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About this book

This book is the Arm® Realm Management Extension (RME) System Architecture. This book describes the
changes and additions to the Armv9-A system architecture that are introduced by RME, and therefore must be
read in conjunction with the Arm® Architecture Reference Manual Supplement, The Realm Management Extension
(RME), for Armv9-A.

It is assumed that the reader is familiar with the Armv8-A and Armv9-A architecture.
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Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms like IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document
• A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.
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Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

• Declaration
• Rule
• Goal
• Information
• Rationale
• Implementation note
• Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

In this document, a content item is rendered with a token of the following format in the left margin: Liiiii

• L is a label that indicates the content class of the content item.
• iiiii is the identifier of the content item.

Content item classes

Declaration

A Declaration is a statement that does one or more of the following:

• Introduces a concept
• Introduces a term
• Describes the structure of data
• Describes the encoding of data

A Declaration does not describe behavior.

A Declaration is rendered with the label D.

x
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Rules-based writing

Rule

A Rule is a statement that describes the behavior of a compliant implementation.

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label I.

Rationale

A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note

An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.
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Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] Arm® Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A.
(ARM DDI 0615) Arm Ltd.

[2] Arm® CCA Security Model 1.0. (ARM DEN 0096) Arm Ltd.

[3] Arm® System Memory Management Unit Architecture supplement - The Realm Management Extension (RME),
for SMMUv3. (ARM IHI 0094) Arm Ltd.

[4] Arm® Architecture Reference Manual Armv8, for A-profile architecture. (ARM DDI 0487) Arm Ltd.

[5] Arm® Server Base System Architecture Platform Design Document. (ARM DEN 0029) Arm Ltd.

[6] Arm® Architecture Reference Manual Supplement, Reliability, Availability, and Serviceability (RAS), for
Armv8-A. (ARM DDI 0587) Arm Ltd.

[7] Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring
(MPAM), for A-profile architecture. (ARM DDI 0598) Arm Ltd.

[8] Arm® CoreSight™ Performance Monitoring Unit Architecture. (ARM IHI 0091) Arm Ltd.

[9] Arm® Power State Coordination Interface. (ARM DEN 0022) Arm Ltd.
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Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title (Arm® Realm Management Extension (RME) System Architecture).
• The number (ARM DEN 0129 A.b).
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.
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Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms@arm.com.
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Chapter A1
Introduction

A1.1 Overview

A1.1.1 Context

This chapter introduces the Realm Management Extension (RME) system architecture. The RME architecture is
specified in [1] and is defined as an extension to the A-profile of the Armv9 architecture.

The RME architecture defines the set of hardware features and properties that are required to comply with the Arm
CCA architecture.

The Arm Confidential Compute Architecture (Arm CCA) enables the construction of protected execution
environments called Realms. Realms allow lower-privileged software, such as application or a Virtual Machine to
protect its content and execution from attacks by higher-privileged software, such as an OS or a hypervisor.

Higher-privileged software retains the responsibility for allocating and managing the resources that are utilized by
a Realm, but cannot access its contents, nor affect its execution flow.

This document describes the required system properties for implementing the RME functionality.

This includes definitions of:

• Concepts and terms of the RME system architecture.
• System resources, capabilities, and components required by the architecture.
• System flows and identifiers.
• Security properties of an RME system.

IP that supports RME complies with the System Architecture defined by this specification.
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Chapter A1. Introduction
A1.1. Overview

The RME system architecture is applicable to multiple topologies and platform use-cases, for example Cloud,
Mobile, and IoT.

Figure A1.1 provides an example illustration of the RME impact on a representative single-socket system topology.
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Figure A1.1: RME System Architecture
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Chapter A1. Introduction
A1.2. Scope and intended audience

A1.2 Scope and intended audience

This specification forms part of the Arm guide to implementing RME.

The intended audiences for this specification include:

• SoC architects and micro-architects.
• System IP and CPU micro-architects.
• System Firmware developers.
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Chapter B1
Identifiers

This chapter specifies the RME-specific identifiers that are sent in transactions across the system fabric.
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Chapter B1. Identifiers
B1.1. Physical Address Space tag

B1.1 Physical Address Space tag

ITVRTM An RME memory system supports multiple physical address spaces.

A Physical Address of any memory-mapped Resource in the system (Hardware Physical Address) is associated
with an architectural Physical Address Space (PAS).

IRZSTK The following architectural physical address spaces are defined by RME:

• Non-secure PAS.
• Secure PAS.
• Realm PAS.
• Root PAS.

Figure B1.1 illustrates the concept of architectural physical address spaces.
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Figure B1.1: Physical Address Spaces

IHTPJJ Associating memory-mapped Resources with architectural physical address spaces can be done in several ways:

• The association of a Resource with a PA in one physical address space can make it inaccessible through other
physical address spaces.

– For example, main memory in a RME-enabled system is associated this way using the Granule Protection
Table.

ARM DEN 0129
A.b

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21



Chapter B1. Identifiers
B1.1. Physical Address Space tag

• Two distinct Resources can be each assigned to a different PAS while each Resource is accessed through the
same PA within that PAS.

– This banked assignment method might be used for peripheral registers.
• In specific cases, a single Resource can be simultaneously accessible through the same PA in multiple

physical address spaces.
– For example, peripheral registers in the Secure PAS can be accessible also in the Root PAS.
– Arm strongly recommends that this approach is only used with peripherals, and only with peripherals

that are PAS tag-aware.

ICWKBT The Physical Address Space tag (PAS tag) is an Address Space Identifier which permits the forming of multiple
physical address spaces in the system. A Physical Address (PA) is associated with a physical address space by
qualifying it with a PAS tag.

All accesses are associated with a PAS, which is checked by PAS filters assigned to protect memory resources.
Depending on system implementation, requester type, and memory type, this can be the requester-side PAS filter
implemented within PEs and System MMUs, referred to as the Granule Protection Check, or a completer-side PAS
filter, or a combination of both.

Accesses to cacheable memory retain their associated PAS until reaching the Point of Physical Aliasing (PoPA).

Accesses to non-cacheable memory retain their associated PAS at least until reaching the PAS filter assigned to
protect that memory. Whether the associated PAS is retained beyond that filter for non-cacheable accesses depends
on system implementation.

See also:

• B2.2 Memory isolation and protection
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Chapter B2
System capabilities

This chapter specifies the system capabilities required by RME for guaranteeing Arm CCA security and isolation
properties for Realms.
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Chapter B2. System capabilities
B2.1. Execution isolation

B2.1 Execution isolation

B2.1.1 Security states

IQPTSX An RME system supports the following Security states:

• Non-secure.
• Secure.
• Realm.
• Root.

ICLTDC The term requester refers to a hardware agent that is capable of initiating accesses. A requester can be a PE or a
non-PE agent.

RDFYXL In an RME system, any access by a requester and any instruction executed by a PE is associated with a single
Security state.

ILJDDC The Realm Management Extension capability defined in [1] specifies how PE execution context is mapped to
Security states.

IVHCHD RME provides hardware-based isolation that allows execution contexts to run in different Security states and share
resources in the system while ensuring that:

• Execution in the Realm Security state cannot be observed or modified by an agent associated with either the
Non-secure Security state or the Secure Security state.

• Execution in the Secure Security state cannot be observed or modified by an agent associated with either the
Non-secure Security state or the Realm Security state.

• Execution in the Root Security state cannot be observed or modified by an agent associated with any other
Security state.

• Memory assigned to the Realm Security state cannot be read or modified by an agent associated with either
the Non-secure Security state or the Secure Security state.

• Memory assigned to the Secure Security state cannot be read or modified by an agent associated with either
the Non-secure Security state or the Realm Security state.

• Memory assigned to the Root Security state cannot be read or modified by an agent associated with any other
Security state.

This specification uses the term RME security guarantee to describe the preceding properties.

IJTCVV The RME security guarantee applies to a system in the Secured lifecycle state.

B2.1.2 Security model

ILYDGX The Arm CCA System Security Domain (SSD) includes all hardware agents capable of affecting the Arm CCA
and RME security guarantees. Examples include isolation hardware and Trusted subsystems.

IPPRLG A Trusted subsystem is a system function with private resources, configuration, and firmware that are attestable, for
example a Trusted SCP.

IWPQRT The Monitor Security Domain (MSD) is updatable PE firmware executing in the Root security state at EL3 that is
responsible for enforcing the Arm CCA and RME security guarantees.

IYRMHM The Realm Management Security Domain (RMSD) is updatable PE firmware executing in the Realm Security
state at EL2 that is responsible for enforcing the Arm CCA security guarantee for Realms.

The terms in this section are formally defined in [2]. Figure B2.1 provides an illustration of the security model.
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Figure B2.1: Arm CCA security model
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B2.2 Memory isolation and protection

The concept of architecturally-separate physical address spaces enables the formation of robust isolation boundaries
for memory protection.

This chapter defines rules for guaranteeing memory isolation using physical address spaces and methods for
mapping resources to Execution states through these spaces.

IBHZXC The physical address spaces that can be reached from each Security state are defined in [1] and captured in Table
B2.1, the PAS Access Table:

Table B2.1: PAS Access Table

Secure state Non-secure state Root state Realm state

PAS[1:0]

0b00 - Secure Yes No Yes No

0b01 - Non-secure Yes Yes Yes Yes

0b10 - Root No No Yes No

0b11 - Realm No No Yes Yes

IYLXPX A Resource is an addressable physical entity that is formally defined in [1]. A Resource in an RME system is
accessible only when it is associated with a Resource PAS.

RQDWVC Association of a Resource with a Resource PAS is controlled by either SSD or MSD.

IJVLCJ Association of a Resource with a Resource PAS can be set statically by isolation hardware or can change during
runtime, for example by MSD firmware.

RBJVZS An access to a Resource is associated with an Access PAS in accordance with the PAS Access Table.

ITYMYY For requesters that access Resources through a stage 1 or stage 2 MMU, assigning the Access PAS in accordance
with the PAS Access Table is enforced by MMU SSD hardware.

For requesters that do not access Resources through a stage 1 or stage 2 MMU, such as the Generic Interrupt
Controller (GIC) or a Debug Access Port, assigning the Access PAS in accordance with the PAS Access Table is
enforced at the requester side by SSD hardware.

SSD hardware is hardware that is either immutable or exclusively controlled by an SSD component, for example a
Trusted subsystem.

The PAS tag attached to a request conveys its associated Access PAS.

ITFRNC [1] and [3] define the programming model for setting the Access PAS from each Security state.

RSCDLL Once assigned, the value of an Access PAS cannot be altered.

IJFTJL The system must not expose any registers or debug mechanisms that permit the value of an Access PAS to be
overridden.

RYKVJK A PAS filter enforces the PAS protection check by permitting access to a Resource only if the Access PAS matches
a Resource PAS with which that the Resource is associated.

RMZJXC Every requester in the system is subjected to the PAS protection check.
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ICDDPM A requester in this context includes any of the following:

• Processing elements (PEs) used by the host operating system or hypervisor to execute user applications or
kernel threads.

– The term application PEs is also used in this specification to make a distinction between processing
elements visible to host software and processing elements embedded in system devices.

• Non-PE requesters that might be fully coherent, IO-coherent, or Non-coherent.
– This includes any device that supports initiation of a memory access, such as cache prefetchers, the

Generic Interrupt Controller (GIC), or a Debug Access Port.
– Other examples are peripheral devices and control processors that might contain non-application PEs.

ITJRFZ Certain Trusted requesters comply with the PAS protection check without going through a PAS filter.

• A PAS filter can directly access resources in the Root PAS such as protection tables stored in DRAM.
• A Memory Protection Engine (MPE) can directly access resources in the Root PAS, such as integrity tags

stored in DRAM.
• Trusted subsystems can directly access peripheral registers or SMEM using a hardwired map that associates

resources with the Root PAS.

INDZHH The term completer refers to a component that contains Resources and responds to accesses.

IHQDWZ For certain Resources such as peripherals or SMEM, the PAS filter can be located at the completer-side. For other
Resources, such as DRAM, a PAS filter must be attached to all requesters that access that Resource. RME system
architecture rules guarantee that isolation is maintained in either construction.

IVPYFG MSD Resources are in the Root PAS and are managed by software running at EL3.

RWRGTF Access to the Root PAS is only permitted for Trusted requesters.

ICNYKS Trusted requesters are:

• A PE executing in the Root Security state (EL3).
• Trusted subsystems. For example, a Trusted SCP, or a subsystem hosting HES.
• Memory Protection Engines.
• PAS filters.

IQNNTR RMSD Resources are in the Realm PAS and are managed by software running at EL2 in the Realm Security state.

IFPLKV The term Resource X is in PAS Y means that Resource X is accessible only in PAS Y unless where the text
explicitly permits the Resource to be accessible in more than one PAS.

See also:

• B2.2.1 Granular PAS filtering

B2.2.1 Granular PAS filtering

IBYTBH Granular PAS filtering is the programmable association of a Resource with a PAS at a granularity of a page
(Physical Granule).

IXXXPR A Granular PAS filter checks the Access PAS against a Physical Granule Resource PAS as specified in a Granule
Protection Table (GPT). If the check fails, the access is aborted and a Granule Protection Fault (GPF) is reported.

RKGDVK A Resource can be associated with a PAS using a Granule Protection Table if the following conditions are met:

• There is only a single PA within each PAS through which the Resource can be reached and the value of the
PA is the same across all physical address spaces.

• The Resource can be assigned to a PAS at page granularity.

IRSGHN The term Granule Protection Check (GPC) refers to a requester-side Granular PAS filter as specified by [1] and [3],
where such filter can be attached to an MMU or an SMMU.
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IKQQJG GPC is a requester-side PAS filter. By system construction, any access from an application PE or an
SMMU-attached requester first goes through a requester-side PAS filter and then can reach a completer-side PAS
filter. The programming of the GPT must therefore take into account the potential existence of completer-side PAS
filters for specific Resources.

The Granule Protection Check can be omitted for Resources that are protected by a completer-side PAS filter, and
in this scenario the Resource is marked in the GPT as “All Accesses Permitted”.

IWVWZP MSD guarantees that all requesters subject to the Granule Protection Check observe a consistent view of the
Granule Protection Table.

IHDLTB The memory encryption rules imply that granule contents are not preserved when the PAS association of a granule
is changed. Nevertheless, software cannot rely on the transition of a granule to a new PAS as an implicit scrubbing
event and must explicitly scrub granule contents before transitioning the granule to the Non-secure PAS.

RWJNMD Granule Protection Check for on-chip Resources can only rely on Granule Protection Tables that are stored on-chip
or are stored off-chip with equivalent level of integrity and replay protection.

RGQCQT A Granule Protection Check that applies to non-idempotent locations does not permit any access to be speculatively
performed to a non-idempotent location before the Granule Protection Check for the access is complete.

IKYMLS An example for a non-idempotent location is a read-sensitive memory-mapped peripheral register. Speculative
read access to non-idempotent memory can result in UNPREDICTABLE behavior. Correspondingly, a system that is
using GPC for assigning non-idempotent locations to Realm, Secure, or Root PAS must complete the GPC for any
non-idempotent location before permitting access to it.

RGFGZM If a requester-side Granular PAS filter is in reset state, any requester that is associated with it is either in reset state
or blocked from accessing memory.

IKVHFL This permits for a predictable access control behavior when initializing the system.

See also:

• B2.3 Device isolation and protection.
• Chapter B5 Power Management.

B2.2.2 Cache Maintenance

IKWFWG The Point of Physical Aliasing (PoPA) is a reference location for cache maintenance operations that is defined in
[1].

RWFQKD A PA that targets memory that can be cached is associated with a PAS until reaching the PoPA.

RFRMJJ Where a PA is associated with a PAS, any PA compare operation includes the PAS.

IKHSYM This rule applies to any cache or snoop filter that is before the PoPA (between the requesters and the PoPA) at any
hierarchy level of the system including L1 data and instruction caches. This is needed to maintain the principle of
separate physical address spaces as a global security property of the system.

ISQJLC An RME system supports cache maintenance operations to the PoPA in compliance with [1]. The scope of a cache
maintenance operation to the PoPA (PoPA CMO) is the Outer Shareable shareability domain.

RQBNJF A PoPA CMO applies to any cached copy in the system with the specified {PAS, PA} regardless of both:

• The shareability domain it was cached with.
• Whether the system supports a single or multiple Outer Shareable shareability domains.

IJQSYD As an example, implementations must guarantee that a PoPA CMO sent from one PE affects cache-lines that
were allocated as Non-shareable by other PEs. Such a guarantee typically requires snoop filter registration for
any allocation into a fully-coherent cache that is located past the Granule Protection Check, regardless of the
shareability attribute of the access causing the allocation.
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An implementation can support that by having application PEs artificially convert Non-shareable Cacheable
accesses to either Inner Shareable Cacheable or Outer Shareable Cacheable but must guarantee that memory
consistency and coherency semantics are preserved when other requesters continue to use the Non-shareable
attribute when accessing the same Location.

Non-PE requesters can continue using the Non-shareable Cacheable attribute when allocating into a cache that
is located before the Granule Protection Check, as later write-backs from such cache always go through a PAS
protection check.

B2.2.3 Main memory (DRAM) protection

B2.2.3.1 Memory encryption and integrity

IFPJXZ There are several memory encryption and integrity schemes that are applicable to an RME system.

The baseline encryption requirement is supporting encryption for external memory, using a separate encryption
key or tweak for each PAS and providing spatial isolation using an address tweak. RME prevents runtime software
access to ciphertext in external memory, in accordance with [2].

Cryptographic memory integrity and freshness are additional, threat-model dependent, capabilities for complying
with the Arm CCA security guarantees as specified in [2].

This specification uses the term Memory Protection Engine (MPE) to describe the component that provides external
memory encryption and integrity services.

A taxonomy of memory protection schemes that can be used with an Arm CCA system is defined in [2].

RMLFBL External memory that is assigned to Secure PAS, Realm PAS, or Root PAS must be encrypted using a method that
provides at least the following:

• A different encryption context for each PAS.
• A different address tweak for each encryption data block, such as a 128-bit memory block.
• If cryptographic memory integrity is not supported, an encryption mode that ensures bit diffusion over an

encryption data block.

RMYWVB Data is encrypted before being written to external memory or to any shared cache that resides past the PoPA.

See also:

• B3.2.4 Memory Protection Engine System Requirements.

B2.2.3.2 DRAM scrubbing

IDGWPK The term scrubbing is used in this specification to describe an operation that guarantees that the previous contents
of a memory location are no longer readable.

IMLKLZ The term ECC-scrubbing is used to describe the operation of refreshing DRAM ECC state.

IKQPGL On system boot, memory that could have been assigned to Secure PAS, Realm PAS, or Root PAS must be scrubbed
before any requester that is not a Trusted requester is granted access to that memory. Because an RME system
supports memory encryption, scrubbing is performed implicitly by resetting all stored copies of the memory
encryption key on an RME system reset.

RBNSQB An ECC-scrubbing engine located after the PoPA must not leak confidential information, for example through
error record registers.

See also:

• B4.3 RAS.
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B2.3 Device isolation and protection

MMU-attached Granule Protection Checks are applicable to Normal memory and Device memory. This system
capability can be augmented with PAS filters on the completer side for isolating specific Resources. For example, a
completer-side PAS filter might be useful where protection at register granularity is required or where it is required
immediately after reset for an SSD resource.

RGDVSZ A PA of an access to a memory-mapped peripheral is associated with a PAS until reaching the PAS filter assigned
to protect the peripheral.

IQXXCQ For memory-mapped peripherals that are not protected by a completer-side PAS filter the PAS tag can be stripped
at an IMPLEMENTATION DEFINED location. For example, a PAS tag of an access to a PCIe memory-mapped
peripheral can be stripped at the Root Port.

B2.3.1 Peripheral isolation

ISKDDD A peripheral can include a private completer-side PAS filter for autonomously controlling access to its
memory-mapped registers.

RDVPGT A private PAS filter allows access to a register only if the Access PAS matches a Resource PAS that the register is
associated with.

ILDBCM A peripheral might associate a memory-mapped register with multiple physical address spaces, for example to
expose different values to software in different Security states. In such a case, the PAS filter allows access to the
register from multiple physical address spaces.

IFLNFT An interconnect can include a PAS filter for controlling access to completer nodes that are not PAS-aware.

ITKRBJ For example, an interconnect can be configured to assign an attached device to a specific PAS, and block any
accesses to that device unless they use the correct PAS.

B2.3.2 Non-PE requesters (Devices)

RRHBJN The Security state of a non-PE requester that is not a Trusted subsystem can be one of the following:

• Non-secure.
• Secure.

ICPKZT A non-PE requester that is not a Trusted subsystem cannot access memory in the Realm PAS or the Root PAS.
Providing non-PE requesters such as IO devices or accelerators with access to the Realm PAS is not supported in
this version of the RME architecture.

ICRPCL An RME system can include non-PE requesters which are fully coherent and therefore capable of emitting snoop
responses.

RMCMSH A fully coherent non-PE requester, that is not part of the System Security Domain (SSD), will not observe
coherency traffic for addresses in the Secure, Realm or Root PAS.

IPPVTC For example, a fully coherent external device that is attached to an RME system over a coherent link must not be
able to track access patterns by observing snoop requests in the Secure, Realm or Root PAS. A cache of a coherent
non-PE requester that is part of the System Security Domain is permitted to observe snoop requests in any PAS but
will not make these requests visible to the hosted context.

B2.3.3 Programmable completer-side filters
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ITPLYX A completer-side PAS filter can be software programmable. Examples include:

• A completer-side PAS filter that can be programmed to assign memory-mapped portions of a Resource or
granules of a Resource to a specific PAS.

• A completer-side PAS filter for SMEM that can be programmed to assign an SMEM address range to a
specific PAS.

• A completer-side PAS filter on an interconnect port that can be programmed to assign a completer attached
to that port to a specific PAS.

RRGQRT If a programmable completer-side PAS filter can assign resources to all physical address spaces then:

• The registers that control the filter are in the Root PAS.
• On an RME system reset, Resources controlled by the filter are either assigned to the Root PAS or are reset

to a known value.

RGLLZY If a programmable completer-side PAS filter assigns resources only to the Secure PAS and Non-secure PAS then:

• The registers that control the filter are in the Secure PAS or in the Root PAS.
• On an RME system reset, Resources controlled by the filter are either assigned to the Secure PAS or the Root

PAS or are reset to a known value.

ITCSGH Resources suitable for protection using a completer-side PAS filter include memory-mapped peripherals and
on-chip SRAM (SMEM).
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Chapter B3
Resources and Components

This chapter outlines properties of system resources and components that are part of an RME system.

RJSDVG All RME structures and fields use little-endian convention.
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B3.1 Shielded memory

This section describes shielded memory requirements for MSD and RMSD.

IPLSGD The term shielded memory (SMEM) refers to memory that provides confidentiality, integrity, and replay protection
against off-chip attacks. A typical example for SMEM is on-chip SRAM. Shielded memory can be local to a PE or
globally visible to all requesters in a system.

IFTDTY MSD and RMSD use SMEM for storing sensitive code and state in accordance with requirements in [2]. MSD
SMEM is used for storing MSD code, data and translation tables, and also for storing the level 0 GPT. RMSD
SMEM can be used for storing RMSD code, data, measurements, and cryptographic context.

RCSSDG MSD SMEM is in the Root PAS.

RSPLKT The address ranges of MSD SMEM are either defined statically or defined by SSD following an RME system reset.

RNXJLB On an RME system reset MSD SMEM is either immediately assigned to the Root PAS or scrubbed and is available
for access by the PE boot ROM as soon as it starts executing.

RCMMCZ RMSD SMEM is in the Realm PAS.

RZVQGS The address ranges of SMEM assigned to the Realm PAS and Secure PAS are either defined statically or by SSD
or MSD.

RZQQSQ SMEM that can be dynamically assigned to the Realm PAS or the Secure PAS is either immediately assigned to
the Root PAS or scrubbed on an RME system reset.

RZCJHY The access control path that protects SMEM is not affected by state from non-shielded memory.

ISQQWY For example, if the Level 1 GPT is stored in non-shielded memory it cannot be used for assigning on-chip SRAM
to the Root PAS.

IJRLRX For example, if SMEM is on-chip SRAM then SMEM access control can be implemented using a completer-side
PAS filter, where:

• On an RME system reset all SMEM Resources are assigned to the Root PAS.
• SMEM Resources can be assigned to the Realm and Secure PAS using registers in the Root PAS.

This prevents leakage of state following system reboot.

IGCJRZ Arm recommends that global RMSD SMEM and global MSD SMEM support cacheable accesses. [1] specifies
GPT shareability and cacheability configuration that is common to all levels of the GPT. An implementation that
locates the level 0 GPT in non-cacheable SMEM can use an IMPLEMENTATION DEFINED method to guarantee this
does not prohibit cacheability of other levels of the GPT.
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B3.2 Components

B3.2.1 PE

IPCXDR The term application PE refers to a PE used by the operating system or hypervisor to execute user applications or
kernel threads.

RGSRPS All A-profile application PEs in the system implement the Realm Management Extension (RME).

IZCLYG Non-application PEs are not required to implement the Realm Management Extension. As any other requesters,
non-application PEs are subjected to PAS filtering.

ITXKMT External access to PE resources through a memory-mapped interface such as a utility bus must comply with RME
system architecture rules for peripheral isolation.

For example, an implementation must guarantee that for features that are exposed through a memory-mapped
interface:

• When a PE is in the Realm Security state, Non-secure or Secure accesses by another agent through the
memory-mapped interface, do not return any information about Realm Security state execution or affect it.

• Similarly, when a PE is in the Secure Security state, Non-secure or Realm accesses by another agent through
a memory-mapped interface, do not return any information about Secure Security state execution or affect it.

IFHLLF A PE that implements RME and might be integrated in legacy systems should support a LEGACY_TZ_EN input
tie-off. When set, the LEGACY_TZ_EN input tie-off forces the PE to hide the RME capability and fallback to
supporting two Security states and two physical address spaces.

See also:

• B2.3.1 Peripheral isolation.
• B8.1 Using RME IP in a legacy system.

B3.2.2 SMMU

RNJRPC An SMMU in an RME system complies with [3].

B3.2.3 Interconnect and caches

This section defines rules related to components that connect between multiple requesters and completers, such as
clusters, non-coherent interconnects, and coherent interconnects.

IYBKWT A PAS tag is assigned to any transaction that carries a PA.

IFLYMQ The integration of an RME-aware component must guarantee that the PAS tag is propagated to that component
through any interconnect or bus on the way. For example:

• A coherent or non-coherent interconnect attaching to global SMEM that is protected with a completer-side
PAS filter.

• A system bus, such as AMBA APB, attaching to a memory-mapped interface of a PE.

RXBKYB All bus and interconnect decoding components between the point where the Access PAS is assigned and the PoPA
are PAS tag-aware.

ISFRSB In practice, a forwarding component can decide to ignore the PAS tag when making a forwarding decision for
certain address ranges, such as memory ranges that are subject to granular PAS filtering.

RXTSXB An RME coherent interconnect supports cache maintenance operations to the PoPA in compliance with [1].
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RFXQCD A PoPA CMO applies to any cache before the PoPA, including system caches that are located beyond the Point of
Coherency.

RLCXDB Completion of a PoPA CMO for a given PA guarantees that both:

• Any dirty cached or transient state associated with the PA before the PoPA has been cleaned to after the
PoPA.

• Any cached or transient state associated with the PA before the PoPA has been invalidated.

ICDSDR Any system cache before the PoPA must comply with the cache lockdown rules that are specified in [1].

RCMMDG For any cache before the PoPA, cache prefetching across granule-boundary is allowed only after querying the GPC
for the PAS association of the next granule.

RPSGCM A cache maintenance operation performed on a Clean cache entry never results with a write of entry content past
the PoPA.

IRMKKN Writing clean data past the PoPA can lead to data corruption as a granule transitions between Physical Address
Spaces for certain cache and MMU implementations that make use of Speculative data read accesses. The Armv8-A
architecture forbids writing clean data outside of a shareability domain (See [4], D4.4.1 General behavior of the
caches).

See also:

• B8.1 Using RME IP in a legacy system.

B3.2.3.1 DVM operations

IWWYZX Granular PAS filters can cache GPT content. [1] Defines the rules for caching GPT content and invalidating cached
GPT content. The scope of all GPT cache invalidations is the Outer Shareable domain which guarantees that all
GPT caches in the system are reachable by GPT cache invalidations.

RJRJSQ An RME coherent interconnect complies with a Distributed Virtual Memory (DVM) version that supports Realm
Translation Regimes and TLB Invalidate by PA operations.

B3.2.4 Memory Protection Engine System Requirements

IZNLMR A Memory Protection Engine (MPE) in an RME system is either configured by MSD or a Trusted subsystem or
implemented as an autonomous SSD component.

RKSPKN Encryption keys used by MPE are stored in registers that are reset to a known default value on an RME system
reset.

IKZZCG An MPE supports a different encryption key or tweak for each PAS.

RQDPVN Any PAS other than the Non-secure PAS must have encryption enabled.

RVSMPS The decision to enable encryption for the Non-secure PAS is either hardwired or defined at boot and immutable
once set.

IWHCDD An MPE can include functionality that verifies the integrity, that is, the correctness and freshness, of data read
from memory.

RYHXPH An MPE integrity error is reported as an external abort to a software or hardware agent consuming the error.

RYJDSJ Any captured details of an MPE integrity error are only visible to MSD.

INDPVG If a speculative access is made to a memory location that is integrity protected and that access is tagged with an
incorrect PAS, the integrity check can fail but it must not result in a fatal error.

An example of a speculative access that might have an incorrect PAS is a read access generated for a translation
table walk for which the granule protection check for the address being accessed has not been architecturally
resolved.
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IKCTYS The properties of Memory Protection Engines are reflected through the following structures:

• Global MPE properties like “Encryption using a per-PAS key” can be captured in the System Properties
structure in Root Non-volatile Storage.

• Programming interface details of MSD controlled MPEs are identified through MSD resource discovery.

RLPQSN An MPE property that is reported through the System Properties structure in Root Non-volatile Storage (RNVS) is
supported for all external memory ports in the system.

See also:

• B3.3 Resource discovery.
• B4.3 RAS.

B3.2.5 Trusted System Control Processor

IMCHBN The RME system architecture anticipates the presence of a System Control Processor (SCP) within an
implementation which can be responsible for operations such as system initialization and run-time power
management. Where such a processor must have the ability to access locations in the Root PAS, it becomes a
Trusted subsystem and is referred by this specification as a Trusted SCP.

RSXCFK A Trusted SCP is an on-chip control processor that is trusted by MSD and can access resources in the Root PAS.

RZHJQJ A Trusted SCP is considered a Trusted subsystem and must meet the applicable security requirements defined in
[2], for example, supporting Secure boot and having attestable firmware.

ICLYQH An implementation must guarantee that the Trusted SCP is able to specify the correct PAS when accessing any
system resource and specifically Root PAS resources.

Root PAS resources include:

• MSD SMEM.
• MSD-Protected Registers (MPRs).
• Memory-mapped resources of Trusted subsystems and Trusted requesters.
• Main memory (such as DRAM) assigned to the Root PAS.

RMZDXV It is permitted for a Trusted SCP to have a mechanism to bypass a PAS filter which filters its transactions.

IMMVRL The Trusted SCP must be able to access registers in the system before any programmable PAS filter, including an
SMMU-attached Granule Protection Check, has been configured by MSD.
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B3.3 Resource discovery

IJDXSD The method by which MSD discovers RME resources in the system is out of scope for this specification.

This specification uses the term MSD Resource Discovery to describe the mechanism that allows enumerating
these resources.

How MSD resource discovery is implemented is IMPLEMENTATION DEFINED. For example, resources can be
discovered through a firmware structure that is part of MSD firmware.

MSD resource discovery includes information like the following:

• Locations of system PAS filters, for example SMMUs, and system Memory Protection Engines that are
managed by MSD.

• Location of MSD SMEM.

• Location of Root Non-volatile Storage (RNVS).

• Locations of DRAM carve-outs that are reserved for MSD.

• Locations of Storage Class Memory in the system address map.

ARM DEN 0129
A.b

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37



Chapter B4
System security properties

This chapter defines general security properties and capabilities that must be supported by the System Architecture
to ensure RME security.

This chapter extends other security specifications that may be part of a system’s certification profile, for example
Trusted Based System Architecture.
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B4.1 Root of Trust Services

B4.1.1 Non-volatile storage

This section describes System Architecture requirements for Root Non-Volatile Storage.

IQPVZF Root Non-Volatile Storage (RNVS) is an on-chip non-volatile storage resource, such as fuses or on-chip flash that
stores Arm CCA immutable boot parameters.

RWNPYD A programming interface that allows read and write access to RNVS must be in the Root PAS.

IVZVBQ RNVS parameters can be conceptually partitioned to two categories, public parameters and confidential parameters.

RQCHPW The system supports a method for permanently blocking write access from application PEs to all RNVS parameters.

RLMSSL The system supports a method for permanently blocking read access from application PEs to RNVS confidential
parameters.

IMZTMB The following table provides examples for RNVS public parameters.

Table B4.1: RNVS public parameters

Parameter Description

MSD firmware Anti-rollback For example: a monotonic counter specifying minimal firmware version.

System Properties A vector in which each property is assigned a single bit:

“0” - property is supported.

“1” - property is not supported.

System Properties can be included in the Realm attestation report.

MSD Verification Key Public key for validating the MSD firmware signature.

IRZNNN System Properties is a structure that allows the system integrator to report to MSD the set of chosen implementation
options of an RME system.

RVXBYG System support for any memory protection property reported in System Properties is immutable and applicable for
all DRAM memory controllers in the system.

ITGKMJ RNVS confidential parameters are immutable confidential material such as a Hardware Unique Key (HUK) and
other private keys. These are specified in [2].

ISBYFQ The physical implementation and factory provisioning methods of RNVS depend on the security certification
profile of the system and must comply with requirements for Shielded locations or Isolated locations as specified
in [2].

B4.1.2 Root watchdog

IFDTWY The term Root watchdog refers to a watchdog that is exclusively controlled by MSD or a Trusted subsystem. An
RME implementation can include a Root watchdog for detecting and recovering from MSD functional faults.

RZHBBL The memory-mapped registers of a Root watchdog are in the Root PAS.

RVXGBP A Root watchdog is capable of triggering an RME system reset when predefined expiration conditions are met.
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IZYNSW For a generic watchdog implementation as specified by [5], this can be supported by routing Watchdog Signal 1
(WS1) to a Trusted subsystem such as a Trusted SCP or hardware that directly trigger an RME system reset.

IZDCNQ A Root watchdog can generate an interrupt to EL3 when predefined expiration conditions are met. The method for
securely delivering the watchdog interrupt to EL3 is IMPLEMENTATION DEFINED.

B4.1.3 Random Number Generator

RQYRGG MSD and RMSD are provided with a private interface for accessing a True Random Number Generator (TRNG)
that meets the certification profile of the system.

IMQMBF [1] specifies the related requirements for Armv8 RNG architecture extension support.

B4.1.4 Cryptographic Services

IDKFMS The RME System Architecture does not specify hardware requirements for generic cryptographic services, for
example:

• Encryption cipher modes and Message Authentication Codes.

• Public Key Cryptography.

• Key generation and Key Derivation Functions (KDF).

• Secure key storage and secure measurement storage.

• Monotonic counters and trusted time.

MSD and RMSD can implement required cryptographic functionality such as AES-GCM-256 or SHA using a
software library that leverages the various ARMv8 cryptographic extensions.

Other cryptographic functionality might be offered as a system service implemented by SSD and exposed through
a memory-mapped interface in the Root PAS.

B4.1.5 Hardware Enforced Security

IHTMDC This section specifies rules for RME systems that support Hardware Enforced Security (HES) as defined in [2].

HES moves critical Arm CCA security features off application PEs and into an isolated Trusted subsystem
responsible for Arm CCA initial measurements, identity and attestation services, debug authentication, and
lifecycle state management.

HES functionality can be hosted on a dedicated Trusted subsystem or as an isolated tenant within a multi-tenant
Trusted subsystem.

A HES implementation integrates RNVS functionality, cryptographic functionality, and secure measurement
storage forming a private execution environment that shares no resources with application PEs. This allows for the
following:

• A guarantee that firmware running on an application PE cannot influence Arm CCA initial measurements or
Arm CCA initial boot state.

• Physical isolation of critical Arm CCA resources by preventing direct access to root secrets, or to operations
on root secrets, from application PEs.

Arm strongly recommends that RME systems support HES.
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IYBZMD The HES implementation has private execution resources, memory resources, and cryptographic resources that are
not shared with application PEs or other hardware agents. The system can further provide a HES implementation
with private reset, clock and power domain to allow it to maintain context independently to the system power state.

The HES implementation can include an updatable component such as a firmware image. The HES updatable
component is measured by immutable HES logic and the measurement result is included in attestation tokens that
are composed and signed by HES.

RNWQBJ If HES is hosted as a tenant within a multi-tenant Trusted subsystem, HES functionality must be isolated from
other tenants, such that tenants must not be able to monitor HES functionality or impact HES functionality or
integrity.

RHJSSG The HES implementation exposes a private interface to SSD components such as Trusted subsystems for requesting
HES services.

IPMWXL Services provided by HES for SSD are defined in [2] and can include:

• Extending one or more measurements with a digest calculated by SSD.
• Calculating a digest of an image or boot state provided by SSD, for example a Trusted SCP image, and

extending a measurement with that digest.

RCGDVX The HES implementation exposes a programming interface in the Root PAS, shared by all application PEs, allowing
MSD and PE Initial boot ROM to request for HES services.

IBNKKC Services provided by HES for PE Initial boot ROM include:

• Extending a measurement with a digest calculated by PE Initial boot.

Services provided by HES for MSD include:

• Composing and signing an initial attestation token for MSD.
• Extend one or more measurements with a digest calculated by MSD, for example a digest measuring RMSD

image.

RBQPFG HES has exclusive read and write access to RNVS confidential parameters.

RBTWVY A measurement register can be either extended using a secure hash algorithm, locked or reset.

RDFPJL HES has exclusive access to extend, lock and reliably obtain the value of a measurement register it owns.

RFWSRF Once locked, a measurement cannot be further extended until it is reset.

RWYSLK An RME system reset is the only method to reset a measurement owned by HES.

RXCRMH On an RME system reset, HES state is reset to a known value, including all measurements and ephemeral
cryptographic context.
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B4.2 System isolation properties

B4.2.1 System configuration integrity

IPDPGT MSD must establish the correctness and integrity of any System register that can risk its security guarantees.

For example, MSD must assert that memory controller configuration is consistent as well as any configuration that
controls the mapping of physical address spaces to memory controllers.

INKJLK A MSD-Protected Register (MPR) is a configuration register holding a value that can compromise MSD
functionality.

MPRs must be in the Root PAS and can only be configured by MSD or by a Trusted subsystem.

IWVSXK The list of MPRs in a system is IMPLEMENTATION DEFINED and [2] provides details on their possible classes.
Here are some examples:

• Interconnect Registers that control mapping of physical addresses to DRAM memory ports.

• Registers that allow modifying the address or data fields of a memory access or cache maintenance message
or can impact its delivery.

• Memory controller registers that allow modifying the value of a memory location, modifying the address or
data of an access or violate RME RAS rules.

• Registers that might store confidential information or that provide access to memory, buffers, or caches that
might store it.

• Registers controlling debug/DFT access to memory, buffers, or caches.

• Registers controlling power and reset settings or Trusted SCP registers.

• Registers controlling the system counter functionality.

Identifying all MPRs in a system requires a careful security analysis that addresses both direct channels and side
channels.

B4.2.1.1 Temporal isolation

This section defines properties and rules related to temporal isolation of memory-mapped registers.

IDDMPS A register is write-lockable if MSD has a method to block writes to it from all requesters at any Security state.

A register is read-lockable if MSD has a method to block reads to it from all requesters at any Security state.

IPCLND Examples for how the write-lockable and read-lockable properties can be implemented are:

• Using write-lock and read-lock signals that are controlled by a register in the Root PAS.
• Using the No accesses permitted GPC encoding specified in [1], if the properties can be applied to all registers

in a single Physical Granule.

RVDFYZ A register that is located outside of the Root PAS but can affect a service provided by MSD must be implemented
as a measurable register.

RYLVDB A measurable register is a write-lockable register that MSD has a trusted method to obtain its value.

IGSPZK As an example, measurable registers can be used for a configuration that defines a protection policy or a property of
an address range that are not directly controlled by MSD. After MSD sets the write-lock of a measurable register it
must have a method to read its value using a path that is controlled by SSD, MSD or by other measurable registers.

ARM DEN 0129
A.b

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42



Chapter B4. System security properties
B4.2. System isolation properties

B4.2.2 Reporting of critical errors

IVZDVG A functional error that can violate the RME security guarantee such as a GPC walk fault is reported either to MSD
or to a Trusted subsystem.

[1] describes how GPC faults can be reported to EL3 using synchronous GPC exceptions.

When an error is detected asynchronously, it can be signaled to application PEs using the SError interrupt or can
be wired directly to a Trusted subsystem. Examples include:

• A GPC fault detected by an SMMU that is reported in SMMU_ROOT_GPT_CFG_FAR as specified in [3].
• A GPT walk fault detected by an MMU on a write to the Trace Buffer.
• A RAS critical error detected by a Trusted requester.
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B4.3 RAS

The RME architecture specification [1] provides implementation requirements for RAS in PEs and system
components using the Arm RAS architecture [6]. This section provides additional rules for system components
described in this specification.

B4.3.1 Confidential information in RAS Error Records

The RME architecture [1] describes the concept of confidential information and provides the requirements on the
content that can be recorded in RAS error record registers.

RGNGMB Only SSD or MSD are capable of controlling whether recording is performed for error records that might contain
confidential information.

IHBRCT The RME security guarantee for the protection of confidential information applies to systems in the Secured
lifecycle state. If the RME system is not in the Secured state or if Root external debugging is enabled, recording
can be enabled for any error record.

B4.3.2 RAS Error signaling

The following rules describe constraints on how errors must be signaled to PEs or other system components in an
RME system using the Arm RAS architecture.

IBHNYL For rules on signaling errors to PEs, see the RME architecture specification [1].

RGZTVL Critical Error Interrupts (CI) must be wired to a Trusted subsystem that will respond with an RME system reset.

RLWVCX An uncontainable error results in an RME system reset.

IHYXZN Components that implement RAS can be reset with an Error Recovery Reset, so that RAS syndrome information is
not lost.

RJNBWJ Only SSD or MSD can enable or disable the generation of a CRI.

B4.3.3 RAS for Memory Protection Engine

Section B3.2.4 Memory Protection Engine System Requirements introduces the concept of MPE and its associated
requirements. This section covers RAS requirements associated with MPEs.

RXPCTR Where an MPE provides support for integrity, if it detects an integrity error it can perform one of the following
responses:

• Respond by returning poison back to the consumer and record the error as a deferred error.
• Respond with an in-band error response and record the error as an uncorrected error.

RHSVLQ Only SSD or MSD must be able to control the abilities of detecting, propagating, and reporting MPE integrity
errors.

IDKXXG Arm recommends MPEs with integrity support implement the Arm RAS system architecture [6].

RGZHTD In addition to providing encryption and, where implemented, integrity capabilities, the MPE is able to pass poison
information:

• If a requester above the MPE defers errors by writing poison, then the MPE must be able to pass this value
through to the memory system below it as poison.

• If a requester above the MPE consumes a memory location that has been marked as poison, either as a result
of that access or a previous access, the MPE must pass that poison to consumer.
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ITMKYF Passing poison through the MPE does not weaken its security properties.
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B4.4 MPAM

IWRPFN The complete definition of MPAM changes for RME is specified in [7].

IMYBCG A PE that implements RME is capable of generating a 2-bit MPAM_SP encoded as:

• 0b00 - Secure.
• 0b01 - Non-secure.
• 0b10 - Root.
• 0b11 - Realm.

IQZQNG Non-PE requesters in an RME system are capable of generating the following MPAM_SP encodings:

• 0b00 - Secure.
• 0b01 - Non-secure.

Other encodings for non-PE requesters are in the scope of future versions of the RME Architecture.

IZFXNS A Four-space MSC is an MSC that supports 4 PARTID spaces.

IQNCKT An MSC that supports only 2 PARTID spaces can have a PARTID space mapper that allows associating the
PARTID space of an incoming message with one of the PARTID spaces supported by the MSC. The registers
controlling the PARTID space mapper are in the Root PAS and are defined in [7].

RRFSYB An RME system propagates a 2-bit MPAM_SP field to all MSCs that are either a Four-space MSC or have a
PARTID space mapper.

IBTNRR An RME system can include a combination of Four-space MSCs, MSCs that support a PARTID space mapper and
Two-space MSCs.

IVSQFK An RME system can include a Two-space MSC only where this does not leak confidential information.

IFXLRK An access to a Granule Protection Table by a PAS filter is tagged with the PARTID and PMG of the memory access
being filtered. This is consistent with MPAM rules on PARTID selection for translation table walk accesses.
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B4.5 MTE

IFTYRS [1] defines the required changes to the Memory Tagging Extension (FEAT_MTE) when RME is implemented.
Memory Tagging makes use of Allocation Tags that can be assigned for Normal memory locations in the system.
One implementation option for storing Allocation Tags is using an array located in main memory.

IDFCMZ Where an implementation is using addressable memory for storing Allocation Tags, the hardware physical address
range of such memory (MTE carve-out) can only be accessible to:

• Hardware responsible for the association of Allocation Tags with physical addresses.
• An Access in Root PAS - for implementations that expose Allocation Tags through regions of the data PA

space.

The MTE carve-out must be protected by a filter located either at the completer or at the requester side that
guarantees this behavior.

Encryption of Allocation Tags in main memory is an optional defence-in-depth capability for mitigating attempts
to read or corrupt tags. If performed, and the MTE carve-out is accessible in the Root PAS then encryption must
be done using the Root PAS encryption key. Otherwise, encryption may be done using a key associated with the
PAS of the data that corresponds to the Allocation Tag.

RJYMQD Allocation and protection of the address range assigned to an MTE carve-out are controlled by either SSD or MSD.
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B4.6 Side channel resistance

B4.6.1 System PMU counters

IDSBRJ Performance Monitoring Unit (PMU) counters are a potential side channel for leaking confidential information such
as access patterns or control flow of execution in a Security state protected by the RME security guarantee. The
following rules augment existing rules specified in [8] for guaranteeing that system PMUs do not leak confidential
information. These rules apply to any PMU counter in the system, including architectural and IMPLEMENTATION
DEFINED MPAM monitors.

RHRVJB A system PMU counter that is accessible in the Secure PAS can only count events that are attributable to the Secure
PAS or to the Non-secure PAS.

RBSZPN A system PMU counter that is accessible in the Realm PAS can only count events that are attributable to the Realm
PAS or to the Non-secure PAS.

RTMSNN A system PMU counter that is accessible in the Root PAS can count events that are attributable to any PAS.

RMMPWY A system PMU counter that is accessible in the Non-secure PAS can count events that are attributable to a specific
PAS if there is a per-PAS authentication control that can permit events from that PAS to be counted.

RPLXZB A per-PAS authentication control, as specified in [8] can be driven by a debug authentication interface signal or by
a register accessible in the corresponding PAS or in the Root PAS.

RCFYKS An event that is not explicitly associated with a PAS but can leak confidential information is implicitly associated
with the Root PAS.

B4.6.2 Fault attacks using signal and power manipulations

INSXXG The integrity and robustness of clock, reset, and voltage supplies of a system are an important aspect of its security
guarantee. While this specification does not define explicit requirements for addressing fault injection attacks, it is
strongly recommended that RME implementations consider the system immunity against attacks that may make
use of these physical properties. Examples for possible measures include:

• Detection of glitches on input power supplies and of voltage levels dropping or exceeding the levels allowed
by specification.

• Increasing noise-immunity of reset control signals.
• Reliable delivery of clocks to system components with duty-cycle and jitter that meet specification boundaries.
• Implementing any register that controls voltage settings, power switch on/off settings, clock duty cycle, PLL

settings, or power-on-reset settings as an MSD protected register (MPR).
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B4.7 Architectural differences

IJFJVD Architectural differences between application PEs in an RME system present a potential security exposure and
increase management software complexity. For example, supporting a different physical range per PE by having
different values in ID_AA64MMFR0_EL1.PARange could compromise the enforcement of memory isolation.
Supporting different cache policies through CTR_EL0.L1Ip could compromise Realm memory confidentiality
through incorrect cache maintenance operations.

The rules in this section aim to minimize architectural differences between application PEs and guarantee that
where a difference exists it does not compromise the RME security guarantee.

RSQMWT Application PEs in an RME system do not have architectural differences unless this is explicitly permitted by this
specification.

IBFCFX An architectural feature must be implemented using the same revision and the same feature IDs across all
application PEs that support it. This guarantees predictable software behavior and simplifies the reporting of
supported architectural extensions and features in an attestation report.

Non-uniform support of an architectural feature is possible only if the feature is not exposed to a Realm and
not used by RMSD. Arm strongly recommends that all application PEs in an RME system implement uniform
support of architectural features and where this is not possible guarantee that controls at EL2 or EL3 can be used
to hide non-uniform features from Realms. These can be register and instruction trap controls at EL2 or feature
enablement configuration at EL3. Using trap controls for guaranteeing feature uniformity has the drawback of
requiring RMSD software to be platform-dependant and may not completely prevent hostile attempts to use the
feature.

IJVTXC Application PEs are allowed to have differences in the following architected registers:

Description Short-Form Permitted Differences

Main ID Register MIDR_EL1 Part number [15:4], Revision [3:0], Variant
[23:20], Implementer [31:24].

Virtualization Processor ID
Register

VPIDR_EL2 Same fields as MIDR_EL1, writable by
hypervisor.

Multiprocessor ID Register MPIDR_EL1 Bits [39:32] and Bits [24:0]. Affinity fields
and MT bit.

Virtualization Multiprocessor
ID Register

VMPIDR_EL2 Same fields as MPIDR, writable by
hypervisor.

Revision ID Register REVIDR_EL1 Specific to implementation indicates
implementation specific Revisions/ECOs.
All bits can vary.

Auxiliary ID Register AIDR_EL1 IMPLEMENTATION DEFINED identification
information

Current Cache Size ID
Registers

CCSIDR_EL1 CCSIDR2_EL1 The number of Sets and the associativity of
Caches can be different on each PE.

The following differences are allowed by the Server Base System Architecture [5] but are not allowed by the RME
system architecture:

Description Short-Form SBSA differences not allowed by RME

Cache type register CTR_EL0 Bits [15:14] Level 1 Instruction Cache Policy
(L1IP).
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Description Short-Form SBSA differences not allowed by RME

AArch64 Memory Features
Register

ID_AA64MMFR0_EL1 Bits [3:0] describing the supported physical
address range.

RCFYBJ An IMPLEMENTATION DEFINED property of an architecture extension or an IMPLEMENTATION DEFINED difference
between application PEs must not create an exposure that could break the RME security guarantee.

RXKBNZ PE behavior is UNPREDICTABLE when the following are true:

• An IMPLEMENTATION DEFINED difference between application PEs is visible to software, for example
through different System register values across PEs.

• There is a mismatch between the register value assumed by software running on a PE and the actual hardware
value of the PE.

– An example where such mismatch could occur, is if software obtained the value by reading it on a
different PE.

IDTDWX UNPREDICTABLE behavior as defined in the Arm architecture is constrained to forbid privilege escalation.
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This chapter specifies RME system power management rules.

Power management flows define how the system and its components transition between various power states and
how associated operations like switching-off power domains and managing context are executed.

The RME Power Management requirements described in this chapter address the following:

• Prevent compromise of the RME security guarantee using power management manipulations, for example
due to loss of context.

• Minimize RME impact on power management functionality and system power consumption.
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B5.1 System power management

B5.1.1 Power states

RLRQXZ A software-initiated power state transition in an RME system at any level of the system hierarchy (PE, PE-cluster,
System) is validated by MSD or by a Trusted subsystem.

B5.1.2 PE power management

ITGBQF At the exit from any PE low-power state in which PE context is lost, instruction execution begins at MSD. Before
allowing code in other Security states to run, MSD sets up PE context to maintain the RME security guarantee at
the PE level and at the system level.

RWJVRX Save/Restore operations for MSD PE context can only be done by MSD or a Trusted subsystem and use storage
that is not accessible from Realm, Secure and Non-secure states.

RMVZHF Save/Restore operations for RMSD PE context can only be done by RMSD, MSD, or a Trusted subsystem and use
storage that is not accessible from Secure and Non-secure states.

RRCLYM Save/Restore operations for PE context of Secure state can only be done by MSD or a Trusted subsystem or
software running in the Secure state and use storage that is not accessible from Realm and Non-secure states.

B5.1.3 System and PE-cluster power management

IJMNJC System power management operations that involve power-gating caches or interconnect elements present an
attack surface and therefore must be managed by trusted power control which can be implemented through MSD
firmware, a Trusted subsystem such as a Trusted SCP, SSD power control logic, or a combination thereof.

As an example, before powering-down a component within a level of the system hierarchy (PE, PE-Cluster, System)
power control must establish that a coherent cache clean operation for all data caches in that component has been
performed.

When powering-up a component within a level of the system hierarchy (PE, PE-Cluster, System) power control
must establish that all data and instruction caches are in INVALID state, and that the level of system hierarchy is
configured with power settings that allow it to operate correctly.

RGVJYZ Any register that affects a system power policy or a hardware power mode is implemented as an MSD-Protected
Register (MPR).

IPKLDS MSD state is defined to be any system state that affects MSD behavior. MSD state includes the following:

• System structures storing MSD PE context.
• SMEM in the Root PAS.
• DRAM assigned to the Root PAS, for example GPT.
• MPRs and measurable registers.
• PAS filters context and MPE context.
• Cache state and Snoop filter state.

RKYXMR Any power management operation that can affect MSD state or the RME security guarantee must be validated by
MSD or a Trusted subsystem.

IKVFFP For example, a Trusted SCP can expose an interface to Non-secure software to modify the performance attributes
of the system but must not permit the programming of invalid values or invalid value combinations.

B5.1.4 System power states
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IYDHQF Once all PEs have been placed in a power state in which PE context is lost the system can enter a power state
in which its context is lost, for example by calling PSCI SYSTEM_OFF. If PEs are placed in a low power state
in which PE context is preserved, the system can enter a low power state in which its context is preserved, for
example by calling PSCI SYSTEM_SUSPEND.

RMLJVR On an exit from a low power state in which system context is preserved, power control guarantees that MSD state
is fully preserved. If MSD state is not preserved, power control applies an RME system reset.

IFVZXC Managing MSD state during a power state in which system context is preserved can be done using system retention
structures or using Save/Restore operations for lost context.

RZNLSZ Save/Restore operations for MSD state can only be done by MSD or a Trusted subsystem and use on-chip storage
that is not accessible from Realm PAS, Secure PAS or Non-secure PAS.

IWDNPT On an exit from a low power state, MSD establishes if any MSD state is no longer valid, in which case MSD
performs initialization operations in a cold boot manner.
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B5.2 RME components power management

IZPKNM The term ACTIVE is used in this section to describe a power mode in which a component is fully operational.

A component in any low-power mode, for example clock-gated, power-gated, or retention is no longer in the
ACTIVE power mode.

Also, a component that has not fully restored its context following an exit from a low-power mode is not in the
ACTIVE mode.

IZQCHL A PAS filter or MPE can be placed in a non-ACTIVE mode if this does not violate the RME security guarantee.
For example, if all requesters associated with an MMU-attached PAS filter are reset or power-gated MSD can
permit the power-gating of the filter. A completer-side PAS filter can be power-gated when the corresponding
peripheral is power-gated.

A transition of a PAS filter or MPE to a non-ACTIVE mode in which context is retained can be done autonomously.
Otherwise, if context is lost the transition can be carried by trusted power control. Power control verifies that the
transition is allowed, and that context is correctly restored before moving back to ACTIVE mode.

RDQTSG An MPE or a PAS filter in a non-ACTIVE mode in which context is not fully retained blocks its operation and
does not service requests until it is in ACTIVE mode again.

RJDBCS An MMU-attached PAS filter in a non-ACTIVE mode either continues to respond to GPT cache invalidations, or
invalidates any cached state when moving back to ACTIVE mode.
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ILRRRJ The term RMSD external debugging is used in this chapter to describe any system or PE external debugging
capability that enables the following:

• Monitoring or modifying RMSD behavior.
• External access to the Realm PAS or Realm Security state.

The term Root external debugging is used in this chapter to describe any system or PE external debugging capability
that enables the following:

• Monitoring or modifying MSD behavior.
• External access to the Root PAS or Root Security state.

This includes both invasive and non-invasive hardware debugging capabilities that provide access to a component
used by MSD or RMSD, including Debug Access Ports, trace hardware, or debug registers.

IGPSGG A Secured Arm CCA system is a system that is provisioned to run Arm CCA at the Secured lifecycle state as
defined in [2].

RQSXBZ RMSD external debugging and Root external debugging are disabled by default on a Secured Arm CCA system.

RHLTLK RMSD external debugging can only be authorized following an RME system reset and before RMSD firmware is
loaded.

RXVNFV Root external debugging can only be authorized following an RME system reset and before MSD firmware is
loaded.

IDSKVX RMSD external debugging and Root external debugging can only be enabled on a Secured Arm CCA system after
performing the following operations:

• Authenticating a signed request such as a debug certificate for enabling a debugging mode.
• For RMSD external debugging:
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Chapter B6. Debug

– Guaranteeing that RMSD external debugging state is visible to MSD.
• For Root external debugging:

– Guaranteeing that RNVS confidential parameters and any other SSD or MSD non-volatile confidential
parameters are inaccessible.

– Guaranteeing that any confidential state from previous boot that may reside in TLBs, caches, or PE
registers is invalidated or scrubbed.

RGTPGZ When Root external debugging is enabled, the RNVS confidential parameters are either inaccessible, scrubbed, or
populated with debug values.

RRHGKX Access to a Secured Arm CCA system through an external debug or test interface, including debug access ports,
JTAG ports, and scan interfaces is disabled by default. Debug access can be enabled following validation of a
debug certificate or password which is injected via an external debug interface.

IVNSTB [1] describes how the Debug Authentication Interface defined in [4] is extended to express the RMSD external
debugging and Root external debugging capabilities. In compliance with the rules specified in this section, Debug
Authentication Interface signals that enable RMSD external debugging and Root external debugging can only be
set before MSD starts executing.

RQLPNL When external debugging is enabled for any Security state, external requests to power-up a component within
a level of the system hierarchy (PE, PE-Cluster, System) are permitted but must be executed by trusted power
control.
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Chapter B7
System boot

This chapter describes requirements for initializing an RME system.
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Chapter B7. System boot
B7.1. Reset requirements

B7.1 Reset requirements

IYRDRZ An RME system reset is any system event that resets the entire global functional state of the system.

An RME system reset includes the resetting of PEs, PE-clusters, system core logic and auxiliary logic, all system
buses, and all system peripherals.

From MSD perspective, an RME system reset event is observed as the logical equivalent to power cycling the
platform.

On coming out of reset, execution starts at an address in the Root PAS.

RHJHRL On an RME system reset, all Trusted requesters and Trusted subsystems are reset. Any Trusted subsystem state
that might include MSD or RMSD confidential information is reset to known values.

IZVHWK Examples for Trusted requesters and Trusted subsystems are GPCs, MPEs, a Trusted SCP, and a Trusted subsystem
hosting HES.

RKKSQB An RME system reset propagates to PEs as either a Cold reset, Warm reset, or Error recovery reset.

RHLKZP An RME system reset might propagate to any component that implements RAS [6] as an Error recovery reset.

RSSGMJ The reset of a system component that affects the RME security guarantee can only be controlled by MSD or a
Trusted subsystem, or driven by an RME system reset.

ICRGLD An RME system reset is not required to explicitly reset external memory. For example, a SYSTEM_WARM_RESET
operation as defined by PSCI [9] is a permitted variant of an RME system reset.

See also:

• Reset chapter in [1]
• B4.3 RAS
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Chapter B7. System boot
B7.2. RME disable

B7.2 RME disable

INMQLP An RME system can fall back to supporting only two Security states and two physical address spaces if it includes
a LEGACY_TZ_EN system tie-off.

RKQLKN LEGACY_TZ_EN is not permitted to change value after RME system reset has been deasserted.

ITJPLF Disabling RME functionality can be controlled by a fuse that drives the value of the LEGACY_TZ_EN tie-off
before RME system reset deasserts.

Disabling RME as a firmware boot option is not currently supported. A boot time option for disabling RME
complicates the security analysis due to potential leakage of confidential information across boot cycles. It also
implies a functional challenge in synchronizing the resource transition from Root PAS to Secure PAS across
multiple system components with the MSD firmware transition from Root state to Secure state.

The Granule Protection Check can be disabled by MSD firmware if Granular PAS filtering is not required.

See also:

• Chapter B8 System construction
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Chapter B8
System construction

B8.1 Using RME IP in a legacy system

ITLFMJ RME IP that might be integrated in systems that support only two Security states can have an input tie-off
(LEGACY_TZ_EN) that enables a legacy behavior.

RKXMHF A system that contains RME components, that have the LEGACY_TZ_EN input, will drive a common tie-off input
value into all components.

ILRMWL IP with the LEGACY_TZ_EN tie-off might include PEs, SMMUs, components with a completer-side PAS filter,
and logic that enforces the PAS Access Table ( Table B2.1).

RHCGZN If LEGACY_TZ_EN is TRUE, PAS[1] is driven to 0b0 by any logic that enforces the PAS Access Table ( Table
B2.1).

RCLKXF A PE that supports the LEGACY_TZ_EN tie-off hides the RME capability if LEGACY_TZ_EN is TRUE and
reverts all functionality defined by RME.

B8.1.1 Peripheral isolation in legacy systems

IQGRFK A peripheral with a private completer-side PAS filter which might be used in a system that supports only two
Security states can implement the LEGACY_TZ_EN input tie-off.

When set, the LEGACY_TZ_EN input tie-off forces the peripheral HW to fallback to supporting only two physical
address spaces.

If LEGACY_TZ_EN is TRUE:
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Chapter B8. System construction
B8.1. Using RME IP in a legacy system

• Peripheral registers that are in the Root PAS and affect global functionality are assigned to the Secure PAS.
• Peripheral registers that are in the Realm PAS can be assigned to the Non-secure PAS or become inaccessible.

See also:

• B3.2.1 PE
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Chapter B8. System construction
B8.2. Using legacy IP in an RME system

B8.2 Using legacy IP in an RME system

IDFSNF An RME system might include legacy requesters or completers that support only two physical address spaces.

RCKBGZ A legacy completer is attached to an RME IP by driving the NS signal of the completer from PAS[0] of the RME
IP.

RYKSSD A legacy requester is attached to an RME IP by driving PAS[0] of the RME IP from the NS signal of the legacy
requester and driving PAS[1] of the RME IP to 0b0.

IWKZHW A legacy requester that is fully coherent must not receive or respond to snoop requests in the Realm PAS or Root
PAS.
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Chapter B8. System construction
B8.3. Memory hot plug

B8.3 Memory hot plug

IQXFYH An RME System can support memory hot-insertion and hot-removal operations if the following conditions are
met:

• MSD has a method to establish if a memory slot is populated and learn about hot-insertion and hot-removal
events of memory modules.

• An access to an unpopulated memory slot produces an error equivalent to an MPE integrity error.

Once a memory module is hot-inserted, MSD can assign granules that use this memory to a protected PAS after
establishing that the memory slot configuration is correct and that MPE capabilities are enabled for the slot.
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Chapter B9
Appendix: System flows

B9.1 System Initialization flow

This section provides an example of an initialization flow of an RME system, and describes the relations between
system components and corresponding security considerations for a system boot sequence. This section does not
include specific details about secure boot sequences, or software measurement flows.

Reset Deassertion:

• RME system reset deasserts.
– SMMU-attached GPCs assume a default policy that blocks all memory accesses.

* This does not block Trusted requesters such as HES from accessing system resources.
– MMU-attached GPCs assume a default policy that permits MSD to access the system.
– MPEs are in reset state. All encryption key state is set to zero by HW, which effectively scrubs DRAM

content.
• HES starts executing and measures SSD state, for example, firmware images of Trusted subsystems.
• A Trusted SCP starts executing and performs system initialization that can include DRAM configuration.

Application PE Initial Boot:

• Performed by application PE Initial boot code, for example a PE boot ROM executing at EL3, and HES. In
the following example, the PE boot ROM performs the measurement of MSD firmware.

– HES releases application PE reset.
– PE boot ROM loads MSD firmware image into MSD SMEM locks, measures it, and submits the MSD

measurement to HES.
– PE boot ROM validates MSD firmware, for example using MSD Verification Key, and launches MSD.
– MSD establishes if global initialization is required, for example if this is the Primary PE after a cold

reset.
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Chapter B9. Appendix: System flows
B9.1. System Initialization flow

* If yes, perform MSD Initialization. Otherwise, skip to Initial Boot Exit after completing local PE
initialization.

* Until MMU is enabled, all PE memory accesses are in the Root PAS.

MSD Initialization:

• MSD firmware completes system initialization operations. This includes:
– Configuring any MPRs that were not configured by Trusted SCP or HES.
– As an optional step, launch an S-EL2 firmware image in order to perform system initialization operations

such as DRAM and interconnect configuration:
* Firstly, perform GPT Initialization but configure only the Level 0 GPT entries with block descriptors

set to “All accesses permitted”.
· This maintains the behavior that GPC is always enabled when executing in EL2 or lower Exception

levels.
* Secondly, load, validate, and launch the S-EL2 image. S-EL2 firmware executes and returns back

control to MSD Initialization.
– Lock and validate all measurable registers in the system.
– Perform GPT Initialization.

GPT Initialization:

• SMMU-attached GPCs and MPEs in the system are identified through MSD resource discovery.
• MSD configures SMMU-attached GPCs and MPEs of the system to enable a secure initialization of the GPT.

– Invalidate all data/unified caches in the system that are before the PoPA, including both private and
shared caches, to prevent GPT corruption using dirty cache lines.

* If GPT Initialization occurs immediately after reset, this might be guaranteed by the system default
behavior such that no explicit invalidation is required.

– Establish that MPEs enforce the required encryption and integrity properties of Root PAS main memory,
such as DRAM.

– Establish that non-Trusted requesters are blocked from accessing DRAM during the GPT initialization.
• MSD initializes GPT:

– Resolve the system physical address space size, main memory ranges, and physical granule size.
* This can be done using information from a firmware table.

– Resolve the available Root PAS SMEM and DRAM resources allocated for the GPT, for example
through MSD resource discovery.

* An example of a GPT allocation:
· Level 0 GPT in SMEM with size defined by the Protected Physical Address Size and the window

size of a level 0 GPT entry. For example, if the Protected Physical Address Size is 8TB then the
Level 0 GPT requires 64KB of SMEM.

· Leve1 1 GPTs in DRAM with size defined by the total amount of DRAM in the system.
– Initialize the level 0 GPT default values. For example:

* Level 0 entries of DRAM regions: configure a level 1 GPT Table Descriptor.
* Level 0 entries of non-DRAM regions: configure as “All accesses permitted”.

– Initialize the level 1 GPT default values.
* In the case of the address range that stores the GPT itself, assign to Root PAS.
* Optionally, allocate DRAM carve-out memory ranges to Realm PAS and Secure PAS.
* For the rest of the main memory address range, assign to Non-secure PAS.

– MSD completes GPC configuration by:
* Enabling the MMU-attached GPC and SMMU-attached GPCs.
* Invalidating all GPT caches, to enforce new GPT configuration.
* After the MMU-attached GPC is enabled the MMU can be enabled.

Initial Boot Exit (performed by all application PEs):

• Before allowing boot operations for other Security states:
– Scrub any PE register that might have held RMSD or Realm state, unless it is guaranteed to be reset to a

constant value by a PE warm or cold reset.
– Scrub any SMEM content that might have been assigned to RMSD on previous boot.
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Chapter B9. Appendix: System flows
B9.1. System Initialization flow

– Invalidate PE GPT caches to flush stale state before GPC is enabled.
– Once GPT Initialization is complete by Primary PE, enable MMU-attached GPC.

* After GPC is enabled the MMU can be enabled.
– For the Primary PE, guarantee that all PE TLBs, private caches, and shared caches have been invalidated.

This is so that any potential secret from previous boot is flushed.
– For all other PEs, guarantee that all PE TLBs and private caches have been invalidated. This is so that

any potential secret from previous boot is flushed.

RMSD Initialization:

• Before MSD loads, validates and launches an RMSD image it performs the following:
– Read System Properties from RNVS and verify that minimal conditions for enabling RMSD functionality

are met.
– Allocate required RMSD SMEM and DRAM resources. DRAM resources might have already been

assigned during GPT Initialization.
– Establish RMSD external debugging state. This has an impact on how RMSD boot state is derived.
– Derive RMSD boot state as defined in [2] using RNVS parameters.

• RMSD performs the following as part of its boot:
– Query MSD for the location and size of SMEM and DRAM resources allocated to RMSD.
– Initialize RMSD using RMSD boot state.

PE entering a low-power state in which PE context is lost:

• MSD image performs operations that guarantee that the PE exits coherency domains without leaving dirty
copies in any cache that is powered-down as part of the entry into the low power state.

• MSD image can then disable GPC for the PE before it enters the low-power state.

During low-power state the PE does not make accesses. On exit from low-power state instruction execution begins
at MSD.

See also:

• B3.3 Resource discovery
• Chapter B5 Power Management
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Glossary

Application PE

A PE used by the operating system or hypervisor to execute user application or kernel threads.

GPC

Granule Protection Check. The process of checking whether an access to a Location is permitted by the Granule
Protection Table. This term is also used to refer to an MMU-attached or SMMU-attached Granular PAS filter that
implements the Granule Protection Check.

GPT

Granule Protection Table

HES

Hardware Enforced Security

Location

An address in a Physical Address Space

MPE

Memory Protection Engine

MSD

Monitor Security Domain

PAS

Physical Address Space

PG

Physical Granule

PoPA

Point of Physical Aliasing (A point in the system that spans multiple Physical Address Spaces)

Resource

A physical entity that can be accessed at one or more Locations

RME

Realm Management Extension

RMSD

Realm Management Security Domain

RNVS

Root non-volatile storage

SCP

System Control Processor

SMEM
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Glossary

Shielded memory

SoC

System on Chip

SSD

System Security Domain
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