q rm Realm Management Monitor

specification

Document number DENO0137
Document quality EAC

Document version 1.0-eac3
Document confidentiality Non-confidential

Document build information 1b76d699 doctool 0.53.0

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Realm Management Monitor specification

Release information

1.0-eac3 (20-07-2023)

Clarifications

¢ Clarify which bits of command input / output values should / must be zero (FENIMORE-674)
» Explain distinction between concrete and abstract types (FENIMORE-693)
e Clarify return value from RSI_IPA_STATE_SET when stopping at first DESTROYED entry (FENIMORE-699) [Igxppx]

Defects

* PSCI_SYSTEM_{OFFRESET}: change Realm state to SYSTEM_OFF (FENIMORE-694)
* RMI_REC_CREATE: update RIM only if runnable flag is set (FENIMORE-697)
* RMI_REALM_CREATE.: fix list of measured parameters (FENIMORE-695)
* Remove members from RmmSystemRegisters (FENIMORE-700)
— State saved / restored depends on architecture features supported by the platform, so defining this type as an empty
placeholder
* Avoid use of reserved ASL v1 keyword “entry” in MRS (FENIMORE-702)
RmiRecEntry -> RmiRecEnter
RmiRecEntryFlags -> RmiRecEnterFlags
— RmiRecRun::entry -> RmiRecRun::enter
— RmmRttWalkResult::entry -> RmmRttWalkResult::rtte
* RSI_IPA_STATE_SET: prohibit RSI_DESTROYED input value (FENIMORE-705)
* RMI_PSCI_COMPLETE: PSCI_CPU_ON: fix copy of context_id to target CPU X0 (FENIMORE-703)
» Allow Host to reject request to change RIPAS to RAM (FENIMORE-661)
* Allow Host to reject PSCI_CPU_ON request via RMI_PSCI_COMPLETE (FENIMORE-706)

Relaxations

 Permit folding of level 2 RTT to create level 1 block mapping (FENIMORE-608)
¢ Remove restriction that attestation token size must not exceed 4KB (FENIMORE-691)

1.0-eac2 (07-06-2023)

Clarifications

* Remove reference to triggering ERROR_INPUT by setting MBZ bit to 1 (FENIMORE-675)
* Clarify constraints on output values in case of command failure [Rrrzvs] (FENIMORE-676)
* Clarify encoding of RmiRealmParams::sve_sz (FENIMORE-684)

* Clarify set of SMCCC interfaces available to a Realm [RnpLkx] (FENIMORE-685)

Defects

* Replace PMU fields in RmiRecExit with single bit indicating the PMU overflow status [Ryxtzr] (FENIMORE-679)
RMI_PSCI_COMPLETE: failure condition should compare against MPIDR, not RD address (FENIMORE-681)
RMI_REC_CREATE: remove params_valid failure condition (FENIMORE-686)
RMI_RTT_{INIT,SET}_RIPAS: check alignment of “top” input value (FENIMORE-687)
* Reduce coupling between HIPAS and RIPAS (FENIMORE-680)

— Replace HIPAS=DESTROYED with RIPAS=DESTROYED

— Remove RmiRttEntryState::RMI_DESTROYED

— Change encoding of RmiRttEntryState::RMI_TABLE

ii

Add RmiRipas::RMI_DESTROYED
Add RsiRipas::RSI_DESTROYED
RMI_DATA_CREATE_UNKNOWN: remove pre-condition that RIPAS=RAM
RMI_DATA_DESTROY:

* In all cases, post-condition now states that HIPAS=UNASSIGNED

If pre-condition was RIPAS=RAM, post-condition states that RIPAS=DESTROYED
RMI_RTT_DESTROY:

* Remove post-condition that HIPAS=DESTROYED

* Add post-condition that state of parent RTTE is UNASSIGNED

* Add post-condition that RIPAS=DESTROYED
RMI_RTT_SET_IPA_STATE: stop at first DESTROYED entry if “destroyed” flag is set
RSI_IPA_STATE_SET: add “destroyed” flag

— Clarify distinction between “RTT folding” [Dgpxcp] and “RTT destruction” [Dyxrzw]

e RMI_RTT_INIT_RIPAS: success conditions should be bounded by walk_top, not top

Relaxations
¢ RSI_REALM_CONFIG: provide Realm hash algorithm (FENIMORE-678)

1.0-eac1 (31-03-2023)

Clarifications

* Unused bits of RmiRecEntry::gicv3_hcr are SBZ [Ismuxs] (FENIMORE-666)

« RMI_REC_ENTER: all RMI_ERROR_INPUT failure conditions precede all RMI_ERROR_REC failure conditions
(FENIMORE-668)

* Avoid use of raw Xn values in command conditions where possible (FENIMORE-671)

¢ Clarify definition of REC exit due to (Non-)emulatable Data Abort [Dcyrmr, DMmrzvmce] (FENIMORE-673)

Defects

e RMI_RTT_INIT_RIPAS: take account of “top” IPA value when calculating RIM contribution (FENIMORE-662)
 RttSkipEntriesWithRipas: fix inverted logic (FENIMORE-663)

* RMI_RTT_SET_RIPAS: on success, modify IPA range [base, walk_top) (FENIMORE-669)

e RMI_RTT_{INIT,SET}_RIPAS: remove redundant failure conditions (FENIMORE-670)

¢ Clarify HIPAS=DESTROYED implies RIPAS=UNDEFINED [R;yprr] (FENIMORE-672)

Relaxations
* RSI_HOST_CALL.: relax alignment requirement from 4KB to 256B

1.0-eac0 (31-01-2023)

Clarifications
None
Defects

* RmiRealmParams: reduce width of integer attributes (FENIMORE-647)

* RSI_IPA_STATE_SET: replace (base, size) with (base, top) (FENIMORE-656)

e RMI_RTT_INIT_RIPAS, RMI_RTT_SET_RIPAS: allow single command to modify multiple RTT entries
(FENIMORE-656)

Relaxations
* RMI_RTT_SET_RIPAS: remove “ripas” input value (FENIMORE-659)

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. iii
1.0-eac3 Non-confidential

1.0-bet2 (16-12-2022)

Clarifications

* Flows: update RMI_REC_ENTRY to take a single ‘run’ input value
* Clarify meaning of “TTD” [Iymnsr] (FENIMORE-641)
* Fix typo in reference to “CCA platform token claim map” [Ipkry] (FENIMORE-647)
* Fix reference to “RME system architecture spec” (FENIMORE-648)
* Flows: remove stale reference to parameters passed to RMI_DATA_CREATE (FENIMORE-649)
* Improve definition and constistency of usage of the term “REC” (FENIMORE-650)
— Where referring to the RMM data structure “REC object” is now used
¢ Clarify description of properties of Realm IPA space [Itpgxw] (FENIMORE-639)
— Replace “permitted, under control of host” with statements which refer to particular HIPAS values.
— Add “Protected IPA, HIPAS=DESTROYED” row, thereby removing contradictory statements regarding SEA taken
to Realm, previously in “Protected IPA, RIPAS=EMPTY”.
* On assertion of an EL1 timer, the RMM guarantees a REC exit, not only a Realm exit (FENIMORE-651)
* RMI_RTT_FOLD: preserve RIPAS value if IPA is Protected (FENIMORE-638)

Defects

* Attestation: wrap sub-tokens in byte stream (FENIMORE-643)
* RMI_DATA_DESTROY, RMI_RTT_{DESTROY,FOLD}: return PA of destroyed object (FENIMORE-563)
¢ RMI_REALM_DESTROY, RMI_REC_DESTROY, RMI_REC_ENTER, RMI_RTT_DESTROY, RMI_RTT_FOLD,
RMI_RTT_SET_RIPAS: Remove RMI_ERROR_IN_USE (FENIMORE-588)
« RMI_DATA_CREATE, RMI_DATA_CREATE_UNKNOWN, RMI_REC_CREATE, RMI_RTT_CREATE: pass RD
pointer in X1 (FENIMORE-655)
* Replace RmiRealmParams::features_0 with discrete fields (FENIMORE-655)
* RMI_DATA_CREATE(_UNKNOWN): require RIPAS=RAM (FENIMORE-645)
* Apply “must / should be zero” consistently (FENIMORE-619)
— In command inputs, unused bits are SBZ
— In command outputs, unused bits are MBZ

Relaxations

e RSI_HOST_CALL: expand set of GPRs to X0-X30 (FENIMORE-607)
— This enables the RMM to support any calling convention.
« RMI_DATA_DESTROY, RMI_RTT_DESTROY, RMI_RTT_UNMAP_UNPROTECTED: return IPA of next live RTT
entry (FENIMORE-563)

1.0-bet1 (31-10-2022)

Clarifications

* Rename HIPAS VALID_NS -> UNASSIGNED (FENIMORE-631)
* SEA injection is independent of whether Host emulates MMIO (FENIMORE-632)
In RIPAS change flow, permit Host to apply the change to zero or more pages of the target IPA region (FENIMORE-633)
* Flows: replace HVC with Host call (FENIMORE-611)
Clarify behavior of VmidIsValid() function (FENIMORE-630)
Qualify “all other exit fields are zero” statements [Rgrirp, Rircrr] (FENIMORE-634)
— GIC, timer and PMU fields are valid on every REC exit.

Defects

* Change size of RsiHostCall type to 256 bytes (FENIMORE-629)

¢ Correct the set of ESR_EL?2 fields which are returned to the Host on REC exit due to Data abort [Rryvgr |
— On all Data Aborts, add FnV.
— On Emulatable Data Aborts, add SF.
— On Non-emulatable Data Abort at an Unprotected IPA, add IL.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. iv
1.0-eac3 Non-confidential

Relaxations

None

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying the
Document you indicate that you agree to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;
(ii)) manufacture and have manufactured products which have been created under the licence granted in (i) above; and
(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is
not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the Document at any time and without
notice. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR
OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT
LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN
ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM
OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS,
LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if
Licensee is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon
giving written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee
or by Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination
of this Licence, all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any
termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this Licence and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. vi
1.0-eac3 Non-confidential

be the trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this
Licence, to use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
http://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.
Copyright © 2022-2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21585 version 4.0

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. vii
1.0-eac3 Non-confidential

http://www.arm.com/company/policies/trademarks

Contents

Realm Management Monitor specification

Preface

Realm Management Monitor specification
Release information
Arm Non-Confidential Document Licence (“Licence”)

Conventions e e
Typographical conventions
Numbers
Pseudocode descriptions
ADAresses e

Rules-basedwriting
Contentitemidentifiers
Contentitemrendering
Contentitemclasses

Additionalreading e

Feedback
Feedbackonthisbook

Openissues e

Part A Architecture

Chapter A1

Chapter A2

Chapter A3

DENO0137
1.0-eac3

Overview

Al Confidential computing

A1.2 System software components o L

A1.3 Realm Management Monitor oo

Concepts

A2.1 Realm e e
A2.1.1 OVerview
A2.1.2 Realm execution environment
A21.3 Realmattributes
A2.1.4 Realmliveness
A2.1.5 Realmlifecycle
A2.1.6 Realmparameters
A2.1.7 RealmDescriptor

A2.2 Granule e
A22.1 Granuleattributes
A2.22 Granuleownership
A2.2.3 Granulelifecycle.
A224 Granulewiping

A2.3 Realm Execution Context
A2.3.1 Overview e
A232 RECattributes.
A2.3.3 RECindexand MPIDRvalue.
A23.4 RECIlifecycle

Realm creation
A3.1 Realm feature discovery and selection

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Contents

Chapter A4

Chapter A5

DENO0137
1.0-eac3

A3.1.1 Realm hash algorithmo oL 43
A3.12 RealmLPA2and IPAwidth 43
A3.1.3 Realm support for Scalable Vector Extension 44
A3.1.4 Realm support for self-hosteddebug 44
A3.1.5 Realm support for Performance Monitors Extension 44
A3.1.6 Realm support for Activity Monitors Extension 45
A3.1.7 Realm support for Statistical Profiling Extension 45
A3.1.8 Realm support for Trace Buffer Extension 45
Realm exception model
A4 .1 Exception model overview o 47
A4.2 RECentry e 49
A421 RecEnterobject 49
A4.2.2 General purpose registers restoredon RECentry 51
A4.2.3 REC entry following REC exitdue to Data Abort 51
A4.3 REC exit 52
A4.3.1 RecExitobject 52
A4.3.2 Realmexitreason 54
A4.3.3 General purpose registers savedon RECexit 54
A4.3.4 REC exit due to synchronous exception 55
A435 RECexitduetolRQ 57
A43.6 RECexitduetoFIQ. 57
A43.7 RECexitduetoPSCIl. 58
A43.8 RECexitdueto RIPASchangepending. 59
A43.9 RECexitduetoHostcall 59
A4.3.10 RECexitduetoSError 59
Ad.4 Emulated Data Aborts 61
A4.5 Hostcall e 61
Realm memory management
A5.1 Realm memory managementoverview L. 63
A5.2 Realm view of memory management 63
A5.2.1 RealmIPAspace 63
A522 RealmlIPAstate 63
A5.2.3 RealmaccesstoaProtectedIPA, 64
A5.2.4 Changes to RIPAS while Realm stateisNEW 64
A5.25 Changes to RIPAS while Realm stateis ACTIVE 64
A5.2.6 Realmaccesstoan Unprotected IPA 66
A5.2.7 Synchronous External Abortso L. 66
A5.2.8 Realmaccessoutside IPAspace 66
A5.2.9 Summary of Realm IPA space properties 67
A5.3 Host view of memory management 68
A5.3.1 HostIPAstate 68
A5.3.2 Changes to HIPAS while Realm stateisNEW 69
A5.3.3 Changes to HIPAS while Realm state is ACTIVE 70
A5.3.4 Summary of changes to HIPAS and RIPAS of a Protected IPA 71
A5.3.5 Dependency of RMI command execution on RIPAS and HIPAS values . 73
A5.3.6 Changes to HIPAS of an Unprotected IPA 73
A5.4 RIPASchange e 75
A5.5 Realm Translation Table 77
A5.5.1 RTToverview 77
A5.5.2 RTT structure and configuration 77
A553 RTTstartinglevel 77
A5.5.4 RTTentry e 78
A555 RTTreading 78
Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. ix

Non-confidential

Contents

Chapter A6

Chapter A7

Chapter A8

Part B Interface

Chapter B1

Chapter B2

DENO0137
1.0-eac3

A556 RTTfolding
A557 RTTunfolding
A558 RTTElivenessand RTT liveness.
A55.9 RTTdestruction
A5510 RTTwalk.
A5.5.11 RTTentryattributes
Realm interrupts and timers
A6.1 Realminterrupts
A6.2 Realmtimers e
Realm measurement and attestation
A7 Realmmeasurements
A7.11 Realm Initial Measurement oL
A7.1.2 Realm Extensible Measurement
A7.2 Realm attestation
A7.2.1 Attestationtoken
A7.2.2 Attestation token generation
A7.2.3 Attestationtokenformat
Realm debug and performance monitoring
A8.1 Realm PMU e
Commands
B1.1 OVerVIEW e
B1.2 Command definition
B1.21 Examplecommand
B1.3 Commandregisters
B1.4 Command condition expressions
B1.5 Commandcontextvalues
B1.6 Command failure conditions
B1.7 Command success conditions L.
B1.8 Concrete and abstracttypes
B1.9 Command footprint
Command condition functions
B2.1 AddrinRange function
B2.2 AddrisAligned function oL
B2.3 AddrisGranuleAligned function
B2.4 AddrisProtected function
B2.5 AddrisRttLevelAligned function oL
B2.6 AddrRangelsProtected function L.
B2.7 AlignDownToRttLevel function oL
B2.8 AlignUpToRttLevel function.
B2.9 CurrentRealm function
B2.10 CurrentRec function
B2.11 Equalfunction
B2.12 Gicv3ConfiglsValid function
B2.13 Granule function
B2.14 MinAddress function
B2.15 MpidrEqual function
B2.16 MpidrisUsed function
B2.17 PalsDelegable function

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

Contents

DENO0137

1.0-eac3

B2.18 PsciReturnCodeEncode function 126
B2.19 PsciReturnCodePermitted function 126
B2.20 ReadMemory function 127
B2.21 Realmfunction 127
B2.22 RealmConfig function. 127
B2.23 RealmHostCall function 127
B2.24 RealmlsLive function L 127
B2.25 RealmParams function o 128
B2.26 RealmParamsSupported function 128
B2.27 Recfunction. 128
B2.28 RecAuxAlias function 128
B2.29 RecAuxAligned function L L 129
B2.30 RecAuxCount function 129
B2.31 RecAuxEqual function 129
B2.32 RecAuxSort function 129
B2.33 RecAuxStateEqual function o 130
B2.34 RecAuxStates function L 130
B2.35 RecFromMpidr function. L 130
B2.36 RecIndex function. 130
B2.37 RecParams function 131
B2.38 RecRipasChangeResponse function 131
B2.39 RecRunfunction 131
B2.40 RemExtend function 131
B2.41 ResultEqual function 132
B2.42 RimExtendData function 132
B2.43 RimExtendRec function 132
B2.44 RimExtendRipas function 132
B2.45 RimExtendRipasForEntry function. 133
B2.46 Rimlnit function 133
B2.47 RmiRealmParamslsValid function 133
B2.48 Ritfunction 133
B2.49 RttAllEntriesContiguous function 133
B2.50 RttAllEntriesRipas function oL 134
B2.51 RttAllEntriesState function 134
B2.52 RttConfiglsValid function 134
B2.53 RttDescriptorlsValidForUnprotected function 134
B2.54 RttEntriesinRangeRipas function 134
B2.55 RttEntry function 135
B2.56 RttEntryFromDescriptor function oo 135
B2.57 RttEntrylndex function 135
B2.58 RttEntryState function 135
B2.59 RttFold function 136
B2.60 RttlsHomogeneous function L 136
B2.61 RittlsLive function 136
B2.62 RitLevellsBlockOrPage function 136
B2.63 RttLevellsStarting function 136
B2.64 RttLevellsValid function 137
B2.65 RttLevelSize function 137
B2.66 RitsAllProtectedEntriesRipas function 137
B2.67 RitsAllProtectedEntriesState function 137
B2.68 RttsAllUnprotectedEntriesState function 137
B2.69 RttsGranuleState function 138
B2.70 RttSkipEntriesUnlessRipas function 138
B2.71 RitSkipEntriesUnlessState function Lo 138
B2.72 RitSkipEntriesWithRipas function 138

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Xi

Non-confidential

Contents

B2.73 RttSkipNonLiveEntries function oL
B2.74 RitsStateEqual function
B2.75 RttWalk function
B2.76 ToAddress function
B2.77 ToBits64 function
B2.78 VmidlsFree function
B2.79 VmidlsValid function
Chapter B3 Realm Management Interface
B3.1 RMlversion
B3.2 RMIcommand returncodes
B3.3 RMlicommands e

B3.4

B3.3.1 RMI_DATA_CREATEcommand
B3.3.2 RMI_DATA_CREATE_UNKNOWN command
B3.3.3 RMI_DATA_DESTROY command
B3.3.4 RMI_FEATUREScommand
B3.3.5 RMI_GRANULE_DELEGATE command
B3.3.6 RMI_GRANULE_UNDELEGATEcommand
B3.3.7 RMI_PSCI_ COMPLETEcommand
B3.3.8 RMI_REALM_ACTIVATEcommand
B3.3.9 RMI_REALM_CREATEcommand
B3.3.10 RMI_REALM_DESTROYcommand
B3.3.11 RMI_REC AUX COUNTcommand
B3.3.12 RMI_REC CREATEcommand.
B3.3.13 RMI_REC DESTROYcommand.
B3.3.14 RMI_REC_ENTERcommand
B3.3.15 RMI_RTT_CREATEcommand
B3.3.16 RMI_RTT_DESTROYcommand
B3.3.17 RMI_RTT_FOLDcommand
B3.3.18 RMI_RTT_INIT_RIPAScommand
B3.3.19 RMI_RTT_MAP_UNPROTECTED command
B3.3.20 RMI_RTT_READ_ENTRY command
B3.3.21 RMI_RTT_SET_RIPAScommand
B3.3.22 RMI_RTT_UNMAP_UNPROTECTED command
B3.3.23 RMI_VERSIONcommand

RMItypes o
B3.4.1 RmiCommandReturnCode type
B3.4.2 RmiDataFlagstype
B3.4.3 RmiDataMeasureContenttype
B3.4.4 RmiEmulatedMmiotype
B3.45 RmiFeaturetype.
B3.4.6 RmiFeatureRegisterOtype
B3.4.7 RmiHashAlgorithmtype. oL
B3.4.8 RmilnjectSeatype.
B3.4.9 RmilnterfaceVersiontype L.
B3.4.10 RmiPmuOverflowStatustype
B3.4.11 RmiRealmFlagstype
B3.4.12 RmiRealmParamstype
B3.4.13 RmiRecCreateFlagstype
B3.4.14 RmiRecEntertype
B3.4.15 RmiRecEnterFlagstype,
B3.4.16 RmiRecExittype
B3.4.17 RmiRecExitReasontype L.
B3.4.18 RmiRecMpidrtype
B3.4.19 RmiRecParamstype

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

1.0-eac3

Non-confidential

Xii

Contents

Chapter B4

Chapter B5

Part C Types
Chapter C1

DENO0137
1.0-eac3

B3.4.20 RmiRecRuntype 223
B3.4.21 RmiRecRunnabletype 223
B3.4.22 RmiResponsetype 224
B3.4.23 RmiRipastype 224
B3.4.24 RmiRttEntryStatetype L 224
B3.4.25 RmiStatusCodetype 225
B3.4.26 RmiTraptype 225
Realm Services Interface
B4.1 RSlversion e e 228
B4.2 RSIcommandreturncodes 228
B4.3 RSlcommands e 229
B4.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command 230
B4.3.2 RSI_ATTESTATION_TOKEN_INITcommand 232
B4.3.3 RSI_HOST CALLcommand 234
B4.3.4 RSLIPA_STATE_ GETcommand 236
B4.3.5 RSLIPA_STATE_ SETcommand. 238
B4.3.6 RSI_MEASUREMENT_EXTEND command 240
B4.3.7 RSI_MEASUREMENT_READcommand 242
B4.3.8 RSI_REALM_CONFIGcommand 244
B4.3.9 RSILVERSIONcommand 246
B4.4 RSItypes e 247
B4.4.1 RsiCommandReturnCodetype 247
B4.42 RsiHashAlgorithmtype 247
B4.4.3 RsiHostCalltype 248
B4.4.4 RsilnterfaceVersiontype oL 249
B4.45 RsiRealmConfigtype L 249
B4.46 RsiResponsetype. 250
B4.47 RsiRipastype 250
B4.4.8 RsiRipasChangeDestroyedtype 251
B4.49 RsiRipasChangeFlagstype 251
Power State Control Interface
B5.1 PSCloverview e 253
B5.2 PSClversion e 253
B5.3 PSClcommands 254
B5.3.1 PSCI_AFFINITY_INFOcommand 255
B5.3.2 PSCI CPU OFFcommand 257
B5.3.3 PSCI CPU ONcommand 258
B5.3.4 PSCI_CPU_SUSPENDcommand 260
B5.3.5 PSCI_ FEATUREScommand 261
B5.3.6 PSCI_SYSTEM OFFcommand 263
B5.3.7 PSCI_SYSTEM RESETcommand 264
B5.3.8 PSCI_ VERSIONcommand. 265
B5.4 PSCltypes o 266
B5.4.1 PscilnterfaceVersiontype Lo 266
B5.4.2 PsciReturnCodetype 266
RMM types
C1.1 RmmGranuletype 269
C1.2 RmmGranuleState type 269
C1.3 RmmHashAlgorithmtype 270
Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. xiii

Non-confidential

Contents

Chapter C2

Part D Usage
Chapter D1

DENO0137
1.0-eac3

C14 RmmHostCallPending type 270
C1.5 RmmMeasurementDescriptorDatatype 270
C1.6 RmmMeasurementDescriptorRectype 271
C1.7 RmmMeasurementDescriptorRipastype 271
C1.8 RmmPhysicalAddressSpacetype 272
C1.9 RmmPsciPendingtype 272
C1.10 RmmRealmtype 273
C1.11 RmmRealmMeasurementtype 273
Ct1.12 RmmRealmStatetype 273
C1.13 RmmRectype e 274
C1.14 RmmRecAttestStatetype 274
C1.15 RmmRecEmulatableAborttype 275
C1.16 RmmRecFlagstype. 275
C1.17 RmmRecResponsetype 275
C1.18 RmmRecRunnabletype 276
C1.19 RmmRecStatetype 276
C1.20 RmmRipastype 276
C1.21 RmmRipasChangeDestroyedtype 276
C1.22 RmmRtttype e 277
C1.23 RmmRttEntry type 277
C1.24 RmmRttEntryStatetypeo o 277
C1.25 RmmRttWalkResulttype 278
C1.26 RmmSystemRegisterstype 278
Generic types
C2.1 Addresstype 279
Cc2.2 BitsNtype e 279
c2.3 INNtype o 280
C2.4 UINENtype o 280
Flows
D1.1 Granule delegationflows L 283
D1.1.1 Granule delegationflow 283
D1.1.2 Granule undelegationflow 283
D1.2 Realm lifecycle flows 285
D1.21 Realmcreationflow oL 285
D1.2.2 Realm Translation Table creationflow 285
D1.2.3 Initialize memory of New Realmflow 286
D124 RECcreationflow 288
D1.25 Realmdestructionflow 290
D1.3 Realm exception modelflows 292
D1.3.1 Realmentryandexitflow L. 292
D1.3.2 Hostcallflow 292
D1.3.3 REC exitdue to Data Abort faultflow 293
D1.3.4 MMIOemulationflow 294
D1.4 PSClflows e 296
D1.4.1 PSCI_CPU ONflow 296
D1.5 Realm memory managementflows oL, 299
D1.5.1 Add memory to Active Realmflow 299
D152 NSmemoryflow. 299
D153 RIPASchangeflow 300
D1.6 Realm interrupts and timersflows 302
Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. xiv

Non-confidential

Contents
Contents

Chapter D2

Glossary

DENO0137
1.0-eac3

D1.6.1 Interruptflow. 302
D1.6.2 Timerinterruptdeliveryflow 302

Realm attestationflows 304
D1.7.1 Attestation token generationflow, 304
D1.7.2 Handling interrupts during attestation token generation flow 304

Realm shared memory protocol

D2.1 Realm shared memory protocol description 307
D2.2 Realm shared memory protocolflow 307
Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. XV

Non-confidential

Preface

XVi

Conventions

Typographical conventions

The typographical conventions are:
italic

Introduces special terminology, and denotes citations.
monospace

Used for pseudocode and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
pseudocode and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.
Red text

Indicates an open issue.
Blue text

Indicates a link. This can be

¢ A cross-reference to another location within the document
* A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example OxFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Addresses

Unless otherwise stated, the term address in this specification refers to a physical address.

Xvii

http://developer.arm.com

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

* Declaration

* Rule

* Goal

* Information

» Rationale

* Implementation note
* Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

Content item classes

Declaration

A Declaration is a statement that does one or more of the following:

¢ Introduces a concept

* Introduces a term

* Describes the structure of data
* Describes the encoding of data

A Declaration does not describe behaviour.

A Declaration is rendered with the label D.

Xviii

Preface

Rules-based writing

DENO0137
1.0-eac3

Rule

A Rule is a statement that describes the behaviour of a compliant implementation.
A Rule explains what happens in a particular situation.
A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.
A Goal is comparable to a “business requirement” or an “emergent property.”
A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label 1.

Rationale

A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note

An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Xix
Non-confidential

Additional reading

This section lists publications by Arm and by third parties.
See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1] Introducing Arm CCA. (ARM DEN 0125) Arm Limited.

[2] Arm Architecture Reference Manual Supplement, The Realim Management Extension (RME), for Armv9-A.
(ARM DDI 0615 A.d) Arm Ltd.

[3] Arm Architecture Reference Manual for A-Profile architecture. (ARM DDI 0487 I.a) Arm Ltd.
[4] Arm CCA Security model. (ARM DEN 0096) Arm Limited.

[5] Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4. (ARM IHI 0069
G) Arm Ltd.

[6] Concise Binary Object Representation (CBOR).

[7] CBOR Object Signing and Encryption (COSE).

[8] Entity Attestation Token (EAT).

[9] Concise Data Definition Language (CDDL).

[10] IANA Hash Function Textual Names.

[11] SEC I: Elliptic Curve Cryptography, version 2.0.

[12] RME system architecture spec. (ARM DEN 0129) Arm Ltd.

[13] Arm SMC Calling Convention. (ARM DEN 0028 D) Arm Ltd.

[14] Arm Specification Language Reference Manual. (ARM DDI 0612) Arm Ltd.
[15] Secure Hash Standard (SHS).

[16] Arm Power State Coordination Interface (PSCI). (ARM DEN 0022 D.b) Arm Ltd.

XX

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have any comments or suggestions for additions and improvements, create a ticket at https://support.developer.arm.com
As part of the ticket, include:

* The title (Realm Management Monitor specification).

¢ The number (DENO137 1.0-eac3).

* The section name(s) to which your comments refer.

* The page number(s) to which your comments apply.

¢ The rule identifier(s) to which your comments apply, if applicable.
* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

XX1

Open issues

The following table lists known open issues in this version of the document.

Key Description

XXii

Part A
Architecture

Chapter A1
Overview

The RMM is a software component which forms part of a system which implements the Arm Confidential Compute
Architecture (Arm CCA). Arm CCA is an architecture which provides protected execution environments called
Realms.

The threat model which Arm CCA is designed to address is described in Introducing Arm CCA [1].

The hardware architecture of Arm CCA is called the Realm Management Extension (RME), and is described in
Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A [2].

A1.1 Confidential computing

DENO0137
1.0-eac3

The Armv8-A architecture (Arm Architecture Reference Manual for A-Profile architecture [3]) includes mechanisms
that establish a privilege hierarchy. Software operating at higher privilege levels is responsible for managing the
resources (principally memory and processor cycles) that are used by entities at lower privilege levels.

Prior to Arm CCA, resource management was coupled with a right of access. That is, a resource that is managed
by a higher-privileged entity is also accessible by it. A Realm is a protected execution environment for which this
coupling is broken, so that the right to manage resources is separated from the right to access those resources.

The purpose of a Realm is to provide to the Realm owner an environment for confidential computing, without
requiring the Realm owner to trust the software components that manage the resources used by the Realm.

Construction of a Realm, and allocation of resources to a Realm at runtime, are the responsibility of the Virtual
Machine Monitor (VMM). In this specification, the term Host is used to refer to the VMM.

See also:

e A2.1 Realm

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 24
Non-confidential

Chapter A1. Overview
A1.3. Realm Management Monitor

A1.2 System software components

The system software architecture of Arm CCA is summarised in the following figure.

Realm Security state Non-secure Security state Secure Security state
VM VM
ELO App App App App TA TA
Realm Realm

EL1 Secure
OS kernel OS kernel TOS partition

EL2 RMM Hypervisor SPM

EL3 Monitor

Root Security state

Figure A1.1: System software architecture

The components shown in the diagram are listed below.

Component Description

Monitor The most privileged software component, which is responsible for
switching between the Security states used at EL2, EL.1 and ELO.

Realm A protected execution environment.

Realm Management Monitor (RMM) The software component which is responsible for the management
of Realms.

Virtual Machine (VM) An execution environment within which an operating system can

run. Note that a Realm is a VM which executes in the Realm
security state.

Hypervisor The software component which is responsible for the management
of VMs.

Secure Partition Manager (SPM) The software component which is responsible for the management
of Secure Partitions.

Trusted OS (TOS) An operating system which runs in a Secure Partition.

Trusted Application (TA) An application hosted by a TOS.

A1.3 Realm Management Monitor

The Realm Management Monitor (RMM) is the system component that is responsible for the management of
Realms.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 25
1.0-eac3 Non-confidential

Chapter A1. Overview
A1.3. Realm Management Monitor

DENO0137
1.0-eac3

The responsibilities of the RMM are to:

 Provide services that allow the Host to create, populate, execute and destroy Realms.

* Provide services that allow the initial configuration and contents of a Realm to be attested.

* Protect the confidentiality and integrity of Realm state during the lifetime of the Realm.

* Protect the confidentiality of Realm state during and following destruction of the Realm.
The RMM exposes the following interfaces, which are accessed via SMC instructions, to the Host:

* The Realm Management Interface (RMI), which provides services for the creation, population, execution and
destruction of Realms.

The RMM exposes the following interfaces, which are accessed via SMC instructions, to Realms:

e The Realm Services Interface (RSI), which provides services used to manage resources allocated to the
Realm, and to request an attestation report.

* The Power State Coordination Interface (PSCI), which provides services used to control power states of
VPEs within a Realm. Note that the HVC conduit for PSCI is not supported for Realms.

The RMM operates by manipulating data structures which are stored in memory accessible only to the RMM.
See also:

e Chapter B3 Realm Management Interface
* Chapter B4 Realm Services Interface
* Chapter BS Power State Control Interface

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 26
Non-confidential

Chapter A2
Concepts

This chapter introduces the following concepts which are central to the RMM architecture:

e A2.1 Realm
e A2.2 Granule
e A2.3 Realm Execution Context

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

27

Chapter A2. Concepts
A2.1. Realm

A2.1 Realm

This section describes the concept of a Realm.

A2.1.1 Overview

Dpirsr A Realm is an execution environment which is protected from agents in the Non-secure and Secure Security states,
and from other Realms.

A2.1.2 Realm execution environment

Trovry The execution environment of a Realm is an ELO + EL1 environment, as described in Arm Architecture Reference
Manual for A-Profile architecture [3].

A2.1.2.1 Realm registers

RyJHOK On first entry to a Realm VPE, PE state is initialized according to “PE state on reset to AArch64 state” in Arm
Architecture Reference Manual for A-Profile architecture [3], except for GPR and PC values which are specified by
the Host during Realm creation.

Gzrcox Confidentiality is guaranteed for a Realm VPE’s general purpose and SIMD / floating point registers.

Gonzes Confidentiality is guaranteed for other Realm VPE register state (including stack pointer, program counter and
ELO/EL1 system registers).

GyruHp Integrity is guaranteed for a Realm VPE’s general purpose and SIMD / floating point registers.

GyKRIG Integrity is guaranteed for other Realm VPE register state (including stack pointer, program counter and ELO / EL1
system registers).

Icrrn A Realm can use a Host call to pass arguments to the Host and receive results from the Host.
See also:

e A2.3 Realm Execution Context
e A4.5 Host call
e B3.3.9 RMI REALM_ CREATE command

A2.1.2.2 Realm memory

Trommz A Realm is able to determine whether a given IPA is protected or unprotected.

GroroH Confidentiality is guaranteed for memory contents accessed via a protected address. Informally, this means that a
change to the contents of such a memory location is not observable by any agent outside the CCA platform.

Gomrned Integrity is guaranteed for memory contents accessed via a protected address. Informally, this means that the
Realm does not observe the contents of the location to change unless the Realm itself has either written a different
value to the location, or provided consent to the RMM for integrity of the location to be violated.

See also:

e AS5.2.1 Realm IPA space

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 28
1.0-eac3 Non-confidential

Chapter A2. Concepts

A2.1. Realm

I?{I:\[T

A2.1.2.3 Realm processor features
The value returned to a Realm from reading a feature register is architecturally valid and describes the set of
features which are present in the Realm’s execution environment.

The RMM may suppress a feature which is supported by the underlying hardware platform, if exposing that feature
to a Realm could lead to a security vulnerability.

See also:

* A3.1 Realm feature discovery and selection
A2.1.2.4 IMPDEF system registers

A Realm read from or write to an IMPLEMENTATION DEFINED system register causes an Unknown exception
taken to the Realm.

A2.1.3 Realm attributes

TrrDVx

—)IVIHJUK

XoNpK:

DENO0137
1.0-eac3

This section describes the attributes of a Realm.

A Realm attribute is a property of a Realm whose value can be observed or modified either by the Host or by the
Realm.

An example of a way in which a Realm attribute may be observable is the outcome of an RMM command.

The attributes of a Realm are summarized in the following table.

Name Type Description

ipa_width Ulnt8 IPA width in bits

measurements RmmRealmMeasurement[5] Realm measurements

hash_algo RmmHashAlgorithm Algorithm used to compute Realm measurements
rec_index Ulnt64 Index of next REC to be created

rtt_base Address Realm Translation Table base address
rtt_level_start Int64 RTT starting level

rtt_num_start Ulnt64 Number of physically contiguous starting level RTTs
state RmmRealmState Lifecycle state

vmid Bits16 Virtual Machine Identifier

rpv Bits512 Realm Personalization Value

A Realm Initial Measurement (RIM) is a measurement of the configuration and contents of a Realm at the time of
activation.

A Realm Extensible Measurement (REM) is a measurement value which can be extended during the lifetime of a
Realm.

Attributes of a Realm include an array of measurement values. The first entry in this array is a RIM. The remaining
entries in this array are REMs.

During Realm creation, the Host provides ipa_width, rtt_level_start and rtt_num_start values as Realm parameters.
According to the VMSA, the rtt_num_start value is architecturally defined as a function of the ipa_width and
rtt_level_start values. It would therefore have been possible to design the Realm creation interface such that the

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 29
Non-confidential

Chapter A2. Concepts

A2.1. Realm
I:_:P TT
De ek
S? “NBF
IZFJ,.;
I:‘k K

Host provided only the ipa_width and rtt_level_start values. However, this would potentially allow a Realm to
be successfully created, but with a configuration which did not match the Host’s intent. For this reason, it was
decided that the Host should specify all three values explicitly, and that Realm creation should fail if the values are
not consistent. See Arm Architecture Reference Manual for A-Profile architecture [3] for further details.

The VMID of a Realm is chosen by the Host. The VMID must be within the range supported by the hardware
platform. The RMM ensures that every Realm on the system has a unique VMID.

A Realm Personalization Value (RPV) is a provided by the Host, to distinguish between Realms which have the
same Realm Initial Measurement, but different behavior.

Possible uses of the RPV include:

* A GUID

* Hash of Realm Owner public key

¢ Hash of a “personalisation document” which is provided to the Realm via a side-band (for example, via NS
memory) and contains configuration information used by Realm software.

The RMM treats the RPV as an opaque value.
The RPV is included in the Realm attestation report as a separate claim.
See also:

* A2.1.5 Realm lifecycle

e A2.3 Realm Execution Context

e A3.1.2 Realm LPA2 and IPA width

e AS5.2.1 Realm IPA space

e AS5.5 Realm Translation Table

e A7.1 Realm measurements

e A7.2.3.1.2 Realm Personalization Value claim
¢ CI1.10 RmmRealm type

A2.1.4 Realm liveness

D WIXTJ

DENO0137
1.0-eac3

Realm liveness is a property which means that there exists one or more Granules, other than the RD and the starting
level RTTs, which are owned by the Realm.

If a Realm is live, it cannot be destroyed.
A Realm is live if any of the following is true:

* The number of RECs owned by the Realm is not zero
A starting level RTT of the Realm is live

If a Realm owns a non-zero number of Data Granules, this implies that it has a starting level RTT which is live,
and therefore that the Realm itself is live.

See also:

e A2.1.5 Realm lifecycle

e A2.2.2 Granule ownership

e A2.2.3 Granule lifecycle

e A2.3 Realm Execution Context

e AS5.5.8 RTTE liveness and RTT liveness

* B2.24 RealmlisLive function

e B3.3.10 RMI_REALM_DESTROY command

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 30
Non-confidential

Chapter A2. Concepts
A2.1. Realm

A2.1.5 Realm lifecycle

See also:

e Chapter A3 Realm creation
* D1.2 Realm lifecycle flows

A2.1.5.1 States

Depopyg The states of a Realm are listed below.

State

Description

NEW
ACTIVE
SYSTEM_OFF

Under construction. Not eligible for execution.
Eligible for execution.

System has been turned off. Not eligible for execution.

A2.1.5.2 State transitions

TRREFG Permitted Realm state transitions are shown in the following table. The rightmost column lists the events which
can cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of a Realm object. A transition to the pseudo-state
NULL represents destruction of a Realm object.

From state To state Events

NULL NEW RMI_REALM_CREATE

NEW NULL RMI_REALM_DESTROY

ACTIVE NULL RMI_REALM_DESTROY

SYSTEM_OFF NULL RMI_REALM_DESTROY

NEW ACTIVE RMI_REALM_ACTIVATE

ACTIVE SYSTEM_OFF PSCI_SYSTEM_OFF
PSCI_SYSTEM_RESET

Tycpww Permitted Realm state transitions are shown in the following figure. Each arc is labeled with the events which can

cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of an RD. A transition to the pseudo-state NULL

represents destruction of an RD.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 31

1.0-eac3

Non-confidential

Chapter A2. Concepts

A2.1. Realm
R . RMI_REALM_CREATE R
NULL | NEW
[T - RMI_REALM_DESTROY —
RMI_REALM_ACTIVATE
(_w
ACTIVE
RMI_REALM_DESTROY ;
PSCI_SYSTEM_OFF
PSCI_SYSTEM_RESET
A
\ SYSTEM_OFF
RMI_REALM_DESTROY
Figure A2.1: Realm state transitions
See also:

e B3.3.8 RMI_REALM_ACTIVATE command
e B3.3.9 RMI REALM_CREATE command

e B3.3.10 RMI_REALM_DESTROY command
e B5.3.6 PSCI SYSTEM OFF command

e B5.3.7 PSCI_SYSTEM_RESET command

A2.1.6 Realm parameters

Drguvz A Realm parameter is a value which is provided by the Host during Realm creation.
See also:

* A2.1.3 Realm attributes

* A3.1 Realm feature discovery and selection
* B2.25 RealmParams function

e B3.3.9 RMI REALM CREATE command

e B3.4.12 RmiRealmParams type

A2.1.7 Realm Descriptor

Drnsey A Realm Descriptor (RD) is an RMM data structure which stores attributes of a Realm.
D;j[;;j;-jj,{ The SiZC Of an RD IS one Granule.
See also:

e A2.1.3 Realm attributes
e A2.2.3 Granule lifecycle

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 32
1.0-eac3 Non-confidential

Chapter A2. Concepts
A2.2. Granule

A2.2 Granule

D NBXXX

l\ JGZW

This section describes the concept of a Granule.
A Granule is a unit of physical memory whose size is 4KB.
A Granule may be used to store one of the following:

* Code or data used by the Host

* Code or data used by software in the Secure Security state
e Code or data used by a Realm

 Data used by the RMM to manage a Realm

The use of a Granule is reflected in its lifecycle state.
A Granule is delegable if it can be delegated by the Host for use by the RMM or by a Realm.

In a typical implementation, all memory which is presented to the Host as RAM is delegable. Examples of
non-delegable memory may include the following:

e Memory which is carved out for use by the Root world, the RMM or the Secure world
* Device memory

See also:

e A2.2.1 Granule attributes
e A2.2.3 Granule lifecycle

A2.2.1 Granule attributes

DENO0137
1.0-eac3

This section describes the attributes of a Granule.

A Granule attribute is a property of a Granule whose value can be observed or modified either by the Host or by a
Realm.

Examples of ways in which a Granule attribute may be observable include the outcome of an RMM command, and
whether a memory access generates a fault.

The attributes of a Granule are summarized in the following table.

Name Type Description
pas RmmPhysical AddressSpace Physical Address Space
state RmmGranuleState Lifecycle state

The set of Physical Address Spaces is:

* NS
* REALM
 OTHER

The RMM cannot distinguish whether a Granule is in the Secure or Root PAS, so these two values are combined as
OTHER.

If the state of a Granule is not UNDELEGATED then the PAS of the Granule is REALM.
If the state of a Granule is UNDELEGATED then the PAS of the Granule is not REALM.

If the state of a Granule is UNDELEGATED then the RMM does not prevent the PAS of the Granule from being
changed by another agent to any value except REALM.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 33
Non-confidential

Chapter A2. Concepts

A2.2. Granule

An NS Granule is a Granule whose PAS is NS.
See also:

* A2.1 Realm

* A2.1.7 Realm Descriptor
* A2.2.3 Granule lifecycle
e Cl1.1 RmmGranule type

A2.2.2 Granule ownership

TLTLZ'f,?Ll

A Granule whose state is neither UNDELEGATED nor DELEGATED is owned by a Realm.
The owner of a Granule is identified by the address of a Realm Descriptor (RD).

For a Granule whose state is RD, the ownership relation is recursive: the owning Realm is identified by the address
of the RD itself.

A Granule whose state is RTT is one of the following:
A starting level RTT. The address of this RTT is stored in the RD of the owning Realm.

* A non-starting level RTT. The address of this RTT is stored in its parent RTT, in an RTT entry whose state is
TABLE. Recursively following the parent relationship leads to the RD of the owning Realm.

A Granule whose state is DATA is mapped at a Protected IPA, in an RTT entry whose state is ASSIGNED. The
Realm which owns the RTT is the owner of the DATA Granule.

A REC has an “owner” attribute which points to the RD of the owning Realm.
A REC is not mapped at a Protected IPA. Its ownership therefore needs to be recorded explicitly.
See also:

e A2.1 Realm

e A2.1.7 Realm Descriptor

e A2.3 Realm Execution Context

e A5.2.1 Realm IPA space

e AS5.5 Realm Translation Table

e B3.3.1 RMI _DATA_CREATE command

e B3.3.2 RMI_DATA_CREATE_UNKNOWN command
e B3.3.12 RMI_REC_CREATE command

e B3.3.15 RMI_RTT_CREATE command

A2.2.3 Granule lifecycle

—)HPHJ

DENO0137
1.0-eac3

A2.2.3.1 States

The states of a Granule are listed below.

State Description
UNDELEGATED Not delegated for use by the RMM.
DELEGATED Delegated for use by the RMM.
RD Realm Descriptor.
REC Realm Execution Context.
REC_AUX Realm Execution Context auxiliary Granule.
Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 34

Non-confidential

Chapter A2. Concepts
A2.2. Granule

State Description
DATA Realm code or data.
RTT Realm Translation Table.

A2.2.3.2 State transitions

I8 Permitted Granule state transitions are shown in the following table. The rightmost column lists the events which
can cause the corresponding state transition.

From state To state Events

UNDELEGATED DELEGATED RMI_GRANULE_DELEGATE

DELEGATED UNDELEGATED RMI_GRANULE_UNDELEGATE

DELEGATED RD RMI_REALM_CREATE

RD DELEGATED RMI_REALM_DESTROY

DELEGATED DATA RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

DATA DELEGATED RMI_DATA_DESTROY

DELEGATED REC RMI_REC_CREATE

REC DELEGATED RMI_REC_DESTROY

DELEGATED REC_AUX RMI_REC_CREATE

REC_AUX DELEGATED RMI_REC_DESTROY

DELEGATED RTT RMI_REALM_CREATE
RMI_RTT_CREATE

RTT DELEGATED RMI_REALM_DESTROY
RMI_RTT_DESTROY

Tyvgum Permitted Granule state transitions are shown in the following figure. Each arc is labeled with the events which

can cause the corresponding state transition.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 35
1.0-eac3 Non-confidential

Chapter A2. Concepts

A2.2. Granule

RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

A 4

I

DATA

RMI_DATA_DESTROY

RMI_REALM_CREATE

RD

I RMI_REALM_DESTROY
y

RMI_GRANULE_DELEGATE A RMI_REC_CREATE
UNDELEGATED | | DELEGATED | REC
 RMI_GRANULE_UNDELEGATE RMI_REC_DESTROY

A

A 4

—
A

RMI_REC_CREATE

REC_AUX

RMI_REC_DESTROY

RMI_REALM_CREATE
RMI_RTT_CREATE

R

[

RMI_REALM_DESTROY
RMI_RTT_DESTROY

Figure A2.2: Granule state transitions

See also:

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI _DATA_CREATE_UNKNOWN command
e B3.3.3 RMI_DATA_DESTROY command

e B3.3.5 RMI GRANULE_DELEGATE command

e B3.3.6 RMI_GRANULE_UNDELEGATE command
e B3.3.9 RMI REALM_CREATE command

e B3.3.10 RMI_REALM_DESTROY command

e B3.3.12 RMI_REC_CREATE command

e B3.3.13 RMI REC _DESTROY command

e B3.3.15 RMI_RTT_CREATE command

e B3.3.16 RMI _RTT _DESTROY command

A2.2.4 Granule wiping

DENO0137
1.0-eac3

When the state of a Granule has transitioned from P to DELEGATED and then to any other state, any content
associated with P has been wiped.

Any sequence of Granule state transitions which passes through the DELEGATED state causes the Granule
contents to be wiped. This is necessary to ensure that information does not leak from one Realm to another, or from
a Realm to the Host. Note that no agent can observe the contents of a Granule while its state is DELEGATED.

Wiping is an operation which changes the observable value of a memory location from X to Y, such that the value X
cannot be determined from the value Y.

Wiping of a memory location does not reveal, directly or indirectly, any confidential Realm data.
Wiping is not guaranteed to be implemented as zero filling.

Realm software should not assume that the initial contents of uninitialized memory (that is, Realm IPA space
which is backed by DATA Granules created using RMI_DATA_CREATE_UNKNOWN) are zero.

See also:

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 36
Non-confidential

Chapter A2. Concepts

A2.2. Granule

DENO0137
1.0-eac3

e Arm CCA Security model [4]
e B3.3.2 RMI_DATA_CREATE_UNKNOWN command
e B3.3.6 RMI_GRANULE_UNDELEGATE command

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter A2. Concepts
A2.3. Realm Execution Context

A2.3 Realm Execution Context

This section describes the concept of a Realm Execution Context (REC).

A2.3.1 Overview

A Realm Execution Context (REC) is an R-EL0& 1 execution context which is associated with a Realm VPE.

A REC object is an RMM data structure which is used to store the register state of a REC.

See also:

e A2.1.2 Realm execution environment
* Chapter A4 Realm exception model

A2.3.2 REC attributes

This section describes the attributes of a REC.

Dy1c A REC attribute is a property of a REC whose value can be observed or modified either by the Host or by the
Realm which owns the REC.
Icscer Examples of ways in which a REC attribute may be observable include the outcome of an RMM command, and
the PE state following Realm entry.
Drosr The attributes of a REC are summarized in the following table.
Name Type Description
attest_state RmmRecAttestState Attestation token generation state
attest_challenge Bits512 Challenge for under-construction attestation token
aux Address[16] Addresses of auxiliary Granules

emulatable_abort

flags

gprs

mpidr
owner

pc
psci_pending
state
sysregs
ripas_addr
ripas_top
ripas_value

ripas_destroyed

DENO0137
1.0-eac3

RmmRecEmulatable Abort

RmmRecFlags
Bits64[32]

Bits64

Address

Bits64
RmmPsciPending
RmmRecState
RmmSystemRegisters
Address

Address
RmmRipas

RmmRipasChangeDestroyed

Whether the most recent exit from this REC was due
to an Emulatable Data Abort

Flags which control REC behavior
General-purpose register values

MPIDR value

PA of RD of Realm which owns this REC
Program counter value

Whether a PSCI request is pending
Lifecycle state

EL1 and ELO system register values

Next address to be processed in RIPAS change
Top address of pending RIPAS change
RIPAS value of pending RIPAS change

Whether a RIPAS change from DESTROYED should
be permitted

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 38
Non-confidential

Chapter A2. Concepts
A2.3. Realm Execution Context

Name Type Description
ripas_response RmmRecResponse Host response to RIPAS change request
host_call_pending RmmHostCallPending Whether a Host call is pending

The aux attribute of a REC is a list of auxiliary Granules.
The number of auxiliary Granules required for a REC is returned by the RMI_REC_AUX_COUNT command.

Depending on the configuration of the CCA platform and of the Realm, the amount of storage space required for a
REC may exceed a single Granule.

The number of auxiliary Granules required for a REC can vary between Realms on a CCA platform.
The number of auxiliary Granules required for a REC is a constant for the lifetime of a given Realm.

The gprs attribute of a REC is the set of general-purpose register values which are saved by the RMM on exit from
the REC and restored by the RMM on entry to the REC.

The mpidr attribute of a REC is a value which can be used to identify the VPE associated with the REC.

The pc attribute of a REC is the program counter which is saved by the RMM on exit from the REC and restored
by the RMM on entry to the REC.

The runnable flag of a REC determines whether the REC is eligible for execution. The RMI_REC_ENTER
command results in a REC entry only if the value of the flag is RUNNABLE.

The runnable flag of a REC is controlled by the Realm. Its initial value is reflected in the Realm Initial Measurement,
and during Realm execution its value can be changed by execution of the PSCI_CPU_ON and PSCI_CPU_OFF
commands.

The state attribute of a REC is controlled by the Host, by execution of the RMI_REC_ENTER command.

The sysregs attribute of a REC is the set of system register values which are saved by the RMM on exit from the
REC and restored by the RMM on entry to the REC.

See also:

e A2.3.3 REC index and MPIDR value
* A2.3.4 REC lifecycle

e A4.3.4.3 REC exit due to Data Abort
e B3.3.14 RMI_REC_ENTER command
e B5.3.2 PSCI_CPU_OFF command

e B5.3.3 PSCI_CPU_ON command

e Cl1.13 RmmRec type

A2.3.3 REC index and MPIDR value

DENO0137
1.0-eac3

The REC index is the unsigned integer value generated by concatenation of MPIDR fields:
index = Aff3:Aff2:Aff1:Aff0[3:0]

This is illustrated by the following table.

REC
index Aff3 Aff2 Affl Aff0[3:0]
0 0 0 0 0
1 0 0 0 1
Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 39

Non-confidential

Chapter A2. Concepts
A2.3. Realm Execution Context

REC
index Aff3 Aff2 Affl AffO[3:0]
16 0 0 1 0
4096 0 1 0 0
1048576 1 0 0 0
Tovrzy The Af£0[7:4] field of a REC MPIDR value is RESO for compatibility with GICv3.
Trrwy When creating the nth REC in a Realm, the Host is required to use the MPIDR corresponding to REC index n.
See also:
* B2.36 RecIndex function
e B3.3.12 RMI REC _CREATE command
¢ B3.4.18 RmiRecMpidr type
A2.3.4 REC lifecycle
A2.3.4.1 States
DauTxoy The states of a REC are listed below.
State Description
READY REC is not currently running.
RUNNING REC is currently running.
A2.3.4.2 State transitions
T o Permitted REC state transitions are shown in the following table. The rightmost column lists the events which can

cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of a REC object. A transition to the pseudo-state
NULL represents destruction of a REC object.

From state To state Events
NULL READY RMI_REC_CREATE
READY NULL RMI_REC_DESTROY
READY RUNNING RMI_REC_ENTER
RUNNING READY Return from RMI_REC_ENTER
DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 40

1.0-eac3 Non-confidential

Chapter A2. Concepts
A2.3. Realm Execution Context

TrNSTT Permitted REC state transitions are shown in the following figure. Each arc is labeled with the events which can
cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of a REC. A transition to the pseudo-state NULL
represents destruction of a REC.

R . RMI_REC_CREATE R
NULL P | READY
s < RMI_REC_DESTROY .

RMI_REC_ENTER Return from
RMI_REC_ENTER

A
RUNNING

Figure A2.3: REC state transitions

See also:

e B3.3.12 RMI REC_CREATE command
e B3.3.13 RMI_REC_DESTROY command
e B3.3.14 RMI_REC_ENTER command

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 41
1.0-eac3 Non-confidential

Chapter A3
Realm creation

This section describes the process of creating a Realm.

See also:

e A2.1 Realm
* DI1.2 Realm lifecycle flows

DENO0137
1.0-eac3

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

A3.1 Realm feature discovery and selection

RMM implementations across different CCA platforms may support disparate features and may offer disparate
configuration options for Realms.

The features supported by an RMM implementation are discovered by reading feature pseudo-register values using
the RMI_FEATURES command.

The term pseudo-register is used because, although these values are stored in memory, their usage model is similar
to feature registers specified in the Arm A-profile architecture.

On Realm creation, the Host specifies a set of desired features in a Realm parameters structure to the
RMI_REALM_CREATE command. The RMM checks that the features specified by the Host are supported by the
implementation.

The features specified at Realm creation time are included in the Realm Initial Measurement.
See also:

* A2.1.6 Realm parameters

e A7.1.1 Realm Initial Measurement

e B3.3.4 RMI FEATURES command

e B3.3.9 RMI_REALM_CREATE command

A3.1.1 Realm hash algorithm

The set of hash algorithms supported by the implementation is reported by the RMI_FEATURES command in
RmiFeatureRegister0.

Requesting an unsupported hash algorithm causes execution of RMI_REALM_CREATE to fail.
See also:

e A7.1 Realm measurements
e B3.3.9 RMI REALM CREATE command
e B3.4.6 RmiFeatureRegisterQ type

A3.1.2 Realm LPA2 and IPA width

I NKLXQ

ILIZT‘%}]

DENO0137
1.0-eac3

Support by the implementation for LPA?2 is reported by the RMI_FEATURES command in RmiFeatureRegister0.
Usage of LPA2 for Realm Translation Tables is an attribute which is set by the Host during Realm creation.
Realm IPA width is an attribute which is set by the Host during Realm creation.

Requesting an unsupported IPA width (for example, smaller than the minimum supported, or larger than the
maximum supported) causes execution of RMI_REALM_CREATE to fail.

The Host can choose a smaller IPA width than the maximum supported IPA width reported by RMI_FEATURES.
This is true regardless of whether LPA2 is enabled for the Realm.

The Host may want to enable LPA2 for a Realm due to either or both of the following reasons:

* to allow the Realm to be configured with a larger IPA width
¢ to allow access from mappings in the Realm’s stage 2 translation to a larger PA space

A Realm can query its IPA width using the RSI_REALM_CONFIG command.
See also:

e AS5.2.1 Realm IPA space

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 43
Non-confidential

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

e B3.3.9 RMI REALM_CREATE command
e B3.4.6 RmiFeatureRegisterQ type
e B4.3.8 RSI REALM _CONFIG command

A3.1.3 Realm support for Scalable Vector Extension

Rusykc

Uzraxy

Support by the implementation for the Scalable Vector Extension (FEAT_SVE) is reported by the RMI_FEATURES
command in RmiFeatureRegister(.

Availability of SVE to a Realm is set by the Host during Realm creation.
SVE vector length for a Realm is set by the Host during Realm creation.

Requesting a larger-than-supported SVE vector length causes execution of RMI_REALM_CREATE to fail. This
is different from the behaviour of the hardware architecture, in which a larger-than-supported SVE vector length
value is silently truncated.

The RMI ABI provides a natural mechanism to signal an invalid feature selection, via the return code of
RMI_REALM_CREATE. The analog in the hardware architecture would be to generate an illegal exception
return, which would cause undesirable coupling between two disparate parts of the architecture, namely the
exception model and the SVE feature.

If SVE is supported by the platform but is disabled for the Realm via the RMI_REALM_CREATE command then
aread of ID_AAG64PFRO_EL1 . SVE indicates that SVE is not supported.

The RMM should trap and emulate reads of ID_AA64PFRO_ELL . SVE.

A Realm should discover SVE support by reading ID_2AA64PFRO_EL1 . SVE rather than based on the platform
identity read from MIDR_EL1.

See also:

e B3.3.9 RMI REALM CREATE command
e B3.4.6 RmiFeatureRegisterQ type

A3.1.4 Realm support for self-hosted debug

Self-hosted debug is always available in Armv8§-A.
The number of breakpoints and watchpoints are attributes which are set by the Host during Realm creation.

Requesting a number of breakpoints which is different from the number of breakpoints available causes execution
of RMI_REALM_CREATE to fail.

Requesting a number of watchpoints which is different from the number of watchpoints available causes execution
of RMI_REALM_CREATE to fail.

See also:

e B3.3.9 RMI REALM_CREATE command

A3.1.5 Realm support for Performance Monitors Extension

Trvcop

J~HH’, C

DENO0137
1.0-eac3

Support by the implementation for the Performance Monitors Extension (FEAT_PMU) is reported by the
RMI_FEATURES command in RmiFeatureRegister0.

Auvailability of PMU to a Realm is set by the Host during Realm creation.

The number of PMU counters available to a Realm is set by the Host during Realm creation.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 44
Non-confidential

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

RyvraD Requesting a number of PMU counters which is different from the number of PMU counters available causes

RMI_REALM_CREATE to fail.
See also:

e AS8.1 Realm PMU
e B3.3.9 RMI REALM_ CREATE command
* B3.4.6 RmiFeatureRegister(type

A3.1.6 Realm support for Activity Monitors Extension

Rygvzs The Activity Monitors Extension (FEAT_AMUV1) is not available to a Realm.

A3.1.7 Realm support for Statistical Profiling Extension

Rpcent, The Statistical Profiling Extension (FEAT_SPE) is not available to a Realm.

A3.1.8 Realm support for Trace Buffer Extension

Ruxpxc The Trace Buffer Extension (FEAT_TRBE) is not available to a Realm.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

1.0-eac3 Non-confidential

45

Chapter A4
Realm exception model

This section describes how Realms are executed, and how exceptions which cause exit from a Realm are handled.
See also:

e A2.1.2 Realm execution environment

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 46
1.0-eac3 Non-confidential

Chapter A4. Realm exception model
A4.1. Exception model overview

A4.1

DENO0137
1.0-eac3

Exception model overview

A Realm entry is a transfer of control to a Realm.

A Realm exit is a transition of control from a Realm.

When executing in a Realm, an exception taken to R-EL2 or EL3 results in a Realm exit.

A REC entry is a Realm entry due to execution of RMI_REC_ENTER.

The Host provides the address of a REC as an input to the RMI_REC_ENTER command.

In this chapter, both rec and “the target REC” refer to the REC object which is provided to the RMI_REC_ENTER

command.

A RecRun object is a data structure used to pass values between the RMM and the Host on REC entry and on REC

exit.

A RecRun object is stored in Non-secure memory.

The Host provides the address of a RecRun object as an input to the RMI_REC_ENTER command.

An implementation is permitted to return RMI_SUCCESS from RMI_REC_ENTER without performing a REC
entry. For example, on observing a pending interrupt, the implementation can generate a REC exit due to IRQ

without entering the target REC.

A REC exit is return from an execution of RMI_REC_ENTER which caused a REC entry.

The following diagram summarises the possible control flows that result from a Realm exit.

ELO

EL1

EL2

EL3

Realm Security state

Non-secure
Security state

Secure
Security state

Realm
a b ¢ d e
O, © O 04 O
RMM 0 & o @ Hypervisor @ SPM
© Monitor]
& o

Root Security state

Figure A4.1: Realm exit paths

a. The exception is taken to EL3. The Monitor handles the exception and returns control to the Realm.

b. The exception is taken to EL3. The Monitor pre-empts Realm Security state and passes control to the Secure
Security state. This may be for example due to an FIQ.

c. The exception is taken to EL2. The RMM decides to perform a REC exit. The RMM executes an SMC
instruction, requesting the Monitor to pass control to the Non-secure Security state.

d. The exception is taken to EL2. The RMM executes an SMC instruction, requesting the Monitor to perform
an operation, then returns control to the Realm.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

47

Chapter A4. Realm exception model
A4.1. Exception model overview

e. The exception is taken to EL2. The RMM handles the exception and returns control to the Realm.
See also:

* A4.2 REC entry

e A4.3 REC exit

e B3.3.14 RMI_REC_ENTER command
* B3.4.20 RmiRecRun type

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

48

Chapter A4. Realm exception model
A4.2. REC entry

A4.2 REC entry

This section describes REC entry.

See also:

e A4.3 REC exit
e B3.3.14 RMI_REC_ENTER command

A4.2.1 RecEnter object

DENO0137
1.0-eac3

A RecEnter object is a data structure used to pass values from the Host to the RMM on REC entry.

A RecEnter object is stored in the RecRun object which is passed by the Host as an input to the RMI_REC_ENTER

command.
On REC entry, execution state is restored from the REC object and from the RecEnter object to the PE.

A RecEnter object contains attributes which are used to manage Realm virtual interrupts.

The attributes of a RecEnter object are summarized in the following table.

Name Byte offset Type Description
flags 0x0 RmiRecEnterFlags Flags
gprs[0] 0x200 Bits64 Registers
gprs[1] 0x208 Bits64 Registers
gprs[2] 0x210 Bits64 Registers
gprs[3] 0x218 Bits64 Registers
gprs[4] 0x220 Bits64 Registers
gprs[5] 0x228 Bits64 Registers
gprs[6] 0x230 Bits64 Registers
gprs[7] 0x238 Bits64 Registers
gprs[8] 0x240 Bits64 Registers
gprs[9] 0x248 Bits64 Registers
gprs[10] 0x250 Bits64 Registers
gprs[11] 0x258 Bits64 Registers
gprs[12] 0x260 Bits64 Registers
gprs[13] 0x268 Bits64 Registers
gprs[14] 0x270 Bits64 Registers
gprs[15] 0x278 Bits64 Registers
gprs[16] 0x280 Bits64 Registers
gprs[17] 0x288 Bits64 Registers
gprs[18] 0x290 Bits64 Registers
gprs[19] 0x298 Bits64 Registers

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

49

Chapter A4. Realm exception model
A4.2. REC entry

I LEYDV

DENO0137
1.0-eac3

Name Byte offset Type Description
gprs[20] 0x2a0 Bits64 Registers
gprs[21] 0x2a8 Bits64 Registers
gprs[22] 0x2b0 Bits64 Registers
gprs[23] 0x2b8 Bits64 Registers
gprs[24] 0x2c0 Bits64 Registers
gprs[25] 0x2c8 Bits64 Registers
gprs[26] 0x2d0 Bits64 Registers
gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers
gprs[30] 0x2£0 Bits64 Registers
gicv3_her 0x300 Bits64 GICv3 Hypervisor Control Register value
gicv3_Irs[0] 0x308 Bits64 GICv3 List Register values
gicv3_lrs[1] 0x310 Bits64 GICv3 List Register values
gicv3_Irs[2] 0x318 Bits64 GICv3 List Register values
gicv3_lIrs[3] 0x320 Bits64 GICv3 List Register values
gicv3_Irs[4] 0x328 Bits64 GICv3 List Register values
gicv3_lrs[5] 0x330 Bits64 GICv3 List Register values
gicv3_lIrs[6] 0x338 Bits64 GICv3 List Register values
gicv3_lIrs[7] 0x340 Bits64 GICv3 List Register values
gicv3_lrs[8] 0x348 Bits64 GICv3 List Register values
gicv3_Irs[9] 0x350 Bits64 GICv3 List Register values
gicv3_lIrs[10] 0x358 Bits64 GICv3 List Register values
gicv3_Irs[11] 0x360 Bits64 GICv3 List Register values
gicv3_lrs[12] 0x368 Bits64 GICv3 List Register values
gicv3_lrs[13] 0x370 Bits64 GICv3 List Register values
gicv3_lIrs[14] 0x378 Bits64 GICv3 List Register values
gicv3_lIrs[15] 0x380 Bits64 GICv3 List Register values

In this chapter, both enter and “the RecEnter object” refer to the RecEnter object which is provided to the

RMI_REC_ENTER command.

On REC exit, all enter fields are ignored unless specified otherwise.

See also:

e A2.3 Realm Execution Context

e A4.3.1 RecExit object

* Chapter A6 Realm interrupts and timers

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

50

Chapter A4. Realm exception model
A4.2. REC entry

* B3.4.14 RmiRecEnter type

A4.2.2 General purpose registers restored on REC entry

RNZZ SET

RrzrrM

On REC entry, if the most recent exit from the target REC was a REC exit due to PSCI, then all of the following
occur:

* X0 to X6 contain the PSCI return code and PSCI output values.
* GPR values X7 to X30 are restored from the REC object to the PE.

On REC entry, if either this is the first entry to this REC, or the most recent exit from the target REC was not a
REC exit due to PSCI, then GPR values X0 to X30 are restored from the REC object to the PE.

On REC entry, if rec.host_call_pending is HOST_CALL_PENDING, then GPR values X0 to X30 are
copied from enter.gprs[0..30] to the RsiHostCall data structure.

On REC entry, if writing to the RsiHostCall data structure fails due to the target IPA not being mapped then a REC
exit to Data Abort results.

On REC entry, if writing to the RsiHostCall data structure succeeds then rec.host_call_pending is
NO_HOST_CALL_PENDING.

On REC entry, if RMM access to enter causes a GPF then the RMI_REC_ENTER command fails with
RMI_ERROR_INPUT.

See also:

* A4.3.3 General purpose registers saved on REC exit
e A4.3.4.3 REC exit due to Data Abort

e A4.3.7 REC exit due to PSCI

* A4.3.9 REC exit due to Host call

e A4.5 Host call

A4.2.3 REC entry following REC exit due to Data Abort

DENO0137
1.0-eac3

On REC entry, if the most recent exit from the target REC was a REC exit due to Emulatable Data Abort and
enter.flags.emul_mmio == RMI_EMULATED_MMIO, then the return address is the next instruction following
the faulting instruction.

On REC entry, if the most recent exit from the target REC was a REC exit due to Emulatable Data Abort and the
Realm memory access was aread and enter.flags.emul_mmio == RMI_EMULATED_MMIO, then the register
indicated by ESR_EL2.ISS.SRT is set to enter.gprs[0].

On REC entry, if the most recent exit from the target REC was a REC exit due to Data Abort at an Unprotected
IPA and enter.flags.inject_sea == RMI_INJECT_SEA, then a Synchronous External Abort is taken to the
Realm.

See also:

* A4.3.4.3 REC exit due to Data Abort

* A4.4 Emulated Data Aborts

e AS5.2.6 Realm access to an Unprotected IPA
* AS5.2.7 Synchronous External Aborts

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 51
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

A4.3 REC exit

This section describes REC exit.

See also:

e A4.2 REC entry
e B3.3.14 RMI_REC_ENTER command

A4.3.1 ReckEXxit object

I'.'HJ’T‘

Drromn

DENO0137
1.0-eac3

A RecExit object is a data structure used to pass values from the RMM to the Host on REC exit.

A RecExit object is stored in the RecRun object which is passed by the Host as an input to the RMI_REC_ENTER

command.

On REC exit, execution state is saved from the PE to the REC object and to the RecExit object.

A RecExit object contains attributes which are used to manage Realm virtual interrupts and Realm timers.

The attributes of a RecExit object are summarized in the following table.

Name Byte offset Type Description
exit_reason 0x0 RmiRecExitReason Exit reason

esr 0x100 Bits64 Exception Syndrome Register
far 0x108 Bits64 Fault Address Register
hpfar 0x110 Bits64 Hypervisor IPA Fault Address register
gprs[0] 0x200 Bits64 Registers

gprs[1] 0x208 Bits64 Registers

gprs[2] 0x210 Bits64 Registers

gprs[3] 0x218 Bits64 Registers

gprs[4] 0x220 Bits64 Registers

gprs[5] 0x228 Bits64 Registers

gprs[6] 0x230 Bits64 Registers

gprs[7] 0x238 Bits64 Registers

gprs[8] 0x240 Bits64 Registers

gprs[9] 0x248 Bits64 Registers

gprs[10] 0x250 Bits64 Registers

gprs[11] 0x258 Bits64 Registers

gprs[12] 0x260 Bits64 Registers

gprs[13] 0x268 Bits64 Registers

gprs[14] 0x270 Bits64 Registers

gprs[15] 0x278 Bits64 Registers

gprs[16] 0x280 Bits64 Registers

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

52

Chapter A4. Realm exception model

A4.3. REC exit
Name Byte offset Type Description
gprs[17] 0x288 Bits64 Registers
gprs[18] 0x290 Bits64 Registers
gprs[19] 0x298 Bits64 Registers
gprs[20] 0x2a0 Bits64 Registers
gprs[21] 0x2a8 Bits64 Registers
gprs[22] 0x2b0 Bits64 Registers
gprs[23] 0x2b8 Bits64 Registers
gprs[24] 0x2c0 Bits64 Registers
gprs[25] 0x2c8 Bits64 Registers
gprs[26] 0x2d0 Bits64 Registers
gprs[27] 0x2d8 Bits64 Registers
gprs[28] 0x2e0 Bits64 Registers
gprs[29] 0x2e8 Bits64 Registers
gprs[30] 0x2£0 Bits64 Registers
gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value
gicv3_lIrs[0] 0x308 Bits64 GICv3 List Register values
gicv3_Irs[1] 0x310 Bits64 GICv3 List Register values
gicv3_lrs[2] 0x318 Bits64 GICv3 List Register values
gicv3_lIrs[3] 0x320 Bits64 GICv3 List Register values
gicv3_lIrs[4] 0x328 Bits64 GICv3 List Register values
gicv3_lrs[5] 0x330 Bits64 GICv3 List Register values
gicv3_lrs[6] 0x338 Bits64 GICv3 List Register values
gicv3_Irs[7] 0x340 Bits64 GICv3 List Register values
gicv3_Irs[8] 0x348 Bits64 GICv3 List Register values
gicv3_lrs[9] 0x350 Bits64 GICv3 List Register values
gicv3_lrs[10] 0x358 Bits64 GICv3 List Register values
gicv3_lIrs[11] 0x360 Bits64 GICv3 List Register values
gicv3_lIrs[12] 0x368 Bits64 GICv3 List Register values
gicv3_lrs[13] 0x370 Bits64 GICv3 List Register values
gicv3_lIrs[14] 0x378 Bits64 GICv3 List Register values
gicv3_Irs[15] 0x380 Bits64 GICv3 List Register values
gicv3_misr 0x388 Bits64 GICv3 Maintenance Interrupt State

Register value

gicv3_vmer 0x390 Bits64 GICv3 Virtual Machine Control Register

DENO0137
1.0-eac3

value

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

53

Chapter A4. Realm exception model

A4.3. REC exit
Name Byte offset Type Description
cntp_ctl 0x400 Bits64 Counter-timer Physical Timer Control
Register value
cntp_cval 0x408 Bits64 Counter-timer Physical Timer
CompareValue Register value
cntv_ctl 0x410 Bits64 Counter-timer Virtual Timer Control
Register value
cntv_cval 0x418 Bits64 Counter-timer Virtual Timer CompareValue
Register value
ripas_base 0x500 Bits64 Base address of target region for pending
RIPAS change
ripas_top 0x508 Bits64 Top address of target region for pending
RIPAS change
ripas_value 0x510 RmiRipas RIPAS value of pending RIPAS change
imm 0x600 Bits16 Host call immediate value
pmu_ovf_status 0x700 RmiPmuOverflowStatus PMU overflow status
Trozxz In this chapter, both exit and “the RecExit object” refer to the RecExit object which is provided to the
RMI_REC_ENTER command.
R On REC exit, all exit fields are zero unless specified otherwise.
See also:
* A2.3 Realm Execution Context
* A4.2.1 RecEnter object
* A4.5 Host call
e Chapter A6 Realm interrupts and timers
e Chapter A8 Realm debug and performance monitoring
* B3.4.16 RmiRecEXxit type
A4.3.2 Realm exit reason
T pywn. On return from the RMI_REC_ENTER command, the reason for the REC exit is indicated by exit .exit_reason

and exit .esr.
See also:

¢ B3.4.17 RmiRecExitReason type

A4.3.3 General purpose registers saved on REC exit

Rpakve On REC exit due to PSCI, all of the following are true:

e exit.gprs[0] contains the PSCI FID.

* exit.gprs[1..3] contain the corresponding PSCI arguments. If the PSCI command has fewer than 3
arguments, the remaining values contain zero.

¢ GPR values X7 to X30 are saved from the PE to the REC object.

Renzk On REC exit for any reason which is not REC exit due to PSCI, GPR values X0 to X30 are saved from the PE to
the REC.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 54
1.0-eac3 Non-confidential

Chapter A4. Realm exception model

A4.3. REC exit

Ruzeet On REC exit for any reason which is neither REC exit due to Host call nor REC exit due to PSCI, exit.gprs is
zZero.

Rrray On REC exit, if RMM access to exit causes a GPF then the RMI_REC_ENTER command fails with

RMI_ERROR_INPUT.
See also:

e A4.2.2 General purpose registers restored on REC entry
* A4.3.7 REC exit due to PSCI
* A4.3.9 REC exit due to Host call

A4.3.4 REC exit due to synchronous exception

T snpns A synchronous exception taken to R-EL2 can cause a REC exit.

Trpsnc The following table summarises the behavior of synchronous exceptions taken to R-EL2.
Exception class Behavior
Trapped WFI or WFE instruction execution REC exit due to WFI or WFE
HVC instruction execution in AArch64 state Unknown exception taken to Realm
SMC instruction execution in AArch64 state One of:

¢ REC exit due to PSCI
* RSI command handled by RMM, followed by
return to Realm

Trapped MSR, MRS or System instruction execution ~ Emulated by RMM, followed by return to Realm
in AArch64 state

Instruction Abort from a lower Exception level REC exit due to Instruction Abort

Data Abort from a lower Exception level REC exit due to Data Abort

Ryrrmp Realm execution of an SMC which is not part of one of the following ABIs results in a return value of
SMCCC_NOT_SUPPORTED:

* PSCI
* RSI

See also:

* A4.5 Host call
* Chapter B4 Realm Services Interface
» Chapter BS Power State Control Interface

A4.3.4.1 REC exit due to WFI or WFE

Derupx A REC exit due to WFI or WFE is a REC exit due to WFI, WFIT, WFE or WFET instruction execution in a Realm.

RyrJor On WFI or WFIT instruction execution in a Realm, a REC exit due to WFI or WFE is caused if enter.trap_wfi
is RMI_TRAP.

Reanen On WEE or WFET instruction execution in a Realm, a REC exit due to WFI or WFE is caused if enter.trap_wfe
is RMI_TRAP.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 55

1.0-eac3 Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

DENO0137
1.0-eac3

On REC exit due to WFI or WFE, all of the following are true:

* exit.exit_reasonis RMI_EXIT SYNC.

e exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.

* exit.esr.ISS.TI contains the value of ESR_EL2.ISS.TI at the time of the Realm exit.
e All other exit fields are zero.

On REC exit due to WFI or WFE, if the exit was caused by WFET or WFIT instruction execution then
exit.gprs[0] contains the timeout value.

A4.3.4.2 REC exit due to Instruction Abort

A REC exit due to Instruction Abort is a REC exit due to a Realm instruction fetch from a Protected IPA for which
either of the following is true:

» HIPAS is UNASSIGNED and RIPAS is RAM
* RIPAS is DESTROYED

On REC exit due to Instruction Abort, all of the following are true:

* exit.exit_reasonis RMI_EXIT SYNC.

* exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.

* exit.esr.ISS.SET contains the value of ESR_EL2.ISS.SET at the time of the Realm exit.

* exit.esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.

* exit.esr.ISS.IFSC contains the value of ESR_EL2.ISS.IFSC at the time of the Realm exit.
e exit.hpfar contains the value of HPFAR_EL2 at the time of the Realm exit.

¢ All other exit fields are zero.

See also:

e AS5.2.2 Realm IPA state
e AS5.2.3 Realm access to a Protected IPA

A4.3.4.3 REC exit due to Data Abort

A REC exit due to Emulatable Data Abort is a REC exit due to a Realm data access to one of the following:

* an Unprotected IPA whose HIPAS is UNASSIGNED_NS, where the access caused ESR_EL2.ISS.ISV to
besetto '1°'

* an Unprotected IPA whose HIPAS is ASSIGNED_NS, where the access caused a stage 2 permission fault
and caused ESR_EL2.ISS.ISVtobesetto '1"'

A REC exit due to Non-emulatable Data Abort is a REC exit due to a Realm data access to one of the following:

* an Unprotected IPA whose HIPAS is UNASSIGNED_NS, where the access caused ESR_EL2.ISS.ISVto
besetto '0"

 an Unprotected IPA whose HIPAS is ASSIGNED_NS, where the access caused a stage 2 permission fault
and caused ESR_EL2.ISS.ISVtobesetto '0’

¢ a Protected IPA whose HIPAS is UNASSIGNED and whose RIPAS is RAM

¢ a Protected IPA whose RIPAS is DESTROYED.

On REC exit due to Data Abort, all of the following are true:

* exit.exit_reasonis RMI_EXIT SYNC.

e exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.

* exit.esr.ISS.SET contains the value of ESR_EL2.ISS.SET at the time of the Realm exit.

* exit.esr.ISS.FnV contains the value of ESR_EL2.ISS.FnvV at the time of the Realm exit.

* exit.esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.

* exit.esr.ISS.DFSC contains the value of ESR_EL2.ISS.DFSC at the time of the Realm exit.
e exit.hpfar contains the value of HPFAR_EL2 at the time of the Realm exit.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 56
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

Rrpuaw

Rogter

On REC exit due to Emulatable Data Abort, all of the following are true:

* rec.emulatable_abort is EMULATABLE ABORT.

* exit.esr.ISS.ISV contains the value of ESR_EL2.ISS. ISV at the time of the Realm exit.

* exit.esr.ISS.SAS contains the value of ESR_EL2.ISS.SAS at the time of the Realm exit.

* exit.esr.ISS.SF contains the value of ESR_EL2.ISS.SF at the time of the Realm exit.

* exit.esr.ISS.WnR contains the value of ESR_EL2.ISS.WnR at the time of the Realm exit.

* exit.far contains the value of FAR_EL2 at the time of the Realm exit, with bits more significant than the
size of a Granule masked to zero.

On REC exit due to Non-emulatable Data Abort at an Unprotected IPA, all of the following are true:
* exit.esr.IL contains the value of ESR_EL2.IL at the time of the Realm exit.
On REC exit due to Data Abort, all of the other exit fields are zero.

On REC exit due to Emulatable Data Abort, ESR_EL2.ISS.SSE is not propagated to the Host. This is because
this field is used to emulate sign extension on loads, which must be performed by the RMM so that the Realm can
rely on architecturally correct behavior of the virtual execution environment.

On REC exit due to Emulatable Data Abort, the Host can calculate the faulting IPA from the exit .hpfar and
exit.far values.

On REC exit due to Emulatable Data Abort, if the Realm memory access was a write,
exit.gprs[0] contains the value of the register indicated by ESR_EL2.ISS.SRT at the time of the Realm exit.

On REC exit not due to Emulatable Data Abort, rec.emulatable_abort is NOT_EMULATABLE_ABORT.
See also:

* A4.2.3 REC entry following REC exit due to Data Abort
* A4.4 Emulated Data Aborts

* AS5.2.1 Realm IPA space

e A5.2.3 Realm access to a Protected IPA

e AS5.2.6 Realm access to an Unprotected IPA

A4.3.5 REC exit due to IRQ

A REC exit due to IRQ is a REC exit due to an IRQ exception which should be handled by the Host.
On REC exit due to IRQ, exit.exit_reason is RMI_EXIT_IRQ.

On REC exit due to IRQ, exit .esr is zero.

See also:

* Chapter A6 Realm interrupts and timers

A4.3.6 REC exit due to FIQ

Dzrymm

Rep

Rexzrr
DENO0137

1.0-eac3

A REC exit due to FIQ is a REC exit due to an FIQ exception which should be handled by the Host.
On REC exit due to FIQ, exit.exit_reason is RMI_EXIT_FIQ.

On REC exit due to FIQ, exit .esr is zero.

See also:

* Chapter A6 Realm interrupts and timers

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 57
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

A4.3.7 REC exit due to PSCI

DENO0137
1.0-eac3

A PSCI function executed by a Realm is either:

* handled by the RMM, returning to the Realm, or
* forwarded by the RMM to the Host via a REC exit due to PSCI.

A REC exit due to PSCI is a REC exit due to Realm PSCI function execution by SMC instruction which was
forwarded by the RMM to the Host.

The following table summarises the behavior of PSCI function execution by a Realm.

PSCI functions not listed in this table are not supported. Calling a non-supported PSCI function results in a return
value of PSCI_NOT_SUPPORTED.

Can result in REC Requires Host to call

PSCI function exit due to PSCI RMI_PSCI_COMPLETE
PSCI_VERSION No -

PSCI_FEATURES No -

PSCI_CPU_SUSPEND Yes No

PSCI_CPU_OFF Yes No

PSCI_CPU_ON Yes Yes
PSCI_AFFINITY_INFO Yes Yes

PSCI_SYSTEM_OFF Yes No
PSCI_SYSTEM_RESET Yes No

On REC exit due to PSCI, exit .exit_reason is RMI_EXIT PSCI.
On REC exit due to PSCI, exit .gprs contains sanitised parameters from the PSCI call.

On REC exit due to PSCI, if the command arguments include an MPIDR value, rec.psci_pending is set to
PSCI_REQUEST_PENDING. Otherwise, rec.psci_pending is set to NO_PSCI_REQUEST_PENDING.

Following REC exit due to PSCL if rec.psci_pending is PSCI_REQUEST_PENDING, the Host must complete
the request by calling the RMI_PSCI_COMPLETE command, prior to re-entering the REC.

In the call to RMI_PSCI_COMPLETE, the Host provides the target REC, which corresponds to the MPIDR value
provided by the Realm. This is necessary because the RMM does not maintain a mapping from MPIDR values to
REC addresses. The RMM validates that the REC provided by the Host matches the MPIDR value.

In the call to RMI_PSCI_COMPLETE, the Host provides a PSCI status value, which the RMM handles as follows:

* If the Host provides PSCI_SUCCESS, the RMM performs the PSCI operation requested by the Realm. The
result of the PSCI operation is recorded in the REC and returned to the Realm on the next entry to the calling
REC.

* If the Host provides a status value other than PSCI_SUCCESS, the RMM validates that the status code is
permitted for the PSCI operation requested by the Realm. If the status code is permitted, it is recorded in the
REC and returned to the Realm on the next entry to the calling REC.

See also:

* A4.3.3 General purpose registers saved on REC exit
e B2.19 PsciReturnCodePermitted function

* B3.3.7 RMI_PSCI_COMPLETE command

» Chapter B5 Power State Control Interface

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 58
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

* D1.4 PSCI flows

A4.3.8 REC exit due to RIPAS change pending

Dgccvy A REC exit due to RIPAS change pending is a REC exit due to the Realm issuing a RIPAS change request.
Rosskx On REC exit due to RIPAS change pending, all of the following are true:

* exit.exit_reasonis RMI_EXIT_RIPAS_CHANGE.

* exit.ripas_base is the base address of the region on which a RIPAS change is pending.
* exit.ripas_top is the top address of the region on which a RIPAS change is pending.

* exit.ripas_value is the requested RIPAS value.

* rec.ripas_addr is the base address of the region on which a RIPAS change is pending.
* rec.ripas_top is the top address of the region on which a RIPAS change is pending.

* rec.ripas_value is the requested RIPAS value.

Tuvckrka On REC exit due to RIPAS change pending:

* exit holds the base address and the size of the region on which a RIPAS change is pending. These values
inform the Host of the bounds of the RIPAS change request.

* rec holds the next address to be processed in a RIPAS change, and the top of the requested RIPAS change
region. These values are used by the RMM to enforce that the RMI_RTT_SET_RIPAS command can only
apply RIPAS change within the bounds of the RIPAS change request, and to report the progress of the RIPAS
change to the Realm on the next REC entry.

Rormmn On REC exit not due to RIPAS change pending, all of the following are true:

* rec.ripas_addris O
* rec.ripas_topis 0

See also:

e A2.3.2 REC attributes
* AS5.4 RIPAS change

A4.3.9 REC exit due to Host call

Durzxk A REC exit due to Host call is a REC exit due to RSI_HOST_CALL execution in a Realm.
RGTIRp On REC exit due to Host call, all of the following are true:

* rec.host_call_pendingis HOST_CALL_PENDING.

* exit.exit_reasonis RMI_EXIT HOST_CALL.

* exit.imm contains the immediate value passed to the RSI_HOST_CALL command.

* exit.gprs[0..30] contain the register values passed to the RSI_HOST_CALL command.

* All other exit fields except for exit.give3_»*, exit_cntx and exit.pmu_ovf_status are zero.

See also:

e A4.5 Host call
e B4.3.3 RSI_ HOST_CALL command

A4.3.10 REC exit due to SError

Dpeumip A REC exit due to SError is a REC exit due to an SError interrupt during Realm execution.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 59
1.0-eac3 Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

RLI?”:’L

DENO0137
1.0-eac3

On REC exit due to SError, all of the following occur:

exit.

exit

exit.

exit.

exit.

exit.

All other exit fields except for exit.give3_x, exit_cntx and exit.pmu_ovf_status are zero.

exit_reason is RMI_EXIT_SERROR.

.esr.EC contains the value of ESR_EL2 .EC at the time of the Realm exit.

esr.ISS.IDS contains the value of ESR_EL2.ISS.IDS at the time of the Realm exit.
esr.ISS.AET contains the value of ESR_EL2.ISS.AET at the time of the Realm exit.
esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.

esr.ISS.DFSC contains the value of ESR_EL2.ISS.DFSC at the time of the Realm exit.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter A4. Realm exception model
A4.4. Emulated Data Aborts

A4.4 Emulated Data Aborts

Tsvypc

On REC exit due to Emulatable Data Abort, sufficient information is provided to the Host to enable it to emulate
the access, for example to emulate a virtual peripheral.

On taking the REC exit, the Host can either

* Establish a mapping in the RTT, in which case it would want the Realm to re-attempt the access. In this case,
on the next REC entry the Host sets enter.flags.emul_mmio = RMI_NOT_EMULATED_MMIO, which
indicates that instruction emulation was not performed. This causes the return address to be the faulting
instruction.

Emulate the access. For an emulated write, the data is provided in exit .gprs[0]. For an emulated read,
the data is provided in enter.gprs[0]. In this case, on the next REC entry the Host sets
enter.flags.emul_mmio = RMI_EMULATED_MMIO, which indicates that the instruction was emulated.
This causes the return address to be the address of the instruction which generated the Data Abort plus 4
bytes.

See also:

* A4.2.3 REC entry following REC exit due to Data Abort
* A4.3.4.3 REC exit due to Data Abort
e AS5.2.1 Realm IPA space

A4.5 Host call

DENO0137
1.0-eac3

This section describes the programming model for Realm communication with the Host.

A Host call is a call made by the Realm to the Host, by execution of the RSI_HOST_CALL command.
A Host call can be used by a Realm to make a hypercall.

On Realm execution of HVC, an Unknown exception is taken to the Realm.

See also:

* A4.2.2 General purpose registers restored on REC entry
* A4.3.9 REC exit due to Host call

e B4.3.3 RSI HOST_CALL command

e DI1.3.2 Host call flow

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 61
Non-confidential

Chapter A5
Realm memory management

This section describes how Realm memory is managed. This includes:

* How the translation tables which describe the Realm’s address space are managed by the Host.
* Properties of the Realm’s address space, and of the memory which can be mapped into it.
* How faults caused by Realm memory accesses are handled.

See also:

¢ A2.1.2 Realm execution environment
e DI1.5 Realm memory management flows
e Chapter D2 Realm shared memory protocol

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

62

Chapter A5. Realm memory management
A5.2. Realm view of memory management

A5.1 Realm memory management overview

Realm memory management can be viewed from one of two standpoints: the Realm and the Host.

From the Realm’s point of view, the RMM provides security guarantees regarding the IPA space of the Realm and
the memory which is mapped into it. These security guarantees are upheld via RSI commands which the Realm
can execute in order to query the initial configuration and contents of its address space, and to modify properties of
the address space at runtime.

From the Host’s point of view, Realm memory management involves manipulating the stage 2 translation tables
which describe the Realm’s address space, and handling faults which are caused by Realm memory accesses.
These operations are similar to those involved in managing the memory of a normal VM, but in the case of a Realm
they are performed via execution of RMI commands.

See also:

* AS5.2 Realm view of memory management
e AS5.3 Host view of memory management

A5.2 Realm view of memory management

This section describes memory management from the Realm’s point of view.

A5.2.1 Realm IPA space

Ipirzs The IPA space of a Realm is divided into two halves: Protected IPA space and Unprotected IPA space.

Srzuxc Software in a Realm should treat the most significant bit of an IPA as a protection attribute.

DkxGp A Protected IPA is an address in the lower half of a Realm’s IPA space. The most significant bit of a Protected IPA
1S O.

DurueM An Unprotected IPA is an address in the upper half of a Realm’s IPA space. The most significant bit of an

Unprotected IPA is 1.
See also:

e A2.1.3 Realm attributes
e A3.1.2 Realm LPA2 and IPA width

A5.2.2 Realm IPA state

Dy A Protected IPA has an associated Realm IPA state (RIPAS).
The RIPAS values are shown in the following table.
RIPAS Description
EMPTY Address where no Realm resources are mapped
RAM Address where private code or data owned by the Realm is mapped
DESTROYED Address which is inaccessible to the Realm due to an action taken by the Host
Tvzcy RIPAS values are stored in an RTT.
See also:
DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 63

1.0-eac3 Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

e AS5.5 Realm Translation Table

A5.2.3 Realm access to a Protected IPA

Realm data access to a Protected IPA whose RIPAS is EMPTY causes a Synchronous External Abort taken to the
Realm.

Realm instruction fetch from a Protected IPA whose RIPAS is EMPTY causes a Synchronous External Abort taken
to the Realm.

Realm data access to a Protected IPA whose RIPAS is RAM does not cause a Synchronous External Abort taken to
the Realm.

Realm data access to a Protected IPA can cause an REC exit due to Data Abort.

Realm instruction fetch from a Protected IPA whose RIPAS is RAM does not cause a Synchronous External Abort
taken to the Realm.

Realm instruction fetch from a Protected IPA whose RIPAS is RAM can cause a REC exit due to Instruction Abort.
Realm data access to a Protected IPA whose RIPAS is DESTROYED causes a REC exit due to Data Abort.

Realm instruction fetch from a Protected IPA whose RIPAS is DESTROYED causes a REC exit due to Instruction
Abort.

See also:

e A4.3.4.2 REC exit due to Instruction Abort
e A4.3.4.3 REC exit due to Data Abort
* AS5.2.7 Synchronous External Aborts

A5.2.4 Changes to RIPAS while Realm state is NEW

This section describes how the RIPAS of a Protected IPA can change while the Realm state is NEW.

For a Realm in the NEW state, the RIPAS of a Protected IPA can change to RAM due to Host execution of
RMI_RTT_INIT_RIPAS.

For a Realm in the NEW state, changing the RIPAS of a Protected IPA to RAM causes the RIM to be updated.

For a Realm in the NEW state, the RIPAS of a Protected IPA can change to DESTROYED due to Host execution
of RMI_DATA_DESTROY or RMI_RTT_DESTROY.

For a Realm in the NEW state, changing the RIPAS of a Protected IPA to DESTROYED does not cause the RIM
to be updated.

See also:

e AS5.4 RIPAS change

e A7.1.1 Realm Initial Measurement

e B3.3.3 RMI_DATA_DESTROY command
e B3.3.16 RMI_RTT_DESTROY command

e B3.3.18 RMI RTT INIT RIPAS command

A5.2.5 Changes to RIPAS while Realm state is ACTIVE

Tnzxec

DENO0137
1.0-eac3

This section describes how the RIPAS of a Protected IPA can change while the Realm state is ACTIVE.

A Realm in the ACTIVE state can request the RIPAS of a region of Protected IPA space to be changed to either
EMPTY or RAM.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 64
Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

INZZ}I:‘L—

DENO0137
1.0-eac3

A Realm in the ACTIVE state cannot request the RIPAS of a region of Protected IPA space to be changed to
DESTROYED.

For a Realm in the ACTIVE state, the RIPAS of a Protected IPA can change to EMPTY only in response to Realm
execution of RSI_IPA_STATE_SET.

The fact that the Host cannot change the RIPAS of a Protected IPA to EMPTY without the Realm having consented
to this change prevents the Host from injecting an SEA at a Protected IPA which has been configured to have a
RIPAS of RAM, which could potentially trigger unexpected behavior in the Realm.

For a Realm in the ACTIVE state, the RIPAS of a Protected IPA can change to RAM only in response to Realm
execution of RSI_IPA_STATE_SET.

On execution of RSI_IPA_STATE_SET, a Realm can optionally specify that the RIPAS change should only succeed
if the current RIPAS is not DESTROYED.

An expected pattern for Realm creation is as follows:
1. Host populates an “initial image” range of Realm IPA space with measured content:
a. Host executes RMI_RTT_INIT_RIPAS, causing a RIPAS change to RAM.

b. Host executes RMI_DATA_CREATE, establishing a mapping to physical memory and updating the
RIM.

2. Host informs the Realm of the range of IPA space which should be considered by the Realm as DRAM. This
is a superset of the IPA range populated in step 1. For unpopulated parts of this IPA range, the RIPAS is
EMPTY.

3. Realm executes RSI_IPA_STATE_SET(ripas=RAM) for the DRAM IPA range described to it in step 2.
Following this command, the desired state is:

a. For the initial image IPA range, the contents match those described by the RIM.
b. For the entire DRAM IPA range, RIPAS is RAM.

If at step 2, the Host were to execute RMI_DATA_DESTROY on a page within the initial image IPA range, its
RIPAS would change to DESTROYED. The Host could then execute RMI_DATA_CREATE_UNKNOWN, with
the result that contents of the initial image IPA range no longer match those described by the RIM.

By specifying at step 3 that the RIPAS change should only succeed if the current RIPAS is not DESTROYED, the
Realm is able to prevent loss of integrity within the initial image IPA range.

For a Realm in the ACTIVE state, the RIPAS of a Protected IPA can change to DESTROYED due to Host execution
of RMI_DATA_DESTROQOY or RMI_RTT_DESTROY.

The result of changing the RIPAS of a Protected IPA to DESTROYED is that subsequent Realm accesses to that
address do not make forward progress. This is consistent with the principle that the RMM does not provide an
availability guarantee to a Realm.

The following diagram summarizes RIPAS changes which can occur when the Realm state is ACTIVE.

RSI_IPA_STATE SET(EMPTY) RSI_IPA_STATE_SET(RAM)

EMPTY A DESTROYED RAM

Host action Host action

Key
E—— Transition which can occur only as the result of a Realm action
------------ > Transition which can occur without the Realm having taken any action
See also:
Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 65

Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

* AS5.4 RIPAS change

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI_DATA_CREATE_UNKNOWN command
e B3.3.3 RMI_DATA_DESTROY command

e B3.3.16 RMI_RTT_DESTROY command

e B3.3.18 RMI_RTT_INIT_RIPAS command

e B4.3.5 RSI_IPA_STATE_SET command

A5.2.6 Realm access to an Unprotected IPA

Tf, QJML

An access by a Realm to an Unprotected IPA can result in a Granule Protection Fault (GPF).
The RMM does not ensure that the PAS of a Granule mapped at an Unprotected IPA is NS.
Realm software must be able to handle taking a GPF during access to an Unprotected IPA.
Realm data access to an Unprotected IPA can cause a REC exit due to Data Abort.

On taking a REC exit due to Data Abort at an Unprotected IPA, the Host can inject a Synchronous External Abort
to the Realm.

The Host can inject an SEA in response to an unexpected Realm data access to an Unprotected IPA.

Realm data access to an Unprotected IPA which caused ESR_EL2.ISS.ISVtobesetto '1' can be emulated by
the Host.

Realm instruction fetch from an Unprotected IPA causes a Synchronous External Abort taken to the Realm.
See also:

* A4.2.3 REC entry following REC exit due to Data Abort
* A4.3.4.3 REC exit due to Data Abort

* A4.4 Emulated Data Aborts

e AS5.2.7 Synchronous External Aborts

A5.2.7 Synchronous External Aborts

R KNJW

When a Synchronous External Abort is taken to a Realm, ESR_EL1.EA == '1".

A5.2.8 Realm access outside IPA space

Reyyac

RT SJJR

DENO0137
1.0-eac3

If stage 1 translation is enabled, Realm access to an IPA which is greater than the IPA space of the Realm causes a
stage 1 Address Size Fault taken to the Realm, with the fault status code indicating the level at which the fault
occurred.

If stage 1 translation is disabled, Realm access to an IPA which is greater than the IPA space of the Realm causes a
stage 1 level O Address Size Fault taken to the Realm.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 66
Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

A5.2.9 Summary of Realm IPA space properties

T rpgru The following table summarizes the properties of Realm IPA space.

Data access
causes abort to Data access causes REC

Instruction
fetch causes

Instruction fetch causes
REC exit due to

Realm IPA Realm? exit due to Data Abort? abort to Realm? Instruction Abort?
Protected, Always (SEA) Never Always (SEA) Never
RIPAS=EMPTY
Protected, Never When Never When
RIPAS=RAM HIPAS=UNASSIGNED HIPAS=UNASSIGNED
Protected, Never Always Never Always
RIPAS=DESTROYED
Unprotected Host can inject When Always (SEA) Never

SEA following HIPAS=UNASSIGNED_NS

REC exit due to

Data Abort
Outside Realm IPA Always (Address Never Always (Address Never
space Size Fault) Size Fault)

See also:

e A4.2.3 REC entry following REC exit due to Data Abort

DENO0137
1.0-eac3

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

67

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3 Host view of memory management

This section describes memory management from the Host’s point of view.

A5.3.1 Host IPA state

A Realm IPA has an associated Host IPA state (HIPAS).
The HIPAS values for a Protected IPA are shown in the following table.

HIPAS Description

UNASSIGNED Address is not associated with any Granule.
ASSIGNED Address is associated with a DATA Granule.

The HIPAS values for an Unprotected IPA are shown in the following table.

HIPAS Description

UNASSIGNED_NS Address is not associated with any Granule.
ASSIGNED_NS Host-owned memory is mapped at this address.

I rrsxk. HIPAS values are stored in a Realm Translation Table (RTT).
Teamko HIPAS transitions are caused by execution of RMI commands.

Tnocas A mapping at a Protected IPA is valid if the HIPAS is ASSIGNED and the RIPAS is RAM.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

Chapter A5. Realm memory management
A5.3. Host view of memory management

* the translation table entry attributes, and
¢ the behavior which results from Realm access to that IPA.

The following table summarizes, for each combination of RIPAS and HIPAS for a Protected IPA:

Each TTD.X column refers to the value of the corresponding “X” field in the architecturally-defined Stage 2

translation table descriptor which is written by the RMM.

Instruction
RIPAS HIPAS TTD.ADDR TTD.NS TTD.VALID Data access fetch
EMPTY UNASSIGNED 0 SEA to Realm SEA to Realm
EMPTY ASSIGNED DATA 0 SEA to Realm SEA to Realm
RAM UNASSIGNED 0 REC exitdue to REC exit due to
Data Abort Instruction
Abort
RAM ASSIGNED DATA 0 1 Data access Instruction fetch
DESTROYED UNASSIGNED 0 REC exitdue to REC exit due to
Data Abort Instruction
Abort
DESTROYED ASSIGNED DATA 0 REC exitdue to REC exit due to
Data Abort Instruction
Abort

See also:

e AS5.5 Realm Translation Table

A5.3.2 Changes to HIPAS while Realm state is NEW

This section describes how the HIPAS of a Protected IPA can change while the Realm state is NEW.

Iy The following diagram summarizes HIPAS changes at a Protected IPA which can occur when the Realm state is
NEW.
ASSIGNED
K
RMI_DATA_CREATE RMI_DATA_DESTROY
RMI_DATA_CREATE_UNKNOWN
UNASSIGNED RMI_RTT_DESTROY
See also:
e B3.3.1 RMI_DATA_CREATE command
* B3.3.2 RMI_DATA_CREATE_UNKNOWN command
* B3.3.3 RMI_DATA_DESTROY command
e B3.3.16 RMI_RTT _DESTROY command
DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 69

1.0-eac3 Non-confidential

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3.3 Changes to HIPAS while Realm state is ACTIVE

This section describes how the HIPAS of a Protected IPA can change while the Realm state is ACTIVE.

Tukzxy The following diagram summarizes HIPAS changes at a Protected IPA which can occur when the Realm state is

ASSIGNED
A

ACTIVE.

RMI_DATA_CREATE_UNKNOWN

RMI_DATA_DESTROY

v
.
UNASSIGNED RMI_RTT_DESTROY

See also:

e B3.3.2 RMI_DATA_CREATE_UNKNOWN command
e B3.3.3 RMI_DATA_DESTROY command
e B3.3.16 RMI_RTT_DESTROY command

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

70

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3.4 Summary of changes to HIPAS and RIPAS of a Protected IPA

I rgmcp The following diagram summarizes HIPAS and RIPAS changes at a Protected IPA which can occur when the
Realm state is NEW.
RIPAS
EMPTY DESTROYED RAM
ASSIGNED
A A A
RMI_DATA_CREATE_UNKNOWN RMI_DATA_DESTROY
RMI_DATA_CREATE_UNKNOWN RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN
HIPAS RMI_DATA_DESTROY RMI_DATA_DESTROY

\ 4 v l
UNASSIGNED

RMI_RTT_DESTROY RMI_RTT_DESTROY

RMI_RTT_INIT_RIPAS

Key

:] Initial state

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 71
1.0-eac3 Non-confidential

Chapter A5. Realm memory management
A5.3. Host view of memory management

Tvekng The following diagram summarizes HIPAS and RIPAS changes at a Protected IPA which can occur when the
Realm state is ACTIVE.
RIPAS
EMPTY DESTROYED RAM
RMI_RTT_SET_RIPAS
ASSIGNED ' '
RMI_RTT_SET_RIPAS RMI_RTT_SET_RIPAS
VALID =0 |€------- N { VALID = 0 }“‘ ---------- VALID = 1
A A A
RMI_DATA_CREATE_UNKNOWN RMI_DATA_DESTROY
RMI_DATA_CREATE_UNKNOWN RMI_DATA_CREATE_UNKNOWN
HIPAS
RMI_DATA_DESTROY RMI_DATA_DESTROY
A 4 A 4 l
RMI_RTT_SET_RIPAS RMI_RTT_SET_RIPAS
VALID = 0 ‘(-------- N { VALID = 0 }“‘ ---------- >‘ VALID = 0
UNASSIGNED g H
! RMI_RTT_DESTROY RMI_RTT_DESTROY !
"""""""""""""""""""""" RMIRTT_SET RIPAS T
Key
EEEmm— Command which can be successfully executed by Host at any time
------------ > Command which can only be successfully executed by Host if Realm has provided consent
VALID =1 Mapping is architecturally valid

See also:

B3.3.1 RMI_DATA_CREATE command

B3.3.2 RMI_DATA_CREATE_UNKNOWN command
B3.3.3 RMI_DATA_DESTROY command

B3.3.16 RMI_RTT_DESTROY command

B3.3.18 RMI_RTT_INIT_RIPAS command

B3.3.21 RMI_RTT_SET_RIPAS command

DENO0137
1.0-eac3

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3.5 Dependency of RMI command execution on RIPAS and HIPAS values

The following table summarizes dependencies on RMI command execution on the current Protected IPA.

Dependency on Dependency on New
Command RIPAS HIPAS New RIPAS HIPAS
RMI_DATA_CREATE RIPAS is RAM HIPAS is Unchanged ASSIGNED
UNASSIGNED
RMI_DATA_CREATE_UNKNOWN None HIPAS is Unchanged ASSIGNED
UNASSIGNED
RMI_DATA_DESTROY If RIPAS is EMPTY HIPAS is Unchanged = UNASSIGNED
ASSIGNED
RMI_DATA_DESTROY If RIPAS is RAM HIPAS is DESTROYED UNASSIGNED
ASSIGNED
RMI_RTT_CREATE None None Unchanged Unchanged
RMI_RTT_DESTROY None HIPAS of all entries DESTROYED Unchanged
is UNASSIGNED
RMI_RTT_FOLD RIPAS of all entries HIPAS of all entries Unchanged Unchanged
is identical is identical
RMI_RTT_INIT_RIPAS RIPAS is EMPTY HIPAS is RAM Unchanged
UNASSIGNED
RMI_RTT_SET_RIPAS Optionally, Realm None As specified Unchanged

may specify that
RIPAS is not
DESTROYED

by Realm

Successful execution of RMI_DATA_CREATE_UNKNOWN does not depend on the RIPAS value of the target

IPA.

Successful execution of RMI_DATA_DESTROY does not depend on the RIPAS value of the target IPA.

Successful execution of RMI_RTT_DESTROY does not depend on the RIPAS values of entries in the target RTT.

Successful execution of RMI_RTT_FOLD does depend on the RIPAS values of entries in the target RTT.

See also:

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI DATA_CREATE_UNKNOWN command

e B3.3.3 RMI_DATA_DESTROY command
e B3.3.15 RMI_RTT_CREATE command

e B3.3.16 RMI RTT DESTROY command

e B3.3.17 RMI RTT FOLD command

e B3.3.18 RMI_RTT _INIT_RIPAS command
e B3.3.21 RMI _RTT_SET_RIPAS command

A5.3.6 Changes to HIPAS of an Unprotected IPA

DENO0137

1.0-eac3

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter A5. Realm memory management
A5.3. Host view of memory management

Tynvey The following diagram summarises HIPAS transitions for an Unprotected IPA.

RMI_RTT_MAP_UNPROTECTED
UNASSIGNED_NS " ASSIGNED_NS
h RMI RTT UNMAP UNPROTECTED

A

See also:

* AS5.4 RIPAS change

e AS5.5 Realm Translation Table

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI_DATA_CREATE_UNKNOWN command
e B3.3.3 RMI_DATA_DESTROY command

e B3.3.16 RMI_RTT_DESTROY command

e B3.3.18 RMI RTT_INIT RIPAS command

e B3.3.21 RMI _RTT _SET _RIPAS command

e B4.3.5 RSI_IPA_STATE_SET command

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 74
1.0-eac3 Non-confidential

Chapter A5. Realm memory management
A5.4. RIPAS change

A5.4 RIPAS change

)
w

DENO0137
1.0-eac3

A RIPAS change consists of actions taken by first the Realm, and then the Host:

A RIPAS change is a process via which the RIPAS of a region of Protected IPA space is changed, for a Realm
whose state is ACTIVE.

* The Realm issues a RIPAS change request by executing RSI_IPA_STATE_SET.

— The input values to this command include:

The requested IPA range: [base, top)
* The requested RIPAS value (either EMPTY or RAM)
* A flag which indicates whether a change from DESTROYED should be permitted
— The RMM records these values in the REC, and then performs a REC exit due to RIPAS change pending.
* In response, the Host executes zero or more RMI_RTT_SET_RIPAS commands.
o If the requested RIPAS value was RAM, at the next RMI_REC_ENTER the Host can optionally indicate that
it rejects the RIPAS change request.

Output values from RSI_IPA_STATE_SET indicate:

* The top of the IPA range which has been modified by the command (new_base).
* If the requested RIPAS value was RAM, whether the Host rejected the Realm request.

Output values from RSI_IPA_STATE_SET are expected to be handled by the Realm as follows:

new_base response Meaning Expected Realm action

new_base == base RSI_ACCEPT RIPAS change incomplete. =~ Call RSI_IPA_STATE_SET
again, with
base = new_base.

base < new_base < top RSI_ACCEPT RIPAS change incomplete. Call RSI_IPA_STATE_SET
again, with
base = new_base.

new_base == top RSI_ACCEPT RIPAS change complete. No further Realm action
required.

new_base == base RSI_REJECT RIPAS change request Depends on protocol agreed

rejected. between Realm and Host,

out of scope of this
specification.

base < new_base < top RSI_REJECT RIPAS change to partial Depends on protocol agreed

region

[base, new_base).
Host rejected request to
change RIPAS for region
[new_base, top).

between Realm and Host,
out of scope of this
specification.

* rec.ripas_addr

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

The RIPAS change process, together with the Realm Initial Measurement ensures that a Realm can always reliably
determine the RIPAS of any Protected IPA.

A RIPAS change is applied by one or more calls to the RMI_RTT_SET_RIPAS command.
Successful execution of RMI_RTT_SET_RIPAS targets an RTTE at address rec.ripas_addr.

On successful execution of RMI_RTT_SET_RIPAS, both of the following are set to the address of the next page
whose RIPAS is to be modified:

75

Chapter A5. Realm memory management
A5.4. RIPAS change

g TNV TYT
OTZYZ

R\ OMLC

I DRPPK

DENO0137
1.0-eac3

* The command output value
If both of the following are true on successful execution of RMI_RTT_SET_RIPAS

* The RIPAS change request indicated that a change from DESTROYED should not be permitted
* A page P within the target IPA range has RIPAS value DESTROYED

then rec.ripas_addr and the command output value are both set to P.

On REC entry following a REC exit due to RIPAS change, GPR values are updated to indicate for how much of
the target IPA range the RIPAS change has been applied.

To complete a RIPAS change for a given target IPA range, a Realm should execute RSI_IPA_STATE_SET in a
loop, until the value of X1 reaches the top of the target IPA range.

On REC entry following a REC exit due to RIPAS change, rec.ripas_response is set to the value of
enter.flags.ripas_response.

If all of the following are true then the output value of RSI_IPA_STATE_SET indicates “Host rejected the request’:

* rec.ripas_value is RAM.
* rec.ripas_addr is not equal to rec.ripas_top.
* rec.ripas_response is REJECT.

Otherwise, the output value of RSI_IPA_STATE_SET indicates “Host accepted the request”.
See also:

e A2.3.2 REC attributes

e A4.2 REC entry

e A4.3.8 REC exit due to RIPAS change pending
e A5.2.2 Realm IPA state

e A7.1.1 Realm Initial Measurement

¢ B2.38 RecRipasChangeResponse function

e B3.3.14 RMI REC_ENTER command

e B3.3.21 RMI_RTT_SET_RIPAS command

e B4.3.5 RSI_IPA_STATE_SET command

e DI1.5.3 RIPAS change flow

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 76
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

A5.5 Realm Translation Table

This section introduces the stage 2 translation table used by a Realm.

A5.5.1 RTT overview

D "RNCX

THE Ccvz

A Realm Translation Table (RTT) is an abstraction over an Armv8-A stage 2 translation table used by a Realm.

The attributes and format of an Armv8-A stage 2 translation table are defined by the Armv8-A Virtual Memory
System Architecture (VMSA) Arm Architecture Reference Manual for A-Profile architecture [3].

The translation granule size of an RTT is 4KB.

The RMM architecture can only be deployed on a hardware platform which implements a translation granule size
of 4KB.

The contents of an RTT are not directly accessible to the Host.

The contents of an RTT are manipulated using RMM commands. These commands allow the Host to manipulate
the contents of the RTT used by a Realm, subject to constraints imposed by the RMM.

An RTT entry (RTTE) is an abstraction over an Armv8-A stage 2 translation table descriptor.
An RTTE contains an output address which can point to one of the following:

* Another RTT
* A DATA Granule which is owned by the Realm
* Non-secure memory which is accessible to both the Realm and the Host

A5.5.2 RTT structure and configuration

DVH\ Wi

An RTT tree is a hierarchical data structure composed of RTTs, connected via Table Descriptors.
An RTT contains an array of RTTEs.
An RTT level is the depth of an RTT within an RTT tree.

An RTT does not have an intrinsic “level” attribute. The level of an RTT is determined by its position within an
RTT tree.

The RTT level of the root of an RTT tree is called the starting level.
The maximum depth of an RTT tree depends on all of the following:

e whether LPA2 is selected when the Realm is created
e the rtt_level_start attribute of the Realm
* the ipa_width attribute of the Realm.

See also:

e A2.1.3 Realm attributes
e A3.1.2 Realm LPA2 and IPA width

A5.5.3 RTT starting level

DENO0137
1.0-eac3

The RTT starting level is set when a Realm is created.

The number of starting level RTTs is architecturally defined as a function of the Realm IPA width and the RTT
starting level. See Arm Architecture Reference Manual for A-Profile architecture [3] for further details.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 77
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

TrynNxB The address of the first starting level RTT is stored in the RTT base attribute of the owning Realm.
T xxwow The RTT base attribute is set when a Realm is created.
See also:

e A2.1.3 Realm attributes

A5.5.4 RTT entry

Ispcez An RTT entry (RTTE) is an abstraction over an Armv8-A stage 2 translation table descriptor. The attributes and
format of an Armv8-A stage 2 translation table descriptor are defined by the Armv8-A Virtual Memory System
Architecture (VMSA) Arm Architecture Reference Manual for A-Profile architecture [3].

DeNHog An RTTE has a state.
The values of RTTE state are:

* TABLE: the output address of the RTTE points to another RTT
* A HIPAS value

Towoss The state of an RTTE in a RTT which is not level 2 or level 3 is UNASSIGNED, UNASSIGNED_NS or TABLE.

Dusust, The output address of an RTTE whose state is TABLE and which is in a level n RTT is the physical address of a
level n+1 RTT.

TpgzTm An RTT whose level n is not the starting RTT level is pointed-to by exactly one TABLE RTTE in a level n-1 RTT.
Ipxowz The following diagram shows an example RTT tree, annotated with RTTE states.
RD
RTT base
‘\ Level 0 RTT Block
g UNASSIGNED
TABLE —\ N Level 1 RTT
UNASSIGNED UNASSIGNED R Level 2 RTT
UNASSIGNED UNASSIGNED [unassioneD Level 3 RTT
UNASSIGNED ASSIGNED ASSIGNED
/\/\ UNASSIGNED UNASSIGNED UNASSIGNED
’\/\ TABLE /‘ UNASSIGNED g Page
UNASSIGNED_NS /\/\ UNASSIGNED
UNASSIGNED_NS ’\/\ /\/\
TABLE ’\/\ /\/\
UNASSIGNED TABLE /\/\
UNASSIGNED UNASSIGNED
UNASSIGNED
Trcuos The function AddrIsRttLevelAligned () is used to evaluate whether an address is aligned to the address range

described by an RTTE at a specified RTT level.

See also:

* AS5.3.1 Host IPA state
* B1.4 Command condition expressions

A5.5.5 RTT reading

<IWKQ

DENO0137
1.0-eac3

Attributes of an RTTE, including the RTTE state, can be read by calling the RMI_RTT_READ_ENTRY command.

The set of RTTE attributes which are returned depends on the state of the RTTE.

See also:

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

e B3.3.20 RMI RTT READ ENTRY command

A5.5.6 RTT folding

DrucLc An RTT is homogeneous if its entries satisfy one of the conditions in the following table. If an RTT is homogeneous,
the following table specifies the state to which the parent RTTE is set.

Conditions on child RTT contents Parent RTTE state

All of the following are true: UNASSIGNED
 State of all entries is UNASSIGNED
e RIPAS of all entries is the same

State of all entries is UNASSIGNED_NS UNASSIGNED_NS

All of the following are true: ASSIGNED
e Levelis2or3
* State of all entries is ASSIGNED
* Output address of first entry is aligned to size of the address
range described by an entry in the parent RTT
* Qutput addresses of all entries are contiguous
» RIPAS of all entries is the same

All of the following are true: ASSIGNED_NS
e Levelis2or3
o State of all entries is ASSIGNED_NS
* Output address of first entry is aligned to size of the address
range described by an entry in the parent RTT
* Qutput addresses of all entries are contiguous
* Attributes of all entries are identical

TkpxLT The function Rtt IsHomogeneous () is used to evaluate whether an RTT is homogeneous.

Dopxcp RTT folding is the operation of destroying a homogeneous child RTT, and moving information which was stored in
the child RTT into the parent RTTE.

T vk On RTT folding, the state of the parent RTTE is determined from the contents of the child RTTE:.
IiLwcH The function RttFold () is used to evaluate the parent RTTE state which results from an RTT folding operation.
Trpmer On RTT folding, if the state of the parent RTTE is ASSIGNED or ASSIGNED_NS then the attributes of the parent

RTTE are copied from the child RTTEs.
See also:

e AS5.5.9 RTT destruction

* B2.59 RttFold function

e B2.60 RttlsHomogeneous function

e B3.3.17 RMI RTT _FOLD command

A5.5.7 RTT unfolding

Daoomc RTT unfolding is the operation of creating a child RTT, and populating it based on the contents of the parent RTTE.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 79
1.0-eac3 Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

On RTT unfolding, the state of all RTTEs in the child RTT are set to the state of the parent RTTE.

On RTT unfolding, if the state of the parent RTTE is ASSIGNED or ASSIGNED_NS, then the output addresses of
RTTEs in the child RTT are set to a contiguous range which starts from the address of the parent RTTE.

See also:

e B3.3.15 RMI RTT CREATE command

A5.5.8 RTTE liveness and RTT liveness

Dkemin
Ducvaz

Truryz

—)HF‘.'E R

Dypsru

Tyuxany

I YPLKM

RTTE liveness is a property which means that a physical address is stored in the RTTE.
An RTTE is live if the RTTE state is ASSIGNED, ASSIGNED_NS or TABLE.

The function Rt t SkipNonLiveEntries () is used to scan an RTT to find the next live RTTE. The resulting [PA
is returned to the Host from commands whose successful execution causes a live RTTE to become non-live.

Identifying the next live RTTE allows the Host to avoid calls to RMI_RTT_READ_ENTRY when unmapping
ranges of a Realm’s IPA space, for example during Realm destruction.

RTT liveness is a property which means that there exists another RMM data structure which is referenced by the
RTT.

An RTT is live if, for any of its entries, either of the following is true:

e The RTTE state is ASSIGNED
e The RTTE state is TABLE.

Note that an RTT can be non-live, even if one of its entries is live. This would be the case for example if the RTT
corresponds to an Unprotected IPA range and the state of one of its entries is ASSIGNED_NS.

The function RttIsLive () is used to evaluate whether an RTT is live.
See also:

e AS5.5.9 RTT destruction

» B2.61 RttlsLive function

» B2.73 RttSkipNonLiveEntries function

* B3.3.3 RMI_DATA_DESTROY command

e B3.3.16 RMI RTT _DESTROY command

e B3.3.22 RMI_RTT _UNMAP_UNPROTECTED command

A5.5.9 RTT destruction

DENO0137
1.0-eac3

RTT destruction is the operation of destroying a child RTT, and discarding information which was stored in the
child RTT.

An RTT cannot be destroyed if it is live.
An RTT can be destroyed regardless of whether it is homogeneous.
Following RTT destruction, all of the following are true for the parent RTTE:

* RIPAS is DESTROYED
* RTTE state is UNASSIGNED

See also:

e AS5.2 Realm view of memory management
e AS5.5.6 RTT folding
* AS5.5.8 RTTE liveness and RTT liveness

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 80
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

e B3.3.16 RMI_RTT_DESTROY command

A5.5.10 RTT walk

A5.5.11

R:{xftf

U NPVGN

DENO0137
1.0-eac3

An TPA is translated to a PA by walking an RTT tree, starting at the RTT base.

The behaviour of an RTT walk is defined by the Armv8-A Virtual Memory System Architecture (VMSA) Arm
Architecture Reference Manual for A-Profile architecture [3].

The inputs to an RTT walk are:

* a Realm Descriptor, which contains the address of the initial RTT
 atarget [PA
* atarget RTT level.

The RTT walk terminates when either:

* it reaches the target RTT level, or
* it reaches an RTTE whose state is not TABLE.

The result of an RTT walk performed by the RMM is a data structure of type RmmRttWalkResult.

The attributes of an RmmRt tWalkResult are summarized in the following table.

Name Type Description

level Int8 RTT level reached by the walk
rtt_addr Address Address of RTT reached by the walk
rtte RmmRttEntry RTTE reached by the walk

The function RmmRttWalkResult RttWalk (rd, addr, level) isused to represent an RTT walk.
The input address to an RTT walk is always less than 2w, where w is the IPA width of the target Realm.
See also:

e A2.1.3 Realm attributes

* B1.4 Command condition expressions

e B2.75 RttWalk function

e B3.3.1 RMI_DATA_CREATE command

e B3.3.2 RMI _DATA_CREATE_UNKNOWN command
e B3.3.3 RMI_DATA_DESTROY command

e B3.3.15 RMI RTT CREATE command

e B3.3.16 RMI_RTT_DESTROY command

e B3.3.19 RMI_RTT_MAP_UNPROTECTED command
e B3.3.22 RMI_RTT_UNMAP_UNPROTECTED command
e C1.25 RmmRttWalkResult type

RTT entry attributes

The cacheability attributes of an RTT entry which corresponds to a Protected IPA and whose state is ASSIGNED
are independent of any stage 1 descriptors and of the state of the stage 1| MMU.

The RMM uses FEAT_S2FWB to ensure that the cacheability attributes of an RTT entry which corresponds to a
Protected IPA and whose state is ASSIGNED are independent of stage 1 translation.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 81
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

Razxmu
Drgrur
XQHLKB
RorzTL
Lo
DENO0137
1.0-eac3

The attributes of an RTT entry which corresponds to a Protected IPA and whose state is ASSIGNED include the
following:

* Normal memory
¢ Inner Write-Back Cacheable
¢ Inner Shareable

The following attributes of an RTT entry which corresponds to an Unprotected IPA and whose state is
ASSIGNED NS are Host-controlled RTT attributes:

* ADDR

® MemAttr[2:0]
® S2AP

* SH

In an RTT entry which corresponds to an Unprotected IPA and whose state is ASSIGNED_NS, MemAttr [3] is
RESO because the RMM uses FEAT_S2FWB.

Hardware access flag and dirty bit management is disabled for the stage 2 translation used by a Realm.

Hardware access flag and dirty bit management may be enabled by software executing within the Realm, for its
own stage 1 translation.

See also:

* AS5.2.1 Realm IPA space

e B2.53 RttDescriptorlsValidForUnprotected function

e B3.3.19 RMI_RTT_MAP_UNPROTECTED command
e B3.3.20 RMI_RTT_READ_ENTRY command

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 82
Non-confidential

Chapter A6
Realm interrupts and timers

This specification requires that a virtual Generic Interrupt Controller (vGIC) is presented to a Realm. This vGIC
should be architecturally compliant with respect to GICv3 with no legacy operation.

The Host is able to inject virtual interrupts using the GIC virtual CPU interface.

The vGIC presented to a Realm is expected to be implemented via a combination of Host emulation and RMM
mediation, as follows:

Management of Non-secure physical interrupts is performed by the Host, via the GIC Interrupt Routing
Infrastructure (IRI).

The Host is responsible for emulating a GICv3 distributor MMIO interface.
The Host is responsible for emulating a GICv3 redistributor MMIO interface for each REC.

The GIC MMIO interfaces emulated by the Host must be presented to the Realm via its Unprotected IPA
space.

The Host may optionally provide a virtual Interrupt Translation Service (ITS). The Realm must allocate ITS
tables within its Unprotected IPA space.

The RMM allows the Host to control some of the GIC virtual CPU interface state which is observed by the
Realm. This state is designed to be the minimum required to allow the Host to correctly manage interrupts
for the Realm, with integrity guaranteed by the RMM for the remainder of the GIC CPU interface state.

On REC exit, the RMM exposes some of the GIC virtual CPU interface state to the Host. This state is
designed to be the minimum required to allow the Host to correctly manage interrupts for the Realm, with
confidentiality guaranteed by the RMM for the remainder of the GIC virtual CPU interface state.

On every REC exit, the EL1 timer state is exposed to the Host. The RMM guarantees that a REC exit occurs
whenever a Realm EL1 timer asserts or de-asserts its output.

DENO0137
1.0-eac3

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 83
Non-confidential

Chapter A6. Realm interrupts and timers

See also:

e Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]
e AS5.2.1 Realm IPA space
* D1.6 Realm interrupts and timers flows

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

84

Chapter A6. Realm interrupts and timers
A6.1. Realm interrupts

A6.1

9

Ugxcne

RNITI‘?T'

DENO0137
1.0-eac3

SKON

F

Realm interrupts

This section describes the programming model for a REC’s GIC CPU interface.
The value of enter.gicv3_1lrs[n] is valid if all of the following are true:

* The value is an architecturally valid encoding of ICH_LR<n>_EL2 according to Arm Generic Interrupt
Controller (GIC) Architecture Specification version 3 and version 4 [5].
© HW == '0"'.

The GICv3 architecture states that, if W == '1"' then the virtual interrupt must be linked to a physical interrupt
whose state is Active, otherwise behavior is undefined. The RMM is unable to validate that invariant, so it imposes
the constraint that Hw == '0°.

The value of enter.gicv3_hcr is valid if the value is an architecturally valid encoding of ICH_HCR_EL2
according to Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5].

REC entry fails if the value of any enter.gicv3_x attribute is invalid.
On REC entry, ICH_LR<n>_FEL2 is setto enter.gicv3_1rs[n], for all values of n supported by the PE.
On REC entry, the following fields in ICH_HCR_EL2 are set to the corresponding values in enter.gicv3_hcr:

* UIE

* LRENPIE
* NPIE

* VGrpOEIE
* VGrpODIE
* VGrplEIE
® VGrplDIE
¢ TDIR

On REC entry, fields in enter.gicv3_hcr must be set to ‘0’ except for the following:

e UIE

* LRENPIE
* NPIE

* VGrpOEIE
* VGrpODIE
* VGrplEIE
® VGrplDIE
* TDIR

If any other field in enter.gicv3_hcris set to ‘1, then RMI_REC_ENTER fails.

The RMM provides access to the GIC virtual CPU interface to the Realm and therefore controls the enable bit
and most trap bits in ICH_HCR_EL2. The maintenance interrupt control bits are controlled by the Host, because
the maintenance interrupts are provided as hints to the hypervisor to allocate List Registers optimally and to
correctly emulate GICv3 behavior. The TDIR bit is also controlled by the Host because it is used when supporting
EOImode == '1' in the Realm. This mode is used to allow deactivation of virtual interrupts across RECs. This
deactivation must be handled by the Host because the RMM can only operate on a single REC during execution of
RMI_REC_ENTER.

A REC exit due to IRQ is not generated for an interrupt which is masked by the value of 1cC_PMR_EL1 at the
time of REC entry.

The RMM should preserve the value of 1cc_PMR_EL1 during REC entry.
On REC exit, exit .gicv3_vmcr contains the value of ICH_VMCR_EL?2 at the time of the Realm exit.

On REC exit, exit .gicv3_misr contains the value of ICH_MISR_EL2 at the time of the Realm exit.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 85
Non-confidential

Chapter A6. Realm interrupts and timers
A6.1. Realm interrupts

0

DENO0137
1.0-eac3

The Host could in principle infer the value of ICH_MISR_EL?2 at the time of the Realm exit from the combination
of exit.gicv3_lrs[n] and exit.gicv3_hcr. However, this would be cumbersome, error-prone, and diverge
from the design of existing hypervisor software.

On REC exit, exit .gicv3_1rs[n] contains the value of ICH_LR<n>_EL2 at the time of the Realm exit, for all
values of n supported by the PE.

On REC exit, the following fields in exit.gicv3_hcr contains the value of the corresponding field in
ICH_HCR_ELZ2 at the time of the Realm exit:

® EOIcount
e UIE

* LRENPIE
* NPIE

* VGrpOEIE
* VGrpODIE
* VGrplEIE
* VGrplDIE
* TDIR

All other fields contain zero.
On REC exit, the values of the following registers may have changed:

e ICH_APOR<n>_EL2
e ICH_AP1R<n>_EL2
e ICH_LR<n>_EL2

e ICH_VMCR_EL2

e ICH_HCR_EL2

It is the responsibility of the caller to save and restore GIC virtualization system control registers if their value
needs to be preserved following execution of RMI_REC_ENTER.

On REC entry, the values of the GIC virtualization control system registers are overwritten. The Non-secure
hypervisor runs at EL2 and therefore does not make direct use of the virtual GIC CPU interface for its own
execution. This means that saving / restoring the caller’s GIC virtualization control system registers would typically
not be required and would add additional runtime overhead for each execution of RMI_REC_ENTER.

On REC exit, ICH_HCR_EL2.En == '0°'.

Disabling the virtual GIC CPU interface ensures that the caller does not receive unexpected GIC maintenance
interrupts. A stronger constraint, for example stating that all GIC virtualization control system registers are zero
on REC exit, was considered. However, this was rejected on the basis that it may preclude future optimisations,
such as returning early from execution of RMI_REC_ENTER, without needing to first write zero to all GIC
virtualization control system registers, if an interrupt is pending.

See also:

* Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]
* A4.2 REC entry

* A4.3 REC exit

e B3.3.14 RMI REC_ENTER command

* B3.4.14 RmiRecEnter type

* B3.4.16 RmiRecEXxit type

e DI1.6.1 Interrupt flow

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 86
Non-confidential

Chapter A6. Realm interrupts and timers
A6.2. Realm timers

A6.2

Rkk L
R‘v W
Tyryg
Rrkcn
Rrozr
R JSMQF
X,()\
IrrM
R';‘T,S D
DENO0137
1.0-eac3

Realm timers

This section describes the programming model for Realm EL1 timers.
Architectural timers are available to a Realm and behave according to their architectural specification.
During Realm execution, if a Realm EL1 timer asserts its output, a Realm exit occurs.

If the Host has programmed an EL1 timer to assert its output during Realm execution, that timer output is not
guaranteed to assert.

If the Host has programmed an EL2 timer to assert its output during Realm execution, that timer output is
guaranteed to assert.

Both the virtual and physical counter values are guaranteed to be monotonically increasing when read by a Realm,
in accordance with the architectural counter behavior.

When read by a Realm, either the virtual or physical counter returns the same value at a given point in time on a
given PE.

In order to ensure that the Realm has a consistent view of time, the virtual timer offset must be fixed for the lifetime
of the Realm. The absolute value of the virtual timer offset is not important, so the value zero has been chosen for
simplicity of both the specification and the implementation.

The rule that virtual and physical counter values are identical may need to be amended if a future version of the
specification supports migration and / or virtualization of time based on the virtual counter differing from the
physical counter.

On REC exit, Realm EL1 timer state is exposed via the RecExit object:

* exit.cntv_ctl contains the value of CNTV_CTL_ELO at the time of the Realm exit.

* exit.cntv_cval contains the value of CNTV_CVAL_ELO at the time of the Realm exit, expressed as if the
virtual counter offset was zero.

* exit.cntp_ctl contains the value of CNTP_CTI,_ELO at the time of the Realm exit.

* exit.cntp_cval contains the value of CNTP_CVAL_ELO at the time of the Realm exit, expressed as if the
physical counter offset was zero.

The Host should check the Realm EL1 timer state on every return from RMI_REC_ENTER, and if a timer condition
is met, the Host should inject a virtual interrupt. This is true regardless of the value of exit .exit_reason: even
if the return occurred for a reason unrelated to timer state (for example, a REC exit due to Data Abort), the timer
condition should be checked.

This is to ensure that the Realm does not miss a timer interrupt if, for example, there is no other event causing a
return from RMI_REC_ENTER. In other words, the RMM only guarantees that the Host can observe a change in
timer output state during return from RMI_REC_ENTER, but does not guarantee a REC exit specifically indicating
an asserted timer output change.

See also:

* A4.3 REC exit
e B3.4.16 RmiRecEXxit type
* DI1.6.2 Timer interrupt delivery flow

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 87
Non-confidential

Chapter A7
Realm measurement and attestation

This section describes how the initial state of a Realm is measured and can be attested.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

88

Chapter A7. Realm measurement and attestation
A7.1. Realm measurements

A7.1 Realm measurements

Tyrrwe

This section describes how Realm measurement values are calculated.

A Realm measurement value is a rolling hash.

A Realm Hash Algorithm (RHA) is an algorithm which is used to extend a Realm measurement value.
The RHA used by a Realm is selected via the hash_algo attribute.

See also:

e A2.1.3 Realm attributes

e A3.1.1 Realm hash algorithm

e A7.2.3.1.3 Realm Initial Measurement claim

e A7.2.3.1.4 Realm Extensible Measurements claim

A7.1.1 Realm Initial Measurement

Tykspz

IH(,“]DV

Inoor:

I\ WBL

DENO0137
1.0-eac3

This section describes how the Realm Initial Measurement (RIM) is calculated.
The initial RIM value for a Realm is calculated from a subset of the Realm parameters.

A RIM is extended by applying the RHA to the inputs of RMM operations which are executed during Realm
construction.

The following operations cause a RIM to be extended:

* Creation of a DATA Granule during Realm construction
* Creation of a runnable REC
* Changes to RIPAS of Protected IPA during Realm construction

On execution of an operation which requires extension of a RIM, the RMM first constructs a measurement
descriptor structure. The measurement descriptor contents include the current RIM value. The new RIM value is
computed by applying the RHA to the measurement descriptor.

desc = MeasurementDescriptor(M;_q, ...)
M; = RH A(desc)

A RIM is immutable while the state of the Realm is ACTIVE. This implies that a RIM reflects the configuration
and contents of the Realm at the moment when it transitioned from the NEW to the ACTIVE state.

A RIM depends upon the order of the RMM operations which are executed during Realm construction.

The order in which RMM operations are executed during Realm construction must be agreed between the Realm
owner (or a delegate of the Realm owner which will receive and validate the RIM) and the Host which executes the
RMM commands. This ensures that a correctly-constructed Realm will have the expected measurement.

The value of a RIM can be read using the RSI_ MEASUREMENT_READ command.
See also:

* B3.3.1.4 RMI_DATA_CREATE extension of RIM

e B3.3.9.4 RMI_REALM_CREATE initialization of RIM
* B3.3.12.4 RMI_REC_CREATE extension of RIM

e B3.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM

e B4.3.7 RSI MEASUREMENT _READ command

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 89
Non-confidential

Chapter A7. Realm measurement and attestation
A7.1. Realm measurements

A7.1.2 Realm Extensible Measurement

DENO0137
1.0-eac3

This section describes the behavior of a Realm Extensible Measurement (REM).

A REM is extended using the RSI_MEASUREMENT_EXTEND command.

The value of a REM can be read using the RSI_MEASUREMENT_READ command.

The initial value of a REM is zero.
See also:

e B4.3.6 RSI_ MEASUREMENT _EXTEND command
e B4.3.7 RSI_ MEASUREMENT_READ command

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2 Realm attestation

This section describes the primitives which are used to support remote Realm attestation.

A7.2.1 Attestation token

DyrrLN A CCA attestation token is a collection of claims about the state of a Realm and of the CCA platform on which the

Realm is running.
Taxesp A CCA attestation token consists of two parts:
¢ Realm token
Contains attributes of the Realm, including:

— Realm Initial Measurement
— Realm Extensible Measurements

* CCA platform token

Contains attributes of the CCA platform on which the Realm is running, including:

— CCA platform identity
— CCA platform lifecycle state
— CCA platform software component measurements

T skico The size of a CCA attestation token may be greater than 4KB.
See also:

e A7.1.1 Realm Initial Measurement
e A7.1.2 Realm Extensible Measurement

A7.2.2 Attestation token generation

T krMRE The process for a Realm to obtain an attestation token is:

e Call RSI_ATTESTATION_TOKEN_INIT once

* Call RSI_ATTESTATION_TOKEN_CONTINUE in a loop, until the result is not RSI_INCOMPLETE
Each call to RSI_ATTESTATION_TOKEN_CONTINUE retrieves up to one Granule of the attestation token.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

91

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

S XMLMF

,,,,,,,,,

DENO0137
1.0-eac3

The following pseudocode illustrates the process of a Realm obtaining an attestation token.

int get_attestation_token(...)

{

int ret;

ret = RSI_ATTESTATION_TOKEN_INIT (challenge);
if (ret) {
return ret;

}

do { // Retrieve one Granule of data per loop iteration
uint64_t granule = alloc_granule();
uint64_t offset = 0;

do { // Retrieve sub-Granule chunk of data per loop iteration
uint64_t size = GRANULE_SIZE - offset;

(status, len) = RSI_ATTESTATION_TOKEN_CONTINUE (Granule, offset, size);
offset += len;
} while (ret == RSI_INCOMPLETE && offset < GRANULE_SIZE);

// "offset" bytes of data are now ready for consumption from "granule"
} while (ret == RSI_INCOMPLETE) ;

return ret;

Up to one attestation token generation operation may be ongoing on a REC.

On execution of RSI_ATTESTATION_TOKEN_INIT, if an attestation token generation operation is ongoing on
the calling REC, it is terminated.

The challenge value provided to RSI_ATTESTATION_TOKEN_INIT is included in the generated attestation token.
This allows the relying party to establish freshness of the attestation token.

If the size of the challenge provided by the relying party is less than 64 bytes, it should be zero-padded prior to
calling RSI_ATTESTATION_TOKEN_INIT. Arm recommends that the challenge should contain at least 32 bytes
of unique data.

Generation of an attestation token can be a long-running operation, during which interrupts may need to be handled.

If a physical interrupt becomes pending during execution of RSI_ATTESTATION_TOKEN_CONTINUE, a REC
exit due to IRQ can occur.

On the next entry to the REC:

o If a virtual interrupt is pending on that REC, it is taken to the REC’s exception handler
* RSI_ATTESTATION_TOKEN_CONTINUE returns RSI_INCOMPLETE
e The REC should call RSI_ATTESTATION_TOKEN_CONTINUE again

See also:

e A4.3.5 REC exit due to IRQ

e AG6.1 Realm interrupts

e A7.2.3.1.1 Realm challenge claim

e B4.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command

e B4.3.2 RSI_ATTESTATION_TOKEN_INIT command

e DI1.7.1 Attestation token generation flow

e DI1.7.2 Handling interrupts during attestation token generation flow

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 92
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3 Attestation token format

Trpucx

I PTVH

DENO0137
1.0-eac3

The CCA attestation token is a profiled IETF Entity Attestation Token (EAT).

The CCA attestation token is a Concise Binary Object Representation (CBOR) map, in which the map values are
the Realm token and the CCA platform token.

The Realm token contains structured data in CBOR, wrapped with a COSE_Sign1 envelope according to the
CBOR Object Signing and Encryption (COSE) standard.

The Realm token is signed by the Realm Attestation Key (RAK).

The CCA platform token contains structured data in CBOR, wrapped with a COSE_Sign1 envelope according to
the COSE standard.

The CCA platform token is signed by the Initial Attestation Key (IAK).

The CCA platform token contains a hash of RAK_pub. This establishes a cryptographic binding between the
Realm token and the CCA platform token.

The CCA attestation token is defined as follows:

cca-token = #6.399 (cca-token—-collection) ; EAT token—-collection extension

cca-platform-token = bstr .cbor COSE_Signl_Tagged
cca-realm-delegated-token = bstr .cbor COSE_Signl_Tagged

cca—-token—-collection = {
44234 => cca-platform-token ; 44234 = 0xACCA
44241 => cca-realm-delegated-token

; EAT standard definitions
COSE_Signl_Tagged = #6.18 (COSE_Signl)

; Deliberately shortcut these definitions until EAT is finalised and able to
; pull in the full set of definitions
COSE_Signl = "COSE-Signl placeholder"

The composition of the CCA attestation token is summarised in the following figure.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 93
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

CCA attestation token

Realm token

COSE_Sign1 envelope

Realm token claim map

Client challenge ={ challenge l

| realm_public_key = RAK_pL1]

| Signature(RAK) l

CCA platform token

COSE_Sign1 envelope

Platform token claim map

| challenge = Hash(RAK_pubrL:

| Signature(lAK)

Figure A7.1: Attestation token format

See also:

e Arm CCA Security model [4]

* Concise Binary Object Representation (CBOR) [6]
CBOR Object Signing and Encryption (COSE) [7]
» Entity Attestation Token (EAT) [8]

A7.2.3.1 Realm claims

A7.2.3.2 CCA platform claims

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 94
1.0-eac3 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.1 Realm claims

This section defines the format of the Realm token claim map. The format is described using a combination of
Concise Data Definition Language (CDDL) and text description.

T ukBHC The Realm token claim map is defined as follows:

cca-realm-claims = (cca-realm-claim-map)

cca-realm-claim-map = {
cca-realm-challenge
cca-realm-personalization-value
cca-realm—-initial-measurement
cca-realm-extensible-measurements
cca-realm-hash-algo-id
cca-realm-public-key
cca-realm-public-key-hash-algo-id

}

See also:

» Concise Data Definition Language (CDDL) [9]

e A7.2.3.1.1 Realm challenge claim

e A7.2.3.1.2 Realm Personalization Value claim

e A7.2.3.1.3 Realm Initial Measurement claim

e A7.2.3.1.4 Realm Extensible Measurements claim

e A7.2.3.1.5 Realm hash algorithm ID claim

e A7.2.3.1.6 Realm public key claim

e A7.2.3.1.7 Realm public key hash algorithm identifier claim
e A7.2.3.1.8 Collated CDDL for Realm claims

e A7.2.3.1.9 Example Realm claims

A7.2.3.1.1 Realm challenge claim

T rwxo The Realm challenge claim is used to carry the challenge provided by the caller to demonstrate freshness of the
generated token.
IrvLzK The Realm challenge claim is identified using the EAT nonce label (10).
Tonvne The length of the Realm challenge is 64 bytes.
T pxuxt The Realm challenge claim must be present in a Realm token.
TsxceN The format of the Realm challenge claim is defined as follows:
cca-realm-challenge-label = 10
cca-realm-challenge-type = bytes .size 64
cca-realm—-challenge = (
cca-realm-challenge—label => cca-realm-challenge-type
)
See also:
e A7.2.2 Attestation token generation
e B4.3.2 RSI ATTESTATION_TOKEN _INIT command
A7.2.3.1.2 Realm Personalization Value claim
Tsenxs The Realm Personalization Value claim contains the RPV which was provided at Realm creation.
TskzeD The Realm Personalization Value claim must be present in a Realm token.
DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 95

1.0-eac3 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
1.0-eac3

The format of the Realm Personalization Value claim is defined as follows:

cca-realm-personalization-value-label = 44235
cca-realm-personalization-value-type = bytes .size 64

cca-realm-personalization-value = (
cca-realm-personalization-value-label => cca-realm-personalization-value-type

)

See also:

e A2.1.3 Realm attributes
A7.2.3.1.3 Realm Initial Measurement claim

The Realm Initial Measurement claim contains the values of the Realm Initial Measurement.
The Realm Initial Measurement claim must be present in a Realm token.

The format of the Realm Initial Measurement claim is defined as follows:

cca-realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-realm-initial-measurement-label = 44238
cca-realm—-initial-measurement = (

cca-realm-initial-measurement-label => cca-realm-measurement-type

)

See also:
e A7.1 Realm measurements
e A7.2.3.1.4 Realm Extensible Measurements claim

A7.2.3.1.4 Realm Extensible Measurements claim

The Realm Extensible Measurements claim contains the values of the Realm Extensible Measurements.
The Realm Extensible Measurements claim must be present in a Realm token.

The format of the Realm measurements claim is defined as follows:

cca-realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-realm-extensible-measurements—label = 44239
cca-realm-extensible-measurements = (

cca-realm-extensible-measurements—label => [4x4 cca-realm-measurement-type |

)

See also:

e A7.1 Realm measurements
e A7.2.3.1.3 Realm Initial Measurement claim

A7.2.3.1.5 Realm hash algorithm ID claim

The Realm hash algorithm ID claim identifies the algorithm used to calculate all hash values which are present in

the Realm token.

Arm recommends that the value of the Realm hash algorithm ID claim is an IANA Hash Function name JANA

Hash Function Textual Names [10].

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Tyrveo The Realm hash algorithm ID claim must be present in a Realm token.

IpwpLg The format of the Realm hash algorithm ID claim is defined as follows:

cca-realm-hash-algo-id-label = 44236

cca-realm-hash-algo-id = (
cca-realm-hash-algo-id-label => text

)

A7.2.3.1.6 Realm public key claim

T 7crMc The Realm public key claim identifies the key which is used to sign the Realm token.

TusNaC The value of the Realm public key claim is RAK_pub, encoded according to SEC 1: Elliptic Curve Cryptography,
version 2.0 [11].

T1snpo The Realm public key claim must be present in a Realm token.

TxNNDS The format of the Realm public key claim is defined as follows:

cca-realm-public-key-label = 44237

; TODO: support public key sizes other than ECC-P384
cca-realm-public-key-type = bytes .size 97

cca-realm-public-key = (
cca-realm-public-key-label => cca-realm-public-key-type

)

See also:

e SEC I: Elliptic Curve Cryptography, version 2.0 [11]
e A7.2.3.1.7 Realm public key hash algorithm identifier claim
e A7.2.3.2.2 CCA platform challenge claim

A7.2.3.1.7 Realm public key hash algorithm identifier claim

TywsLe The Realm public key hash algorithm identifier claim identifies the algorithm used to calculate HRAK_pub).
T rNrBN The Realm public key hash algorithm identifier claim must be present in a Realm token.
Tunpvx The format of the Realm public key hash algorithm identifier claim is defined as follows:

cca-realm-public-key-hash-algo-id-label = 44240

cca-realm-public-key-hash-algo-id = (
cca-realm-public-key-hash-algo-id-label => text
)

See also:

e SEC I: Elliptic Curve Cryptography, version 2.0 [11]
e A7.2.3.1.6 Realm public key claim
e A7.2.3.2.2 CCA platform challenge claim

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 97
1.0-eac3 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.1.8 Collated CDDL for Realm claims

Dpeyxs The format of the Realm token claim map is defined as follows:

N

cca-realm-claims = (cca-realm-claim-map)

cca-realm-claim-map = {
cca-realm-challenge
cca-realm-personalization-value
cca-realm-initial-measurement
cca-realm-extensible-measurements
cca-realm-hash-algo-id
cca-realm-public-key
cca-realm-public-key-hash-algo-id

cca-realm-challenge—-label = 10
cca-realm-challenge-type = bytes .size 64
cca-realm-challenge = (

cca-realm-challenge—-label => cca-realm-challenge-type
cca-realm-personalization-value-label = 44235

cca-realm-personalization-value-type = bytes .size 64

cca-realm-personalization-value = (

cca-realm-personalization-value—-label => cca-realm-personalization-value-type

cca-realm—measurement-type = bytes .size 32 / bytes .size 48 / bytes
cca-realm-initial-measurement—-label = 44238

cca-realm—-initial-measurement = (
cca-realm-initial-measurement-label => cca-realm-measurement-type

cca-realm-extensible-measurements-label 44239

cca-realm—-extensible—-measurements = (

cca-realm-extensible-measurements—-label => [4%x4 cca-realm-measurement-type]

cca-realm-hash-algo-id-label = 44236

cca-realm-hash-algo-id = (
cca-realm-hash-algo-id-label => text

cca-realm-public-key-label = 44237

; TODO: support public key sizes other than ECC-P384
cca-realm-public-key-type = bytes .size 97

cca-realm-public-key = (
cca-realm-public-key-label => cca-realm-public-key-type

cca-realm-public-key-hash-algo-id-label = 44240

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

98

Chapter A7. Realm measurement and attestation

A7.2. Realm attestation

cca-realm-public-key-hash-algo-id = (
cca-realm-public-key-hash-algo-id-label => text

)

DENO0137
1.0-eac3

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Icprrr

DENO0137
1.0-eac3

A7.2.3.1.9 Example Realm claims

An example Realm claim map is shown below in COSE-DIAG format:

/ Realm claim map /

/ cca-realm-challenge /
10: h'AB
ABABABABABABABABABARABABRABABRABABABABABABABABABABABABABABABABABAB',

/ cca-realm-personalization-value /
44235: h'AB
ABARABABABABABABRABABABAB',

/ cca-realm-initial-measurement /
44238: h'00",

/ cca-realm-extensible-measurements /

44239: [
h'00",
h'00",
h'00",
h'00"

]I

/ cca-realm-hash-algo-id /
44236: "sha-256",

/ cca-realm-public-key /

44237: h'0476F988091BE585ED41801AECFAB858548C63057E16B0E676120BBDOD2F9C29
E056C5D41A0130EB9C21517899DC23146B28E1B062BD3EA4B315FD219F1CBB52
8CBO6ET74CA49BE16773734F61A1CA61031B2BBF3D918F2F94FFC4228E50919544
AE',

/ cca-realm-public-key-hash-algo-id /
44240: "sha-256"

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Ie,

I<fv P
IL{L FR
T umkne
IHH'—&’,
ITKT?'TZ
DENO0137
1.0-eac3

A7.2.3.2 CCA platform claims

This section defines the format of the CCA platform token claim map. The format is described using a combination
of Concise Data Definition Language (CDDL) and text description.

The CCA platform token claim map is defined as follows:

cca-platform-claims = (cca-platform-claim-map)

cca-platform-claim-map = {
cca-platform-profile
cca-platform-challenge
cca-platform-implementation-id
cca-platform-instance-id
cca-platform-config
cca-platform-lifecycle
cca-platform-sw—-components
? cca-platform-verification-service
cca-platform-hash-algo-id

}

See also:

* Concise Data Definition Language (CDDL) [9]

e A7.2.3.2.1 CCA platform profile claim

* A7.23.2.2 CCA platform challenge claim

* A7.2.3.2.3 CCA platform Implementation ID claim

e A7.2.3.2.4 CCA platform Instance ID claim

e A7.2.3.2.5 CCA platform config claim

e A7.2.3.2.6 CCA platform lifecycle claim

e A7.2.3.2.7 CCA platform software components claim
* A7.2.3.2.8 CCA platform verification service claim

e A7.2.3.2.9 CCA platform hash algorithm ID claim

¢ A7.2.3.2.10 Collated CDDL for CCA platform claims
e A7.2.3.2.11 Example CCA platform claims

A7.2.3.2.1 CCA platform profile claim

The CCA platform profile claim identifies the EAT profile to which the CCA platform token conforms. Note that
because the platform token is expected to be issued when bound to a Realm token, the profile document should
include a description of the Realm claims.

The CCA platform profile claim is identified using the EAT profile label (265).
The CCA platform profile claim must be present in a CCA platform token.

The format of the CCA platform profile claim is defined as follows:

cca-platform-profile-label = 265 ; EAT profile
cca-profile-type = "http://arm.com/CCA-SSD/1.0.0"
cca-platform-profile = (

cca-platform-profile-label => cca-profile-type
)

A7.2.3.2.2 CCA platform challenge claim

The CCA platform challenge claim contains a hash of the public key used to sign the Realm token.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 101
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

TN:V;'?E

IH CFY

IEH'{DG

DENO0137
1.0-eac3

The CCA platform challenge claim is identified using the EAT nonce label (10).
The length of the CCA platform challenge is either 32, 48 or 64 bytes.
The CCA platform challenge claim must be present in a CCA platform token.

The format of the CCA platform challenge claim is defined as follows:

cca-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-platform-challenge-label = 10
cca-platform-challenge = (

cca-platform-challenge—-label => cca-hash-type

)

See also:

* A7.2.3.1.6 Realm public key claim
A7.2.3.2.3 CCA platform Implementation ID claim

The CCA platform Implementation ID claim uniquely identifies the implementation of the CCA platform.

The value of the CCA platform Implementation ID claim can be used by a verification service to locate the details
of the CCA platform implementation from an endorser or manufacturer. Such details are used by a verification
service to determine the security properties or certification status of the CCA platform implementation.

The semantics of the CCA platform Implementation ID value are defined by the manufacturer or a particular
certification scheme. For example, the ID could take the form of a product serial number, database ID, or other
appropriate identifier.

The CCA platform Implementation ID claim does not identify a particular instance of the CCA implementation.
The CCA platform Implementation ID claim must be present in a CCA platform token.

The format of the CCA platform Implementation ID claim is defined as follows:

cca-platform-implementation-id-label = 2396 ; PSA implementation ID
cca-platform-implementation-id-type = bytes .size 32

cca-platform-implementation-id = (
cca-platform-implementation—-id-label => cca-platform-implementation-id-type

)

See also:

e Arm CCA Security model [4]
e A7.2.3.2.4 CCA platform Instance ID claim

A7.2.3.2.4 CCA platform Instance ID claim

The CCA platform Instance ID claim represents the unique identifier of the Initial Attestation Key (IAK) for the
CCA platform.

The CCA platform Instance ID claim is identified using the EAT ueid label (256).

The first byte of the CCA platform Instance ID value must be 0x01.

The CCA platform Instance ID claim must be present in a CCA platform token.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 102
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

I;I]"'{’ F

DENO0137
1.0-eac3

The format of the CCA platform Instance ID claim is defined as follows:

cca-platform-instance-id-label = 256 ; EAT ueid

; TODO: require that the first byte of cca-platform-instance-id-type is 0x01
; EAT UEIDs need to be 7 — 33 bytes
cca-platform-instance-id-type = bytes .size 33

cca-platform-instance-id = (
cca-platform-instance-id-label => cca-platform-instance-id-type

)

See also:
* Arm CCA Security model [4]
* A7.2.3.2.3 CCA platform Implementation ID claim
A7.2.3.2.5 CCA platform config claim
The CCA platform config claim describes the set of chosen implementation options of the CCA platform. As an
example, these may include a description of the level of physical memory protection which is provided.

The CCA platform config claim is expected to contain the System Properties field which is present in the Root
Non-volatile Storage (RNVS) public parameters.

The CCA platform config claim must be present in a CCA platform token.

cca-platform-config-label = 2401 ; PSA platform range
; TBD: add to IANA registration
cca-platform-config-type = bytes

cca-platform-config = (
cca-platform-config-label => cca-platform-config-type

)

See also:

* RME system architecture spec [12]
A7.2.3.2.6 CCA platform lifecycle claim

The CCA platform lifecycle claim identifies the lifecycle state of the CCA platform.
The value of the CCA platform lifecycle claim is an integer which is divided as follows:

* value[15:8]: CCA platform lifecycle state
¢ value[7:0]: IMPLEMENTATION DEFINED

The CCA platform lifecycle claim must be present in a CCA platform token.

A non debugged CCA platform will be in psa-lifecycle-secured state. Realm Management Security Domain
debug is always recoverable, and would therefore be represented by psa-lifecycle-non-psa-rot-debug state. Root
world debug is recoverable on a HES system and would be represented by psa-lifecycle-recoverable-psa-rot
state. On a non-HES system Root world debug is usually non-recoverable, and would be represented by
psa-lifecycle-lifecycle-decommissioned state.

The format of the CCA platform lifecycle claim is defined as follows:

cca-platform-lifecycle-label = 2395 ; PSA lifecycle

cca-platform-lifecycle-unknown-type = 0x0000..0x00ff
cca-platform-lifecycle-assembly—-and-test-type = 0x1000..0x10ff
cca-platform-lifecycle-cca-platform-rot-provisioning-type = 0x2000..0x20ff

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 103
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
1.0-eac3

cca-platform-lifecycle-secured-type = 0x3000..0x30ff
cca-platform-lifecycle-non-cca-platform-rot-debug-type = 0x4000..0x40ff
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type = 0x5000..0x50ff
cca-platform-lifecycle-decommissioned-type = 0x6000..0x60ff

cca-platform-lifecycle-type =
cca-platform-1lifecycle-unknown-type /
cca-platform-lifecycle-assembly—-and-test-type /
cca-platform-lifecycle-cca-platform-rot-provisioning-type /
cca-platform-lifecycle-secured-type /
cca-platform-lifecycle-non-cca-platform-rot-debug-type /
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type /
cca-platform-lifecycle-decommissioned-type

cca-platform-lifecycle = (
cca-platform-lifecycle-label => cca-platform-lifecycle-type
)

See also:

e Arm CCA Security model [4]
A7.2.3.2.7 CCA platform software components claim

The CCA platform software components claim is a list of software components which can affect the behavior of
the CCA platform. It is expected that an implementation will describe the expected software component values
within the profile.

The CCA platform software components claim must be present in a CCA platform token.

The format of the CCA platform software components claim is defined as follows:

cca-platform-sw—components—-label = 2399 ; PSA software components
cca-platform-sw—component = {
? 1 => text, ; component type
2 => cca-hash-type, ; measurement value
? 4 => text, ; version
5 => cca-hash-type, ; signer id
? 6 => text, ; hash algorithm identifier

cca-platform-sw—components = (
cca-platform-sw-components—-label => [+ cca-platform-sw-component]

CCA platform software component type

The CCA platform software component type is a string which represents the role of the software component.

The CCA platform software component type is intended for use as a hint to help the relying party understand how
to evaluate the CCA platform software component measurement value.

The CCA platform software component type is optional in a CCA platform token.
CCA platform software component measurement value

The CCA platform software component measurement value represents a hash of the state of the software component
in memory at the time it was initialized.

The CCA platform software component measurement value must be a hash of 256 bits or stronger.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 104
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Ipcomr

lHL{ IDP

Trz3s0

l\ [FYCX

I\vH"f;?\l

DENO0137
1.0-eac3

The CCA platform software component measurement value must be present in a CCA platform token.
CCA platform software component version

The CCA platform software component version is a text string whose meaning is defined by the software component
vendor.

The CCA platform software component version is optional in a CCA platform token.
CCA platform software component signer ID

The CCA platform software component signer ID is the hash of a signing authority public key for the software
component. It can be used by a verifier to ensure that the software component was signed by an expected trusted
source.

The CCA platform software component signer ID value must be a hash of 256 bits or stronger.

The CCA platform software signer ID must be present in a CCA platform token.
CCA platform software hash algorithm ID
The CCA platform software hash algorithm ID identifies the way in which the hash algorithm used to measure the

CCA platform software component.

Arm recommends that the value of the CCA platform software hash algorithm ID is an IANA Hash Function name
IANA Hash Function Textual Names [10].

Arm recommends that the hash algorithm used to measure the CCA platform software component is one of the
algorithms listed in the Arm CCA Security model [4].

The CCA platform software hash algorithm ID is optional in a CCA platform token.
A7.2.3.2.8 CCA platform verification service claim
The CCA platform verification service claim is a hint which can be used by a relying party to locate a verifier for

the token.

The value of the CCA platform verification service claim is a text string which can be used to locate the service or
a URL specifying the address of the service.

The CCA platform verification service claim may be ignored by a relying party in favor of other information.
The CCA platform verification service claim is optional in a CCA platform token.

The format of the CCA platform verification service claim is defined as follows:

cca-platform-verification-service-label = 2400 ; PSA verification service
cca-platform-verification-service-type = text

cca-platform-verification-service = (
cca-platform-verification-service-label =>
cca-platform-verification-service-type

A7.2.3.2.9 CCA platform hash algorithm ID claim

The CCA platform hash algorithm ID claim identifies the algorithm used to calculate the extended measurements
in the CCA platform token.

Arm recommends that the value of the CCA platform hash algorithm ID claim is an IANA Hash Function name
IANA Hash Function Textual Names [10].

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 105
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
1.0-eac3

The CCA platform hash algorithm ID claim must be present in a CCA platform token.
The format of the CCA platform hash algorithm ID claim is defined as follows:

cca-platform-hash-algo-id-label = 2402 ; PSA platform range
; TBD: add to IANA registration

cca-platform-hash-algo-id = (
cca-platform-hash-algo-id-label => text
)

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

D DVMJZ

DENO0137
1.0-eac3

A7.2.3.2.10 Collated CDDL for CCA platform claims

The format of the CCA platform token claim map is defined as follows:

cca-platform-claims = (cca-platform-claim-map)

cca-platform-claim-map = ({
cca-platform-profile
cca-platform-challenge
cca-platform-implementation-id
cca-platform-instance-id
cca-platform-config
cca-platform-lifecycle
cca-platform-sw—components
? cca-platform-verification-service
cca-platform-hash-algo-id

cca-platform-profile-label = 265 ; EAT profile

cca-profile-type = "http://arm.com/CCA-SSD/1.0.0"

cca-platform-profile = (
cca-platform-profile-label => cca-profile-type

)

cca-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64

cca-platform-challenge-label = 10

cca-platform-challenge = (
cca-platform-challenge-label => cca-hash-type

cca-platform-implementation-id-label = 2396 ; PSA implementation ID
cca-platform-implementation-id-type = bytes .size 32

cca-platform-implementation-id = (

cca-platform-implementation—-id-label => cca-platform-implementation-id-type

cca-platform-instance-id-label = 256 ; EAT ueid

; TODO:

require that the first byte of cca-platform-instance-id-type is 0x01

; EAT UEIDs need to be 7 - 33 bytes
cca-platform-instance-id-type = bytes .size 33

cca-platform-instance-id = (
cca-platform-instance-id-label => cca-platform-instance-id-type

cca-platform-config-label = 2401 ; PSA platform range

; TBD: add to IANA registration

cca-platform-config-type = bytes

cca-platform-config = (
cca-platform-config-label => cca-platform-config-type

cca-platform-lifecycle-label = 2395 ; PSA lifecycle

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

cca-platform-lifecycle-unknown-type = 0x0000..0x00ff
cca-platform-lifecycle-assembly-and-test-type = 0x1000..0x10ff
cca-platform-lifecycle-cca-platform-rot-provisioning-type = 0x2000..0x20ff
cca-platform-lifecycle-secured-type = 0x3000..0x30ff
cca-platform-lifecycle-non-cca-platform-rot-debug-type = 0x4000..0x40ff
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type = 0x5000
cca-platform-lifecycle-decommissioned-type = 0x6000..0x60ff

cca-platform-lifecycle-type =

cca-platform-1lifecycle-unknown-type /
cca-platform-lifecycle-assembly—-and-test-type /
cca-platform-lifecycle-cca-platform-rot-provisioning-type /
cca-platform-lifecycle-secured-type /
cca-platform-lifecycle-non-cca-platform-rot-debug-type /
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type /
cca-platform-lifecycle-decommissioned-type

cca-platform-lifecycle = (

cca-platform-lifecycle-label => cca-platform-lifecycle-type

cca-platform-sw—components—-label = 2399 ; PSA software components
cca-platform-sw—component = {
? 1 => text, ; component type
=> cca-hash-type, ; measurement value
4 => text, ; version
5 => cca-hash-type, ; signer id
6 => text, ; hash algorithm identifier

cca-platform-sw—components = (

cca-platform-sw-components—-label => [+ cca-platform-sw-component]

cca-platform-verification-service = (

cca-platform-verification-service-label =>
cca-platform-verification-service-type

cca-platform-hash-algo-id-label = 2402 ; PSA platform range

; TBD: add to IANA registration

cca-platform-hash-algo-id = (

cca-platform-hash-algo-id-label => text

..0x50ff

cca-platform-verification-service-label = 2400 ; PSA verification service
cca-platform-verification-service-type = text

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.2.11 Example CCA platform claims

T rvukI, An example CCA platform claim map is shown below in COSE-DIAG format:

/ CCA platform claim map /
{
/ cca-platform-profile /
265: "http://arm.com/CCA-SSD/1.0.0",

/ cca-platform-challenge /
10: h'AA
AA',

/ cca-platform-implementation-id /
2396: h'AA',

/ cca-platform-instance-id /
256: h'010BBBBRBRBRBRBBBBBBBBBRRRBBBBBBBBBBRRBRBBBBBBBBBRRBRRBBBBBBBBBBBBBBBB
BB',

/ cca-platform-config /
2401: h'CFCFCFCF',

/ cca-platform-lifecycle /
2395: 12288,

/ cca-platform-sw—-components /

2399: [
{
/ measurement value /
2: h'AAARAARNAA
AARAAY,
/ signer id /
5: h'BBBBBBBRBRBRBRBRBRBBBBBBBBRBRBRBRBRBRBBBBBBBRBRBRBRBRBRBBBBBBBBRBR
BRBRBRBRBRBRBBRBBBBBRBRBRBRBRBRBRBBBBBRBRBRBRBRBRBRBBBBBBBBBRBRBRBREB',
/ version /
4: "1.0.0",
/ hash algorithm identifier /
6: "sha-256"
} ’
{
/ measurement value /
2: h'CCCCCCCCCCCCCCCCCCCCCCeeereecceeecceecececeececeececececececcecececcececcecececcececc
CCCCCCCCCCCcceceereceeeceeeecececececceccecccceccececcecce,
/ signer id /
5: h'DD
DD !,
/ version /
4: "1.0.0",
/ hash algorithm identifier /
6: "sha-256"
}
1y
DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 109

1.0-eac3 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

/ cca-platform-verification-service /
2400: "https://cca_verifier.org",

/ cca-platform-hash-algo-id /
2402: "sha-256"

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 110
1.0-eac3 Non-confidential

Chapter A8
Realm debug and performance monitoring

This section describes the debug and performance monitoring features which are available to a Realm.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

111

Chapter A8. Realm debug and performance monitoring
A8.1. Realm PMU

A8.1 Realm PMU

This section describes the programming model for usage of PMU by a Realm.

Rpnnoo On REC entry, Realm PMU state is restored from the REC object.

RraryJ On REC exit, all Realm PMU state is saved to the REC object.

RyxTzF On REC exit, exit .pmu_ovf_status indicates the status of the PMU overflow at the time of the Realm exit.
See also:

e A3.1.5 Realm support for Performance Monitors Extension
* A4.3 REC exit
e B3.4.16 RmiRecEXxit type

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 112
1.0-eac3 Non-confidential

Part B
Interface

Chapter B1
Commands

This chapter describes how RMM commands are defined in this specification.

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
1.0-eac3 Non-confidential

114

Chapter B1. Commands
B1.1. Overview

B1.1

Ryp1kx

Q
O DFNMZ

DENO0137

1.0-eac3

Overview

The RMM exposes the following interfaces to the Host:
e The Realm Management Interface (RMI)
The RMM exposes the following interfaces to a Realm:

* The Realm Services Interface (RSI)
¢ The Power State Coordination Interface (PSCI)

Any other SMC executed by a Realm returns SMCCC_NOT_SUPPORTED.
An RMM interface consists of a set of RMM commands.

An RMM interface is compliant with the SMC Calling Convention (SMCCC).
SMCCC version >= 1.2 is required.

SMCCC version 1.2 increases the number of SMC64 arguments and return values from 4 to 17. Some RMM
commands use more than 4 input or output values.

On a CCA platform which implements FEAT_SVE, SMCCC version >= 1.3 is required.

SMCCC version 1.3 introduces a bit in the FID which a caller can use to indicate that SVE state does not need to
be preserved across the SMC call.

On a CCA platform which implements FEAT _SME, SMCCC version >= 1.4 is required.
SMCCC version 1.4 adds support for preservation of SME state across an SMC call.

An RMM command uses the SMC64 calling convention.

To determine whether an RMM interface is implemented, software should use the following flow:

1. Determine whether the SMCCC_VERSION command is implemented, following the procedure described in
Arm SMC Calling Convention [13].

2. Check that the SMCCC version is >=1.1.
3. Execute the <Interface>.Version command, which returns:

* SMCCC_NOT_SUPPORTED (-1) if <Interface> is not implemented.
* A version number (>0) if <Interface> is implemented.

All data types defined in this specification are little-endian.
See also:

e Chapter B3 Realm Management Interface
e Chapter B4 Realm Services Interface
* Chapter BS Power State Control Interface

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 115
Non-confidential

Chapter B1. Commands
B1.2. Command definition

B1.2 Command definition

Tysmvp The definition of an RMM command consists of:
* A function identifier (FID)
* A set of input values (referred to as “arguments” in SMCCC)
* A set of output values (referred to as “results” in SMCCC)
* A set of context values
* A partially-ordered set of failure conditions
¢ A set of success conditions
* A set of footprint items
Tcevie Each failure condition, success condition and footprint item has an associated identifier. Identifiers are unique

within each of the above groups, within each command.

An identifier has no meaning. It is only a label by which a given condition or footprint item can be referred to.

See also:

* SMCCC Arm SMC Calling Convention [13]

B1.2.1 Example command

Iyrve The following command, EXAMPLE_ADD, is an example of how the components of an RMM command definition
are presented in this document.
This command takes as an input value the address params_ptr of an NS Granule which contains two integer
values x and y. On successful execution of the command:
* The output value sum contains the sum of x and y
* The output value zero indicates whether either of x or y is zero

EXAMPLE_ADD is defined as follows:
Interface
FID
0x042
Input values
Name Register Field Type Description
fid X0 [63:0] Ulnt64 Command FID
params_ptr X1 [63:0] Address PA of parameters
Context
The EXAMPLE_ADD command operates on the following context.
Name Type Value Before Description
params ExampleParams Params (params_ptr) false Parameters

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 116

1.0-eac3 Non-confidential

Chapter B1. Commands
B1.3. Command registers

Output values

Name Register Field Type Description

result X0 [15:0] CommandReturnCode Command return status

sum X1 [63:0] Ulnt64 Sum of x and y

zero X2 [63:0] Ulnt64 Whether either x or y was zero

Failure conditions

ID Condition

params_align pre: 'AddrIsGranuleAligned (params_ptr)
post: ResultEqual (result, ERROR_INPUT)

params_state pre: Granule(params_ptr).state != NS
post: ResultEqual (result, ERROR_MEMORY)

Success conditions

ID Post-condition
sum sum == params.xX + params.y
Zero zero == (params.x == 0) || (params.y == 0)

B1.3 Command registers

Dspenm An FID is a value which identifies a particular RMM command.

Tmrock The FID of an RMM command is unique among the RMM commands in an RMM interface.
Trypcy An FID is read from general-purpose register XO0.

Dx1sFs An input value is a value read by an RMM command from general-purpose registers.

Dvepew An output value is a value written by an RMM command to general-purpose registers.

Degivs A command return code is a value which specifies whether an RMM command succeeded or failed.

Irrzr A command return code is written to general-purpose register XO.

B1.4 Command condition expressions

Dcurys A condition expression is an expression which evaluates to a boolean value.
TENPKQ Following expansion of macros, a condition expression is a valid expression in Arm Specification Language (ASL).
See also:

* Arm Specification Language Reference Manual [14]

DENO0137 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 117
1.0-eac3 Non-confidential

Chapter B1. Commands
B1.5. Command context values

e Chapter B2 Command condition functions

B1.5 Command context values

DENO0137
1.0-eac3

A context value is a value which is derived from the value of a command input register and which is used by a
command condition expression.

A context value can be thought of as a local variable for use by command condition expressions.

For example, consider the following example command condition expression:

!AddrIsGranuleAligned (RealmParams (params_ptr) .rtt_base)

By introducing a context value params with the value RealmParams (params_ptr), this command condition
expression can be re-written as:

'AddrIsGranuleAligned (params.rtt_base)

The before property of a context value indicates whether its expression is re-evaluated after the command has
executed.

* before = true: the expression is not re-evaluated after the command has executed
* before = false: the expression is re-evaluated after the command has executed

Specifying before = true for a context value allows system state to be sampled before command execution,
and then used after command execution in a command success condition.

For example, the RMI_ REALM_DESTROY command takes as an input value the address rd of a Realm Descriptor.
Successful execution of the command results observable effects including the following:

* The state of the RD Granule changes from RD to DELEGATED
e The state of the RTT base Granule, whose address was previously held in the RD, changes from RTT to
DELEGATED

The address of the RTT base Granule is not included in the input values of the command.

A context value is defined as follows:

Name Type Value Before Description

rtt_base Address Realm(rd) .rtt_base true RTT base address

The state change of the RTT Granule can then be expressed as:

Granule (rtt_base) .state == DELEGATED

The before property of a context value has no effect if the value is only used in command failure conditions.

An in-memory value is a value passed to a command via an in-memory data structure, the address of which is
passed in an input register.

An in-memory value is a context value.
See also:

e B3.3.9 RMI REALM_CREATE command

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 118
Non-confidential

Chapter B1. Commands
B1.6. Command failure conditions

B1.6

I JMTTY

DENO0137
1.0-eac