
ARM® Generic Interrupt Controller
Architecture version 1.0

Architecture Specification
Copyright © 2008 ARM Limited. All rights reserved.
ARM IHI 0048A

ARM Generic Interrupt Controller

Copyright © 2008 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be
the trademarks of their respective owners.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. Neither the whole nor any part of the
information contained in, or the product described in, this document may be adapted or reproduced in any material form
except with the prior written permission of the copyright holder.

1. Subject to the provisions of Clauses 2 and 3, ARM hereby grants to you a perpetual, non-exclusive,
non-transferable, royalty free, worldwide licence to use and copy the ARM Generic Interrupt Controller (GIC)
Architecture Specification (“Specification”) for the purpose of developing, having developed, manufacturing,
having manufactured, offering to sell, selling, supplying or otherwise distributing products which comply with
the Specification and which contain at least one processor core which has either been (i) developed by or for ARM
or (ii) developed under licence from ARM.

2. THE ARM GIC ARCHITECTURE SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
SATISFACTORY QUALITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE.

3. No licence, express, implied or otherwise, is granted to you, under the provisions of Clause 1, to use the ARM
tradename in connection with the ARM GIC Architecture Specification or any products based thereon. Nothing
in Clause 1 shall be construed as authority for you to make any representations on behalf of ARM in respect of
the ARM GIC Architecture Specification.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2008 ARM Limited

110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

This document is Non-Confidential. The right to use, copy and disclose this document is subject to the licence set out
above.

Unrestricted Access is an ARM internal classification.

Change History

Date Issue Confidentiality Change

23 September 2008 A Non-Confidential Unrestricted Access First release for version 1.0
ii Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Contents
ARM Generic Interrupt Controller
Architecture Specification

Preface
About this specification ... vi
Conventions .. viii
Further reading ... ix
Feedback ... x

Chapter 1 Introduction
1.1 About the Generic Interrupt Controller architecture 1-2
1.2 Security Extensions support .. 1-3
1.3 Terminology ... 1-4

Chapter 2 GIC Partitioning
2.1 About GIC partitioning .. 2-2
2.2 The Distributor ... 2-4
2.3 CPU interfaces ... 2-6

Chapter 3 Interrupt Handling and Prioritization
3.1 About interrupt handling and prioritization .. 3-2
3.2 General handling of interrupts .. 3-5
3.3 Interrupt prioritization ... 3-12
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. iii
Unrestricted Access Non-Confidential

Contents
3.4 The effect of the Security Extensions on interrupt handling 3-15
3.5 The effect of the Security Extensions on interrupt prioritization 3-18
3.6 Pseudocode details of interrupt handling and prioritization 3-25

Chapter 4 Programmers Model
4.1 About the programmers model .. 4-2
4.2 Effect of the Security Extensions on the programmers model 4-7
4.3 Distributor register descriptions ... 4-11
4.4 CPU interface register descriptions ... 4-46

Appendix A Pseudocode Index
A.1 Index of pseudocode functions .. A-2

Appendix B Software Examples for the GIC
B.1 Use of identification registers ... B-2
B.2 Initialization after reset or power on ... B-3
B.3 Processor response to an initial interrupt ... B-6
B.4 Preemptive processing .. B-9
B.5 Generating a software interrupt ... B-12
B.6 Changing a CPU interface interrupt priority mask B-13
B.7 Changing the priority of an interrupt ... B-14
B.8 Changing the processor targets of an interrupt B-15
B.9 Disabling a peripheral interrupt .. B-16
B.10 Changing the security configuration of an interrupt B-17
B.11 Disabling a CPU interface on the GIC ... B-19
B.12 Message passing between processors .. B-20
B.13 Example of using the binary point .. B-21

Appendix C Register Shortform Names
C.1 Register name aliases ... C-2
C.2 Index of architectural shortform names .. C-4

Glossary
iv Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Preface

This preface summarizes the contents of this specification and lists the conventions it uses. It contains the
following sections:

• About this specification on page vi

• Conventions on page viii

• Further reading on page ix

• Feedback on page x.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. v
Unrestricted Access Non-Confidential

Preface
About this specification

This is version 1.0 of the Architecture Specification for the ARM Generic Interrupt Controller (GIC).

Throughout this document, references to the GIC or a GIC refer to a device that implements this GIC
architecture. Unless the context makes it clear that a reference is to an IMPLEMENTATION DEFINED feature of
the device, these references describe the requirements of this specification.

Intended audience

The specification is written for users that want to design, implement, or program the GIC in a range of
ARM-compliant implementations from simple uniprocessor implementations to complex multiprocessor
systems.

The specification assumes that users have some experience of ARM products. It does not assume experience
of the GIC.

Using this specification

This specification is organized into the following chapters:

Chapter 1 Introduction

Read this for an overview of the GIC, and information about the terminology used in this
document.

Chapter 2 GIC Partitioning

Read this for a description of the major interfaces and components of the GIC. The chapter
also describes how they operate.

Chapter 3 Interrupt Handling and Prioritization

Read this for a description of the requirements for interrupt handling, and the interrupt
priority scheme for a GIC.

Chapter 4 Programmers Model

Read this for a description of the Distributor and CPU interface registers.

Appendix A Pseudocode Index

Read this for an index to the pseudocode functions defined in this specification.

Appendix B Software Examples for the GIC

Read this for a description of non-architectural, non-prescriptive, methods of using the GIC,
and of how the GIC manages interrupts.

Appendix C Register Shortform Names

Read this for a description of relationship between the architectural shortform names of the
registers described in this specification and their legacy shortform aliases, and for an
alphabetic index of the architectural shortform names.
vi Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Preface
 Glossary Read the Glossary for definitions of terms used in this document.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. vii
Unrestricted Access Non-Confidential

Preface
Conventions

The following sections describe conventions that this book can use:

• General typographic conventions

• Signals

• Numbers

• Pseudocode descriptions.

General typographic conventions

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other
items appearing in assembler syntax descriptions, pseudocode, and source code
examples.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Denotes signal names and is used for terms in descriptive lists, where appropriate.

SMALL CAPITALS Used for a few terms that have specific technical meanings, that are included in the
Glossary.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers
by 0x and written in a monospace font.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality.
This pseudocode is written in a monspace font, and follows the conventions described in the ARM
Architecture Reference Manual, ARMv7-A and ARMv7-R edition.
viii Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Preface
Further reading

This section lists publications by ARM and by third parties.

See http://infocenter.arm.com/ for access to ARM documentation.

ARM publications

This specification contains information that is specific to the GIC. See the following documents for other
relevant information:

• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).

External publications

This section lists relevant documents published by third parties:

• JEP106M, Standard Manufacture’s Identification Code, JEDEC Solid State Technology Association.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. ix
Unrestricted Access Non-Confidential

Preface
Feedback

ARM welcomes feedback on this documentation.

Feedback on this specification

If you have any comments or suggestions about this documentation, contact your supplier and give:

• the document title

• the document number

• an explanation with as much information as you can provide.

ARM also welcomes general suggestions for additions and improvements.
x Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Chapter 1
Introduction

This chapter gives an overview of the GIC and information about the terminology used in this document. It
contains the following sections:

• About the Generic Interrupt Controller architecture on page 1-2

• Security Extensions support on page 1-3

• Terminology on page 1-4.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 1-1
Unrestricted Access Non-Confidential

Introduction
1.1 About the Generic Interrupt Controller architecture

The Generic Interrupt Controller (GIC) architecture defines:

• the architectural requirements for handling all interrupt sources for any processor associated with a
GIC

• a common interrupt controller programming interface applicable to uniprocessor or multiprocessor
systems.

Note
 The architecture describes a GIC designed for use with one or more processors that comply with the ARM
A and R architecture profiles. However the GIC architecture does not place any restrictions on the
processors used with an implementation of the GIC.

The GIC is a centralized resource for supporting and managing interrupts in a system that includes at least
one processor. It provides:

• registers for managing interrupt sources, interrupt behavior, and interrupt routing to one or more
processors

• support for:

— the ARM architecture Security Extensions

— enabling, disabling, and generating processor interrupts from hardware (peripheral) interrupt
sources

— generating software interrupts

— interrupt masking and prioritization

— uniprocessor and multiprocessor environments.

The GIC takes interrupts asserted at the system level and signals them to each connected processor as
appropriate. If the GIC implements the Security Extensions it can implement two interrupt requests to a
connected processor. The architecture identifies these two requests as IRQ and FIQ.

Note
 In many implementations the IRQ and FIQ interrupt requests correspond to the IRQ and FIQ asynchronous
exceptions that are supported by all variants of the ARM architecture except the Microcontroller profile
(M-profile). For more information about IRQ, FIQ, and asynchronous exceptions, see the ARM Architecture
Reference Manual, ARMv7-A and ARMv7-R edition.

1.1.1 GIC architecture specification version

This specification describes version 1.0 of the GIC architecture. Some products have been implemented
using preliminary versions of this specification and might not fully comply with this specification.

The GIC architecture specification version is independent of the rxpx version, or major and minor revision
description, used for product releases.
1-2 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Introduction
1.2 Security Extensions support

The ARM GIC architecture Security Extensions support:

• configuring each interrupt as either Secure or Non-secure

• signalling Secure interrupts to the target processor using either the IRQ or the FIQ exception request

• a unified scheme for handling the priority of Secure and Non-secure interrupts

• optional lockdown of the configuration of some Secure interrupts.

In an implementation that includes the Security Extensions:

• System software individually defines each implemented interrupt as either Secure or Non-secure.

• The behavior of processor accesses to registers in the GIC depends on whether the access is Secure
or Non-secure, see Processor security state and Secure and Non-secure GIC accesses on page 1-5.

Except where this document explicitly indicates otherwise, when accessing GIC registers:

— a Non-secure read of a register field holding state information for a Secure interrupt returns
zero

— the GIC ignores any Non-secure write to a register field holding state information for a Secure
interrupt.

Non-secure accesses can only read or set information corresponding to Non-secure interrupts. Secure
accesses can read or set information corresponding to both Non-secure and Secure interrupts.

• A Non-secure interrupt signals an IRQ interrupt request to a target processor.

• A Secure interrupt can signal either an IRQ or an FIQ interrupt request to a target processor.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 1-3
Unrestricted Access Non-Confidential

Introduction
1.3 Terminology

The following sections define architectural terms used in this specification:

• Interrupt states

• Interrupt types

• Models for handling interrupts on page 1-5

• Spurious interrupts on page 1-5

• Processor security state and Secure and Non-secure GIC accesses on page 1-5

• Banking on page 1-6.

1.3.1 Interrupt states

The following states apply at the interface between the GIC and each processor supported in the system:

Inactive An interrupt that is not active or pending.

Pending An interrupt from a source to the GIC that is recognized as asserted in hardware or
generated by software and is waiting to be serviced by a target processor.

Active An interrupt from a source to the GIC that has been acknowledged by a processor,
and is being serviced but has not completed.

Active and pending A processor is servicing the interrupt and the GIC has a pending interrupt from the
same source.

1.3.2 Interrupt types

A device that implements this GIC architecture can manage the following types of interrupt:

Peripheral interrupt This is an interrupt asserted by a signal to the GIC. The GIC architecture defines the
following types of peripheral interrupt:

Private peripheral interrupt (PPI)

This is a peripheral interrupt that is specific to a single processor.

Shared peripheral interrupt (SPI)

This is a peripheral interrupt that the Distributor can route to any
combination of processors.

Each peripheral interrupt is either:

Edge-triggered

This is an interrupt that is asserted on detection of a rising edge of an
interrupt signal and then, regardless of the state of the signal, remains
asserted until it is cleared by the conditions defined by this specification.

Level-sensitive
This is an interrupt that is asserted whenever the interrupt signal level is
HIGH, and deasserted whenever the level is LOW.
1-4 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Introduction
Note
 While a level-sensitive interrupt is asserted its state in the GIC is pending, or active

and pending. If the peripheral deasserts the interrupt signal for any reason the GIC
removes the pending state from the interrupt. For more information see Interrupt
handling state machine on page 3-10.

Software-generated interrupt (SGI)

This is an interrupt generated by software writing to a specific register in the GIC.
The system uses SGIs for interprocessor communication.

A software interrupt has edge-triggered properties. The software triggering of the
interrupt is equivalent to the edge transition of the interrupt signal on a peripheral
input.

1.3.3 Models for handling interrupts

In a multiprocessor implementation, there are two models for handling interrupts:

1-N model Only one processor handles this interrupt. The system must implement a mechanism to
determine which processor handles an interrupt that is programmed to target more than one
processor.

N-N model All processors receive the interrupt independently. When a processor acknowledges the
interrupt, the interrupt pending state is cleared only for that processor. The interrupt remains
pending for the other processors.

1.3.4 Spurious interrupts

It is possible that an interrupt that the GIC has signaled to a processor is no longer required. If this happens,
when the processor acknowledges the interrupt, the GIC returns a special Interrupt ID that identifies the
interrupt as a spurious interrupt. This can happen because:

• the state of the interrupt has changed

• software has re-programmed the GIC to change the processing requirements for the interrupt

• the interrupt is handled using the 1-N model and another processor has acknowledged the interrupt.

1.3.5 Processor security state and Secure and Non-secure GIC accesses

A processor that implements the ARM Security Extensions has a security state, either Secure or Non-secure:

• a processor in Non-secure state can make only Non-secure accesses to a GIC

• a processor in Secure state can make both Secure and Non-secure accesses to a GIC

• software running in Non-secure state is described as Non-secure software

• software running in Secure state is described as Secure software.

For more information about the implementation of the Security Extensions on a processor see the ARM
Architecture Reference Manual, ARMv7-A and ARMv7-R edition.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 1-5
Unrestricted Access Non-Confidential

Introduction
A multiprocessor system with a GIC that implements the Security Extensions might include one or more
processors that do not implement the Security Extensions. Such a processor is implemented so that either:

• it makes only Secure accesses to the GIC, meaning any software running on the processor is Secure
software that can only make Secure accesses to the GIC

• it makes only Non-secure accesses to the GIC, meaning any software running on the processor is
Non-secure software.

1.3.6 Banking

Interrupt banking

In a multiprocessor implementation, for PPIs and SGIs, the GIC can have multiple interrupts
with the same interrupt ID. Such an interrupt is called a banked interrupt, and is identified
uniquely by the combination of its interrupt ID and its associated CPU interface. For more
information see Interrupt IDs on page 2-4.

Register banking

Register banking refers to implementing multiple copies of a register at the same address.
This occurs:

• in a multiprocessor implementation, for some registers corresponding to banked
interrupts

• in a GIC that implements the Security Extensions, to provide separate Secure and
Non-secure copies of some registers.

For more information see Register banking on page 4-5.
1-6 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Chapter 2
GIC Partitioning

This chapter describes the architectural partitioning of the GIC. It contains the following sections:

• About GIC partitioning on page 2-2

• The Distributor on page 2-4

• CPU interfaces on page 2-6.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 2-1
Unrestricted Access Non-Confidential

GIC Partitioning
2.1 About GIC partitioning

This GIC architecture splits logically into a Distributor block and one or more CPU interface blocks, as
Figure 2-1 on page 2-3 shows:

Distributor This performs interrupt prioritization and distribution to the CPU interfaces that
connect to the processors in the system.

CPU interfaces Each CPU interface performs priority masking and preemption handling for a
connected processor in the system.

Each block provides part of the GIC programmers model, and the programmers model is generally the same
for each implemented CPU interface. This model supports implementation of the GIC in uniprocessing or
multiprocessing environments.

Note
 • The split of the GIC into the Distributor and CPU interface blocks is an architectural abstraction. It

is IMPLEMENTATION DEFINED whether these blocks are implemented separately or combined.

• In a GIC that implements the Security Extensions in a multiprocessor system, a CPU interface can
be implemented so that it receives:

— both Secure and Non-secure accesses

— only Secure accesses

— only Non-secure accesses.

A GIC can implement up to eight CPU interfaces, numbered from 0-7.
2-2 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

GIC Partitioning
Figure 2-1 GIC logical partitioning into Distributor and CPU interfaces

GIC

Distributor

Interrupt ID
32-1019

PPIs

(FIQ‡, IRQ)*

Interrupt ID
0-15

PPIs

(FIQ‡, IRQ)*

Processor
0

Processor
7

SPIs

CPU
interface 7

* FIQ‡, IRQ

Memory-mapped
interface

Processor
0

Processor
7

Memory-mapped
interface

CFGSDISABLE‡

‡ Only if Security Extensions are implemented
* Optional input and bypass multiplexer, see text

Interrupt ID
16-31

SGI
request

Interrupt ID
0-15

CPU
interface 0

* FIQ‡, IRQ

Memory-mapped
interface

Interrupt ID
16-31

SGI
request
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 2-3
Unrestricted Access Non-Confidential

GIC Partitioning
2.2 The Distributor

The Distributor centralizes all interrupt sources, determines the priority of each interrupt, and for each CPU
interface dispatches the interrupt with the highest priority to the interface for priority masking and
preemption handling.

 The Distributor provides a programming interface for:

• globally enabling the forwarding of interrupts to the CPU interfaces

• enabling or disabling each interrupt

• setting the priority level of each interrupt

• setting the target processor list of each interrupt

• setting each peripheral interrupt to be level-sensitive or edge-triggered

• if the GIC implements the Security Extensions, setting each interrupt as either Secure or Non-secure

• sending an SGI to one or more target processors.

In addition, the Distributor provides:

• visibility of the state of each interrupt

• a mechanism for software to set or clear the pending state of a peripheral interrupt.

2.2.1 Interrupt IDs

Interrupts from sources are identified using ID numbers. Each CPU interface can see up to 1020 interrupts.
Because of banking of SPIs and PPIs this means the distributor supports up to 1244 interrupts.

The GIC assigns interrupt ID numbers ID0-ID1019 as follows:

• Interrupt numbers ID32-ID1019 are used for SPIs.

• Interrupt numbers ID0-ID31 are used for interrupts that are private to a CPU interface, and are banked
in the Distributor,

A banked interrupt is one where the Distributor can have multiple interrupts with the same ID. A
banked interrupt is identified uniquely by its ID number and its associated CPU interface number. Of
the banked interrupt IDs:

— ID0-ID15 are used for SGIs

— ID16-ID31 are used for PPIs

In a multiprocessor system:

— A PPI is signalled to a particular CPU interface, and is private to that interface. In prioritizing
interrupts for a CPU interface the distributor considers only the PPIs signalled to that interface.

— Each connected processor issues an SGI by writing to the ICDSGIR in the Distributor, see
Software Generated Interrupt Register (ICDSGIR) on page 4-39. Each SGI can target multiple
processors. In the distributor and in a targeted processor, an SGI is identified uniquely by the
combination of its interrupt number, ID0-ID15, and the processor source ID,
CPUID0-CPUID7, of the processor that issued the SGI. Banking SGIs means the GIC can
handle multiple software interrupts simultaneously without resource conflicts.
2-4 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

GIC Partitioning
The Distributor ignores any write to the ICDSGIR that is not from a processor that is connected
to one of the CPU interfaces. How the Distributor determines the processor source ID of a
processor writing to the ICDSGIR is IMPLEMENTATION DEFINED.

In a uniprocessor system, there is no distinction between shared and private interrupts, because all
interrupts are visible to the processor. In this case the processor source ID value is 0.

• Interrupt numbers ID1020-ID1023 are reserved for special purposes, see Special interrupt numbers
on page 3-11.

System software sets the priority of each interrupt independent of its interrupt number.

In any system that implements the Security Extensions, to support a consistent model for message passing
between processors, ARM strongly recommends that all processors reserve:

• ID0-ID7 for Non-secure interrupts

• ID8-ID15 for Secure interrupts.

For more information about message passing see Message passing between processors on page B-20.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 2-5
Unrestricted Access Non-Confidential

GIC Partitioning
2.3 CPU interfaces

Each CPU interface block provides the interface for a processor that operates with the GIC. Each CPU
interface provides a programming interface for:

• enabling the signalling of interrupt requests by the CPU interface

• acknowledging an interrupt

• indicating completion of the processing of an interrupt

• setting an interrupt priority mask for the processor

• defining the preemption policy for the processor

• determining the highest priority pending interrupt for the processor.

When enabled, a CPU interface takes the highest priority pending interrupt for its connected processor and
determines whether the interrupt has sufficient priority for it to signal the interrupt request to the processor.
To determine whether to signal the interrupt request to the processor the CPU interface considers the
interrupt priority mask and the preemption settings for the processor. At any time, the connected processor
can read the priority of its highest priority active interrupt from a CPU interface register.

The mechanism for signaling an interrupt to the processor is IMPLEMENTATION DEFINED.

Note
 On ARM processor implementations, the traditional mechanism for signalling an interrupt request is by
asserting nIRQ or nFIQ.

The processor acknowledges the interrupt request by reading the CPU interface Interrupt Acknowledge
register. The CPU interface returns one of:

• The ID number of the highest priority pending interrupt, if that interrupt is of sufficient priority to
generate an interrupt exception on the processor. This is the normal response to an interrupt
acknowledge.

• Exceptionally, an ID number that indicates a spurious interrupt.

When the processor acknowledges the interrupt at the CPU interface, the Distributor changes the status of
the interrupt from pending to either active, or active and pending. At this point the CPU interface can signal
another interrupt to the processor, to preempt interrupts that are active on the processor. If there is no
pending interrupt with sufficient priority for signalling to the processor, the interface deasserts the interrupt
request signal to the processor.

When the interrupt handler on the processor has completed the processing of an interrupt, it writes to the
CPU interface to indicate interrupt completion. When this happens, the distributor changes the status of the
interrupt either:

• from active to inactive

• from active and pending to pending.
2-6 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Chapter 3
Interrupt Handling and Prioritization

This chapter describes the requirements for interrupt handling and prioritization in the GIC. It contains the
following sections:

• About interrupt handling and prioritization on page 3-2

• General handling of interrupts on page 3-5

• Interrupt prioritization on page 3-12

• The effect of the Security Extensions on interrupt handling on page 3-15

• The effect of the Security Extensions on interrupt prioritization on page 3-18

• Pseudocode details of interrupt handling and prioritization on page 3-25.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-1
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
3.1 About interrupt handling and prioritization

The following subsections give more information about the interrupts supported by a GIC, and how a
connected processor must determine the range of interrupt IDs supported by the GIC:

• Handling different interrupt types in a multiprocessor system on page 3-3

• Identifying the supported interrupts on page 3-3.

The remainder of the chapter describes interrupt handling and prioritization.

Interrupt handling describes:

• how the GIC recognizes interrupts

• how software can program the GIC to configure and control interrupts

• the state machine the GIC maintains for each interrupt on each CPU interface

• how the exception model of a processor interacts with the GIC.

Prioritization describes:

• the configuration and control of interrupt priority

• the order of execution of pending interrupts

• the determination of when interrupts are visible to a target processor, including:

— interrupt priority masking

— interrupt grouping

— preemption of an active interrupt.

The GIC architecture supports uniprocessor and multiprocessor systems. In either a uniprocessor or a
multiprocessor system, a GIC can implement the ARM Security Extensions. A GIC that implements the
Security Extensions:

• recognizes that a connected processor that implements the Security Extensions makes either Secure
accesses or Non-secure accesses to the GIC registers

• supports:

— the configuration of interrupts as either Secure or Non-secure

— the handling of Secure and Non-secure interrupts.

• in a multiprocessor system, might implement the Security Extensions on only some of its CPU
interfaces.

Support for Secure and Non-secure interrupts makes interrupt handling and prioritization more complex.
This chapter describes interrupt handling and prioritization in a GIC that does not implement the Security
Extensions, and then describes the effect of the Security Extensions, in the following sections:

• General handling of interrupts on page 3-5

• Interrupt prioritization on page 3-12

• The effect of the Security Extensions on interrupt handling on page 3-15

• The effect of the Security Extensions on interrupt prioritization on page 3-18

• Pseudocode details of interrupt handling and prioritization on page 3-25.
3-2 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
3.1.1 Handling different interrupt types in a multiprocessor system

A GIC supports peripheral interrupts and software-generated interrupts, see Interrupt types on page 1-4.

In a multiprocessor implementation the GIC handles:

• software generated interrupts (SGIs) using an N-N model

• peripheral (hardware) interrupts using a 1-N model.

See Models for handling interrupts on page 1-5 for definitions of the two models.

3.1.2 Identifying the supported interrupts

The GIC architecture defines different ID values for the different types of interrupt, see Interrupt IDs on
page 2-4. However, there is no requirement for the GIC to implement a continuous block of interrupt IDs
for any interrupt type.

Note
 ARM strongly recommends that implemented interrupts are grouped to use the lowest ID numbers and as
small a range of interrupt IDs as possible, because this reduces the number of registers that must be
implemented, and that discovery routines must check.

To correctly handle interrupts, software must know what interrupt IDs are supported by the GIC. Software
can use the ICDISERs to discover this information, see Interrupt Set-Enable Registers (ICDISERn) on
page 4-19. If the processor implements the Security Extensions, Secure software determines which
interrupts are visible to Non-secure software. The Non-secure software must know which interrupts it can
see, and might use this discovery process to find this information.

ICDISER0 provides the Set-enables bits for:

• SGIs, using interrupt IDs 15-0, corresponding to register bits [15:0]

• PPIs, using interrupt IDs 31-16, corresponding to register bits [31:16].

The remaining ICDISERs, from ICDISER1, provide the Set-enable bits for the SPIs, starting at interrupt
ID 32.

If an interrupt is:

• not supported, the Set-enable bit corresponding to its interrupt ID is RAZ/WI

• supported and permanently enabled, the Set-enable bit corresponding to its interrupt ID is RAO/WI.

Software discovers which interrupts are supported as follows:

• Read the ICDICTR, see Interrupt Controller Type Register (ICDICTR) on page 4-14. The
ITLinesNumber field identifies the number of implemented ICDISERs, and therefore the maximum
number of SPIs that might be supported.

• Write 0 to the ICDDCR.Enable bit, to disable forwarding of interrupts to CPU interfaces, see
Distributor Control Register (ICDDCR) on page 4-12.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-3
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
Note
 When ICDDCR.Enable is set to 0 the GIC ignores the state of peripheral signals. This means it might

miss edge-triggered interrupts.

• For each implemented ICDISER, starting with ICDISER0:

— Write 0xFFFFFFFF to the ICDISER.

— Read the value of the ICDISER. Bits that read as 1 correspond to supported interrupt IDs.

Software uses the ICDICERs to discover which interrupts are permanently enabled, see Interrupt
Clear-Enable Registers (ICDICERn) on page 4-21. It does this discovery as follows. For each implemented
ICDICER, starting with ICDICER0:

• Write 0xFFFFFFFF to the ICDICER. This disables all interrupts that can be disabled.

• Read the value of the ICDICER. Bits that read as 1 correspond to interrupts that are permanently
enabled.

• Write 1 to any bits in the ICDICER that correspond to interrupts that must be re-enabled.

The GIC implements the same number of ICDISERs and ICDICERs.

When software has completed its discovery, it writes 1 to the ICDDCR.Enable bit, to enable forwarding of
interrupts to CPU interfaces.

If the GIC implements the Security Extensions, software can use Secure accesses to:

• discover all the supported interrupt IDs.

• write to the ICDISRs, to configure interrupts as Secure or Non-secure, see Interrupt Security
Registers (ICDISRn) on page 4-17.

Software using Non-secure accesses can discover only the interrupts that are configured as Non-secure.

If Secure software changes the security configuration of any interrupts after Non-secure software has
discovered its supported interrupts, it must communicate the effect of those changes to the Non-secure
software.
3-4 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
3.2 General handling of interrupts

The Distributor maintains a state machine for each supported interrupt on each CPU interface. Interrupt
handling state machine on page 3-10 describes this state machine and its state transitions. The possible
states of an interrupt are:

• inactive

• pending

• active

• active and pending.

When the GIC recognizes an interrupt request, it marks its state as pending. Regenerating a pending
interrupt does not affect the state of the interrupt.

The GIC operates on interrupts as follows:

1. The GIC determines whether each interrupt is enabled. An interrupt that is not enabled has no further
effect on the GIC.

2. For each enabled interrupt that is pending, the Distributor determines the targeted processor or
processors.

3. For each processor, the Distributor determines the highest priority pending interrupt, based on the
priority information it holds for each interrupt, and forwards the interrupt to the CPU interface.

4. The CPU interface compares the interrupt priority with the current interrupt priority for the processor,
determined by a combination of the Priority Mask Register, the current preemption settings, and the
highest priority active interrupt for the processor. If the interrupt has sufficient priority, the GIC
signals an interrupt exception request to the processor.

Note
 Throughout this document, an interrupt is described as having sufficient priority if its priority value,

compared with the Priority Mask Register value, the preemption settings for the interface, and the
priority of the highest priority active interrupt on the processor, mean that the CPU interface must
signal the interrupt request to the processor.

5. When the processor takes the interrupt exception, it reads the ICCIAR in its CPU interface to
acknowledge the interrupt, see Interrupt Acknowledge Register (ICCIAR) on page 4-56. This read
returns an Interrupt ID that the processor uses to select the correct interrupt handler. When it
recognizes this read, the GIC changes the state of the interrupt:

• if the pending state of the interrupt persists when the interrupt becomes active, or if the
interrupt is generated again, from pending to active and pending.

• otherwise, from pending to active
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-5
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
Note
 • A level-sensitive peripheral interrupt persists when it is acknowledged by the processor,

because the interrupt signal to the GIC remains asserted until the interrupt service routine
(ISR) running on the processor accesses the peripheral asserting the signal.

• In a multiprocessor implementation, the GIC handles:

— SGIs using an N-N model, where the acknowledgement of an interrupt by one processor
has no effect on the state of the interrupt on other CPU interfaces

— peripheral interrupts using a 1-N model, where the acknowledgement of an interrupt by
one processor removes the pending status of the interrupt on any other targeted
processors, see Implications of the 1-N model on page 3-8.

6. When the processor has completed handling the interrupt, it signals this completion by writing to the
ICCEOIR in the GIC, see End of Interrupt Register (ICCEOIR) on page 4-59.

The GIC requires the order of completion of interrupts by a particular processor to be the reverse of
the order of acknowledgement, so the last interrupt acknowledged must be the first interrupt
completed.

When the processor writes to the ICCEOIR, the GIC changes the state of the interrupt, for the
corresponding CPU interface, either:

• from active to inactive

• from active and pending to pending.

If there is no pending interrupt of sufficient priority for the CPU interface to signal it to the processor,
the interface deasserts the interrupt exception request to the processor.

A CPU interface never signals to the connected processor any interrupt that is active and pending. It
only signals interrupts that are pending and have sufficient priority:

• for SPIs, this means the interface never signals any interrupt that is active and pending on any
CPU interface

• for SGIs, the interface never signals any interrupt that is active and pending on this interface,
but does not consider whether the interrupt is active and pending on any other interface

• any PPI is private to this interface and the interface does not signal it if it is active and pending.

For more information about the steps in this process see:

• Interrupt prioritization on page 3-12,

• for a GIC that implements the Security Extensions:

— The effect of the Security Extensions on interrupt handling on page 3-15

— The effect of the Security Extensions on interrupt prioritization on page 3-18.
3-6 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
3.2.1 Interrupt controls in the GIC

The following sections describe the interrupt controls in the GIC:

• Interrupt enables

• Setting and clearing pending state of an interrupt

• Finding the active or pending state of an interrupt on page 3-8

• Generating an SGI on page 3-8.

Interrupt enables

For peripheral interrupts, a processor:

• enables an interrupt by writing to the appropriate ICDISER bit, see Interrupt Set-Enable Registers
(ICDISERn) on page 4-19

• disables an interrupt by writing to the appropriate ICDICER bit, see Interrupt Clear-Enable Registers
(ICDICERn) on page 4-21.

Whether SGIs are permanently enabled, or can be enabled and disabled by writes to the ICDISER and
ICDICER, is IMPLEMENTATION DEFINED.

Writes to the ICDISERs and ICDICERs control whether the Distributor forwards interrupts to the CPU
interfaces. Disabling an interrupt by writing to the appropriate ICDICER does not prevent that interrupt
from changing state, for example becoming pending.

Setting and clearing pending state of an interrupt

For peripheral interrupts, a processor can:

• set the pending state by writing to the appropriate ICDISPR bit, see Interrupt Set-Pending Registers
(ICDISPRn) on page 4-23

• clear the pending state by writing to the appropriate ICDICPR bit, see Interrupt Clear-Pending
Registers (ICDICPRn) on page 4-26.

For a level-sensitive interrupt:

• If the hardware signal of an interrupt is asserted when a processor writes to the corresponding
ICDICPR bit then the write to the register has no effect on the pending state of the interrupt.

• If a processor writes a 1 to an ICDISPR bit then the corresponding interrupt becomes pending
regardless of the state of the hardware signal of that interrupt, and remains pending regardless of the
assertion or deassertion of the signal.

For more information about the control of the pending state of a level-sensitive interrupt see Control of the
pending status of level-sensitive interrupts on page 4-28.

For SGIs, the GIC ignores writes to the corresponding ICDISPR and ICDISCR bits. A processor cannot
change the state of a software-generated interrupt by writing to these registers.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-7
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
Finding the active or pending state of an interrupt

A processor can find:

• the pending state of an interrupt by reading the corresponding ICDISPR or ICDICPR bit

• the active state of an interrupt by reading the corresponding ICDABR bit, see Active Bit Registers
(ICDABRn) on page 4-29.

The corresponding register bit is 1 if the interrupt is pending or active. If an interrupt is pending and active
the corresponding bit is 1 in both registers.

For an SGI, the corresponding ICDISPR and ICDICPR bits RAO if there is a pending interrupt from at least
one generating processor that targets the processor reading the ICDISPR or ICDICPR.

Generating an SGI

A processor generates an SGI by writing to an ICDSGIR, see Software Generated Interrupt Register
(ICDSGIR) on page 4-39. An SGI can target multiple processors, and the ICDSGIR write specifies the target
processor list. The ICDSGIR includes optimization for:

• interrupting only the processor that writes to the ICDSGIR

• interrupting all processors other than the one that writes to the ICDSGIR.

SGIs from different processors use the same interrupt IDs. Therefore, any target processor can receive SGIs
with the same interrupt ID from different processors. On the CPU interface of the target processor, the
pending status of each of these interrupts is independent of the pending status of any other interrupt, but only
one interrupt with this ID can be active. Reading the ICCIAR for an SGI returns both the interrupt ID and
the CPU ID of the processor that generated the interrupt, uniquely identifying the interrupt.

In a multiprocessor implementation, the interrupt priority of each SGI interrupt ID is defined independently
for each CPU interface, see Interrupt Priority Registers (ICDIPRn) on page 4-31. This means that, for each
CPU interface, all SGIs with a particular interrupt ID that are pending on that interface have the same
priority and must be handled serially. How the CPU interface serializes these SGIs is IMPLEMENTATION
DEFINED.

3.2.2 Implications of the 1-N model

In a multiprocessor implementation, the GIC uses a 1-N model to handle peripheral interrupts that target
more than one processor. This means that when the GIC recognizes an interrupt acknowledge from one of
the target processors it clears the pending state of the interrupt on all the other targeted processors. This
model means an interrupt can be handled by the first available processor. However, the interrupt might
generate an interrupt exception on more than one of the targeted processors, for example if two of the
targeted processors recognize the interrupt exception request from the GIC at similar times.

When multiple target processors attempt to acknowledge the interrupt, the following can occur:

• A processor reads the ICCIAR and obtains the interrupt ID of the interrupt to be serviced, see
Interrupt Acknowledge Register (ICCIAR) on page 4-56. More than one target processor might have
obtained this interrupt ID, if the processors read their ICCIARs at very similar times. The system
3-8 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
might require software on the target processors to ensure that only one processor runs its interrupt
service routine. A typical mechanism to achieve this is implementing a lock on the interrupt service
routine (ISR), in shared memory. This might operate as follows:

— each target processor that obtains the interrupt ID from its read of the ICCIAR runs a
semaphore routine, attempting to obtain a lock on the ISR corresponding to the specified ID
value

— if a processor fails to obtain the lock it does no further processing of the interrupt, but writes
the interrupt ID to its ICCEOIR, see End of Interrupt Register (ICCEOIR) on page 4-59

— the processor that obtains the lock handles the interrupt and then writes the interrupt ID to its
ICCEOIR.

• A processor reads the ICCIAR and obtains the interrupt ID 1023, indicating a spurious interrupt. The
processor can return from its interrupt service routine without writing to its ICCEOIR.

The spurious interrupt ID indicates that the original interrupt is no longer pending, typically because
another target processor is handling it.

Note
 • A GIC implementation might ensure that only one processor can make a 1-N interrupt active,

removing the need for a lock on the ISR. This is not required by the architecture, and generic GIC
code must not rely on this behavior.

• For any processor, if an interrupt is active and pending, the GIC does not signal an interrupt exception
request for this interrupt to any processor until the active status is cleared.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-9
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
3.2.3 Interrupt handling state machine

The distributor maintains a state machine for each supported interrupt on each CPU interface. Figure 3-1
shows an instance of this state machine, and the possible state transitions.

Figure 3-1 Interrupt handling state machine

Note
 SGIs are generated only by writes to an ICDSGIR. Peripheral interrupts are generated by either a peripheral
indicating it requires service, or by a write to an ICDISPR.

When the Distributor and CPU interfaces are enabled, the conditions that cause each of the state transitions
are as follows:

Transition A1 or A2, add pending status

For an SGI:

• Occurs on a write to an ICDSGIR that specifies the processor as a target.

• If the GIC implements the Security Extensions and the write to the ICDSGIR is
Secure, the transition occurs only if the security configuration of the specified SGI,
for the appropriate CPU interface, corresponds to the ICDSGIR.SATT bit value.

For an SPI or PPI, occurs if either:

• a peripheral asserts an interrupt signal

• software writes to an ICDISPR.

Transition B1 or B2, remove pending status

Not applicable to SGIs:

• a pending SGI must transition through the active state, or reset, to remove its pending
status.

• an active and pending SGI must transition through the pending state, or reset, to
remove its pending status.

Inactive Pending

Active

Active and
pending

B2A2
E2

D

C

E1

B1

A1
3-10 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
For an SPI or PPI, occurs if either:

• the level-sensitive interrupt is pending only because of the assertion of an input
signal, and that signal is deasserted

• the interrupt is pending only because of the assertion of an edge-triggered interrupt
signal, or a write to an ICDISPR, and software writes to the corresponding ICDICPR.

Transition C If the interrupt is enabled and of sufficient priority to be signalled to the processor, occurs
when software reads from the ICCIAR.

Transition D For an SGI, occurs if the associated SGI is enabled and the Distributor forwards it to the
CPU interface at the same time that the processor reads the ICCIAR to acknowledge a
previous instance of the SGI. Whether this transition occurs depends on the timing of the
read of the ICCIAR relative to the reforwarding of the SGI.

For an SPI or PPI:

• Occurs if all the following apply:

— The interrupt is enabled.

— Software reads from the ICCIAR. This read adds the active state to the
interrupt.

— For a level-sensitive interrupt, the interrupt signal remains asserted. This is
usually the case, because the peripheral does not deassert the interrupt until the
processor has serviced the interrupt.

• For an edge-triggered interrupt, whether this transition occurs depends on the timing
of the read of the ICCIAR relative to the detection of the reassertion of the interrupt.
Otherwise the read of the ICCIAR causes transition C, possibly followed by
transition A2.

Transition E1 or E2, remove active status

Occurs when software writes to the ICCEOIR.

3.2.4 Special interrupt numbers

The GIC architecture reserves interrupt ID numbers 1020-1023 for special purposes. In a GIC that does not
implement the Security Extensions, the only one of these used is ID 1023. This value is returned to a
processor, in response to an interrupt acknowledge, if there is no pending interrupt with sufficient priority
for it to be signalled to the processor, It is described as a response to a spurious interrupt.

Note
 A race condition can cause a spurious interrupt. For example, a spurious interrupt can occur if a processor
writes a 1 to a field in an ICDICER that corresponds to a pending interrupt after the CPU interface has
signalled the interrupt to the processor and the processor has recognized the interrupt, but before the
processor has read from the ICCIAR.

For more information about the special interrupt numbers see Special interrupt numbers when the Security
Extensions are implemented on page 3-16.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-11
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
3.3 Interrupt prioritization

This section describes interrupt prioritization in the GIC architecture. It includes the following subsections:

• Preemption on page 3-13

• Priority masking on page 3-13

• Priority grouping on page 3-14

• Interrupt generation on page 3-14.

Software configures interrupt prioritization in the GIC by assigning a priority value to each interrupt source.
Priority values are 8-bit unsigned binary. A GIC supports a minimum of 16 and a maximum of 256 priority
levels. If the GIC implements fewer than 256 priority levels, low-order bits of the priority fields are
RAZ/WI, This means that the number of implemented priority field bits is IMPLEMENTATION DEFINED in the
range 4-8, as Table 3-1 shows.

In the GIC prioritization scheme, lower numbers have higher priority, that is, the lower the assigned priority
value the higher the priority of the interrupt. The highest interrupt priority always has priority field value 0,
and the lowest value depends on the number of implemented priority levels, as Table 3-1 shows.

The ICDIPRs hold the priority value for each supported interrupt, see Interrupt Priority Registers
(ICDIPRn) on page 4-31. To determine the number of priority bits implemented write 0xFF to an ICDIPR
priority field and read back the value stored.

Note
 ARM recommends that, before checking the priority range in this way

• for a peripheral interrupt, software first disables the interrupt

• for an SGI. software first checks that the interrupt is inactive.

An implementation might reserve an interrupt for a particular purpose and assign a fixed priority to that
interrupt, meaning the priority value for that interrupt is read-only.

This model aligns with the priority grouping mechanism described in Priority grouping on page 3-14.

Table 3-1 Effect of not implementing some LS priority field bits

Implemented priority bits Possible priority field values Number of priority levels

[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE, (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16
3-12 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
If, on a particular CPU interface, multiple pending interrupts have the same priority, and have sufficient
priority that the interface must signal them to the processor, it is IMPLEMENTATION DEFINED how the
interface selects which interrupt to signal.

When an interrupt is active on a CPU interface, the GIC might signal a higher-priority interrupt on that CPU
interface, see Preemption.

Software sets the priority of each interrupt in the appropriate ICDIPR, see Interrupt Priority Registers
(ICDIPRn) on page 4-31. It is IMPLEMENTATION DEFINED whether a write to the ICDIPR changes the
priority of any active interrupt.

3.3.1 Preemption

A CPU interface supports forwarding of higher priority pending interrupts to a target processor before an
active interrupt completes. A pending interrupt is only forwarded if it has a higher priority than all of:

• the priority of the highest priority active interrupt on the target processor, the running priority for the
processor, see Running Priority Register (ICCRPR) on page 4-61

• the priority mask, see Priority masking

• the priority group, see Priority grouping on page 3-14.

Preemption occurs at the time when the processor acknowledges the new interrupt, and starts to service it
in preference to the previously active interrupt or the currently running process. When this occurs, the initial
active interrupt is said to have been preempted. Starting to service an interrupt while another interrupt is still
active is sometimes described as interrupt nesting.

Note
 For a processor that complies with the ARM architecture:

• The value of the I or F bit in the CPSR determines whether the processor responds to the signalled
interrupt by starting the interrupt acknowledge procedure.

• When processing a preempting interrupt, the processor must save and later restore the context of the
previously active ISR.

For more information, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

3.3.2 Priority masking

The ICCPMR for a CPU interface defines a priority threshold for the target processor, see Interrupt Priority
Mask Register (ICCPMR) on page 4-52. The GIC only signals pending interrupts with a higher priority than
this threshold value to the target processor. A value of zero, the register reset value, masks all interrupts to
the associated processor.

The GIC always masks an interrupt that has the largest supported priority field value. This provides an
additional means of preventing an interrupt being signalled to any processor.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-13
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
Note
 Writing 255 to the ICCPMR always sets it to the largest supported priority field value. Table 3-1 on
page 3-12 shows how the largest supported field value varies with the number of implemented priority bits.

3.3.3 Priority grouping

Priority grouping splits each priority value into two fields, the group priority and the subpriority fields. The
GIC uses the group priority field to determine whether a pending interrupt has sufficient priority to preempt
a currently active interrupt.

The binary point field in the ICCBPR controls the split of the priority bits into the two parts. This 3-bit field
specifies how many of the least significant bits of the 8-bit interrupt priority field are excluded from the
group priority field, as Table 3-2 shows.

The minimum binary point value supported is IMPLEMENTATION DEFINED in the range 0-3.

For more information about the ICCBPR see Binary Point Register (ICCBPR) on page 4-54.

Where multiple pending interrupts share the same group priority, the GIC uses the subpriority field to
resolve the priority within a group. Where two or more pending interrupts in a group have the same
subpriority, how the GIC selects between the interrupts is IMPLEMENTATION DEFINED.

3.3.4 Interrupt generation

The pseudocode in Exception generation pseudocode, without the Security Extensions on page 3-27
describes the generation of interrupts by the GIC.

Table 3-2 Priority grouping by binary point

Binary point value
Interrupt priority field [7:0]

Group priority field Subpriority field Field with binary point

0 [7:1] [0] ggggggg.s

1 [7:2] [1:0] gggggg.ss

2 [7:3] [2:0] ggggg.sss

3 [7:4] [3:0] gggg.ssss

4 [7:5] [4:0] ggg.sssss

5 [7:6] [5:0] gg.ssssss

6 [7] [6:0] g.sssssss

7 No preemption [7:0] .ssssssss
3-14 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
3.4 The effect of the Security Extensions on interrupt handling

If a GIC CPU interface implements the Security Extensions, it provides two interrupt output signals, IRQ
and FIQ:

• The CPU interface always uses the IRQ exception request for Non-secure interrupts

• Software can configure the CPU interface to use either IRQ or FIQ exception requests for Secure
interrupts.

Note
 In a GIC that does not support the Security Extensions, each CPU interface implements only a single port
for signalling interrupts to a target processor. The alternatives for providing GIC interrupt routing for both
IRQ and FIQ exception requests in a processor environment that does not include the Security Extensions
are:

• Implement two instances of the GIC, without the Security Extensions. One instance routes FIQs and
the other instance routes IRQs.

• Implement a single GIC that implements the Security Extensions, and implements the CPU interface
to the processor so that all accesses appear to the GIC as Secure accesses. In an implementation of
this model, software configures an interrupt as Secure to assign it to the generation of FIQ exception
requests to the processor.

The remainder of this section describes a GIC that implements the Security Extensions.

3.4.1 Security Extensions support

Software can detect support for the Security Extensions by reading the ICDICTR.SecurityExtn bit, see
Interrupt Controller Type Register (ICDICTR) on page 4-14.

Secure software makes Secure writes to the ICDISRs to configure each interrupt as Secure or Non-secure,
see Interrupt Security Registers (ICDISRn) on page 4-17.

In addition:

• The banking of registers provides independent control of Secure and Non-secure interrupts, see Effect
of the Security Extensions on the programmers model on page 4-7.

• The Secure copy of the ICCICR has additional fields to control the processing of Secure and
Non-secure interrupts, see CPU Interface Control Register (ICCICR) on page 4-47. These fields are:

— the SBPR bit, that affects the preemption of Non-secure interrupts, see Control of preemption
by Non-secure interrupts on page 3-22

— the FIQEn bit, that controls whether the interface signals Secure interrupts to the processor
using the IRQ or FIQ interrupt exception requests

— the AckCtl bit, that affects the acknowledgment of Non-secure interrupts, see Effect of the
Security Extensions on interrupt acknowledgement on page 3-16
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-15
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
— the EnableNS bit, that controls whether Non-secure interrupts are signaled to the processor,
and is an alias of the Enable bit in the Non-secure ICCICR.

• The Non-secure copy of the ICCBPR is aliased as the ICCABPR, see Aliased Binary Point Register
(ICCABPR) on page 4-62. This is a Secure register, meaning it is only accessible by Secure accesses.

3.4.2 Special interrupt numbers when the Security Extensions are implemented

Special interrupt numbers on page 3-11 describes the use of interrupt ID 1023 to indicate a spurious
interrupt. The full list of the interrupt ID numbers the GIC architecture reserves for special purposes is as
follows:

1020-1021 Reserved.

1022 Used only if the GIC implements the Security Extensions.

The GIC returns this value to a processor in response to an interrupt acknowledge only when
all of the following apply:

• the interrupt acknowledge is a Secure read

• the highest priority pending interrupt is Non-secure

• the AckCtl bit in the Secure ICCICR is set to 0

• the priority of the interrupt is sufficient for it to be signalled to the processor.

Note
 Interrupt ID 1022 informs Secure software that there is a Non-secure interrupt of sufficient

priority to be signalled to the processor, that must be handled by Non-secure software. In
this situation the Secure software might alter its schedule to permit Non-secure software to
handle the interrupt, to minimize the interrupt latency.

1023 This value is returned to a processor, in response to an interrupt acknowledge, if there is no
pending interrupt with sufficient priority for it to be signalled to the processor.

On a processor that implements the Security Extensions, Secure software treats values of 1022 and 1023 as
spurious interrupts.

3.4.3 Effect of the Security Extensions on interrupt acknowledgement

When a processor takes an interrupt, it acknowledges the interrupt by reading the ICCIAR, see General
handling of interrupts on page 3-5. A read of the ICCIAR always acknowledges the highest priority pending
interrupt for the processor performing the read.

If the highest priority pending interrupt is a Secure interrupt, the processor must make a Secure read of the
ICCIAR to acknowledge it.

By default, the processor must make a Non-secure read of the ICCIAR to acknowledge a Non-secure
interrupt. If he AckCtl bit in the Secure ICCICR is set to 1 the processor can make a Secure read of the
ICCIAR to acknowledge a Non-secure interrupt.
3-16 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
If the read of the ICCIAR does not match the security of the interrupt, taking account of the AckCtl bit value
for a Non-secure interrupt, the ICCIAR read does not acknowledge any interrupt and returns the value:

• 1022 for a Secure read when the highest priority interrupt is Non-secure

• 1023 for a Non-secure read when the highest priority interrupt is Secure.

See Effect of the Security Extensions on reads of the ICCIAR on page 4-58 for more information.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-17
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
3.5 The effect of the Security Extensions on interrupt prioritization

If the GIC supports the Security Extensions:

• Secure software must program the ICDISRs to configure each supported interrupt as either Secure or
Non-secure, see Interrupt Security Registers (ICDISRn) on page 4-17

• the GIC provides Secure and Non-secure views of the interrupt priority settings

• the minimum number of priority values supported increases from 16 to 32.

Note
 Non-secure accesses can see only half of the supported priority values. Therefore, if the GIC

implements 32 priority values, Non-secure accesses see only 16 priority values.

3.5.1 Software views of interrupt priority

When a processor reads the priority value of an interrupt, the GIC returns either the Secure or the
Non-secure view of that value, depending on whether the access is Secure or Non-secure. This section
describes the two views of interrupt priority, and the relationship between them.

For a Secure access, the GIC implements a minimum of 32 and a maximum of 256 priority levels. This
means it implements 5-8 bits of the 8-bit priority value fields. Unimplemented low-order bits of the priority
fields are RAZ/WI, Figure 3-2 shows the Secure view of a priority value field for a Secure interrupt.

Figure 3-2 Secure view of the priority field for a Secure interrupt

In this view:

• bits H-D are the bits that the GIC must implement

• bits c-a are the bits the GIC might implement, that are RAZ/WI if not implemented.

A Non-secure access can only see a priority value field that corresponds to a Non-secure access. For a
Non-secure access, the GIC supports half the priority levels it supports for a Secure access. Figure 3-3 shows
the Non-secure view of a priority value field for a Non-secure interrupt.

Figure 3-3 Non-secure view of the priority field for a Non-secure interrupt

a

7 6 5 4 3 2 1 0

H G F E D c bSecure view,
priority value field for Secure interrupt

0

7 6 5 4 3 2 1 0

G F E D c b aNon-secure view,
priority value field for Non-secure interrupt
3-18 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
In this view:

• bits G-D are the bits that the GIC must implement

• bits c-a are the bits the GIC might implement, that are RAZ/WI if not implemented

• bit [0] is RAZ/WI.

The Non-secure view of a priority value does not show how the value is stored in the Distributor. Taking the
value from a Non-secure write to a priority field, before storing the value the Distributor:

• right-shifts the value by one bit

• sets bit [7] of the value to 1.

This translation means the priority value for the Non-secure interrupt is in the top half of the possible value
range, meaning the interrupt priority is in the bottom half of the priority range.

A Secure read of the priority value for a Non-secure interrupt returns the value stored in the distributor.
Figure 3-4 shows this Secure view of the priority value field for a Non-secure interrupt that has had its
priority value field set by a Non-secure access, or has had a priority value with bit [7] == 1 set by a Secure
access:

Figure 3-4 Secure read of the priority field for a Non-secure interrupt

A Secure write to the priority value field for a Non-secure interrupt can set bit [7] to 0, but see
Recommendations for managing priority values on page 3-22. If a Secure write sets bit [7] to 0:

• A Non-secure read returns the value 0bGFEDcba0.

• A Non-secure write can change the value of the field, but only to a value that has bit [7] set to 1 in
the distributor view of the field.

Note
 This behavior of Non-secure accesses applies only to the Priority value fields in the ICDIPR, see Interrupt
Priority Registers (ICDIPRn) on page 4-31:

• if the Priority field in the ICCPMR holds a value with bit [7] == 0, then the field is RAZ/WI to
Non-secure accesses, see Interrupt Priority Mask Register (ICCPMR) on page 4-52

• if the Priority field in the ICCRPR holds a value with bit [7] == 0, then the field is RAZ to Non-secure
reads, see Running Priority Register (ICCRPR) on page 4-61.

Figure 3-5 on page 3-20 shows the relationship between the views of the Priority value fields.

a

7 6 5 4 3 2 1 0

1 G F E D c b
Secure read,
priority value field for Non-secure interrupt,
with value set by a Non-secure write
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-19
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
Figure 3-5 Relationship between Secure and Non-secure views of interrupt priority fields

Figure 3-6 on page 3-21 shows how the software views of the interrupt priorities, from Secure and
Non-secure accesses, relate to the priority values held in the Distributor, and the interrupt value that are
visible to Secure and Non-secure accesses. This is for a GIC that implements the maximum range of priority
values.

a

7 6 5 4 3 2 1 0

H G F E D c b Matches distributor view

0

7 6 5 4 3 2 1 0

G F E D c b a Translation of distributor view

a

7 6 5 4 3 2 1 0

1‡ G F E D c b

Secure Secure
or Non-secure

Non-secure Non-secure

Secure Non-secure

InterruptAccess

InterruptAccess

InterruptAccess

Matches distributor view

‡ If the priority value was set by a Non-secure write, bit [7] is set to 1 in the Distributor, and a Secure
read sees this value. A Secure write to the field can set this bit to 0, see text for how this affects
Non-secure accesses to the field.
The priority field for a Secure interrupt is RAZ/WI to Non-secure accesses.
3-20 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
Figure 3-6 Software views of the priorities of Non-secure and Secure interrupts

Table 3-3 shows how the number of priority value bits implemented by the GIC affects the Secure and
Non-secure views of interrupt priority.

This model for the presentation of priority values ensures software written to operate with an
implementation of this GIC architecture functions as intended regardless of whether the GIC implements
the Security Extensions. However, programmers must ensure secure software assigns appropriate priority
levels to the Secure and Non-secure interrupts. See Priority management and the Security Extensions on
page 3-24 for more information.

0x00

0x7F
0x80

0xFF

Priority range for
Non-secure interrupts †

0x00

0xFE

Increasing
priority ‡

0x00

0xFF

Increasing
priority

Priority range for
 Secure interrupts †

Priority values
in Distributor

‡ All priority values are even (bit [0] == 0) in the view from Non-secure accesses

Software view from
Non-secure accesses

Software view from
Secure accesses

† Ranges recommended by ARM for normal use, see text for more information

Table 3-3 Effect of not implementing some LS priority field bits, with Security Extensions

Implemented priority bits, as
seen in Secure view

Possible priority field values

Secure view Non-secure view

[7:0] 0xFF-0x00 (255-0), all values 0xFE-0x00 (254-0), even values only

[7:1] 0xFE-0x00 (254-0), even values only 0xFC-0x00 (252-0), in steps of 4

[7:2] 0xFC-0x00 (252-0), in steps of 4 0xF8-0x00 (248-0), in steps of 8

[7:3] 0xF8-0x00 (248-0), in steps of 8 0xF0-0x00 (240-0), in steps of 16
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-21
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
For more information about priority-related register access restrictions associated with the Security
Extensions, see the pseudocode in Interrupt generation when the GIC implements the Security Extensions
on page 3-23.

Recommendations for managing priority values

ARM strongly recommends that:

• for a Secure interrupt, software sets bit [7] of the priority value field to 0

• if using a Secure write to set the priority of a Non-secure interrupt, software sets bit [7] of the priority
value field to 1.

This ensures that all Secure interrupts have lower priority values, and therefore higher priorities, than all
Non-secure interrupts. However, a system might have requirements that cannot be met with this scheme, see
Priority management and the Security Extensions on page 3-24.

Note
 Software might not have any awareness of the Security Extensions, and therefore might not know whether
it is making Secure or Non-secure accesses to GIC registers. However, for any implemented interrupt,
software can write 0xFF to the corresponding ICDIPR priority value field, and then read back the value stored
in the field to determine the supported interrupt priority range. ARM recommends that, before checking the
priority range in this way:

• for a peripheral interrupt, software first disables the interrupt

• for an SGI. software first checks that the interrupt is inactive.

3.5.2 Control of preemption by Non-secure interrupts

See Preemption on page 3-13 and Priority grouping on page 3-14 for more information about preemption.

When the GIC implements the Security Extensions, it always uses the Secure ICCBPR to determine whether
it signals a Secure interrupt to the processor, for possible preemption, see Binary Point Register (ICCBPR)
on page 4-54. By default, it uses the Non-secure ICCBPR to determine whether to signal a Non-secure
interrupt for possible preemption. However, Secure software can configure the CPU interface to always use
the Secure ICCBPR for determining possible preemption, for both Secure and Non-Secure interrupts. To do
this, it sets the SBPR bit in the Secure ICCICR to 1, see CPU Interface Control Register (ICCICR) on
page 4-47.

3.5.3 The effect of the Security Extensions on priority masking

This section describes how the Security Extensions change the information given in Priority masking on
page 3-13.

If the GIC implements the Security Extensions, the ICCPMR is RAZ/WI to Non-secure accesses if it holds
a value with bit [7] == 0. In normal operation, Non-secure software does not access the ICCPMR when it is
programmed with such a value. For more information see Interrupt Priority Mask Register (ICCPMR) on
page 4-52 and Non-secure access to register fields for Secure interrupt priorities on page 4-8.
3-22 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
3.5.4 The effect of the Security Extensions on priority grouping

For Secure interrupts, the priority grouping behavior is as described in Priority grouping on page 3-14. For
Non-secure interrupts, priority grouping is modified so that, for each binary point value, one bit moves from
the subpriority field to the group priority field.

Note
 Priority grouping always operates on the priority value held in the Distributor, not the value visible to a
Non-secure read of the priority value corresponding to a Non-secure interrupt. See Figure 3-5 on page 3-20
and Figure 3-6 on page 3-21.

Table 3-2 on page 3-14 shows the priority grouping for Non-secure interrupts.

The right shift of the binary point for Non-secure interrupts, and the views of interrupt priority described in
Software views of interrupt priority on page 3-18, mean that software that has no awareness of the Security
Extensions sees the same priority grouping mechanism regardless of whether it is running in Secure state or
in Non-secure state.

3.5.5 Interrupt generation when the GIC implements the Security Extensions

The pseudocode in Exception generation pseudocode, with the Security Extensions on page 3-28 describes
the generation of interrupts by the GIC when the GIC implements the Security Extensions.

Table 3-4 Priority grouping for Non-secure interrupts

Binary point value
Interrupt priority field [7:0]

Group priority field Subpriority field Field with binary point

0 [7:0]a

a. If a Non-secure write sets the priority value field for a Non-secure interrupt then bit [7] is 1.

- gggggggg.

1 [7:1]a [0] ggggggg.s

2 [7:2]a [1:0] gggggg.ss

3 [7:3]a [2:0] ggggg.sss

4 [7:4]a [3:0] gggg.ssss

5 [7:5]a [4:0] ggg.sssss

6 [7:6]a [5:0] gg.ssssss

7 [7]a [6:0] g.sssssss
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-23
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
3.5.6 Priority management and the Security Extensions

A system that implements the Security Extensions can use the following schemes for managing interrupt
priority:

Non-cooperative All Secure interrupts have higher priority than any Non-secure interrupt, and can
always preempt any Non-secure interrupt.

Co-operative Secure and Non-secure software interact to program some Secure interrupts with
lower priority than some Non-secure interrupts.

Secure software is software that can make Secure accesses to the GIC, and might be able to make
Non-secure accesses. Non-secure software can make only Non-secure accesses.

Where Secure software manipulates the priority level of a Non-secure interrupt, normally it ensures bit [7]
of the priority value field is set to 1, so that the priority of the interrupt is in the lower half of the implemented
range. However, it might have to program the priority level of a Non-secure interrupt to a value in the upper
half of the implemented priority range, for example to manage an SGI from Non-secure software that targets
at a processor that executes only Secure software.

Secure software can also set the priority of a Secure interrupt to a value in the lower half of the implemented
priority range, so that it has lower priority than some Non-secure interrupts.

Note
 • Setting the priority of a Secure interrupt in the lower half of the priority range provides an opportunity

for security attacks, such as denial of service. Secure software must consider the possibility of attacks
of this kind before setting a Secure interrupt priority to a value in the priority range visible to
Non-secure software.

• The GIC architecture does not require all processors in the system to use the same scheme for
managing interrupt priority.
3-24 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
3.6 Pseudocode details of interrupt handling and prioritization

The following sections provide pseudocode descriptions of interrupt handling and prioritization, with and
without the Security Extensions, and describe the accesses to the registers that control prioritization in a
system that implements the Security Extensions:

• General helper functions and definitions

• Exception generation pseudocode, without the Security Extensions on page 3-27

• Exception generation pseudocode, with the Security Extensions on page 3-28

• The effect of the Security Extensions on accesses to prioritization registers on page 3-29.

3.6.1 General helper functions and definitions

The following pseudocode provides helper functions and definitions used elsewhere in the GIC pseudocode:

// Helper functions
// ================

SignalFIQ(boolean next_fiq) // Signals an interrupt on the FIQ input to the processor,
 // according to the value of next_fiq.

SignalIRQ(boolean next_irq) // Signals an interrupt on the IRQ input to the processor,
 // according to the value of next_irq.

boolean IsSecureInt(integer InterruptID) // Returns TRUE if the bitfield in the ICDISR associated
 // with the argument InterruptID is set to 1, indicating
 // that the interrupt is configured as a Secure
 // interrupt.

boolean IsPending(integer InterruptID) // Returns TRUE if the interrupt specified by the
 // argument InterruptID is pending.

boolean AnyActiveInterrupts() // Returns TRUE if any interrupts are active on this
 // processor.

bits(8) ReadICDIPR(integer InterruptID) // Returns the 8-bit priority field from the ICDIPR
 // associated with the argument InterruptID.

WriteICDIPR(integer InterruptID, bits(8) Value) // Updates the priority field in the ICDIPR
 // associated with the argument InterruptID
 // with the 8-bit Value.

IgnorWriteRequest() // Ignore the register write request (no operation).

// boolean PriorityIsHigher()
// ==========================

boolean PriorityIsHigher(bits(8) pr1, bits(8) pr2)
 return UInt(pr1) < UInt(pr2); // Lower number => higher priority.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-25
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
// bits(8) GIC_PriorityMask()
// ==========================

// NOTE: where the Security Extensions are not supported, NS_mask = ‘0’

bits(8) GIC_PriorityMask(integer n, bit NS_mask) // Calculate the Binary Point (group) mask.
 assert n >= 0 && n <= 7; // Range check for the priority mask.
 if n < MINIMUM_BINARY_POINT then // Saturate n on the minimum value supported.
 n = MINIMUM_BINARY_POINT;
 if NS_mask == ‘0’ then // Mask generation for a secure GIC access.
 n = n + 1;
 mask = ‘1111111100000000’<15-n:8-n>; // Generate the 8-bit group priority mask.
 return mask;

// Global variables
// ================

integer CPU_INTERFACE_ID // An identifier for a specific CPU Interface. The value of this
 // variable has implicit effects on which CPU interface register,
 // CPU interface signal or banked version of a Distributor
 // register is accessed.

boolean NS_access // current GIC access state:
 // TRUE: Non-secure
 // FALSE: Secure.

// NOTE: Architected registers are considered global variables identified
// by their architecture mnemonic, and as such are not declared here.

// global constants
// ================

integer MINIMUM_BINARY_POINT // A minimum binary point value of 0,1,2 or 3,
 // this is an IMPLEMENTATION DEFINED value.

bits(8) P_MASK // IMPLEMENTATION DEFINED mask of valid priority bits:
 // For systems without the Security Extensions, supported
 // values are 0xF0, 0xF8, 0xFC, 0xFE and 0xFF.
 // For systems with the Security Extensions, supported
 // values are 0xF8, 0xFC, 0xFE and 0xFF.

// registers associated with prioritization control and configuration
// ==

enumeration RegName {RegName_ICDIPR, RegName_ICCPMR, RegName_ICCRPR}
3-26 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
3.6.2 Exception generation pseudocode, without the Security Extensions

The following pseudocode describes how exceptions are generated by a CPU interface that does not
implement the Security Extensions. It shows all the GIC prioritization.

//
// GIC_GenerateException()
// =======================
//
void GIC_GenerateException()
 while TRUE do // Loop continuously.
 if ICDDCR<0> == ‘1’ then // GIC Distributor enabled.

 cpu_count = UInt(ICDICTR<7:5>); // Determine the number of CPU interfaces.

 for CPU_INTERFACE_ID = 0 to cpu_count
 // The iterations of this loop are permitted to
 // occur in parallel.
 next_irq = FALSE;
 intID = ICCHPIR<9:0>; // Establish the ID of the highest pending
 // interrupt on the appropriate CPU interface.

 if PriorityIsHigher(ReadICDIPR(intID), ICCPMR<7:0>) && IsPending(intID) &&
 ICCICR.Enable == ‘1’) then
 mask = GIC_PriorityMask(ICCBPR<2:0>, ‘0’);
 if !AnyActiveInterrupts() then
 // No active interrupts.
 next_irq = TRUE;
 else // Currently active interrupt(s).
 if PriorityIsHigher(ReadICDIPR(intID), ICCRPR<7:0> AND mask) then
 next_irq = TRUE;

 SignalIRQ(next_irq); // Update driven status of IRQ.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-27
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
3.6.3 Exception generation pseudocode, with the Security Extensions

The following pseudocode describes how exceptions are generated by a CPU interface that implements the
Security Extensions. It shows all the GIC prioritization and the security state information.

//
// GenerateException()
// ===================
//
void GIC_GenerateException()
 while TRUE do // Loop continuously.
 if ICDDCR<0> == ‘1’ then // GIC Distributor enabled.
 cpu_count = UInt(ICDICTR<7:5>); // Determine the number of CPU interfaces.

 for CPU_INTERFACE_ID = 0 to cpu_count
 // The iterations of this loop are permitted to
 // occur in parallel.
 sbp = UInt(ICCBPR<2:0>); // Secure version of this register.
 nsbp = UInt(ICCABPR<2:0>);
 next_fiq = FALSE;
 next_irq = FALSE;
 intID = ICCHPIR<9:0>; // Establish the ID of the highest pending
 // interrupt on the appropriate CPU interface.

 if PriorityIsHigher(ReadICDIPR(intID), ICCPMR<7:0>) && IsPending(intID)

 smsk = GIC_PriorityMask(sbp, ‘0’);
 if ICCICR.SBPR == ‘1’ then
 nsmsk = smsk;
 else
 nsmsk = GIC_PriorityMask(nsbp, ‘1’);

 if !AnyActiveInterrupts() then // No active interrupt.
 if IsSecureInt(intID) && (ICCICR.EnableS == ‘1’) then
 if ICCICR.FIQEn == ‘1’ then
 next_fiq = TRUE;
 else
 next_irq = TRUE; // Secure interrupt signaled on IRQ.
 if !IsSecureInt(intID) && (ICCICR.EnableNS == ‘1’) then
 next_irq = TRUE
 else // Currently active interrupt(s).
 if IsSecureInt(intID) && (ICCICR.EnableS == ‘1’) then
 if PriorityIsHigher(ReadICDIPR(intID), ICCRPR<7:0> AND smsk) then
 if ICCICR.FIQEn == ‘1’ then
 next_fiq = TRUE;
 else
 next_irq = TRUE;
 else // Highest pending interrupt is non-secure.
 if (!IsSecureInt(intID)) && (ICCICR.EnableNS == ‘1’) then
 if PriorityIsHigher(ReadICDIPR(intID), ICCRPR<7:0> AND nsmsk) then
 next_irq = TRUE;

 SignalFIQ(next_fiq); // Update driven status of FIQ.
 SignalIRQ(next_irq); // Update driven status of IRQ.
3-28 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Interrupt Handling and Prioritization
3.6.4 The effect of the Security Extensions on accesses to prioritization registers

The Security Extensions change some of the behavior of accesses to the ICDIPR, ICCPMR, and ICCRPR
see Non-secure access to register fields for Secure interrupt priorities on page 4-8. The following
pseudocode functions define the behavior:
• PriorityRegWrite(integer InterruptID, RegName Register, bits(8) value)

• bits(8) PriorityRegRead(integer InterruptID, RegName Register).

//
// PriorityRegWrite()
// ==================
//

PriorityRegWrite(integer InterruptID, RegName Register, bits(8) value)

 when RegName_ICDIPR
 if NS_access then // A non-secure GIC access.
 if !IsSecureInt(InterruptID) then
 mod_write_val = (‘10000000’ OR LSR(value,1)) AND P_MASK;
 WriteICDIPR(InterruptID, mod_write_val);
 else
 IgnoreWriteRequest();
 else // A secure GIC access.
 mod_write_val = value AND P_MASK;
 WriteICDIPR(InterruptID, mod_write_val);

 when RegName_ICCPMR
 if NS_access then // A non-secure GIC access.
 mod_write_val = (‘10000000’ OR LSR(value,1)) AND P_MASK;
 if ICCPMR<7> == ‘1’ then // Non-secure execution can only update the
 ICCPMR<7:0> = mod_write_val; // Priority Mask Register if the current
 // value is in the range 0x80 to 0xFF.
 else
 IgnoreWriteRequest();
 else // A secure GIC access.
 ICCPMR<7:0> = value AND P_MASK;

//
// PriorityRegRead()
// =================
//

// P_MASK used here to emphasize that the number of valid bits is IMPLEMENTATION DEFINED

bits(8) PriorityRegRead(integer InterruptID, RegName Register)

 when RegName_ICDIPR
 read_value = ReadICDIPR(InterruptID);
 if NS_access then // A non-secure GIC access.
 read_value<7:0> = LSL((read_value AND P_MASK),1);
 if IsSecureInt(InterruptID) then
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 3-29
Unrestricted Access Non-Confidential

Interrupt Handling and Prioritization
 read_value = ‘00000000’; // Can’t read a secure priority value.
 return(read_value);

 when RegName_ICCPMR
 read_value = ICCPMR<7:0>;
 if NS_access then // A non-secure GIC access.
 if read_value <7> == ‘0’ then
 read_value = ‘00000000’; // A secure priority value, RAZ.
 else
 read_value<7:0> = LSL((read_value AND P_MASK),1);
 return(read_value);

 when RegName_ICCRPR
 read_value = ICCRPR<7:0>;
 if NS_access then // A non-secure GIC access.
 if read_value <7> == ‘0’ then
 read_value = ‘00000000’; // A secure priority value, RAZ.
 else
 read_value<7:0> = LSL((read_value AND P_MASK),1);
 return(read_value);
3-30 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Chapter 4
Programmers Model

This chapter describes the Distributor and CPU interface registers, It contains the following sections:

• About the programmers model on page 4-2

• Effect of the Security Extensions on the programmers model on page 4-7

• Distributor register descriptions on page 4-11

• CPU interface register descriptions on page 4-46.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-1
Unrestricted Access Non-Confidential

Programmers Model
4.1 About the programmers model

The programmers model provides the software interface to the GIC. This chapter describes the programmers
model, that operates using a memory-mapped register interface.

The following sections describe the programmers model:

• GIC register short names

• Distributor register map

• CPU interface register map on page 4-4

• GIC register access on page 4-5

• Reset behavior on page 4-6

• Effect of the Security Extensions on the programmers model on page 4-7.

Table 4-1 and Table 4-2 on page 4-4 describe the register access type as follows:

RW Read and write.

RO Read only.

WO Write only.

4.1.1 GIC register short names

All of the GIC registers have short names. In these names:

• the first two letters are IC, indicating a GIC register

• the third letter is one of:

— D, indicating a distributor register

— C, indicating a CPU interface register

• the remaining letters are a mnemonic for the register, for example ABR for Active Bit Register.

4.1.2 Distributor register map

Table 4-1 shows the Distributor register map. Address offsets are relative to the Distributor base address
defined by the GIC system memory map.

All GIC registers are 32-bits wide. Reserved register addresses are RAZ/WI.

Table 4-1 Distributor register map

Offset Namea Type Resetb Description

0x000 ICDDCR RW 0x00000000 Distributor Control Register (ICDDCR) on page 4-12

0x004 ICDICTR RO IMPLEMENTATION

DEFINED

Interrupt Controller Type Register (ICDICTR) on
page 4-14

0x008 ICDIIDR RO IMPLEMENTATION
DEFINED

Distributor Implementer Identification Register
(ICDIIDR) on page 4-16
4-2 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
0x00C-0x07C - - - Reserved

0x080 ICDISR RW IMPLEMENTATION
DEFINEDc

Interrupt Security Registers (ICDISRn) on page 4-17d

0x084-0x0FC 0x00000000

0x100-0x17C ICDISER RW IMPLEMENTATION
DEFINED

Interrupt Set-Enable Registers (ICDISERn) on
page 4-19

0x180-0x1FC ICDICER RW IMPLEMENTATION
DEFINED

Interrupt Clear-Enable Registers (ICDICERn) on
page 4-21

0x200-0x27C ICDISPR RW 0x00000000 Interrupt Set-Pending Registers (ICDISPRn) on
page 4-23

0x280-0x2FC ICDICPR RW 0x00000000 Interrupt Clear-Pending Registers (ICDICPRn) on
page 4-26

0x300-0x37C ICDABR RO 0x00000000 Active Bit Registers (ICDABRn) on page 4-29

0x380-0x3FC - - - Reserved

0x400-0x7F8 ICDIPR RW 0x00000000 Interrupt Priority Registers (ICDIPRn) on page 4-31

0x7FC - - - Reserved

0x800-0x81C ICDIPTR ROe IMPLEMENTATION
DEFINED

Interrupt Processor Targets Registers (ICDIPTRn) on
page 4-33

0x820-0xBF8 RWe 0x00000000

0xBFC - - - Reserved

0xC00-0xCFC ICDICFR RW IMPLEMENTATION
DEFINED

Interrupt Configuration Registers (ICDICFRn) on
page 4-36

0xD00-0xDFC - - - IMPLEMENTATION DEFINED registers

0xE00-0xEFC - - - Reserved

0xF00 ICDSGIR WO - Software Generated Interrupt Register (ICDSGIR) on
page 4-39

Table 4-1 Distributor register map (continued)

Offset Namea Type Resetb Description
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-3
Unrestricted Access Non-Confidential

Programmers Model
4.1.3 CPU interface register map

Table 4-2 shows the CPU interface register map. Address offsets are relative to the CPU interface base
address defined by the system memory map.

All GIC registers are 32-bits wide. Reserved register addresses are RAZ/WI.

For a multiprocessor implementation, the GIC implements a set of CPU interface registers for each CPU
interface. ARM strongly recommends that each processor has the same CPU interface base address for the
CPU interface that connects it to the GIC. This is the private CPU interface base address for that processor.
It is IMPLEMENTATION DEFINED whether a processor can access the CPU interface registers of other
processors in the system.

0xF04-0xFCC - - - Reserved

0xFD0-0xFFC - RO IMPLEMENTATION
DEFINED

Identification registers on page 4-42

a. For legacy shortform register names see Appendix C Register Shortform Names.
b. For details of any restrictions that apply to the reset values of IMPLEMENTATION DEFINED cases, for example

architecturally-required bit values, see the appropriate register description.
c. For more information see ICDISR0 reset value on page 4-18.
d. Present only if the GIC implements the Security Extensions, otherwise RAZ/WI.
e. In a uniprocessor implementation, these registers are RAZ/WI.

Table 4-1 Distributor register map (continued)

Offset Namea Type Resetb Description

Table 4-2 CPU interface register map

Offset Namea Type Reset Description

0x00 ICCICR RW 0x00000000 CPU Interface Control Register (ICCICR) on page 4-47

0x04 ICCPMR RW 0x00000000 Interrupt Priority Mask Register (ICCPMR) on page 4-52

0x08 ICCBPR RW 0x00000000-

0x00000003b

Binary Point Register (ICCBPR) on page 4-54

0x0C ICCIAR RO 0x000003FF Interrupt Acknowledge Register (ICCIAR) on page 4-56

0x10 ICCEOIR WO - End of Interrupt Register (ICCEOIR) on page 4-59

0x14 ICCRPR RO 0x000000FF Running Priority Register (ICCRPR) on page 4-61

0x18 ICCHPIR RO 0x000003FF Highest Pending Interrupt Register (ICCHPIR) on
page 4-63

0x1C ICCABPR RW 0x00000000 Aliased Binary Point Register (ICCABPR) on page 4-62
4-4 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.1.4 GIC register access

All registers support 32-bit word accesses with the access type defined in Table 4-1 on page 4-2 and
Table 4-2 on page 4-4.

In addition, the following registers support byte accesses:

• ICDIPR, see Interrupt Priority Registers (ICDIPRn) on page 4-31

• ICDIPTR, see Interrupt Processor Targets Registers (ICDIPTRn) on page 4-33.

Halfword register accesses are IMPLEMENTATION DEFINED.

If the GIC implements the Security Extensions these affect register accesses as follows:

• some registers are banked, see Register banking

• some registers are accessible only using Secure accesses

• optionally, the GIC supports lockdown of the values of some registers.

For more information see Effect of the Security Extensions on the programmers model on page 4-7.

Register banking

Register banking refers to providing multiple copies of a register at the same address. The properties of a
register access determine which copy of the register is addressed. The GIC banks registers in two cases:

• If the GIC implements the Security Extensions, some registers are banked to provide separate Secure
and Non-secure copies of the registers. The register bit assignments can differ in the Secure and
Non-secure copies of a register. A secure access to the register address accesses the Secure copy of
the register, and a Non-secure access accesses the Non-secure copy. See Effect of the Security
Extensions on the programmers model on page 4-7 for more information.

0x20-0x3C - - - Reserved

0x40-0xCF - - - IMPLEMENTATION DEFINED registers

0xD0-0xF8 - - - Reserved

0xFC ICCIIDR RO IMPLEMENTATION

DEFINED

CPU Interface Identification Register (ICCIIDR) on
page 4-65

a. For legacy shortform register names see Appendix C Register Shortform Names.
b. See the register description for more information.

Table 4-2 CPU interface register map (continued)

Offset Namea Type Reset Description
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-5
Unrestricted Access Non-Confidential

Programmers Model
• If the GIC is implemented as part of a multiprocessor system, some Distributor registers are banked
to provide a separate copy for each connected processor.

Note
 The GIC implements the CPU interface registers independently for each CPU interface, and each

connected processor accesses these registers for the interface it connects to.

4.1.5 Reset behavior

On exit from reset, the GIC clears the enable bits in the ICDDCR and ICCICR registers to 0. This means
that software can program the Distributor and CPU interface registers before enabling the GIC.

When ICDDCR.Enable is 0:

• software can read or write the Distributor registers

• any pending interrupts are not forwarded to the CPU interfaces.

When ICCICR.Enable is 0:

• software can read or write the CPU interface registers

• any pending interrupts are not forwarded to the processor

• any read of the ICCIAR or ICCHPIR returns a spurious interrupt ID.
4-6 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.2 Effect of the Security Extensions on the programmers model

Note
 For an overview of the GIC implementation of the ARM Security Extensions, see Security Extensions
support on page 1-3.

If the GIC implements the Security Extensions, the ICDICTR.SecurityExtn bit is RAO, see Interrupt
Controller Type Register (ICDICTR) on page 4-14.

A GIC implementation of the Security Extensions provides the following features:

• Each supported interrupt is either Secure or Non-secure:

— a GIC might implement some interrupts as always Secure, or as always Non-secure

— otherwise, software configures each interrupt as Secure or Non-secure

— some aspects of interrupt handling depend on whether interrupts are Secure or Non-secure.

• Accesses to the GIC registers are either Secure or Non-secure, see Processor security state and
Secure and Non-secure GIC accesses on page 1-5.

In normal operation, Secure software accesses the GIC using only Secure accesses.

Table 4-3 shows the registers that are implemented differently as part of the Security Extensions. All
registers not listed in Table 4-3 are Common registers.

Table 4-3 Registers implemented differently when the GIC includes the Security Extensions

Register Type See: Effect

Distributor registers

ICDDCR Banked Distributor Control Register (ICDDCR) on page 4-12 Register is bankeda

ICDICTR Common Interrupt Controller Type Register (ICDICTR) on page 4-14 Adds the LSPI field

ICDISR Secure Interrupt Security Registers (ICDISRn) on page 4-17 Register is Secure

ICDSGIR Common Software Generated Interrupt Register (ICDSGIR) on page 4-39 Adds the SATT bit

CPU interface registers

ICCICR Banked CPU Interface Control Register (ICCICR) on page 4-47 Register is bankeda

ICCBPR Banked Binary Point Register (ICCBPR) on page 4-54 Register is bankeda

ICCABPR Secure Aliased Binary Point Register (ICCABPR) on page 4-62 Register is Secure

a. Banked to provide Secure and Non-secure copies of the register, see Register banking on page 4-5.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-7
Unrestricted Access Non-Confidential

Programmers Model
The ARMv7-A and ARMv7-R Architecture Reference Manual defines the Security Extensions register types:

Banked The device implements Secure and Non-secure copies of the register. The register bit
assignments can differ in the Secure and Non-secure copies of a register. A Secure access
always accesses the Secure copy of the register, and a Non-secure access always accesses
the Non-secure copy.

Secure The register is accessible only from a Secure access. The address of a Secure register is
RAZ/WI to any Non-secure access.

Common The register is accessible from both Secure and Non-Secure accesses. The access
permissions of some or all fields in the register might depend on whether the access is
Secure or Non-secure.

In addition, in a GIC that implements the Security Extensions, the priority range available for Non-secure
interrupts is half the range available for Secure interrupts, see The effect of the Security Extensions on
interrupt prioritization on page 3-18.

The following sections give more information about the effect of the Security Extensions on the GIC
programmers model:

• Non-secure access to register fields for Secure interrupt priorities

• Configuration lockdown on page 4-9.

4.2.1 Non-secure access to register fields for Secure interrupt priorities

Most register fields associated with a Secure interrupts are RAZ/WI to Non-secure accesses. The following
Non-secure register accesses are exceptions to this rule:

Non-secure access to an access priority field in the ICDIPRs

• If the priority field corresponds to a Non-secure interrupt the access operates as
defined by the Non-secure view of interrupt priority, see Software views of interrupt
priority on page 3-18.

• If the priority field corresponds to a Secure interrupt, the field is RAZ/WI.

Non-secure access to the ICCPMR and ICCRPR
• If the current priority mask value is in the range 0x00-0x7F:

— a read access returns the value 0x00

— the GIC ignores a write access to the ICCPMR.

• If the current priority mask value is in the range 0x80-0xFF:

— A read access returns the Non-secure view of the current value.

— A write access to the ICCPMR succeeds, based on the Non-secure view of the
priority mask value written to the register. This means a Non-secure write
cannot set a priority mask value in the rage 0x00-0x7F.

The pseudocode in The effect of the Security Extensions on accesses to prioritization registers on page 3-29
describes accesses to the ICDIPRs, ICCPMR, and ICCRPR when the GIC implements the Security
Extensions.
4-8 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.2.2 Configuration lockdown

A GIC that implements the Security Extensions can also implement configuration lockdown. This provides
a control signal that the system can assert to prevent write access to the register fields controlling a
configured range of SPIs, when those SPIs are configured as Secure interrupts, and to some configuration
registers. When the control signal is asserted, the Secure SPIs and configuration registers are described as
being locked down.

Lockdown is controlled by an active HIGH disable signal, CFGSDISABLE. That is, the system asserts
CFGSDISABLE HIGH to disable write access to the register fields and registers.

The SPIs that can be locked down are called lockable SPIs (LSPIs). The number of LSPIs is
IMPLEMENTATION DEFINED, between 0 and 31:

• If the GIC supports any LSPIs then the first possible LSPI has Interrupt ID 32

• The ICDICTR.LSPI field defines the maximum number of LSPIs, see Interrupt Controller Type
Register (ICDICTR) on page 4-14. If ICDICTR.LSPI is greater than 0 then the possible LSPIs have
interrupt IDs 32 to (31+(ICDICTR.LSPI)).

Note
 ICDICTR.LSPI only defines the range of possible LSPIs. The GIC might not support all the

interrupts in this range.

If ICDICTR.LSPI is 0 lockdown is not supported. This means software cannot lockdown the control
registers if the GIC does not implement any LSPIs.

When the SPIs and configuration registers are locked down, the GIC prevents write accesses to:

• The secure copy of the ICDDCR, see Distributor Control Register (ICDDCR) on page 4-12.

• All bits of the secure copy of the ICCICR, except for the EnableNS bit, see CPU Interface Control
Register (ICCICR) on page 4-47. You can still write to the ICCICR.EnableNS bit.

• Fields in the following registers that correspond to Lockable SPIs that are configured as Secure:

— ICDISERs, see Interrupt Set-Enable Registers (ICDISERn) on page 4-19

— ICDICERs, see Interrupt Clear-Enable Registers (ICDICERn) on page 4-21

— ICDISPRs, see Interrupt Set-Pending Registers (ICDISPRn) on page 4-23

— ICDICPRs, see Interrupt Clear-Pending Registers (ICDICPRn) on page 4-26

— ICDIPRs, see Interrupt Priority Registers (ICDIPRn) on page 4-31

— ICDIPTRs, see Interrupt Processor Targets Registers (ICDIPTRn) on page 4-33

— ICDICFRs, see Interrupt Configuration Registers (ICDICFRn) on page 4-36.

• Fields in the ICDISRs that correspond to lockable SPIs that you have configured as Secure, see
Interrupt Security Registers (ICDISRn) on page 4-17. If you reconfigure a lockable SPI from
Non-secure to Secure while CFGSDISABLE remains HIGH, the GIC prevents any further writes to
ICDISR fields that correspond to that SPI.

The GIC ignores any write to a locked down register or register field.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-9
Unrestricted Access Non-Confidential

Programmers Model
Note
 • ARM recommends that, during the system boot process, the system reads the ICDICTR.LSPI field

to find the number of lockable SPIs, programs the registers and register fields that can be locked
down, and then asserts CFGSDISABLE HIGH. Normally, this means that the Secure boot sequence
that follows a full system reset must run appropriate Secure configuration code.

• ARM strongly recommends that once CFGSDISABLE is first asserted HIGH during the system
boot process, the system ensures CFGSDISABLE cannot be deasserted except by a processor reset.
4-10 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.3 Distributor register descriptions

The following sections describe the Distributor registers:

• Distributor Control Register (ICDDCR) on page 4-12

• Interrupt Controller Type Register (ICDICTR) on page 4-14

• Distributor Implementer Identification Register (ICDIIDR) on page 4-16

• Interrupt Security Registers (ICDISRn) on page 4-17

• Interrupt Set-Enable Registers (ICDISERn) on page 4-19

• Interrupt Clear-Enable Registers (ICDICERn) on page 4-21

• Interrupt Set-Pending Registers (ICDISPRn) on page 4-23

• Interrupt Clear-Pending Registers (ICDICPRn) on page 4-26

• Active Bit Registers (ICDABRn) on page 4-29

• Interrupt Priority Registers (ICDIPRn) on page 4-31

• Interrupt Processor Targets Registers (ICDIPTRn) on page 4-33

• Interrupt Configuration Registers (ICDICFRn) on page 4-36

• Software Generated Interrupt Register (ICDSGIR) on page 4-39

• Identification registers on page 4-42.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-11
Unrestricted Access Non-Confidential

Programmers Model
4.3.1 Distributor Control Register (ICDDCR)

The ICDDCR characteristics are:

Purpose Enables the forwarding of pending interrupts to the CPU interfaces.

Usage constraints If the GIC implements the Security Extensions with configuration lockdown, the
system can lock down the Secure ICDDCR, see Configuration lockdown on
page 4-9.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions, this register is banked to provide Secure and Non-secure
copies, see Register banking on page 4-5.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-1 shows the ICDDCR bit assignments.

Figure 4-1 ICDDCR bit assignments

Table 4-4 shows the ICDDCR bit assignments.

31 1 0

Reserved

Enable

Table 4-4 ICDDCR bit assignments

Bits Name Function

[31:1] - Reserved.

[0] Enable Global enable for monitoring peripheral interrupt signals and forwarding pending interrupts to
the CPU interfaces.

0 The GIC ignores all peripheral interrupt signals, and does not forward pending
interrupts to the CPU interfaces.

1 The GIC monitors the peripheral interrupt signals, and forwards pending
interrupts to the CPU interfaces.
4-12 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
When ICDDCR.Enable is set to 0, disabling the distributor functions, other GIC register read and writes still
operate normally. This means software can change the state of PPIs and SPIs before re-enabling the
distributor. For example, software can:

• Make an interrupt pending by writing to the corresponding ICDISPR or the ICDSGIR, see:

— Interrupt Set-Pending Registers (ICDISPRn) on page 4-23

— Software Generated Interrupt Register (ICDSGIR) on page 4-39.

• Remove the pending state of an interrupt by writing to the corresponding ICDICPR, see Interrupt
Clear-Pending Registers (ICDICPRn) on page 4-26. If the interrupt is level sensitive and the
corresponding interrupt signal is asserted, the interrupt becomes pending again as soon as the
software re-enables the distributor.

• Remove the active state from an interrupt by writing to the corresponding ICCEOIR, see End of
Interrupt Register (ICCEOIR) on page 4-59.

Note
 Setting ICDDCR.Enable to 0 disables forwarding of interrupts to the CPU interfaces, and therefore software
cannot add the active state to any interrupt. The GIC clears the pending state of an SGI only when the SGI
becomes active, and therefore software cannot clear the pending state of an SGI.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-13
Unrestricted Access Non-Confidential

Programmers Model
4.3.2 Interrupt Controller Type Register (ICDICTR)

The ICDICTR characteristics are:

Purpose Provides information about the configuration of the GIC. It indicates:

• whether the GIC implements the Security Extensions

• the maximum number of interrupt IDs that the GIC supports

• the number of CPU interfaces implemented

• if the GIC implements the Security Extensions, the maximum number of
implemented Lockable Shared Peripheral Interrupts (LSPIs).

Usage constraints No usage constraints.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-2 shows the ICDICTR Register bit assignments.

Figure 4-2 ICDICTR Register bit assignments

Table 4-5 shows the ICDICTR Register bit assignments.

31 0

LSPI ‡

16 11

Reserved

15 10 9 8 7 5 4

ITLinesNumber

SecurityExtn

CPUNumber

‡ Implemented only if the GIC implements the Security Extensions, Reserved otherwise

Reserved

Table 4-5 ICDICTR Register bit assignments

Bits Name Function

[31:16] - Reserved.

[15:11] - If the GIC does not implement the Security Extensions, this field is Reserved.

[15:11] LSPI If the GIC implements the Security Extensions, the value of this field is the
maximum number of implemented lockable SPIs, from 0 (0b00000) to 31
(0b11111), see Configuration lockdown on page 4-9. If this field is 0b00000 then
the GIC does not implement configuration lockdown.
4-14 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
The ITLinesNumber field only indicates the maximum number of SPIs that the GIC might support. This
value determines the number of implemented interrupt registers, that is, the number of instances of the
registers described in the following sections:

• Interrupt Security Registers (ICDISRn) on page 4-17

• Interrupt Set-Enable Registers (ICDISERn) on page 4-19

• Interrupt Clear-Enable Registers (ICDICERn) on page 4-21

• Interrupt Set-Pending Registers (ICDISPRn) on page 4-23

• Interrupt Clear-Pending Registers (ICDICPRn) on page 4-26

• Active Bit Registers (ICDABRn) on page 4-29

• Interrupt Priority Registers (ICDIPRn) on page 4-31

• Interrupt Processor Targets Registers (ICDIPTRn) on page 4-33

• Interrupt Configuration Registers (ICDICFRn) on page 4-36.

The GIC architecture does not require a GIC to support a continuous range of SPI interrupt IDs, and the
supported SPI interrupt ID range is likely to be non-continuous. Software must check which SPI interrupt
IDs are supported, up to the maximum value indicated by the ITLinesNumber field, see Identifying the
supported interrupts on page 3-3.

[10] SecurityExtn Indicates whether the GIC implements the Security Extensions.

0 Security Extensions not implemented.

1 Security Extensions implemented.

[9:8] - Reserved.

[7:5] CPUNumber Indicates the number of implemented CPU interfaces. The number of
implemented CPU interfaces is one more than the value of this field, for example
if this field is 0b011, there are four CPU interfaces.

[4:0] ITLinesNumber Indicates the maximum number of interrupts that the GIC supportsa. If the value
of this field is N, the maximum number of interrupts is 32(N+1). The interrupt ID
range is from 0 to one less than the number of IDs. For example:

0b00011 Up to 128 interrupt lines, interrupt IDs 0-127.

The maximum number of interrupts is 1020 (0b11111).

See the text in this section for more information.

a. Regardless of the range of interrupt IDs defined by this field, interrupt IDs 1020-1023 are reserved for special
purposes, see Special interrupt numbers on page 3-11. For more information about interrupt IDs, see Interrupt IDs
on page 2-4.

Table 4-5 ICDICTR Register bit assignments (continued)

Bits Name Function
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-15
Unrestricted Access Non-Confidential

Programmers Model
4.3.3 Distributor Implementer Identification Register (ICDIIDR)

The ICDIIDR characteristics are:

Purpose Provides information about the implementer and revision of the Distributor.

Usage constraints No usage constraints.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-3 shows the ICDIIDR bit assignments.

Figure 4-3 ICDIIDR bit assignments

Table 4-6 shows the ICDIIDR bit assignments.

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Table 4-6 ICDIIDR bit assignments

Bits Name Function

[31:24] ProductID An IMPLEMENTATION DEFINED product identifier.

[23:20] - Reserved.

[19:16] Variant An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish
product variants, or major revisions of a product.

[15:12] Revision An IMPLEMENTATION DEFINED revision number. Typically, this field is used to
distinguish minor revisions of a product.

[11:0] Implementer Contains the JEP106 code of the company that implemented the GIC Distributor:a

Bits [11:8] The JEP106 continuation code of the implementer.

Bits [7] Always 0.

Bits [6:0] The JEP106 identity code of the implementer.

a. For an ARM implementation, the value of this field is 0x43B.
4-16 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.3.4 Interrupt Security Registers (ICDISRn)

The ICDISR characteristics are:

Purpose The ICDISRs provide a Security status bit for each interupt supported by the GIC.
Each bit controls the security status of the corresponding interrupt.

Usage constraints Accessible by Secure accesses only. The register addresses are RAZ/WI to
Non-secure accesses.

A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements configuration lockdown, the system can lockdown the
Security status bits for the lockable SPIs that are configured as Secure, see
Configuration lockdown on page 4-9.

Configurations Secure registers, only implemented if the GIC implements the Security Extensions.
If the GIC does not implement the Security Extensions the ICDISR addresses are
RAZ/WI.

The number of implemented ICDISRs is (ICDICTR.ITLinesNumber + 1), see
Interrupt Controller Type Register (ICDICTR) on page 4-14. The implemented
ICDISRs number upwards from ICDISR0.

In a multiprocessor implementation, ICDISR0 is banked for each connected
processor, see Register banking on page 4-5. This register holds the security status
bits for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-2, and ICDISR0 reset value on
page 4-18.

Figure 4-4 shows the ICDISR bit assignments.

Figure 4-4 ICDISR bit assignments

Table 4-7 shows the ICDISR bit assignments.

31 0

Security status bits

Table 4-7 ICDISR bit assignments

Bits Name Function

[31:0] Security status bits For each bit:

0 The corresponding interrupt is Secure.

1 The corresponding interrupt is Non-secure.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-17
Unrestricted Access Non-Confidential

Programmers Model
Note
 On start-up or reset, each interrupt with ID32 or higher resets as Secure and therefore all SPIs are Secure
unless the system reprograms the appropriate ICDISR bit. See ICDISR0 reset value for information about
the reset security configuration of interrupts with IDs 0-31.

ARM recommends that you statically allocate each implemented interrupt as either Secure or Non-secure.
To change the security status of an interrupt you must ensure that all the status information for that interrupt
is drained before you update the appropriate interrupt Security status bit.

For interrupt ID N, when DIV and MOD are the integer division and modulo operations:

• the corresponding ICDISR number, M, is given by M = N DIV 32

• the offset of the required ICDISR is (0x080 + (4*M))

• the bit number of the required Security status bit in this register is N MOD 32.

ICDISR0 reset value

Normally, the reset value of all ICDISRs is zero, so that all interrupts are Secure unless reprogrammed as
Non-secure by Secure accesses to the appropriate ICDISRs.

A multiprocessor implementation that supports the Security Extensions might include one or more
Non-secure processors, meaning processors that cannot make Secure accesses to the GIC. In this situation
only, a GIC can implement a Secure IMPLEMENTATION DEFINED mechanism that resets to 1 the ICDISR0
bits for the SGIs and PPIs of any Non-secure processor. This mechanism must apply only to:

• a banked ICDISR0 that corresponds to a Non-secure processor

• bits in that banked ICDISR0 that correspond to implemented interrupts.
4-18 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.3.5 Interrupt Set-Enable Registers (ICDISERn)

The ICDISER characteristics are:

Purpose The ICDISERs provide a Set-enable bit for each interupt supported by the GIC.
Writing 1 to a Set-enable bit enables forwarding of the corresponding interrupt to
the CPU interfaces. Reading a bit identifies whether the interrupt is enabled.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Secure interrupt is RAZ/WI to Non-secure
accesses

• if the GIC implements configuration lockdown, the system can lock down the
Set-enable bits for the lockable SPIs that are configured as Secure, see
Configuration lockdown on page 4-9.

Support of Set-enable bits for SGIs is IMPLEMENTATION DEFINED.

Configurations These registers are available in all configurations of the GIC. If the GIC implements
the Security Extensions these registers are Common.

The number of implemented ICDISERs is (ICDICTR.ITLinesNumber + 1), see
Interrupt Controller Type Register (ICDICTR) on page 4-14. The implemented
ICDISERs number upwards from ICDISER0.

In a multiprocessor implementation, ICDISER0 is banked for each connected
processor, see Register banking on page 4-5. This register holds the Set-enable bits
for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-5 shows the ICDISER bit assignments.

Figure 4-5 ICDISER bit assignments

Set-enable bits

31 0
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-19
Unrestricted Access Non-Confidential

Programmers Model
Table 4-8 shows the ICDISER bit assignments.

For interrupt ID N, when DIV and MOD are the integer division and modulo operations:

• the corresponding ICDISER number, M, is given by M = N DIV 32

• the offset of the required ICDISER is (0x100 + (4*M))

• the bit number of the required Set-enable bit in this register is N MOD 32.

At start-up, and after a reset, a processor can use this register to discover which peripheral interrupt IDs the
GIC supports. If the processor and the GIC both implement the Security Extensions it must do this for the
Secure view of the available interrupts, and Non-secure software running on the processor must do this
discovery after the Secure software has configured interrupts as Secure and Non-secure. For more
information see Identifying the supported interrupts on page 3-3.

Note
 Disabling an interrupt only disables the forwarding of the interrupt to any CPU interface. It does not prevent
the interrupt from changing state, for example becoming pending, or active and pending if it is already
active.

Table 4-8 ICDISER bit assignments

Bits Name Function

[31:0] Set-enable
bits

For SPIs and PPIs, for each bit:

Reads 0 The corresponding interrupt is disabled.

1 The corresponding interrupt is enabled.

Writes 0 Has no effect.

1 Enables the corresponding interrupt. A subsequent read of this
bit returns the value 1.

For SGIs the behavior of the bit on reads and writes is IMPLEMENTATION DEFINED.
4-20 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.3.6 Interrupt Clear-Enable Registers (ICDICERn)

The ICDICER characteristics are:

Purpose The ICDICERs provide a Clear-enable bit for each interupt supported by the GIC.
Writing 1 to a Clear-enable bit disables forwarding of the corresponding interrupt to
the CPU interfaces. Reading a bit identifies whether the interrupt is enabled.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Secure interrupt is RAZ/WI to Non-secure
accesses

• if the GIC implements configuration lockdown, the system can lock down the
Clear-enable bits for the lockable SPIs that are configured as Secure, see
Configuration lockdown on page 4-9.

Support of Clear-enable bits for SGIs is IMPLEMENTATION DEFINED.

Configurations These registers are available in all configurations of the GIC. If the GIC implements
the Security Extensions these registers are Common.

The number of implemented ICDICERs is (ICDICTR.ITLinesNumber + 1), see
Interrupt Controller Type Register (ICDICTR) on page 4-14. The implemented
ICDICERs number upwards from ICDICER0.

In a multiprocessor implementation, ICDICER0 is banked for each connected
processor, see Register banking on page 4-5. This register holds the Clear-enable
bits for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-6 shows the ICDICER bit assignments.

Figure 4-6 ICDICER bit assignments

Clear-enable bits

31 0
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-21
Unrestricted Access Non-Confidential

Programmers Model
Table 4-9 shows the ICDICER bit assignments.

For interrupt ID N, when DIV and MOD are the integer division and modulo operations:

• the corresponding ICDICER number, M, is given by M = N DIV 32

• the offset of the required ICDICER is (0x180 + (4*M))

• the bit number of the required Clear-enable bit in this register is N MOD 32.

Note
 Writing a 1 to an ICDICER bit only disables the forwarding of the corresponding interrupt to any CPU
interface. It does not prevent the interrupt from changing state, for example becoming pending, or active and
pending if it is already active.

Table 4-9 ICDICER bit assignments

Bits Name Function

[31:0] Clear-enable
bits

For SPIs and PPIs, for each bit:

Reads 0 The corresponding interrupt is disabled.

1 The corresponding interrupt is enabled.

Writes 0 Has no effect.

1 Disables the corresponding interrupt. A subsequent read of
this bit returns the value 0.

For SGIs the behavior of the bit on reads and writes is IMPLEMENTATION DEFINED.
4-22 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.3.7 Interrupt Set-Pending Registers (ICDISPRn)

The ICDISPR characteristics are:

Purpose The ICDISPRs provide a Set-pending bit for each interrupt supported by the GIC.
Writing 1 to a Set-pending bit sets the status of the corresponding peripheral
interrupt to pending. Reading a bit identifies whether the interrupt is pending.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Secure interrupt is RAZ/WI to Non-secure
accesses

• if the GIC implements configuration lockdown, the system can lock down the
Set-pending bits for the lockable SPIs that are configured as Secure, see
Configuration lockdown on page 4-9.

Set-pending bits for SGIs are read-only and ignore writes.

Configurations These registers are available in all configurations of the GIC. If the GIC implements
the Security Extensions these registers are Common.

The number of implemented ICDISPRs is (ICDICTR.ITLinesNumber + 1), see
Interrupt Controller Type Register (ICDICTR) on page 4-14. The implemented
ICDISPRs number upwards from ICDISPR0.

In a multiprocessor implementation, ICDISPR0 is banked for each connected
processor, see Register banking on page 4-5. This register holds the Set-pending bits
for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-7 shows the ICDISPR bit assignments.

Figure 4-7 ICDISPR bit assignments

Set-pending bits

31 0
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-23
Unrestricted Access Non-Confidential

Programmers Model
Table 4-10 shows the ICDISPR bit assignments.

Table 4-10 ICDISPR bit assignments

Bits Name Function

[31:0] Set-pending
bits

For each bit:

Reads 0 The corresponding interrupt is not pending on any processor.

1 • For SGIs and PPIs, the corresponding interrupt is
pendinga on this processor.

• For SPIs, the corresponding interrupt is pendinga on at
least one processor.

Writes For SPIs and PPIs:

0 Has no effect.

1 The effect depends on whether the interrupt is edge-triggered or
level-sensitive:

Edge-triggered

Changes the status of the corresponding interrupt
to:

• pending if it was previously inactive

• active and pending if it was previously
active.

Has no effect if the interrupt is already pendinga.

Level sensitive

If the corresponding interrupt is not pendinga,
changes the status of the corresponding interrupt
to:

• pending if it was previously inactive

• active and pending if it was previously
active.

If the interrupt is already pendinga:

• because of a write to the ICDISPR, the write
has no effect

• because the corresponding interrupt signal is
asserted, the write has no effect on the status
of the interrupt, but the interrupt remains
pendinga if the interrupt signal is deasserted.

For more information see Control of the pending
status of level-sensitive interrupts on page 4-28.

For SGIs, the write is ignored.

a. Pending interrupts include interrupts that are active and pending.
4-24 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
For interrupt ID N, when DIV and MOD are the integer division and modulo operations:

• the corresponding ICDISPR number, M, is given by M = N DIV 32

• the offset of the required ICDISPR is (0x200 + (4*M))

• the bit number of the required Set-pending bit in this register is N MOD 32.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-25
Unrestricted Access Non-Confidential

Programmers Model
4.3.8 Interrupt Clear-Pending Registers (ICDICPRn)

The ICDICPR characteristics are:

Purpose The ICDICPRs provide a Clear-pending bit for each interupt supported by the GIC.
Writing 1 to a Clear-pending bit clears the pending status of the corresponding
peripheral interrupt. Reading a bit identifies whether the interrupt is pending.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Secure interrupt is RAZ/WI to Non-secure
accesses

• if the GIC implements configuration lockdown, the system can lock down the
Clear-pending bits for the lockable SPIs that are configured as Secure, see
Configuration lockdown on page 4-9.

Clear-pending bits for SGIs are read-only and ignore writes.

Configurations These registers are available in all configurations of the GIC. If the GIC implements
the Security Extensions these registers are Common.

The number of implemented ICDICPRs is (ICDICTR.ITLinesNumber + 1), see
Interrupt Controller Type Register (ICDICTR) on page 4-14. The implemented
ICDICPRs number upwards from ICDICPR0.

In a multiprocessor implementation, ICDICPR0 is banked for each connected
processor, see Register banking on page 4-5. This register holds the Clear-pending
bits for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-8 shows the ICDICPR bit assignments.

Figure 4-8 ICDICPR bit assignments

Clear-pending bits

31 0
4-26 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
Table 4-11 shows the ICDICPR bit assignments.

For interrupt ID N, when DIV and MOD are the integer division and modulo operations:

• the corresponding ICDICPR number, M, is given by M = N DIV 32

• the offset of the required ICDICPR is (0x280 + (4*M))

• the bit number of the required Set-pending bit in this register is N MOD 32.

Table 4-11 ICDICPR bit assignments

Bits Name Function

[31:0] Clear-pending
bits

For each bit:

Reads 0 The corresponding interrupt is not pending on any processor.

1 • For SGIs and PPIs, the corresponding interrupt is
pendinga on this processor.

• For SPIs, the corresponding interrupt is pendinga on at
least one processor.

Writes For SPIs and PPIs:

0 Has no effect.

1 The effect depends on whether the interrupt is edge-triggered
or level-sensitive:

Edge-triggered

Changes the status of the corresponding interrupt
to:

• inactive if it was previously pending

• active if it was previously active and
pending.

Has no effect if the interrupt is not pending.

Level-sensitive

If the corresponding interrupt is pendinga only
because of a write to the ICDISPR, the write
changes the status of the interrupt to:

• inactive if it was previously pending

• active if it was previously active and
pending.

Otherwise the interrupt remains pending if the
interrupt signal remains asserted.

For more information see Control of the pending
status of level-sensitive interrupts on page 4-28

For SGIs, the write is ignored.

a. Pending interrupts include interrupts that are active and pending.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-27
Unrestricted Access Non-Confidential

Programmers Model
Control of the pending status of level-sensitive interrupts

This subsection describes the status of an interrupt as includes pending if the interrupt status is one of:

• pending

• active and pending.

For an edge-triggered interrupt, the includes pending status is latched on either a write to the ICDISPR or
the assertion of the interrupt signal to the GIC. However, for a level-sensitive interrupt, the includes pending
status either:

• is latched on a write to the ICDISPR

• follows the state of the interrupt signal to the GIC, without any latching.

This means that the operation of the Set-pending and Clear-pending registers is more complicated for
level-sensitive interrupts. Figure 4-9 shows the logic of the pending status of a level-sensitive interrupt. The
logical output status_includes_pending is TRUE when the interrupt status includes pending, and FALSE
otherwise.

Figure 4-9 Logic of the pending status of a level-sensitive interrupt

status_includes_pending
Interrupt signal to GIC

ICDICPR

ICDISPR Write 1 ‡

‡ The register ignores a write of 0

Valid † read of ICCIAR

† A read that acknowledges this interrupt

Write 1 ‡

Bits corresponding
to this interrupt

ICCIAR: Interrupt Acknowledge Register
ICDICPR: Interrupt Clear-Pending Register
ICDISPR: Interrupt Set-Pending Register

Read

Read

D

4-28 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.3.9 Active Bit Registers (ICDABRn)

The ICDABR characteristics are:

Purpose The ICDABRs provide an Active bit for each interupt supported by the GIC.
Reading an Active bit identifies whether the corresponding interrupt is active.

Note
 The bit reads as one if the status of the interrupt is active or active and pending. Read

the ICDSPR or ICDCPR to find the pending status of the interrupt.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ.

If the GIC implements the Security Extensions a register bit that corresponds to a
Secure interrupt is RAZ to Non-secure accesses.

Configurations These registers are available in all configurations of the GIC. If the GIC implements
the Security Extensions these registers are Common.

The number of implemented ICDABRs is (ICDICTR.ITLinesNumber + 1), see
Interrupt Controller Type Register (ICDICTR) on page 4-14. The implemented
ICDABRs number upwards from ICDABR0.

In a multiprocessor implementation, ICDABR0 is banked for each connected
processor, see Register banking on page 4-5. This register holds the Active bits for
interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-10 shows the ICDABR bit assignments.

Figure 4-10 ICDABR bit assignments

31 0

Active bits
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-29
Unrestricted Access Non-Confidential

Programmers Model
Table 4-12 shows the ICDABR bit assignments.

For interrupt ID N, when DIV and MOD are the integer division and modulo operations:

• the corresponding ICDABR number, M, is given by M = N DIV 32

• the offset of the required ICDABR is (0x300 + (4*M))

• the bit number of the required Active bit in this register is N MOD 32.

Table 4-12 ICDABR bit assignments

Bits Name Function

[31:0] Active bits For each bit:

0 Corresponding interrupt is not activea.

1 Corresponding interrupt is activea.

a. Active interrupts include interrupts that are active and pending.
4-30 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.3.10 Interrupt Priority Registers (ICDIPRn)

The ICDIPR characteristics are:

Purpose The ICDIPRs provide an 8-bit Priority field for each interupt supported by the GIC.
This field stores the priority of the corresponding interrupt.

Usage constraints These registers are byte accessible.

A register field corresponding to an unimplemented interrupt is RAZ/WI.

A GIC might implement fewer than eight priority bits, but must implement at least
bits [7:4] of each field. In each field, unimplemented bits are RAZ/WI.

If the GIC implements the Security Extensions:

• a register field that corresponds to a Secure interrupt is RAZ/WI to
Non-secure accesses

• a Non-secure access to a field that corresponds to a Non-secure interrupt
behaves as described in Software views of interrupt priority on page 3-18

• if the GIC implements configuration lockdown, the system can lock down the
Priority fields for the lockable SPIs that are configured as Secure, see
Configuration lockdown on page 4-9

It is IMPLEMENTATION DEFINED whether changing the value of a priority field
changes the priority of an active interrupt.

Configurations These registers are available in all configurations of the GIC. If the GIC implements
the Security Extensions these registers are Common.

The number of implemented ICDIPRs is (8*(ICDICTR.ITLinesNumber+1)), see
Interrupt Controller Type Register (ICDICTR) on page 4-14. The implemented
ICDIPRs number upwards from ICDIPR0.

In a multiprocessor implementation, ICDIPR0 to ICDIPR7 are banked for each
connected processor, see Register banking on page 4-5. These registers hold the
Priority fields for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-11 shows the ICDIPR bit assignments.

Figure 4-11 ICDIPR bit assignments

31 7 08

Priority,
byte offset 0

Priority,
byte offset 1

Priority,
byte offset 2

Priority,
byte offset 3

15162324
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-31
Unrestricted Access Non-Confidential

Programmers Model
Table 4-13 shows the ICDIPR bit assignments.

For interrupt ID N, when DIV and MOD are the integer division and modulo operations:

• the corresponding ICDIPR number, M, is given by M = N DIV 4

• the offset of the required ICDIPR is (0x400 + (4*M))

• the byte offset of the required Priority field in this register is N MOD 4, where:

— byte offset 0 refers to register bits [7:0]

— byte offset 1 refers to register bits [15:8]

— byte offset 2 refers to register bits [23:16]

— byte offset 3 refers to register bits [31:24].

Table 4-13 ICDIPR bit assignments

Bits Namea Function

[31:24] Priority, byte offset 3 Each priority field holds a priority value, from an IMPLEMENTATION DEFINED
range. The lower the value, the greater the priority of the corresponding
interrupt. For more information see Interrupt prioritization on page 3-12 and, if
appropriate, The effect of the Security Extensions on interrupt prioritization on
page 3-18.

[23:16] Priority, byte offset 2

[15:8] Priority, byte offset 1

[7:0] Priority, byte offset 0

a. Each field holds the priority value for a single interrupt. This section describes how the interrupt ID value determines
the ICDIPR register number and the byte offset of the priority field in that register.
4-32 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.3.11 Interrupt Processor Targets Registers (ICDIPTRn)

The ICDIPTR characteristics are:

Purpose The ICDIPTRs provide an 8-bit CPU targets field for each interrupt supported by
the GIC. This field stores the list of processors that the interrupt is sent to if it is
asserted.

Usage constraints For a multiprocessor implementation:

• These registers are byte accessible.

• A register field corresponding to an unimplemented interrupt is RAZ/WI.

• ICDIPTR0 to ICDIPTR7 are read-only, and each field returns a value
corresponding only to the processor reading the register.

• It is IMPLEMENTATION DEFINED which, if any, SPIs are statically configured
in hardware. The CPU targets field for such an SPI is read-only, and returns
a value that indicates the CPU targets for the interrupt.

• if the GIC implements the Security Extensions:

— a register field that corresponds to a Secure interrupt is RAZ/WI to
Non-secure accesses

— if the GIC implements configuration lockdown, the system can lock
down the CPU targets fields for the lockable SPIs that are configured
as Secure, see Configuration lockdown on page 4-9.

See also The effect of changes to an ICDIPTR on page 4-35.

Note
 In a uniprocessor implementation, all interrupts target the one processor, and the

ICDIPTRs are RAZ/WI.

Configurations These registers are available in all configurations of the GIC. If the GIC implements
the Security Extensions these registers are Common.

The number of implemented ICDIPTRs is (8*(ICDICTR.ITLinesNumber+1)), see
Interrupt Controller Type Register (ICDICTR) on page 4-14. The implemented
ICDIPTRs number upwards from ICDIPTR0.

In a multiprocessor implementation, ICDIPTR0 to ICDIPTR7 are banked for each
connected processor, see Register banking on page 4-5. These registers hold the
CPU targets fields for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-2.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-33
Unrestricted Access Non-Confidential

Programmers Model
Figure 4-12 shows the ICDIPTR bit assignments, for a multiprocessor implementation.

Figure 4-12 ICDIPTR bit assignments

Table 4-14 shows the ICDIPTR bit assignments, for a multiprocessor implementation.

Table 4-15 shows how each bit of a CPU targets field targets the interrupt at one of the CPU interfaces.

A CPU targets field bit that corresponds to an unimplemented CPU interface is RAZ/WI.

31 7 08

CPU targets,
byte offset 0

CPU targets,
byte offset 1

CPU targets,
byte offset 2

CPU targets,
byte offset 3

15162324

Table 4-14 ICDIPTR bit assignments

Bits Namea Function

[31:24] CPU targets, byte offset 3 Processors in the system number from 0, and each bit in a CPU targets field
refers to the corresponding processor, see Table 4-15. For example, a value
of 0x3 means that the Pending interrupt is sent to processors 0 and 1.

For ICDIPTR0 to ICDIPTR7, a read of any CPU targets field returns the
number of the processor performing the read.

[23:16] CPU targets, byte offset 2

[15:8] CPU targets, byte offset 1

[7:0] CPU targets, byte offset 0

a. Each field holds the CPU targets list for a single interrupt. This section describes how the interrupt ID value determines
the ICDIPTR register number and the byte offset of the CPU targets field in that register.

Table 4-15 Meaning of CPU targets field bit values

CPU targets field value Interrupt targets

0bxxxxxxx1 CPU interface 0

0bxxxxxx1x CPU interface 1

0bxxxxx1xx CPU interface 2

0bxxxx1xxx CPU interface 3

0bxxx1xxxx CPU interface 4

0bxx1xxxxx CPU interface 5

0bx1xxxxxx CPU interface 6

0b1xxxxxxx CPU interface 7
4-34 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
For interrupt ID N, when DIV and MOD are the integer division and modulo operations:

• the corresponding ICDIPTR number, M, is given by M = N DIV 4

• the offset of the required ICDIPTR is (0x800 + (4*M))

• the byte offset of the required Priority field in this register is N MOD 4, where:

— byte offset 0 refers to register bits [7:0]

— byte offset 1 refers to register bits [15:8]

— byte offset 2 refers to register bits [23:16]

— byte offset 3 refers to register bits [31:24].

The effect of changes to an ICDIPTR

Software can write to an ICDIPTR at any time. Any change to a CPU targets field value:

• Has no effect on any active interrupt. This means that removing a CPU interface from a targets list
does not cancel an active state for that interrupt on that CPU interface.

• Has an immediate effect on any pending interrupts. This means:

— adding a CPU interface to the target list of a pending interrupt makes that interrupt pending on
that CPU interface

— removing a CPU interface from the target list of a pending interrupt removes the pending state
of that interrupt on that CPU interface.

• If applied to an interrupt that is active and pending, will not change the interrupt targets until the
active status is cleared.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-35
Unrestricted Access Non-Confidential

Programmers Model
4.3.12 Interrupt Configuration Registers (ICDICFRn)

The ICDICFR characteristics are:

Purpose The ICDICFRs provide a 2-bit Int_config field for each interupt supported by the
GIC. This field identifies whether the corresponding interrupt is:

• edge-triggered or level-sensitive, see Interrupt types on page 1-4

• handled using the 1-N model or using the N-N model, see Models for
handling interrupts on page 1-5.

Usage constraints For each supported PPI, it is IMPLEMENTATION DEFINED whether software can
program the corresponding Int_config field.

For SGIs, Int_config fields are read-only, meaning that ICDICFR0 is read-only. For
PPIs, it is IMPLEMENTATION DEFINED whether the most significant bit of the
Int_config field is programmable. See Table 4-16 on page 4-37 for more
information.

A register field corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register field that corresponds to a Secure interrupt is RAZ/WI to
Non-secure accesses

• if the GIC implements configuration lockdown, the system can lock down the
Int_config fields for the lockable SPIs that are configured as Secure, see
Configuration lockdown on page 4-9.

Before changing the value of a programmable Int_config field, software must
disable the corresponding interrupt, otherwise GIC behavior is UNPREDICTABLE.

Configurations These registers are available in all configurations of the GIC. If the GIC implements
the Security Extensions these registers are Common.

In a multiprocessor implementation, if the most significant bit of the Int_config field
for any PPI is programmable then ICDICFR1 is banked for each connected
processor, see Register banking on page 4-5. This registers holds the Int_config
fields for the PPIs, interrupts 16-31.

The number of implemented ICDICFRs is (2*(ICDICTR.ITLinesNumber+1)), see
Interrupt Controller Type Register (ICDICTR) on page 4-14. The implemented
ICDICFRs number upwards from ICDICFR0.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-13 on page 4-37 shows the ICDICFR bit assignments.
4-36 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
Figure 4-13 ICDICFR bit assignments

Table 4-16 shows the ICDICFR bit assignments, for version 1 of the GIC Architecture Specification.

In some implementations of this GIC architecture before the publication of version 1 of the GIC
Architecture Specification, the model for handling each peripheral interrupt can be configured using bit [0]
of the corresponding Int_config field. Table 4-17 on page 4-38 shows the encoding of Int_config[0] on these
implementations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit [2F], Int_config[0]: Reserved
Bit [2F+1], Int_config[1]: Level-sensitive or edge-triggered

Field number, F

Int_config fields

All Int_config fields have the same format, as shown for field 9

Shown for
F=3

Table 4-16 ICDICFR bit assignments

Bits Name Function

[2F+1:2F] Int_config,
field F

For Int_config[1], the most significant bit, bit [2F+1], the encoding is:

0 Corresponding interrupt is level-sensitive.

1 Corresponding interupt is edge-triggered.

Int_config[0], the least significant bit, bit [2F], is Reserved, but see Table 4-17 on
page 4-38 for the encoding of this bit on some early implementations of this GIC
architecture.

For SGIs:

Int_config[1] Not programmable, RAO/WIa.

For PPIs and SPIs:

Int_config[1] For SPIs, this bit is programmable. For PPIs it is IMPLEMENTATION
DEFINED whether this bit is programmable. A read of this bit always
returns the correct value to indicate whether the corresponding interrupt
is level-sensitive or edge-triggered.

a. If the GIC implements the Security Extensions and the bit corresponds to a Secure interrupt, it is RAZ/WI to Non-secure
accesses. This is the usual behavior of bits that correspond to Secure interrupts.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-37
Unrestricted Access Non-Confidential

Programmers Model
For interrupt ID N, when DIV and MOD are the integer division and modulo operations:

• the corresponding ICDICFR number, M, is given by M = N DIV 16

• the offset of the required ICDIPTR is (0xC00 + (4*M))

• the required Priority field in this register, F, is given by F = N MOD 16, where field 0 refers to register
bits [1:0], field 1 refers to bits [3:2], and so on, up to field 15 refers to bits [31:30], see Figure 4-13
on page 4-37.

Table 4-17 ICDICFR Int_config[0] encoding in some early GIC implementations

Bits Name Function

[2F] Int_config[0],
field F

On a GIC where the handling mode of peripheral interrupts is configurable, the
encoding of Int_config[0] for PPIs and SPIs, is:

0 Corresponding interrupt is handled using the N-N model.

1 Corresponding interrupt is handled using the 1-N model.
4-38 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.3.13 Software Generated Interrupt Register (ICDSGIR)

The ICDSGIR characteristics are:

Purpose Controls the generation of SGIs.

Usage constraints The SATT field, bit [15], is implemented only if the GIC implements the Security
Extensions.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-1 on page 4-2.

Figure 4-14 shows the ICDSGIR bit assignments.

Figure 4-14 ICDSGIR bit assignments

Table 4-18 shows the ICDSGIR bit assignments.

31 0

SATT ‡

Reserved

16

SGIINTID

14

Reserved

152324 34

TargetListFilter

26 25

CPUTargetList

‡ Implemented only if the GIC implements the Security Extensions, Reserved otherwise

Table 4-18 ICDSGIR bit assignments

Bits Name Function

[31:26] - Reserved.

[25:24] TargetListFilter 0b00 Send the interrupt to the CPU interfaces specified in the
CPUTargetList fielda.

0b01 Send the interrupt to all CPU interfaces except the CPU interface that
requested the interrupt.

0b10 Send the interrupt only to the CPU interface that requested the
interrupt.

0b11 Reserved.

[23:16] CPUTargetList When TargetList Filter = 0b00, defines the CPU interfaces the Distributor must send
the interrupt to.

Each bit of CPUTargetList[7:0] refers to the corresponding CPU interface, for
example CPUTargetList[0] corresponds to CPU interface 0. Setting a bit to 1 sends
the interrupt to the corresponding interface.

[15] - If GIC does not implement the Security Extensions, this field is Reserved.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-39
Unrestricted Access Non-Confidential

Programmers Model
SGI generation when the GIC implements the Security Extensions

If the GIC implements the Security Extensions, whether an SGI is sent to a processor specified in the write
to the ICDSGIR depends on:

• the security status of the write to the ICDSGIR

• for a Secure write to the ICDSGIR, the value of the ICDSGIR.SATT bit

• whether the specified SGI is configured as Secure or Non-secure on the targeted processor.

ICDISR0 holds the security states of the SGIs, see Interrupt Security Registers (ICDISRn) on page 4-17. In
a multiprocessor system, ICDISR0 is banked for each connected processor, so the system configures the
security of each SGI independently for each processor. A single write to the ICDSGIR can target more than
one processor. For each targeted processor, the Distributor determines whether to send the SGI to the
processor.

Table 4-19 on page 4-41 shows the truth table for whether the Distributor sends a particular SGI to a specific
target CPU interface.

[15] SATT If the GIC implements the Security Extensions, this field is writable only using a
Secure access. Any Non-secure write to the ICDSGIR issues an SGI only if the
specified SGI is programmed as Non-secure, regardless of the value of bit [15] of the
write.

Specifies the required security value of the SGI:

0 Send the SGI specified in the SGIINTID field to a specified CPU
interface only if the SGI is configured as Secure on that interface.

1 Send the SGI specified in the SGIINTID field to a specified CPU
interfaces only if the SGI is configured as Non-secure on that
interface.

See SGI generation when the GIC implements the Security Extensions for more
information.

[14:4] - Reserved, SBZ.

[3:0] SGIINTID The Interrupt ID of the SGI to send to the specified CPU interfaces. The value of this
field is the Interrupt ID, in the range 0-15, for example a value of 0b0011 specifies
Interrupt ID 3.

a. When TargetListFilter is 0b00, if the CPUTargetList field is 0x00 the Distributor does not send the interrupt to any CPU
interface.

Table 4-18 ICDSGIR bit assignments (continued)

Bits Name Function
4-40 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
Table 4-19 Truth table for sending an SGI to a target processor

Status of ICDSGIR write SATT value Status of SGI on target processor Send SGI?a

Secure 0 Secure Yes

Non-secure No

1 Secure No

Non-secure Yes

Non-secure x Secure No

Non-secure Yes

a. Whether the SGI is sent to the CPU interface for the target processor.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-41
Unrestricted Access Non-Confidential

Programmers Model
4.3.14 Identification registers

This architecture specification defines offsets 0xFD0-0xFFC in the Distributor register map as a read-only
identification register space. This space includes three architecturally defined registers. as Table 4-20
shows:

The assignment of this register space, and naming of registers in this space, is consistent with the ARM
identification scheme for PrimeCells and CoreSight components. ARM implementations of this GIC
architecture implement that identification scheme, and ARM strongly recommends that other implementers
also use this scheme, to provide a consistent software discovery model, see The ARM implementation of the
GIC Identification Registers on page 4-43 and Use of identification registers on page B-2.

Peripheral ID2 Register (ICPIDR2)

The ICPIDR2 characteristics are:

Purpose Provides a four-bit architecturally-defined architecture revision field. The
remaining bits of the register are IMPLEMENTATION DEFINED.

Usage constraints There are no usage constraints.

Configurations This register is available in all configurations of the GIC.

Attributes See the register summary in Table 4-20.

Figure 4-15 shows the ICPIDR2 bit assignments.

Figure 4-15 ICPIDR2 bit assignments

Table 4-20 The GIC identification register space

Offset Name Type Reseta

a. The reset value of an IMPLEMENTATION DEFINED register is IMPLEMENTATION DEFINED.

Description

0xFD0-0xFE4 - RO - IMPLEMENTATION DEFINED registers

0xFE8 ICPIDR2 RO -b

b. See the register description for information about the architecturally defined bits in this register.

Peripheral ID2 Register (ICPIDR2)

0xFEC-0xFFC - RO - IMPLEMENTATION DEFINED registers

ArchRevIMPLEMENTATION DEFINED

31 8 7 4 3 0

IMPLEMENTATION DEFINED
4-42 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
Table 4-21 shows the ICPIDR2 bit assignments.

The ARM implementation of the GIC Identification Registers

Note
 • The ARM implementation of these registers is consistent with the identification scheme for

PrimeCells and CoreSight components. This implementation identifies the device as a GIC that
implements this architecture. It does not identify the designer or manufacturer of the GIC
implementation. For information about the designer and manufacturer of a GIC implementation see:

— Distributor Implementer Identification Register (ICDIIDR) on page 4-16

— CPU Interface Identification Register (ICCIIDR) on page 4-65

• In other contexts, this identification scheme identifies a component in a system. The GIC use of the
scheme is different. It identifies only that the device is an implementation of a version of this GIC
architecture. Software must read the ICDIIDR and ICCIIDR to discover, for example, the
implementer and version of the GIC hardware. For more information see Use of identification
registers on page B-2.

Table 4-22 shows the Identification Registers for an ARM implementation of this version of the GIC
architecture. ARM recommends other implementers to include the registers described here.

Table 4-21 ICPIDR2 bit assignments

Bits Name Function

[31:8] - IMPLEMENTATION DEFINED.

[7:4] ArchRev Revision field for the GIC architecture. The value of this field is 0x1. This value might
increase in future versions of the architecture.

[3:0] - IMPLEMENTATION DEFINED.

Table 4-22 Identification Registers for a GIC, with ARM implementation values

Registera Offset Bits
ARM implementation

Value Description

Component ID0 (ICCIDR0) 0xFF0 [7:0] 0x0D ARM-defined fixed values for the preamble for
component discovery.

Component ID1 (ICCIDR1) 0xFF4 [7:0] 0xF0

Component ID2 (ICCIDR2) 0xFF8 [7:0] 0x05

Component ID3 (ICCIDR3) 0xFFC [7:0] 0xB1
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-43
Unrestricted Access Non-Confidential

Programmers Model
Note
 Some previous ARM implementations of the GIC did not implement Peripheral ID registers 4-7. Software
can use the value of bit [3] of the ICPIDR2 to identify these implementations:

0 Legacy format.

1 ARM GIC architecture v1.0 format.

Peripheral ID0 (ICPIDR0) 0xFE0 [7:0] 0x90 Bits [7:0] of the ARM-defined DevID field.

Peripheral ID1 (ICPIDR1) 0xFE4 [7:4] 0xB Bits [3:0] of the ARM-defined ArchID field.

[3:0] 0x3 Bits [11:8] of the ARM-defined DevID field.

Peripheral ID2 (ICPIDR2) 0xFE8 [7:4] 0x1 Architecturally-defined ArchRev field.

[3] 1 ARM-defined UsesJEPcode field.

[2:0] 0b011 Bits [6:4] of the ARM-defined ArchID field.

Peripheral ID3 (ICPIDR3) 0xFEC [3:0] 0x0 Reserved by ARM.

[7:4] 0x0 ARM-defined Revision field.

Peripheral ID4 (ICPIDR4) 0xFD0 [3:0] 0x4 ARM-defined ContinuationCode field.

[7:4] 0x0 Reserved by ARM.

Peripheral ID5 (ICPIDR5) 0xFD4 [7:0] 0x00 Reserved by ARM.

Peripheral ID6 (ICPIDR6) 0xFD8 [7:0] 0x00 Reserved by ARM.

Peripheral ID7 (ICPIDR7) 0xFDC [7:0] 0x00 Reserved by ARM.

a. In the ARM implementation, bits [31:8] of each register are reserved. Bits [7:0] of the four Component ID registers
together define a conceptual 32-bit Component ID, and bits [7:0] of the eight Peripheral ID registers together define a
conceptual 64-bit Peripheral ID.
In the GIC implementation, despite their names, Component ID and Peripheral ID refer only to the architecture of the
implementation, see the Note at the start of this section for more information.

Table 4-22 Identification Registers for a GIC, with ARM implementation values (continued)

Registera Offset Bits
ARM implementation

Value Description
4-44 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
The ARM peripheral ID for a GIC

Together, the Peripheral ID registers ICPIDR0 to ICPIDR7 define an 64-bit peripheral ID. In current ARM
implementations, bits [63:36] of that ID are reserved, RAZ. Figure 4-16 shows bits [35:0] of the
Peripheral ID for a GIC, and Table 4-23 shows all the fields in the 64-bit Peripheral ID.

Figure 4-16 ARM Peripheral ID fields for a GIC

Table 4-23 Fields in the GIC Peripheral ID, for an ARM implementation

Name Bits Source Value Function

- [63:40] ICPIDR7[7:0],
ICPIDR6[7:0],
ICPIDR5[7:0]

RAZ

- [39:36] ICPIDR4[7:4] 0x0 Reserveda

ContinuationCode [35:32] ICPIDR4[3:0] 0x4 JEP106 continuation code for ARMa

a. ARM-defined field.

Revision [31:28] ICPIDR3[7:4] 0x0 Revision fielda

- [27:24] ICPIDR3[3:0] 0x0 Reserveda

ArchRev [23:20] ICPIDR2[7:4] 0x1 Architecturally-defined revision number for the ARM
GIC architecture, see Peripheral ID2 Register
(ICPIDR2) on page 4-42

UsesJEPcode [19] ICPIDR2[3] 1 Indicate that the identifier string uses JEP106 codes to
identify ARM as the designer of the architecturea

ArchID [18:12] ICPIDR2[2:0],
ICPIDR1[7:4]

0x3B Identifies ARM as the designer of the GIC
architecturea

DevID [11:0] ICPIDR1[3:0],
ICPIDR0[7:0]

0x390 Identifies the device as a GICa

00 0 0 0 0 0 001 0 0 0

23
4 3 2 0 7 4 3 0 7

0

0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0

ICPIDR0[7:0]ICPIDR1[7:0]ICPIDR2[7:0]

DevIDArchIDArchRev
UsesJEPcode

20 19 18 16 15 12 11 8 7
07

ICPIDR3[7:0]ICPIDR4[3:0]

4 3 073 0

ReservedRevision
ContinuationCode

31 28 27 2435 32
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-45
Unrestricted Access Non-Confidential

Programmers Model
4.4 CPU interface register descriptions

The following sections describe the CPU interface registers:

• CPU Interface Control Register (ICCICR) on page 4-47

• Interrupt Priority Mask Register (ICCPMR) on page 4-52

• Binary Point Register (ICCBPR) on page 4-54

• Interrupt Acknowledge Register (ICCIAR) on page 4-56

• End of Interrupt Register (ICCEOIR) on page 4-59

• Running Priority Register (ICCRPR) on page 4-61

• Aliased Binary Point Register (ICCABPR) on page 4-62

• Highest Pending Interrupt Register (ICCHPIR) on page 4-63

• CPU Interface Identification Register (ICCIIDR) on page 4-65.
4-46 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.4.1 CPU Interface Control Register (ICCICR)

The ICCICR characteristics are:

Purpose Enables the signalling of interrupts to the target processors. In a GIC that
implements the Security Extensions, provides additional global controls for
handling Secure interrupts.

Usage constraints If the GIC implements the Security Extensions with configuration lockdown, the
system can lock down the Secure ICCICR, see Configuration lockdown on
page 4-9.

Configurations If the GIC implements the Security Extensions, this register is banked to provide
Secure and Non-secure copies, see Register banking on page 4-5, and the bit
assignments are different in the Secure and Non-secure copies of the register.

Attributes See the register summary in Table 4-2 on page 4-4.

Figure 4-17 shows the Non-secure ICCICR bit assignments for:

• a GIC that does not implement the Security Extensions

• the Non-secure copy of the ICCICR in a GIC that implement the Security Extensions.

Figure 4-17 ICCICR bit assignments, GIC without Security Extensions and Non-secure ICCICR

Table 4-24 shows the ICCICR bit assignments for a GIC that does not implement the Security Extensions,
and for the Non-secure ICCICR.

For a GIC that implements the Security Extensions, Figure 4-18 on page 4-48 shows bit assignments for the
the Secure copy of the ICCICR.

Enable

31 1 0

Reserved

Table 4-24 ICCICR bit assignments, GIC without Security Extensions and Non-secure ICCICR

Bits Name Function

[31:1] - Reserved.

[0] Enable Global enable for the signalling of interrupts by the CPU interfaces to the connected processors.

0 Disable signalling of interrupts.

1 Enable signalling of interrupts.

On a GIC that implements the Security Extensions, this bit controls only the signalling of
Non-secure interrupts.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-47
Unrestricted Access Non-Confidential

Programmers Model
Figure 4-18 Secure ICCICR bit assignments

Table 4-25 shows the Secure ICCICR bit assignments.

31 1 0

Reserved

2345

EnableNS
EnableS

AckCtl
FIQEn
SBPR

Table 4-25 Secure ICCICR bit assignments

Bit Name Function

[31:5] - Reserved.

[4] SBPR Controls whether the CPU interface uses the Secure or Non-secure Binary Point Register for
preemption.

0 To determine any preemption, use:

• the Secure Binary Point Register for Secure interrupts

• the Non-secure Binary Point Register for Non-secure interrupts.

1 To determine any preemption use the Secure Binary Point Register for both
Secure and Non-secure interrupts.

[3] FIQEn Controls whether the GIC signals Secure interrupts to a target processor using the FIQ or the
IRQ signal.

0 Signal Secure interrupts using the IRQ signal.

1 Signal Secure interrupts using the FIQ signal.

The GIC always signals Non-secure interrupts using the IRQ signal.

[2] AckCtl Controls whether a Secure read of the ICCIAR, when the highest priority pending interrupt
is Non-secure, causes the CPU interface to acknowledge the interrupt.

0 If the highest priority pending interrupt is Non-secure, a Secure read of the
ICCIAR returns an Interrupt ID of 1022. The read does not acknowledge the
interrupt, and the pending status of the interrupt is unchanged.

1 If the highest priority pending interrupt is Non-secure, a Secure read of the
ICCIAR returns the Interrupt ID of the Non-secure interrupt. The read
acknowledges the interrupt, and the status of the interrupt becomes active, or
active and pending.

For more information see The effect of the Security Extensions on interrupt prioritization on
page 3-18.
4-48 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
Optional support for interrupt signal pass-through

Optionally, a GIC can multiplex the interrupt request from a CPU interface with a legacy interrupt signal so
that:

• When the system enables interrupt signalling by the GIC, the CPU interface drives the GIC interrupt
request output.

• When the system disables interrupt signalling by the GIC, the legacy interrupt signal drives the GIC
interrupt request output. Operating in this way is called interrupt signal pass-through.

Figure 4-19 shows a simple implementation of interrupt signal pass-through.

Figure 4-19 Interrupt signal pass-through

GIC support for interrupt signal pass-through is IMPLEMENTATION DEFINED.

Note
 In a multiprocessor system support might be different on different CPU interfaces, and some or all interfaces
might not support any pass-through.

[1] EnableNS An alias of the Enable bit in the Non-secure ICCICR. This alias bit means Secure software
can enable the signalling of Non-secure interrupts.

0 Disable signalling of Non-secure interrupts.

1 Enable signalling of Non-secure interrupts.

[0] EnableS Global enable for the signalling of Secure interrupts by the CPU interfaces to the connected
processors.

0 Disable signalling of Secure interrupts.

1 Enable signalling of Secure interrupts.

Table 4-25 Secure ICCICR bit assignments (continued)

Bit Name Function

CPU
interface

0

1

Interrupt
request

Signalling enable

GIC

Legacy
Interrupt signal

Interrupt request
to processor
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-49
Unrestricted Access Non-Confidential

Programmers Model
interrupt signal pass-through with Security Extensions support

When a GIC implements the Security Extensions, it has two interrupt exception request outputs, described
as IRQ and FIQ. It always uses the IRQ output to signal Non-secure interrupts, but can use the FIQ output
to signal Secure interrupts. In many implementations these GIC signals correspond to the nIRQ and nFIQ
input ports on an ARM processor, and on a processor that implements the ARMv7-A or ARMv7-R
architecture profile these GIC outputs normally correspond to requests for the IRQ and FIQ interrupt
exceptions. In such an implementation, the appropriate GIC CPU interface might include pass-through of
both interrupt signals. Table 4-26 shows how the Secure ICCICR controls the GIC interrupt outputs.

For such an implementation, Figure 4-20 on page 4-51 shows how the Secure and Non-secure interrupts
might be signaled, for a CPU interface that implements active-LOW interrupt signaling.

Table 4-26 Interrupt pass through behavior

Secure ICCICR register bits GIC interrupt outputs

FIQEn EnableS EnableNSa

a. The EnableNS bit in the Secure ICCICR register. This is an alias of the Enable bit in the Non-secure
ICCICR register.

IRQ request behavior FIQ request behavior

0 0 0 Pass through Pass through

1 Driven by GIC Pass through

1 0 Driven by GIC Pass through

1 Driven by GIC Pass through

1 0 0 Pass through Pass through

1 Driven by GIC Pass through

1 0 Pass through Driven by GIC

1 Driven by GIC Driven by GIC
4-50 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
Figure 4-20 Secure and Non-secure interrupt signaling, with pass-through

CPU interface

0

1
IRQ

GIC

To
processor

FIQEn EnableS EnableNS

0

1
FIQ

Interrupt requests
from distributor,
prioritization and

filtering not shown Non-secure

Secure

Secure ICCICR register (part)

Legacy
interrupt
signals

nIRQ

nFIQ

GIC implemented with active-LOW interrupt signals

nIRQ

nFIQ
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-51
Unrestricted Access Non-Confidential

Programmers Model
4.4.2 Interrupt Priority Mask Register (ICCPMR)

The ICCPMR characteristics are:

Purpose Provides an interrupt priority filter. Only interrupts with higher priority than the
value in this register can be signalled to the processor.

Note
 Higher priority corresponds to a lower Priority field value.

Usage constraints If the GIC implements the Security Extensions then:

• a Non-secure access to this register can only read or write a value that
corresponds to the lower half of the priority range, see The effect of the
Security Extensions on interrupt prioritization on page 3-18.

• if a Secure write has programmed the ICCPMR with a value that corresponds
to a value in the upper half of the priority range then:

— any Non-secure read of the ICCPMR returns 0x00, regardless of the
value held in the register

— any Non-secure write to the ICCPMR is ignored.

For more information see Non-secure access to register fields for Secure interrupt
priorities on page 4-8.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions, this register is Common.

Attributes See the register summary in Table 4-2 on page 4-4.

Figure 4-21 shows the ICCPMR bit assignments.

Figure 4-21 ICCPMR bit assignments

31 7 08

PriorityReserved
4-52 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
Table 4-27 shows the ICCPMR Register bit assignments.

Table 4-27 ICCPMR Register bit assignments

Bits Name Function

[31:8] - Reserved.

[7:0] Priority The priority mask level for the CPU interface. If the priority of an interrupt is higher than the
value indicated by this field, the interface signals the interrupt to the processor.

If the GIC supports fewer than 256 priority levels then some bits are RAZ/WI, as follows:

128 supported levels Bit [0] = 0.

64 supported levels Bit [1:0] = 0b00.

32 supported levels Bit [2:0] = 0b000.

16 supported levels Bit [3:0] = 0b0000.

For more information see Interrupt prioritization on page 3-12.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-53
Unrestricted Access Non-Confidential

Programmers Model
4.4.3 Binary Point Register (ICCBPR)

The ICCBPR characteristics are:

Purpose The register defines the point at which the priority value fields split into two parts,
the group priority field and the subpriority field. The group priority field is used to
determine interrupt preemption. For more information see Preemption on page 3-13
and Priority grouping on page 3-14.

Usage constraints The minimum binary point value is IMPLEMENTATION DEFINED in the range 0-3. An
attempt to program the binary point field to a value less than the minimum value sets
the field to the minimum value. On a reset, the binary point field is set to the
minimum supported value.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions:

• This register is banked to provide Secure and Non-secure copies, see Register
banking on page 4-5.

• The Non-secure copy of the ICCBPR is aliased as the ICCABPR, see Aliased
Binary Point Register (ICCABPR) on page 4-62, so that a processor can use
Secure accesses to access the Non-secure ICCBR.

• The ICCICR.SBPR bit controls whether the Secure or Non-secure copy of
the ICCBPR is used to determine the preemption of Non-secure interrupts,
see CPU Interface Control Register (ICCICR) on page 4-47.

Attributes See the register summary in Table 4-2 on page 4-4.

Figure 4-22 shows the ICCBPR bit assignments.

Figure 4-22 ICCBPR bit assignments

31 2 0

Reserved

3

Binary
point
4-54 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
Table 4-28 shows the ICCBPR bit assignments.

Note
 Aliasing the Non-secure ICCBPR as the ICCABPR means that, in a multiprocessor system, a processor that
can make only Secure accesses to the GIC can access the Non-secure ICCBPR, to configure the preemption
setting for Non-secure interrupts.

Table 4-28 ICCBPR bit assignments

Bits Name Function

[31:3] - Reserved.

[2:0] Binary
point

The value of this field controls how the 8-bit interrupt priority field is split into a group priority
field, used to determine interrupt preemption, and a subpriority field. For how this field
determines the interrupt priority bits assigned to the group priority field see:

• Table 3-2 on page 3-14, for a GIC that does not implement the Security Extensions, and
for a GIC that implements the Security Extensions when processing a Secure interrupt

• Table 3-4 on page 3-23, for a GIC that implements the Security Extensions when
processing a Non-secure interrupt.

See Priority grouping on page 3-14 for more information.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-55
Unrestricted Access Non-Confidential

Programmers Model
4.4.4 Interrupt Acknowledge Register (ICCIAR)

The ICCIAR characteristics are:

Purpose The processor reads this register to obtain the interrupt ID of the signaled interrupt.
This read acts as an acknowledge for the interrupt.

Usage constraints There are no usage constraints.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-2 on page 4-4.

Figure 4-23 shows the IAR bit assignments.

Figure 4-23 ICCIAR bit assignments

Table 4-29 shows the IAR bit assignments.

A read of the ICCIAR returns the interrupt ID of the highest priority pending interrupt for the CPU interface,
The read returns a spurious interrupt ID of 1023 if any of the following apply:

• Signalling of interrupts to the CPU interface is disabled

• There is no pending interrupt on this CPU interface with sufficient priority for the interface to signal
it to the processor.

31 9 0

Reserved

10

ACKINTID

1213

CPUID

Table 4-29 ICCIAR bit assignments

Bit Name Function

[31:13] - Reserved.

[12:10] CPUID For SGIs in a multiprocessor implementation, this field identifies the processor that
requested the interrupt. It returns the number of the CPU interface that made the
request, for example a value of 3 (0b011) means the request was generated by a write
to the IDCSFGIR on CPU interface 3.

For all other interrupts this field is RAZ.

[9:0] ACKINTID The interrupt ID.
4-56 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
Note
 The following sequence of events is an example of when the GIC returns an interrupt ID of 1023, and shows
how reads of the ICCIAR can be timing critical:

1. A peripheral asserts a level-sensitive interrupt.

2. The interrupt has sufficient priority and therefore the GIC signals it to a targeted processor.

3. The peripheral deasserts the interrupt. Because there is no other pending interrupt of sufficient
priority, the GIC deasserts the interrupt request to the processor.

4. Before it has recognized the deassertion of the interrupt request from stage 3, the targeted processor
reads the ICCIAR. Because there is no interrupt with sufficient priority to signal to the processor, the
GIC returns the spurious ID value of 1023.

The determination of the returned interrupt ID is more complex if the CPU interface implements the
Security Extensions, see Effect of the Security Extensions on reads of the ICCIAR on page 4-58.

A non-spurious interrupt ID returned by a read of the ICCIAR is called a valid interrupt ID.

When the GIC returns a valid interrupt ID to a read of the ICCIAR it treats the read as an acknowledge of
that interrupt and, as a side-effect of the read, changes the interrupt status from pending to active, or to active
and pending if the pending state of the interrupt persists. Normally, the pending state of an interrupt persists
only if the interrupt is level-sensitive and remains asserted.

For every read of a valid Interrupt ID from the ICCIAR, the interrupt service routine on the connected
processor must perform a matching write to the ICCEOIR, see End of Interrupt Register (ICCEOIR) on
page 4-59.

Note
 • For compatibility with possible extensions to the GIC architecture specification, ARM recommends

that software preserves the entire register value read from the ICCIAR, and writes that value back to
the ICCEOIR when it has completed its processing of the interrupt.

• ARM recommends that software uses spin-locks to arbitrate which processor handles an SPI. When
the GIC generates an SPI that is targeted at more than one processor, it cannot guarantee either of the
following:

— only one processor receives the Interrupt ID of the SPI from a read of the ICCIAR

— other processors receive a spurious interrupt response.

For more information see Implications of the 1-N model on page 3-8.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-57
Unrestricted Access Non-Confidential

Programmers Model
Effect of the Security Extensions on reads of the ICCIAR

If a CPU interface implements the Security Extensions, whether a read of the ICCIAR returns a valid
interrupt ID depends on:

• whether there is a pending interrupt of sufficient priority for it to be signaled to the processor, and if
so, whether the highest priority pending interrupt is a Secure or a Non-secure interrupt

• whether the ICCIAR read access is Secure or Non-secure

• the value of the ICCICR.AckCtl bit, see CPU Interface Control Register (ICCICR) on page 4-47.

Reads of the ICCIAR that do not return a valid interrupt ID returns a spurious interrupt ID, ID 1022 or 1023,
see Special interrupt numbers when the Security Extensions are implemented on page 3-16. Table 4-30
shows all possible ICCIAR reads for a CPU interface that implements the Security Extensions.

Table 4-30 Effect of the Security Extensions on ICCIAR reads

Security of highest priority pending
interrupta ICCIAR read ICCICR.AckCtl Returned interrupt ID

Non-secure Non-secure x ID of Non-secure interrupt

Secure 1 ID of Non-secure interrupt

0 Interrupt ID 1022

Secure Non-secure x Interrupt ID 1023

Secure x ID of Secure interrupt

No pending interruptsa or signalling of
interrupts by CPU interface disabled

x x Interrupt ID 1023

a. Of sufficient priority to be signaled to the processor.
4-58 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.4.5 End of Interrupt Register (ICCEOIR)

The ICCEOIR characteristics are:

Purpose A processor writes to this register to inform the CPU interface that it has completed
its interrupt service routine for the specified interrupt.

Usage constraints There are no usage constraints.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See Table 4-2 on page 4-4.

Figure 4-24 shows the ICCEOIR bit assignments.

Figure 4-24 ICCEOIR bit assignments

Table 4-31 shows the ICCEOIR bit assignments.

Writing to this register causes the GIC to change the status of the identified interrupt:

• to inactive, if it was active

• to pending, if it was active and pending.

The interrupt service routine on the connected processor must write to the ICCEOIR for every read of a valid
Interrupt ID from the ICCIAR, see Interrupt Acknowledge Register (ICCIAR) on page 4-56. The value
written to the ICCEOIR must be the interrupt ID read from the ICCIAR.

Note
 • For compatibility with possible extensions to the GIC architecture specification, ARM recommends

that software preserves the entire register value read from the ICCIAR when it acknowledges the
interrupt, and writes that value back to the ICCEOIR when it has completed its processing of the
interrupt.

31 9 0

Reserved

10

EOIINTID

1213

CPUID

Table 4-31 ICCEOIR bit assignments

Bits Name Function

[31:13] - Reserved.

[12:10] CPUID On a multiprocessor implementation, on completion of the processing of an SGI, this
field contains the CPUID value from the corresponding ICCIAR access.

In all other cases this field SBZ.

[9:0] EOIINTID The ACKINTID value from the corresponding ICCIAR access.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-59
Unrestricted Access Non-Confidential

Programmers Model
• If a read of the ICCIAR returns the ID of a spurious interrupt, software does not have to make a
corresponding write to the ICCEOIR. If software writes the ID of a spurious interrupt to the
ICCEOIR, the GIC ignores that write.

For nested interrupts, the order of interrupt completion must be the reverse of the order of interrupt
acknowledgement. That is, the order of writes to the ICCEOIR must be the reverse of the order of reads from
the ICCIAR.

If the values in the write to the ICCEOIR do not match a currently active interrupt, the effect of the write is
UNPREDICTABLE.

If the CPU interface implements the Security Extensions, the possible effects of the write to the ICCEOIR
are more complex, see Effect of the Security Extensions on writes to the ICCEOIR.

Effect of the Security Extensions on writes to the ICCEOIR

If a CPU interface implements the Security Extensions, whether a write to the ICCEOIR removes the active
status of the identified interrupt depends on:

• whether the ICCIAR write is Secure or Non-secure

• the value of the ICCICR.AckCtl bit, see CPU Interface Control Register (ICCICR) on page 4-47.

Table 4-32 shows all possible results of a write to the ICCEOIR.

Table 4-32 Effect of the Security Extensions on ICCEOIR writes

Active interrupt is ICCEOIR write ICCICR.AckCtl Active status removed

Non-secure Non-secure x Yes

Secure 1 Yes

Secure 0 No

Secure Non-secure x No

Secure x Yes
4-60 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.4.6 Running Priority Register (ICCRPR)

The ICCRPR characteristics are:

Purpose Indicates the priority of the highest priority interrupt that is active on the CPU
interface.

Usage constraints If there is no active interrupt on the CPU interface, and the GIC implements 8-bit
priority fields, a read of this register returns the value 0xFF, corresponding to the
lowest possible interrupt priority. If the GIC implements priority fields of less than
8 bits, the read might return the register reset value of 0xFF, or might return a value
corresponding to the lowest possible interrupt priority. Software cannot determine
the number of implemented priority bits from a read of this register.

If the GIC implements the Security Extensions, the value returned by a Non-secure
read of the Priority field is:

• 0x00 if the field value is less than 0x80

• the Non-secure view of the Priority value if the field value is 0x80 or more.

For more information see Non-secure access to register fields for Secure interrupt
priorities on page 4-8.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-2 on page 4-4.

Figure 4-25 shows the ICCRPR bit assignments.

Figure 4-25 ICCRPR bit assignments

Table 4-33 shows the RPR bit assignments.

31 7 0

Reserved

8

Priority

Table 4-33 ICCRPR bit assignments

Bit Name Description

[31:8] - Reserved.

[7:0] Priority The priority value of the highest priority interrupt that is active on the CPU interface.

See the Usage constraints at the start of this section for more information about the value
returned when software reads this field.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-61
Unrestricted Access Non-Confidential

Programmers Model
4.4.7 Aliased Binary Point Register (ICCABPR)

The ICCABPR characteristics are:

Purpose Provides an alias of the Non-secure ICCBPR, see Binary Point Register (ICCBPR)
on page 4-54.

Usage constraints Accessible by Secure accesses only.

Configurations Secure register, only implemented if the GIC implements the Security extensions. If
the GIC does not implement the Security Extensions the ICCABPR address is
RAZ/WI.

Attributes See the register summary in Table 4-2 on page 4-4.

For the register bit assignments, see Figure 4-22 on page 4-54 and Table 4-28 on page 4-55.
4-62 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.4.8 Highest Pending Interrupt Register (ICCHPIR)

The ICCHPIR characteristics are:

Purpose Indicates the Interrupt ID, and processor ID if appropriate, of the pending interrupt
with the highest priority on the CPU interface.

Usage constraints Never returns the Interrupt ID of an interrupt that is Active and Pending. Returns a
processor ID only for an SGI in a multiprocessor implementation.

If the GIC implements the Security Extensions, the value returned to a Non-secure
read depends on whether the highest priority pending interrupt is Secure or
Non-secure, see Effect of the Security Extensions on reads of the ICCHPIR on
page 4-64.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-2 on page 4-4.

Figure 4-26 shows the ICCHPIR bit assignments.

Figure 4-26 ICCHPIR bit assignments

Table 4-34 shows the ICCHPIR bit assignments.

31 9 0

Reserved

10

PENDINTID

1213

CPUID

Table 4-34 ICCHPIR bit assignments

Bit Name Description

[31:13] - Reserved.

[12:10] CPUID On a multiprocessor implementation, if the PENDINTID field returns the ID of an
SGI, this field contains the CPUID value for that interrupt. This identifies the processor
that generated the interrupt.

In all other cases this field is RAZ.

[9:0] PENDINTID The interrupt ID of the highest priority pending interrupt. See Table 4-35 on page 4-64
for more information about the result of Non-secure reads of the ICCHPIR when the
GIC implements the Security Extensions.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-63
Unrestricted Access Non-Confidential

Programmers Model
Effect of the Security Extensions on reads of the ICCHPIR

If a CPU interface implements the Security Extensions, whether a read of the ICCHPIR returns a valid
interrupt ID depends on:

• whether there is a pending interrupt of sufficient priority for it to be signaled to the processor, and if
so, whether the highest priority pending interrupt is a Secure or a Non-secure interrupt

• whether the ICCHPIR read access is Secure or Non-secure

• the value of the ICCICR.AckCtl bit, see CPU Interface Control Register (ICCICR) on page 4-47.

Reads of the ICCHPIR that do not return a valid interrupt ID returns a spurious interrupt ID, ID 1022 or
1023, see Special interrupt numbers when the Security Extensions are implemented on page 3-16.
Table 4-35 shows all possible ICCHPIR reads for a CPU interface that implements the Security Extensions.

Table 4-35 Effect of the Security Extensions on ICCHPIR reads

Security of highest priority pending
interrupta ICCHPIR read ICCICR.AckCtl Returned interrupt ID

Non-secure Non-secure x ID of Non-secure interrupt

Secure 0 Interrupt ID 1022

1 ID of Non-secure interrupt

Secure Non-secure x Interrupt ID 1023

Secure x ID of Secure interrupt

No pending interruptsa or forwarding of
interrupts to CPU interface is disabled

x Interrupt ID 1023

a. Of sufficient priority to be signaled to the processor.
4-64 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Programmers Model
4.4.9 CPU Interface Identification Register (ICCIIDR)

The ICCIIDR characteristics are:

Purpose Provides information about the implementer and revision of the CPU interface.

Usage constraints No usage constraints.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-2 on page 4-4.

Figure 4-27 shows the ICCIIDR bit assignments.

Figure 4-27 ICCIIDR bit assignments

Table 4-36 shows the ICCIIDR bit assignments.

31 0

Revision Implementer

20 11

ProductID

19 121516

Architecture
version

Table 4-36 ICCIIDR bit assignments

Bit Name Description

[31:20] ProductID An IMPLEMENTATION DEFINED product identifier.a

[19:16] Architecture version For an implementation that complies with this specification, the value is 0x1.

[15:12] Revision An IMPLEMENTATION DEFINED revision number for the CPU interface.

[11:0] Implementer Contains the JEP106 code of the company that implemented the GIC CPU
interface:b

Bits [11:8] The JEP106 continuation code of the implementer.

Bit [7] Always 0.

Bits [6:0] The JEP106 identity code of the implementer.

a. For an ARM implementation, the value of this field is 0x390.
b. For an ARM implementation, the value of this field is 0x43B.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. 4-65
Unrestricted Access Non-Confidential

Programmers Model
4-66 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Appendix A
Pseudocode Index

This appendix gives an index of the pseudocode functions defined in this specification.
It contains the following section:

• Index of pseudocode functions on page A-2.

The pseudocode in this document follows the ARM architecture pseudocode
conventions. For more information, see ARM Architecture Reference Manual ARMv7-A
and ARMv7-R edition.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. A-1
Unrestricted Access Non-Confidential

Pseudocode Index
A.1 Index of pseudocode functions

Table A-1 is an index of the pseudocode functions defined in this specification. Where
different forms of the function are used to support the architecture with and without the
Security Extensions, the index refers to both forms.

Table A-1 Pseudocode functions and procedures

Function Meaning See

AnyActiveInterrupts() Return TRUE if any interrupt is in the active state. General helper functions and definitions
on page 3-25

BinaryMask() Return the priority mask to be used for priority
grouping as part of interrupt prioritization

General helper functions and definitions
on page 3-25

GenerateException() Exception generation by the CPU interface using
the GIC prioritization scheme.

Exception generation pseudocode,
without the Security Extensions on
page 3-27

Exception generation pseudocode, with
the Security Extensions on page 3-28

IgnoreWriteRequest() No operation. Indicates cases where the GIC
ignores a write to a register.

General helper functions and definitions
on page 3-25

IsPending() Return TRUE if the interrupt identified by the
function argument is pending.

General helper functions and definitions
on page 3-25

IsSecure() Return TRUE if the interrupt identified by the
function argument is configured as a Secure
interrupt.

General helper functions and definitions
on page 3-25

PriorityIsHigher() Return TRUE if the first argument of the function
has a higher priority than the second argument.

General helper functions and definitions
on page 3-25

PriorityRegRead() Read behavior of accesses to the ICDIPR,
ICCPMR and ICCRPR when the Security
Extensions are implemented.

The effect of the Security Extensions on
accesses to prioritization registers on
page 3-29

PriorityRegWrite() Write behavior of accesses to the ICDIPR and
ICCPMR when the Security Extensions are
implemented.

The effect of the Security Extensions on
accesses to prioritization registers on
page 3-29

ReadICDIPR() Return the priority value of the interrupt identified
by the function argument, by reading the
appropriate ICDIPR.

General helper functions and definitions
on page 3-25
A-2 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Pseudocode Index
SignalFIQ() If the input parameter is TRUE, signal the target
processor to request an FIQ exception.

General helper functions and definitions
on page 3-25

SignalIRQ() If the input parameter is TRUE, signal the target
processor to request an IRQ exception.

General helper functions and definitions
on page 3-25

WriteICDIPR() Set the priority value of the interrupt identified by
the function argument, by writing to the
appropriate ICDIPR.

General helper functions and definitions
on page 3-25

Table A-1 Pseudocode functions and procedures (continued)

Function Meaning See
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. A-3
Unrestricted Access Non-Confidential

Pseudocode Index
A-4 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Appendix B
Software Examples for the GIC

This appendix gives examples of how software uses the GIC. It contains the following
sections:

• Use of identification registers on page B-2

• Initialization after reset or power on on page B-3

• Processor response to an initial interrupt on page B-6

• Preemptive processing on page B-9

• Generating a software interrupt on page B-12

• Changing a CPU interface interrupt priority mask on page B-13

• Changing the priority of an interrupt on page B-14

• Changing the processor targets of an interrupt on page B-15

• Disabling a peripheral interrupt on page B-16

• Changing the security configuration of an interrupt on page B-17

• Disabling a CPU interface on the GIC on page B-19

• Message passing between processors on page B-20

• Example of using the binary point on page B-21.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-1
Unrestricted Access Non-Confidential

Software Examples for the GIC
B.1 Use of identification registers

The Distributor and each CPU interface include an identification register that software
can read to discover information about the implementer and the device version, see:

• Distributor Implementer Identification Register (ICDIIDR) on page 4-16

• CPU Interface Identification Register (ICCIIDR) on page 4-65.

In addition, the architecture reserves a region in the Distributor memory map for
identification registers for the GIC architecture, see Identification registers on
page 4-42. The only architectural requirement for this region is a 4-bit field that defines
the architecture version, see Peripheral ID2 Register (ICPIDR2) on page 4-42.

An ARM implementation of this GIC architecture uses the identification registers
region to implement a set of identification registers that are consistent with the
identification scheme used for PrimeCell and CoreSight components. For consistency
with the PrimeCell and CoreSight schemes, these registers are named the
Component ID and Peripheral ID registers. However, in the GIC scheme they identify
only that the device implements a particular version of the ARM GIC architecture. They
do not identify the implementer of the GIC, and do not provide any version information
for the GIC implementation. Software can read these registers to discover that it is
operating with a GIC that implements this architecture.

Software that knows it is operating with a GIC that implements this architecture can
read the ICDICTR to find more information about the GIC implementation, see
Interrupt Controller Type Register (ICDICTR) on page 4-14. This identifies:

• the maximum number of interrupts the GIC supports

• the number of CPU interfaces on the GIC

• whether the GIC implements the Security Extensions

• if the GIC implements the Security Extensions, the maximum number of lockable
SPIs (LSPIs) it supports.

For more information about software discovery of the features of a GIC see
Initialization after reset or power on on page B-3.
B-2 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
B.2 Initialization after reset or power on

After a reset, the Distributor and CPU interfaces are disabled, and software must
initialize the Distributor and all CPU interfaces.

Note
 • Before enabling the CPU interfaces, software might have to discover which

interrupts are implemented, see Identifying the supported interrupts on page 3-3.

• If the GIC implements the Security Extensions, only software running in Secure
mode can initialize the GIC.

For example, software can initialize the Distributor and each CPU interface to signal
interrupts to each connected processor as follows:

1. The SPIs are the interrupts with IDs in the range 32-1019. For these interrupts:

a. If the GIC implements the Security Extensions, write to the ICDISRs, to
specify which interrupts are Non-secure, see Interrupt Security Registers
(ICDISRn) on page 4-17.

Note
 • A reset sets all bits in the ICDISRs corresponding to the SPIs to 0,

configuring all of the interrupts as Secure.

• Bits in ICDISR0 can reset to either 0 or 1, see ICDISR0 reset value
on page 4-18.

b. Write to the ICDICFRs to specify whether each interrupt is level-sensitive
or edge-triggered, see Interrupt Configuration Registers (ICDICFRn) on
page 4-36.

c. Write to the ICDIPRs to specify the priority value for each interrupt, see
Interrupt Priority Registers (ICDIPRn) on page 4-31.

d. If the GIC is part of a multiprocessor implementation, write to the
ICDIPTRs to specify the target processor list for each interrupt, see
Interrupt Processor Targets Registers (ICDIPTRn) on page 4-33.

e. Write to the ICDISERs to enable the interrupts, see Interrupt Set-Enable
Registers (ICDISERn) on page 4-19.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-3
Unrestricted Access Non-Confidential

Software Examples for the GIC
2. The PPIs are the interrupts with IDs in the range 16-31, and the SGIs are the
interrupts with IDs in the range 0-15. If the GIC is part of a multiprocessor
implementation, these interrupts and the corresponding registers are banked for
each connected processor, and each processor must configure its interrupts as
follows:

a. If the GIC implements the Security Extensions, write to ICDISR0, to
specify which interrupts are Non-secure.

b. For the PPIs, interrupt IDs 16-31, write to ICDICFR1 to specify whether
each interrupt is level-sensitive or edge-triggered.

Note
 For PPIs, it is IMPLEMENTATION DEFINED whether each interrupt is

configurable as level-sensitive or edge-triggered. For any interrupt that is
not configurable, reading the ICDICFR1 identifies whether the interrupt is
level-sensitive or edge-triggered.

c. Write to the appropriate ICDIPRs to specify the priority value for each
interrupt.

d. Write to ICDISER0 to enable the PPIs.

Note
 The behavior of ICDISER0[15:0], the Set-enable bits for the SGIs, is

IMPLEMENTATION DEFINED. Processors might have to write to these bits to
enable SGIs.

3. For each implemented CPU interface:

a. Write to the ICCPMR, to set the priority mask for the interface, see
Interrupt Priority Mask Register (ICCPMR) on page 4-52.

b. Write to the ICCBPR, to set the binary point position, that determines
preemption on the interface, see Binary Point Register (ICCBPR) on
page 4-54. If the GIC implements the Security Extensions you must set the
binary point position in both the Secure and Non-secure copies of the
ICCBPR.

c. Write to the ICCICR to enable signalling of interrupts by the interface, see
CPU Interface Control Register (ICCICR) on page 4-47.

If the interface implements the Security Extensions, software can write to
the Secure ICCICR to enable the signalling of both Secure and Non-secure
interrupts. This write must also configure how the interface handles Secure
and Non-secure interrupts, see Security Extensions support on page 3-15.
B-4 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
4. Write to the ICDDCR to enable the Distributor, see Distributor Control Register
(ICDDCR) on page 4-12.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-5
Unrestricted Access Non-Confidential

Software Examples for the GIC
B.3 Processor response to an initial interrupt

After the system software has initialized the GIC, the process of sending a first interrupt
to a connected processor might be as follows:

1. In the GIC, the Distributor receives an interrupt.

2. The distributor sends the interrupt to the CPU interfaces specified in the target list
for the interrupt.

3. If the interrupt priority is higher than the value in the ICCPMR, see Interrupt
Priority Mask Register (ICCPMR) on page 4-52, the CPU interface signals the
interrupt to the connected processor.

4. The processor branches to the appropriate interrupt vector determined by whether
the GIC caused the assertion of an IRQ or an FIQ exception on that processor.

If the processor implements the Security Extensions then:

• System software defines its vector base address independently for operation
in Secure and Non-secure state, The system can also program the processor
to handle interrupts in Monitor mode. This is defined independently for
IRQ and FIQ exceptions, and the software must defines a separate vector
base address for exceptions handled in Monitor mode.

• System software can configure the GIC to signal Secure interrupts using the
FIQ exception request. By also configuring the processor to handle FIQ
exceptions in Monitor mode it provides a mechanism for the processor to
take a Secure interrupt when operating in Non-secure state, and switch to
operating in Secure state. The Monitor mode code at the Monitor mode FIQ
exception vector stacks the current state of the processor, including its
Non-secure security state, and then changes operation to Secure state.

If the GIC is signalling Secure interrupts using the FIQ exception request
and Non-secure interrupts using the IRQ exception request, a processor
operating in Secure state might handle Non-secure interrupts in Monitor
mode, so that the Monitor mode handler code can change operation to
Non-secure state.

Note
 Monitor mode code must ensure that, when the processor starts operating in the

other security state, the processor state is consistent with the appropriate interrupt
having been taken in that security state.

5. The processor stacks the workspace.
B-6 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
6. If the interrupt is preempting another interrupt, the processor also:

• stacks the IRQ or FIQ mode Link Register (LR) and SPSR values

• changes to System or Supervisor mode and stacks all the state required for
processing the original, preempted, interrupt.

• returns to IRQ or FIQ mode to process the preempting interrupt.

7. The processor reads the ICCIAR to obtain the interrupt ID, see Interrupt
Acknowledge Register (ICCIAR) on page 4-56, and checks that the interrupt ID is
valid.

If the ICCIAR read returns a spurious interrupt, the processor jumps to step 14.
In this case it does not write to the End of Interrupt register. If the system
implements the Security Extensions and the ICCIAR read returns the spurious
interrupt ID of 1022, before jumping to step 14 the software running on the
processor might inform the Secure scheduler that a Non-secure interrupt is
pending, see Effect of the Security Extensions on handling an initial interrupt on
page B-8.

8. If the interrupt is an SPI that targets more than one processor, the processor tries
to obtain a lock on the interrupt service code routine. If it cannot obtain a lock, it
assumes that another processor is processing the interrupt, and jumps to step 13.

9. To permit preemption of the interrupt, the processor ensures that the appropriate
bit of the CPSR is set to 0. If the system implements the Security Extensions and
the GIC is using the FIQ signal for Secure interrupts this is:

• the I bit for Non-secure interrupts

• the F bit for Secure interrupts.

10. In a cooperative system, the system must ensure that the security state of the
processor corresponds to the security of the interrupt, Secure or Non-secure. This
might require the processor to issue an SMC instruction, a Secure Monitor Call.

For more information about cooperative systems see Priority management and
the Security Extensions on page 3-24 and ARM recommendations for interrupt
handling with the Security Extensions on page B-10.

11. The processor jumps to the Interrupt Service Routine (ISR) to execute the routine.

12. If the interrupt is an SPI or PPI, the ISR must service the requirements of the
device that asserted the interrupt, so that the device de-asserts the interrupt. This
is particularly important for level-sensitive interrupts, where the ISR must ensure
the interrupt is de-asserted at the GIC input before proceeding to the next step.

13. If the interrupt ID is valid, the processor writes the interrupt ID to the ICCEOIR,
see End of Interrupt Register (ICCEOIR) on page 4-59. When the GIC recognizes
this write it removes the active status from the interrupt, for this processor.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-7
Unrestricted Access Non-Confidential

Software Examples for the GIC
14. The processor restores the workspace it stacked at step 5.

15. The processor returns from the interrupt vector. If the processor implements the
Security state this might require it to enter Monitor mode to change its security
state.

Note
 If an ARMv6 processor uses the SRS and RFE instructions, it does not have to use

the CPSR I bit to disable interrupts as part of its interrupt return routine.

B.3.1 Effect of the Security Extensions on handling an initial interrupt

If the GIC implements the Security Extensions:

• If software running on a processor in Non-secure state reads the ICCIAR when
no Non-secure interrupt with sufficient priority to be signaled to the processor is
pending, the read returns interrupt ID 1023, indicating no outstanding interrupt,
regardless of whether there are pending Secure interrupts of sufficient priority to
be signaled to the processor.

• If software running on a processor in Secure state makes a Secure read of the
ICCIAR when no interrupt with sufficient priority to be signaled to the processor
is pending, the read returns interrupt ID1023, indicating no outstanding interrupt.
If a Non-secure interrupt with sufficient priority to be signaled to the processor is
pending, the result of the read depends on the value of the AckCtl bit in the Secure
ICCICR, see CPU Interface Control Register (ICCICR) on page 4-47. The ID
returned is one of:

— ID 1022, if AckCtl is 0. The GIC does not treat this read of the ICCICR as
acknowledging any interrupt.

— The ID of the Non-secure interrupt, if AckCtl is 1. The GIC treats this read
of the ICCICR as acknowledging the interrupt.
B-8 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
B.4 Preemptive processing

The following sections describe how the GIC signals interrupts for possible preemption,
and how a processor that implements the Security Extensions might process preempting
interrupts:

• CPU interface signalling of interrupts for possible preemption

• ARM recommendations for interrupt handling with the Security Extensions on
page B-10.

B.4.1 CPU interface signalling of interrupts for possible preemption

When an interrupt is active on a CPU interface, indicating that software on the processor
is handling the interrupt, the Distributor can send another interrupt to the CPU interface.
The CPU interface uses the priority value of this interrupt to determine whether or not
to signal the interrupt to the processor. The CPU interface signals the new interrupt to
the processor only if the priority of that new interrupt is higher than the priority
indicated by the ICCRPR, considering only the bits in the Group priority field as
defined by the appropriate Binary Point Register.

For more information see:

• Running Priority Register (ICCRPR) on page 4-61

• Priority grouping on page 3-14

• if appropriate, The effect of the Security Extensions on priority grouping on
page 3-23.

Note
 • A smaller register priority field value always corresponds to a higher priority

interrupt.

• The Distributor can forward a number of interrupts to a CPU interface, and all of
those interrupts then have a state of pending on that CPU interface. If there is at
least one active interrupt on the interface, the CPU interface considers whether it
must signal the highest priority pending interrupt to the processor, for possible
preemption.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-9
Unrestricted Access Non-Confidential

Software Examples for the GIC
B.4.2 ARM recommendations for interrupt handling with the Security Extensions

In a system that implements the Security Extensions, a processor that implements the
Security Extensions follows either a non-cooperative or a co-operative scheme for
managing prioritization between Secure and Non-secure interrupts, see Priority
management and the Security Extensions on page 3-24. The following sections give
software recommendations for both schemes.

Non-cooperative scheme

In a processor that implements a non-cooperative scheme, ARM recommends that:

• The processor makes a Secure write to set the ICCICR.SBPR bit to 0, see CPU
Interface Control Register (ICCICR) on page 4-47. This means the GIC CPU
interface:

— uses the Non-secure ICCBPR to determine the preemption of Non-secure
interrupts

— uses the Secure ICCBPR to determine the preemption of Secure interrupts.

• Divides the implemented interrupt priority range so that:

— all Secure interrupts use only priorities in the higher priority half of the
priority range

— all Non-secure interrupts use only priorities in the lower priority half of the
priority range.

Using this configuration:

• Non-secure software, that can only make Non-secure accesses to the GIC, writes
to the Non-secure Binary Point Register to manage the preemption of Non-secure
interrupts

• Secure software writes to the Secure Binary Point Register to manage the
preemption of Secure interrupts.

Co-operative scheme

In a processor that implements a co-operative scheme, ARM recommends that:

• The processor makes a Secure write to set the ICCICR.SBPR bit to 1. This means
the GIC CPU interface uses the Secure ICCBPR to determine the preemption of
both Secure and Non-secure interrupts.

• The processor programs the priorities of Non-secure and Secure interrupts so that
there is some overlap of priorities. That is, so that at least one Non-secure
interrupt has higher priority than at least one Secure interrupt.
B-10 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
• On the processor, the cooperative interrupt handling software ensures that a
preempted interrupt restarts correctly after processing a preempting interrupt of
the opposite security.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-11
Unrestricted Access Non-Confidential

Software Examples for the GIC
B.5 Generating a software interrupt

To generate an SGI, software writes to the ICDSGIR, specifying:

• the processors targeted by the interrupt

• the SGI interrupt ID.

If the system implements the Security Extensions, and the processor makes a Secure
write to the register, the ICDSGIR.SATT bit value specifies the interrupt security
required for the interrupt.

For more information see Software Generated Interrupt Register (ICDSGIR) on
page 4-39.

The write changes the state of the interrupt from inactive to pending or from active to
active and pending. It does this for:

• if the GIC does not implement the Security Extensions, all target CPU interfaces

• if the GIC implements the Security Extensions, any target CPU interfaces for
which the specified SGI is configured to the security specified by the
ICDSGIR.SATT bit, see Table 4-19 on page 4-41.

The priority of the SGI is the same on all targeted CPU interfaces, as defined in
ICDIPR0, see Interrupt Priority Registers (ICDIPRn) on page 4-31.

If an SGI is active and pending on a CPU interface, it means that when the ISR on the
connected processor writes to the ICCEOIR to indicate that it has completed its
processing of the interrupt, the interrupt status on that interface becomes pending. If the
SGI has sufficient priority the interface signals it to the processor.,

Software might use an SGI to post messages to other processors asynchronously. For
example, each processor maintains in shared memory a queue of messages it wants to
send to other processors. Each time it writes a new entry to the queue, it then writes to
the ICDSGIR to send the appropriate SGI to the target processors. When the SGI is
signalled to it, a target processor inspects the message queue maintained by the
requesting processor, and performs each requested action, until it has drained the queue
and marked all the messages as acted on.

Note
 Race conditions can cause a target processor to receive a spurious interrupt from an SGI
associated with adding a new entry to the queue while the target processor is processing
entries in the queue.
B-12 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
B.6 Changing a CPU interface interrupt priority mask

Each CPU interface has an ICCPMR, see Interrupt Priority Mask Register (ICCPMR)
on page 4-52. If an interrupt has the priority indicated by the ICCPMR, or a lower
priority, then the interface never signals it to the processor.

This section describes managing the interrupt priority mask in a system where both the
GIC and a connected processor implement the Security Extensions.

If the processor uses a Non-secure write to the ICCPMR to set the mask to the highest
possible priority then the CPU interface never signals any Non-secure interrupts to the
processor. The CPU interface continues to signal Secure interrupts to the processor that
have a priority that is higher than the mask priority.

If the processor uses a Secure write to the ICCPMR to set the mask to the highest
possible priority then the CPU interface never signals any Secure or Non-secure
interrupts to the processor. This enables software to perform a task without any
possibility of an interrupt occurring.

If the processor has used a Secure write to programme the ICCPMR to a value that
corresponds to a priority in the upper half of the priority range then the GIC CPU
interface ignores any Non-secure write to the ICCPMR.

In any GIC implementation, a processor can modify the priority mask for its own
interface to the GIC. It is IMPLEMENTATION DEFINED whether it has any access to the
ICCPMR for any other CPU interface.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-13
Unrestricted Access Non-Confidential

Software Examples for the GIC
B.7 Changing the priority of an interrupt

To change the priority of an interrupt, software writes to the corresponding ICDIPR, see
Interrupt Priority Registers (ICDIPRn) on page 4-31. The ICDIPRs are byte accessible,
so software can change the priority for a single interrupt field in an ICDIPR.

It is IMPLEMENTATION DEFINED whether a change to the priority of an interrupt applies
to an active interrupt.

A Non-secure write to an ICDIPR can change only priority fields that correspond to
Non-secure interrupts. A Secure write can change priority fields corresponding to both
Secure and Non-secure interrupts.

Changing the priority of a pending interrupt can change the interrupt ID that is sent to
a CPU interface.
B-14 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
B.8 Changing the processor targets of an interrupt

To change the processor targets of an interrupt, software writes to the corresponding
ICDIPTR, see Interrupt Processor Targets Registers (ICDIPTRn) on page 4-33. The
ICDIPTRs are byte accessible, so software can change the priority for a single interrupt
field in an ICDIPTR.

See The effect of changes to an ICDIPTR on page 4-35 for information about when
changes to the targets list are effective.

A Non-secure write to an ICDIPTR can change only CPU targets fields that correspond
to Non-secure interrupts. A Secure write can change CPU targets fields corresponding
to both Secure and Non-secure interrupts.

Note
 Secure software cannot restrict the processors targeted by a Non-secure interrupt.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-15
Unrestricted Access Non-Confidential

Software Examples for the GIC
B.9 Disabling a peripheral interrupt

In any implementation, some interrupt might be permanently enabled, see Identifying
the supported interrupts on page 3-3.

To disable an interrupt, software writes a 1 to the corresponding Clear-enable bit, see
Interrupt Clear-Enable Registers (ICDICERn) on page 4-21. Disabling an interrupt has
no effect on the active state of an interrupt and software must complete its processing
of an active interrupt, even if it has disabled the interrupt.

When software disables a peripheral interrupt, the Distributor does not forward the
interrupt to the CPU interface. However, if a peripheral asserts a disabled peripheral
interrupt, or software generates an SGI targeted at a CPU interface on which it is
disabled, then the Distributor still changes the state of that interrupt to pending.

If the interrupt is pending when software disables the interrupt, and the processor
acknowledges another interrupt, the GIC might signal the interrupt to the processor
before it recognizes the write to the ICDICER that disables the interrupt. If this happens,
the interrupt becomes active and the processor must handle the interrupt.

Software can remove the pending state of a peripheral interrupt as follows:

1. If the interrupt is level-sensitive, ensure that the relevant peripheral is not
asserting the interrupt signal.

2. Write a 1 to the Clear-pending bit that corresponds to the interrupt, see Interrupt
Clear-Pending Registers (ICDICPRn) on page 4-26.

3. Write 0xFF to the corresponding ICDIPR, see Interrupt Priority Registers
(ICDIPRn) on page 4-31.

Note
 Setting the priority to 0xFF is the only way to disable a permanently-enabled

interrupt.
B-16 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
B.10 Changing the security configuration of an interrupt

Note
 This section applies only to a GIC that implements the Security Extensions

Normally, software changes the security configuration of an interrupt as part of the
larger task of transferring control of a peripheral either:

• from a Non-secure device driver to a Secure device driver

• from a Secure device driver to a Non-secure device driver.

Only a Secure access to the GIC can change the security configuration of an interrupt.
This means the processor must be in Secure state to make this change. Typically, the
software operates as follows:

1. Determine that the peripheral and any interrupt service routines (ISRs) that
service interrupts generated by the peripheral are in a suitable state to transfer
control from one security state to the other. This means either:

• the peripheral has completed any outstanding tasks, and is idle

• software can force the peripheral to abandon any outstanding tasks, and
force any active ISRs for the interrupt to complete.

2. Prevent the peripheral from issuing any interrupts, for example, by writing to an
interrupt mask in the peripheral, or by disabling the peripheral.

3. Disable the interrupt in the Distributor by writing a 1 to the corresponding
Clear-Enable bit, see Interrupt Clear-Enable Registers (ICDICERn) on
page 4-21.

4. Ensure that the interrupt is not pending, by reading the corresponding Set-pending
or Clear-pending bit, see Interrupt Set-Pending Registers (ICDISPRn) on
page 4-23 and Interrupt Clear-Pending Registers (ICDICPRn) on page 4-26. If
the interrupt is pending, either:

• write to the corresponding Clear-pending bit to remove its pending state

• wait for it to complete.

5. Ensure that the interrupt is not active, by reading the corresponding Active bit, see
Active Bit Registers (ICDABRn) on page 4-29. If the interrupt is active then wait
for it to complete.

Note
 In a multiprocessor system, the interrupt might be active on another CPU

interface.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-17
Unrestricted Access Non-Confidential

Software Examples for the GIC
6. Program the required priority level, and targets for the new use of the interrupt.
Normally, the security of the register writes used to do this corresponds to the
required security of the interrupt. That is, if the interrupt will be Secure the
software makes Secure writes, and if it will be Non-secure the software makes
Non-secure writes.

Note
 When transferring an interrupt from Secure to Non-secure use, if the Secure

software knows the priority model used by the Non-secure software, it can use
Secure writes for the reprogramming, specifying priorities in the lower half of the
priority range (0x80-0xFF).

Write to the corresponding:

• ICDIPTR to program the targets, see Interrupt Processor Targets Registers
(ICDIPTRn) on page 4-33

• ICDIPR to program the priority, see Interrupt Priority Registers (ICDIPRn)
on page 4-31.

7. Make a Secure write to the corresponding ICDISR to configure the interrupt as
Secure or Non-secure, see Interrupt Security Registers (ICDISRn) on page 4-17.

8. Enable the interrupt in the Distributor by writing a 1 to the corresponding
Set-Enable bit, see Interrupt Set-Enable Registers (ICDISERn) on page 4-19.

9. Enable the peripheral to issue interrupts, for example, by writing to an interrupt
mask in the peripheral, or by enabling the peripheral.
B-18 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
B.11 Disabling a CPU interface on the GIC

Note
 The process described here is more likely to be required in a multiprocessor
implementation, and is described only for such an implementation.

If software disables a CPU interface, for example before powering down a processor,
interrupts might be lost. To ensure no interrupts are lost, ARM recommends the
following procedure, for software running on the processor connected to the interface
that is being disabled:

1. For each implemented interrupt ID, use Secure accesses to remove your own ID
from the processor targets list. This requires a read, modify, write sequence on
each ICDIPTR, see Interrupt Processor Targets Registers (ICDIPTRn) on
page 4-33.

2. Read the ICCIAR, see Interrupt Acknowledge Register (ICCIAR) on page 4-56.
If this read returns:

a. a Spurious Interrupt, then there is no Pending interrupt for this CPU

b. a valid interrupt ID, take the interrupt, and repeat this step.

If the system implements the Security Extensions software must perform this step
twice, as follows:

• using Secure reads of the ICCIAR, to ensure there are no Secure interrupts
pending on this interface

• using Non-secure reads of the ICCIAR, to ensure there are no Non-secure
interrupts pending on this interface.

3. Disable the CPU interface by writing 0 to the ICCICR.Enable bit, see CPU
Interface Control Register (ICCICR) on page 4-47.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-19
Unrestricted Access Non-Confidential

Software Examples for the GIC
B.12 Message passing between processors

Message passing involves two tasks:

1. Storing the message in shared memory, performing any operations required to
ensure the message is visible to each target processor

2. Issuing an SGI to inform the target processors that the message is available.

In a system that implements the Security Extensions, a processor normally issues a
Secure SGI to inform other processors of a secure message, and a Non-secure interrupt
to inform them of a non-secure message. However, for a system that contains processors
that operate in a fixed security state to send messages across security states, processors
in Secure state must be able to respond to Non-secure interrupts, and must be able to
signal messages using Non-secure interrupts. This might require a co-operative
interrupt priority scheme, see Priority management and the Security Extensions on
page 3-24.
B-20 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Software Examples for the GIC
B.13 Example of using the binary point

Table B-1 shows three interrupt sources, and their priority field values and relative
priorities. It also shows how a binary point value of 3 splits the priority value field into
the group priority and subpriority fields, indicated by the g and s bits if the field value
is shown as 0bgggg.ssss.

The CPU interface uses only the group priority field to determine whether an interrupt
can preempt the active interrupt. This means, for this example:

• interrupt A can preempt interrupt B or C if either is active on the processor

• interrupt B cannot preempt interrupt C if it is active on the processor.

The GIC uses all bits of the priority field to determine interrupt priority. If interrupt A
is active on a processor, and interrupts B and C are pending, when the processor
indicates completion of interrupt A, the GIC signals interrupt B to the processor, in
preference to interrupt C.

Note
 The GIC only signals a pending interrupt to the processor if the priority of that interrupt
is higher than the priority indicated by the ICCPMR, see Interrupt Priority Mask
Register (ICCPMR) on page 4-52.

For more information see:

• Preemption on page 3-13

• Priority grouping on page 3-14

• The effect of the Security Extensions on interrupt prioritization on page 3-18.

Table B-1 Preemption example with three interrupts

Source Interrupt Priority field value Relative priority Priority field with binary point

a A 0b00001100 Highest 0b0000.1100

b B 0b00010000 Medium 0b0001.0000

c C 0b00010100 Lowest 0b0001.0100
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. B-21
Unrestricted Access Non-Confidential

Software Examples for the GIC
B-22 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Appendix C
Register Shortform Names

This appendix describes the relationship between the architectural shortform names of the registers
described in this specification, and their legacy shortform aliases. It also provides an index of the
architectural shortform names. It contains the following sections:

• Register name aliases on page C-2.

• Index of architectural shortform names on page C-4.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. C-1
Unrestricted Access Non-Confidential

Register Shortform Names
C.1 Register name aliases

Some implementations of this GIC architecture, for historical reasons, do not use the architectural shortform
names of the registers described in this specification. Developers must not rely on this distinction being
maintained in future versions of the ARM GIC architecture. Table C-1 shows the relationship of the
shortform names for the registers in the Distributor.

Table C-1 Shortform names for the registers in the Distributor

Register Architectural shortform Aliased shortform

Distributor Control ICDDCR enable_s, enable_ns

Interrupt Controller Type ICDICTR ic_type_reg

Distributor Implementor Identification ICDIIDR dist_ident_reg

Interrupt Security ICDISR int_security

Interrupt Set-Enable ICDISER enable_set

Interrupt Clear-Enable ICDICER enable_clr

Interrupt Set-Pending ICDISPR pending_set

Interrupt Clear-Pending ICDICPR pending_clr

Active Bit ICDABR active_status

Interrupt Priority ICDIPR priority_level

Interrupt Processor Targets ICDIPTR target

Interrupt Configuration ICDICR int_config

Software Generated Interrupt ICDSGIR sti_control

Identification - -
C-2 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Register Shortform Names
Table C-1 on page C-2 shows the relationship of the shortform names for the registers in the CPU interface.

Table C-2 Shortform names for the registers in the CPU interface

Register Architectural shortform Aliased shortform

CPU Interface Control ICCICR control_s, control_ns

Priority Mask ICCPMR priority_mask

Binary Point Register ICCBPR bin_pt_s, bin_pt_ns

Interrupt Acknowledge ICCIAR int_ack

End of Interrupt ICCEOIR EOI

Running Priority ICCRPR run_priority

Aliased Binary Point ICCABPR alias_bin_pt_ns

Highest Pending Interrupt ICCHPIR hi_pending

CPU Implementor Identification ICCIIDR cpu_ident
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. C-3
Unrestricted Access Non-Confidential

Register Shortform Names
C.2 Index of architectural shortform names

Table C-3 is an alphabetic index of the GIC register shortform names, indexing the description of each
register. An n at the end of a register name, as in ICDABRn, shows that there are multiple instances of the
register.

Table C-3 Index of register shortform names

Shortform name Description

Component IDn Identification registers on page 4-42

ICCABPR Aliased Binary Point Register (ICCABPR) on page 4-62

ICCBPR Binary Point Register (ICCBPR) on page 4-54

ICCEOIR End of Interrupt Register (ICCEOIR) on page 4-59

ICCHPIR Highest Pending Interrupt Register (ICCHPIR) on page 4-63

ICCIAR Interrupt Acknowledge Register (ICCIAR) on page 4-56

ICCICR CPU Interface Control Register (ICCICR) on page 4-47

ICCIIDR CPU Interface Identification Register (ICCIIDR) on page 4-65

ICCPMR Interrupt Priority Mask Register (ICCPMR) on page 4-52

ICCRPR Running Priority Register (ICCRPR) on page 4-61

ICDABRn Active Bit Registers (ICDABRn) on page 4-29

ICDDCR Distributor Control Register (ICDDCR) on page 4-12

ICDICERn Interrupt Clear-Enable Registers (ICDICERn) on page 4-21

ICDICFRn Interrupt Configuration Registers (ICDICFRn) on page 4-36

ICDICPRn Interrupt Clear-Pending Registers (ICDICPRn) on page 4-26

ICDICTR Interrupt Controller Type Register (ICDICTR) on page 4-14

ICDIIDR Distributor Implementer Identification Register (ICDIIDR) on page 4-16

ICDIPRn Interrupt Priority Registers (ICDIPRn) on page 4-31

ICDIPTRn Interrupt Processor Targets Registers (ICDIPTRn) on page 4-33

ICDISERn Interrupt Set-Enable Registers (ICDISERn) on page 4-19

ICDISPRn Interrupt Set-Pending Registers (ICDISPRn) on page 4-23
C-4 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Register Shortform Names
ICDISRn Interrupt Security Registers (ICDISRn) on page 4-17

ICDSGIR Software Generated Interrupt Register (ICDSGIR) on page 4-39

Peripheral IDn Identification registers on page 4-42

Table C-3 Index of register shortform names (continued)

Shortform name Description
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. C-5
Unrestricted Access Non-Confidential

Register Shortform Names
C-6 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Glossary

Banked register
Is a register that has multiple instances, with the instance that is in use depending on the processor mode,
security state, or other processor state.

IMP Is an abbreviation used in diagrams to indicate that the bit or bits concerned have IMPLEMENTATION DEFINED
behavior.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but should be defined and documented by individual
implementations.

Observer
A processor or mechanism within the system, such as peripheral device, that is capable of generating reads
from or writes to memory.

Read-As-One (RAO)
In any implementation, the bit must read as 1, or all 1s for a bit field.

Read-As-Zero (RAZ)
In any implementation, the bit must read as 0, or all 0s for a bit field.

RAO See Read-As-One.

RAO/WI Read-As-One, Writes Ignored.

In any implementation, the bit must read as 1, or all 1s for a bit field, and writes to the field must be ignored.

Software can rely on the bit reading as 1, or all 1s for a bit field, and on writes being ignored.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. Glossary-1
Unrestricted Access Non-Confidential

Glossary
RAZ See Read-As-Zero.

RAZ/WI Read-As-Zero, Writes Ignored.

In any implementation, the bit must read as 0, or all 0s for a bit field, and writes to the field must be ignored.

Software can rely on the bit reading as 0, or all 0s for a bit field, and on writes being ignored.

Reserved
Registers and instructions that are reserved are UNPREDICTABLE unless otherwise stated. Bit positions
described as Reserved are UNK/SBZP.

SBZ See Should-Be-Zero.

SBZP See Should-Be-Zero-or-Preserved.

Security hole
Is a mechanism that bypasses system protection.

Should-Be-Zero (SBZ)
Should be written as 0 (or all 0s for a bit field) by software. Values other than 0 produce UNPREDICTABLE
results.

Should-Be-Zero-or-Preserved (SBZP)
Must be written as 0, or all 0s for a bit field, by software if the value is being written without having been
previously read, or if the register has not been initialized. Where the register was previously read on the same
processor, since the processor was last reset, the value in the field should be preserved by writing the value
that was previously read.

Hardware must ignore writes to these fields.

If a value is written to the field that is neither 0 (or all 0s for a bit field), nor a value previously read for the
same field on the same processor, the result is UNPREDICTABLE.

UNKNOWN
An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to
instruction, and implementation to implementation. An UNKNOWN value must not be a security hole.
UNKNOWN values must not be documented or promoted as having a defined value or effect.

UNK/SBZP
UNKNOWN on reads, Should-Be-Zero-or-Preserved on writes.

In any implementation, the bit must read as 0, or all 0s for a bit field, and writes to the field must be ignored.

Software must not rely on the field reading as 0, or all 0s for a bit field, and must use an SBZP policy to
write to the field.

UNK Software must treat a field as containing an UNKNOWN value.

In any implementation, the bit must read as 0, or all 0s for a bit field. Software must not rely on the field
reading as zero.
Glossary-2 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

Glossary
UNPREDICTABLE
The behavior cannot be relied upon. UNPREDICTABLE behavior must not represent security holes.
UNPREDICTABLE behavior must not halt or hang the processor, or any parts of the system. UNPREDICTABLE
behavior must not be documented or promoted as having a defined effect.

Unsigned data types
Represent a non-negative integer in the range 0 to +2N−1, using normal binary format.
ARM IHI 0048A Copyright © 2008 ARM Limited. All rights reserved. Glossary-3
Unrestricted Access Non-Confidential

Glossary
Glossary-4 Copyright © 2008 ARM Limited. All rights reserved. ARM IHI 0048A
Non-Confidential Unrestricted Access

	ARM Generic Interrupt Controller Architecture Specification
	Contents
	Preface
	About this specification
	Intended audience
	Using this specification

	Conventions
	General typographic conventions
	Signals
	Numbers
	Pseudocode descriptions

	Further reading
	ARM publications
	External publications

	Feedback
	Feedback on this specification

	Introduction
	1.1 About the Generic Interrupt Controller architecture
	1.1.1 GIC architecture specification version

	1.2 Security Extensions support
	1.3 Terminology
	1.3.1 Interrupt states
	1.3.2 Interrupt types
	1.3.3 Models for handling interrupts
	1.3.4 Spurious interrupts
	1.3.5 Processor security state and Secure and Non-secure GIC accesses
	1.3.6 Banking

	GIC Partitioning
	2.1 About GIC partitioning
	2.2 The Distributor
	2.2.1 Interrupt IDs

	2.3 CPU interfaces

	Interrupt Handling and Prioritization
	3.1 About interrupt handling and prioritization
	3.1.1 Handling different interrupt types in a multiprocessor system
	3.1.2 Identifying the supported interrupts

	3.2 General handling of interrupts
	3.2.1 Interrupt controls in the GIC
	Interrupt enables
	Setting and clearing pending state of an interrupt
	Finding the active or pending state of an interrupt
	Generating an SGI

	3.2.2 Implications of the 1-N model
	3.2.3 Interrupt handling state machine
	3.2.4 Special interrupt numbers

	3.3 Interrupt prioritization
	3.3.1 Preemption
	3.3.2 Priority masking
	3.3.3 Priority grouping
	3.3.4 Interrupt generation

	3.4 The effect of the Security Extensions on interrupt handling
	3.4.1 Security Extensions support
	3.4.2 Special interrupt numbers when the Security Extensions are implemented
	3.4.3 Effect of the Security Extensions on interrupt acknowledgement

	3.5 The effect of the Security Extensions on interrupt prioritization
	3.5.1 Software views of interrupt priority
	Recommendations for managing priority values

	3.5.2 Control of preemption by Non-secure interrupts
	3.5.3 The effect of the Security Extensions on priority masking
	3.5.4 The effect of the Security Extensions on priority grouping
	3.5.5 Interrupt generation when the GIC implements the Security Extensions
	3.5.6 Priority management and the Security Extensions

	3.6 Pseudocode details of interrupt handling and prioritization
	3.6.1 General helper functions and definitions
	3.6.2 Exception generation pseudocode, without the Security Extensions
	3.6.3 Exception generation pseudocode, with the Security Extensions
	3.6.4 The effect of the Security Extensions on accesses to prioritization registers

	Programmers Model
	4.1 About the programmers model
	4.1.1 GIC register short names
	4.1.2 Distributor register map
	4.1.3 CPU interface register map
	4.1.4 GIC register access
	Register banking

	4.1.5 Reset behavior

	4.2 Effect of the Security Extensions on the programmers model
	4.2.1 Non-secure access to register fields for Secure interrupt priorities
	4.2.2 Configuration lockdown

	4.3 Distributor register descriptions
	4.3.1 Distributor Control Register (ICDDCR)
	4.3.2 Interrupt Controller Type Register (ICDICTR)
	4.3.3 Distributor Implementer Identification Register (ICDIIDR)
	4.3.4 Interrupt Security Registers (ICDISRn)
	ICDISR0 reset value

	4.3.5 Interrupt Set-Enable Registers (ICDISERn)
	4.3.6 Interrupt Clear-Enable Registers (ICDICERn)
	4.3.7 Interrupt Set-Pending Registers (ICDISPRn)
	4.3.8 Interrupt Clear-Pending Registers (ICDICPRn)
	Control of the pending status of level-sensitive interrupts

	4.3.9 Active Bit Registers (ICDABRn)
	4.3.10 Interrupt Priority Registers (ICDIPRn)
	4.3.11 Interrupt Processor Targets Registers (ICDIPTRn)
	The effect of changes to an ICDIPTR

	4.3.12 Interrupt Configuration Registers (ICDICFRn)
	4.3.13 Software Generated Interrupt Register (ICDSGIR)
	SGI generation when the GIC implements the Security Extensions

	4.3.14 Identification registers
	Peripheral ID2 Register (ICPIDR2)
	The ARM implementation of the GIC Identification Registers

	4.4 CPU interface register descriptions
	4.4.1 CPU Interface Control Register (ICCICR)
	Optional support for interrupt signal pass-through

	4.4.2 Interrupt Priority Mask Register (ICCPMR)
	4.4.3 Binary Point Register (ICCBPR)
	4.4.4 Interrupt Acknowledge Register (ICCIAR)
	Effect of the Security Extensions on reads of the ICCIAR

	4.4.5 End of Interrupt Register (ICCEOIR)
	Effect of the Security Extensions on writes to the ICCEOIR

	4.4.6 Running Priority Register (ICCRPR)
	4.4.7 Aliased Binary Point Register (ICCABPR)
	4.4.8 Highest Pending Interrupt Register (ICCHPIR)
	Effect of the Security Extensions on reads of the ICCHPIR

	4.4.9 CPU Interface Identification Register (ICCIIDR)

	Pseudocode Index
	A.1 Index of pseudocode functions

	Software Examples for the GIC
	B.1 Use of identification registers
	B.2 Initialization after reset or power on
	B.3 Processor response to an initial interrupt
	B.3.1 Effect of the Security Extensions on handling an initial interrupt

	B.4 Preemptive processing
	B.4.1 CPU interface signalling of interrupts for possible preemption
	B.4.2 ARM recommendations for interrupt handling with the Security Extensions
	Non-cooperative scheme
	Co-operative scheme

	B.5 Generating a software interrupt
	B.6 Changing a CPU interface interrupt priority mask
	B.7 Changing the priority of an interrupt
	B.8 Changing the processor targets of an interrupt
	B.9 Disabling a peripheral interrupt
	B.10 Changing the security configuration of an interrupt
	B.11 Disabling a CPU interface on the GIC
	B.12 Message passing between processors
	B.13 Example of using the binary point

	Register Shortform Names
	C.1 Register name aliases
	C.2 Index of architectural shortform names

	Glossary

