
Realm Management Monitor
specification

Document number DEN0137

Document quality REL

Document version 1.0-rel0

Document confidentiality Non-confidential

Document build information 28835aeb doctool 0.55.0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.

Realm Management Monitor specification

Release information

1.0-rel0 (10-09-2024)
Clarifications

• RMI_RTT_READ_ENTRY: add ripas_prot success condition
• Clarify rules regarding Realm EL1 timer state
• Correct wording in “Initialize memory of New Realm” flow
• RecAuxCount return value is not greater than 16, and constant for a Realm (FENIMORE-796)
• Clarify purpose of CCA platform hash algorithm ID claim (FENIMORE-811)
• Clarify behaviour of RMI_REC_ENTER if RMI_EMULATED_MMIO flag is set following a REC exit not due to

emulatable Data Abort
• RMI_RTT_READ_ENTRY: simplify expression of ripas_unprot pre-condition (FENIMORE-847)

Defects

• Correct typo in “REC entry” section [ILFYDV]
• Add rule regarding Realm execution of data cache invalidate by set / way (FENIMORE-734)
• Remove SH from the set of Host-controlled Unprotected RTT attributes (FENIMORE-736)
• If LPA2 is enabled, ensure that PA written to RTTE is less than 2ˆ48 (FENIMORE-752)
• RMI_RTT_SET_RIPAS: if base address is not aligned with entry at which RTT walk terminates, only fail if RIPAS of that

entry does not match the requested value (FENIMORE-765)
• RMI_DATA_DESTROY: if address is mapped as block, level can be either 1 or 2 (FENIMORE-775)
• RMI_RTT_MAP_UNPROTECTED: remove reference to non-existent output value “nl” (FENIMORE-776)
• Make number of GICv3 List Register values discoverable (FENIMORE-779)
• RMI_REC_ENTER: if RMI_INJECT_SEA is set then RMI_EMULATED_MMIO is ignored (FENIMORE-782)
• Impose IMPLEMENTATION DEFINED limit on maximum number of RECs per Realm (FENIMORE-800)
• Allow Realm to query RIPAS of an IPA range (FENIMORE-802)
• Introduce RIPAS DEV value (FENIMORE-802)
• Add RPV to RsiRealmConfig (FENIMORE-810)
• Expand RmiFeatureRegister0::{NUM_BPS, NUM_WPS} to support up to 64 counters (FENIMORE-759)
• Attestation token: change profile value to be a versioned tag (FENIMORE-809)
• RSI_ATTESTATION_TOKEN_CONTINUE: add RSI_ERROR_UNKNOWN failure condition (FENIMORE-832)
• RmiFeatureRegister0::GICV3_NUM_LRS: report number of available LRs, minus one (FENIMORE-845)
• Simplify definition of NUM_BPS, NUM_WPS fields (FENIMORE-846)
• RMI_RTT_READ_ENTRY: ripas_unprot failure condition: change && to || (FENIMORE-861)
• RMI_RTT_INIT_RIPAS: correct inconsistency between text and command definition (FENIMORE-864)

Relaxations

• RMI_RTT_{INIT,SET}_RIPAS: relax “top_rtt_align” failure condition
– The previous condition caused the command to fail if the “top” address was misaligned
– This is replaced with “no_progress”, which only fails if the command does not modify any RTT entries

1.0-eac5 (05-10-2023)
Clarifications

• Fix attestation token flows (FENIMORE-718)
• Clarify behavior on Host rejection of a RIPAS change request (FENIMORE-719)
• Replace Granule::pas attribute with Granule::gpt

– PAS is an attribute of a memory access, not of a Granule.

Defects

• {RMI,RSI}_VERSION: (FENIMORE-724)
– Clarify rules regarding returned interface version, and provide examples

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ii

– Remove rule that if the return code is SUCCESS, subsequent calls to the interface adhere to the behavior corresponding
with the returned interface version

• Specify that SMCCC registers not specified as command input / output values are SBZ and MBZ respectively
(FENIMORE-724)

• RSI_ATTESTATION_TOKEN_INIT: return upper bound on token size (FENIMORE-720)
• RMI_DATA_CREATE: move RIPAS=RAM from being a pre-condition to a post-condition (FENIMORE-721)

Relaxations

None

1.0-eac4 (06-09-2023)
Clarifications

• Exclude GIC, timer and PMU values from “On REC exit . . . all other REC exit fields are zero” (FENIMORE-712)
• Amend contradictory statement regarding RTT folding to level 1 (FENIMORE-715) [IQWQSB]

Defects

• RMI_RTT_{INIT,SET}_RIPAS: fix “top” alignment check
– Ensure that “top” is Granule aligned (FENIMORE-710)
– Ensure that return code is deterministically specified (FENIMORE-711)
– Prevent RIPAS change from proceeding beyond the “top” address provided by the Realm (FENIMORE-711)

• {RMI,RSI}_VERSION: add handshake (FENIMORE-708)
– The caller provides a “requested version”
– The RMM either returns:

* A version which it can implement, that is compatible with the requested version (and a SUCCESS return code)
* A version which it implements, that is incompatible with the requested version (and an error code)

– If the return code is SUCCESS, subsequent calls to the interface adhere to the behavior corresponding with the
returned interface version

• Increase width of PsciReturnCode to 64 bits (FENIMORE-709)

Relaxations

• RMI_REALM_CREATE: permit number of PMU counters to be less than number supported by the implementation
(FENIMORE-716)

• RMI_REALM_CREATE: permit number of breakpoints or watchpoints to be less than number supported by the
implementation (FENIMORE-717)

1.0-eac3 (20-07-2023)
Clarifications

• Clarify which bits of command input / output values should / must be zero (FENIMORE-674)
• Explain distinction between concrete and abstract types (FENIMORE-693)
• Clarify return value from RSI_IPA_STATE_SET when stopping at first DESTROYED entry (FENIMORE-699) [IGXDDX]

Defects

• PSCI_SYSTEM_{OFF,RESET}: change Realm state to SYSTEM_OFF (FENIMORE-694)
• RMI_REC_CREATE: update RIM only if runnable flag is set (FENIMORE-697)
• RMI_REALM_CREATE: fix list of measured parameters (FENIMORE-695)
• Remove members from RmmSystemRegisters (FENIMORE-700)

– State saved / restored depends on architecture features supported by the platform, so defining this type as an empty
placeholder

• Avoid use of reserved ASL v1 keyword “entry” in MRS (FENIMORE-702)
– RmiRecEntry -> RmiRecEnter
– RmiRecEntryFlags -> RmiRecEnterFlags
– RmiRecRun::entry -> RmiRecRun::enter
– RmmRttWalkResult::entry -> RmmRttWalkResult::rtte

• RSI_IPA_STATE_SET: prohibit RSI_DESTROYED input value (FENIMORE-705)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

• RMI_PSCI_COMPLETE: PSCI_CPU_ON: fix copy of context_id to target CPU X0 (FENIMORE-703)
• Allow Host to reject request to change RIPAS to RAM (FENIMORE-661)
• Allow Host to reject PSCI_CPU_ON request via RMI_PSCI_COMPLETE (FENIMORE-706)

Relaxations

• Permit folding of level 2 RTT to create level 1 block mapping (FENIMORE-608)
• Remove restriction that attestation token size must not exceed 4KB (FENIMORE-691)

1.0-eac2 (07-06-2023)
Clarifications

• Remove reference to triggering ERROR_INPUT by setting MBZ bit to 1 (FENIMORE-675)
• Clarify constraints on output values in case of command failure [RTFZMS] (FENIMORE-676)
• Clarify encoding of RmiRealmParams::sve_sz (FENIMORE-684)
• Clarify set of SMCCC interfaces available to a Realm [RNPLKX] (FENIMORE-685)

Defects

• Replace PMU fields in RmiRecExit with single bit indicating the PMU overflow status [RWXTZF] (FENIMORE-679)
• RMI_PSCI_COMPLETE: failure condition should compare against MPIDR, not RD address (FENIMORE-681)
• RMI_REC_CREATE: remove params_valid failure condition (FENIMORE-686)
• RMI_RTT_{INIT,SET}_RIPAS: check alignment of “top” input value (FENIMORE-687)
• Reduce coupling between HIPAS and RIPAS (FENIMORE-680)

– Replace HIPAS=DESTROYED with RIPAS=DESTROYED
– Remove RmiRttEntryState::RMI_DESTROYED
– Change encoding of RmiRttEntryState::RMI_TABLE
– Add RmiRipas::RMI_DESTROYED
– Add RsiRipas::RSI_DESTROYED
– RMI_DATA_CREATE_UNKNOWN: remove pre-condition that RIPAS=RAM
– RMI_DATA_DESTROY:

* In all cases, post-condition now states that HIPAS=UNASSIGNED
* If pre-condition was RIPAS=RAM, post-condition states that RIPAS=DESTROYED

– RMI_RTT_DESTROY:
* Remove post-condition that HIPAS=DESTROYED
* Add post-condition that state of parent RTTE is UNASSIGNED
* Add post-condition that RIPAS=DESTROYED

– RMI_RTT_SET_IPA_STATE: stop at first DESTROYED entry if “destroyed” flag is set
– RSI_IPA_STATE_SET: add “destroyed” flag
– Clarify distinction between “RTT folding” [DQPXCP] and “RTT destruction” [DVXRZW]

• RMI_RTT_INIT_RIPAS: success conditions should be bounded by walk_top, not top

Relaxations

• RSI_REALM_CONFIG: provide Realm hash algorithm (FENIMORE-678)

1.0-eac1 (31-03-2023)
Clarifications

• Unused bits of RmiRecEntry::gicv3_hcr are SBZ [ISMHXB] (FENIMORE-666)
• RMI_REC_ENTER: all RMI_ERROR_INPUT failure conditions precede all RMI_ERROR_REC failure conditions

(FENIMORE-668)
• Avoid use of raw Xn values in command conditions where possible (FENIMORE-671)
• Clarify definition of REC exit due to (Non-)emulatable Data Abort [DCYRMT, DMTZMC] (FENIMORE-673)

Defects

• RMI_RTT_INIT_RIPAS: take account of “top” IPA value when calculating RIM contribution (FENIMORE-662)
• RttSkipEntriesWithRipas: fix inverted logic (FENIMORE-663)
• RMI_RTT_SET_RIPAS: on success, modify IPA range [base, walk_top) (FENIMORE-669)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

• RMI_RTT_{INIT,SET}_RIPAS: remove redundant failure conditions (FENIMORE-670)
• Clarify HIPAS=DESTROYED implies RIPAS=UNDEFINED [RJYDRL] (FENIMORE-672)

Relaxations

• RSI_HOST_CALL: relax alignment requirement from 4KB to 256B

1.0-eac0 (31-01-2023)
Clarifications

None

Defects

• RmiRealmParams: reduce width of integer attributes (FENIMORE-647)
• RSI_IPA_STATE_SET: replace (base, size) with (base, top) (FENIMORE-656)
• RMI_RTT_INIT_RIPAS, RMI_RTT_SET_RIPAS: allow single command to modify multiple RTT entries

(FENIMORE-656)

Relaxations

• RMI_RTT_SET_RIPAS: remove “ripas” input value (FENIMORE-659)

1.0-bet2 (16-12-2022)
Clarifications

• Flows: update RMI_REC_ENTRY to take a single ‘run’ input value
• Clarify meaning of “TTD” [IYMNSR] (FENIMORE-641)
• Fix typo in reference to “CCA platform token claim map” [IFJKFY] (FENIMORE-647)
• Fix reference to “RME system architecture spec” (FENIMORE-648)
• Flows: remove stale reference to parameters passed to RMI_DATA_CREATE (FENIMORE-649)
• Improve definition and constistency of usage of the term “REC” (FENIMORE-650)

– Where referring to the RMM data structure “REC object” is now used
• Clarify description of properties of Realm IPA space [ITPGKW] (FENIMORE-639)

– Replace “permitted, under control of host” with statements which refer to particular HIPAS values.
– Add “Protected IPA, HIPAS=DESTROYED” row, thereby removing contradictory statements regarding SEA taken

to Realm, previously in “Protected IPA, RIPAS=EMPTY”.
• On assertion of an EL1 timer, the RMM guarantees a REC exit, not only a Realm exit (FENIMORE-651)
• RMI_RTT_FOLD: preserve RIPAS value if IPA is Protected (FENIMORE-638)

Defects

• Attestation: wrap sub-tokens in byte stream (FENIMORE-643)
• RMI_DATA_DESTROY, RMI_RTT_{DESTROY,FOLD}: return PA of destroyed object (FENIMORE-563)
• RMI_REALM_DESTROY, RMI_REC_DESTROY, RMI_REC_ENTER, RMI_RTT_DESTROY, RMI_RTT_FOLD,

RMI_RTT_SET_RIPAS: Remove RMI_ERROR_IN_USE (FENIMORE-588)
• RMI_DATA_CREATE, RMI_DATA_CREATE_UNKNOWN, RMI_REC_CREATE, RMI_RTT_CREATE: pass RD

pointer in X1 (FENIMORE-655)
• Replace RmiRealmParams::features_0 with discrete fields (FENIMORE-655)
• RMI_DATA_CREATE(_UNKNOWN): require RIPAS=RAM (FENIMORE-645)
• Apply “must / should be zero” consistently (FENIMORE-619)

– In command inputs, unused bits are SBZ
– In command outputs, unused bits are MBZ

Relaxations

• RSI_HOST_CALL: expand set of GPRs to X0-X30 (FENIMORE-607)
– This enables the RMM to support any calling convention.

• RMI_DATA_DESTROY, RMI_RTT_DESTROY, RMI_RTT_UNMAP_UNPROTECTED: return IPA of next live RTT
entry (FENIMORE-563)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

1.0-bet1 (31-10-2022)
Clarifications

• Rename HIPAS VALID_NS -> UNASSIGNED (FENIMORE-631)
• SEA injection is independent of whether Host emulates MMIO (FENIMORE-632)
• In RIPAS change flow, permit Host to apply the change to zero or more pages of the target IPA region (FENIMORE-633)
• Flows: replace HVC with Host call (FENIMORE-611)
• Clarify behavior of VmidIsValid() function (FENIMORE-630)
• Qualify “all other exit fields are zero” statements [RGTJRP, RLRCFP] (FENIMORE-634)

– GIC, timer and PMU fields are valid on every REC exit.

Defects

• Change size of RsiHostCall type to 256 bytes (FENIMORE-629)
• Correct the set of ESR_EL2 fields which are returned to the Host on REC exit due to Data abort [RRYVFL]

– On all Data Aborts, add FnV.
– On Emulatable Data Aborts, add SF.
– On Non-emulatable Data Abort at an Unprotected IPA, add IL.

Relaxations

None

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this License (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this License. By using or copying the
Document you indicate that you agree to be bound by the terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide License to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the License granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of a product that is not
itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions, information,
scope, and data. This document was produced using reasonable efforts based on information available as of the date of issue
of this document. The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope of its
obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety and
that you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning
your products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible
for any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. Arm may make changes to the Document at any time and without notice. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST
EXTENT PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT
OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE (INCLUDING WITHOUT
LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN
ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENSE). THE EXISTENCE OF MORE THAN ONE CLAIM
OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS,
LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this License then Arm may terminate this License immediately upon giving
written notice to Licensee. Licensee may terminate this License at any time. Upon termination of this License by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this
License, all terms shall survive except for the License grants.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party in breach. Any
termination of this License shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This License may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this License and any translation, the terms of the English version of this License shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners. No license, express, implied or otherwise, is granted to Licensee under this
License, to use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
http://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.

Copyright © 2022-2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

http://www.arm.com/company/policies/trademarks

Contents

Realm Management Monitor specification

Realm Management Monitor specification . ii
Release information . ii
Arm Non-Confidential Document License (“License”) vii

Preface
Conventions . xvii

Typographical conventions . xvii
Numbers . xvii
Pseudocode descriptions . xvii
Addresses . xvii

Rules-based writing . xviii
Content item identifiers . xviii
Content item rendering . xviii
Content item classes . xviii

Additional reading . xix
Feedback . xxi

Feedback on this book . xxi
Open issues . xxii

Part A Architecture

Chapter A1 Overview
A1.1 Confidential computing . 24
A1.2 System software components . 25
A1.3 Realm Management Monitor . 25

Chapter A2 Concepts
A2.1 Realm . 28

A2.1.1 Overview . 28
A2.1.2 Realm execution environment . 28
A2.1.3 Realm attributes . 29
A2.1.4 Realm liveness . 30
A2.1.5 Realm lifecycle . 30
A2.1.6 Realm parameters . 32
A2.1.7 Realm Descriptor . 32

A2.2 Granule . 33
A2.2.1 Granule attributes . 33
A2.2.2 Granule ownership . 33
A2.2.3 Granule lifecycle . 34
A2.2.4 Granule wiping . 36

A2.3 Realm Execution Context . 37
A2.3.1 Overview . 37
A2.3.2 REC attributes . 37
A2.3.3 REC index and MPIDR value . 38
A2.3.4 REC lifecycle . 39

Chapter A3 Realm creation
A3.1 Realm feature discovery and selection . 42

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

Contents

A3.1.1 Realm hash algorithm . 42
A3.1.2 Realm LPA2 and IPA width . 42
A3.1.3 Realm support for Scalable Vector Extension 43
A3.1.4 Realm support for self-hosted debug 43
A3.1.5 Realm support for Performance Monitors Extension 44
A3.1.6 Realm support for Activity Monitors Extension 44
A3.1.7 Realm support for Statistical Profiling Extension 44
A3.1.8 Realm support for Trace Buffer Extension 44
A3.1.9 Number of GICv3 List Registers . 44

Chapter A4 Realm exception model
A4.1 Exception model overview . 46
A4.2 REC entry . 48

A4.2.1 RmiRecEnter object . 48
A4.2.2 General purpose registers restored on REC entry 50
A4.2.3 REC entry following REC exit due to Data Abort 50

A4.3 REC exit . 51
A4.3.1 RmiRecExit object . 51
A4.3.2 Realm exit reason . 53
A4.3.3 General purpose registers saved on REC exit 53
A4.3.4 REC exit due to synchronous exception 54
A4.3.5 REC exit due to IRQ . 56
A4.3.6 REC exit due to FIQ . 56
A4.3.7 REC exit due to PSCI . 57
A4.3.8 REC exit due to RIPAS change pending 58
A4.3.9 REC exit due to Host call . 58
A4.3.10 REC exit due to SError . 58

A4.4 Emulated Data Aborts . 60
A4.5 Host call . 60

Chapter A5 Realm memory management
A5.1 Realm memory management overview . 62
A5.2 Realm view of memory management . 62

A5.2.1 Realm IPA space . 62
A5.2.2 Realm IPA state . 62
A5.2.3 Realm access to a Protected IPA . 63
A5.2.4 Changes to RIPAS while Realm state is REALM_NEW 63
A5.2.5 Changes to RIPAS while Realm state is REALM_ACTIVE 63
A5.2.6 Realm access to an Unprotected IPA 65
A5.2.7 Synchronous External Aborts . 65
A5.2.8 Realm access outside IPA space . 66
A5.2.9 Summary of Realm IPA space properties 67
A5.2.10 Cache maintenance operations . 67

A5.3 Host view of memory management . 68
A5.3.1 Host IPA state . 68
A5.3.2 Changes to HIPAS while Realm state is REALM_NEW 69
A5.3.3 Changes to HIPAS while Realm state is REALM_ACTIVE 69
A5.3.4 Summary of changes to HIPAS and RIPAS of a Protected IPA 71
A5.3.5 Dependency of RMI command execution on RIPAS and HIPAS values . 73
A5.3.6 Changes to HIPAS of an Unprotected IPA 73

A5.4 RIPAS change . 75
A5.5 Realm Translation Table . 77

A5.5.1 RTT overview . 77
A5.5.2 RTT structure and configuration . 77
A5.5.3 RTT starting level . 77

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

Contents

A5.5.4 RTT entry . 78
A5.5.5 RTT reading . 79
A5.5.6 RTT folding . 79
A5.5.7 RTT unfolding . 80
A5.5.8 RTTE liveness and RTT liveness . 80
A5.5.9 RTT destruction . 80
A5.5.10 RTT walk . 81
A5.5.11 RTT entry attributes . 81

Chapter A6 Realm interrupts and timers
A6.1 Realm interrupts . 85
A6.2 Realm timers . 87

Chapter A7 Realm measurement and attestation
A7.1 Realm measurements . 90

A7.1.1 Realm Initial Measurement . 90
A7.1.2 Realm Extensible Measurement . 91

A7.2 Realm attestation . 92
A7.2.1 Attestation token . 92
A7.2.2 Attestation token generation . 92
A7.2.3 Attestation token format . 94

Chapter A8 Realm debug and performance monitoring
A8.1 Realm PMU . 113

Part B Interface

Chapter B1 Commands
B1.1 Overview . 116
B1.2 Command definition . 117

B1.2.1 Example command . 117
B1.3 Command registers . 118
B1.4 Command condition expressions . 118
B1.5 Command context values . 119
B1.6 Command failure conditions . 120
B1.7 Command success conditions . 121
B1.8 Concrete and abstract types . 121
B1.9 Command footprint . 121

Chapter B2 Interface versioning

Chapter B3 Command condition functions
B3.1 AddrInRange function . 126
B3.2 AddrIsAligned function . 126
B3.3 AddrIsGranuleAligned function . 127
B3.4 AddrIsProtected function . 127
B3.5 AddrIsRttLevelAligned function . 127
B3.6 AddrRangeIsProtected function . 127
B3.7 AlignDownToRttLevel function . 127
B3.8 AlignUpToRttLevel function . 128
B3.9 AuxAlias function . 128
B3.10 AuxAligned function . 128
B3.11 AuxEqual function . 128
B3.12 AuxSort function . 129
B3.13 AuxStateEqual function . 129

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi

Contents

B3.14 AuxStates function . 129
B3.15 CurrentRealm function . 129
B3.16 CurrentRec function . 129
B3.17 Equal function . 130
B3.18 Gicv3ConfigIsValid function . 131
B3.19 Granule function . 131
B3.20 GranuleAccessPermitted function . 131
B3.21 ImplFeatures function . 131
B3.22 MinAddress function . 131
B3.23 MpidrEqual function . 132
B3.24 MpidrIsUsed function . 132
B3.25 PaIsDelegable function . 132
B3.26 PsciReturnCodeEncode function . 132
B3.27 PsciReturnCodePermitted function . 132
B3.28 ReadMemory function . 133
B3.29 Realm function . 133
B3.30 RealmConfig function . 133
B3.31 RealmHostCall function . 133
B3.32 RealmIsLive function . 133
B3.33 RealmParams function . 134
B3.34 RealmParamsSupported function . 134
B3.35 Rec function . 134
B3.36 RecAuxCount function . 134
B3.37 RecFromMpidr function . 134
B3.38 RecIndex function . 134
B3.39 RecParams function . 135
B3.40 RecRipasChangeResponse function . 135
B3.41 RecRun function . 135
B3.42 RemExtend function . 135
B3.43 ResultEqual function . 136
B3.44 RimExtendData function . 136
B3.45 RimExtendRec function . 136
B3.46 RimExtendRipas function . 136
B3.47 RimExtendRipasForEntry function . 137
B3.48 RimInit function . 137
B3.49 RipasToRmi function . 137
B3.50 RmiRealmParamsIsValid function . 137
B3.51 Rtt function . 137
B3.52 RttAllEntriesContiguous function . 138
B3.53 RttAllEntriesRipas function . 138
B3.54 RttAllEntriesState function . 138
B3.55 RttConfigIsValid function . 138
B3.56 RttDescriptorIsValidForUnprotected function 138
B3.57 RttEntriesInRangeRipas function . 139
B3.58 RttEntry function . 139
B3.59 RttEntryFromDescriptor function . 139
B3.60 RttEntryIndex function . 139
B3.61 RttEntryState function . 139
B3.62 RttFold function . 140
B3.63 RttIsHomogeneous function . 140
B3.64 RttIsLive function . 140
B3.65 RttLevelIsBlockOrPage function . 140
B3.66 RttLevelIsStarting function . 140
B3.67 RttLevelIsValid function . 141
B3.68 RttLevelSize function . 141

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Contents

B3.69 RttsAllProtectedEntriesRipas function . 141
B3.70 RttsAllProtectedEntriesState function . 141
B3.71 RttsAllUnprotectedEntriesState function . 141
B3.72 RttsGranuleState function . 142
B3.73 RttSkipEntriesUnlessRipas function . 142
B3.74 RttSkipEntriesUnlessState function . 142
B3.75 RttSkipEntriesWithRipas function . 142
B3.76 RttSkipNonLiveEntries function . 143
B3.77 RttsStateEqual function . 143
B3.78 RttWalk function . 144
B3.79 ToAddress function . 144
B3.80 ToBits64 function . 144
B3.81 VmidIsFree function . 144
B3.82 VmidIsValid function . 144

Chapter B4 Realm Management Interface
B4.1 RMI version . 147
B4.2 RMI command return codes . 147
B4.3 RMI commands . 148

B4.3.1 RMI_DATA_CREATE command . 149
B4.3.2 RMI_DATA_CREATE_UNKNOWN command 152
B4.3.3 RMI_DATA_DESTROY command . 155
B4.3.4 RMI_FEATURES command . 158
B4.3.5 RMI_GRANULE_DELEGATE command 159
B4.3.6 RMI_GRANULE_UNDELEGATE command 161
B4.3.7 RMI_PSCI_COMPLETE command . 163
B4.3.8 RMI_REALM_ACTIVATE command . 167
B4.3.9 RMI_REALM_CREATE command . 169
B4.3.10 RMI_REALM_DESTROY command . 172
B4.3.11 RMI_REC_AUX_COUNT command . 174
B4.3.12 RMI_REC_CREATE command . 175
B4.3.13 RMI_REC_DESTROY command . 179
B4.3.14 RMI_REC_ENTER command . 181
B4.3.15 RMI_RTT_CREATE command . 184
B4.3.16 RMI_RTT_DESTROY command . 187
B4.3.17 RMI_RTT_FOLD command . 190
B4.3.18 RMI_RTT_INIT_RIPAS command . 193
B4.3.19 RMI_RTT_MAP_UNPROTECTED command 196
B4.3.20 RMI_RTT_READ_ENTRY command 199
B4.3.21 RMI_RTT_SET_RIPAS command . 201
B4.3.22 RMI_RTT_UNMAP_UNPROTECTED command 204
B4.3.23 RMI_VERSION command . 207

B4.4 RMI types . 209
B4.4.1 RmiCommandReturnCode type . 209
B4.4.2 RmiDataFlags type . 209
B4.4.3 RmiDataMeasureContent type . 210
B4.4.4 RmiEmulatedMmio type . 210
B4.4.5 RmiFeature type . 210
B4.4.6 RmiFeatureRegister0 type . 211
B4.4.7 RmiHashAlgorithm type . 212
B4.4.8 RmiInjectSea type . 212
B4.4.9 RmiInterfaceVersion type . 213
B4.4.10 RmiPmuOverflowStatus type . 213
B4.4.11 RmiRealmFlags type . 213
B4.4.12 RmiRealmParams type . 214

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii

Contents

B4.4.13 RmiRecCreateFlags type . 215
B4.4.14 RmiRecEnter type . 216
B4.4.15 RmiRecEnterFlags type . 217
B4.4.16 RmiRecExit type . 218
B4.4.17 RmiRecExitReason type . 220
B4.4.18 RmiRecMpidr type . 221
B4.4.19 RmiRecParams type . 221
B4.4.20 RmiRecRun type . 223
B4.4.21 RmiRecRunnable type . 223
B4.4.22 RmiResponse type . 223
B4.4.23 RmiRipas type . 224
B4.4.24 RmiRttEntryState type . 224
B4.4.25 RmiStatusCode type . 224
B4.4.26 RmiTrap type . 225

Chapter B5 Realm Services Interface
B5.1 RSI version . 227
B5.2 RSI command return codes . 227
B5.3 RSI commands . 228

B5.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command 229
B5.3.2 RSI_ATTESTATION_TOKEN_INIT command 231
B5.3.3 RSI_FEATURES command . 233
B5.3.4 RSI_HOST_CALL command . 234
B5.3.5 RSI_IPA_STATE_GET command . 236
B5.3.6 RSI_IPA_STATE_SET command . 238
B5.3.7 RSI_MEASUREMENT_EXTEND command 240
B5.3.8 RSI_MEASUREMENT_READ command 242
B5.3.9 RSI_REALM_CONFIG command . 244
B5.3.10 RSI_VERSION command . 245

B5.4 RSI types . 247
B5.4.1 RsiCommandReturnCode type . 247
B5.4.2 RsiHashAlgorithm type . 247
B5.4.3 RsiHostCall type . 248
B5.4.4 RsiInterfaceVersion type . 249
B5.4.5 RsiRealmConfig type . 249
B5.4.6 RsiResponse type . 250
B5.4.7 RsiRipas type . 250
B5.4.8 RsiRipasChangeDestroyed type . 251
B5.4.9 RsiRipasChangeFlags type . 251

Chapter B6 Power State Control Interface
B6.1 PSCI overview . 253
B6.2 PSCI version . 253
B6.3 PSCI commands . 254

B6.3.1 PSCI_AFFINITY_INFO command . 255
B6.3.2 PSCI_CPU_OFF command . 257
B6.3.3 PSCI_CPU_ON command . 258
B6.3.4 PSCI_CPU_SUSPEND command . 260
B6.3.5 PSCI_FEATURES command . 261
B6.3.6 PSCI_SYSTEM_OFF command . 262
B6.3.7 PSCI_SYSTEM_RESET command . 263
B6.3.8 PSCI_VERSION command . 264

B6.4 PSCI types . 265
B6.4.1 PsciInterfaceVersion type . 265
B6.4.2 PsciReturnCode type . 265

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiv

Contents

Part C Types

Chapter C1 RMM types
C1.1 RmmDataFlags type . 268
C1.2 RmmDataMeasureContent type . 269
C1.3 RmmFeature type . 269
C1.4 RmmFeatures type . 269
C1.5 RmmGptEntry type . 270
C1.6 RmmGranule type . 270
C1.7 RmmGranuleState type . 271
C1.8 RmmHashAlgorithm type . 271
C1.9 RmmHipas type . 271
C1.10 RmmHostCallPending type . 272
C1.11 RmmMeasurementDescriptorData type . 272
C1.12 RmmMeasurementDescriptorRec type . 272
C1.13 RmmMeasurementDescriptorRipas type . 273
C1.14 RmmPhysicalAddressSpace type . 273
C1.15 RmmPsciPending type . 274
C1.16 RmmRealm type . 274
C1.17 RmmRealmMeasurement type . 275
C1.18 RmmRealmState type . 275
C1.19 RmmRec type . 275
C1.20 RmmRecAttestState type . 276
C1.21 RmmRecEmulatableAbort type . 276
C1.22 RmmRecFlags type . 277
C1.23 RmmRecResponse type . 277
C1.24 RmmRecRunnable type . 277
C1.25 RmmRecState type . 277
C1.26 RmmRipas type . 278
C1.27 RmmRipasChangeDestroyed type . 278
C1.28 RmmRtt type . 278
C1.29 RmmRttEntry type . 278
C1.30 RmmRttEntryState type . 279
C1.31 RmmRttWalkResult type . 279
C1.32 RmmSystemRegisters type . 280

Chapter C2 Generic types
C2.1 Address type . 281
C2.2 BitsN type . 281
C2.3 IntN type . 281
C2.4 UIntN type . 282

Part D Usage

Chapter D1 Flows
D1.1 Granule delegation flows . 285

D1.1.1 Granule delegation flow . 285
D1.1.2 Granule undelegation flow . 285

D1.2 Realm lifecycle flows . 287
D1.2.1 Realm creation flow . 287
D1.2.2 Realm Translation Table creation flow 287
D1.2.3 Initialize memory of New Realm flow 288
D1.2.4 REC creation flow . 290
D1.2.5 Realm destruction flow . 292

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xv

Contents
Contents

D1.3 Realm exception model flows . 294
D1.3.1 Realm entry and exit flow . 294
D1.3.2 Host call flow . 294
D1.3.3 REC exit due to Data Abort fault flow 295
D1.3.4 MMIO emulation flow . 296

D1.4 PSCI flows . 298
D1.4.1 PSCI_CPU_ON flow . 298

D1.5 Realm memory management flows . 301
D1.5.1 Add memory to Active Realm flow . 301
D1.5.2 NS memory flow . 301
D1.5.3 RIPAS change flow . 302

D1.6 Realm interrupts and timers flows . 303
D1.6.1 Interrupt flow . 303
D1.6.2 Timer interrupt delivery flow . 303

D1.7 Realm attestation flows . 305
D1.7.1 Attestation token generation flow . 305
D1.7.2 Handling interrupts during attestation token generation flow 305

Chapter D2 Realm shared memory protocol
D2.1 Realm shared memory protocol description 308
D2.2 Realm shared memory protocol flow . 308

Glossary

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvi

Preface

Preface

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

monospace

Used for pseudocode and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
pseudocode and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document
• A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Addresses

Unless otherwise stated, the term address in this specification refers to a physical address.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvii

http://developer.arm.com

Preface
Rules-based writing

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

• Declaration
• Rule
• Goal
• Information
• Rationale
• Implementation note
• Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

In this document, a content item is rendered with a token of the following format in the left margin: Liiiii

• L is a label that indicates the content class of the content item.
• iiiii is the identifier of the content item.

Content item classes

Declaration
A Declaration is a statement that does one or more of the following:

• Introduces a concept
• Introduces a term
• Describes the structure of data
• Describes the encoding of data

A Declaration does not describe behaviour.

A Declaration is rendered with the label D.

Rule
A Rule is a statement that describes the behaviour of a compliant implementation.

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xviii

Preface
Additional reading

A Rule is rendered with the label R.

Goal
A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information
An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label I.

Rationale
A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note
An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage
A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1] Introducing Arm CCA. (ARM DEN 0125) Arm Limited.

[2] Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A.
(ARM DDI 0615 A.d) Arm Ltd.

[3] Arm Architecture Reference Manual for A-Profile architecture. (ARM DDI 0487 I.a) Arm Ltd.

[4] Arm CCA Security model. (ARM DEN 0096) Arm Limited.

[5] Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4. (ARM IHI
0069 G) Arm Ltd.

[6] Concise Binary Object Representation (CBOR). See https://tools.ietf.org/html/rfc7049

[7] CBOR Object Signing and Encryption (COSE). See https://tools.ietf.org/html/rfc8152

[8] Entity Attestation Token (EAT). See https://datatracker.ietf.org/doc/draft-ietf-rats-eat/

[9] Concise Data Definition Language (CDDL). See https://tools.ietf.org/html/rfc8610

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xix

https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc8152
https://datatracker.ietf.org/doc/draft-ietf-rats-eat/
https://tools.ietf.org/html/rfc8610

Preface
Additional reading

[10] IANA Named Information Hash Algorithm Registry. See http://www.iana.org/assignments/named-informa
tion

[11] SEC 1: Elliptic Curve Cryptography, version 2.0. See https://www.secg.org/sec1-v2.pdf

[12] RME system architecture spec. (ARM DEN 0129) Arm Ltd.

[13] Arm SMC Calling Convention. (ARM DEN 0028 D) Arm Ltd.

[14] Arm Specification Language Reference Manual. (ARM DDI 0612) Arm Ltd.

[15] Secure Hash Standard (SHS). See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[16] Arm Power State Coordination Interface (PSCI). (ARM DEN 0022 D.b) Arm Ltd.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xx

http://www.iana.org/assignments/named-information
http://www.iana.org/assignments/named-information
https://www.secg.org/sec1-v2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Preface
Feedback

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have any comments or suggestions for additions and improvements, create a ticket at https://support.developer.arm.com/.
As part of the ticket, include:

• The title (Realm Management Monitor specification).
• The number (DEN0137 1.0-rel0).
• The section name(s) to which your comments refer.
• The page number(s) to which your comments apply.
• The rule identifier(s) to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxi

Preface
Open issues

Open issues

The following table lists known open issues in this version of the document.

Key Description

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxii

Part A
Architecture

Chapter A1
Overview

The RMM is a software component which forms part of a system which implements the Arm Confidential Compute
Architecture (Arm CCA). Arm CCA is an architecture which provides protected execution environments called
Realms.

The threat model which Arm CCA is designed to address is described in Introducing Arm CCA [1].

The hardware architecture of Arm CCA is called the Realm Management Extension (RME), and is described in
Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A [2].

A1.1 Confidential computing

The Armv8-A architecture (Arm Architecture Reference Manual for A-Profile architecture [3]) includes mechanisms
that establish a privilege hierarchy. Software operating at higher privilege levels is responsible for managing the
resources (principally memory and processor cycles) that are used by entities at lower privilege levels.

Prior to Arm CCA, resource management was coupled with a right of access. That is, a resource that is managed
by a higher-privileged entity is also accessible by it. A Realm is a protected execution environment for which this
coupling is broken, so that the right to manage resources is separated from the right to access those resources.

The purpose of a Realm is to provide to the Realm owner an environment for confidential computing, without
requiring the Realm owner to trust the software components that manage the resources used by the Realm.

Construction of a Realm, and allocation of resources to a Realm at runtime, are the responsibility of the Virtual
Machine Monitor (VMM). In this specification, the term Host is used to refer to the VMM.

See also:

• A2.1 Realm

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter A1. Overview
A1.2. System software components

A1.2 System software components

The system software architecture of Arm CCA is summarised in the following figure.

......

OS kernel

App App

VM

Realm

RMM

TOS

TA TA

Hypervisor SPM

Monitor

Realm Security state Non-secure Security state Secure Security state

EL0

EL1

EL2

EL3

Realm

OS kernel

App App

VM

Secure
partition

...

Root Security state

Figure A1.1: System software architecture

The components shown in the diagram are listed below.

Component Description

Monitor The most privileged software component, which is responsible for
switching between the Security states used at EL2, EL1 and EL0.

Realm A protected execution environment.

Realm Management Monitor (RMM) The software component which is responsible for the management of
Realms.

Virtual Machine (VM) An execution environment within which an operating system can run.
Note that a Realm is a VM which executes in the Realm security
state.

Hypervisor The software component which is responsible for the management of
VMs.

Secure Partition Manager (SPM) The software component which is responsible for the management of
Secure Partitions.

Trusted OS (TOS) An operating system which runs in a Secure Partition.

Trusted Application (TA) An application hosted by a TOS.

A1.3 Realm Management Monitor

The Realm Management Monitor (RMM) is the system component that is responsible for the management of
Realms.

The responsibilities of the RMM are to:

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter A1. Overview
A1.3. Realm Management Monitor

• Provide services that allow the Host to create, populate, execute and destroy Realms.

• Provide services that allow the initial configuration and contents of a Realm to be attested.

• Protect the confidentiality and integrity of Realm state during the lifetime of the Realm.

• Protect the confidentiality of Realm state during and following destruction of the Realm.

The RMM exposes the following interfaces, which are accessed via SMC instructions, to the Host:

• The Realm Management Interface (RMI), which provides services for the creation, population, execution and
destruction of Realms.

The RMM exposes the following interfaces, which are accessed via SMC instructions, to Realms:

• The Realm Services Interface (RSI), which provides services used to manage resources allocated to the
Realm, and to request an attestation report.

• The Power State Coordination Interface (PSCI), which provides services used to control power states of
VPEs within a Realm. Note that the HVC conduit for PSCI is not supported for Realms.

The RMM operates by manipulating data structures which are stored in memory accessible only to the RMM.

See also:

• Chapter B4 Realm Management Interface
• Chapter B5 Realm Services Interface
• Chapter B6 Power State Control Interface

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter A2
Concepts

This chapter introduces the following concepts which are central to the RMM architecture:

• A2.1 Realm
• A2.2 Granule
• A2.3 Realm Execution Context

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter A2. Concepts
A2.1. Realm

A2.1 Realm

This section describes the concept of a Realm.

A2.1.1 Overview

DDLRSR A Realm is an execution environment which is protected from agents in the Non-secure and Secure Security states,
and from other Realms.

A2.1.2 Realm execution environment

ILQYLY The execution environment of a Realm is an EL0 + EL1 environment, as described in Arm Architecture Reference
Manual for A-Profile architecture [3].

A2.1.2.1 Realm registers

RNJHQK On first entry to a Realm VPE, PE state is initialized according to “PE state on reset to AArch64 state” in Arm
Architecture Reference Manual for A-Profile architecture [3], except for GPR and PC values which are specified by
the Host during Realm creation.

GZFCQX Confidentiality is guaranteed for a Realm VPE’s general purpose and SIMD / floating point registers.

GQHZCS Confidentiality is guaranteed for other Realm VPE register state (including stack pointer, program counter and
EL0 / EL1 system registers).

GXRMHP Integrity is guaranteed for a Realm VPE’s general purpose and SIMD / floating point registers.

GYKRWG Integrity is guaranteed for other Realm VPE register state (including stack pointer, program counter and EL0 / EL1
system registers).

IGPGFB A Realm can use a Host call to pass arguments to the Host and receive results from the Host.

See also:

• A2.3 Realm Execution Context
• A4.5 Host call
• B4.3.9 RMI_REALM_CREATE command

A2.1.2.2 Realm memory

ITQMMZ A Realm is able to determine whether a given IPA is protected or unprotected.

GLQFQH Confidentiality is guaranteed for memory contents accessed via a protected address. Informally, this means that a
change to the contents of such a memory location is not observable by any agent outside the CCA platform.

GQMLCJ Integrity is guaranteed for memory contents accessed via a protected address. Informally, this means that the
Realm does not observe the contents of the location to change unless the Realm itself has either written a different
value to the location, or provided consent to the RMM for integrity of the location to be violated.

See also:

• A5.2.1 Realm IPA space

A2.1.2.3 Realm processor features

RJGHYJ The value returned to a Realm from reading a feature register is architecturally valid and describes the set of
features which are present in the Realm’s execution environment.

IKKBDP The RMM may suppress a feature which is supported by the underlying hardware platform, if exposing that feature
to a Realm could lead to a security vulnerability.

See also:

• A3.1 Realm feature discovery and selection

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter A2. Concepts
A2.1. Realm

A2.1.2.4 IMPDEF system registers

RFQCKH A Realm read from or write to an IMPLEMENTATION DEFINED system register causes an Unknown exception
taken to the Realm.

A2.1.3 Realm attributes

This section describes the attributes of a Realm.

DJSGFY A Realm attribute is a property of a Realm whose value can be observed or modified either by the Host or by the
Realm.

ITTDVX An example of a way in which a Realm attribute may be observable is the outcome of an RMM command.

DMHJCK The attributes of a Realm are summarized in the following table.

Name Type Description

feat_lpa2 RmmFeature Whether LPA2 is enabled for this Realm

ipa_width UInt8 IPA width in bits

measurements RmmRealmMeasurement[5] Realm measurements

hash_algo RmmHashAlgorithm Algorithm used to compute Realm measurements

rec_index UInt64 Index of next REC to be created

rtt_base Address Realm Translation Table base address

rtt_level_start Int64 RTT starting level

rtt_num_start UInt64 Number of physically contiguous starting level RTTs

state RmmRealmState Lifecycle state

vmid Bits16 Virtual Machine Identifier

rpv Bits512 Realm Personalization Value

num_recs UInt64 Number of RECs owned by this Realm

DMGGPT A Realm Initial Measurement (RIM) is a measurement of the configuration and contents of a Realm at the time of
activation.

DGRFCS A Realm Extensible Measurement (REM) is a measurement value which can be extended during the lifetime of a
Realm.

IFMPYL Attributes of a Realm include an array of measurement values. The first entry in this array is a RIM. The remaining
entries in this array are REMs.

XDNDKV During Realm creation, the Host provides ipa_width, rtt_level_start and rtt_num_start values as Realm parameters.
According to the VMSA, the rtt_num_start value is architecturally defined as a function of the ipa_width and
rtt_level_start values. It would therefore have been possible to design the Realm creation interface such that the
Host provided only the ipa_width and rtt_level_start values. However, this would potentially allow a Realm to
be successfully created, but with a configuration which did not match the Host’s intent. For this reason, it was
decided that the Host should specify all three values explicitly, and that Realm creation should fail if the values are
not consistent. See Arm Architecture Reference Manual for A-Profile architecture [3] for further details.

IQRVTT The VMID of a Realm is chosen by the Host. The VMID must be within the range supported by the hardware
platform. The RMM ensures that every Realm on the system has a unique VMID.

DFTWBK A Realm Personalization Value (RPV) is a provided by the Host, to distinguish between Realms which have the
same Realm Initial Measurement, but different behavior.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter A2. Concepts
A2.1. Realm

SFCNBF Possible uses of the RPV include:

• A GUID
• Hash of Realm Owner public key
• Hash of a “personalisation document” which is provided to the Realm via a side-band (for example, via NS

memory) and contains configuration information used by Realm software.

IZFSWC The RMM treats the RPV as an opaque value.

IBFSRK The RPV is included in the Realm attestation report as a separate claim.

IMFRXD The RPV is included in the output of the RSI_REALM_CONFIG command.

See also:

• A2.1.5 Realm lifecycle
• A2.3 Realm Execution Context
• A3.1.2 Realm LPA2 and IPA width
• A5.2.1 Realm IPA space
• A5.5 Realm Translation Table
• A7.1 Realm measurements
• A7.2.3.1.3 Realm Personalization Value claim
• B5.3.3 RSI_FEATURES command
• B5.3.9 RSI_REALM_CONFIG command
• C1.16 RmmRealm type

A2.1.4 Realm liveness

DWTXTJ Realm liveness is a property which means that there exists one or more Granules, other than the RD and the starting
level RTTs, which are owned by the Realm.

IPVPQB If a Realm is live, it cannot be destroyed.

DPCKRN A Realm is live if any of the following is true:

• The number of RECs owned by the Realm is not zero
• A starting level RTT of the Realm is live

IVKKPJ If a Realm owns a non-zero number of Data Granules, this implies that it has a starting level RTT which is live,
and therefore that the Realm itself is live.

See also:

• A2.1.5 Realm lifecycle
• A2.2.2 Granule ownership
• A2.2.3 Granule lifecycle
• A2.3 Realm Execution Context
• A5.5.8 RTTE liveness and RTT liveness
• B3.32 RealmIsLive function
• B4.3.10 RMI_REALM_DESTROY command

A2.1.5 Realm lifecycle

See also:

• Chapter A3 Realm creation
• D1.2 Realm lifecycle flows

A2.1.5.1 States

DGDQPJ The states of a Realm are listed below.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter A2. Concepts
A2.1. Realm

State Description

REALM_NEW Under construction. Not eligible for execution.

REALM_ACTIVE Eligible for execution.

REALM_SYSTEM_OFF System has been turned off. Not eligible for execution.

A2.1.5.2 State transitions

IRRHFG Permitted Realm state transitions are shown in the following table. The rightmost column lists the events which
can cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of a Realm object. A transition to the pseudo-state
NULL represents destruction of a Realm object.

From state To state Events

NULL REALM_NEW RMI_REALM_CREATE

REALM_NEW NULL RMI_REALM_DESTROY

REALM_ACTIVE NULL RMI_REALM_DESTROY

REALM_SYSTEM_OFF NULL RMI_REALM_DESTROY

REALM_NEW REALM_ACTIVE RMI_REALM_ACTIVATE

REALM_ACTIVE REALM_SYSTEM_OFF PSCI_SYSTEM_OFF
PSCI_SYSTEM_RESET

IYCPWW Permitted Realm state transitions are shown in the following figure. Each arc is labeled with the events which can
cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of an RD. A transition to the pseudo-state NULL
represents destruction of an RD.

REALM_SYSTEM_OFF

REALM_NEW

REALM_ACTIVE

NULL

RMI_REALM_CREATE

RMI_REALM_DESTROY

RMI_REALM_ACTIVATE

PSCI_SYSTEM_OFF
PSCI_SYSTEM_RESET

RMI_REALM_DESTROY

RMI_REALM_DESTROY

Figure A2.1: Realm state transitions

See also:

• B6.3.6 PSCI_SYSTEM_OFF command
• B6.3.7 PSCI_SYSTEM_RESET command
• B4.3.8 RMI_REALM_ACTIVATE command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter A2. Concepts
A2.1. Realm

• B4.3.9 RMI_REALM_CREATE command
• B4.3.10 RMI_REALM_DESTROY command

A2.1.6 Realm parameters

DTGMVZ A Realm parameter is a value which is provided by the Host during Realm creation.

See also:

• A2.1.3 Realm attributes
• A3.1 Realm feature discovery and selection
• B3.33 RealmParams function
• B4.3.9 RMI_REALM_CREATE command
• B4.4.12 RmiRealmParams type

A2.1.7 Realm Descriptor

DTNSBY A Realm Descriptor (RD) is an RMM data structure which stores attributes of a Realm.

DGGKWX The size of an RD is one Granule.

See also:

• A2.1.3 Realm attributes
• A2.2.3 Granule lifecycle

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter A2. Concepts
A2.2. Granule

A2.2 Granule

This section describes the concept of a Granule.

DNBXXX A Granule is a unit of physical memory whose size is 4KB.

IDJGZW A Granule may be used to store one of the following:

• Code or data used by the Host
• Code or data used by software in the Secure Security state
• Code or data used by a Realm
• Data used by the RMM to manage a Realm

The use of a Granule is reflected in its lifecycle state.

DZVRXC A Granule is delegable if it can be delegated by the Host for use by the RMM or by a Realm.

UKHKLP In a typical implementation, all memory which is presented to the Host as RAM is delegable. Examples of
non-delegable memory may include the following:

• Memory which is carved out for use by the Root world, the RMM or the Secure world
• Device memory

See also:

• A2.2.1 Granule attributes
• A2.2.3 Granule lifecycle

A2.2.1 Granule attributes

This section describes the attributes of a Granule.

DJPBBC A Granule attribute is a property of a Granule whose value can be observed or modified either by the Host or by a
Realm.

IWVXGK Examples of ways in which a Granule attribute may be observable include the outcome of an RMM command, and
whether a memory access generates a fault.

DDVMRF The attributes of a Granule are summarized in the following table.

Name Type Description

gpt RmmGptEntry GPT entry

state RmmGranuleState Lifecycle state

See also:

• A2.1 Realm
• A2.1.7 Realm Descriptor
• A2.2.3 Granule lifecycle
• B3.20 GranuleAccessPermitted function
• C1.6 RmmGranule type

A2.2.2 Granule ownership

IDMVQM A Granule whose state is neither UNDELEGATED nor DELEGATED is owned by a Realm.

IPRNTM The owner of a Granule is identified by the address of a Realm Descriptor (RD).

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter A2. Concepts
A2.2. Granule

IZXBZM For a Granule whose state is RD, the ownership relation is recursive: the owning Realm is identified by the address
of the RD itself.

ITYHTD A Granule whose state is RTT is one of the following:

• A starting level RTT. The address of this RTT is stored in the RD of the owning Realm.

• A non-starting level RTT. The address of this RTT is stored in its parent RTT, in an RTT entry whose state is
TABLE. Recursively following the parent relationship leads to the RD of the owning Realm.

IQCNRM A Granule whose state is DATA is mapped at a Protected IPA, in an RTT entry whose state is ASSIGNED. The
Realm which owns the RTT is the owner of the DATA Granule.

IHHPVB A REC has an “owner” attribute which points to the RD of the owning Realm.

XNDNHG A REC is not mapped at a Protected IPA. Its ownership therefore needs to be recorded explicitly.

See also:

• A2.1 Realm
• A2.1.7 Realm Descriptor
• A2.3 Realm Execution Context
• A5.2.1 Realm IPA space
• A5.5 Realm Translation Table
• B4.3.1 RMI_DATA_CREATE command
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.12 RMI_REC_CREATE command
• B4.3.15 RMI_RTT_CREATE command

A2.2.3 Granule lifecycle

A2.2.3.1 States

DMPLGT The states of a Granule are listed below.

For each state, the corresponding GPT entry value is shown.

Granule state Description GPT entry

UNDELEGATED
Not delegated for use by the RMM.

Not GPT_REALM

DELEGATED
Delegated for use by the RMM.

GPT_REALM

RD
Realm Descriptor.

GPT_REALM

REC
Realm Execution Context.

GPT_REALM

REC_AUX
Realm Execution Context auxiliary Granule.

GPT_REALM

DATA
Realm code or data.

GPT_REALM

RTT
Realm Translation Table.

GPT_REALM

IMPGJV If the state of a Granule is UNDELEGATED then the RMM does not prevent the GPT entry of the Granule from
being changed by another agent to any value except GPT_REALM.

DVRSKZ An NS Granule is a Granule whose GPT entry is GPT_NS.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter A2. Concepts
A2.2. Granule

A2.2.3.2 State transitions

IZJBTT Permitted Granule state transitions are shown in the following table. The rightmost column lists the events which
can cause the corresponding state transition.

From state To state Events

UNDELEGATED DELEGATED RMI_GRANULE_DELEGATE

DELEGATED UNDELEGATED RMI_GRANULE_UNDELEGATE

DELEGATED RD RMI_REALM_CREATE

RD DELEGATED RMI_REALM_DESTROY

DELEGATED DATA RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

DATA DELEGATED RMI_DATA_DESTROY

DELEGATED REC RMI_REC_CREATE

REC DELEGATED RMI_REC_DESTROY

DELEGATED REC_AUX RMI_REC_CREATE

REC_AUX DELEGATED RMI_REC_DESTROY

DELEGATED RTT RMI_REALM_CREATE
RMI_RTT_CREATE

RTT DELEGATED RMI_REALM_DESTROY
RMI_RTT_DESTROY

IVVGVM Permitted Granule state transitions are shown in the following figure. Each arc is labeled with the events which
can cause the corresponding state transition.

UNDELEGATED

RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

RD

REC

REC_AUX

DATA

RTT

RMI_DATA_DESTROY

RMI_REC_CREATE

RMI_REC_DESTROY

RMI_REALM_DESTROY

RMI_REALM_CREATE

RMI_REC_CREATE

DELEGATED

RMI_REC_DESTROY

RMI_REALM_CREATE
RMI_RTT_CREATE

RMI_REALM_DESTROY
RMI_RTT_DESTROY

RMI_GRANULE_DELEGATE

RMI_GRANULE_UNDELEGATE

Figure A2.2: Granule state transitions

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter A2. Concepts
A2.2. Granule

See also:

• B4.3.1 RMI_DATA_CREATE command
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.5 RMI_GRANULE_DELEGATE command
• B4.3.6 RMI_GRANULE_UNDELEGATE command
• B4.3.9 RMI_REALM_CREATE command
• B4.3.10 RMI_REALM_DESTROY command
• B4.3.12 RMI_REC_CREATE command
• B4.3.13 RMI_REC_DESTROY command
• B4.3.15 RMI_RTT_CREATE command
• B4.3.16 RMI_RTT_DESTROY command

A2.2.4 Granule wiping

RTMGSL When the state of a Granule has transitioned from P to DELEGATED and then to any other state, any content
associated with P has been wiped.

XCTGQZ Any sequence of Granule state transitions which passes through the DELEGATED state causes the Granule
contents to be wiped. This is necessary to ensure that information does not leak from one Realm to another, or from
a Realm to the Host. Note that no agent can observe the contents of a Granule while its state is DELEGATED.

DWTWJR Wiping is an operation which changes the observable value of a memory location from X to Y, such that the value X
cannot be determined from the value Y.

RBSXXV Wiping of a memory location does not reveal, directly or indirectly, any confidential Realm data.

IMRPCQ Wiping is not guaranteed to be implemented as zero filling.

SVJWYH Realm software should not assume that the initial contents of uninitialized memory (that is, Realm IPA space
which is backed by DATA Granules created using RMI_DATA_CREATE_UNKNOWN) are zero.

See also:

• Arm CCA Security model [4]
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.6 RMI_GRANULE_UNDELEGATE command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter A2. Concepts
A2.3. Realm Execution Context

A2.3 Realm Execution Context

This section describes the concept of a Realm Execution Context (REC).

A2.3.1 Overview

DLRFCP A Realm Execution Context (REC) is an R-EL0&1 execution context which is associated with a Realm VPE.

A REC object is an RMM data structure which is used to store the register state of a REC.

See also:

• A2.1.2 Realm execution environment
• Chapter A4 Realm exception model

A2.3.2 REC attributes

This section describes the attributes of a REC.

DZLGLT A REC attribute is a property of a REC whose value can be observed or modified either by the Host or by the
Realm which owns the REC.

ICSGGT Examples of ways in which a REC attribute may be observable include the outcome of an RMM command, and
the PE state following Realm entry.

DLQSFT The attributes of a REC are summarized in the following table.

Name Type Description

attest_state RmmRecAttestState Attestation token generation state

attest_challenge Bits512 Challenge for under-construction attestation token

aux Address[16] Addresses of auxiliary Granules

emulatable_abort RmmRecEmulatableAbort Whether the most recent exit from this REC was due to
an Emulatable Data Abort

flags RmmRecFlags Flags which control REC behavior

gprs Bits64[32] General-purpose register values

mpidr Bits64 MPIDR value

owner Address PA of RD of Realm which owns this REC

pc Bits64 Program counter value

psci_pending RmmPsciPending Whether a PSCI request is pending

state RmmRecState Lifecycle state

sysregs RmmSystemRegisters EL1 and EL0 system register values

ripas_addr Address Next address to be processed in RIPAS change

ripas_top Address Top address of pending RIPAS change

ripas_value RmmRipas RIPAS value of pending RIPAS change

ripas_destroyed RmmRipasChangeDestroyed Whether a RIPAS change from DESTROYED should be
permitted

ripas_response RmmRecResponse Host response to RIPAS change request

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter A2. Concepts
A2.3. Realm Execution Context

host_call_pending RmmHostCallPending Whether a Host call is pending

IPVMTY The aux attribute of a REC is a list of auxiliary Granules.

IRWFZF The number of auxiliary Granules required for a REC is returned by the RMI_REC_AUX_COUNT command.

XLRWHB Depending on the configuration of the CCA platform and of the Realm, the amount of storage space required for a
REC may exceed a single Granule.

ITGLBK The number of auxiliary Granules required for a REC can vary between Realms on a CCA platform.

RMMBNR The number of auxiliary Granules required for a REC is a constant for the lifetime of a given Realm.

IBGVRT The gprs attribute of a REC is the set of general-purpose register values which are saved by the RMM on exit from
the REC and restored by the RMM on entry to the REC.

IFPJDL The mpidr attribute of a REC is a value which can be used to identify the VPE associated with the REC.

IBLVKZ The pc attribute of a REC is the program counter which is saved by the RMM on exit from the REC and restored
by the RMM on entry to the REC.

IGHFNQ The runnable flag of a REC determines whether the REC is eligible for execution. The RMI_REC_ENTER
command results in a REC entry only if the value of the flag is RUNNABLE.

ISCCMH The runnable flag of a REC is controlled by the Realm. Its initial value is reflected in the Realm Initial Measurement,
and during Realm execution its value can be changed by execution of the PSCI_CPU_ON and PSCI_CPU_OFF
commands.

IPMYBG The state attribute of a REC is controlled by the Host, by execution of the RMI_REC_ENTER command.

DCDXDZ The sysregs attribute of a REC is the set of system register values which are saved by the RMM on exit from the
REC and restored by the RMM on entry to the REC.

See also:

• A2.3.3 REC index and MPIDR value
• A2.3.4 REC lifecycle
• A4.3.4.3 REC exit due to Data Abort
• B4.3.14 RMI_REC_ENTER command
• B6.3.2 PSCI_CPU_OFF command
• B6.3.3 PSCI_CPU_ON command
• C1.19 RmmRec type

A2.3.3 REC index and MPIDR value

DKQVHN The REC index is the unsigned integer value generated by concatenation of MPIDR fields:

index = Aff3:Aff2:Aff1:Aff0[3:0]

This is illustrated by the following table.

REC index Aff3 Aff2 Aff1 Aff0[3:0]

0 0 0 0 0

1 0 0 0 1

.

16 0 0 1 0

.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter A2. Concepts
A2.3. Realm Execution Context

REC index Aff3 Aff2 Aff1 Aff0[3:0]

4096 0 1 0 0

.

1048576 1 0 0 0

.

IPVLZY The Aff0[7:4] field of a REC MPIDR value is RES0 for compatibility with GICv3.

ITTWVM When creating the nth REC in a Realm, the Host is required to use the MPIDR corresponding to REC index n.

See also:

• B3.38 RecIndex function
• B4.3.12 RMI_REC_CREATE command
• B4.4.18 RmiRecMpidr type

A2.3.4 REC lifecycle

A2.3.4.1 States

DHTXQY The states of a REC are listed below.

State Description

REC_READY REC is not currently running.

REC_RUNNING REC is currently running.

A2.3.4.2 State transitions

IPHMWT Permitted REC state transitions are shown in the following table. The rightmost column lists the events which can
cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of a REC object. A transition to the pseudo-state
NULL represents destruction of a REC object.

From state To state Events

NULL REC_READY RMI_REC_CREATE

REC_READY NULL RMI_REC_DESTROY

REC_READY REC_RUNNING RMI_REC_ENTER

REC_RUNNING REC_READY Return from RMI_REC_ENTER

IFNSTJ Permitted REC state transitions are shown in the following figure. Each arc is labeled with the events which can
cause the corresponding state transition.

A transition from the pseudo-state NULL represents creation of a REC. A transition to the pseudo-state NULL
represents destruction of a REC.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter A2. Concepts
A2.3. Realm Execution Context

REC_READY

REC_RUNNING

NULL

RMI_REC_CREATE

RMI_REC_DESTROY

RMI_REC_ENTER Return from
RMI_REC_ENTER

Figure A2.3: REC state transitions

ILYXCN The maximum number of RECs per Realm is an IMPLEMENTATION DEFINED value which is discoverable via
RMI_FEATURES.

See also:

• B4.3.12 RMI_REC_CREATE command
• B4.3.13 RMI_REC_DESTROY command
• B4.3.14 RMI_REC_ENTER command

See also:

• B4.3.4 RMI_FEATURES command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter A3
Realm creation

This section describes the process of creating a Realm.

See also:

• A2.1 Realm
• D1.2 Realm lifecycle flows

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

A3.1 Realm feature discovery and selection

IGJSMC RMM implementations across different CCA platforms may support disparate features and may offer disparate
configuration options for Realms.

IYRSDX The features supported by an RMI implementation are discovered by reading feature pseudo-register values using
the RMI_FEATURES command.

XWPHWG The term pseudo-register is used because, although these values are stored in memory, their usage model is similar
to feature registers specified in the Arm A-profile architecture.

IQNJTQ On Realm creation, the Host specifies a set of desired features in a Realm parameters structure to the
RMI_REALM_CREATE command. The RMM checks that the features specified by the Host are supported by the
implementation.

IRRHJJ The features specified at Realm creation time are included in the Realm Initial Measurement.

IZHXGX The features supported by an RSI implementation are discovered by reading feature pseudo-register values using
the RSI_FEATURES command.

See also:

• A2.1.6 Realm parameters
• A7.1.1 Realm Initial Measurement
• B4.3.4 RMI_FEATURES command
• B4.3.9 RMI_REALM_CREATE command
• B5.3.3 RSI_FEATURES command

A3.1.1 Realm hash algorithm

IWMKGX The set of hash algorithms supported by the implementation is reported by the RMI_FEATURES command in
RmiFeatureRegister0.

RKPBQM Requesting an unsupported hash algorithm causes execution of RMI_REALM_CREATE to fail.

See also:

• A7.1 Realm measurements
• B4.3.9 RMI_REALM_CREATE command
• B4.4.6 RmiFeatureRegister0 type

A3.1.2 Realm LPA2 and IPA width

IGVJMZ Support by the implementation for LPA2 is reported by the RMI_FEATURES command in RmiFeatureRegister0.

INKLXQ Usage of LPA2 for Realm Translation Tables is an attribute which is set by the Host during Realm creation.

ILKJGN Realm IPA width is an attribute which is set by the Host during Realm creation.

RSZVDK Requesting an unsupported IPA width (for example, smaller than the minimum supported, or larger than the
maximum supported) causes execution of RMI_REALM_CREATE to fail.

IGKCCS The Host can choose a smaller IPA width than the maximum supported IPA width reported by RMI_FEATURES.
This is true regardless of whether LPA2 is enabled for the Realm.

XFTVXQ The Host may want to enable LPA2 for a Realm due to either or both of the following reasons:

• to allow the Realm to be configured with a larger IPA width
• to allow access from mappings in the Realm’s stage 2 translation to a larger PA space

IXDBQB A Realm can query its IPA width using the RSI_REALM_CONFIG command.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

IFSNMG If LPA2 is not enabled for a Realm then passing a PA greater than or equal to 2^48 to any of the following
commands causes an error to be returned:

• RMI_DATA_CREATE
• RMI_DATA_CREATE_UNKNOWN
• RMI_RTT_CREATE
• RMI_RTT_MAP_UNPROTECTED

See also:

• A5.2.1 Realm IPA space
• B4.3.9 RMI_REALM_CREATE command
• B4.4.6 RmiFeatureRegister0 type
• B5.3.9 RSI_REALM_CONFIG command

A3.1.3 Realm support for Scalable Vector Extension

IKJVLJ Support by the implementation for the Scalable Vector Extension (FEAT_SVE) is reported by the RMI_FEATURES
command in RmiFeatureRegister0.

IZJSMJ Availability of SVE to a Realm is set by the Host during Realm creation.

IVNLNH SVE vector length for a Realm is set by the Host during Realm creation.

RFZZDS Requesting a larger-than-supported SVE vector length causes execution of RMI_REALM_CREATE to fail. This
is different from the behaviour of the hardware architecture, in which a larger-than-supported SVE vector length
value is silently truncated.

XYGWTK The RMI ABI provides a natural mechanism to signal an invalid feature selection, via the return code of
RMI_REALM_CREATE. The analog in the hardware architecture would be to generate an illegal exception
return, which would cause undesirable coupling between two disparate parts of the architecture, namely the
exception model and the SVE feature.

RNBYKC If SVE is supported by the platform but is disabled for the Realm via the RMI_REALM_CREATE command then
a read of ID_AA64PFR0_EL1.SVE indicates that SVE is not supported.

UZRJXL The RMM should trap and emulate reads of ID_AA64PFR0_EL1.SVE.

SVXRNN A Realm should discover SVE support by reading ID_AA64PFR0_EL1.SVE rather than based on the platform
identity read from MIDR_EL1.

See also:

• B4.3.9 RMI_REALM_CREATE command
• B4.4.6 RmiFeatureRegister0 type

A3.1.4 Realm support for self-hosted debug

ISSTJD Self-hosted debug is always available in Armv8-A.

ILVMFG The number of breakpoints and watchpoints are attributes which are set by the Host during Realm creation.

RCJQTB Requesting a number of breakpoints which is larger than the number of breakpoints available causes execution of
RMI_REALM_CREATE to fail.

RPLMDH Requesting a number of watchpoints which is larger than the number of watchpoints available causes execution of
RMI_REALM_CREATE to fail.

See also:

• B4.3.9 RMI_REALM_CREATE command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter A3. Realm creation
A3.1. Realm feature discovery and selection

A3.1.5 Realm support for Performance Monitors Extension

IRVCQD Support by the implementation for the Performance Monitors Extension (FEAT_PMU) is reported by the
RMI_FEATURES command in RmiFeatureRegister0.

INHCFC Availability of PMU to a Realm is set by the Host during Realm creation.

IXZMKC The number of PMU counters available to a Realm is set by the Host during Realm creation.

RXVRGD Requesting a number of PMU counters which is larger than the number of PMU counters available causes
RMI_REALM_CREATE to fail.

See also:

• A8.1 Realm PMU
• B4.3.9 RMI_REALM_CREATE command
• B4.4.6 RmiFeatureRegister0 type

A3.1.6 Realm support for Activity Monitors Extension

RJJVZS The Activity Monitors Extension (FEAT_AMUv1) is not available to a Realm.

A3.1.7 Realm support for Statistical Profiling Extension

RDCBNL The Statistical Profiling Extension (FEAT_SPE) is not available to a Realm.

A3.1.8 Realm support for Trace Buffer Extension

RNXDXG The Trace Buffer Extension (FEAT_TRBE) is not available to a Realm.

A3.1.9 Number of GICv3 List Registers

IFLRMX The number of GICv3 List Registers which can be provided by the Host via the RMI_REC_ENTER command is
reported by the RMI_FEATURES command in RmiFeatureRegister0.

XJHNQX Making the number of GICv3 List Registers discoverable via RMI allows the RMM to reserve List Registers for
its own usage.

See also:

• B4.3.14 RMI_REC_ENTER command
• B4.4.6 RmiFeatureRegister0 type

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter A4
Realm exception model

This section describes how Realms are executed, and how exceptions which cause exit from a Realm are handled.

See also:

• A2.1.2 Realm execution environment

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter A4. Realm exception model
A4.1. Exception model overview

A4.1 Exception model overview

DHCGWL A Realm entry is a transfer of control to a Realm.

DRMGWJ A Realm exit is a transition of control from a Realm.

ISMPWB When executing in a Realm, an exception taken to R-EL2 or EL3 results in a Realm exit.

DXSNZP A REC entry is a Realm entry due to execution of RMI_REC_ENTER.

IFQZJG The Host provides the address of a REC as an input to the RMI_REC_ENTER command.

IMDQWG In this chapter, both rec and “the target REC” refer to the REC object which is provided to the RMI_REC_ENTER
command.

DBLJGY A RecRun object is a data structure used to pass values between the RMM and the Host on REC entry and on REC
exit.

IVCCFV A RecRun object is stored in Non-secure memory.

IWBHYZ The Host provides the address of a RecRun object as an input to the RMI_REC_ENTER command.

IHMSQM An implementation is permitted to return RMI_SUCCESS from RMI_REC_ENTER without performing a REC
entry. For example, on observing a pending interrupt, the implementation can generate a REC exit due to IRQ
without entering the target REC.

DTJCGH A REC exit is return from an execution of RMI_REC_ENTER which caused a REC entry.

IHPWVY The following diagram summarises the possible control flows that result from a Realm exit.

RMM Hypervisor SPM

Monitor

Realm Security state Non-secure
Security state

Secure
Security state

EL0

EL1

EL2

EL3

Realm

Root Security state

a b c d e

Figure A4.1: Realm exit paths

a. The exception is taken to EL3. The Monitor handles the exception and returns control to the Realm.

b. The exception is taken to EL3. The Monitor pre-empts Realm Security state and passes control to the Secure
Security state. This may be for example due to an FIQ.

c. The exception is taken to EL2. The RMM decides to perform a REC exit. The RMM executes an SMC
instruction, requesting the Monitor to pass control to the Non-secure Security state.

d. The exception is taken to EL2. The RMM executes an SMC instruction, requesting the Monitor to perform
an operation, then returns control to the Realm.

e. The exception is taken to EL2. The RMM handles the exception and returns control to the Realm.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter A4. Realm exception model
A4.1. Exception model overview

See also:

• A4.2 REC entry
• A4.3 REC exit
• B4.3.14 RMI_REC_ENTER command
• B4.4.20 RmiRecRun type

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter A4. Realm exception model
A4.2. REC entry

A4.2 REC entry

This section describes REC entry.

See also:

• A4.3 REC exit
• B4.3.14 RMI_REC_ENTER command

A4.2.1 RmiRecEnter object

DSVSJM An RmiRecEnter object is a data structure used to pass values from the Host to the RMM on REC entry.

IYSKDN An RmiRecEnter object is stored in the RecRun object which is passed by the Host as an input to the
RMI_REC_ENTER command.

ITRKKX On REC entry, execution state is restored from the REC object and from the RmiRecEnter object to the PE.

IGHDLM An RmiRecEnter object contains attributes which are used to manage Realm virtual interrupts.

DCLNLW The attributes of an RmiRecEnter object are summarized in the following table.

Name Byte offset Type Description

flags 0x0 RmiRecEnterFlags Flags

gprs[0] 0x200 Bits64 Registers

gprs[1] 0x208 Bits64 Registers

gprs[2] 0x210 Bits64 Registers

gprs[3] 0x218 Bits64 Registers

gprs[4] 0x220 Bits64 Registers

gprs[5] 0x228 Bits64 Registers

gprs[6] 0x230 Bits64 Registers

gprs[7] 0x238 Bits64 Registers

gprs[8] 0x240 Bits64 Registers

gprs[9] 0x248 Bits64 Registers

gprs[10] 0x250 Bits64 Registers

gprs[11] 0x258 Bits64 Registers

gprs[12] 0x260 Bits64 Registers

gprs[13] 0x268 Bits64 Registers

gprs[14] 0x270 Bits64 Registers

gprs[15] 0x278 Bits64 Registers

gprs[16] 0x280 Bits64 Registers

gprs[17] 0x288 Bits64 Registers

gprs[18] 0x290 Bits64 Registers

gprs[19] 0x298 Bits64 Registers

gprs[20] 0x2a0 Bits64 Registers

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter A4. Realm exception model
A4.2. REC entry

Name Byte offset Type Description

gprs[21] 0x2a8 Bits64 Registers

gprs[22] 0x2b0 Bits64 Registers

gprs[23] 0x2b8 Bits64 Registers

gprs[24] 0x2c0 Bits64 Registers

gprs[25] 0x2c8 Bits64 Registers

gprs[26] 0x2d0 Bits64 Registers

gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers

gprs[30] 0x2f0 Bits64 Registers

gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value

gicv3_lrs[0] 0x308 Bits64 GICv3 List Register values

gicv3_lrs[1] 0x310 Bits64 GICv3 List Register values

gicv3_lrs[2] 0x318 Bits64 GICv3 List Register values

gicv3_lrs[3] 0x320 Bits64 GICv3 List Register values

gicv3_lrs[4] 0x328 Bits64 GICv3 List Register values

gicv3_lrs[5] 0x330 Bits64 GICv3 List Register values

gicv3_lrs[6] 0x338 Bits64 GICv3 List Register values

gicv3_lrs[7] 0x340 Bits64 GICv3 List Register values

gicv3_lrs[8] 0x348 Bits64 GICv3 List Register values

gicv3_lrs[9] 0x350 Bits64 GICv3 List Register values

gicv3_lrs[10] 0x358 Bits64 GICv3 List Register values

gicv3_lrs[11] 0x360 Bits64 GICv3 List Register values

gicv3_lrs[12] 0x368 Bits64 GICv3 List Register values

gicv3_lrs[13] 0x370 Bits64 GICv3 List Register values

gicv3_lrs[14] 0x378 Bits64 GICv3 List Register values

gicv3_lrs[15] 0x380 Bits64 GICv3 List Register values

IZWRQP In this chapter, both enter and “the RmiRecEnter object” refer to the RmiRecEnter object which is provided to
the RMI_REC_ENTER command.

ILFYDV On REC entry, all enter fields are ignored unless specified otherwise.

See also:

• A2.3 Realm Execution Context
• A4.3.1 RmiRecExit object
• Chapter A6 Realm interrupts and timers
• B4.4.14 RmiRecEnter type

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter A4. Realm exception model
A4.2. REC entry

A4.2.2 General purpose registers restored on REC entry

RNMSFT On REC entry, if the most recent exit from the target REC was a REC exit due to PSCI, then all of the following
occur:

• X0 to X6 contain the PSCI return code and PSCI output values.
• GPR values X7 to X30 are restored from the REC object to the PE.

RRZRRM On REC entry, if either this is the first entry to this REC, or the most recent exit from the target REC was not a
REC exit due to PSCI, then GPR values X0 to X30 are restored from the REC object to the PE.

RYSNYQ On REC entry, if rec.host_call_pending is HOST_CALL_PENDING, then GPR values X0 to X30 are
copied from enter.gprs[0..30] to the RsiHostCall data structure.

RYWHKC On REC entry, if writing to the RsiHostCall data structure fails due to the target IPA not being mapped then a REC
exit to Data Abort results.

RTZVNK On REC entry, if writing to the RsiHostCall data structure succeeds then rec.host_call_pending is
NO_HOST_CALL_PENDING.

RNLVXB On REC entry, if RMM access to enter causes a GPF then the RMI_REC_ENTER command fails with
RMI_ERROR_INPUT.

See also:

• A4.3.3 General purpose registers saved on REC exit
• A4.3.4.3 REC exit due to Data Abort
• A4.3.7 REC exit due to PSCI
• A4.3.9 REC exit due to Host call
• A4.5 Host call

A4.2.3 REC entry following REC exit due to Data Abort

RTWMDB On REC entry, if enter.flags.inject_sea == RMI_INJECT_SEA then the value of enter.flags.

↪→emul_mmio is ignored.

RBWZKH On REC entry, if the most recent exit from the target REC was a REC exit due to Emulatable Data Abort and
enter.flags.emul_mmio == RMI_EMULATED_MMIO, then the return address is the next instruction following
the faulting instruction.

RSCJWG On REC entry, if the most recent exit from the target REC was a REC exit due to Emulatable Data Abort and the
Realm memory access was a read and enter.flags.emul_mmio == RMI_EMULATED_MMIO, then the register
indicated by ESR_EL2.ISS.SRT is set to enter.gprs[0].

IKNFDT On execution of RMI_REC_ENTER, if the most recent exit from the target REC was not a REC exit
due to Emulatable Data Abort and enter.flags.emul_mmio == RMI_EMULATED_MMIO, then the
RMI_REC_ENTER command fails.

RLJWRK On REC entry, if the most recent exit from the target REC was a REC exit due to Data Abort at an Unprotected
IPA and enter.flags.inject_sea == RMI_INJECT_SEA, then a Synchronous External Abort is taken to the
Realm.

See also:

• A4.3.4.3 REC exit due to Data Abort
• A4.4 Emulated Data Aborts
• A5.2.6 Realm access to an Unprotected IPA
• A5.2.7 Synchronous External Aborts

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter A4. Realm exception model
A4.3. REC exit

A4.3 REC exit

This section describes REC exit.

See also:

• A4.2 REC entry
• B4.3.14 RMI_REC_ENTER command

A4.3.1 RmiRecExit object

DPBDCB An RmiRecExit object is a data structure used to pass values from the RMM to the Host on REC exit.

IVHJTL An RmiRecExit object is stored in the RecRun object which is passed by the Host as an input to the
RMI_REC_ENTER command.

IJKWPB On REC exit, execution state is saved from the PE to the REC object and to the RmiRecExit object.

IZSCNM An RmiRecExit object contains attributes which are used to manage Realm virtual interrupts and Realm timers.

DFFCMN The attributes of an RmiRecExit object are summarized in the following table.

Name Byte offset Type Description

exit_reason 0x0 RmiRecExitReason Exit reason

esr 0x100 Bits64 Exception Syndrome Register

far 0x108 Bits64 Fault Address Register

hpfar 0x110 Bits64 Hypervisor IPA Fault Address register

gprs[0] 0x200 Bits64 Registers

gprs[1] 0x208 Bits64 Registers

gprs[2] 0x210 Bits64 Registers

gprs[3] 0x218 Bits64 Registers

gprs[4] 0x220 Bits64 Registers

gprs[5] 0x228 Bits64 Registers

gprs[6] 0x230 Bits64 Registers

gprs[7] 0x238 Bits64 Registers

gprs[8] 0x240 Bits64 Registers

gprs[9] 0x248 Bits64 Registers

gprs[10] 0x250 Bits64 Registers

gprs[11] 0x258 Bits64 Registers

gprs[12] 0x260 Bits64 Registers

gprs[13] 0x268 Bits64 Registers

gprs[14] 0x270 Bits64 Registers

gprs[15] 0x278 Bits64 Registers

gprs[16] 0x280 Bits64 Registers

gprs[17] 0x288 Bits64 Registers

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter A4. Realm exception model
A4.3. REC exit

Name Byte offset Type Description

gprs[18] 0x290 Bits64 Registers

gprs[19] 0x298 Bits64 Registers

gprs[20] 0x2a0 Bits64 Registers

gprs[21] 0x2a8 Bits64 Registers

gprs[22] 0x2b0 Bits64 Registers

gprs[23] 0x2b8 Bits64 Registers

gprs[24] 0x2c0 Bits64 Registers

gprs[25] 0x2c8 Bits64 Registers

gprs[26] 0x2d0 Bits64 Registers

gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers

gprs[30] 0x2f0 Bits64 Registers

gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value

gicv3_lrs[0] 0x308 Bits64 GICv3 List Register values

gicv3_lrs[1] 0x310 Bits64 GICv3 List Register values

gicv3_lrs[2] 0x318 Bits64 GICv3 List Register values

gicv3_lrs[3] 0x320 Bits64 GICv3 List Register values

gicv3_lrs[4] 0x328 Bits64 GICv3 List Register values

gicv3_lrs[5] 0x330 Bits64 GICv3 List Register values

gicv3_lrs[6] 0x338 Bits64 GICv3 List Register values

gicv3_lrs[7] 0x340 Bits64 GICv3 List Register values

gicv3_lrs[8] 0x348 Bits64 GICv3 List Register values

gicv3_lrs[9] 0x350 Bits64 GICv3 List Register values

gicv3_lrs[10] 0x358 Bits64 GICv3 List Register values

gicv3_lrs[11] 0x360 Bits64 GICv3 List Register values

gicv3_lrs[12] 0x368 Bits64 GICv3 List Register values

gicv3_lrs[13] 0x370 Bits64 GICv3 List Register values

gicv3_lrs[14] 0x378 Bits64 GICv3 List Register values

gicv3_lrs[15] 0x380 Bits64 GICv3 List Register values

gicv3_misr 0x388 Bits64 GICv3 Maintenance Interrupt State Register
value

gicv3_vmcr 0x390 Bits64 GICv3 Virtual Machine Control Register
value

cntp_ctl 0x400 Bits64 Counter-timer Physical Timer Control
Register value

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter A4. Realm exception model
A4.3. REC exit

Name Byte offset Type Description

cntp_cval 0x408 Bits64 Counter-timer Physical Timer CompareValue
Register value

cntv_ctl 0x410 Bits64 Counter-timer Virtual Timer Control Register
value

cntv_cval 0x418 Bits64 Counter-timer Virtual Timer CompareValue
Register value

ripas_base 0x500 Bits64 Base address of target region for pending
RIPAS change

ripas_top 0x508 Bits64 Top address of target region for pending
RIPAS change

ripas_value 0x510 RmiRipas RIPAS value of pending RIPAS change

imm 0x600 Bits16 Host call immediate value

pmu_ovf_status 0x700 RmiPmuOverflowStatus PMU overflow status

IFQZXZ In this chapter, both exit and “the RmiRecExit object” refer to the RmiRecExit object which is provided to the
RMI_REC_ENTER command.

RPNWZV On REC exit, all exit fields are zero unless specified otherwise.

See also:

• A2.3 Realm Execution Context
• A4.2.1 RmiRecEnter object
• A4.5 Host call
• Chapter A6 Realm interrupts and timers
• Chapter A8 Realm debug and performance monitoring
• B4.4.16 RmiRecExit type

A4.3.2 Realm exit reason

IDYWHJ On return from the RMI_REC_ENTER command, the reason for the REC exit is indicated by exit.exit_reason
and exit.esr.

See also:

• B4.4.17 RmiRecExitReason type

A4.3.3 General purpose registers saved on REC exit

RPBKVB On REC exit due to PSCI, all of the following are true:

• exit.gprs[0] contains the PSCI FID.
• exit.gprs[1..3] contain the corresponding PSCI arguments. If the PSCI command has fewer than 3

arguments, the remaining values contain zero.
• GPR values X7 to X30 are saved from the PE to the REC object.

RFNZKM On REC exit for any reason which is not REC exit due to PSCI, GPR values X0 to X30 are saved from the PE to
the REC.

RMZGPT On REC exit for any reason which is neither REC exit due to Host call nor REC exit due to PSCI, exit.gprs is
zero.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter A4. Realm exception model
A4.3. REC exit

RFRGVT On REC exit, if RMM access to exit causes a GPF then the RMI_REC_ENTER command fails with
RMI_ERROR_INPUT.

See also:

• A4.2.2 General purpose registers restored on REC entry
• A4.3.7 REC exit due to PSCI
• A4.3.9 REC exit due to Host call

A4.3.4 REC exit due to synchronous exception

ISNDHF A synchronous exception taken to R-EL2 can cause a REC exit.

IRPSNC The following table summarises the behavior of synchronous exceptions taken to R-EL2.

Exception class Behavior

Trapped WFI or WFE instruction execution REC exit due to WFI or WFE

HVC instruction execution in AArch64 state Unknown exception taken to Realm

SMC instruction execution in AArch64 state One of:
• REC exit due to PSCI
• RSI command handled by RMM, followed by

return to Realm
Trapped MSR, MRS or System instruction execution in
AArch64 state

Emulated by RMM, followed by return to Realm

Instruction Abort from a lower Exception level REC exit due to Instruction Abort

Data Abort from a lower Exception level REC exit due to Data Abort

RYLFMD Realm execution of an SMC which is not part of one of the following ABIs results in a return value of
SMCCC_NOT_SUPPORTED:

• PSCI
• RSI

See also:

• A4.5 Host call
• Chapter B5 Realm Services Interface
• Chapter B6 Power State Control Interface

A4.3.4.1 REC exit due to WFI or WFE

DGLHPX A REC exit due to WFI or WFE is a REC exit due to WFI, WFIT, WFE or WFET instruction execution in a Realm.

RVTJQF On WFI or WFIT instruction execution in a Realm, a REC exit due to WFI or WFE is caused if enter.trap_wfi
is RMI_TRAP.

RGBNGW On WFE or WFET instruction execution in a Realm, a REC exit due to WFI or WFE is caused if enter.trap_wfe
is RMI_TRAP.

RYQWST On REC exit due to WFI or WFE, all of the following are true:

• exit.exit_reason is RMI_EXIT_SYNC.
• exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.
• exit.esr.ISS.TI contains the value of ESR_EL2.ISS.TI at the time of the Realm exit.
• All other exit fields except for exit.givc3_*, exit_cnt* and exit.pmu_ovf_status are zero.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter A4. Realm exception model
A4.3. REC exit

RBPYBC On REC exit due to WFI or WFE, if the exit was caused by WFET or WFIT instruction execution then
exit.gprs[0] contains the timeout value.

See also:

• A6.1 Realm interrupts
• A6.2 Realm timers
• A8.1 Realm PMU

A4.3.4.2 REC exit due to Instruction Abort

DGYQXK A REC exit due to Instruction Abort is a REC exit due to a Realm instruction fetch from a Protected IPA for which
either of the following is true:

• HIPAS is UNASSIGNED and RIPAS is RAM
• RIPAS is DESTROYED

RMGWRC On REC exit due to Instruction Abort, all of the following are true:

• exit.exit_reason is RMI_EXIT_SYNC.
• exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.
• exit.esr.ISS.SET contains the value of ESR_EL2.ISS.SET at the time of the Realm exit.
• exit.esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.
• exit.esr.ISS.IFSC contains the value of ESR_EL2.ISS.IFSC at the time of the Realm exit.
• exit.hpfar contains the value of HPFAR_EL2 at the time of the Realm exit.
• All other exit fields except for exit.givc3_*, exit_cnt* and exit.pmu_ovf_status are zero.

See also:

• A5.2.2 Realm IPA state
• A5.2.3 Realm access to a Protected IPA
• A6.1 Realm interrupts
• A6.2 Realm timers
• A8.1 Realm PMU

A4.3.4.3 REC exit due to Data Abort

DCYRMT A REC exit due to Emulatable Data Abort is a REC exit due to a Realm data access to one of the following:

• an Unprotected IPA whose HIPAS is UNASSIGNED_NS, where the access caused ESR_EL2.ISS.ISV to
be set to '1'

• an Unprotected IPA whose HIPAS is ASSIGNED_NS, where the access caused a stage 2 permission fault
and caused ESR_EL2.ISS.ISV to be set to '1'

DMTZMC A REC exit due to Non-emulatable Data Abort is a REC exit due to a Realm data access to one of the following:

• an Unprotected IPA whose HIPAS is UNASSIGNED_NS, where the access caused ESR_EL2.ISS.ISV to
be set to '0'

• an Unprotected IPA whose HIPAS is ASSIGNED_NS, where the access caused a stage 2 permission fault
and caused ESR_EL2.ISS.ISV to be set to '0'

• a Protected IPA whose HIPAS is UNASSIGNED and whose RIPAS is RAM
• a Protected IPA whose RIPAS is DESTROYED.

RRYVFL On REC exit due to Data Abort, all of the following are true:

• exit.exit_reason is RMI_EXIT_SYNC.
• exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.
• exit.esr.ISS.SET contains the value of ESR_EL2.ISS.SET at the time of the Realm exit.
• exit.esr.ISS.FnV contains the value of ESR_EL2.ISS.FnV at the time of the Realm exit.
• exit.esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.
• exit.esr.ISS.DFSC contains the value of ESR_EL2.ISS.DFSC at the time of the Realm exit.
• exit.hpfar contains the value of HPFAR_EL2 at the time of the Realm exit.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter A4. Realm exception model
A4.3. REC exit

On REC exit due to Emulatable Data Abort, all of the following are true:

• rec.emulatable_abort is EMULATABLE_ABORT.
• exit.esr.ISS.ISV contains the value of ESR_EL2.ISS.ISV at the time of the Realm exit.
• exit.esr.ISS.SAS contains the value of ESR_EL2.ISS.SAS at the time of the Realm exit.
• exit.esr.ISS.SF contains the value of ESR_EL2.ISS.SF at the time of the Realm exit.
• exit.esr.ISS.WnR contains the value of ESR_EL2.ISS.WnR at the time of the Realm exit.
• exit.far contains the value of FAR_EL2 at the time of the Realm exit, with bits more significant than the

size of a Granule masked to zero.

On REC exit due to Non-emulatable Data Abort at an Unprotected IPA, all of the following are true:

• exit.esr.IL contains the value of ESR_EL2.IL at the time of the Realm exit.

On REC exit due to Data Abort, all other exit fields except for exit.givc3_*, exit_cnt* and
exit.pmu_ovf_status are zero.

XXHXJC On REC exit due to Emulatable Data Abort, ESR_EL2.ISS.SSE is not propagated to the Host. This is because
this field is used to emulate sign extension on loads, which must be performed by the RMM so that the Realm can
rely on architecturally correct behavior of the virtual execution environment.

XHSWFR On REC exit due to Emulatable Data Abort, the Host can calculate the faulting IPA from the exit.hpfar and
exit.far values.

RFFNHW On REC exit due to Emulatable Data Abort, if the Realm memory access was a write,
exit.gprs[0] contains the value of the register indicated by ESR_EL2.ISS.SRT at the time of the Realm exit.

RQBTPR On REC exit not due to Emulatable Data Abort, rec.emulatable_abort is NOT_EMULATABLE_ABORT.

See also:

• A4.2.3 REC entry following REC exit due to Data Abort
• A4.4 Emulated Data Aborts
• A5.2.1 Realm IPA space
• A5.2.3 Realm access to a Protected IPA
• A5.2.6 Realm access to an Unprotected IPA
• A6.1 Realm interrupts
• A6.2 Realm timers
• A8.1 Realm PMU

A4.3.5 REC exit due to IRQ

DYLWXK A REC exit due to IRQ is a REC exit due to an IRQ exception which should be handled by the Host.

RTYJSX On REC exit due to IRQ, exit.exit_reason is RMI_EXIT_IRQ.

RCSQXV On REC exit due to IRQ, exit.esr is zero.

See also:

• Chapter A6 Realm interrupts and timers

A4.3.6 REC exit due to FIQ

DZTYMM A REC exit due to FIQ is a REC exit due to an FIQ exception which should be handled by the Host.

RPDSBD On REC exit due to FIQ, exit.exit_reason is RMI_EXIT_FIQ.

RGXZRF On REC exit due to FIQ, exit.esr is zero.

See also:

• Chapter A6 Realm interrupts and timers

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter A4. Realm exception model
A4.3. REC exit

A4.3.7 REC exit due to PSCI

IZSGFP A PSCI function executed by a Realm is either:

• handled by the RMM, returning to the Realm, or
• forwarded by the RMM to the Host via a REC exit due to PSCI.

DRFTQD A REC exit due to PSCI is a REC exit due to Realm PSCI function execution by SMC instruction which was
forwarded by the RMM to the Host.

IVBJXY The following table summarises the behavior of PSCI function execution by a Realm.

PSCI functions not listed in this table are not supported. Calling a non-supported PSCI function results in a return
value of PSCI_NOT_SUPPORTED.

PSCI function
Can result in REC exit
due to PSCI

Requires Host to call
RMI_PSCI_COMPLETE

PSCI_VERSION No -

PSCI_FEATURES No -

PSCI_CPU_SUSPEND Yes No

PSCI_CPU_OFF Yes No

PSCI_CPU_ON Yes Yes

PSCI_AFFINITY_INFO Yes Yes

PSCI_SYSTEM_OFF Yes No

PSCI_SYSTEM_RESET Yes No

RNTZNJ On REC exit due to PSCI, exit.exit_reason is RMI_EXIT_PSCI.

RSXGJK On REC exit due to PSCI, exit.gprs contains sanitised parameters from the PSCI call.

RYTDGT On REC exit due to PSCI, if the command arguments include an MPIDR value, rec.psci_pending is set to
PSCI_REQUEST_PENDING. Otherwise, rec.psci_pending is set to NO_PSCI_REQUEST_PENDING.

IKKFMQ Following REC exit due to PSCI, if rec.psci_pending is PSCI_REQUEST_PENDING, the Host must complete
the request by calling the RMI_PSCI_COMPLETE command, prior to re-entering the REC.

In the call to RMI_PSCI_COMPLETE, the Host provides the target REC, which corresponds to the MPIDR value
provided by the Realm. This is necessary because the RMM does not maintain a mapping from MPIDR values to
REC addresses. The RMM validates that the REC provided by the Host matches the MPIDR value.

In the call to RMI_PSCI_COMPLETE, the Host provides a PSCI status value, which the RMM handles as follows:

• If the Host provides PSCI_SUCCESS, the RMM performs the PSCI operation requested by the Realm. The
result of the PSCI operation is recorded in the REC and returned to the Realm on the next entry to the calling
REC.

• If the Host provides a status value other than PSCI_SUCCESS, the RMM validates that the status code is
permitted for the PSCI operation requested by the Realm. If the status code is permitted, it is recorded in the
REC and returned to the Realm on the next entry to the calling REC.

See also:

• A4.3.3 General purpose registers saved on REC exit
• B3.27 PsciReturnCodePermitted function
• B4.3.7 RMI_PSCI_COMPLETE command
• Chapter B6 Power State Control Interface

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter A4. Realm exception model
A4.3. REC exit

• D1.4 PSCI flows

A4.3.8 REC exit due to RIPAS change pending

DJGCVY A REC exit due to RIPAS change pending is a REC exit due to the Realm issuing a RIPAS change request.

RQSSKK On REC exit due to RIPAS change pending, all of the following are true:

• exit.exit_reason is RMI_EXIT_RIPAS_CHANGE.
• exit.ripas_base is the base address of the region on which a RIPAS change is pending.
• exit.ripas_top is the top address of the region on which a RIPAS change is pending.
• exit.ripas_value is the requested RIPAS value.
• rec.ripas_addr is the base address of the region on which a RIPAS change is pending.
• rec.ripas_top is the top address of the region on which a RIPAS change is pending.
• rec.ripas_value is the requested RIPAS value.

IMCKKH On REC exit due to RIPAS change pending:

• exit holds the base address and the size of the region on which a RIPAS change is pending. These values
inform the Host of the bounds of the RIPAS change request.

• rec holds the next address to be processed in a RIPAS change, and the top of the requested RIPAS change
region. These values are used by the RMM to enforce that the RMI_RTT_SET_RIPAS command can only
apply RIPAS change within the bounds of the RIPAS change request, and to report the progress of the RIPAS
change to the Realm on the next REC entry.

RQRMMN On REC exit not due to RIPAS change pending, all of the following are true:

• rec.ripas_addr is 0
• rec.ripas_top is 0

See also:

• A2.3.2 REC attributes
• A5.4 RIPAS change

A4.3.9 REC exit due to Host call

DWFZXK A REC exit due to Host call is a REC exit due to RSI_HOST_CALL execution in a Realm.

RGTJRP On REC exit due to Host call, all of the following are true:

• rec.host_call_pending is HOST_CALL_PENDING.
• exit.exit_reason is RMI_EXIT_HOST_CALL.
• exit.imm contains the immediate value passed to the RSI_HOST_CALL command.
• exit.gprs[0..30] contain the register values passed to the RSI_HOST_CALL command.
• All other exit fields except for exit.givc3_*, exit_cnt* and exit.pmu_ovf_status are zero.

See also:

• A4.5 Host call
• A6.1 Realm interrupts
• A6.2 Realm timers
• A8.1 Realm PMU
• B5.3.4 RSI_HOST_CALL command

A4.3.10 REC exit due to SError

DPGMHP A REC exit due to SError is a REC exit due to an SError interrupt during Realm execution.

RLRCFP On REC exit due to SError, all of the following occur:

• exit.exit_reason is RMI_EXIT_SERROR.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter A4. Realm exception model
A4.3. REC exit

• exit.esr.EC contains the value of ESR_EL2.EC at the time of the Realm exit.
• exit.esr.ISS.IDS contains the value of ESR_EL2.ISS.IDS at the time of the Realm exit.
• exit.esr.ISS.AET contains the value of ESR_EL2.ISS.AET at the time of the Realm exit.
• exit.esr.ISS.EA contains the value of ESR_EL2.ISS.EA at the time of the Realm exit.
• exit.esr.ISS.DFSC contains the value of ESR_EL2.ISS.DFSC at the time of the Realm exit.
• All other exit fields except for exit.givc3_*, exit_cnt* and exit.pmu_ovf_status are zero.

See also:

• A6.1 Realm interrupts
• A6.2 Realm timers
• A8.1 Realm PMU

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter A4. Realm exception model
A4.4. Emulated Data Aborts

A4.4 Emulated Data Aborts

ISVYDC On REC exit due to Emulatable Data Abort, sufficient information is provided to the Host to enable it to emulate
the access, for example to emulate a virtual peripheral.

On taking the REC exit, the Host can either

• Establish a mapping in the RTT, in which case it would want the Realm to re-attempt the access. In this case,
on the next REC entry the Host sets enter.flags.emul_mmio = RMI_NOT_EMULATED_MMIO, which
indicates that instruction emulation was not performed. This causes the return address to be the faulting
instruction.

• Emulate the access. For an emulated write, the data is provided in exit.gprs[0]. For an emulated read,
the data is provided in enter.gprs[0]. In this case, on the next REC entry the Host sets
enter.flags.emul_mmio = RMI_EMULATED_MMIO, which indicates that the instruction was emulated.
This causes the return address to be the address of the instruction which generated the Data Abort plus 4
bytes.

See also:

• A4.2.3 REC entry following REC exit due to Data Abort
• A4.3.4.3 REC exit due to Data Abort
• A5.2.1 Realm IPA space

A4.5 Host call

This section describes the programming model for Realm communication with the Host.

DYDJWT A Host call is a call made by the Realm to the Host, by execution of the RSI_HOST_CALL command.

IXNFKZ A Host call can be used by a Realm to make a hypercall.

RDNBQF On Realm execution of HVC, an Unknown exception is taken to the Realm.

See also:

• A4.2.2 General purpose registers restored on REC entry
• A4.3.9 REC exit due to Host call
• B5.3.4 RSI_HOST_CALL command
• D1.3.2 Host call flow

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter A5
Realm memory management

This section describes how Realm memory is managed. This includes:

• How the translation tables which describe the Realm’s address space are managed by the Host.
• Properties of the Realm’s address space, and of the memory which can be mapped into it.
• How faults caused by Realm memory accesses are handled.

See also:

• A2.1.2 Realm execution environment
• D1.5 Realm memory management flows
• Chapter D2 Realm shared memory protocol

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter A5. Realm memory management
A5.1. Realm memory management overview

A5.1 Realm memory management overview

Realm memory management can be viewed from one of two standpoints: the Realm and the Host.

From the Realm’s point of view, the RMM provides security guarantees regarding the IPA space of the Realm and
the memory which is mapped into it. These security guarantees are upheld via RSI commands which the Realm
can execute in order to query the initial configuration and contents of its address space, and to modify properties of
the address space at runtime.

From the Host’s point of view, Realm memory management involves manipulating the stage 2 translation tables
which describe the Realm’s address space, and handling faults which are caused by Realm memory accesses.
These operations are similar to those involved in managing the memory of a normal VM, but in the case of a Realm
they are performed via execution of RMI commands.

See also:

• A5.2 Realm view of memory management
• A5.3 Host view of memory management

A5.2 Realm view of memory management

This section describes memory management from the Realm’s point of view.

A5.2.1 Realm IPA space

IDLRZF The IPA space of a Realm is divided into two halves: Protected IPA space and Unprotected IPA space.

SLZHXC Software in a Realm should treat the most significant bit of an IPA as a protection attribute.

DKXGDV A Protected IPA is an address in the lower half of a Realm’s IPA space. The most significant bit of a Protected IPA
is 0.

DMRWGM An Unprotected IPA is an address in the upper half of a Realm’s IPA space. The most significant bit of an
Unprotected IPA is 1.

See also:

• A2.1.3 Realm attributes
• A3.1.2 Realm LPA2 and IPA width

A5.2.2 Realm IPA state

DWWCBD A Protected IPA has an associated Realm IPA state (RIPAS).

The RIPAS values are shown in the following table.

Name Description

DESTROYED Address which is inaccessible to the Realm due to an action taken
by the Host.

DEV Address where memory of an assigned Realm device is mapped.

EMPTY Address where no Realm resources are mapped.

RAM Address where private code or data owned by the Realm is mapped.

IVZCZV RIPAS values are stored in an RTT.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter A5. Realm memory management
A5.2. Realm view of memory management

IZPNZT The Realm can query the RIPAS of an IPA range by executing RSI_IPA_STATE_GET.

See also:

• A5.5 Realm Translation Table
• B5.3.5 RSI_IPA_STATE_GET command

A5.2.3 Realm access to a Protected IPA

RJVQQR Realm data access to a Protected IPA whose RIPAS is EMPTY causes a Synchronous External Abort taken to the
Realm.

RMKLSD Realm instruction fetch from a Protected IPA whose RIPAS is EMPTY causes a Synchronous External Abort taken
to the Realm.

RQSQLF Realm data access to a Protected IPA whose RIPAS is RAM does not cause a Synchronous External Abort taken to
the Realm.

IPGHBT Realm data access to a Protected IPA can cause an REC exit due to Data Abort.

RFCJCP Realm instruction fetch from a Protected IPA whose RIPAS is RAM does not cause a Synchronous External Abort
taken to the Realm.

IXHKQY Realm instruction fetch from a Protected IPA whose RIPAS is RAM can cause a REC exit due to Instruction Abort.

RCLVKF Realm data access to a Protected IPA whose RIPAS is DESTROYED causes a REC exit due to Data Abort.

RMZYQT Realm instruction fetch from a Protected IPA whose RIPAS is DESTROYED causes a REC exit due to Instruction
Abort.

See also:

• A4.3.4.2 REC exit due to Instruction Abort
• A4.3.4.3 REC exit due to Data Abort
• A5.2.7 Synchronous External Aborts

A5.2.4 Changes to RIPAS while Realm state is REALM_NEW

This section describes how the RIPAS of a Protected IPA can change while the Realm state is REALM_NEW.

IBSBHN For a Realm in the REALM_NEW state, the RIPAS of a Protected IPA can change to RAM due to Host execution
of RMI_DATA_CREATE or RMI_RTT_INIT_RIPAS.

IBSGSW For a Realm in the REALM_NEW state, changing the RIPAS of a Protected IPA to RAM causes the RIM to be
updated.

IYCPNY For a Realm in the REALM_NEW state, the RIPAS of a Protected IPA can change to DESTROYED due to Host
execution of RMI_DATA_DESTROY or RMI_RTT_DESTROY.

IYXLCP For a Realm in the REALM_NEW state, changing the RIPAS of a Protected IPA to DESTROYED does not cause
the RIM to be updated.

See also:

• A5.4 RIPAS change
• A7.1.1 Realm Initial Measurement
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.16 RMI_RTT_DESTROY command
• B4.3.18 RMI_RTT_INIT_RIPAS command

A5.2.5 Changes to RIPAS while Realm state is REALM_ACTIVE

This section describes how the RIPAS of a Protected IPA can change while the Realm state is REALM_ACTIVE.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter A5. Realm memory management
A5.2. Realm view of memory management

INZXPG A Realm in the REALM_ACTIVE state can request the RIPAS of a region of Protected IPA space to be changed to
either EMPTY or RAM.

IRXHXF A Realm in the REALM_ACTIVE state cannot request the RIPAS of a region of Protected IPA space to be changed
to DESTROYED.

IFRJJH For a Realm in the REALM_ACTIVE state, the RIPAS of a Protected IPA can change to EMPTY only in response
to Realm execution of RSI_IPA_STATE_SET.

XHQLVY The fact that the Host cannot change the RIPAS of a Protected IPA to EMPTY without the Realm having consented
to this change prevents the Host from injecting an SEA at a Protected IPA which has been configured to have a
RIPAS of RAM, which could potentially trigger unexpected behavior in the Realm.

IHNFYR For a Realm in the REALM_ACTIVE state, the RIPAS of a Protected IPA can change to RAM only in response to
Realm execution of RSI_IPA_STATE_SET.

IVVFMX On execution of RSI_IPA_STATE_SET, a Realm can optionally specify that the RIPAS change should only succeed
if the current RIPAS is not DESTROYED.

XVXHBV An expected pattern for Realm creation is as follows:

1. Host populates an “initial image” range of Realm IPA space with measured content:

Host executes RMI_DATA_CREATE, establishing a mapping to physical memory, changing RIPAS to RAM
and updating the RIM.

2. Host informs the Realm of the range of IPA space which should be considered by the Realm as DRAM. This
is a superset of the IPA range populated in step 1. For unpopulated parts of this IPA range, the RIPAS is
EMPTY.

3. Realm executes RSI_IPA_STATE_SET(ripas=RAM) for the DRAM IPA range described to it in step 2.
Following this command, the desired state is:

a. For the initial image IPA range, the contents match those described by the RIM.

b. For the entire DRAM IPA range, RIPAS is RAM.

If at step 2, the Host were to execute RMI_DATA_DESTROY on a page within the initial image IPA range, its
RIPAS would change to DESTROYED. The Host could then execute RMI_DATA_CREATE_UNKNOWN, with
the result that contents of the initial image IPA range no longer match those described by the RIM.

By specifying at step 3 that the RIPAS change should only succeed if the current RIPAS is not DESTROYED, the
Realm is able to prevent loss of integrity within the initial image IPA range.

IKZVDC For a Realm in the REALM_ACTIVE state, the RIPAS of a Protected IPA can change to DESTROYED due to
Host execution of RMI_DATA_DESTROY or RMI_RTT_DESTROY.

XJJPHJ The result of changing the RIPAS of a Protected IPA to DESTROYED is that subsequent Realm accesses to that
address do not make forward progress. This is consistent with the principle that the RMM does not provide an
availability guarantee to a Realm.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter A5. Realm memory management
A5.2. Realm view of memory management

INMMSG The following diagram summarizes RIPAS changes which can occur when the Realm state is REALM_ACTIVE.

Host action

DESTROYED RAMEMPTY

RSI_IPA_STATE_SET(RAM)

RSI_IPA_STATE_SET(RAM)

Host action

RSI_IPA_STATE_SET(EMPTY)

RSI_IPA_STATE_SET(EMPTY)

Transition which can occur without the Realm having taken any action

Transition which can occur only as the result of a Realm action

Key

See also:

• A5.4 RIPAS change
• B4.3.1 RMI_DATA_CREATE command
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.16 RMI_RTT_DESTROY command
• B4.3.18 RMI_RTT_INIT_RIPAS command
• B5.3.6 RSI_IPA_STATE_SET command

A5.2.6 Realm access to an Unprotected IPA

IKQJML An access by a Realm to an Unprotected IPA can result in a Granule Protection Fault (GPF).

The RMM does not ensure that the GPT entry of a Granule mapped at an Unprotected IPA permits access via
Non-secure PAS.

SZZBQF Realm software must be able to handle taking a GPF during access to an Unprotected IPA.

IWCVBZ Realm data access to an Unprotected IPA can cause a REC exit due to Data Abort.

IRNDTJ On taking a REC exit due to Data Abort at an Unprotected IPA, the Host can inject a Synchronous External Abort
to the Realm.

XMGBDH The Host can inject an SEA in response to an unexpected Realm data access to an Unprotected IPA.

IFVYCM Realm data access to an Unprotected IPA which caused ESR_EL2.ISS.ISV to be set to '1' can be emulated by
the Host.

RXLSKP Realm instruction fetch from an Unprotected IPA causes a Synchronous External Abort taken to the Realm.

See also:

• A4.2.3 REC entry following REC exit due to Data Abort
• A4.3.4.3 REC exit due to Data Abort
• A4.4 Emulated Data Aborts
• A5.2.7 Synchronous External Aborts

A5.2.7 Synchronous External Aborts

RVKNJW When a Synchronous External Abort is taken to a Realm, ESR_EL1.EA == '1'.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter A5. Realm memory management
A5.2. Realm view of memory management

A5.2.8 Realm access outside IPA space

RGYVZQ If stage 1 translation is enabled, Realm access to an IPA which is greater than the IPA space of the Realm causes a
stage 1 Address Size Fault taken to the Realm, with the fault status code indicating the level at which the fault
occurred.

RLSJJR If stage 1 translation is disabled, Realm access to an IPA which is greater than the IPA space of the Realm causes a
stage 1 level 0 Address Size Fault taken to the Realm.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter A5. Realm memory management
A5.2. Realm view of memory management

A5.2.9 Summary of Realm IPA space properties

ITPGKW The following table summarizes the properties of Realm IPA space.

Realm IPA

Data access
causes abort to
Realm?

Data access causes REC exit
due to Data Abort?

Instruction fetch
causes abort to
Realm?

Instruction fetch causes
REC exit due to
Instruction Abort?

Protected,
RIPAS=EMPTY

Always (SEA) Never Always (SEA) Never

Protected,
RIPAS=RAM

Never When
HIPAS=UNASSIGNED

Never When
HIPAS=UNASSIGNED

Protected,
RIPAS=DESTROYED

Never Always Never Always

Unprotected Host can inject
SEA following
REC exit due to
Data Abort

When
HIPAS=UNASSIGNED_NS

Always (SEA) Never

Outside Realm IPA
space

Always (Address
Size Fault)

Never Always (Address
Size Fault)

Never

See also:

• A4.2.3 REC entry following REC exit due to Data Abort

A5.2.10 Cache maintenance operations

RTZQDY A data cache invalidate by set / way instruction executed by a Realm either has no effect, or performs a data cache
clean and invalidate.

XXZRDW This is to ensure that a Realm cannot invalidate a cache line owned by another Realm.

UVQMTB Arm expects that the RMM will set HCR_EL2.VM == '1', which causes a data cache invalidate instruction
executed at EL1 to perform a data cache clean and invalidate.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3 Host view of memory management

This section describes memory management from the Host’s point of view.

A5.3.1 Host IPA state

DYZTZJ A Realm IPA has an associated Host IPA state (HIPAS).

The HIPAS values are shown in the following table.

Name Description

HIPAS_ASSIGNED Protected IPA which is associated with a DATA Granule.

HIPAS_ASSIGNED_NS Unprotected IPA which is associated with an NS Granule.

HIPAS_UNASSIGNED Protected IPA which is not associated with any Granule.

HIPAS_UNASSIGNED_NS Unprotected IPA which is not associated with any Granule.

ITRSKJ HIPAS values are stored in a Realm Translation Table (RTT).

IGZMKQ HIPAS transitions are caused by execution of RMI commands.

INQCGS A mapping at a Protected IPA is valid if the HIPAS is ASSIGNED and the RIPAS is RAM.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter A5. Realm memory management
A5.3. Host view of memory management

IYMNSR The following table summarizes, for each combination of RIPAS and HIPAS for a Protected IPA:

• the translation table entry attributes, and
• the behavior which results from Realm access to that IPA.

Each TTD.X column refers to the value of the corresponding “X” field in the architecturally-defined Stage 2
translation table descriptor which is written by the RMM.

RIPAS HIPAS TTD.ADDR TTD.NS TTD.VALID Data access
Instruction
fetch

EMPTY UNASSIGNED 0 SEA to Realm SEA to Realm

EMPTY ASSIGNED DATA 0 SEA to Realm SEA to Realm

RAM UNASSIGNED 0 REC exit due to
Data Abort

REC exit due to
Instruction Abort

RAM ASSIGNED DATA 0 1 Data access Instruction fetch

DESTROYED UNASSIGNED 0 REC exit due to
Data Abort

REC exit due to
Instruction Abort

DESTROYED ASSIGNED DATA 0 REC exit due to
Data Abort

REC exit due to
Instruction Abort

See also:

• A5.5 Realm Translation Table

A5.3.2 Changes to HIPAS while Realm state is REALM_NEW

This section describes how the HIPAS of a Protected IPA can change while the Realm state is REALM_NEW.

IYNFGD The following diagram summarizes HIPAS changes at a Protected IPA which can occur when the Realm state is
REALM_NEW.

ASSIGNED

UNASSIGNED

RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

RMI_DATA_DESTROY

RMI_RTT_DESTROY

See also:

• B4.3.1 RMI_DATA_CREATE command
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.16 RMI_RTT_DESTROY command

A5.3.3 Changes to HIPAS while Realm state is REALM_ACTIVE

This section describes how the HIPAS of a Protected IPA can change while the Realm state is REALM_ACTIVE.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter A5. Realm memory management
A5.3. Host view of memory management

IWKZXY The following diagram summarizes HIPAS changes at a Protected IPA which can occur when the Realm state is
REALM_ACTIVE.

ASSIGNED

UNASSIGNED

RMI_DATA_CREATE_UNKNOWN RMI_DATA_DESTROY

RMI_RTT_DESTROY

See also:

• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.16 RMI_RTT_DESTROY command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3.4 Summary of changes to HIPAS and RIPAS of a Protected IPA

ITJMCP The following diagram summarizes HIPAS and RIPAS changes at a Protected IPA which can occur when the
Realm state is NEW.

ASSIGNED

UNASSIGNED

EMPTY DESTROYED RAM

RMI_DATA_DESTROY

RMI_DATA_CREATE_UNKNOWN

RMI_DATA_CREATE

RMI_RTT_DESTROY

RMI_RTT_INIT_RIPAS

RMI_DATA_DESTROY

RMI_DATA_CREATE
RMI_DATA_CREATE_UNKNOWN

RMI_DATA_CREATE_UNKNOWN

RMI_RTT_DESTROY

RMI_DATA_DESTROY

RIPAS

HIPAS

Key

Initial state

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter A5. Realm memory management
A5.3. Host view of memory management

IVGKNJ The following diagram summarizes HIPAS and RIPAS changes at a Protected IPA which can occur when the
Realm state is REALM_ACTIVE.

ASSIGNED

UNASSIGNED

EMPTY DESTROYED RAM

VALID = 0

RMI_DATA_CREATE_UNKNOWN

RMI_RTT_DESTROY

RMI_RTT_SET_RIPAS

VALID = 0

RMI_DATA_DESTROY

VALID = 0

RMI_RTT_SET_RIPAS
VALID = 0

VALID = 1

VALID = 0

RMI_DATA_CREATE_UNKNOWN

RMI_DATA_CREATE_UNKNOWN

RMI_RTT_SET_RIPAS

RMI_RTT_DESTROY

RMI_RTT_SET_RIPAS

RMI_RTT_SET_RIPAS RMI_RTT_SET_RIPAS

RMI_DATA_DESTROY

RIPAS

HIPAS

Command which can only be successfully executed by Host if Realm has provided consent

Command which can be successfully executed by Host at any time

Key

VALID = 1 Mapping is architecturally valid

RMI_DATA_DESTROY

See also:

• B4.3.1 RMI_DATA_CREATE command
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.16 RMI_RTT_DESTROY command
• B4.3.18 RMI_RTT_INIT_RIPAS command
• B4.3.21 RMI_RTT_SET_RIPAS command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter A5. Realm memory management
A5.3. Host view of memory management

A5.3.5 Dependency of RMI command execution on RIPAS and HIPAS values

IHLHZS The following table summarizes dependencies on RMI command execution on the current Protected IPA.

Command
Dependency on
RIPAS

Dependency on
HIPAS New RIPAS New HIPAS

RMI_DATA_CREATE None HIPAS is
UNASSIGNED

RAM ASSIGNED

RMI_DATA_CREATE_UNKNOWN None HIPAS is
UNASSIGNED

Unchanged ASSIGNED

RMI_DATA_DESTROY If RIPAS is EMPTY HIPAS is ASSIGNED Unchanged UNASSIGNED

RMI_DATA_DESTROY If RIPAS is RAM HIPAS is ASSIGNED DESTROYED UNASSIGNED

RMI_RTT_CREATE None None Unchanged Unchanged

RMI_RTT_DESTROY None HIPAS of all entries is
UNASSIGNED

DESTROYED Unchanged

RMI_RTT_FOLD RIPAS of all entries is
identical

HIPAS of all entries is
identical

Unchanged Unchanged

RMI_RTT_INIT_RIPAS None HIPAS is
UNASSIGNED

RAM Unchanged

RMI_RTT_SET_RIPAS Optionally, Realm may
specify that RIPAS is
not DESTROYED

None As specified
by Realm

Unchanged

IWBRCN Successful execution of RMI_DATA_CREATE_UNKNOWN does not depend on the RIPAS value of the target
IPA.

ILCSVH Successful execution of RMI_DATA_DESTROY does not depend on the RIPAS value of the target IPA.

IMMSBL Successful execution of RMI_RTT_DESTROY does not depend on the RIPAS values of entries in the target RTT.

ITJCGT Successful execution of RMI_RTT_FOLD does depend on the RIPAS values of entries in the target RTT.

See also:

• B4.3.1 RMI_DATA_CREATE command
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.15 RMI_RTT_CREATE command
• B4.3.16 RMI_RTT_DESTROY command
• B4.3.17 RMI_RTT_FOLD command
• B4.3.18 RMI_RTT_INIT_RIPAS command
• B4.3.21 RMI_RTT_SET_RIPAS command

A5.3.6 Changes to HIPAS of an Unprotected IPA

IYNYBY The following diagram summarises HIPAS transitions for an Unprotected IPA.

UNASSIGNED_NS ASSIGNED_NS

RMI_RTT_MAP_UNPROTECTED

RMI_RTT_UNMAP_UNPROTECTED

See also:

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter A5. Realm memory management
A5.3. Host view of memory management

• A5.4 RIPAS change
• A5.5 Realm Translation Table
• B4.3.1 RMI_DATA_CREATE command
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.16 RMI_RTT_DESTROY command
• B4.3.18 RMI_RTT_INIT_RIPAS command
• B4.3.21 RMI_RTT_SET_RIPAS command
• B5.3.6 RSI_IPA_STATE_SET command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter A5. Realm memory management
A5.4. RIPAS change

A5.4 RIPAS change

DBTSQY A RIPAS change is a process via which the RIPAS of a region of Protected IPA space is changed, for a Realm
whose state is REALM_ACTIVE.

IKXXBV A RIPAS change consists of actions taken by first the Realm, and then the Host:

• The Realm issues a RIPAS change request by executing RSI_IPA_STATE_SET.
– The input values to this command include:

* The requested IPA range: [base, top)

* The requested RIPAS value (either EMPTY or RAM)
* A flag which indicates whether a change from DESTROYED should be permitted

– The RMM records these values in the REC, and then performs a REC exit due to RIPAS change pending.
• In response, the Host executes zero or more RMI_RTT_SET_RIPAS commands.
• If the requested RIPAS value was RAM, at the next RMI_REC_ENTER the Host can optionally indicate that

it rejects the RIPAS change request.

Output values from RSI_IPA_STATE_SET indicate:

• The top of the IPA range which has been modified by the command (new_base).
• If the requested RIPAS value was RAM, whether the Host rejected the Realm request.

SCTTQV Output values from RSI_IPA_STATE_SET are expected to be handled by the Realm as follows:

new_base response Meaning Expected Realm action

new_base == base RSI_ACCEPT RIPAS change incomplete. Call RSI_IPA_STATE_SET
again, with
base = new_base.

base < new_base < top RSI_ACCEPT RIPAS change incomplete. Call RSI_IPA_STATE_SET
again, with
base = new_base.

new_base == top RSI_ACCEPT RIPAS change complete. No further Realm action
required.

new_base == base RSI_REJECT RIPAS change request
rejected.

Depends on protocol agreed
between Realm and Host, out
of scope of this specification.

base < new_base < top RSI_REJECT RIPAS change to partial
region [base, new_base).
Host rejected request to
change RIPAS for region
[new_base, top).

Depends on protocol agreed
between Realm and Host, out
of scope of this specification.

IRFVTG The RIPAS change process, together with the Realm Initial Measurement ensures that a Realm can always reliably
determine the RIPAS of any Protected IPA.

ILPZWK A RIPAS change is applied by one or more calls to the RMI_RTT_SET_RIPAS command.

IMMHMZ Successful execution of RMI_RTT_SET_RIPAS targets an RTTE at address rec.ripas_addr.

IJHJGZ On successful execution of RMI_RTT_SET_RIPAS, both of the following are set to the address of the next page
whose RIPAS is to be modified:

• rec.ripas_addr

• The command output value

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter A5. Realm memory management
A5.4. RIPAS change

IGXDDX If both of the following are true on successful execution of RMI_RTT_SET_RIPAS

• The RIPAS change request indicated that a change from DESTROYED should not be permitted
• A page P within the target IPA range has RIPAS value DESTROYED

then rec.ripas_addr and the command output value are both set to P.

IHXKPB On REC entry following a REC exit due to RIPAS change, GPR values are updated to indicate for how much of
the target IPA range the RIPAS change has been applied.

STZYZV To complete a RIPAS change for a given target IPA range, a Realm should execute RSI_IPA_STATE_SET in a
loop, until the value of X1 reaches the top of the target IPA range.

RLDMLC On REC entry following a REC exit due to RIPAS change, rec.ripas_response is set to the value of
enter.flags.ripas_response.

IDRPPK If all of the following are true then the output value of RSI_IPA_STATE_SET indicates “Host rejected the request”:

• rec.ripas_value is RAM.
• rec.ripas_addr is not equal to rec.ripas_top.
• rec.ripas_response is REJECT.

Otherwise, the output value of RSI_IPA_STATE_SET indicates “Host accepted the request”.

SBZWWC Receipt of a rejection for a RIPAS change request whose parameters were valid is expected to be fatal for the
Realm.

See also:

• A2.3.2 REC attributes
• A4.2 REC entry
• A4.3.8 REC exit due to RIPAS change pending
• A5.2.2 Realm IPA state
• A7.1.1 Realm Initial Measurement
• B3.40 RecRipasChangeResponse function
• B4.3.14 RMI_REC_ENTER command
• B4.3.21 RMI_RTT_SET_RIPAS command
• B5.3.6 RSI_IPA_STATE_SET command
• D1.5.3 RIPAS change flow

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter A5. Realm memory management
A5.5. Realm Translation Table

A5.5 Realm Translation Table

This section introduces the stage 2 translation table used by a Realm.

A5.5.1 RTT overview

DFRNCX A Realm Translation Table (RTT) is an abstraction over an Armv8-A stage 2 translation table used by a Realm.

IMBCVZ The attributes and format of an Armv8-A stage 2 translation table are defined by the Armv8-A Virtual Memory
System Architecture (VMSA) Arm Architecture Reference Manual for A-Profile architecture [3].

RPXNHQ The translation granule size of an RTT is 4KB.

ITQVTP The RMM architecture can only be deployed on a hardware platform which implements a translation granule size
of 4KB.

IPHGQQ The contents of an RTT are not directly accessible to the Host.

IFPLRL The contents of an RTT are manipulated using RMM commands. These commands allow the Host to manipulate
the contents of the RTT used by a Realm, subject to constraints imposed by the RMM.

DQTZDW An RTT entry (RTTE) is an abstraction over an Armv8-A stage 2 translation table descriptor.

IVYLTT An RTTE contains an output address which can point to one of the following:

• Another RTT
• A DATA Granule which is owned by the Realm
• Non-secure memory which is accessible to both the Realm and the Host

A5.5.2 RTT structure and configuration

DVHLWF An RTT tree is a hierarchical data structure composed of RTTs, connected via Table Descriptors.

IKNPNX An RTT contains an array of RTTEs.

DHYTCJ An RTT level is the depth of an RTT within an RTT tree.

IKKMSX An RTT does not have an intrinsic “level” attribute. The level of an RTT is determined by its position within an
RTT tree.

DQSYBS The RTT level of the root of an RTT tree is called the starting level.

ISSDBT The maximum depth of an RTT tree depends on all of the following:

• whether LPA2 is selected when the Realm is created
• the rtt_level_start attribute of the Realm
• the ipa_width attribute of the Realm.

See also:

• A2.1.3 Realm attributes
• A3.1.2 Realm LPA2 and IPA width

A5.5.3 RTT starting level

IFDWZF The RTT starting level is set when a Realm is created.

IYCPMF The number of starting level RTTs is architecturally defined as a function of the Realm IPA width and the RTT
starting level. See Arm Architecture Reference Manual for A-Profile architecture [3] for further details.

IRYNXB The address of the first starting level RTT is stored in the RTT base attribute of the owning Realm.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter A5. Realm memory management
A5.5. Realm Translation Table

IXXWQW The RTT base attribute is set when a Realm is created.

See also:

• A2.1.3 Realm attributes

A5.5.4 RTT entry

IZBGGZ An RTT entry (RTTE) is an abstraction over an Armv8-A stage 2 translation table descriptor. The attributes and
format of an Armv8-A stage 2 translation table descriptor are defined by the Armv8-A Virtual Memory System
Architecture (VMSA) Arm Architecture Reference Manual for A-Profile architecture [3].

DBNHQQ An RTTE has a state.

The RTTE state values are shown in the following table.

Name Description

ASSIGNED This RTTE is identified by a Protected IPA.
The output address of this RTTE points to a DATA Granule.

ASSIGNED_NS This RTTE is identified by an Unprotected IPA.
The output address of this RTTE points to an NS Granule.

TABLE The output address of this RTTE points to the next-level RTT.

UNASSIGNED This RTTE is identified by a Protected IPA.
This RTTE is not associated with any Granule.

UNASSIGNED_NS This RTTE is identified by an Unprotected IPA.
This RTTE is not associated with any Granule.

IQWQSB The state of an RTTE in a RTT which is not level 1 or level 2 or level 3 is UNASSIGNED, UNASSIGNED_NS or
TABLE.

DNSHSL The output address of an RTTE whose state is TABLE and which is in a level n RTT is the physical address of a
level n+1 RTT.

IDJZTM An RTT whose level n is not the starting RTT level is pointed-to by exactly one TABLE RTTE in a level n-1 RTT.

IDXQWZ The following diagram shows an example RTT tree, annotated with RTTE states.

TABLE

Level 0 RTT

UNASSIGNED

UNASSIGNED

UNASSIGNED

UNASSIGNED_NS

UNASSIGNED

UNASSIGNED

UNASSIGNED

UNASSIGNED

UNASSIGNED

ASSIGNED

UNASSIGNED

UNASSIGNED

UNASSIGNED

UNASSIGNED

ASSIGNED

UNASSIGNED

UNASSIGNED

UNASSIGNED

UNASSIGNED

Level 1 RTT

Level 2 RTT

Level 3 RTT

...

...

...

...

Page

RTT base

RD

TABLE

TABLE

TABLE

Block

UNASSIGNED_NS

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter A5. Realm memory management
A5.5. Realm Translation Table

IFGWQS The function AddrIsRttLevelAligned() is used to evaluate whether an address is aligned to the address range
described by an RTTE at a specified RTT level.

See also:

• A5.3.1 Host IPA state
• B1.4 Command condition expressions

A5.5.5 RTT reading

IKJWKQ Attributes of an RTTE, including the RTTE state, can be read by calling the RMI_RTT_READ_ENTRY command.
The set of RTTE attributes which are returned depends on the state of the RTTE.

See also:

• B4.3.20 RMI_RTT_READ_ENTRY command

A5.5.6 RTT folding

DRMCLC An RTT is homogeneous if its entries satisfy one of the conditions in the following table. If an RTT is homogeneous,
the following table specifies the state to which the parent RTTE is set.

Conditions on child RTT contents Parent RTTE state

All of the following are true:
• State of all entries is UNASSIGNED
• RIPAS of all entries is the same

UNASSIGNED

State of all entries is UNASSIGNED_NS UNASSIGNED_NS

All of the following are true:
• Level is 2 or 3
• State of all entries is ASSIGNED
• Output address of first entry is aligned to size of the address

range described by an entry in the parent RTT
• Output addresses of all entries are contiguous
• RIPAS of all entries is the same

ASSIGNED

All of the following are true:
• Level is 2 or 3
• State of all entries is ASSIGNED_NS
• Output address of first entry is aligned to size of the address

range described by an entry in the parent RTT
• Output addresses of all entries are contiguous
• Attributes of all entries are identical

ASSIGNED_NS

IKDXLT The function RttIsHomogeneous() is used to evaluate whether an RTT is homogeneous.

DQPXCP RTT folding is the operation of destroying a homogeneous child RTT, and moving information which was stored in
the child RTT into the parent RTTE.

IQMGWK On RTT folding, the state of the parent RTTE is determined from the contents of the child RTTEs.

ILLWGH The function RttFold() is used to evaluate the parent RTTE state which results from an RTT folding operation.

ITPMGT On RTT folding, if the state of the parent RTTE is ASSIGNED or ASSIGNED_NS then the attributes of the parent
RTTE are copied from the child RTTEs.

See also:

• A5.5.9 RTT destruction

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter A5. Realm memory management
A5.5. Realm Translation Table

• B3.62 RttFold function
• B3.63 RttIsHomogeneous function
• B4.3.17 RMI_RTT_FOLD command

A5.5.7 RTT unfolding

DHQQMG RTT unfolding is the operation of creating a child RTT, and populating it based on the contents of the parent RTTE.

IKWZXN On RTT unfolding, the state of all RTTEs in the child RTT are set to the state of the parent RTTE.

IHMYSW On RTT unfolding, if the state of the parent RTTE is ASSIGNED or ASSIGNED_NS, then the output addresses of
RTTEs in the child RTT are set to a contiguous range which starts from the address of the parent RTTE.

See also:

• B4.3.15 RMI_RTT_CREATE command

A5.5.8 RTTE liveness and RTT liveness

DKCMLN RTTE liveness is a property which means that a physical address is stored in the RTTE.

DHGYJZ An RTTE is live if the RTTE state is ASSIGNED, ASSIGNED_NS or TABLE.

IRHLYZ The function RttSkipNonLiveEntries() is used to scan an RTT to find the next live RTTE. The resulting IPA
is returned to the Host from commands whose successful execution causes a live RTTE to become non-live.

XGQPSF Identifying the next live RTTE allows the Host to avoid calls to RMI_RTT_READ_ENTRY when unmapping
ranges of a Realm’s IPA space, for example during Realm destruction.

DMPWLR RTT liveness is a property which means that there exists another RMM data structure which is referenced by the
RTT.

DYPSLW An RTT is live if, for any of its entries, either of the following is true:

• The RTTE state is ASSIGNED
• The RTTE state is TABLE.

IMXJNY Note that an RTT can be non-live, even if one of its entries is live. This would be the case for example if the RTT
corresponds to an Unprotected IPA range and the state of one of its entries is ASSIGNED_NS.

IYPLKM The function RttIsLive() is used to evaluate whether an RTT is live.

See also:

• A5.5.9 RTT destruction
• B3.64 RttIsLive function
• B3.76 RttSkipNonLiveEntries function
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.16 RMI_RTT_DESTROY command
• B4.3.22 RMI_RTT_UNMAP_UNPROTECTED command

A5.5.9 RTT destruction

DVXRZW RTT destruction is the operation of destroying a child RTT, and discarding information which was stored in the
child RTT.

IPRMFR An RTT cannot be destroyed if it is live.

IMDFQN An RTT can be destroyed regardless of whether it is homogeneous.

IMCKSK Following RTT destruction, all of the following are true for the parent RTTE:

• RIPAS is DESTROYED
• RTTE state is UNASSIGNED

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter A5. Realm memory management
A5.5. Realm Translation Table

See also:

• A5.2 Realm view of memory management
• A5.5.6 RTT folding
• A5.5.8 RTTE liveness and RTT liveness
• B4.3.16 RMI_RTT_DESTROY command

A5.5.10 RTT walk

ICBWSX An IPA is translated to a PA by walking an RTT tree, starting at the RTT base.

IFDWYV The behaviour of an RTT walk is defined by the Armv8-A Virtual Memory System Architecture (VMSA) Arm
Architecture Reference Manual for A-Profile architecture [3].

ITVGQD The inputs to an RTT walk are:

• a Realm Descriptor, which contains the address of the initial RTT
• a target IPA
• a target RTT level.

The RTT walk terminates when either:

• it reaches the target RTT level, or
• it reaches an RTTE whose state is not TABLE.

DRBHVQ The result of an RTT walk performed by the RMM is a data structure of type RmmRttWalkResult.

The attributes of an RmmRttWalkResult are summarized in the following table.

Name Type Description

level Int8 RTT level reached by the walk

rtt_addr Address Address of RTT reached by the walk

rtte RmmRttEntry RTTE reached by the walk

IZSRCD The function RmmRttWalkResult RttWalk(rd, addr, level) is used to represent an RTT walk.

IFBZPQ The input address to an RTT walk is always less than 2^w, where w is the IPA width of the target Realm.

See also:

• A2.1.3 Realm attributes
• B1.4 Command condition expressions
• B3.78 RttWalk function
• B4.3.1 RMI_DATA_CREATE command
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.15 RMI_RTT_CREATE command
• B4.3.16 RMI_RTT_DESTROY command
• B4.3.19 RMI_RTT_MAP_UNPROTECTED command
• B4.3.22 RMI_RTT_UNMAP_UNPROTECTED command
• C1.31 RmmRttWalkResult type

A5.5.11 RTT entry attributes

RKCFCT The cacheability attributes of an RTT entry which corresponds to a Protected IPA and whose state is ASSIGNED
are independent of any stage 1 descriptors and of the state of the stage 1 MMU.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter A5. Realm memory management
A5.5. Realm Translation Table

UNPVGN The RMM uses FEAT_S2FWB to ensure that the cacheability attributes of an RTT entry which corresponds to a
Protected IPA and whose state is ASSIGNED are independent of stage 1 translation.

RJZKMH The attributes of an RTT entry which corresponds to a Protected IPA and whose state is ASSIGNED include the
following:

• Normal memory
• Inner Write-Back Cacheable
• Inner Shareable

DFJTMF The following attributes of an RTT entry which corresponds to an Unprotected IPA and whose state is
ASSIGNED_NS are Host-controlled RTT attributes:

• ADDR

• MemAttr[2:0]

• S2AP

RQFLWD The shareability attributes of an RTT entry which corresponds to an Unprotected IPA and whose state is
ASSIGNED_NS are as follows:

• Inner Shareable if the mapping is cacheable.
• Outer Shareable if the mapping is non-cacheable.

UMCCRT The shareability attributes of an RTT entry which corresponds to an Unprotected IPA are expected to be controlled
by the RMM as follows:

• If LPA2 is enabled at stage 2 then the RMM is expected to set VTCR_EL2.DS == '1'.
• If LPA2 is not enabled at stage 2 then the RMM is expected to set the value of the SH field in the translation

table descriptor based on the value of the MemAttr field.

XQHLKB In an RTT entry which corresponds to an Unprotected IPA and whose state is ASSIGNED_NS, MemAttr[3] is
RES0 because the RMM uses FEAT_S2FWB.

RJRZTL Hardware access flag and dirty bit management is disabled for the stage 2 translation used by a Realm.

IQFGJC Hardware access flag and dirty bit management may be enabled by software executing within the Realm, for its
own stage 1 translation.

See also:

• A5.2.1 Realm IPA space
• B3.56 RttDescriptorIsValidForUnprotected function
• B4.3.19 RMI_RTT_MAP_UNPROTECTED command
• B4.3.20 RMI_RTT_READ_ENTRY command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter A6
Realm interrupts and timers

This specification requires that a virtual Generic Interrupt Controller (vGIC) is presented to a Realm. This vGIC
should be architecturally compliant with respect to GICv3 with no legacy operation.

The Host is able to inject virtual interrupts using the GIC virtual CPU interface.

The vGIC presented to a Realm is expected to be implemented via a combination of Host emulation and RMM
mediation, as follows:

• Management of Non-secure physical interrupts is performed by the Host, via the GIC Interrupt Routing
Infrastructure (IRI).

• The Host is responsible for emulating a GICv3 distributor MMIO interface.

• The Host is responsible for emulating a GICv3 redistributor MMIO interface for each REC.

• The GIC MMIO interfaces emulated by the Host must be presented to the Realm via its Unprotected IPA
space.

• The Host may optionally provide a virtual Interrupt Translation Service (ITS). The Realm must allocate ITS
tables within its Unprotected IPA space.

• The RMM allows the Host to control some of the GIC virtual CPU interface state which is observed by the
Realm. This state is designed to be the minimum required to allow the Host to correctly manage interrupts
for the Realm, with integrity guaranteed by the RMM for the remainder of the GIC CPU interface state.

• On REC exit, the RMM exposes some of the GIC virtual CPU interface state to the Host. This state is
designed to be the minimum required to allow the Host to correctly manage interrupts for the Realm, with
confidentiality guaranteed by the RMM for the remainder of the GIC virtual CPU interface state.

On every REC exit, the EL1 timer state is exposed to the Host. The RMM guarantees that a REC exit occurs
whenever a Realm EL1 timer asserts or de-asserts its output.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter A6. Realm interrupts and timers

See also:

• Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]
• A5.2.1 Realm IPA space
• D1.6 Realm interrupts and timers flows

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter A6. Realm interrupts and timers
A6.1. Realm interrupts

A6.1 Realm interrupts

This section describes the programming model for a REC’s GIC CPU interface.

DXZVGB The value of enter.gicv3_lrs[n] is valid if all of the following are true:

• The value is an architecturally valid encoding of ICH_LR<n>_EL2 according to Arm Generic Interrupt
Controller (GIC) Architecture Specification version 3 and version 4 [5].

• HW == '0'.

XDMSDZ The GICv3 architecture states that, if HW == '1' then the virtual interrupt must be linked to a physical interrupt
whose state is Active, otherwise behavior is undefined. The RMM is unable to validate that invariant, so it imposes
the constraint that HW == '0'.

DCPLDX The value of enter.gicv3_hcr is valid if the value is an architecturally valid encoding of ICH_HCR_EL2
according to Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5].

RHLFRY REC entry fails if the value of any enter.gicv3_* attribute is invalid.

RWNFRW On REC entry, ICH_LR<n>_EL2 is set to enter.gicv3_lrs[n], for all values of n supported by the PE.

RWVGFJ On REC entry, the following fields in ICH_HCR_EL2 are set to the corresponding values in enter.gicv3_hcr:

• UIE

• LRENPIE

• NPIE

• VGrp0EIE

• VGrp0DIE

• VGrp1EIE

• VGrp1DIE

• TDIR

ISMHXB On REC entry, fields in enter.gicv3_hcr must be set to ‘0’ except for the following:

• UIE

• LRENPIE

• NPIE

• VGrp0EIE

• VGrp0DIE

• VGrp1EIE

• VGrp1DIE

• TDIR

If any other field in enter.gicv3_hcr is set to ‘1’, then RMI_REC_ENTER fails.

XLMXCX The RMM provides access to the GIC virtual CPU interface to the Realm and therefore controls the enable bit
and most trap bits in ICH_HCR_EL2. The maintenance interrupt control bits are controlled by the Host, because
the maintenance interrupts are provided as hints to the hypervisor to allocate List Registers optimally and to
correctly emulate GICv3 behavior. The TDIR bit is also controlled by the Host because it is used when supporting
EOImode == '1' in the Realm. This mode is used to allow deactivation of virtual interrupts across RECs. This
deactivation must be handled by the Host because the RMM can only operate on a single REC during execution of
RMI_REC_ENTER.

RLNQRL A REC exit due to IRQ is not generated for an interrupt which is masked by the value of ICC_PMR_EL1 at the
time of REC entry.

UGXCHC The RMM should preserve the value of ICC_PMR_EL1 during REC entry.

RNKPNC On REC exit, exit.gicv3_vmcr contains the value of ICH_VMCR_EL2 at the time of the Realm exit.

RSKQNF On REC exit, exit.gicv3_misr contains the value of ICH_MISR_EL2 at the time of the Realm exit.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter A6. Realm interrupts and timers
A6.1. Realm interrupts

XDBGXB The Host could in principle infer the value of ICH_MISR_EL2 at the time of the Realm exit from the combination
of exit.gicv3_lrs[n] and exit.gicv3_hcr. However, this would be cumbersome, error-prone, and diverge
from the design of existing hypervisor software.

RQKZXD On REC exit, exit.gicv3_lrs[n] contains the value of ICH_LR<n>_EL2 at the time of the Realm exit, for all
values of n supported by the PE.

RSNVZH On REC exit, the following fields in exit.gicv3_hcr contains the value of the corresponding field in
ICH_HCR_EL2 at the time of the Realm exit:

• EOIcount

• UIE

• LRENPIE

• NPIE

• VGrp0EIE

• VGrp0DIE

• VGrp1EIE

• VGrp1DIE

• TDIR

All other fields contain zero.

RFGQXT On REC exit, the values of the following registers may have changed:

• ICH_AP0R<n>_EL2

• ICH_AP1R<n>_EL2

• ICH_LR<n>_EL2

• ICH_VMCR_EL2

• ICH_HCR_EL2

SQMJVJ It is the responsibility of the caller to save and restore GIC virtualization system control registers if their value
needs to be preserved following execution of RMI_REC_ENTER.

XKDGHF On REC entry, the values of the GIC virtualization control system registers are overwritten. The Non-secure
hypervisor runs at EL2 and therefore does not make direct use of the virtual GIC CPU interface for its own
execution. This means that saving / restoring the caller’s GIC virtualization control system registers would typically
not be required and would add additional runtime overhead for each execution of RMI_REC_ENTER.

RVSBBS On REC exit, ICH_HCR_EL2.En == '0'.

XWLTBX Disabling the virtual GIC CPU interface ensures that the caller does not receive unexpected GIC maintenance
interrupts. A stronger constraint, for example stating that all GIC virtualization control system registers are zero
on REC exit, was considered. However, this was rejected on the basis that it may preclude future optimisations,
such as returning early from execution of RMI_REC_ENTER, without needing to first write zero to all GIC
virtualization control system registers, if an interrupt is pending.

See also:

• Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]
• A4.2 REC entry
• A4.3 REC exit
• B4.3.14 RMI_REC_ENTER command
• B4.4.14 RmiRecEnter type
• B4.4.16 RmiRecExit type
• D1.6.1 Interrupt flow

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter A6. Realm interrupts and timers
A6.2. Realm timers

A6.2 Realm timers

This section describes the operation of architectural timers during Realm execution, including the following:

• The behavior of EL2 timers programmed by the Host
• The behavior of EL1 timers as perceived by the Realm
• The Realm timer state which is exposed to the Host on REC exit, in order to facilitate virtualization of timer

interrupts

RLKNDV Architectural timers are available to a Realm and behave according to their architectural specification.

IVFYJV If the Host has programmed an EL1 timer to assert its output during Realm execution, that timer output is not
guaranteed to assert.

RFKCHX If the Host has programmed an EL2 timer to assert its output during Realm execution, that timer output is
guaranteed to assert.

RRJZRP Both the virtual and physical counter values are guaranteed to be monotonically increasing when read by a Realm,
in accordance with the architectural counter behavior.

RJSMQP A read by a Realm of either the virtual or physical counter at the same place in the instruction flow would return
the same value.

XYCDMW In order to ensure that the Realm has a consistent view of time, the virtual timer offset must be fixed for the lifetime
of the Realm. The absolute value of the virtual timer offset is not important, so the value zero has been chosen for
simplicity of both the specification and the implementation.

IFKMGZ The rule that virtual and physical counter values are identical may need to be amended if a future version of the
specification supports migration and / or virtualization of time based on the virtual counter differing from the
physical counter.

RSVCMR On a change in the output of an EL1 timer which requires a Realm-observable change to the state of virtual
interrupts, a REC exit occurs.

RVWQDH On REC exit, Realm EL1 timer state is exposed via the RmiRecExit object:

• exit.cntv_ctl contains the value of CNTV_CTL_EL0 at the time of the Realm exit.
• exit.cntv_cval contains the value of CNTV_CVAL_EL0 at the time of the Realm exit, expressed as if the

virtual counter offset was zero.
• exit.cntp_ctl contains the value of CNTP_CTL_EL0 at the time of the Realm exit.
• exit.cntp_cval contains the value of CNTP_CVAL_EL0 at the time of the Realm exit, expressed as if the

physical counter offset was zero.

SPYWWF The Host should check the Realm EL1 timer state on every return from RMI_REC_ENTER and update virtual
interrupt state accordingly. This is true regardless of the value of exit.exit_reason: even if the return occurred
for a reason unrelated to timers (for example, a REC exit due to Data Abort), the Realm EL1 timer state should be
checked.

IVRWGS On REC entry, for both the EL1 Virtual Timer and the EL1 Physical Timer, if the EL1 timer asserts its output in
the state described in the REC exit structure from the previous REC exit then the RMM masks the hardware timer
signal before returning to the Realm.

This masking is done to allow the Realm to make forward progress, which would otherwise be prevented by the
hardware timer generating a physical interrupt that would cause a Realm exit.

During Realm execution, when the hardware timer signal is masked, the Realm may write to the timer registers,
causing the hardware timer to become de-asserted and possibly asserted again. Such changes in the output of the
EL1 timer are not required to result in a REC exit if the RMM can infer that the change should not result in a
Realm-observable change to the state of virtual interrupts.

It is only when a change in the hardware timer output means that the corresponding virtual interrupt needs to be
made pending or idle, that a REC exit must occur.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter A6. Realm interrupts and timers
A6.2. Realm timers

See also:

• A4.3 REC exit
• B4.4.16 RmiRecExit type
• D1.6.2 Timer interrupt delivery flow

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter A7
Realm measurement and attestation

This section describes how the initial state of a Realm is measured and can be attested.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter A7. Realm measurement and attestation
A7.1. Realm measurements

A7.1 Realm measurements

This section describes how Realm measurement values are calculated.

DSJWWS A Realm measurement value is a rolling hash.

DYKDBY A Realm Hash Algorithm (RHA) is an algorithm which is used to extend a Realm measurement value.

INRKWB The RHA used by a Realm is selected via the hash_algo attribute.

See also:

• A2.1.3 Realm attributes
• A3.1.1 Realm hash algorithm
• A7.2.3.1.4 Realm Initial Measurement claim
• A7.2.3.1.5 Realm Extensible Measurements claim

A7.1.1 Realm Initial Measurement

This section describes how the Realm Initial Measurement (RIM) is calculated.

IXKSBZ The initial RIM value for a Realm is calculated from a subset of the Realm parameters.

INCNDK A RIM is extended by applying the RHA to the inputs of RMM operations which are executed during Realm
construction.

INQQTF The following operations cause a RIM to be extended:

• Creation of a DATA Granule during Realm construction
• Creation of a runnable REC
• Changes to RIPAS of Protected IPA during Realm construction

RVMPZG On execution of an operation which requires extension of a RIM, the RMM first constructs a measurement
descriptor structure. The measurement descriptor contents include the current RIM value. The new RIM value is
computed by applying the RHA to the measurement descriptor.

desc = MeasurementDescriptor(Mi−1, ...)

Mi = RHA(desc)

IFQHFC A RIM is immutable while the state of the Realm is REALM_ACTIVE. This implies that a RIM reflects the
configuration and contents of the Realm at the moment when it transitioned from the REALM_NEW to the
REALM_ACTIVE state.

IDQGPT A RIM depends upon the order of the RMM operations which are executed during Realm construction.

SVZNCW The order in which RMM operations are executed during Realm construction must be agreed between the Realm
owner (or a delegate of the Realm owner which will receive and validate the RIM) and the Host which executes the
RMM commands. This ensures that a correctly-constructed Realm will have the expected measurement.

ILTWBL The value of a RIM can be read using the RSI_MEASUREMENT_READ command.

See also:

• B4.3.1.4 RMI_DATA_CREATE extension of RIM
• B4.3.9.4 RMI_REALM_CREATE initialization of RIM
• B4.3.12.4 RMI_REC_CREATE extension of RIM
• B4.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM
• B5.3.8 RSI_MEASUREMENT_READ command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter A7. Realm measurement and attestation
A7.1. Realm measurements

A7.1.2 Realm Extensible Measurement

This section describes the behavior of a Realm Extensible Measurement (REM).

IQJDWM A REM is extended using the RSI_MEASUREMENT_EXTEND command.

ICTMBT The value of a REM can be read using the RSI_MEASUREMENT_READ command.

IMDQRP The initial value of a REM is zero.

See also:

• B5.3.7 RSI_MEASUREMENT_EXTEND command
• B5.3.8 RSI_MEASUREMENT_READ command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2 Realm attestation

This section describes the primitives which are used to support remote Realm attestation.

A7.2.1 Attestation token

DVRRLN A CCA attestation token is a collection of claims about the state of a Realm and of the CCA platform on which the
Realm is running.

IBXBSD A CCA attestation token consists of two parts:

• Realm token

Contains attributes of the Realm, including:

– Realm Initial Measurement
– Realm Extensible Measurements

• CCA platform token

Contains attributes of the CCA platform on which the Realm is running, including:

– CCA platform identity
– CCA platform lifecycle state
– CCA platform software component measurements

IJKJCQ The size of a CCA attestation token may be greater than 4KB.

See also:

• A7.1.1 Realm Initial Measurement
• A7.1.2 Realm Extensible Measurement

A7.2.2 Attestation token generation

IKRMRH The process for a Realm to obtain an attestation token is:

• Call RSI_ATTESTATION_TOKEN_INIT once
• Call RSI_ATTESTATION_TOKEN_CONTINUE in a loop, until the result is not RSI_INCOMPLETE

Each call to RSI_ATTESTATION_TOKEN_CONTINUE retrieves up to one Granule of the attestation token.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

SXMLMF The following pseudocode illustrates the process of a Realm obtaining an attestation token.

int get_attestation_token(...)
{

int ret;
uint64_t size, max_size;
uint64_t buf, granule;

ret = RSI_ATTESTATION_TOKEN_INIT(challenge, &max_size);
if (ret) {

return ret;
}

buf = alloc(max_size);
granule = buf;

do { // Retrieve one Granule of data per loop iteration
uint64_t offset = 0;

do { // Retrieve sub-Granule chunk of data per loop iteration
size = GRANULE_SIZE - offset;
ret = RSI_ATTESTATION_TOKEN_CONTINUE(granule, offset, size, &len);
offset += len;

} while (ret == RSI_INCOMPLETE && offset < GRANULE_SIZE);

// "offset" bytes of data are now ready for consumption from "granule"

if (ret == RSI_INCOMPLETE) {
granule += GRANULE_SIZE;

}
} while ((ret == RSI_INCOMPLETE) && (granule < buf + max_size));

return ret;
}

IZWQCB Up to one attestation token generation operation may be ongoing on a REC.

ITMJVG On execution of RSI_ATTESTATION_TOKEN_INIT, if an attestation token generation operation is ongoing on
the calling REC, it is terminated.

IWTKDD The challenge value provided to RSI_ATTESTATION_TOKEN_INIT is included in the generated attestation token.
This allows the relying party to establish freshness of the attestation token.

If the size of the challenge provided by the relying party is less than 64 bytes, it should be zero-padded prior to
calling RSI_ATTESTATION_TOKEN_INIT. Arm recommends that the challenge should contain at least 32 bytes
of unique data.

IGKDJW Generation of an attestation token can be a long-running operation, during which interrupts may need to be handled.

ICXSJP If a physical interrupt becomes pending during execution of RSI_ATTESTATION_TOKEN_CONTINUE, a REC
exit due to IRQ can occur.

On the next entry to the REC:

• If a virtual interrupt is pending on that REC, it is taken to the REC’s exception handler
• RSI_ATTESTATION_TOKEN_CONTINUE returns RSI_INCOMPLETE
• The REC should call RSI_ATTESTATION_TOKEN_CONTINUE again

See also:

• A4.3.5 REC exit due to IRQ
• A6.1 Realm interrupts

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

• A7.2.3.1.1 Realm challenge claim
• B5.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command
• B5.3.2 RSI_ATTESTATION_TOKEN_INIT command
• D1.7.1 Attestation token generation flow
• D1.7.2 Handling interrupts during attestation token generation flow

A7.2.3 Attestation token format

ITFHGX The CCA attestation token is a profiled IETF Entity Attestation Token (EAT).

ILPTVH The CCA attestation token is a Concise Binary Object Representation (CBOR) map, in which the map values are
the Realm token and the CCA platform token.

IYZPHG The Realm token contains structured data in CBOR, wrapped with a COSE_Sign1 envelope according to the
CBOR Object Signing and Encryption (COSE) standard.

IMMQZG The Realm token is signed by the Realm Attestation Key (RAK).

IWBGNP The CCA platform token contains structured data in CBOR, wrapped with a COSE_Sign1 envelope according to
the COSE standard.

ICGYKX The CCA platform token is signed by the Initial Attestation Key (IAK).

ICCGQH The CCA platform token contains a hash of RAK_pub. This establishes a cryptographic binding between the
Realm token and the CCA platform token.

IPTKYD The CCA attestation token is defined as follows:

cca-token = #6.399(cca-token-collection) ; CMW Collection
; (draft-ietf-rats-msg-wrap)

cca-platform-token = bstr .cbor COSE_Sign1_Tagged
cca-realm-delegated-token = bstr .cbor COSE_Sign1_Tagged

cca-token-collection = {
44234 => cca-platform-token ; 44234 = 0xACCA
44241 => cca-realm-delegated-token

}

; EAT standard definitions
COSE_Sign1_Tagged = #6.18(COSE_Sign1)

; Deliberately shortcut these definitions until EAT is finalised and able to
; pull in the full set of definitions
COSE_Sign1 = "COSE-Sign1 placeholder"

IHZNNH The composition of the CCA attestation token is summarised in the following figure.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

realm_public_key = RAK_pub

Realm token claim map

Realm token

CCA attestation token

challenge

Signature(RAK)

Client challenge

COSE_Sign1 envelope

...

Platform token claim map

CCA platform token

challenge = Hash(RAK_pub)

Signature(IAK)

COSE_Sign1 envelope

...

Figure A7.1: Attestation token format

See also:

• Arm CCA Security model [4]
• Concise Binary Object Representation (CBOR) [6]
• CBOR Object Signing and Encryption (COSE) [7]
• Entity Attestation Token (EAT) [8]
• A7.2.3.1 Realm claims
• A7.2.3.2 CCA platform claims

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.1 Realm claims
This section defines the format of the Realm token claim map. The format is described using a combination of
Concise Data Definition Language (CDDL) and text description.

IHKBHC The Realm token claim map is defined as follows:

cca-realm-claims = (cca-realm-claim-map)

cca-realm-claim-map = {
cca-realm-challenge
? cca-realm-profile
cca-realm-personalization-value
cca-realm-initial-measurement
cca-realm-extensible-measurements
cca-realm-hash-algo-id
cca-realm-public-key
cca-realm-public-key-hash-algo-id

}

See also:

• Concise Data Definition Language (CDDL) [9]
• A7.2.3.1.1 Realm challenge claim
• A7.2.3.1.2 Realm profile claim
• A7.2.3.1.3 Realm Personalization Value claim
• A7.2.3.1.4 Realm Initial Measurement claim
• A7.2.3.1.5 Realm Extensible Measurements claim
• A7.2.3.1.6 Realm hash algorithm ID claim
• A7.2.3.1.7 Realm public key claim
• A7.2.3.1.8 Realm public key hash algorithm identifier claim
• A7.2.3.1.9 Collated CDDL for Realm claims
• A7.2.3.1.10 Example Realm claims

A7.2.3.1.1 Realm challenge claim

ITFWXQ The Realm challenge claim is used to carry the challenge provided by the caller to demonstrate freshness of the
generated token.

IRVLZK The Realm challenge claim is identified using the EAT nonce label (10).

IMNVNP The length of the Realm challenge is 64 bytes.

IPXMXF The Realm challenge claim must be present in a Realm token.

IBXGFN The format of the Realm challenge claim is defined as follows:

cca-realm-challenge-label = 10
cca-realm-challenge-type = bytes .size 64

cca-realm-challenge = (
cca-realm-challenge-label => cca-realm-challenge-type

)

See also:

• A7.2.2 Attestation token generation
• B5.3.2 RSI_ATTESTATION_TOKEN_INIT command

A7.2.3.1.2 Realm profile claim

ICVNNV The Realm profile claim identifies the EAT profile to which the Realm token conforms.

ISMSCF The Realm profile claim is identified using the EAT profile label (265).

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

IXSSJY The Realm profile claim is optional in a CCA Realm token.

IGQTJT If the Realm profile is not included in a CCA Realm token then the profile value used in the CCA Platform token
should refer to a profile that describes both Platform and Realm claims.

ISWDJM The format of the Realm profile claim is defined as follows:

cca-realm-profile-label = 265 ; EAT profile

cca-realm-profile-type = "tag:arm.com,2023:realm#1.0.0"

cca-realm-profile = (
cca-realm-profile-label => cca-realm-profile-type

)

A7.2.3.1.3 Realm Personalization Value claim

ISCNXB The Realm Personalization Value claim contains the RPV which was provided at Realm creation.

IBKZPD The Realm Personalization Value claim must be present in a Realm token.

IQKNDV The format of the Realm Personalization Value claim is defined as follows:

cca-realm-personalization-value-label = 44235
cca-realm-personalization-value-type = bytes .size 64

cca-realm-personalization-value = (
cca-realm-personalization-value-label => cca-realm-personalization-value-type

)

See also:

• A2.1.3 Realm attributes

A7.2.3.1.4 Realm Initial Measurement claim

IBXKGD The Realm Initial Measurement claim contains the values of the Realm Initial Measurement.

IFZQSM The Realm Initial Measurement claim must be present in a Realm token.

IGGTNH The format of the Realm Initial Measurement claim is defined as follows:

cca-realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-realm-initial-measurement-label = 44238

cca-realm-initial-measurement = (
cca-realm-initial-measurement-label => cca-realm-measurement-type

)

See also:

• A7.1 Realm measurements
• A7.2.3.1.5 Realm Extensible Measurements claim

A7.2.3.1.5 Realm Extensible Measurements claim

IKFNMV The Realm Extensible Measurements claim contains the values of the Realm Extensible Measurements.

IDSNFB The Realm Extensible Measurements claim must be present in a Realm token.

IZKVMN The format of the Realm measurements claim is defined as follows:

cca-realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-realm-extensible-measurements-label = 44239

cca-realm-extensible-measurements = (
cca-realm-extensible-measurements-label => [4*4 cca-realm-measurement-type]

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

)

See also:

• A7.1 Realm measurements
• A7.2.3.1.4 Realm Initial Measurement claim

A7.2.3.1.6 Realm hash algorithm ID claim

IDGCGG The Realm hash algorithm ID claim identifies the algorithm used to calculate all hash values which are present in
the Realm token.

IPVLCJ Arm recommends that the value of the Realm hash algorithm ID claim is an IANA Hash Function name IANA
Named Information Hash Algorithm Registry [10].

IWKVCQ The Realm hash algorithm ID claim must be present in a Realm token.

IPWPLJ The format of the Realm hash algorithm ID claim is defined as follows:

cca-realm-hash-algo-id-label = 44236

cca-realm-hash-algo-id = (
cca-realm-hash-algo-id-label => text

)

A7.2.3.1.7 Realm public key claim

IZCFMQ The Realm public key claim identifies the key which is used to sign the Realm token.

IWBNHC The value of the Realm public key claim is a CBOR bstr of a COSE_Key structure. The parameters used for the
COSE_Key are profile-specific.

ILSNPQ The Realm public key claim must be present in a Realm token.

INNNDS The format of the Realm public key claim is defined as follows:

cca-realm-public-key-label = 44237

cca-realm-public-key-type = bstr .cbor COSE_Key

cca-realm-public-key = (
cca-realm-public-key-label => cca-realm-public-key-type

)
COSE_Key-label = int / tstr

COSE_Key-values = any

; See RFC8152 for full definition of COSE_Key
COSE_Key = {

1 => tstr / int, ; kty
? 2 => bstr, ; kid
? 3 => tstr / int, ; alg
? 4 => [+ (tstr / int)], ; key_ops
? 5 => bstr, ; Base IV

* COSE_Key-label => COSE_Key-values
}

See also:

• SEC 1: Elliptic Curve Cryptography, version 2.0 [11]
• A7.2.3.1.8 Realm public key hash algorithm identifier claim
• A7.2.3.2.2 CCA platform challenge claim

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.1.8 Realm public key hash algorithm identifier claim

IWWSLP The Realm public key hash algorithm identifier claim identifies the algorithm used to calculate H(RAK_pub).

ITNRBN The Realm public key hash algorithm identifier claim must be present in a Realm token.

INNPVX The format of the Realm public key hash algorithm identifier claim is defined as follows:

cca-realm-public-key-hash-algo-id-label = 44240

cca-realm-public-key-hash-algo-id = (
cca-realm-public-key-hash-algo-id-label => text

)

See also:

• SEC 1: Elliptic Curve Cryptography, version 2.0 [11]
• A7.2.3.1.7 Realm public key claim
• A7.2.3.2.2 CCA platform challenge claim

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.1.9 Collated CDDL for Realm claims

DDCYXZ The format of the Realm token claim map is defined as follows:

cca-realm-claims = (cca-realm-claim-map)

cca-realm-claim-map = {
cca-realm-challenge
? cca-realm-profile
cca-realm-personalization-value
cca-realm-initial-measurement
cca-realm-extensible-measurements
cca-realm-hash-algo-id
cca-realm-public-key
cca-realm-public-key-hash-algo-id

}
cca-realm-challenge-label = 10
cca-realm-challenge-type = bytes .size 64

cca-realm-challenge = (
cca-realm-challenge-label => cca-realm-challenge-type

)
cca-realm-profile-label = 265 ; EAT profile

cca-realm-profile-type = "tag:arm.com,2023:realm#1.0.0"

cca-realm-profile = (
cca-realm-profile-label => cca-realm-profile-type

)
cca-realm-personalization-value-label = 44235
cca-realm-personalization-value-type = bytes .size 64

cca-realm-personalization-value = (
cca-realm-personalization-value-label => cca-realm-personalization-value-type

)
cca-realm-measurement-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-realm-initial-measurement-label = 44238

cca-realm-initial-measurement = (
cca-realm-initial-measurement-label => cca-realm-measurement-type

)
cca-realm-extensible-measurements-label = 44239

cca-realm-extensible-measurements = (
cca-realm-extensible-measurements-label => [4*4 cca-realm-measurement-type]

)
cca-realm-hash-algo-id-label = 44236

cca-realm-hash-algo-id = (
cca-realm-hash-algo-id-label => text

)
cca-realm-public-key-label = 44237

cca-realm-public-key-type = bstr .cbor COSE_Key

cca-realm-public-key = (
cca-realm-public-key-label => cca-realm-public-key-type

)
COSE_Key-label = int / tstr

COSE_Key-values = any

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

; See RFC8152 for full definition of COSE_Key
COSE_Key = {

1 => tstr / int, ; kty
? 2 => bstr, ; kid
? 3 => tstr / int, ; alg
? 4 => [+ (tstr / int)], ; key_ops
? 5 => bstr, ; Base IV

* COSE_Key-label => COSE_Key-values
}
cca-realm-public-key-hash-algo-id-label = 44240

cca-realm-public-key-hash-algo-id = (
cca-realm-public-key-hash-algo-id-label => text

)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.1.10 Example Realm claims

ICPTFR An example Realm claim map is shown below in COSE-DIAG format:

/ Realm claim map /
{

/ cca-realm-profile /
265: "tag:arm.com,2023:realm#1.0.0",

/ cca-realm-challenge /
10: h'AB

AB',

/ cca-realm-personalization-value /
44235: h'AB

AB',

/ cca-realm-initial-measurement /
44238: h'00',

/ cca-realm-extensible-measurements /
44239: [

h'00',
h'00',
h'00',
h'00'

],

/ cca-realm-hash-algo-id /
44236: "sha-256",

/ cca-realm-public-key /
44237: h'A50102033823200221582066EEA6A22678C3A9F83148EF349800B20ABB486F2C

C6D7ED017EC49798C8D4372258202F25DE86812374E6E8D48DEE8E230AD29CCD
839BE6E0DB8C7AB9DEDE0805D29D',

/ cca-realm-public-key-hash-algo-id /
44240: "sha-256"

}

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.2 CCA platform claims
This section defines the format of the CCA platform token claim map. The format is described using a combination
of Concise Data Definition Language (CDDL) and text description.

IFJKFY The CCA platform token claim map is defined as follows:

cca-platform-claims = (cca-platform-claim-map)

cca-platform-claim-map = {
cca-platform-profile
cca-platform-challenge
cca-platform-implementation-id
cca-platform-instance-id
cca-platform-config
cca-platform-lifecycle
cca-platform-sw-components
? cca-platform-verification-service
cca-platform-hash-algo-id

}

See also:

• Concise Data Definition Language (CDDL) [9]
• A7.2.3.2.1 CCA platform profile claim
• A7.2.3.2.2 CCA platform challenge claim
• A7.2.3.2.3 CCA platform Implementation ID claim
• A7.2.3.2.4 CCA platform Instance ID claim
• A7.2.3.2.5 CCA platform config claim
• A7.2.3.2.6 CCA platform lifecycle claim
• A7.2.3.2.7 CCA platform software components claim
• A7.2.3.2.8 CCA platform verification service claim
• A7.2.3.2.9 CCA platform hash algorithm ID claim
• A7.2.3.2.10 Collated CDDL for CCA platform claims
• A7.2.3.2.11 Example CCA platform claims

A7.2.3.2.1 CCA platform profile claim

IFQYTP The CCA platform profile claim identifies the EAT profile to which the CCA platform token conforms. Note that
because the platform token is expected to be issued when bound to a Realm token, the profile document should
also include the relevant Realm profile or a reference to that profile.

IXMVFR The CCA platform profile claim is identified using the EAT profile label (265).

IGMKNR The CCA platform profile claim must be present in a CCA platform token.

IMHRTD The format of the CCA platform profile claim is defined as follows:

cca-platform-profile-label = 265 ; EAT profile

cca-platform-profile-type = "tag:arm.com,2023:cca_platform#1.0.0"

cca-platform-profile = (
cca-platform-profile-label => cca-platform-profile-type

)

A7.2.3.2.2 CCA platform challenge claim

ITKTWZ The CCA platform challenge claim contains a hash of the public key used to sign the Realm token.

ICLJKK The CCA platform challenge claim is identified using the EAT nonce label (10).

IXHLYJ The length of the CCA platform challenge is either 32, 48 or 64 bytes.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

IGVHNX The CCA platform challenge claim must be present in a CCA platform token.

ILRWHR The format of the CCA platform challenge claim is defined as follows:

cca-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-platform-challenge-label = 10

cca-platform-challenge = (
cca-platform-challenge-label => cca-hash-type

)

See also:

• A7.2.3.1.7 Realm public key claim

A7.2.3.2.3 CCA platform Implementation ID claim

ISMWND The CCA platform Implementation ID claim uniquely identifies the implementation of the CCA platform.

INDVFB The value of the CCA platform Implementation ID claim can be used by a verification service to locate the details
of the CCA platform implementation from an endorser or manufacturer. Such details are used by a verification
service to determine the security properties or certification status of the CCA platform implementation.

IRXPVW The semantics of the CCA platform Implementation ID value are defined by the manufacturer or a particular
certification scheme. For example, the ID could take the form of a product serial number, database ID, or other
appropriate identifier.

ISRPZY The CCA platform Implementation ID claim does not identify a particular instance of the CCA implementation.

INTCFY The CCA platform Implementation ID claim must be present in a CCA platform token.

IDHYDG The format of the CCA platform Implementation ID claim is defined as follows:

cca-platform-implementation-id-label = 2396 ; PSA implementation ID
cca-platform-implementation-id-type = bytes .size 32

cca-platform-implementation-id = (
cca-platform-implementation-id-label => cca-platform-implementation-id-type

)

See also:

• Arm CCA Security model [4]
• A7.2.3.2.4 CCA platform Instance ID claim

A7.2.3.2.4 CCA platform Instance ID claim

IZYRZB The CCA platform Instance ID claim represents the unique identifier of the Initial Attestation Key (IAK) for the
CCA platform.

IXVLLN The CCA platform Instance ID claim is identified using the EAT ueid label (256).

RHVTNC The first byte of the CCA platform Instance ID value must be 0x01.

IZNGDF The CCA platform Instance ID claim must be present in a CCA platform token.

IVPKJN The format of the CCA platform Instance ID claim is defined as follows:

cca-platform-instance-id-label = 256 ; EAT ueid

; TODO: require that the first byte of cca-platform-instance-id-type is 0x01
; EAT UEIDs need to be 7 - 33 bytes
cca-platform-instance-id-type = bytes .size 33

cca-platform-instance-id = (
cca-platform-instance-id-label => cca-platform-instance-id-type

)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

See also:

• Arm CCA Security model [4]
• A7.2.3.2.3 CCA platform Implementation ID claim

A7.2.3.2.5 CCA platform config claim

IWVQJT The CCA platform config claim describes the set of chosen implementation options of the CCA platform. As an
example, these may include a description of the level of physical memory protection which is provided.

UGPXWX The CCA platform config claim is expected to contain the System Properties field which is present in the Root
Non-volatile Storage (RNVS) public parameters.

IMJHQJ The CCA platform config claim must be present in a CCA platform token.

cca-platform-config-label = 2401 ; PSA platform range
; TBD: add to IANA registration

cca-platform-config-type = bytes

cca-platform-config = (
cca-platform-config-label => cca-platform-config-type

)

See also:

• RME system architecture spec [12]

A7.2.3.2.6 CCA platform lifecycle claim

ISYKFY The CCA platform lifecycle claim identifies the lifecycle state of the CCA platform.

RNBFVV The value of the CCA platform lifecycle claim is an integer which is divided as follows:

• value[15:8]: CCA platform lifecycle state
• value[7:0]: IMPLEMENTATION DEFINED

IWFZHV The CCA platform lifecycle claim must be present in a CCA platform token.

IQFYLF A non debugged CCA platform will be in psa-lifecycle-secured state. Realm Management Security Domain
debug is always recoverable, and would therefore be represented by psa-lifecycle-non-psa-rot-debug state. Root
world debug is recoverable on a HES system and would be represented by psa-lifecycle-recoverable-psa-rot
state. On a non-HES system Root world debug is usually non-recoverable, and would be represented by
psa-lifecycle-lifecycle-decommissioned state.

IHMZLL The format of the CCA platform lifecycle claim is defined as follows:

cca-platform-lifecycle-label = 2395 ; PSA lifecycle

cca-platform-lifecycle-unknown-type = 0x0000..0x00ff
cca-platform-lifecycle-assembly-and-test-type = 0x1000..0x10ff
cca-platform-lifecycle-cca-platform-rot-provisioning-type = 0x2000..0x20ff
cca-platform-lifecycle-secured-type = 0x3000..0x30ff
cca-platform-lifecycle-non-cca-platform-rot-debug-type = 0x4000..0x40ff
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type = 0x5000..0x50ff
cca-platform-lifecycle-decommissioned-type = 0x6000..0x60ff

cca-platform-lifecycle-type =
cca-platform-lifecycle-unknown-type /
cca-platform-lifecycle-assembly-and-test-type /
cca-platform-lifecycle-cca-platform-rot-provisioning-type /
cca-platform-lifecycle-secured-type /
cca-platform-lifecycle-non-cca-platform-rot-debug-type /
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type /

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

cca-platform-lifecycle-decommissioned-type

cca-platform-lifecycle = (
cca-platform-lifecycle-label => cca-platform-lifecycle-type

)

See also:

• Arm CCA Security model [4]

A7.2.3.2.7 CCA platform software components claim

IPJCSC The CCA platform software components claim is a list of software components which can affect the behavior of
the CCA platform. It is expected that an implementation will describe the expected software component values
within the profile.

ITJTXG The CCA platform software components claim must be present in a CCA platform token.

IDPSKT The format of the CCA platform software components claim is defined as follows:

cca-platform-sw-components-label = 2399 ; PSA software components

cca-platform-sw-component = {
? 1 => text, ; component type
2 => cca-hash-type, ; measurement value

? 4 => text, ; version
5 => cca-hash-type, ; signer id

? 6 => text, ; hash algorithm identifier
}

cca-platform-sw-components = (
cca-platform-sw-components-label => [+ cca-platform-sw-component]

)

CCA platform software component type

IPDNCF The CCA platform software component type is a string which represents the role of the software component.

ITPSYF The CCA platform software component type is intended for use as a hint to help the relying party understand how
to evaluate the CCA platform software component measurement value.

RRSNBH The CCA platform software component type is optional in a CCA platform token.

CCA platform software component measurement value

IRWDKD The CCA platform software component measurement value represents a hash of the state of the software component
in memory at the time it was initialized.

RTVXRZ The CCA platform software component measurement value must be a hash of 256 bits or stronger.

RLGBCM The CCA platform software component measurement value must be present in a CCA platform token.

CCA platform software component version

IJVJFW The CCA platform software component version is a text string whose meaning is defined by the software component
vendor.

RCZRXB The CCA platform software component version is optional in a CCA platform token.

CCA platform software component signer ID

IDCDMR The CCA platform software component signer ID is the hash of a signing authority public key for the software
component. It can be used by a verifier to ensure that the software component was signed by an expected trusted
source.

RPXRMC The CCA platform software component signer ID value must be a hash of 256 bits or stronger.

RXPHQC The CCA platform software signer ID must be present in a CCA platform token.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

CCA platform software component hash algorithm ID

ITQWZX The CCA platform software component hash algorithm ID identifies the way in which the hash algorithm used to
measure the CCA platform software component.

IHHBHG Arm recommends that the value of the CCA platform software component hash algorithm ID is an IANA Hash
Function name IANA Named Information Hash Algorithm Registry [10].

INJYCM Arm recommends that the hash algorithm used to measure the CCA platform software component is one of the
algorithms listed in the Arm CCA Security model [4].

IHPHCD The CCA platform software component hash algorithm ID is optional in a CCA platform token.

A7.2.3.2.8 CCA platform verification service claim

INSTDP The CCA platform verification service claim is a hint which can be used by a relying party to locate a verifier for
the token.

IRZJSQ The value of the CCA platform verification service claim is a text string which can be used to locate the service or
a URL specifying the address of the service.

IMFYCX The CCA platform verification service claim may be ignored by a relying party in favor of other information.

IMRSXY The CCA platform verification service claim is optional in a CCA platform token.

IWRJSX The format of the CCA platform verification service claim is defined as follows:

cca-platform-verification-service-label = 2400 ; PSA verification service
cca-platform-verification-service-type = text

cca-platform-verification-service = (
cca-platform-verification-service-label =>

cca-platform-verification-service-type
)

A7.2.3.2.9 CCA platform hash algorithm ID claim

IVDZMF The CCA platform hash algorithm ID claim identifies the default algorithm used to calculate measurements in the
CCA platform token.

IXHJFX The default hash algorithm may be overridden for an individual software component, by the CCA platform software
component hash algorithm ID claim.

IYRPYY Arm recommends that the value of the CCA platform hash algorithm ID claim is an IANA Hash Function name
IANA Named Information Hash Algorithm Registry [10].

ITQSTK The CCA platform hash algorithm ID claim must be present in a CCA platform token.

IRKZJT The format of the CCA platform hash algorithm ID claim is defined as follows:

cca-platform-hash-algo-id-label = 2402 ; PSA platform range
; TBD: add to IANA registration

cca-platform-hash-algo-id = (
cca-platform-hash-algo-id-label => text

)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.2.10 Collated CDDL for CCA platform claims

DDVMJZ The format of the CCA platform token claim map is defined as follows:

cca-platform-claims = (cca-platform-claim-map)

cca-platform-claim-map = {
cca-platform-profile
cca-platform-challenge
cca-platform-implementation-id
cca-platform-instance-id
cca-platform-config
cca-platform-lifecycle
cca-platform-sw-components
? cca-platform-verification-service
cca-platform-hash-algo-id

}
cca-platform-profile-label = 265 ; EAT profile

cca-platform-profile-type = "tag:arm.com,2023:cca_platform#1.0.0"

cca-platform-profile = (
cca-platform-profile-label => cca-platform-profile-type

)
cca-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64
cca-platform-challenge-label = 10

cca-platform-challenge = (
cca-platform-challenge-label => cca-hash-type

)
cca-platform-implementation-id-label = 2396 ; PSA implementation ID
cca-platform-implementation-id-type = bytes .size 32

cca-platform-implementation-id = (
cca-platform-implementation-id-label => cca-platform-implementation-id-type

)
cca-platform-instance-id-label = 256 ; EAT ueid

; TODO: require that the first byte of cca-platform-instance-id-type is 0x01
; EAT UEIDs need to be 7 - 33 bytes
cca-platform-instance-id-type = bytes .size 33

cca-platform-instance-id = (
cca-platform-instance-id-label => cca-platform-instance-id-type

)
cca-platform-config-label = 2401 ; PSA platform range

; TBD: add to IANA registration
cca-platform-config-type = bytes

cca-platform-config = (
cca-platform-config-label => cca-platform-config-type

)
cca-platform-lifecycle-label = 2395 ; PSA lifecycle

cca-platform-lifecycle-unknown-type = 0x0000..0x00ff
cca-platform-lifecycle-assembly-and-test-type = 0x1000..0x10ff
cca-platform-lifecycle-cca-platform-rot-provisioning-type = 0x2000..0x20ff
cca-platform-lifecycle-secured-type = 0x3000..0x30ff
cca-platform-lifecycle-non-cca-platform-rot-debug-type = 0x4000..0x40ff
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type = 0x5000..0x50ff
cca-platform-lifecycle-decommissioned-type = 0x6000..0x60ff

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

cca-platform-lifecycle-type =
cca-platform-lifecycle-unknown-type /
cca-platform-lifecycle-assembly-and-test-type /
cca-platform-lifecycle-cca-platform-rot-provisioning-type /
cca-platform-lifecycle-secured-type /
cca-platform-lifecycle-non-cca-platform-rot-debug-type /
cca-platform-lifecycle-recoverable-cca-platform-rot-debug-type /
cca-platform-lifecycle-decommissioned-type

cca-platform-lifecycle = (
cca-platform-lifecycle-label => cca-platform-lifecycle-type

)
cca-platform-sw-components-label = 2399 ; PSA software components

cca-platform-sw-component = {
? 1 => text, ; component type
2 => cca-hash-type, ; measurement value

? 4 => text, ; version
5 => cca-hash-type, ; signer id

? 6 => text, ; hash algorithm identifier
}

cca-platform-sw-components = (
cca-platform-sw-components-label => [+ cca-platform-sw-component]

)
cca-platform-verification-service-label = 2400 ; PSA verification service
cca-platform-verification-service-type = text

cca-platform-verification-service = (
cca-platform-verification-service-label =>

cca-platform-verification-service-type
)
cca-platform-hash-algo-id-label = 2402 ; PSA platform range

; TBD: add to IANA registration

cca-platform-hash-algo-id = (
cca-platform-hash-algo-id-label => text

)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

A7.2.3.2.11 Example CCA platform claims

ITVHKL An example CCA platform claim map is shown below in COSE-DIAG format:

/ CCA platform claim map /
{

/ cca-platform-profile /
265: "tag:arm.com,2023:cca_platform#1.0.0",

/ cca-platform-challenge /
10: h'AA

AA',

/ cca-platform-implementation-id /
2396: h'AA',

/ cca-platform-instance-id /
256: h'010BBB

BB',

/ cca-platform-config /
2401: h'CFCFCFCF',

/ cca-platform-lifecycle /
2395: 12288,

/ cca-platform-sw-components /
2399: [

{
/ measurement value /
2: h'AA

AA',

/ signer id /
5: h'BB

BB',

/ version /
4: "1.0.0",

/ hash algorithm identifier /
6: "sha-256"

},
{

/ measurement value /
2: h'CC

CC',

/ signer id /
5: h'DD

DD',

/ version /
4: "1.0.0",

/ hash algorithm identifier /
6: "sha-256"

}
],

/ cca-platform-verification-service /

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter A7. Realm measurement and attestation
A7.2. Realm attestation

2400: "https://cca_verifier.org",

/ cca-platform-hash-algo-id /
2402: "sha-256"

}

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter A8
Realm debug and performance monitoring

This section describes the debug and performance monitoring features which are available to a Realm.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter A8. Realm debug and performance monitoring
A8.1. Realm PMU

A8.1 Realm PMU

This section describes the programming model for usage of PMU by a Realm.

RDNNQQ On REC entry, Realm PMU state is restored from the REC object.

RLHRYJ On REC exit, all Realm PMU state is saved to the REC object.

RWXTZF On REC exit, exit.pmu_ovf_status indicates the status of the PMU overflow at the time of the Realm exit.

See also:

• A3.1.5 Realm support for Performance Monitors Extension
• A4.3 REC exit
• B4.4.16 RmiRecExit type

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Part B
Interface

Chapter B1
Commands

This chapter describes how RMM commands are defined in this specification.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter B1. Commands
B1.1. Overview

B1.1 Overview

RVZRKZ The RMM exposes the following interfaces to the Host:

• The Realm Management Interface (RMI)

RNPLKX The RMM exposes the following interfaces to a Realm:

• The Realm Services Interface (RSI)
• The Power State Coordination Interface (PSCI)

Any other SMC executed by a Realm returns SMCCC_NOT_SUPPORTED.

ITKQXF An RMM interface consists of a set of RMM commands.

IRTRYT An RMM interface is compliant with the SMC Calling Convention (SMCCC).

RNNFPH SMCCC version >= 1.2 is required.

XFDXJG SMCCC version 1.2 increases the number of SMC64 arguments and return values from 4 to 17. Some RMM
commands use more than 4 input or output values.

RVXJJQ On a CCA platform which implements FEAT_SVE, SMCCC version >= 1.3 is required.

XKCMSY SMCCC version 1.3 introduces a bit in the FID which a caller can use to indicate that SVE state does not need to
be preserved across the SMC call.

RJNVJQ On a CCA platform which implements FEAT_SME, SMCCC version >= 1.4 is required.

XQXMZL SMCCC version 1.4 adds support for preservation of SME state across an SMC call.

RKWMVX An RMM command uses the SMC64 calling convention.

SDFNMZ To determine whether an RMM interface is implemented, software should use the following flow:

1. Determine whether the SMCCC_VERSION command is implemented, following the procedure described in
Arm SMC Calling Convention [13].

2. Check that the SMCCC version is >= 1.1.

3. Execute the <Interface>.Version command, which returns:

• SMCCC_NOT_SUPPORTED (-1) if <Interface> is not implemented.
• A version number (>0) if <Interface> is implemented.

RYBXKR All data types defined in this specification are little-endian.

See also:

• Chapter B4 Realm Management Interface
• Chapter B5 Realm Services Interface
• Chapter B6 Power State Control Interface

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter B1. Commands
B1.2. Command definition

B1.2 Command definition

IWBMVP The definition of an RMM command consists of:

• A function identifier (FID)
• A set of input values (referred to as “arguments” in SMCCC)
• A set of output values (referred to as “results” in SMCCC)
• A set of context values
• A partially-ordered set of failure conditions
• A set of success conditions
• A set of footprint items

IGCVWC Each failure condition, success condition and footprint item has an associated identifier. Identifiers are unique
within each of the above groups, within each command.

An identifier has no meaning. It is only a label by which a given condition or footprint item can be referred to.

RSTJHR On calling an RMI or RSI command, any of X1 - X16 which are not specified as input values in the command
definition SBZ.

RKBWJD On return from an RMI or RSI command, any of X0 - X16 which are not specified as output values in the command
definition MBZ.

See also:

• SMCCC Arm SMC Calling Convention [13]

B1.2.1 Example command

INFVGF The following command, EXAMPLE_ADD, is an example of how the components of an RMM command definition
are presented in this document.

This command takes as an input value the address params_ptr of an NS Granule which contains two integer
values x and y. On successful execution of the command:

• The output value sum contains the sum of x and y

• The output value zero indicates whether either of x or y is zero

EXAMPLE_ADD is defined as follows:

Interface

FID

0x042

Input values

Name Register Field Type Description

fid X0 [63:0] UInt64 Command FID

params_ptr X1 [63:0] Address PA of parameters

Context

The EXAMPLE_ADD command operates on the following context.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter B1. Commands
B1.3. Command registers

Name Type Value Before Description

params ExampleParams Params(params_ptr) false Parameters

Output values

Name Register Field Type Description

result X0 [15:0] CommandReturnCode Command return status

sum X1 [63:0] UInt64 Sum of x and y

zero X2 [63:0] UInt64 Whether either x or y was zero

Failure conditions

ID Condition

params_align pre: !AddrIsGranuleAligned(params_ptr)
post: ResultEqual(result, ERROR_INPUT)

params_gpt pre: Granule(params_ptr).gpt != GPT_NS
post: ResultEqual(result, ERROR_MEMORY)

Success conditions

ID Post-condition

sum sum == params.x + params.y

zero zero == (params.x == 0) || (params.y == 0)

B1.3 Command registers

DZDGNM An FID is a value which identifies a particular RMM command.

IMJQGK The FID of an RMM command is unique among the RMM commands in an RMM interface.

IRVPGY An FID is read from general-purpose register X0.

DXLSFS An input value is a value read by an RMM command from general-purpose registers.

DVCDCW An output value is a value written by an RMM command to general-purpose registers.

DCZLVJ A command return code is a value which specifies whether an RMM command succeeded or failed.

IFRZFT A command return code is written to general-purpose register X0.

B1.4 Command condition expressions

DCHRYB A condition expression is an expression which evaluates to a boolean value.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter B1. Commands
B1.5. Command context values

IBNPKQ Following expansion of macros, a condition expression is a valid expression in Arm Specification Language (ASL).

See also:

• Arm Specification Language Reference Manual [14]
• Chapter B3 Command condition functions

B1.5 Command context values

DDLBYC A context value is a value which is derived from the value of a command input register and which is used by a
command condition expression.

IVKKKY A context value can be thought of as a local variable for use by command condition expressions.

For example, consider the following example command condition expression:

!AddrIsGranuleAligned(RealmParams(params_ptr).rtt_base)

By introducing a context value params with the value RealmParams(params_ptr), this command condition
expression can be re-written as:

!AddrIsGranuleAligned(params.rtt_base)

DQDFNW The before property of a context value indicates whether its expression is re-evaluated after the command has
executed.

• before = true: the expression is not re-evaluated after the command has executed
• before = false: the expression is re-evaluated after the command has executed

ILTLQN Specifying before = true for a context value allows system state to be sampled before command execution,
and then used after command execution in a command success condition.

For example, the RMI_REALM_DESTROY command takes as an input value the address rd of a Realm Descriptor.
Successful execution of the command results observable effects including the following:

• The state of the RD Granule changes from RD to DELEGATED
• The state of the RTT base Granule, whose address was previously held in the RD, changes from RTT to

DELEGATED

The address of the RTT base Granule is not included in the input values of the command.

A context value is defined as follows:

Name Type Value Before Description

rtt_base Address Realm(rd).rtt_base true RTT base address

The state change of the RTT Granule can then be expressed as:

Granule(rtt_base).state == DELEGATED

IYNDGD The before property of a context value has no effect if the value is only used in command failure conditions.

DXBHPB An in-memory value is a value passed to a command via an in-memory data structure, the address of which is
passed in an input register.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter B1. Commands
B1.6. Command failure conditions

IZTYSS An in-memory value is a context value.

See also:

• B4.3.9 RMI_REALM_CREATE command

B1.6 Command failure conditions

DDNQQC An RMM command failure condition defines a way in which the command can fail.

IGVBBZ A failure condition consists of a pre-condition and a post-condition.

IWTSZH A failure pre-condition can be thought of as the “trigger” of the failure: if the pre-condition is true then the
command fails.

IKJHNX A failure post-condition can be thought of as the “effect” of the failure: if the command failed due to a particular
trigger, then the post-condition defines the error code which is returned.

ICVTGY A failure pre-condition is a condition expression whose terms can include input values and context values.

IHNDNN A failure post-condition is a condition expression whose terms can include input values and context values.

IKHJDY Observability of the checking of command failure conditions is subject to a partial order.

An ordering relation “A precedes B” means either of the following:

• The pre-condition of B is well-formed only if the pre-condition of A is false. This is referred to as a
well-formedness ordering.

• If the pre-conditions of A and B are both true, then the post-condition of A is observed. This is referred to as
a behavioral ordering.

The absence of an ordering relation “A precedes B” means that, if the pre-conditions of A and B are both true then
either the post-condition of A is observed or the post-condition of B is observed.

Orderings are specified between groups of failure conditions. For example, the expression [A, B] < [C, D]

means that both conditions A and B precede both conditions C and D.

The same information is also presented graphically, with failure conditions represented as nodes and ordering
relations represented as edges.

BA

C D

Figure B1.1

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter B1. Commands
B1.7. Command success conditions

The specification does not state whether an individual ordering relation is a well-formedness ordering or a
behavioral ordering.

IJMTTY A given implementation of the RMM is expected to have deterministic behavior. That is, for a runtime instance of
the RMM in a particular state, two executions of a command without an interleaving of other commands, with the
same input values, results in the same outcome (either success, or the same failure condition.)

RWXZJJ If a failure pre-condition evaluates to true then the corresponding failure post-condition evaluates to true.

RDDGDW If a failure pre-condition evaluates to true then the command is aborted.

RTFZMS If a command fails then all output values except for X0 are UNDEFINED, unless stated otherwise.

RVHFHD If no failure pre-condition evaluates to true then the command succeeds.

B1.7 Command success conditions

DSZGNZ An RMM command success condition defines an observable effect of a successful execution of the command.

ILZXHB A success condition is a condition expression whose terms can include input values, context values and output
values.

INMCSF The order in which success conditions are listed has no architectural significance.

INJQFG If an RMM command succeeds then the return code is <Interface>_SUCCESS.

RMKRVV If an RMM command succeeds then all of its success conditions evaluate to true.

B1.8 Concrete and abstract types

DNXQWV A concrete type is a type which has a defined encoding.

Examples of concrete types include:

• An integer which has a defined bit width.
• An enumeration within which each label is associated with a unique binary value.
• A struct which has a defined width, and within which each member has a defined position. The type of each

member of a concrete struct is a concrete type.

IWDGMW Concrete types are used to define command input values and output values.

DWTCVJ An abstract type is a type which does not have a defined encoding.

Examples of concrete types include:

• An integer which does not have a defined bit width.
• An enumeration which has a set of labels, but which does not define a binary value for each label.
• A struct which has a set of members, but which does not define a struct width nor a position for each member.

The type of each member of an abstract struct is an abstract type.

IQZRGY Abstract types are used to model the internal state of the RMM.

ILMKGP A command failure condition or success condition may need to test for logical equality between a concrete type
and a corresponding abstract type. For example, the command may set the value of an internal RMM variable to
match the value of a command input. To enable such comparisons, the specification defines an Equal() function
for each pair of corresponding concrete and abstract types.

See also:

• B3.17 Equal function

B1.9 Command footprint

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter B1. Commands
B1.9. Command footprint

DZDJDB The footprint of an RMM command defines the set of state items which successful execution of the command can
modify.

IXMZYS The footprint of an RMM command may include state items which are not modified by successful execution of the
command.

IRWQMJ If an RMM command changes the state of a Granule then the footprint typically does not include all attributes of
the object which is created or destroyed.

For example, the footprint of RMI_REALM_CREATE includes the state of the RD Granule, but does not include
attributes of the newly-created Realm.

RWZYBV Except for items in the footprint of an RMM command and registers in the output values of the RMM command,
execution of the command does not have any observable effects.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter B2
Interface versioning

This section describes how the RMI and RSI interfaces are versioned, and how the caller of each can determine
whether there exists a mutually acceptable revision of the interface via which it can communicate with the RMM.

Other interfaces exposed by the RMM, such as PSCI, may define their own versioning schemes which differ from
that used by RMI and RSI. For details, refer to the specification of the interface concerned.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter B2. Interface versioning

ILZVQR Revisions of the RMI and the RSI are identified by a (major, minor) version tuple.

The semantics of this version tuple are as follows. For two revisions of the interface P = (majP, minP) and
Q = (majQ, minQ):

• If majP != majQ then the two interfaces may contain incompatible commands.

• If majP == majQ and minP < minQ then:

– Every command defined in P has the same behavior in Q, when called with input values that are specified
as valid in P.

– A command defined in P may accept additional input values in Q. These could be provided via any of:

* Input registers which were unused in P.
* Input memory locations which were specified as SBZ in P.
* Encodings which were specified as reserved in P.

– A command defined in P may return additional output values in Q. These could be returned via any of:

* Output registers which were unused in P.
* Output memory locations which were specified as MBZ in P.
* Encodings which were specified as reserved in P.

– Q may contain additional commands which are not present in P.

• P is less than Q if one of the following conditions is true:

– majP < majQ
– majP == majQ and minP < minQ

IZCPBC For each interface, an RMM implementation supports a set of revisions. The size of this set is at least one.

IRMSLZ If an RMM implementation supports a given interface revision (x, y) then Arm expects that it will also supports all
earlier revisons with the same major version number. That is:

(x, 0), (x, 1) . . . (x, y-1), (x, y).

A possible exception to this may occur if a security vulnerability is discovered in a particular revision of the interface.
For example, if interface revision (x, bad) is found to contain a vulnerability then an RMM implementation may
choose to support the following set of revisions:

(x, 0), (x, 1) . . . (x, bad-1), (x, bad+1) . . . (x, y-1), (x, y).

IGLDQG The set of interface revisions supported by an RMM implementation may include revisons with different major
version numbers, for example:

(1, 0), (1, 1) . . . (1, m)

(2, 0), (2, 1) . . . (2, n)

IJNVXJ The RMI_VERSION and RSI_VERSION commands allow the caller and the RMM to determine whether there
exists a mutually acceptable revision of the interface via which the two components can communicate.

In each case:

• The caller provides a requested interface revision.
• The output values include a status code and two revisions which are supported by the RMM: a lower revision

and a higher revision.
• The higher revision value is the highest interface revision which is supported by the RMM.
• The lower revision is less than or equal to the higher revision.

The status code and lower revision output values indicate which of the following is true, in order of precedence:

a) The RMM supports an interface revision which is compatible with the requested revision.

• The status code is “success”.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter B2. Interface versioning

• The lower revision is equal to the requested revision.

b) The RMM does not support an interface revision which is compatible with the requested revision The RMM
supports an interface revision which is incompatible with and less than the requested revision.

• The status code is “failure”.
• The lower revision is the highest interface revision which is both less than the requested revision and

supported by the RMM.

c) The RMM does not support an interface revision which is compatible with the requested revision The RMM
supports an interface revision which is incompatible with and greater than the requested revision.

• The status code is “failure”.
• The lower revision is equal to the higher revision.

The following table shows how each of a set of example scenarios maps onto the above outcomes.

Scenario

Revisions
supported by
RMM

Revision
requested by
caller Outcome

“Lower
revision”
output value

“Higher
revision”
output value

1 (1, 0) (1, 0) Success (a) (1, 0) (1, 0)

2 (1, 0), (1, 1) (1, 0) Success (a) (1, 0) (1, 1)

3 (1, 0), (2, 0) (1, 0) Success (a) (1, 0) (2, 0)

4 (1, 0) (1, 1) Failure (b) (1, 0) (1, 0)

5 (1, 0), (1, 1) (1, 2) Failure (b) (1, 1) (1, 1)

6 (1, 0), (1, 1) (2, 0) Failure (b) (1, 1) (1, 1)

7 (1, 0), (1, 1), (1, 3) (1, 2) Failure (b) (1, 1) (1, 3)

8 (1, 0) (2, 0) Failure (b) (1, 0) (1, 0)

9 (1, 0) (2, 1) Failure (b) (1, 0) (1, 0)

10 (1, 0), (1, 1) (2, 0) Failure (b) (1, 1) (1, 1)

11 (1, 0), (1, 1) (2, 1) Failure (b) (1, 1) (1, 1)

12 (1, 0), (1, 1), (2, 0) (2, 1) Failure (b) (2, 0) (2, 0)

13 (2, 0) (1, 0) Failure (c) (2, 0) (2, 0)

14 (2, 0) (1, 1) Failure (c) (2, 0) (2, 0)

15 (2, 0), (2, 1) (1, 0) Failure (c) (2, 1) (2, 1)

See also:

• B4.1 RMI version
• B4.3.23 RMI_VERSION command
• B5.1 RSI version
• B5.3.10 RSI_VERSION command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter B3
Command condition functions

This chapter describes functions which are used in command condition expressions.

See also:

• B1.4 Command condition expressions

B3.1 AddrInRange function

Returns TRUE if addr is within [base, base+size].

func AddrInRange(
addr : Address,
base : Address,
size : integer) => boolean

begin
return ((UInt(addr) >= UInt(base))

&& (UInt(addr) <= UInt(base) + size));
end

B3.2 AddrIsAligned function

Returns TRUE if address addr is aligned to an n byte boundary.

func AddrIsAligned(
addr : Address,
n : integer) => boolean

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter B3. Command condition functions
B3.3. AddrIsGranuleAligned function

B3.3 AddrIsGranuleAligned function

Returns TRUE if address addr is aligned to the size of a Granule.

func AddrIsGranuleAligned(
addr : Address) => boolean

func AddrIsGranuleAligned(
addr : integer) => boolean

See also:

• A2.2 Granule

B3.4 AddrIsProtected function

Returns TRUE if address addr is a Protected IPA for realm.

func AddrIsProtected(
addr : Address,
realm : RmmRealm) => boolean

begin
return UInt(addr) < 2^(realm.ipa_width - 1);

end

B3.5 AddrIsRttLevelAligned function

Returns TRUE if Address addr is aligned to the size of the address range described by an RTTE in a level level
RTT.

Returns FALSE if level is invalid.

func AddrIsRttLevelAligned(
addr : Address,
level : integer) => boolean

B3.6 AddrRangeIsProtected function

Returns TRUE if all addresses in range [base, top) are Protected IPAs for realm.

func AddrRangeIsProtected(
base : Address,
top : Address,
realm : RmmRealm) => boolean

begin
var size = UInt(top) - UInt(base);
return (AddrIsProtected(base, realm)

&& size > 0
&& size < 2^realm.ipa_width
&& AddrIsProtected(ToAddress(UInt(top) - 1), realm));

end

B3.7 AlignDownToRttLevel function

Round down addr to align to the size of the address range described by an RTTE in a level level RTT.

func AlignDownToRttLevel(
addr : Address,
level : integer) => Address

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter B3. Command condition functions
B3.8. AlignUpToRttLevel function

B3.8 AlignUpToRttLevel function

Round up addr to align to the size of the address range described by an RTTE in a level level RTT.

func AlignUpToRttLevel(
addr : Address,
level : integer) => Address

B3.9 AuxAlias function

Returns TRUE if any of the first count entries in a list of auxiliary Granule addresses are aliased - either among
themselves, or with the REC address itself.

func AuxAlias(
rec : Address,
aux : array [16] of Address,
count : integer) => boolean

begin
assert 0 <= count && count <= 16;
var sorted = AuxSort(aux, count);

for i = 0 to count - 1 do
if sorted[i] == rec then

return TRUE;
end
if i >= 1 && sorted[i] == sorted[i - 1] then

return TRUE;
end

end
return FALSE;

end

B3.10 AuxAligned function

Returns TRUE if the first count entries in a list of auxiliary Granule addresses are aligned to the size of a Granule.

func AuxAligned(
aux : array [16] of Address,
count : integer) => boolean

begin
assert 0 <= count && count <= 16;
for i = 0 to count - 1 do

if !AddrIsGranuleAligned(aux[i]) then
return FALSE;

end
end
return TRUE;

end

B3.11 AuxEqual function

Returns TRUE if the first count entries in two lists of auxiliary Granule addresses are equal.

func AuxEqual(
aux1 : array [16] of Address,
aux2 : array [16] of Address,
count : integer) => boolean

begin

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter B3. Command condition functions
B3.12. AuxSort function

assert 0 <= count && count <= 16;
for i = 0 to count - 1 do

if aux1[i] != aux2[i] then
return FALSE;

end
end
return TRUE;

end

B3.12 AuxSort function

Sort first count entries in array of auxiliary Granule addresses.

func AuxSort(
addrs : array [16] of Address,
count : integer) => array [16] of Address

B3.13 AuxStateEqual function

Returns TRUE if the state of the first count entries in a list of auxiliary Granule addresses is equal to state.

func AuxStateEqual(
aux : array [16] of Address,
count : integer,
state : RmmGranuleState) => boolean

begin
assert 0 <= count && count <= 16;
for i = 0 to count - 1 do

if (!PaIsDelegable(aux[i])
|| Granule(aux[i]).state != state) then

return FALSE;
end

end
return TRUE;

end

B3.14 AuxStates function

Inductive function which identifies the states of the first count entries in a list of auxiliary Granules.

This function is used in the definition of command footprint.

func AuxStates(
aux : array [16] of Address,
count : integer)

B3.15 CurrentRealm function

Returns the current Realm.

func CurrentRealm() => RmmRealm

B3.16 CurrentRec function

Returns the current REC.

func CurrentRec() => RmmRec

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter B3. Command condition functions
B3.17. Equal function

B3.17 Equal function

Check whether concrete and abstract values are equal

func Equal(
abstract : RmmFeature,
concrete : RmiFeature) => boolean

func Equal(
concrete : RmiFeature,
abstract : RmmFeature) => boolean

func Equal(
abstract : RmmHashAlgorithm,
concrete : RmiHashAlgorithm) => boolean

func Equal(
concrete : RmiHashAlgorithm,
abstract : RmmHashAlgorithm) => boolean

func Equal(
abstract : RmmRecRunnable,
concrete : RmiRecRunnable) => boolean

func Equal(
concrete : RmiRecRunnable,
abstract : RmmRecRunnable) => boolean

func Equal(
abstract : RmmRipas,
concrete : RmiRipas) => boolean

func Equal(
concrete : RmiRipas,
abstract : RmmRipas) => boolean

func Equal(
abstract : RmmHashAlgorithm,
concrete : RsiHashAlgorithm) => boolean

func Equal(
concrete : RsiHashAlgorithm,
abstract : RmmHashAlgorithm) => boolean

func Equal(
abstract : RmmRipas,
concrete : RsiRipas) => boolean

func Equal(
concrete : RsiRipas,
abstract : RmmRipas) => boolean

func Equal(
abstract : RmmRipasChangeDestroyed,
concrete : RsiRipasChangeDestroyed) => boolean

func Equal(
concrete : RsiRipasChangeDestroyed,
abstract : RmmRipasChangeDestroyed) => boolean

See also:

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter B3. Command condition functions
B3.18. Gicv3ConfigIsValid function

• B1.8 Concrete and abstract types

B3.18 Gicv3ConfigIsValid function

Returns TRUE if the values of all gicv3_* attributes are valid.

func Gicv3ConfigIsValid(
gicv3_hcr : bits(64),
gicv3_lrs : array [16] of bits(64)) => boolean

See also:

• A6.1 Realm interrupts
• B4.4.14 RmiRecEnter type

B3.19 Granule function

Returns the Granule located at physical address addr.

func Granule(
addr : Address) => RmmGranule

See also:

• A2.2 Granule

B3.20 GranuleAccessPermitted function

Returns TRUE if the Granule located at physical address addr is accessible via pas.

func GranuleAccessPermitted(
addr : Address,
pas : RmmPhysicalAddressSpace) => boolean

begin
case Granule(addr).gpt of

when GPT_NS => return (pas == PAS_NS);
when GPT_REALM => return (pas == PAS_REALM);
when GPT_SECURE => return (pas == PAS_SECURE);
when GPT_ROOT => return (pas == PAS_ROOT);
when GPT_AAP => return TRUE;

end
end

B3.21 ImplFeatures function

Returns features supported by the implementation.

func ImplFeatures() => RmmFeatures

B3.22 MinAddress function

Returns the smaller of two addresses.

func MinAddress(
addr1 : Address,
addr2 : Address) => Address

begin
return ToAddress(Min(UInt(addr1), UInt(addr2)));

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter B3. Command condition functions
B3.23. MpidrEqual function

end

B3.23 MpidrEqual function

Returns TRUE if the specified MPIDR values are logically equivalent.

func MpidrEqual(
rmm_mpidr : bits(64),
rmi_mpidr : RmiRecMpidr) => boolean

begin
return (rmm_mpidr[3: 0] == rmi_mpidr.aff0

&& rmm_mpidr[15: 8] == rmi_mpidr.aff1
&& rmm_mpidr[23:16] == rmi_mpidr.aff2
&& rmm_mpidr[31:24] == rmi_mpidr.aff3);

end

B3.24 MpidrIsUsed function

Returns TRUE if the specified MPIDR value identifies a REC in the current Realm.

func MpidrIsUsed(
mpidr : bits(64)) => boolean

B3.25 PaIsDelegable function

Returns TRUE if the Granule located at physical address addr is delegable.

func PaIsDelegable(
addr : Address) => boolean

B3.26 PsciReturnCodeEncode function

Return encoding for a PsciReturnCode value.

func PsciReturnCodeEncode(
value : PsciReturnCode) => bits(64)

B3.27 PsciReturnCodePermitted function

Whether a PSCI return code is permitted.

func PsciReturnCodePermitted(
calling_rec : RmmRec,
target_rec : RmmRec,
value : PsciReturnCode) => boolean

begin
if value == PSCI_SUCCESS then

return TRUE;
end

var fid : bits(64) = calling_rec.gprs[0];

// Host is permitted to deny a PSCI_CPU_ON request, if the target
// CPU is not already on.
if (fid == FID_PSCI_CPU_ON

&& target_rec.flags.runnable != RUNNABLE
&& value == PSCI_DENIED) then
return TRUE;

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter B3. Command condition functions
B3.28. ReadMemory function

end

return FALSE;
end

See also:

• A4.3.7 REC exit due to PSCI
• B4.3.7 RMI_PSCI_COMPLETE command

B3.28 ReadMemory function

Read contents of memory at address range [addr + offset, addr + offset + size)

offset and size are both numbers of bytes.

func ReadMemory(
addr : bits(64),
offset : integer,
size : integer) => bits(size * 8)

B3.29 Realm function

Returns the Realm whose RD is located at physical address addr.

func Realm(
addr : Address) => RmmRealm

See also:

• A2.1 Realm

B3.30 RealmConfig function

Returns Realm configuration stored at IPA addr, mapped in the current Realm.

func RealmConfig(
addr : Address) => RsiRealmConfig

B3.31 RealmHostCall function

Returns Host call data stored at IPA addr, mapped in the current Realm.

func RealmHostCall(
addr : Address) => RsiHostCall

B3.32 RealmIsLive function

Returns TRUE if the Realm whose RD is located at physical address addr is live.

func RealmIsLive(
addr : Address) => boolean

See also:

• A2.1.4 Realm liveness

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter B3. Command condition functions
B3.33. RealmParams function

B3.33 RealmParams function

Returns Realm parameters stored at physical address addr.

If the PAS of addr is not NS, the return value is UNKNOWN.

func RealmParams(
addr : Address) => RmiRealmParams

See also:

• A2.1.6 Realm parameters

B3.34 RealmParamsSupported function

Returns TRUE if the Realm parameters are supported by the implementation.

func RealmParamsSupported(
value : RmiRealmParams) => boolean

B3.35 Rec function

Returns the REC object located at physical address addr.

func Rec(
addr : Address) => RmmRec

See also:

• A2.3 Realm Execution Context

B3.36 RecAuxCount function

Returns the number of auxiliary Granules required for a REC in the Realm described by rd.

The return value is guaranteed not to be greater than 16.

For a given Realm, this function always returns the same value.

func RecAuxCount(
rd : Address) => integer

B3.37 RecFromMpidr function

Returns the REC object identified by the specified MPIDR value, in the current Realm.

func RecFromMpidr(
mpidr : bits(64)) => RmmRec

B3.38 RecIndex function

Returns the REC index which corresponds to mpidr.

func RecIndex(
mpidr : RmiRecMpidr) => integer

begin
return (UInt(mpidr.aff0)

+ 16 * UInt(mpidr.aff1)
+ 16 * 256 * UInt(mpidr.aff2)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter B3. Command condition functions
B3.39. RecParams function

+ 16 * 256 * 256 * UInt(mpidr.aff3));
end

See also:

• A2.3.3 REC index and MPIDR value

B3.39 RecParams function

Returns REC parameters stored at physical address addr.

If the PAS of addr is not NS, the return value is UNKNOWN.

func RecParams(
addr : Address) => RmiRecParams

B3.40 RecRipasChangeResponse function

Returns response to RIPAS change request.

func RecRipasChangeResponse(
rec : RmmRec) => RsiResponse

begin
if ((rec.ripas_value == RAM)

&& (rec.ripas_addr != rec.ripas_top)
&& (rec.ripas_response == REJECT)) then

return RSI_REJECT;
end

return RSI_ACCEPT;
end

See also:

• A5.4 RIPAS change

B3.41 RecRun function

Returns the RecRun object stored at physical address addr.

func RecRun(
addr : Address) => RmiRecRun

See also:

• A4.2 REC entry
• A4.3 REC exit

B3.42 RemExtend function

Extend REM, using size LSBs from new_value, with the remaining bits zero-padded to form a 512-bit value.

func RemExtend(
hash_algo : RmmHashAlgorithm,
old_value : RmmRealmMeasurement,
new_value : RmmRealmMeasurement,
size : integer) => RmmRealmMeasurement

See also:

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter B3. Command condition functions
B3.43. ResultEqual function

• A7.1.2 Realm Extensible Measurement

B3.43 ResultEqual function

Returns TRUE if command result matches the stated value.

func ResultEqual(
result : RmiCommandReturnCode,
status : RmiStatusCode) => boolean

func ResultEqual(
result : RmiCommandReturnCode,
status : RmiStatusCode,
index : integer) => boolean

B3.44 RimExtendData function

Extend RIM with contribution from DATA creation.

func RimExtendData(
realm : RmmRealm,
ipa : Address,
data : Address,
flags : RmiDataFlags) => RmmRealmMeasurement

See also:

• B4.3.1.4 RMI_DATA_CREATE extension of RIM

B3.45 RimExtendRec function

Extend RIM with contribution from REC creation.

func RimExtendRec(
realm : RmmRealm,
params : RmiRecParams) => RmmRealmMeasurement

See also:

• B4.3.12.4 RMI_REC_CREATE extension of RIM

B3.46 RimExtendRipas function

Extend RIM with contribution from RIPAS change for an IPA range.

func RimExtendRipas(
realm : RmmRealm,
base : Address,
top : Address,
level : integer) => RmmRealmMeasurement

begin
var rim = realm.measurements[0];
var size = RttLevelSize(level);
var addr = base;

while (UInt(addr) < UInt(top)) do
rim = RimExtendRipasForEntry(rim, addr, level);
addr = ToAddress(UInt(addr) + size);

end

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter B3. Command condition functions
B3.47. RimExtendRipasForEntry function

return rim;
end

See also:

• B4.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM

B3.47 RimExtendRipasForEntry function

Extend RIM with contribution from RIPAS change for a single RTT entry.

func RimExtendRipasForEntry(
rim : RmmRealmMeasurement,
ipa : Address,
level : integer) => RmmRealmMeasurement

B3.48 RimInit function

Initialize RIM.

func RimInit(
hash_algo : RmmHashAlgorithm,
params : RmiRealmParams) => RmmRealmMeasurement

See also:

• B4.3.9.4 RMI_REALM_CREATE initialization of RIM

B3.49 RipasToRmi function

Encodes a RIPAS value.

func RipasToRmi(
ripas : RmmRipas) => RmiRipas

begin
case ripas of

when EMPTY => return RMI_EMPTY;
when RAM => return RMI_RAM;
when DESTROYED => return RMI_DESTROYED;

end
end

B3.50 RmiRealmParamsIsValid function

Returns TRUE if the memory location contains a valid encoding of the RmiRealmParams type.

func RmiRealmParamsIsValid(
addr : Address) => boolean

B3.51 Rtt function

Returns the RTT at address rtt.

func Rtt(
addr : Address) => RmmRtt

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter B3. Command condition functions
B3.52. RttAllEntriesContiguous function

B3.52 RttAllEntriesContiguous function

Returns TRUE if all entries in the RTT at address rtt at level level have contiguous output addresses, starting
with addr.

func RttAllEntriesContiguous(
rtt : RmmRtt,
addr : Address,
level : integer) => boolean

See also:

• A5.5 Realm Translation Table

B3.53 RttAllEntriesRipas function

Returns TRUE if all entries in the RTT at address rtt have RIPAS ripas.

func RttAllEntriesRipas(
rtt : RmmRtt,
ripas : RmmRipas) => boolean

B3.54 RttAllEntriesState function

Returns TRUE if all entries in the RTT at address rtt have state state.

func RttAllEntriesState(
rtt : RmmRtt,
state : RmmRttEntryState) => boolean

See also:

• A5.5 Realm Translation Table

B3.55 RttConfigIsValid function

Returns TRUE if the RTT configuration values provided are self-consistent and are supported by the platform.

func RttConfigIsValid(
ipa_width : integer,
rtt_level_start : integer,
rtt_num_start : integer) => boolean

See also:

• A5.5 Realm Translation Table

B3.56 RttDescriptorIsValidForUnprotected function

Returns TRUE if, within the descriptor desc, all of the following are true:

• All fields which are Host-controlled RTT attributes are set to architecturally valid values.
• All fields which are not Host-controlled RTT attributes are set to zero.

func RttDescriptorIsValidForUnprotected(
desc : bits(64)) => boolean

See also:

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter B3. Command condition functions
B3.57. RttEntriesInRangeRipas function

• A5.5.11 RTT entry attributes

B3.57 RttEntriesInRangeRipas function

Returns TRUE if all entries in the RTT at address rtt at level level, within IPA range [base, top), have RIPAS
ripas.

func RttEntriesInRangeRipas(
rtt : RmmRtt,
level : integer,
base : Address,
top : Address,
ripas : RmmRipas) => boolean

B3.58 RttEntry function

Returns the ith entry in the RTT at address rtt.

func RttEntry(
rtt : Address,
i : integer) => RmmRttEntry

See also:

• A5.5 Realm Translation Table

B3.59 RttEntryFromDescriptor function

Converts a descriptor to an RmmRttEntry object.

func RttEntryFromDescriptor(
desc : bits(64)) => RmmRttEntry

B3.60 RttEntryIndex function

Returns the index of the entry in a level level RTT which is identified by addr.

func RttEntryIndex(
addr : Address,
level : integer) => integer

See also:

• A5.5 Realm Translation Table

B3.61 RttEntryState function

Encodes the state of an RTTE.

func RttEntryState(
state : RmmRttEntryState) => RmiRttEntryState

begin
case state of

when UNASSIGNED => return RMI_UNASSIGNED;
when ASSIGNED => return RMI_ASSIGNED;
when UNASSIGNED_NS => return RMI_UNASSIGNED;
when ASSIGNED_NS => return RMI_ASSIGNED;
when TABLE => return RMI_TABLE;

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter B3. Command condition functions
B3.62. RttFold function

end
end

B3.62 RttFold function

Returns the RTTE which results from folding the homogeneous RTT at address rtt.

func RttFold(
rtt : RmmRtt) => RmmRttEntry

See also:

• A5.5.6 RTT folding

B3.63 RttIsHomogeneous function

Returns TRUE if the RTT at address rtt is homogeneous.

func RttIsHomogeneous(
rtt : RmmRtt) => boolean

See also:

• A5.5.6 RTT folding

B3.64 RttIsLive function

Returns TRUE if the RTT at address rtt is live.

func RttIsLive(
rtt : RmmRtt) => boolean

See also:

• A5.5.8 RTTE liveness and RTT liveness
• A5.5.9 RTT destruction

B3.65 RttLevelIsBlockOrPage function

Returns TRUE if level is either a block or page RTT level for the Realm described by rd.

func RttLevelIsBlockOrPage(
rd : Address,
level : integer) => boolean

See also:

• A5.5 Realm Translation Table

B3.66 RttLevelIsStarting function

Returns TRUE if level is the starting level of the RTT for the Realm described by rd.

func RttLevelIsStarting(
rd : Address,
level : integer) => boolean

See also:

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter B3. Command condition functions
B3.67. RttLevelIsValid function

• A5.5 Realm Translation Table

B3.67 RttLevelIsValid function

Returns TRUE if level is a valid RTT level for the Realm described by rd.

func RttLevelIsValid(
rd : Address,
level : integer) => boolean

See also:

• A5.5 Realm Translation Table

B3.68 RttLevelSize function

Returns the size of the address space described by each entry in an RTT at level.

If level is invalid, the return value is UNKNOWN.

func RttLevelSize(
level : integer) => integer

See also:

• A5.5 Realm Translation Table

B3.69 RttsAllProtectedEntriesRipas function

Returns TRUE if the RIPAS of all entries identified by Protected IPAs in all of the starting-level RTT Granules is
equal to ripas.

func RttsAllProtectedEntriesRipas(
rtt_base : Address,
rtt_num_start : integer,
ripas : RmmRipas) => boolean

B3.70 RttsAllProtectedEntriesState function

Returns TRUE if the state of all entries identified by Protected IPAs in all of the starting-level RTT Granules is
equal to state.

func RttsAllProtectedEntriesState(
rtt_base : Address,
rtt_num_start : integer,
state : RmmRttEntryState) => boolean

B3.71 RttsAllUnprotectedEntriesState function

Returns TRUE if the state of all entries identified by Unprotected IPAs in all of the starting-level RTT Granules is
equal to state.

func RttsAllUnprotectedEntriesState(
rtt_base : Address,
rtt_num_start : integer,
state : RmmRttEntryState) => boolean

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter B3. Command condition functions
B3.72. RttsGranuleState function

B3.72 RttsGranuleState function

Inductive function which identifies the states of the starting-level RTT Granules.

This function is used in the definition of command footprint.

func RttsGranuleState(
rtt_base : Address,
rtt_num_start : integer)

B3.73 RttSkipEntriesUnlessRipas function

Scanning rtt starting from ipa, returns the IPA of the first entry whose RIPAS is ripas.

If no entry is found whose RIPAS is ripas, returns the next IPA after the last entry in rtt.

The return value is aligned to the size of the address range described by an entry at RTT level.

func RttSkipEntriesUnlessRipas(
rtt : RmmRtt,
level : integer,
ipa : Address,
ripas : RmmRipas) => Address

B3.74 RttSkipEntriesUnlessState function

Scanning rtt starting from ipa, returns the IPA of the first entry whose state is state.

If no entry is found whose state is state, returns the next IPA after the last entry in rtt.

The return value is aligned to the size of the address range described by an entry at RTT level.

func RttSkipEntriesUnlessState(
rtt : RmmRtt,
level : integer,
ipa : Address,
state : RmmRttEntryState) => Address

B3.75 RttSkipEntriesWithRipas function

Scan rtt starting from base and terminating at top.

• If stop_at_destroyed is FALSE then return IPA of the first entry whose state is TABLE.
• If stop_at_destroyed is TRUE then return IPA of the first entry whose state is TABLE or whose RIPAS is

DESTROYED.

If no such entry is found, returns the smaller of:

• The next IPA after the last entry in rtt

• The top argument.

The return value is aligned to the size of the address range described by an entry at RTT level.

func RttSkipEntriesWithRipas(
rtt : RmmRtt,
level : integer,
base : Address,
top : Address,
stop_at_destroyed : boolean) => Address

begin
var result : Address = RttSkipEntriesUnlessState(

rtt, level, base, TABLE);

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter B3. Command condition functions
B3.76. RttSkipNonLiveEntries function

if stop_at_destroyed then
result = MinAddress(result,

RttSkipEntriesUnlessRipas(
rtt, level, base, DESTROYED));

end

result = MinAddress(result, top);

return AlignDownToRttLevel(result, level);
end

B3.76 RttSkipNonLiveEntries function

Scanning rtt starting from ipa, returns the IPA of the first live entry.

If no live entry is found, returns the next IPA after the last entry in rtt.

The return value is aligned to the size of the address range described by an entry at RTT level.

func RttSkipNonLiveEntries(
rtt : RmmRtt,
level : integer,
ipa : Address) => Address

begin
var result : Address = RttSkipEntriesUnlessState(

rtt, level, ipa, ASSIGNED);

result = MinAddress(result,
RttSkipEntriesUnlessState(

rtt, level, ipa, ASSIGNED_NS));

result = MinAddress(result,
RttSkipEntriesUnlessState(

rtt, level, ipa, TABLE));

return AlignDownToRttLevel(result, level);
end

See also:

• A5.5.8 RTTE liveness and RTT liveness

B3.77 RttsStateEqual function

Returns TRUE if the state of all of the starting-level RTT Granules is equal to state.

func RttsStateEqual(
rtt_base : Address,
rtt_num_start : integer,
state : RmmGranuleState) => boolean

begin
for i = 0 to rtt_num_start - 1 do

var addr = (UInt(rtt_base) + i * RMM_GRANULE_SIZE)[(ADDRESS_WIDTH-1):0];
if (!PaIsDelegable(addr)

|| Granule(addr).state != state) then
return FALSE;

end
end

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter B3. Command condition functions
B3.78. RttWalk function

return TRUE;
end

B3.78 RttWalk function

Returns the result of an RTT walk from the RTT base of rd to address addr.

If level is provided, the walk terminates at level.

func RttWalk(
rd : Address,
addr : Address) => RmmRttWalkResult

func RttWalk(
rd : Address,
addr : Address,
level : integer) => RmmRttWalkResult

See also:

• A5.5.10 RTT walk

B3.79 ToAddress function

Convert integer to Address.

func ToAddress(value : integer) => Address
begin

return value[(ADDRESS_WIDTH-1):0];
end

B3.80 ToBits64 function

Convert integer to Bits64.

func ToBits64(value : integer) => bits(64)
begin

return value[63:0];
end

B3.81 VmidIsFree function

Returns TRUE if vmid is unused.

func VmidIsFree(
vmid : bits(16)) => boolean

B3.82 VmidIsValid function

Returns TRUE if vmid is valid on the platform.

func VmidIsValid(
vmid : bits(16)) => boolean

If the underlying hardware platform does not implement FEAT_VMID16 then a VMID value with
vmid[15:8] != 0 is invalid.

See also:

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter B3. Command condition functions
B3.82. VmidIsValid function

• A2.1.3 Realm attributes
• B4.3.9 RMI_REALM_CREATE command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter B4
Realm Management Interface

This chapter defines the interface used by the Host to manage Realms.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter B4. Realm Management Interface
B4.1. RMI version

B4.1 RMI version

RNCFDX This specification defines version 1.0 of the Realm Management Interface.

See also:

• Chapter B2 Interface versioning
• B4.3.23 RMI_VERSION command

B4.2 RMI command return codes

IJQMBN The return code of an RMI command is a tuple which contains status and index fields.

IYCHQV The status field of an RMI command return code indicates whether the command

• succeeded, or
• failed, and the reason for the failure.

IPPNST If an RMI command succeeds then the status of its return code is RMI_SUCCESS.

IMBVPG The index field of an RMI command return code can provide additional information about the reason for a command
failure. The meaning of the index field depends on the status, and is described by the following table.

Status Description Meaning of index

RMI_SUCCESS
Command completed successfully

None: index is zero.

RMI_ERROR_INPUT
The value of a command input value caused the
command to fail

None: index is zero.

RMI_ERROR_REALM
An attribute of a Realm does not match the
expected value

Varies between usages.
See individual commands
for details.

RMI_ERROR_REC
An attribute of a REC does not match the
expected value

None: index is zero.

RMI_ERROR_RTT
An RTT walk terminated before reaching the
target RTT level, or reached an RTTE with an
unexpected value

RTT level at which the
walk terminated.

IQQQNB Multiple failure conditions in an RMI command may return the same error code - that is, the same status and index
values.

RXRDYQ If an input to an RMI command uses an invalid encoding then the command fails and returns RMI_ERROR_INPUT.

Command inputs include registers and in-memory data structures.

Invalid encodings include:

• using a reserved encoding in an enumeration

See also:

• B4.4.1 RmiCommandReturnCode type

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3 RMI commands

The following table summarizes the FIDs of commands in the RMI interface.

FID Command

0xC4000150 RMI_VERSION

0xC4000151 RMI_GRANULE_DELEGATE

0xC4000152 RMI_GRANULE_UNDELEGATE

0xC4000153 RMI_DATA_CREATE

0xC4000154 RMI_DATA_CREATE_UNKNOWN

0xC4000155 RMI_DATA_DESTROY

. . .

0xC4000157 RMI_REALM_ACTIVATE

0xC4000158 RMI_REALM_CREATE

0xC4000159 RMI_REALM_DESTROY

0xC400015A RMI_REC_CREATE

0xC400015B RMI_REC_DESTROY

0xC400015C RMI_REC_ENTER

0xC400015D RMI_RTT_CREATE

0xC400015E RMI_RTT_DESTROY

0xC400015F RMI_RTT_MAP_UNPROTECTED

. . .

0xC4000161 RMI_RTT_READ_ENTRY

0xC4000162 RMI_RTT_UNMAP_UNPROTECTED

. . .

0xC4000164 RMI_PSCI_COMPLETE

0xC4000165 RMI_FEATURES

0xC4000166 RMI_RTT_FOLD

0xC4000167 RMI_REC_AUX_COUNT

0xC4000168 RMI_RTT_INIT_RIPAS

0xC4000169 RMI_RTT_SET_RIPAS

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.1 RMI_DATA_CREATE command

Creates a Data Granule, copying contents from a Non-secure Granule provided by the caller.

See also:

• Chapter A5 Realm memory management
• B4.3.3 RMI_DATA_DESTROY command
• D1.2.3 Initialize memory of New Realm flow

B4.3.1.1 Interface

B4.3.1.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000153

rd X1 63:0 Address PA of the RD for the target Realm

data X2 63:0 Address PA of the target Data

ipa X3 63:0 Address IPA at which the Granule will be
mapped in the target Realm

src X4 63:0 Address PA of the source Granule

flags X5 63:0 RmiDataFlags Flags

B4.3.1.1.2 Context

The RMI_DATA_CREATE command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm(rd) true Realm

walk RmmRttWalkResult RttWalk(
rd, ipa,
RMM_RTT_PAGE_LEVEL)

false RTT walk result

entry_idx UInt64 RttEntryIndex(
ipa, walk.level)

false RTTE index

B4.3.1.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.1.2 Failure conditions

ID Condition

src_align pre: !AddrIsGranuleAligned(src)
post: ResultEqual(result, RMI_ERROR_INPUT)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

src_bound pre: !PaIsDelegable(src)
post: ResultEqual(result, RMI_ERROR_INPUT)

src_pas pre: !GranuleAccessPermitted(src, PAS_NS)
post: ResultEqual(result, RMI_ERROR_INPUT)

data_align pre: !AddrIsGranuleAligned(data)
post: ResultEqual(result, RMI_ERROR_INPUT)

data_bound pre: !PaIsDelegable(data)
post: ResultEqual(result, RMI_ERROR_INPUT)

data_state pre: Granule(data).state != DELEGATED
post: ResultEqual(result, RMI_ERROR_INPUT)

data_bound2 pre: ((realm.feat_lpa2 == FEATURE_FALSE)
&& (UInt(data) >= 2^48))

post: ResultEqual(result, RMI_ERROR_INPUT)

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsGranuleAligned(ipa)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_bound pre: !AddrIsProtected(ipa, realm)
post: ResultEqual(result, RMI_ERROR_INPUT)

realm_state pre: realm.state != REALM_NEW
post: ResultEqual(result, RMI_ERROR_REALM)

rtt_walk pre: walk.level < RMM_RTT_PAGE_LEVEL
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.rtte.state != UNASSIGNED
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

B4.3.1.2.1 Failure condition ordering

[rd_bound, rd_state] < [realm_state]
[rd_bound, rd_state] < [rtt_walk, rtte_state]
[ipa_bound] < [rtt_walk, rtte_state]

RMI_ERROR_INPUT

RMI_ERROR_REALM RMI_ERROR_RTT

src_alignsrc_boundsrc_pasdata_aligndata_bounddata_statedata_bound2rd_align rd_bound

realm_state rtt_walk

rd_stateipa_align ipa_bound

rtte_state

B4.3.1.3 Success conditions

ID Condition

data_state Granule(data).state == DATA

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

rtte_state walk.rtte.state == ASSIGNED

rtte_ripas walk.rtte.ripas == RAM

rtte_addr walk.rtte.addr == data

rim Realm(rd).measurements[0] == RimExtendData(
realm, ipa, data, flags)

B4.3.1.4 RMI_DATA_CREATE extension of RIM
On successful execution of RMI_DATA_CREATE, the new RIM value of the target Realm is calculated by the
RMM as follows:

1. If flags.measure == RMI_MEASURE_CONTENT then using the RHA of the target Realm, compute the
hash of the contents of the DATA Granule.

2. Allocate an RmmMeasurementDescriptorData data structure.

3. Populate the measurement descriptor:

• Set the desc_type field to the descriptor type.
• Set the len field to the descriptor length.
• Set the rim field to the current RIM value of the target Realm.
• Set the ipa field to the IPA at which the DATA Granule is mapped in the target Realm.
• Set the flags field to the flags provided by the Host.
• If flags.measure == RMI_MEASURE_CONTENT then set the content field to the hash of the contents of the

DATA Granule. Otherwise, set the content field to zero.

4. Using the RHA of the target Realm, compute the hash of the measurement descriptor. Set the RIM of the
target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size of the RIM.

See also:

• A7.1.1 Realm Initial Measurement
• B3.44 RimExtendData function
• C1.11 RmmMeasurementDescriptorData type

B4.3.1.5 Footprint

ID Value

data_state Granule(data).state

rim Realm(rd).measurements[0]

rtte RttEntry(walk.rtt_addr, entry_idx)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.2 RMI_DATA_CREATE_UNKNOWN command

Creates a Data Granule with unknown contents.

See also:

• A2.2.4 Granule wiping
• Chapter A5 Realm memory management
• B4.3.3 RMI_DATA_DESTROY command
• D1.5.1 Add memory to Active Realm flow

B4.3.2.1 Interface

B4.3.2.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000154

rd X1 63:0 Address PA of the RD for the target Realm

data X2 63:0 Address PA of the target Data

ipa X3 63:0 Address IPA at which the Granule will be
mapped in the target Realm

B4.3.2.1.2 Context

The RMI_DATA_CREATE_UNKNOWN command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm(rd) false Realm

walk RmmRttWalkResult RttWalk(
rd, ipa,
RMM_RTT_PAGE_LEVEL)

false RTT walk result

entry_idx UInt64 RttEntryIndex(
ipa, walk.level)

false RTTE index

B4.3.2.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.2.2 Failure conditions

ID Condition

data_align pre: !AddrIsGranuleAligned(data)
post: ResultEqual(result, RMI_ERROR_INPUT)

data_bound pre: !PaIsDelegable(data)
post: ResultEqual(result, RMI_ERROR_INPUT)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

data_state pre: Granule(data).state != DELEGATED
post: ResultEqual(result, RMI_ERROR_INPUT)

data_bound2 pre: ((realm.feat_lpa2 == FEATURE_FALSE)
&& (UInt(data) >= 2^48))

post: ResultEqual(result, RMI_ERROR_INPUT)

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsGranuleAligned(ipa)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_bound pre: !AddrIsProtected(ipa, Realm(rd))
post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < RMM_RTT_PAGE_LEVEL
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.rtte.state != UNASSIGNED
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

B4.3.2.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[ipa_bound] < [rtt_walk, rtte_state]

RMI_ERROR_INPUT

RMI_ERROR_RTT

data_aligndata_bounddata_statedata_bound2rd_align rd_bound

rtt_walk

rd_stateipa_align ipa_bound

rtte_state

B4.3.2.3 Success conditions

ID Condition

data_state Granule(data).state == DATA

data_content Contents of target Granule are wiped.

rtte_state walk.rtte.state == ASSIGNED

rtte_addr walk.rtte.addr == data

B4.3.2.4 Footprint

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Value

data_state Granule(data).state

rtte RttEntry(walk.rtt_addr, entry_idx)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.3 RMI_DATA_DESTROY command

Destroys a Data Granule.

See also:

• Chapter A5 Realm memory management
• B4.3.1 RMI_DATA_CREATE command
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• D1.2.5 Realm destruction flow

B4.3.3.1 Interface

B4.3.3.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000155

rd X1 63:0 Address PA of the RD which owns the target Data

ipa X2 63:0 Address IPA at which the Granule is mapped in
the target Realm

B4.3.3.1.2 Context

The RMI_DATA_DESTROY command operates on the following context.

Name Type Value Before Description

walk RmmRttWalkResult RttWalk(
rd, ipa,
RMM_RTT_PAGE_LEVEL)

false RTT walk result

entry_idx UInt64 RttEntryIndex(
ipa, walk.level)

false RTTE index

walk_top Address RttSkipNonLiveEntries(
Rtt(walk.rtt_addr),
walk.level,
ipa)

false Top IPA of non-live
RTT entries, from
entry at which the
RTT walk terminated

B4.3.3.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

data X1 63:0 Address PA of the Data Granule which was
destroyed

top X2 63:0 Address Top IPA of non-live RTT entries, from
entry at which the RTT walk terminated

The data output value is valid only when the command result is RMI_SUCCESS.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter B4. Realm Management Interface
B4.3. RMI commands

The values of the result and top output values for different command outcomes are summarized in the following
table.

Scenario result top walk.rtte.state

ipa is mapped as a page RMI_SUCCESS > ipa Before execution: ASSIGNED
After execution: UNASSIGNED
and RIPAS is DESTROYED

ipa is not mapped (RMI_ERROR_RTT, <= 3) > ipa UNASSIGNED

ipa is mapped as a block (RMI_ERROR_RTT, 0
0 < level < 3)

== ipa ASSIGNED

RTT walk was not performed,
due to any other command failure

Another error code 0 Unknown

See also:

• A5.5.8 RTTE liveness and RTT liveness

B4.3.3.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsGranuleAligned(ipa)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_bound pre: !AddrIsProtected(ipa, Realm(rd))
post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < RMM_RTT_PAGE_LEVEL
post: (ResultEqual(result, RMI_ERROR_RTT, walk.level)

&& (top == walk_top))

rtte_state pre: walk.rtte.state != ASSIGNED
post: (ResultEqual(result, RMI_ERROR_RTT, walk.level)

&& (top == walk_top))

B4.3.3.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[ipa_bound] < [rtt_walk, rtte_state]

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter B4. Realm Management Interface
B4.3. RMI commands

RMI_ERROR_INPUT

RMI_ERROR_RTT

rd_align rd_bound

rtt_walk

rd_stateipa_align ipa_bound

rtte_state

B4.3.3.3 Success conditions

ID Condition

data_state Granule(walk.rtte.addr).state == DELEGATED

rtte_state walk.rtte.state == UNASSIGNED

ripas_ram pre: walk.rtte.ripas == RAM
post: walk.rtte.ripas == DESTROYED

data data == walk.rtte.addr

top top == walk_top

B4.3.3.4 Footprint

ID Value

data_state Granule(walk.rtte.addr).state

rtte RttEntry(walk.rtt_addr, entry_idx)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.4 RMI_FEATURES command

Read feature register.

The following table indicates which feature register is returned depending on the index provided.

Index Feature register

0 Feature register 0

See also:

• A3.1 Realm feature discovery and selection

B4.3.4.1 Interface

B4.3.4.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000165

index X1 63:0 UInt64 Feature register index

B4.3.4.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

value X1 63:0 Bits64 Feature register value

B4.3.4.2 Failure conditions
The RMI_FEATURES command does not have any failure conditions.

B4.3.4.3 Success conditions

ID Condition

index pre: index != 0
post: value == Zeros()

B4.3.4.4 Footprint
The RMI_FEATURES command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.5 RMI_GRANULE_DELEGATE command

Delegates a Granule.

See also:

• A2.2 Granule
• B4.3.6 RMI_GRANULE_UNDELEGATE command
• D1.2.1 Realm creation flow

B4.3.5.1 Interface

B4.3.5.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000151

addr X1 63:0 Address PA of the target Granule

B4.3.5.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.5.2 Failure conditions

ID Condition

gran_align pre: !AddrIsGranuleAligned(addr)
post: ResultEqual(result, RMI_ERROR_INPUT)

gran_bound pre: !PaIsDelegable(addr)
post: ResultEqual(result, RMI_ERROR_INPUT)

gran_state pre: Granule(addr).state != UNDELEGATED
post: ResultEqual(result, RMI_ERROR_INPUT)

gran_gpt pre: Granule(addr).gpt != GPT_NS
post: ResultEqual(result, RMI_ERROR_INPUT)

B4.3.5.2.1 Failure condition ordering

The RMI_GRANULE_DELEGATE command does not have any failure condition orderings.

B4.3.5.3 Success conditions

ID Condition

gran_state Granule(addr).state == DELEGATED

gran_gpt Granule(addr).gpt == GPT_REALM

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.5.4 Footprint

ID Value

gran_gpt Granule(addr).gpt

gran_state Granule(addr).state

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.6 RMI_GRANULE_UNDELEGATE command

Undelegates a Granule.

See also:

• A2.2 Granule
• B4.3.5 RMI_GRANULE_DELEGATE command
• D1.2.5 Realm destruction flow

B4.3.6.1 Interface

B4.3.6.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000152

addr X1 63:0 Address PA of the target Granule

B4.3.6.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.6.2 Failure conditions

ID Condition

gran_align pre: !AddrIsGranuleAligned(addr)
post: ResultEqual(result, RMI_ERROR_INPUT)

gran_bound pre: !PaIsDelegable(addr)
post: ResultEqual(result, RMI_ERROR_INPUT)

gran_state pre: Granule(addr).state != DELEGATED
post: ResultEqual(result, RMI_ERROR_INPUT)

B4.3.6.2.1 Failure condition ordering

The RMI_GRANULE_UNDELEGATE command does not have any failure condition orderings.

B4.3.6.3 Success conditions

ID Condition

gran_gpt Granule(addr).gpt == GPT_NS

gran_state Granule(addr).state == UNDELEGATED

gran_content Contents of target Granule are wiped.

See also:

• A2.2.4 Granule wiping

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.6.4 Footprint

ID Value

gran_gpt Granule(addr).gpt

gran_state Granule(addr).state

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.7 RMI_PSCI_COMPLETE command

Completes a pending PSCI command which was called with an MPIDR argument, by providing the corresponding
REC.

See also:

• A4.3.7 REC exit due to PSCI
• B6.3.1 PSCI_AFFINITY_INFO command
• B6.3.3 PSCI_CPU_ON command
• D1.4 PSCI flows

B4.3.7.1 Interface

B4.3.7.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000164

calling_rec X1 63:0 Address PA of the calling REC

target_rec X2 63:0 Address PA of the target REC

status X3 63:0 PsciReturnCode Status of the PSCI request

B4.3.7.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.7.2 Failure conditions

ID Condition

alias pre: calling_rec == target_rec
post: ResultEqual(result, RMI_ERROR_INPUT)

calling_align pre: !AddrIsGranuleAligned(calling_rec)
post: ResultEqual(result, RMI_ERROR_INPUT)

calling_bound pre: !PaIsDelegable(calling_rec)
post: ResultEqual(result, RMI_ERROR_INPUT)

calling_state pre: Granule(calling_rec).state != REC
post: ResultEqual(result, RMI_ERROR_INPUT)

target_align pre: !AddrIsGranuleAligned(target_rec)
post: ResultEqual(result, RMI_ERROR_INPUT)

target_bound pre: !PaIsDelegable(target_rec)
post: ResultEqual(result, RMI_ERROR_INPUT)

target_state pre: Granule(target_rec).state != REC
post: ResultEqual(result, RMI_ERROR_INPUT)

pending pre: Rec(calling_rec).psci_pending != PSCI_REQUEST_PENDING
post: ResultEqual(result, RMI_ERROR_INPUT)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

owner pre: Rec(target_rec).owner != Rec(calling_rec).owner
post: ResultEqual(result, RMI_ERROR_INPUT)

target pre: Rec(target_rec).mpidr != Rec(calling_rec).gprs[1]
post: ResultEqual(result, RMI_ERROR_INPUT)

status pre: !PsciReturnCodePermitted(
Rec(calling_rec), Rec(target_rec), status)

post: ResultEqual(result, RMI_ERROR_INPUT)

B4.3.7.2.1 Failure condition ordering

The RMI_PSCI_COMPLETE command does not have any failure condition orderings.

B4.3.7.3 Success conditions

ID Condition

pending Rec(calling_rec).psci_pending == NO_PSCI_REQUEST_PENDING

on_already pre: (status == PSCI_SUCCESS
&& Rec(calling_rec).gprs[0] == FID_PSCI_CPU_ON
&& Rec(target_rec).flags.runnable == RUNNABLE)

post: (Rec(calling_rec).gprs[0] ==
PsciReturnCodeEncode(PSCI_ALREADY_ON))

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

on_success pre: (status == PSCI_SUCCESS
&& Rec(calling_rec).gprs[0] == FID_PSCI_CPU_ON
&& Rec(target_rec).flags.runnable != RUNNABLE)

post: (Rec(target_rec).gprs[0] == Rec(calling_rec).gprs[3]
&& Rec(target_rec).gprs[1] == Zeros()
&& Rec(target_rec).gprs[2] == Zeros()
&& Rec(target_rec).gprs[3] == Zeros()
&& Rec(target_rec).gprs[4] == Zeros()
&& Rec(target_rec).gprs[5] == Zeros()
&& Rec(target_rec).gprs[6] == Zeros()
&& Rec(target_rec).gprs[7] == Zeros()
&& Rec(target_rec).gprs[8] == Zeros()
&& Rec(target_rec).gprs[9] == Zeros()
&& Rec(target_rec).gprs[10] == Zeros()
&& Rec(target_rec).gprs[11] == Zeros()
&& Rec(target_rec).gprs[12] == Zeros()
&& Rec(target_rec).gprs[13] == Zeros()
&& Rec(target_rec).gprs[14] == Zeros()
&& Rec(target_rec).gprs[15] == Zeros()
&& Rec(target_rec).gprs[16] == Zeros()
&& Rec(target_rec).gprs[17] == Zeros()
&& Rec(target_rec).gprs[18] == Zeros()
&& Rec(target_rec).gprs[19] == Zeros()
&& Rec(target_rec).gprs[20] == Zeros()
&& Rec(target_rec).gprs[21] == Zeros()
&& Rec(target_rec).gprs[22] == Zeros()
&& Rec(target_rec).gprs[23] == Zeros()
&& Rec(target_rec).gprs[24] == Zeros()
&& Rec(target_rec).gprs[25] == Zeros()
&& Rec(target_rec).gprs[26] == Zeros()
&& Rec(target_rec).gprs[27] == Zeros()
&& Rec(target_rec).gprs[28] == Zeros()
&& Rec(target_rec).gprs[29] == Zeros()
&& Rec(target_rec).gprs[30] == Zeros()
&& Rec(target_rec).gprs[31] == Zeros()
&& Rec(target_rec).pc == Rec(calling_rec).gprs[2]
&& Rec(target_rec).flags.runnable == RUNNABLE
&& Rec(calling_rec).gprs[0] ==

PsciReturnCodeEncode(PSCI_SUCCESS))

affinity_on pre: (status == PSCI_SUCCESS
&& Rec(calling_rec).gprs[0] == FID_PSCI_AFFINITY_INFO
&& Rec(target_rec).flags.runnable == RUNNABLE)

post: (Rec(calling_rec).gprs[0] ==
PsciReturnCodeEncode(PSCI_SUCCESS))

affinity_off pre: (status == PSCI_SUCCESS
&& Rec(calling_rec).gprs[0] == FID_PSCI_AFFINITY_INFO
&& Rec(target_rec).flags.runnable != RUNNABLE)

post: (Rec(calling_rec).gprs[0] ==
PsciReturnCodeEncode(PSCI_OFF))

status pre: status != PSCI_SUCCESS
post: (Rec(calling_rec).gprs[0] ==

PsciReturnCodeEncode(status))

args (Rec(calling_rec).gprs[1] == Zeros()
&& Rec(calling_rec).gprs[2] == Zeros()
&& Rec(calling_rec).gprs[3] == Zeros())

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.7.4 Footprint

ID Value

target_flags Rec(target_rec).flags

target_gprs Rec(target_rec).gprs

target_pc Rec(target_rec).pc

calling_pend Rec(calling_rec).psci_pending

calling_gprs Rec(calling_rec).gprs

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.8 RMI_REALM_ACTIVATE command

Activates a Realm.

See also:

• A2.1 Realm

B4.3.8.1 Interface

B4.3.8.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000157

rd X1 63:0 Address PA of the RD

B4.3.8.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.8.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

realm_state pre: Realm(rd).state != REALM_NEW
post: ResultEqual(result, RMI_ERROR_REALM)

B4.3.8.2.1 Failure condition ordering

[rd_bound, rd_state] < [realm_state]

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter B4. Realm Management Interface
B4.3. RMI commands

RMI_ERROR_INPUT

RMI_ERROR_REALM

rd_align rd_bound

realm_state

rd_state

B4.3.8.3 Success conditions

ID Condition

realm_state Realm(rd).state == REALM_ACTIVE

B4.3.8.4 Footprint

ID Value

realm_state Realm(rd).state

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.9 RMI_REALM_CREATE command

Creates a Realm.

See also:

• A2.1 Realm
• A2.1.6 Realm parameters
• B4.3.10 RMI_REALM_DESTROY command
• D1.2.1 Realm creation flow

B4.3.9.1 Interface

B4.3.9.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000158

rd X1 63:0 Address PA of the RD

params_ptr X2 63:0 Address PA of Realm parameters

B4.3.9.1.2 Context

The RMI_REALM_CREATE command operates on the following context.

Name Type Value Before Description

params RmiRealmParams RealmParams(params_ptr) false Realm parameters

realm RmmRealm Realm(rd) false Realm

B4.3.9.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.9.2 Failure conditions

ID Condition

params_align pre: !AddrIsGranuleAligned(params_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

params_bound pre: !PaIsDelegable(params_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

params_pas pre: !GranuleAccessPermitted(params_ptr, PAS_NS)
post: ResultEqual(result, RMI_ERROR_INPUT)

params_valid pre: !RmiRealmParamsIsValid(params_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

params_supp pre: !RealmParamsSupported(params)
post: ResultEqual(result, RMI_ERROR_INPUT)

alias pre: AddrInRange(rd, params.rtt_base,
(params.rtt_num_start - 1) * RMM_GRANULE_SIZE)

post: ResultEqual(result, RMI_ERROR_INPUT)

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != DELEGATED
post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_align pre: !AddrIsAligned(params.rtt_base,
params.rtt_num_start * RMM_GRANULE_SIZE)

post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_num_level pre: !RttConfigIsValid(
params.s2sz,
params.rtt_level_start, params.rtt_num_start)

post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_state pre: !RttsStateEqual(
params.rtt_base, params.rtt_num_start, DELEGATED)

post: ResultEqual(result, RMI_ERROR_INPUT)

vmid_valid pre: !VmidIsValid(params.vmid) || !VmidIsFree(params.vmid)
post: ResultEqual(result, RMI_ERROR_INPUT)

B4.3.9.2.1 Failure condition ordering

The RMI_REALM_CREATE command does not have any failure condition orderings.

B4.3.9.3 Success conditions

ID Condition

rd_state Granule(rd).state == RD

realm_state Realm(rd).state == REALM_NEW

rec_index Realm(rd).rec_index == 0

rtt_base Realm(rd).rtt_base == params.rtt_base

rtt_state RttsStateEqual(
Realm(rd).rtt_base, Realm(rd).rtt_num_start, RTT)

rtte_p_states RttsAllProtectedEntriesState(
Realm(rd).rtt_base, Realm(rd).rtt_num_start,
UNASSIGNED)

rtte_up_states RttsAllUnprotectedEntriesState(
Realm(rd).rtt_base, Realm(rd).rtt_num_start,
UNASSIGNED_NS)

rtte_ripas RttsAllProtectedEntriesRipas(
Realm(rd).rtt_base, Realm(rd).rtt_num_start,
EMPTY)

lpa2 Equal(realm.feat_lpa2, params.flags.lpa2)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

ipa_width Realm(rd).ipa_width == params.s2sz

hash_algo Equal(Realm(rd).hash_algo, params.hash_algo)

rim Realm(rd).measurements[0] == RimInit(
Realm(rd).hash_algo, params)

rem (Realm(rd).measurements[1] == Zeros()
&& Realm(rd).measurements[2] == Zeros()
&& Realm(rd).measurements[3] == Zeros()
&& Realm(rd).measurements[4] == Zeros())

rtt_level Realm(rd).rtt_level_start == params.rtt_level_start

rtt_num Realm(rd).rtt_num_start == params.rtt_num_start

vmid Realm(rd).vmid == params.vmid

rpv Realm(rd).rpv == params.rpv

num_recs realm.num_recs == 0

B4.3.9.4 RMI_REALM_CREATE initialization of RIM
On successful execution of RMI_REALM_CREATE, the initial RIM value of the target Realm is calculated by the
RMM as follows:

1. Allocate a zero-filled RmiRealmParams data structure to hold the measured Realm parameters.

2. Copy the following attributes from the Host-provided RmiRealmParams data structure into the measured
Realm parameters data structure:

• flags
• s2sz
• sve_vl
• num_bps
• num_wps
• pmu_num_ctrs
• hash_algo

3. Using the RHA of the target Realm, compute the hash of the measured Realm parameters data structure. Set
the RIM of the target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size
of the RIM.

See also:

• A7.1.1 Realm Initial Measurement
• B3.48 RimInit function
• B4.4.12 RmiRealmParams type

B4.3.9.5 Footprint

ID Value

rd_state Granule(rd).state

rtt_state RttsGranuleState(Realm(rd).rtt_base,
Realm(rd).rtt_num_start)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.10 RMI_REALM_DESTROY command

Destroys a Realm.

See also:

• A2.1 Realm
• B4.3.9 RMI_REALM_CREATE command
• D1.2.5 Realm destruction flow

B4.3.10.1 Interface

B4.3.10.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000159

rd X1 63:0 Address PA of the RD

B4.3.10.1.2 Context

The RMI_REALM_DESTROY command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm(rd) true Realm

B4.3.10.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.10.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

realm_live pre: RealmIsLive(rd)
post: ResultEqual(result, RMI_ERROR_REALM)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.10.2.1 Failure condition ordering

[rd_bound, rd_state] < [realm_live]

RMI_ERROR_INPUT

RMI_ERROR_REALM

rd_align rd_bound

realm_live

rd_state

B4.3.10.3 Success conditions

ID Condition

rtt_state RttsStateEqual(
realm.rtt_base, realm.rtt_num_start, DELEGATED)

rd_state Granule(rd).state == DELEGATED

vmid VmidIsFree(realm.vmid)

B4.3.10.4 Footprint

ID Value

rd_state Granule(rd).state

rtt_state RttsGranuleState(
realm.rtt_base, realm.rtt_num_start)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.11 RMI_REC_AUX_COUNT command

Get number of auxiliary Granules required for a REC.

See also:

• A2.3 Realm Execution Context
• B4.3.12 RMI_REC_CREATE command
• B4.4.19 RmiRecParams type
• D1.2.4 REC creation flow

B4.3.11.1 Interface

B4.3.11.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000167

rd X1 63:0 Address PA of the RD for the target Realm

B4.3.11.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

aux_count X1 63:0 UInt64 Number of auxiliary Granules required
for a REC

B4.3.11.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

B4.3.11.2.1 Failure condition ordering

The RMI_REC_AUX_COUNT command does not have any failure condition orderings.

B4.3.11.3 Success conditions

ID Condition

aux_count aux_count == RecAuxCount(rd)

B4.3.11.4 Footprint
The RMI_REC_AUX_COUNT command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.12 RMI_REC_CREATE command

Creates a REC.

See also:

• A2.3 Realm Execution Context
• A2.3.3 REC index and MPIDR value
• B4.3.11 RMI_REC_AUX_COUNT command
• B4.3.13 RMI_REC_DESTROY command
• D1.2.4 REC creation flow

B4.3.12.1 Interface

B4.3.12.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC400015A

rd X1 63:0 Address PA of the RD for the target Realm

rec X2 63:0 Address PA of the target REC

params_ptr X3 63:0 Address PA of REC parameters

B4.3.12.1.2 Context

The RMI_REC_CREATE command operates on the following context.

Name Type Value Before Description

realm_pre RmmRealm Realm(rd) true Realm

realm RmmRealm Realm(rd) false Realm

params RmiRecParams RecParams(params_ptr) false REC parameters

rec_index UInt64 Realm(rd).rec_index true REC index

B4.3.12.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.12.2 Failure conditions

ID Condition

params_align pre: !AddrIsGranuleAligned(params_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

params_bound pre: !PaIsDelegable(params_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

params_pas pre: !GranuleAccessPermitted(params_ptr, PAS_NS)
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_align pre: !AddrIsGranuleAligned(rec)
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_bound pre: !PaIsDelegable(rec)
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_state pre: Granule(rec).state != DELEGATED
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

realm_state pre: realm.state != REALM_NEW
post: ResultEqual(result, RMI_ERROR_REALM)

num_recs pre: realm.num_recs == (2 ^ ImplFeatures().max_recs_order) - 1
post: ResultEqual(result, RMI_ERROR_REALM)

mpidr_index pre: RecIndex(params.mpidr) != realm.rec_index
post: ResultEqual(result, RMI_ERROR_INPUT)

num_aux pre: params.num_aux != RecAuxCount(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

aux_align pre: !AuxAligned(params.aux, params.num_aux)
post: ResultEqual(result, RMI_ERROR_INPUT)

aux_alias pre: AuxAlias(rec, params.aux, params.num_aux)
post: ResultEqual(result, RMI_ERROR_INPUT)

aux_state pre: !AuxStateEqual(
params.aux, params.num_aux, DELEGATED)

post: ResultEqual(result, RMI_ERROR_INPUT)

B4.3.12.2.1 Failure condition ordering

[rd_bound, rd_state] < [realm_state, num_recs]

RMI_ERROR_INPUT

RMI_ERROR_REALM

params_alignparams_boundparams_pasrec_alignrec_boundrec_staterd_align rd_bound

realm_state

rd_statempidr_indexnum_auxaux_alignaux_aliasaux_state

num_recs

B4.3.12.3 Success conditions

ID Condition

rec_index Realm(rd).rec_index == rec_index + 1

rec_gran_state Granule(rec).state == REC

rec_owner Rec(rec).owner == rd

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

rec_attest Rec(rec).attest_state == NO_ATTEST_IN_PROGRESS

rec_mpidr MpidrEqual(Rec(rec).mpidr, params.mpidr)

rec_state Rec(rec).state == REC_READY

runnable pre: params.flags.runnable == RMI_RUNNABLE
post: Rec(rec).flags.runnable == RUNNABLE

not_runnable pre: params.flags.runnable == RMI_NOT_RUNNABLE
post: Rec(rec).flags.runnable == NOT_RUNNABLE

rec_gprs (Rec(rec).gprs[0] == params.gprs[0]
&& Rec(rec).gprs[1] == params.gprs[1]
&& Rec(rec).gprs[2] == params.gprs[2]
&& Rec(rec).gprs[3] == params.gprs[3]
&& Rec(rec).gprs[4] == params.gprs[4]
&& Rec(rec).gprs[5] == params.gprs[5]
&& Rec(rec).gprs[6] == params.gprs[6]
&& Rec(rec).gprs[7] == params.gprs[7]
&& Rec(rec).gprs[8] == Zeros()
&& Rec(rec).gprs[9] == Zeros()
&& Rec(rec).gprs[10] == Zeros()
&& Rec(rec).gprs[11] == Zeros()
&& Rec(rec).gprs[12] == Zeros()
&& Rec(rec).gprs[13] == Zeros()
&& Rec(rec).gprs[14] == Zeros()
&& Rec(rec).gprs[15] == Zeros()
&& Rec(rec).gprs[16] == Zeros()
&& Rec(rec).gprs[17] == Zeros()
&& Rec(rec).gprs[18] == Zeros()
&& Rec(rec).gprs[19] == Zeros()
&& Rec(rec).gprs[20] == Zeros()
&& Rec(rec).gprs[21] == Zeros()
&& Rec(rec).gprs[22] == Zeros()
&& Rec(rec).gprs[23] == Zeros()
&& Rec(rec).gprs[24] == Zeros()
&& Rec(rec).gprs[25] == Zeros()
&& Rec(rec).gprs[26] == Zeros()
&& Rec(rec).gprs[27] == Zeros()
&& Rec(rec).gprs[28] == Zeros()
&& Rec(rec).gprs[29] == Zeros()
&& Rec(rec).gprs[30] == Zeros()
&& Rec(rec).gprs[31] == Zeros())

rec_pc Rec(rec).pc == params.pc

rim pre: params.flags.runnable == RMI_RUNNABLE
post: Realm(rd).measurements[0] == RimExtendRec(

realm, params)

rec_aux AuxEqual(
Rec(rec).aux, params.aux,
RecAuxCount(rd))

rec_aux_state AuxStateEqual(
Rec(rec).aux, RecAuxCount(rd), REC_AUX)

ripas_addr Rec(rec).ripas_addr == Zeros()

ripas_top Rec(rec).ripas_top == Zeros()

host_call Rec(rec).host_call_pending == NO_HOST_CALL_PENDING

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

num_recs realm.num_recs == realm_pre.num_recs + 1

B4.3.12.4 RMI_REC_CREATE extension of RIM
On successful execution of RMI_REC_CREATE, if the new REC is runnable then the new RIM value of the target
Realm is calculated by the RMM as follows:

1. Allocate a zero-filled RmiRecParams data structure to hold the measured REC parameters.

2. Copy the following attributes from the Host-provided RmiRecParams data structure into the measured REC
parameters data structure:

• gprs
• pc
• flags

3. Using the RHA of the target Realm, compute the hash of the measured REC parameters data structure.

4. Allocate an RmmMeasurementDescriptorRec data structure.

5. Populate the measurement descriptor:

• Set the desc_type field to the descriptor type.
• Set the len field to the descriptor length.
• Set the rim field to the current RIM value of the target Realm.
• Set the content field to the hash of the measured REC parameters.

6. Using the RHA of the target Realm, compute the hash of the measurement descriptor. Set the RIM of the
target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size of the RIM.

See also:

• A7.1.1 Realm Initial Measurement
• B3.45 RimExtendRec function
• B4.4.19 RmiRecParams type
• C1.12 RmmMeasurementDescriptorRec type

B4.3.12.5 Footprint

ID Value

rec_index Realm(rd).rec_index

rec_state Granule(rec).state

rec_aux_state AuxStates(Rec(rec).aux,
RecAuxCount(rd))

rim Realm(rd).measurements[0]

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.13 RMI_REC_DESTROY command

Destroys a REC.

See also:

• A2.3 Realm Execution Context
• B4.3.12 RMI_REC_CREATE command
• D1.2.5 Realm destruction flow

B4.3.13.1 Interface

B4.3.13.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC400015B

rec_ptr X1 63:0 Address PA of the target REC

B4.3.13.1.2 Context

The RMI_REC_DESTROY command operates on the following context.

Name Type Value Before Description

rd Address Rec(rec_ptr).owner true RD address

realm_pre RmmRealm Realm(rd) true Realm

realm RmmRealm Realm(rd) false Realm

rec RmmRec Rec(rec_ptr) true REC

B4.3.13.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.13.2 Failure conditions

ID Condition

rec_align pre: !AddrIsGranuleAligned(rec_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_bound pre: !PaIsDelegable(rec_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_gran_state pre: Granule(rec_ptr).state != REC
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_state pre: rec.state == REC_RUNNING
post: ResultEqual(result, RMI_ERROR_REC)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.13.2.1 Failure condition ordering

[rec_bound, rec_gran_state] < [rec_state]

RMI_ERROR_INPUT

RMI_ERROR_REC

rec_align rec_bound

rec_state

rec_gran_state

B4.3.13.3 Success conditions

ID Condition

rec_gran_state Granule(rec_ptr).state == DELEGATED

rec_aux_state AuxStateEqual(
rec.aux, RecAuxCount(rd), DELEGATED)

num_recs realm.num_recs == realm_pre.num_recs - 1

B4.3.13.4 Footprint

ID Value

rec_state Granule(rec_ptr).state

rec_aux_state AuxStates(rec.aux, RecAuxCount(rd))

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.14 RMI_REC_ENTER command

Enter a REC.

See also:

• A2.3 Realm Execution Context
• Chapter A4 Realm exception model
• D1.3.1 Realm entry and exit flow

B4.3.14.1 Interface

B4.3.14.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC400015C

rec X1 63:0 Address PA of the target REC

run_ptr X2 63:0 Address PA of RecRun object

The number of GICv3 List Register values which can be provided by the Host in RmiRecEnter, and which are
returned in RmiRecExit, is reported by the RMI_FEATURES command.

See also:

• A3.1.9 Number of GICv3 List Registers

B4.3.14.1.2 Context

The RMI_REC_ENTER command operates on the following context.

Name Type Value Before Description

run RmiRecRun RecRun(run_ptr) false RecRun object

B4.3.14.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.14.2 Failure conditions

ID Condition

run_align pre: !AddrIsGranuleAligned(run_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

run_bound pre: !PaIsDelegable(run_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

run_pas pre: !GranuleAccessPermitted(run_ptr, PAS_NS)
post: ResultEqual(result, RMI_ERROR_INPUT)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

rec_align pre: !AddrIsGranuleAligned(rec)
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_bound pre: !PaIsDelegable(rec)
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_gran_state pre: Granule(rec).state != REC
post: ResultEqual(result, RMI_ERROR_INPUT)

realm_new pre: Realm(Rec(rec).owner).state == REALM_NEW
post: ResultEqual(result, RMI_ERROR_REALM, 0)

system_off pre: Realm(Rec(rec).owner).state == REALM_SYSTEM_OFF
post: ResultEqual(result, RMI_ERROR_REALM, 1)

rec_state pre: Rec(rec).state == REC_RUNNING
post: ResultEqual(result, RMI_ERROR_REC)

rec_runnable pre: Rec(rec).flags.runnable == NOT_RUNNABLE
post: ResultEqual(result, RMI_ERROR_REC)

rec_mmio pre: (run.enter.flags.emul_mmio == RMI_EMULATED_MMIO
&& Rec(rec).emulatable_abort != EMULATABLE_ABORT)

post: ResultEqual(result, RMI_ERROR_REC)

rec_gicv3 pre: !Gicv3ConfigIsValid(
run.enter.gicv3_hcr, run.enter.gicv3_lrs)

post: ResultEqual(result, RMI_ERROR_REC)

rec_psci pre: Rec(rec).psci_pending == PSCI_REQUEST_PENDING
post: ResultEqual(result, RMI_ERROR_REC)

B4.3.14.2.1 Failure condition ordering

[rec_align, rec_bound, rec_gran_state, run_pas, run_bound, run_align] < [rec_state,
↪→ rec_runnable, rec_mmio, realm_new, system_off, rec_gicv3, rec_psci]

RMI_ERROR_INPUT

RMI_ERROR_RECRMI_ERROR_REALM

rec_align

rec_state

rec_boundrec_gran_staterun_pasrun_boundrun_align

rec_runnablerec_mmiorec_gicv3rec_pscirealm_newsystem_off

B4.3.14.3 Success conditions

ID Condition

rec_exit run.exit contains Realm exit syndrome information.

rec_emul_abt rec.emulatable_abort is updated.

B4.3.14.4 Footprint

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Value

emul_abt Rec(rd).emulatable_abort

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.15 RMI_RTT_CREATE command

Creates an RTT.

See also:

• A5.5 Realm Translation Table
• A5.5.7 RTT unfolding
• B4.3.16 RMI_RTT_DESTROY command
• B4.3.17 RMI_RTT_FOLD command

B4.3.15.1 Interface

B4.3.15.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC400015D

rd X1 63:0 Address PA of the RD for the target Realm

rtt X2 63:0 Address PA of the target RTT

ipa X3 63:0 Address Base of the IPA range described by the
RTT

level X4 63:0 Int64 RTT level

B4.3.15.1.2 Context

The RMI_RTT_CREATE command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm(rd) true Realm

walk RmmRttWalkResult RttWalk(
rd, ipa,
level - 1)

false RTT walk result

entry_idx UInt64 RttEntryIndex(
ipa, walk.level)

false RTTE index

unfold RmmRttEntry RttWalk(
rd, ipa,
level - 1).rtte

true RTTE before
command execution

B4.3.15.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

B4.3.15.2 Failure conditions

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

level_bound pre: (!RttLevelIsValid(rd, level)
|| RttLevelIsStarting(rd, level))

post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level - 1)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_bound pre: UInt(ipa) >= (2 ^ Realm(rd).ipa_width)
post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_align pre: !AddrIsGranuleAligned(rtt)
post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_bound pre: !PaIsDelegable(rtt)
post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_state pre: Granule(rtt).state != DELEGATED
post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_bound2 pre: ((realm.feat_lpa2 == FEATURE_FALSE)
&& (UInt(rtt) >= 2^48))

post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < level - 1
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.rtte.state == TABLE
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

B4.3.15.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[level_bound, ipa_bound] < [rtt_walk, rtte_state]

RMI_ERROR_INPUT

RMI_ERROR_RTT

rd_align rd_bound

rtt_walk

rd_statelevel_boundipa_boundipa_alignrtt_alignrtt_boundrtt_statertt_bound2

rtte_state

B4.3.15.3 Success conditions

ID Condition

rtt_state Granule(rtt).state == RTT

rtte_state walk.rtte.state == TABLE

rtte_addr walk.rtte.addr == rtt

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

rtte_c_ripas pre: AddrIsProtected(ipa, realm)
post: RttAllEntriesRipas(Rtt(rtt), unfold.ripas)

rtte_c_state RttAllEntriesState(Rtt(rtt), unfold.state)

rtte_c_addr pre: (unfold.state != UNASSIGNED
&& unfold.state != UNASSIGNED_NS)

post: RttAllEntriesContiguous(Rtt(rtt), unfold.addr, level)

B4.3.15.4 Footprint

ID Value

rtt_state Granule(rtt).state

rtte RttEntry(walk.rtt_addr, entry_idx)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.16 RMI_RTT_DESTROY command

Destroys an RTT.

See also:

• A5.5 Realm Translation Table
• A5.5.9 RTT destruction
• B4.3.15 RMI_RTT_CREATE command
• B4.3.17 RMI_RTT_FOLD command

B4.3.16.1 Interface

B4.3.16.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC400015E

rd X1 63:0 Address PA of the RD for the target Realm

ipa X2 63:0 Address Base of the IPA range described by the
RTT

level X3 63:0 Int64 RTT level

B4.3.16.1.2 Context

The RMI_RTT_DESTROY command operates on the following context.

Name Type Value Before Description

walk RmmRttWalkResult RttWalk(
rd, ipa,
level - 1)

false RTT walk result

entry_idx UInt64 RttEntryIndex(
ipa, walk.level)

false RTTE index

walk_top Address RttSkipNonLiveEntries(
Rtt(walk.rtt_addr),
walk.level,
ipa)

false Top IPA of non-live
RTT entries, from
entry at which the
RTT walk terminated

B4.3.16.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

rtt X1 63:0 Address PA of the RTT which was destroyed

top X2 63:0 Address Top IPA of non-live RTT entries, from
entry at which the RTT walk terminated

The rtt output value is valid only when the command result is RMI_SUCCESS.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter B4. Realm Management Interface
B4.3. RMI commands

The values of the result and top output values for different command outcomes are summarized in the following
table.

Scenario result top walk.rtte.state

Target RTT exists and is not live RMI_SUCCESS > ipa Before execution: TABLE
After execution: UNASSIGNED
and RIPAS is DESTROYED

Missing RTT (RMI_ERROR_RTT, < level) > ipa UNASSIGNED or
UNASSIGNED_NS

Block mapping at lower level (RMI_ERROR_RTT, < level) == ipa ASSIGNED or ASSIGNED_NS

Live RTT at target level (RMI_ERROR_RTT, level) == ipa TABLE

RTT walk was not performed,
due to any other command failure

Another error code 0 Unknown

See also:

• A5.5.8 RTTE liveness and RTT liveness

B4.3.16.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

level_bound pre: (!RttLevelIsValid(rd, level)
|| RttLevelIsStarting(rd, level))

post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level - 1)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_bound pre: UInt(ipa) >= (2 ^ Realm(rd).ipa_width)
post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < level - 1
post: (ResultEqual(result, RMI_ERROR_RTT, walk.level)

&& (top == walk_top))

rtte_state pre: walk.rtte.state != TABLE
post: (ResultEqual(result, RMI_ERROR_RTT, walk.level)

&& (top == walk_top))

rtt_live pre: RttIsLive(Rtt(walk.rtte.addr))
post: (ResultEqual(result, RMI_ERROR_RTT, level)

&& (top == ipa))

B4.3.16.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state, rtt_live]
[level_bound, ipa_bound] < [rtt_walk, rtte_state]

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter B4. Realm Management Interface
B4.3. RMI commands

RMI_ERROR_INPUT

RMI_ERROR_RTT

rd_align rd_bound

rtt_walk

rd_statelevel_boundipa_boundipa_align

rtte_statertt_live

B4.3.16.3 Success conditions

ID Condition

rtte_state walk.rtte.state == UNASSIGNED

ripas walk.rtte.ripas == DESTROYED

rtt_state Granule(walk.rtte.addr).state == DELEGATED

rtt rtt == walk.rtte.addr

top top == walk_top

B4.3.16.4 Footprint

ID Value

rtt_state Granule(walk.rtte.addr).state

rtte RttEntry(walk.rtt_addr, entry_idx)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.17 RMI_RTT_FOLD command

Destroys a homogeneous RTT.

See also:

• A5.5 Realm Translation Table
• A5.5.6 RTT folding
• B4.3.15 RMI_RTT_CREATE command
• B4.3.16 RMI_RTT_DESTROY command

B4.3.17.1 Interface

B4.3.17.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000166

rd X1 63:0 Address PA of the RD for the target Realm

ipa X2 63:0 Address Base of the IPA range described by the
RTT

level X3 63:0 Int64 RTT level

B4.3.17.1.2 Context

The RMI_RTT_FOLD command operates on the following context.

Name Type Value Before Description

walk RmmRttWalkResult RttWalk(
rd, ipa,
level - 1)

false RTT walk result

entry_idx UInt64 RttEntryIndex(
ipa, walk.level)

false RTTE index

fold RmmRttEntry RttFold(
Rtt(walk.rtte.addr))

true Result of folding RTT

B4.3.17.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

rtt X1 63:0 Address PA of the RTT which was destroyed

The rtt output value is valid only when the command result is RMI_SUCCESS.

B4.3.17.2 Failure conditions

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

level_bound pre: (!RttLevelIsValid(rd, level)
|| RttLevelIsStarting(rd, level))

post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level - 1)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_bound pre: UInt(ipa) >= (2 ^ Realm(rd).ipa_width)
post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < level - 1
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.rtte.state != TABLE
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

rtt_homo pre: !RttIsHomogeneous(Rtt(walk.rtte.addr))
post: ResultEqual(result, RMI_ERROR_RTT, level)

B4.3.17.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state, rtt_homo]
[level_bound, ipa_bound] < [rtt_walk, rtte_state]

RMI_ERROR_INPUT

RMI_ERROR_RTT

rd_align rd_bound

rtt_walk

rd_statelevel_boundipa_boundipa_align

rtte_statertt_homo

B4.3.17.3 Success conditions

ID Condition

rtte_state walk.rtte.state == fold.state

rtte_addr pre: (fold.state != UNASSIGNED
&& fold.state != UNASSIGNED_NS)

post: walk.rtte.addr == fold.addr

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

rtte_attr pre: (fold.state == ASSIGNED
|| fold.state == ASSIGNED_NS)

post: (walk.rtte.MemAttr == fold.MemAttr
&& walk.rtte.S2AP == fold.S2AP)

rtte_ripas pre: AddrIsProtected(ipa, Realm(rd))
post: walk.rtte.ripas == fold.ripas

rtt_state Granule(walk.rtte.addr).state == DELEGATED

rtt rtt == walk.rtte.addr

B4.3.17.4 Footprint

ID Value

rtt_state Granule(walk.rtte.addr).state

rtte RttEntry(walk.rtt_addr, entry_idx)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.18 RMI_RTT_INIT_RIPAS command

Set the RIPAS of a target IPA range to RAM, for a Realm in the REALM_NEW state.

See also:

• A5.2.2 Realm IPA state
• D1.2.3 Initialize memory of New Realm flow

B4.3.18.1 Interface

B4.3.18.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000168

rd X1 63:0 Address PA of the RD for the target Realm

base X2 63:0 Address Base of target IPA region

top X3 63:0 Address Top of target IPA region

B4.3.18.1.2 Context

The RMI_RTT_INIT_RIPAS command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm(rd) true Realm

walk RmmRttWalkResult RttWalk(rd, base,
RMM_RTT_PAGE_LEVEL)

false RTT walk result

walk_top Address RttSkipEntriesWithRipas(
Rtt(walk.rtt_addr),
walk.level,
base, top, FALSE)

false Top IPA of entries
which have associated
RIPAS values,
starting from entry at
which the RTT walk
terminated

B4.3.18.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

out_top X1 63:0 Address Top IPA of range whose RIPAS was
modified

The out_top output value is valid only when the command result is RMI_SUCCESS.

When the out_top output value is valid, it is aligned to the size of the address range described by the RTT entry
at the level where the RTT walk terminated.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.18.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

size_valid pre: UInt(top) <= UInt(base)
post: ResultEqual(result, RMI_ERROR_INPUT)

top_bound pre: !AddrIsProtected(
ToAddress(UInt(top) - RMM_GRANULE_SIZE),
realm)

post: ResultEqual(result, RMI_ERROR_INPUT)

realm_state pre: realm.state != REALM_NEW
post: ResultEqual(result, RMI_ERROR_REALM)

base_align pre: !AddrIsRttLevelAligned(base, walk.level)
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.rtte.state != UNASSIGNED
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

top_gran_align pre: !AddrIsGranuleAligned(top)
post: ResultEqual(result, RMI_ERROR_INPUT)

no_progress pre: UInt(base) == UInt(walk_top)
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

B4.3.18.2.1 Failure condition ordering

[rd_bound, rd_state] < [realm_state]
[rd_bound, rd_state] < [base_align, rtte_state]
[rd_bound, rd_state] < [no_progress]
[top_gran_align] < [no_progress]

RMI_ERROR_INPUT

RMI_ERROR_REALM
RMI_ERROR_RTT

rd_align rd_bound

realm_state base_align no_progress

rd_statesize_validtop_bound top_gran_align

rtte_state

B4.3.18.3 Success conditions

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter B4. Realm Management Interface
B4.3. RMI commands

ID Condition

rtte_ripas RttEntriesInRangeRipas(
Rtt(walk.rtt_addr),
walk.level,
base, walk_top,
RAM)

rim Realm(rd).measurements[0] == RimExtendRipas(
realm, base, walk_top, walk.level)

out_top out_top == walk_top

B4.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM
On successful execution of RMI_RTT_INIT_RIPAS, the new RIM value of the target Realm is calculated by the
RMM as follows:

1. Allocate an RmmMeasurementDescriptorRipas data structure.

2. For each RTT entry in the range [base, top) described by the RMI_RTT_INIT_RIPAS input values:

a. Populate the measurement descriptor:

• Set the desc_type field to the descriptor type.
• Set the len field to the descriptor length.
• Set the base field to the IPA of the RTT entry.
• Set the top field to Min(ipa + size, top), where

– ipa is the IPA of the RTT entry
– size is the size in bytes of the IPA region described by the RTT entry
– top is the input value provided to the command

b. Using the RHA of the target Realm, compute the hash of the measurement descriptor. Set the RIM of the
target Realm to this value, zero filling upper bytes if the RHA output is smaller than the size of the RIM.

See also:

• A7.1.1 Realm Initial Measurement
• B3.46 RimExtendRipas function
• C1.13 RmmMeasurementDescriptorRipas type

B4.3.18.5 Footprint

ID Value

rtte Rtt(walk.rtt_addr)

rim Realm(rd).measurements[0]

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.19 RMI_RTT_MAP_UNPROTECTED command

Creates a mapping from an Unprotected IPA to a Non-secure PA.

See also:

• A5.5 Realm Translation Table
• B4.3.22 RMI_RTT_UNMAP_UNPROTECTED command

B4.3.19.1 Interface

B4.3.19.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC400015F

rd X1 63:0 Address PA of the RD for the target Realm

ipa X2 63:0 Address IPA at which the Granule will be
mapped in the target Realm

level X3 63:0 Int64 RTT level

desc X4 63:0 Bits64 RTTE descriptor

The layout and encoding of fields in the desc input value match “Attribute fields in stage 2 VMSAv8-64 Block
and Page descriptors” in Arm Architecture Reference Manual for A-Profile architecture [3].

See also:

• Arm Architecture Reference Manual for A-Profile architecture [3]
• A5.5.11 RTT entry attributes
• B3.56 RttDescriptorIsValidForUnprotected function

B4.3.19.1.2 Context

The RMI_RTT_MAP_UNPROTECTED command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm(rd) false Realm

walk RmmRttWalkResult RttWalk(
rd, ipa, level)

false RTT walk result

entry_idx UInt64 RttEntryIndex(
ipa, walk.level)

false RTTE index

rtte RmmRttEntry RttEntryFromDescriptor(desc
↪→)

false RTT entry

B4.3.19.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.19.2 Failure conditions

ID Condition

attr_valid pre: !RttDescriptorIsValidForUnprotected(desc)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

level_bound pre: !RttLevelIsBlockOrPage(rd, level)
post: ResultEqual(result, RMI_ERROR_INPUT)

addr_align pre: !AddrIsRttLevelAligned(rtte.addr, level)
post: ResultEqual(result, RMI_ERROR_INPUT)

addr_bound pre: ((realm.feat_lpa2 == FEATURE_FALSE)
&& (UInt(rtte.addr) >= 2^48))

post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_bound pre: (UInt(ipa) >= (2 ^ Realm(rd).ipa_width)
|| AddrIsProtected(ipa, Realm(rd)))

post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < level
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

rtte_state pre: walk.rtte.state != UNASSIGNED_NS
post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

B4.3.19.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[level_bound, ipa_bound] < [rtt_walk, rtte_state]

RMI_ERROR_INPUT

RMI_ERROR_RTT

attr_validrd_align rd_bound

rtt_walk

rd_statelevel_boundipa_boundaddr_alignaddr_boundipa_align

rtte_state

B4.3.19.3 Success conditions

ID Condition

rtte_state walk.rtte.state == ASSIGNED_NS

rtte_contents (walk.rtte.MemAttr == rtte.MemAttr
&& walk.rtte.S2AP == rtte.S2AP
&& walk.rtte.addr == rtte.addr)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.19.4 Footprint

ID Value

rtte RttEntry(walk.rtt_addr, entry_idx)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

198

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.20 RMI_RTT_READ_ENTRY command

Reads an RTTE.

See also:

• A5.5 Realm Translation Table

B4.3.20.1 Interface

B4.3.20.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000161

rd X1 63:0 Address PA of the RD for the target Realm

ipa X2 63:0 Address Realm Address for which to read the
RTTE

level X3 63:0 Int64 RTT level at which to read the RTTE

B4.3.20.1.2 Context

The RMI_RTT_READ_ENTRY command operates on the following context.

Name Type Value Before Description

walk RmmRttWalkResult RttWalk(
rd, ipa, level)

false RTT walk result

rtte RmmRttEntry RttEntryFromDescriptor(desc
↪→)

false RTT entry

B4.3.20.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

walk_level X1 63:0 UInt64 RTT level reached by the RTT walk

state X2 7:0 RmiRttEntryState State of RTTE reached by the walk

desc X3 63:0 Bits64 RTTE descriptor

ripas X4 7:0 RmiRipas RIPAS of RTTE reached by the walk

The following unused bits of RMI_RTT_READ_ENTRY output values MBZ: X2[63:8], X4[63:8].

The layout and encoding of fields in the rtte output value match “Attribute fields in stage 2 VMSAv8-64 Block
and Page descriptors” in Arm Architecture Reference Manual for A-Profile architecture [3].

See also:

• Arm Architecture Reference Manual for A-Profile architecture [3]
• A5.5.11 RTT entry attributes

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.20.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

level_bound pre: !RttLevelIsValid(rd, level)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_bound pre: UInt(ipa) >= (2 ^ Realm(rd).ipa_width)
post: ResultEqual(result, RMI_ERROR_INPUT)

B4.3.20.2.1 Failure condition ordering

The RMI_RTT_READ_ENTRY command does not have any failure condition orderings.

B4.3.20.3 Success conditions

ID Condition

state state == RttEntryState(walk.rtte.state)

state_invalid pre: (walk.rtte.state == UNASSIGNED
|| walk.rtte.state == UNASSIGNED_NS)

post: (rtte.MemAttr == Zeros()
&& rtte.S2AP == Zeros()
&& rtte.addr == Zeros())

state_prot pre: (walk.rtte.state == ASSIGNED
|| walk.rtte.state == TABLE)

post: (rtte.MemAttr == Zeros()
&& rtte.S2AP == Zeros()
&& rtte.addr == walk.rtte.addr)

state_unprot pre: walk.rtte.state == ASSIGNED_NS
post: (rtte.MemAttr == walk.rtte.MemAttr

&& rtte.S2AP == walk.rtte.S2AP
&& rtte.addr == walk.rtte.addr)

ripas_prot pre: (walk.rtte.state == UNASSIGNED
|| walk.rtte.state == ASSIGNED)

post: ripas == RipasToRmi(walk.rtte.ripas)

ripas_unprot pre: (walk.rtte.state == UNASSIGNED_NS
|| walk.rtte.state == ASSIGNED_NS)

post: ripas == RMI_EMPTY

B4.3.20.4 Footprint
The RMI_RTT_READ_ENTRY command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.21 RMI_RTT_SET_RIPAS command

Completes a request made by the Realm to change the RIPAS of a target IPA range.

See also:

• A5.4 RIPAS change

B4.3.21.1 Interface

B4.3.21.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000169

rd X1 63:0 Address PA of the RD for the target Realm

rec_ptr X2 63:0 Address PA of the target REC

base X3 63:0 Address Base of target IPA region

top X4 63:0 Address Top of target IPA region

B4.3.21.1.2 Context

The RMI_RTT_SET_RIPAS command operates on the following context.

Name Type Value Before Description

realm RmmRealm Realm(rd) true Realm

rec RmmRec Rec(rec_ptr) false REC

walk RmmRttWalkResult RttWalk(
rd, base,
RMM_RTT_PAGE_LEVEL)

false RTT walk result

ripas RmmRipas walk.rtte.ripas true RIPAS before the
command executed

walk_top Address RttSkipEntriesWithRipas(
Rtt(walk.rtt_addr),
walk.level,
base, top,
rec.ripas_destroyed

!=
CHANGE_DESTROYED)

true Top IPA of entries
which have associated
RIPAS values,
starting from entry at
which the RTT walk
terminated

B4.3.21.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

out_top X1 63:0 Address Top IPA of range whose RIPAS was
modified

The out_top output value is valid only when the command result is RMI_SUCCESS.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.21.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_align pre: !AddrIsGranuleAligned(rec_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_bound pre: !PaIsDelegable(rec_ptr)
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_gran_state pre: Granule(rec_ptr).state != REC
post: ResultEqual(result, RMI_ERROR_INPUT)

rec_state pre: rec.state == REC_RUNNING
post: ResultEqual(result, RMI_ERROR_REC)

rec_owner pre: rec.owner != rd
post: ResultEqual(result, RMI_ERROR_REC)

size_valid pre: UInt(top) <= UInt(base)
post: ResultEqual(result, RMI_ERROR_INPUT)

base_bound pre: base != rec.ripas_addr
post: ResultEqual(result, RMI_ERROR_INPUT)

top_bound pre: UInt(top) > UInt(rec.ripas_top)
post: ResultEqual(result, RMI_ERROR_INPUT)

base_align pre: (!AddrIsRttLevelAligned(base, walk.level)
&& ripas != rec.ripas_value)

post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

top_gran_align pre: !AddrIsGranuleAligned(top)
post: ResultEqual(result, RMI_ERROR_INPUT)

no_progress pre: (UInt(base) == UInt(walk_top)
&& ripas != rec.ripas_value)

post: ResultEqual(result, RMI_ERROR_RTT, walk.level)

B4.3.21.2.1 Failure condition ordering

[rd_bound, rd_state] < [base_align]
[rd_bound, rd_state] < [no_progress]
[rec_bound, rec_gran_state] < [rec_state, rec_owner]
[base_bound] < [base_align]
[top_gran_align] < [no_progress]

RMI_ERROR_INPUT

RMI_ERROR_REC
RMI_ERROR_RTT

rd_align rd_bound

base_alignno_progress

rd_staterec_align rec_bound

rec_state

rec_gran_statesize_valid base_boundtop_bound top_gran_align

rec_owner

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.21.3 Success conditions

ID Condition

rtte_ripas RttEntriesInRangeRipas(
Rtt(walk.rtt_addr),
walk.level,
base, walk_top,
rec.ripas_value)

ripas_addr rec.ripas_addr == MinAddress(top, walk_top)

out_top out_top == MinAddress(top, walk_top)

B4.3.21.4 Footprint

ID Value

rtte Rtt(walk.rtt_addr)

ripas_addr rec.ripas_addr

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.22 RMI_RTT_UNMAP_UNPROTECTED command

Removes a mapping at an Unprotected IPA.

See also:

• A5.5 Realm Translation Table
• B4.3.19 RMI_RTT_MAP_UNPROTECTED command

B4.3.22.1 Interface

B4.3.22.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000162

rd X1 63:0 Address PA of the RD for the target Realm

ipa X2 63:0 Address IPA at which the Granule is mapped in
the target Realm

level X3 63:0 Int64 RTT level

B4.3.22.1.2 Context

The RMI_RTT_UNMAP_UNPROTECTED command operates on the following context.

Name Type Value Before Description

walk RmmRttWalkResult RttWalk(
rd, ipa, level)

false RTT walk result

entry_idx UInt64 RttEntryIndex(
ipa, walk.level)

false RTTE index

walk_top Address RttSkipNonLiveEntries(
Rtt(walk.rtt_addr),
walk.level,
ipa)

false Top IPA of non-live
RTT entries, from
entry at which the
RTT walk terminated

B4.3.22.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

top X1 63:0 Address Top IPA of non-live RTT entries, from
entry at which the RTT walk terminated

The values of the result and top output values for different command outcomes are summarized in the following
table.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

Chapter B4. Realm Management Interface
B4.3. RMI commands

Scenario result top walk.rtte.state

ipa is mapped at the target level RMI_SUCCESS > ipa Before execution:
ASSIGNED_NS
After execution:
UNASSIGNED_NS

ipa is not mapped (RMI_ERROR_RTT, <= level) > ipa UNASSIGNED_NS

ipa is mapped at a lower level (RMI_ERROR_RTT, < level) == ipa ASSIGNED_NS

RTT walk was not performed,
due to any other command failure

Another error code 0 Unknown

See also:

• A5.5.8 RTTE liveness and RTT liveness

B4.3.22.2 Failure conditions

ID Condition

rd_align pre: !AddrIsGranuleAligned(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_bound pre: !PaIsDelegable(rd)
post: ResultEqual(result, RMI_ERROR_INPUT)

rd_state pre: Granule(rd).state != RD
post: ResultEqual(result, RMI_ERROR_INPUT)

level_bound pre: !RttLevelIsBlockOrPage(rd, level)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_align pre: !AddrIsRttLevelAligned(ipa, level)
post: ResultEqual(result, RMI_ERROR_INPUT)

ipa_bound pre: (UInt(ipa) >= (2 ^ Realm(rd).ipa_width)
|| AddrIsProtected(ipa, Realm(rd)))

post: ResultEqual(result, RMI_ERROR_INPUT)

rtt_walk pre: walk.level < level
post: (ResultEqual(result, RMI_ERROR_RTT, walk.level)

&& (top == walk_top))

rtte_state pre: walk.rtte.state != ASSIGNED_NS
post: (ResultEqual(result, RMI_ERROR_RTT, walk.level)

&& (top == walk_top))

B4.3.22.2.1 Failure condition ordering

[rd_bound, rd_state] < [rtt_walk, rtte_state]
[level_bound, ipa_bound] < [rtt_walk, rtte_state]

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205

Chapter B4. Realm Management Interface
B4.3. RMI commands

RMI_ERROR_INPUT

RMI_ERROR_RTT

rd_align rd_bound

rtt_walk

rd_statelevel_boundipa_boundipa_align

rtte_state

B4.3.22.3 Success conditions

ID Condition

rtte_state walk.rtte.state == UNASSIGNED_NS

top top == walk_top

B4.3.22.4 Footprint

ID Value

rtte RttEntry(walk.rtt_addr, entry_idx)

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

206

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.23 RMI_VERSION command

Allows the Host and the RMM to determine whether there exists a mutually acceptable revision of the RMM via
which the two components can communicate.

On calling this command, the Host provides a requested RMI version.

The output values include a status code and two revisions which are supported by the RMM: a lower revision and a
higher revision.

• The higher revision value is the highest interface revision which is supported by the RMM.
• The lower revision is less than or equal to the higher revision.

The status code and lower revision output values indicate which of the following is true, in order of precedence:

a) The RMM supports an interface revision which is compatible with the requested revision.

• The status code is RMI_SUCCESS.
• The lower revision is equal to the requested revision.

b) The RMM does not support an interface revision which is compatible with the requested revision The RMM
supports an interface revision which is incompatible with and less than the requested revision.

• The status code is RMI_ERROR_INPUT.
• The lower revision is the highest interface revision which is both less than the requested revision and

supported by the RMM.

c) The RMM does not support an interface revision which is compatible with the requested revision The RMM
supports an interface revision which is incompatible with and greater than the requested revision.

• The status code is RMI_ERROR_INPUT.
• The lower revision is equal to the higher revision.

See also:

• Chapter B2 Interface versioning
• B4.1 RMI version

B4.3.23.1 Interface

B4.3.23.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000150

req X1 63:0 RmiInterfaceVersion Requested interface revision

B4.3.23.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RmiCommandReturnCode Command return status

lower X1 63:0 RmiInterfaceVersion Lower implemented interface revision

higher X2 63:0 RmiInterfaceVersion Higher implemented interface revision

B4.3.23.2 Failure conditions
The RMI_VERSION command does not have any failure conditions.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

207

Chapter B4. Realm Management Interface
B4.3. RMI commands

B4.3.23.3 Success conditions
The RMI_VERSION command does not have any success conditions.

B4.3.23.4 Footprint
The RMI_VERSION command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

208

Chapter B4. Realm Management Interface
B4.4. RMI types

B4.4 RMI types

This section defines types which are used in the RMI interface.

B4.4.1 RmiCommandReturnCode type

The RmiCommandReturnCode fieldset contains a return code from an RMI command.

The RmiCommandReturnCode fieldset is a concrete type.

The width of the RmiCommandReturnCode fieldset is 64 bits.

See also:

• Chapter B1 Commands

The fields of the RmiCommandReturnCode fieldset are shown in the following diagram.

078151631

statusindexMBZ

3263

MBZ

The fields of the RmiCommandReturnCode fieldset are shown in the following table.

Name Bits Description Value

status 7:0 Status of the command RmiStatusCode

index 15:8 Index which identifies the reason for a command
failure

UInt8

63:16 Reserved MBZ

B4.4.2 RmiDataFlags type

The RmiDataFlags fieldset contains flags provided by the Host during DATA Granule creation.

The RmiDataFlags fieldset is a concrete type.

The width of the RmiDataFlags fieldset is 64 bits.

The fields of the RmiDataFlags fieldset are shown in the following diagram.

0131

m
e
a
su
re

SBZ

3263

SBZ

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

209

Chapter B4. Realm Management Interface
B4.4. RMI types

The fields of the RmiDataFlags fieldset are shown in the following table.

Name Bits Description Value

measure 0:0 Whether to measure DATA Granule contents RmiDataMeasureContent

63:1 Reserved SBZ

B4.4.3 RmiDataMeasureContent type

The RmiDataMeasureContent enumeration represents whether to measure DATA Granule contents.

The RmiDataMeasureContent enumeration is a concrete type.

The width of the RmiDataMeasureContent enumeration is 1 bits.

The values of the RmiDataMeasureContent enumeration are shown in the following table.

Encoding Name Description

0 RMI_NO_MEASURE_CONTENT Do not measure DATA Granule contents.

1 RMI_MEASURE_CONTENT Measure DATA Granule contents.

B4.4.4 RmiEmulatedMmio type

The RmiEmulatedMmio enumeration represents whether the host has completed emulation for an Emulatable
Abort.

The RmiEmulatedMmio enumeration is a concrete type.

The width of the RmiEmulatedMmio enumeration is 1 bits.

The values of the RmiEmulatedMmio enumeration are shown in the following table.

Encoding Name Description

0 RMI_NOT_EMULATED_MMIO Host has not completed emulation for an Emulatable Abort.

1 RMI_EMULATED_MMIO Host has completed emulation for an Emulatable Abort.

B4.4.5 RmiFeature type

The RmiFeature enumeration represents whether a feature is supported or enabled.

The RmiFeature enumeration is a concrete type.

The width of the RmiFeature enumeration is 1 bits.

The values of the RmiFeature enumeration are shown in the following table.

Encoding Name Description

0 RMI_FEATURE_FALSE • During discovery: Feature is not supported.
• During selection: Feature is not enabled.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

210

Chapter B4. Realm Management Interface
B4.4. RMI types

Encoding Name Description

1 RMI_FEATURE_TRUE • During discovery: Feature is supported.
• During selection: Feature is enabled.

B4.4.6 RmiFeatureRegister0 type

The RmiFeatureRegister0 fieldset contains feature register 0.

The RmiFeatureRegister0 fieldset is a concrete type.

The width of the RmiFeatureRegister0 fieldset is 64 bits.

See also:

• A3.1 Realm feature discovery and selection
• B4.3.4 RMI_FEATURES command

The fields of the RmiFeatureRegister0 fieldset are shown in the following diagram.

0789101314192025262731

S2SZ

LP
A
2

S
V
E
_E
N

SVE_VLNUM_BPSNUM_WPS

P
M
U
_E
N

P
M
U
_N

U
M
_C
T
R
S

3233343738414263

H
A
S
H
_S
H
A
_2
5
6

H
A
S
H
_S
H
A
_5
1
2

G
IC
V
3
_N

U
M
_L
R
S

M
A
X
_R
E
C
S
_O

R
D
E
R

MBZ

The fields of the RmiFeatureRegister0 fieldset are shown in the following table.

Name Bits Description Value

S2SZ 7:0 Maximum Realm IPA width supported by the
RMM.
Specifies the input address size for stage 2
translation to be 2 ^ S2SZ. Note this format
expresses the IPA width directly and is therefore
different from the VTCR_EL2.T0SZ encoding.

UInt8

LPA2 8:8 Whether LPA2 is supported. RmiFeature

SVE_EN 9:9 Whether SVE is supported. RmiFeature

SVE_VL 13:10 Maximum SVE vector length supported by the
RMM.
The effective vector length supported by the
RMM is (SVE_VL + 1)*128, similar to the
value of ZCR_ELx.LEN.

UInt4

NUM_BPS 19:14 Number of breakpoints available, minus one.
The value 0 is reserved.

UInt6

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

211

Chapter B4. Realm Management Interface
B4.4. RMI types

Name Bits Description Value

NUM_WPS 25:20 Number of watchpoints available, minus one.
The value 0 is reserved.

UInt6

PMU_EN 26:26 Whether PMU is supported RmiFeature

PMU_NUM_CTRS 31:27 Number of PMU counters available UInt5

HASH_SHA_256 32:32 Whether SHA-256 is supported RmiFeature

HASH_SHA_512 33:33 Whether SHA-512 is supported RmiFeature

GICV3_NUM_LRS 37:34 Number of GICv3 List Registers which are
available, minus one.

UInt4

MAX_RECS_ORDER41:38 Order of the maximum number of RECs which
can be created per Realm.
The maximum number of RECs is computed as
follows:
MAX_RECS = (2 ^ MAX_RECS_ORDER)- 1

UInt4

63:42 Reserved MBZ

B4.4.7 RmiHashAlgorithm type

The RmiHashAlgorithm enumeration represents hash algorithm.

The RmiHashAlgorithm enumeration is a concrete type.

The width of the RmiHashAlgorithm enumeration is 8 bits.

The values of the RmiHashAlgorithm enumeration are shown in the following table.

Encoding Name Description

0 RMI_HASH_SHA_256 SHA-256 (Secure Hash Standard (SHS) [15])

1 RMI_HASH_SHA_512 SHA-512 (Secure Hash Standard (SHS) [15])

Unused encodings for the RmiHashAlgorithm enumeration are reserved for use by future versions of this
specification.

B4.4.8 RmiInjectSea type

The RmiInjectSea enumeration represents whether to inject a Synchronous External Abort into the Realm.

The RmiInjectSea enumeration is a concrete type.

The width of the RmiInjectSea enumeration is 1 bits.

The values of the RmiInjectSea enumeration are shown in the following table.

Encoding Name Description

0 RMI_NO_INJECT_SEA Do not inject an SEA into the Realm.

1 RMI_INJECT_SEA Inject an SEA into the Realm.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

212

Chapter B4. Realm Management Interface
B4.4. RMI types

B4.4.9 RmiInterfaceVersion type

The RmiInterfaceVersion fieldset contains an RMI interface version.

The RmiInterfaceVersion fieldset is a concrete type.

The width of the RmiInterfaceVersion fieldset is 64 bits.

See also:

• B4.1 RMI version
• B4.3.23 RMI_VERSION command

The fields of the RmiInterfaceVersion fieldset are shown in the following diagram.

015163031

minormajorMBZ

3263

MBZ

The fields of the RmiInterfaceVersion fieldset are shown in the following table.

Name Bits Description Value

minor 15:0 Interface minor version number (the value y in
interface version x.y)

UInt16

major 30:16 Interface major version number (the value x in
interface version x.y)

UInt15

63:31 Reserved MBZ

B4.4.10 RmiPmuOverflowStatus type

The RmiPmuOverflowStatus enumeration represents PMU overflow status.

The RmiPmuOverflowStatus enumeration is a concrete type.

The width of the RmiPmuOverflowStatus enumeration is 8 bits.

The values of the RmiPmuOverflowStatus enumeration are shown in the following table.

Encoding Name Description

0 RMI_PMU_OVERFLOW_NOT_ACTIVE PMU overflow is not active.

1 RMI_PMU_OVERFLOW_ACTIVE PMU overflow is active.

Unused encodings for the RmiPmuOverflowStatus enumeration are reserved for use by future versions of this
specification.

B4.4.11 RmiRealmFlags type

The RmiRealmFlags fieldset contains flags provided by the Host during Realm creation.

The RmiRealmFlags fieldset is a concrete type.

The width of the RmiRealmFlags fieldset is 64 bits.

The fields of the RmiRealmFlags fieldset are shown in the following diagram.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

213

Chapter B4. Realm Management Interface
B4.4. RMI types

012331

lp
a
2

sv
e

p
m
u

SBZ

3263

SBZ

The fields of the RmiRealmFlags fieldset are shown in the following table.

Name Bits Description Value

lpa2 0:0 Whether LPA2 is enabled RmiFeature

sve 1:1 Whether SVE is enabled RmiFeature

pmu 2:2 Whether PMU is enabled RmiFeature

63:3 Reserved SBZ

B4.4.12 RmiRealmParams type

The RmiRealmParams structure contains parameters provided by the Host during Realm creation.

The RmiRealmParams structure is a concrete type.

The width of the RmiRealmParams structure is 4096 (0x1000) bytes.

See also:

• A2.1.6 Realm parameters
• B4.3.9 RMI_REALM_CREATE command

The members of the RmiRealmParams structure are shown in the following table.

Name Byte offset Type Description

flags 0x0 RmiRealmFlags Flags

s2sz 0x8 UInt8 Requested IPA width.
Specifies the input address size for stage 2
translation to be 2 ^ S2SZ. Note this format
expresses the IPA width directly and is
therefore different from the
VTCR_EL2.T0SZ encoding.

sve_vl 0x10 UInt8 Requested SVE vector length.
The effective vector length requested is
(sve_vl + 1)*128, similar to the value of
ZCR_ELx.LEN.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

214

Chapter B4. Realm Management Interface
B4.4. RMI types

Name Byte offset Type Description

num_bps 0x18 UInt8 Number of breakpoints, minus one.
The value 0 is reserved.

num_wps 0x20 UInt8 Number of watchpoints, minus one.
The value 0 is reserved.

pmu_num_ctrs 0x28 UInt8 Requested number of PMU counters

hash_algo 0x30 RmiHashAlgorithm Algorithm used to measure the initial state of
the Realm

rpv 0x400 Bits512 Realm Personalization Value

vmid 0x800 Bits16 Virtual Machine Identifier

rtt_base 0x808 Address Realm Translation Table base

rtt_level_start 0x810 Int64 RTT starting level

rtt_num_start 0x818 UInt32 Number of starting level RTTs

Unused bits of the RmiRealmParams structure SBZ.

B4.4.13 RmiRecCreateFlags type

The RmiRecCreateFlags fieldset contains flags provided by the Host during REC creation.

The RmiRecCreateFlags fieldset is a concrete type.

The width of the RmiRecCreateFlags fieldset is 64 bits.

The fields of the RmiRecCreateFlags fieldset are shown in the following diagram.

0131
ru
n
n
a
b
le

SBZ

3263

SBZ

The fields of the RmiRecCreateFlags fieldset are shown in the following table.

Name Bits Description Value

runnable 0:0 Whether REC is eligible for execution RmiRecRunnable

63:1 Reserved SBZ

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

215

Chapter B4. Realm Management Interface
B4.4. RMI types

B4.4.14 RmiRecEnter type

The RmiRecEnter structure contains data passed from the Host to the RMM on REC entry.

The RmiRecEnter structure is a concrete type.

The width of the RmiRecEnter structure is 2048 (0x800) bytes.

See also:

• A4.2.1 RmiRecEnter object
• B4.3.14 RMI_REC_ENTER command
• B4.4.16 RmiRecExit type

The members of the RmiRecEnter structure are shown in the following table.

Name Byte offset Type Description

flags 0x0 RmiRecEnterFlags Flags

gprs[0] 0x200 Bits64 Registers

gprs[1] 0x208 Bits64 Registers

gprs[2] 0x210 Bits64 Registers

gprs[3] 0x218 Bits64 Registers

gprs[4] 0x220 Bits64 Registers

gprs[5] 0x228 Bits64 Registers

gprs[6] 0x230 Bits64 Registers

gprs[7] 0x238 Bits64 Registers

gprs[8] 0x240 Bits64 Registers

gprs[9] 0x248 Bits64 Registers

gprs[10] 0x250 Bits64 Registers

gprs[11] 0x258 Bits64 Registers

gprs[12] 0x260 Bits64 Registers

gprs[13] 0x268 Bits64 Registers

gprs[14] 0x270 Bits64 Registers

gprs[15] 0x278 Bits64 Registers

gprs[16] 0x280 Bits64 Registers

gprs[17] 0x288 Bits64 Registers

gprs[18] 0x290 Bits64 Registers

gprs[19] 0x298 Bits64 Registers

gprs[20] 0x2a0 Bits64 Registers

gprs[21] 0x2a8 Bits64 Registers

gprs[22] 0x2b0 Bits64 Registers

gprs[23] 0x2b8 Bits64 Registers

gprs[24] 0x2c0 Bits64 Registers

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

216

Chapter B4. Realm Management Interface
B4.4. RMI types

Name Byte offset Type Description

gprs[25] 0x2c8 Bits64 Registers

gprs[26] 0x2d0 Bits64 Registers

gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers

gprs[30] 0x2f0 Bits64 Registers

gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value

gicv3_lrs[0] 0x308 Bits64 GICv3 List Register values

gicv3_lrs[1] 0x310 Bits64 GICv3 List Register values

gicv3_lrs[2] 0x318 Bits64 GICv3 List Register values

gicv3_lrs[3] 0x320 Bits64 GICv3 List Register values

gicv3_lrs[4] 0x328 Bits64 GICv3 List Register values

gicv3_lrs[5] 0x330 Bits64 GICv3 List Register values

gicv3_lrs[6] 0x338 Bits64 GICv3 List Register values

gicv3_lrs[7] 0x340 Bits64 GICv3 List Register values

gicv3_lrs[8] 0x348 Bits64 GICv3 List Register values

gicv3_lrs[9] 0x350 Bits64 GICv3 List Register values

gicv3_lrs[10] 0x358 Bits64 GICv3 List Register values

gicv3_lrs[11] 0x360 Bits64 GICv3 List Register values

gicv3_lrs[12] 0x368 Bits64 GICv3 List Register values

gicv3_lrs[13] 0x370 Bits64 GICv3 List Register values

gicv3_lrs[14] 0x378 Bits64 GICv3 List Register values

gicv3_lrs[15] 0x380 Bits64 GICv3 List Register values

Unused bits of the RmiRecEnter structure SBZ.

B4.4.15 RmiRecEnterFlags type

The RmiRecEnterFlags fieldset contains flags provided by the Host during REC entry.

The RmiRecEnterFlags fieldset is a concrete type.

The width of the RmiRecEnterFlags fieldset is 64 bits.

The fields of the RmiRecEnterFlags fieldset are shown in the following diagram.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

217

Chapter B4. Realm Management Interface
B4.4. RMI types

01234531

e
m
u
l_
m
m
io

in
je
ct
_s
e
a

tr
a
p
_w

fi

tr
a
p
_w

fe

ri
p
a
s_
re
sp
o
n
se

SBZ

3263

SBZ

The fields of the RmiRecEnterFlags fieldset are shown in the following table.

Name Bits Description Value

emul_mmio 0:0 Whether the host has completed emulation for
an Emulatable Data Abort

RmiEmulatedMmio

inject_sea 1:1 Whether to inject a Synchronous External Abort
into the Realm.

RmiInjectSea

trap_wfi 2:2 Whether to trap WFI execution by the Realm. RmiTrap

trap_wfe 3:3 Whether to trap WFE execution by the Realm. RmiTrap

ripas_response 4:4 Host response to RIPAS change request. RmiResponse

63:5 Reserved SBZ

B4.4.16 RmiRecExit type

The RmiRecExit structure contains data passed from the RMM to the Host on REC exit.

The RmiRecExit structure is a concrete type.

The width of the RmiRecExit structure is 2048 (0x800) bytes.

See also:

• A4.3.1 RmiRecExit object
• B4.3.14 RMI_REC_ENTER command
• B4.4.14 RmiRecEnter type

The members of the RmiRecExit structure are shown in the following table.

Name Byte offset Type Description

exit_reason 0x0 RmiRecExitReason Exit reason

esr 0x100 Bits64 Exception Syndrome Register

far 0x108 Bits64 Fault Address Register

hpfar 0x110 Bits64 Hypervisor IPA Fault Address register

gprs[0] 0x200 Bits64 Registers

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

218

Chapter B4. Realm Management Interface
B4.4. RMI types

Name Byte offset Type Description

gprs[1] 0x208 Bits64 Registers

gprs[2] 0x210 Bits64 Registers

gprs[3] 0x218 Bits64 Registers

gprs[4] 0x220 Bits64 Registers

gprs[5] 0x228 Bits64 Registers

gprs[6] 0x230 Bits64 Registers

gprs[7] 0x238 Bits64 Registers

gprs[8] 0x240 Bits64 Registers

gprs[9] 0x248 Bits64 Registers

gprs[10] 0x250 Bits64 Registers

gprs[11] 0x258 Bits64 Registers

gprs[12] 0x260 Bits64 Registers

gprs[13] 0x268 Bits64 Registers

gprs[14] 0x270 Bits64 Registers

gprs[15] 0x278 Bits64 Registers

gprs[16] 0x280 Bits64 Registers

gprs[17] 0x288 Bits64 Registers

gprs[18] 0x290 Bits64 Registers

gprs[19] 0x298 Bits64 Registers

gprs[20] 0x2a0 Bits64 Registers

gprs[21] 0x2a8 Bits64 Registers

gprs[22] 0x2b0 Bits64 Registers

gprs[23] 0x2b8 Bits64 Registers

gprs[24] 0x2c0 Bits64 Registers

gprs[25] 0x2c8 Bits64 Registers

gprs[26] 0x2d0 Bits64 Registers

gprs[27] 0x2d8 Bits64 Registers

gprs[28] 0x2e0 Bits64 Registers

gprs[29] 0x2e8 Bits64 Registers

gprs[30] 0x2f0 Bits64 Registers

gicv3_hcr 0x300 Bits64 GICv3 Hypervisor Control Register value

gicv3_lrs[0] 0x308 Bits64 GICv3 List Register values

gicv3_lrs[1] 0x310 Bits64 GICv3 List Register values

gicv3_lrs[2] 0x318 Bits64 GICv3 List Register values

gicv3_lrs[3] 0x320 Bits64 GICv3 List Register values

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

219

Chapter B4. Realm Management Interface
B4.4. RMI types

Name Byte offset Type Description

gicv3_lrs[4] 0x328 Bits64 GICv3 List Register values

gicv3_lrs[5] 0x330 Bits64 GICv3 List Register values

gicv3_lrs[6] 0x338 Bits64 GICv3 List Register values

gicv3_lrs[7] 0x340 Bits64 GICv3 List Register values

gicv3_lrs[8] 0x348 Bits64 GICv3 List Register values

gicv3_lrs[9] 0x350 Bits64 GICv3 List Register values

gicv3_lrs[10] 0x358 Bits64 GICv3 List Register values

gicv3_lrs[11] 0x360 Bits64 GICv3 List Register values

gicv3_lrs[12] 0x368 Bits64 GICv3 List Register values

gicv3_lrs[13] 0x370 Bits64 GICv3 List Register values

gicv3_lrs[14] 0x378 Bits64 GICv3 List Register values

gicv3_lrs[15] 0x380 Bits64 GICv3 List Register values

gicv3_misr 0x388 Bits64 GICv3 Maintenance Interrupt State Register
value

gicv3_vmcr 0x390 Bits64 GICv3 Virtual Machine Control Register
value

cntp_ctl 0x400 Bits64 Counter-timer Physical Timer Control
Register value

cntp_cval 0x408 Bits64 Counter-timer Physical Timer CompareValue
Register value

cntv_ctl 0x410 Bits64 Counter-timer Virtual Timer Control Register
value

cntv_cval 0x418 Bits64 Counter-timer Virtual Timer CompareValue
Register value

ripas_base 0x500 Bits64 Base address of target region for pending
RIPAS change

ripas_top 0x508 Bits64 Top address of target region for pending
RIPAS change

ripas_value 0x510 RmiRipas RIPAS value of pending RIPAS change

imm 0x600 Bits16 Host call immediate value

pmu_ovf_status 0x700 RmiPmuOverflowStatus PMU overflow status

Unused bits of the RmiRecExit structure MBZ.

B4.4.17 RmiRecExitReason type

The RmiRecExitReason enumeration represents the reason for a REC exit.

The RmiRecExitReason enumeration is a concrete type.

The width of the RmiRecExitReason enumeration is 8 bits.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

220

Chapter B4. Realm Management Interface
B4.4. RMI types

The values of the RmiRecExitReason enumeration are shown in the following table.

Encoding Name Description

0 RMI_EXIT_SYNC REC exit due to synchronous exception

1 RMI_EXIT_IRQ REC exit due to IRQ

2 RMI_EXIT_FIQ REC exit due to FIQ

3 RMI_EXIT_PSCI REC exit due to PSCI

4 RMI_EXIT_RIPAS_CHANGE REC exit due to RIPAS change pending

5 RMI_EXIT_HOST_CALL REC exit due to Host call

6 RMI_EXIT_SERROR REC exit due to SError

Unused encodings for the RmiRecExitReason enumeration are reserved for use by future versions of this
specification.

B4.4.18 RmiRecMpidr type

The RmiRecMpidr fieldset contains MPIDR value which identifies a REC.

The RmiRecMpidr fieldset is a concrete type.

The width of the RmiRecMpidr fieldset is 64 bits.

See also:

• A2.3.3 REC index and MPIDR value
• B4.3.12 RMI_REC_CREATE command

The fields of the RmiRecMpidr fieldset are shown in the following diagram.

034781516232431

aff0SBZaff1aff2aff3

3263

SBZ

The fields of the RmiRecMpidr fieldset are shown in the following table.

Name Bits Description Value

aff0 3:0 Affinity level 0 Bits4

7:4 Reserved SBZ

aff1 15:8 Affinity level 1 Bits8

aff2 23:16 Affinity level 2 Bits8

aff3 31:24 Affinity level 3 Bits8

63:32 Reserved SBZ

B4.4.19 RmiRecParams type

The RmiRecParams structure contains parameters provided by the Host during REC creation.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

221

Chapter B4. Realm Management Interface
B4.4. RMI types

The RmiRecParams structure is a concrete type.

The width of the RmiRecParams structure is 4096 (0x1000) bytes.

The number of valid entries in the aux array is determined by the return value from the RMI_REC_AUX_COUNT
command.

See also:

• B4.3.11 RMI_REC_AUX_COUNT command

The members of the RmiRecParams structure are shown in the following table.

Name Byte offset Type Description

flags 0x0 RmiRecCreateFlags Flags

mpidr 0x100 RmiRecMpidr MPIDR of the REC

pc 0x200 Bits64 Program counter

gprs[0] 0x300 Bits64 General-purpose registers

gprs[1] 0x308 Bits64 General-purpose registers

gprs[2] 0x310 Bits64 General-purpose registers

gprs[3] 0x318 Bits64 General-purpose registers

gprs[4] 0x320 Bits64 General-purpose registers

gprs[5] 0x328 Bits64 General-purpose registers

gprs[6] 0x330 Bits64 General-purpose registers

gprs[7] 0x338 Bits64 General-purpose registers

num_aux 0x800 UInt64 Number of auxiliary Granules

aux[0] 0x808 Address Addresses of auxiliary Granules

aux[1] 0x810 Address Addresses of auxiliary Granules

aux[2] 0x818 Address Addresses of auxiliary Granules

aux[3] 0x820 Address Addresses of auxiliary Granules

aux[4] 0x828 Address Addresses of auxiliary Granules

aux[5] 0x830 Address Addresses of auxiliary Granules

aux[6] 0x838 Address Addresses of auxiliary Granules

aux[7] 0x840 Address Addresses of auxiliary Granules

aux[8] 0x848 Address Addresses of auxiliary Granules

aux[9] 0x850 Address Addresses of auxiliary Granules

aux[10] 0x858 Address Addresses of auxiliary Granules

aux[11] 0x860 Address Addresses of auxiliary Granules

aux[12] 0x868 Address Addresses of auxiliary Granules

aux[13] 0x870 Address Addresses of auxiliary Granules

aux[14] 0x878 Address Addresses of auxiliary Granules

aux[15] 0x880 Address Addresses of auxiliary Granules

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter B4. Realm Management Interface
B4.4. RMI types

Unused bits of the RmiRecParams structure SBZ.

B4.4.20 RmiRecRun type

The RmiRecRun structure contains fields used to share information between RMM and Host during REC entry
and REC exit.

The RmiRecRun structure is a concrete type.

The width of the RmiRecRun structure is 4096 (0x1000) bytes.

See also:

• A4.2.1 RmiRecEnter object
• A4.3.1 RmiRecExit object
• B4.3.14 RMI_REC_ENTER command

The members of the RmiRecRun structure are shown in the following table.

Name Byte offset Type Description

enter 0x0 RmiRecEnter Entry information

exit 0x800 RmiRecExit Exit information

B4.4.21 RmiRecRunnable type

The RmiRecRunnable enumeration represents whether a REC is eligible for execution.

The RmiRecRunnable enumeration is a concrete type.

The width of the RmiRecRunnable enumeration is 1 bits.

The values of the RmiRecRunnable enumeration are shown in the following table.

Encoding Name Description

0 RMI_NOT_RUNNABLE Not eligible for execution.

1 RMI_RUNNABLE Eligible for execution.

B4.4.22 RmiResponse type

The RmiResponse enumeration represents whether the Host accepted or rejected a Realm request.

The RmiResponse enumeration is a concrete type.

The width of the RmiResponse enumeration is 1 bits.

The values of the RmiResponse enumeration are shown in the following table.

Encoding Name Description

0 RMI_ACCEPT Host accepted the Realm request.

1 RMI_REJECT Host rejected the Realm request.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

223

Chapter B4. Realm Management Interface
B4.4. RMI types

B4.4.23 RmiRipas type

The RmiRipas enumeration represents realm IPA state.

The RmiRipas enumeration is a concrete type.

The width of the RmiRipas enumeration is 8 bits.

The values of the RmiRipas enumeration are shown in the following table.

Encoding Name Description

0 RMI_EMPTY Address where no Realm resources are mapped.

1 RMI_RAM Address where private code or data owned by the Realm is
mapped.

2 RMI_DESTROYED Address which is inaccessible to the Realm due to an action taken
by the Host.

Unused encodings for the RmiRipas enumeration are reserved for use by future versions of this specification.

B4.4.24 RmiRttEntryState type

The RmiRttEntryState enumeration represents the state of an RTTE.

The RmiRttEntryState enumeration is a concrete type.

The width of the RmiRttEntryState enumeration is 8 bits.

The values of the RmiRttEntryState enumeration are shown in the following table.

Encoding Name Description

0 RMI_UNASSIGNED This RTTE is not associated with any Granule.

1 RMI_ASSIGNED The output address of this RTTE points to:
• a DATA Granule, if the input address is a Protected IPA, or
• an NS Granule, if the input address is an Unprotected IPA.

2 RMI_TABLE The output address of this RTTE points to the next-level RTT.

Unused encodings for the RmiRttEntryState enumeration are reserved for use by future versions of this
specification.

B4.4.25 RmiStatusCode type

The RmiStatusCode enumeration represents the status of an RMI operation.

The RmiStatusCode enumeration is a concrete type.

The width of the RmiStatusCode enumeration is 8 bits.

See also:

• B1.3 Command registers
• B1.5 Command context values

The values of the RmiStatusCode enumeration are shown in the following table.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

224

Chapter B4. Realm Management Interface
B4.4. RMI types

Encoding Name Description

0 RMI_SUCCESS Command completed successfully

1 RMI_ERROR_INPUT The value of a command input value caused the command to fail

2 RMI_ERROR_REALM An attribute of a Realm does not match the expected value

3 RMI_ERROR_REC An attribute of a REC does not match the expected value

4 RMI_ERROR_RTT An RTT walk terminated before reaching the target RTT level, or
reached an RTTE with an unexpected value

Unused encodings for the RmiStatusCode enumeration are reserved for use by future versions of this specification.

B4.4.26 RmiTrap type

The RmiTrap enumeration represents whether a trap is enabled.

The RmiTrap enumeration is a concrete type.

The width of the RmiTrap enumeration is 1 bits.

The values of the RmiTrap enumeration are shown in the following table.

Encoding Name Description

0 RMI_NO_TRAP Trap is disabled.

1 RMI_TRAP Trap is enabled.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

225

Chapter B5
Realm Services Interface

This chapter defines the interface used by Realm software to request services from the RMM.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter B5. Realm Services Interface
B5.1. RSI version

B5.1 RSI version

RQKLGZ This specification defines version 1.0 of the Realm Services Interface.

See also:

• Chapter B2 Interface versioning
• B5.3.10 RSI_VERSION command

B5.2 RSI command return codes

ICYQDJ An RSI command return code indicates whether the command

• succeeded, or
• failed, and the reason for the failure.

IDQJSP If an RSI command succeeds then it returns RSI_SUCCESS.

IYMHKC Multiple failure conditions in an RSI command may return the same return code.

RMLBDM If an input to an RSI command uses an invalid encoding then the command fails and returns RSI_ERROR_INPUT.

Command inputs include registers and in-memory data structures.

Invalid encodings include:

• using a reserved encoding in an enumeration

See also:

• B5.4.1 RsiCommandReturnCode type

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

227

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3 RSI commands

The following table summarizes the FIDs of commands in the RSI interface.

FID Command

0xC4000190 RSI_VERSION

0xC4000191 RSI_FEATURES

0xC4000192 RSI_MEASUREMENT_READ

0xC4000193 RSI_MEASUREMENT_EXTEND

0xC4000194 RSI_ATTESTATION_TOKEN_INIT

0xC4000195 RSI_ATTESTATION_TOKEN_CONTINUE

0xC4000196 RSI_REALM_CONFIG

0xC4000197 RSI_IPA_STATE_SET

0xC4000198 RSI_IPA_STATE_GET

0xC4000199 RSI_HOST_CALL

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

228

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command

Continue the operation to retrieve an attestation token.

See also:

• A7.2 Realm attestation
• B5.3.2 RSI_ATTESTATION_TOKEN_INIT command

B5.3.1.1 Interface

B5.3.1.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000195

addr X1 63:0 Address IPA of the Granule to which the token
will be written

offset X2 63:0 UInt64 Offset within Granule to start of buffer
in bytes

size X3 63:0 UInt64 Size of buffer in bytes

B5.3.1.1.2 Context

The RSI_ATTESTATION_TOKEN_CONTINUE command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

rec RmmRec CurrentRec() false Current REC

B5.3.1.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

len X1 63:0 UInt64 Number of bytes written to buffer

B5.3.1.2 Failure conditions

ID Condition

addr_align pre: !AddrIsGranuleAligned(addr)
post: result == RSI_ERROR_INPUT

addr_bound pre: !AddrIsProtected(addr, realm)
post: result == RSI_ERROR_INPUT

offset_bound pre: offset >= RMM_GRANULE_SIZE
post: result == RSI_ERROR_INPUT

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229

Chapter B5. Realm Services Interface
B5.3. RSI commands

ID Condition

size_overflow pre: offset + size < offset
post: result == RSI_ERROR_INPUT

size_bound pre: offset + size > RMM_GRANULE_SIZE
post: result == RSI_ERROR_INPUT

state pre: rec.attest_state != ATTEST_IN_PROGRESS
post: result == RSI_ERROR_STATE

unknown pre: Token generation failed for an unknown or IMPDEF reason.
post: result == RSI_ERROR_UNKNOWN

B5.3.1.2.1 Failure condition ordering

The RSI_ATTESTATION_TOKEN_CONTINUE command does not have any failure condition orderings.

B5.3.1.3 Success conditions

ID Condition

incomplete pre: Token generation is not complete.
post: result == RSI_INCOMPLETE

complete pre: Token generation is complete.
post: rec.attest_state == NO_ATTEST_IN_PROGRESS

B5.3.1.4 Footprint

ID Value

state rec.attest_state

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

230

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.2 RSI_ATTESTATION_TOKEN_INIT command

Initialize the operation to retrieve an attestation token.

See also:

• A7.2 Realm attestation
• B5.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command

B5.3.2.1 Interface

B5.3.2.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000194

challenge_0 X1 63:0 Bits64 Doubleword 0 of the challenge value

challenge_1 X2 63:0 Bits64 Doubleword 1 of the challenge value

challenge_2 X3 63:0 Bits64 Doubleword 2 of the challenge value

challenge_3 X4 63:0 Bits64 Doubleword 3 of the challenge value

challenge_4 X5 63:0 Bits64 Doubleword 4 of the challenge value

challenge_5 X6 63:0 Bits64 Doubleword 5 of the challenge value

challenge_6 X7 63:0 Bits64 Doubleword 6 of the challenge value

challenge_7 X8 63:0 Bits64 Doubleword 7 of the challenge value

B5.3.2.1.2 Context

The RSI_ATTESTATION_TOKEN_INIT command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

rec RmmRec CurrentRec() false Current REC

B5.3.2.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

size X1 63:0 UInt64 Upper bound on attestation token size in
bytes

B5.3.2.2 Failure conditions
The RSI_ATTESTATION_TOKEN_INIT command does not have any failure conditions.

B5.3.2.3 Success conditions

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

231

Chapter B5. Realm Services Interface
B5.3. RSI commands

ID Condition

state rec.attest_state == ATTEST_IN_PROGRESS

challenge rec.attest_challenge == [
challenge_0,
challenge_1,
challenge_2,
challenge_3,
challenge_4,
challenge_5,
challenge_6,
challenge_7

]

B5.3.2.4 Footprint

ID Value

state rec.attest_state

challenge rec.attest_challenge

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

232

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.3 RSI_FEATURES command

Read feature register.

In the current version of the interface, this command returns zero regardless of the index provided.

See also:

• A3.1 Realm feature discovery and selection

B5.3.3.1 Interface

B5.3.3.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000191

index X1 63:0 UInt64 Feature register index

B5.3.3.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

value X1 63:0 Bits64 Feature register value

B5.3.3.2 Failure conditions
The RSI_FEATURES command does not have any failure conditions.

B5.3.3.3 Success conditions

ID Condition

index value == Zeros()

B5.3.3.4 Footprint
The RSI_FEATURES command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

233

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.4 RSI_HOST_CALL command

Make a Host call.

See also:

• A4.5 Host call

B5.3.4.1 Interface

B5.3.4.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000199

addr X1 63:0 Address IPA of the Host call data structure

B5.3.4.1.2 Context

The RSI_HOST_CALL command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

rec RmmRec CurrentRec() false Current REC

data RsiHostCall RealmHostCall(addr) false Host call data
structure

B5.3.4.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

B5.3.4.2 Failure conditions

ID Condition

addr_align pre: !AddrIsAligned(addr, 256)
post: result == RSI_ERROR_INPUT

addr_bound pre: !AddrIsProtected(addr, realm)
post: result == RSI_ERROR_INPUT

B5.3.4.2.1 Failure condition ordering

The RSI_HOST_CALL command does not have any failure condition orderings.

B5.3.4.3 Success conditions
The RSI_HOST_CALL command does not have any success conditions.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

234

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.4.4 Footprint

ID Value

host_call rec.host_call_pending

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.5 RSI_IPA_STATE_GET command

Get RIPAS of a target IPA range.

See also:

• A5.2 Realm view of memory management
• B5.3.6 RSI_IPA_STATE_SET command

B5.3.5.1 Interface

B5.3.5.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000198

base X1 63:0 Address Base of target IPA region

top X2 63:0 Address End of target IPA region

B5.3.5.1.2 Context

The RSI_IPA_STATE_GET command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

B5.3.5.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

out_top X1 63:0 Address Top of IPA region which has the
reported RIPAS value

ripas X2 7:0 RsiRipas RIPAS value

The following unused bits of RSI_IPA_STATE_GET output values MBZ: X2[63:8].

If result == RSI_SUCCESS then all of the following are true:

• out_top > base

• out_top <= top

• All addresses within the range [base, out_top) have the RIPAS value ripas.

Note that the RIPAS of a Protected IPA can change at any time to DESTROYED without the Realm taking any
action.

See also:

• A5.2.5 Changes to RIPAS while Realm state is REALM_ACTIVE

B5.3.5.2 Failure conditions

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

236

Chapter B5. Realm Services Interface
B5.3. RSI commands

ID Condition

base_align pre: !AddrIsGranuleAligned(base)
post: result == RSI_ERROR_INPUT

end_align pre: !AddrIsGranuleAligned(top)
post: result == RSI_ERROR_INPUT

size_valid pre: UInt(top) <= UInt(base)
post: result == RSI_ERROR_INPUT

rgn_bound pre: !AddrRangeIsProtected(base, top, realm)
post: result == RSI_ERROR_INPUT

B5.3.5.2.1 Failure condition ordering

The RSI_IPA_STATE_GET command does not have any failure condition orderings.

B5.3.5.3 Success conditions
The RSI_IPA_STATE_GET command does not have any success conditions.

B5.3.5.4 Footprint
The RSI_IPA_STATE_GET command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

237

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.6 RSI_IPA_STATE_SET command

Request RIPAS of a target IPA range to be changed to a specified value.

See also:

• A5.2 Realm view of memory management
• A5.4 RIPAS change
• B5.3.5 RSI_IPA_STATE_GET command

B5.3.6.1 Interface

B5.3.6.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000197

base X1 63:0 Address Base of target IPA region

top X2 63:0 Address Top of target IPA region

ripas X3 7:0 RsiRipas RIPAS value

flags X4 63:0 RsiRipasChangeFlags Flags

The following unused bits of RSI_IPA_STATE_SET input values SBZ: X3[63:8].

B5.3.6.1.2 Context

The RSI_IPA_STATE_SET command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

rec RmmRec CurrentRec() false Current REC

B5.3.6.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

new_base X1 63:0 Address Base of IPA region which was not
modified by the command

response X2 0:0 RsiResponse Whether the Host accepted or rejected
the request

The following unused bits of RSI_IPA_STATE_SET output values MBZ: X2[63:1].

If the Host rejects the request then:

• result == RSI_SUCCESS

• new_base == base

• response == RSI_REJECT

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

238

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.6.2 Failure conditions

ID Condition

base_align pre: !AddrIsGranuleAligned(base)
post: result == RSI_ERROR_INPUT

top_align pre: !AddrIsGranuleAligned(top)
post: result == RSI_ERROR_INPUT

size_valid pre: UInt(top) <= UInt(base)
post: result == RSI_ERROR_INPUT

rgn_bound pre: !AddrRangeIsProtected(base, top, realm)
post: result == RSI_ERROR_INPUT

ripas_valid pre: (ripas != RSI_EMPTY) && (ripas != RSI_RAM)
post: result == RSI_ERROR_INPUT

B5.3.6.2.1 Failure condition ordering

The RSI_IPA_STATE_SET command does not have any failure condition orderings.

B5.3.6.3 Success conditions

ID Condition

new_base new_base == rec.ripas_addr

response response == RecRipasChangeResponse(rec)

B5.3.6.4 Footprint
The RSI_IPA_STATE_SET command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

239

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.7 RSI_MEASUREMENT_EXTEND command

Extend Realm Extensible Measurement (REM) value.

B5.3.7.1 Interface

B5.3.7.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000193

index X1 63:0 UInt64 Measurement index

size X2 63:0 UInt64 Measurement size in bytes

value_0 X3 63:0 Bits64 Doubleword 0 of the measurement value

value_1 X4 63:0 Bits64 Doubleword 1 of the measurement value

value_2 X5 63:0 Bits64 Doubleword 2 of the measurement value

value_3 X6 63:0 Bits64 Doubleword 3 of the measurement value

value_4 X7 63:0 Bits64 Doubleword 4 of the measurement value

value_5 X8 63:0 Bits64 Doubleword 5 of the measurement value

value_6 X9 63:0 Bits64 Doubleword 6 of the measurement value

value_7 X10 63:0 Bits64 Doubleword 7 of the measurement value

B5.3.7.1.2 Context

The RSI_MEASUREMENT_EXTEND command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

meas_old RmmRealmMeasurement CurrentRealm().measurements
↪→[index]

true Previous
measurement value

B5.3.7.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

B5.3.7.2 Failure conditions

ID Condition

index_bound pre: index < 1 || index > 4
post: result == RSI_ERROR_INPUT

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

240

Chapter B5. Realm Services Interface
B5.3. RSI commands

ID Condition

size_bound pre: size > 64
post: result == RSI_ERROR_INPUT

B5.3.7.2.1 Failure condition ordering

The RSI_MEASUREMENT_EXTEND command does not have any failure condition orderings.

B5.3.7.3 Success conditions

ID Condition

realm_meas realm.measurements[index] == RemExtend(
realm.hash_algo, meas_old,
[value_0, value_1, value_2, value_3,
value_4, value_5, value_6, value_7][

(RMM_REALM_MEASUREMENT_WIDTH-1):0],
size)

B5.3.7.4 Footprint

ID Value

realm_meas realm.measurements[index]

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

241

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.8 RSI_MEASUREMENT_READ command

Read measurement for the current Realm.

See also:

• A7.1 Realm measurements
• D1.2.1 Realm creation flow

B5.3.8.1 Interface

B5.3.8.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000192

index X1 63:0 UInt64 Measurement index

index 0 selects the RIM. An index of 1 or greater selects the corresponding REM.

B5.3.8.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

value_0 X1 63:0 Bits64 Doubleword 0 of the Realm
measurement identified by “index”

value_1 X2 63:0 Bits64 Doubleword 1 of the Realm
measurement identified by “index”

value_2 X3 63:0 Bits64 Doubleword 2 of the Realm
measurement identified by “index”

value_3 X4 63:0 Bits64 Doubleword 3 of the Realm
measurement identified by “index”

value_4 X5 63:0 Bits64 Doubleword 4 of the Realm
measurement identified by “index”

value_5 X6 63:0 Bits64 Doubleword 5 of the Realm
measurement identified by “index”

value_6 X7 63:0 Bits64 Doubleword 6 of the Realm
measurement identified by “index”

value_7 X8 63:0 Bits64 Doubleword 7 of the Realm
measurement identified by “index”

If the size of the measurement value is smaller than 512 bits, the output values are padded with zeroes.

B5.3.8.2 Failure conditions

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

242

Chapter B5. Realm Services Interface
B5.3. RSI commands

ID Condition

index_bound pre: index > 4
post: result == RSI_ERROR_INPUT

B5.3.8.3 Success conditions
The RSI_MEASUREMENT_READ command does not have any success conditions.

B5.3.8.4 Footprint
The RSI_MEASUREMENT_READ command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

243

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.9 RSI_REALM_CONFIG command

Read configuration for the current Realm.

B5.3.9.1 Interface

B5.3.9.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000196

addr X1 63:0 Address IPA of the Granule to which the
configuration data will be written

B5.3.9.1.2 Context

The RSI_REALM_CONFIG command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

cfg RsiRealmConfig RealmConfig(addr) false Realm configuration

B5.3.9.1.3 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

B5.3.9.2 Failure conditions

ID Condition

addr_align pre: !AddrIsGranuleAligned(addr)
post: result == RSI_ERROR_INPUT

addr_bound pre: !AddrIsProtected(addr, realm)
post: result == RSI_ERROR_INPUT

B5.3.9.2.1 Failure condition ordering

The RSI_REALM_CONFIG command does not have any failure condition orderings.

B5.3.9.3 Success conditions

ID Condition

ipa_width cfg.ipa_width == realm.ipa_width

hash_algo Equal(cfg.hash_algo, realm.hash_algo)

B5.3.9.4 Footprint
The RSI_REALM_CONFIG command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

244

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.10 RSI_VERSION command

Returns RSI version.

On calling this command, the Realm provides a requested RSI version.

The output values include a status code and two revisions which are supported by the RMM: a lower revision and a
higher revision.

• The higher revision value is the highest interface revision which is supported by the RMM.
• The lower revision is less than or equal to the higher revision.

The status code and lower revision output values indicate which of the following is true, in order of precedence:

a) The RMM supports an interface revision which is compatible with the requested revision.

• The status code is RSI_SUCCESS.
• The lower revision is equal to the requested revision.

b) The RMM does not support an interface revision which is compatible with the requested revision The RMM
supports an interface revision which is incompatible with and less than the requested revision.

• The status code is RSI_ERROR_INPUT.
• The lower revision is the highest interface revision which is both less than the requested revision and

supported by the RMM.

c) The RMM does not support an interface revision which is compatible with the requested revision The RMM
supports an interface revision which is incompatible with and greater than the requested revision.

• The status code is RSI_ERROR_INPUT.
• The lower revision is equal to the higher revision.

See also:

• Chapter B2 Interface versioning
• B5.1 RSI version

B5.3.10.1 Interface

B5.3.10.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000190

req X1 63:0 RsiInterfaceVersion Requested interface revision

B5.3.10.1.2 Output values

Name Register Bits Type Description

result X0 63:0 RsiCommandReturnCode Command return status

lower X1 63:0 RsiInterfaceVersion Lower implemented interface revision

higher X2 63:0 RsiInterfaceVersion Higher implemented interface revision

B5.3.10.2 Failure conditions
The RSI_VERSION command does not have any failure conditions.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

245

Chapter B5. Realm Services Interface
B5.3. RSI commands

B5.3.10.3 Success conditions
The RSI_VERSION command does not have any success conditions.

B5.3.10.4 Footprint
The RSI_VERSION command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

246

Chapter B5. Realm Services Interface
B5.4. RSI types

B5.4 RSI types

This section defines types which are used in the RSI interface.

B5.4.1 RsiCommandReturnCode type

The RsiCommandReturnCode enumeration represents a return code from an RSI command.

The RsiCommandReturnCode enumeration is a concrete type.

The width of the RsiCommandReturnCode enumeration is 64 bits.

See also:

• Chapter B1 Commands

The values of the RsiCommandReturnCode enumeration are shown in the following table.

Encoding Name Description

0 RSI_SUCCESS Command completed successfully

1 RSI_ERROR_INPUT The value of a command input value caused the command to fail

2 RSI_ERROR_STATE The state of the current Realm or current REC does not match the
state expected by the command

3 RSI_INCOMPLETE The operation requested by the command is not complete

4 RSI_ERROR_UNKNOWN The operation requested by the command failed for an unknown
reason

Unused encodings for the RsiCommandReturnCode enumeration are reserved for use by future versions of this
specification.

B5.4.2 RsiHashAlgorithm type

The RsiHashAlgorithm enumeration represents hash algorithm.

The RsiHashAlgorithm enumeration is a concrete type.

The width of the RsiHashAlgorithm enumeration is 8 bits.

See also:

• B5.3.9 RSI_REALM_CONFIG command

The values of the RsiHashAlgorithm enumeration are shown in the following table.

Encoding Name Description

0 RSI_HASH_SHA_256 SHA-256 (Secure Hash Standard (SHS) [15])

1 RSI_HASH_SHA_512 SHA-512 (Secure Hash Standard (SHS) [15])

Unused encodings for the RsiHashAlgorithm enumeration are reserved for use by future versions of this
specification.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

247

Chapter B5. Realm Services Interface
B5.4. RSI types

B5.4.3 RsiHostCall type

The RsiHostCall structure contains data structure used to pass Host call arguments and return values.

The RsiHostCall structure is a concrete type.

The width of the RsiHostCall structure is 256 (0x100) bytes.

See also:

• A4.5 Host call
• B5.3.4 RSI_HOST_CALL command

The members of the RsiHostCall structure are shown in the following table.

Name Byte offset Type Description

imm 0x0 UInt16 Immediate value

gprs[0] 0x8 Bits64 Registers

gprs[1] 0x10 Bits64 Registers

gprs[2] 0x18 Bits64 Registers

gprs[3] 0x20 Bits64 Registers

gprs[4] 0x28 Bits64 Registers

gprs[5] 0x30 Bits64 Registers

gprs[6] 0x38 Bits64 Registers

gprs[7] 0x40 Bits64 Registers

gprs[8] 0x48 Bits64 Registers

gprs[9] 0x50 Bits64 Registers

gprs[10] 0x58 Bits64 Registers

gprs[11] 0x60 Bits64 Registers

gprs[12] 0x68 Bits64 Registers

gprs[13] 0x70 Bits64 Registers

gprs[14] 0x78 Bits64 Registers

gprs[15] 0x80 Bits64 Registers

gprs[16] 0x88 Bits64 Registers

gprs[17] 0x90 Bits64 Registers

gprs[18] 0x98 Bits64 Registers

gprs[19] 0xa0 Bits64 Registers

gprs[20] 0xa8 Bits64 Registers

gprs[21] 0xb0 Bits64 Registers

gprs[22] 0xb8 Bits64 Registers

gprs[23] 0xc0 Bits64 Registers

gprs[24] 0xc8 Bits64 Registers

gprs[25] 0xd0 Bits64 Registers

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

248

Chapter B5. Realm Services Interface
B5.4. RSI types

Name Byte offset Type Description

gprs[26] 0xd8 Bits64 Registers

gprs[27] 0xe0 Bits64 Registers

gprs[28] 0xe8 Bits64 Registers

gprs[29] 0xf0 Bits64 Registers

gprs[30] 0xf8 Bits64 Registers

Unused bits of the RsiHostCall structure SBZ.

B5.4.4 RsiInterfaceVersion type

The RsiInterfaceVersion fieldset contains an RSI interface version.

The RsiInterfaceVersion fieldset is a concrete type.

The width of the RsiInterfaceVersion fieldset is 64 bits.

See also:

• B5.1 RSI version
• B5.3.10 RSI_VERSION command

The fields of the RsiInterfaceVersion fieldset are shown in the following diagram.

015163031

minormajorSBZ

3263

SBZ

The fields of the RsiInterfaceVersion fieldset are shown in the following table.

Name Bits Description Value

minor 15:0 Interface minor version number (the value y in
interface version x.y)

UInt16

major 30:16 Interface major version number (the value x in
interface version x.y)

UInt15

63:31 Reserved SBZ

B5.4.5 RsiRealmConfig type

The RsiRealmConfig structure contains realm configuration.

The RsiRealmConfig structure is a concrete type.

The width of the RsiRealmConfig structure is 4096 (0x1000) bytes.

See also:

• B5.3.9 RSI_REALM_CONFIG command

The members of the RsiRealmConfig structure are shown in the following table.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

249

Chapter B5. Realm Services Interface
B5.4. RSI types

Name Byte offset Type Description

ipa_width 0x0 UInt64 IPA width in bits

hash_algo 0x8 RsiHashAlgorithm Hash algorithm

rpv 0x200 Bits512 Realm Personalization Value

Unused bits of the RsiRealmConfig structure MBZ.

B5.4.6 RsiResponse type

The RsiResponse enumeration represents whether the Host accepted or rejected a Realm request.

The RsiResponse enumeration is a concrete type.

The width of the RsiResponse enumeration is 1 bits.

The values of the RsiResponse enumeration are shown in the following table.

Encoding Name Description

0 RSI_ACCEPT Host accepted the Realm request.

1 RSI_REJECT Host rejected the Realm request.

B5.4.7 RsiRipas type

The RsiRipas enumeration represents realm IPA state.

The RsiRipas enumeration is a concrete type.

The width of the RsiRipas enumeration is 8 bits.

See also:

• A5.4 RIPAS change
• B5.3.5 RSI_IPA_STATE_GET command
• B5.3.6 RSI_IPA_STATE_SET command

The values of the RsiRipas enumeration are shown in the following table.

Encoding Name Description

0 RSI_EMPTY Address where no Realm resources are mapped.

1 RSI_RAM Address where private code or data owned by the Realm is
mapped.

2 RSI_DESTROYED Address which is inaccessible to the Realm due to an action taken
by the Host.

3 RSI_DEV Address where memory of an assigned Realm device is mapped.

Unused encodings for the RsiRipas enumeration are reserved for use by future versions of this specification.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

250

Chapter B5. Realm Services Interface
B5.4. RSI types

B5.4.8 RsiRipasChangeDestroyed type

The RsiRipasChangeDestroyed enumeration represents whether a RIPAS change from DESTROYED should be
permitted.

The RsiRipasChangeDestroyed enumeration is a concrete type.

The width of the RsiRipasChangeDestroyed enumeration is 1 bits.

The values of the RsiRipasChangeDestroyed enumeration are shown in the following table.

Encoding Name Description

0 RSI_NO_CHANGE_DESTROYED A RIPAS change from DESTROYED should not be permitted.

1 RSI_CHANGE_DESTROYED A RIPAS change from DESTROYED should be permitted.

B5.4.9 RsiRipasChangeFlags type

The RsiRipasChangeFlags fieldset contains flags provided by the Realm when requesting a RIPAS change.

The RsiRipasChangeFlags fieldset is a concrete type.

The width of the RsiRipasChangeFlags fieldset is 64 bits.

The fields of the RsiRipasChangeFlags fieldset are shown in the following diagram.

0131

d
e
st
ro
y
e
d

SBZ

3263

SBZ

The fields of the RsiRipasChangeFlags fieldset are shown in the following table.

Name Bits Description Value

destroyed 0:0 Whether a RIPAS change from DESTROYED
should be permitted

RsiRipasChangeDestroyed

63:1 Reserved SBZ

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

251

Chapter B6
Power State Control Interface

This section describes how Power State Control Interface (PSCI) function execution by a Realm execution of SMC
instructions is handled.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

252

Chapter B6. Power State Control Interface
B6.1. PSCI overview

B6.1 PSCI overview

IGBVWX In this section,

• rec refers to the currently executing REC
• exit refer to the RmiRecExit object which was provided to the RMI_REC_ENTER command
• target_rec refers to the REC object identified by an MPIDR value passed to a PSCI function.

IGHKCJ The RMM provides a trusted implementation of parts of the PSCI ABI. This section describes the checks performed
by the RMM when a Realm executes a PSCI command, and the internal RMM state changes which result from a
successful PSCI command execution. Successful execution by the RMM of some PSCI commands results in a
REC exit due to PSCI, which allows the Host to perform further processing of the command.

IXHDQF The HVC conduit for PSCI is not supported for Realms.

See also:

• Arm Power State Coordination Interface (PSCI) [16]
• A2.3.2 REC attributes
• A4.3.7 REC exit due to PSCI
• A4.5 Host call
• D1.4 PSCI flows

B6.2 PSCI version

RTFCVF The RMM must support version >= 1.1 of the Power State Control Interface.

See also:

• B6.3.8 PSCI_VERSION command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

253

Chapter B6. Power State Control Interface
B6.3. PSCI commands

B6.3 PSCI commands

The following table summarizes the FIDs of commands in the PSCI interface.

FID Command

0x84000000 PSCI_VERSION

. . .

0x84000002 PSCI_CPU_OFF

. . .

0x84000008 PSCI_SYSTEM_OFF

0x84000009 PSCI_SYSTEM_RESET

0x8400000A PSCI_FEATURES

. . .

0xC4000001 PSCI_CPU_SUSPEND

. . .

0xC4000003 PSCI_CPU_ON

0xC4000004 PSCI_AFFINITY_INFO

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

254

Chapter B6. Power State Control Interface
B6.3. PSCI commands

B6.3.1 PSCI_AFFINITY_INFO command

Query status of a VPE.

This command causes a REC exit due to PSCI. In response, the Host should provide the target REC (identified by
target_affinity) by calling RMI_PSCI_COMPLETE.

See also:

• A2.3.2 REC attributes
• A4.3.7 REC exit due to PSCI
• B4.3.7 RMI_PSCI_COMPLETE command
• B6.3.2 PSCI_CPU_OFF command
• B6.3.3 PSCI_CPU_ON command

B6.3.1.1 Interface

B6.3.1.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000004

target_affinity X1 63:0 Bits64 This parameter contains a copy of the
affinity fields of the MPIDR register

lowest_affinity_leve l X2 31:0 UInt32 Denotes the lowest affinity level field
that is valid in the target_affinity
parameter

The following unused bits of PSCI_AFFINITY_INFO input values SBZ: X2[63:32].

B6.3.1.1.2 Context

The PSCI_AFFINITY_INFO command operates on the following context.

Name Type Value Before Description

target_rec RmmRec RecFromMpidr(
target_affinity)

false Target REC

B6.3.1.1.3 Output values

Name Register Bits Type Description

result X0 63:0 PsciReturnCode Command return code

B6.3.1.2 Failure conditions

ID Condition

target_bound pre: lowest_affinity_level != 0
post: result == PSCI_INVALID_PARAMETERS

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

255

Chapter B6. Power State Control Interface
B6.3. PSCI commands

ID Condition

target_match pre: !MpidrIsUsed(target_affinity)
post: result == PSCI_INVALID_PARAMETERS

B6.3.1.2.1 Failure condition ordering

The PSCI_AFFINITY_INFO command does not have any failure condition orderings.

B6.3.1.3 Success conditions

ID Condition

runnable pre: target_rec.flags.runnable == RUNNABLE
post: result == PSCI_SUCCESS

not_runnable pre: target_rec.flags.runnable == NOT_RUNNABLE
post: result == PSCI_OFF

B6.3.1.4 Footprint
The PSCI_AFFINITY_INFO command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

256

Chapter B6. Power State Control Interface
B6.3. PSCI commands

B6.3.2 PSCI_CPU_OFF command

Power down the calling core.

This command causes a REC exit due to PSCI.

See also:

• A2.3.2 REC attributes
• A4.3.7 REC exit due to PSCI
• B6.3.3 PSCI_CPU_ON command
• B6.3.4 PSCI_CPU_SUSPEND command

B6.3.2.1 Interface

B6.3.2.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0x84000002

B6.3.2.1.2 Context

The PSCI_CPU_OFF command operates on the following context.

Name Type Value Before Description

rec RmmRec CurrentRec() false Current REC

B6.3.2.1.3 Output values

The PSCI_CPU_OFF command does not have any output values.

Following execution of PSCI_CPU_OFF, control does not return to the caller.

B6.3.2.2 Failure conditions
The PSCI_CPU_OFF command does not have any failure conditions.

B6.3.2.3 Success conditions
The PSCI_CPU_OFF command does not have any success conditions.

Following execution of PSCI_CPU_OFF, control does not return to the caller.

B6.3.2.4 Footprint
The PSCI_CPU_OFF command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

257

Chapter B6. Power State Control Interface
B6.3. PSCI commands

B6.3.3 PSCI_CPU_ON command

Power up a core.

This command causes a REC exit due to PSCI. In response, the Host should provide the target REC (identified by
target_cpu) by calling RMI_PSCI_COMPLETE.

See also:

• A2.3.2 REC attributes
• A4.3.7 REC exit due to PSCI
• B4.3.7 RMI_PSCI_COMPLETE command
• B6.3.2 PSCI_CPU_OFF command
• B6.3.4 PSCI_CPU_SUSPEND command
• D1.4.1 PSCI_CPU_ON flow

B6.3.3.1 Interface

B6.3.3.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000003

target_cpu X1 63:0 Bits64 This parameter contains a copy of the
affinity fields of the MPIDR register

entry_point_address X2 63:0 Address Address at which the core must resume
execution

context_id X3 31:0 UInt32 This parameter is only meaningful to the
caller (must be present in X0 of the
target PE upon first entry to Non-Secure
exception level)

The following unused bits of PSCI_CPU_ON input values SBZ: X3[63:32].

B6.3.3.1.2 Context

The PSCI_CPU_ON command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

target_rec RmmRec RecFromMpidr(target_cpu) false Target REC

B6.3.3.1.3 Output values

Name Register Bits Type Description

result X0 63:0 PsciReturnCode Command return code

B6.3.3.2 Failure conditions

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

258

Chapter B6. Power State Control Interface
B6.3. PSCI commands

ID Condition

entry pre: !AddrIsProtected(entry_point_address, realm)
post: result == PSCI_INVALID_ADDRESS

mpidr pre: !MpidrIsUsed(target_cpu)
post: result == PSCI_INVALID_PARAMETERS

runnable pre: target_rec.flags.runnable == RUNNABLE
post: result == PSCI_ALREADY_ON

B6.3.3.2.1 Failure condition ordering

The PSCI_CPU_ON command does not have any failure condition orderings.

B6.3.3.3 Success conditions

ID Condition

entry target_rec.pc == ToBits64(UInt(entry_point_address))

runnable target_rec.flags.runnable == RUNNABLE

B6.3.3.4 Footprint

ID Value

runnable target_rec.flags.runnable

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

259

Chapter B6. Power State Control Interface
B6.3. PSCI commands

B6.3.4 PSCI_CPU_SUSPEND command

Suspend execution on the calling VPE.

This command causes a REC exit due to PSCI.

See also:

• A4.3.7 REC exit due to PSCI
• B6.3.2 PSCI_CPU_OFF command
• B6.3.3 PSCI_CPU_ON command

B6.3.4.1 Interface

B6.3.4.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0xC4000001

power_state X1 31:0 UInt32 Identifier for a specific local state

entry_point_address X2 63:0 Address Address at which the core must resume
execution

context_id X3 63:0 UInt64 This parameter is only meaningful to the
caller (must be present in X0 upon first
entry to Non- Secure exception level)

The following unused bits of PSCI_CPU_SUSPEND input values SBZ: X1[63:32].

The RMM treats all target power states as suspend requests, and therefore the entry_point_address and
context_id arguments are ignored.

B6.3.4.1.2 Output values

The PSCI_CPU_SUSPEND command does not have any output values.

Following execution of PSCI_CPU_SUSPEND, control does not return to the caller.

B6.3.4.2 Failure conditions
The PSCI_CPU_SUSPEND command does not have any failure conditions.

B6.3.4.3 Success conditions
The PSCI_CPU_SUSPEND command does not have any success conditions.

Following execution of PSCI_CPU_SUSPEND, control does not return to the caller.

B6.3.4.4 Footprint
The PSCI_CPU_SUSPEND command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260

Chapter B6. Power State Control Interface
B6.3. PSCI commands

B6.3.5 PSCI_FEATURES command

Query whether a specific PSCI feature is implemented.

See also:

• B6.3.1 PSCI_AFFINITY_INFO command
• B6.3.2 PSCI_CPU_OFF command
• B6.3.3 PSCI_CPU_ON command
• B6.3.4 PSCI_CPU_SUSPEND command
• B6.3.6 PSCI_SYSTEM_OFF command
• B6.3.7 PSCI_SYSTEM_RESET command

B6.3.5.1 Interface

B6.3.5.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0x8400000A

psci_func_id X1 31:0 UInt32 Function ID for a PSCI Function

The following unused bits of PSCI_FEATURES input values SBZ: X1[63:32].

B6.3.5.1.2 Output values

Name Register Bits Type Description

result X0 63:0 PsciReturnCode Command return code

B6.3.5.2 Failure conditions
The PSCI_FEATURES command does not have any failure conditions.

B6.3.5.3 Success conditions

ID Condition

func_ok pre: psci_func_id is a supported PSCI function.
post: result == PSCI_SUCCESS

func_not_ok pre: psci_func_id is not a supported PSCI function.
post: result == PSCI_NOT_SUPPORTED

B6.3.5.4 Footprint
The PSCI_FEATURES command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

261

Chapter B6. Power State Control Interface
B6.3. PSCI commands

B6.3.6 PSCI_SYSTEM_OFF command

Shut down the system.

This command causes a REC exit due to PSCI.

See also:

• A2.3.2 REC attributes
• A4.3.7 REC exit due to PSCI
• B6.3.7 PSCI_SYSTEM_RESET command

B6.3.6.1 Interface

B6.3.6.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0x84000008

B6.3.6.1.2 Context

The PSCI_SYSTEM_OFF command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

B6.3.6.1.3 Output values

The PSCI_SYSTEM_OFF command does not have any output values.

Following execution of PSCI_SYSTEM_OFF, control does not return to the caller.

B6.3.6.2 Failure conditions
The PSCI_SYSTEM_OFF command does not have any failure conditions.

B6.3.6.3 Success conditions

ID Condition

state realm.state == REALM_SYSTEM_OFF

Following execution of PSCI_SYSTEM_OFF, control does not return to the caller.

B6.3.6.4 Footprint
The PSCI_SYSTEM_OFF command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

262

Chapter B6. Power State Control Interface
B6.3. PSCI commands

B6.3.7 PSCI_SYSTEM_RESET command

Shut down the system.

This command causes a REC exit due to PSCI.

See also:

• A2.3.2 REC attributes
• A4.3.7 REC exit due to PSCI
• B6.3.6 PSCI_SYSTEM_OFF command

B6.3.7.1 Interface

B6.3.7.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0x84000009

B6.3.7.1.2 Context

The PSCI_SYSTEM_RESET command operates on the following context.

Name Type Value Before Description

realm RmmRealm CurrentRealm() false Current Realm

B6.3.7.1.3 Output values

The PSCI_SYSTEM_RESET command does not have any output values.

Following execution of PSCI_SYSTEM_RESET, control does not return to the caller.

B6.3.7.2 Failure conditions
The PSCI_SYSTEM_RESET command does not have any failure conditions.

B6.3.7.3 Success conditions

ID Condition

state realm.state == REALM_SYSTEM_OFF

Following execution of PSCI_SYSTEM_RESET, control does not return to the caller.

B6.3.7.4 Footprint
The PSCI_SYSTEM_RESET command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

263

Chapter B6. Power State Control Interface
B6.3. PSCI commands

B6.3.8 PSCI_VERSION command

Query the version of PSCI implemented.

B6.3.8.1 Interface

B6.3.8.1.1 Input values

Name Register Bits Type Description

fid X0 63:0 UInt64 FID, value 0x84000000

B6.3.8.1.2 Output values

Name Register Bits Type Description

result X0 63:0 PsciInterfaceVersionInterface version

See also:

• B6.2 PSCI version

B6.3.8.2 Failure conditions
The PSCI_VERSION command does not have any failure conditions.

B6.3.8.3 Success conditions
The PSCI_VERSION command does not have any success conditions.

B6.3.8.4 Footprint
The PSCI_VERSION command does not have any footprint.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

264

Chapter B6. Power State Control Interface
B6.4. PSCI types

B6.4 PSCI types

This section defines types which are used in the PSCI interface.

B6.4.1 PsciInterfaceVersion type

The PsciInterfaceVersion fieldset contains an PSCI interface version.

The PsciInterfaceVersion fieldset is a concrete type.

The width of the PsciInterfaceVersion fieldset is 64 bits.

The fields of the PsciInterfaceVersion fieldset are shown in the following diagram.

015163031

minormajorMBZ

3263

MBZ

The fields of the PsciInterfaceVersion fieldset are shown in the following table.

Name Bits Description Value

minor 15:0 Interface minor version number (the value y in
interface version x.y)

UInt16

major 30:16 Interface major version number (the value x in
interface version x.y)

UInt15

63:31 Reserved MBZ

B6.4.2 PsciReturnCode type

The PsciReturnCode enumeration represents the return code of a PSCI command.

The PsciReturnCode enumeration is a concrete type.

The width of the PsciReturnCode enumeration is 64 bits.

The values of the PsciReturnCode enumeration are shown in the following table.

Encoding Name Description

-9 PSCI_INVALID_ADDRESS Refer to PSCI specification

-8 PSCI_DISABLED Refer to PSCI specification

-7 PSCI_NOT_PRESENT Refer to PSCI specification

-6 PSCI_INTERNAL_FAILURE Refer to PSCI specification

-5 PSCI_ON_PENDING Refer to PSCI specification

-4 PSCI_ALREADY_ON Refer to PSCI specification

-3 PSCI_DENIED Refer to PSCI specification

-2 PSCI_INVALID_PARAMETERS Refer to PSCI specification

-1 PSCI_NOT_SUPPORTED Refer to PSCI specification

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

265

Chapter B6. Power State Control Interface
B6.4. PSCI types

Encoding Name Description

0 PSCI_SUCCESS Refer to PSCI specification

1 PSCI_OFF Refer to PSCI specification

Unused encodings for the PsciReturnCode enumeration are reserved for use by future versions of this specification.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Part C
Types

Chapter C1
RMM types

This section describes types which are used to model the abstract state of the RMM.

C1.1 RmmDataFlags type

The RmmDataFlags fieldset contains flags provided by the Host during DATA Granule creation.

The RmmDataFlags fieldset is a concrete type.

The width of the RmmDataFlags fieldset is 64 bits.

The fields of the RmmDataFlags fieldset are shown in the following diagram.

0131

m
e
a
su
re

SBZ

3263

SBZ

The fields of the RmmDataFlags fieldset are shown in the following table.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268

Chapter C1. RMM types
C1.2. RmmDataMeasureContent type

Name Bits Description Value

measure 0:0 Whether to measure DATA Granule contents RmmDataMeasureContent

63:1 Reserved SBZ

C1.2 RmmDataMeasureContent type

The RmmDataMeasureContent enumeration represents whether to measure DATA Granule contents.

The RmmDataMeasureContent enumeration is a concrete type.

The width of the RmmDataMeasureContent enumeration is 1 bits.

The values of the RmmDataMeasureContent enumeration are shown in the following table.

Encoding Name Description

0 NO_MEASURE_CONTENT Do not measure DATA Granule contents.

1 MEASURE_CONTENT Measure DATA Granule contents.

C1.3 RmmFeature type

The RmmFeature enumeration represents whether a feature is enabled.

The RmmFeature enumeration is an abstract type.

The values of the RmmFeature enumeration are shown in the following table.

Name Description

FEATURE_FALSE • During discovery: Feature is not supported.
• During selection: Feature is not enabled.

FEATURE_TRUE • During discovery: Feature is supported.
• During selection: Feature is enabled.

C1.4 RmmFeatures type

The RmmFeatures structure contains features supported by RMM implementation.

The RmmFeatures structure is an abstract type.

The members of the RmmFeatures structure are shown in the following table.

Name Type Description

max_ipa_width UInt64 Maximum IPA width

feat_lpa2 RmmFeature Whether LPA2 is supported

feat_sve RmmFeature Whether SVE is supported

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

269

sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.5. RmmGptEntry type

Name Type Description

max_sve_vl UInt64 Maximum SVE vector length

num_bps UInt64 Number of breakpoints available

num_wps UInt64 Number of watchpoints available

feat_pmu RmmFeature Number of watchpoints available

pmu_num_ctrs UInt64 Number of PMU counters available

feat_sha_256 RmmFeature Whether SHA-256 is supported

feat_sha_512 RmmFeature Whether SHA-512 is supported

max_recs_order UInt64 Order of the maximum number of RECs which can be
created per Realm

C1.5 RmmGptEntry type

The RmmGptEntry enumeration represents granule Protection Table entry.

The RmmGptEntry enumeration is an abstract type.

See also:

• B3.20 GranuleAccessPermitted function

The values of the RmmGptEntry enumeration are shown in the following table.

Name Description

GPT_AAP Access permitted via any PAS.

GPT_NS Access permitted via Non-secure PAS only.

GPT_REALM Access permitted via Realm PAS only.

GPT_ROOT Access permitted via Root PAS only.

GPT_SECURE Access permitted via Secure PAS only.

C1.6 RmmGranule type

The RmmGranule structure contains attributes of a Granule.

The RmmGranule structure is an abstract type.

The members of the RmmGranule structure are shown in the following table.

Name Type Description

gpt RmmGptEntry GPT entry

state RmmGranuleState Lifecycle state

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

270

sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.7. RmmGranuleState type

C1.7 RmmGranuleState type

The RmmGranuleState enumeration represents the state of a granule.

The RmmGranuleState enumeration is an abstract type.

The values of the RmmGranuleState enumeration are shown in the following table.

Name Description

DATA Realm code or data.

DELEGATED Delegated for use by the RMM.

RD Realm Descriptor.

REC Realm Execution Context.

REC_AUX Realm Execution Context auxiliary Granule.

RTT Realm Translation Table.

UNDELEGATED Not delegated for use by the RMM.

C1.8 RmmHashAlgorithm type

The RmmHashAlgorithm enumeration represents hash algorithm.

The RmmHashAlgorithm enumeration is an abstract type.

The values of the RmmHashAlgorithm enumeration are shown in the following table.

Name Description

HASH_SHA_256 SHA-256 (Secure Hash Standard (SHS) [15])

HASH_SHA_512 SHA-512 (Secure Hash Standard (SHS) [15])

C1.9 RmmHipas type

The RmmHipas enumeration represents host IPA state.

The RmmHipas enumeration is an abstract type.

The values of the RmmHipas enumeration are shown in the following table.

Name Description

HIPAS_ASSIGNED Protected IPA which is associated with a DATA Granule.

HIPAS_ASSIGNED_NS Unprotected IPA which is associated with an NS Granule.

HIPAS_UNASSIGNED Protected IPA which is not associated with any Granule.

HIPAS_UNASSIGNED_NS Unprotected IPA which is not associated with any Granule.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

271

sec:interface:concrete-abstract-types
sec:interface:concrete-abstract-types
sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.10. RmmHostCallPending type

C1.10 RmmHostCallPending type

The RmmHostCallPending enumeration represents whether a Host call is pending.

The RmmHostCallPending enumeration is an abstract type.

The values of the RmmHostCallPending enumeration are shown in the following table.

Name Description

HOST_CALL_PENDING No Host call is pending.

NO_HOST_CALL_PENDING A Host call is pending.

C1.11 RmmMeasurementDescriptorData type

The RmmMeasurementDescriptorData structure contains data structure used to calculate the contribution to the
RIM of a DATA Granule.

The RmmMeasurementDescriptorData structure is a concrete type.

The width of the RmmMeasurementDescriptorData structure is 256 (0x100) bytes.

See also:

• B4.3.1.4 RMI_DATA_CREATE extension of RIM

The members of the RmmMeasurementDescriptorData structure are shown in the following table.

Name Byte offset Type Description

desc_type 0x0 Bits8 Measurement descriptor type, value 0x0

len 0x8 UInt64 Length of this data structure in bytes

rim 0x10 RmmRealmMeasurement Current RIM value

ipa 0x50 Address IPA at which the DATA Granule is mapped in
the Realm

flags 0x58 RmmDataFlags Flags provided by Host

content 0x60 RmmRealmMeasurement Hash of contents of DATA Granule, or zero if
flags indicate DATA Granule contents are
unmeasured

Unused bits of the RmmMeasurementDescriptorData structure MBZ.

C1.12 RmmMeasurementDescriptorRec type

The RmmMeasurementDescriptorRec structure contains data structure used to calculate the contribution to the
RIM of a REC.

The RmmMeasurementDescriptorRec structure is a concrete type.

The width of the RmmMeasurementDescriptorRec structure is 256 (0x100) bytes.

See also:

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

272

sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.13. RmmMeasurementDescriptorRipas type

• B4.3.12.4 RMI_REC_CREATE extension of RIM

The members of the RmmMeasurementDescriptorRec structure are shown in the following table.

Name Byte offset Type Description

desc_type 0x0 Bits8 Measurement descriptor type, value 0x1

len 0x8 UInt64 Length of this data structure in bytes

rim 0x10 RmmRealmMeasurement Current RIM value

content 0x50 RmmRealmMeasurement Hash of 4KB page which contains REC
parameters data structure

Unused bits of the RmmMeasurementDescriptorRec structure MBZ.

C1.13 RmmMeasurementDescriptorRipas type

The RmmMeasurementDescriptorRipas structure contains data structure used to calculate the contribution to the
RIM of a RIPAS change.

The RmmMeasurementDescriptorRipas structure is a concrete type.

The width of the RmmMeasurementDescriptorRipas structure is 256 (0x100) bytes.

See also:

• B4.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM

The members of the RmmMeasurementDescriptorRipas structure are shown in the following table.

Name Byte offset Type Description

desc_type 0x0 Bits8 Measurement descriptor type, value 0x2

len 0x8 UInt64 Length of this data structure in bytes

rim 0x10 RmmRealmMeasurement Current RIM value

base 0x50 Address Base IPA of the RIPAS change

top 0x58 Address Top IPA of the RIPAS change

Unused bits of the RmmMeasurementDescriptorRipas structure MBZ.

C1.14 RmmPhysicalAddressSpace type

The RmmPhysicalAddressSpace enumeration represents the PAS of a Granule.

The RmmPhysicalAddressSpace enumeration is an abstract type.

See also:

• B3.20 GranuleAccessPermitted function

The values of the RmmPhysicalAddressSpace enumeration are shown in the following table.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

273

sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.15. RmmPsciPending type

Name Description

PAS_NS Non-secure PAS.

PAS_REALM Realm PAS.

PAS_ROOT Root PAS.

PAS_SECURE Secure PAS.

C1.15 RmmPsciPending type

The RmmPsciPending enumeration represents whether a PSCI request is pending.

The RmmPsciPending enumeration is an abstract type.

The values of the RmmPsciPending enumeration are shown in the following table.

Name Description

NO_PSCI_REQUEST_PENDING A PSCI request is pending.

PSCI_REQUEST_PENDING No PSCI request is pending.

C1.16 RmmRealm type

The RmmRealm structure contains attributes of a Realm.

The RmmRealm structure is an abstract type.

See also:

• A2.1 Realm

The members of the RmmRealm structure are shown in the following table.

Name Type Description

feat_lpa2 RmmFeature Whether LPA2 is enabled for this Realm

ipa_width UInt8 IPA width in bits

measurements RmmRealmMeasurement[5] Realm measurements

hash_algo RmmHashAlgorithm Algorithm used to compute Realm measurements

rec_index UInt64 Index of next REC to be created

rtt_base Address Realm Translation Table base address

rtt_level_start Int64 RTT starting level

rtt_num_start UInt64 Number of physically contiguous starting level RTTs

state RmmRealmState Lifecycle state

vmid Bits16 Virtual Machine Identifier

rpv Bits512 Realm Personalization Value

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

274

sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.17. RmmRealmMeasurement type

Name Type Description

num_recs UInt64 Number of RECs owned by this Realm

C1.17 RmmRealmMeasurement type

The RmmRealmMeasurement type is realm measurement.

The RmmRealmMeasurement type is a concrete type.

The width of the RmmRealmMeasurement type is 512 bits.

C1.18 RmmRealmState type

The RmmRealmState enumeration represents the state of a Realm.

The RmmRealmState enumeration is an abstract type.

The values of the RmmRealmState enumeration are shown in the following table.

Name Description

REALM_ACTIVE Eligible for execution.

REALM_NEW Under construction. Not eligible for execution.

REALM_SYSTEM_OFF System has been turned off. Not eligible for execution.

C1.19 RmmRec type

The RmmRec structure contains attributes of a REC.

The RmmRec structure is an abstract type.

See also:

• A2.3 Realm Execution Context

The members of the RmmRec structure are shown in the following table.

Name Type Description

attest_state RmmRecAttestState Attestation token generation state

attest_challenge Bits512 Challenge for under-construction attestation token

aux Address[16] Addresses of auxiliary Granules

emulatable_abort RmmRecEmulatableAbort Whether the most recent exit from this REC was due to
an Emulatable Data Abort

flags RmmRecFlags Flags which control REC behavior

gprs Bits64[32] General-purpose register values

mpidr Bits64 MPIDR value

owner Address PA of RD of Realm which owns this REC

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

275

sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.20. RmmRecAttestState type

Name Type Description

pc Bits64 Program counter value

psci_pending RmmPsciPending Whether a PSCI request is pending

state RmmRecState Lifecycle state

sysregs RmmSystemRegisters EL1 and EL0 system register values

ripas_addr Address Next address to be processed in RIPAS change

ripas_top Address Top address of pending RIPAS change

ripas_value RmmRipas RIPAS value of pending RIPAS change

ripas_destroyed RmmRipasChangeDestroyed Whether a RIPAS change from DESTROYED should be
permitted

ripas_response RmmRecResponse Host response to RIPAS change request

host_call_pending RmmHostCallPending Whether a Host call is pending

C1.20 RmmRecAttestState type

The RmmRecAttestState enumeration represents whether an attestation token generation operation is ongoing on
this REC.

The RmmRecAttestState enumeration is an abstract type.

The values of the RmmRecAttestState enumeration are shown in the following table.

Name Description

ATTEST_IN_PROGRESS An attestation token generation operation is in progress.

NO_ATTEST_IN_PROGRESS No attestation token generation operation is in progress.

C1.21 RmmRecEmulatableAbort type

The RmmRecEmulatableAbort enumeration represents whether the most recent exit from a REC was due to an
Emulatable Data Abort.

The RmmRecEmulatableAbort enumeration is an abstract type.

The values of the RmmRecEmulatableAbort enumeration are shown in the following table.

Name Description

EMULATABLE_ABORT The most recent exit from a REC was due to an Emulatable Data
Abort.

NOT_EMULATABLE_ABORT The most recent exit from a REC was not due to an Emulatable
Data Abort.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

276

sec:interface:concrete-abstract-types
sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.22. RmmRecFlags type

C1.22 RmmRecFlags type

The RmmRecFlags structure contains REC flags.

The RmmRecFlags structure is an abstract type.

The members of the RmmRecFlags structure are shown in the following table.

Name Type Description

runnable RmmRecRunnable Whether the REC is elgible to run

C1.23 RmmRecResponse type

The RmmRecResponse enumeration represents whether the Host accepted or rejected a Realm request.

The RmmRecResponse enumeration is an abstract type.

The values of the RmmRecResponse enumeration are shown in the following table.

Name Description

ACCEPT Host accepted the Realm request.

REJECT Host rejected the Realm request.

C1.24 RmmRecRunnable type

The RmmRecRunnable enumeration represents whether a REC is eligible for execution.

The RmmRecRunnable enumeration is an abstract type.

The values of the RmmRecRunnable enumeration are shown in the following table.

Name Description

NOT_RUNNABLE Not eligible for execution.

RUNNABLE Eligible for execution.

C1.25 RmmRecState type

The RmmRecState enumeration represents the state of a REC.

The RmmRecState enumeration is an abstract type.

The values of the RmmRecState enumeration are shown in the following table.

Name Description

REC_READY REC is not currently running.

REC_RUNNING REC is currently running.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

277

sec:interface:concrete-abstract-types
sec:interface:concrete-abstract-types
sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.26. RmmRipas type

Name Description

C1.26 RmmRipas type

The RmmRipas enumeration represents realm IPA state.

The RmmRipas enumeration is an abstract type.

The values of the RmmRipas enumeration are shown in the following table.

Name Description

DESTROYED Address which is inaccessible to the Realm due to an action taken
by the Host.

DEV Address where memory of an assigned Realm device is mapped.

EMPTY Address where no Realm resources are mapped.

RAM Address where private code or data owned by the Realm is mapped.

C1.27 RmmRipasChangeDestroyed type

The RmmRipasChangeDestroyed enumeration represents whether a RIPAS change from DESTROYED should be
permitted.

The RmmRipasChangeDestroyed enumeration is an abstract type.

The values of the RmmRipasChangeDestroyed enumeration are shown in the following table.

Name Description

CHANGE_DESTROYED A RIPAS change from DESTROYED should be permitted.

NO_CHANGE_DESTROYED A RIPAS change from DESTROYED should not be permitted.

C1.28 RmmRtt type

The RmmRtt structure contains an RTT.

The RmmRtt structure is an abstract type.

The members of the RmmRtt structure are shown in the following table.

Name Type Description

entries RmmRttEntry[512] Entries

C1.29 RmmRttEntry type

The RmmRttEntry structure contains attributes of an RTT Entry.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

278

sec:interface:concrete-abstract-types
sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.30. RmmRttEntryState type

The RmmRttEntry structure is an abstract type.

See also:

• A5.5 Realm Translation Table

The members of the RmmRttEntry structure are shown in the following table.

Name Type Description

addr Address Output address

ripas RmmRipas RIPAS

state RmmRttEntryState State

MemAttr Bits3 MemAttr

S2AP Bits2 S2AP

C1.30 RmmRttEntryState type

The RmmRttEntryState enumeration represents the state of an RTTE.

The RmmRttEntryState enumeration is an abstract type.

The values of the RmmRttEntryState enumeration are shown in the following table.

Name Description

ASSIGNED This RTTE is identified by a Protected IPA.
The output address of this RTTE points to a DATA Granule.

ASSIGNED_NS This RTTE is identified by an Unprotected IPA.
The output address of this RTTE points to an NS Granule.

TABLE The output address of this RTTE points to the next-level RTT.

UNASSIGNED This RTTE is identified by a Protected IPA.
This RTTE is not associated with any Granule.

UNASSIGNED_NS This RTTE is identified by an Unprotected IPA.
This RTTE is not associated with any Granule.

C1.31 RmmRttWalkResult type

The RmmRttWalkResult structure contains result of an RTT walk.

The RmmRttWalkResult structure is an abstract type.

See also:

• A5.5.10 RTT walk

The members of the RmmRttWalkResult structure are shown in the following table.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

279

sec:interface:concrete-abstract-types

Chapter C1. RMM types
C1.32. RmmSystemRegisters type

Name Type Description

level Int8 RTT level reached by the walk

rtt_addr Address Address of RTT reached by the walk

rtte RmmRttEntry RTTE reached by the walk

C1.32 RmmSystemRegisters type

The RmmSystemRegisters structure contains EL0 and EL1 system registers.

The RmmSystemRegisters structure is an abstract type.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Chapter C2
Generic types

This section defines types which are shared between RMM interfaces and descriptions of RMM abstract state.

See also:

• B4.4 RMI types
• B5.4 RSI types
• B6.4 PSCI types
• Chapter C1 RMM types

C2.1 Address type

The Address type is an address.

The Address type is a concrete type.

The width of the Address type is 64 bits.

C2.2 BitsN type

The BitsN type is an N-bit field.

The BitsN type is a concrete type.

The width of the BitsN type is N bits.

C2.3 IntN type

The IntN type is an signed N-bit integer.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

281

Chapter C2. Generic types
C2.4. UIntN type

The IntN type is a concrete type.

The width of the IntN type is N bits.

C2.4 UIntN type

The UIntN type is an unsigned N-bit integer.

The UIntN type is a concrete type.

The width of the UIntN type is N bits.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

282

Part D
Usage

Chapter D1
Flows

This section presents flows which explain how the RMM architecture can be used by the Host, and by Realm
software.

Note that parts of the sequences below are for illustration only. For example, in the Realm creation flows, the
RMI_GRANULE_DELEGATE and RMI_GRANULE_UNDELEGATE commands are called immediately before
or after the RMI_X_CREATE and RMI_X_DESTROY commands respectively. An alternative flow would be for
the Host to maintain a pool of Granules in the DELEGATED state, from which RMM data structures and Realm
data can be allocated on demand.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

284

Chapter D1. Flows
D1.1. Granule delegation flows

D1.1 Granule delegation flows

D1.1.1 Granule delegation flow

The following diagram shows how the GPT entry of a Granule is changed from GPT_NS to GPT_REALM.

See Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A [2]
for example software flows for the operations performed by the Monitor in this flow.

It is anticipated that the Monitor software will be required to use synchronization mechanisms to serialize access
to the GPT.

Host Monitor RMM

RMI_GRANULE_DELEGATE(addr)

check_state_and_lock(addr, Undelegated)

SET_GPT(addr, GPT_REALM)

Update GPT entry; TLBI; SYNC

result

alt [result == RMI_SUCCESS]

set_state_and_unlock(addr, Delegated)

Before the granule is used (either
by the RMM, or mapped into a Realm),
it will be zero-filled by the RMM.

See also:

• A2.2.1 Granule attributes
• B4.3.5 RMI_GRANULE_DELEGATE command
• D1.1.2 Granule undelegation flow

D1.1.2 Granule undelegation flow

The following diagram shows how the GPT entry of a Granule is changed from GPT_REALM to GPT_NS.

See Arm Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A [2]
for example software flows for the operations performed by the Monitor in this flow.

It is anticipated that the Monitor software will be required to use synchronization mechanisms to serialize access
to the GPT.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

285

Chapter D1. Flows
D1.1. Granule delegation flows

Host Monitor RMM

RMI_GRANULE_UNDELEGATE(addr)

check_state_and_lock(addr, Delegated)

SET_GPT(addr, GPT_NS)

Perform cache maintenance

Update GPT entry; TLBI; SYNC

result

alt [result == RMI_SUCCESS]

set_state_and_unlock(addr, Undelegated)

alt [result != RMI_SUCCESS]

panic()
GPT update should never fail.

See also:

• A2.2.1 Granule attributes
• B4.3.6 RMI_GRANULE_UNDELEGATE command
• D1.1.1 Granule delegation flow

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

286

Chapter D1. Flows
D1.2. Realm lifecycle flows

D1.2 Realm lifecycle flows

This section contains flows which relate to the Realm lifecycle.

See also:

• A2.1.5 Realm lifecycle

D1.2.1 Realm creation flow

The following diagram shows the flow for creating a Realm.

To create a Realm, the Host must allocate and delegate two Granules:

• rd to store the Realm Descriptor
• rtt which will be the starting level Realm Translation Table (RTT)

The Host also provides an NS Granule (params) containing Realm creation parameters.

Host RMM

RMI_FEATURES(index=0)

RMI_SUCCESS

Select hash algorithm

(rd, rtt, params) = alloc_granules()

RMI_GRANULE_DELEGATE(rd)

RMI_SUCCESS

RMI_GRANULE_DELEGATE(rtt)

RMI_SUCCESS

params.rtt_base = rttParameters are passed
in an NS granule.

params.hash_algo = <value>

RMI_REALM_CREATE(rd, params)

RMI_SUCCESS

RD is populated with Realm parameters.
RTT is zero-filled.

free_granule(params)

See also:

• B4.3.5 RMI_GRANULE_DELEGATE command
• B4.3.9 RMI_REALM_CREATE command
• D1.2.5 Realm destruction flow

D1.2.2 Realm Translation Table creation flow

The following diagram shows the flow for populating the Realm Translation Tables (RTTs).

The starting level Realm Translation Tables (RTTs) are provided at Realm creation time.

Subsequent levels of RTT are added using the RMI_RTT_CREATE command. This can be performed when the
state of the Realm is REALM_NEW or REALM_ACTIVE.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

287

Chapter D1. Flows
D1.2. Realm lifecycle flows

Host RMM

Create Realm (rd)

(rtt1, rtt2, rtt3) = alloc_granules()

RMI_GRANULE_DELEGATE(rtt1)

RMI_SUCCESS

RMI_RTT_CREATE(rd, rtt1, ipa, level=1)

RMI_SUCCESS

RMI_GRANULE_DELEGATE(rtt2)

RMI_SUCCESS

RMI_RTT_CREATE(rd, rtt2, ipa, level=2)

RMI_SUCCESS

RMI_GRANULE_DELEGATE(rtt3)

RMI_SUCCESS

RMI_RTT_CREATE(rd, rtt3, ipa, level=3)

RMI_SUCCESS

See also:

• Chapter A5 Realm memory management
• B4.3.15 RMI_RTT_CREATE command
• D1.2.1 Realm creation flow
• D1.2.3 Initialize memory of New Realm flow

D1.2.3 Initialize memory of New Realm flow

Immediately following Realm creation, every page in the Protected IPA space has its RIPAS set to EMPTY. There
are two ways in which the Host can set the RIPAS of a given page of Protected IPA space to RAM:

1. Change the RIPAS by executing RMI_RTT_INIT_RIPAS, but do not populate the contents of the page. The
RIM is extended to reflect the RIPAS change.

2. Both change the RIPAS and populate the page with contents provided by the Host, by executing
RMI_DATA_CREATE. The RIM is extended to reflect the contents added by the Host.

Once the Host has performed either of these actions for a given page of Protected IPA space, that page cannot be
further modified prior to Realm activation.

The following diagram shows the flow for initializing the RIPAS without providing contents.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

288

Chapter D1. Flows
D1.2. Realm lifecycle flows

Host RMM

Create Realm (rd) and RTTs

RMI_RTT_INIT_RIPAS(rd, base, top)

RMI_SUCCESS

Realm Initial Measurement has been
updated to reflect the RIPAS change.

RIPAS of RTTE identified by ipa
has been updated to RAM.

RMI_REALM_ACTIVATE(rd)

The following diagram shows the flow for populating the page with contents provided by the Host.

To do this, the Host must:

• Delegate a destination Granule (dst).
• Provide an NS Granule (src), whose contents will be copied into the destination Granule.
• Specify the Protected IPA ipa at which the dst Granule should be mapped in the Realm’s IPA space.
• Ensure that the level 3 RTT which contains the RTTE identified by the Protected IPA has been created.

Once the Data Granule has been created, the src Granule can be reallocated by the Host.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

289

Chapter D1. Flows
D1.2. Realm lifecycle flows

Host RMM

Create Realm (rd) and RTTs
and initialize RIPAS to RAM

(src, dst) = alloc_granules()

RMI_GRANULE_DELEGATE(dst)

RMI_SUCCESS

Copy initial Realm image into src

RMI_DATA_CREATE(rd, dst, ipa, src, flags)

RMI_SUCCESS

src contents have been copied to dst.

Realm Initial Measurement has been
updated with the IPA and contents
of the DATA Granule.

HIPAS of RTTE identified by ipa
has been updated to ASSIGNED.

free_granule(src)

RMI_REALM_ACTIVATE(rd)

Once the Realm state has changed
to Active, further Data granules
with Host-controlled contents can
no longer be added to the Realm

See also:

• A2.2.1 Granule attributes
• A5.2.2 Realm IPA state
• A7.1.1 Realm Initial Measurement
• B4.3.1 RMI_DATA_CREATE command
• B4.3.5 RMI_GRANULE_DELEGATE command
• B4.3.18 RMI_RTT_INIT_RIPAS command
• D1.2.1 Realm creation flow
• D1.2.2 Realm Translation Table creation flow
• D1.2.5 Realm destruction flow

D1.2.4 REC creation flow

The following diagram shows the flow for creating a REC during Realm creation.

To create a REC, the Host must:

• Delegate a destination Granule (rec).
• Query the number of auxiliary Granules required, by calling RMI_REC_AUX_COUNT
• Delegate the required number of auxiliary Granules (aux)
• Provide auxiliary Granule addresses, register values and REC activation status in an NS Granule (params).

Once the REC has been created, the params Granule can be reallocated by the Host.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

290

Chapter D1. Flows
D1.2. Realm lifecycle flows

Host RMM

Create Realm (rd)

RMI_REC_AUX_COUNT(rd)

(RMI_SUCCESS, aux_count)

(rec, params) = alloc_granules()

aux = alloc_granules(aux_count)

RMI_GRANULE_DELEGATE(rec)

RMI_SUCCESS

loop [i = 0 to aux_count - 1]

RMI_GRANULE_DELEGATE(aux[i])

RMI_SUCCESS

params.aux[i] = aux[i]

params.flags.runnable = <bool>Only runnable RECs can be scheduled
by the Host. Software in the Realm
can activate other RECs via PSCI.

params.gprs = <value>The Host provides (in an NS Granule)
the initial value of the registers
stored in the REC.

params.mpidr = <value>

RMI_REC_CREATE(rd, rec, params)

RMI_SUCCESS

Realm Initial Measurement has been
updated with the contents of the REC
and its runnable status.

Multiple RECs can be created per Realm.
All contribute to the Realm Initial Measurement.

mpidr value can be used by software
to identify this REC.

free_granule(params)

RMI_REALM_ACTIVATE(rd)

Once the Realm state has changed
to Active, further RECs can
no longer be added to the Realm

See also:

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

291

Chapter D1. Flows
D1.2. Realm lifecycle flows

• B4.3.5 RMI_GRANULE_DELEGATE command
• B4.3.11 RMI_REC_AUX_COUNT command
• B4.3.12 RMI_REC_CREATE command
• D1.2.1 Realm creation flow
• D1.2.5 Realm destruction flow

D1.2.5 Realm destruction flow

The following diagram shows the flow for destroying a Realm.

To destroy a Realm, the Host must first make the Realm non-live. This is done by destroying (in any order) the
objects which are associated with the Realm:

• Data Granules
• RECs
• RTTs

Finally, the Realm itself can be destroyed.

Once each of these objects has been destroyed, the corresponding Granules can be undelegated and reallocated by
the Host.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

292

Chapter D1. Flows
D1.2. Realm lifecycle flows

Host RMM

loop [For each REC]

RMI_REC_DESTROY(rec)

RMI_SUCCESS

RMI_GRANULE_UNDELEGATE(rec)

RMI_SUCCESS

free_granule(rec)

loop [For each Data Granule]

data = RMI_DATA_DESTROY(rd, ipa)

RMI_SUCCESS

RMI_GRANULE_UNDELEGATE(data)

RMI_SUCCESS

free_granule(data)

Non-starting level RTTs must be destroyed
leaf-upwards, using RMI_DATA_DESTROY, RMI_RTT_DESTROY
and RMI_GRANULE_UNDELEGATE commands.

Once all objects associated with
the Realm have been reclaimed,
the Realm itself can be destroyed
and the RD and starting level RTT
can then be reclaimed.

RMI_REALM_DESTROY(rd)

RMI_SUCCESS

RMI_GRANULE_UNDELEGATE(rd)

RMI_SUCCESS

RMI_GRANULE_UNDELEGATE(rtt)

RMI_SUCCESS

See also:

• A2.1.4 Realm liveness
• B4.3.3 RMI_DATA_DESTROY command
• B4.3.6 RMI_GRANULE_UNDELEGATE command
• B4.3.10 RMI_REALM_DESTROY command
• B4.3.13 RMI_REC_DESTROY command
• D1.2.1 Realm creation flow

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

293

Chapter D1. Flows
D1.3. Realm exception model flows

D1.3 Realm exception model flows

This section contains flows which relate to the Realm exception model.

See also:

• Chapter A4 Realm exception model

D1.3.1 Realm entry and exit flow

The following diagram shows how a Realm is executed, and illustrates the different reasons for exiting the Realm
and returning control to the Host.

A REC is entered using the RMI_REC_ENTER command. The parameters to this command include:

• an RmiRecEnter object, which is a data structure used to pass values from the Host to the RMM on REC
entry

• an RmiRecExit object, which is a data structure used to pass values from the RMM to the Host on REC exit

Host RMM Realm

run = alloc_granule()
REC exit information is
returned in an NS Granule.
For REC exit due to Host call,
this includes the GPR values.

RMI_REC_ENTER(rec, run)

Restore EL1/EL0 context from rec

ERET

alt

Load into RsiHostCall structure values to be returned to Host

RSI_HOST_CALL

Interrupt

stage 2 fault

...

Store EL1/EL0 context to rec

Update exit with exit reason and associated information

alt [If REC exit due to Host call]

Store GPR values in run.exit

RMI_SUCCESS

free_granule(run)

See also:

• Chapter A4 Realm exception model
• D1.3.2 Host call flow
• D1.3.3 REC exit due to Data Abort fault flow
• D1.3.4 MMIO emulation flow

D1.3.2 Host call flow

The following diagram shows how software executing inside the Realm can voluntarily yield control back to the
Host by making a Host call.

A REC is entered using the RMI_REC_ENTER command. The parameters to this command include:

• an RmiRecEnter object, which is a data structure used to pass values from the Host to the RMM on REC
entry

• an RmiRecExit object, which is a data structure used to pass values from the RMM to the Host on REC exit

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

294

Chapter D1. Flows
D1.3. Realm exception model flows

On execution of RSI_HOST_CALL, arguments are copied from the RsiHostCall object in Realm memory into
the RmiRecExit object in NS memory. On the subsequent RMI_REC_ENTER, return values are copied from the
RmiRecEnter object in NS memory into the RsiHostCall object in Realm memory.

Host RMM Realm

RMI_REC_ENTER(rec, run)

Restore EL1/EL0 context from rec

ERET

Write Host call arguments into RsiHostCall object

RSI_HOST_CALL

Store EL1/EL0 context to rec

Copy Host call arguments to run.exit

RMI_SUCCESS

Determine from exit that REC exit was due to Host call

Read Host call arguments from run.exit

Write Host call results to run.entry

RMI_REC_ENTER(rec, run)

Restore EL1/EL0 context from rec

Copy Host call results to RsiHostCall

ERET

Read Host call results from RsiHostCall object

See also:

• A4.5 Host call

D1.3.3 REC exit due to Data Abort fault flow

The following diagram shows how a Data Abort due to a Realm access is taken to the Host.

A REC is entered using the RMI_REC_ENTER command. The parameters to this command include:

• an RmiRecEnter object, which is a data structure used to pass values from the Host to the RMM on REC
entry

• an RmiRecExit object, which is a data structure used to pass values from the RMM to the Host on REC exit

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

295

Chapter D1. Flows
D1.3. Realm exception model flows

Host RMM Realm

RMI_REC_ENTER(rec, run)

Restore EL1/EL0 context from rec

ERET

Stage 2 fault

Store EL1/EL0 context to rec

Store fault syndrome to run.exit

RMI_SUCCESS

Determine from run.exit that a stage 2 fault occurred

Read fault syndrome from run.exit and take appropriate action

See also:

• Chapter A4 Realm exception model

D1.3.4 MMIO emulation flow

The following diagram shows how an MMIO access by a Realm can be emulated by the Host.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

296

Chapter D1. Flows
D1.3. Realm exception model flows

Host RMM Realm

RMI_REC_ENTER(rec, run)

ERET

Stage 2 fault

RMI_SUCCESS

Determine from fault syndrome
that MMIO emulation is required

alt [If emulating read]

run.entry.gprs[0] = <value>

alt [If emulating write]

<value> = run.exit.gprs[0]

run.entry.is_emul_mmio = RMI_EMULATED_MMIO

RMI_REC_ENTER(rec, run)

Because run.entry.is_emul_mmio == RMI_EMULATED_MMIO

Check that rec.ESR_EL2 indicates an emulatable abort

alt [If emulating read]

rec.<reg> = run.entry.gprs[0]

Restore EL1/EL0 context from rec

ERET

See also:

• Chapter A4 Realm exception model

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

297

Chapter D1. Flows
D1.4. PSCI flows

D1.4 PSCI flows

D1.4.1 PSCI_CPU_ON flow

The following diagram shows how one Realm VPE can set the “runnable” flag in another Realm VPE by executing
PSCI_CPU_ON.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

298

Chapter D1. Flows
D1.4. PSCI flows

Host RMM VPE_A VPE_B

Create two VPEs, with
VPE_A runnable and
VPE_B not runnable.

RMI_REC_ENTER(rec_a, run)

Check rec_a.flags.runnable == RUNNABLE

ERET

PSCI_CPU_ON(mpidr_b, entry_point_address)

Check that mpidr_b is valid

Check that entry_point_address is a Protected IPA

Exit due to PSCI

fid = run.exit.gprs[0]

Determine that Realm called PSCI_CPU_ON

mpidr_b = run.exit.gprs.x1

rec_b = find_rec(mpidr_b)

RMI_PSCI_COMPLETE(rec_a, rec_b)

Check that rec_b.mpidr == rec_a.gprs[1]

mpidr_b is still held in rec_a.gprs[1]
per the specification of PSCI_CPU_ON,
so there is no need for a dedicated
"pending MPIDR" REC attribute.

rec_a.gprs[0] = PSCI_SUCCESS

rec_b.flags.runnable = RUNNABLE

rec_b.pc = rec_a.gprs[2]

RMI_SUCCESS

RMI_REC_ENTER(rec_b, run)

Check rec_b.flags.runnable == RUNNABLE

ERET

REC exit

RMI_SUCCESS

RMI_REC_ENTER(rec_a, run)

Check rec_a.flags.runnable == RUNNABLE

ERET

VPE_A observes return
from PSCI_CPU_ON call

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

299

Chapter D1. Flows
D1.4. PSCI flows

See also:

• B4.3.7 RMI_PSCI_COMPLETE command
• B6.3.3 PSCI_CPU_ON command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

300

Chapter D1. Flows
D1.5. Realm memory management flows

D1.5 Realm memory management flows

This section contains flows which relate to management of Realm memory.

See also:

• Chapter A5 Realm memory management

D1.5.1 Add memory to Active Realm flow

The following diagram shows the flow for adding memory to a Realm whose state is REALM_ACTIVE.

To add memory to a Realm whose state is REALM_ACTIVE, the Host must:

• Delegate a destination Granule (dst).
• Specify the Protected IPA at which the dst Granule will be mapped in the Realm’s IPA space.
• Ensure that the level 3 RTT which contains the RTTE identified by the Protected IPA has been created.

Once a given Protected IPA has been populated with unknown content, it cannot be repopulated.

Host RMM

data = alloc_granule()

RMI_GRANULE_DELEGATE(data)

RMI_SUCCESS

RMI_DATA_CREATE_UNKNOWN(rd, data, ipa)

RMI_SUCCESS

data contents have been initialized
to an unknown value.

State of RTTE identified by ipa
has been updated.

See also:

• A2.1.5 Realm lifecycle
• Chapter A5 Realm memory management
• B4.3.2 RMI_DATA_CREATE_UNKNOWN command
• B4.3.5 RMI_GRANULE_DELEGATE command

D1.5.2 NS memory flow

The following diagram describes how NS memory can be mapped into a Realm.

Host RMM Realm

RMI_RTT_MAP_UNPROTECTED(ns, rd, ipa)

update_stage_2(ipa, ns, NS=1)

RMI_SUCCESS

See also:

• Chapter A5 Realm memory management
• B4.3.19 RMI_RTT_MAP_UNPROTECTED command

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

301

Chapter D1. Flows
D1.5. Realm memory management flows

• B4.3.22 RMI_RTT_UNMAP_UNPROTECTED command

D1.5.3 RIPAS change flow

The following diagram describes how a Realm requests a RIPAS change, and how that request is handled by the
Host.

• The Realm calls RSI_IPA_STATE_SET to request a RIPAS change for IPA range [base, top).
• This causes a REC exit due to RIPAS change pending.

On taking a REC exit due to RIPAS change pending, the Host does the following:

• Reads the region base and top addresses from the RmiRecExit object.
• Applies the requested RIPAS change to an IPA range starting from the base of the target region, and extending

no further than the top of the target region.
• Calls RMI_REC_ENTER to re-enter the REC.

The Realm observes in X1 the top of the region for which the RIPAS change was applied.

Host RMM Realm

Starting state:
HIPAS = UNASSIGNED for Protected IPA range [base, top)

Starting state:
RIPAS = EMPTY for Protected IPA range [base, top)

RMI_REC_ENTER(rec, run)

ERET

RSI_IPA_STATE_SET(base, top, ripas=RAM)

rec.exit_reason = RIPAS
rec.ripas_addr = base
rec.ripas_top = top
rec.ripas_value = RAM

run.exit.exit_reason = RIPAS
run.exit.ripas_base = base
run.exit.ripas_top = top
run.exit.ripas_value = RAM

RMI_SUCCESS

alt [Host accepts the request]

RMI_RTT_SET_RIPAS(rd, rec, base, top)

Check target IPA range against values in REC

Update REC and RTTEs

RMI_SUCCESS

RMI_REC_ENTER(rec, run)

X0=RSI_SUCCESS, X1=base+progress, X2=RSI_ACCEPT

alt [Host rejects the request]

run.flags.response = RMI_REJECT

RMI_REC_ENTER(rec, run)

X0=RSI_SUCCESS, X1=base, X2=RSI_REJECT

See also:

• A5.4 RIPAS change
• B4.3.14 RMI_REC_ENTER command
• B4.3.21 RMI_RTT_SET_RIPAS command
• B5.3.6 RSI_IPA_STATE_SET command
• D2.2 Realm shared memory protocol flow

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

302

Chapter D1. Flows
D1.6. Realm interrupts and timers flows

D1.6 Realm interrupts and timers flows

D1.6.1 Interrupt flow

The following diagram shows how a virtual interrupt is injected into a Realm by the Host.

Host RMM Realm VPE GIC

Save virtual GIC CPU interface state

Set virtual interrupt pending
by writing to run.entry.gicv3_lrs

RMI_REC_ENTER(rec, run)

Validate run.entry.gicv3*

Restore virtual GIC CPU interface state
from rec and run.entry.gicv3*

ERET

Virtual interrupt

Acknowledge interrupt

Handle interrupt

REC exit for whatever reason

Save virtual GIC CPU interface state to rec and run.exit.gicv3*

See also:

• A6.1 Realm interrupts

D1.6.2 Timer interrupt delivery flow

The following diagram shows how a timer interrupt is delivered to and handled by a Realm.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

303

Chapter D1. Flows
D1.6. Realm interrupts and timers flows

Host RMM Realm VPE GIC EL1 Generic Timer

RMI_REC_ENTER(rec, run)

If timer output is asserted,
mask its interrupt signal at EL2

If timer output is not asserted,
unmask its interrupt signal it at EL2

Restore EL1 timer state from rec

Validate run.entry.gicv3*

Restore virtual GIC CPU interface state
from rec and run.entry.gicv3*

ERET

Set timer

TimerConditionMet

Physical interrupt

IRQ exception taken to EL2

Save EL1 timer state to rec

Save EL1 timer state to run.exit.cnt*

Save virtual GIC CPU interface state to rec and run.exit.gicv3*

RMI_EXIT_IRQ

Read run.exit.cnt* values

Determine that Realm timer condition is met

Set virtual interrupt pending
by writing to run.entry.gicv3_lrs

RMI_REC_ENTER(rec, run)

If timer output is asserted,
mask its interrupt signal at EL2

If timer output is not asserted,
unmask its interrupt signal it at EL2

Restore EL1 timer state from rec

Validate run.entry.gicv3*

Restore virtual GIC CPU interface state
from rec and run.entry.gicv3*

ERET

Virtual interrupt

See also:

• A6.2 Realm timers

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

304

Chapter D1. Flows
D1.7. Realm attestation flows

D1.7 Realm attestation flows

D1.7.1 Attestation token generation flow

The following diagram shows the flow for a Realm to obtain an attestation token.

The Realm first calls RSI_ATTESTATION_TOKEN_INIT, providing a challenge value. The output values include
an upper bound on the attestation token size.

The Realm then calls RSI_ATTESTATION_TOKEN_CONTINUE, providing the address of a buffer where
the next part of the attestation token will be written. This command is called in a loop, until the result is not
RSI_INCOMPLETE.

RMM Realm

size = RSI_ATTESTATION_TOKEN_INIT(challenge)

rec.attest_state = ATTEST_IN_PROGRESS

rec.attest_challenge = challenge

(RSI_SUCCESS, size)

buf = alloc(size)
addr = buf

loop [until result != RSI_INCOMPLETE]

offset = 0

loop [until result != RSI_INCOMPLETE or offset >= GRANULE_SIZE]

size = GRANULE_SIZE - offset
(result, len) = RSI_ATTESTATION_TOKEN_CONTINUE(addr, offset, size)

Check that rec.attest_state == ATTEST_IN_PROGRESS

Proceed with token generation

alt [Token generation complete]

(RSI_SUCCESS, len)

(RSI_INCOMPLETE, len)

offset += len

addr += GRANULE_SIZE

See also:

• A7.2.2 Attestation token generation
• B5.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command
• B5.3.2 RSI_ATTESTATION_TOKEN_INIT command

D1.7.2 Handling interrupts during attestation token generation flow

The following diagram shows how interrupts are handled during generation of an attestation token.

If the RMM detects that a physical interrupt is pending during execution of RSI_ATTESTATION_TOKEN_CONTINUE,
it saves the execution context to the REC object, and performs a REC exit due to IRQ.

During handling of the IRQ, the Host may signal a virtual interrupt to the REC.

On the next entry to the REC, if a virtual interrupt is pending, it is taken to the REC’s exception vector.

Whether or not a virtual interrupt was taken, on return to the original thread, the REC determines that X0 is
RSI_INCOMPLETE, and therefore calls RSI_ATTESTATION_TOKEN_CONTINUE again.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

305

Chapter D1. Flows
D1.7. Realm attestation flows

Host RMM Realm thread Realm exception vector

RMI_REC_ENTER(rec, run)

Restore execution context from rec

ERET

RSI_ATTESTATION_TOKEN_INIT(challenge)

RSI_SUCCESS

RSI_ATTESTATION_TOKEN_CONTINUE(addr, offset, size)

loop [While no physical interrupt pending]

Proceed with token generation

Physical interrupt pending

Save execution context to rec

rec.gprs[0] = RSI_INCOMPLETE

run.exit.reason = IRQ

RMI_SUCCESS

During handling of the physical
interrupt, the Host may signal
a virtual interrupt to the REC.

RMI_REC_ENTER(rec, run)

Restore execution context from rec

alt [Virtual interrupt pending]

ERET

Push registers to stack

Handle interrupt

Pop registers from stack

ERET

X0 == RSI_INCOMPLETE

RSI_ATTESTATION_TOKEN_CONTINUE(addr, offset, size)

See also:

• A4.3.5 REC exit due to IRQ
• A6.1 Realm interrupts
• A7.2.2 Attestation token generation
• B5.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command
• B5.3.2 RSI_ATTESTATION_TOKEN_INIT command
• D1.3.1 Realm entry and exit flow

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

306

Chapter D2
Realm shared memory protocol

This section describes a protocol for management of memory which is shared between a Realm and the Host. This
protocol makes use of the primitives described in this specification. However, the protocol itself is not part of the
RMM architecture. Use of this protocol is subject to a contract between the Realm and Host software agents.

See also:

• Chapter A5 Realm memory management

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

307

Chapter D2. Realm shared memory protocol
D2.1. Realm shared memory protocol description

D2.1 Realm shared memory protocol description

The Host agrees to provide the Realm with a certain amount of memory. This memory is referred to below as the
Realm’s “memory footprint”.

The memory footprint is described to the Realm, for example via firmware tables. The Realm can choose, at any
point during its execution, how much of its memory footprint is protected (accessible only to the Realm) and how
much is shared with the Host.

Realm software treats the most significant IPA bit as a “protection attribute” bit. This means that for every
Protected IPA (in which the most significant bit is '0'), there exists a corresponding Unprotected IPA alias, which
is generated by setting the most significant bit to '1'.

The choice of whether a given page is protected or shared at a given time is expressed by setting the RIPAS of the
Protected IPA:

• If the RIPAS of the Protected IPA is RAM, the page is protected and access to the Unprotected IPA alias
causes a Synchronous External Abort taken to the Realm.

• If the RIPAS of the Protected IPA is EMPTY, the page is shared and access to the Unprotected IPA alias does
not cause a Synchronous External Abort taken to the Realm.

The initial RIPAS for every page in the Realm’s memory footprint is described to the Realm, for example via
firmware tables. The Host agrees that during Realm execution, it will accept a RIPAS change request on any page
within the Realm’s memory footprint.

See also:

• A5.2.1 Realm IPA space
• A5.2.2 Realm IPA state
• A5.4 RIPAS change

D2.2 Realm shared memory protocol flow

The following diagram illustrates how the protocol is used to set up and tear down a shared memory buffer.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

308

Chapter D2. Realm shared memory protocol
D2.2. Realm shared memory protocol flow

Protected IPA space Unprotected IPA space

Initial state

RIPAS = EMPTY

Unprotected page

RIPAS = RAM

Memory footprint (Protected IPA alias)

Set all pages in Protected memory footprint to RIPAS = RAM

Access to any page within Protected memory footprint does not generate an SEA
Access to any page within Unprotected memory footprint generates an SEA

Memory footprint (Unprotected IPA alias)

Create shared buffer by setting RIPAS of Protected alias to EMPTY

OK SEA SEA SEA SEA SEA SEA SEA SEAOK OK OK OK OK OK OK

SEA SEA OKOK

Tear down shared buffer by setting RIPAS of Protected alias to RAM

SEA SEAOKOK

Figure D2.1: Realm shared memory protocol flow

See also:

• D1.5.3 RIPAS change flow

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

309

Glossary

Glossary

ASL

Arm Specification Language
Language used to express pseudocode implementations. Formal language definition can be found in Arm Specifica-
tion Language Reference Manual [14].

CBOR

Concise Binary Object Representation

CCA

Confidential Compute Architecture

CCA platform

All hardware and firmware components which are involved in delivering the CCA security guarantee. See Arm
CCA Security model [4].

CDDL

Concise Data Definition Language

COSE

CBOR Object Signing and Encryption

EAT

Entity Attestation Token

FID

Function Identifier

GIC

Generic Interrupt Controller
See Arm Generic Interrupt Controller (GIC) Architecture Specification version 3 and version 4 [5]

GPF

Granule Protection Fault

GPT

Granule Protection Table
Table which determines the Physical Address Space of each Granule.

HIPAS

Host IPA state

Host

Software executing in Non-secure Security state which manages resources used by Realms

IAK

Initial Attestation Key Key used to sign the CCA platform attestation token.

IPA

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

310

Glossary

Intermediate Physical Address
Address space visible to software executing at EL1 in the Realm.

IPI

Inter-processor interrupt

IRI

Interrupt Routing Infrastructure
A subset of the components which make up the GIC.

ITS

Interrupt Translation Service
A service provided by the GIC.

MBZ

Must Be Zero

MMIO

Memory-mapped I/O

MPIDR

Multiprocessor Affinity Register

NS

Non-secure

PAS

Physical Address Space

PE

Processing Element

PMU

Performance Monitor Unit

PSCI

Power State Control Interface
See Arm Power State Coordination Interface (PSCI) [16]

RAK

Realm Attestation Key Key used to sign the Realm attestation token.

RD

Realm Descriptor
Object which stores attributes of a Realm.

Realm

A protected execution environment

REC

Realm Execution Context
Object which stores PE state associated with a thread of execution within a Realm.

REM

Realm Extensible Measurement Measurement value which can be extended during the lifetime of a Realm.

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

311

Glossary

RHA

Realm Hash Algorithm

RIM

Realm Initial Measurement Measurement of the state of a Realm at the time of activation.

RIPAS

Realm IPA state

RMI

Realm Management Interface The ABI exposed by the RMM for use by the Host.

RMM

Realm Management Monitor

RNVS

Root Non-volatile Storage

RPV

Realm Personalization Value

RSI

Realm Services Interface The ABI exposed by the RMM for use by the Realm.

RTT

Realm Translation Table
Object which describes the IPA space of a Realm.

RTTE

Realm Translation Table Entry

SBZ

Should Be Zero

SEA

Synchronous External Abort

SGI

Software Generated Interrupt

SMCCC

SMC Calling Convention
See Arm SMC Calling Convention [13]

SPM

Secure Partition Manager

TA

Trusted Application

TOS

Trusted OS

VMM

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

312

Glossary

Virtual Machine Monitor

VMSA

Virtual Memory System Architecture

VPE

Virtual Processing Element

Wiping

An operation which changes the value of a memory location from X to Y, such that the value X cannot be determined
from the value Y

DEN0137
1.0-rel0

Copyright © 2022-2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

313

	Realm Management Monitor specification
	Release information
	1.0-rel0 (10-09-2024)
	1.0-eac5 (05-10-2023)
	1.0-eac4 (06-09-2023)
	1.0-eac3 (20-07-2023)
	1.0-eac2 (07-06-2023)
	1.0-eac1 (31-03-2023)
	1.0-eac0 (31-01-2023)
	1.0-bet2 (16-12-2022)
	1.0-bet1 (31-10-2022)

	Arm Non-Confidential Document License (“License”)

	Contents
	Preface
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Addresses

	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes
	Declaration
	Rule
	Goal
	Information
	Rationale
	Implementation note
	Software usage

	Additional reading
	Feedback
	Feedback on this book

	Open issues

	A Architecture
	A1 Overview
	A1.1 Confidential computing
	A1.2 System software components
	A1.3 Realm Management Monitor

	A2 Concepts
	A2.1 Realm
	A2.1.1 Overview
	A2.1.2 Realm execution environment
	A2.1.2.1 Realm registers
	A2.1.2.2 Realm memory
	A2.1.2.3 Realm processor features
	A2.1.2.4 IMPDEF system registers

	A2.1.3 Realm attributes
	A2.1.4 Realm liveness
	A2.1.5 Realm lifecycle
	A2.1.5.1 States
	A2.1.5.2 State transitions

	A2.1.6 Realm parameters
	A2.1.7 Realm Descriptor

	A2.2 Granule
	A2.2.1 Granule attributes
	A2.2.2 Granule ownership
	A2.2.3 Granule lifecycle
	A2.2.3.1 States
	A2.2.3.2 State transitions

	A2.2.4 Granule wiping

	A2.3 Realm Execution Context
	A2.3.1 Overview
	A2.3.2 REC attributes
	A2.3.3 REC index and MPIDR value
	A2.3.4 REC lifecycle
	A2.3.4.1 States
	A2.3.4.2 State transitions

	A3 Realm creation
	A3.1 Realm feature discovery and selection
	A3.1.1 Realm hash algorithm
	A3.1.2 Realm LPA2 and IPA width
	A3.1.3 Realm support for Scalable Vector Extension
	A3.1.4 Realm support for self-hosted debug
	A3.1.5 Realm support for Performance Monitors Extension
	A3.1.6 Realm support for Activity Monitors Extension
	A3.1.7 Realm support for Statistical Profiling Extension
	A3.1.8 Realm support for Trace Buffer Extension
	A3.1.9 Number of GICv3 List Registers

	A4 Realm exception model
	A4.1 Exception model overview
	A4.2 REC entry
	A4.2.1 RmiRecEnter object
	A4.2.2 General purpose registers restored on REC entry
	A4.2.3 REC entry following REC exit due to Data Abort

	A4.3 REC exit
	A4.3.1 RmiRecExit object
	A4.3.2 Realm exit reason
	A4.3.3 General purpose registers saved on REC exit
	A4.3.4 REC exit due to synchronous exception
	A4.3.4.1 REC exit due to WFI or WFE
	A4.3.4.2 REC exit due to Instruction Abort
	A4.3.4.3 REC exit due to Data Abort

	A4.3.5 REC exit due to IRQ
	A4.3.6 REC exit due to FIQ
	A4.3.7 REC exit due to PSCI
	A4.3.8 REC exit due to RIPAS change pending
	A4.3.9 REC exit due to Host call
	A4.3.10 REC exit due to SError

	A4.4 Emulated Data Aborts
	A4.5 Host call

	A5 Realm memory management
	A5.1 Realm memory management overview
	A5.2 Realm view of memory management
	A5.2.1 Realm IPA space
	A5.2.2 Realm IPA state
	A5.2.3 Realm access to a Protected IPA
	A5.2.4 Changes to RIPAS while Realm state is REALM_NEW
	A5.2.5 Changes to RIPAS while Realm state is REALM_ACTIVE
	A5.2.6 Realm access to an Unprotected IPA
	A5.2.7 Synchronous External Aborts
	A5.2.8 Realm access outside IPA space
	A5.2.9 Summary of Realm IPA space properties
	A5.2.10 Cache maintenance operations

	A5.3 Host view of memory management
	A5.3.1 Host IPA state
	A5.3.2 Changes to HIPAS while Realm state is REALM_NEW
	A5.3.3 Changes to HIPAS while Realm state is REALM_ACTIVE
	A5.3.4 Summary of changes to HIPAS and RIPAS of a Protected IPA
	A5.3.5 Dependency of RMI command execution on RIPAS and HIPAS values
	A5.3.6 Changes to HIPAS of an Unprotected IPA

	A5.4 RIPAS change
	A5.5 Realm Translation Table
	A5.5.1 RTT overview
	A5.5.2 RTT structure and configuration
	A5.5.3 RTT starting level
	A5.5.4 RTT entry
	A5.5.5 RTT reading
	A5.5.6 RTT folding
	A5.5.7 RTT unfolding
	A5.5.8 RTTE liveness and RTT liveness
	A5.5.9 RTT destruction
	A5.5.10 RTT walk
	A5.5.11 RTT entry attributes

	A6 Realm interrupts and timers
	A6.1 Realm interrupts
	A6.2 Realm timers

	A7 Realm measurement and attestation
	A7.1 Realm measurements
	A7.1.1 Realm Initial Measurement
	A7.1.2 Realm Extensible Measurement

	A7.2 Realm attestation
	A7.2.1 Attestation token
	A7.2.2 Attestation token generation
	A7.2.3 Attestation token format
	A7.2.3.1 Realm claims
	A7.2.3.1.1 Realm challenge claim
	A7.2.3.1.2 Realm profile claim
	A7.2.3.1.3 Realm Personalization Value claim
	A7.2.3.1.4 Realm Initial Measurement claim
	A7.2.3.1.5 Realm Extensible Measurements claim
	A7.2.3.1.6 Realm hash algorithm ID claim
	A7.2.3.1.7 Realm public key claim
	A7.2.3.1.8 Realm public key hash algorithm identifier claim
	A7.2.3.1.9 Collated CDDL for Realm claims
	A7.2.3.1.10 Example Realm claims

	A7.2.3.2 CCA platform claims
	A7.2.3.2.1 CCA platform profile claim
	A7.2.3.2.2 CCA platform challenge claim
	A7.2.3.2.3 CCA platform Implementation ID claim
	A7.2.3.2.4 CCA platform Instance ID claim
	A7.2.3.2.5 CCA platform config claim
	A7.2.3.2.6 CCA platform lifecycle claim
	A7.2.3.2.7 CCA platform software components claim
	CCA platform software component type
	CCA platform software component measurement value
	CCA platform software component version
	CCA platform software component signer ID
	CCA platform software component hash algorithm ID

	A7.2.3.2.8 CCA platform verification service claim
	A7.2.3.2.9 CCA platform hash algorithm ID claim
	A7.2.3.2.10 Collated CDDL for CCA platform claims
	A7.2.3.2.11 Example CCA platform claims

	A8 Realm debug and performance monitoring
	A8.1 Realm PMU

	B Interface
	B1 Commands
	B1.1 Overview
	B1.2 Command definition
	B1.2.1 Example command
	FID
	Input values
	Context
	Output values

	B1.3 Command registers
	B1.4 Command condition expressions
	B1.5 Command context values
	B1.6 Command failure conditions
	B1.7 Command success conditions
	B1.8 Concrete and abstract types
	B1.9 Command footprint

	B2 Interface versioning
	B3 Command condition functions
	B3.1 AddrInRange function
	B3.2 AddrIsAligned function
	B3.3 AddrIsGranuleAligned function
	B3.4 AddrIsProtected function
	B3.5 AddrIsRttLevelAligned function
	B3.6 AddrRangeIsProtected function
	B3.7 AlignDownToRttLevel function
	B3.8 AlignUpToRttLevel function
	B3.9 AuxAlias function
	B3.10 AuxAligned function
	B3.11 AuxEqual function
	B3.12 AuxSort function
	B3.13 AuxStateEqual function
	B3.14 AuxStates function
	B3.15 CurrentRealm function
	B3.16 CurrentRec function
	B3.17 Equal function
	B3.18 Gicv3ConfigIsValid function
	B3.19 Granule function
	B3.20 GranuleAccessPermitted function
	B3.21 ImplFeatures function
	B3.22 MinAddress function
	B3.23 MpidrEqual function
	B3.24 MpidrIsUsed function
	B3.25 PaIsDelegable function
	B3.26 PsciReturnCodeEncode function
	B3.27 PsciReturnCodePermitted function
	B3.28 ReadMemory function
	B3.29 Realm function
	B3.30 RealmConfig function
	B3.31 RealmHostCall function
	B3.32 RealmIsLive function
	B3.33 RealmParams function
	B3.34 RealmParamsSupported function
	B3.35 Rec function
	B3.36 RecAuxCount function
	B3.37 RecFromMpidr function
	B3.38 RecIndex function
	B3.39 RecParams function
	B3.40 RecRipasChangeResponse function
	B3.41 RecRun function
	B3.42 RemExtend function
	B3.43 ResultEqual function
	B3.44 RimExtendData function
	B3.45 RimExtendRec function
	B3.46 RimExtendRipas function
	B3.47 RimExtendRipasForEntry function
	B3.48 RimInit function
	B3.49 RipasToRmi function
	B3.50 RmiRealmParamsIsValid function
	B3.51 Rtt function
	B3.52 RttAllEntriesContiguous function
	B3.53 RttAllEntriesRipas function
	B3.54 RttAllEntriesState function
	B3.55 RttConfigIsValid function
	B3.56 RttDescriptorIsValidForUnprotected function
	B3.57 RttEntriesInRangeRipas function
	B3.58 RttEntry function
	B3.59 RttEntryFromDescriptor function
	B3.60 RttEntryIndex function
	B3.61 RttEntryState function
	B3.62 RttFold function
	B3.63 RttIsHomogeneous function
	B3.64 RttIsLive function
	B3.65 RttLevelIsBlockOrPage function
	B3.66 RttLevelIsStarting function
	B3.67 RttLevelIsValid function
	B3.68 RttLevelSize function
	B3.69 RttsAllProtectedEntriesRipas function
	B3.70 RttsAllProtectedEntriesState function
	B3.71 RttsAllUnprotectedEntriesState function
	B3.72 RttsGranuleState function
	B3.73 RttSkipEntriesUnlessRipas function
	B3.74 RttSkipEntriesUnlessState function
	B3.75 RttSkipEntriesWithRipas function
	B3.76 RttSkipNonLiveEntries function
	B3.77 RttsStateEqual function
	B3.78 RttWalk function
	B3.79 ToAddress function
	B3.80 ToBits64 function
	B3.81 VmidIsFree function
	B3.82 VmidIsValid function

	B4 Realm Management Interface
	B4.1 RMI version
	B4.2 RMI command return codes
	B4.3 RMI commands
	B4.3.1 RMI_DATA_CREATE command
	B4.3.1.1 Interface
	B4.3.1.1.1 Input values
	B4.3.1.1.2 Context
	B4.3.1.1.3 Output values

	B4.3.1.2 Failure conditions
	B4.3.1.2.1 Failure condition ordering

	B4.3.1.3 Success conditions
	B4.3.1.4 RMI_DATA_CREATE extension of RIM
	B4.3.1.5 Footprint

	B4.3.2 RMI_DATA_CREATE_UNKNOWN command
	B4.3.2.1 Interface
	B4.3.2.1.1 Input values
	B4.3.2.1.2 Context
	B4.3.2.1.3 Output values

	B4.3.2.2 Failure conditions
	B4.3.2.2.1 Failure condition ordering

	B4.3.2.3 Success conditions
	B4.3.2.4 Footprint

	B4.3.3 RMI_DATA_DESTROY command
	B4.3.3.1 Interface
	B4.3.3.1.1 Input values
	B4.3.3.1.2 Context
	B4.3.3.1.3 Output values

	B4.3.3.2 Failure conditions
	B4.3.3.2.1 Failure condition ordering

	B4.3.3.3 Success conditions
	B4.3.3.4 Footprint

	B4.3.4 RMI_FEATURES command
	B4.3.4.1 Interface
	B4.3.4.1.1 Input values
	B4.3.4.1.2 Output values

	B4.3.4.2 Failure conditions
	B4.3.4.3 Success conditions
	B4.3.4.4 Footprint

	B4.3.5 RMI_GRANULE_DELEGATE command
	B4.3.5.1 Interface
	B4.3.5.1.1 Input values
	B4.3.5.1.2 Output values

	B4.3.5.2 Failure conditions
	B4.3.5.2.1 Failure condition ordering

	B4.3.5.3 Success conditions
	B4.3.5.4 Footprint

	B4.3.6 RMI_GRANULE_UNDELEGATE command
	B4.3.6.1 Interface
	B4.3.6.1.1 Input values
	B4.3.6.1.2 Output values

	B4.3.6.2 Failure conditions
	B4.3.6.2.1 Failure condition ordering

	B4.3.6.3 Success conditions
	B4.3.6.4 Footprint

	B4.3.7 RMI_PSCI_COMPLETE command
	B4.3.7.1 Interface
	B4.3.7.1.1 Input values
	B4.3.7.1.2 Output values

	B4.3.7.2 Failure conditions
	B4.3.7.2.1 Failure condition ordering

	B4.3.7.3 Success conditions
	B4.3.7.4 Footprint

	B4.3.8 RMI_REALM_ACTIVATE command
	B4.3.8.1 Interface
	B4.3.8.1.1 Input values
	B4.3.8.1.2 Output values

	B4.3.8.2 Failure conditions
	B4.3.8.2.1 Failure condition ordering

	B4.3.8.3 Success conditions
	B4.3.8.4 Footprint

	B4.3.9 RMI_REALM_CREATE command
	B4.3.9.1 Interface
	B4.3.9.1.1 Input values
	B4.3.9.1.2 Context
	B4.3.9.1.3 Output values

	B4.3.9.2 Failure conditions
	B4.3.9.2.1 Failure condition ordering

	B4.3.9.3 Success conditions
	B4.3.9.4 RMI_REALM_CREATE initialization of RIM
	B4.3.9.5 Footprint

	B4.3.10 RMI_REALM_DESTROY command
	B4.3.10.1 Interface
	B4.3.10.1.1 Input values
	B4.3.10.1.2 Context
	B4.3.10.1.3 Output values

	B4.3.10.2 Failure conditions
	B4.3.10.2.1 Failure condition ordering

	B4.3.10.3 Success conditions
	B4.3.10.4 Footprint

	B4.3.11 RMI_REC_AUX_COUNT command
	B4.3.11.1 Interface
	B4.3.11.1.1 Input values
	B4.3.11.1.2 Output values

	B4.3.11.2 Failure conditions
	B4.3.11.2.1 Failure condition ordering

	B4.3.11.3 Success conditions
	B4.3.11.4 Footprint

	B4.3.12 RMI_REC_CREATE command
	B4.3.12.1 Interface
	B4.3.12.1.1 Input values
	B4.3.12.1.2 Context
	B4.3.12.1.3 Output values

	B4.3.12.2 Failure conditions
	B4.3.12.2.1 Failure condition ordering

	B4.3.12.3 Success conditions
	B4.3.12.4 RMI_REC_CREATE extension of RIM
	B4.3.12.5 Footprint

	B4.3.13 RMI_REC_DESTROY command
	B4.3.13.1 Interface
	B4.3.13.1.1 Input values
	B4.3.13.1.2 Context
	B4.3.13.1.3 Output values

	B4.3.13.2 Failure conditions
	B4.3.13.2.1 Failure condition ordering

	B4.3.13.3 Success conditions
	B4.3.13.4 Footprint

	B4.3.14 RMI_REC_ENTER command
	B4.3.14.1 Interface
	B4.3.14.1.1 Input values
	B4.3.14.1.2 Context
	B4.3.14.1.3 Output values

	B4.3.14.2 Failure conditions
	B4.3.14.2.1 Failure condition ordering

	B4.3.14.3 Success conditions
	B4.3.14.4 Footprint

	B4.3.15 RMI_RTT_CREATE command
	B4.3.15.1 Interface
	B4.3.15.1.1 Input values
	B4.3.15.1.2 Context
	B4.3.15.1.3 Output values

	B4.3.15.2 Failure conditions
	B4.3.15.2.1 Failure condition ordering

	B4.3.15.3 Success conditions
	B4.3.15.4 Footprint

	B4.3.16 RMI_RTT_DESTROY command
	B4.3.16.1 Interface
	B4.3.16.1.1 Input values
	B4.3.16.1.2 Context
	B4.3.16.1.3 Output values

	B4.3.16.2 Failure conditions
	B4.3.16.2.1 Failure condition ordering

	B4.3.16.3 Success conditions
	B4.3.16.4 Footprint

	B4.3.17 RMI_RTT_FOLD command
	B4.3.17.1 Interface
	B4.3.17.1.1 Input values
	B4.3.17.1.2 Context
	B4.3.17.1.3 Output values

	B4.3.17.2 Failure conditions
	B4.3.17.2.1 Failure condition ordering

	B4.3.17.3 Success conditions
	B4.3.17.4 Footprint

	B4.3.18 RMI_RTT_INIT_RIPAS command
	B4.3.18.1 Interface
	B4.3.18.1.1 Input values
	B4.3.18.1.2 Context
	B4.3.18.1.3 Output values

	B4.3.18.2 Failure conditions
	B4.3.18.2.1 Failure condition ordering

	B4.3.18.3 Success conditions
	B4.3.18.4 RMI_RTT_INIT_RIPAS extension of RIM
	B4.3.18.5 Footprint

	B4.3.19 RMI_RTT_MAP_UNPROTECTED command
	B4.3.19.1 Interface
	B4.3.19.1.1 Input values
	B4.3.19.1.2 Context
	B4.3.19.1.3 Output values

	B4.3.19.2 Failure conditions
	B4.3.19.2.1 Failure condition ordering

	B4.3.19.3 Success conditions
	B4.3.19.4 Footprint

	B4.3.20 RMI_RTT_READ_ENTRY command
	B4.3.20.1 Interface
	B4.3.20.1.1 Input values
	B4.3.20.1.2 Context
	B4.3.20.1.3 Output values

	B4.3.20.2 Failure conditions
	B4.3.20.2.1 Failure condition ordering

	B4.3.20.3 Success conditions
	B4.3.20.4 Footprint

	B4.3.21 RMI_RTT_SET_RIPAS command
	B4.3.21.1 Interface
	B4.3.21.1.1 Input values
	B4.3.21.1.2 Context
	B4.3.21.1.3 Output values

	B4.3.21.2 Failure conditions
	B4.3.21.2.1 Failure condition ordering

	B4.3.21.3 Success conditions
	B4.3.21.4 Footprint

	B4.3.22 RMI_RTT_UNMAP_UNPROTECTED command
	B4.3.22.1 Interface
	B4.3.22.1.1 Input values
	B4.3.22.1.2 Context
	B4.3.22.1.3 Output values

	B4.3.22.2 Failure conditions
	B4.3.22.2.1 Failure condition ordering

	B4.3.22.3 Success conditions
	B4.3.22.4 Footprint

	B4.3.23 RMI_VERSION command
	B4.3.23.1 Interface
	B4.3.23.1.1 Input values
	B4.3.23.1.2 Output values

	B4.3.23.2 Failure conditions
	B4.3.23.3 Success conditions
	B4.3.23.4 Footprint

	B4.4 RMI types
	B4.4.1 RmiCommandReturnCode type
	B4.4.2 RmiDataFlags type
	B4.4.3 RmiDataMeasureContent type
	B4.4.4 RmiEmulatedMmio type
	B4.4.5 RmiFeature type
	B4.4.6 RmiFeatureRegister0 type
	B4.4.7 RmiHashAlgorithm type
	B4.4.8 RmiInjectSea type
	B4.4.9 RmiInterfaceVersion type
	B4.4.10 RmiPmuOverflowStatus type
	B4.4.11 RmiRealmFlags type
	B4.4.12 RmiRealmParams type
	B4.4.13 RmiRecCreateFlags type
	B4.4.14 RmiRecEnter type
	B4.4.15 RmiRecEnterFlags type
	B4.4.16 RmiRecExit type
	B4.4.17 RmiRecExitReason type
	B4.4.18 RmiRecMpidr type
	B4.4.19 RmiRecParams type
	B4.4.20 RmiRecRun type
	B4.4.21 RmiRecRunnable type
	B4.4.22 RmiResponse type
	B4.4.23 RmiRipas type
	B4.4.24 RmiRttEntryState type
	B4.4.25 RmiStatusCode type
	B4.4.26 RmiTrap type

	B5 Realm Services Interface
	B5.1 RSI version
	B5.2 RSI command return codes
	B5.3 RSI commands
	B5.3.1 RSI_ATTESTATION_TOKEN_CONTINUE command
	B5.3.1.1 Interface
	B5.3.1.1.1 Input values
	B5.3.1.1.2 Context
	B5.3.1.1.3 Output values

	B5.3.1.2 Failure conditions
	B5.3.1.2.1 Failure condition ordering

	B5.3.1.3 Success conditions
	B5.3.1.4 Footprint

	B5.3.2 RSI_ATTESTATION_TOKEN_INIT command
	B5.3.2.1 Interface
	B5.3.2.1.1 Input values
	B5.3.2.1.2 Context
	B5.3.2.1.3 Output values

	B5.3.2.2 Failure conditions
	B5.3.2.3 Success conditions
	B5.3.2.4 Footprint

	B5.3.3 RSI_FEATURES command
	B5.3.3.1 Interface
	B5.3.3.1.1 Input values
	B5.3.3.1.2 Output values

	B5.3.3.2 Failure conditions
	B5.3.3.3 Success conditions
	B5.3.3.4 Footprint

	B5.3.4 RSI_HOST_CALL command
	B5.3.4.1 Interface
	B5.3.4.1.1 Input values
	B5.3.4.1.2 Context
	B5.3.4.1.3 Output values

	B5.3.4.2 Failure conditions
	B5.3.4.2.1 Failure condition ordering

	B5.3.4.3 Success conditions
	B5.3.4.4 Footprint

	B5.3.5 RSI_IPA_STATE_GET command
	B5.3.5.1 Interface
	B5.3.5.1.1 Input values
	B5.3.5.1.2 Context
	B5.3.5.1.3 Output values

	B5.3.5.2 Failure conditions
	B5.3.5.2.1 Failure condition ordering

	B5.3.5.3 Success conditions
	B5.3.5.4 Footprint

	B5.3.6 RSI_IPA_STATE_SET command
	B5.3.6.1 Interface
	B5.3.6.1.1 Input values
	B5.3.6.1.2 Context
	B5.3.6.1.3 Output values

	B5.3.6.2 Failure conditions
	B5.3.6.2.1 Failure condition ordering

	B5.3.6.3 Success conditions
	B5.3.6.4 Footprint

	B5.3.7 RSI_MEASUREMENT_EXTEND command
	B5.3.7.1 Interface
	B5.3.7.1.1 Input values
	B5.3.7.1.2 Context
	B5.3.7.1.3 Output values

	B5.3.7.2 Failure conditions
	B5.3.7.2.1 Failure condition ordering

	B5.3.7.3 Success conditions
	B5.3.7.4 Footprint

	B5.3.8 RSI_MEASUREMENT_READ command
	B5.3.8.1 Interface
	B5.3.8.1.1 Input values
	B5.3.8.1.2 Output values

	B5.3.8.2 Failure conditions
	B5.3.8.3 Success conditions
	B5.3.8.4 Footprint

	B5.3.9 RSI_REALM_CONFIG command
	B5.3.9.1 Interface
	B5.3.9.1.1 Input values
	B5.3.9.1.2 Context
	B5.3.9.1.3 Output values

	B5.3.9.2 Failure conditions
	B5.3.9.2.1 Failure condition ordering

	B5.3.9.3 Success conditions
	B5.3.9.4 Footprint

	B5.3.10 RSI_VERSION command
	B5.3.10.1 Interface
	B5.3.10.1.1 Input values
	B5.3.10.1.2 Output values

	B5.3.10.2 Failure conditions
	B5.3.10.3 Success conditions
	B5.3.10.4 Footprint

	B5.4 RSI types
	B5.4.1 RsiCommandReturnCode type
	B5.4.2 RsiHashAlgorithm type
	B5.4.3 RsiHostCall type
	B5.4.4 RsiInterfaceVersion type
	B5.4.5 RsiRealmConfig type
	B5.4.6 RsiResponse type
	B5.4.7 RsiRipas type
	B5.4.8 RsiRipasChangeDestroyed type
	B5.4.9 RsiRipasChangeFlags type

	B6 Power State Control Interface
	B6.1 PSCI overview
	B6.2 PSCI version
	B6.3 PSCI commands
	B6.3.1 PSCI_AFFINITY_INFO command
	B6.3.1.1 Interface
	B6.3.1.1.1 Input values
	B6.3.1.1.2 Context
	B6.3.1.1.3 Output values

	B6.3.1.2 Failure conditions
	B6.3.1.2.1 Failure condition ordering

	B6.3.1.3 Success conditions
	B6.3.1.4 Footprint

	B6.3.2 PSCI_CPU_OFF command
	B6.3.2.1 Interface
	B6.3.2.1.1 Input values
	B6.3.2.1.2 Context
	B6.3.2.1.3 Output values

	B6.3.2.2 Failure conditions
	B6.3.2.3 Success conditions
	B6.3.2.4 Footprint

	B6.3.3 PSCI_CPU_ON command
	B6.3.3.1 Interface
	B6.3.3.1.1 Input values
	B6.3.3.1.2 Context
	B6.3.3.1.3 Output values

	B6.3.3.2 Failure conditions
	B6.3.3.2.1 Failure condition ordering

	B6.3.3.3 Success conditions
	B6.3.3.4 Footprint

	B6.3.4 PSCI_CPU_SUSPEND command
	B6.3.4.1 Interface
	B6.3.4.1.1 Input values
	B6.3.4.1.2 Output values

	B6.3.4.2 Failure conditions
	B6.3.4.3 Success conditions
	B6.3.4.4 Footprint

	B6.3.5 PSCI_FEATURES command
	B6.3.5.1 Interface
	B6.3.5.1.1 Input values
	B6.3.5.1.2 Output values

	B6.3.5.2 Failure conditions
	B6.3.5.3 Success conditions
	B6.3.5.4 Footprint

	B6.3.6 PSCI_SYSTEM_OFF command
	B6.3.6.1 Interface
	B6.3.6.1.1 Input values
	B6.3.6.1.2 Context
	B6.3.6.1.3 Output values

	B6.3.6.2 Failure conditions
	B6.3.6.3 Success conditions
	B6.3.6.4 Footprint

	B6.3.7 PSCI_SYSTEM_RESET command
	B6.3.7.1 Interface
	B6.3.7.1.1 Input values
	B6.3.7.1.2 Context
	B6.3.7.1.3 Output values

	B6.3.7.2 Failure conditions
	B6.3.7.3 Success conditions
	B6.3.7.4 Footprint

	B6.3.8 PSCI_VERSION command
	B6.3.8.1 Interface
	B6.3.8.1.1 Input values
	B6.3.8.1.2 Output values

	B6.3.8.2 Failure conditions
	B6.3.8.3 Success conditions
	B6.3.8.4 Footprint

	B6.4 PSCI types
	B6.4.1 PsciInterfaceVersion type
	B6.4.2 PsciReturnCode type

	C Types
	C1 RMM types
	C1.1 RmmDataFlags type
	C1.2 RmmDataMeasureContent type
	C1.3 RmmFeature type
	C1.4 RmmFeatures type
	C1.5 RmmGptEntry type
	C1.6 RmmGranule type
	C1.7 RmmGranuleState type
	C1.8 RmmHashAlgorithm type
	C1.9 RmmHipas type
	C1.10 RmmHostCallPending type
	C1.11 RmmMeasurementDescriptorData type
	C1.12 RmmMeasurementDescriptorRec type
	C1.13 RmmMeasurementDescriptorRipas type
	C1.14 RmmPhysicalAddressSpace type
	C1.15 RmmPsciPending type
	C1.16 RmmRealm type
	C1.17 RmmRealmMeasurement type
	C1.18 RmmRealmState type
	C1.19 RmmRec type
	C1.20 RmmRecAttestState type
	C1.21 RmmRecEmulatableAbort type
	C1.22 RmmRecFlags type
	C1.23 RmmRecResponse type
	C1.24 RmmRecRunnable type
	C1.25 RmmRecState type
	C1.26 RmmRipas type
	C1.27 RmmRipasChangeDestroyed type
	C1.28 RmmRtt type
	C1.29 RmmRttEntry type
	C1.30 RmmRttEntryState type
	C1.31 RmmRttWalkResult type
	C1.32 RmmSystemRegisters type

	C2 Generic types
	C2.1 Address type
	C2.2 BitsN type
	C2.3 IntN type
	C2.4 UIntN type

	D Usage
	D1 Flows
	D1.1 Granule delegation flows
	D1.1.1 Granule delegation flow
	D1.1.2 Granule undelegation flow

	D1.2 Realm lifecycle flows
	D1.2.1 Realm creation flow
	D1.2.2 Realm Translation Table creation flow
	D1.2.3 Initialize memory of New Realm flow
	D1.2.4 REC creation flow
	D1.2.5 Realm destruction flow

	D1.3 Realm exception model flows
	D1.3.1 Realm entry and exit flow
	D1.3.2 Host call flow
	D1.3.3 REC exit due to Data Abort fault flow
	D1.3.4 MMIO emulation flow

	D1.4 PSCI flows
	D1.4.1 PSCI_CPU_ON flow

	D1.5 Realm memory management flows
	D1.5.1 Add memory to Active Realm flow
	D1.5.2 NS memory flow
	D1.5.3 RIPAS change flow

	D1.6 Realm interrupts and timers flows
	D1.6.1 Interrupt flow
	D1.6.2 Timer interrupt delivery flow

	D1.7 Realm attestation flows
	D1.7.1 Attestation token generation flow
	D1.7.2 Handling interrupts during attestation token generation flow

	D2 Realm shared memory protocol
	D2.1 Realm shared memory protocol description
	D2.2 Realm shared memory protocol flow

	Glossary

