
ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 1 of 59
Non-Confidential

Server Base System
Architecture

Document number: ARM-DEN-0029A Version 3.1
Date of Issue: 27th February 2017
Author: Architecture and Technology Group
Confidentiality: Non-Confidential

© Copyright 2016 ARM® Limited or its affiliates. All rights reserved.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 2 of 59

Non-Confidential

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this document
may be reproduced in any form by any means without the express prior written permission of ARM. No license, express or
implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to
use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to
identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
ARM’s customers is not intended to create or refer to any partnership relationship with any other company. ARM may make
changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering
this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these
terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php.

Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 3 of 59

Non-Confidential

Release Information
The following releases of this document have been made:

Date Issue Confidentiality Change
11 February 2016 Initial Non-Confidential Restricted access Initial Release
27 February 2017 A Non-Confidential Change of Proprietary Notice

Addition of release history
No other changes

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 4 of 59

Non-Confidential

Contents

1	 ABOUT THIS DOCUMENT 8	

1.1	 References 8	

1.2	 Terms and abbreviations 8	

1.3	 Feedback 9	
1.3.1	 Feedback on this manual 9	

2	 BACKGROUND 10	

3	 INTRODUCTION 11	

4	 SBSA 13	

4.1	 Level 0 13	
4.1.1	 PE Architecture 13	
4.1.2	 Interrupt Controller 13	
4.1.3	 Memory Map 13	
4.1.4	 I/O Virtualization 14	
4.1.5	 Clock and Timer Subsystem 14	
4.1.6	 Wakeup semantics 15	
4.1.7	 Power State Semantics 16	
4.1.8	 Peripheral Subsystems 19	

4.2	 Level 1 19	
4.2.1	 PE Architecture 19	
4.2.2	 Interrupt Controller 19	
4.2.3	 Clock and Timer Subsystem 19	

4.2.3.1 Summary of the required registers of the CNTControlBase frame 20
4.2.3.2 Summary of the required registers of the CNTReadBase frame 20
4.2.3.3 Summary of the required registers of the CNTCTLBase frame 20
4.2.3.4 Summary of the required registers of the CNTBaseN frame 21

4.2.4	 Watchdogs 21	
4.2.5	 Wakeup semantics 22	
4.2.6	 Requirements on power state semantics 22	
4.2.7	 Peripheral Subsystems 23	

4.3	 Level 2 23	
4.3.1	 PE Architecture 23	
4.3.2	 Interrupt Controller 23	

4.3.2.1 PPI assignments 23
4.3.3	 Memory Map 24	
4.3.4	 Requirements on power state semantics 24	
4.3.5	 I/O Virtualization 25	
4.3.6	 Clock and Timer Subsystem 26	
4.3.7	 Wakeup semantics 26	
4.3.8	 Watchdogs 26	
4.3.9	 Peripheral Systems 26	

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 5 of 59

Non-Confidential

4.4	 Level 3 26	
4.4.1	 PE Architecture 26	
4.4.2	 Expected usage of Secure state 27	
4.4.3	 Memory Map 27	
4.4.4	 Interrupt Controller 27	
4.4.5	 I/O Virtualization 27	
4.4.6	 Clock and Timer Subsystem 28	
4.4.7	 Watchdogs 28	
4.4.8	 Peripheral Subsystems 28	

4.5	 Level 3 – firmware 28	
4.5.1	 Memory Map 28	
4.5.2	 Clock and Timer Subsystem 29	
4.5.3	 Watchdogs 29	
4.5.4	 Peripheral Subsystems 30	

5	 APPENDIX A: GENERIC WATCHDOG 31	

5.1	 About 31	

5.2	 Watchdog Operation 31	

5.3	 Register summary 33	

5.4	 Register descriptions 34	
5.4.1	 Watchdog Control and Status Register 34	
5.4.2	 Watchdog Interface Identification Register 35	

6	 APPENDIX B: GENERIC UART 36	

6.1	 About 36	

6.2	 Generic UART register frame 36	

6.3	 Interrupts 38	

6.4	 Control and setup 38	

6.5	 Operation 38	

7	 APPENDIX C: PERMITTED ARCHITECTURAL DIFFERENCE BETWEEN PES 39	

8	 APPENDIX D: PCI EXPRESS INTEGRATION 41	

8.1	 Configuration space 41	

8.2	 PCI Express Memory Space 41	

8.3	 PCI Express device view of memory 41	

8.4	 Message signaled interrupts 42	
8.4.1	 GICv2m support for MSI(-X) 42	

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 6 of 59

Non-Confidential

8.4.2	 GICv3 support for MSI(-X) 42	

8.5	 Legacy interrupts 43	

8.6	 I/O Virtualization 43	

8.7	 I/O Coherency 43	
8.7.1	 PCI Express I/O Coherency without System MMU 44	
8.7.2	 PCI Express I/O Coherency with System MMU 44	

8.8	 Legacy I/O 44	

8.9	 Integrated end points 44	

8.10	 Peer-to-peer 44	

8.11	 PASID support 45	

9	 APPENDIX E: GICV2M ARCHITECTURE 46	

9.1	 Introduction 46	

9.2	 About the GICv2m architecture 46	

9.3	 Security 46	

9.4	 Virtualization 47	

9.5	 SPI allocation 47	

9.6	 GICv2 programming 47	

9.7	 Non-secure MSI register summary 48	

9.8	 Secure MSI register summary 48	

9.9	 Register descriptions 49	
9.9.1	 MSI Type Register 49	
9.9.2	 Set SPI Register 49	
9.9.3	 MSI Interface Identification Register 50	

9.10	 Secure MSI register summary 50	

10	 APPENDIX F: GIC-400 AND 64KB TRANSLATION GRANULE 51	

11	 APPENDIX G: GICV2M COMPATIBILITY IN A GICV3 SYSTEM 52	

11.1	 GICv2m-based hypervisor (GICv2m guests) or GICv2m OS without hypervisor 52	

11.2	 GICv3-based hypervisor with GICv2m guest OS 53	

12	 APPENDIX H: SMMUV3 INTEGRATION 53	

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 7 of 59

Non-Confidential

13	 APPENDIX I: DEVICEID GENERATION AND ITS GROUPS 54	

13.1	 ITS groups 54	
13.1.1	 Introduction 54	
13.1.2	 Rules 54	
13.1.3	 Examples of ITS groups 55	

13.2	 Generation of DeviceID values 56	
13.2.1	 Introduction 56	
13.2.2	 Rules 56	

13.3	 System description of DeviceID and ITS groups from ACPI tables 57	

13.4	 DeviceIDs from hot-plugged devices 58	

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 8 of 59

Non-Confidential

1 ABOUT THIS DOCUMENT

1.1 References
This document refers to the following documents:

Reference Doc No Title
[1] ARM DDI 0406 ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R

edition
[2] ARM IHI 0048 ARM® Architecture Specification, GIC architecture version 2.0

[3] ARM DDI 0183 ARM® PrimeCell® UART (PL011) Technical Reference Manual
[4] ARM IHI 0067 ARM® System Memory Management Unit Architecture Specification,

64KB Translation Granule Supplement
[5] ARM IHI 0062 ARM® System Memory Management Unit Architecture Specification
[6] ARM DDI 0487 ARM® Architecture Reference Manual ARMv8, for the ARMv8-A

architecture profile
[7] ARM DEN 0044 Server Base Boot Requirements, System Software on ARM®

Platforms
[8] ARM IHI 0069 ARM® Architecture Specification, GIC architecture version 3.0 and

version 4.0

1.2 Terms and abbreviations
This document uses the following terms and abbreviations:

Term Meaning

Base Server System A system compliant with the Server Base System Architecture

SBSA Server Base System Architecture

ARM ARM ARM Architecture Reference Manual; see [1] and [6].

GIC Generic Interrupt Controller

VM Virtual Machine

PE Processing Element, as defined in the ARM ARM. Typically a single hardware
thread of a PE.

PMU Performance Monitor Unit

I/O Coherent A device is I/O Coherent with the PE caches if its transactions snoop the PE
caches for cacheable regions of memory. The PE does not snoop the device’s
cache.

SGI Software Generated Interrupt

SPI Shared Peripheral Interrupt

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 9 of 59

Non-Confidential

PPI Private Peripheral Interrupt

LPI Locality-specific Peripheral Interrupt (GICv3)

SRE System Register interface Enable (GICv3)

ARE Affinity Routing Enable (GICv3)

System firmware data System description data structures such as ACPI or FDT

SBBR Server Base Boot Requirements

1.3 Feedback
ARM welcomes feedback on its documentation.

1.3.1 Feedback on this manual
If you have comments on the content of this manual, send e-mail to errata@arm.com. Give:

• The	title.	

• The	document	and	version	number,	ARM-DEN-0029	v3.0.	

• The	page	numbers	to	which	your	comments	apply.	

• A	concise	explanation	of	your	comments.	

ARM also welcomes general suggestions for additions and improvements.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 10 of 59

Non-Confidential

2 BACKGROUND
ARM processors are used in a wide variety of system-on-chip products in many diverse markets. The constraints
on products in these markets are inevitably very different, and it is impossible to produce a single product that
meets of the needs of the markets.

The ARM architecture profiles, Application, Real-time, and Microcontroller, exist in part to segment the solutions
produced by ARM and to describe the characteristics of particular target markets. The differences between
products targeted at different profiles are substantial due to the diverse functional requirements of the market
segments.

However, even within an architectural profile, the wide-ranging use of a product means that there are frequent
requests for features to be removed to save silicon area. This is relevant for products targeted at cost-sensitive
markets, where the cost of customizing software to accommodate the loss of a feature is small compared to the
overall cost saving of removing the feature itself.

In other markets, such as those which require an open platform with complex software, the savings gained from
removing a hardware feature are outweighed by the cost of software development to support the different variants.
In addition, software development is often performed by third parties, and the uncertainty about whether new
features are widely deployed can be a substantial brake to the adoption of those features.

The ARM Application profile must balance these two competing business pressures. It offers a wide range of
features, such as Advanced SIMD and floating point support, and TrustZone system security technology, to tackle
an increasing range of problems, while allowing features to be removed from implementations where they are not
needed and where silicon area and cost savings are an issue.

ARM processors are built into a large variety of systems. Aspects of this system functionality are crucial to the
fundamental function of system software.

Variability in PE features and certain key aspects of the system impact on the cost of software system
development and the associated quality risks.

Base System Architecture specifications are part of ARM’s strategy of addressing this variability.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 11 of 59

Non-Confidential

3 INTRODUCTION
This document specifies a hardware system architecture, based on ARM 64-bit architecture, which server system
software, such as operating systems, hypervisors and firmware can rely on. It addresses PE features and key
aspects of system architecture.

The primary goal is to ensure enough standard system architecture to enable a suitably-built single OS image to
run on all hardware compliant with this specification. A driver-based model for advanced platform capabilities
beyond basic system configuration and boot is required, however that is outside the scope of this document. Fully
discoverable and describable peripherals aid the implementation of such a driver model.

This specification also specifies features that firmware can rely on, allowing for some commonality in firmware
implementation across platforms.

ARM does not mandate compliance to this specification but anticipates that OEMs and software providers will
require compliance to maximize out of box software compatibility and reliability.

This specification embeds the notion of levels of functionality. Level 0 is the first level; level 1 adds functionality
on top of level 0. Unless explicitly stated, all specification items belonging to level N apply to levels greater than
N.

An implementation is consistent with a level of the Server Base System Architecture if it implements all of the
functionality of that level at performance levels appropriate for the target uses of that level. This means that all
functionality of a level can be exploited by software without unexpectedly poor performance.

Note: This is intended to avoid approaches such as software emulation of functionality that is critical to the
performance of software using the SBSA. It is not intended to act as a restriction of legitimate exploration of the
power, performance or area tradeoffs that characterize different products, nor to restrict the use of trapping within
a Virtualization system.

Implementations that are consistent with a level of the Server Base System Architecture can include additional
features that are not included in the definition of that level. However, software written for a specific level must run,
unaltered, on implementations that include such additional functionality.

Software running on a system including an ARM core inevitably includes code that is system-specific. Such code
is typically partitioned from the rest of the system software in the form of Firmware, Hardware Abstraction Layers,
Board Support Packages, Drivers and similar constructs. This document refers to such constructs as Hardware
Specific Software. The ARM Server Base Boot Requirements (SBBR) specification [7] describes firmware
requirements for an ARM server system. Where this specification refers to system firmware data, it refers to
firmware specified in the SBBR.

This specification uses the phrase software consistent with the Server Base System Architecture to indicate
software that is designed to be portable between different implementations that are consistent with the Server
Base System Architecture. Software that is consistent with the Server Base System Architecture does not depend
on the presence of hardware features that are not mandated in this specification. However, software might use

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 12 of 59

Non-Confidential

features that are not included in this specification, after checking that the platform supports the features, for
example by using hardware ID registers or system firmware data.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 13 of 59

Non-Confidential

4 SBSA

4.1 Level 0

4.1.1 PE Architecture
The PEs referred to in this specification are those that are running the operating system or hypervisor, not PEs
that are acting as devices.
PEs in the base server system are compliant with ARMv8 and the following is true:

• The number of PEs in the system does not exceed eight.
Note: This restriction is due to GICv2 limitations and will be removed in a future level.

• PEs implement Advanced SIMD extensions.
• Whether the Instruction Caches are implemented as VIPT or PIPT is IMPLEMENTATION DEFINED.

Note: Not all PEs are required to support the same Instruction Cache addressing scheme.
• PEs shall implement 16-bit ASID support.
• PEs shall support 4KB and 64KB translation granules at stage 1 and stage 2.
• All PEs are coherent and in the same Inner Shareable domain.
• Where export restrictions allow, PEs should implement cryptography extensions.
• PEs shall implement little-endian support.
• PEs shall implement EL2.
• PEs shall implement AArch64 at all Exception levels.
• The PMU overflow signal from each PE must be wired to a unique PPI or SPI interrupt with no

intervening logic.
• Each PE implements a minimum of four programmable PMU counters.
• Each PE implements a minimum of four synchronous watchpoints.
• Each PE implements a minimum of four breakpoints, two of which must be able to match virtual

address, contextID or VMID.
• All PEs are architecturally symmetric except for the permitted exceptions laid out in APPENDIX C:

Permitted Architectural Difference between PEs.

Note: It is consistent with this specification to implement PEs with EL3 and with support for the AArch32
Execution state.

4.1.2 Interrupt Controller
The base server system shall implement a GICv2 interrupt controller.
The system shall implement at least eight Non-secure Software Generated Interrupts, assigned to interrupt IDs
0-7.

4.1.3 Memory Map
This specification does not mandate a standard memory map. It is expected that the system memory map is
described to system software by system firmware data.
To enable EL2 hypervisors to use a 64KB translation granule at stage 2 MMU translation, the base server system
shall ensure that all memory and peripherals can be mapped using 64KB stage 2 pages and must not require the

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 14 of 59

Non-Confidential

use of 4KB pages at stage 2. It is expected therefore that peripherals that are to be assigned to different virtual
machines will be situated within different 64KB regions of memory.
Systems will not necessarily fully populate all of the addressable memory space. All memory accesses, whether
they access memory space that is populated or not, shall respond within finite time, so as to avoid the possibility
of system deadlock. Where a memory access is to an unpopulated part of the addressable memory space,
accesses must be terminated in a manner that is presented to the PE as a precise Data Abort or causes a system
error interrupt, or causes an SPI interrupt to be delivered to the GIC.

Note: Compliant software must not make any assumptions about the memory map that might prejudice compliant
hardware. For example, the full physical address space must be supported. There must be no dependence on
memory or peripherals being located at certain physical locations.

Note: The ARM implementation of GICv2, the GIC-400 product, needs special address bus wiring in a 64KB
translation granule system. See Appendix F: GIC-400 and 64KB Translation Granule.

4.1.4 I/O Virtualization
It is implementation-specific whether any given device in a base server architecture system supports the ability to
be hardware virtualized. It is expected that devices that can be hardware virtualized have that property expressed
by system firmware data.
If a device is virtualized and passed through to an operating system under a hypervisor then the memory
transactions of the device must be subject to stage 2 translation, allocation of memory attributes, and application
of permission checks, under the control of the hypervisor. This specification collectively refers to this translation,
attribution, and permission checking as policing. The act of policing is referred to as stage 2 System MMU
functionality.
This stage 2 System MMU functionality must be provided by a System MMU compatible with the ARM SMMUv1
with support for a 64KB translation granule specification, where:

• Support for stage1 policing is not required.

Note: Support for broadcast TLB maintenance operations is not required, and compliant software must maintain
the MMU TLBs using the software interface.

SMMUv1 with support for a 64KB translation granule does not have support for PCI Express ATS; support for PCI
Express ATS will be system-specific.
The base server system might instance an IMPLEMENTATION DEFINED number of SMMU components. It is
expected that these components will be described by system firmware data along with a description of how to
associate them with the devices they police.

Note: This is consistent with the ARM MMU-401 implementation. Software can either program stage 2 System
MMUs to use the same page tables as the PE or build shadow page tables. Standard PCI Express ATS support,
which is included in SMMUv3, is introduced in a later level of this specification.

4.1.5 Clock and Timer Subsystem
The base server system shall include the system counter of the Generic Timer as specified in the ARM ARM.

The system counter of the Generic Timer shall run at a minimum frequency of 10MHz and at a maximum
frequency of 400MHz.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 15 of 59

Non-Confidential

The architecture of the counter mandates that it shall be at least 56 bits, and at most 64 bits.

Note: The counter shall be sized and programmed to ensure that rollover never occurs in practical situations. The
timers and watchdogs that use the counter as a timebase rely on the counter not rolling over.

The Generic Timer system counter also exports its count value, or an equivalent encoded value, through the
system to the timers in the PEs as part of the Generic Timer subsystem. This count must be available to the PE
Timers when they are active, which is when the PEs are in power states where the PE timer is required to be on.

The local PE timers have a programmable count value. When the value expires it generates a Private Peripheral
Interrupt for the associated PE.

The local PE timers can be built so that they are always on. This property is described in the system firmware
data. Unless all of the local PE timers are always on, the base server system shall implement a system-specific
system wakeup timer that can be used when PE Timers are powered down. On timer expiry, the system wakeup
timer shall generate a level interrupt that shall be wired to the GIC as an SPI. Additionally, the system wakeup
timer can be used to wake up PEs. See 4.1.6.

4.1.6 Wakeup semantics
Systems implement many different power domains and power states. It is important for the OS or hypervisor, or
both, to understand the relationship between these power domains and the facilities it has for waking PEs from
various low power states.

A key component in controlling the entry to and exit from low-power states is the IMPLEMENTATION DEFINED power
controller. The power controller controls the application of power to the various power domains. On entry to low-
power states hardware-specific software will program the power controller to take the correct action. On exit from
a low-power state, hardware-specific software may need to reprogram the power controller. Hardware-specific
software is required to save and restore system state when entering and exiting some low-power states.

This specification defines two classes of wakeup methods: interrupts, and always-on power domain wake events.
The first class of wakeup methods are interrupts. This specification defines interrupts that wake PEs as wakeup
interrupts.

A wakeup interrupt is any interrupt that is any one of the following:

• An SPI that directly targets a PE.
• An SGI.
• A PPI.

	
In addition, for an interrupt to be a wakeup interrupt, it shall be enabled in the distributor. A PE shall wake in
response to a wakeup interrupt, independent of the state of its CPSR interrupt mask bits, which are the A, I, and F
bits, and of the wakeup interrupt priority.

Note: Typically, a wakeup signal is exported from the GIC to the power controller to initiate the PE wakeup.

Note: There are some power states where a PE will not wake on an interrupt. It is the responsibility of system
software to ensure there are no wakeup interrupts targeting a PE entering these states.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 16 of 59

Non-Confidential

The local PE timers are an important source of interrupts and can wake the PE. However the local PE timer may
be powered down in some low-power states, as it might be in the same power domain as the PE. In low-power
states where the local PE timer is powered down, system software can use an SGI from other running PEs to
wake the PE, or it can configure the system wakeup timer to send a wakeup interrupt to the PE to wake it.

In some very deep low-power states the GIC will be powered down. To wake from these states, there is another
class of wakeup methods that can be used; always-on power domain wake events.

If the system supports a low-power state where the GIC is powered down, there is an IMPLEMENTATION DEFINED
way to program the power controller to wake a PE on expiry of the system wakeup timer. In this scenario, the
system wakeup timer is still required to send its interrupt.

There may be other IMPLEMENTATION DEFINED always-on power domain wakeup events that can wake PEs from
deep low-power states, such as PCI Express wakeup events and Wake-on-LAN.
See 4.1.7 for a description of the power state semantics that the system must comply with.

4.1.7 Power State Semantics
This specification does not mandate a given hierarchy of power domains, but there are some rules and semantics
that must be followed.

Figure 1 is an example block diagram showing a possible hierarchy of power domains. Note that there are other
examples that conform to this specification that are not subsets of the system in the diagram.

In order for either the OS or hypervisor, or both, to be able to reason about wakeup events and to know which
timers will be available to wake the PE, all PEs must be in a state that is consistent with one of the semantics
described in Table 1: PE Power States and Table 2: Power State Semantics. Note that all PEs do not need to be
in the same state. It is expected that the semantics of the power states that a system supports will be described
by system firmware data. Table 3: Component Power State Semantics describes the power state semantics in a
set of component-specific rules.

System MMUs and, in the future, GICv3, make use of tables in memory in the power states where GIC is ‘On’,
system memory shall be available and will respond to requests without requiring intervention from software
running on the PEs.

Hardware-specific software is required to save and restore system state when entering and exiting low-power
states.

It is highly likely that many systems will support very low-power states where most system logic is powered down
and the system memory is in self-refresh, but the OS retains control over future wakeup. This is reflected in
power state semantic E. In this state, the GIC can be powered off after system software has saved its state. In
this state, wakeup signals go straight to the system power controller and do not require use of the GIC to wake the
PEs. The system power controller is system-specific. When in a power state of semantic E, the system power
controller wakes an IMPLEMENTATION DEFINED PE, or set of PEs, when the system wakeup timer expires. Other
system-specific events may also cause wakeup from this state, such as a PCI Express wakeup event. The events
that will cause wakeup from this state are expected to be discoverable from system firmware data.

When the system is in a state where the GIC is powered down devices must not send messaged interrupts to the
GIC.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 17 of 59

Non-Confidential

System wake
up timer

System
counter

Power
Controller

GIC

CPU CPU CPU CPU

PCIe
RC

Timer
Timer Timer

Timer

Interrupt

Wakeup signal

Power domain

Figure 1: Example system block diagram showing power domains and timer hierarchy

PE State Description

Run The PE is powered up and running code.
Idle_standby The PE is in STANDBYWFI state, but remains powered up. There is full state retention, and

no state saving or restoration are required. Execution automatically resumes after any
interrupt or external debug request (EDBGRQ). Debug registers are accessible.

Idle_retention The PE is in STANDBYWFI state, but remains powered up. There is full state retention, and
no state saving or restoration are required. Execution automatically resumes after any
interrupt or external debug request (EDBGRQ). Debug registers are not accessible.

Sleep The PE is powered down but hardware will wake the PE autonomously, for example, on
receiving a wakeup interrupt. No PE state is retained. State must be explicitly saved. The
woken PE starts execution at the reset vector, and then hardware-specific software restores
state.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 18 of 59

Non-Confidential

Off The PE is powered down and is not required to be woken by interrupts. The only way to
wake the PE is by explicitly requesting the power controller, for example, from system
software running on another PE, or an external source such as a poweron_reset. This state
can be used when the system software explicitly decides to remove the PE from active
service, giving the hardware opportunity for more aggressive power saving. No PE state is
retained.

Table 1: PE Power States

Semantic PE PE
timers

GIC System
wakeup timers
and system
counter

Note

A Run On On On -
B Idle On On On The PE will resume execution on receipt of

any interrupt.
C Sleep On On On The PE will wake on receipt of a wakeup

interrupt.
D Sleep Off On On The PE will wake on receipt of a wakeup

interrupt, but the local timer is off.
E Sleep Off Off On The PE will wake as the result of a system

timer wakeup event or other system-
specific events.

F Off Off On On Some, but not all PEs, are in Off state.
G Off Off Off Off All PEs are in Off state.
H Sleep On Off On The PE will wake from as the result of a PE

timer event, a system timer wakeup event,
or other system-specific events.

I Idle Off On On The PE will resume execution on receipt of
any interrupt, but the local timer is off.

Table 2: Power State Semantics

Component Semantics

PE Individual PEs can be in Run, Idle, Sleep, or Off state.

PE timers Must be On if the associated PE is in the Run state.
Might be On or Off if the PE is in Idle or Sleep state.
Must be Off if the PE is in the Off state.

GIC Must be On if any PE is in the Run or Idle state.
Might be On or Off if all PEs are in either the Sleep or Off state, with at least one PE in
the Sleep state.
Must be Off If all PEs are in the Off state.

System wake up
timers and system

Must be On if any PE is not in the Off state.
Must be Off if all PEs are in the Off state.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 19 of 59

Non-Confidential

counter
Table 3: Component Power State Semantics

4.1.8 Peripheral Subsystems
If the system has a USB2.0 host controller peripheral it must conform to EHCI v1.1 or later.

If the system has a USB3.0 host controller peripheral it must conform to XHCI v1.0 or later.

If the system has a SATA host controller peripheral it must conform to AHCI v1.3 or later.

Peripheral subsystems which do not conform to the above are permitted, provided that they are not required to
boot and install an OS.

4.2 Level 1

4.2.1 PE Architecture
In addition to the level 0 requirements, the following must be true of the PEs in the base server system:

• Each PE must implement a minimum of six programmable PMU counters.
• Each PE must implement a minimum of six breakpoints, two of which must be able to match virtual

address, contextID or VMID.

4.2.2 Interrupt Controller
If the base server system includes PCI Express then the base server system must implement a GICv2m interrupt
controller. The system must implement at least one Non-secure MSI frame with a minimum of 32 SPIs. There is
no requirement to support a Secure MSI frame.
Note that a GICv2m interrupt controller is a GICv2 interrupt controller with additional register frames specified in
the GICv2m specification, see APPENDIX E: GICv2m Architecture, for standardized support of PCI Express MSI
and MSI-X.
If the base server system does not include a PCI Express root complex then the base server system must
implement a GICv2 interrupt controller.

4.2.3 Clock and Timer Subsystem
Level 0 of the SBSA requires a system-specific system timer unless all of the local PE timers are always on.
Level 1 of the SBSA supersedes this requirement and requires that unless all of the local PE timers are always on
that there is a system wakeup timer in the form of the memory mapped timer described in the ARMv8 ARM [6].
The wakeup timer does not require a virtual timer to be implemented and it is permissible for the virtual offset
register to read as zero. Writes to the virtual offset register in CNTCTLBase frame are ignored. The timer is not
required to have a CNTEL0Base frame.
In systems that implement EL3, the memory mapped timer (the CNTBaseN frame and associated CNTCTLBase
frame) must be mapped into the Non-secure address space.
Table 4 : Generic counter and timer memory mappings shows where the various counter and timer frames are
mapped in systems with and without EL3.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 20 of 59

Non-Confidential

Register Frame System without EL3 System with EL3

CNTControlBase Non-secure Secure
CNTReadBase Non-secure Either
CNTCTLBase Non-secure Non-secure and Secure
CNTBaseN Non-secure Non-secure

Table 4 : Generic counter and timer memory mappings

4.2.3.1 Summary of the required registers of the CNTControlBase frame

Offset Name Type Description

0x000 CNTCR RW Counter Control Register

0x004 CNTSR RO Counter Status Register

0x008 CNTCV[31:0] RW Counter Count Value Register

0x00C CNTCV[63:32] RW Counter Count Value Register

0x010-0x01C - RES0 Reserved

0x020 CNTFID0 RO OR RW Frequency modes table, and end marker.
CNTFID0 is the base frequency, and each
CNTFIDn is an alternative frequency. For
more information see ARM ARM.

0x020+4n CNTFIDn RO OR RW

(0x024+4n)-
0x0BC

- RES0 Reserved

0x0C0-0X0FC - IMPLEMENTATION
DEFINED

Reserved for IMPLEMENTATION DEFINED
registers

0x100-0xFCC - RES0 Reserved

0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11

4.2.3.2 Summary of the required registers of the CNTReadBase frame

Offset Name Type Description

0x000 CNTCV[31:0] RO Counter Count Value Register

0x004 CNTCV[63:32] RO Counter Count Value Register

0x008-0xFCC - RES0 Reserved

0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11

4.2.3.3 Summary of the required registers of the CNTCTLBase frame

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 21 of 59

Non-Confidential

Offset Name Type Security Description

0x000 CNTFRQ RW Secure Counter Frequency register

0x004 CNTNSAR RW Secure Counter Non-secure Access register

0x008 CNTTIDR RO Both Counter Timer ID register

0x00C-0x03F - RES0 Both Reserved

0x040+4N CNTACR<N> RW Configurable Counter Access Control register N

0x060-0x07F - RES0 Both Reserved

0x0C0-0x0FC - UNK/SBZP Both Reserved

0x100-0x7FC - - Both IMPLEMENTATION DEFINED

0x800-0xFBC - UNK/SBZP Both Reserved

0xFC0-0xFCF - - Both IMPLEMENTATION DEFINED

0xFD0-0xFFC CounterID<n> RO Both Counter ID registers 0-11

4.2.3.4 Summary of the required registers of the CNTBaseN frame

Offset Name Type Description

0x000 CNTPCT[31:0] RO Physical Count register

0x004 CNTPCT[63:32] RO Physical Count register

0x010 CNTFRQ RO Counter Frequency register

0x020 CNTP_CVAL[31:0] RW Physical Timer Compare Value register

0x024 CNTP_CVAL[63:32] RW Physical Timer Compare Value register

0x028 CNTP_TVAL RW Physical Timer Value register

0x02C CNTP_CTL RW Physical Timer Control register

0x040-0xFCF - RES0 Reserved

0xFD0-0xFFC CounterID<n> RO Counter ID registers 0-11

4.2.4 Watchdogs
The base server system implements a Generic Watchdog as specified in APPENDIX A: Generic Watchdog.
Watchdog Signal 0 is routed as an SPI to the GIC and it is expected this will be configured as an EL2 interrupt,
directly targeting a single PE.
Watchdog Signal 1 shall be routed to the platform. In this context, platform means any entity that is more
privileged than the code running at EL2. Examples of the platform component that services Watchdog Signal 1
are: EL3 system firmware, or a system control processor, or dedicated reset control hardware.
The action taken on the raising of Watchdog Signal 1 is platform-specific.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 22 of 59

Non-Confidential

Note: Only directly-targeted SPI are required to wake a PE; see section 4.1.6 for further information.
Programming the watchdog SPI to be directly targeted ensures delivery of the interrupt independent of PE power
states. However it is possible to use a 1 of N SPI to deliver the interrupt as long as one of the target PEs is
running.

4.2.5 Wakeup semantics
If the system supports a low-power state where the GIC is powered down, then there shall be an IMPLEMENTATION
DEFINED way to program the power controller to wake a PE on expiry of the system wakeup timer or the generic
watchdog. In this scenario, the system wakeup timer or generic watchdog is still required to send its interrupt.

4.2.6 Requirements on power state semantics
The power state semantic table and the Component Power State Semantic table are extended to include the
Generic Watchdog.

Semantic PE PE
timers

GIC System wake
up timers,
system
counter and
generic
watchdog

Note

A Run On On On -
B Idle On On On PE will resume execution on receipt of any

interrupt.
C Sleep On On On PE will wake on receipt of a wakeup interrupt.
D Sleep Off On On PE will wake on receipt of a wakeup interrupt,

but local timer is off.
E Sleep Off Off On PE will wake from system timer wakeup

event or other system specific events.
F Off Off On On Some, but not all, PEs are in Off state.
G Off Off Off Off All PEs in Off state.
H Sleep On Off On PE will wake from PE timer, system timer wakeup

event or other system specific events.
I Idle Off On On PE will resume execution on receipt of any

interrupt, but the local timer is off.
Table 5: Power State Semantics

PE Individual PEs can be in Run, Idle, Sleep or Off state.

PE timers Must be On if the associated PE is in the Run state.
May be On or Off if the PE is in Idle or Sleep state.
Must be Off if the PE is in the Off state.

GIC Must be On if any PE is in the Run or Idle state.
Maybe On or Off if all PEs are in either the Sleep or Off state, with at least one PE in
the Sleep state.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 23 of 59

Non-Confidential

Must be Off If all PEs are in the Off state.

System wake up
timers and system
counter and generic
watchdog

Must be On if any PE is not in the Off state.
Must be Off if all PEs are in the Off state.

Table 6: Component Power State Semantics

4.2.7 Peripheral Subsystems
For the purpose of system development and bring up, the base server system shall include a Generic UART. The
Generic UART is specified in Appendix B. The UARTINTR interrupt output is connected to the GIC as an SPI.

If the system has a PCI Express root complex then it must comply with the rules in APPENDIX D: PCI Express
Integration.

4.3 Level 2

4.3.1 PE Architecture
The maximum number of PEs is raised to 228. This reflects the maximum number of PEs GICv3 can support.

1. The PMU overflow signal from each PE must be wired to a unique PPI interrupt with no intervening logic.

4.3.2 Interrupt Controller
The GICv3 specification introduces support for systems with more than eight PEs, as well as improved support for
larger numbers of interrupts.
A level 2 base server system shall implement a GICv3 interrupt controller.
If the base server system includes PCI Express then the GICv3 interrupt controller shall implement ITS and LPI.

Note: It is expected that MSI and MIS-X are mapped to LPI interrupts.
Note: It is permissible to build a system with no support for SPI, however ARM expects that the peripheral eco-
system will continue to rely on wired level interrupts and expects most systems to support SPI as well as LPI
interrupts.
Note: The ARM PL011 UART requires a level interrupt, as does a PCIe root complex, for legacy interrupt support.

It is optional for the interrupt controller to include GICv2 and GICv2m backward compatibility; ARE may be
implemented as RAO/WI for both Security states and SRE as RAO/WI for all Exception levels. Any system that
does not include this compatibility will not be able to run software that is compliant with level 0 or level 1.
See Appendix G: GICv2m compatibility in a GICv3 system on page 52 for how backward compatibility with
GICv2m can be achieved in a GICv3 system.
Support for compatibility with level 0 and level 1 of this spec (and hence GICv2 and GICv2m) is deprecated.

Note: A level 2 system running in backwards-compatible mode is only able to use a maximum of 8 PEs.

4.3.2.1 PPI assignments
A level 2 base server system must comply with the PPI mapping laid out in: Table 7 - PPI assignments.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 24 of 59

Non-Confidential

Interrupt ID Interrupt Description

30 Overflow interrupt from CNTP Non-secure physical timer interrupt.

29 Overflow interrupt from CNTPS Secure Physical timer interrupt.

28 Overflow interrupt from CNTHV EL2 virtual timer (if PEs are v8.1 or greater)

27 Overflow interrupt from CNTV Virtual timer interrupt.

26 Overflow interrupt from CNTHP Hypervisor timer interrupt.

25 GIC Maintenance interrupt The virtual PE interface list register overflow
interrupt.

24 CTIIRQ CTI (Cross Trigger Interface) interrupt.

23 Performance Monitors Interrupt Indicates an overflow condition in the
performance monitors unit.

22 COMMIRQ DCC (comms channel) interrupt.

21 PMBIRQ Statistical Profiling Interrupt (if Statistical Profiling
Extensions implemented)

19-20 Reserved Expansion space for future SBSA usage
Table 7 - PPI assignments

4.3.3 Memory Map
Where a memory access is to an unpopulated part of the addressable memory space, accesses must be
terminated in a manner that is presented to the PE as either a precise Data Abort or that causes a system error
interrupt or an SPI or LPI interrupt to be delivered to the GIC.

4.3.4 Requirements on power state semantics
GICv3 introduces a new class of interrupt: LPI. A PE receiving any of the following types of interrupt shall wake
up:

• An SPI that directly targets a PE.
• An SGI.
• A PPI.
• An LPI.

The power state semantic table and the component power state semantic table are modified to split the GIC
requirements into those for the PE Interface and those for the distributor.

Semantic PE and
GIC PE
Interface

PE
timers

GIC
Distributor

System
wakeup
timers,
system
counter and
generic
watchdog

Note

A Run On On On -

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 25 of 59

Non-Confidential

B Idle On On On PE will resume execution on receipt of
any interrupt.

C Sleep On On On PE will wake on receipt of a wakeup
interrupt.

D Sleep Off On On PE will wake on receipt of a wakeup
interrupt, but local timer is off.

E Sleep Off Off On PE will wake from system timer wakeup
event or other system specific events.

F Off Off On On Some, but not all, PEs are in Off state.
G Off Off Off Off All PEs in Off state.
H Sleep On Off On PE will wake from PE timer, system timer

wakeup event or other system specific
events.

I Idle Off On On PE will resume execution on receipt of any
interrupt, but the local timer is off.

Table 8: Power State Semantics

PE and GIC PE
Interface

Individual PEs and their associated GIC PE interface can be in Run, Idle, Sleep or Off
state.

PE timers Must be On if the associated PE is in the Run state.
May be On or Off if the PE is in Idle or Sleep state.
Must be Off if the PE is in the Off state.

GIC Distributor Must be On if any PE is in the Run or Idle state.
Maybe On or Off if all PEs are in either the Sleep or Off state, with at least one PE in
the Sleep state.
Must be Off If all PEs are in the Off state.

System wakeup timers
and system counter
and generic watchdog

Must be On if any PE is not in the Off state.
Must be Off if all PEs are in the Off state.

Table 9: Component Power State Semantics

4.3.5 I/O Virtualization
Stage 2 System MMU functionality must be provided by a System MMU compatible with the ARM SMMUv2 spec
where:

• Support for stage 1 policing is not required.

Note: Support for broadcast TLB maintenance operations is not required.

Note: This behavior is consistent with ARMs MMU-500 implementation.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 26 of 59

Non-Confidential

4.3.6 Clock and Timer Subsystem
In systems that include the system wakeup time, the timer expiry interrupt is presented to the GIC as either an SPI
or LPI.
It is recognized that in large system a shared resource like the system wakeup timer can create a system
bottleneck, as access to it must be arbitrated through a system-wide lock. It is anticipated that this will be dealt
with by the platform by having the firmware tables describe the PE timers as always on and remove the need for
the system timer. The platform will either implement hardware always on PE timers or use the platform firmware
to save and restore the PE timers in a performance scalable fashion.

Note: Systems compliant with Level 3 – firmware will have standard hardware that the firmware can use, see
section 4.5.2.

4.3.7 Wakeup semantics
Whenever a PE is woken from a sleep or off state the OS or Hypervisor shall be presented with an interrupt so
that it can determine which device requested the wakeup. The interrupt must be pending in the GIC at the point
that control is handed back to the OS or Hypervisor from the system-specific software performing the state
restore.
This interrupt must behave like any other: a device sends an interrupt to the GIC, and the GIC sends the interrupt
to the OS or Hypervisor. The OS or Hypervisor is not required to communicate with a system-specific interrupt
controller.

Note: If the wakeup event is an edge then the system must ensure that this edge is not lost. The system must
ensure that the edge wakes the system and is subsequently delivered to the GIC without losing the edge.

An example of an expected chain of events would be:

1. Wakeup event occurs e.g. GPIO or wake-on-LAN.
2. The power controller responds by powering on the necessary resources that include the PE and the GIC.
3. The PE comes out of reset and system-specific software restores state, including the GIC.
4. An interrupt is presented to the GIC representing the wakeup event. In many situations this might be

exactly the same signal as the wakeup event.
5. The system must ensure that, by the time the system-specific restore software has delegated to the OS or

Hypervisor, the interrupt is pending in the GIC.
6. The OS or Hypervisor can respond to the interrupt.

4.3.8 Watchdogs
The watchdog signal WS0 shall be presented to the GIC as SPI or an LPI interrupt.

4.3.9 Peripheral Systems
The UARTINTR output of the generic UART as described in Appendix B shall be connected to the GIC as an SPI
or LPI.

4.4 Level 3

4.4.1 PE Architecture
In addition to the level 2 requirements, the following shall be true of the PEs in the base server system:

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 27 of 59

Non-Confidential

• Each PE shall implement the EL3 Exception level.
• PEs shall implement the CRC32 instructions.

4.4.2 Expected usage of Secure state
The Level 3 base server system is expected to use the PE EL3 and Secure state as a place to implement
platform-specific firmware. The system may choose to implement further functionality in the Secure state, but that
is outside the scope of SBSA Level 3.
Given this expected use SBSA Level 3 does not expect PCI express to be present in the Secure state; this
assumption is reflected in the GICv3 architecture in that there is no support for Secure LPI.

4.4.3 Memory Map
All Non-secure on-chip masters in a base server system that are expected to be under the control of the operating
system or hypervisor must be capable of addressing all of the Non-secure address space. If the master goes
through a SMMU then the master must be capable of addressing all of the Non-secure address space when the
SMMU is turned off.
Non-secure off-chip devices that cannot directly address all of the Non-secure address space must be placed
behind a stage 1 System MMU compatible with the ARM SMMUv2 or SMMUv3 specification. that has an output
address size large enough to address all of the Non-secure address space. See Section 4.4.5.

4.4.4 Interrupt Controller
The GICv3 interrupt controller shall support two Security states.

4.4.5 I/O Virtualization
Stage 2 System MMU functionality must be provided by a System MMU compatible with the ARM SMMUv2
specification where:

• Support for stage 1 policing is not required.
• Each context bank must present a unique physical interrupt to the GIC.

Or the Stage 2 System MMU functionality must be provided by a System MMU compatible with the ARM SMMUv3
spec where:

• Support for stage 1 policing is not required.
• The integration of the System MMUs is compliant with the specification in APPENDIX H: SMMUv3

Integration.

All the System MMUs in the system must the compliant with the same architecture version.

Note: System MMUv3 is not backwards compatible with System MMUv2 and as such any system implementing
System MMUv3 MMUs is not strictly backwards compatible with level 2.
Note: Support for broadcast TLB maintenance operations is not required.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 28 of 59

Non-Confidential

4.4.6 Clock and Timer Subsystem
If the system includes a system wakeup timer, this memory-mapped timer must be mapped on to Non-secure
address space. This is now referred to as the Non-secure system wakeup timer. The following table summarizes
which address space the register frames should be mapped on to.

Register Frame

CNTControlBase Secure
CNTReadBase Not required
CNTCTLBase Non-secure and Secure
CNTBaseN Non-secure

4.4.7 Watchdogs
The watchdog required by level 2 must have both its register frames mapped on to Non-secure address space;
this is referred to as the Non-secure watchdog.

Note: Only directly targeted SPI are required to wake a PE so programming the watchdog SPI to be directly
targeted ensures delivery of the interrupt independent of PE power states. See section 4.2.6. However, it is
possible to use a 1 of N SPI to deliver the interrupt as long as one of the target PEs is running.

4.4.8 Peripheral Subsystems
The Generic UART required by level 2 must be mapped on to Non-secure address space. This is referred to as
the Non-secure Generic UART.
For systems that include PCI express, the PCI express integration appendix introduces an additional rule
applicable to a level 3 system. See section 8.3, PCI Express device view of memory.

The memory attributes of DMA traffic must be one of the following:

• Inner writeback, outer writeback, Inner Shareable.
• Inner non-cacheable, outer non-cacheable.
• A device type.

I/O Coherent DMA traffic must have the attribute “Inner writeback, outer writeback, Inner Shareable”.

4.5 Level 3 – firmware
Level 3 – firmware is an optional additional set of requirements for a level 3 system. It is designed to give a base
set of functionality that standard platform firmware can rely on. A system that is compliant with level 3 and not
compliant with level 3 – firmware is still a fully compliant level 3 system. It has all the features required by the
operating systems and hypervisors.

4.5.1 Memory Map
The system must provide some memory mapped in the Secure address space. The memory shall not be aliased
in the Non-secure address space. The amount of Secure memory provided is platform-specific as the intended
use of the memory is for platform-specific firmware.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 29 of 59

Non-Confidential

All Non-secure on-chip masters in a base server system that are expected to be used by the platform firmware
must be capable of addressing all of the Non-secure address space. If the master goes through a SMMU then the
master must be capable of addressing all of the Non-secure address space even when the SMMU is off.

4.5.2 Clock and Timer Subsystem
A system compatible with level 3- firmware must also include a Secure wakeup timer in the form of the memory
mapped timer described in the ARMv8 ARM [6] This timer must be mapped into the Secure address space, and
the timer expiry interrupt shall be presented to the GIC as an SPI. This timer is referred to as the Secure system
wakeup timer.
The Secure wakeup timer does not require a virtual timer to be implemented and it is permissible for the virtual
offset register to read as zero, where writes to the virtual offset register in CNTCTLBase frame are ignored. The
timer is not required to have a CNTEL0Base frame.
The following table summarizes which address space the register frames related to the Secure wakeup timer
should be mapped on to.

Register Frame

CNTControlBase Secure
CNTReadBase Not required
CNTCTLBase Secure
CNTBaseN Secure

CNTCTLBase may be shared amongst multiple timers, including various Secure and Non-secure timers. The
SBSA specification does not require this.

Note: GICv3 does not support Secure LPI; therefore the Secure system timer interrupt shall not be delivered as
LPI.
Note: It is recognized that in a large system, a shared resource like the system wakeup timer can create a system
bottleneck, as access to it must be arbitrated through a system-wide lock. Level 3-firmware requires just a single
timer so that standard firmware implementations have a guaranteed timer resource across platforms. It is
anticipated that large PE systems will implement a more scalable solution such as one timer per PE.

4.5.3 Watchdogs
The required behavior of watchdog signal 1 of the Non-secure watchdog is modified in level 3– firmware and is
required to be routed as an SPI to the GIC. It is expected that this SPI be configured as an EL3 interrupt, directly
targeting a single PE.
A system compatible with level 3- firmware must implement a second watchdog, and is referred to as the Secure
watchdog. It must have both its register frames mapped in the Secure memory address space and must not be
aliased to the Non-secure address space.
Watchdog Signal 0 of the Secure watchdog shall be routed as an SPI to the GIC and it is expected this will be
configured as an EL3 interrupt, directly targeting a single PE.

Note: GICv3 does not support Secure LPI. The Secure watchdog interrupts shall not be delivered as LPI.
Note: Only directly targeted SPI are required to wake a PE. Programming the watchdog SPI to be directly
targeted ensures delivery of the interrupt independent of PE power states. However it is possible to use a 1 of N
SPI to deliver the interrupt provided that one of the target PEs is running. See section 4.2.6 for information about
SPI waking a PE.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 30 of 59

Non-Confidential

Watchdog Signal 1 of the Secure watchdog shall be routed to the platform. In this context, platform means any
entity that is more privileged than the code running at EL3. Examples of the platform component that services
Watchdog Signal 1 are a system control processor, or dedicated reset control hardware.
The action taken on the raising of Watchdog Signal 1 of the Secure watchdog is platform-specific.

4.5.4 Peripheral Subsystems
A system compatible with level 3-firmware must provide a second generic UART, referred to as the Secure
Generic UART, that can be configured to exist in the Secure memory address space. It must not be aliased in the
Non-secure address space. The UARTINTR output of the Secure Generic UART shall be connected to the GIC
as an SPI.

Note: GICv3 does not support Secure LPI. The Secure Generic UART interrupt shall not be delivered as LPI.

Systems that integrate PCI express should note that PCI express integration appendix introduces an additional
rule applicable to a level 3 system, see 8.3 PCI Express device view of memory.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 31 of 59

Non-Confidential

5 APPENDIX A: GENERIC WATCHDOG

5.1 About
The Generic Watchdog aids the detection of errant system behavior. If the Generic Watchdog is not refreshed
periodically, it will raise a signal, which is typically wired to an interrupt. If this watchdog remains un-refreshed, it
will raise a second signal which can be used to interrupt higher-privileged software or cause a PE reset.

The Generic Watchdog has two register frames, one that contains the refresh register and one for control of the
watchdog.

5.2 Watchdog Operation
The Generic Watchdog has the concept of a Cold reset and a Warm reset. On a Cold reset, certain register
values are reset to a known state. Watchdog Cold reset must only occur as part of the watchdog powering-up
sequence. On a Warm reset, the architectural state of the watchdog is not reset, but other logic such as the bus
interface might be. This is to facilitate the PEs in the system going through a reset sequence, while the watchdog
retains its state so it can be examined when the PEs are running.

The basic function of the Generic Watchdog is to count for a fixed period of time, during which it expects to be
refreshed by the system indicating normal operation. If a refresh occurs within the watch period, the period is
refreshed to the start. If the refresh does not occur then the watch period expires, and a signal is raised and a
second watch period is begun.

The initial signal is typically wired to an interrupt and alerts the system. The system can attempt to take corrective
action that includes refreshing the watchdog within the second watch period. If the refresh is successful, the
system returns to the previous normal operation. If it fails, then the second watch period expires and a second
signal is generated. The signal is fed to a higher agent as an interrupt or reset for it to take executive action.

The Watchdog uses the Generic Timer system counter as the timebase against which the decision to trigger an
interrupt is made.

Note: The ARM ARM states that the system counter measures the passing of real-time. This counter is
sometimes referred to as the physical counter.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 32 of 59

Non-Confidential

The Watchdog is based on a 64-bit compare value and comparator. When the generic timer system count value
is greater than the compare value, a timeout refresh is triggered.

The compare value can either be loaded directly or indirectly on an explicit refresh or timeout refresh.

When the watchdog is refreshed explicitly, the compare value is loaded with the sum of the zero-extended
watchdog offset register and the current generic timer system count value.

When the watchdog is refreshed through a timeout, the compare value is loaded with the sum of the
zero-extended watchdog offset register and the current generic timer system count value. See below for
exceptions
An explicit watchdog refresh occurs when one of a number of different events occur:

• The Watchdog Refresh Register is written.
• The Watchdog Offset Register is written.
• The Watchdog Control and Status register is written.

In the case of an explicit refresh, the Watchdog Signals are cleared. A timeout refresh does not clear the
Watchdog Signals.

The watchdog has the following output signals:

• Watchdog Signal 0 (WS0).
• Watchdog Signal 1 (WS1).

If WS0 is asserted and a timeout refresh occurs, then the following must occur:

• If the system is compliant to SBSA level 0 or level 1, then it is IMPLEMENTATION DEFINED whether the
compare value is loaded with the sum of the zero-extended watchdog offset register and the current
generic timer system count value, or whether it retains its current value.

• If the system is compliant to SBSA level 2 or higher, the compare value must retain its current value. This
means that the compare value records the time that WS1 is asserted.

If both watchdog signals are deasserted and a timeout refresh occurs, WS0 is asserted.

If WS0 is asserted and a timeout refresh occurs, WS1 is asserted.

WS0 and WS1 remain asserted until an explicit refresh or watchdog Cold reset occurs.

WS0 and WS1 are deasserted when the watchdog is disabled.

The status of WS0 and WS1 can be read in the Watchdog Control and Status Register.

Note: The following pseudocode assumes that the compare value is not updated on a timeout refresh when WS0
== 1 and does not show the other permitted behavior.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 33 of 59

Non-Confidential

TimeoutRefresh = (SystemCounter[63:0] > CompareValue[63:0])
If WatchdogColdReset
 WatchdogEnable = DISABLED
Endif
If LoadNewCompareValue
 CompareValue = new_value
ElseIf ExplicitRefresh == TRUE or (TimeoutRefresh == TRUE and WS0 ==
FALSE)

CompareValue = SystemCounter[63:0] +
ZeroExtend(WatchdogOffsetValue[31:0])

Endif
If WatchdogEnable == DISABLED
 WS0 = FALSE
 WS1 = FALSE
ElseIf ExplicitRefresh == TRUE
 WS0 = FALSE
 WS1 = FALSE
ElseIf TimeoutRefresh == TRUE
 If WS0 == FALSE
 WS0 = TRUE
 Else
 WS1 = TRUE
 Endif
Endif

The Generic Watchdog shall be disabled when the System Counter is being updated, or the results are
UNPREDICTABLE.

Note: The watchdog offset register is 32 bits wide. This gives a maximum watch period of around 10s at a system
counter frequency of 400MHz. If a larger watch period is required, the compare value can be programmed directly
into the compare value register.

5.3 Register summary
This section gives a summary of the registers, relative to the base address of the relevant frames.

All registers are 32 bits in size and should be accessed using 32-bit reads and writes. If an access size other than
32 bits is used then the results are IMPLEMENTATION DEFINED. There are two register frames, one for a refresh
register, and the other containing the status and setup registers.
The Generic Watchdog is little-endian.

Table 10 shows the refresh frame.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 34 of 59

Non-Confidential

Offset Name Description

0x000 – 0x003 WRR Watchdog refresh register. A write to this location
causes the watchdog to refresh and start a new watch
period. A read has no effect and returns 0.

0x004 – 0xFCB - Reserved.

0xFCC – 0xFCF W_IIDR See Watchdog Interface Identification Register on page
35.

0xFD0 – 0xFFF - IMPLEMENTATION DEFINED.
Table 10 Refresh Frame

Table 11 shows the watchdog control frame.

Offset Name Description

0x000 – 0x003 WCS Watchdog control and status register. A read/write
register containing a watchdog enable bit, and bits
indicating the current status of the watchdog signals.

0x004 – 0x007 - Reserved.

0x008 – 0x00B WOR Watchdog offset register. A read/write register
containing the unsigned 32 bit watchdog countdown
timer value.

0x00C – 0x00F - Reserved.

0x010 – 0x013 WCV[31:0]
WCV[63:32]

Watchdog compare value. Read/write registers
containing the current value in the watchdog compare
register.
Reserved.

0x014 – 0x017

0x018 – 0xFCB -

0xFCC – 0xFCF W_IIDR See Watchdog Interface Identification Register on page
35.

0xFD0 – 0xFFF - IMPLEMENTATION DEFINED.
Table 11 Watchdog Control Frame

5.4 Register descriptions

5.4.1 Watchdog Control and Status Register
The format of the Watchdog Control and Status Register is:

Bits [31:3]
Reserved. Read all zeros, write has no effect.

Bits [2:1] – Watchdog Signal Status bits
A read of these bits indicates the current state of the watchdog signals; bit [2] reflects the status of WS1 and
bit [1] reflects the status of WS0.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 35 of 59

Non-Confidential

A write to these bits has no effect.

Bit [0] – Watchdog Enable bit
A write of 1 to this bit enables the Watchdog, a 0 disables the Watchdog.
A read of these bits indicates the current state of the Watchdog enable.
The watchdog enable bit resets to 0 on watchdog Cold reset.

5.4.2 Watchdog Interface Identification Register
W_IIDR is a 32-bit read-only register.
The format of the register is:

ProductID, bits [31:20]
An IMPLEMENTATION DEFINED product identifier.

Architecture version, bits [19:16]
Revision field for the Generic Watchdog architecture. The value of this field depends on the Generic
Watchdog architecture version:

• 0x0 for Generic Watchdog v0.

Revision, bits [15:12]
An IMPLEMENTATION DEFINED revision number for the component.

Implementer, bits [11:0]
Contains the JEP106 code of the company that implemented the Generic Watchdog:
Bits [11:8] The JEP106 continuation code of the implementer.
Bit [7] Always 0.
Bits [6:0] The JEP106 identity code of the implementer.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 36 of 59

Non-Confidential

6 APPENDIX B: GENERIC UART

6.1 About
This specification of the ARM generic UART is designed to offer a basic facility for software bring up and as such
specifies the registers and behavior required for system software to use the UART to receive and transmit data.
This specification does not cover registers needed to configure the UART as these are considered hardware-
specific and will be set up by hardware-specific software. This specification does not cover the physical interface
of the UART to the outside world, as this is system specific.

The registers specified in this specification are a subset of the ARM PL011 r1p5 UART. An instance of the PL011
r1p5 UART will be compliant with this specification.

The generic UART supports at least 32-entry separate transmit and receive byte FIFOs and does not support
DMA Features, Modem control features, Hardware flow control features, or IrDA SIR features.

The generic UART uses 8-bit words, equivalent to UARTLCR_H.WLEN == b11.

The basic use model for the FIFO allows software polling to manage flow, but this specification also requires an
interrupt from the UART to allow for interrupt-driven use of the UART.

Table 12 on page 38 identifies the minimum register set used for SW management of the UART.

6.2 Generic UART register frame
The Generic UART is specified as a set of 32-bit registers. However it is required that implementations support
accesses to these registers using read and writes accesses of various sizes. The required access sizes are
included in Table 12 Base UART Register Set. The base address of each access, independent of access size,
must be the same as the base address of the register being accessed.
If an access size not listed in the table is used, the results are IMPLEMENTATION DEFINED.
The Generic UART is little-endian.

Offset Name Description Permitted access sizes/bits

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 37 of 59

Non-Confidential

0x000 –
0x003

UARTDR – Data Register A 32-bit read/write register.
Bits [7:0] An 8-bit data register used to
access the Tx and Rx FIFOs.
Bits [11:8] 4 bits of error status used
to detect frame errors – read-only.
Bits [31:12] Reserved.
(Ref Section 3.3.1 – PL011TRM)

Read: 16,32
Write: 8,16,32

0x004 –
0x007

UARTRSR/UARTECR –
Receive status and error
clear register

A 32-bit read/write register – a write
clears the bits.
Bits [3:0] Four bits of error status,
used to detect frame errors as in the
UARTDR register, except it allows
clearing of these bits.
Bits [31:4] Reserved.
(Ref Section 3.3.2 – PL011TRM)

Read: 8, 16, 32
Write: 8, 16, 32

0x018 –
0x01c

UARTFR – Flag Register A 32-bit read-only register.
Bits [2:0] Reserved.
Bits [7:3] Bits used indicate state of
UART and FIFOs, with operation as
PL011.
Bits [15:8] Reserved.
(Ref Section 3.3.3 – PL011TRM)

Read: 8, 16, 32

0x03c –
0x03f

UARTRIS – Raw
Interrupt Status Register

A 32 bit read-only register.

Bits [3:0] Reserved.
Bits [10:4] Bits used indicate state of
Interrupts.
Bits [31:11] Reserved.
(Ref Section 3.3.11 – PL011TRM)

Read: 16, 32

0x040 –
0x043

UARTMIS – Masked
Interrupt Status Register

A 32 bit read-only register.

Bits [3:0] Reserved.
Bits [10:4] Bits used indicate state of
Interrupts.
Bits [31:11] Reserved.
(Ref Section 3.3.12 – PL011TRM)

Read: 16, 32

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 38 of 59

Non-Confidential

0x038 –
0x03b

UARTIMSC – Interrupt
Mask Set/Clear Register

A 32-bit read/write register showing
the current mask status.
Bits [3:0] Write as Ones.
Bits[10:4] Bits used to set or clear the
mask bits assigned to the
corresponding interrupts:
1 = mask
0 = unmask
Bits [31:11] Reserved, preserve value.
(Ref Section 3.3.10 – PL011TRM)

Read: 16, 32
Write: 16, 32

0x044 –
0x047

UARTICR – Interrupt
Clear Register

A 32-bit write-only register.
Bits[3:0] Reserved
Bits [10:4] Bits used to clear the
interrupts whose status is indicated in
UARTRIS.
Bits[31:11] Reserved
(Ref Section 3.3.13 – PL011TRM)

Write: 16, 32

Table 12 Base UART Register Set

6.3 Interrupts
The UARTINTR interrupt output shall be connected to the GIC.

6.4 Control and setup
Hardware-specific software is required to set up the UART into a state where the above specification can be
met and the UART can be used.

This setup is equivalent to the following PL011 state:

UARTLCR_H.WLEN == b11 // 8-bit word
UARTLCR_H.FEN == b1 // FIFO enabled
UARTCR.RXE == b1 // receive enabled
UARTCR.TXE == b1 // transmit enabled
UARTCR.UARTEN == b1 // UART enabled

6.5 Operation
The base UART operation complies with the subset of features implemented of the Pl011 Primecell UART,
the operation of which can be found in sections 2.4.1, 2.4.2, 2.4.3, and 2.4.5 of the ARM® PrimeCell®
UART (PL011) Technical Reference Manual [3]. Operations of the IrDA SIR, modem, hardware flow control,
and DMA are not supported.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 39 of 59

Non-Confidential

7 APPENDIX C: PERMITTED ARCHITECTURAL DIFFERENCE
BETWEEN PES

Table 13 shows the permitted differences in architected registers between PEs in a single base server system.
The permitted differences column lists the bit fields for a register that may vary from PE to PE. Where a bit field is
not listed, the value must be the same across all PEs in the system.

Description Short-Form Permitted Differences
AArch64 Memory Features
Register

ID_AA64MMFR0_EL1 Bits [3:0] describing the supported physical
address range.

Main ID Register MIDR_EL1 Part number [15:4], Revision [3:0], Variant [23:20].

Virtualization Processor ID
Register

VPIDR_EL2 Same fields as MIDR_EL1, writable by hypervisor.

Multiprocessor ID Register

MPIDR_EL1 Bits [39:32] and Bits [24:0]. Affinity fields and MT
bit.

Virtualization
Multiprocessor ID Register

VMPIDR_EL2 Same fields as MPIDR, writable by hypervisor.

Cache type register

CTR_EL0 Bits [15:14] Level 1 Instruction Cache Policy.

Revision ID Register REVIDR_EL1 Specific to implementation indicates
implementation specific Revisions/ECOs. All bits
may vary.

Cache level ID register CLIDR_EL1 All bits, each PE can have a unique cache
hierarchy.

Cache Size ID Register CCSIDR_EL1 Sets [27:13], Data cache associativity [12:3].
Caches on different PEs can be different sizes.

Auxiliary Control Register ACTLR_EL{1,2,3} Specific to implementation, all bits may vary.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 40 of 59

Non-Confidential

Auxiliary Fault Status
Registers

AFSR{0,1}_EL{1,2,3} Specific to implementation, all bits may vary.

Table 13 Permitted architectural differences

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 41 of 59

Non-Confidential

8 APPENDIX D: PCI EXPRESS INTEGRATION

8.1 Configuration space
Systems must map memory space to PCI Express configuration space, using the PCI Express Enhanced
Configuration Access Mechanism (ECAM). For more information about ECAM, see PCI Express Base
Specification Revision 3.0.

The ECAM maps configuration space to a contiguous region of memory address space, using bit slices of the
memory address to map on to the PCI Express configuration space address fields. This mapping is shown in
Table 14.

Memory Address bits PCI Express Configuration Space address field

(20 + n - 1):20 Bus Number 1 ≤ n ≤ 8.

19:15 Device Number.

14:12 Function Number.

11:8 Extended Register Number.

7:2 Register Number.

1:0 Byte.
Table 14 Enhanced Configuration Address Mapping

The system may implement multiple ECAM regions.

The base address of each ECAM region within the system memory map is IMPLEMENTATION DEFINED and is
expected to be discoverable from system firmware data.

It is system-specific whether a system supports non-PE agents accessing ECAM regions.

Note: Alternative Routing-ID Interpretation (ARI) is permitted. For buses with an ARI device the ECAM field
[19:12] is interpreted as the 8-bit function number.

8.2 PCI Express Memory Space
It is system-specific whether a system supports mapping PCI Express memory space as cacheable.

All systems must support mapping PCI Express memory space as either device memory or non-cacheable
memory. When PCI Express memory space is mapped as normal memory, the system must support unaligned
accesses to that region.

8.3 PCI Express device view of memory
Transactions from a PCI express device will either directly address the memory system of the base server system
or be presented to a SMMU for optional address translation and permission policing.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 42 of 59

Non-Confidential

In systems that are compatible with level 3 or above of the SBSA, the addresses sent by PCI express devices
must be presented to the memory system or SMMU unmodified. In a system where the PCI express does not use
an SMMU, the PCI express devices have the same view of physical memory as the PEs. In a system with a
SMMU for PCI express there are no transformations to addresses being sent by PCI express devices before they
are presented as an input address to the SMMU.

8.4 Message signaled interrupts
Support for Message Signaled Interrupts (MSI/MSI-X) is required for PCI Express devices. MSI and MSI-X are
edge-triggered interrupts that are delivered as a memory write transaction.

The system shall implement an interrupt controller compliant with the ARM Generic Interrupt Controller, each
SBSA level specifies which version should be used.

Note: ARM introduced standard support for MSI(-X) in the GICv2m architecture, this support is extended in
GICv3.

The intended use model is that each unique MSI(-X) shall trigger an interrupt with a unique ID and the MSI(-X)
shall target GIC registers requiring no hardware specific software to service the interrupt.

8.4.1 GICv2m support for MSI(-X)
GICv2m has the MSI_SETSPI_NS register to support MSI(-X). If I/O virtualization of PCI Express drivers is to be
supported in a GICv2m system, multiple versions of the register can exist in different memory pages, allowing
different virtual machines to see different registers. Each register targets a unique set of SPIs.

8.4.2 GICv3 support for MSI(-X)
GICv2m is limited in scalability not only in terms of PE count, but also in the number of MSI(-X) that are supported.
The architectural maximum number of SPI is 988.

GICv3 adds a new class of interrupt, LPI, to address this. LPI can be targeted to a single PE.

In GICv3, SPI can be targeted at a single PE or can be “1 of N”, where the interrupt will be delivered to any one of
the PEs in the system currently powered up.

In GICv3, SPI are still limited in scale, but an implementation can support thousands of LPIs.

In GICv3, MSI(-X) can target SPI or LPI.

A single GICD_SETSPI_NSR register is supported for MSI targeting SPI. This is a compatibility break with
GICv2m, and does not support I/O virtualization.

GICv3 provides the GITS_TRANSLATER register for MSI targeting LPI. This register uses a Device_ID to
uniquely identify the originating device to fully support I/O virtualization, and is backed by memory-based tables to
support flexible retargeting of interrupts.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 43 of 59

Non-Confidential

8.5 Legacy interrupts
PCI Express legacy Interrupt messages must be converted to an SPI:

• Each of the 4 legacy interrupt lines must be allocated a unique SPI ID.
• The exact SPI IDs that are allocated are IMPLEMENTATION DEFINED.
• Each legacy interrupt SPI must be programmed as level-sensitive in the appropriate GIC_ICFGR.

IMPLEMENTATION DEFINED registers must not be used to deliver these messages, only registers defined in the PCI
Express specification and the ARM GIC specification.

8.6 I/O Virtualization
Hardware support for I/O Virtualization is optional, but if required shall use a System MMU compliant with the
ARM System MMU specification.

Each function, or virtual function, that requires hardware I/O virtualization is associated with a SMMU context.
The programming of this association is IMPLEMENTATION DEFINED and is expected to be described by system
firmware data.

SMMU does not support PCI Express ATS until SMMUv3, and as such ATS support is system-specific in systems
that don not have a SMMUv3 or later.

Note: The Server Base System Architecture requires certain versions of the SMMU to be used at particular levels
of the specification.

8.7 I/O Coherency
PCI Express transactions not marked as No_snoop accessing memory that the PE translation tables attribute as
cacheable and shared are I/O Coherent with the PEs.

The PCI Express root complex is in the same Inner Shareable domain as the PEs.

I/O Coherency fundamentally means that no software coherency management is required on the PEs for the PCI
Express root complex, and therefore devices, to get a coherent view of the PE memory.

This means that if a PCI Express device is accessing cached memory then the transactions from the PCI Express
devices will snoop the PE caches.

PCI Express also allows PCI Express devices to mark transactions as No_snoop. The memory accessed by such
transactions must have coherency managed by software.

The following summarize the attributes the transactions from the PCI Express root complex must have and how
coherency is maintained.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 44 of 59

Non-Confidential

8.7.1 PCI Express I/O Coherency without System MMU
In the case where there is not a System MMU translating transactions from the root complex, the system must be
able to distinguish between addresses that are targeted at memory and devices. Transactions that are targeted at
devices must be treated as device type accesses. They must be ordered, must not merge and must not allocate in
caches. Transactions that are targeted at memory and that are marked No Snoop must be presented to the
memory system as non-cached. Transactions that are targeted at memory and not marked as No_snoop must be
presented as cached, shared.

The following table shows how coherency is managed for PCI Express transactions. If a memory page is marked
as non-cached in the PE translation tables, all PCI Express transactions accessing that memory must be marked
as No_snoop. Failure to do so may result in loss of coherency.

PE page table attribute PCI Express transaction
type

PCI Express transaction
memory attributes

Coherency management

Cacheable, shared Snoop Cacheable, shared Hardware

No_snoop Non-cached Software

Cacheable, non-shared Snoop Cacheable, shared Software

No_snoop Non-cached Software

Non-cached Snoop Not allowed Not allowed

No_snoop Non-cached Hardware
Table 15 : PCI Express transaction types and I/O coherency

8.7.2 PCI Express I/O Coherency with System MMU
In the case where the system has a System MMU translating and attributing the transactions from the root
complex, the PCI Express transactions must keep the memory attributes assigned by the System MMU. If the
System MMU-assigned attribute is cacheable then it is IMPLEMENTATION DEFINED if No_snoop transactions replace
the attribute with non-cached.

8.8 Legacy I/O
The specification does not specify a standard mechanism for supporting legacy I/O transactions. Software
consistent with the Server Base System Architecture shall not support legacy I/O.

8.9 Integrated end points
Feedback from OS vendors has indicated that they have seen many ‘almost PCI Express’ integrated endpoints.
This leads to a bad experience and either no OS support for the endpoint or painful bespoke support.
Anything claiming to follow the PCI Express specification must follow all the specification that is software-visible to
ensure standard, quality software support.

8.10 Peer-to-peer
It is system-specific whether peer-to-peer traffic through the system is supported.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 45 of 59

Non-Confidential

Systems compatible with level 3 or above of the SBSA must not deadlock if PCI express devices attempt peer-to-
peer transactions – even if the system does not support peer-to-peer traffic. This rule is needed to uphold the
principle that a virtual machine and its assigned devices should not deadlock the system for other virtual machines
or the hypervisor.

8.11 PASID support
SMMUv3 included optional support for PCIe PASID. If the system supports PCIe PASID, then at least 16 bits of
PASID must be supported. This support must be full system support, from the root complex through to the
SMMUv3 and any end points for which PASID support is required.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 46 of 59

Non-Confidential

9 APPENDIX E: GICV2M ARCHITECTURE

9.1 Introduction
ARM is standardizing how PCI Express MSI and MSI-X interrupts are handled. The key part of this
standardization is ensuring that each individual MSI(-X) message is presented to the operating system (OS) as a
unique interrupt ID.

To facilitate this, using GICv2 interrupt controllers, ARM offers this specification to convert MSI(-X) writes to
unique interrupts. It is designed to be used alongside an existing GICv2 implementation.

The standard abstraction that is expected to be given to the OS is the address of the MSI_SETSPI register and
the set of SPIs that it can generate. It is expected that this abstraction will be represented by system firmware
data.

9.2 About the GICv2m architecture
GICv2m provides an extension to GICv2 Generic Interrupt Controller Architecture, which enables MSIs to set
GICv2 Shared Peripheral Interrupts (SPIs) to pending. This provides a similar mechanism to the message-based
interrupt features added in GICv3.

The additional registers provided by GICv2m are specified as an additional memory-mapped Non-secure MSI
register frame, described in Non-secure MSI register summary on page 48. This allows a GICv2m implementation
to be built by adding a component that implements the additional registers to an existing GICv2-compatible
interrupt controller. The additional component is connected to a subset of the SPI inputs to the GICv2 interrupt
controller. When the additional component receives an MSI it generates an edge on the corresponding SPI input.

9.3 Security
GICv2m can optionally include Security Extensions to include support for Secure MSI or MSI-X. The GICv2m
Security Extensions are optional even when the GIC Security Extensions are included. However, if the GICv2m
Security Extensions are included the GIC Security Extensions are mandatory.

GIC Security Extensions GICv2m Security Extensions Description

Not included Not included No support for Secure interrupts.

Included Not included MSI are Non-secure. Other interrupts can be
Secure or Non-secure.

Not included Included Not supported.

Included Included All interrupts can be Secure and Non-secure.
Table 16 GIC and GICv2m Security Extensions

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 47 of 59

Non-Confidential

The inclusion of the GICv2m Security Extensions adds a further memory-mapped Secure MSI register frame,
described in Secure MSI register summary on page 48.

9.4 Virtualization
To support virtualization, GICv2m supports the inclusion of an IMPLEMENTATION DEFINED number of instances of the
Non-secure MSI register frame.

A hypervisor can allocate one or more instance to each guest operating system. Stage 2 translation tables ensure
each PCI Express function only has visibility of the Non-secure MSI register frames allocated to the operating
system that is controlling the device. This ensures that a guest operating system is not able to program a PCI
Express device to trigger MSI interrupts allocated to another guest operating system.

9.5 SPI allocation
GICv2m allows the allocation of SPIs to each of the register frames defined by the architecture.

Each instance of the Non-secure MSI register frame is allocated an IMPLEMENTATION DEFINED number of
contiguous SPIs. For details of Non-secure MSI register frame instances, see Virtualization on page 47.

When GICv2m includes the Security Extensions, an additional IMPLEMENTATION DEFINED number of contiguous
SPIs are allocated for Secure MSI.

The Secure MSI SPI range and the Non-secure MSI SPI range must not overlap, and are not required to be
adjacent.

SPIs that are allocated to MSIs must only be controllable by the GICv2m MSI registers. This means that other
interrupt sources must not share SPIs that are allocated as MSIs.

9.6 GICv2 programming
MSIs have edge-triggered properties. All SPIs that are allocated to MSIs must be programmed as edge-triggered
in the appropriate GICv2 GICD_ICFGRn registers. For details of the GICD_ICFGRn registers see the ARM
Generic Interrupt Controller v2 Architecture Specification.

In implementations that include the GICv2m Security Extensions, Secure system software must program the GIC
so that:

• SPIs that are allocated to Secure MSI can be defined as Secure or Non-secure interrupts.
• SPIs that are allocated to Non-secure MSI must be defined as Non-secure interrupts, unless the GIC has

been configured to permit Non-secure software to create and manage the interrupt.

When used with a processor that includes the ARM Security Extensions, this means that SPIs allocated to Secure
MSI must be included in Group 0, and SPIs allocated to Non-secure MSI must be included in Group 1. This is
achieved using the GICv2 GICD_IGROUPRn registers. Additionally, Non-secure software can be permitted to
manage a Group 0 interrupt using the GICv2 GICD_NSACRn registers. For details of the GICD_IGROUPRn and
GICD_NSACRn registers see the ARM Generic Interrupt Controller v2 Architecture Specification.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 48 of 59

Non-Confidential

When using GICv2m, it is a programming error to incorrectly define the security of SPIs mapped to Non-secure
MSI interrupts in GICv2. This will adversely affect the ability to port GICv2m-compatible software to GICv3.

9.7 Non-secure MSI register summary
This section summarizes the Non-secure MSI registers, relative to a base memory address. This register frame is
present in all GICv2m implementations.

This register frame is 4KB in size, and all registers are 32 bits wide. It must be accessible using Non-secure
accesses. All registers have similar behavior to equivalent registers in the GICv3 distributor.

Offset Name Description

0x000 – 0x007 - Reserved.

0x008 MSI_TYPER See MSI Type Register on page 49.

0x00C – 0x03C - RESERVED.

0x040 MSI_SETSPI_NS See Set SPI Register on page 49.

0x044 – 0xFC8 - Reserved.

0xFCC MSI_IIDR See MSI Interface Identification Register on page 50

0xFD0 – 0xFFC - IMPLEMENTATION DEFINED.
Table 17 GICv2m Non-secure MSI register summary

9.8 Secure MSI register summary
This section summarizes the optional Secure MSI registers, relative to a base memory address. This register
frame is only included in GICv2m implementations that include the optional GICv2m Security Extensions.

This register frame is 4KB in size, and all registers are 32 bits wide. It must only be accessible using Secure
accesses. All registers have similar behavior to equivalent registers in the GICv3 distributor.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 49 of 59

Non-Confidential

Offset Name Description

0x000 – 0x007 - Reserved.

0x008 MSI_TYPER See MSI Type Register on page 49.

0x00C – 0x03C - Reserved.

0x040 MSI_SETSPI_S See Set SPI Register on page 49.

0x044 – 0xFC8 - Reserved.

0xFCC MSI_IIDR See MSI Interface Identification Register on page 50.

0xFD0 – 0xFFC - IMPLEMENTATION DEFINED.
Table 18 GICv2m Secure MSI register summary

9.9 Register descriptions
All registers must support 32-bit word accesses. The MSI_SETSPI_S and MSI_SETSPI_NS registers must also
support 16-bit writes to bits [15:0]. Whether other access sizes are permitted is IMPLEMENTATION DEFINED.
The GICv2m is little-endian.

9.9.1 MSI Type Register
MSI_TYPER is a 32-bit read-only register that provides information about the SPIs that are assigned to the MSI
frame. For information about how SPIs are assigned to each frame, see SPI allocation on page 47.

The format of the register is:

Bits [31:26]
Reserved, RES0.

Base SPI number, bits [25:16]
Returns the IMPLEMENTATION DEFINED ID of the lowest SPI assigned to the frame. SPI ID values must be in
the range 32 to 1020.

Bits [15:10]
Reserved, RES0.

Number of SPIs, bits [9:0]
Returns the IMPLEMENTATION DEFINED number of contiguous SPIs assigned to the frame.

9.9.2 Set SPI Register
MSI_SETSPI_NS and MSI_SETSPI_S are 32-bit write-only registers.

The format of the register is:

Bits [31:10]
Reserved, RES0.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 50 of 59

Non-Confidential

SPI, bits [9:0]
On a write, an edge-triggered interrupt is generated to the GICv2 generic interrupt controller for an SPI with
the ID identified by the value of this field. If the resulting value does not identify an SPI that is allocated to
this frame, the write has no effect.

9.9.3 MSI Interface Identification Register
MSI_IIDR is a 32-bit read-only register.

The format of the register is:

ProductID, bits [31:20]
An IMPLEMENTATION DEFINED product identifier.

Architecture version, bits [19:16]
Revision field for the GICv2m architecture. The value of this field depends on the GICv2m architecture
version:

• 0x0 for GICv2m v0.

Revision, bits [15:12]
An IMPLEMENTATION DEFINED revision number for the component.

Implementer, bits [11:0]
Contains the JEP106 code of the company that implemented the GICv2m:
Bits [11:8] The JEP106 continuation code of the implementer.
Bit [7] Always 0.
Bits [6:0] The JEP106 identity code of the implementer.

9.10 Secure MSI register summary
This section summarizes the optional Secure MSI registers, relative to a base memory address. This register
frame is only included in GICv2m implementations that include the optional GICv2m Security Extensions.

This register frame is 4KB in size, and all registers are 32 bits wide. It must only be accessible using Secure
accesses. All registers have similar behavior to equivalent registers in the GICv3 distributor.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 51 of 59

Non-Confidential

Offset Name Description

0x000 – 0x007 - Reserved.

0x008 MSI_TYPER See MSI Type Register on page 49.

0x00C – 0x03C - Reserved.

0x040 MSI_SETSPI_S See Set SPI Register on page 49.

0x044 – 0xFC8 - Reserved.

0xFCC MSI_IIDR See MSI Interface Identification Register on page 50.

0xFD0 – 0xFFC - IMPLEMENTATION DEFINED.
Table 19 GICv2m Secure MSI register summary

10 APPENDIX F: GIC-400 AND 64KB TRANSLATION GRANULE
The GICC register frame as defined in the GICv2 specification must be spread across two MMU pages in order
that GICC_DIR is in a different page to the rest of GICC.

In a 64KB translation granule system this means that GICC needs to have its base at 4KB below a 64KB
boundary.

The ARM implementation of GICv2, the GIC-400 product, aligns GICC to an 8KB boundary. An address wiring
workaround is needed to use the GIC-400 in a 64KB translation granule system. The following is an example of
how this may be done:

AddressGIC400[14:0] = {AddressSystem[18:16],AddressSystem[11:0]}

This has the effect of aliasing each 4KB of GIC registers 16 times in a 64KB page. System software can now be
told that the last alias in a 64KB page is the GICC base, which conveniently runs into the first alias of the next
64KB page completing the GICC register frame.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 52 of 59

Non-Confidential

11 APPENDIX G: GICV2M COMPATIBILITY IN A GICV3 SYSTEM
A key difference between GICv3 and GICv2 is that GICv3 can support more than 8 PEs, which is the maximum
supported by GICv2. To achieve this, there is a change in some of the architectural concepts. GICv3 introduces
a new type of interrupt, called LPI, which is designed to be more scalable. It also changes the routing semantics
of SPI to enable them to scale to more than 8 PEs.

However, GICv3 supports full backwards compatibility with GICv2 when ARE==SRE==0.

GICv2m is an extension of the GICv2 architecture that adds register frames to support MSI(-X). This note
explains how to achieve compatibility between a GICv3 hardware system and GICv2m software.

11.1 GICv2m-based hypervisor (GICv2m guests) or GICv2m OS without
hypervisor
The GICv3 must be configured to have SRE==ARE==0 and can therefore only be used with 8 PEs or less, but is
fully GICv2 compatible. To be GICv2m compatible, the hardware system must implement GICv2m register frames
for MSI support.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 53 of 59

Non-Confidential

11.2 GICv3-based hypervisor with GICv2m guest OS
The hypervisor runs with ARE==1 so can address > 8 PEs.

The GICv2m guests run with EL1.SRE==EL1.ARE==0 which aligns with GICv2 functionality. The guest must be
restricted to eight PEs or fewer.

The GICv2m register frames are not needed for the guests though as long as the OS is using a suitable
abstraction for MSI support. The expected abstraction for the MSI targets is the tuple of (register address,
interrupt ID set).

It is expected that the firmware interface of the OS will hand over a set of these MSI registers to the OS, which in
this case will be supplied by the hypervisor.

In this compatibility case, the hypervisor hands over the address of GITS_TRANSLATER and a set of IDs (the ID
set need to be in the valid SPI range of 32-1019). The hypervisor creates a single interrupt translation table for all
the devices that belong to the OS, and creates translations for the IDs handed to the OS to unique LPIs.

Whenever a device sends an MSI, the hypervisor receives the corresponding LPI. The hypervisor then posts the
original ID to the guest. The target PE is chosen by the hypervisor based on the routing information the GICv2m
guest programs into the SPI route register, which is trapped by the hypervisor.

12 APPENDIX H: SMMUV3 INTEGRATION
This appendix details rules about the integration of a SMMUv3 SMMU into an SBSA system.

The system is permitted to include any number of SMMUs.
All SMMU translation table walks and all SMMU accesses to SMMU memory structures and queues are I/O
coherent (SMMU_IDR0.COHACC == 1).
SMMUv3 supports two distinct page table fault models: stall on fault, and terminate on fault. Care must be taken
when designing a system to use the stall on fault model.

The system must be constructed so the act of the SMMU stalling on a fault from a device must not stall the
progress of any other device or PE that is not under the control of the same operating system as the stalling
device.

The SMMUv3 spec requires that PCIe root complex must not use the stall model due to potential deadlock.

See 8.11 PASID support for requirements on PCIe PASID support.
See 13 APPENDIX I: DeviceID generation and ITS groups for requirements on how DeviceID and StreamID
should be assigned and how ITS groups should be used.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 54 of 59

Non-Confidential

13 APPENDIX I: DEVICEID GENERATION AND ITS GROUPS

13.1 ITS groups

13.1.1 Introduction
Every ITS block in the system is a member of a logical ITS group. Devices that send MSIs are also associated
with an ITS group. Devices are only programmed to send MSIs to an ITS in their group. In the simplest case, the
system contains one ITS group which contains all devices and ITS blocks. Devices are assigned DeviceID values
within each ITS group. See Section 13.2.

Note: The concept of ITS grouping means the system does not have to support the use of any ITS block from
any device, which can ease system design.

13.1.2 Rules
• The system contains one or more ITS group(s).
• An ITS group may contain one or more ITS blocks.
• An ITS block is associated with one ITS group.
• A device that is expected to send an MSI is associated with one ITS group.
• Devices can be programmed to send MSIs to any ITS block within the group.
• If a device sends an MSI to an ITS block outside of its assigned group, the MSI write is illegal and does

not trigger an interrupt that could appear to originate from a different device. See Section 13.2.2 for
permitted behavior of illegal MSI writes.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 55 of 59

Non-Confidential

• The association of devices and ITS blocks to ITS groups is considered static by high-level software.
• An ITS group represents a DeviceID namespace independent of any other ITS group.
• All ITS blocks within an ITS group support a common DeviceID namespace size, a common input EventID

namespace size and are capable of receiving an MSI from any device within the group.
• All ITS blocks within an ITS group observe the same DeviceID for any given device in the same ITS

group.
o Note: This rule, and the preceding rule, allows software to use ITS blocks sharing a common

group interchangeably.
• System firmware data, for example, firmware tables such as ACPI/FDT, describe the association of ITS

blocks and devices with ITS groups to high-level software.

ARM recommends that the DeviceID namespace in each group is as densely-packed as possible, and starts at 0
if possible.
Note: It is not required that all DeviceIDs be entirely contiguous but excessive fragmentation makes the software
configuration of an ITS more difficult.

13.1.3 Examples of ITS groups

DeviceID
0

DeviceID
1

DeviceID
2

GIC ITS
A

DeviceID
0

DeviceID
1

GIC ITS
B

GIC ITS
C

Group 0 Group 1

Figure 2: Device and ITS grouping

In Figure 2:

• ITS A serves two devices.
• ITS B and ITS C serve three devices; any of these three can send an MSI to either of B or C.
• Two unrelated DeviceID namespaces exist. DeviceID 0 in Group 0 is different to DeviceID 0 in Group 1.
• A device in Group 0 can only trigger an MSI on its assigned ITS, A, and should not be configured to do

otherwise. It cannot send an MSI to ITS B as it is in a different group to the device. If this is done, the
MSI write might be ignored or aborted, but in any case does not cause an interrupt that might appear to
be valid.

The properties that system-description structures convey to high-level software are:

• Identification of the two devices that are associated with Group 0, and the three associated with Group 1.
• ITS block A is in Group 0, B and C are in Group 1.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 56 of 59

Non-Confidential

• For each MSI-capable master device, which DeviceID in the group’s namespace the device has been
assigned.

13.2 Generation of DeviceID values

13.2.1 Introduction
Every device master that is expected to send MSIs has a DeviceID associated with it. This DeviceID is used to
program the interrupt properties of MSIs originating from each device. The term “device” is used in the context of
a logical programming interface used by one body of software.

Where a device is a client of, that is, behind, an SMMU, a granularity of ‘source’ identification is typically chosen
so that an individual device can be assigned to a less-privileged piece of software independent of neighboring
SMMU client devices. The system designer assigns a master-unique StreamID to device traffic input to the
SMMU. The simplest way to achieve the same granularity of interrupt source differentiation and SMMU DMA
differentiation is for the device’s DeviceID to be generated from the device’s SMMU StreamID. It is beneficial for
high-level software and firmware system descriptions to ensure that this relationship is as simple as possible.
DeviceID is derived from a StreamID 1:1 or with a simple linear offset.

When a device is not behind an SMMU, its DeviceID appears to high-level software as though it is assigned
directly by the system designer.

If a master is a bridge from a different interconnect with an originator ID, such as a PCIe RequesterID, and
devices on that interconnect might need to send MSIs, the originator ID is used to generate a DeviceID. The
function to generate the DeviceID should be an identity or a simple offset.

The overall principle of DeviceID and StreamID mapping is that the relationship between one ID space, for
example, a PCIe RequesterID namespace, and a DeviceID be easily described using linear span-and-offset
operations.

When an SMMU is used to allow devices to be programmed by possibly malicious software that is not the most
privileged part of the system, devices that are not designed to directly trigger MSIs could be misused to direct a
DMA write transaction at an ITS MSI target register. The system must not allow this behavior to trigger an MSI
that masquerades as originating from a different master. The system must anticipate that PEs also have the
potential to be misused in this manner. Exposing an ITS to a VM for legitimate MSI purposes can mean the
untrusted VM software is able to write to the ITS MSI target register from a PE.

13.2.2 Rules
• Every device that is expected to originate MSIs is associated with a DeviceID.
• DeviceID arrangement and system design prevents any mechanism that any software that is not the most

privileged in the system, for example VM, or application, can exploit to trigger interrupts associated with a
different body of software, for example. a different VM, or OS driver.

o A write to an ITS GITS_TRANSLATER from a PE, or from a device that is known at design time
to not support genuine MSIs and is under control of software less privileged than the software
controlling the ITS, is an illegal MSI write and must not be able to trigger an MSI appearing to

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 57 of 59

Non-Confidential

have a DeviceID associated with a different device. See Section 13.1.2, an MSI sent to an ITS in
a group different to the originating device is also an illegal MSI write.

o An illegal MSI write is permitted to:
Complete with WI semantics, or be terminated with an abort, or trigger an MSI having a
DeviceID that does not alias any DeviceID of a legitimate source.
§ Note: Devices that are known at design time to only be controlled by the most privileged

software in the system, such as those without an MMU/MPU, can be trusted not to send
malicious writes to the ITS (so no special steps are required to prevent malicious MSI
writes), but a device that has the potential to be controlled by a VM cannot be trusted.
Devices that are clients of an SMMU fall into the latter category.

• If a device is a client of an SMMU, the associated DeviceID is derived from the SMMU’s StreamID with an
identity or simple offset function:

o The SMMU component must output the input StreamID unmodified so it can be used to derive the
DeviceID downstream of the SMMU.

o If two devices have different StreamIDs, they must also have distinct DeviceIDs.
§ It is not permitted for >1 StreamID to be associated with 1 DeviceID.
§ It is not permitted for >1 DeviceID to be associated with 1 StreamID.

o The generic StreamID to DeviceID relationship is:
§ DeviceID = zero_extend(SMMU_StreamID) + Constant_Offset_A

o A PCIe Root Complex behind an SMMU generates a StreamID on that SMMU from its
RequesterID with this relationship:

§ StreamID = zero_extend(RequesterID[15:0]) + 0x10000*Constant_B
§ This StreamID is then used post-SMMU, as above, to generate a DeviceID.

• DeviceIDs derived from other kinds of system IDs are also created from an identity or simple offset
function.

o For a Root Complex without an SMMU, the relationship is:
§ DeviceID = zero_extend(RequesterID[15:0]) + 0x10000*Constant_C

• The relationships between a device, its StreamID and its DeviceID are considered static by high-level
software. If the mapping is not fixed by hardware, the relationship between a StreamID and a DeviceID
must not change after system initialization.

ARM recommends that:

• All devices expected to originate MSIs have a DeviceID unique to their ITS group, even if the devices are
not connected to an SMMU.

• Note: Providing separate DeviceIDs for different devices can improve the efficiency of structure allocation
in GIC driver software.

13.3 System description of DeviceID and ITS groups from ACPI tables
The properties of the GIC distributor, Redistributors and ITS blocks such as base addresses will be described to
high-level software by system firmware data. In addition, for any given device expected to send MSIs, system
firmware data tables must ensure that:

• The device’s DeviceID can be determined, either:

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 58 of 59

Non-Confidential

o Directly: A device is labeled with a DeviceID value.
o Hierarchically indirect: If a device has a known ID on a sub-interconnect, the transformation

between that interconnect’s ID and the DeviceID namespace is described in a manner that allows
the DeviceID to be derived. This might comprise multiple transformations ascending a hierarchy,
where a device is associated with intermediate IDs (such as a StreamID) which are ultimately
used to generate a DeviceID.

§ Example: A PCIe Root Complex without an SMMU is described in terms of the DeviceID
range output for its RequesterID range. The DeviceID of an endpoint served by the Root
Complex is not directly provided, but is derived from the endpoint’s RequesterID given the
described mapping.

§ Example: A PCIe Root Complex with an SMMU is described in terms of the
transformation of RequesterID range to SMMU input StreamID range and the
transformation of StreamID range to DeviceID range.

• The device’s association with an ITS group can be determined and the ITS blocks within the group can be
enumerated.

Note: More compact descriptions result by describing a range of DeviceIDs to allow DeviceIDs to be derived from
a formula instead of directly describing individual DeviceIDs. This is especially pertinent for interconnects such as
PCIe.

Note: PEs and other masters that do not support MSIs are not described as being part of an ITS group; as they
are not intended to invoke valid MSIs, there is no association to an ITS on which it is valid to invoke MSIs.

The DeviceID and ITS group associations are not expected to be discoverable through a programming interface of
hardware components and a system is not required to provide such an interface.

13.4 DeviceIDs from hot-plugged devices
• If a device is not physically present at system initialization time, values in the DeviceID namespace

appropriate to the potential physical location of future devices must be reserved and associated with the
device when it later becomes present, in a system-specific manner.

• When a device is hot-plugged, it may be enumerated using an interconnect ID whose mapping to
DeviceID was statically described in system description tables and its DeviceID derived from this existing
mapping.

• If a new device’s DeviceID cannot be derived from existing mappings in system description tables, the
hot-plug mechanism (e.g. via firmware) must provide a means to determine the new device’s DeviceID.

Note: These points also apply to a new device’s SMMU StreamID.

Note: In current systems, hot-plug device masters that are capable of sending MSIs are most likely to be PCIe
endpoints. When a system and PCIe-specific mechanism makes a new endpoint present, the existing indirect
description of the Root Complex’s DeviceID span is used to calculate the new DeviceID from the new
RequesterID.

ARM-DEN-0029A v3.1 Copyright © 2013-2016 ARM Limited or its affiliates. All rights reserved. Page 59 of 59

Non-Confidential

ARM recommends that description of a sub-interconnect bridge, such as a PCIe Root Complex, includes all
potential endpoints (on PCIe, up to 216) rather than limiting description to the endpoints present at boot time, if
more client endpoints can later become present.

