q rm Realm Management Monitor

specification

Document number DENO0137
Document quality REL

Document version 1.0-rel0
Document confidentiality Non-confidential

Document build information 28835aeb doctool 0.55.0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

Realm Management Monitor specification

Release information
1.0-rel0 (10-09-2024)

Clarifications

RMI_RTT_READ_ENTRY: add ripas_prot success condition

Clarify rules regarding Realm EL1 timer state

Correct wording in “Initialize memory of New Realm” flow

RecAuxCount return value is not greater than 16, and constant for a Realm (FENIMORE-796)

Clarify purpose of CCA platform hash algorithm ID claim (FENIMORE-811)

Clarify behaviour of RMI_REC_ENTER if RMI_EMULATED_MMIO flag is set following a REC exit not due to
emulatable Data Abort

RMI_RTT_READ_ENTRY: simplify expression of ripas_unprot pre-condition (FENIMORE-847)

Defects

Correct typo in “REC entry” section [I gypy]

Add rule regarding Realm execution of data cache invalidate by set / way (FENIMORE-734)

Remove SH from the set of Host-controlled Unprotected RTT attributes (FENIMORE-736)

If LPA2 is enabled, ensure that PA written to RTTE is less than 2°48 (FENIMORE-752)

RMI_RTT_SET_RIPAS: if base address is not aligned with entry at which RTT walk terminates, only fail if RIPAS of that
entry does not match the requested value (FENIMORE-765)

RMI_DATA_DESTROY: if address is mapped as block, level can be either 1 or 2 (FENIMORE-775)
RMI_RTT_MAP_UNPROTECTED: remove reference to non-existent output value “nl” (FENIMORE-776)
Make number of GICv3 List Register values discoverable (FENIMORE-779)

RMI_REC_ENTER: if RMI_INJECT_SEA is set then RMI_EMULATED_MMIO is ignored (FENIMORE-782)
Impose IMPLEMENTATION DEFINED limit on maximum number of RECs per Realm (FENIMORE-800)

Allow Realm to query RIPAS of an IPA range (FENIMORE-802)

Introduce RIPAS DEV value (FENIMORE-802)

Add RPV to RsiRealmConfig (FENIMORE-810)

Expand RmiFeatureRegisterQ:: {NUM_BPS, NUM_WPS} to support up to 64 counters (FENIMORE-759)
Attestation token: change profile value to be a versioned tag (FENIMORE-809)
RSI_ATTESTATION_TOKEN_CONTINUE: add RSI_ERROR_UNKNOWN failure condition (FENIMORE-832)
RmiFeatureRegister0::GICV3_NUM_LRS: report number of available LRs, minus one (FENIMORE-845)
Simplify definition of NUM_BPS, NUM_WPS fields (FENIMORE-846)

RMI_RTT_READ_ENTRY: ripas_unprot failure condition: change && to || (FENIMORE-861)
RMI_RTT_INIT_RIPAS: correct inconsistency between text and command definition (FENIMORE-864)

Relaxations

RMI_RTT_{INIT,SET}_RIPAS: relax “top_rtt_align” failure condition
— The previous condition caused the command to fail if the “top” address was misaligned
— This is replaced with “no_progress”, which only fails if the command does not modify any RTT entries

1.0-eac5 (05-10-2023)

Clarifications

Fix attestation token flows (FENIMORE-718)
Clarify behavior on Host rejection of a RIPAS change request (FENIMORE-719)
Replace Granule::pas attribute with Granule::gpt

— PAS is an attribute of a memory access, not of a Granule.

Defects

{RMILRSI}_VERSION: (FENIMORE-724)
— Clarify rules regarding returned interface version, and provide examples

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. ii
1.0-rel0 Non-confidential

— Remove rule that if the return code is SUCCESS, subsequent calls to the interface adhere to the behavior corresponding
with the returned interface version
* Specify that SMCCC registers not specified as command input / output values are SBZ and MBZ respectively
(FENIMORE-724)
e RSI_ATTESTATION_TOKEN_INIT: return upper bound on token size (FENIMORE-720)
¢ RMI_DATA_CREATE: move RIPAS=RAM from being a pre-condition to a post-condition (FENIMORE-721)

Relaxations

None

1.0-eac4 (06-09-2023)
Clarifications

¢ Exclude GIC, timer and PMU values from “On REC exit ... all other REC exit fields are zero” (FENIMORE-712)
* Amend contradictory statement regarding RTT folding to level 1 (FENIMORE-715) [Iqwqgsg]

Defects

e RMI_RTT_{INIT,SET}_RIPAS: fix “top” alignment check
— Ensure that “top” is Granule aligned (FENIMORE-710)
— Ensure that return code is deterministically specified (FENIMORE-711)
— Prevent RIPAS change from proceeding beyond the “top” address provided by the Realm (FENIMORE-711)
* {RMILRSI}_VERSION: add handshake (FENIMORE-708)
— The caller provides a “requested version”
— The RMM either returns:
% A version which it can implement, that is compatible with the requested version (and a SUCCESS return code)
% A version which it implements, that is incompatible with the requested version (and an error code)
— If the return code is SUCCESS, subsequent calls to the interface adhere to the behavior corresponding with the
returned interface version
¢ Increase width of PsciReturnCode to 64 bits (FENIMORE-709)

Relaxations

* RMI_REALM_CREATE: permit number of PMU counters to be less than number supported by the implementation
(FENIMORE-716)

* RMI_REALM_CREATE: permit number of breakpoints or watchpoints to be less than number supported by the
implementation (FENIMORE-717)

1.0-eac3 (20-07-2023)
Clarifications

e Clarify which bits of command input / output values should / must be zero (FENIMORE-674)
» Explain distinction between concrete and abstract types (FENIMORE-693)
¢ Clarify return value from RSI_IPA_STATE_SET when stopping at first DESTROYED entry (FENIMORE-699) [Igxppx]

Defects

* PSCI_SYSTEM_{OFFRESET}: change Realm state to SYSTEM_OFF (FENIMORE-694)
* RMI_REC_CREATE: update RIM only if runnable flag is set (FENIMORE-697)
« RMI_REALM_CREATE: fix list of measured parameters (FENIMORE-695)
¢ Remove members from RmmSystemRegisters (FENIMORE-700)
— State saved / restored depends on architecture features supported by the platform, so defining this type as an empty
placeholder
* Avoid use of reserved ASL v1 keyword “entry” in MRS (FENIMORE-702)
— RmiRecEntry -> RmiRecEnter
RmiRecEntryFlags -> RmiRecEnterFlags
RmiRecRun::entry -> RmiRecRun::enter
RmmRttWalkResult::entry -> RmmRttWalkResult::rtte
RSI_IPA_STATE_SET: prohibit RSI_DESTROYED input value (FENIMORE-705)

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. iii
1.0-rel0 Non-confidential

¢ RMI_PSCI_COMPLETE: PSCI_CPU_ON: fix copy of context_id to target CPU X0 (FENIMORE-703)
* Allow Host to reject request to change RIPAS to RAM (FENIMORE-661)
* Allow Host to reject PSCI_CPU_ON request via RMI_PSCI_COMPLETE (FENIMORE-706)

Relaxations

 Permit folding of level 2 RTT to create level 1 block mapping (FENIMORE-608)
¢ Remove restriction that attestation token size must not exceed 4KB (FENIMORE-691)

1.0-eac2 (07-06-2023)
Clarifications

* Remove reference to triggering ERROR_INPUT by setting MBZ bit to 1 (FENIMORE-675)
¢ Clarify constraints on output values in case of command failure [Rrezyvs] (FENIMORE-676)
¢ Clarify encoding of RmiRealmParams::sve_sz (FENIMORE-684)

* Clarify set of SMCCC interfaces available to a Realm [Rnprxx] (FENIMORE-685)

Defects

* Replace PMU fields in RmiRecExit with single bit indicating the PMU overflow status [Ryxtzr] (FENIMORE-679)
¢ RMI_PSCI_COMPLETE: failure condition should compare against MPIDR, not RD address (FENIMORE-681)
RMI_REC_CREATE: remove params_valid failure condition (FENIMORE-686)
RMI_RTT_{INIT,SET}_RIPAS: check alignment of “top” input value (FENIMORE-687)
* Reduce coupling between HIPAS and RIPAS (FENIMORE-680)
— Replace HIPAS=DESTROYED with RIPAS=DESTROYED
— Remove RmiRttEntryState::RMI_DESTROYED
Change encoding of RmiRttEntryState::RMI_TABLE
Add RmiRipas::RMI_DESTROYED
Add RsiRipas::RSI_DESTROYED
RMI_DATA_CREATE_UNKNOWN: remove pre-condition that RIPAS=RAM
RMI_DATA_DESTROY:
+ In all cases, post-condition now states that HIPAS=UNASSIGNED
If pre-condition was RIPAS=RAM, post-condition states that RIPAS=DESTROYED
RMI_RTT_DESTROY:
* Remove post-condition that HIPAS=DESTROYED
* Add post-condition that state of parent RTTE is UNASSIGNED
Add post-condition that RIPAS=DESTROYED
RMI_RTT_SET_IPA_STATE: stop at first DESTROYED entry if “destroyed” flag is set
RSI_IPA_STATE_SET: add “destroyed” flag
— Clarify distinction between “RTT folding” [Dgpxcp] and “RTT destruction” [Dyxrzw]
* RMI_RTT_INIT_RIPAS: success conditions should be bounded by walk_top, not top

Relaxations
e RSI_REALM_CONFIG: provide Realm hash algorithm (FENIMORE-678)
1.0-eac1 (31-03-2023)

Clarifications

¢ Unused bits of RmiRecEntry::gicv3_hcr are SBZ [Isyuxs] (FENIMORE-666)

« RMI_REC_ENTER: all RMI_ERROR_INPUT failure conditions precede all RMI_ERROR_REC failure conditions
(FENIMORE-668)

* Avoid use of raw Xn values in command conditions where possible (FENIMORE-671)

¢ Clarify definition of REC exit due to (Non-)emulatable Data Abort [Dcyrmr, Dmrzvmc] (FENIMORE-673)

Defects

e RMI_RTT_INIT_RIPAS: take account of “top” IPA value when calculating RIM contribution (FENIMORE-662)
 RttSkipEntriesWithRipas: fix inverted logic (FENIMORE-663)
* RMI_RTT_SET_RIPAS: on success, modify IPA range [base, walk_top) (FENIMORE-669)

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. iv
1.0-rel0 Non-confidential

e RMI_RTT_{INIT,SET}_RIPAS: remove redundant failure conditions (FENIMORE-670)
¢ Clarify HIPAS=DESTROYED implies RIPAS=UNDEFINED [R;ypgr;] (FENIMORE-672)

Relaxations

* RSI_HOST_CALL: relax alignment requirement from 4KB to 256B
1.0-eac0 (31-01-2023)

Clarifications
None
Defects

¢ RmiRealmParams: reduce width of integer attributes (FENIMORE-647)

* RSI_IPA_STATE_SET: replace (base, size) with (base, top) (FENIMORE-656)

e RMI_RTT_INIT_RIPAS, RMI_RTT_SET_RIPAS: allow single command to modify multiple RTT entries
(FENIMORE-656)

Relaxations
* RMI_RTT_SET_RIPAS: remove “ripas” input value (FENIMORE-659)
1.0-bet2 (16-12-2022)

Clarifications

* Flows: update RMI_REC_ENTRY to take a single ‘run’ input value
¢ Clarify meaning of “TTD” [Iymnsr] (FENIMORE-641)
* Fix typo in reference to “CCA platform token claim map” [Igkry] (FENIMORE-647)
* Fix reference to “RME system architecture spec” (FENIMORE-648)
* Flows: remove stale reference to parameters passed to RMI_DATA_CREATE (FENIMORE-649)
* Improve definition and constistency of usage of the term “REC” (FENIMORE-650)
— Where referring to the RMM data structure “REC object” is now used
¢ Clarify description of properties of Realm IPA space [Itpgkw] (FENIMORE-639)
— Replace “permitted, under control of host” with statements which refer to particular HIPAS values.
— Add “Protected IPA, HIPAS=DESTROYED” row, thereby removing contradictory statements regarding SEA taken
to Realm, previously in “Protected IPA, RIPAS=EMPTY"”.
* On assertion of an EL1 timer, the RMM guarantees a REC exit, not only a Realm exit (FENIMORE-651)
* RMI_RTT_FOLD: preserve RIPAS value if IPA is Protected (FENIMORE-638)

Defects

 Attestation: wrap sub-tokens in byte stream (FENIMORE-643)
* RMI_DATA_DESTROY, RMI_RTT_{DESTROY,FOLD}: return PA of destroyed object (FENIMORE-563)
¢ RMI_REALM_DESTROY, RMI_REC_DESTROY, RMI_REC_ENTER, RMI_RTT_DESTROY, RMI_RTT_FOLD,
RMI_RTT_SET_RIPAS: Remove RMI_ERROR_IN_USE (FENIMORE-588)
* RMI_DATA_CREATE, RMI_DATA_CREATE_UNKNOWN, RMI_REC_CREATE, RMI_RTT_CREATE: pass RD
pointer in X1 (FENIMORE-655)
* Replace RmiRealmParams::features_0 with discrete fields (FENIMORE-655)
¢ RMI_DATA_CREATE(_UNKNOWN): require RIPAS=RAM (FENIMORE-645)
* Apply “must/ should be zero” consistently (FENIMORE-619)
— In command inputs, unused bits are SBZ
— In command outputs, unused bits are MBZ

Relaxations

* RSI_HOST_CALL: expand set of GPRs to X0-X30 (FENIMORE-607)
— This enables the RMM to support any calling convention.
* RMI_DATA_DESTROY, RMI_RTT_DESTROY, RMI_RTT_UNMAP_UNPROTECTED: return IPA of next live RTT
entry (FENIMORE-563)

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. v
1.0-rel0 Non-confidential

1.0-bet1 (31-10-2022)
Clarifications

* Rename HIPAS VALID_NS -> UNASSIGNED (FENIMORE-631)
» SEA injection is independent of whether Host emulates MMIO (FENIMORE-632)
 In RIPAS change flow, permit Host to apply the change to zero or more pages of the target IPA region (FENIMORE-633)
* Flows: replace HVC with Host call (FENIMORE-611)
* Clarify behavior of VmidIsValid() function (FENIMORE-630)
* Qualify “all other exit fields are zero” statements [Rgrirp, RLrcrr] (FENIMORE-634)
— GIC, timer and PMU fields are valid on every REC exit.

Defects

» Change size of RsiHostCall type to 256 bytes (FENIMORE-629)

¢ Correct the set of ESR_EL?2 fields which are returned to the Host on REC exit due to Data abort [Rryvrr]
— On all Data Aborts, add FnV.
— On Emulatable Data Aborts, add SF.
— On Non-emulatable Data Abort at an Unprotected IPA, add IL.

Relaxations

None

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. vi
1.0-rel0 Non-confidential

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this License (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this License. By using or copying the
Document you indicate that you agree to be bound by the terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide License to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;
(ii)) manufacture and have manufactured products which have been created under the License granted in (i) above; and
(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of a product that is not
itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions, information,
scope, and data. This document was produced using reasonable efforts based on information available as of the date of issue
of this document. The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope of its
obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety and
that you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning
your products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible
for any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. Arm may make changes to the Document at any time and without notice. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST
EXTENT PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT
OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE (INCLUDING WITHOUT
LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN
ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENSE). THE EXISTENCE OF MORE THAN ONE CLAIM
OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS,
LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this License then Arm may terminate this License immediately upon giving
written notice to Licensee. Licensee may terminate this License at any time. Upon termination of this License by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this
License, all terms shall survive except for the License grants.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. vii
1.0-rel0 Non-confidential

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party in breach. Any
termination of this License shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This License may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this License and any translation, the terms of the English version of this License shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners. No license, express, implied or otherwise, is granted to Licensee under this
License, to use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
http://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.
Copyright © 2022-2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. viii
1.0-rel0 Non-confidential

http://www.arm.com/company/policies/trademarks

Contents

Realm Management Monitor specification

Preface

Realm Management Monitor specification
Release information
Arm Non-Confidential Document License (“License”)

Conventions e e e
Typographical conventions
Numbers
Pseudocode descriptions
ADAresses e

Rules-basedwriting
Contentitemidentifiers
Contentitemrendering
Contentitemclasses

Additionalreading e

Feedback
Feedbackonthisbook

Openissues e

Part A Architecture

Chapter A1

Chapter A2

Chapter A3

DENO0137
1.0-rel0

Overview

Al Confidential computing

A1.2 System software components o L

A1.3 Realm Management Monitor oL

Concepts

A2.1 Realm e e
A2.11 OVerview
A2.1.2 Realm execution environment
A21.3 Realmattributes
A2.1.4 Realmliveness
A2.1.5 Realmlifecycle
A2.1.6 Realmparameters
A2.1.7 RealmDescriptor

A2.2 Granule e
A22.1 Granuleattributes
A2.22 Granuleownership
A2.2.3 Granulelifecycle.
A224 Granulewiping

A2.3 Realm Execution Context
A2.3.1 Overview e
A232 RECattributes.
A2.3.3 RECindexand MPIDRvalue.
A23.4 RECIlifecycle

Realm creation
A3.1 Realm feature discovery and selection

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

Contents

Chapter A4

Chapter A5

DENO0137
1.0-rel0

A3.1.1 Realm hash algorithmo oL 42
A3.12 RealmLPA2and IPAwidth 42
A3.1.3 Realm support for Scalable Vector Extension 43
A3.1.4 Realm support for self-hosteddebug 43
A3.1.5 Realm support for Performance Monitors Extension 44
A3.1.6 Realm support for Activity Monitors Extension 44
A3.1.7 Realm support for Statistical Profiling Extension 44
A3.1.8 Realm support for Trace Buffer Extension 44
A3.1.9 Numberof GICv3 ListRegisters 44
Realm exception model
A4 .1 Exception model overview oL 46
A4.2 RECentry 48
A4.21 RmiRecEnterobject. 48
A4.2.2 General purpose registers restoredon RECentry 50
A4.23 REC entry following REC exit due to Data Abort 50
A4.3 REC exit 51
A4.3.1 RmiRecExitobject 51
A4.3.2 Realmexitreason 53
A4.3.3 General purpose registers savedon RECexit 53
A4.3.4 REC exit due to synchronous exception 54
A435 RECexitduetolRQ 56
A436 RECexitduetoFIQ. 56
A43.7 RECexitduetoPSCIl. 57
A4.3.8 REC exitdue to RIPAS changepending 58
A43.9 RECexitduetoHostcall 58
A4.3.10 RECexitdueto SError 58
Ad.4 Emulated Data Aborts 60
A4.5 Hostcall 60
Realm memory management
A5.1 Realm memory management overview 62
A5.2 Realm view of memory management 62
A5.2.1 RealmIPAspace 62
A5.22 ReamlIPAstate 62
A523 RealmaccesstoaProtected IPA 63
A5.2.4 Changes to RIPAS while Realm state is REALM_NEW 63
A5.2.5 Changes to RIPAS while Realm state is REALM_ACTIVE 63
A5.2.6 Realmaccessto an Unprotected IPA 65
A5.2.7 Synchronous External Aborts 65
A5.2.8 Realmaccessoutside IPAspace 66
A5.2.9 Summary of Realm IPA space properties 67
A5.2.10 Cache maintenance operations 67
A5.3 Host view of memory management 68
A5.3.1 HostIPAstate 68
A5.3.2 Changes to HIPAS while Realm state is REALM_NEW 69
A5.3.3 Changes to HIPAS while Realm state is REALM_ACTIVE 69
A5.3.4 Summary of changes to HIPAS and RIPAS of a Protected IPA 71
A5.3.5 Dependency of RMI command execution on RIPAS and HIPAS values . 73
A5.3.6 Changes to HIPAS of an Unprotected IPA 73
A5.4 RIPASchange 75
A5.5 Realm Translation Table 77
A5.5.1 RTToverview 77
A5.5.2 RTT structure and configuration 77
A5.5.3 RTTstartinglevel 77
Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. X

Non-confidential

Contents

Chapter A6

Chapter A7

Chapter A8

Part B Interface

Chapter B1

Chapter B2
Chapter B3

DENO0137
1.0-rel0

A5.5.4 RTTentry
A555 RTTreading e
A556 RTTfolding e
A55.7 RTTunfolding
A5.5.8 RTTElivenessandRTTliveness.
A5.5.9 RTTdestruction
A5510 RTTwalk. e
A55.11 RTTentryattributes

Realm interrupts and timers

A6.1 Realminterrupts

A6.2 Realmtimers e

Realm measurement and attestation

A7.1 Realm measurements
A7.1.1 Realm Initial Measurement
A7.1.2 Realm Extensible Measurement

A7.2 Realm attestation
A7.2.1 Attestationtoken
A7.2.2 Attestationtoken generation oL
A7.2.3 Attestationtokenformat.

Realm debug and performance monitoring

A8.1 Realm PMU e
Commands
B1.1 Overview e
B1.2 Command definition
B1.2.1 Examplecommand
B1.3 Commandregisters
B1.4 Command condition expressions
B1.5 Command contextvalues,
B1.6 Command failure conditions
B1.7 Command success conditions
B1.8 Concrete and abstracttypes
B1.9 Commandfootprint

Interface versioning

Command condition functions

B3.1
B3.2
B3.3
B3.4
B3.5
B3.6
B3.7
B3.8
B3.9
B3.10
B3.11
B3.12
B3.13

AddrinRange functiono
AddrisAligned function
AddrisGranuleAligned function.
AddrlsProtected function o oo
AddrIsRttLevelAligned function
AddrRangelsProtected function
AlignDownToRttLevel function L o oL
AlignUpToRttLevel function.
AuxAlias function
AuxAligned function.
AuxEqualfunction.
AuxSortfunction
AuxStateEqual function.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

Non-confidential

Xi

Contents

B3.14 AuxStatesfunction 129
B3.15 CurrentRealm function 129
B3.16 CurrentRec function 129
B3.17 Equalfunction 130
B3.18 Gicv3ConfiglsValid function oo oo 131
B3.19 Granule function 131
B3.20 GranuleAccessPermitted function 131
B3.21 ImplFeatures function 131
B3.22 MinAddress function 131
B3.23 MpidrEqual functiono oo 132
B3.24 MpidrisUsed function 132
B3.25 PalsDelegable function 132
B3.26 PsciReturnCodeEncode function 132
B3.27 PsciReturnCodePermitted function 132
B3.28 ReadMemory function 133
B3.29 Realm function 133
B3.30 RealmConfigfunction. 133
B3.31 RealmHostCall function 133
B3.32 RealmlsLive function 133
B3.33 RealmParams function 134
B3.34 RealmParamsSupported function, 134
B3.35 Recfunction. e 134
B3.36 RecAuxCount function 134
B3.37 RecFromMpidr function. 134
B3.38 Reclndex function. 134
B3.39 RecParams function 135
B3.40 RecRipasChangeResponse function 135
B3.41 RecRun function 135
B3.42 RemExtend function 135
B3.43 ResultEqual function 136
B3.44 RimExtendData function 136
B3.45 RimExtendRec function 136
B3.46 RimExtendRipas function 136
B3.47 RimExtendRipasForEntry function. 137
B3.48 Riminitfunction 137
B3.49 RipasToRmifunction, 137
B3.50 RmiRealmParamslsValid function 137
B3.51 Rttfunction e 137
B3.52 RttAllEntriesContiguous function 138
B3.53 RttAllEntriesRipas function 138
B3.54 RttAllEntriesState function L 138
B3.55 RttConfiglsValid function 138
B3.56 RttDescriptorisValidForUnprotected function 138
B3.57 RttEntriesInRangeRipas function 0 oL 139
B3.58 RttEntry function 139
B3.59 RttEntryFromDescriptor function L 139
B3.60 RttEntrylndex function 139
B3.61 RttEntryState function 139
B3.62 RttFold function 140
B3.63 RttlsHomogeneous function 140
B3.64 RttlsLive function 140
B3.65 RttLevellsBlockOrPage function 140
B3.66 RttLevellsStarting function 140
B3.67 RttLevellsValid function 141
B3.68 RitLevelSize function 141
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. Xii

1.0-rel0 Non-confidential

Contents

Chapter B4

DENO0137
1.0-rel0

B3.69 RttsAllProtectedEntriesRipas function
B3.70 RitsAllProtectedEntriesState function
B3.71 RttsAllUnprotectedEntriesState function
B3.72 RttsGranuleState function
B3.73 RttSkipEntriesUnlessRipas function
B3.74 RttSkipEntriesUnlessState function
B3.75 RttSkipEntriesWithRipas function
B3.76 RttSkipNonLiveEntries function
B3.77 RttsStateEqual function
B3.78 RttWalk function
B3.79 ToAddressfunction
B3.80 ToBits64 function
B3.81 VmidlsFree function
B3.82 VmidiIsValid function

Realm Management Interface

B4.1 RMlversion, .

B4.2 RMI commandreturncodes

B4.3 RMlicommands
B4.3.1 RMI_DATA_CREATE command
B4.3.2 RMI_DATA_CREATE_UNKNOWN command . .
B4.3.3 RMI_DATA DESTROY command
B4.3.4 RMI_FEATURES command
B4.3.5 RMI_GRANULE_DELEGATE command
B4.3.6 RMI_GRANULE_UNDELEGATE command . . .
B4.3.7 RMI_PSCI_COMPLETE command
B4.3.8 RMI_REALM_ACTIVATE command
B4.3.9 RMI_REALM_CREATE command
B4.3.10 RMI_REALM_DESTROY command
B4.3.11 RMI_REC_AUX_COUNT command
B4.3.12 RMI_REC_CREATEcommand.
B4.3.13 RMI_REC_DESTROY command.
B4.3.14 RMI_REC_ENTERcommand
B4.3.15 RMI_RTT_CREATEcommand
B4.3.16 RMI_RTT_DESTROY command
B4.3.17 RMI_RTT_FOLD command
B4.3.18 RMI_RTT_INIT_RIPAS command
B4.3.19 RMI_RTT_MAP_UNPROTECTED command . .
B4.3.20 RMI_RTT_READ_ENTRY command
B4.3.21 RMI_RTT_SET RIPAScommand
B4.3.22 RMI_RTT_UNMAP_UNPROTECTED command
B4.3.23 RMI_VERSIONcommand

B4.4 RMlitypes
B4.4.1 RmiCommandReturnCodetype
B4.42 RmiDataFlagstype
B4.4.3 RmiDataMeasureContenttype
B4.44 RmiEmulatedMmiotype
B4.45 RmiFeaturetype.
B4.4.6 RmiFeatureRegisterOtype
B4.4.7 RmiHashAlgorithmtype
B4.4.8 RmilnjectSeatype.
B4.4.9 RmilnterfaceVersiontype
B4.4.10 RmiPmuOverflowStatustype
B4.4.11 RmiRealmFlagstype
B4.4.12 RmiRealmParamstype

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

Contents

Chapter B5

Chapter B6

DENO0137
1.0-rel0

B4.4.13 RmiRecCreateFlagstype L. 215
B4.4.14 RmiRecEntertype 216
B4.4.15 RmiRecEnterFlagstype 217
B4.4.16 RmiRecExittype 218
B4.4.17 RmiRecExitReasontype L. 220
B4.4.18 RmiRecMpidrtype 221
B4.4.19 RmiRecParamstype 221
B4.420 RmiRecRuntype 223
B4.4.21 RmiRecRunnabletype, 223
B4.4.22 RmiResponsetype 223
B4.4.23 RmiRipastype 224
B4.4.24 RmiRttEntryStatetype 224
B4.4.25 RmiStatusCodetype 224
B4.4.26 RmiTraptype e 225
Realm Services Interface
B5.1 RSIversion 227
B5.2 RSlcommandreturncodes 227
B5.3 RSlcommands 228
B5.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command 229
B5.3.2 RSI_ATTESTATION_TOKEN_INIT command 231
B5.3.3 RSI_FEATUREScommand. 233
B5.3.4 RSI HOST CALLcommand 234
B5.3.5 RSI_IPA_STATE GETcommand 236
B5.3.6 RSI_IPA_STATE_SETcommand. 238
B5.3.7 RSI_MEASUREMENT_EXTEND command 240
B5.3.8 RSI_MEASUREMENT_READ command 242
B5.3.9 RSI_ REALM CONFIGcommand 244
B5.3.10 RSI_VERSIONcommand 245
B5.4 RSItypes e 247
B5.4.1 RsiCommandReturnCodetype 247
B5.4.2 RsiHashAlgorithmtype L. 247
B5.4.3 RsiHostCalltype 248
B5.4.4 RsilnterfaceVersiontype 249
B5.4.5 RsiRealmConfigtype 249
B5.46 RsiResponsetype. 250
B5.4.7 RsiRipastype 250
B5.4.8 RsiRipasChangeDestroyedtype 251
B5.4.9 RsiRipasChangeFlagstype 251
Power State Control Interface
B6.1 PSCloverview 253
B6.2 PSClversion e 253
B6.3 PSClcommands e 254
B6.3.1 PSCI_AFFINITY_INFOcommand 255
B6.3.2 PSCI CPU OFFcommand 257
B6.3.3 PSCI_CPU_ONcommand 258
B6.3.4 PSCI CPU SUSPENDcommand 260
B6.3.5 PSCI_ FEATUREScommand 261
B6.3.6 PSCI_SYSTEM OFFcommand 262
B6.3.7 PSCI_SYSTEM_RESET command 263
B6.3.8 PSCI_VERSIONcommand. 264
B6.4 PSCltypes 265
B6.4.1 PscilnterfaceVersiontype L. 265
B6.4.2 PsciReturnCodetype 265
Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. xiv
Non-confidential

Contents

Part C Types
Chapter C1

Chapter C2

Part D Usage

Chapter D1

DENO0137
1.0-rel0

RMM types
C1.1 RmmbDataFlagstype 268
Ci1.2 RmmbDataMeasureContenttype 269
C1.3 RmmFeaturetype e 269
Cl14 RmmFeaturestype e 269
C15 RmmGptEntry type 270
C1.6 RmmGranuletype 270
C1.7 RmmGranuleStatetype 271
C1.8 RmmHashAlgorithmtype 271
C1.9 RmmHipastype 271
C1.10 RmmHostCallPendingtype 272
C1.11 RmmMeasurementDescriptorDatatype 272
C1.12 RmmMeasurementDescriptorRectype 272
C1.13 RmmMeasurementDescriptorRipastype 273
C1.14 RmmPhysicalAddressSpacetype 273
C1.15 RmmPsciPendingtype 274
C1.16 RmmRealmtype 274
C1.17 RmmRealmMeasurementtype 275
C1.18 RmmRealmStatetype 275
C1.19 RmmRectype e 275
C1.20 RmmRecAttestStatetype 276
C1.21 RmmRecEmulatableAborttype 276
C1.22 RmmRecFlagstype 277
C1.23 RmmRecResponsetype 277
C1.24 RmmRecRunnabletype 277
C1.25 RmmRecStatetype 277
C1.26 RmmRipastype e 278
C1.27 RmmRipasChangeDestroyedtype 278
C1.28 RmmRitttype 278
C1.29 RmmRtEntry type 278
C1.30 RmmRttEntryStatetype 279
C1.31 RmmRttWalkResulttype 279
C1.32 RmmSystemRegisterstype 280
Generic types
Cc2.1 Addresstype 281
Cc2.2 BitsNtype e 281
c2.3 INtNtype e 281
C24 UIntNtype o e 282
Flows
D11 Granule delegationflows 285
D1.1.1 Granule delegationflow L. 285
D1.1.2 Granule undelegationflow 285
D1.2 Realm lifecycle flows 287
D1.21 Realmcreationflow 287
D1.2.2 Realm Translation Table creationflow 287
D1.2.3 Initialize memory of New Realmflow 288
D1.24 RECcreationflow 290
D1.25 Realmdestructionflow oL 292
Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. XV
Non-confidential

Contents
Contents

Chapter D2

Glossary

DENO0137
1.0-rel0

D1.3

D1.4

D1.5

D1.6

Realm exception modelflows 294
D1.3.1 Realmentryandexitflow L. 294
D1.3.2 Hostcallflow 294
D1.3.3 REC exitdue to Data Abort faultflow 295
D1.34 MMIO emulationflow 296

PSClflows 298
D1.4.1 PSCI_CPU ONflow 298

Realm memory managementflows, 301
D1.5.1 Add memory to Active Realmflow 301
D152 NSmemoryflow. 301
D153 RIPASchangeflow 302

Realm interrupts and timersflows L. 303
D1.6.1 Interruptflow. 303
D1.6.2 Timerinterruptdelivery flow 303

Realm attestationflows 305
D1.7.1 Attestation token generationflow 305
D1.7.2 Handling interrupts during attestation token generation flow 305

Realm shared memory protocol

D21 Realm shared memory protocol description 308
D2.2 Realm shared memory protocolflow 308
Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. Xvi

Non-confidential

Preface

Preface

Conventions

Typographical conventions
The typographical conventions are:
italic
Introduces special terminology, and denotes citations.
monospace
Used for pseudocode and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
pseudocode and source code examples.

SMALL CAPITALS
Used for some common terms such as IMPLEMENTATION DEFINED.
Used for a few terms that have specific technical meanings, and are included in the Glossary.
Red text
Indicates an open issue.
Blue text
Indicates a link. This can be
¢ A cross-reference to another location within the document
* A URL, for example http://developer.arm.com
Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.

In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To

improve readability, long numbers can be written with an underscore separator between every four characters, for

example OxFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.
Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode

is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Addresses

Unless otherwise stated, the term address in this specification refers to a physical address.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. XVvii
1.0-rel0 Non-confidential

http://developer.arm.com

Preface

Rules-based writing

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

* Declaration

* Rule

* Goal

* Information

* Rationale

* Implementation note
* Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must

conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,

these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an

implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to

understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions

of the specification.

Content item rendering

Content item classes

DENO0137
1.0-rel0

Declaration
A Declaration is a statement that does one or more of the following:

¢ Introduces a concept

e Introduces a term

¢ Describes the structure of data
* Describes the encoding of data

A Declaration does not describe behaviour.

A Declaration is rendered with the label D.

Rule

A Rule is a statement that describes the behaviour of a compliant implementation.
A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xviii

Preface

Additional reading

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label 1.

Rationale

A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note

An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

Additional reading

DENO0137
1.0-rel0

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

(1]

(2]

(3]
[4]

Introducing Arm CCA. (ARM DEN 0125) Arm Limited.

Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A.
(ARM DDI 0615 A.d) Arm Ltd.

Arm Architecture Reference Manual for A-Profile architecture. (ARM DDI 0487 1.a) Arm Ltd.
Arm CCA Security model. (ARM DEN 0096) Arm Limited.

Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4. (ARM IHI
0069 G) Arm Ltd.

Concise Binary Object Representation (CBOR). See https://tools.ietf.org/html/rfc7049
CBOR Object Signing and Encryption (COSE). See https://tools.ietf.org/html/rfc8152
Entity Attestation Token (EAT). See https://datatracker.ietf.org/doc/draft-ietf-rats-eat/

Concise Data Definition Language (CDDL). See https://tools.ietf.org/html/rfc8610

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. Xix
Non-confidential

https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc8152
https://datatracker.ietf.org/doc/draft-ietf-rats-eat/
https://tools.ietf.org/html/rfc8610

Preface

Additional reading

DENO0137
1.0-rel0

[10]
[11]
[12]
[13]
[14]
[15]

[16]

IANA Named Information Hash Algorithm Registry. See http://www.iana.org/assignments/named-informa

tion
SEC 1: Elliptic Curve Cryptography, version 2.0. See https://www.secg.org/secl-v2.pdf

RME system architecture spec. (ARM DEN 0129) Arm Ltd.

Arm SMC Calling Convention. (ARM DEN 0028 D) Arm Ltd.

Arm Specification Language Reference Manual. (ARM DDI 0612) Arm Ltd.

Secure Hash Standard (SHS). See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Arm Power State Coordination Interface (PSCI). (ARM DEN 0022 D.b) Arm Ltd.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

XX

http://www.iana.org/assignments/named-information
http://www.iana.org/assignments/named-information
https://www.secg.org/sec1-v2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Preface
Feedback

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have any comments or suggestions for additions and improvements, create a ticket at https://support.developer.arm.com
As part of the ticket, include:

* The title (Realm Management Monitor specification).

¢ The number (DEN0137 1.0-rel0).

* The section name(s) to which your comments refer.

* The page number(s) to which your comments apply.

* The rule identifier(s) to which your comments apply, if applicable.
* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. XXi
1.0-rel0 Non-confidential

Preface
Open issues

Open issues

The following table lists known open issues in this version of the document.

Key Description

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. XXii
1.0-rel0 Non-confidential

Part A
Architecture

Chapter A1
Overview

The RMM is a software component which forms part of a system which implements the Arm Confidential Compute
Architecture (Arm CCA). Arm CCA is an architecture which provides protected execution environments called
Realms.

The threat model which Arm CCA is designed to address is described in Introducing Arm CCA [1].

The hardware architecture of Arm CCA is called the Realm Management Extension (RME), and is described in
Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A [2].

A1.1 Confidential computing

DENO0137
1.0-rel0

The Armv8-A architecture (Arm Architecture Reference Manual for A-Profile architecture [3]) includes mechanisms
that establish a privilege hierarchy. Software operating at higher privilege levels is responsible for managing the
resources (principally memory and processor cycles) that are used by entities at lower privilege levels.

Prior to Arm CCA, resource management was coupled with a right of access. That is, a resource that is managed
by a higher-privileged entity is also accessible by it. A Realm is a protected execution environment for which this
coupling is broken, so that the right to manage resources is separated from the right to access those resources.

The purpose of a Realm is to provide to the Realm owner an environment for confidential computing, without
requiring the Realm owner to trust the software components that manage the resources used by the Realm.

Construction of a Realm, and allocation of resources to a Realm at runtime, are the responsibility of the Virtual
Machine Monitor (VMM). In this specification, the term Host is used to refer to the VMM.

See also:

e A2.1 Realm

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 24
Non-confidential

Chapter A1. Overview
A1.2. System software components

A1.2 System software components

The system software architecture of Arm CCA is summarised in the following figure.

Realm Security state Non-secure Security state Secure Security state
VM VM
ELO App | | App App | | App TA || TA
Realm Realm

EL1 Secure
0OS kernel OS kernel TOS partition

EL2 RMM Hypervisor SPM

EL3 Monitor

Root Security state

Figure A1.1: System software architecture

The components shown in the diagram are listed below.

Component Description

Monitor The most privileged software component, which is responsible for
switching between the Security states used at EL2, EL1 and ELO.

Realm A protected execution environment.

Realm Management Monitor (RMM) The software component which is responsible for the management of
Realms.

Virtual Machine (VM) An execution environment within which an operating system can run.
Note that a Realm is a VM which executes in the Realm security
state.

Hypervisor The software component which is responsible for the management of
VMs.

Secure Partition Manager (SPM) The software component which is responsible for the management of

Secure Partitions.
Trusted OS (TOS) An operating system which runs in a Secure Partition.

Trusted Application (TA) An application hosted by a TOS.

A1.3 Realm Management Monitor

DENO0137
1.0-rel0

The Realm Management Monitor (RMM) is the system component that is responsible for the management of
Realms.

The responsibilities of the RMM are to:

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 25
Non-confidential

Chapter A1. Overview
A1.3. Realm Management Monitor
* Provide services that allow the Host to create, populate, execute and destroy Realms.
 Provide services that allow the initial configuration and contents of a Realm to be attested.
* Protect the confidentiality and integrity of Realm state during the lifetime of the Realm.
* Protect the confidentiality of Realm state during and following destruction of the Realm.
The RMM exposes the following interfaces, which are accessed via SMC instructions, to the Host:

e The Realm Management Interface (RMI), which provides services for the creation, population, execution and
destruction of Realms.

The RMM exposes the following interfaces, which are accessed via SMC instructions, to Realms:

* The Realm Services Interface (RSI), which provides services used to manage resources allocated to the
Realm, and to request an attestation report.

* The Power State Coordination Interface (PSCI), which provides services used to control power states of
VPEs within a Realm. Note that the HVC conduit for PSCI is not supported for Realms.

The RMM operates by manipulating data structures which are stored in memory accessible only to the RMM.
See also:

e Chapter B4 Realm Management Interface
* Chapter BS Realm Services Interface
» Chapter B6 Power State Control Interface

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 26
1.0-rel0 Non-confidential

Chapter A2
Concepts

This chapter introduces the following concepts which are central to the RMM architecture:

e A2.1 Realm
e A2.2 Granule
e A2.3 Realm Execution Context

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

27

Chapter A2. Concepts
A2.1. Realm

A2.1 Realm

This section describes the concept of a Realm.

A2.1.1 Overview

DprRrsR A Realm is an execution environment which is protected from agents in the Non-secure and Secure Security states,
and from other Realms.

A2.1.2 Realm execution environment

Trovry The execution environment of a Realm is an ELO + EL1 environment, as described in Arm Architecture Reference
Manual for A-Profile architecture [3].

A2.1.2.1 Realm registers

RyJHoK On first entry to a Realm VPE, PE state is initialized according to “PE state on reset to AArch64 state” in Arm
Architecture Reference Manual for A-Profile architecture [3], except for GPR and PC values which are specified by
the Host during Realm creation.

Gzrcox Confidentiality is guaranteed for a Realm VPE’s general purpose and SIMD / floating point registers.

Gonzcs Confidentiality is guaranteed for other Realm VPE register state (including stack pointer, program counter and
ELO/EL1 system registers).

Gyrmup Integrity is guaranteed for a Realm VPE’s general purpose and SIMD / floating point registers.

GYKRIG Integrity is guaranteed for other Realm VPE register state (including stack pointer, program counter and ELO / EL1
system registers).

Tcparn A Realm can use a Host call to pass arguments to the Host and receive results from the Host.
See also:

e A2.3 Realm Execution Context
e A4.5 Host call
e B4.39 RMI REALM CREATE command

A2.1.2.2 Realm memory

Tromuz A Realm is able to determine whether a given IPA is protected or unprotected.

Groron Confidentiality is guaranteed for memory contents accessed via a protected address. Informally, this means that a
change to the contents of such a memory location is not observable by any agent outside the CCA platform.

Gomre. Integrity is guaranteed for memory contents accessed via a protected address. Informally, this means that the
Realm does not observe the contents of the location to change unless the Realm itself has either written a different
value to the location, or provided consent to the RMM for integrity of the location to be violated.

See also:
e AS5.2.1 Realm IPA space
A2.1.2.3 Realm processor features

RiycHyJ The value returned to a Realm from reading a feature register is architecturally valid and describes the set of
features which are present in the Realm’s execution environment.

TxkBDP The RMM may suppress a feature which is supported by the underlying hardware platform, if exposing that feature
to a Realm could lead to a security vulnerability.

See also:

e A3.1 Realm feature discovery and selection

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 28
1.0-rel0 Non-confidential

Chapter A2. Concepts

A2.1. Realm

A2.1.2.4 IMPDEF system registers

A Realm read from or write to an IMPLEMENTATION DEFINED system register causes an Unknown exception
taken to the Realm.

A2.1.3 Realm attributes

T r7pyx

D\VHM,‘V‘K

TEZ:‘ZL

XpNDK

DENO0137
1.0-rel0

This section describes the attributes of a Realm.

A Realm attribute is a property of a Realm whose value can be observed or modified either by the Host or by the
Realm.

An example of a way in which a Realm attribute may be observable is the outcome of an RMM command.

The attributes of a Realm are summarized in the following table.

Name Type Description

feat_lIpa2 RmmPFeature Whether LPA2 is enabled for this Realm
ipa_width Ulnt8 IPA width in bits

measurements RmmRealmMeasurement[5] Realm measurements

hash_algo RmmHashAlgorithm Algorithm used to compute Realm measurements
rec_index Ulnt64 Index of next REC to be created

rtt_base Address Realm Translation Table base address
rtt_level_start Int64 RTT starting level

rtt_num_start Ulnt64 Number of physically contiguous starting level RTTs
state RmmRealmState Lifecycle state

vmid Bits16 Virtual Machine Identifier

pv Bits512 Realm Personalization Value

num_recs Ulnt64 Number of RECs owned by this Realm

A Realm Initial Measurement (RIM) is a measurement of the configuration and contents of a Realm at the time of
activation.

A Realm Extensible Measurement (REM) is a measurement value which can be extended during the lifetime of a
Realm.

Attributes of a Realm include an array of measurement values. The first entry in this array is a RIM. The remaining
entries in this array are REMs.

During Realm creation, the Host provides ipa_width, rtt_level_start and rtt_num_start values as Realm parameters.
According to the VMSA, the rtt_num_start value is architecturally defined as a function of the ipa_width and
rtt_level_start values. It would therefore have been possible to design the Realm creation interface such that the
Host provided only the ipa_width and rtt_level_start values. However, this would potentially allow a Realm to
be successfully created, but with a configuration which did not match the Host’s intent. For this reason, it was
decided that the Host should specify all three values explicitly, and that Realm creation should fail if the values are
not consistent. See Arm Architecture Reference Manual for A-Profile architecture [3] for further details.

The VMID of a Realm is chosen by the Host. The VMID must be within the range supported by the hardware
platform. The RMM ensures that every Realm on the system has a unique VMID.

A Realm Personalization Value (RPV) is a provided by the Host, to distinguish between Realms which have the
same Realm Initial Measurement, but different behavior.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter A2. Concepts

A2.1. Realm
SFCNBF Possible uses of the RPV include:
« A GUID
* Hash of Realm Owner public key
* Hash of a “personalisation document” which is provided to the Realm via a side-band (for example, via NS
memory) and contains configuration information used by Realm software.
Izrsuc The RMM treats the RPV as an opaque value.
Tersri The RPV is included in the Realm attestation report as a separate claim.
T MFRXD The RPV is included in the output of the RSI_REALM_CONFIG command.

See also:

e A2.1.5 Realm lifecycle

e A2.3 Realm Execution Context

e A3.1.2 Realm LPA2 and IPA width

e AS5.2.1 Realm IPA space

e A5.5 Realm Translation Table

e A7.1 Realm measurements

e A7.2.3.1.3 Realm Personalization Value claim
e B5.3.3 RSI_FEATURES command

e B5.3.9 RSI_REALM_CONFIG command

e C1.16 RmmRealm type

A2.1.4 Realm liveness

DyrxTg Realm liveness is a property which means that there exists one or more Granules, other than the RD and the starting
level RTTs, which are owned by the Realm.

Ipvpoz If a Realm is live, it cannot be destroyed.
Dpckry A Realm is live if any of the following is true:

* The number of RECs owned by the Realm is not zero
* A starting level RTT of the Realm is live

TvkkpJ If a Realm owns a non-zero number of Data Granules, this implies that it has a starting level RTT which is live,
and therefore that the Realm itself is live.

See also:

* A2.1.5 Realm lifecycle

* A2.2.2 Granule ownership

e A2.2.3 Granule lifecycle

e A2.3 Realm Execution Context

* AS5.5.8 RTTE liveness and RTT liveness

* B3.32 RealmlsLive function

e B4.3.10 RMI_REALM_DESTROY command

A2.1.5 Realm lifecycle

See also:

* Chapter A3 Realm creation
e DI1.2 Realm lifecycle flows

A2.1.5.1 States

DgpopJ The states of a Realm are listed below.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 30
1.0-rel0 Non-confidential

Chapter A2. Concepts

A2.1. Realm
State Description
REALM_NEW Under construction. Not eligible for execution.
REALM_ACTIVE Eligible for execution.
REALM_SYSTEM_OFF System has been turned off. Not eligible for execution.
A2.1.5.2 State transitions
Trrurc Permitted Realm state transitions are shown in the following table. The rightmost column lists the events which
can cause the corresponding state transition.
A transition from the pseudo-state NULL represents creation of a Realm object. A transition to the pseudo-state
NULL represents destruction of a Realm object.
From state To state Events
NULL REALM_NEW RMI_REALM_CREATE
REALM_NEW NULL RMI_REALM_DESTROY
REALM_ACTIVE NULL RMI_REALM_DESTROY
REALM_SYSTEM_OFF NULL RMI_REALM_DESTROY
REALM_NEW REALM_ACTIVE RMI_REALM_ACTIVATE
REALM_ACTIVE REALM_SYSTEM_OFF PSCI_SYSTEM_OFF
PSCI_SYSTEM_RESET
Ivepuwn Permitted Realm state transitions are shown in the following figure. Each arc is labeled with the events which can
cause the corresponding state transition.
A transition from the pseudo-state NULL represents creation of an RD. A transition to the pseudo-state NULL
represents destruction of an RD.
gmmmmmmennaneas . RMI_REALM_CREATE R
5 NULL L "| REALM_NEW
T T < RMI_REALM_DESTROY | S
RMI_REALM_ACTIVATE
A
—
RMI_REALM_DESTROY REALM_ACTIVE
PSCI_SYSTEM_OFF
PSCI_SYSTEM_RESET
A 4
N REALM_SYSTEM_OFF
RMI_REALM_DESTROY
Figure A2.1: Realm state transitions
See also:
e B6.3.6 PSCI_SYSTEM_OFF command
e B6.3.7 PSCI_SYSTEM_RESET command
e B4.3.8 RMI_REALM_ACTIVATE command
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 31
1.0-rel0 Non-confidential

Chapter A2. Concepts
A2.1. Realm

e B4.3.9 RMI REALM_CREATE command
e B4.3.10 RMI_REALM_DESTROY command

A2.1.6 Realm parameters

Drouvz A Realm parameter is a value which is provided by the Host during Realm creation.
See also:

e A2.1.3 Realm attributes

* A3.1 Realm feature discovery and selection
* B3.33 RealmParams function

e B4.3.9 RMI REALM_CREATE command

* B4.4.12 RmiRealmParams type

A2.1.7 Realm Descriptor

Drnspy A Realm Descriptor (RD) is an RMM data structure which stores attributes of a Realm.
Daerix The size of an RD is one Granule.
See also:

e A2.1.3 Realm attributes
* A2.2.3 Granule lifecycle

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

32

Chapter A2. Concepts
A2.2. Granule

A2.2 Granule

This section describes the concept of a Granule.
Dysxxx A Granule is a unit of physical memory whose size is 4KB.
TIpoczu A Granule may be used to store one of the following:

* Code or data used by the Host

* Code or data used by software in the Secure Security state
* Code or data used by a Realm

 Data used by the RMM to manage a Realm

The use of a Granule is reflected in its lifecycle state.
Dgvrxc A Granule is delegable if it can be delegated by the Host for use by the RMM or by a Realm.

UkukrLp In a typical implementation, all memory which is presented to the Host as RAM is delegable. Examples of
non-delegable memory may include the following:

¢ Memory which is carved out for use by the Root world, the RMM or the Secure world
* Device memory

See also:
e A2.2.1 Granule attributes
e A2.2.3 Granule lifecycle
A2.2.1 Granule attributes

This section describes the attributes of a Granule.

Dspeac A Granule attribute is a property of a Granule whose value can be observed or modified either by the Host or by a
Realm.
TyvxcR Examples of ways in which a Granule attribute may be observable include the outcome of an RMM command, and
whether a memory access generates a fault.
Dpvmzr The attributes of a Granule are summarized in the following table.
Name Type Description
gpt RmmGptEntry GPT entry
state RmmGranuleState Lifecycle state
See also:
e A2.1 Realm

* A2.1.7 Realm Descriptor

* A2.2.3 Granule lifecycle

¢ B3.20 GranuleAccessPermitted function
e C1.6 RmmGranule type

A2.2.2 Granule ownership

T pmvom A Granule whose state is neither UNDELEGATED nor DELEGATED is owned by a Realm.
T oRNTM The owner of a Granule is identified by the address of a Realm Descriptor (RD).
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 33

1.0-rel0 Non-confidential

Chapter A2. Concepts
A2.2. Granule

A2.2.3

DH\ LG

IH\

DENO0137
1.0-rel0

For a Granule whose state is RD, the ownership relation is recursive: the owning Realm is identified by the address
of the RD itself.

A Granule whose state is RTT is one of the following:
* A starting level RTT. The address of this RTT is stored in the RD of the owning Realm.

* A non-starting level RTT. The address of this RTT is stored in its parent RTT, in an RTT entry whose state is
TABLE. Recursively following the parent relationship leads to the RD of the owning Realm.

A Granule whose state is DATA is mapped at a Protected IPA, in an RTT entry whose state is ASSIGNED. The
Realm which owns the RTT is the owner of the DATA Granule.

A REC has an “owner” attribute which points to the RD of the owning Realm.
A REC is not mapped at a Protected IPA. Its ownership therefore needs to be recorded explicitly.
See also:

e A2.1 Realm

* A2.1.7 Realm Descriptor

e A2.3 Realm Execution Context

e AS5.2.1 Realm IPA space

e AS5.5 Realm Translation Table

e B4.3.1 RMI_DATA_CREATE command

e B4.3.2 RMI _DATA_CREATE_UNKNOWN command
e B4.3.12 RMI_REC_CREATE command

e B4.3.15 RMI RTT CREATE command

Granule lifecycle
A2.2.3.1 States

The states of a Granule are listed below.

For each state, the corresponding GPT entry value is shown.

Granule state Description GPT entry

UNDELEGATED Not GPT_REALM
Not delegated for use by the RMM. © -

DELEGATED GPT_REALM
Delegated for use by the RMM. -

RD . GPT_REALM
Realm Descriptor.

REC GPT_REALM
Realm Execution Context. -

REC_AUX GPT_REALM

- Realm Execution Context auxiliary Granule. -

DATA GPT_REALM
Realm code or data. -

RTT GPT_REALM

Realm Translation Table.

If the state of a Granule is UNDELEGATED then the RMM does not prevent the GPT entry of the Granule from
being changed by another agent to any value except GPT_REALM.

An NS Granule is a Granule whose GPT entry is GPT_NS.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 34
Non-confidential

Chapter A2. Concepts
A2.2. Granule

DENO0137
1.0-rel0

A2.2.3.2 State transitions

Permitted Granule state transitions are shown in the following table. The rightmost column lists the events which
can cause the corresponding state transition.

From state To state Events

UNDELEGATED DELEGATED RMI_GRANULE_DELEGATE

DELEGATED UNDELEGATED RMI_GRANULE_UNDELEGATE

DELEGATED RD RMI_REALM_CREATE

RD DELEGATED RMI_REALM_DESTROY

DELEGATED DATA RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

DATA DELEGATED RMI_DATA_DESTROY

DELEGATED REC RMI_REC_CREATE

REC DELEGATED RMI_REC_DESTROY

DELEGATED REC_AUX RMI_REC_CREATE

REC_AUX DELEGATED RMI_REC_DESTROY

DELEGATED RTT RMI_REALM_CREATE
RMI_RTT_CREATE

RTT DELEGATED RMI_REALM_DESTROY

RMI_RTT_DESTROY

Permitted Granule state transitions are shown in the following figure. Each arc is labeled with the events which
can cause the corresponding state transition.

UNDELEGATED |

RMI_GRANULE_DELEGATE

RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

DATA

RMI_DATA_DESTROY

RMI_REALM_CREATE

e]

[RMI_REALM_DESTROY
y

A 4

RMI_GRANULE_UNDELEGATE

RMI_REC_CREATE
DELEGATED | REC

A 4

RMI_REC_DESTROY

RMI_REC_CREATE

REC_AUX
RMI_REC_DESTROY
RMI_REALM_CREATE
L RMI_RTT_CREATE R
L RTT

RMI_REALM_DESTROY
RMI_RTT_DESTROY

Figure A2.2: Granule state transitions

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 35

Non-confidential

Chapter A2. Concepts

A2.2. Granule

See also:

e B4.3.1 RMI _DATA_CREATE command

e B4.3.2 RMI_DATA_CREATE_UNKNOWN command
e B4.3.3 RMI_DATA_DESTROY command

e B4.3.5 RMI_GRANULE_DELEGATE command

e B4.3.6 RMI_GRANULE_UNDELEGATE command
e B4.3.9 RMI_REALM_CREATE command

e B4.3.10 RMI_REALM_DESTROY command

e B4.3.12 RMI _REC_CREATE command

e B4.3.13 RMI_REC_DESTROY command

e B4.3.15 RMI_RTT_CREATE command

e B4.3.16 RMI_RTT_DESTROY command

A2.2.4 Granule wiping

RTZZ;—:"L
Xc
Dyrwgr
Rpsxx
IHF’
Svawys
DENO0137
1.0-rel0

When the state of a Granule has transitioned from P to DELEGATED and then to any other state, any content
associated with P has been wiped.

Any sequence of Granule state transitions which passes through the DELEGATED state causes the Granule
contents to be wiped. This is necessary to ensure that information does not leak from one Realm to another, or from
a Realm to the Host. Note that no agent can observe the contents of a Granule while its state is DELEGATED.

Wiping is an operation which changes the observable value of a memory location from X to ¥, such that the value X
cannot be determined from the value Y.

Wiping of a memory location does not reveal, directly or indirectly, any confidential Realm data.
Wiping is not guaranteed to be implemented as zero filling.

Realm software should not assume that the initial contents of uninitialized memory (that is, Realm IPA space
which is backed by DATA Granules created using RMI_DATA_CREATE_UNKNOWN) are zero.

See also:

* Arm CCA Security model [4]
e B4.3.2 RMI DATA_CREATE_UNKNOWN command
e B4.3.6 RMI_GRANULE_UNDELEGATE command

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 36
Non-confidential

Chapter A2. Concepts

A2.3. Realm Execution Context

A2.3 Realm Execution Context

This section describes the concept of a Realm Execution Context (REC).

A2.3.1 Overview

Dirrcp A Realm Execution Context (REC) is an R-EL0&]1 execution context which is associated with a Realm VPE.

A REC object is an RMM data structure which is used to store the register state of a REC.

See also:

e A2.1.2 Realm execution environment
* Chapter A4 Realm exception model

A2.3.2 REC attributes

This section describes the attributes of a REC.

Dzrert A REC attribute is a property of a REC whose value can be observed or modified either by the Host or by the
Realm which owns the REC.
Tcsaa Examples of ways in which a REC attribute may be observable include the outcome of an RMM command, and

the PE state following Realm entry.

DroseT The attributes of a REC are summarized in the following table.
Name Type Description
attest_state RmmRecAttestState Attestation token generation state

attest_challenge Bits512 Challenge for under-construction attestation token

aux Address[16] Addresses of auxiliary Granules

emulatable_abort RmmRecEmulatableAbort Whether the most recent exit from this REC was due to
an Emulatable Data Abort

flags RmmRecFlags Flags which control REC behavior

gprs Bits64[32] General-purpose register values

mpidr Bits64 MPIDR value

owner Address PA of RD of Realm which owns this REC

pc Bits64 Program counter value

psci_pending RmmPsciPending Whether a PSCI request is pending

state RmmRecState Lifecycle state

sysregs RmmSystemRegisters EL1 and ELO system register values

ripas_addr Address Next address to be processed in RIPAS change

ripas_top Address Top address of pending RIPAS change

ripas_value RmmRipas RIPAS value of pending RIPAS change

ripas_destroyed =~ RmmRipasChangeDestroyed Whether a RIPAS change from DESTROYED should be

permitted
ripas_response RmmRecResponse Host response to RIPAS change request
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 37

1.0-rel0 Non-confidential

Chapter A2. Concepts
A2.3. Realm Execution Context

host_call_pending RmmHostCallPending Whether a Host call is pending

The aux attribute of a REC is a list of auxiliary Granules.
The number of auxiliary Granules required for a REC is returned by the RMI_REC_AUX_COUNT command.

Depending on the configuration of the CCA platform and of the Realm, the amount of storage space required for a
REC may exceed a single Granule.

The number of auxiliary Granules required for a REC can vary between Realms on a CCA platform.
The number of auxiliary Granules required for a REC is a constant for the lifetime of a given Realm.

The gprs attribute of a REC is the set of general-purpose register values which are saved by the RMM on exit from
the REC and restored by the RMM on entry to the REC.

The mpidr attribute of a REC is a value which can be used to identify the VPE associated with the REC.

The pc attribute of a REC is the program counter which is saved by the RMM on exit from the REC and restored
by the RMM on entry to the REC.

The runnable flag of a REC determines whether the REC is eligible for execution. The RMI_REC_ENTER
command results in a REC entry only if the value of the flag is RUNNABLE.

The runnable flag of a REC is controlled by the Realm. Its initial value is reflected in the Realm Initial Measurement,
and during Realm execution its value can be changed by execution of the PSCI_CPU_ON and PSCI_CPU_OFF
commands.

The state attribute of a REC is controlled by the Host, by execution of the RMI_REC_ENTER command.

The sysregs attribute of a REC is the set of system register values which are saved by the RMM on exit from the
REC and restored by the RMM on entry to the REC.

See also:

e A2.3.3 REC index and MPIDR value
* A2.3.4 REC lifecycle

e A4.3.4.3 REC exit due to Data Abort
e B4.3.14 RMI_REC_ENTER command
e B6.3.2 PSCI CPU_OFF command

e B6.3.3 PSCI_CPU_ON command

e C1.19 RmmRec type

A2.3.3 REC index and MPIDR value

Dxovan

DENO0137
1.0-rel0

The REC index is the unsigned integer value generated by concatenation of MPIDR fields:
index = Aff3:Aff2:Aff1:Aff0[3:0]

This is illustrated by the following table.

RECindex Aff3 Aff2 Affl Aff0[3:0]

0 0 0 0 0
1 0 0 0 1
16 0 0 1 0
Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 38

Non-confidential

Chapter A2. Concepts
A2.3. Realm Execution Context

RECindex Aff3 Aff2 Affl Aff0[3:0]

4096 0 1 0 0
1048576 1 0 0 0
Toyrz The a£f£0[7:4] field of a REC MPIDR value is RESO for compatibility with GICv3.
T rruvm When creating the nth REC in a Realm, the Host is required to use the MPIDR corresponding to REC index #.
See also:
¢ B3.38 Reclndex function
e B4.3.12 RMI_REC_CREATE command
* B4.4.18 RmiRecMpidr type
A2.3.4 REC lifecycle
A2.3.4.1 States
DauTxoy The states of a REC are listed below.
State Description
REC_READY REC is not currently running.
REC_RUNNING REC is currently running.

A2.3.4.2 State transitions

T o Permitted REC state transitions are shown in the following table. The rightmost column lists the events which can
cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of a REC object. A transition to the pseudo-state
NULL represents destruction of a REC object.

From state To state Events

NULL REC_READY RMI_REC_CREATE

REC_READY NULL RMI_REC_DESTROY

REC_READY REC_RUNNING RMI_REC_ENTER

REC_RUNNING REC_READY Return from RMI_REC_ENTER
IeNsTS Permitted REC state transitions are shown in the following figure. Each arc is labeled with the events which can

cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of a REC. A transition to the pseudo-state NULL
represents destruction of a REC.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 39
1.0-rel0 Non-confidential

Chapter A2. Concepts
A2.3. Realm Execution Context

I LYXCN

DENO0137
1.0-rel0

R . RMI_REC_CREATE

NULL : | REC_READY
LS / RMI_REC_DESTROY .

A

RMI_REC_ENTER Return from
RMI_REC_ENTER

REC_RUNNING

E

Figure A2.3: REC state transitions

The maximum number of RECs per Realm is an IMPLEMENTATION DEFINED value which is discoverable via
RMI_FEATURES.

See also:

e B4.3.12 RMI_REC_CREATE command
e B4.3.13 RMI_REC_DESTROY command
e B4.3.14 RMI_REC_ENTER command

See also:

e B4.3.4 RMI_FEATURES command

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 40
Non-confidential

Chapter A3
Realm creation

This section describes the process of creating a Realm.

See also:

e A2.1 Realm
* DI1.2 Realm lifecycle flows

DENO0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

A3.1 Realm feature discovery and selection

RMM implementations across different CCA platforms may support disparate features and may offer disparate
configuration options for Realms.

The features supported by an RMI implementation are discovered by reading feature pseudo-register values using
the RMI_FEATURES command.

The term pseudo-register is used because, although these values are stored in memory, their usage model is similar
to feature registers specified in the Arm A-profile architecture.

On Realm creation, the Host specifies a set of desired features in a Realm parameters structure to the
RMI_REALM_CREATE command. The RMM checks that the features specified by the Host are supported by the
implementation.

The features specified at Realm creation time are included in the Realm Initial Measurement.

The features supported by an RSI implementation are discovered by reading feature pseudo-register values using
the RSI_FEATURES command.

See also:

e A2.1.6 Realm parameters

e A7.1.1 Realm Initial Measurement

e B4.3.4 RMI_FEATURES command

e B4.3.9 RMI_REALM_CREATE command
e B5.3.3 RSI_FEATURES command

A3.1.1 Realm hash algorithm

The set of hash algorithms supported by the implementation is reported by the RMI_FEATURES command in
RmiFeatureRegister0.

Requesting an unsupported hash algorithm causes execution of RMI_REALM_CREATE to fail.
See also:

e A7.1 Realm measurements
e B4.3.9 RMI REALM CREATE command
* B4.4.6 RmiFeatureRegister0 type

A3.1.2 Realm LPA2 and IPA width

Teovouz
I NKLXQ

T1kaen

DENO0137
1.0-rel0

Support by the implementation for LPA2 is reported by the RMI_FEATURES command in RmiFeatureRegister0.
Usage of LPA2 for Realm Translation Tables is an attribute which is set by the Host during Realm creation.
Realm IPA width is an attribute which is set by the Host during Realm creation.

Requesting an unsupported IPA width (for example, smaller than the minimum supported, or larger than the
maximum supported) causes execution of RMI_REALM_CREATE to fail.

The Host can choose a smaller IPA width than the maximum supported IPA width reported by RMI_FEATURES.
This is true regardless of whether LPA2 is enabled for the Realm.

The Host may want to enable LPA2 for a Realm due to either or both of the following reasons:

* to allow the Realm to be configured with a larger IPA width
* to allow access from mappings in the Realm’s stage 2 translation to a larger PA space

A Realm can query its [PA width using the RSI_REALM_CONFIG command.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 42
Non-confidential

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

If LPA2 is not enabled for a Realm then passing a PA greater than or equal to 2”48 to any of the following
commands causes an error to be returned:

* RMI_DATA_CREATE

* RMI_DATA_CREATE_UNKNOWN
* RMI_RTT_CREATE

* RMI_RTT_MAP_UNPROTECTED

See also:

* AS5.2.1 Realm IPA space

e B4.3.9 RMI REALM_CREATE command
* B4.4.6 RmiFeatureRegister(type

e B5.3.9 RSI_REALM_CONFIG command

A3.1.3 Realm support for Scalable Vector Extension

RH\:V KC

UT\R‘TXT‘

n

Support by the implementation for the Scalable Vector Extension (FEAT_SVE) is reported by the RMI_FEATURES
command in RmiFeatureRegister(.

Auvailability of SVE to a Realm is set by the Host during Realm creation.
SVE vector length for a Realm is set by the Host during Realm creation.

Requesting a larger-than-supported SVE vector length causes execution of RMI_REALM_CREATE to fail. This
is different from the behaviour of the hardware architecture, in which a larger-than-supported SVE vector length
value is silently truncated.

The RMI ABI provides a natural mechanism to signal an invalid feature selection, via the return code of
RMI_REALM_CREATE. The analog in the hardware architecture would be to generate an illegal exception
return, which would cause undesirable coupling between two disparate parts of the architecture, namely the
exception model and the SVE feature.

If SVE is supported by the platform but is disabled for the Realm via the RMI_REALM_CREATE command then
aread of ID_AAG64PFRO_EL1 . SVE indicates that SVE is not supported.

The RMM should trap and emulate reads of ID_AA64PFRO_EL1.SVE.

A Realm should discover SVE support by reading ID_AA64PFRO_ELL . SVE rather than based on the platform
identity read from MIDR_EL1.

See also:

e B4.3.9 RMI REALM CREATE command
* B4.4.6 RmiFeatureRegister(type

A3.1.4 Realm support for self-hosted debug

Iss

I7 1F
Resors
Reomr
DENO0137

1.0-rel0

Self-hosted debug is always available in Armv8-A.
The number of breakpoints and watchpoints are attributes which are set by the Host during Realm creation.

Requesting a number of breakpoints which is larger than the number of breakpoints available causes execution of
RMI_REALM_CREATE to fail.

Requesting a number of watchpoints which is larger than the number of watchpoints available causes execution of
RMI_REALM_CREATE to fail.

See also:

e B4.3.9 RMI REALM CREATE command

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 43
Non-confidential

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

A3.1.5 Realm support for Performance Monitors Extension

Trvcop Support by the implementation for the Performance Monitors Extension (FEAT_PMU) is reported by the
RMI_FEATURES command in RmiFeatureRegister(.

T uncre Availability of PMU to a Realm is set by the Host during Realm creation.

Txzmke The number of PMU counters available to a Realm is set by the Host during Realm creation.

RyvRreD Requesting a number of PMU counters which is larger than the number of PMU counters available causes

RMI_REALM_CREATE to fail.
See also:

* A8.1 Realm PMU
* B4.3.9 RMI_REALM_CREATE command
* B4.4.6 RmiFeatureRegisterQ type

A3.1.6 Realm support for Activity Monitors Extension

Rygvzs The Activity Monitors Extension (FEAT_AMUV1) is not available to a Realm.
A3.1.7 Realm support for Statistical Profiling Extension

Rpcant The Statistical Profiling Extension (FEAT_SPE) is not available to a Realm.

A3.1.8 Realm support for Trace Buffer Extension

Ryxpxe The Trace Buffer Extension (FEAT_TRBE) is not available to a Realm.
A3.1.9 Number of GICv3 List Registers
Trrrux The number of GICv3 List Registers which can be provided by the Host via the RMI_REC_ENTER command is

reported by the RMI_FEATURES command in RmiFeatureRegister(.

X JHNOX Making the number of GICv3 List Registers discoverable via RMI allows the RMM to reserve List Registers for
its own usage.

See also:

e B4.3.14 RMI REC ENTER command
e B4.4.6 RmiFeatureRegisterQ type

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 44
1.0-rel0 Non-confidential

Chapter A4
Realm exception model

This section describes how Realms are executed, and how exceptions which cause exit from a Realm are handled.
See also:

e A2.1.2 Realm execution environment

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 45
1.0-rel0 Non-confidential

Chapter A4. Realm exception model
A4.1. Exception model overview

A4.1 Exception model overview

DENO0137
1.0-rel0

A Realm entry is a transfer of control to a Realm.

A Realm exit is a transition of control from a Realm.

When executing in a Realm, an exception taken to R-EL2 or EL3 results in a Realm exit.
A REC entry is a Realm entry due to execution of RMI_REC_ENTER.

The Host provides the address of a REC as an input to the RMI_REC_ENTER command.

In this chapter, both rec and “the target REC” refer to the REC object which is provided to the RMI_REC_ENTER
command.

A RecRun object is a data structure used to pass values between the RMM and the Host on REC entry and on REC
exit.

A RecRun object is stored in Non-secure memory.
The Host provides the address of a RecRun object as an input to the RMI_REC_ENTER command.

An implementation is permitted to return RMI_SUCCESS from RMI_REC_ENTER without performing a REC
entry. For example, on observing a pending interrupt, the implementation can generate a REC exit due to IRQ
without entering the target REC.

A REC exit is return from an execution of RMI_REC_ENTER which caused a REC entry.

The following diagram summarises the possible control flows that result from a Realm exit.

Realm Security state Non-secure Secure
Security state Security state
ELO Realm
a b c d e
EL1 0. © O 04 O
EL2 | RMM o & o @ Hypervisor| | | @ SPM
EL3 o Monitor
& &

Root Security state

Figure A4.1: Realm exit paths

a. The exception is taken to EL3. The Monitor handles the exception and returns control to the Realm.

b. The exception is taken to EL3. The Monitor pre-empts Realm Security state and passes control to the Secure
Security state. This may be for example due to an FIQ.

c. The exception is taken to EL2. The RMM decides to perform a REC exit. The RMM executes an SMC
instruction, requesting the Monitor to pass control to the Non-secure Security state.

d. The exception is taken to EL2. The RMM executes an SMC instruction, requesting the Monitor to perform
an operation, then returns control to the Realm.

e. The exception is taken to EL2. The RMM handles the exception and returns control to the Realm.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 46
Non-confidential

Chapter A4. Realm exception model
A4.1. Exception model overview

See also:

e A4.2 REC entry

* A4.3 REC exit

* B4.3.14 RMI_REC_ENTER command
* B4.4.20 RmiRecRun type

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

47

Chapter A4. Realm exception model
A4.2. REC entry

A4.2 REC entry

This section describes REC entry.

See also:

e A4.3 REC exit

e B4.3.14 RMI REC_ENTER command

A4.2.1 RmiRecEnter object

Dsvsom An RmiRecEnter object is a data structure used to pass values from the Host to the RMM on REC entry.
Tyskpn An RmiRecEnter object is stored in the RecRun object which is passed by the Host as an input to the
RMI_REC_ENTER command.
T TRREX On REC entry, execution state is restored from the REC object and from the RmiRecEnter object to the PE.
Teupim An RmiRecEnter object contains attributes which are used to manage Realm virtual interrupts.
Dern The attributes of an RmiRecEnter object are summarized in the following table.
Name Byte offset Type Description
flags 0x0 RmiRecEnterFlags Flags
gprs[0] 0x200 Bits64 Registers
gprs[1] 0x208 Bits64 Registers
gprs[2] 0x210 Bits64 Registers
gprs[3] 0x218 Bits64 Registers
gprs[4] 0x220 Bits64 Registers
gprs[5] 0x228 Bits64 Registers
gprs[6] 0x230 Bits64 Registers
gprs[7] 0x238 Bits64 Registers
gprs[8] 0x240 Bits64 Registers
gprs[9] 0x248 Bits64 Registers
gprs[10] 0x250 Bits64 Registers
gprs[11] 0x258 Bits64 Registers
gprs[12] 0x260 Bits64 Registers
gprs[13] 0x268 Bits64 Registers
gprs[14] 0x270 Bits64 Registers
gprs[15] 0x278 Bits64 Registers
gprs[16] 0x280 Bits64 Registers
gprs[17] 0x288 Bits64 Registers
gprs[18] 0x290 Bits64 Registers
gprs[19] 0x298 Bits64 Registers
gprs[20] 0x2a0 Bits64 Registers
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 48

1.0-rel0

Non-confidential

Chapter A4. Realm exception model
A4.2. REC entry

Name Byte offset Type Description

gprs[21] 0x2a8 Bits64 Registers

gprs[22] 0x2b0 Bits64 Registers

gprs[23] 0x2b8 Bits64 Registers

gprs[24] 0x2c0 Bits64 Registers

gprs[25] 0x2c8 Bits64 Registers

gprs[26] 0x2d0 Bits64 Registers

gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers

gprs[30] 0x2f£0 Bits64 Registers

gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value
gicv3_Irs[0] 0x308 Bits64 GICv3 List Register values
gicv3_lIrs[1] 0x310 Bits64 GICv3 List Register values
gicv3_lrs[2] 0x318 Bits64 GICv3 List Register values
gicv3_lrs[3] 0x320 Bits64 GICv3 List Register values
gicv3_lIrs[4] 0x328 Bits64 GICv3 List Register values
gicv3_Irs[5] 0x330 Bits64 GICv3 List Register values
gicv3_lrs[6] 0x338 Bits64 GICv3 List Register values
gicv3_Irs[7] 0x340 Bits64 GICv3 List Register values
gicv3_Irs[8] 0x348 Bits64 GICv3 List Register values
gicv3_Irs[9] 0x350 Bits64 GICv3 List Register values
gicv3_lrs[10] 0x358 Bits64 GICv3 List Register values
gicv3_Irs[11] 0x360 Bits64 GICv3 List Register values
gicv3_lrs[12] 0x368 Bits64 GICv3 List Register values
gicv3_lrs[13] 0x370 Bits64 GICv3 List Register values
gicv3_lrs[14] 0x378 Bits64 GICv3 List Register values
gicv3_Irs[15] 0x380 Bits64 GICv3 List Register values

In this chapter, both enter and “the RmiRecEnter object” refer to the RmiRecEnter object which is provided to
the RMI_REC_ENTER command.

On REC entry, all enter fields are ignored unless specified otherwise.

See also:

e A2.3 Realm Execution Context
¢ A4.3.1 RmiRecExit object

* Chapter A6 Realm interrupts and timers
e B4.4.14 RmiRecEnter type

DENO0137

1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

Non-confidential

49

Chapter A4. Realm exception model
A4.2. REC entry

A4.2.2 General purpose registers restored on REC entry

RH SF

On REC entry, if the most recent exit from the target REC was a REC exit due to PSCI, then all of the following
occur:

* XO0 to X6 contain the PSCI return code and PSCI output values.
* GPR values X7 to X30 are restored from the REC object to the PE.

On REC entry, if either this is the first entry to this REC, or the most recent exit from the target REC was not a
REC exit due to PSCI, then GPR values X0 to X30 are restored from the REC object to the PE.

On REC entry, if rec.host_call_pending is HOST_CALL_PENDING, then GPR values X0 to X30 are
copied from enter.gprs[0..30] to the RsiHostCall data structure.

On REC entry, if writing to the RsiHostCall data structure fails due to the target IPA not being mapped then a REC
exit to Data Abort results.

On REC entry, if writing to the RsiHostCall data structure succeeds then rec.host_call_pending is
NO_HOST_CALL_PENDING.

On REC entry, if RMM access to enter causes a GPF then the RMI_REC_ENTER command fails with
RMI_ERROR_INPUT.

See also:

* A4.3.3 General purpose registers saved on REC exit
e A4.3.4.3 REC exit due to Data Abort

e A4.3.7 REC exit due to PSCI

e A4.3.9 REC exit due to Host call

e A4.5 Host call

A4.2.3 REC entry following REC exit due to Data Abort

R‘\‘u‘: VDB

DENO0137
1.0-rel0

On REC entry, if enter.flags.inject_sea == RMI_INJECT_SEA then the value of enter.flags.
—remul_mmio is ignored.

On REC entry, if the most recent exit from the target REC was a REC exit due to Emulatable Data Abort and
enter.flags.emul_mmio == RMI_EMULATED_MMIO, then the return address is the next instruction following
the faulting instruction.

On REC entry, if the most recent exit from the target REC was a REC exit due to Emulatable Data Abort and the
Realm memory access was aread and enter.flags.emul_mmio == RMI_EMULATED_MMIO, then the register
indicated by ESR_EL2.ISS.SRT is setto enter.gprs[0].

On execution of RMI_REC_ENTER, if the most recent exit from the target REC was not a REC exit
due to Emulatable Data Abort and enter.flags.emul_mmio == RMI_EMULATED_MMIO, then the
RMI_REC_ENTER command fails.

On REC entry, if the most recent exit from the target REC was a REC exit due to Data Abort at an Unprotected
IPA and enter.flags.inject_sea == RMI_INJECT_SEA, then a Synchronous External Abort is taken to the
Realm.

See also:

e A4.3.4.3 REC exit due to Data Abort

* A4.4 Emulated Data Aborts

e AS5.2.6 Realm access to an Unprotected IPA
e AS5.2.7 Synchronous External Aborts

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 50
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

A4.3 REC exit

This section describes REC exit.
See also:
e A4.2 REC entry
e B4.3.14 RMI REC_ENTER command

A4.3.1 RmiRecEXxit object

Despes An RmiRecExit object is a data structure used to pass values from the RMM to the Host on REC exit.
Typorr An RmiRecExit object is stored in the RecRun object which is passed by the Host as an input to the
RMI_REC_ENTER command.
T sxwps On REC exit, execution state is saved from the PE to the REC object and to the RmiRecExit object.
Tzscnm An RmiRecEXxit object contains attributes which are used to manage Realm virtual interrupts and Realm timers.
Drrem The attributes of an RmiRecExit object are summarized in the following table.
Name Byte offset Type Description
exit_reason 0x0 RmiRecExitReason Exit reason
esr 0x100 Bits64 Exception Syndrome Register
far 0x108 Bits64 Fault Address Register
hpfar 0x110 Bits64 Hypervisor IPA Fault Address register
gprs[0] 0x200 Bits64 Registers
gprs[1] 0x208 Bits64 Registers
gprs[2] 0x210 Bits64 Registers
gprs[3] 0x218 Bits64 Registers
gprs[4] 0x220 Bits64 Registers
gprs[5] 0x228 Bits64 Registers
gprs[6] 0x230 Bits64 Registers
gprs[7] 0x238 Bits64 Registers
gprs[8] 0x240 Bits64 Registers
gprs[9] 0x248 Bits64 Registers
gprs[10] 0x250 Bits64 Registers
gprs[11] 0x258 Bits64 Registers
gprs[12] 0x260 Bits64 Registers
gprs[13] 0x268 Bits64 Registers
gprs[14] 0x270 Bits64 Registers
gprs[15] 0x278 Bits64 Registers
gprs[16] 0x280 Bits64 Registers
gprs[17] 0x288 Bits64 Registers
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 51

1.0-rel0 Non-confidential

Chapter A4. Realm exception model

A4.3. REC exit

Name Byte offset Type Description

gprs[18] 0x290 Bits64 Registers

gprs[19] 0x298 Bits64 Registers

gprs[20] 0x2a0 Bits64 Registers

gprs[21] 0x2a8 Bits64 Registers

gprs[22] 0x2b0 Bits64 Registers

gprs[23] 0x2b8 Bits64 Registers

gprs[24] 0x2c0 Bits64 Registers

gprs[25] 0x2c8 Bits64 Registers

gprs[26] 0x2d0 Bits64 Registers

gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers

gprs[30] 0x2£0 Bits64 Registers

gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value

gicv3_lrs[0] 0x308 Bits64 GICv3 List Register values

gicv3_lIrs[1] 0x310 Bits64 GICv3 List Register values

gicv3_Irs[2] 0x318 Bits64 GICv3 List Register values

gicv3_lrs[3] 0x320 Bits64 GICv3 List Register values

gicv3_Irs[4] 0x328 Bits64 GICv3 List Register values

gicv3_Irs[5] 0x330 Bits64 GICv3 List Register values

gicv3_lIrs[6] 0x338 Bits64 GICv3 List Register values

gicv3_lrs[7] 0x340 Bits64 GICv3 List Register values

gicv3_Irs[8] 0x348 Bits64 GICv3 List Register values

gicv3_Irs[9] 0x350 Bits64 GICv3 List Register values

gicv3_lrs[10] 0x358 Bits64 GICv3 List Register values

gicv3_lrs[11] 0x360 Bits64 GICv3 List Register values

gicv3_lIrs[12] 0x368 Bits64 GICv3 List Register values

gicv3_lIrs[13] 0x370 Bits64 GICv3 List Register values

gicv3_lrs[14] 0x378 Bits64 GICv3 List Register values

gicv3_Irs[15] 0x380 Bits64 GICv3 List Register values

gicv3_misr 0x388 Bits64 GICv3 Maintenance Interrupt State Register
value

gicv3_vmer 0x390 Bits64 GICv3 Virtual Machine Control Register
value

cntp_ctl 0x400 Bits64 Counter-timer Physical Timer Control
Register value

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 52

1.0-rel0

Non-confidential

Chapter A4. Realm exception model

A4.3. REC exit
Name Byte offset Type Description
cntp_cval 0x408 Bits64 Counter-timer Physical Timer Compare Value
Register value
cntv_ctl 0x410 Bits64 Counter-timer Virtual Timer Control Register
value
cntv_cval 0x418 Bits64 Counter-timer Virtual Timer CompareValue
Register value
ripas_base 0x500 Bits64 Base address of target region for pending
RIPAS change
ripas_top 0x508 Bits64 Top address of target region for pending
RIPAS change
ripas_value 0x510 RmiRipas RIPAS value of pending RIPAS change
imm 0x600 Bits16 Host call immediate value
pmu_ovf_status 0x700 RmiPmuOverflowStatus PMU overflow status
Trozxz In this chapter, both exit and “the RmiRecExit object” refer to the RmiRecExit object which is provided to the
RMI_REC_ENTER command.
Rpnwzy On REC exit, all exit fields are zero unless specified otherwise.
See also:

* A2.3 Realm Execution Context

* A4.2.1 RmiRecEnter object

e A4.5 Host call

* Chapter A6 Realm interrupts and timers

* Chapter A8 Realm debug and performance monitoring
e B4.4.16 RmiRecEXxit type

A4.3.2 Realm exit reason

T ovwng On return from the RMI_REC_ENTER command, the reason for the REC exit is indicated by exit .exit_reason
and exit.esr.

See also:

* B4.4.17 RmiRecExitReason type

A4.3.3 General purpose registers saved on REC exit

Rperve On REC exit due to PSCI, all of the following are true:

e exit.gprs[0] contains the PSCI FID.

* exit.gprs[1..3] contain the corresponding PSCI arguments. If the PSCI command has fewer than 3
arguments, the remaining values contain zero.

* GPR values X7 to X30 are saved from the PE to the REC object.

Renzi) On REC exit for any reason which is not REC exit due to PSCI, GPR values X0 to X30 are saved from the PE to
the REC.

Ruzcpr On REC exit for any reason which is neither REC exit due to Host call nor REC exit due to PSCI, exit.gprs is
Zero.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 53

1.0-rel0 Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

Rrrevt On REC exit, if RMM access to exit causes a GPF then the RMI_REC_ENTER command fails with
RMI_ERROR_INPUT.

See also:

* A4.2.2 General purpose registers restored on REC entry
* A4.3.7 REC exit due to PSCI
* A4.3.9 REC exit due to Host call

A4.3.4 REC exit due to synchronous exception

T snpur A synchronous exception taken to R-EL2 can cause a REC exit.

Trpsne The following table summarises the behavior of synchronous exceptions taken to R-EL2.
Exception class Behavior
Trapped WFI or WFE instruction execution REC exit due to WFI or WFE
HVC instruction execution in AArch64 state Unknown exception taken to Realm
SMC instruction execution in AArch64 state One of:

* REC exit due to PSCI
¢ RSI command handled by RMM, followed by
return to Realm
Trapped MSR, MRS or System instruction execution in ~ Emulated by RMM, followed by return to Realm
AArch64 state

Instruction Abort from a lower Exception level REC exit due to Instruction Abort

Data Abort from a lower Exception level REC exit due to Data Abort

RyLrMD Realm execution of an SMC which is not part of one of the following ABIs results in a return value of
SMCCC_NOT_SUPPORTED:
e PSCI
e RSI
See also:
e A4.5 Host call
* Chapter BS Realm Services Interface
» Chapter B6 Power State Control Interface
A4.3.4.1 REC exit due to WFI or WFE
Derapx A REC exit due to WFI or WFE is a REC exit due to WFI, WFIT, WFE or WFET instruction execution in a Realm.
RyrJor On WFI or WFIT instruction execution in a Realm, a REC exit due to WFI or WFE is caused if enter.trap_wfi
is RMI_TRAP.
Reanen On WEFE or WFET instruction execution in a Realm, a REC exit due to WFI or WFE is caused if enter.trap_wfe
is RMI_TRAP.
Ryowst On REC exit due to WFI or WFE, all of the following are true:
* exit.exit_reasonis RMI_EXIT _SYNC.
* exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.
* exit.esr.ISS.TI contains the value of ESR_EL2.15S.TT at the time of the Realm exit.
* All other exit fields except for exit.givc3_*, exit_cnt* and exit.pmu_ovf_status are Zero.
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 54

1.0-rel0 Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

Repve

BPYBC

DENO0137
1.0-rel0

On REC exit due to WFI or WFE, if the exit was caused by WFET or WFIT instruction execution then
exit.gprs[0] contains the timeout value.

See also:

* AG6.1 Realm interrupts
e A6.2 Realm timers
e AS8.1 Realm PMU

A4.3.4.2 REC exit due to Instruction Abort

A REC exit due to Instruction Abort is a REC exit due to a Realm instruction fetch from a Protected IPA for which
either of the following is true:

* HIPAS is UNASSIGNED and RIPAS is RAM
* RIPAS is DESTROYED

On REC exit due to Instruction Abort, all of the following are true:

* exit.exit_reasonis RMI_EXIT SYNC.

* exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.

* exit.esr.ISS.SET contains the value of ESR_EL2.ISS.SET at the time of the Realm exit.

* exit.esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.

* exit.esr.ISS.IFSC contains the value of ESR_EL2.ISS.IFSC atthe time of the Realm exit.

e exit.hpfar contains the value of HPFAR_EL2 at the time of the Realm exit.

* All other exit fields except for exit.give3_*, exit_cnt* and exit.pmu_ovf_status are zero.

See also:

e A5.2.2 Realm IPA state

e A5.2.3 Realm access to a Protected IPA
e AG6.1 Realm interrupts

e A6.2 Realm timers

e A8.1 Realm PMU

A4.3.4.3 REC exit due to Data Abort

A REC exit due to Emulatable Data Abort is a REC exit due to a Realm data access to one of the following:

* an Unprotected IPA whose HIPAS is UNASSIGNED_NS, where the access caused ESR_EL2.ISS.ISV to
besetto '1°'

* an Unprotected IPA whose HIPAS is ASSIGNED_NS, where the access caused a stage 2 permission fault
and caused ESR_EL2.ISS.ISVtobesetto '1"'

A REC exit due to Non-emulatable Data Abort is a REC exit due to a Realm data access to one of the following:

* an Unprotected IPA whose HIPAS is UNASSIGNED_NS, where the access caused ESR_EL2.ISS.ISVto
besetto '0"

 an Unprotected IPA whose HIPAS is ASSIGNED_NS, where the access caused a stage 2 permission fault
and caused ESR_EL2.ISS.ISVtobesetto '0’

¢ a Protected IPA whose HIPAS is UNASSIGNED and whose RIPAS is RAM

¢ a Protected IPA whose RIPAS is DESTROYED.

On REC exit due to Data Abort, all of the following are true:

* exit.exit_reasonis RMI_EXIT SYNC.

e exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.

* exit.esr.ISS.SET contains the value of ESR_EL2.ISS.SET at the time of the Realm exit.

* exit.esr.ISS.FnV contains the value of ESR_EL2.ISS.FnvV at the time of the Realm exit.

* exit.esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.

* exit.esr.ISS.DFSC contains the value of ESR_EL2.ISS.DFSC at the time of the Realm exit.
e exit.hpfar contains the value of HPFAR_EL2 at the time of the Realm exit.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 55
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

RFF}]ZI‘?F

RoBTRR

On REC exit due to Emulatable Data Abort, all of the following are true:

* rec.emulatable_abort is EMULATABLE ABORT.

* exit.esr.ISS.ISV contains the value of ESR_EL2.ISS. ISV at the time of the Realm exit.

* exit.esr.ISS.SAS contains the value of ESR_EL2.ISS.SAS at the time of the Realm exit.

* exit.esr.ISS.SF contains the value of ESR_EL2.ISS.SF at the time of the Realm exit.

* exit.esr.ISS.WnR contains the value of ESR_EL2.ISS.WnR at the time of the Realm exit.

* exit.far contains the value of FAR_EL2 at the time of the Realm exit, with bits more significant than the
size of a Granule masked to zero.

On REC exit due to Non-emulatable Data Abort at an Unprotected IPA, all of the following are true:
* exit.esr.IL contains the value of ESR_EL2.IL at the time of the Realm exit.

On REC exit due to Data Abort, all other exit fields except for exit.give3_*, exit_cnt* and
exit.pmu_ovf_status are zero.

On REC exit due to Emulatable Data Abort, ESR_EL2.ISS.SSE is not propagated to the Host. This is because
this field is used to emulate sign extension on loads, which must be performed by the RMM so that the Realm can
rely on architecturally correct behavior of the virtual execution environment.

On REC exit due to Emulatable Data Abort, the Host can calculate the faulting IPA from the exit .hpfar and
exit.far values.

On REC exit due to Emulatable Data Abort, if the Realm memory access was a write,
exit.gprs[0] contains the value of the register indicated by ESR_EL2.ISS.SRT at the time of the Realm exit.

On REC exit not due to Emulatable Data Abort, rec.emulatable_abort is NOT_EMULATABLE_ABORT.
See also:

* A4.2.3 REC entry following REC exit due to Data Abort
* A4.4 Emulated Data Aborts

e AS5.2.1 Realm IPA space

e AS5.2.3 Realm access to a Protected IPA

* AS5.2.6 Realm access to an Unprotected IPA

* AG6.1 Realm interrupts

e A6.2 Realm timers

* A8.1 Realm PMU

A4.3.5 REC exit due to IRQ

Dyruxx
Rrygsx

Resox

A REC exit due to IRQ is a REC exit due to an IRQ exception which should be handled by the Host.
On REC exit due to IRQ, exit .exit_reason is RMI_EXIT_IRQ.

On REC exit due to IRQ, exit .esr is zero.

See also:

e Chapter A6 Realm interrupts and timers

A4.3.6 REC exit due to FIQ

DENO0137
1.0-rel0

A REC exit due to FIQ is a REC exit due to an FIQ exception which should be handled by the Host.
On REC exit due to FIQ, exit .exit_reason is RMI_EXIT_FIQ.

On REC exit due to FIQ, exit .esr is zero.

See also:

* Chapter A6 Realm interrupts and timers

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 56
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

A4.3.7 REC exit due to PSCI

Tyscrp

DENO0137
1.0-rel0

A PSCI function executed by a Realm is either:

* handled by the RMM, returning to the Realm, or
* forwarded by the RMM to the Host via a REC exit due to PSCI.

A REC exit due to PSCI is a REC exit due to Realm PSCI function execution by SMC instruction which was
forwarded by the RMM to the Host.

The following table summarises the behavior of PSCI function execution by a Realm.

PSCI functions not listed in this table are not supported. Calling a non-supported PSCI function results in a return
value of PSCI_NOT_SUPPORTED.

Can result in REC exit Requires Host to call

PSCI function due to PSCI RMI_PSCI_COMPLETE
PSCI_VERSION No -

PSCI_FEATURES No -

PSCI_CPU_SUSPEND Yes No

PSCI_CPU_OFF Yes No

PSCI_CPU_ON Yes Yes
PSCI_AFFINITY_INFO Yes Yes

PSCI_SYSTEM_OFF Yes No
PSCI_SYSTEM_RESET Yes No

On REC exit due to PSCI, exit.exit_reason is RMI_EXIT_PSCI.
On REC exit due to PSCI, exit .gprs contains sanitised parameters from the PSCI call.

On REC exit due to PSCI, if the command arguments include an MPIDR value, rec.psci_pending is set to
PSCI_REQUEST_PENDING. Otherwise, rec.psci_pending is set to NO_PSCI_REQUEST_PENDING.

Following REC exit due to PSCI, if rec.psci_pending is PSCI_REQUEST_PENDING, the Host must complete
the request by calling the RMI_PSCI_COMPLETE command, prior to re-entering the REC.

In the call to RMI_PSCI_COMPLETE, the Host provides the target REC, which corresponds to the MPIDR value
provided by the Realm. This is necessary because the RMM does not maintain a mapping from MPIDR values to
REC addresses. The RMM validates that the REC provided by the Host matches the MPIDR value.

In the call to RMI_PSCI_COMPLETE, the Host provides a PSCI status value, which the RMM handles as follows:

* If the Host provides PSCI_SUCCESS, the RMM performs the PSCI operation requested by the Realm. The
result of the PSCI operation is recorded in the REC and returned to the Realm on the next entry to the calling
REC.

* If the Host provides a status value other than PSCI_SUCCESS, the RMM validates that the status code is
permitted for the PSCI operation requested by the Realm. If the status code is permitted, it is recorded in the
REC and returned to the Realm on the next entry to the calling REC.

See also:

A4.3.3 General purpose registers saved on REC exit
* B3.27 PsciReturnCodePermitted function

e B4.3.7 RMI_PSCI_COMPLETE command

* Chapter B6 Power State Control Interface

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 57
Non-confidential

Chapter A4. Realm exception model
A4.3. REC exit

* D1.4 PSCI flows

A4.3.8 REC exit due to RIPAS change pending

D JGCVY

R

A REC exit due to RIPAS change pending is a REC exit due to the Realm issuing a RIPAS change request.

SSKK On REC exit due to RIPAS change pending, all of the following are true:

* exit.exit_reasonis RMI_EXIT RIPAS_CHANGE.

* exit.ripas_base is the base address of the region on which a RIPAS change is pending.
* exit.ripas_top is the top address of the region on which a RIPAS change is pending.

* exit.ripas_value is the requested RIPAS value.

* rec.ripas_addr is the base address of the region on which a RIPAS change is pending.
* rec.ripas_top is the top address of the region on which a RIPAS change is pending.

* rec.ripas_value is the requested RIPAS value.

On REC exit due to RIPAS change pending:

* exit holds the base address and the size of the region on which a RIPAS change is pending. These values
inform the Host of the bounds of the RIPAS change request.

* rec holds the next address to be processed in a RIPAS change, and the top of the requested RIPAS change
region. These values are used by the RMM to enforce that the RMI_RTT_SET_RIPAS command can only
apply RIPAS change within the bounds of the RIPAS change request, and to report the progress of the RIPAS
change to the Realm on the next REC entry.

Rorumm On REC exit not due to RIPAS change pending, all of the following are true:

* rec.ripas_addrisO
* rec.ripas_topis (O

See also:

e A2.3.2 REC attributes
e AS5.4 RIPAS change

A4.3.9 REC exit due to Host call

Dyurzxk A REC exit due to Host call is a REC exit due to RSI_ HOST CALL execution in a Realm.

Rg

JRe On REC exit due to Host call, all of the following are true:

e rec.host_call_pendingis HOST_CALL_PENDING.

* exit.exit_reasonis RMI_EXIT _HOST_CALL.

* exit.imm contains the immediate value passed to the RSI_HOST_CALL command.

* exit.gprs[0..30] contain the register values passed to the RSI_HOST_CALL command.

* All other exit fields except for exit.give3_*, exit_cnt* and exit.pmu_ovf_status are zero.

See also:

e A4.5 Host call

e AG6.1 Realm interrupts

e AG6.2 Realm timers

e A8.1 Realm PMU

e B5.3.4 RSI_HOST_CALL command

A4.3.10 REC exit due to SError

Dpeumip A REC exit due to SError is a REC exit due to an SError interrupt during Realm execution.
Rircrp On REC exit due to SError, all of the following occur:
* exit.exit_reason is RMI_EXIT_SERROR.
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 58

1.0-rel0 Non-confidential

Chapter A4. Realm exception model

A4.3. REC exit
* exit
* exit
* exit.
* exit.
* exit.

See also:
DENO0137
1.0-rel0

All other exit fields except for exit.givec3_*, exit_cntx and exit.pmu_ovf_status are zero.

.esr.EC contains the value of ESR_EL2 .EC at the time of the Realm exit.
.esr.ISS.IDS contains the value of ESR_EL2.ISS.IDS atthe time of the Realm exit.

esr.ISS.AET contains the value of ESR_EL2.ISS.AET at the time of the Realm exit.
esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.
esr.ISS.DFSC contains the value of ESR_EL2.ISS.DFSC at the time of the Realm exit.

e AG6.1 Realm interrupts
AG6.2 Realm timers
A8.1 Realm PMU

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter A4. Realm exception model
A4.4. Emulated Data Aborts

A4.4 Emulated Data Aborts

Tf,,‘ibff

On REC exit due to Emulatable Data Abort, sufficient information is provided to the Host to enable it to emulate
the access, for example to emulate a virtual peripheral.

On taking the REC exit, the Host can either

* Establish a mapping in the RTT, in which case it would want the Realm to re-attempt the access. In this case,

on the next REC entry the Host sets enter.flags.emul_mmio = RMI_NOT_EMULATED_MMIO, which
indicates that instruction emulation was not performed. This causes the return address to be the faulting
instruction.

Emulate the access. For an emulated write, the data is provided in exit .gprs[0]. For an emulated read,
the data is provided in enter.gprs[0]. In this case, on the next REC entry the Host sets
enter.flags.emul_mmio = RMI_EMULATED_MMIO, which indicates that the instruction was emulated.
This causes the return address to be the address of the instruction which generated the Data Abort plus 4
bytes.

See also:

* A4.2.3 REC entry following REC exit due to Data Abort
e A4.3.4.3 REC exit due to Data Abort
e AS5.2.1 Realm IPA space

A4.5 Host call

DENO0137
1.0-rel0

This section describes the programming model for Realm communication with the Host.

A Host call is a call made by the Realm to the Host, by execution of the RSI_HOST_CALL command.
A Host call can be used by a Realm to make a hypercall.

On Realm execution of HVC, an Unknown exception is taken to the Realm.

See also:

* A4.2.2 General purpose registers restored on REC entry
e A4.3.9 REC exit due to Host call

e B5.3.4 RSI_HOST_CALL command

e DI1.3.2 Host call flow

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 60
Non-confidential

Chapter A5
Realm memory management

This section describes how Realm memory is managed. This includes:

* How the translation tables which describe the Realm’s address space are managed by the Host.
* Properties of the Realm’s address space, and of the memory which can be mapped into it.
* How faults caused by Realm memory accesses are handled.

See also:

¢ A2.1.2 Realm execution environment
e DI1.5 Realm memory management flows
e Chapter D2 Realm shared memory protocol

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

61

Chapter A5. Realm memory management
Ab5.1. Realm memory management overview

A5.1 Realm memory management overview

Realm memory management can be viewed from one of two standpoints: the Realm and the Host.

From the Realm’s point of view, the RMM provides security guarantees regarding the IPA space of the Realm and
the memory which is mapped into it. These security guarantees are upheld via RST commands which the Realm
can execute in order to query the initial configuration and contents of its address space, and to modify properties of
the address space at runtime.

From the Host’s point of view, Realm memory management involves manipulating the stage 2 translation tables
which describe the Realm’s address space, and handling faults which are caused by Realm memory accesses.
These operations are similar to those involved in managing the memory of a normal VM, but in the case of a Realm
they are performed via execution of RMI commands.

See also:

* AS5.2 Realm view of memory management
¢ AS5.3 Host view of memory management

A5.2 Realm view of memory management

This section describes memory management from the Realm’s point of view.

A5.2.1 Realm IPA space

Tpiag

The IPA space of a Realm is divided into two halves: Protected IPA space and Unprotected IPA space.
Software in a Realm should treat the most significant bit of an IPA as a protection attribute.

A Protected IPA is an address in the lower half of a Realm’s IPA space. The most significant bit of a Protected IPA
is 0.

An Unprotected IPA is an address in the upper half of a Realm’s IPA space. The most significant bit of an
Unprotected IPA is 1.

See also:

e A2.1.3 Realm attributes
e A3.1.2 Realm LPA2 and IPA width

A5.2.2 Realm IPA state

DENO0137

1.0-rel0

A Protected IPA has an associated Realm IPA state (RIPAS).

The RIPAS values are shown in the following table.

Name Description

DESTROYED Address which is inaccessible to the Realm due to an action taken
by the Host.

DEV Address where memory of an assigned Realm device is mapped.

EMPTY Address where no Realm resources are mapped.

RAM Address where private code or data owned by the Realm is mapped.

RIPAS values are stored in an RTT.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 62
Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management
I spN2T The Realm can query the RIPAS of an IPA range by executing RSI_IPA_STATE_GET.
See also:
e AS5.5 Realm Translation Table
e B5.3.5 RSI_IPA_STATE _GET command

A5.2.3 Realm access to a Protected IPA

Rvoor Realm data access to a Protected IPA whose RIPAS is EMPTY causes a Synchronous External Abort taken to the
Realm.

RukLSD Realm instruction fetch from a Protected IPA whose RIPAS is EMPTY causes a Synchronous External Abort taken
to the Realm.

Rosors Realm data access to a Protected IPA whose RIPAS is RAM does not cause a Synchronous External Abort taken to
the Realm.

TocuaaT Realm data access to a Protected IPA can cause an REC exit due to Data Abort.

Rrcgcr Realm instruction fetch from a Protected IPA whose RIPAS is RAM does not cause a Synchronous External Abort
taken to the Realm.

T xR0y Realm instruction fetch from a Protected IPA whose RIPAS is RAM can cause a REC exit due to Instruction Abort.

Rervir Realm data access to a Protected IPA whose RIPAS is DESTROYED causes a REC exit due to Data Abort.

Ruzvot Realm instruction fetch from a Protected IPA whose RIPAS is DESTROYED causes a REC exit due to Instruction
Abort.
See also:

e A4.3.4.2 REC exit due to Instruction Abort
e A4.3.4.3 REC exit due to Data Abort
e AS5.2.7 Synchronous External Aborts

A5.2.4 Changes to RIPAS while Realm state is REALM_NEW
This section describes how the RIPAS of a Protected IPA can change while the Realm state is REALM_NEW.

TssBEN For a Realm in the REALM_NEW state, the RIPAS of a Protected IPA can change to RAM due to Host execution
of RMI_DATA_CREATE or RMI_RTT_INIT_RIPAS.

Tosesu For a Realm in the REALM_NEW state, changing the RIPAS of a Protected IPA to RAM causes the RIM to be
updated.

Tvepny For a Realm in the REALM_NEW state, the RIPAS of a Protected IPA can change to DESTROYED due to Host
execution of RMI_DATA_DESTROY or RMI_RTT_DESTROY.

Tyxicp For a Realm in the REALM_NEW state, changing the RIPAS of a Protected IPA to DESTROYED does not cause
the RIM to be updated.

See also:

* AS5.4 RIPAS change

e A7.1.1 Realm Initial Measurement

e B4.3.3 RMI_DATA_DESTROY command

e B4.3.16 RMI_RTT_DESTROY command

e B4.3.18 RMI_RTT _INIT_RIPAS command

A5.2.5 Changes to RIPAS while Realm state is REALM_ACTIVE
This section describes how the RIPAS of a Protected IPA can change while the Realm state is REALM_ACTIVE.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 63
1.0-rel0 Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

THL};JT

T:lﬂ H

DENO0137
1.0-rel0

A Realm in the REALM_ACTIVE state can request the RIPAS of a region of Protected IPA space to be changed to
either EMPTY or RAM.

A Realm in the REALM_ACTIVE state cannot request the RIPAS of a region of Protected IPA space to be changed
to DESTROYED.

For a Realm in the REALM_ACTIVE state, the RIPAS of a Protected IPA can change to EMPTY only in response
to Realm execution of RSI_IPA_STATE_SET.

The fact that the Host cannot change the RIPAS of a Protected IPA to EMPTY without the Realm having consented
to this change prevents the Host from injecting an SEA at a Protected IPA which has been configured to have a
RIPAS of RAM, which could potentially trigger unexpected behavior in the Realm.

For a Realm in the REALM_ACTIVE state, the RIPAS of a Protected IPA can change to RAM only in response to
Realm execution of RSI_IPA_STATE_SET.

On execution of RSI_IPA_STATE_SET, a Realm can optionally specify that the RIPAS change should only succeed
if the current RIPAS is not DESTROYED.

An expected pattern for Realm creation is as follows:
1. Host populates an “initial image” range of Realm IPA space with measured content:

Host executes RMI_DATA_CREATE, establishing a mapping to physical memory, changing RIPAS to RAM
and updating the RIM.

2. Host informs the Realm of the range of IPA space which should be considered by the Realm as DRAM. This
is a superset of the IPA range populated in step 1. For unpopulated parts of this IPA range, the RIPAS is
EMPTY.

3. Realm executes RSI_IPA_STATE_SET(ripas=RAM) for the DRAM IPA range described to it in step 2.
Following this command, the desired state is:

a. For the initial image IPA range, the contents match those described by the RIM.
b. For the entire DRAM IPA range, RIPAS is RAM.

If at step 2, the Host were to execute RMI_DATA_DESTROY on a page within the initial image IPA range, its
RIPAS would change to DESTROYED. The Host could then execute RMI_DATA_CREATE_UNKNOWN, with
the result that contents of the initial image IPA range no longer match those described by the RIM.

By specifying at step 3 that the RIPAS change should only succeed if the current RIPAS is not DESTROYED, the
Realm is able to prevent loss of integrity within the initial image IPA range.

For a Realm in the REALM_ACTIVE state, the RIPAS of a Protected IPA can change to DESTROYED due to
Host execution of RMI_DATA_DESTROY or RMI_RTT_DESTROY.

The result of changing the RIPAS of a Protected IPA to DESTROYED is that subsequent Realm accesses to that
address do not make forward progress. This is consistent with the principle that the RMM does not provide an
availability guarantee to a Realm.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 64
Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

Tamsc The following diagram summarizes RIPAS changes which can occur when the Realm state is REALM_ACTIVE.

RSI_IPA_STATE_SET(EMPTY)

RSI_IPA_STATE_SET(RAM)

RSI_IPA_STATE_SET(EMPTY) RSI_IPA_STATE_SET(RAM)
EMPTY DESTROYED RAM
Host action Host action
Key
EEE—— Transition which can occur only as the result of a Realm action
------------ | 3 Transition which can occur without the Realm having taken any action

See also:

e AS5.4 RIPAS change

e B4.3.1 RMI _DATA_CREATE command

e B4.3.2 RMI_DATA_CREATE_UNKNOWN command
e B4.3.3 RMI_DATA_DESTROY command

e B4.3.16 RMI_RTT_DESTROY command

e B4.3.18 RMI_RTT_INIT_RIPAS command

e B5.3.6 RSI IPA_STATE _SET command

A5.2.6 Realm access to an Unprotected IPA

TxoomL An access by a Realm to an Unprotected IPA can result in a Granule Protection Fault (GPF).

The RMM does not ensure that the GPT entry of a Granule mapped at an Unprotected IPA permits access via
Non-secure PAS.

Realm software must be able to handle taking a GPF during access to an Unprotected IPA.

Realm data access to an Unprotected IPA can cause a REC exit due to Data Abort.

TrNDTI On taking a REC exit due to Data Abort at an Unprotected IPA, the Host can inject a Synchronous External Abort
to the Realm.

XMGBDH The Host can inject an SEA in response to an unexpected Realm data access to an Unprotected IPA.

Trvvem Realm data access to an Unprotected IPA which caused ESR_EL2.ISS.ISVtobesetto '1' can be emulated by
the Host.

Ry1skp Realm instruction fetch from an Unprotected IPA causes a Synchronous External Abort taken to the Realm.
See also:

* A4.2.3 REC entry following REC exit due to Data Abort
* A4.3.4.3 REC exit due to Data Abort

* A4.4 Emulated Data Aborts

e AS5.2.7 Synchronous External Aborts

A5.2.7 Synchronous External Aborts

Ryxnau When a Synchronous External Abort is taken to a Realm, ESR_EL1.EA == '1'.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 65
1.0-rel0 Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

A5.2.8 Realm access outside IPA space

Reyvzo If stage 1 translation is enabled, Realm access to an IPA which is greater than the IPA space of the Realm causes a
stage 1 Address Size Fault taken to the Realm, with the fault status code indicating the level at which the fault
occurred.

Risgor If stage 1 translation is disabled, Realm access to an IPA which is greater than the IPA space of the Realm causes a

stage 1 level 0 Address Size Fault taken to the Realm.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 66
1.0-rel0 Non-confidential

Chapter A5. Realm memory management
A5.2. Realm view of memory management

A5.2.9 Summary of Realm IPA space properties

I rpcru The following table summarizes the properties of Realm IPA space.

Data access

Instruction fetch

Instruction fetch causes

causes abort to Data access causes REC exit causes abort to REC exit due to
Realm IPA Realm? due to Data Abort? Realm? Instruction Abort?
Protected, Always (SEA) Never Always (SEA) Never
RIPAS=EMPTY
Protected, Never When Never ‘When
RIPAS=RAM HIPAS=UNASSIGNED HIPAS=UNASSIGNED
Protected, Never Always Never Always
RIPAS=DESTROYED
Unprotected Host can inject When Always (SEA) Never

SEA following HIPAS=UNASSIGNED_NS

REC exit due to

Data Abort
Outside Realm IPA Always (Address ~ Never Always (Address Never
space Size Fault) Size Fault)

See also:
* A4.2.3 REC entry following REC exit due to Data Abort
A5.2.10 Cache maintenance operations
Rrzopy A data cache invalidate by set / way instruction executed by a Realm either has no effect, or performs a data cache
clean and invalidate.

Xx7RDW This is to ensure that a Realm cannot invalidate a cache line owned by another Realm.
Uyomts Arm expects that the RMM will set HCR_EL2.VM == '1', which causes a data cache invalidate instruction

executed at EL1 to perform a data cache clean and invalidate.

DENO0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

Non-confidential

67

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3 Host view of memory management
This section describes memory management from the Host’s point of view.

A5.3.1 Host IPA state

Dyz123 A Realm IPA has an associated Host IPA state (HIPAS).

The HIPAS values are shown in the following table.

Name Description
HIPAS_ASSIGNED Protected IPA which is associated with a DATA Granule.
HIPAS_ASSIGNED_NS Unprotected IPA which is associated with an NS Granule.
HIPAS_UNASSIGNED Protected IPA which is not associated with any Granule.
HIPAS_UNASSIGNED_NS Unprotected IPA which is not associated with any Granule.

T RSk HIPAS values are stored in a Realm Translation Table (RTT).

T comxc HIPAS transitions are caused by execution of RMI commands.

Tnocas A mapping at a Protected IPA is valid if the HIPAS is ASSIGNED and the RIPAS is RAM.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 68

1.0-rel0 Non-confidential

Chapter A5. Realm memory management
A5.3. Host view of memory management

I YMNSR

* the translation table entry attributes, and
¢ the behavior which results from Realm access to that IPA.

The following table summarizes, for each combination of RIPAS and HIPAS for a Protected IPA:

Each TTD.X column refers to the value of the corresponding “X” field in the architecturally-defined Stage 2
translation table descriptor which is written by the RMM.

Instruction

RIPAS HIPAS TTD.ADDR TTD.NS TTD.VALID Data access fetch
EMPTY UNASSIGNED 0 SEA to Realm SEA to Realm
EMPTY ASSIGNED DATA 0 SEA to Realm SEA to Realm
RAM UNASSIGNED 0 REC exit due to REC exit due to

Data Abort Instruction Abort
RAM ASSIGNED DATA 0 1 Data access Instruction fetch
DESTROYED UNASSIGNED 0 REC exit due to REC exit due to

Data Abort Instruction Abort
DESTROYED ASSIGNED DATA 0 REC exit due to REC exit due to

Data Abort Instruction Abort

See also:

AS.5 Realm Translation Table

A5.3.2 Changes to HIPAS while Realm state is REALM_NEW
This section describes how the HIPAS of a Protected IPA can change while the Realm state is REALM_NEW.

Tynrar The following diagram summarizes HIPAS changes at a Protected IPA which can occur when the Realm state is
REALM_NEW.
ASSIGNED
7
RMI_DATA_CREATE RMI_DATA_DESTROY
RMI_DATA_CREATE_UNKNOWN

UNASSIGNED RMI_RTT_DESTROY

See also:

e B4.3.1 RMI DATA_CREATE command

e B4.3.2 RMI_DATA_CREATE_UNKNOWN command
B4.3.3 RMI_DATA_DESTROY command

B4.3.16 RMI_RTT_DESTROY command

A5.3.3 Changes to HIPAS while Realm state is REALM_ACTIVE
This section describes how the HIPAS of a Protected IPA can change while the Realm state is REALM_ACTIVE.

DENO0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 69
Non-confidential

Chapter A5. Realm memory management
A5.3. Host view of memory management

Tukzxy The following diagram summarizes HIPAS changes at a Protected IPA which can occur when the Realm state is

REALM_ACTIVE.
ASSIGNED
A

RMI_DATA_CREATE_UNKNOWN RMI_DATA_DESTROY

.
UNASSIGNED RMI_RTT_DESTROY

See also:

e B4.3.2 RMI_DATA_CREATE_UNKNOWN command
e B4.3.3 RMI_DATA_DESTROY command
e B4.3.16 RMI_RTT_DESTROY command

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 70
1.0-rel0 Non-confidential

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3.4 Summary of changes to HIPAS and RIPAS of a Protected IPA

I romcp The following diagram summarizes HIPAS and RIPAS changes at a Protected IPA which can occur when the
Realm state is NEW.
RIPAS
EMPTY DESTROYED RAM

A A A

RMI_DATA_CREATE

RMI_DATA_CREATE_UNKNOWN RMI_DATA_DESTROY

RMI_DATA_CREATE_UNKNOWN RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

HIPAS RMI_DATA_DESTROY RMI_DATA_DESTROY

4 v l
UNASSIGNED

RMI_RTT_DESTROY RMI_RTT_DESTROY

RMI_RTT_INIT_RIPAS

Key

:] Initial state

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 71
1.0-rel0 Non-confidential

Chapter A5. Realm memory management
A5.3. Host view of memory management

Tvekng The following diagram summarizes HIPAS and RIPAS changes at a Protected IPA which can occur when the
Realm state is REALM_ACTIVE.
RIPAS
EMPTY DESTROYED RAM
RMI_RTT_SET_RIPAS
ASSIGNED v]
RMI_RTT_SET_RIPAS RMI_RTT_SET_RIPAS
VALID = 0 [d----ne-TeenTooiaaiians { VALID = 0 } ---------------------------- VALID = 1
A A r Y
RMI_DATA_CREATE_UNKNOWN RMI_DATA_DESTROY
RMI_DATA_CREATE_UNKNOWN RMI_DATA_CREATE_UNKNOWN
HIPAS - - B B B B
RMI_DATA_DESTROY RMI_DATA_DESTROY
v v l
RMI_RTT_SET_RIPAS RMI_RTT_SET_RIPAS
VALID = 0 i(---------------------------- { VALID = 0 } ----------------------------)‘ VALID = 0
UNASSIGNED ! !
: RMI_RTT_DESTROY RMI_RTT_DESTROY !
""""""""""""""""""""" RMI_RTT_SET_RIPAS 77777
Key
e Command which can be successfully executed by Host at any time
------------ | Command which can only be successfully executed by Host if Realm has provided consent
VALID = 1 Mapping is architecturally valid

See also:

B4.3.1 RMI DATA_CREATE command

B4.3.2 RMI_DATA_CREATE_UNKNOWN command
B4.3.3 RMI_DATA_DESTROY command

B4.3.16 RMI_RTT_DESTROY command

B4.3.18 RMI_RTT_INIT_RIPAS command

B4.3.21 RMI_RTT_SET_RIPAS command

DENO0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3.5 Dependency of RMI command execution on RIPAS and HIPAS values

Thrazs The following table summarizes dependencies on RMI command execution on the current Protected IPA.
Dependency on Dependency on
Command RIPAS HIPAS New RIPAS New HIPAS
RMI_DATA_CREATE None HIPAS is RAM ASSIGNED
UNASSIGNED
RMI_DATA_CREATE_UNKNOWN None HIPAS is Unchanged ASSIGNED
UNASSIGNED
RMI_DATA_DESTROY If RIPAS is EMPTY HIPAS is ASSIGNED Unchanged UNASSIGNED
RMI_DATA_DESTROY If RIPAS is RAM HIPAS is ASSIGNED DESTROYED UNASSIGNED
RMI_RTT CREATE None None Unchanged Unchanged
RMI_RTT_DESTROY None HIPAS of all entriesis DESTROYED Unchanged
UNASSIGNED
RMI_RTT_FOLD RIPAS of all entries is ~ HIPAS of all entries is ~ Unchanged Unchanged
identical identical
RMI_RTT_INIT_RIPAS None HIPAS is RAM Unchanged
UNASSIGNED
RMI_RTT_SET_RIPAS Optionally, Realm may None As specified Unchanged
specify that RIPAS is by Realm
not DESTROYED
TusreN Successful execution of RMI_DATA_CREATE_UNKNOWN does not depend on the RIPAS value of the target
IPA.
T1csvn Successful execution of RMI_DATA_DESTROY does not depend on the RIPAS value of the target IPA.
TumsaL Successful execution of RMI_RTT_DESTROY does not depend on the RIPAS values of entries in the target RTT.
Iroca Successful execution of RMI_RTT_FOLD does depend on the RIPAS values of entries in the target RTT.
See also:

e B4.3.1 RMI_DATA_CREATE command

e B4.3.2 RMI DATA_CREATE UNKNOWN command
e B4.3.3 RMI_DATA_DESTROY command

e B4.3.15 RMI_RTT_CREATE command

e B4.3.16 RMI_RTT_DESTROY command

e B4.3.17 RMI_RTT_FOLD command

e B4.3.18 RMI RTT INIT RIPAS command

e B4.3.21 RMI RTT _SET RIPAS command

A5.3.6 Changes to HIPAS of an Unprotected IPA

Tynyry The following diagram summarises HIPAS transitions for an Unprotected IPA.
RMI_RTT_MAP_UNPROTECTED R
UNASSIGNED_NS " ASSIGNED_NS
" RMI RTT UNMAP UNPROTECTED
See also:
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 73

1.0-rel0 Non-confidential

Chapter A5. Realm memory management
A5.3. Host view of memory management

DENO0137
1.0-rel0

AS5.4 RIPAS change

AS5.5 Realm Translation Table

B4.3.1 RMI_DATA_CREATE command

B4.3.2 RMI_DATA_CREATE_UNKNOWN command
B4.3.3 RMI_DATA_DESTROY command

B4.3.16 RMI_RTT_DESTROY command

B4.3.18 RMI_RTT_INIT_RIPAS command

B4.3.21 RMI RTT_SET RIPAS command

B5.3.6 RSI_IPA_STATE_SET command

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter A5. Realm memory management
A5.4. RIPAS change

A5.4 RIPAS change

Dsrsov A RIPAS change is a process via which the RIPAS of a region of Protected IPA space is changed, for a Realm
whose state is REALM_ACTIVE.

Txxx A RIPAS change consists of actions taken by first the Realm, and then the Host:

* The Realm issues a RIPAS change request by executing RSI_IPA_STATE_SET.
— The input values to this command include:
The requested IPA range: [base, top)
The requested RIPAS value (either EMPTY or RAM)
% A flag which indicates whether a change from DESTROYED should be permitted
— The RMM records these values in the REC, and then performs a REC exit due to RIPAS change pending.
* In response, the Host executes zero or more RMI_RTT_SET_RIPAS commands.
o If the requested RIPAS value was RAM, at the next RMI_REC_ENTER the Host can optionally indicate that
it rejects the RIPAS change request.

Output values from RSI_IPA_STATE_SET indicate:

* The top of the IPA range which has been modified by the command (new_base).
* If the requested RIPAS value was RAM, whether the Host rejected the Realm request.

SerTo Output values from RSI_IPA_STATE_SET are expected to be handled by the Realm as follows:
new_base response Meaning Expected Realm action
new_base == base RSI_ACCEPT RIPAS change incomplete. Call RSI_IPA_STATE_SET
again, with

base = new_base.
base < new_base < top RSI_ACCEPT RIPAS change incomplete. Call RSI_IPA_STATE_SET

again, with
base = new_base.

new_base == top RSI_ACCEPT RIPAS change complete. No further Realm action
required.
new_base == base RSI_REJECT RIPAS change request Depends on protocol agreed
rejected. between Realm and Host, out

of scope of this specification.

base < new_base < top RSI_REJECT RIPAS change to partial Depends on protocol agreed
region [base, new_base). between Realm and Host, out
Host rejected request to of scope of this specification.

change RIPAS for region

[new_lbase, top).

IrpvrG The RIPAS change process, together with the Realm Initial Measurement ensures that a Realm can always reliably
determine the RIPAS of any Protected IPA.

I1p7uk A RIPAS change is applied by one or more calls to the RMI_RTT_SET_RIPAS command.

Tumamz, Successful execution of RMI_RTT_SET_RIPAS targets an RTTE at address rec.ripas_addr.

T 5472 On successful execution of RMI_RTT_SET_RIPAS, both of the following are set to the address of the next page

whose RIPAS is to be modified:

® rec.ripas_addr
¢ The command output value

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 75
1.0-rel0 Non-confidential

Chapter A5. Realm memory management
A5.4. RIPAS change

DENO0137
1.0-rel0

If both of the following are true on successful execution of RMI_RTT_SET_RIPAS

» The RIPAS change request indicated that a change from DESTROYED should not be permitted
* A page P within the target IPA range has RIPAS value DESTROYED

then rec.ripas_addr and the command output value are both set to P.

On REC entry following a REC exit due to RIPAS change, GPR values are updated to indicate for how much of
the target IPA range the RIPAS change has been applied.

To complete a RIPAS change for a given target IPA range, a Realm should execute RSI_IPA_STATE_SET in a
loop, until the value of X1 reaches the top of the target IPA range.

On REC entry following a REC exit due to RIPAS change, rec.ripas_response is set to the value of
enter.flags.ripas_response.

If all of the following are true then the output value of RSI_IPA_STATE_SET indicates “Host rejected the request”:

* rec.ripas_value is RAM.
* rec.ripas_addr isnotequal to rec.ripas_top.
e rec.ripas_response is REJECT.

Otherwise, the output value of RSI_IPA_STATE_SET indicates “Host accepted the request”.

Receipt of a rejection for a RIPAS change request whose parameters were valid is expected to be fatal for the
Realm.

See also:

e A2.3.2 REC attributes

* A4.2 REC entry

* A4.3.8 REC exit due to RIPAS change pending
* AS5.2.2 Realm IPA state

e A7.1.1 Realm Initial Measurement

¢ B3.40 RecRipasChangeResponse function

e B4.3.14 RMI_REC_ENTER command

e B4.3.21 RMI_RTT_SET_RIPAS command

e B5.3.6 RSI_IPA_STATE_SET command

e DI1.5.3 RIPAS change flow

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 76
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

A5.5

Realm Translation Table

This section introduces the stage 2 translation table used by a Realm.

RTT overview

A Realm Translation Table (RTT) is an abstraction over an Armv8-A stage 2 translation table used by a Realm.

The attributes and format of an Armv8-A stage 2 translation table are defined by the Armv8-A Virtual Memory
System Architecture (VMSA) Arm Architecture Reference Manual for A-Profile architecture [3].

The translation granule size of an RTT is 4KB.

The RMM architecture can only be deployed on a hardware platform which implements a translation granule size
of 4KB.

The contents of an RTT are not directly accessible to the Host.

The contents of an RTT are manipulated using RMM commands. These commands allow the Host to manipulate
the contents of the RTT used by a Realm, subject to constraints imposed by the RMM.

An RTT entry (RTTE) is an abstraction over an Armv8-A stage 2 translation table descriptor.
An RTTE contains an output address which can point to one of the following:

¢ Another RTT
* A DATA Granule which is owned by the Realm
* Non-secure memory which is accessible to both the Realm and the Host

A5.5.2 RTT structure and configuration

Dvurwr
Txnpnx
Duyreg

I KKMSX

An RTT tree is a hierarchical data structure composed of RTTs, connected via Table Descriptors.
An RTT contains an array of RTTEs.
An RTT level is the depth of an RTT within an RTT tree.

An RTT does not have an intrinsic “level” attribute. The level of an RTT is determined by its position within an
RTT tree.

The RTT level of the root of an RTT tree is called the starting level.
The maximum depth of an RTT tree depends on all of the following:

e whether LPA2 is selected when the Realm is created
* the rtt_level_start attribute of the Realm
* the ipa_width attribute of the Realm.

See also:

e A2.1.3 Realm attributes
e A3.1.2 Realm LPA2 and IPA width

A5.5.3 RTT starting level

DENO0137
1.0-rel0

The RTT starting level is set when a Realm is created.

The number of starting level RTTs is architecturally defined as a function of the Realm IPA width and the RTT
starting level. See Arm Architecture Reference Manual for A-Profile architecture [3] for further details.

The address of the first starting level RTT is stored in the RTT base attribute of the owning Realm.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 77
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table
T exwon The RTT base attribute is set when a Realm is created.
See also:

e A2.1.3 Realm attributes

A5.5.4 RTT entry

Tzpccz An RTT entry (RTTE) is an abstraction over an Armv8-A stage 2 translation table descriptor. The attributes and
format of an Armv8-A stage 2 translation table descriptor are defined by the Armv8-A Virtual Memory System
Architecture (VMSA) Arm Architecture Reference Manual for A-Profile architecture [3].

DiNHoC An RTTE has a state.

The RTTE state values are shown in the following table.

Name Description
ASSIGNED This RTTE is identified by a Protected IPA.

The output address of this RTTE points to a DATA Granule.
ASSIGNED_NS This RTTE is identified by an Unprotected IPA.

The output address of this RTTE points to an NS Granule.
TABLE The output address of this RTTE points to the next-level RTT.
UNASSIGNED This RTTE is identified by a Protected IPA.

This RTTE is not associated with any Granule.
UNASSIGNED_NS This RTTE is identified by an Unprotected IPA.

This RTTE is not associated with any Granule.

Towoss The state of an RTTE in a RTT which is not level 1 or level 2 or level 3 is UNASSIGNED, UNASSIGNED_NS or
TABLE.

DysHsT, The output address of an RTTE whose state is TABLE and which is in a level n RTT is the physical address of a
level n+1 RTT.

Tpsztm An RTT whose level n is not the starting RTT level is pointed-to by exactly one TABLE RTTE in a level n-1 RTT.

Ioxonz The following diagram shows an example RTT tree, annotated with RTTE states.

RD

RTT base
>
Level 0 RTT d Block
g

UNASSIGNED
TABLE] Level 1 RTT
UNASSIGNED UNASSIGNED Level 2 RTT -
UNASSIGNED UNASSIGNED [unassienen Level 3 RTT
UNASSIGNED ASSIGNED ASSIGNED
/\/\ UNASSIGNED UNASSIGNED UNASSIGNED
’\/\ TABLE UNASSIGNED g Page
UNASSIGNED_NS /\/\ UNASSIGNED
UNASSIGNED_NS ’\/\ /\/\
TABLE ’\/\ /\/\
UNASSIGNED TABLE /\/\
UNASSIGNED UNASSIGNED
UNASSIGNED
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 78

1.0-rel0 Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

Treuos The function AddrIsRttLevelAligned () is used to evaluate whether an address is aligned to the address range
described by an RTTE at a specified RTT level.
See also:
* AS5.3.1 Host IPA state

* B1.4 Command condition expressions

A5.5.5 RTT reading

TxJwko Attributes of an RTTE, including the RTTE state, can be read by calling the RMI_RTT_READ_ENTRY command.
The set of RTTE attributes which are returned depends on the state of the RTTE.

See also:

e B4.3.20 RMI_RTT_READ_ENTRY command

A5.5.6 RTT folding

Drucrc An RTT is homogeneous if its entries satisfy one of the conditions in the following table. If an RTT is homogeneous,
the following table specifies the state to which the parent RTTE is set.

Conditions on child RTT contents Parent RTTE state

All of the following are true: UNASSIGNED
« State of all entries is UNASSIGNED
¢ RIPAS of all entries is the same
State of all entries is UNASSIGNED_NS UNASSIGNED_NS

All of the following are true: ASSIGNED
e Levelis2or3
* State of all entries is ASSIGNED
e Qutput address of first entry is aligned to size of the address
range described by an entry in the parent RTT
¢ Output addresses of all entries are contiguous
* RIPAS of all entries is the same
All of the following are true: ASSIGNED_NS
e Levelis2or3
e State of all entries is ASSIGNED_NS
¢ Output address of first entry is aligned to size of the address
range described by an entry in the parent RTT
e Qutput addresses of all entries are contiguous
* Attributes of all entries are identical

TxpxnT The function Rtt IsHomogeneous () is used to evaluate whether an RTT is homogeneous.

Dopxcp RTT folding is the operation of destroying a homogeneous child RTT, and moving information which was stored in
the child RTT into the parent RTTE.

T vk On RTT folding, the state of the parent RTTE is determined from the contents of the child RTTE:s.
T1rucH The function RttFold () is used to evaluate the parent RTTE state which results from an RTT folding operation.
Irpmc On RTT folding, if the state of the parent RTTE is ASSIGNED or ASSIGNED_NS then the attributes of the parent

RTTE are copied from the child RTTEs.
See also:

e AS5.5.9 RTT destruction

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 79
1.0-rel0 Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

* B3.62 RttFold function
e B3.63 RttlsHomogeneous function
e B4.3.17 RMI_RTT _FOLD command

A5.5.7 RTT unfolding

RTT unfolding is the operation of creating a child RTT, and populating it based on the contents of the parent RTTE.
On RTT unfolding, the state of all RTTEs in the child RTT are set to the state of the parent RTTE.

On RTT unfolding, if the state of the parent RTTE is ASSIGNED or ASSIGNED_NS, then the output addresses of
RTTE:s in the child RTT are set to a contiguous range which starts from the address of the parent RTTE.

See also:

e B4.3.15 RMI RTT CREATE command

A5.5.8 RTTE liveness and RTT liveness

—)KL “MLN
Dyc

5YJZ

TruLyz

RTTE liveness is a property which means that a physical address is stored in the RTTE.
An RTTE is live if the RTTE state is ASSIGNED, ASSIGNED_NS or TABLE.

The function Rt t SkipNonLiveEntries () is used to scan an RTT to find the next live RTTE. The resulting I[PA
is returned to the Host from commands whose successful execution causes a live RTTE to become non-live.

Identifying the next live RTTE allows the Host to avoid calls to RMI_RTT_READ_ENTRY when unmapping
ranges of a Realm’s IPA space, for example during Realm destruction.

RTT liveness is a property which means that there exists another RMM data structure which is referenced by the
RTT.

An RTT is live if, for any of its entries, either of the following is true:

e The RTTE state is ASSIGNED
e The RTTE state is TABLE.

Note that an RTT can be non-live, even if one of its entries is live. This would be the case for example if the RTT
corresponds to an Unprotected IPA range and the state of one of its entries is ASSIGNED_NS.

The function RttIsLive () is used to evaluate whether an RTT is live.
See also:

e AS5.5.9 RTT destruction

» B3.64 RttlsLive function

* B3.76 RttSkipNonLiveEntries function

e B4.3.3 RMI_DATA_DESTROY command

e B4.3.16 RMI_RTT_DESTROY command

e B4.3.22 RMI_RTT_UNMAP_UNPROTECTED command

A5.5.9 RTT destruction

D XRZW
TpruFR
Tupron
TyMcksk
DENO0137
1.0-rel0

RTT destruction is the operation of destroying a child RTT, and discarding information which was stored in the
child RTT.

An RTT cannot be destroyed if it is live.
An RTT can be destroyed regardless of whether it is homogeneous.
Following RTT destruction, all of the following are true for the parent RTTE:

¢ RIPAS is DESTROYED
e RTTE state is UNASSIGNED

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 80
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

See also:

e AS5.2 Realm view of memory management
e AS5.5.6 RTT folding

* AS5.5.8 RTTE liveness and RTT liveness

e B4.3.16 RMI_RTT_DESTROY command

A5.5.10 RTT walk

An TPA is translated to a PA by walking an RTT tree, starting at the RTT base.

The behaviour of an RTT walk is defined by the Armv8-A Virtual Memory System Architecture (VMSA) Arm
Architecture Reference Manual for A-Profile architecture [3].

The inputs to an RTT walk are:

* a Realm Descriptor, which contains the address of the initial RTT
* atarget [PA
 atarget RTT level.

The RTT walk terminates when either:

* it reaches the target RTT level, or
e it reaches an RTTE whose state is not TABLE.

The result of an RTT walk performed by the RMM is a data structure of type RmmRttWalkResult.

The attributes of an RmmRt tWalkResult are summarized in the following table.

Name Type Description

level Int8 RTT level reached by the walk
rtt_addr Address Address of RTT reached by the walk
rtte RmmRttEntry RTTE reached by the walk

The function RmmRttWalkResult RttWalk (rd, addr, level) isused to represent an RTT walk.
The input address to an RTT walk is always less than 2~w, where w is the IPA width of the target Realm.
See also:

e A2.1.3 Realm attributes

* B1.4 Command condition expressions

e B3.78 RttWalk function

e B4.3.1 RMI_DATA_CREATE command

e B4.3.2 RMI_DATA_CREATE_UNKNOWN command
e B4.3.3 RMI_DATA_DESTROY command

e B4.3.15 RMI_RTT_CREATE command

e B4.3.16 RMI_RTT_DESTROY command

e B4.3.19 RMI_RTT_MAP_UNPROTECTED command
e B4.3.22 RMI_RTT _UNMAP_UNPROTECTED command
e C1.31 RmmRttWalkResult type

A5.5.11 RTT entry attributes

DENO0137
1.0-rel0

The cacheability attributes of an RTT entry which corresponds to a Protected IPA and whose state is ASSIGNED
are independent of any stage 1 descriptors and of the state of the stage | MMU.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 81
Non-confidential

Chapter A5. Realm memory management
Ab5.5. Realm Translation Table

UHL\"H 5N

R;,\"H

Drgtvr

R;,]"TJ,‘T’,

X;,HL}'.L

RarztL

DENO0137
1.0-rel0

The RMM uses FEAT_S2FWB to ensure that the cacheability attributes of an RTT entry which corresponds to a
Protected IPA and whose state is ASSIGNED are independent of stage 1 translation.

The attributes of an RTT entry which corresponds to a Protected IPA and whose state is ASSIGNED include the
following:

e Normal memory
¢ Inner Write-Back Cacheable
¢ Inner Shareable

The following attributes of an RTT entry which corresponds to an Unprotected IPA and whose state is
ASSIGNED_NS are Host-controlled RTT attributes:

* ADDR
®* MemAttr[2:0]
® S2AP

The shareability attributes of an RTT entry which corresponds to an Unprotected IPA and whose state is
ASSIGNED_NS are as follows:

¢ Inner Shareable if the mapping is cacheable.
¢ Quter Shareable if the mapping is non-cacheable.

The shareability attributes of an RTT entry which corresponds to an Unprotected IPA are expected to be controlled
by the RMM as follows:

e If LPA2 is enabled at stage 2 then the RMM is expected to set VTCR_EL2.DS == '1'.
» If LPA2 is not enabled at stage 2 then the RMM is expected to set the value of the SH field in the translation
table descriptor based on the value of the MemaAtt r field.

In an RTT entry which corresponds to an Unprotected IPA and whose state is ASSIGNED_NS, MemaAttr[3] is
RESO because the RMM uses FEAT S2FWB.

Hardware access flag and dirty bit management is disabled for the stage 2 translation used by a Realm.

Hardware access flag and dirty bit management may be enabled by software executing within the Realm, for its
own stage 1 translation.

See also:

e AS5.2.1 Realm IPA space

e B3.56 RttDescriptorlsValidForUnprotected function

e B4.3.19 RMI_RTT_MAP_UNPROTECTED command
e B4.3.20 RMI_RTT_READ_ENTRY command

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 82
Non-confidential

Chapter A6
Realm interrupts and timers

This specification requires that a virtual Generic Interrupt Controller (vGIC) is presented to a Realm. This vGIC
should be architecturally compliant with respect to GICv3 with no legacy operation.

The Host is able to inject virtual interrupts using the GIC virtual CPU interface.

The vGIC presented to a Realm is expected to be implemented via a combination of Host emulation and RMM
mediation, as follows:

Management of Non-secure physical interrupts is performed by the Host, via the GIC Interrupt Routing
Infrastructure (IRI).

The Host is responsible for emulating a GICv3 distributor MMIO interface.
The Host is responsible for emulating a GICv3 redistributor MMIO interface for each REC.

The GIC MMIO interfaces emulated by the Host must be presented to the Realm via its Unprotected IPA
space.

The Host may optionally provide a virtual Interrupt Translation Service (ITS). The Realm must allocate ITS
tables within its Unprotected IPA space.

The RMM allows the Host to control some of the GIC virtual CPU interface state which is observed by the
Realm. This state is designed to be the minimum required to allow the Host to correctly manage interrupts
for the Realm, with integrity guaranteed by the RMM for the remainder of the GIC CPU interface state.

On REC exit, the RMM exposes some of the GIC virtual CPU interface state to the Host. This state is
designed to be the minimum required to allow the Host to correctly manage interrupts for the Realm, with
confidentiality guaranteed by the RMM for the remainder of the GIC virtual CPU interface state.

On every REC exit, the EL1 timer state is exposed to the Host. The RMM guarantees that a REC exit occurs
whenever a Realm EL1 timer asserts or de-asserts its output.

DENO0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 83
Non-confidential

Chapter A6. Realm interrupts and timers

See also:

e Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]
e AS5.2.1 Realm IPA space
* D1.6 Realm interrupts and timers flows

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

84

Chapter A6. Realm interrupts and timers
A6.1. Realm interrupts

A6.1

XLTZZIJLAL

Ximxcx

DENO0137

1.0-rel0

Realm interrupts

This section describes the programming model for a REC’s GIC CPU interface.
The value of enter.gicv3_1lrs[n] is valid if all of the following are true:

* The value is an architecturally valid encoding of ICH_LR<n>_EL2 according to Arm Generic Interrupt
Controller (GIC) Architecture Specification version 3 and version 4 [5].
¢ HW == '0"'.

The GICv3 architecture states that, if Hw == '1' then the virtual interrupt must be linked to a physical interrupt
whose state is Active, otherwise behavior is undefined. The RMM is unable to validate that invariant, so it imposes
the constraint that Hw == '0°'.

The value of enter.gicv3_hcr is valid if the value is an architecturally valid encoding of ICH_HCR_EL2
according to Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5].

REC entry fails if the value of any enter.gicv3_x attribute is invalid.
On REC entry, ICH_LR<n>_EL2 is set to enter.gicv3_lrs[n], for all values of n supported by the PE.
On REC entry, the following fields in ICH_HCR_EL2 are set to the corresponding values in enter.gicv3_hcr:

e UIE

* LRENPIE
* NPIE

* VGrpOEIE
* VGrpODIE
* VGrplEIE
® VGrplDIE
* TDIR

On REC entry, fields in enter.gicv3_hcr must be set to ‘0’ except for the following:

e UIE

* LRENPIE
* NPIE

* VGrpOEIE
* VGrpODIE
* VGrplEIE
®* VGrplDIE
* TDIR

If any other field in enter.gicv3_hcrissetto ‘1’, then RMI_REC_ENTER fails.

The RMM provides access to the GIC virtual CPU interface to the Realm and therefore controls the enable bit
and most trap bits in ICH_HCR_EL2. The maintenance interrupt control bits are controlled by the Host, because
the maintenance interrupts are provided as hints to the hypervisor to allocate List Registers optimally and to
correctly emulate GICv3 behavior. The TDIR bit is also controlled by the Host because it is used when supporting
EOImode == '1' in the Realm. This mode is used to allow deactivation of virtual interrupts across RECs. This
deactivation must be handled by the Host because the RMM can only operate on a single REC during execution of
RMI_REC_ENTER.

A REC exit due to IRQ is not generated for an interrupt which is masked by the value of 1cC_PMR_EL1 at the
time of REC entry.

The RMM should preserve the value of 1cc_PMR_EL1 during REC entry.
On REC exit, exit .gicv3_vmcr contains the value of ICH_VMCR_EL?2 at the time of the Realm exit.

On REC exit, exit .gicv3_misr contains the value of ICH_MISR_EL2 at the time of the Realm exit.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 85
Non-confidential

Chapter A6. Realm interrupts and timers
A6.1. Realm interrupts

0

DENO0137
1.0-rel0

The Host could in principle infer the value of ICH_MISR_EL?2 at the time of the Realm exit from the combination
of exit.gicv3_lrs[n] and exit.gicv3_hcr. However, this would be cumbersome, error-prone, and diverge
from the design of existing hypervisor software.

On REC exit, exit .gicv3_1rs[n] contains the value of ICH_LR<n>_EL2 at the time of the Realm exit, for all
values of n supported by the PE.

On REC exit, the following fields in exit.gicv3_hcr contains the value of the corresponding field in
ICH_HCR_ELZ2 at the time of the Realm exit:

® EOIcount
e UIE

* LRENPIE
* NPIE

* VGrpOEIE
* VGrpODIE
* VGrplEIE
* VGrplDIE
* TDIR

All other fields contain zero.
On REC exit, the values of the following registers may have changed:

e ICH_APOR<n>_EL2
e ICH_AP1R<n>_EL2
e ICH_LR<n>_EL2

e ICH_VMCR_EL2

e ICH_HCR_EL2

It is the responsibility of the caller to save and restore GIC virtualization system control registers if their value
needs to be preserved following execution of RMI_REC_ENTER.

On REC entry, the values of the GIC virtualization control system registers are overwritten. The Non-secure
hypervisor runs at EL2 and therefore does not make direct use of the virtual GIC CPU interface for its own
execution. This means that saving / restoring the caller’s GIC virtualization control system registers would typically
not be required and would add additional runtime overhead for each execution of RMI_REC_ENTER.

On REC exit, ICH_HCR_EL2.En == '0°'.

Disabling the virtual GIC CPU interface ensures that the caller does not receive unexpected GIC maintenance
interrupts. A stronger constraint, for example stating that all GIC virtualization control system registers are zero
on REC exit, was considered. However, this was rejected on the basis that it may preclude future optimisations,
such as returning early from execution of RMI_REC_ENTER, without needing to first write zero to all GIC
virtualization control system registers, if an interrupt is pending.

See also:

* Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]
* A4.2 REC entry

* A4.3 REC exit

e B4.3.14 RMI REC_ENTER command

* B4.4.14 RmiRecEnter type

* B4.4.16 RmiRecEXxit type

e DI1.6.1 Interrupt flow

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 86
Non-confidential

Chapter A6. Realm interrupts and timers
A6.2. Realm timers

A6.2 Realm timers

DENO0137
1.0-rel0

This section describes the operation of architectural timers during Realm execution, including the following:

 The behavior of EL2 timers programmed by the Host

 The behavior of EL1 timers as perceived by the Realm

» The Realm timer state which is exposed to the Host on REC exit, in order to facilitate virtualization of timer
interrupts

Architectural timers are available to a Realm and behave according to their architectural specification.

If the Host has programmed an EL1 timer to assert its output during Realm execution, that timer output is not
guaranteed to assert.

If the Host has programmed an EL2 timer to assert its output during Realm execution, that timer output is
guaranteed to assert.

Both the virtual and physical counter values are guaranteed to be monotonically increasing when read by a Realm,
in accordance with the architectural counter behavior.

A read by a Realm of either the virtual or physical counter at the same place in the instruction flow would return
the same value.

In order to ensure that the Realm has a consistent view of time, the virtual timer offset must be fixed for the lifetime
of the Realm. The absolute value of the virtual timer offset is not important, so the value zero has been chosen for
simplicity of both the specification and the implementation.

The rule that virtual and physical counter values are identical may need to be amended if a future version of the
specification supports migration and / or virtualization of time based on the virtual counter differing from the
physical counter.

On a change in the output of an EL1 timer which requires a Realm-observable change to the state of virtual
interrupts, a REC exit occurs.

On REC exit, Realm EL1 timer state is exposed via the RmiRecEXxit object:

* exit.cntv_ctl contains the value of CNTV_CTL_ELO at the time of the Realm exit.

* exit.cntv_cval contains the value of CNTV_CVAL_ELO at the time of the Realm exit, expressed as if the
virtual counter offset was zero.

* exit.cntp_ctl contains the value of CNTP_CTI_ELO at the time of the Realm exit.

* exit.cntp_cval contains the value of CNTP_CVAL_ELO at the time of the Realm exit, expressed as if the
physical counter offset was zero.

The Host should check the Realm EL1 timer state on every return from RMI_REC_ENTER and update virtual
interrupt state accordingly. This is true regardless of the value of exit.exit_reason: even if the return occurred
for a reason unrelated to timers (for example, a REC exit due to Data Abort), the Realm EL1 timer state should be
checked.

On REC entry, for both the EL1 Virtual Timer and the EL1 Physical Timer, if the EL1 timer asserts its output in
the state described in the REC exit structure from the previous REC exit then the RMM masks the hardware timer
signal before returning to the Realm.

This masking is done to allow the Realm to make forward progress, which would otherwise be prevented by the
hardware timer generating a physical interrupt that would cause a Realm exit.

During Realm execution, when the hardware timer signal is masked, the Realm may write to the timer registers,
causing the hardware timer to become de-asserted and possibly asserted again. Such changes in the output of the
EL1 timer are not required to result in a REC exit if the RMM can infer that the change should not result in a
Realm-observable change to the state of virtual interrupts.

It is only when a change in the hardware timer output means that the corresponding virtual interrupt needs to be
made pending or idle, that a REC exit must occur.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 87
Non-confidential

Chapter A6. Realm interrupts and timers
A6.2. Realm timers

See also:

* A4.3 REC exit
e B4.4.16 RmiRecEXxit type
e DI1.6.2 Timer interrupt delivery flow

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

88

Chapter A7
Realm measurement and attestation

This section describes how the initial state of a Realm is measured and can be attested.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

89

Chapter A7. Realm measurement and attestation
A7.1. Realm measurements

A7.1 Realm measurements

This section describes how Realm measurement values are calculated.

A Realm measurement value is a rolling hash.

A Realm Hash Algorithm (RHA) is an algorithm which is used to extend a Realm measurement value.
The RHA used by a Realm is selected via the hash_algo attribute.

See also:

e A2.1.3 Realm attributes

e A3.1.1 Realm hash algorithm

e A7.2.3.1.4 Realm Initial Measurement claim

e A7.2.3.1.5 Realm Extensible Measurements claim

A7.1.1 Realm Initial Measurement

IH"T NDK

TH QQTE

DENO0137
1.0-rel0

This section describes how the Realm Initial Measurement (RIM) is calculated.
The initial RIM value for a Realm is calculated from a subset of the Realm parameters.

A RIM is extended by applying the RHA to the inputs of RMM operations which are executed during Realm
construction.

The following operations cause a RIM to be extended:

¢ Creation of a DATA Granule during Realm construction
* Creation of a runnable REC
* Changes to RIPAS of Protected IPA during Realm construction

On execution of an operation which requires extension of a RIM, the RMM first constructs a measurement
descriptor structure. The measurement descriptor contents include the current RIM value. The new RIM value is
computed by applying the RHA to the measurement descriptor.

desc = MeasurementDescriptor(M;_1,...)
M; = RHA(desc)

A RIM is immutable while the state of the Realm is REALM_ACTIVE. This implies that a RIM reflects the
configuration and contents of the Realm at the moment when it transitioned from the REALM_NEW to the
REALM_ACTIVE state.

A RIM depends upon the order of the RMM operations which are executed during Realm construction.

The order in which RMM operations are executed during Realm construction must be agreed between the Realm
owner (or a delegate of the Realm owner which will receive and validate the RIM) and the Host which executes the
RMM commands. This ensures that a correctly-constructed Realm will have the expected measurement.

The value of a RIM can be read using the RSI_ MEASUREMENT_READ command.
See also:

e B4.3.1.4 RMI_DATA_CREATE extension of RIM

e B4.3.9.4 RMI_REALM_CREATE initialization of RIM
* B4.3.12.4 RMI_REC_CREATE extension of RIM

e B4.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM

e B5.3.8 RSI_ MEASUREMENT_READ command

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 90
Non-confidential

Chapter A7. Realm measurement and attestation
A7.1. Realm measurements

A7.1.2 Realm Extensible Measurement

DENO0137
1.0-rel0

This section describes the behavior of a Realm Extensible Measurement (REM).

A REM is extended using the RSI_MEASUREMENT_EXTEND command.

The value of a REM can be read using the RSI_MEASUREMENT_READ command.

The initial value of a REM is zero.
See also:

e B5.3.7 RSI MEASUREMENT _EXTEND command
e B5.3.8 RSI_ MEASUREMENT_READ command

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2 Realm attestation

This section describes the primitives which are used to support remote Realm attestation.

A7.2.1 Attestation token

DvRRLN A CCA attestation token is a collection of claims about the state of a Realm and of the CCA platform on which the
Realm is running.

Ipxesp A CCA attestation token consists of two parts:
¢ Realm token
Contains attributes of the Realm, including:

— Realm Initial Measurement
— Realm Extensible Measurements

* CCA platform token
Contains attributes of the CCA platform on which the Realm is running, including:

— CCA platform identity
— CCA platform lifecycle state
— CCA platform software component measurements

T 5xJc0 The size of a CCA attestation token may be greater than 4KB.

See also:

e A7.1.1 Realm Initial Measurement
e A7.1.2 Realm Extensible Measurement

A7.2.2 Attestation token generation

T xrMRE The process for a Realm to obtain an attestation token is:

e Call RSI_ATTESTATION_TOKEN_INIT once
* Call RSI_ATTESTATION_TOKEN_CONTINUE in a loop, until the result is not RSI_INCOMPLETE

Each call to RSI_ATTESTATION_TOKEN_CONTINUE retrieves up to one Granule of the attestation token.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 92
1.0-rel0 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

SxMLMF The following pseudocode illustrates the process of a Realm obtaining an attestation token.

int get_attestation_token(...)
{
int ret;
uinto64_t size, max_size;
uint64_t buf, granule;

ret = RSI_ATTESTATION_TOKEN_INIT (challenge, &max_size);
if (ret) {
return ret;

}

buf = alloc(max_size);
granule = buf;

do { // Retrieve one Granule of data per loop iteration
uint64_t offset = 0;

do { // Retrieve sub-Granule chunk of data per loop iteration
size = GRANULE_SIZE - offset;
ret = RSI_ATTESTATION_TOKEN_CONTINUE (granule, offset, size, &len);
offset += len;

} while (ret == RSI_INCOMPLETE && offset < GRANULE_SIZE);

// "offset" bytes of data are now ready for consumption from "granule"
if (ret == RSI_INCOMPLETE) {
granule += GRANULE_SIZE;
}
} while ((ret == RSI_INCOMPLETE) && (granule < buf + max_size));

return ret;

Izwoce Up to one attestation token generation operation may be ongoing on a REC.

I rmove On execution of RSI_ATTESTATION_TOKEN_INIT, if an attestation token generation operation is ongoing on
the calling REC, it is terminated.

TywrkrDD The challenge value provided to RSI_ATTESTATION_TOKEN_INIT is included in the generated attestation token.

This allows the relying party to establish freshness of the attestation token.

If the size of the challenge provided by the relying party is less than 64 bytes, it should be zero-padded prior to
calling RSI_ATTESTATION_TOKEN_INIT. Arm recommends that the challenge should contain at least 32 bytes
of unique data.

Tckpow Generation of an attestation token can be a long-running operation, during which interrupts may need to be handled.

Texsap If a physical interrupt becomes pending during execution of RSI_ATTESTATION_TOKEN_CONTINUE, a REC
exit due to IRQ can occur.

On the next entry to the REC:

o If a virtual interrupt is pending on that REC, it is taken to the REC’s exception handler
* RSI_ATTESTATION_TOKEN_CONTINUE returns RSI_INCOMPLETE
* The REC should call RSI_ATTESTATION_TOKEN_CONTINUE again

See also:

* A4.3.5 REC exit due to IRQ
* AG6.1 Realm interrupts

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 93
1.0-rel0 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

* A7.2.3.1.1 Realm challenge claim

* B5.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command

e B5.3.2 RSI ATTESTATION_TOKEN _INIT command

e DI1.7.1 Attestation token generation flow

» DI1.7.2 Handling interrupts during attestation token generation flow

A7.2.3 Attestation token format

IWW GX

ILPTTK

I:LJLh

DENO0137
1.0-rel0

The CCA attestation token is a profiled IETF Entity Attestation Token (EAT).

The CCA attestation token is a Concise Binary Object Representation (CBOR) map, in which the map values are
the Realm token and the CCA platform token.

The Realm token contains structured data in CBOR, wrapped with a COSE_Sign1 envelope according to the
CBOR Object Signing and Encryption (COSE) standard.

The Realm token is signed by the Realm Attestation Key (RAK).

The CCA platform token contains structured data in CBOR, wrapped with a COSE_Sign1 envelope according to
the COSE standard.

The CCA platform token is signed by the Initial Attestation Key (IAK).

The CCA platform token contains a hash of RAK_pub. This establishes a cryptographic binding between the
Realm token and the CCA platform token.

The CCA attestation token is defined as follows:

cca-token = #6.399 (cca-token-collection) ; CMW Collection
; (draft-ietf-rats-msg-wrap)

cca-platform-token = bstr .cbor COSE_Signl_Tagged
cca-realm-delegated-token = bstr .cbor COSE_Signl_Tagged

cca—-token—-collection = {
44234 => cca-platform-token ; 44234 = 0xACCA
44241 => cca-realm-delegated-token

; EAT standard definitions
COSE_Signl_Tagged = #6.18 (COSE_Signl)

; Deliberately shortcut these definitions until EAT is finalised and able to
; pull in the full set of definitions
COSE_Signl = "COSE-Signl placeholder"

The composition of the CCA attestation token is summarised in the following figure.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 94
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
1.0-rel0

CCA attestation token

Realm token

COSE_Sign1l envelope

Realm token claim map

Client challenge

See also:

* Arm CCA Security model [4]

Concise Binary Object Representation (CBOR) [6]
CBOR Object Signing and Encryption (COSE) [7]
Entity Attestation Token (EAT) [8]

A7.2.3.1 Realm claims

A7.2.3.2 CCA platform claims

:{ challenge

|

| realm_public_key = RAK_pu%h

| Signature(RAK)

CCA platform token

COSE_Sign1 envelope

Platform token claim map

| challenge = Hash(RAK_pub

he

e

| Signature(lAK)

Figure A7.1: Attestation token format

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

Non-confidential

95

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation
A7.2.3.1 Realm claims

This section defines the format of the Realm token claim map. The format is described using a combination of
Concise Data Definition Language (CDDL) and text description.

T ukBHc The Realm token claim map is defined as follows:

cca-realm-claims = (cca-realm-claim-map)

cca-realm-claim-map = {
cca-realm-challenge
? cca-realm-profile
cca-realm-personalization-value
cca-realm-initial-measurement
cca-realm-extensible-measurements
cca-realm-hash-algo-id
cca-realm-public-key
cca-realm-public-key-hash-algo-id

}

See also:

» Concise Data Definition Language (CDDL) [9]

e A7.2.3.1.1 Realm challenge claim

e A7.2.3.1.2 Realm profile claim

e A7.2.3.1.3 Realm Personalization Value claim

e A7.2.3.1.4 Realm Initial Measurement claim

e A7.2.3.1.5 Realm Extensible Measurements claim
e A7.2.3.1.6 Realm hash algorithm ID claim

e A7.2.3.1.7 Realm public key claim

e A7.2.3.1.8 Realm public key hash algorithm identifier claim
e A7.2.3.1.9 Collated CDDL for Realm claims

* A7.2.3.1.10 Example Realm claims

A7.2.3.1.1 Realm challenge claim

T rrwxo The Realm challenge claim is used to carry the challenge provided by the caller to demonstrate freshness of the
generated token.

Irvizk The Realm challenge claim is identified using the EAT nonce label (10).

T vnvNp The length of the Realm challenge is 64 bytes.

T oxmxF The Realm challenge claim must be present in a Realm token.

Texcry The format of the Realm challenge claim is defined as follows:
cca-realm-challenge-label = 10
cca-realm-challenge-type = bytes .size 64

cca-realm-challenge = (
cca-realm—-challenge—label => cca-realm-challenge-type

)

See also:

e A7.2.2 Attestation token generation
e B5.3.2 RSI_ ATTESTATION_TOKEN_INIT command

A7.2.3.1.2 Realm profile claim

T v The Realm profile claim identifies the EAT profile to which the Realm token conforms.
Tsuscr The Realm profile claim is identified using the EAT profile label (265).
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 96

1.0-rel0 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation
Tyssay The Realm profile claim is optional in a CCA Realm token.

Teots If the Realm profile is not included in a CCA Realm token then the profile value used in the CCA Platform token
should refer to a profile that describes both Platform and Realm claims.

T supau The format of the Realm profile claim is defined as follows:

cca-realm-profile-label = 265 ; EAT profile
cca-realm-profile-type = "tag:arm.com,2023:realm#1.0.0"
cca-realm-profile = (

cca-realm-profile-label => cca-realm-profile-type

)

A7.2.3.1.3 Realm Personalization Value claim

Iscnxs The Realm Personalization Value claim contains the RPV which was provided at Realm creation.

TexzeD The Realm Personalization Value claim must be present in a Realm token.

T orND The format of the Realm Personalization Value claim is defined as follows:
cca-realm-personalization-value-label = 44235

cca-realm-personalization-value-type = bytes .size 64

cca-realm-personalization-value = (
cca-realm-personalization-value-label => cca-realm-personalization-value-type
)

See also:
e A2.1.3 Realm attributes

A7.2.3.1.4 Realm Initial Measurement claim

Igxkep The Realm Initial Measurement claim contains the values of the Realm Initial Measurement.
Trz0sm The Realm Initial Measurement claim must be present in a Realm token.
Tcemnn The format of the Realm Initial Measurement claim is defined as follows:

cca-realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-realm-initial-measurement-label = 44238

cca-realm—-initial-measurement = (
cca-realm-initial-measurement-label => cca-realm-measurement-type

)

See also:

e A7.1 Realm measurements
e A7.2.3.1.5 Realm Extensible Measurements claim

A7.2.3.1.5 Realm Extensible Measurements claim

T e The Realm Extensible Measurements claim contains the values of the Realm Extensible Measurements.
Ipsnrs The Realm Extensible Measurements claim must be present in a Realm token.
T kv The format of the Realm measurements claim is defined as follows:

cca-realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-realm-extensible-measurements—-label = 44239

cca-realm—-extensible—-measurements = (
cca-realm-extensible-measurements—label => [4%x4 cca-realm-measurement-type]

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 97
1.0-rel0 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

IRTNES

IL:ZEJ:"Q{

I NNNDS

DENO0137

1.0-rel0

)

See also:

e A7.1 Realm measurements
e A7.2.3.1.4 Realm Initial Measurement claim

A7.2.3.1.6 Realm hash algorithm ID claim

The Realm hash algorithm ID claim identifies the algorithm used to calculate all hash values which are present in
the Realm token.

Arm recommends that the value of the Realm hash algorithm ID claim is an IANA Hash Function name /ANA
Named Information Hash Algorithm Registry [10].

The Realm hash algorithm ID claim must be present in a Realm token.

The format of the Realm hash algorithm ID claim is defined as follows:

cca-realm-hash-algo-id-label = 44236

cca-realm-hash-algo-id = (
cca-realm-hash-algo-id-label => text

)

A7.2.3.1.7 Realm public key claim
The Realm public key claim identifies the key which is used to sign the Realm token.

The value of the Realm public key claim is a CBOR bstr of a COSE_Key structure. The parameters used for the
COSE_Key are profile-specific.

The Realm public key claim must be present in a Realm token.

The format of the Realm public key claim is defined as follows:

cca-realm-public-key-label = 44237
cca-realm-public-key-type = bstr .cbor COSE_Key
cca-realm-public-key = (

cca-realm-public-key-label => cca-realm-public-key-type
)COSE_Key—label = int / tstr

COSE_Key-values = any

; See RFC8152 for full definition of COSE_Key
COSE_Key = {

1 => tstr / int, ; kty
? 2 => bstr, ; kid
? 3 => tstr / int, ; alg
? 4 => [+ (tstr / int)], ; key_ops
? 5 => bstr, ; Base IV
* COSE_Key-label => COSE_Key-values
}
See also:

e SEC I: Elliptic Curve Cryptography, version 2.0 [11]
* A7.2.3.1.8 Realm public key hash algorithm identifier claim
e A7.2.3.2.2 CCA platform challenge claim

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 98
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Tywsre

LrnreN

Ty
DEN0137

1.0-rel0

A7.2.3.1.8 Realm public key hash algorithm identifier claim

The Realm public key hash algorithm identifier claim identifies the algorithm used to calculate H(RAK_pub).

The Realm public key hash algorithm identifier claim must be present in a Realm token.

The format of the Realm public key hash algorithm identifier claim is defined as follows:

cca-realm-public-key-hash-algo-id-label = 44240

cca-realm-public-key-hash-algo-id = (
cca-realm-public-key-hash-algo-id-label => text

)

See also:

* SEC I: Elliptic Curve Cryptography, version 2.0 [11]
* A7.2.3.1.7 Realm public key claim
e A7.2.3.2.2 CCA platform challenge claim

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
1.0-rel0

A7.2.3.1.9 Collated CDDL for Realm claims

The format of the Realm token claim map is defined as follows:

cca—

cca—

}

cca—
cca—

cca—

)

cca—

cca-—

cca—

)

cca—
cca—

cca-—

)

cca-—
cca—

cca-—

)

cca-—

cca—

)

cca—

cca—

)

cca—

cca-—

cca—

)

realm-claims = (cca-realm-claim-map)

realm-claim-map = {
cca-realm-challenge

? cca-realm-profile
cca-realm-personalization-value
cca-realm-initial-measurement
cca-realm-extensible-measurements
cca-realm-hash-algo-id
cca-realm-public-key
cca-realm-public-key-hash-algo-id

realm-challenge-label = 10
realm-challenge-type = bytes .size 64

realm-challenge = (
cca-realm—-challenge—label => cca-realm-challenge-type

realm-profile-label = 265 ; EAT profile
realm-profile-type = "tag:arm.com,2023:realm#l1.0.0"

realm-profile = (
cca-realm-profile-label => cca-realm-profile-type

realm-personalization-value-label = 44235
realm-personalization-value-type = bytes .size 64

realm-personalization-value = (
cca-realm-personalization-value-label => cca-realm-personalization-value-type

realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
realm-initial-measurement-label = 44238

realm—-initial-measurement = (
cca-realm-initial-measurement-label => cca-realm-measurement-type

realm-extensible-measurements—label = 44239

realm-extensible-measurements = (
cca-realm-extensible-measurements—-label => [4x4 cca-realm-measurement-type]

realm—hash-algo—-id-label = 44236

realm-hash-algo-id = (
cca-realm-hash-algo-id-label => text

realm-public-key-label = 44237
realm-public-key-type = bstr .cbor COSE_Key

realm-public-key = (
cca-realm-public-key-label => cca-realm-public-key-type

COSE_Key-label = int / tstr

COSE_Key-values = any

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
1.0-rel0

14
COSE_Key =

1 =>
>
>
>
>

ESEEVERNEEN]
g w N
U

*

}

COSE_.

See RFC8152 for full definition of COSE_Key

{

tstr / int, ; kty
bstr, ; kid
tstr / int, ; alg
[+ (tstr / int) 1, ; key_ops
bstr, ; Base IV

Key-label => COSE_Key-values

cca-realm-public-key-hash-algo-id-label = 44240

cca-realm-public-key-hash-algo-id = (
cca-realm-public-key-hash-algo-id-label => text

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

LcprrR

DENO0137
1.0-rel0

A7.2.3.1.10 Example Realm claims

An example Realm claim map is shown below in COSE-DIAG format:

/ Realm claim map /

{

/ cca-realm-profile /
265: "tag:arm.com,2023:realm#l1.0.0",

/ cca-realm-challenge /
10: h'ABRABABABABABABABABABAB
ABABABABABABABABABABRABARABABRABABABABABABABABABABARABABABABABABAB',

/ cca-realm-personalization-value /
44235: h'ABABABABABABABABABABABABARABABRABABABRABABABABABABRABARABABABABABAB
ABABABABABABABABABARARABRABRABRABABABABABABABABABABABABABARABRARBARBRAR',

/ cca-realm-initial-measurement /
44238: h'00",

/ cca-realm—-extensible-measurements /

44239: [
h'00",
h'00",
h'00",
h'00"

1,

/ cca-realm-hash-algo-id /
44236: "sha-256",

/ cca-realm-public-key /

44237: h'A50102033823200221582066EEA6A22678C3A9F83148EF349800B20ABB486F2C
C6D7ED017EC49798C8D4372258202F25DE86812374E6E8D48DEESE230AD29CCD
839BE6EODBS8C7ABODEDEO8O5D29D ",

/ cca-realm-public-key-hash-algo-id /
44240: "sha-256"

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.2 CCA platform claims

This section defines the format of the CCA platform token claim map. The format is described using a combination
of Concise Data Definition Language (CDDL) and text description.

Troxry The CCA platform token claim map is defined as follows:

cca-platform-claims = (cca-platform-claim-map)

cca-platform-claim-map = {
cca-platform-profile
cca-platform-challenge
cca-platform-implementation—-id
cca-platform-instance-id
cca-platform-config
cca-platform-lifecycle
cca-platform-sw—-components
? cca-platform-verification-service
cca-platform-hash-algo-id

}

See also:

e Concise Data Definition Language (CDDL) [9]

e A7.2.3.2.1 CCA platform profile claim

e A7.2.3.2.2 CCA platform challenge claim

* A7.2.3.2.3 CCA platform Implementation ID claim

e A7.2.3.2.4 CCA platform Instance ID claim

e A7.2.3.2.5 CCA platform config claim

e A7.2.3.2.6 CCA platform lifecycle claim

e A7.2.3.2.7 CCA platform software components claim
* A7.2.3.2.8 CCA platform verification service claim

* A7.2.3.2.9 CCA platform hash algorithm ID claim

e A7.2.3.2.10 Collated CDDL for CCA platform claims
e A7.2.3.2.11 Example CCA platform claims

A7.2.3.2.1 CCA platform profile claim

Trovre The CCA platform profile claim identifies the EAT profile to which the CCA platform token conforms. Note that
because the platform token is expected to be issued when bound to a Realm token, the profile document should
also include the relevant Realm profile or a reference to that profile.

T xmveR The CCA platform profile claim is identified using the EAT profile label (265).

T cMrNR The CCA platform profile claim must be present in a CCA platform token.

TuuRTD The format of the CCA platform profile claim is defined as follows:
cca-platform-profile-label = 265 ; EAT profile
cca-platform-profile-type = "tag:arm.com,2023:cca_platform#1.0.0"
cca-platform-profile = (

cca-platform-profile-label => cca-platform-profile-type
)
A7.2.3.2.2 CCA platform challenge claim

I Tz The CCA platform challenge claim contains a hash of the public key used to sign the Realm token.

T CLoKK The CCA platform challenge claim is identified using the EAT nonce label (10).

Txuryd The length of the CCA platform challenge is either 32, 48 or 64 bytes.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 103

1.0-rel0 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

IH“,

I\ HYDG

DENO0137
1.0-rel0

The CCA platform challenge claim must be present in a CCA platform token.

The format of the CCA platform challenge claim is defined as follows:

cca-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-platform-challenge-label = 10

cca-platform-challenge = (
cca-platform-challenge-label => cca-hash-type
)

See also:
e A7.2.3.1.7 Realm public key claim
A7.2.3.2.3 CCA platform Implementation ID claim
The CCA platform Implementation ID claim uniquely identifies the implementation of the CCA platform.

The value of the CCA platform Implementation ID claim can be used by a verification service to locate the details
of the CCA platform implementation from an endorser or manufacturer. Such details are used by a verification
service to determine the security properties or certification status of the CCA platform implementation.

The semantics of the CCA platform Implementation ID value are defined by the manufacturer or a particular
certification scheme. For example, the ID could take the form of a product serial number, database ID, or other
appropriate identifier.

The CCA platform Implementation ID claim does not identify a particular instance of the CCA implementation.
The CCA platform Implementation ID claim must be present in a CCA platform token.

The format of the CCA platform Implementation ID claim is defined as follows:

cca-platform-implementation-id-label = 2396 ; PSA implementation ID
cca-platform-implementation-id-type = bytes .size 32

cca-platform-implementation—-id = (
cca-platform-implementation-id-label => cca-platform-implementation-id-type

)

See also:

* Arm CCA Security model [4]
e A7.2.3.2.4 CCA platform Instance ID claim

A7.2.3.2.4 CCA platform Instance ID claim

The CCA platform Instance ID claim represents the unique identifier of the Initial Attestation Key (IAK) for the
CCA platform.

The CCA platform Instance ID claim is identified using the EAT ueid label (256).
The first byte of the CCA platform Instance ID value must be 0x01.
The CCA platform Instance ID claim must be present in a CCA platform token.

The format of the CCA platform Instance ID claim is defined as follows:

cca-platform-instance-id-label = 256 ; EAT ueid

; TODO: require that the first byte of cca-platform-instance-id-type is 0x01
; EAT UEIDs need to be 7 - 33 bytes
cca-platform-instance-id-type = bytes .size 33

cca-platform-instance-id = (
cca-platform-instance-id-label => cca-platform-instance-id-type

)

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 104
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Torvir

DENO0137
1.0-rel0

See also:

* Arm CCA Security model [4]
* A7.2.3.2.3 CCA platform Implementation ID claim

A7.2.3.2.5 CCA platform config claim

The CCA platform config claim describes the set of chosen implementation options of the CCA platform. As an
example, these may include a description of the level of physical memory protection which is provided.

The CCA platform config claim is expected to contain the System Properties field which is present in the Root
Non-volatile Storage (RNVS) public parameters.

The CCA platform config claim must be present in a CCA platform token.

cca-platform-config-label = 2401 ; PSA platform range
; TBD: add to IANA registration
cca-platform-config-type = bytes

cca-platform-config = (
cca-platform-config-label => cca-platform-config-type

)

See also:
* RME system architecture spec [12]
A7.2.3.2.6 CCA platform lifecycle claim
The CCA platform lifecycle claim identifies the lifecycle state of the CCA platform.
The value of the CCA platform lifecycle claim is an integer which is divided as follows:

¢ value[15:8]: CCA platform lifecycle state
e value[7:0]: IMPLEMENTATION DEFINED

The CCA platform lifecycle claim must be present in a CCA platform token.

A non debugged CCA platform will be in psa-lifecycle-secured state. Realm Management Security Domain
debug is always recoverable, and would therefore be represented by psa-lifecycle-non-psa-rot-debug state. Root
world debug is recoverable on a HES system and would be represented by psa-lifecycle-recoverable-psa-rot
state. On a non-HES system Root world debug is usually non-recoverable, and would be represented by
psa-lifecycle-lifecycle-decommissioned state.

The format of the CCA platform lifecycle claim is defined as follows:

cca-platform-lifecycle-label = 2395 ; PSA lifecycle

cca-platform-lifecycle-unknown-type = 0x0000..0x00ff
cca-platform-lifecycle-assembly-and-test-type = 0x1000..0x10ff
cca-platform-lifecycle-cca-platform-rot-provisioning-type = 0x2000..0x20ff
cca-platform-lifecycle-secured-type = 0x3000..0x30ff
cca-platform-lifecycle-non-cca-platform-rot-debug-type = 0x4000..0x40ff
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type = 0x5000..0x50ff
cca-platform-lifecycle-decommissioned-type = 0x6000..0x60ff

cca-platform-lifecycle-type =
cca-platform-1lifecycle-unknown-type /
cca-platform-lifecycle-assembly-and-test-type /
cca-platform-lifecycle-cca-platform-rot-provisioning-type /
cca-platform-lifecycle-secured-type /
cca-platform-lifecycle-non-cca-platform-rot-debug-type /
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type /

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 105
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

Tppsk

Tncoms

Rpxruc

Rxpnoc

DENO0137
1.0-rel0

cca-platform-lifecycle-decommissioned-type

cca-platform-lifecycle = (
cca-platform-lifecycle-label => cca-platform-lifecycle-type
)

See also:
e Arm CCA Security model [4]
A7.2.3.2.7 CCA platform software components claim

The CCA platform software components claim is a list of software components which can affect the behavior of
the CCA platform. It is expected that an implementation will describe the expected software component values
within the profile.

The CCA platform software components claim must be present in a CCA platform token.

The format of the CCA platform software components claim is defined as follows:

cca-platform-sw-components—-label = 2399 ; PSA software components
cca-platform-sw—component = ({
? 1 => text, ; component type
2 => cca-hash-type, ; measurement value
? 4 => text, ; version
5 => cca-hash-type, ; signer id
? 6 => text, ; hash algorithm identifier

cca-platform-sw—components = (
cca-platform-sw—components—label => [+ cca-platform-sw-—component]

)

CCA platform software component type

The CCA platform software component type is a string which represents the role of the software component.

The CCA platform software component type is intended for use as a hint to help the relying party understand how
to evaluate the CCA platform software component measurement value.

The CCA platform software component type is optional in a CCA platform token.
CCA platform software component measurement value

The CCA platform software component measurement value represents a hash of the state of the software component
in memory at the time it was initialized.

The CCA platform software component measurement value must be a hash of 256 bits or stronger.
The CCA platform software component measurement value must be present in a CCA platform token.
CCA platform software component version

The CCA platform software component version is a text string whose meaning is defined by the software component
vendor.

The CCA platform software component version is optional in a CCA platform token.
CCA platform software component signer ID

The CCA platform software component signer ID is the hash of a signing authority public key for the software
component. It can be used by a verifier to ensure that the software component was signed by an expected trusted
source.

The CCA platform software component signer ID value must be a hash of 256 bits or stronger.
The CCA platform software signer ID must be present in a CCA platform token.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 106
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

TH:?IDE

TIvIFItT}{

II IRSXY

DENO0137
1.0-rel0

CCA platform software component hash algorithm ID

The CCA platform software component hash algorithm ID identifies the way in which the hash algorithm used to
measure the CCA platform software component.

Arm recommends that the value of the CCA platform software component hash algorithm ID is an IJANA Hash
Function name TANA Named Information Hash Algorithm Registry [10].

Arm recommends that the hash algorithm used to measure the CCA platform software component is one of the
algorithms listed in the Arm CCA Security model [4].

The CCA platform software component hash algorithm ID is optional in a CCA platform token.
A7.2.3.2.8 CCA platform verification service claim

The CCA platform verification service claim is a hint which can be used by a relying party to locate a verifier for
the token.

The value of the CCA platform verification service claim is a text string which can be used to locate the service or
a URL specifying the address of the service.

The CCA platform verification service claim may be ignored by a relying party in favor of other information.
The CCA platform verification service claim is optional in a CCA platform token.

The format of the CCA platform verification service claim is defined as follows:

cca-platform-verification-service-label = 2400 ; PSA verification service
cca-platform-verification-service-type = text

cca-platform-verification-service = (
cca-platform-verification-service-label =>
cca-platform-verification-service-type

)

A7.2.3.2.9 CCA platform hash algorithm ID claim

The CCA platform hash algorithm ID claim identifies the default algorithm used to calculate measurements in the
CCA platform token.

The default hash algorithm may be overridden for an individual software component, by the CCA platform software
component hash algorithm ID claim.

Arm recommends that the value of the CCA platform hash algorithm ID claim is an IANA Hash Function name
IANA Named Information Hash Algorithm Registry [10].

The CCA platform hash algorithm ID claim must be present in a CCA platform token.
The format of the CCA platform hash algorithm ID claim is defined as follows:

cca-platform-hash-algo-id-label = 2402 ; PSA platform range
; TBD: add to IANA registration

cca-platform-hash-algo-id = (
cca-platform-hash-algo-id-label => text
)

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 107
Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.2.10 Collated CDDL for CCA platform claims

Dpymaz The format of the CCA platform token claim map is defined as follows:

cca-platform-claims = (cca-platform-claim-map)

cca-platform-claim-map = {
cca-platform-profile
cca-platform-challenge
cca-platform-implementation-id
cca-platform-instance-id
cca-platform-config
cca-platform-lifecycle
cca-platform-sw-components
? cca-platform-verification-service
cca-platform-hash-algo-id

}

cca-platform-profile-label = 265 ; EAT profile

cca-platform-profile-type = "tag:arm.com,2023:cca_platform#l1.0.0"

cca-platform-profile = (
cca-platform-profile-label => cca-platform-profile-type
)
cca-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-platform-challenge-label = 10

cca-platform-challenge = (
cca-platform-challenge-label => cca-hash-type
)
cca-platform-implementation-id-label = 2396 ; PSA implementation ID
cca-platform-implementation-id-type = bytes .size 32

cca-platform-implementation—-id = (

cca-platform-implementation-id-label => cca-platform-implementation-id-type
)
cca-platform-instance-id-label = 256 ; EAT ueid

; TODO: require that the first byte of cca-platform-instance-id-type is 0x01
; EAT UEIDs need to be 7 - 33 bytes
cca-platform-instance-id-type = bytes .size 33

cca-platform-instance-id = (
cca-platform-instance-id-label => cca-platform-instance-id-type
)
cca-platform-config-label = 2401 ; PSA platform range
; TBD: add to IANA registration
cca-platform-config-type = bytes

cca-platform-config = (
cca-platform-config-label => cca-platform-config-type

)
cca-platform-lifecycle-label = 2395 ; PSA lifecycle

cca-platform-lifecycle-unknown-type = 0x0000..0x00ff
cca-platform-lifecycle-assembly-and-test-type = 0x1000..0x10ff
cca-platform-lifecycle-cca-platform-rot-provisioning-type = 0x2000..0x20ff
cca-platform-lifecycle-secured-type = 0x3000..0x30ff
cca-platform-lifecycle-non-cca-platform-rot-debug-type = 0x4000..0x40ff
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type = 0x5000..0x50ff
cca-platform-lifecycle-decommissioned-type = 0x6000..0x60ff

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 108
1.0-rel0 Non-confidential

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

DENO0137
1.0-rel0

cca—

cca—

)

cca—

cca—

?

(AN}

)

cca—

)

cca—
cca-—

cca—

)

cca-—

cca-—

platform-lifecycle-type =

cca-platform-lifecycle-unknown-type /
cca-platform-lifecycle-assembly-and-test-type /
cca-platform-lifecycle-cca-platform-rot-provisioning-type /
cca-platform-lifecycle-secured-type /
cca-platform-lifecycle-non-cca-platform-rot-debug-type /
cca-platform-lifecycle-recoverable-cca-platform-rot—-debug-type /
cca-platform-lifecycle-decommissioned-type

platform-lifecycle = (
cca-platform-lifecycle-label => cca-platform-lifecycle-type

platform-sw-components—-label = 2399 ; PSA software components
platform-sw—component = {

1 => text, ; component type

2 => cca-hash-type, ; measurement value

4 => text, ; version

5 => cca-hash-type, ; signer id

6 => text, ; hash algorithm identifier
platform-sw-components = (

cca-platform-sw—components—label => [+ cca-platform-sw-—component]

platform-verification-service-label = 2400 ; PSA verification service

platform-verification-service-type = text

platform-verification-service = (
cca-platform-verification-service-label =>
cca-platform-verification-service-type

platform-hash-algo-id-label = 2402 ; PSA platform range
; TBD: add to IANA registration

platform-hash-algo-id = (
cca-platform-hash-algo-id-label => text

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.2.11 Example CCA platform claims
T rvekL An example CCA platform claim map is shown below in COSE-DIAG format:

/ CCA platform claim map /
{
/ cca-platform-profile /
265: "tag:arm.com,2023:cca_platform#l.0.0",

/ cca-platform-challenge /
10: h'AA
AA',

/ cca-platform-implementation-id /
2396: h'AAT',

/ cca-platform-instance-id /
256: h'010BBBBBBBBBBBBBRBBBRBBERBBBBRBBBRBBBBBBBRBBBBRBBBRBBBBBBRBBBBBBBBBBB
BB',

/ cca-platform-config /
2401: h'CFCFCFCF',

/ cca-platform-lifecycle /
2395: 12288,

/ cca-platform-sw-components /
2399: [
{
/ measurement value /
2: h'AA
AAT,

/ signer id /
5: h'BBBBEBBBERBBBBBBERBBBERBBBBRBBBBBBRBBBRBBBBBBERBBBRBBBRBBBBBBBEBBBBRBBBREB
BBBBBBBRBBBBBBBRBBBRBBBBBBBRBBBRBBBRBBBBBBRBBBBRBBBBBBBBBBBRBBBBBBRBEB',

/ version /
4: "1.0.0",

/ hash algorithm identifier /

6: "sha-256"

/ measurement value /
2: h'CCCCCCCCCCCCCCCCCCCCCCCcererececeeecceececceeccecececcecececcececcececcecececcececc
CCCCCCCCCCCCCCCCrreeeececceceeccececcecececcecececcecececcececcecececcececccececccececccece',

/ signer id /
5: h'DD
DD ',

/ version /
4: "1.0.0",

/ hash algorithm identifier /
6: "sha-256"

1,

/ cca-platform-verification-service /

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 110
1.0-rel0 Non-confidential

Chapter A7. Realm measurement and attestation

A7.2. Realm attestation

2400:

"https://cca_verifier.org",

/ cca-platform-hash-algo-id /

2402:

"sha-256"

DENO0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter A8
Realm debug and performance monitoring

This section describes the debug and performance monitoring features which are available to a Realm.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

112

Chapter A8. Realm debug and performance monitoring
A8.1. Realm PMU

A8.1 Realm PMU

This section describes the programming model for usage of PMU by a Realm.

Rpwoc On REC entry, Realm PMU state is restored from the REC object.

RraryJ On REC exit, all Realm PMU state is saved to the REC object.

RyxTzs On REC exit, exit .pmu_ovf_status indicates the status of the PMU overflow at the time of the Realm exit.
See also:

e A3.1.5 Realm support for Performance Monitors Extension
* A4.3 REC exit
e B4.4.16 RmiRecEXxit type

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 113
1.0-rel0 Non-confidential

Part B
Interface

Chapter B1
Commands

This chapter describes how RMM commands are defined in this specification.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 115
1.0-rel0 Non-confidential

Chapter B1. Commands
B1.1. Overview

B1.1

RH\ LKX

I‘\‘V;X

IrTRYT

R‘v’\;?x KR

DENO0137
1.0-rel0

Overview

The RMM exposes the following interfaces to the Host:
¢ The Realm Management Interface (RMI)
The RMM exposes the following interfaces to a Realm:

* The Realm Services Interface (RSI)
* The Power State Coordination Interface (PSCI)

Any other SMC executed by a Realm returns SMCCC_NOT_SUPPORTED.
An RMM interface consists of a set of RMM commands.

An RMM interface is compliant with the SMC Calling Convention (SMCCC).
SMCCC version >= 1.2 is required.

SMCCC version 1.2 increases the number of SMC64 arguments and return values from 4 to 17. Some RMM
commands use more than 4 input or output values.

On a CCA platform which implements FEAT_SVE, SMCCC version >= 1.3 is required.

SMCCC version 1.3 introduces a bit in the FID which a caller can use to indicate that SVE state does not need to
be preserved across the SMC call.

On a CCA platform which implements FEAT_SME, SMCCC version >= 1.4 is required.
SMCCC version 1.4 adds support for preservation of SME state across an SMC call.

An RMM command uses the SMC64 calling convention.

To determine whether an RMM interface is implemented, software should use the following flow:

1. Determine whether the SMCCC_VERSION command is implemented, following the procedure described in
Arm SMC Calling Convention [13].

2. Check that the SMCCC version is >=1.1.
3. Execute the <Interface>.Version command, which returns:

* SMCCC_NOT_SUPPORTED (-1) if <Interface> is not implemented.
* A version number (>0) if <Interface> is implemented.

All data types defined in this specification are little-endian.
See also:

» Chapter B4 Realm Management Interface
* Chapter BS Realm Services Interface
* Chapter B6 Power State Control Interface

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 116
Non-confidential

Chapter B1. Commands
B1.2. Command definition

B1.2 Command definition

TyupMvp The definition of an RMM command consists of:

* A function identifier (FID)

* A set of input values (referred to as “arguments” in SMCCC)
* A set of output values (referred to as “results” in SMCCC)

* A set of context values

* A partially-ordered set of failure conditions

¢ A set of success conditions

* A set of footprint items

Icevnc Each failure condition, success condition and footprint item has an associated identifier. Identifiers are unique
within each of the above groups, within each command.

An identifier has no meaning. It is only a label by which a given condition or footprint item can be referred to.

RsTouR On calling an RMI or RSI command, any of X1 - X16 which are not specified as input values in the command
definition SBZ.

RxswJp On return from an RMI or RSI command, any of X0 - X16 which are not specified as output values in the command
definition MBZ.

See also:

* SMCCC Arm SMC Calling Convention [13]

B1.2.1 Example command

Inrves The following command, EXAMPLE_ADD, is an example of how the components of an RMM command definition
are presented in this document.

This command takes as an input value the address params_ptr of an NS Granule which contains two integer
values x and y. On successful execution of the command:

* The output value sum contains the sum of x and y
 The output value zero indicates whether either of x or y is zero

EXAMPLE_ADD is defined as follows:
Interface

FID

0x042

Input values

Name Register Field Type Description

fid X0 [63:0] Ulnt64 Command FID

params_ptr X1 [63:0] Address PA of parameters
Context

The EXAMPLE_ADD command operates on the following context.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 117
1.0-rel0 Non-confidential

Chapter B1. Commands
B1.3. Command registers

Name Type Value Before Description

params ExampleParams Params (params_ptr) false Parameters

Output values

Name Register Field Type Description

result X0 [15:0] CommandReturnCode Command return status

sum X1 [63:0] Ulnt64 Sum of x and y

zero X2 [63:0] Ulnt64 Whether either x or y was zero

Failure conditions

ID Condition

params_align pre: !AddrIsGranuleAligned(params_ptr)
post: ResultEqual (result, ERROR_INPUT)

params_gpt pre: Granule (params_ptr).gpt != GPT_NS
post: ResultEqual (result, ERROR_MEMORY)

Success conditions

1D Post-condition
sum sSum == params.X + params.y
zero zero == (params.x == 0) || (params.y == 0)

B1.3 Command registers

Dzpenm An FID is a value which identifies a particular RMM command.

Tmgoc The FID of an RMM command is unique among the RMM commands in an RMM interface.
Trvpcy An FID is read from general-purpose register XO0.

Dx1ses An input value is a value read by an RMM command from general-purpose registers.

Dvepen An output value is a value written by an RMM command to general-purpose registers.

Degivy A command return code is a value which specifies whether an RMM command succeeded or failed.
IrRZFT A command return code is written to general-purpose register XO0.

B1.4 Command condition expressions

Dchurys A condition expression is an expression which evaluates to a boolean value.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 118
1.0-rel0 Non-confidential

Chapter B1. Commands
B1.5. Command context values

InpKe

DENO0137
1.0-rel0

Following expansion of macros, a condition expression is a valid expression in Arm Specification Language (ASL).

See also:

* Arm Specification Language Reference Manual [14]
» Chapter B3 Command condition functions

Command context values

A context value is a value which is derived from the value of a command input register and which is used by a
command condition expression.

A context value can be thought of as a local variable for use by command condition expressions.

For example, consider the following example command condition expression:

'AddrIsGranuleAligned (RealmParams (params_ptr) .rtt_base)

By introducing a context value params with the value RealmParams (params_ptr), this command condition
expression can be re-written as:

'AddrIsGranuleAligned (params.rtt_base)

The before property of a context value indicates whether its expression is re-evaluated after the command has
executed.

* before = true: the expression is not re-evaluated after the command has executed
* before = false: the expression is re-evaluated after the command has executed

Specifying before = true for a context value allows system state to be sampled before command execution,
and then used after command execution in a command success condition.

For example, the RMI_REALM_DESTROY command takes as an input value the address rd of a Realm Descriptor.
Successful execution of the command results observable effects including the following:

* The state of the RD Granule changes from RD to DELEGATED

* The state of the RTT base Granule, whose address was previously held in the RD, changes from RTT to
DELEGATED

The address of the RTT base Granule is not included in the input values of the command.

A context value is defined as follows:

Name Type Value Before Description

rtt_base Address Realm(rd) .rtt_base true RTT base address

The state change of the RTT Granule can then be expressed as:

Granule (rtt_base) .state == DELEGATED

The before property of a context value has no effect if the value is only used in command failure conditions.

An in-memory value is a value passed to a command via an in-memory data structure, the address of which is
passed in an input register.

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 119
Non-confidential

Chapter B1. Commands
B1.6. Command failure conditions

Irvss An in-memory value is a context value.
See also:

e B4.3.9 RMI REALM CREATE command

B1.6 Command failure conditions

Dpnooc An RMM command failure condition defines a way in which the command can fail.

Icvenz A failure condition consists of a pre-condition and a post-condition.

Tursy A failure pre-condition can be thought of as the “trigger” of the failure: if the pre-condition is true then the
command fails.

Txoanx A failure post-condition can be thought of as the “effect” of the failure: if the command failed due to a particular
trigger, then the post-condition defines the error code which is returned.

Tcvray A failure pre-condition is a condition expression whose terms can include input values and context values.

T 4NDNN A failure post-condition is a condition expression whose terms can include input values and context values.

Txupy Observability of the checking of command failure conditions is subject to a partial order.

An ordering relation “A precedes B” means either of the following:

* The pre-condition of B is well-formed only if the pre-condition of A is false. This is referred to as a
well-formedness ordering.

* If the pre-conditions of A and B are both true, then the post-condition of A is observed. This is referred to as
a behavioral ordering.

The absence of an ordering relation “A precedes B’ means that, if the pre-conditions of A and B are both true then
either the post-condition of A is observed or the post-condition of B is observed.

Orderings are specified between groups of failure conditions. For example, the expression [A, B] < [C, D]
means that both conditions A and B precede both conditions C and D.

The same information is also presented graphically, with failure conditions represented as nodes and ordering
relations represented as edges.

©
O

Figure B1.1

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 120
1.0-rel0 Non-confidential

Chapter B1. Commands
B1.7. Command success conditions

R\ DGDW
RT]"T“ >

Rf HEFHD

B1.7

B1.9

DENO0137

1.0-rel0

The specification does not state whether an individual ordering relation is a well-formedness ordering or a
behavioral ordering.

A given implementation of the RMM is expected to have deterministic behavior. That is, for a runtime instance of
the RMM in a particular state, two executions of a command without an interleaving of other commands, with the
same input values, results in the same outcome (either success, or the same failure condition.)

If a failure pre-condition evaluates to true then the corresponding failure post-condition evaluates to true.
If a failure pre-condition evaluates to true then the command is aborted.
If a command fails then all output values except for X0 are UNDEFINED, unless stated otherwise.

If no failure pre-condition evaluates to true then the command succeeds.

Command success conditions

An RMM command success condition defines an observable effect of a successful execution of the command.

A success condition is a condition expression whose terms can include input values, context values and output
values.

The order in which success conditions are listed has no architectural significance.
If an RMM command succeeds then the return code is <Interface>_SUCCESS.

If an RMM command succeeds then all of its success conditions evaluate to true.

Concrete and abstract types

A concrete type is a type which has a defined encoding.
Examples of concrete types include:

* An integer which has a defined bit width.

* An enumeration within which each label is associated with a unique binary value.

* A struct which has a defined width, and within which each member has a defined position. The type of each
member of a concrete struct is a concrete type.

Concrete types are used to define command input values and output values.
An abstract type is a type which does not have a defined encoding.
Examples of concrete types include:

* An integer which does not have a defined bit width.

* An enumeration which has a set of labels, but which does not define a binary value for each label.

* A struct which has a set of members, but which does not define a struct width nor a position for each member.
The type of each member of an abstract struct is an abstract type.

Abstract types are used to model the internal state of the RMM.

A command failure condition or success condition may need to test for logical equality between a concrete type
and a corresponding abstract type. For example, the command may set the value of an internal RMM variable to
match the value of a command input. To enable such comparisons, the specification defines an Equal () function
for each pair of corresponding concrete and abstract types.

See also:

* B3.17 Equal function

Command footprint

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 121
Non-confidential

Chapter B1. Commands
B1.9. Command footprint

DyzpJps The footprint of an RMM command defines the set of state items which successful execution of the command can
modify.

Txmzys The footprint of an RMM command may include state items which are not modified by successful execution of the
command.

T rwom. If an RMM command changes the state of a Granule then the footprint typically does not include all attributes of

the object which is created or destroyed.

For example, the footprint of RMI_REALM_CREATE includes the state of the RD Granule, but does not include
attributes of the newly-created Realm.

Ruzyev Except for items in the footprint of an RMM command and registers in the output values of the RMM command,
execution of the command does not have any observable effects.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 122
1.0-rel0 Non-confidential

Chapter B2
Interface versioning

This section describes how the RMI and RSI interfaces are versioned, and how the caller of each can determine
whether there exists a mutually acceptable revision of the interface via which it can communicate with the RMM.

Other interfaces exposed by the RMM, such as PSCI, may define their own versioning schemes which differ from
that used by RMI and RSI. For details, refer to the specification of the interface concerned.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 123
1.0-rel0 Non-confidential

Chapter B2. Interface versioning

T12vor Revisions of the RMI and the RSI are identified by a (major, minor) version tuple.

The semantics of this version tuple are as follows. For two revisions of the interface P = (majp, minp) and
0 = (majg, ming):

* If majp != majy then the two interfaces may contain incompatible commands.

* If majp == majy and minp < ming then:

— Every command defined in P has the same behavior in Q, when called with input values that are specified
as valid in P.

— A command defined in P may accept additional input values in Q. These could be provided via any of:

+ Input registers which were unused in P.
+ Input memory locations which were specified as SBZ in P.
* Encodings which were specified as reserved in P.

— A command defined in P may return additional output values in Q. These could be returned via any of:

Output registers which were unused in P.
% Output memory locations which were specified as MBZ in P.
* Encodings which were specified as reserved in P.

— Q may contain additional commands which are not present in P.
e Pis less than Q if one of the following conditions is true:

- majp < majg
— majp == majp and minp < ming

Iscpme For each interface, an RMM implementation supports a set of revisions. The size of this set is at least one.

Trustz If an RMM implementation supports a given interface revision (x, y) then Arm expects that it will also supports all
earlier revisons with the same major version number. That is:

(x,0),(x, 1)... (x,y-1),(x, y).

A possible exception to this may occur if a security vulnerability is discovered in a particular revision of the interface.
For example, if interface revision (x, bad) is found to contain a vulnerability then an RMM implementation may
choose to support the following set of revisions:

(x,0),(x, 1) ... (x, bad-1), (x, bad+1) ... (x, y-1), (x, y).

Tcrooc The set of interface revisions supported by an RMM implementation may include revisons with different major
version numbers, for example:

(1,0),(1,1)... (I, m)
(2,0),(2,1)... (2, n)

T onvxa The RMI_VERSION and RSI_VERSION commands allow the caller and the RMM to determine whether there
exists a mutually acceptable revision of the interface via which the two components can communicate.

In each case:

* The caller provides a requested interface revision.

* The output values include a status code and two revisions which are supported by the RMM: a lower revision
and a higher revision.

 The higher revision value is the highest interface revision which is supported by the RMM.

 The lower revision is less than or equal to the higher revision.

The status code and lower revision output values indicate which of the following is true, in order of precedence:
a) The RMM supports an interface revision which is compatible with the requested revision.

» The status code is “success”.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 124
1.0-rel0 Non-confidential

Chapter B2. Interface versioning

* The lower revision is equal to the requested revision.

b) The RMM does not support an interface revision which is compatible with the requested revision The RMM
supports an interface revision which is incompatible with and less than the requested revision.

* The status code is “failure”.
* The lower revision is the highest interface revision which is both less than the requested revision and
supported by the RMM.

¢) The RMM does not support an interface revision which is compatible with the requested revision The RMM
supports an interface revision which is incompatible with and greater than the requested revision.

* The status code is “failure”.
* The lower revision is equal to the higher revision.

The following table shows how each of a set of example scenarios maps onto the above outcomes.

Revisions Revision “Lower “Higher
supported by requested by revision” revision”

Scenario RMM caller Outcome output value output value

1 (1,0) (1,0) Success (a) (1,0) (1,0)

2 (1,0),(1,1) (1,0) Success (a) (1,0) (1,1)

3 (1,0),(2,0) (1,0) Success (a) (1,0) (2,0)

4 (1,0) (1,1) Failure (b) (1,0) (1,0)

5 (1,0),(1,1) (1,2) Failure (b) (1, 1) (1, 1)

6 (1,0),(1,1) (2,0) Failure (b) (1, 1) (1, 1)

7 (1,0),(1,1),(1,3) (1,2) Failure (b) (1, 1) (1, 3)

8 (1,0) (2,0) Failure (b) (1,0) (1,0)

9 (1,0) (2, 1) Failure (b) (1,0) (1,0)

10 (1,0),(1,1) (2,0) Failure (b) (1, 1) (1, 1)

11 (1,0),(1,1) (2, 1) Failure (b) (1,1) (1, 1)

12 (1,0),(1,1),(2,00 (2, 1) Failure (b) (2,0) (2,0)

13 (2,0) (1,0) Failure (c) (2,0) (2,0)

14 (2,0) (1, 1) Failure (c) (2,0) (2,0)

15 (2,0),(2, 1) (1,0) Failure (c) 2, 1) (2, 1)

See also:

e B4.1 RMI version
e B4.3.23 RMI _VERSION command
e B5.1 RSI version
e B5.3.10 RSI_VERSION command

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 125
1.0-rel0 Non-confidential

Chapter B3
Command condition functions

This chapter describes functions which are used in command condition expressions.
See also:

* B1.4 Command condition expressions

B3.1 AddrinRange function

Returns TRUE if addr is within [base, base+size].

func AddrInRange (

addr : Address,

base : Address,

size : integer) => boolean
begin

return ((UInt (addr) >= UInt (base))

&& (UInt (addr) <= UlInt (base) + size));

end

B3.2 AddrisAligned function

Returns TRUE if address addr is aligned to an n byte boundary.

func AddrIsAligned(
addr : Address,
n : integer) => boolean

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

126

Chapter B3. Command condition functions
B3.3. AddrlsGranuleAligned function

B3.3 AddrisGranuleAligned function

Returns TRUE if address addr is aligned to the size of a Granule.

func AddrIsGranuleAligned (
addr : Address) => boolean

func AddrIsGranuleAligned (
addr : integer) => boolean

See also:

e A2.2 Granule

B3.4 AddrisProtected function

Returns TRUE if address addr is a Protected IPA for realm.

func AddrIsProtected(

addr : Address,

realm : RmmRealm) => boolean
begin

return UInt (addr) < 2" (realm.ipa_width - 1);
end

B3.5 AddrisRttLevelAligned function

Returns TRUE if Address addr is aligned to the size of the address range described by an RTTE in a level 1evel
RTT.

Returns FALSE if 1evel is invalid.

func AddrIsRttLevelAligned (
addr : Address,
level : integer) => boolean

B3.6 AddrRangelsProtected function

Returns TRUE if all addresses in range [base, top) are Protected IPAs for realm.

func AddrRangeIsProtected(
base : Address,
top : Address,
realm : RmmRealm) => boolean
begin
var size = Ulnt (top) - UlInt (base);
return (AddrIsProtected(base, realm)
&& size > 0
&& size < 2”realm.ipa_width
&& AddrIsProtected(ToAddress (UInt (top) - 1), realm));
end

B3.7 AlignDownToRttLevel function

Round down addr to align to the size of the address range described by an RTTE in a level 1evel RTT.

func AlignDownToRttLevel (
addr : Address,
level : integer) => Address

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 127
1.0-rel0 Non-confidential

Chapter B3. Command condition functions
B3.8. AlignUpToRttLevel function

B3.8 AlignUpToRttLevel function

Round up addr to align to the size of the address range described by an RTTE in a level 1evel RTT.

func AlignUpToRttLevel (
addr : Address,
level : integer) => Address

B3.9 AuxAlias function

Returns TRUE if any of the first count entries in a list of auxiliary Granule addresses are aliased - either among
themselves, or with the REC address itself.

func AuxAlias (
rec : Address,
aux : array [16] of Address,
count : integer) => boolean
begin
assert 0 <= count && count <= 16;
var sorted = AuxSort (aux, count);

for i = 0 to count - 1 do
if sorted[i] == rec then
return TRUE;
end
if i >= 1 && sorted[i] == sorted[i - 1] then
return TRUE;
end
end
return FALSE;
end

B3.10 AuxAligned function

Returns TRUE if the first count entries in a list of auxiliary Granule addresses are aligned to the size of a Granule.

func AuxAligned (

aux : array [16] of Address,

count : integer) => boolean
begin

assert 0 <= count && count <= 16;

for i = 0 to count - 1 do

if 'AddrIsGranuleAligned(aux[i]) then
return FALSE;
end
end
return TRUE;
end

B3.11 AuxEqual function

Returns TRUE if the first count entries in two lists of auxiliary Granule addresses are equal.

func AuxEqual (

auxl : array [16] of Address,
aux2 : array [16] of Address,
count : integer) => boolean
begin
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 128

1.0-rel0 Non-confidential

Chapter B3. Command condition functions
B3.12. AuxSort function

assert 0 <= count && count <= 16;
for i = 0 to count - 1 do
if aux1[i] != aux2[i] then
return FALSE;
end
end
return TRUE;
end

B3.12 AuxSort function

Sort first count entries in array of auxiliary Granule addresses.

func AuxSort (
addrs : array [16] of Address,
count : integer) => array [16] of Address

B3.13 AuxStateEqual function

Returns TRUE if the state of the first count entries in a list of auxiliary Granule addresses is equal to state.

func AuxStateEqual (
aux : array [16] of Address,

count : integer,
state : RmmGranuleState) => boolean
begin
assert 0 <= count && count <= 16;
for i = 0 to count - 1 do
if (!'PalIsDelegable (aux[i])
| | Granule (aux[1]) .state != state) then
return FALSE;
end
end
return TRUE;
end

B3.14 AuxStates function

Inductive function which identifies the states of the first count entries in a list of auxiliary Granules.

This function is used in the definition of command footprint.

func AuxStates (
aux : array [16] of Address,
count : integer)

B3.15 CurrentRealm function

Returns the current Realm.

func CurrentRealm() => RmmRealm

B3.16 CurrentRec function

Returns the current REC.

func CurrentRec () => RmmRec

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

129

Chapter B3. Command condition functions
B3.17. Equal function

B3.17 Equal function

DENO0137
1.0-rel0

Check whether concrete and abstract values are equal

func Equal (

abstract RmmFeature,

concrete RmiFeature) => boolean
func Equal (

concrete RmiFeature,

abstract RmmFeature) => boolean
func Equal (

abstract RmmHashAlgorithm,

concrete RmiHashAlgorithm) => boolean
func Equal (

concrete RmiHashAlgorithm,

abstract RmmHashAlgorithm) => boolean
func Equal (

abstract RmmRecRunnable,

concrete RmiRecRunnable) => boolean
func Equal (

concrete RmiRecRunnable,

abstract RmmRecRunnable) => boolean
func Equal (

abstract RmmRipas,

concrete RmiRipas) => boolean
func Equal (

concrete RmiRipas,

abstract RmmRipas) => boolean
func Equal (

abstract RmmHashAlgorithm,

concrete RsiHashAlgorithm) => boolean
func Equal (

concrete RsiHashAlgorithm,

abstract RmmHashAlgorithm) => boolean

func Equal (

abstract RmmRipas,

concrete RsiRipas) => boolean
func Equal (

concrete RsiRipas,

abstract RmmRipas) => boolean

func Equal (
abstract
concrete

RmmRipasChangeDestroyed,
RsiRipasChangeDestroyed) => boolean

func Equal (

concrete RsiRipasChangeDestroyed,
abstract RmmRipasChangeDestroyed) => boolean
See also:

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

Non-confidential

130

Chapter B3. Command condition functions
B3.18. Gicv3ConfiglsValid function

* B1.8 Concrete and abstract types

B3.18 Gicv3ConfiglsValid function

Returns TRUE if the values of all gicv3_* attributes are valid.

func Gicv3ConfigIsValid(
gicv3_hcr : bits(64),
gicv3_lrs : array [16] of bits(64)) => boolean

See also:

e AG6.1 Realm interrupts
* B4.4.14 RmiRecEnter type

B3.19 Granule function

Returns the Granule located at physical address addr.

func Granule (
addr : Address) => RmmGranule

See also:

e A2.2 Granule

B3.20 GranuleAccessPermitted function

Returns TRUE if the Granule located at physical address addr is accessible via pas.

func GranuleAccessPermitted (
addr : Address,

pas : RmmPhysicalAddressSpace) => boolean
begin
case Granule (addr) .gpt of
when GPT_NS => return (pas == PAS_NS);
when GPT_REALM => return (pas == PAS_REALM);
when GPT_SECURE => return (pas == PAS_SECURE);
when GPT_ROOT => return (pas == PAS_ROOT);
when GPT_AAP => return TRUE;
end
end

B3.21 ImplFeatures function

Returns features supported by the implementation.

func ImplFeatures () => RmmFeatures

B3.22 MinAddress function

Returns the smaller of two addresses.

func MinAddress (
addrl : Address,
addr2 : Address) => Address
begin
return ToAddress (Min (UInt (addrl), UInt (addr2)));

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

131

Chapter B3. Command condition functions
B3.23. MpidrEqual function

end

B3.23 MpidrEqual function

Returns TRUE if the specified MPIDR values are logically equivalent.

func MpidrEqual (
rmm_mpidr : bits(64),
rmi_mpidr : RmiRecMpidr) => boolean
begin
return (rmm_mpidr[3: 0
&& rmm_mpidr[15: 8
&& rmm_mpidr([23:16
&& rmm_mpidr[31:24

] == rmi_mpidr.aff0

] == rmi_mpidr.affl

] == rmi_mpidr.aff2

] == rmi_mpidr.aff3);
end

B3.24 MpidrisUsed function

Returns TRUE if the specified MPIDR value identifies a REC in the current Realm.

func MpidrIsUsed (
mpidr : bits(64)) => boolean

B3.25 PalsDelegable function

Returns TRUE if the Granule located at physical address addr is delegable.

func PalIsDelegable (
addr : Address) => boolean

B3.26 PsciReturnCodeEncode function

Return encoding for a PsciReturnCode value.

func PsciReturnCodeEncode (
value : PsciReturnCode) => bits(64)

B3.27 PsciReturnCodePermitted function

Whether a PSCI return code is permitted.

func PsciReturnCodePermitted (

calling_rec : RmmRec,
target_rec : RmmRec,
value : PsciReturnCode) => boolean
begin
if value == PSCI_SUCCESS then
return TRUE;
end
var fid : bits(64) = calling_rec.gprs[0];

// Host is permitted to deny a PSCI_CPU_ON request, if the target
// CPU is not already on.

if (fid == FID_PSCI_CPU_ON
&& target_rec.flags.runnable != RUNNABLE
&& value == PSCI_DENIED) then

return TRUE;

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 132
1.0-rel0 Non-confidential

Chapter B3. Command condition functions
B3.28. ReadMemory function

end

return FALSE;
end

See also:

e A4.3.7 REC exit due to PSCI
e B4.3.7 RMI PSCI COMPLETE command

B3.28 ReadMemory function

Read contents of memory at address range [addr + offset, addr + offset + size)

offset and size are both numbers of bytes.

func ReadMemory (
addr : bits(64),
offset : integer,
size : integer) => bits(size * 8)

B3.29 Realm function

Returns the Realm whose RD is located at physical address addr.

func Realm(
addr : Address) => RmmRealm

See also:

e A2.1 Realm

B3.30 RealmConfig function

Returns Realm configuration stored at IPA addr, mapped in the current Realm.

func RealmConfig(
addr : Address) => RsiRealmConfig

B3.31 RealmHostCall function

Returns Host call data stored at IPA addr, mapped in the current Realm.

func RealmHostCall (
addr : Address) => RsiHostCall

B3.32 RealmlisLive function

Returns TRUE if the Realm whose RD is located at physical address addr is live.

func RealmIsLive (
addr : Address) => boolean

See also:

e A2.1.4 Realm liveness

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

133

Chapter B3. Command condition functions
B3.33. RealmParams function

B3.33

B3.34

B3.35

B3.36

B3.37

B3.38

DENO0137

1.0-rel0

RealmParams function

Returns Realm parameters stored at physical address addr.

If the PAS of addr is not NS, the return value is UNKNOWN.

func RealmParams (
addr : Address) => RmiRealmParams

See also:

¢ A2.1.6 Realm parameters

RealmParamsSupported function

Returns TRUE if the Realm parameters are supported by the implementation.

func RealmParamsSupported (
value : RmiRealmParams) => boolean

Rec function

Returns the REC object located at physical address addr.

func Rec(
addr : Address) => RmmRec

See also:

e A2.3 Realm Execution Context

RecAuxCount function

Returns the number of auxiliary Granules required for a REC in the Realm described by rd.
The return value is guaranteed not to be greater than 16.

For a given Realm, this function always returns the same value.

func RecAuxCount (
rd : Address) => integer

RecFromMpidr function

Returns the REC object identified by the specified MPIDR value, in the current Realm.

func RecFromMpidr (
mpidr : bits(64)) => RmmRec

Reclndex function

Returns the REC index which corresponds to mpidr.

func RecIndex (
mpidr : RmiRecMpidr) => integer
begin
return (UInt (mpidr.aff0)
+ 16 % UInt (mpidr.affl)
+ 16 % 256 * UInt (mpidr.aff2)

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter B3. Command condition functions
B3.39. RecParams function

+ 16 % 256 * 256 x UlInt (mpidr.aff3));
end

See also:

e A2.3.3 REC index and MPIDR value

B3.39 RecParams function

Returns REC parameters stored at physical address addr.

If the PAS of addr is not NS, the return value is UNKNOWN.

func RecParams (
addr : Address) => RmiRecParams

B3.40 RecRipasChangeResponse function

Returns response to RIPAS change request.

func RecRipasChangeResponse (

rec : RmmRec) => RsiResponse
begin
if ((rec.ripas_value == RAM)
&& (rec.ripas_addr != rec.ripas_top)
&& (rec.ripas_response == REJECT)) then

return RSI_REJECT;
end

return RSI_ACCEPT;
end

See also:

e AS5.4 RIPAS change

B3.41 RecRun function

Returns the RecRun object stored at physical address addr.

func RecRun (
addr : Address) => RmiRecRun

See also:

e A4.2 REC entry
* A4.3 REC exit

B3.42 RemExtend function

Extend REM, using size LSBs from new_value, with the remaining bits zero-padded to form a 512-bit value.

func RemExtend (
hash_algo : RmmHashAlgorithm,
old_value : RmmRealmMeasurement,
new_value : RmmRealmMeasurement,
size : integer) => RmmRealmMeasurement

See also:

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

1.0-rel0 Non-confidential

135

Chapter B3. Command condition functions
B3.43. ResultEqual function

e A7.1.2 Realm Extensible Measurement

B3.43 ResultEqual function

Returns TRUE if command result matches the stated value.

func ResultEqual (
result : RmiCommandReturnCode,
status : RmiStatusCode) => boolean

func ResultEqual (
result : RmiCommandReturnCode,
status : RmiStatusCode,
index : integer) => boolean

B3.44 RimExtendData function

Extend RIM with contribution from DATA creation.

func RimExtendData (
realm : RmmRealm,
ipa : Address,
data : Address,
flags : RmiDataFlags) => RmmRealmMeasurement

See also:

e B4.3.1.4 RMI_DATA_CREATE extension of RIM

B3.45 RimExtendRec function

Extend RIM with contribution from REC creation.

func RimExtendRec (

realm : RmmRealm,
params : RmiRecParams) => RmmRealmMeasurement
See also:

e B4.3.12.4 RMI_REC_CREATE extension of RIM

B3.46 RimExtendRipas function

Extend RIM with contribution from RIPAS change for an IPA range.

func RimExtendRipas (
realm : RmmRealm,
base : Address,
top : Address,

level : integer) => RmmRealmMeasurement
begin

var rim = realm.measurements[0];

var size = RttLevelSize (level);

var addr = base;

while (UInt (addr) < UInt (top)) do
rim = RimExtendRipasForEntry(rim, addr, level);
addr = ToAddress (UInt (addr) + size);

end

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

136

Chapter B3. Command condition functions
B3.47. RimExtendRipasForEntry function

return rim;
end

See also:

e B4.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM

B3.47 RimExtendRipasForEntry function

Extend RIM with contribution from RIPAS change for a single RTT entry.

func RimExtendRipasForEntry (
rim : RmmRealmMeasurement,
ipa : Address,
level : integer) => RmmRealmMeasurement

B3.48 Riminit function

Initialize RIM.

func RimInit (
hash_algo : RmmHashAlgorithm,
params : RmiRealmParams) => RmmRealmMeasurement

See also:

e B4.3.9.4 RMI_REALM_CREATE initialization of RIM

B3.49 RipasToRmi function

Encodes a RIPAS value.

func RipasToRmi (

ripas : RmmRipas) => RmiRipas
begin
case ripas of
when EMPTY => return RMI_EMPTY;
when RAM => return RMI_RAM;
when DESTROYED => return RMI_DESTROYED;
end
end

B3.50 RmiRealmParamsisValid function

Returns TRUE if the memory location contains a valid encoding of the RmiRealmParams type.

func RmiRealmParamsIsValid(
addr : Address) => boolean

B3.51 Rtt function

Returns the RTT at address rtt.

func Rtt (
addr : Address) => RmmRtt

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 137
1.0-rel0 Non-confidential

Chapter B3. Command condition functions
B3.52. RttAllEntriesContiguous function

B3.52 RttAllEntriesContiguous function

Returns TRUE if all entries in the RTT at address rtt at level 1evel have contiguous output addresses, starting
with addr.

func RttAllEntriesContiguous (
rtt : RmmRtt,
addr : Address,
level : integer) => boolean

See also:

e AS5.5 Realm Translation Table

B3.53 RttAllEntriesRipas function

Returns TRUE if all entries in the RTT at address rtt have RIPAS ripas.

func RttAllEntriesRipas (
rtt : RmmRtt,
ripas : RmmRipas) => boolean

B3.54 RttAllEntriesState function

Returns TRUE if all entries in the RTT at address rtt have state state.

func RttAllEntriesState(
rtt : RmmRtt,
state : RmmRttEntryState) => boolean

See also:

e AS5.5 Realm Translation Table

B3.55 RttConfiglsValid function

Returns TRUE if the RTT configuration values provided are self-consistent and are supported by the platform.

func RttConfigIsValid(
ipa_width : integer,

rtt_level_start : integer,
rtt_num_start : integer) => boolean
See also:

e AS5.5 Realm Translation Table

B3.56 RttDescriptorisValidForUnprotected function

Returns TRUE if, within the descriptor desc, all of the following are true:

* All fields which are Host-controlled RTT attributes are set to architecturally valid values.
* All fields which are not Host-controlled RTT attributes are set to zero.

func RttDescriptorIsValidForUnprotected(
desc : bits(64)) => boolean

See also:

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 138
1.0-rel0 Non-confidential

Chapter B3. Command condition functions
B3.57. RttEntriesinRangeRipas function

* AS5.5.11 RTT entry attributes

B3.57 RttEntriesinRangeRipas function

Returns TRUE if all entries in the RTT at address rtt at level 1evel, within IPA range [base, top), have RIPAS

ripas.

func RttEntriesInRangeRipas (
rtt : RmmRtt,
level : integer,
base : Address,
top : Address,
ripas : RmmRipas) => boolean

B3.58 RttEntry function

Returns the ith entry in the RTT at address rtt.

func RttEntry(
rtt : Address,
i : integer) => RmmRttEntry

See also:

e A5.5 Realm Translation Table

B3.59 RttEntryFromDescriptor function

Converts a descriptor to an RmmRttEntry object.

func RttEntryFromDescriptor (
desc : bits(64)) => RmmRttEntry

B3.60 RttEntrylndex function

Returns the index of the entry in a level level RTT which is identified by addr.

func RttEntryIndex(
addr : Address,
level : integer) => integer

See also:

e A5.5 Realm Translation Table

B3.61 RttEntryState function

Encodes the state of an RTTE.

func RttEntryState(
state : RmmRttEntryState) => RmiRttEntryState

begin
case state of

when UNASSIGNED => return RMI_UNASSIGNED;
when ASSIGNED => return RMI_ASSIGNED;

when UNASSIGNED_NS => return RMI_UNASSIGNED;
when ASSIGNED_NS => return RMI_ASSIGNED;

when TABLE => return RMI_TABLE;

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

1.0-rel0 Non-confidential

139

Chapter B3. Command condition functions
B3.62. RittFold function

end
end

B3.62 RttFold function

Returns the RTTE which results from folding the homogeneous RTT at address rtt.

func RttFold(
rtt : RmmRtt) => RmmRttEntry

See also:

* AS5.5.6 RTT folding

B3.63 RttisHomogeneous function

Returns TRUE if the RTT at address rtt is homogeneous.

func RttIsHomogeneous (
rtt : RmmRtt) => boolean

See also:

e AS5.5.6 RTT folding

B3.64 RittisLive function

Returns TRUE if the RTT at address rtt is live.

func RttIsLive (
rtt : RmmRtt) => boolean

See also:

e AS5.5.8 RTTE liveness and RTT liveness
e AS5.5.9 RTT destruction

B3.65 RttLevellsBlockOrPage function

Returns TRUE if 1evel is either a block or page RTT level for the Realm described by rd.

func RttLevelIsBlockOrPage (
rd : Address,
level : integer) => boolean

See also:

e A5.5 Realm Translation Table

B3.66 RttLevellsStarting function

Returns TRUE if 1evel is the starting level of the RTT for the Realm described by rd.

func RttLevellIsStarting(
rd : Address,
level : integer) => boolean

See also:

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

140

Chapter B3. Command condition functions
B3.67. RittLevellsValid function

e AS5.5 Realm Translation Table

B3.67 RttLevellsValid function

Returns TRUE if 1evel is a valid RTT level for the Realm described by rd.

func RttLevelIsValid/(
rd : Address,
level : integer) => boolean

See also:

e A5.5 Realm Translation Table

B3.68 RttLevelSize function

Returns the size of the address space described by each entry in an RTT at level.

If 1evel is invalid, the return value is UNKNOWN.

func RttLevelSize (
level : integer) => integer

See also:

e AS5.5 Realm Translation Table

B3.69 RttsAllProtectedEntriesRipas function

Returns TRUE if the RIPAS of all entries identified by Protected IPAs in all of the starting-level RTT Granules is
equal to ripas.

func RttsAllProtectedEntriesRipas (
rtt_lbase : Address,
rtt_num_start : integer,
ripas : RmmRipas) => boolean

B3.70 RttsAllProtectedEntriesState function

Returns TRUE if the state of all entries identified by Protected IPAs in all of the starting-level RTT Granules is
equal to state.

func RttsAllProtectedEntriesState(
rtt_base : Address,
rtt_num_start : integer,
state : RmmRttEntryState) => boolean

B3.71 RttsAllUnprotectedEntriesState function

Returns TRUE if the state of all entries identified by Unprotected IPAs in all of the starting-level RTT Granules is
equal to state.

func RttsAllUnprotectedEntriesState(
rtt_base : Address,
rtt_num_start : integer,
state : RmmRttEntryState) => boolean

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 141
1.0-rel0 Non-confidential

Chapter B3. Command condition functions
B3.72. RittsGranuleState function

B3.72 RttsGranuleState function

Inductive function which identifies the states of the starting-level RTT Granules.

This function is used in the definition of command footprint.

func RttsGranuleState (
rtt_base : Address,
rtt_num_start : integer)

B3.73 RttSkipEntriesUnlessRipas function

Scanning rtt starting from ipa, returns the IPA of the first entry whose RIPAS is ripas.
If no entry is found whose RIPAS is ripas, returns the next IPA after the last entry in rtt.

The return value is aligned to the size of the address range described by an entry at RTT level.

func RttSkipEntriesUnlessRipas (
rtt : RmmRtt,

level : integer,
ipa : Address,
ripas : RmmRipas) => Address

B3.74 RttSkipEntriesUnlessState function

Scanning rtt starting from ipa, returns the IPA of the first entry whose state is state.
If no entry is found whose state is state, returns the next IPA after the last entry in rtt.

The return value is aligned to the size of the address range described by an entry at RTT level.

func RttSkipEntriesUnlessState (
rtt : RmmRtt,
level : integer,
ipa : Address,
state : RmmRttEntryState) => Address

B3.75 RtiSkipEntriesWithRipas function

Scan rtt starting from base and terminating at top.

* If stop_at_destroyed is FALSE then return IPA of the first entry whose state is TABLE.
* If stop_at_destroyed is TRUE then return IPA of the first entry whose state is TABLE or whose RIPAS is
DESTROYED.

If no such entry is found, returns the smaller of:

* The next IPA after the last entry in rtt
* The top argument.

The return value is aligned to the size of the address range described by an entry at RTT level.

func RttSkipEntriesWithRipas (
rtt : RmmRtt,
level : integer,
base : Address,
top : Address,
stop_at_destroyed : boolean) => Address
begin
var result : Address = RttSkipEntriesUnlessState (
rtt, level, base, TABLE);

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 142
1.0-rel0 Non-confidential

Chapter B3. Command condition functions
B3.76. RitSkipNonLiveEntries function

if stop_at_destroyed then
result = MinAddress (result,
RttSkipEntriesUnlessRipas (
rtt, level, base, DESTROYED));
end

result = MinAddress (result, top);

return AlignDownToRttLevel (result, level);
end

B3.76 RttSkipNonLiveEntries function

Scanning rtt starting from ipa, returns the IPA of the first live entry.
If no live entry is found, returns the next IPA after the last entry in rtt.

The return value is aligned to the size of the address range described by an entry at RTT level.

func RttSkipNonLiveEntries (
rtt : RmmRtt,

level : integer,
ipa : Address) => Address
begin

var result : Address = RttSkipEntriesUnlessState (
rtt, level, ipa, ASSIGNED);

result = MinAddress (result,
RttSkipEntriesUnlessState (
rtt, level, ipa, ASSIGNED_NS));

result = MinAddress (result,
RttSkipEntriesUnlessState (
rtt, level, ipa, TABLE));

return AlignDownToRttLevel (result, level);
end

See also:

e AS5.5.8 RTTE liveness and RTT liveness

B3.77 RttsStateEqual function

Returns TRUE if the state of all of the starting-level RTT Granules is equal to state.

func RttsStateEqual (
rtt_base : Address,

rtt_num_start : integer,
state : RmmGranuleState) => boolean
begin
for 1 = 0 to rtt_num_start - 1 do
var addr = (UInt (rtt_base) + i * RMM_GRANULE_SIZE) [(ADDRESS_WIDTH-1) :07;
if (!PaIsDelegable (addr)
| | Granule (addr) .state != state) then
return FALSE;
end
end
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 143

1.0-rel0 Non-confidential

Chapter B3. Command condition functions
B3.78. RttWalk function

return TRUE;
end

B3.78 RttWalk function

Returns the result of an RTT walk from the RTT base of rd to address addr.

If 1evel is provided, the walk terminates at level.

func RttWalk (
rd : Address,
addr : Address) => RmmRttWalkResult

func RttWalk (
rd : Address,
addr : Address,
level : integer) => RmmRttWalkResult

See also:

e AS5.5.10 RTT walk

B3.79 ToAddress function

Convert integer to Address.

func ToAddress (value : integer) => Address
begin

return value[(ADDRESS_WIDTH-1) :0];
end

B3.80 ToBits64 function

Convert integer to Bits64.

func ToBits64 (value : integer) => bits(64)
begin

return value[63:0];
end

B3.81 VmidlsFree function

Returns TRUE if vmid is unused.

func VmidIsFree (
vmid : bits(1l6)) => boolean

B3.82 VmidlsValid function

Returns TRUE if vmid is valid on the platform.

func VmidIsValid (
vmid : bits(16)) => boolean

If the underlying hardware platform does not implement FEAT_VMID16 then a VMID value with
vmid[15:8] != 0 isinvalid.

See also:

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 144
1.0-rel0 Non-confidential

Chapter B3. Command condition functions
B3.82. VmidlsValid function

e A2.1.3 Realm attributes
e B4.3.9 RMI_REALM_CREATE command

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 145
1.0-rel0 Non-confidential

Chapter B4
Realm Management Interface

This chapter defines the interface used by the Host to manage Realms.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 146
1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.1. RMI version

B4.1 RMI version

Rucrpx This specification defines version 1.0 of the Realm Management Interface.
See also:

e Chapter B2 Interface versioning
e B4.3.23 RMI_VERSION command

B4.2 RMI command return codes

T 5oMBN The return code of an RMI command is a tuple which contains status and index fields.
Tveno The status field of an RMI command return code indicates whether the command

¢ succeeded, or
e failed, and the reason for the failure.

TepnsT If an RMI command succeeds then the status of its return code is RMI_SUCCESS.

Ivpvec The index field of an RMI command return code can provide additional information about the reason for a command
failure. The meaning of the index field depends on the status, and is described by the following table.

Status Description Meaning of index

RMI_SUCCESS None: index i .
- Command completed successfully onie: Mex 1s zero

RMI_ERROR_INPUT None: index is zero.

The value of a command input value caused the
command to fail
RMI_ERROR_REALM Varies between usages.
See individual commands

for details.

An attribute of a Realm does not match the
expected value

RMI_ERROR_REC An attribute of a REC does not match the None: index is zero.

expected value

RMI_ERROR_RTT RTT level at which th
- OR.. An RTT walk terminated before reaching the eve at which the
walk terminated.

target RTT level, or reached an RTTE with an
unexpected value

T ooonE Multiple failure conditions in an RMI command may return the same error code - that is, the same status and index
values.
Rxrovo If an input to an RMI command uses an invalid encoding then the command fails and returns RMI_ERROR_INPUT.

Command inputs include registers and in-memory data structures.
Invalid encodings include:

* using a reserved encoding in an enumeration
See also:

* B4.4.1 RmiCommandReturnCode type

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 147
1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3 RMI commands

The following table summarizes the FIDs of commands in the RMI interface.

FID Command
0xC4000150 RMI_VERSION
0xC4000151 RMI_GRANULE_DELEGATE
0xC4000152 RMI_GRANULE_UNDELEGATE
0xC4000153 RMI_DATA_CREATE
0xC4000154 RMI_DATA_CREATE_UNKNOWN
0xC4000155 RMI_DATA_DESTROY
0xC4000157 RMI_REALM_ACTIVATE
0xC4000158 RMI_REALM_CREATE
0xC4000159 RMI_REALM_DESTROY
0xC400015A RMI_REC_CREATE
0xC400015B RMI_REC_DESTROY
0xC400015C RMI_REC_ENTER
0xC400015D RMI_RTT_CREATE
0xC400015E RMI_RTT_DESTROY
0xC400015F RMI_RTT_MAP_UNPROTECTED
0xC4000161 RMI_RTT_READ_ENTRY
0xC4000162 RMI_RTT_UNMAP_UNPROTECTED
0xC4000164 RMI_PSCI_COMPLETE
0xC4000165 RMI_FEATURES
0xC4000166 RMI_RTT_FOLD
0xC4000167 RMI_REC_AUX_COUNT
0xC4000168 RMI_RTT_INIT_RIPAS
0xC4000169 RMI_RTT_SET_RIPAS

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 148

Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.1 RMI_DATA_CREATE command

Creates a Data Granule, copying contents from a Non-secure Granule provided by the caller.
See also:

* Chapter A5 Realm memory management
e B4.3.3 RMI_DATA_DESTROY command
e DI1.2.3 Initialize memory of New Realm flow

B4.3.1.1 Interface
B4.3.1.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000153

rd X1 63:0 Address PA of the RD for the target Realm

data X2 63:0 Address PA of the target Data

ipa X3 63:0 Address IPA at which the Granule will be
mapped in the target Realm

src X4 63:0 Address PA of the source Granule

flags X5 63:0 RmiDataFlags Flags

B4.3.1.1.2 Context
The RMI_DATA_CREATE command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm(rd) true Realm

walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa,

RMM_RTT_PAGE_LEVEL)

entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)

B4.3.1.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.1.2 Failure conditions

ID Condition

src_align pre: !AddrIsGranuleAligned(src)
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 149
1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition
src_bound pre: !PalsDelegable(src)

post: ResultEqual (result, RMI_ERROR_INPUT)
src_pas pre: !GranuleAccessPermitted (src,

post: ResultEqual (result, RMI_ERROR_INPUT)
data_align pre: !AddrIsGranuleAligned(data)

post: ResultEqual (result, RMI_ERROR_INPUT)
data_bound pre: !PalsDelegable (data)

post: ResultEqual (result, RMI_ERROR_INPUT)
data_state pre: Granule(data) .state != DELEGATED

data_bound2

rd_align
rd_bound
rd_state
ipa_align
ipa_bound

realm_state

post: ResultEqual (result, RMI_ERROR_INPUT)
pre: ((realm. feat_lpa2 == FEATURE_FALSE)

&& (UInt (data) >= 2748))

post: ResultEqual (result, RMI_ERROR_INPUT)

pre: !AddrIsGranuleAligned (rd)

post: ResultEqual (result, RMI_ERROR_INPUT)

pre: !'PalsDelegable (rd)

post: ResultEqual (result, RMI_ERROR_INPUT)

pre: Granule(rd).state != RD

post: ResultEqual (result, RMI_ERROR_INPUT)

pre: !AddrIsGranuleAligned(ipa)

post: ResultEqual (result, RMI_ERROR_INPUT)

pre: 'AddrIsProtected(ipa, realm)

post: ResultEqual (result, RMI_ERROR_INPUT)

pre: realm.state != REALM NEW

post: ResultEqual (result, RMI_ERROR_REALM)

rtt_walk pre: walk.level < RMM_RTT_PAGE_LEVEL
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)
rtte_state pre: walk.rtte.state != UNASSIGNED
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)
B4.3.1.2.1 Failure condition ordering
[rd_bound, rd_state] < [realm_state]
[rd_bound, rd_state] < [rtt_walk, rtte_state]
[ipa_bound] < [rtt_walk, rtte_state]
o>
B4.3.1.3 Success conditions
ID Condition
data_state Granule (data) .state == DATA
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 150

1.0-rel0

Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

1D Condition
rtte_state walk.rtte.state == ASSIGNED
rtte_ripas walk.rtte.ripas == RAM
rtte_addr walk.rtte.addr == data
rim Realm(rd) .measurements[0] == RimExtendData (
realm, ipa, data, flags)
B4.3.1.4 RMI_DATA_CREATE extension of RIM
On successful execution of RMI_DATA_CREATE, the new RIM value of the target Realm is calculated by the
RMM as follows:
1. If flags.measure == RMI_MEASURE_CONTENT then using the RHA of the target Realm, compute the
hash of the contents of the DATA Granule.
2. Allocate an RmmMeasurementDescriptorData data structure.
3. Populate the measurement descriptor:
* Set the desc_type field to the descriptor type.
* Set the len field to the descriptor length.
* Set the rim field to the current RIM value of the target Realm.
* Set the ipa field to the IPA at which the DATA Granule is mapped in the target Realm.
* Set the flags field to the flags provided by the Host.
* If flags.measure == RMI_MEASURE_CONTENT then set the content field to the hash of the contents of the
DATA Granule. Otherwise, set the content field to zero.
4. Using the RHA of the target Realm, compute the hash of the measurement descriptor. Set the RIM of the
target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size of the RIM.
See also:
* A7.1.1 Realm Initial Measurement
* B3.44 RimExtendData function
e Cl1.11 RmmMeasurementDescriptorData type
B4.3.1.5 Footprint
ID Value
data_state Granule (data) .state
rim Realm(rd) .measurements[0]
rtte RttEntry (walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 151
1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.2 RMI_DATA_CREATE_UNKNOWN command

Creates a Data Granule with unknown contents.
See also:

* A2.2.4 Granule wiping

e Chapter AS Realm memory management
e B4.3.3 RMI _DATA_DESTROY command
e DI1.5.1 Add memory to Active Realm flow

B4.3.2.1 Interface
B4.3.2.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000154

rd X1 63:0 Address PA of the RD for the target Realm
data X2 63:0 Address PA of the target Data

ipa X3 63:0 Address IPA at which the Granule will be

mapped in the target Realm

B4.3.2.1.2 Context
The RMI_DATA_CREATE_UNKNOWN command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm (rd) false Realm

walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa,

RMM_RTT PAGE_LEVEL)

entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)

B4.3.2.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.2.2 Failure conditions

ID Condition

data_align pre: !AddrIsGranuleAligned(data)
post: ResultEqual (result, RMI_ERROR_INPUT)

data_bound pre: !PalsDelegable (data)
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 152
1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface

B4.3. RMI commands

ID Condition
data_state pre: Granule(data).state != DELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)
data_bound?2 pre: ((realm.feat_lpa2 == FEATURE_FALSE)
&& (UInt (data) >= 2748))
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)
ipa_align pre: !AddrIsGranuleAligned (ipa)
post: ResultEqual (result, RMI_ERROR_INPUT)
ipa_bound pre: !AddrIsProtected(ipa, Realm(rd))
post: ResultEqual (result, RMI_ERROR_INPUT)
rtt_walk pre: walk.level < RMM_RTT_PAGE_LEVEL
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)
rtte_state pre: walk.rtte.state != UNASSIGNED
post: ResultEqual (result, RMI_ERROR_RTT, walk.level)
B4.3.2.2.1 Failure condition ordering
[rd_bound, rd_state] < [rtt_walk, rtte_state]
[ipa_bound] < [rtt_walk, rtte_state]
G
B4.3.2.3 Success conditions
ID Condition
data_state Granule (data) .state == DATA

data_content

Contents of target Granule are wiped.

rtte_state walk.rtte.state == ASSIGNED
rtte_addr walk.rtte.addr == data
B4.3.2.4 Footprint
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 153

1.0-rel0

Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Value
data_state Granule (data) .state
rtte RttEntry (walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 154

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.3 RMI_DATA_DESTROY command

Destroys a Data Granule.

See also:

* Chapter A5 Realm memory management
e B4.3.1 RMI_DATA_CREATE command
e B4.3.2 RMI DATA_CREATE _UNKNOWN command

B4.3.3.1 Interface
B4.3.3.1.1 Input values

D1.2.5 Realm destruction flow

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000155

rd X1 63:0 Address PA of the RD which owns the target Data
ipa X2 63:0 Address IPA at which the Granule is mapped in

the target Realm

B4.3.3.1.2 Context

The RMI_DATA_DESTROY command operates on the following context.

Name Type Value Before Description

walk RmmRttWalkResult RttWalk (false RTT walk result
rd, ipa,
RMM_RTT_PAGE_LEVEL)

entry_idx Ulnt64 RttEntryIndex (false RTTE index
ipa, walk.level)

walk_top Address RttSkipNonLiveEntries (false Top IPA of non-live

Rtt (walk.rtt_addr),
walk.level,
ipa)

RTT entries, from
entry at which the
RTT walk terminated

B4.3.3.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

data X1 63:0 Address PA of the Data Granule which was
destroyed

top X2 63:0 Address Top IPA of non-live RTT entries, from

entry at which the RTT walk terminated

The data output value is valid only when the command result is RMI_SUCCESS.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 155

1.0-rel0

Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

The values of the result and top output values for different command outcomes are summarized in the following

table.
Scenario result top walk.rtte.state
ipa is mapped as a page RMI_SUCCESS > ipa Before execution: ASSIGNED
After execution: UNASSIGNED
and RIPAS is DESTROYED
ipa is not mapped (RMI_ERROR_RITT, <= 3) > ipa UNASSIGNED
ipa is mapped as a block (RMI_ERROR_RTT, 0 ==1ipa ASSIGNED

0 <level < 3)

RTT walk was not performed, Another error code 0 Unknown
due to any other command failure

See also:

e A5.5.8 RTTE liveness and RTT liveness

B4.3.3.2 Failure conditions

ID Condition
rd_align pre: !AddrIsGranuleAligned (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)
ipa_align pre: !AddrIsGranuleAligned(ipa)
post: ResultEqual (result, RMI_ERROR_INPUT)
ipa_bound pre: !AddrIsProtected(ipa, Realm(rd))
post: ResultEqual (result, RMI_ERROR_INPUT)
rtt_walk pre: walk.level < RMM_RTT_PAGE_LEVEL
post: (ResultEqual (result, RMI_ERROR_RTT, walk.level)
&& (top == walk_top))
rtte_state pre: walk.rtte.state != ASSIGNED
post: (ResultEqual (result, RMI_ERROR_RTT, walk.level)
&& (top == walk_top))
B4.3.3.2.1 Failure condition ordering
[rd_bound, rd_state] < [rtt_walk, rtte_state]
[ipa_bound] < [rtt_walk, rtte_state]
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 156

1.0-rel0

Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

RMI_ERROR_RTT

B4.3.3.3 Success conditions

ID Condition
data_state Granule (walk.rtte.addr) .state == DELEGATED
rtte_state walk.rtte.state == UNASSIGNED
ripas_ram pre: walk.rtte.ripas == RAM
post: walk.rtte.ripas == DESTROYED
data data == walk.rtte.addr
top top == walk_top

B4.3.3.4 Footprint

ID Value
data_state Granule (walk.rtte.addr) .state
rtte RttEntry (walk.rtt_addr, entry_idx)
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 157

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.4 RMI_FEATURES command

Read feature register.

The following table indicates which feature register is returned depending on the index provided.

Index Feature register

0 Feature register 0

See also:

* A3.1 Realm feature discovery and selection
B4.3.4.1 Interface
B4.3.4.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000165
index X1 63:0 Ulnt64 Feature register index

B4.3.4.1.2 Output values

Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status
value X1 63:0 Bits64 Feature register value

B4.3.4.2 Failure conditions
The RMI_FEATURES command does not have any failure conditions.

B4.3.4.3 Success conditions

ID Condition
index pre: index != 0
post: value == Zeros|()

B4.3.4.4 Footprint
The RMI_FEATURES command does not have any footprint.

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

158

Chapter B4. Realm Management Interface

B4.3. RMI commands

B4.3.5 RMI_GRANULE_DELEGATE command

Delegates a Granule.

See also:

e A2.2 Granule
e B4.3.6 RMI_GRANULE_UNDELEGATE command

¢ DI1.2.1 Realm creation flow

B4.3.5.1 Interface
B4.3.5.1.1 Input values
Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000151
addr X1 63:0 Address PA of the target Granule
B4.3.5.1.2 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status

B4.3.5.2 Failure conditions

1D Condition

gran_align pre: !AddrIsGranuleAligned (addr)
post: ResultEqual (result, RMI_ERROR_INPUT)

gran_bound pre: !PalsDelegable (addr)
post: ResultEqual (result, RMI_ERROR_INPUT)

gran_state pre: Granule (addr) .state != UNDELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)

gran_gpt pre: Granule (addr).gpt != GPT_NS
post: ResultEqual (result, RMI_ERROR_INPUT)

B4.3.5.2.1 Failure condition ordering
The RMI_GRANULE_DELEGATE command does not have any failure condition orderings.

B4.3.5.3 Success conditions

ID Condition
gran_state Granule (addr) .state == DELEGATED
gran_gpt Granule (addr) .gpt == GPT_REALM
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 159

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.5.4 Footprint

ID Value
gran_gpt Granule (addr) .gpt
gran_state Granule (addr) .state
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 160

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface

B4.3. RMI commands

B4.3.6 RMI_GRANULE_UNDELEGATE command

Undelegates a Granule.

See also:

e A2.2 Granule
e B4.3.5 RMI_ GRANULE_DELEGATE command
e DI1.2.5 Realm destruction flow

B4.3.6.1 Interface
B4.3.6.1.1 Input values
Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000152
addr X1 63:0 Address PA of the target Granule
B4.3.6.1.2 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status
B4.3.6.2 Failure conditions
1D Condition
gran_align pre: !AddrIsGranuleAligned (addr)
post: ResultEqual (result, RMI_ERROR_INPUT)
gran_bound pre: !PalsDelegable (addr)
post: ResultEqual (result, RMI_ERROR_INPUT)
gran_state pre: Granule (addr) .state != DELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)
B4.3.6.2.1 Failure condition ordering
The RMI_GRANULE_UNDELEGATE command does not have any failure condition orderings.
B4.3.6.3 Success conditions
ID Condition
gran_gpt Granule (addr) .gpt == GPT_NS
gran_state Granule (addr) .state == UNDELEGATED

gran_content

Contents of target Granule are wiped.

See also:

DENO0137
1.0-rel0

* A2.2.4 Granule wiping

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

Non-confidential

161

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.6.4 Footprint

ID Value
gran_gpt Granule (addr) .gpt
gran_state Granule (addr) .state
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 162

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface

B4.3. RMI commands

B4.3.7 RMI_PSCI_COMPLETE command

Completes a pending PSCI command which was called with an MPIDR argument, by providing the corresponding

REC.

See also:

e A4.3.7 REC exit due to PSCI

e B6.3.1 PSCI_AFFINITY_INFO command
e B6.3.3 PSCI_CPU_ON command
e DI1.4 PSCI flows

B4.3.7.1

Interface

B4.3.7.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000164

calling_rec X1 63:0 Address PA of the calling REC

target_rec X2 63:0 Address PA of the target REC

status X3 63:0 PsciReturnCode Status of the PSCI request
B4.3.7.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.7.2 Failure conditions

ID Condition
alias pre: calling_rec == target_rec
post: ResultEqual (result, RMI_ERROR_INPUT)
calling_align pre: !AddrIsGranuleAligned(calling_rec)
post: ResultEqual (result, RMI_ERROR_INPUT)
calling_bound pre: !PalsDelegable(calling_rec)
post: ResultEqual (result, RMI_ERROR_INPUT)
calling_state pre: Granule(calling_rec).state !=
post: ResultEqual (result, RMI_ERROR_INPUT)
target_align pre: !AddrIsGranuleAligned (target_rec)
post: ResultEqual (result, RMI_ERROR_INPUT)
target_bound pre: !'PalsDelegable (target_rec)
post: ResultEqual (result, RMI_ERROR_INPUT)
target_state pre: Granule(target_rec) .state != REC
post: ResultEqual (result, RMI_ERROR_INPUT)
pending pre: Rec(calling_rec) .psci_pending != PSCI_REQUEST_PENDING
post: ResultEqual (result, RMI_ERROR_INPUT)
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 163
1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

owner pre: Rec(target_rec).owner != Rec(calling_rec) .owner
post: ResultEqual (result, RMI_ERROR_INPUT)

target pre: Rec(target_rec).mpidr != Rec(calling_rec) .gprs[1l]
post: ResultEqual (result, RMI_ERROR_INPUT)
status pre: 'PsciReturnCodePermitted (
Rec(calling_rec), Rec(target_rec), status)

post: ResultEqual (result, RMI_ERROR_INPUT)

B4.3.7.2.1 Failure condition ordering
The RMI_PSCI_COMPLETE command does not have any failure condition orderings.

B4.3.7.3 Success conditions

ID Condition
pending Rec(calling_rec) .psci_pending == NO_PSCI_REQUEST_PENDING
on_already pre: (status == PSCI_SUCCESS
&& Rec(calling_rec) .gprs[0] == FID_PSCI_CPU_ON
&& Rec(target_rec).flags.runnable == RUNNABLE)

post: (Rec(calling_rec) .gprs[0] ==
PsciReturnCodeEncode (PSCI_ALREADY_ON))

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

164

Chapter B4. Realm Management Interface

B4.3. RMI commands

ID Condition
on_success pre: (status == PSCI_SUCCESS
&& Rec(calling_rec) .gprs[0] == FID_PSCI_CPU_ON
&& Rec(target_rec).flags.runnable != RUNNABLE)
post: (Rec(target_rec).gprs[0] == Rec(calling_rec) .gprs[3]
&& Rec(target_rec) .gprs[l] == Zeros()
&& Rec(target_rec) .gprs([2] == Zeros()
&& Rec (target_rec) .gprs[3] == Zeros()
&& Rec(target_rec) .gprs[4] == Zeros()
&& Rec (target_rec) .gprs[5] == Zeros()
&& Rec(target_rec) .gprs[6] == Zeros()
&& Rec(target_rec) .gprs[7] == Zeros()
&& Rec(target_rec) .gprs[8] == Zeros()
&& Rec(target_rec) .gprs[9] == Zeros()
&& Rec(target_rec) .gprs[1l0] == Zeros()
&& Rec (target_rec) .gprs[ll] == Zeros()
&& Rec (target_rec) .gprs[l2] == Zeros()
&& Rec(target_rec) .gprs[l3] == Zeros()
&& Rec (target_rec) .gprs[l4] == Zeros()
&& Rec(target_rec) .gprs[l5] == Zeros()
&& Rec(target_rec) .gprs[l6] == Zeros()
&& Rec (target_rec) .gprs[l7] == Zeros()
&& Rec (target_rec) .gprs[1l8] == Zeros()
&& Rec(target_rec) .gprs[l9] == Zeros()
&& Rec (target_rec) .gprs[20] == Zeros()
&& Rec (target_rec) .gprs[21] == Zeros()
&& Rec(target_rec) .gprs[22] == Zeros()
&& Rec (target_rec) .gprs[23] == Zeros()
&& Rec (target_rec) .gprs[24] == Zeros()
&& Rec (target_rec) .gprs[25] == Zeros()
&& Rec(target_rec) .gprs[26] == Zeros()
&& Rec (target_rec) .gprs[27] == Zeros()
&& Rec (target_rec) .gprs[28] == Zeros()
&& Rec(target_rec) .gprs[29] == Zeros()
&& Rec (target_rec) .gprs[30] == Zeros()
&& Rec (target_rec) .gprs[31l] == Zeros()
&& Rec(target_rec).pc == Rec(calling_rec) .gprs[2]
&& Rec(target_rec).flags.runnable == RUNNABLE
&& Rec(calling_rec) .gprs[0] ==
PsciReturnCodeEncode (PSCI_SUCCESS))
affinity_on pre: (status == PSCI_SUCCESS
&& Rec(calling_rec) .gprs[0] == FID_PSCI_AFFINITY_INFO
&& Rec (target_rec) .flags.runnable == RUNNABLE)
post: (Rec(calling_rec) .gprs[0] ==
PsciReturnCodeEncode (PSCI_SUCCESS))
affinity_off pre: (status == PSCI_SUCCESS
&& Rec(calling_rec) .gprs[0] == FID_PSCI_AFFINITY_ INFO
&& Rec(target_rec) .flags.runnable != RUNNABLE)
post: (Rec(calling_rec) .gprs[0] ==
PsciReturnCodeEncode (PSCI_OFF))
status pre: status != PSCI_SUCCESS
post: (Rec(calling_rec) .gprs[0] ==
PsciReturnCodeEncode (status))
args (Rec (calling_rec) .gprs[l] == Zeros()
&& Rec(calling_rec) .gprs[2] == Zeros()
&& Rec(calling_rec) .gprs([3] == Zeros())
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 165

1.0-rel0

Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.7.4 Footprint

ID Value
target_flags Rec (target_rec) .flags
target_gprs Rec (target_rec) .gprs
target_pc Rec (target_rec) .pc
calling_pend Rec(calling_rec) .psci_pending
calling_gprs Rec(calling_rec) .gprs
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 166

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface

B4.3. RMI commands

B4.3.8 RMI_REALM_ACTIVATE command

Activates a Realm.

See also:
e A2.1 Realm
B4.3.8.1 Interface
B4.3.8.1.1 Input values
Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000157
rd X1 63:0 Address PA of the RD
B4.3.8.1.2 Output values
Name Register Bits Type Description
result X0 63:0 RmiCommandReturnCode Command return status

B4.3.8.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)

realm_state pre: Realm(rd).state != REALM_NEW
post: ResultEqual (result, RMI_ERROR_REALM)

B4.3.8.2.1 Failure condition ordering

[rd_bound, rd_state] < [realm_state]

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

167

Chapter B4. Realm Management Interface
B4.3. RMI commands

realm_state

RMI_ERROR_REALM

L - _ _ T _ _ _ - _ _ _ .
B4.3.8.3 Success conditions
ID Condition
realm_state Realm(rd) .state == REALM_ACTIVE
B4.3.8.4 Footprint
ID Value
realm_state Realm(rd) .state
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 168

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.9 RMI_REALM_CREATE command

Creates a Realm.
See also:

e A2.1 Realm

e A2.1.6 Realm parameters

e B4.3.10 RMI_ REALM DESTROY command
e DI1.2.1 Realm creation flow

B4.3.9.1 Interface
B4.3.9.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000158
rd X1 63:0 Address PA of the RD
params_ptr X2 63:0 Address PA of Realm parameters

B4.3.9.1.2 Context
The RMI_REALM_CREATE command operates on the following context.

Name Type Value Before Description
params RmiRealmParams RealmParams (params_ptr) false Realm parameters
realm RmmRealm Realm(rd) false Realm

B4.3.9.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.9.2 Failure conditions

ID Condition

params_align pre: !AddrIsGranuleAligned (params_ptr)
post: ResultEqual (result, RMI_ERROR_INPUT)

params_bound pre: !PalsDelegable (params_ptr)
post: ResultEqual (result, RMI_ERROR_INPUT)

params_pas pre: !'GranuleAccessPermitted (params_ptr, PAS_NS)
post: ResultEqual (result, RMI_ERROR_INPUT)

params_valid pre: !RmiRealmParamsIsValid (params_ptr)
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
1.0-rel0 Non-confidential

169

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

params_supp pre: !RealmParamsSupported (params)
post: ResultEqual (result, RMI_ERROR_INPUT)

alias pre: AddrInRange(rd, params.rtt_base,
(params.rtt_num_start - 1) * RMM_GRANULE_SIZE)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != DELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_align pre: !AddrIsAligned(params.rtt_base,
params.rtt_num_start x RMM_GRANULE_SIZE)
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_num_level pre: !RttConfigIsValid(
params.s2sz,
params.rtt_level_start, params.rtt_num_start)
post: ResultEqual (result, RMI_ERROR_INPUT)

rtt_state pre: !RttsStateEqual (
params.rtt_base, params.rtt_num_start, DELEGATED)
post: ResultEqual (result, RMI_ERROR_INPUT)

vmid_valid pre: !VmidIsValid(params.vmid) || !VmidIsFree (params.vmid)
post: ResultEqual (result, RMI_ERROR_INPUT)

B4.3.9.2.1 Failure condition ordering
The RMI_REALM_CREATE command does not have any failure condition orderings.

B4.3.9.3 Success conditions

ID Condition
rd_state Granule (rd) .state == RD
realm_state Realm(rd) .state == REALM_NEW
rec_index Realm(rd) .rec_index ==
rtt_base Realm(rd) .rtt_base == params.rtt_lpase
rtt_state RttsStateEqual (
Realm(rd) .rtt_base, Realm(rd).rtt_num_start, RTT)
rtte_p_states RttsAllProtectedEntriesState (
Realm(rd) .rtt_base, Realm(rd).rtt_num_start,
UNASSIGNED)
rtte_up_states RttsAllUnprotectedEntriesState (

Realm(rd) .rtt_base, Realm(rd).rtt_num_start,
UNASSIGNED_NS)

rne_ﬁpas RttsAllProtectedEntriesRipas (
Realm(rd) .rtt_base, Realm(rd).rtt_num_start,
EMPTY)
Ipa2 Equal (realm.feat_lpa2, params.flags.lpa?2)
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 170

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID

Condition

ipa_width
hash_algo

rim

rem

rtt_level
rtt_num
vmid
pv

num_recs

Realm(rd) .ipa_width == params.s2sz
Equal (Realm(rd) .hash_algo, params.hash_algo)

Realm(rd) .measurements[0] == RimInit (
Realm(rd) .hash_algo, params)

(Realm(rd) .measurements[1l] == Zeros|()
&& Realm(rd) .measurements[2] == Zeros|()
&& Realm(rd) .measurements[3] == Zeros|()
&& Realm(rd) .measurements[4] == Zeros())

Realm(rd) .rtt_level_start == params.rtt_level_start
Realm(rd) .rtt_num_start == params.rtt_num_start
Realm(rd) .vmid == params.vmid

Realm(rd) .rpv == params.rpv

realm.num_recs ==

B4.3.9.4 RMI_REALM_CREATE initialization of RIM

On successful execution of RMI_REALM_CREATE, the initial RIM value of the target Realm is calculated by the
RMM as follows:

1.
2.

Allocate a zero-filled RmiRealmParams data structure to hold the measured Realm parameters.

Copy the following attributes from the Host-provided RmiRealmParams data structure into the measured
Realm parameters data structure:

flags

s2sz

sve_vl
num_bps
num_wps
pmu_num_ctrs
hash_algo

. Using the RHA of the target Realm, compute the hash of the measured Realm parameters data structure. Set

the RIM of the target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size
of the RIM.

See also:

A7.1.1 Realm Initial Measurement

* B3.48 Rimlinit function
* B4.4.12 RmiRealmParams type

B4.3.9.5 Footprint

ID

Value

rd_state

rtt_state

Granule (rd) .state

RttsGranuleState(Realm(rd) .rtt_base,
Realm(rd) .rtt_num_start)

DENO0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 171
Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

Destroys a Realm.
See also:

e A2.1 Realm

B4.3.10 RMI_REALM_DESTROY command

e B4.3.9 RMI REALM_CREATE command

e DI1.2.5 Realm destruction flow

B4.3.10.1 Interface
B4.3.10.1.1 Input values

Name Register Bits Type Description
fid X0 63:0 Ulnt64 FID, value 0xC4000159
rd X1 63:0 Address PA of the RD

B4.3.10.1.2 Context

The RMI_REALM_DESTROY command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm (rd) true Realm
B4.3.10.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.10.2 Failure conditions

ID Condition
rd_align pre: !AddrIsGranuleAligned (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd) .state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)
realm_live pre: RealmIsLive (rd)
post: ResultEqual (result, RMI_ERROR_REALM)
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 172
1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.10.2.1 Failure condition ordering

[rd_bound, rd_state] < [realm_live]

B4.3.10.3 Success conditions

ID Condition
rtt_state RttsStateEqual (
realm.rtt_base, realm.rtt_num_start, DELEGATED)
rd_state Granule (rd) .state == DELEGATED
vmid VmidIsFree (realm.vmid)

B4.3.10.4 Footprint

ID Value
rd_state Granule (rd) .state
rtt_state RttsGranuleState (

realm.rtt_base, realm.rtt_num_start)

DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 173
1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.11 RMI_REC_AUX_COUNT command

Get number of auxiliary Granules required for a REC.
See also:

e A2.3 Realm Execution Context

e B4.3.12 RMI_REC_CREATE command
* B4.4.19 RmiRecParams type

¢ DI1.2.4 REC creation flow

B4.3.11.1 Interface
B4.3.11.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC4000167

rd X1 63:0 Address PA of the RD for the target Realm
B4.3.11.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

aux_count X1 63:0 Ulnt64 Number of auxiliary Granules required

for a REC

B4.3.11.2 Failure conditions

ID Condition
rd_align pre: !AddrIsGranuleAligned (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)
rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)
B4.3.11.2.1 Failure condition ordering
The RMI_REC_AUX_COUNT command does not have any failure condition orderings.
B4.3.11.3 Success conditions
ID Condition
aux_count aux_count == RecAuxCount (rd)
B4.3.11.4 Footprint
The RMI_REC_AUX_COUNT command does not have any footprint.
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 174

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.12 RMI_REC_CREATE command

Creates a REC.

See also:

B4.3.12.1

A2.3 Realm Execution Context

A2.3.3 REC index and MPIDR value
B4.3.11 RMI REC_AUX_COUNT command
B4.3.13 RMI_REC_DESTROY command
D1.2.4 REC creation flow

Interface

B4.3.12.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 Ulnt64 FID, value 0xC400015A

rd X1 63:0 Address PA of the RD for the target Realm

rec X2 63:0 Address PA of the target REC

params_ptr X3 63:0 Address PA of REC parameters
B4.3.12.1.2 Context
The RMI_REC_CREATE command operates on the following context.

Name Type Value Before Description

realm_pre RmmRealm Realm(rd) true Realm

realm RmmRealm Realm(rd) false Realm

params RmiRecParams RecParams (params_ptr) false REC parameters

rec_index Ulnt64 Realm(rd) .rec_index true REC index
B4.3.12.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.12.2 Failure conditions

ID Condition
params_align pre: !AddrIsGranuleAligned (params_ptr)
post: ResultEqual (result, RMI_ERROR_INPUT)
params_bound pre: !PalsDelegable (params_ptr)
post: ResultEqual (result, RMI_ERROR_INPUT)

DENO0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

params_pas pre: !GranuleAccessPermitted (params_ptr,
post: ResultEqual (result, RMI_ERROR_INPUT)

rec_align pre: !AddrIsGranuleAligned(rec)
post: ResultEqual (result, RMI_ERROR_INPUT)

rec_bound pre: !PalsDelegable(rec)
post: ResultEqual (result, RMI_ERROR_INPUT)

rec_state pre: Granule(rec) .state != DELEGATED
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_align pre: !AddrIsGranuleAligned (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_bound pre: !PalsDelegable (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual (result, RMI_ERROR_INPUT)

realm_state pre: realm.state != REALM_NEW
post: ResultEqual (result, RMI_ERROR_REALM)

num_recs pre: realm.num_recs == (2 "~ ImplFeatures () .max_recs_order) - 1

post: ResultEqual (result, RMI_ERROR_REALM)

mpidr_index pre: RecIndex(params.mpidr) != realm.rec_index

post: ResultEqual (result, RMI_ERROR_INPUT)

num_aux pre: params.num_aux != RecAuxCount (rd)
post: ResultEqual (result, RMI_ERROR_INPUT)

aux_align pre: 'AuxAligned (params.aux, params.num_aux)

post: ResultEqual (result, RMI_ERROR_INPUT)

aux_alias pre: AuxAlias(rec, params.aux, params.num_aux)

post: ResultEqual (result, RMI_ERROR_INPUT)

aux_state pre: !AuxStateEqual (

params.aux, params.num_aux, DELEGATED)

post: ResultEqual (result, RMI_ERROR_INPUT)

B4.3.12.2.1 Failure condition ordering

[rd_bound, rd_state] < [realm_state, num_recs]

|G o) G Cumaord oo Cstond Cresored Ceevand Ceestand Cpromens G vand™> Cproms > | Gane oo

G|
B4.3.12.3 Success conditions
ID Condition
rec_index Realm(rd) .rec_index == rec_index + 1
rec_gran_state Granule (rec) .state == REC
rec_owner Rec (rec) .owner == rd
DENO0137 Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved. 176

1.0-rel0 Non-confidential

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition
rec_attest Rec (rec) .attest_state == NO_ATTEST_IN_PROGRESS
rec_mpidr MpidrEqual (Rec (rec) .mpidr, params.mpidr)
rec_state Rec (rec) .state == REC_READY
runnable pre: params.flags.runnable == RMI_RUNNABLE
post: Rec(rec).flags.runnable == RUNNABLE
not_runnable pre: params.flags.runnable == RMI_NOT_RUNNABLE
post: Rec(rec).flags.runnable == NOT_RUNNABLE
rec_gprs (Rec (rec) .gprs[0] == params.gprs[0]
&& Rec(rec) .gprs[l] == params.gprs[l]
&& Rec(rec) .gprs[2] == params.gprs[2]
&& Rec(rec) .gprs[3] == params.gprs[3]
&& Rec(rec) .gprs[4] == params.gprs[4]
&& Rec(rec) .gprs[5] == params.gprs[5]
&& Rec(rec) .gprs[6] == params.gprs[6]
&& Rec(rec) .gprs[7] == params.gprs[7]
&& Rec(rec) .gprs[8] == Zeros()
&& Rec(rec) .gprs[9] == Zeros()
&& Rec(rec) .gprs[1l0] == Zeros()
&& Rec(rec) .gprs[ll] == Zeros()
&& Rec(rec) .gprs[l2] == Zeros()
&& Rec(rec) .gprs[1l3] == Zeros()
&& Rec(rec) .gprs[l4] == Zeros()
&& Rec(rec) .gprs[1l5] == Zeros()
&& Rec(rec) .gprs[l6] == Zeros()
&& Rec(rec) .gprs[l7] == Zeros()
&& Rec(rec) .gprs[18] == Zeros()
&& Rec(rec) .gprs[1l9] == Zeros()
&& Rec(rec) .gprs[20] == Zeros()
&& Rec(rec) .gprs[21] == Zeros()
&& Rec(rec) .gprs[22] == Zeros()
&& Rec(rec) .gprs[23] == Zeros()
&& Rec(rec) .gprs[24] == Zeros()
&& Rec(rec) .gprs[25] == Zeros()
&& Rec(rec) .gprs[26] == Zeros()
&& Rec(rec) .gprs[27] == Zeros()
&& Rec(rec) .gprs[28] == Zeros()
&& Rec(rec) .gprs[29] == Zeros()
&& Rec(rec) .gprs[30] == Zeros()
&& Rec(rec) .gprs[31] == Zeros())
rec_pc Rec (rec) .pc == params.pcC
rim pre: params.flags.runnable == RMI_RUNNABLE
post: Realm(rd) .measurements[0] == RimExtendRec (

realm, params)

rec_aux AuxEqual (
Rec (r