional architecture extension. By default, the system starts up in Secure state if 
the TrustZone Security Extension is implemented, as is required for TBSA-M.   

TrustZone for Armv8-M is designed with small energy-efficient systems in mind. Unlike TrustZone in Cortex-A 
processors, the division of Secure and Non-secure states is memory-map based, and the transitions take place 
automatically, without the requirement for a Secure Monitor exception handler. This eliminates switching 
overhead. 

The designer of a microcontroller or SoC device must partition the memory spaces into Secure and Non-secure 
regions.  Some regions are defined by software using a new unit defined by the Armv8-M architecture called the 
Security Attribution Unit (SAU), or by a device-specific controller logic connected to a special Implementation 
Defined Attribution Unit (IDAU) interface on the PE. The relationship between the attribution units is shown in 
Figure 5. 

 
 

 
Figure 5: Security attribution defined by SAU and IDAU 

Handler mode

Thread mode

Handler mode

Thread mode

Secure State
Non-Secure 

State

Address

Compare
Secure/Non-Secure

Secure 
Attribution 
Unit (SAU)

IDAU
Interface

Implementation  
Attribution Unit 

(IDAU)

Processor 
Boundary

Address

Attribution



DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved.  Page 22 
1.0 Beta Release 1  Non-Confidential 

 
The SAU is programmable in Secure state and has a programmers’ model that is similar to the MPU. The SAU 
implementation is configurable by chip designers. The SAU should always be present, but the number of regions 
is defined by the chip designer. Alternatively, chip designers can use an IDAU to define a fixed memory map, and 
use an SAU optionally to override the security attributes for some parts of the memory. This is the 
recommended approach for TBSA-M devices. 

The Processing Element (PE) state is dependent on the memory space definition. When the PE is running code in 
a Secure region, it is in the Secure state. Otherwise, it is in the Non-secure state.  Application code can branch to, 
and call, code in the other Security domain, and the PE detects these switches automatically.  Because an 
application can access functions in the other domain directly, TrustZone for Armv8-M is both flexible and simple 
to use. 

The Secure memory space is further divided into two types: 
• Secure: contains secure program code or data. This includes Secure stack, heap and any other Secure 

data. 
• Non-Secure Callable (NSC): contains entry functions, for example, entry point for APIs, for Non-secure 

programs to access Secure functions. 
Typically, NSC memory regions contain tables of small branch veneers. These are entry points. To prevent Non-
secure applications from branching into invalid entry points, a new instruction called Secure Gateway (SG) has 
been introduced. When a Non-secure program calls a function in the Secure side: 

• The first instruction in the API must be an SG instruction. 
• The SG instruction must be in a region attributed as secure and NSC by the SAU or IDAU. 

There are many other security checking mechanisms within the Armv8-M architecture. Arm recommends the 
Arm Architecture Reference Manual, Armv8, for Armv8-M architecture profile for details. 

In a typical TBSA-M compliant device, the host PE is only one part of the security system.  Additional hardware is 
required to meet security requirements at a system level, to allow memory blocks to be partitioned into Secure 
memory regions and Non-secure memory regions.  Similarly, access permission control logic is required to 
manage access permission of peripherals.  Legacy peripherals and legacy bus masters are reused with 
appropriate bus wrapper logic. 
 

Figure 6 shows a typical SoC architecture based on TrustZone technology. The processor cluster is supported by a 
number of security hardware IPs that utilize TrustZone technology, for example the NS-bit, to work within the 
Trusted world. 
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Figure 6: Example TBSA-M system using TrustZone for Armv8-M 

 

In a TBSA-M system using TrustZone for Armv8-M, TrustZone isolates the Trusted world  from the non-Trusted 
world  and provides the level-1 isolation (see Section 4.6). 
Arm recommends deploying TrustZone for Armv8-M based solutions early in the design process, because PSA 
implementations using TrustZone for Armv8-M commonly provide robust and performant low-cost solutions 
with wide applicability.  

4.2 MPU-based isolation  
In a SoC that relies on MPU-based isolation, control of the Memory Protection Unit (MPU), is the primary means 
of isolation on an SoC, together with support for privileged execution on the processor. The separation of the 
Non-Trusted world and the Trusted world is provided by appropriate configuration of the MPU. 
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On this sort of platform, the PSA firmware framework uses a self-contained Secure Partition Manager (SPM) that 
creates independent secure domains and provides hardware-enforced compartments, called sandboxes, for 
individual code blocks by limiting access to memories and peripherals. The SPM:   

• Is initialized right after secure boot. 
• Runs in the privileged mode of the processor. 
• Sets up a protected environment using an MPU, for example the Arm Cortex-M MPU or a vendor-specific 

alternative. In particular:  
o Its own memories and the security-critical peripherals are protected from the unprivileged code. 
o Access Control Lists (ACLs) limit unprivileged access to selected hardware peripherals and 

memories. 
• Allows interaction from the unprivileged code by exposing Supervisor Call-based APIs. 
• Forwards and deprivileges interrupts to the unprivileged handler that has been registered for them. 
• Prevents register leakage when switching execution between privileged and unprivileged code, and 

between mutually untrusted unprivileged modules. 
• Forces access to some security-critical peripherals, for example Direct Memory Access (DMA), through 

Supervisor call-based APIs. 

When using MPU-based isolation, the application and other parts of the NSPE run in the unprivileged processor 
execution mode and: 

• Have direct memory access to unrestricted unprivileged peripherals. 
• Can require exclusive access to memories and peripherals. 
• Can register for unprivileged interrupts. 
• Cannot access privileged memories and peripherals. 

It is often difficult to run an application entirely in unprivileged state, because of restrictions on programs 
executing in this state. This means that significant parts of an application, with their accompanying 
vulnerabilities, might execute in a privileged state. Therefore, devices which rely solely on MPU and privileged 
execution for isolation afford the least robust implementations of PSA. 
 

4.3 Dual PE-based isolation 
It is sometimes convenient to dedicate one processing element to execute Trusted world firmware and to 
dedicate a second, different PE to execute Non-Trusted world firmware. This kind of design can provide 
sufficient isolation for a robust PSA implementation, together with suitable separation of requests, separate 
routing of interrupts and separation of debug.  
Figure 7 illustrates this approach: 
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Figure 7: Example of a dual-CPU TBSA-M architecture 
 

The separation between the worlds using dual PEs is supported by hardware in a number of ways. For example, 
a TrustZone-based system is functionally emulated by tagging bus requests and filtering them to ensure isolation 
between the Trusted and Non-Trusted worlds. Interrupts are statically hardwired to the core of the appropriate 
world. If more flexibility is required, then use a structure that routes some interrupts through a trusted interrupt 
controller first.  
 

This arrangement allows more flexibility in deploying CPU performance. However, it typically uses more area and 
power than an equivalent single TrustZone-based CPU approach. Also, calls between firmware in the Trusted and 
Non-Trusted worlds will typically suffer higher latency in a dual-CPU approach.  
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4.4 Custom logic based isolation 
Custom isolation logic is used to create generalized protection zones for SoC resources. In a protection zone, no 
access is granted to address regions, interrupts and debug for CPU execution contexts outside the zone. This 
mechanism can be used to separate the Non-Trusted world from the Trusted world and to provide a hardware 
foundation for PSA. 
For example, custom logic is used to restrict memory access dependent on the PC of the instruction that made 
the access. Such logic is supplemented to isolate interrupts and debug access using master or slave-side filters 
that are configured by the Boot ROM prior to loading of the application firmware. 

This arrangement allows PSA isolation to be built on top of the mechanism, provided the mechanism meets the 
security requirements outlined in Section 4.6.  Figure 8 illustrates this SoC design: 

 
Figure 8: Example of a TBSA-M architecture using custom isolation logic 
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Well-designed custom isolation logic can be very robust in protecting read-out of firmware IP by application 
software that is outside the firmware’s protected zone. However, in general, care must be taken in the 
integration and security verification of such schemes within the firmware ecosystem and the extent to which 
such designs are re-used. 

4.5 Trusted subsystems  
 

Trusted subsystems are re-usable blocks of security IP that sit within the trust boundary of the PSA RoT. They 
provide RoT security services to the device. The PSA RoT attests their implementation and configuration. They 
may be integrated, or external and bound to the SoC. Examples include IP, for example DRAM protection 
systems, or Trusted Peripherals that support cryptographic operations, and Secure elements and Security 
Enclaves. In the case of Secure Elements and Security Enclaves, the subsystem implements its own local RoT and 
its own local security life cycle. 
Security Elements are independent subsystems that provide a large set of RoT services for the device. Security 
Enclaves additionally integrate a processor on which it is possible to run application-specific firmware. 

Figure 9 illustrates a TBSA system in which a Trusted subsystem, in the form of a security enclave, combines 
hardware accelerators, RoT control hardware with a layer of security middleware, and software tools for the IC 
and device production process.  
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Figure 9: Example of a TBSA SoC with an integrated security element/secure enclave 

 
The security enclave provides:  

• Cryptographic acceleration for the protection of data-in-transit  and data-at-rest. 

• Protection of various assets belonging to different, optional, stakeholders, for example IC vendors, 
device manufacturers, service operator or users). These asset protection features include: 

o Image verification at boot/during runtime. 

o Authenticated debug. 
o Random number generation. 

o Lifecycle management. 
o Provisioning of assets. 
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Trusted subsystems combine with one of the isolation mechanisms described in 4.1, 4.3 and 4.4 to make the 
divide more robust. See Section 4.8 for details. 

 

TBSA systems can also pair an SoC with an external Security element. Figure 10 illustrates such a system. 
Depending on the application, a secure elements may be used to: 

• Support signature verification (for secure boot and firmware upgrade).  

• Key storage and wrapping and unwrapping of local or remote keys. 

• Generate on-chip key pairs. 

• Establish of a secure channel with remote host including transport layer security (TLS) handshake.  

• Application usage monitoring with secure counters.  

• Authenticate peripherals.  

• Attestation. 

 
It is essential to TBSA compliance that external secure elements robustly pair and create a secure channel with 
the host SoC. The Secure Element should reside within the Trusted world. See Section  4.6 for requirements. 
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Figure 10: Example of a simple TBSA-M SoC with an external security element 
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4.6 PSA isolation levels 
 
TBSA-M requires hardware support for isolation of software in accordance with the PSA firmware framework. 
Figure 11 illustrates the isolation levels: 

 
Figure 11: PSA isolation boundaries 
 

In PSA, the SPM is responsible for the isolation of the SPE from the NSPE, the PSA RoT from the Application RoT 
and secure partitions within the SPE. 
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The isolation must be enforced by platform hardware throughout the system using master-side or slave-side 
filters, for example, the SAU and MPU in an Armv8-M CPU. This enforcement prevents other bus masters from 
bypassing the isolation, and prevents software errors that could have the same effect.  

The hardware filters that enforce isolation must be configured by the SPM or the secure boot firmware before 
the SPM runs. The filters must not be accessible to the NSPE or any Secure Partitions that are isolated from the 
SPM. 

A PSA implementation fully isolates every secure partition, so that each partition only accesses its own data and 
peripherals, and only the SPM accesses the whole system.  
Increased isolation improves the security and robustness of the system, by reducing its vulnerability to software 
defects. However, these benefits come at the expense of additional hardware, memory, performance or energy. 
The PSA Security Model specifies multiple levels of isolation, in order to support implementations with different 
security, performance and cost trade-offs. Table 1 provides a summary of the three supported isolation levels: 

Table 1: PSA isolation security levels 
 

Isolation level Description 

Level 1 SPE isolation 
Two security domains 
SPE is protected from access by Non-secure application firmware and hardware 

Level 2 PSA RoT isolation 
Three security domains 
In addition to Level 1, the PSA RoT is also protected from access by the Application RoT 

Level 3 Maximum firmware isolation 
Three or more security domains 
In addition to Level 2, each Secure Partition is sandboxed and only permitted to access its own 
resources. This protects each Secure Partition from access by other Secure Partitions and 
protects the SPM from access by any Secure Partition. 

Arm recommends that Secure Partition firmware is designed to run with Level 3 isolation and does not assume 
that data is shared with another Secure Partition or the NSPE. This design increases the portability of firmware to 
run on multiple PSA implementations and reduces the risk of introducing vulnerabilities related to the sharing of 
data. 

Although the PSA firmware isolation levels are a useful indicator of the platform’s security capability, it does not 
include all forms of isolation that the platform provides. Many platforms also use temporal isolation, in which 
resources are only available within a specific time window, for example, during boot. The additional security 
provided by Trusted Subsystems does not form part of the specification of TBSA-M, but may be used as 
countermeasure for a threat model posted by a particular application (see Section 4.5). 
 

4.7 Basic architecture 
The Basic architecture performs most of the security functions within Trusted world software on the host 
processor. It is supported by a minimum set of required security hardware, for example: 

• Trusted Boot ROM. 
• Trusted RAM, Trusted External Memory Partitioning, or both. 
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• Trusted peripherals: 
o OTP Fuses, for secrets, counters, lifecycle states, etc. 
o Entropy source. 
o Timer. 
o Watchdog. 

The Basic architecture ensures that the Trusted world software has access to all the assets it requires, and has 
the underlying mechanisms to protect the integrity, confidentiality, and authenticity of the Trusted world. The 
Trusted world software exports cryptographic services to the Non-Trusted world, and supports the execution of 
Trusted services by, for example, implementing an environment that can run Trusted applications.  

 

4.8 Assisted architecture 
 

An Assisted architecture is a basic system that is supplemented with one or more Trusted subsystems. 
An Assisted architecture builds on the Basic architecture by adding hardware to accelerate and offload some of 
the cryptographic operations from the Trusted world software, and to provide increased protection to high value 
assets, for example root keys.  

The cryptographic accelerators support the most commonly used algorithms for encryption, decryption, and 
authentication, for example AES, TDES, SHA, RSA, and ECC. 

Arm recommends increasing protection for the keys in the system by implementing a hardware Key Store. The 
Key Store enables use of the keys by cryptographic accelerators, but prevents the keys from being read by both 
Non-Trusted and Trusted software. 

Assisted architectures can also contain hardware for governing life-cycle state transitions and enforcing lifecycle 
state policies. 

An assisted architecture provides a hardware-initiated response to detect tamper events, as well as hardware 
countermeasures for: 

• Invasive attacks, for example probing. 

• Side channel attacks, for example power and electromagnetic emission analysis. 
• Perturbation attacks, for example clock or voltage manipulation. 

 

 
 

5 TBSA-M security requirements [Normative] 
In order for a device to be compliant with TBSA-M, all applicable requirements must be met. This document 
covers a variety of IP types, and some will not be present on a particular SoC. The term applicable requirements 
describes those which relate to IP present on a particular SoC. 

 
Although current technologies are sometimes used for illustrative purposes, the following requirements are not 
technologically restrictive. In general, the requirements specify security objectives, rather than particular 
solutions. 
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TBSA-M devices require support for the essential PSA isolation levels. 
 

R001_TBSA_BASE The SoC must provide a hardware-based mechanism for separating the Trusted 
world  from the Non-Trusted world. 

 

This requirement supports PSA level 1 isolation (see section 4.6). 

 
 

R002_TBSA_BASE The SoC must provide a hardware-based mechanism which is able to separate 
partitions within the Trusted world. 

 

This requirement supports PSA levels 2 and 3 isolation (see Section 4.6). 

Arm recommends that SoCs provide a hardware-based mechanism so that secure partitions within the 
Application RoT is isolated from each other. This recommendation addresses PSA level 3 isolation.  
Examples of how R001_TBSA_BASE and  R002_TBSA_BASE may be met are given in Chapter 4.  

 

5.1 System view 
At an abstract level, the TBSA-M is a system that comprises a collection of assets, together with operations that 
act on those assets. 

In this context, an asset is a data set that has an owner and a particular intrinsic value, for example a monetary 
value. All data sets are assets associated with a value, even if that value is notionally zero. A data set is any 
stored or processed information, including executable code as well as the data on which it operates. 
High value assets that require protection belong to the Trusted world, while lower value assets that do not 
require protection belong to the Non-Trusted world. The actual classification, ranking, and mapping of assets to 
worlds depends on the target specifications, and is outside the scope of this document. 

Similarly, an operation belongs to a world and is therefore classified as either Trusted or Non-Trusted. 
R010_TBSA_BASE A Non-Trusted world operation must only access Non-Trusted world assets. 

R020_TBSA_BASE A Trusted world operation may optionally  access both Trusted and Non-Trusted 
world assets. 

As described in Chapter 4, some TBSA-M architectures will be built around TrustZone for Armv8-M. In this case, 
code executing on an Armv8-M PE with the security extension exists in one of two Security states, Secure state 
or Non-secure state. Secure state corresponds to Trusted world operations, and the Non-secure state 
corresponds to Non-Trusted world operations. 

R030_TBSA_BASE A SoC using TrustZone Isolation must be based on an Armv8-M architecture PE with 
the Security Extension and MPUs implemented. 

In order to support common embedded OSs in a convenient manner, Arm recommends implementing both 
secure and non-secure MPUs, with each supporting a minimum of eight regions. Arm also recommends that the 
SAU is implemented, with a minimum of four regions. 
Arm recognizes that the security features of a TBSA-M device are entirely implemented in hardware, and that 
the hardware might be configurable by software. 
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R040_TBSA_BASE The hardware and software of a TBSA-M device must work together to ensure that 
all the security requirements are met. 

5.2 Infrastructure 
The TBSA-M is underpinned by a hardware infrastructure that provides strong isolation between the operations 
and assets of the Trusted and Non-Trusted worlds.  
The processor is not the only key component of a larger SoC design that performs operations on stored assets 
within the wider system. In such a system, storage comprises registers, random access memory, and non-volatile 
memory. To provide the required protection for assets, the storage is divided, either physically or virtually, into 
two types: Secure and Non-secure. These types correspond to the Trusted and Non-Trusted worlds, respectively. 

5.2.1 Memory system 
Operations and assets are connected by transactions, in which a transaction represents read or write access to 
storage containing the asset. Each transaction originates from either the Trusted world or Non-Trusted world. 

As described in Chapter 4, the processor sees the memory map as into two spaces, Secure and Non-secure 
storage, in which Trusted world assets are held in Secure storage and Non-Trusted world assets are held in Non-
secure storage. 

To build a useful system, it is necessary to facilitate communication between the two worlds through shared 
memory. In the TBSA-M, this permits a Trusted operation to issue both Secure and Non-secure transactions. The 
opposite, however, is not true. A Non-Trusted operation can only issue Non-secure transactions. 

R010_TBSA_INFRA A Trusted operation can issue Secure or Non-secure transactions. 
R020_TBSA_INFRA A Non-Trusted operation must only issue Non-secure transactions. 

 

Note: There are special cases in TrustZone for Armv8-M systems which do not comply with the 
above equirements: 

Non-secure code calling a Secure API requires secure instruction fetches 
If cache memory is present, Non-secure operations might lead to cache eviction of Secure data. 

The data will not be accessible from Non-trusted world. 

 

As described in Chapter	4, Arm recommends adopting a consistent system-wide approach, so that Secure 
transactions only access Secure storage, and Non-secure transactions only access Non-secure storage. A 
recommended memory system design is described in [5]. 
R030_TBSA_INFRA A Non-secure transaction must only access Non-secure storage. 

The following requirements summarize the link between operations, transactions and storage: 
• A Non-Trusted operation operates in a Non-secure state and only issues Non-secure transactions 

targeting Non-secure storage locations. It must not issue Secure transactions, and therefore cannot 
access Trusted assets.   

• A Trusted operation operates in a Secure state and can issue either Secure or Non-secure transactions. 
As such, it can access both Secure and Non-secure storage. However, Arm recommends that a Secure 
transaction only access Trusted assets and that a Non-secure transaction only access Non-Trusted assets. 

In practice, memory modules (RAM or DRAM) are often split into only two regions, Secure and Non-secure. To 
map the regions correctly into the larger physical address map, remapping logic is implemented. In simple 
implementations, this is fixed logic, but it can also be programmable logic, which offers greater flexibility if 
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software is updated. In the latter case, the relevant configuration registers must only be accessible to Secure 
transactions and belong to the Trusted World. 

R040_TBSA_INFRA If programmable address remapping logic is implemented in the interconnect, then 
its configuration must be possible only from the Trusted world. 

Arm recommends that any programmable address remapping logic be programmable in secure privileged state.  
In TrustZone for Armv8-M systems, the mapping of resources into Secure or Non-secure memory is achieved 
using either fixed or programmable logic. However, a more optimal solution uses a target-based filter. Such a 
filter divides the memory into many regions and enables each memory region to be defined by software 
configuration as either Secure or Non-secure. Access is only permitted to a region if:  

• The region is Secure and ADDRESS.NS = 0. 
• The region is Non-secure and ADDRESS.NS = 1. 

The physical address space after the filter, which does not consider ADDRESS.NS, is consequently halved in size. 
Figure 12 shows the resulting address map: 

 
Figure 12: Filter aliasing 

 

The aliasing in the address map after filtering constrains the memory layout from the point of view of a bus 
master, for example an Arm processor.  
R050_TBSA_INFRA A unified address map that uses target side filtering to disambiguate Non-secure and 

Secure transactions must only permit all Secure or all Non-secure transactions to any 
one region. Secure and Non-secure aliased accesses to the same address region are 
not permitted. 

R060_TBSA_INFRA The target transaction filters configuration space must only be accessed from the 
Trusted world. 

At the interconnect level, before filtering, ADDRESS.NS forms an additional address bit. Each memory transaction 
must transport this bit, together with all other address bits, to the point at which the filter constraints are 
applied. 

Note: When using legacy interconnects for example the Advanced Peripheral Bus (APB) v3 or 
earlier, the peripheral bus does not support an ADDRESS.NS bit. In this case, it is necessary 
to perform filtering before a transaction reaches the bus. An example is a bus bridge 
joining Advanced eXtensible Interface (AXI) and APB. 
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The Arm TrustZone protection controller components of Arm CoreLink SIE-200 contain implementations of 
highly flexible target-based filters. 

Arm TrustZone protection controllers are configured to silently block illegal transactions, or to block and signal a 
security exception through a bus error or interrupt. If an interrupt is generated, it is classified as a Trusted 
interrupt, as described in Section 5.2.3. In any event, illegal transactions must be prevented from reading or 
writing to memory. 

R070_TBSA_INFRA Security exception interrupts must be wired or configured as Secure interrupt 
sources. 

For an Arm processor with TrustZone for Armv8-M, the Security state of the transaction is available at the 
boundary of the processor so that it is propagated through the on-chip interconnect. For example, in an AXI bus 
implementation, the Security state of the transaction, ADDRESS.NS, is mapped to the ARPROT[1] and 
AWPROT[1] signals so that: 

• ARPROT[1] indicates a Trusted read when low.  
• AWPROT[1] indicates a Trusted write when low. 
• An AXI bus master will generate the same signals to indicate the Security state of each transaction.  

In some interconnect designs, it is possible to re-configure the routing of packets to arrive at a different 
interface. Although the access address remains unchanged, this is dangerous and can lead to an exploitation 
mechanism. Such configuration a is only possible from the Trusted World using Secure transactions. 
R080_TBSA_INFRA Configuration of the on-chip interconnect that modifies routing or the memory map 

must only be possible from the Trusted world, unless it is not possible for such 
modifications to affect secure transactions. 

These techniques for address remapping and filtering are methods of constraint that bind storage locations to 
worlds.  
It is possible to have world-aware peripherals, in which the peripheral is visible in both Trusted World and Non-
Trusted World address aliases at the same time. It is also possible for that peripheral to use security attribute 
signals to determine if the access is from Trusted World, using a Trusted address alias, or from Non-Trusted 
world, using a Non-Trusted address alias. This arrangement does not use filters, but the Secure aliases of the 
peripheral address space must be in an XN (execute never) region. 

Whatever the method of constraint, a memory transaction must not be able to bypass it. 
One example is in TBSA-M systems which implement multiple caches that are upstream from a target filter, and 
are synchronized through a coherency mechanism. If such a mechanism, for example bus snooping, is 
implemented, then the mechanism must force a coherency transaction to pass through the target filter. 

R090_TBSA_INFRA All transactions must be constrained; it must not be possible for a transaction to 
bypass a constraining mechanism. 

5.2.2 Shared volatile storage 
Sometimes assets from different worlds occupy the same physical volatile storage location. In this case, the 
underlying storage, for example internal RAM, external RAM, or peripheral space, is called shared volatile 
storage. Because of the requirement to mitigate the leakage of assets, Arm recommends avoiding shared volatile 
storage whenever possible. 

 

A shared volatile storage implementation enables a storage location or region, which previously held a Trusted 
asset, to hold a Non-Trusted asset. Before such a storage location or region is reallocated from Trusted to Non-
Trusted, the Trusted asset must be securely removed. This is achieved using scrubbing. 
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Scrubbing is the atomic process of overwriting a Trusted asset with an unrelated value, which is either a 
constant, a Non-Trusted asset value, or a randomly generated number of the same size. In this situation, the 
term atomic indicates that the process must not be interrupted by the Non-Trusted world. 

R100_TBSA_INFRA If shared volatile storage is implemented, then the associated location or region 
must be scrubbed, before it can be reallocated from Trusted to Non-Trusted. 

Conversely, a shared volatile storage implementation enables a storage location or region. which previously held 
a Non-Trusted asset, to hold a Trusted asset. Take care to mitigate the threat of escalation of privilege. Before 
such a storage location or region is reallocated from Non-Trusted to Trusted, the storage must not be marked as 
executable by a PE in the Secure state. If an Armv8-M processor is used, this is achieved by ensuring that the 
storage is not attributed as NSC, and that it is marked as execute-never (XN) by the secure MPU when it is 
reallocated. If the storage is subsequently scrubbed, it might be made executable and attributed NSC. 

R110_TBSA_INFRA If shared volatile storage is implemented in a TrustZone for Armv8-M based system, 
then the associated location must not be executable or NSC immediately after it is 
reallocated from Non-Trusted to Trusted. 

Note: When a copy of Trusted data is held in a cache, the implementation must not permit any 
mechanism that provides the Non-Trusted world with access to that data. If a hardware engine is 
used for scrubbing, pay careful attention to the sequencing of operations, to ensure that the 
relevant cached data is flushed and invalidated before the scrubbing operation. This situation 
also applies to all hardware registers of any shared device. Even if there are no shared registers, 
the hardware must ensure there are no leaks between worlds. If the changing of some state of 
one world caused a changing in the state of another, secrets might be inferred.   

5.2.3 Interrupts 
In most cases, a Trusted interrupt must not be visible to a Non-Trusted operation, in order to prevent 
information leaks that might be useful to an attacker. Consequently, the on-chip interrupt network must be able 
to route any interrupt to any world. However, the routing of Trusted interrupts must only be configured from 
the Trusted world. 
The number of interrupts to be supported in each world depends on the target requirements and is not specified 
in this document. 

R120_TBSA_INFRA An interrupt originating from a Trusted operation must by default be mapped only to 
a Trusted target. By default, this must be the case following a system reset. 

R130_TBSA_INFRA Any configuration to mask or route a Trusted interrupt must only be carried out from 
the Trusted world. 

R140_TBSA_INFRA The interrupt network might be configured to route an interrupt originating from a 
Trusted operation to a Non-Trusted target. 

R150_TBSA_INFRA Any status flags recording Trusted interrupt events must only be read from the 
Trusted world, unless specifically configured by the Trusted world to be readable by 
the Non-Trusted world. 

These requirements permit a Non-Trusted world request to a Trusted operation to deliver a Trusted Interrupt to 
a Non-Trusted target, which signals the end of the operation.  

This Configuration of the interrupt is done by the Trusted world before or during the Trusted operation. 
Handle these operations carefully. Arm recommends that designs compliant with TBSA-M ensure that, if a 
requirement allows the Non-trusted world to trigger Secure interrupts, the hardware arrangement only allows 
the dedicated Secure interrupt to be triggered from the Non-Secure side. The Secure interrupt handler must be 
written carefully, in order to avoid denial of service attacks. 
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In the Arm architecture, these requirements are supported using the NVIC interrupt controller block. 

5.2.4 Secure RAM 
In a TBSA-M system, some Trusted code will execute from Secure RAM. The Trusted code might also store high 
value assets within the Secure RAM. In this document, Secure RAM refers to one or more dedicated regions that 
are mapped onto one or more physical RAMs. When a physical RAM is not entirely dedicated to Secure storage, 
it is shared between worlds. However, the underlying locations are not classified as shared volatile storage, 
unless they are re-allocated from Secure to Non-trusted worlds. The mapping of Secure regions is static and fixed 
by design, programmable at boot time, or even run time, although with more difficulty. 

A flexible implementation of Secure RAM consists of blocks of RAM that all default to being mapped into the 
Trusted world at boot, until Trusted software partitions it between secure and non-secure use.  
Arm recommends the use of on-chip RAM. However, SRAM can be used on a separate die, if it is within the same 
package as the main SoC. 

Example Secure RAM use cases are: 
• Secure boot code and data. 
• Monitor code. 
• A Secure OS. 
• Cryptographic services. 
• Trusted services, execution environments which conform to particular security standards and Trusted 

Applications (TAs). 
The Secure RAM size depends on the target requirements and is not specified in this document. Many TBSA-M 
systems will integrate all of their RAM requirements on-chip, using one or more independent banks. 

R160_TBSA_INFRA A TBSA-M system must integrate a Secure RAM. 
R170_TBSA_INFRA Secure RAM must be mapped into the Trusted world only. 

R180_TBSA_INFRA If the mapping of Secure RAM into regions is programmable, then configuration of 
the regions must only be possible from the Trusted world. 

 

Note: If Secure RAM is re-mapped from the Trusted world to the Non-Trusted world, it is classified 
as shared volatile storage, and it must meet the requirements of shared volatile storage.  

 

Many TBSA-M devices use embedded resources for both RAM and non-volatile memory (NVM). However, some 
devices might use DRAM, and some might use external NVM, for example serial flash. 

5.2.5 Power and clock management 
Modern battery-powered platforms have a high degree of power control and might integrate an advanced 
power management subsystem using dedicated hardware, and execute a small software stack from local RAM. 
In such cases, the management subsystem has control over a number of Trusted assets, for example: 

• Clock generation and selection. Examples include: 
o Phase-locked loops (PLLs). 
o Clock dividers. 
o Glitch-less clock switching. 
o High-level clock gating. 

• Reset generation. Examples include: 
o Registers to enable or disable clocks. 
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o State machines to sequence the assertion and de-assertion of resets in relation to clocks and power 
states. 

o Re-synchronization of resets. 
• Power control. Examples include: 

o Access to an off-chip power controller, switch, or regulator. 
o State machines for sequencing when changing power states. 
o Logic or processing to intelligently apply power states either on request, or dynamically. 

• State saving and restoration. To dynamically apply power states, some subsystems can also perform 
saving and restoration of system states without the involvement of the main application processor. 

Unrestricted access to this functionality is dangerous, because it could be used by an attacker to induce a fault 
that targets a Trusted service by, for example, perturbing a system clock. To mitigate this threat, the advanced 
power mechanism belongs in the Trusted world. The system must also integrate a Trusted management 
function, to perform policy checks on any requests from the Non-Trusted World, before they are applied. 
This approach still permits execution of most Non-Trusted complex peripheral wake up code from the Non-
Trusted world. 

R190_TBSA_INFRA The advanced power mechanism must integrate a Trusted management function to 
control clocks and power. It must not be possible to directly access clock and power 
functionality from the Non-Trusted world.   

The power and clock status are made available to the Non-Trusted world through APIs that exist in the Trusted 
world.  

 

Note: All system clocks are classified as Trusted because they can only be configured using the 
Trusted manager. 

 

Non-secure peripherals can have their own local clock and power control accessible to the Non-Trusted world, if 
such control is independent from the system clocks and power. 

5.2.6 Peripherals 
A peripheral is a hardware block with an operation supervised by a processor. It does not execute modifiable 
firmware. A peripheral implements one or more operations that act on assets. It has an interface to receive 
commands and data from one or more processors. Some peripherals are capable of direct memory access. 
Depending on the role of a simple peripheral in a particular use case, the wider system can map the operations 
of that peripheral into one world or the other. 

 
R210_TBSA_INFRA If access to a peripheral, or a subset of its operations, is dynamically switched 

between Trusted world and Non-Trusted world, then this must only be done under 
the control of the Trusted world. 

A Non-Trusted peripheral acts only on Non-Trusted assets. A Trusted peripheral can act on assets in both worlds. 
Complex peripherals act in both worlds, supporting both Trusted and Non-Trusted operations, as illustrated in 
Figure 13: 
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Figure 13: Peripheral operations 
 

A Trusted peripheral is a hardware block that implements at least one Trusted operation. Each operation has an 
interface that is mapped into the Trusted or Non-Trusted world, or into both worlds. 
A Trusted peripheral identifies the world in which a request originates. This identification ensures compliance 
with the general requirement that operations originating from the Non-Trusted world cannot access Trusted 
world resources (see Section 5.1). 

Non-Trusted world software must not bypass Trusted world policies by using peripherals to access Trusted world 
assets on its behalf. Some designs are subject to threat models in which particular hardware IP blocks may have 
unknown or undesirable behaviors. In these cases, use additional master side filters under sole control of the 
Trusted world to ensure that such IP cannot access Trusted world assets beyond that authorized by a Trusted 
world policy. 
The implementation of the operations is a design choice. The operations are built using fully separate hardware, 
or using the multiplexing of shared functions and resources.  

A Trusted peripheral must meet the following requirements, which are framed in terms of its operations: 
R220_TBSA_INFRA If the peripheral stores assets in local embedded storage, a Non-Trusted operation 

must not be able to access the local assets of a Trusted operation. 

R230_TBSA_INFRA A Trusted operation must be able to distinguish whether commands and data were 
received at an interface accessible to the Trusted world only, or at an interface 
accessible to the Non-Trusted world. 

R240_TBSA_INFRA A Trusted operation that exposes a Non-secure interface must apply a policy check 
to the Non-Trusted commands and data before acting on them. The policy check 
must be atomic and, following the check, it must not be possible to modify the 
checked commands or data. 

An example policy for a cryptographic accelerator peripheral would cover at least: 
• The world the input data can be read from. 
• The world the output data can be written to. 
• Whether encryption is permitted. 
• Whether decryption is permitted. 
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A specific example is a DMA engine that is shared between worlds. When configured from the Trusted world, the 
DMA can operate on Trusted and Non-Trusted memory, by appropriate use of the NS bit. However, when 
configured from the Non-Trusted world, the DMA must only operate on Non-Trusted memory, using an NS value 
of 1. 

5.3 Fuses 
TBSA-M devices require non-volatile storage to store a range of data across power cycles. These devices vary 
from device firmware to cryptographic keys and system configuration parameters. Fuses often control life cycle 
state management and the debuggability of the device.  
Non-volatile storage can use a variety of technologies, including floating gate memories or oxide-breakdown 
antifuse cells. These technologies vary with respect to certain properties, most notably whether they are OTP or 
Many Time Programmable (MTP). 

All types of non-volatile storage technologies are not available in all semiconductor processes. For example, 
floating gate memories are not economic in some bulk CMOS processes. Where required, off-chip non-volatile 
memory can augment the available on-chip non-volatile storage. 
Non-volatile storage technologies sometimes require error correction mechanisms, in order to ensure the 
correct storage of data during the lifespan of the device. 

R010_TBSA_FUSE A non-volatile storage technology must meet the lifetime requirements of the device, 
either through its intrinsic characteristics, or through the use of error correction 
mechanisms. 

Most security assets and settings that need to be stored on-chip require OTP non-volatile storage, in order to 
ensure that values cannot be changed. Following the industry norm, this document uses the term fuse to refer to 
on-chip OTP non-volatile storage. A fuse is implemented using an antifuse or an MTP technology with controlling 
logic to make it OTP. 

These are the fundamental requirements for implementing fuses in a TBSA-M device: 
R020_TBSA_FUSE A fuse is permitted to transition in one direction only, from its un-programmed state 

to its programmed state. The reverse operation must be prevented. 

R030_TBSA_FUSE  A fuse must only be programmed in accordance with its specified mechanism so 
that its reliable operation is not at risk. 

R040_TBSA_FUSE It must be possible to blow at least a subset of the fuses when the device has left the 
silicon manufacturing facility. 

R050_TBSA_FUSE All fuse values must be stable before any parts of the SoC that depend on them are 
released from reset. 

R060_TBSA_FUSE Fuses that configure the security features of the device must be configured so that 
the programmed state of the fuse enables the feature. That is, the programming of a 
security configuration fuse always increases security within the SoC. 

Note that R060_TBSA_FUSE is intended to ensure that a security feature cannot be deactivated after it is 
enabled. 

R070_TBSA_FUSE Lifetime guarantee mechanisms to correct for in-field failures must not indicate 
which fuses have had errors detected or corrected, just that an error has been 
detected or corrected. This indicator must only be available after all fuses have been 
checked. 
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Full error information is available to the lifetime guarantee mechanism itself, but Arm recommends not 
disclosing this full information, because it might assist an attacker. The security of the mechanism 
implementation must be considered. Arm recommends implementing the mechanism in hardware, but this 
might not be practical in some cases. Arm recommends performing software lifetime guarantee mechanisms 
soon after boot, so that the error indications are set. Arm also recommends disabling the visibility of the full 
error information until the next boot. 

Assets stored in fuses have a variety of characteristics that determine how they are accessed. The main types of 
fuses and their characteristics are summarized as follows: 

• Confidential fuses:  only read by the intended recipient, or a particular hardware module or software 
process.  

• Public fuses: can be accessed by any piece of software or hardware. 

• Lockable fuse: must comply with one of the following requirements: 
o They must prevent re-writing of a locked value. 
o A mechanism that prevents the programming of a fuse bit or group of fuse bits is implemented 

by reserving an additional fuse bit to act as a lock bit. 
o Writing the value is followed by its lock bit being set. Glue logic ensures that no further 

programming is possible. 
o Writing zero, which corresponds to the un-programmed fuse state, causes no value to be 

written. It causes only the lock bit to be set. 
o Tamper detection used to detect that the value has been modified. 
o A tamper protection mechanism is implemented by storing a code in additional fuses that are 

sufficient to detect any modification to the value: 
§ Writing the value is followed by storing the detection code. 
§ When the value is read by the system, a mechanism must recalculate the code from 

the value and compare it with the stored code. 
§ If the codes do not match, the value must not be returned to the system. 
§  

• Open fuse: programmed only once, at any point in the device lifetime. 

• Bitwise fuse: programmed one logical fuse at a time, regardless of the number of fuses required to store 
the value.  

• Bulk fuse: stores multi-bit values that must be programmed at the same time and are treated as an 
atomic unit. 

In the deployed lifecycle state, bitwise and bulk fuses must also comply with the following requirements: 
R080_TBSA_FUSE A confidential fuse whose recipient is a hardware IP must not be readable by any 

software process.  

R090_TBSA_FUSE A confidential fuse whose recipient is a hardware IP must be connected to the IP 
using a path that is not visible to software or any other hardware IP. 

Usually, this is implemented as a direct wire connection.  
R100_TBSA_FUSE A confidential fuse whose recipient is a software process might be readable by that 

process and must be readable by privileged software. 

R100_TBSA_FUSE permits a kernel level driver to access fuses for a user space process. The confidentiality relies 
on the kernel level driver only passing fuse values to the correct user space process. 
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R110_TBSA_FUSE A confidential fuse whose recipient is a Trusted world software process must be 
protected by a hardware filtering mechanism that can only be configured by secure 
software, for example an NS-bit filter. 

R120_TBSA_FUSE It must be possible to fix a lockable fuse in its current state, regardless of whether it 
is programmed or un-programmed. 

R130_TBSA_FUSE The locking mechanism for a lockable fuse can be shared with other lockable fuses, 
depending on the functional requirements. 

An example of R130_TBSA_FUSE is a single locking mechanism for all fuses that are programmed by the silicon 
vendor. 

R140_TBSA_FUSE A bulk fuse must also be a lockable fuse to ensure that any unprogrammed bits 
cannot be programmed later. 

R150_TBSA_FUSE Additional fuses that implement lifetime guarantee mechanisms must have the 
same confidential and write lock characteristics as the logical fuse itself. 

5.4 Cryptographic keys 
Fundamental to the security of a system are the cryptographic keys that provide the authenticity and 
confidentiality of the assets that the system uses. 
It is important to treat a key as an atomic unit when it is created, updated, or destroyed. This principle applies at 
the level of the requesting entity. Replacing part of a key with a known value, and then using that key in a 
cryptographic operation, makes it much easier for an attacker to discover the key using a divide and conquer 
brute-force attack. This is especially relevant when a key is stored in memory units that are smaller than the key. 
An example of this principle is a 128-bit key that is stored in four 32-bit memory locations. Entities, for example 
Trusted firmware functions, that implement key creation, updating or destruction services should ensure that 
their clients cannot observe or use keys in a way that breaks the assumption of atomicity. 

  
R010_TBSA_KEY A key must be treated as an atomic unit. It must not be possible to use a key in a 

cryptographic operation before it has been fully created, during an update 
operation, or during its destruction. 

R020_TBSA_KEY Any operations on a key must be atomic. It must not be possible to interrupt the 
creation, update, or destruction of a key. 

R030_TBSA_KEY When a key is no longer required by the system, it must be put beyond use to 
prevent a hack at a later time from revealing it. 

If a key is put beyond use, it must be impossible to use or access it. This is achieved either by hiding the key 
through blocking access to it, or by removing the key from the system through scrubbing the storage location 
that contains the key. 
Keys have a range of characteristics that influence the level of protection to be applied, and how a keys is used. 

5.4.1 Cryptographic schemes 
A cryptographic scheme provides one or more security services, and is based on a purpose and an algorithm 
requiring specific key properties and key management. 
 
Keys are characterized as private, public or symmetric, according to their classification and use.  
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Broadly, each key should be used for a single purpose, for example encryption, digital signature, integrity, or key 
wrapping. The main motivations for this principle are: 
 

• Limiting the uses of a key limits the potential harm if the key is compromised. 
• The use of a single key for two or more different cryptographic schemes reduces the security provided 

by one or more of the processes. 
• Different uses of a single key can cause conflicts in how each key is managed. For example, keys used 

in different cryptographic processes may have different lifetimes. In this case, a key may be retained 
longer than is best practice for one or more uses of that key. 

  
If a scheme can provide more than one cryptographic service, this principle does not prevent use of a single key. 
An example is use of a symmetric key both to encrypt and to authenticate data in a single operation. Another 
example is use of a digital signature to provide both authentication and integrity.  
 

Re-using part of a larger key in a scheme that uses a shorter key, or using a shorter key in a larger algorithm and 
padding the key input, can leak information about the key, so these practices, too, are prohibited. 
R035_TBSA_KEY A key must only be used by the cryptographic scheme for which it was created. 

5.4.2 Static and ephemeral keys 
Different keys in the same the system can have very different lifespans. These lifespans are also known as 
cryptoperiods. Some keys are programmed during SoC manufacture and never change, while others will exist 
only during a communication session. 

A static key is a key that cannot change after it is introduced to the device. It is stored in an immutable structure 
like a ROM, or in a set of fuses. Although a static key cannot have its value changed, this does not preclude it 
from being revoked or made inaccessible by the system. 

R070_TBSA_KEY A static key must be stored in an immutable structure, for example a ROM or a set of 
bulk-lockable fuses. 

Ephemeral keys have a short lifespan. In many cases, they only exist between power cycles of the device. 
Ephemeral keys are created in the device in a number of ways.  

• Derivation: sometimes it is useful to create one or more keys from a source key. This method is called 
key derivation. Derivation is usually used to create ephemeral keys from static keys. 

A key derivation operation must use a cryptographic one-way function that preserves the entropy of the 
source key, and the operation must be unique for each derived key. Common derivation constructions are 
based on use a keyed Hash Message Authentication Code (HMAC) or a Cipher-based Message 
Authentication Code (CMAC). Refer to the recommendations for key derivation in [18] for a detailed 
treatment. 

Collectively, the inputs to the one-way derivation function are referred to as source material. 

R080_TBSA_KEY To prevent the re-derivation of previously used keys, only Trusted code can have 
access to all of the source material. 

This requirement allows Non-Trusted code access to part of the source material, provided that this is 
insufficient to re-derive previously used keys. 

• Injection: A key is introduced into the system from storage or through a communication link. One 
example is the key in a license certificate. To ensure that the key is encrypted during transit, the 
injection is often protected by another key. 

• Generation: Ephemeral keys are generated on the device by simply sampling random numbers or by 
using random numbers to create a key, for example in a Diffie-Hellman key exchange protocol. 
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When an ephemeral key is no longer required, it must be removed securely from the system. This must happen 
even if the event that makes the key redundant is unexpected.  

R090_TBSA_KEY If an ephemeral key is stored in memory or in a register in clear text form, the 
storage location must be scrubbed before being used for another purpose. 

5.4.3 Device unique and common keys 
 
It is important to distinguish two types of keys. 

Device unique:  A device unique key is statistically unique for each device, so the probability of another device 
having the same key value is insignificant. For TBSA-M systems, a key with at least 128-bits of entropy is 
considered to be sufficient for device uniqueness. 
 

Common - A common key is present on multiple devices. Common keys are sometimes referred to as class keys. 

5.4.4 Source 
Different keys in the same the system are restricted in their domain of operation in order to further isolate 
Trusted world assets from those in the Non-Trusted world. 
Non-Trusted world: 

R100_TBSA_KEY A key that is accessible to, or generated by, the Non-Trusted world must only be 
used for Non-Trusted world cryptographic operations, which are operations that are 
either implemented in the Non-Trusted world, or have both operands and results in 
the Non-Trusted world. 

Trusted world: 

R110_TBSA_KEY A key that is accessible to, or generated by, the Trusted world can be used for 
operations in both Non-Trusted and Trusted worlds, and even across worlds, 
provided that: 

• The Non-Trusted world cannot access the key directly. 

• The Trusted world can control the use of the key through a policy. 

An example key usage policy would cover at least the following: 
• The world the input data is permitted to be read from. 
• The world the output data is permitted to be written to. 
• Permitted operations. 

In the Assisted architecture, the Source key characteristic is extended to include Trusted hardware, when the key 
is derived or generated solely by hardware. 

R140_TBSA_KEY A Trusted hardware key must not be directly accessible by any software. 

A Trusted hardware key is used for Trusted world cryptographic operations, but its usage in a Non-Trusted world 
must be subject to a policy. 
R150_TBSA_KEY The Trusted world must be able to enforce a usage policy for any Trusted hardware 

key that can be used for Non-Trusted world cryptographic operations. 
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5.4.5 Root keys 
A TBSA-M-compliant SoC must provide authentication and encryption services through the use of embedded 
cryptographic keys. The exact number of embedded keys and their type depends on the target requirements, 
and is not specified in this document. 

However, a TBSA-compliant device must embed at least two root keys, one for confidentiality and one for 
authentication. Other keys can be derived from these keys: 

• A Hardware Unique Key (HUK), which provides the RoT for confidentiality. 
• A root authentication key, which is the public key half of an asymmetric key pair. This key might belong 

to an RSA or to an elliptic curve cryptosystem (ECC), and is referred to as the RoT Public Key (ROTPK). 
Examples of other embedded root keys are: 

• Endorsement keys: these asymmetric key pairs prove identity, and therefore trustworthiness, to the 
external world. 

• Additional symmetric keys for firmware decryption and provisioning. These keys are either unique to the 
device, or are class keys that are common across a family of devices. 

The use of ECC for asymmetric cryptography is often beneficial, because its smaller key sizes lessens storage and 
transmission requirements. For example, depending on the algorithm and parameters chosen, the RSA algorithm 
of key size 3072 bits gives comparable security to an ECC algorithm of key size in the range 256-383 bits [19]. 

System architects should also review the comparative performance of RSA and ECC implementations in terms of 
throughput for each relevant key use case.  

R160_TBSA_KEY A TBSA-M device must either entirely embed an ROTPK, or the information that is 
needed to securely identify it. 

When no longer in use, Arm recommends hiding the ROTPK using a non-reversible mechanism, for example a 
sticky register bit that is activated by the boot software.  

An ROTPK key size appropriate for a security strength of 128-bits as recommended by NIST [19] must be used. 
The reason for this is to support the longevity of the device beyond the year 2030. 
R180_TBSA_KEY An elliptic-curve-based ROTPK must be at least 256 bits in size. 

R190_TBSA_KEY An RSA-based ROTPK must be at least 3072 bits in size. 

If an asymmetric cryptosystem is implemented, the following approach is permitted to reduce the ROTPK 
storage footprint. 

Instead of the key itself, a cryptographic hash of the key is stored in on-chip non-volatile storage. The public key 
can then be stored in external non-volatile memory. When required, the key must be retrieved from external 
memory before it is used, and successfully compared with the stored hash by Trusted hardware or software. This 
approach is known as hash locking. Because this approach is not susceptible to a second pre-image attack, only 
half of the digest bits from an approved hash algorithm need to be stored. For example, a common truncation 
mode is for the leftmost 128 bits from a SHA-256 digest to be used [19]. 

R200_TBSA_KEY If a cryptographic hash of the ROTPK is stored in on chip non-volatile memory, rather 
than the key itself, it must be immutable. 

R220_TBSA_KEY A TBSA-M device must embed an HUK in confidential-lockable-bulk fuses. 
R230_TBSA_KEY The HUK must have at least 128 bits of entropy. 

R240_TBSA_KEY The HUK must only be accessible by Trusted code or Trusted hardware that act on 
behalf of Trusted code. 

The storage size and accessibility options for root keys are summarized in Table 2. 
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Table 2: Root key summary 

Name On-Chip Data Size Off-Chip Data Size Access to On-Chip Data 

ROTPK – RSA 3072 bits (Key) 0 bits During boot ROM execution. 
Only 

128 bits (Digest) 3072 bits (Key) During boot ROM execution 
only. 

ROTPK – ECC 256 bits (Key) 0 bits During boot ROM execution 
only. 

HUK 128 bits (key) 0 bits Trusted code/Trusted hardware 
only. 

5.5 Trusted boot 

5.5.1 Overview 
The secure configuration of a TBSA-M device depends on Trusted software that forms part of a chain of trust, 
beginning with the Trusted boot of the SoC. TBSA-M security is not possible without a Trusted boot mechanism. 

Trusted boot is based on a fixed and immutable Trusted boot image. It is the first code to run on the Arm 
processor, and is responsible for verifying and launching the next stage boot. The Trusted boot image must be 
fixed within the SoC at manufacture time and is stored in an embedded ROM. This ROM is referred to as the 
Boot ROM. Boot ROMs are typically implemented as either mask ROM, or by embedded flash with hardware 
support to ensure that, once programmed, the Boot ROM cannot be subsequently altered. The Boot ROM 
contains both the boot vectors for all processors, and the Trusted boot image. 

R010_TBSA_BOOT A TBSA-M device must embed a Boot ROM with the initial code that is needed to 
perform a Trusted system boot. 

The immutability of the initial Boot ROM is critical to the security of the device. If write-disabled embedded flash 
is used, then consider use of fuses or Trusted Subsystems or special write-once registers to disable writes to the 
boot partition. The robustness of the Boot ROM implementation depends on how strongly the design can 
demonstrate that vulnerabilities in code running on the host cannot lead to mutability of the Boot ROM. When 
the underlying storage technology is mutable with, for example, embedded flash, Arm recommends using OTP 
fuses or a controlling Trusted subsystem (e.g. Arm CryptoCell) to provide the necessary robustness guarantees. 

 
Typically, the boot loader is divided into several stages. The first stage is the Boot ROM. Later stages might be 
loaded from non-volatile storage into Secure RAM and executed there, or executed directly from eFlash. In this 
document, the second stage boot loader is referred to as Trusted Boot Firmware. The firmware that is loaded by 
the Trusted Boot Firmware is called Trusted Runtime Firmware. 

5.5.2 Boot types 
There are two classes of boot: a cold boot and a warm boot. A cold boot is not based on a previous system state. 
Normally, a cold boot occurs when the platform is powered up, and a hard-reset signal is generated by a power-
up reset circuit. However, if the design includes a software lock-up, a hard-reset option that triggers a cold boot 
might also be available to the user. 
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A warm boot can deploy one of the following methods to reuse the stored system state, on resuming from sleep, 
for example: 

• The Boot ROM can use a platform-specific mechanism that is designed into the Boot ROM to distinguish 
between a warm boot and a cold boot. 

• The SoC can use platform-specific registers to support an alternate reset vector for a warm boot. 
R020_TBSA_BOOT If the device supports warm boot, a flag or register that survives warm boot must 

exist to enable distinguishing between warm and cold boots. This register or flag 
must be programmable only by the Trusted world and must be reset after a cold 
boot. 

Typically, any storage that is required to support these mechanisms is implemented within a power domain that 
is always powered up. 

5.5.3 Boot configuration 
If the SoC implements multiple processor cores, then the designated boot processor core is called the primary 
processor core. After the de-assertion of a reset, the primary processor core executes the Boot ROM code, and 
the remaining cores are held in reset, or a safe platform-specific state, until the primary processor core initializes 
and boots them. 
R030_TBSA_BOOT On a cold boot, the primary processor must boot from the Boot ROM. It must not be 

possible to boot from any other storage unless Trusted kernel debug is enabled. For 
more information about Trusted kernel debug, see section 5.10. 

In one possible implementation, the platform power controller holds all secondary processors in a reset state, 
while the primary processor executes the Boot ROM until it requests the secondary processors to be released. In 
an alternative implementation, all processors execute from the generic boot vector in the Boot ROM after a cold 
boot. However, the Boot ROM identifies the primary processor and permits it to boot using the Trusted boot 
image, while the secondary processors are made inactive.  
The Armv8-M architecture, when implemented with the Security Extension, will boot into Secure Thread mode 
for both warm and cold boot. 

The Trusted Boot ROM contains sensitive code that verifies and decrypts the next stage of the boot. If an 
attacker read and disassembled the ROM image, they would gain valuable information that could be used to 
target an attack that circumvents the verification mechanism. For example, timing information is used to target a 
fault injection attack. 
Arm recommends making the Trusted boot image within the Boot ROM accessible only during boot. Device 
designers must consider implementing a non-reversible mechanism which prevents access by, for example, 
hiding the Trusted boot image using a sticky register bit that is activated by the boot software. This 
recommendation excludes the initial code that supports warm boot. 

Arm recommends that the Trusted Boot Firmware image should be stored encrypted using an approved 
algorithm, when the image is stored in external NVM. This practice deters the acquisition of the image by an 
attacker to inspect for vulnerabilities.  
The Trusted Boot Firmware image is encrypted either by using a HUK-derived key or by using a common static 
key. Using a HUK-derived key requires a unique image for each device. Using a common static key enables the 
same image to be used across a set of devices. Arm recommends authenticating externally held Firmware using 
an approved algorithm. 

Arm also recommends protecting the key that decrypts Trusted boot firmware from being accessed or re-derived 
after boot, in order to mitigate the threat of attacks revealing the plaintext of Trusted Boot Firmware image. The 
key and its source material must be either inaccessible or accessible only by the Trusted world. 
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The Trusted Boot Firmware code verifies and, if successful, launches the next stage boot, which is Trusted 
Runtime Firmware. For TBSA-M devices, this firmware might be held in either on-chip or off-chip non-volatile 
memory. When the Trusted Runtime firmware is held in on-chip NVM, then this may be executed in place 
following verification. However, if this firmware is held in off-chip NVM, its launch is a non-trivial operation. This 
is because portions of the image must be copied to RAM before authentication. When loaded into RAM, the 
image is optionally decrypted before it is verified. If verification is successful, the image is executed. Verification 
is based on public key cryptography, which uses a digital signature scheme. Arm recommends using different 
keys for decryption and for Trusted Boot Firmware. 

A boot status register is implemented to indicate the boot state of each Trusted processor. For example, the 
boot status register enables the application processor to check whether other Trusted processors are booted up 
correctly. The register must be made available to secure debug. The register can also be used as a general boot 
status register. 
R090_TBSA_BOOT If a boot status register is implemented, then it must be accessible only by the 

Trusted world.  

5.5.4 Stored configuration 
Some aspects of the secure boot behavior, which are governed by the Trusted ROM, might depend on stored 
configuration information. For example, in the case of a warm boot, configuration information might be stored 
in Trusted registers that are immutable between secure boot executions. This is implemented using a sticky 
register bit to prevent access to the data. The sticky bit is set by the secure boot code when the necessary 
operations of a cold or warm boot have been performed. The stick bit is then reset by triggering a warm or a cold 
boot.  
In the case of a cold boot, the Trusted ROM behavior might be entirely fixed in the implementation. However, it 
can also be influenced by additional configuration information stored in fuses. 

Fuse configuration information is used for the following purposes: 
• Selection of the boot device. 
• Storage of the root public authentication key. 
• Storage of a root key for boot image decryption. 
• Storage of other boot specific parameters. 

5.5.5 Secure lockdown 
For certain applications, Arm recommends that the Boot ROM fixes certain registers soon after reset, so that 
they cannot be subsequently changed until the next reset. This is because boot ROM firmware, in practice, is 
smaller, and more tightly audited, than the secure software that follows. Examples of state which the Boot ROM 
might want to fix are: 

• Secure Vector Table Offset Register (VTOR_S). 
• Secure MPU. 
• Non-secure MPU. 
• Security Attribution Unit. 

Armv8-M Cortex implementations present signals at the processor boundary. These might be wired into a write-
once register to facilitate lockdown. 

5.5.6 Assisted architecture 
At each step in the boot chain, each stage must verify the next. If the Trusted Boot Firmware is encrypted, a 
decryption step is also required. Verification of an image is based on a cryptographic hash function and 
asymmetric cryptography. Decryption of an image is based on symmetric cryptography. As the underlying 



DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved.  Page 51 
1.0 Beta Release 1  Non-Confidential 

cryptographic algorithms are CPU-intensive, the Assisted architecture implements hardware acceleration. See 
Section 4.8. 

In an Assisted architecture, the symmetric key that decrypts the Trusted Boot Firmware is used only by the 
accelerator peripheral, and is not visible to software. 

R100_TBSA_BOOT In an Assisted architecture, the key to decrypt the Trusted Boot Firmware image 
must be visible only to the acceleration peripheral. 

5.6 Trusted timers 

5.6.1 Trusted clock source 
Trusted clock sources are required to implement Trusted watchdog timers and Trusted time. Any clock source 
that the Trusted world depends on is classified as a Trusted clock source, and can only be configured from the 
Trusted world. 
In addition to this, a Trusted clock source must be robust against tampering that happens outside the control of 
the associated Trusted manager. Two recommended protection strategies are possible: 

• Internal clock source: The clock source is an integrated autonomous oscillator within the die and cannot 
be easily altered or stopped without deploying invasive techniques. 

• External clock source: The clock source is an external XTAL or clock module and connects to the main 
SoC through an I/O pin. In this case, an attacker can easily stop the clock or alter its frequency. If this is 
the case, then the main SoC must implement monitoring hardware that can detect when the clock 
frequency is outside its acceptable range. 

Arm recommends that, if clock monitoring hardware is implemented, the hardware must expose a status 
register indicating whether the associated clock source is compromised. This register must be readable only from 
the Trusted world, in order to prevent leakage or modification of information that may assist an attacker. 
To signal a clock frequency violation, it might be useful to add a Trusted interrupt to any Trusted clock 
monitoring hardware. 

5.6.2 General Trusted timer 
Trusted timers are required to provide time-based triggers to Trusted world services. A TBSA-M system must 
support one or more Trusted timers. 

R030_TBSA_TIME At least one Trusted timer must exist. 
R040_TBSA_TIME A Trusted timer must only be modified by a Trusted access. Examples of 

modifications are the timer being refreshed, suspended, or reset.  

R050_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted clock source. 

5.6.3 Watchdog 
A TBSA-M system must support one or more Trusted watchdog timers. 

Trusted watchdog timers are required to protect against denial of service, which could occur when, for example 
secure services depend on the RTOS scheduler. In such cases, if the Trusted world is not entered before a pre-
defined time limit, a reset is issued and the SoC is restarted. 
A Trusted watchdog timer might need to signal an interrupt in advance of the reset, permitting some state save 
before a reboot. The watchdog timer must use a mechanism that can indicate to boot software whether the 
expiry of the watchdog timer is the reason for the reboot. 

R060_TBSA_TIME At least one Trusted watchdog timer must exist. 
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R070_TBSA_TIME After a system reset, a Trusted watchdog timer must be started before execution of 
the immutable boot code transfers control to the next firmware stage. 

R080_TBSA_TIME A Trusted watchdog timer must only be modified by a Trusted access. Examples of 
modifications are the timer being refreshed, suspended, or reset.* 

Following a reset, a Trusted system timer must be initiated prior to execution of the handover from the 
immutable boot ROM to the first part of the boot process which executes from mutable code. If mitigation 
against manipulation of embedded flash or RAM at reset is part of the device threat model, then Arm 
recommends initiating the watchdog by hardware before any code execution starts. 

*Note For reasons of practicality, compliance with R080_TBSA_TIME is preferred, but not mandatory, during 
debug. Allowing invasive (halting) debug of the Non-Trusted world in the deployed state may also affect 
the Trusted world timers in many implementations. System designers should consider whether allowing 
invasive debug of the Non-Trusted world creates exploitable vulnerabilities in the operation of Trusted 
timers, including Trusted Watchdog timers, and should take measures to mitigate this possibility.  

 
Arm recommends using a clock speed of at least 1 Hz when the device is not in a power saving cycle. 

R090_TBSA_TIME Before needing a refresh, a Trusted watchdog timer must be capable of running for a 
time period that is long enough for the Non-Trusted re-flashing of early boot loader 
code.  

R100_TBSA_TIME A Trusted watchdog timer must be able to trigger a reset of the SoC, after a pre-
defined period of time. This value is fixed in hardware or programmed by a Trusted 
access. 

R110_TBSA_TIME A Trusted watchdog timer must implement a flag that indicates the occurrence of a 
timeout event that causes a warm reset, to allow post-reset software to distinguish 
this from a power-up cold boot. 

R120_TBSA_TIME The clock source driving a Trusted watchdog timer must be a Trusted clock source. 

5.6.4 Trusted time 
Many Trusted services, for example feature enablement, rely on the availability of Trusted time. Typically, 
Trusted time is implemented using an on-chip real-time counter that is synchronized securely with a remote 
time server.  

An ideal implementation of a Trusted real-time clock (TRTC) consists of a continuously powered counter driven 
by a continuous and accurate clock source, with Trusted time programmable only from the Trusted world. 
However, devices that contain a removable battery must deal with power outages. 
A suitable solution for dealing with power outages is realized by implementing a counter together with a validity 
mechanism, for example a status flag, that indicates whether a valid time has been loaded. 

A TBSA-M system deploying this solution implements Trusted time using a TRTC that consists of a Trusted 
hardware timer. The Trusted hardware timer is associated with a mechanism indicating whether the current 
time is valid, and receives a Trusted clock source. The mechanism indicates when the Trusted timer has been 
updated by a Trusted service, and indicates when power is removed from the timer. Arm recommends that the 
Trusted timer and its validity mechanism reside in a power domain that remains powered up as much as 
possible. 
When Trusted time is lost because of a power outage, the response depends on the target specifications. For 
example, it might be acceptable to restrict specific Trusted services until the TRTC has been updated by the 
appropriate Trusted service. 
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R130_TBSA_TIME A TRTC must be configured only by a Trusted world access. 
R140_TBSA_TIME All components of a TRTC must be implemented within the same power domain. 

R150_TBSA_TIME On initial power up, and following any other outage of power to the TRTC, a validity 
mechanism must indicate that the TRTC is not Trusted. 

R160_TBSA_TIME The TRTC must be driven by a Trusted clock source. 

5.7 Version counters 
A compliant TBSA-M system must implement a core set of Trusted non-volatile counters, which are required for 
version control of firmware and Trusted data held in external storage. In order to prevent replay attacks, it is 
important that these counters cannot be rolled back. 
The following counters are mandatory: 

• A Trusted firmware version counter. 
• A Non-Trusted firmware version counter. 

Ideally, an SoC implements version counters using on-chip MTP storage, for example embedded flash 
technology.  
OTP storage, based on anti-fuse technology, is widely available and cost effective. A non-volatile counter is 
implemented by mapping each possible value that is greater than one onto a separate fuse bit. Each counter 
increment is achieved by programming a further bit. As one bit is required for each value, this is costly for large 
counters. For example, a 10-bit counter requires 1024 bits of storage. For this reason, practical limitations must 
be imposed on the maximum count values for fuse-based implementations. 

The size requirement for a version counter depends on the target specification. For a TBSA-M system, the 
minimum requirements are: 
R010_TBSA_COUNT An on-chip non-volatile Trusted firmware version counter implementation must 

provide a counter range of at least 0 to 63. 

R020_TBSA_COUNT An on-chip non-volatile Non-Trusted firmware version counter implementation must 
provide a counter range of at least 0 to 255. 

All on-chip non-volatile version counters must also meet the following requirements: 

R030_TBSA_COUNT It must only be possible to increment a version counter through a Trusted access. 

R040_TBSA_COUNT It must only be possible to increment a version counter. It must not be possible to 
decrement it. 

R050_TBSA_COUNT When a version counter reaches its maximum value, it must not roll over, and no 
further changes must be possible. 

R060_TBSA_COUNT A version counter must be non-volatile, and the stored value must survive a power 
down period up to the lifetime of the device. 

 

Furthermore, Trusted version counters might also be required to support version control of other platform 
software. A suitable implementation might employ one counter per software instance, or group together a list of 
version numbers inside a database file, which is itself versioned using a single counter. 
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5.8 Entropy source 
Many cryptographic protocols depend on challenge response mechanisms that utilize truly random numbers. 
This means that an embedded true random number generator (TRNG) is an important element of a TBSA-M 
system. 

When platform requirements demand a TRNG, there is normally an associated requirement specifying the 
quality of the source. More commonly, a set of tests must be passed by a compliant source. 
The quality of a random source is normally described in terms of entropy. In information theory, entropy is 
measured on a logarithmic scale in the range [0,1]. For a given string of bits provided by a TRNG, the maximum 
entropy of 1 is achieved if all bit combinations are equally probable. 

A formal treatment of entropy is found in [13]. 
A hardware realization of a TRNG consists of two main components: an entropy source and a digital post 
processing block, as shown in Figure 14:  

 

 
Figure 14: Entropy source top level 
 

The entropy (noise) source incorporates the non-deterministic, entropy-providing circuitry that provides the 
uncertainty associated with the digital output by the entropy source.  
Most techniques for constructing an on-chip entropy source exploit thermal noise on the die. 

The digital post-processing block collects entropy from the analog source through sampling, to monitor the 
quality of the source, and to filter it appropriately, to ensure a high level of gathered entropy. For example, 
repeated periodic sequences are clearly predictable and must be rejected. This is important because fault 
injection techniques can induce predictable behavior into a TRNG and attack the protocols that use it. 

For any entropy source design, the quality of the entropy is reduced as the sample rate increases. Any design has 
a maximum safe ceiling for the sample rate, and this sample rate might not be high enough to meet the overall 
system requirements. 

Although it is possible to design a filtering scheme removing common and predictable patterns that can occur in 
an entropy source, other, more complex patterns might persist, which degrade the available entropy. The extent 
of any such degradation depends on the quality of the source, and in some cases additional digital processing 
might be required to compensate for it. 
A common compensation technique utilizes a cryptographic hash function to compress a large bit string of lower 
entropy into a smaller bit string of higher entropy. However, this function comes at the expense of available 
bandwidth. 

Digital post processing
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To counter this situation, the digital post processing stage expands the entropy source to provide a greater 
number of bits per second, by using the filtered or compressed source to seed a cryptographically strong pseudo 
random sequence generator with a very large period. 

A definitive treatment of these steps is found in the NIST Draft Special Publication 800-90b. 

R010_TBSA_ENTROPY The entropy source must be an integrated hardware block. 
Although some or all of the digital post processing can be performed in software by a Trusted Service, Arm 
recommends a full hardware design. 

It is not possible to construct a TRNG that yields exactly one bit of entropy per output bit, so it is permissible to 
provide output samples together with their assessed entropy in bits. For example, the TRNG might provide 32-bit 
samples that contain only 24 bits of entropy. If the assessed entropy of each sample is variable, the TRNG must 
provide an assessed entropy value with each sample, unless the assessed entropy is a fixed and known constant. 
R020_TBSA_ENTROPY The TRNG must produce samples of known entropy. 
There are many possible choices for measuring entropy. Following the guidance in NIST SP 800-90 [13], Arm 
recommends using a conservative measure called min-entropy. Min-entropy is used as a worst-case measure of the 
uncertainty associated with observations of X. If X has min-entropy m, then the probability of observing any 
particular value is no greater than 2-m. 
  

A number of test suites exist to ensure the quality of a TRNG source. Arm recommends that the TRNG design 
passes the following test suits: 
 

Table 3: Entropy test suites 

Name Details 

NIST 800-22 A Statistical Test Suite for Random and Pseudorandom Number 
Generators for Cryptographic Applications, April 2010 
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.ht
ml 

DieHard http://www.stat.fsu.edu/pub/diehard/ 
https://wayback.archive.org/web/20160125103112/http://stat.fsu.edu/
pub/diehard/ 

DieHarder http://www.phy.duke.edu/~rgb/General/dieharder.php 

ENT http://www.fourmilab.ch/random/ 

 
 

R030_TBSA_ENTROPY The TRNG must pass the NIST 800-22 test suite. 
Details of the NIST 800-22  test suite can be found at [14]. 

R040_TBSA_ENTROPY On production parts, it must not be possible to monitor the analog entropy 
source using an external pin. 
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5.9 Cryptographic acceleration 
In the Assisted architecture, the hardware offers acceleration of some of the cryptographic operations to meet 
the performance requirements of the system. This permits hardware management of the cryptographic keys, 
which are the most valuable assets in the system. By managing the keys in hardware, the threat space is 
drastically reduced. 
If large amounts of data must be processed, cryptographic algorithms are often accelerated, which makes 
symmetric and hashing algorithms the most commonly accelerated. Asymmetric algorithms are complex, so full 
accelerators are also complex and often large. A common trade-off is to accelerate only the most computing-
intensive parts, for example big integer modulo arithmetic. 

Figure 15 shows an example architecture for symmetric algorithm acceleration and an associated Key Store: 

 
Figure 15: Example of a symmetric crypto acceleration architecture 

 

The accelerators and the Key Store are peripherals within a TBSA-M SoC, and must meet the associated 
requirements. 
The Key Store contains entries of keys and their associated metadata. The keys might have been injected 
through the secure peripheral interface, from Trusted software, or directly from OTP. The metadata associated 
with a key can include policy restrictions, by indicating which accelerator engines can access the key, exactly 
what operation is permitted, and which worlds the input and outputs must be in. By storing keys in a Key Store, 
the period of time that the keys are directly readable by software is significantly reduced. 

The accelerators are used by both the Trusted and Non-Trusted worlds, and have both Secure and Non-secure 
interfaces. These interfaces permit software to request cryptographic operations on data that is stored in 
memory, and either supply a key directly, or index a key and its metadata in the Key Store. When programmed, 
the accelerator reads data using its DMA interface, performs the operation, and writes the resultant data. 
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More advanced versions of this acceleration architecture might support key derivation functions, for instance if 
the resultant data from a decryption is not written to memory using DMA, but is instead placed into the Key 
Store. 

5.10 Debug 
As SoCs have become increasingly complex, the mechanisms for debugging the hardware and software have also 
increased in complexity. The fundamental principles of debugging, which require access to the system state and 
system information, conflict with the principles of security, which require the restriction of access to assets. This 
section brings together the high-level security requirements for all debug mechanisms in the SoC. 
Armv8-M supports the following debug modes: 

• Self-hosted debug: The processor itself hosts a debugger. Developer software and a debug kernel run on 
the same processor. For more information, see the Armv8-M Architecture Reference Manual, Section 
B11. 

• External debug: The debugger is external to the processor. The debugging might be either on-chip, for 
example in a second processor, or off-chip, for example a JTAG debugger. External debug is particularly 
useful for: 

o Hardware bring-up. That is, debugging during development when a system is first powered up 
and not all of the software functionality is available. 

o Processors that are deeply embedded inside systems. 
For more information, see the Armv8-M Architecture Reference Manual. 

The Armv8-M architecture also includes definitions for invasive and non-invasive debug. From a security 
perspective, there is no need to distinguish between these, because non-invasive debug can leak any assets 
accessed by that processor.  

5.10.1 Protection mechanisms 
 
Debug mechanisms give an external entity access to system assets, so protection mechanisms must be in place 
to ensure that the external entity is permitted access to those assets. These are called Debug Protection 
Mechanisms (DPMs). 

R010_TBSA_DEBUG All debug functionality must be protected by a DPM so that only an authorized 
external entity can access the debug functionality. There might be scenarios in which 
all external entities can access the debug functionality. 

In devices which share JTAG/SWD with functional I/O, this requirement must be interpreted as prohibiting Non-
secure software observing or influencing secure debug activities. 

R020_TBSA_DEBUG A DPM must be implemented either solely in hardware or together with software 
running in the Trusted world. 

Non-Trusted and Trusted system assets are partitioned according to the worlds in which they are accessible. 

R030_TBSA_DEBUG There must be a DPM to permit access to all assets (Trusted). 

R040_TBSA_DEBUG There must be a DPM to permit access to all Non-Trusted world assets (Non-
Trusted). This mechanism must not permit access to Trusted world assets. 

 

Arm recommends making DPMs lifecycle-aware. The requirements described in this section apply to the 
deployed lifecycle state. See Section 6.   
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5.10.2 Debug Protection Mechanism overlap 
 

The DPM requirements lead to an overlap of the worlds or spaces that each DPM unlocks, as shown in Figure 16 
and Table 4.  

 
Figure 16: DPM overlap 

 
Table 4: DPM overlap 

Master DPM Unlock opens 

DPM_T Trusted world spaces 

Non-Trusted world spaces 

DPM_NT Non-Trusted world spaces 

 
For some applications, it may be desirable to implement further DPMs to give a finer grain control of debug 
access for Armv8-M.  DPMs can control according to whether access is privileged or not, and whether it accesses 
Trusted or Non-Trusted spaces. 

5.10.3 Debug Protection Mechanism states 
Each DPM must have states that reflect access to the debug mechanisms.  These states must be controlled by 
fuses and the unlock mechanism. This is captured in the following requirements: 

R050_TBSA_DEBUG All DPMs must implement the following fuse controlled states: 

• Default: Debug is permitted. 

• Closed: Only an unlock operation is permitted, to transition to Open. 

 These must be determined by a Boolean value (dpm_enable) that is stored in a 
public-open-bitwise fuse or derived from the Device Lifecycle state stored in fuses, 
see Figure 17. 

Non-trusted world
(NT)

Trusted world
(T)

DPM_TDPM_NT
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R090_TBSA_DEBUG The DPM controlling Trusted world functionality must also have another fuse 
controlled state: 

• Locked - The unlock operation is disabled (no state transition is possible). 

 These must be determined by a Boolean value (dpm_lock) that is stored in a Public-
Open-Bitwise fuse or derived from the Device Lifecycle state stored in fuses, see 
Figure 17. 

R120_TBSA_DEBUG All DPMs must have the following state: 

• Open - Debug is permitted. 

 The Open state can only be entered from the Closed state after a successful unlock 
operation. 

 

Note: The fuses and unlock mechanisms for each DPM do not have to be unique. For example, one 
fuse can be used as the dpm_enable for both DPMs, and one unlock mechanism can 
unlock both DPMs. 

Table 5 shows the DPM states and their allowable transitions. 

 

Table 5: DPM states 

DPM state Debug access Transition(s) Notes 

Default Yes None except through Reset  

Closed No Open – after a successful 
unlock operation 

 

Open Yes None except through Reset  

Locked No None Only required for 
Trusted world 

Optional in Non-
Trusted world 
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Figure 17: DPM states 

 

Note: The power domain and reset of the DPM state must be carefully considered to ensure that 
all operations of the SoC are debugged. For example, debugging of the Secure Boot ROM 
during cold and warm boots might require the state to be stored in a domain that is 
permanently powered up, and has an independent reset. 

 

The DPMs are required to protect the system assets, which necessitates the following requirement: 
R150_TBSA_DEBUG The Trusted world DPM must be enabled, using the respective dpm_enable fuses, or 

locked, using the respective dpm_lock fuses, before any Trusted world assets are 
provisioned to the system. 

5.10.4 Unlock operations 
To perform the state transition from Closed to Open, the debug protection mechanism must perform an unlock 
operation to ensure that the external entity has access to a token authorizing access to the associated assets. 
The token might be a simple device-unique password, a cryptographically signed certificate, or a response to a 
challenge. Which form to use often depends on the trade-off between complexity on the device and complexity 
on an external server. For example, it is more complicated to implement signature checking on a device than to 
compare passwords, but managing a database of unique passwords is more complicated than one or two private 
keys on a server. 
To prevent the leak of an unlock token that affects multiple devices, Arm recommends unique unlock tokens for 
each device. Device manufacturers should consider the point in the supply chain that is appropriate to provision 
unlock tokens, by taking the security model of the device into account. 

To ensure that the external entity knows which unlock token to use, Arm recommends either that the device 
stores a unique ID in Public-Lockable fuses, or that the Unique ID is derivable from a value in public-lockable 
fuses.  
Arm also recommends that devices deploy other additional protection for the unlock token, depending on the 
type of token, and the threat model. Protection mechanisms include the use of non-volatile unlock failure 
counters managed by Trusted firmware, and a nonce to protect against replay attacks. 

Reset
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Unlock token:password 

Password-based unlock operations are implemented as a simple comparison. However, Arm recommends not 
storing a copy of the password on the device itself. Instead, Arm recommends storing a cryptographically-strong 
hash of the password that is created using a one-way function (OWF). When the password token is injected using 
an interface from the external entity, it is passed through the same OWF and compared with the stored hash. 
Because the comparison is simple, it must be protected from brute force attacks, by making the password 
sufficiently large: 

R200_TBSA_DEBUG A password unlock token must be at least 128bits in length. 
For password-based unlock tokens in particular, Arm recommends that devices deploy other additional 
countermeasures, for example non-volatile unlock failure counters managed by Trusted firmware. 

This recommendation ensures that different external entities are given different tokens for a device, depending 
on their ownership of assets in the system: 

R210_TBSA_DEBUG Each debug protection mechanism must use a unique password unlock token. 

Unlock token: private key 

Private key-based unlock operations require the injection of a certificate that has been cryptographically signed 
by a private key. The certificate should be paired with the device. 
R220_TBSA_DEBUG The unique ID must be included in a certificate unlock token. 

The debug protection mechanism must check the signature of the certificate: 

R230_TBSA_DEBUG An unlock operation using a certificate unlock token must use an approved 
asymmetric algorithm to check the certificate signature. 

R240_TBSA_DEBUG An unlock operation using a certificate unlock token must have access to an 
asymmetric public key stored on the device. The asymmetric public key that is used 
to authenticate the certificate unlock token must be immutably stored on the device, 
or have been loaded as a certificate during secure boot and authenticated by a chain 
of certificates that begins with the ROTPK. 

R250_TBSA_DEBUG A certificate unlock token must indicate which DPM(s) it is able to unlock using an 
authenticated field. 

R260_TBSA_DEBUG A loadable public key for certificate unlock token authentication must include an 
authenticated field indicating which DPM(s) it is authorized to unlock. 

R270_TBSA_DEBUG A certificate unlock token must only unlock a DPM that its public key is authorized to 
unlock. 

In the simplest case, the chain of certificates is of length one, and the ROTPK and the public key used to 
authenticate the unlock token are one and the same. For more details on this functionality, see TBBR [3]. 

Unlock token: challenge/response 

If the communication channel between the TBSA-M device and the external entity is not secure, then a 
challenge/response-based unlock operation may be preferred over a simple password unlock operation.  The 
unique device ID is used as the challenge and a key stored in fuses as the response. Arm recommends using a 
cryptographic nonce to accompany the challenge, and that the external entity hashes the response key with the 
nonce.   

The response key follows the size and uniqueness requirements for unlock token passwords described above.  
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5.10.5 Other debug functionality 
Complex SoCs often include extra debug functionality beyond the main processor. Examples of this are initiators 
on the interconnect, which are controlled directly from an external debug interface, and system trace modules. 
Care must be taken to ensure that any extra debug functionality is controlled by the correct DPM. They must be 
evaluated based on their access to assets that belong to each world, and assigned the appropriate DPM. 

5.10.6 Arm debug implementation 
The Arm processor and CoreSight IPs include an Authentication Interface with the signals shown in Table 6: 
 

Table 6: Arm authentication interface 

Signal Name Action 

DBGEN Debug Enable Enables invasive and non-invasive 
debug of Non-secure state. 
Debug components are disabled but 
accessible. 

NIDEN Non-invasive Debug Enable Enables non-invasive debug of Non-
secure state. 

SPIDEN Secure Privileged Invasive 
Debug Enable 

When asserted with DBGEN enables 
invasive & non-invasive debug of Secure 
state. 

SPNIDEN Secure Privileged Non-
Invasive Debug Enable 

When asserted with NIDEN, enables 
non-invasive debug of Secure state. 

 
These signals can be mapped to the debug protection mechanisms, as shown in Table 7: 

 
Table 7: DPM mapping to authentication interface 

World Debug Functionality Equation 
Non-secure Non-secure Invasive debug  DBGEN 

Non-secure Non-invasive debug  DBGEN | NIDEN 
Secure Secure Invasive debug  DBGEN & SPIDEN 

Secure Non-invasive debug  (SPIDEN | SPNIDEN) & (DBGEN | 
NIDEN) 

 

5.10.7 Basic architecture 
In the TBSA-M Basic architecture, DPMs might be implemented in software, including the unlocking of any 
external debug interfaces. There are two commonly used implementations: 

• Space is reserved in the non-volatile memory map for the unlock token, and the unlock operation is 
performed by the secure boot process. 

• The external debug interface receives an unlock token, and requests processing by the Trusted world. 
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In both cases, software must read the relevant fuses to understand the state of the DPM, and have target 
registers that unlock the relevant debug features of the device. 

R280_TBSA_DEBUG The device must implement registers that, when written to by software, unlock the 
associated hardware debug features. Access to the secure DPM registers must be 
restricted to privileged Trusted world software. 

5.10.8 Assisted architecture 
In the Assisted architecture, both the Trusted and Non-Trusted DPMs are implemented in discrete hardware 
connected to the external debug interface. The unlock tokens are injected via the external debug interface. The 
tokens are then verified by the hardware that asserts the required signals to the rest of the device, or by 
firmware the boot ROM. 
R290_TBSA_DEBUG The DPM_T and DPM_NT must be implemented solely in hardware or together with 

firmware in immutable boot ROM.  

5.11 External interface peripherals 
TBSA-M based SoCs contain many of the functions of the final consumer device, but they are often required to 
talk to other electronic peripherals in order to receive and transmit data. Examples of these External Interface 
Peripherals (EIPs) include sensors, actuators and communication devices, for example WiFi or Bluetooth Low 
energy modules. Some interfaces are simply connections through SPI or UART, whereas others can embed the 
controllers within the SoC itself. 

Because these interfaces often receive Trusted user data, thought must be given to assets that are transferred 
across these interfaces. The following questions can aid this thought process: 

• Which on-chip world do the assets belong to? 
• Are the assets entering or leaving the device? 
• Are the assets encrypted or not? 
• Are the assets authenticated? 
• If the assets are encrypted or authenticated, how was the key exchanged? 
• What is the impact if the assets are modified? 
• Can commands be received from an external device? 

Often the easiest approach is to let the Non-Trusted world manage the interface, and to let the Trusted world 
supply the data to be transferred. This is acceptable when the Non-Trusted world is no more of a security risk 
than the external connection. For example, non-authenticated encrypted content is sent through the Non-
Trusted world, because changing the encrypted content does not compromise the security of any assets. 
However, if the assets being transferred include user data and are not authenticated, the Non-Trusted world can 
perform a man-in-the-middle attack in the same way as an attacker with access to the external interface. 
Therefore, if any secret values are not encrypted, the Non-Trusted world must not be able to access them and 
the external interface must be correspondingly protected. 

R010_TBSA_EIP If an EIP is used to send or receive clear or unauthenticated Trusted world assets, it is 
implementing a Trusted operation and must meet the requirements of a Trusted 
peripheral. 

R020_TBSA_EIP When an EIP can receive commands from an external device, for example PCIe, then 
the system must enforce a policy to check that those commands do not breach the 
security of the TBSA-M device. 

The requirement  R020_TBSA_EIP does not only apply to the commands that can affect the Trusted world. 
Unrestricted access to the Non-Trusted world by an external device is still a security risk. 
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R040_TBSA_EIP Any sensitive user data that is stored must be stored in Secure storage.   
Threat analysis of biometric sensors used in particular applications might indicate that they must be under the 
control of the Trusted world.   

R050_TBSA_EIP When a sensor has modes that allow it to be used for the acquisition of assets in 
both the Trusted world and the Non-Trusted world, activating features for Trusted 
world sensing must be under the control of the Trusted world. 

5.12 DRAM protection 
Some TBSA-M designs might also deploy external DRAM to store assets. In this case, Arm recommends following 
the advice given in reference [6]. 

6 Device lifecycle management [Normative] 
Designs compliant with TBSA-M architecture must have a mechanism to manage the security lifecycle of the 
device. This mechanism governs the behavior of the device, in both hardware and firmware, in each stage of the 
lifecycle, protecting any security assets introduced into the device and reducing the risk of IP theft and reverse 
engineering. 
Device lifecycle management is implemented either by a state machine in Trusted firmware which controls the 
introduction of OTP assets and fuses, or by an equivalent state machine implemented in hardware. Lifecycle 
state transitions should be atomic: it should not be possible for firmware outside the RoT to observe a partially 
completed transition. Also, state transitions should be robust against external events, for example power loss.  

Details of how the device life manages the progression from device manufacture, provisioning of assets through 
deployment, including any changes of ownership through to discontinuation, are described in the PSA SM, and 
PSA Firmware Framework documents. 
The PSA lifecycle tracks the state of the PSA RoT through its life time, from development and manufacturing, 
through use in the field, to debug and repair states. Depending on its lifecycle state, the PSA RoT will have 
different security properties. For example: 

• In early development and manufacture states, secrets and identities may not have been provisioned and 
debug ports may not yet have been locked down. 

• In some debug and repair states, secrets could potentially be compromised, or boot state and 
attestation might not be trustworthy any more. 

On a device compliant with TBSA-M, many objects may have their own lifecycles. For example: 

• Some Trusted subsystems, for example Secure Element and Security Element style devices, may have 
their own local life cycles and provisioning processes. 

• The application itself may have an application lifecycle, tracking whether the device has been enrolled 
into a Trusted service, or securely associated with a particular set of credentials. 

The PSA lifecycle states indicate the RoT assets present in the device, and the functionality available or disabled 
in each state (e.g. debug, boot options, the writability of eFlash partitions).  Figure 18 shows a generic example 
TBSA-M device lifecycle: 
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Figure 18: Illustration of a device lifecycle  
This device lifecycle begins in the chip manufacturing state, which is completely open and contains only the 
assets that are fixed in hardware. At this point, the device must be fully testable, in order to permit checking for 
manufacturing defects. The device is then configured in multiple steps by the silicon vendor and the purchasing 
Original Equipment Manufacturer (OEM) through the programming of fuses. 

Note: In the automotive industry, the OEM refers to the car maker, and Tier 1 supplier refers to device (ECU) 
manufacturer. Here the term OEM means either of these entities, depending on the particular 
application and supply chain. 

Configuration includes personalization, which is the injection of cryptographic assets, for example unique keys. 
These assets are broadly grouped into two categories: 

• Production assets: These are highly sensitive values that must be protected as soon as it is verified that 
they have been correctly programmed. 
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• Development assets: These are values known to the OEM or silicon vendor, or both, and are used during 
the development of the system. 

Devices that are destined for sale to consumers are personalized with production assets by the silicon vendor 
and OEM. Such devices are configured to enable the security mechanisms required to protect those assets, and 
any other assets that are accessible to the device, for example in flash memory. When this configuration is 
complete, the device enters the Deployed state.  
A device that is in the Development state has a subtly different configuration from the production parts, because 
features, for example debug can still be enabled. These parts are not intended to leave the OEM. 

A device that is in the Deployed state only permits configuration operations that support the required use cases 
and has access to the security functions of the device. Its debugging and testing features are disabled and secure 
boot is mandatory. 
The Return Material Authorization (RMA) lifecycle state is a terminal state used for devices that are returned to 
the manufacturer for failure analysis. When a device is put into the RMA state, it loses access to its secret keys 
and the ability to operate securely. The device should regain access to all debugging and testing capabilities, in 
order to perform reliability, warranty and liability investigations.  

As a minimum, Arm recommends that a device compliant with TBSA-M provides a lifecycle control mechanism in 
which: 

• The lifecycle state is held in, or derivable from, the state of fuses. 
• All lifecycle state transitions are restricted to a designated set, as outlined in the example shown in 

Figure 18, in which there is at least: 
o  A designated initial state from which all devices start. 
o A designated deployed state which mandates the use of the device’s security features. 
o A designated terminal state (RMA) from which no further transitions are allowed. 

• A transition into the RMA state should be authorized by the RoT owners, and should atomically zeroize, 
or otherwise put beyond use, all secret keys in the manner described by FIPS 140-2. 

• Booting, debugging and scan access are governed by a secure lifecycle policy. 
 

7 Approved algorithms and key sizes [Normative] 
In TBSA, the core set of approved algorithms is drawn from NIST suite B or its [15], together with SHA-3 [22]. In 
addition the elliptic curve signature scheme known as Edwards-curve Digital Signature Algorithm (EdDSA) with 
recommended parameters (e.g. edwards25519) may be used. See [23] for details. 

For keyed algorithms, Arm recommends the following key sizes: 
• For symmetric keys used in encryption and MAC generation, a minimum of 128 bits. 
• For asymmetric keys, a minimum of 256 bits for ECC, and a minimum of 3072 bits for RSA. 

These algorithms are implemented in Trusted software if sufficient processor capacity is available to meet 
performance targets. 

The full list of cryptographic algorithms required in a given TBSA-M system depends on the target requirements, 
which are outside the scope of this document. 
 

Note: NIST has recently announced a transitional period during which new algorithms will be identified that are 
resistant to a threat that arises from advances in quantum computing, which is anticipated to become 
important in thirty to forty years. The NSA has made some recommendations on algorithm selection 
during this time of transition, which will last for several years. The reader is encouraged to refer to these, 
particularly if the product and assets to be protected are covered by to this time frame.  
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8 Related documents 
A detailed description of Trusted Boot and Firmware Update requirements is found in [8] 

A good treatment of how to design an address map to use TrustZone for Armv8-M and several types of 
TrustZone Filters to protect memory and peripherals is found [5].  
The Arm Platform Security Architecture software framework and set of API specifications, providing fundamental 
security functions within a common security model is described in [7]. 

 
 

Appendix: TBSA-M checklist [Normative] 
Below is a complete list of mandatory requirements for TBSA-M. Users of this architecture should also consider 
Arm recommendations that might accompany the requirements included in this document. 

 

Ref name Base System Requirements (Section 5, Section 5.1) 

R001_TBSA_BASE The SoC must provide a hardware-based mechanism for separating the Trusted 
World from the Non-Trusted world. 

R002_TBSA_BASE The SoC must provide a hardware-based mechanism which is able to separate 
partitions within the Trusted world. 

R010_TBSA_BASE A Non-Trusted world operation must only access Non-Trusted world assets. 

R020_TBSA_BASE A Trusted world operation can access both Trusted and Non-Trusted world 
assets. 

R030_TBSA_BASE An SoC using TrustZone Isolation must be based on an Armv8-M architecture PE 
with the Security Extension and MPUs implemented. 

R040_TBSA_BASE The hardware and software of a TBSA-M device must work together to ensure 
that all the security requirements are met. 

 
Ref name Infrastructure Requirements (Section 5.2) 

R010_TBSA_INFRA A Trusted operation can issue Secure or Non-secure transactions. 

R020_TBSA_INFRA A Non-Trusted operation must only issue Non-secure transactions. 

R030_TBSA_INFRA A Non-secure transaction must only access Non-secure storage. 

R040_TBSA_INFRA If programmable address remapping logic is implemented in the interconnect 
then its configuration must be possible only from the Trusted world. 

R050_TBSA_INFRA A unified address map that uses target side filtering to disambiguate Non-
secure and Secure transactions must only permit all Secure or all Non-secure 
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transactions to any one region. Secure and Non-secure aliased accesses to the 
same address region are not permitted. 

R060_TBSA_INFRA The target transaction filters configuration space must only be accessed from 
the Trusted world. 

R070_TBSA_INFRA Security exception Interrupts must be wired or configured as Secure interrupt 
sources. 

R080_TBSA_INFRA Configuration of the on-chip interconnect that modifies routing or the memory 
map must only be possible from the Trusted world, unless it is not possible for 
such modifications to affect secure transactions. 

R090_TBSA_INFRA All transactions must be constrained; it must not be possible for a transaction 
to bypass a constraining mechanism. 

R100_TBSA_INFRA If shared volatile storage is implemented, then the associated location or region 
must be scrubbed, before it can be reallocated from Trusted to Non-Trusted. 

R110_TBSA_INFRA If shared volatile storage is implemented in a TrustZone for Armv8-M based 
system, then the associated location must not be executable or NSC 
immediately after it is reallocated from Non-Trusted to Trusted. 

R120_TBSA_INFRA An interrupt originating from a Trusted operation must by default be mapped 
only to a Trusted target. By default, this must be the case following a system 
reset. 

R130_TBSA_INFRA Any configuration to mask or route a Trusted interrupt must only be carried out 
from the Trusted world. 

R140_TBSA_INFRA The interrupt network might be configured to route an interrupt originating 
from a Trusted operation to a Non-Trusted target. 

R150_TBSA_INFRA Any status flags recording Trusted interrupt events must only be read from the 
Trusted world, unless specifically configured by the Trusted world to be 
readable by the Non-Trusted world. 

R160_TBSA_INFRA A TBSA-M system must integrate a Secure RAM. 

R170_TBSA_INFRA Secure RAM must be mapped into the Trusted world only. 

R180_TBSA_INFRA If the mapping of Secure RAM into regions is programmable, then configuration 
of the regions must only be possible from the Trusted world. 

R190_TBSA_INFRA The advanced power mechanism must integrate a Trusted management 
function to control clocks and power. It must not be possible to directly access 
clock and power functionality from the Non-Trusted world. 

R210_TBSA_INFRA If access to a peripheral, or a subset of its operations, is dynamically switched 
between Trusted world and Non-Trusted world, then this must only be done 
under the control of the Trusted world. 

R220_TBSA_INFRA If the peripheral stores assets in local embedded storage, a Non-Trusted 
operation must not be able to access the local assets of a Trusted operation. 
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R230_TBSA_INFRA A Trusted operation must be able to distinguish whether commands and data 
were received at an interface accessible to the Trusted world only, or at an 
interface accessible to the Non-Trusted world. 

R240_TBSA_INFRA A Trusted operation that exposes a Non-secure interface must apply a policy 
check to the Non-Trusted commands and data before acting on them. The 
policy check must be atomic and, following the check, it must not be possible to 
modify the checked commands or data. 

 
Ref name Fuse Requirements (Section 5.3) 

R010_TBSA_FUSE A non-volatile storage technology must meet the lifetime requirements of the 
device, either through its intrinsic characteristics, or through the use of error 
correction mechanisms. 

R020_TBSA_FUSE A fuse is permitted to transition in one direction only, from its un-programmed 
state to its programmed state. The reverse operation must be prevented. 

R030_TBSA_FUSE A fuse must only be programmed in accordance with its specified mechanism 
so that its reliable operation is not at risk. 

R040_TBSA_FUSE It must be possible to blow at least a subset of the fuses when the device has 
left the silicon manufacturing facility. 

R050_TBSA_FUSE All fuse values must be stable before any parts of the SoC that depend on them 
are released from reset. 

R060_TBSA_FUSE Fuses that configure the security features of the device must be configured so 
that the programmed state of the fuse enables the feature. That is, the 
programming of a security configuration fuse always increases security within 
the SoC. 

R070_TBSA_FUSE Lifetime guarantee mechanisms to correct for in-field failures must not indicate 
which fuses have had errors detected or corrected, just that an error has been 
detected or corrected. This indicator must only be available after all fuses have 
been checked. 

R080_TBSA_FUSE A confidential fuse whose recipient is a hardware IP must not be readable by 
any software process. 

R090_TBSA_FUSE A confidential fuse whose recipient is a hardware IP must be connected to the 
IP using a path that is not visible to software or any other hardware IP. 

R100_TBSA_FUSE A confidential fuse whose recipient is a software process might be readable by 
that process and must be readable by privileged software. 

R110_TBSA_FUSE A confidential fuse whose recipient is a Trusted world software process must be 
protected by a hardware filtering mechanism that can only be configured by 
secure software, for example an NS-bit filter. 
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R120_TBSA_FUSE It must be possible to fix a lockable fuse in its current state, regardless of 
whether it is programmed or un-programmed. 

R130_TBSA_FUSE The locking mechanism for a lockable fuse can be shared with other lockable 
fuses, depending on the functional requirements. 

R140_TBSA_FUSE A bulk fuse must also be a lockable fuse to ensure that any unprogrammed bits 
cannot be programmed later. 

R150_TBSA_FUSE Additional fuses that implement lifetime guarantee mechanisms must have the 
same confidential and write lock characteristics as the logical fuse itself. 

 
Ref name Cryptographic Keys (Section 5.4) 

R010_TBSA_KEY A key must be treated as an atomic unit. It must not be possible to use a key in 
a cryptographic operation before it has been fully created, during an update 
operation, or during its destruction. 

R020_TBSA_KEY Any operations on a key must be atomic. It must not be possible to interrupt 
the creation, update, or destruction of a key. 

R030_TBSA_KEY When a key is no longer required by the system, it must be put beyond use to 
prevent a hack at a later time from revealing it. 

R035_TBSA_KEY A key must only be used by the cryptographic scheme for which it was created.  
R070_TBSA_KEY A static key must be stored in an immutable structure, for example a ROM or a 

set of bulk-lockable fuses. 

R080_TBSA_KEY To prevent the re-derivation of previously used keys, only Trusted code can 
have access to all of the source material. 

R090_TBSA_KEY If an ephemeral key is stored in memory or in a register in clear text form, the 
storage location must be scrubbed before being used for another purpose. 

R100_TBSA_KEY A key that is accessible to, or generated by, the Non-Trusted world must only 
be used for Non-Trusted world cryptographic operations, which are operations 
that are either implemented in Non-Trusted world software, or have both clear 
text and cipher text in the Non-Trusted world. 

R110_TBSA_KEY A key that is accessible to, or generated by, the Trusted world can be used for 
operations in both Non-Trusted and Trusted worlds, and even across worlds, 
provided that: 
The Non-Trusted world cannot access the key directly. 

The Trusted world can control the use of the key through a policy. 

R140_TBSA_KEY A Trusted hardware key must not be directly accessible by any software. 

R150_TBSA_KEY The Trusted world must be able to enforce a usage policy for any Trusted 
hardware key that can be used for Non-Trusted world cryptographic 
operations. 



DEN 0083 Copyright © 2017 - 2018 Arm Limited or its affiliates. All rights reserved.  Page 71 
1.0 Beta Release 1  Non-Confidential 

R160_TBSA_KEY A TBSA-M device must either entirely embed an ROTPK, or the information that 
is needed to securely identify it.  

R180_TBSA_KEY An elliptic-curve-based ROTPK must be at least 256 bits in size. 

R190_TBSA_KEY An RSA-based ROTPK must be at least 3072 bits in size. 

R200_TBSA_KEY If a cryptographic hash of the ROTPK is stored in on chip non-volatile memory, 
rather than the key itself, it must be immutable. 

R220_TBSA_KEY A TBSA-M device must embed an HUK in confidential-lockable-bulk fuses.  

R230_TBSA_KEY The HUK must have at least 128 bits of entropy.  

R240_TBSA_KEY The HUK must only be accessible by Trusted code or Trusted hardware that act 
on behalf of Trusted code.  

 
Ref name Trusted Boot Requirements (Section 5.5) 

R010_TBSA_BOOT A TBSA-M device must embed a Boot ROM with the initial code that is needed 
to perform a Trusted system boot. 

R020_TBSA_BOOT If the device supports warm boot, a flag or register that survives warm boot 
must exist to enable distinguishing between warm and cold boots. This register 
or flag must be programmable only by the Trusted world and must be reset 
after a cold boot. 

R030_TBSA_BOOT On a cold boot, the primary processor must boot from the Boot ROM. It must 
not be possible to boot from any other storage unless Trusted Kernel debug is 
enabled For detailed information about Trusted Kernel debug, see Section 6.10. 

R090_TBSA_BOOT If a boot status register is implemented, then it must be accessible only by the 
Trusted world. 

R100_TBSA_BOOT In an Assisted architecture, the key to decrypt the Trusted Boot Firmware 
image must be visible only to the acceleration peripheral. 

 
Ref name Trusted Timers Requirement (Section 5.6) 

R030_TBSA_TIME At least one Trusted timer must exist. 

R040_TBSA_TIME A Trusted timer must only be modified by a Trusted access. Examples of 
modifications are the timer being refreshed, suspended, or reset. 

R050_TBSA_TIME The clock source that drives a Trusted timer must be a Trusted clock source. 

R060_TBSA_TIME At least one Trusted watchdog timer must exist. 

R070_TBSA_TIME After a system reset, a Trusted watchdog timer must be started before 
execution of the immutable boot code transfers control to the next firmware 
stage.  
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R080_TBSA_TIME A Trusted watchdog timer must only be modified by a Trusted access. Examples 
of modifications are the timer being refreshed, suspended, or reset. 

R090_TBSA_TIME Before needing a refresh, a Trusted watchdog timer must be capable of running 
for a time period that is long enough for the Non-Trusted re-flashing of early 
boot loader code. 

R100_TBSA_TIME A Trusted watchdog timer must be able to trigger a reset of the SoC, after a 
pre-defined period of time. This value is fixed in hardware or programmed by a 
Trusted access. 

R110_TBSA_TIME A Trusted watchdog timer must implement a flag that indicates the occurrence 
of a timeout event that causes a warm reset, to allow post-reset software to 
distinguish this from a powerup cold boot. 

R120_TBSA_TIME The clock source driving a Trusted watchdog timer must be a Trusted clock 
source. 

R130_TBSA_TIME A TRTC must be configured only by a Trusted world access. 

R140_TBSA_TIME All components of a TRTC must be implemented within the same power 
domain. 

R150_TBSA_TIME On initial power up, and following any other outage of power to the TRTC, a 
validity mechanism must indicate that the TRTC is not Trusted. 

R160_TBSA_TIME The TRTC must be driven by a Trusted clock source. 

 
Ref name Version Counter Requirements (Section 5.7) 

R010_TBSA_COUNT An on-chip non-volatile Trusted firmware version counter implementation 
must provide a counter range of at least 0 to 63. 

R020_TBSA_COUNT An on-chip non-volatile Non-Trusted firmware version counter implementation 
must provide a counter range of at least 0 to 255. 

R030_TBSA_COUNT It must only be possible to increment a version counter through a Trusted 
access. 

R040_TBSA_COUNT It must only be possible to increment a version counter. It must not be 
possible to decrement it. 

R050_TBSA_COUNT When a version counter reaches its maximum value, it must not roll over, and 
no further changes must be possible. 

R060_TBSA_COUNT A version counter must be non-volatile, and the stored value must survive a 
power down period up to the lifetime of the device. 

 
 

Ref name Entropy Source Requirements (Section 5.8) 
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R010_TBSA_ENTROPY The entropy source must be an integrated hardware block. 

R020_TBSA_ENTROPY The TRNG must produce samples of known entropy. 

R030_TBSA_ENTROPY The TRNG must pass the NIST 800-22 test suite.  
R040_TBSA_ENTROPY On production parts, it must not be possible to monitor the analog entropy 

source using an external pin. 

 
Ref name Debug Requirements (Section 5.10) 

R010_TBSA_DEBUG All debug functionality must be protected by a DPM so that only an authorized 
external entity can access the debug functionality. There might be scenarios in 
which all external entities can access the debug functionality. 

R020_TBSA_DEBUG A DPM must be implemented either solely in hardware or together with 
software running in the Trusted world. 

R030_TBSA_DEBUG There must be a DPM to permit access to all assets (Trusted). 

R040_TBSA_DEBUG There must be a DPM to permit access to all Non-Trusted world assets. This 
mechanism must not permit access to Trusted world assets. 

R050_TBSA_DEBUG All DPMs must implement the following fuse controlled states: 
• Default: Debug is permitted. 

• Closed:  Only an unlock operation is permitted, (to transition to Open). 

 These must be determined by a Boolean value (dpm_enable) that is 
stored in a public-open-bitwise fuse or derived from the Device Lifecycle state 
stored in fuses, see Figure 17 

R090_TBSA_DEBUG The DPM controlling Trusted world functionality must also have another fuse 
controlled state: 
• Locked: The unlock operation is disabled (no state transition is 
possible). 

 These must be determined by a Boolean value (dpm_lock) that is 
stored in a Public-Open-Bitwise fuse or derived from the Device Lifecycle state 
stored in fuses, see Figure 17. 

R120_TBSA_DEBUG All DPMs must have the following state: 
Open - debug is permitted. 
The Open state can only be entered from the Closed state after a successful 
unlock operation. 

R150_TBSA_DEBUG The Trusted world DPM must be enabled, using the respective dpm_enable 
fuses, or locked, using the respective dpm_lock fuses, before any Trusted 
world assets are provisioned to the system. 

R200_TBSA_DEBUG A password unlock token must be at least 128bits in length. 
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R210_TBSA_DEBUG Each debug protection mechanism must use a unique password unlock token. 

R220_TBSA_DEBUG The unique ID must be included in a certificate unlock token. 

R230_TBSA_DEBUG An unlock operation using a certificate unlock token must use an approved 
asymmetric algorithm to check the certificate signature. 

R240_TBSA_DEBUG An unlock operation using a certificate unlock token must have access to an 
asymmetric public key stored on the device. The asymmetric public key that is 
used to authenticate the certificate unlock token must be immutably stored on 
the device, or have been loaded as a certificate during secure boot and 
authenticated by a chain of certificates that begins with the ROTPK. 

R250_TBSA_DEBUG A certificate unlock token must indicate which DPM(s) it is able to unlock using 
an authenticated field. 

R260_TBSA_DEBUG A loadable public key for certificate unlock token authentication must include 
an authenticated field indicating which DPM(s) it is authorized to unlock. 

R270_TBSA_DEBUG A certificate unlock token must only unlock a DPM that its public key is 
authorized to unlock. 

R280_TBSA_DEBUG The device must implement registers that, when written to by software, 
unlock the associated hardware debug features. Access to the secure DPM 
registers must be restricted to privileged trusted world software. 

R290_TBSA_DEBUG The DPM_T and DPM_NT must be implemented solely in hardware or together 
with firmware in immutable boot ROM. 

 
Ref name External Interface Peripherals Requirements (Section 5.11) 

R010_TBSA_EIP If an EIP is used to send or receive clear or unauthenticated Trusted world 
assets, it is implementing a Trusted operation and must meet the requirements 
of a Trusted peripheral. 

R020_TBSA_EIP When an EIP can receive commands from an external device, for example PCIe, 
then the system must enforce a policy to check that those commands do not 
breach the security of the TBSA-M device. 

R040_TBSA_EIP Any sensitive user data that is stored must be stored in Secure storage. 

R050_TBSA_EIP When a sensor has modes that allow it to be used for the acquisition of assets 
in both the Trusted world and the Non-Trusted world, activating features for 
Trusted world sensing must be under the control of the Trusted world. 

 
 
 


