
Arm® Architecture Reference Manual
Supplement

Memory System Resource Partitioning and Monitoring
(MPAM), for A-profile architecture
Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved.
ARM DDI 0598C.b (ID012521)

Arm Architecture Reference Manual Supplement
Memory System Resource Partitioning and Monitoring (MPAM), for A-profile
architecture

Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved.

Release Information

The following releases of this document have been made.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. Arm PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL Arm BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF Arm HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Release history

Date Issue Confidentiality Change

30 October 2018 A.a Non-Confidential EAC release

05 July 2019 A.b Non-Confidential Updated EAC release

21 February 2020 B.a Non-Confidential Updated EAC release incorporating MPAMv0.1 and
MPAMv1.1 architectures

17 July 2020 B.b Non-Confidential Updated EAC release

22 January 2021 B.c Non-Confidential Updated EAC release

23 June 2021 C.a Non-Confidential Updated EAC release incorporating MPAM for Realm
Management Extension

19 October 2021 C.b Non-Confidential Updated EAC release integrating MPAM for Realm
Management Extension
ii Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

In this document, where the term Arm is used to refer to the company it means “Arm or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

The information in this manual is at EAC quality, which means that all features of the specification are described in the manual.

Web Address

http://www.arm.com
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. iii
ID012521 Non-Confidential

iv Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Contents

Preface
About this book ... x
Using this book ... xi
Conventions .. xiii
Additional reading ... xiv
Feedback .. xv

Chapter 1 Introduction
1.1 Overview .. 1-18
1.2 Memory-system resource partitioning ... 1-19
1.3 Memory-system resource usage monitoring .. 1-20
1.4 Memory-system components ... 1-21
1.5 Versions of the MPAM Extension ... 1-22
1.6 Implementation flexibility .. 1-29
1.7 Example uses .. 1-30

Chapter 2 MPAM and Arm Memory-System Architecture
2.1 MPAM and Arm memory-system architecture ... 2-32

Chapter 3 ID Types, Properties, and Spaces
3.1 Introduction ... 3-34
3.2 ID types and properties .. 3-35
3.3 Physical address spaces and Security state .. 3-36
3.4 PARTID spaces and properties .. 3-37

Chapter 4 Memory System Propagation of MPAM Information
4.1 Introduction ... 4-40
4.2 Requester components .. 4-41
4.3 Terminating Completer components .. 4-42
4.4 Intermediate Completer-Requester components ... 4-43
4.5 Request buffering ... 4-44
4.6 Cache memory ... 4-45
4.7 MPAM for RME propagation of MPAM_SP with requests 4-46

Chapter 5 System Model
5.1 Introduction ... 5-48
5.2 System-level field widths .. 5-50
5.3 PE behavior .. 5-51
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. v
ID012521 Non-Confidential

5.4 Other Requesters with MPAM .. 5-52
5.5 Requesters without MPAM support .. 5-53
5.6 Model of a resource partitioning control ... 5-54
5.7 Interconnect behavior ... 5-55
5.8 Cache behavior .. 5-56
5.9 Memory-channel controller behavior .. 5-58
5.10 The MPAM for RME system ... 5-59

Chapter 6 PE Generation of MPAM Information
6.1 Introduction ... 6-68
6.2 MPAM System registers ... 6-69
6.3 Instruction, data, translation table walk, and other accesses 6-72
6.4 Security .. 6-73
6.5 PARTID virtualization ... 6-76
6.6 MPAM AArch32 interoperability ... 6-81
6.7 Support for nested virtualization ... 6-82
6.8 MPAM errors and default ID generation ... 6-85
6.9 MPAM for RME PE generation of MPAM information .. 6-87

Chapter 7 System Registers
7.1 Overview .. 7-92
7.2 Synchronization of System register changes ... 7-93
7.3 Summary of System registers .. 7-94
7.4 System register descriptions .. 7-95
7.5 MPAM enable ... 7-147
7.6 SDEFLT ... 7-148
7.7 Lower-EL MPAM register access trapping ... 7-149
7.8 FORCE_NS .. 7-150
7.9 Reset .. 7-151
7.10 Unimplemented Exception levels ... 7-152

Chapter 8 MPAM in MSCs
8.1 Introduction .. 8-156
8.2 Resource controls .. 8-157
8.3 Resource instance selection .. 8-158
8.4 Security in MSCs .. 8-162
8.5 Virtualization support in system MSCs ... 8-163
8.6 PE with integrated MSCs ... 8-164
8.7 System-wide PARTID and PMG widths ... 8-165
8.8 MPAM interrupts .. 8-166
8.9 MSC support of MPAM for RME .. 8-170

Chapter 9 Resource Partitioning Controls
9.1 Introduction .. 9-174
9.2 Partition resources ... 9-175
9.3 Standard partitioning control interfaces .. 9-176
9.4 Vendor or implementation-specific partitioning control interfaces 9-185
9.5 Measurements for controlling resource usage ... 9-186
9.6 PARTID narrowing ... 9-187
9.7 System reset of MPAM controls in MSCs .. 9-188
9.8 About the fixed-point fractional format ... 9-189

Chapter 10 Resource Monitors
10.1 Introduction ... 10-192
10.2 MPAM resource monitors ... 10-193
10.3 Common features ... 10-196
10.4 Monitor configuration .. 10-198
vi Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 11 Memory-Mapped Registers
11.1 Overview of MMRs ... 11-202
11.2 Summary of memory-mapped registers ... 11-208
11.3 Memory-mapped ID register description .. 11-211
11.4 Memory-mapped partitioning configuration registers ... 11-250
11.5 Memory-mapped monitoring configuration registers .. 11-283
11.6 Memory-mapped control and status registers .. 11-345

Chapter 12 Errors in MSCs
12.1 Introduction .. 12-364
12.2 Error conditions in accessing memory-mapped registers 12-365
12.3 Overwritten error status .. 12-369
12.4 Behavior of configuration reads and writes with errors 12-370
12.5 Optionality of error detection and reporting .. 12-375

Chapter 13 Pseudocode
13.1 Shared pseudocode ... 13-378

Appendix A Generic Resource Controls
A.1 Introduction ... A-390
A.2 Portion resource controls .. A-391
A.3 Maximum-usage resource controls ... A-392
A.4 Proportional resource allocation facilities .. A-393
A.5 Combining resource controls ... A-395

Appendix B MSC Firmware Data
B.1 Introduction ... B-398
B.2 Partitioning-control parameters ... B-399
B.3 Performance-monitoring parameters ... B-400
B.4 Discovery of resource to RIS mapping .. B-401
B.5 Discovery of wired interrupts ... B-402
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. vii
ID012521 Non-Confidential

viii Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Preface

This preface introduces the MPAM Extension architecture specification. It contains the following sections:

• About this book on page x.

• Using this book on page xi.

• Conventions on page xiii.

• Additional reading on page xiv.

• Feedback on page xv.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ix
ID012521 Non-Confidential

Preface
 About this book
About this book

This book is the Architecture Specification for the MPAM Extension Architecture Specification v1.0, v1.1, and v0.1.

It specifies:

• System registers and behaviors for generation of MPAM information in processing elements, or PEs.

• Memory-mapped registers and standard types of resource control interfaces for Memory-System
Components, or MSCs.

• Memory-mapped registers and resource usage monitors for measuring resource usage in MSCs.

Together, these facilities permit software both to observe memory-system usage and to allocate resources to
software by running that software in a memory-system partition.

This document defines all versions of the MPAM Extension. For more information on MPAM Extension versions,
see Versions of the MPAM Extension on page 1-22.

This document primarily covers only the AArch64 Execution state, but the MPAM Extension does continue to
operate in AArch32 state, as detailed in MPAM AArch32 interoperability on page 6-81.

This document primarily describes hardware architecture. As such, it does not usually include information on either
the software needed to control these facilities or the ways to implement effective controls of the memory system
using the parameters defined by this architecture.

This document gives no guidance as to:

• Which optional features to implement in either a PE or an MSC.

• What resources in which MSCs should be controlled by MPAM.

Intended audience

This document targets the following audience:

• Hardware and software developers interested in the MPAM hardware architecture.
x Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Preface
 Using this book
Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the MPAM extension.

Chapter 2 MPAM and Arm Memory-System Architecture

Read this chapter for a description of MPAM and Arm Memory-System Architecture.

Chapter 3 ID Types, Properties, and Spaces

Read this chapter for a description of ID Types, Properties, and Spaces.

Chapter 4 Memory System Propagation of MPAM Information

Read this chapter for a description of MSC Propagation of MPAM Information.

Chapter 5 System Model

Read this chapter for a description of the System model.

Chapter 6 PE Generation of MPAM Information

Read this chapter for a description of PE Generation of MPAM Information.

Chapter 7 System Registers

Read this chapter for a description of the System registers.

Chapter 8 MPAM in MSCs

Read this chapter for a description of MPAM in MSCs.

Chapter 9 Resource Partitioning Controls

Read this chapter for a description of Memory-System Partitioning.

Chapter 10 Resource Monitors

Read this chapter for a description of Performance Monitoring Groups.

Chapter 11 Memory-Mapped Registers

Read this chapter for a description of Memory-Mapped Registers.

Chapter 12 Errors in MSCs

Read this chapter for a description of Errors in MSCs.

Chapter 13 Pseudocode

Read this chapter for the pseudocode definitions that describe various features of the MPAM
Architecture.

Appendix A Generic Resource Controls

Read this appendix for a description of Generic Resource Controls.

Appendix B MSC Firmware Data

Read this appendix for a description of MSC Firmware Data.

 Glossary

Read this glossary for definitions of some of the terms that are used in this manual. The Arm
Glossary does not contain terms that are industry standard unless the Arm meaning differs from the
generally accepted meaning.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. xi
ID012521 Non-Confidential

Preface
 Using this book
Note

Arm publishes a single glossary that relates to most Arm products, see the Arm Glossary
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html. A definition in the
glossary in this book might be more detailed than the corresponding definition in the Arm Glossary.

How to read this book

Readers new to MPAM should first read Chapters 1 to 5.

Readers interested in MPAM generation behavior in the PE should read Chapters 6 and 7.

Readers interested in MPAM resource controls and memory-system component behaviors should read Chapters 8,
9, 11, 12, and Appendices A and B.

Readers interested in MPAM resource usage monitoring should read Chapters 8, 10, 11, and 12.

Readers interested in changes made by the Armv8.6 architecture extension should read sections mentioned in
Versions of the MPAM Extension on page 1-22.

Readers interested in MPAM pseudocode should read Chapter 13.

Readers interested in pseudocode definition, refer to the Arm® Architecture Reference Manual.

Readers interested in Realm Management Extension, RME, should read the Arm® Architecture Reference Manual
Supplement, The Realm Management Extension (RME), for Armv9-A (ARM DDI 0615).
xii Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Preface
 Conventions
Conventions

The following sections describe conventions that this book can use:

• Typographic conventions on page xiii.

• Signals on page xiii.

• Numbers on page xiii.

• Pseudocode descriptions on page xiii.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary LINK.

Colored text Indicates a link. This can be:

• A URL, for example, http://developer.arm.com.

• A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Pseudocode descriptions on page xiii.

• A link to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term.

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font, and is described in Chapter 13 Pseudocode.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. xiii
ID012521 Non-Confidential

Preface
 Additional reading
Additional reading

This section lists relevant publications from Arm and third parties.

See Arm Developer, https://developer.arm.com, for access to Arm documentation.

Arm publications

This book contains information that is specific to this product. See the following documents for other relevant
information:

• Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile (ARM DDI 0487)

• Arm® Architecture Reference Manual Supplement Armv9, for Armv9-A architecture profile (ARM DDI 0608)

• Arm® CoreSight Architecture Specification v2.0 (ARM IHI 0029D)

• ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
(ARM IHI 0069).

• Arm® System Memory Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1
and 3.2 (ARM IHI 0070C.a).

• Arm® Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A
(ARM DDI 0615).

• Arm® System Memory Management Unit Architecture Specification, SMMU architecture (ARM IHI 0070).

• The Realm Management Extension (RME), for SMMUv3 Arm® System Memory Management Unit
Architecture Supplement (ARM IHI 0094).

Other publications

The following books are referred to in this book, or provide more information:

• “Heracles: Improving Resource Efficiency at Scale,” David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, Christos Kozyrakis, 42nd Annual International Symposium on Computer
Architecture (ISCA), New York NY, ACM, 2015.
xiv Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Preface
 Feedback
Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title, Arm® Architecture Reference Manual Supplement Memory System Resource Partitioning and
Monitoring (MPAM), for A-profile architecture.

• The number, ARM DDI 0598C.b

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Progressive Terminology Commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find
offensive terms in this document, please contact terms@arm.com.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. xv
ID012521 Non-Confidential

Preface
 Feedback
xvi Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 1
Introduction

This chapter contains the following sections:

• Overview on page 1-18.

• Memory-system resource partitioning on page 1-19.

• Memory-system resource usage monitoring on page 1-20.

• Memory-system components on page 1-21.

• Versions of the MPAM Extension on page 1-22.

• Implementation flexibility on page 1-29.

• Example uses on page 1-30.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 1-17
ID012521 Non-Confidential

Introduction
1.1 Overview
1.1 Overview

Some shared-memory computer systems run multiple applications or multiple virtual machines (VMs) concurrently.
Such systems may have one or more of the following needs:

• Control the performance effects of misbehaving software on the performance of other software.

• Bound the performance impact on some software by any other software.

• Minimize the performance impact of some software on other software.

These scenarios are common in enterprise networking and server systems. The Memory System Resource
Partitioning and Monitoring (MPAM) extension addresses these scenarios with two approaches that work together,
under software control, to apportion the performance-giving resources of the memory system. The apportionment
can be used to align the division of memory-system performance between software, to match higher-level goals for
dividing the performance of the system between software environments.

These approaches are:

• Memory-system resource partitioning.

• Memory-system resource usage monitoring.

The main motivation of the extension is to make data centers less expensive. The extension can increase server
utilization, so that fewer servers are needed for a given level of service. Utilization can be increased by controlling
how much impact the best-effort jobs have on the tail latency of responses by web-facing jobs. See Heracles:
Improving Resource Efficiency at Scale.

This MPAM Extension describes:

• A mechanism for attaching partition identifiers and a monitoring property, for executing software on an Arm
processing element (PE).

• Propagation of a Partition ID (PARTID) and Performance Monitoring Group (PMG) through the memory
system.

• A framework for memory-system component controls that partition one or more of the performance
resources of the component.

• Extension of the framework for MSCs to have performance monitoring that is sensitive to a combination of
PARTID and PMG.

• Some implementation-independent, memory-mapped interfaces to memory-system component controls for
performance resource controls most likely to be deployed in systems.

• Some implementation-independent memory-mapped interfaces to memory-system component resource
monitoring that would likely be needed to monitor the partitioning of memory-system resources.

There are different versions of this MPAM Extension. For more information, see Versions of the MPAM Extension
on page 1-22.
1-18 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Introduction
1.2 Memory-system resource partitioning
1.2 Memory-system resource partitioning

The performance of programs running on a computer system is affected by the memory-system performance, which
is in part controlled by several resources in the memory system. In a memory system shared by multiple VMs, OSs,
and applications, the resources available to one software environment may vary, depending on which other
programs are also running. This is true because those other programs may consume more or less of an uncontrolled
memory-system resource.

Memory-system resource partitioning provides controls on the limits and use of previously uncontrolled
memory-system resources.

Shared, partitionable memory-system resources that can affect performance of a VM, OS, or application include:

• Shared caches, in which one application may displace the cached data of another application.

• Interconnect bandwidth, in which use by one application can interfere with use by another application due to
contention for buffers, communication links, or other interconnect resources.

• Memory bandwidth, in which use by one application can interfere with the use by another application due to
contention for DRAM bus bandwidth.

This list is not exhaustive. MPAM functionality can be extended in future MPAM Extension specifications and
through vendor and implementation-specific resource partitioning controls or resource-usage monitors.

Memory-system performance resource partitioning is performed by MPAM resource controls located within the
MSCs. Each memory-system component may implement zero or more MPAM resource controls within that
component.

An MPAM resource control uses the PARTID that is set for one or more software environments. A PARTID for the
current software environment labels each memory system request. Each MPAM resource control has control
settings for each PARTID. The PARTID in a request selects the control settings for that PARTID, which are then
used to control the partitioning of the performance resources of that memory-system component.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 1-19
ID012521 Non-Confidential

Introduction
1.3 Memory-system resource usage monitoring
1.3 Memory-system resource usage monitoring

Memory-system resource-usage monitoring measures memory-system resource usage. MSCs can have resource
monitors. An MPAM monitor must be configured and enabled before it can be queried for resource-usage
information. A monitor can be configured to be sensitive to a particular PARTID, or PARTID and PMG, and some
monitors can be configured to certain subcategories of the resource (for example, the memory bandwidth used by
writes that use a PARTID and PMG).

A monitor can measure resource usage or capacity usage, depending on the resource. For example, a cache can have
monitors for cache storage that measure the usage of the cache by a PARTID and PMG.

Monitors can serve several purposes. A memory-system resource monitor might be used to find software
environments to partition. Or, a monitor’s reads might be used to tune the memory-system partitioning controls. A
PMG value can be used to subdivide the software environments within a PARTID for finer-grained monitoring
results, or to make measurements over prospective partitions.
1-20 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Introduction
1.4 Memory-system components
1.4 Memory-system components

A Memory-System Component (MSC) is a function, unit, or design block in a memory system that can have
partitionable resources. MSCs consist of all units that handle load or store requests issued by any MPAM Requester.
These include cache memories, interconnects, Memory Management Units, memory channel controllers, queues,
buffers, rate adaptors, and so on.

An MSC may be a part of another system component. For example, a PE may contain caches, which may contain
MSCs.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 1-21
ID012521 Non-Confidential

Introduction
1.5 Versions of the MPAM Extension
1.5 Versions of the MPAM Extension

This document describes several version of the MPAM architecture. The identification of architecture versions and
the features present within a version differ between PEs and MSCs are described in:

• MPAM versions for PEs on page 1-22.

• MPAM versions for MSCs on page 1-22.

• Relationships between MPAM versions on page 1-27.

• Interoperation of components with different MPAM versions on page 1-28.

1.5.1 MPAM versions for PEs

There are multiple different versions of the MPAM Extension. The architecture version of the MPAM Extension
implemented in a PE is given in ID_AA64PFR0_EL1.MPAM for the major version and
ID_AA64PFR1_EL1.MPAM_frac for the minor version. Table 1-1 on page 1-22 shows how
ID_AA64PFR0_EL1.MPAM and ID_AA64PFR1_EL1.MPAM_frac values indicate the MPAM architecture
version.

The optional MPAM features and MPAM identifier sizes supported by a PE that supports a version of the MPAM
Extension are indicated in the fields of MPAMIDR_EL1.

1.5.2 MPAM versions for MSCs

The architecture version of the MPAM Extension implemented in an MSC is given in the MPAMF_AIDR register
fields, ArchMajorRev and ArchMinorRev. The MPAM Extension versions used in MSCs are a subset of the
versions used in PEs because the MPAM MSC architecture does not cover the generation of MPAM information by
MSCs that are not PEs. The architecture of the component specifies how that component generates MPAM
information for memory system requests that it originates.

Table 1-1 MPAM Extension implemented by a PE

ID_AA64PR
F0_EL1.
MPAM

ID_AA64PR
F1_EL1.
MPAM_frac

MPAM Extension
Architecture version

Notes

0b0000 0b0000 None MPAM is not implemented.

0b0000 0b0001 v0.1 MPAM v0.1 is implemented.
MPAM v0.1 is the same as MPAM v1.1 with FORCE_NS which
is incompatible with MPAM v1.0.

0b0001 0b0000 v1.0 MPAM v1.0 is implemented.

0b0001 0b0001 v1.1 MPAM v1.1 is implemented. MPAM v1.1 includes all features of
MPAM v1.0.

It must not include FORCE_NS.
1-22 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Introduction
1.5 Versions of the MPAM Extension
MPAM Extension versions and the corresponding values of fields in MPAMF_AIDR of the MSC are shown in
Table 1-2 on page 1-23:

Most MPAM features in an MSC are optional. The particular MPAM features available in an MSC are described in
the MSC's MPAMF_IDR register.

MPAMF_IDR is 32-bits in MPAM v1.0 and is 64-bits in MPAM v1.1.

MPAMF_IDR is permitted to have different MPAM features in different address spaces. If the MPAM feature RIS
is implemented MPAMF_IDR is also permitted to have different features for different Resource Instances in an
MSC.

MSCs can be used in MPAM v1.0 and v1.1, and in v0.1 under certain conditions. For more information on the
conditions on use of MSCs in MPAM v0.1, see MPAM versions in MSCs on page 8-156.

If an MSC does not implement any of the MPAM v1.1 MSC features listed in MPAM versions for MSCs on
page 1-22, then the MSC is of MPAM v1.0.

MSC of MPAM v1.1

The MPAM features that can be implemented in an MSC of MPAM v1.1 are:

Expansion of MPAMF_IDR

MPAMF_IDR is expanded to 64 bits to support bits that indicate the presence of features added from
MPAM v1.1.

This feature is mandatory when the MSC implements MPAM v1.1.

This feature is implemented when MPAMF_IDR.EXT is set to 1.

For more information, see MPAMF_IDR, MPAM Features Identification Register on page 11-221.

Capturing of IMPLEMENTATION DEFINED resource partitioning controls or resource monitoring

This feature defines two fields that allow discovery of any IMPLEMENTATION DEFINED resource
partitioning controls or IMPLEMENTATION DEFINED resource monitors that are implemented.

This feature is mandatory when the MSC implements MPAM v1.1 and
MPAMF_IDR.HAS_IMPL_IDR is 1.

This feature is implemented when MPAMF_IDR.EXT is 1. Furthermore:

• When MPAMF_IDR.NO_IMPL_PART is 1, MPAMF_IMPL_IDR does not include the
description of any implementation-specific resource partitioning controls.

Table 1-2 MPAM version implemented by an MSC

MPAMF_AIDR
MPAM Extension
version supported

MSC MPAM support
ArchMajor
Rev

ArchMinor
Rev

0b0000 0b0000 None The MSC does not implement MPAM.

0b0000 0b0001 N/A Not a valid MPAM version for an MSC.

0b0001 0b0000 v1.0 The MSC implements MPAM v1.0 with features as described in the
32-bit MPAMF_IDR.

0b0001 0b0001 v1.1 The MSC implements MPAM v1.1 with features as described in the
64-bit MPAMF_IDR.

MPAM v1.1 includes all of the MSC MPAM features of MPAM v1.0
plus additional MPAM features.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 1-23
ID012521 Non-Confidential

Introduction
1.5 Versions of the MPAM Extension
• When MPAMF_IDR.NO_IMPL_MSMON is 1, MPAMF_IMPL_IDR does not include the
description of any implementation-specific resource monitors.

For more information, see MPAMF_IDR, MPAM Features Identification Register on page 11-221.

Resource instance selection

Resource instance selection, or RIS, provides access to the control settings of multiple resources of
the same type within one MSC.

This feature is optional when the MSC implements MPAM v1.1.

This feature is implemented when MPAMF_IDR.EXT and MPAMF_IDR.HAS_RIS are 1.

For more information, see

• Resource instance selection on page 8-158.

• MPAMCFG_PART_SEL, MPAM Partition Configuration Selection Register on page 11-277.

• MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register on page 11-303.

• Error conditions in accessing memory-mapped registers on page 12-365.

Greater range for MBWU monitors

This feature supports 44-bit and 63-bit memory bandwidth usage counters.

This feature is optional when the MSC implements MPAM v1.1.

This feature is implemented when MPAMF_MBWUMON_IDR.HAS_LONG is 1.

For more information, see Long MBWU counter and capture on page 10-194.

Discovery of MPAMF_ESR and MPAMF_ECR

This feature supports the MPAMF_IDR.HAS_ESR field. This field indicates whether
MPAMF_ESR and MPAMF_ECR are implemented.

This feature is mandatory when the MSC implements MPAM v1.1.

This feature is implemented when MPAMF_IDR.EXT is 1.

For more information, see MPAMF_IDR, MPAM Features Identification Register on page 11-221.

Expansion of MPAMF_ESR

This feature widens MPAMF_ESR to 64 bits to include space for a RIS field.

This feature is optional when the MSC implements MPAM v1.1. Implementation of this feature is
mandatory if MPAMF_IDR.{HAS_ESR, HAS_RIS} are 1.

This feature is implemented when MPAMF_IDR.{EXT, HAS_EXTD_ESR} are 1.

For more information, see

• MPAMF_ESR, MPAM Error Status Register on page 11-359

• Resource instance selection on page 8-158.

1.5.3 MPAM system features by MPAM version

MPAM System features are described in on page 2-31 on page 1-17 on page 2-31chapters 2 through 5 in this
supplement, MPAM system features that vary by version are described in Table 1-3 on page 1-24:

Table 1-3 System features by MPAM version

MPAM feature MPAM v0.1 MPAM v1.0 MPAM v1.1 MPAM for RME

MPAM_NS signal Required Required Required Prohibited

MPAM_SP signal Prohibited Prohibited Prohibited Required
1-24 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Introduction
1.5 Versions of the MPAM Extension
1.5.4 MPAM PE features by MPAM version

The features applicable for different MPAM versions are described in chapters 6 and 7. These features are
summarized in Table 1-4 on page 1-25:

1.5.5 MSC features by MPAM version

MPAM MSC features are covered by chapters 8 through 12 of this supplement.

MPAM MSC features by MPAM version are shown in Table 1-5 on page 1-25:

Table 1-4 MPAM PE features by MPAM version

MPAM feature MPAM v0.1 MPAM v1.0 MPAM v1.1
MPAM for
RME

ID field

PARTID Virtualization Optional Optional Optional Optional Prohibited

Force secure PARTID to
NS

Required Prohibited Prohibited Prohibited MPAMIDR_EL1.HAS_FORCE_
NS

Secure Default PARTID Optional Prohibited Optional Optional MPAMIDR_EL1.HAS_SDEFLT

TIDR in MPAM2_EL2 Required Prohibited Required Required MPAMIDR_EL1.HAS_TIDR

Four PARTID Spaces Prohibited Prohibited Prohibited Required MPAMIDR_EL1.SP4

Alternative PARTID
spaces

Prohibited Prohibited Prohibited Required MPAMIDR_EL1.HAS_ALTSP

Table 1-5 MSC features by MPAM version

MPAM feature
Subordinate
feature

Subordinate
feature 2

MPAM
v1.0

MPAM
v1.1

MPAM
for
RME

ID field

Cache capacity
partitioning

Optional Optional Optional MPAMF_IDR.HAS_CC
AP_PART

Cache portion
partitioning

Optional Optional Optional MPAMF_IDR.HAS_CP
OR_PART

Memory BW
partitioning

Optional Optional Optional MPAMF_IDR.HAS_MB
W_PART

Minimum BW
partioning

Optional Optional Optional MPAMF_MBW_IDR.H
AS_MIN

Maximum BW
partioning

Optional Optional Optional MPAMF_MBW_IDR.H
AS_MAX

BW portion
partitioning

Optional Optional Optional MPAMF_MBW_IDR.H
AS_PBM

Proportional BW
partitioning

Optional Optional Optional MPAMF_MBW_IDR.H
AS_PROP

BW window writable Optional Optional Optional MPAMF_MBW_IDR.W
INDWR

Priority
positioning

Optional Optional Optional MPAMF_IDR.HAS_PRI
_PART
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 1-25
ID012521 Non-Confidential

Introduction
1.5 Versions of the MPAM Extension
Internal priority
partitioning

Optional Optional Optional MPAMF_PRI_IDR.HAS
_INTPRI

Downstream priority
partitioning

Optional Optional Optional MPAMF_PRI_IDR.HAS
_DSPRI

Memory Sys
resource
monitoring

Optional Optional Optional MPAMF_IDR.HAS_MS
MON

Cache storage usage
monitoring

Optional Optional Optional MPAMF_MSMON_IDR
.MSMON_CSU

CSU monitor
capture

Optional Optional Optional MPAMF_CSUMON_ID
R.HAS_CAPTURE

CSU monitor
read-only

Optional Optional Optional MPAMF_CSUMON_ID
R._CSU_RO

Memory BW usage
monitoring

Optional Optional Optional MPAMF_MSMON_IDR
. MSBMON_MBWU

MBWU monitor
capture

Optional Optional Optional MPAMF_MBWUMON_
IDR.HAS_CAPTURE

MBWU monitor
Long

Optional Optional Optional MPAMF_MBWUMON_
IDR.HAS_LONG

MBWU monitor
R/W filtering

Optional Optional Optional MPAMF_MBWUMON_
IDR.HAS_RWBW

MBWU monitor
scaling

Optional Optional Optional MPAMF_MBWUMON_
IDR. SCALE

Monitor overflow
status register

Prohibited Optional Optional MPAMF_MSMON_IDR
.HS_OFLOW_SR

Monitor overflow MSI Prohibited Optional Optional MPAMF_MSMON_IDR
.OFLW_MSI

No hardwired overflow
interrupt

Prohibited Optional Optional MPAMF_MSMON_IDR
.NO_OFLOWINTR

Local monitor capture
event generator

Optional Optional Optional MPAMF_MSMON_IDR
.HAS_LOCAL_CAPT_
EVNT

PARTID
narrowing

 Optional Optional Optional MPAMF_IDR.HAS_PA
RTID_NRW

Implementation-d
efined ID Reg

Optional Optional Optional MPAMF_IDR.HAS_IM
PL_IDR

Impl IDR no
partitioning

Prohibited Required Required MPAMF_IDR.IMPL_ID
R

Impl IDR no
monitoring

Prohibited Required Required MPAMF_IDR.IMPL_M
SMON

Table 1-5 MSC features by MPAM version (continued)

MPAM feature
Subordinate
feature

Subordinate
feature 2

MPAM
v1.0

MPAM
v1.1

MPAM
for
RME

ID field
1-26 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Introduction
1.5 Versions of the MPAM Extension
1.5.6 Relationships between MPAM versions

This section gives the relationships between MPAM versions.

MPAM v0.1

An MPAM v0.1 PE implements any permitted subset of the features of MPAM v1.1 and also implements
MPAM3_EL3.FORCE_NS. The FORCE_NS field cannot be present in any other MPAM version.

In a PE that implements MPAM v0.1, the MPAM features available (either Required or Optional) are described in
Table 1-4 on page 1-25.

In an MSC that implements MPAM v0.1, the MPAM features available are (either Required or Optional) are
described in Table 1-5 on page 1-25.

For more information see SDEFLT and FORCE_NS settings to control Secure MPAM PARTID use on page 6-73 and
MPAM3_EL3, MPAM3 Register (EL3) on page 7-110 for FORCE_NS.

MPAM v1.0

MPAM v1.0 is the base version of MPAM. Unless explicitly defined, all features from MPAM v1.0 are present in
the other versions of MPAM.

In a PE that implements MPAM v1.0, the MPAM features available (either Required or Optional) are described in
Table 1-4 on page 1-25.

In an MSC that implements MPAM v1.0, the MPAM features available (either Required or Optional) are described
in Table 1-5 on page 1-25.

MPAM v1.1

MPAM v1.1 adds features beyond the base version of MPAM. Unless explicitly removed, all features from MPAM
v1.1 are present in MPAM v0.1 and in MPAM for RME.

In a PE that implements MPAM v1.1, the MPAM features available (either Required or Optional) are described in
Table 1-4 on page 1-25.

Extended ID
register

 Prohibited Required Required MPAMF_IDR.EXT

Resource instance
selector

 Prohibited Optional Optional MPAMF_IDR.HAS_RIS

Error status
register

Prohibited Optional Optional MPAMF_IDR.HAS_ES
R

Extended error status
register

Prohibited Optional Optional MPAMF_IDR.HAS_EX
TD_ESR

Error MSI Prohibited Optional Optional MPAMF_IDR.HAS_ER
R_MSI

Four PARTID
spaces

 Required MPAMF_IDR.SP4

Table 1-5 MSC features by MPAM version (continued)

MPAM feature
Subordinate
feature

Subordinate
feature 2

MPAM
v1.0

MPAM
v1.1

MPAM
for
RME

ID field
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 1-27
ID012521 Non-Confidential

Introduction
1.5 Versions of the MPAM Extension
In an MSC that implements MPAM v1.1, the MPAM features available (either Required or Optional) are described
in Table 1-5 on page 1-25.

MPAM for RME

The MPAM for RME architecture supports the Realm Management Extension (RME) in systems, PEs and MSCs.

MPAM for RME requires MPAM v1.1 or higher.

In a PE that implements both RME and MPAM, MPAM for RME is required.

In a PE, MPAM for RME requires the MPAM feature ALTSP.

In a PE that implements MPAM for RME, the MPAM features available (either Required or Optional) are described
in Table 1-4 on page 1-25.

In an MSC that implements MPAM for RME, the MPAM features available (either Required or Optional) are
described in Table 1-5 on page 1-25.

An MPAM for RME implementation requires support for 4 PARTID spaces, see MPAM for RME propagation of
MPAM_SP with requests on page 4-46.

1.5.7 Interoperation of components with different MPAM versions

Hardware should not prevent PEs that implement different versions of the MPAM architecture to coexist within a
system. However, PEs that implement different versions of the MPAM architecture might present a difficulty for
software.

Hardware should not prevent MSCs that implement different versions of the MPAM architecture to coexist within
a system.

There is no required relationship between the MPAM architecture version of a PE and the MPAM architecture
version of an MSC accessed by that PE.
1-28 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Introduction
1.6 Implementation flexibility
1.6 Implementation flexibility

Memory-system partitioning, monitoring capabilities, and certain implementation parameters must be discoverable
by software, and they must be used by software to adapt to the system hardware. Discovery of MPAM
memory-system component topology is expected to be by means of firmware data such as Device Tree or ACPI
interface. MPAM controls and parameters of MSCs are discoverable in memory-mapped ID registers. Discovery of
PE MPAM features and parameters is described in Versions of the MPAM Extension on page 1-22.

The width of memory-system partitioning and monitoring values communicated through the system can be sized to
the needs of the system. The costs can thereby be adjusted to meet the market requirements.

This document defines standard interfaces to some resource partitioning and monitoring features of MSCs. It does
so by defining ID registers that expose implementation parameters and options. It also defines configuration
registers that allow standard programming of these features while giving substantial implementation flexibility. In
addition, this document also defines a mechanism that permits IMPLEMENTATION DEFINED partitioning and
monitoring features that may introduce partitioning or monitoring in new ways or of new resource types.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 1-29
ID012521 Non-Confidential

Introduction
1.7 Example uses
1.7 Example uses

This section is informative. It presents examples of partitioning uses that reduce memory-system interactions.

1.7.1 Separate systems combined

With faster processors, it is often less expensive to integrate into a single computer system the functions previously
performed by two or more systems. If any of these previously separate systems was real-time or otherwise
performance-sensitive, it may be necessary to isolate the performance of that function from others in the integrated
system.

Memory system performance can be monitored, and the measured usage can guide optimization of system
partitioning.

Partitioning is often statically determined by the system developer. Partitions may be given non-shared resource
allocations to improve real-time predictability. The number of partitions required could be small, similar to the
number of previously separate systems.

1.7.2 Foreground and background job optimization

When foreground and background jobs are run on the same system, the foreground job’s response time should not
be compromised, and the background job’s throughput should be optimized. The performance of the foreground and
background jobs can be monitored, and the resource allocations can be changed dynamically to track system loading
while optimizing foreground response time and background throughput.

An example of this approach is proposed in Heracles: Improving Resource Efficiency at Scale. This paper describes
a system that requires only two partitions, one for web-facing applications and another for best-effort applications.
The Heracles approach measures the service-level objective of tail latency for web service and adjusts the division
of resources between the two partitions. Resource-usage monitoring is also used to tune resource allocation for
particular resources.

1.7.3 Service-level provisioning in multi-tenant VM servers

When a server runs multiple VMs for different users, it is necessary to prevent one VM from using more resource
than it has paid for and thereby prevent other tenants from being able to use the resource they have paid for. MPAM
partitions provide a means to regulate the memory-system resources used by a VM.

While there need only be a few service levels provisioned onto a server, each VM needs a separate PARTID so that
resource-usage controls can be separately responsive to the resource demands of that VM.
1-30 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 2
MPAM and Arm Memory-System Architecture

This chapter contains the following sections:

• MPAM and Arm memory-system architecture on page 2-32
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 2-31
ID012521 Non-Confidential

MPAM and Arm Memory-System Architecture
2.1 MPAM and Arm memory-system architecture
2.1 MPAM and Arm memory-system architecture

This section is informative.

MPAM partitioning of memory-system performance resources must not affect the correctness of any memory
behavior specified in the Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile. The
Armv8-A memory model, as specified in that manual, must be followed in all of its particulars, including
requirements for observation, coherence, caching, order, atomicity, endianness, alignment, memory types, and any
other requirements defined in the Armv8-A memory model. Furthermore, these requirements must also be met:

• For single-PE and multiple-PE environments.

• When the MPAM information in multiple requests to an MSC are the same or are different, and whether those
multiple requests come from a single requestor or from multiple requestors.

• For all MPAM memory-system component resource controls and configurations.

• When MPAM information stored with data accessed from caches is the same as, or different from, MPAM
information in requests that access that data.

A Speculative access (either an instruction prefetch or an early data read) may be generated at any time, based on
MPAM System register configuration that might change before the access would be architecturally executed.
MPAM does not impose any limit on such speculation – neither a data dependency on the MPAMn_ELx registers
nor a control dependency on the System register synchronization, other than the limits on use of System register
values in the Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile.
2-32 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 3
ID Types, Properties, and Spaces

This chapter contains the following sections:

• Introduction on page 3-34.

• ID types and properties on page 3-35.

• Physical address spaces and Security state on page 3-36.

• PARTID spaces and properties on page 3-37.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 3-33
ID012521 Non-Confidential

ID Types, Properties, and Spaces
3.1 Introduction
3.1 Introduction

This chapter is normative.

MPAM operation is based on the MPAM information that Requesters include with requests made to the memory
system. This chapter defines the components of that MPAM information bundle, which consists of:

• PARTID

• PMG

• MPAM_NS
3-34 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

ID Types, Properties, and Spaces
3.2 ID types and properties
3.2 ID types and properties

MPAM has a single ID type, the Partition ID or PARTID. The architectural maximum width of a PARTID field is
16 bits.

PARTIDs have a single property. This is the Performance Monitoring Group, or PMG. The architectural maximum
width of a PMG field is 8 bits.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 3-35
ID012521 Non-Confidential

ID Types, Properties, and Spaces
3.3 Physical address spaces and Security state
3.3 Physical address spaces and Security state

The Armv8-A architecture defines two physical address spaces:

• Non-secure physical address space.

• Secure physical address space.

RME provides two additional physical address spaces:

• Realm physical address space.

• Root physical address space.

MPAM makes use of the physical address spaces to access the resource control settings in memory system
components. The controls for each PARTID space are accessed in the physical address space associated with that

PARTID space.

Table 3-1 Physical address spaces to access MSC control settings for PARTID spaces

Physical address space
Access to control
settings for PARTID
space

Non-secure physical address space Non-secure PARTID space

Secure physical address space Secure PARTID space

Realm physical address space Realm PARTID space

Root physical address space Root PARTID space
3-36 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

ID Types, Properties, and Spaces
3.4 PARTID spaces and properties
3.4 PARTID spaces and properties

MPAM uses two PARTID spaces to label memory system requests:

• Secure physical PARTID space. This space is accessed when a Requester is executing in a Secure state.

• Non-secure physical PARTID space. This space is accessed when a Requester is executing in a Non-secure
state.

PEs and some other Requesters have optional virtual PARTID spaces:

• Non-secure virtual PARTID space. This space exists only when the PE has the MPAM virtualization option
implemented and enabled for the current EL.

• Secure virtual PARTID space. This space exists only when the PE has the MPAM virtualization option
implemented and enabled for the current EL.

MPAM for RME provides two additional PARTID spaces:

• Realm PARTID space.

• Root PARTID space.

The PARTID spaces are parallel to the physical address spaces, but the PARTID space is not determined by the
physical address space of an access. The PARTID space is determined by the Security state from which a memory
access is made. Other factors, such as translation configuration, affect the physical address space of a memory
access.

Note

The primary PARTID space is determined only by the Security state and the Exception level.

Except for Non-secure state, if the PE supports the Alternative PARTID spaces and selection on page 6-87 PARTID
space MPAM feature, an alternative PARTID space can be made available for software to use. See Alternative
PARTID spaces and selection on page 6-87.

MPAM_NS indicates the PARTID space of a physical PARTID. When MPAM_NS is 0 it indicates the Secure
physical PARTID space. When MPAM_NS is 1 it indicates the Non-secure physical PARTID space.

For RME, the MPAM_NS component of the MPAM information bundle is redefined to be a 2-bit value, MPAM_SP.
The value of MPAM_SP[1:0] is given in Table 3-3 on page 3-37.

Table 3-2 Primary PARTID space for each Exception level and Security state in RME

Security state EL3 EL2 EL1 EL0

Non-secure n/a Non-secure PARTID space Non-secure PARTID space Non-secure PARTID space

Secure n/a Secure PARTID space Secure PARTID space Secure PARTID space

Realm n/a Realm PARTID space Realm PARTID space Realm PARTID space

Root Root PARTID space n/a n/a n/a

Table 3-3 : Encoding of 2-bit MPAM_SP

MPAM_SP[1:0] MPAM PARTID space

0b00 Secure PARTID space

0b01 Non-secure PARTID space

0b10 Root PARTID space

0b11 Realm PARTID space
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 3-37
ID012521 Non-Confidential

ID Types, Properties, and Spaces
3.4 PARTID spaces and properties
Each PARTID space has a maximum PARTID set by the implementation. The range of valid PARTIDs is 0 to the
maximum PARTID, inclusive. The maximum values of a PARTID implemented by a PE and by different MSCs
need not be the same. Software should avoid using PARTIDs that exceed the smallest maximum of any MSCs
accessed, because the behavior of an MSC accessed with an out-of-range PARTID is not well-defined.

Each MSC has an MPAM identification register with which to discover the maximum PARTID implemented in each
physical PARTID space. The maximum Non-secure PARTID supported by an MSC is indicated in its
MPAMF_IDR.PARTID_MAX. The maximum Secure PARTID supported by an MSC is indicated in its
MPAMF_SIDR.PARTID_MAX.

The maximum PARTID supported by a PE is indicated in MPAMIDR_EL1.PARTID_MAX.

3.4.1 Default PARTID

Each MPAM PARTID space has a default value, which is PARTID 0 in that PARTID space.

The default physical PARTID must be generated when MPAM PARTID generation is disabled by
MPAMn_ELn.MPAMEN == 0, where n is the highest Exception level implemented. This PARTID space is selected
according to the current Security state; it is either the Secure physical PARTID space or the Non-secure physical
PARTID space.

MPAM PARTID generation is permitted to produce the default PARTID when the generation encounters an error.

The PARTID error conditions in a PE are described in MPAM errors and default ID generation on page 6-85.

Note

System designers can choose to output the default IDs on requests generated by Requesters that do not support
MPAM.

3.4.2 Default PMG

The default PMG must be generated when MPAMEN == 0.

It is CONSTRAINED UNPREDICTABLE whether MPAM PMG generation produces the PMG value from the
MPAMn_ELx register field or from the default PMG in either of two cases:

• When the PMG generation encounters an error, such as out-of-range PMG.

• When a default PARTID is generated due to a PARTID generation error.

In other cases, when MPAMEN == 1, the PMG must be the PMG value from the MPAMn_ELx register field.

The PMG error conditions in a PE are described in MPAM errors and default ID generation on page 6-85.

Note

System designers can choose to output the default IDs on requests generated by Requesters that do not support
MPAM.
3-38 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 4
Memory System Propagation of MPAM Information

This chapter contains the following sections:

• Introduction on page 4-40.

• Requester components on page 4-41.

• Terminating Completer components on page 4-42.

• Intermediate Completer-Requester components on page 4-43.

• Request buffering on page 4-44.

• Cache memory on page 4-45.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 4-39
ID012521 Non-Confidential

Memory System Propagation of MPAM Information
4.1 Introduction
4.1 Introduction

This section is normative.

The MPAM information bundle is propagated through the memory system components, or MSCs, that have MPAM
resource controls or monitoring. The MPAM information bundle is described in Introduction on page 3-34.

MPAM information propagates in the direction of requests from Requesters towards terminating Completer
components. This is the downstream direction. The upstream direction is from Completers towards Requesters.

The propagation behavior in the memory system depends on the function of the part of the memory system. Each
MSC must implement at least one of the following behaviors:

• Requester components on page 4-41.

• Terminating Completer components on page 4-42.

• Intermediate Completer-Requester components on page 4-43.

• Request buffering on page 4-44.

• Cache memory on page 4-45.

• MPAM for RME propagation of MPAM_SP with requests on page 4-46.

If an MSC has no downstream components that use MPAM information, the MSC is not required to propagate
MPAM information.
4-40 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory System Propagation of MPAM Information
4.2 Requester components
4.2 Requester components

Requesters must label all requests to downstream MSCs with MPAM information.

A Requester must have a device-appropriate means of setting the MPAM information in the request:

• The PE must use the scheme described in Chapter 6 PE Generation of MPAM Information.

• This architecture does not specify a mechanism for determining the MPAM information for requests from a
non-PE Requester. Arm recommends that non-PE Requesters needing to use MPAM facilities specify a
mechanism for determining the PARTID, PMG, and MPAM_NS of requests.

• Arm System Memory Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and
3.2 specifies MPAM information generation on memory system accesses translated by the SMMU and
accesses originated by the SMMU to its tables in memory.

• Arm Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
specifies MPAM information generation on memory system accesses originated by the GIC to its tables in
memory.

If a Requester does not support MPAM, the system must arrange to supply a value for MPAM information required
for the interface. If no other mechanism is available, then these values must be driven to a default value, whether
they are in the Non-secure physical PARTID space or in the Secure physical PARTID space.

See also Requesters without MPAM support on page 5-53.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 4-41
ID012521 Non-Confidential

Memory System Propagation of MPAM Information
4.3 Terminating Completer components
4.3 Terminating Completer components

A terminating Completer receives requests from upstream Requesters but does not communicate the requests to a
downstream Completer. Instead, the terminating Completer services the requests. A terminating Completer does not
forward MPAM information from a request. A terminating MSC is the edge of MPAM in a system.

A DRAM controller is a terminating Completer, even though it communicates with DRAM devices to complete the
request. The DRAM devices do not support MPAM communication, so MPAM information is not forwarded to
them. This might also happen elsewhere in a system where there is no downstream Completer that has MPAM
support.
4-42 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory System Propagation of MPAM Information
4.4 Intermediate Completer-Requester components
4.4 Intermediate Completer-Requester components

Intermediate MSCs have both one or more Completer interfaces and one or more Requester interfaces.

An intermediate component can route a request from an upstream Requester to one of its downstream Requester
ports. When routing a request from upstream to downstream, the intermediate component passes the MPAM
information unaltered to the downstream Requester port.

An intermediate component might terminate some requests from upstream locally without propagating the request
to a downstream Requester port if the request is serviced locally.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 4-43
ID012521 Non-Confidential

Memory System Propagation of MPAM Information
4.5 Request buffering
4.5 Request buffering

Requests can be buffered in any MSC. A request that is buffered must retain its MPAM information.
4-44 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory System Propagation of MPAM Information
4.6 Cache memory
4.6 Cache memory

A cache line must store the MPAM information of the request that caused its allocation. See Cache behavior on
page 5-56 for requirements on cache memory behavior.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 4-45
ID012521 Non-Confidential

Memory System Propagation of MPAM Information
4.7 MPAM for RME propagation of MPAM_SP with requests
4.7 MPAM for RME propagation of MPAM_SP with requests

MPAM_SP is 2 bits in an MPAM for RME four-PARTID-space region. See Four-space region on page 5-59.

MPAM_SP must be propagated to all components within a four-space region.

MPAM_SP must be propagated to all bridges connecting a four-space region to a two-space region. See Two-space
region on page 5-59 and Systems with both two PARTID space and four PARTID space components on page 5-59.

MPAM_SP must be propagated from all bridges connecting two-space regions to a four-space region.
4-46 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 5
System Model

This chapter contains the following sections:

• Introduction on page 5-48.

• System-level field widths on page 5-50.

• PE behavior on page 5-51.

• Other Requesters with MPAM on page 5-52.

• Requesters without MPAM support on page 5-53.

• Model of a resource partitioning control on page 5-54.

• Interconnect behavior on page 5-55.

• Cache behavior on page 5-56.

• Memory-channel controller behavior on page 5-58.

• The MPAM for RME system on page 5-59.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-47
ID012521 Non-Confidential

System Model
5.1 Introduction
5.1 Introduction

This section describes a model of system behavior that can support the MPAM features. In particular, the behavior
of Requesters, interconnects, caches, and memory controllers is described.

In this system model, a request:

• Begins at a Requester, such as a PE, I/O Requester, DMA controller, or graphics processor:

— MPAM information (PARTID, PMG, and MPAM_NS) is transported with every request.

• Traverses non-cache nodes that might be a transport component (such as an interconnect), a bus resizer, or
an asynchronous bridge.

• Might reach an MSC that contains or is a cache:

— Caches sometimes generate a response (cache hit) and sometimes pass the request on (cache miss).

— Caches could also allocate entries based on the request.

— Caches must store the MPAM PARTID, PMG, and MPAM_NS associated with an allocation:

- Needed for cache-storage usage monitoring.

- Used during eviction to another cache.

— Cache eviction must attach MPAM fields to the eviction request. The source for MPAM information
on an eviction may depend on whether the eviction is to memory or to another cache. See Eviction on
page 5-56 and Optional cache behaviors on page 5-57.

• Might proceed from a cache to a transport component, and to other caches or a memory-channel controller.

• Might result in a memory controller or other terminating Completer device responding to a request it
receives.

Figure 5-1 on page 5-49 shows a simplified system model for the downstream flow, in the direction of requests from
Requesters to Completers. In this figure, all objects implement an MSC except the PEs, I/O Requesters, and I/O
Completers. PEs generate MPAM information from MPAM state in their System registers. I/O Requesters typically
get their MPAM information when their requests pass through an SMMU.

The interconnects in Figure 5-1 on page 5-49 can represent bus, crossbar, packet, or other interconnect technologies.

An MSC responds to the MPAM information that arrives as part of a request. If the MSC implements partitioning
controls, those controls find partitioning settings by the PARTID in the MPAM information of the request, and they
use those settings to control the allocation of a controlled resource.

For caches, a cache line (which has an address) is always associated with the PARTID that allocated the line – or
the PARTID that allocated the line into an inner cache that has now been evicted to the current cache. The inner
cache PARTID must be preserved when the line is evicted to an outer cache.

An address may be accessed by multiple PARTIDs.

A cache must store the PARTIDs of the lines it contains, so that it can measure and control the cache lines used by
a PARTID, and so that it can provide the PARTID to downstream MSCs when the line is evicted.
5-48 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Model
5.1 Introduction
Figure 5-1 MPAM system model (downstream flow)

I/O
Requesters

I/O
Completers

SMMU*

Memory Channel
Controller

* . . . Memory Channel
Controller

*

. . .
PE

L1-I L1-D

Private L2

* *

*

Cluster
Cache

*

System
Cache

*

One of N
Clusters

Memory-System Component (MSC) that might contain MPAM resource controls*

PE

L1-I L1-D

Private L2

* *

*

Cluster
Interconnect
*

SoC Coherent
Interconnect

*

ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-49
ID012521 Non-Confidential

System Model
5.2 System-level field widths
5.2 System-level field widths

Arm recommends that a system be configured to support a common size for the PARTID and PMG fields of MPAM.
Mismatched sizes make it difficult for software to use anything but the smallest of implemented widths.
5-50 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Model
5.3 PE behavior
5.3 PE behavior

Processing elements (PEs) issue memory-system requests. PEs must implement the MPAMn_ELx registers
(page 7-91) and their behaviors to generate the PARTID and PMG fields of memory-system requests.

See Chapter 6 PE Generation of MPAM Information.

5.3.1 PARTID generation

When a PE generates a memory-system request, it must label the request with the PARTID from the MPAMn_ELx
register for the current Exception level. MPAM_NS must be set to the current execution Security state.

If the MPAM Virtualization Extension is implemented and enabled for the current Exception level, the PARTID
from the MPAMn_ELx register must be mapped through the virtual partition mapping registers (System register
descriptions on page 7-95) to produce a physical PARTID.

5.3.2 Information flow

When a PE with MPAM support issues a request to the rest of the system, it labels those commands with the PARTID
and PMG supplied by software in the MPAMn_ELx register in effect (and if MPAM1_EL1 or MPAM0_EL1 with
virtual PARTID mapping is enabled, with the virtual PARTID mapped to a physical PARTID).

In addition to the PARTID and PMG, the request must also have the MPAM_NS bit to indicate whether the PARTID
is to be interpreted as in the Secure PARTID space or the Non-secure PARTID space.

5.3.3 Resource partitioning

If a PE contains internal memory-system partitioning controls, it must have memory-mapped registers (Chapter 9
Resource Partitioning Controls) to identify and configure those features.

The PE could include caches. The included caches could implement memory-system partitioning, such as
cache-capacity partitioning controls. The cache behavior in Cache behavior on page 5-56 must apply to included
cache functionality.

An MSC within a PE could have priority partitioning. This generates a priority or QoS value for the downstream
traffic from that MSC, effectively giving priority or QoS values tied to the software environment that generated that
traffic.

5.3.4 Resource-usage monitoring

A PE may have internal resource monitors that can measure the use by a PARTID and PMG of an MPAM resource
(Chapter 10 Resource Monitors).

If a PE contains such features, they must have memory-mapped registers (Chapter 10 Resource Monitors) to
identify and configure those features.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-51
ID012521 Non-Confidential

System Model
5.4 Other Requesters with MPAM
5.4 Other Requesters with MPAM

Other Requesters that support MPAM, such as a DMA controller, must issue requests to the system that have the
MPAM fields. Non-PE Requesters can have schemes different from those implemented in PEs for associating
MPAM information with requests. These other schemes are not documented herein.
5-52 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Model
5.5 Requesters without MPAM support
5.5 Requesters without MPAM support

A Requester that does not implement support for MPAM must use a system-specific means to provide MPAM
information to MSCs that support MPAM.

Some examples of Requester devices that might not implement support for MPAM include:

• Legacy DMA controller.

• Third-party peripheral IP.

• CoreSight DMA components, such as ETR.

• Older devices which cannot be economically upgraded to include MPAM support.

Some options for adding MPAM information to requests include:

• The MPAM information could be tied off to the default PARTID and PMG values (Default PARTID on
page 3-38) and MPAM_NS set as appropriate for the device.

• The MPAM information could be provided by a System Memory Management Unit (SMMU) that supports
adding MPAM information according to the stream and substream of the request.

• The MPAM information could be in added by a bus bridge or other system component that handles the
Requester's memory-system traffic.

Other implementations are permitted.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-53
ID012521 Non-Confidential

System Model
5.6 Model of a resource partitioning control
5.6 Model of a resource partitioning control

A general model of a resource partitioning controller within an MSC is shown in Figure 5-2 on page 5-54. This
model shows a resource partitioning model that measures resource usage by the partition and that controls resource
usage by comparing the measured usage with the control settings for that partition.

Figure 5-2 Model of MPAM resource partitioning controller

In Figure 5-2 on page 5-54, a request arrives from an upstream Requester to an MSC that implements MPAM
partitioning control. The request is handled as follows:

1. The PARTID and MPAM_NS values of the incoming request are used to index into a Settings Table of
partition-control settings. (There is one settings table per implemented resource control.)

2. The table entry for that PARTID specifies its partition-control setting, which is passed to a Resource
Regulator.

3. Conformance of the resource with the setting may require Measurement of how the resource is being used by
the partition.

4. The Measurement feeds back to the Resource Regulator, where it is compared with the Setting and used to
make a decision about Resource Allocation.

In Figure 5-2 on page 5-54, items 1, 2, 3, and 4 are added to the original memory system when MPAM is
implemented, although in some MSCs there may be sufficient measurement hardware already in place. Item 1, the
Settings Table, is the heart of an MPAM MSC.

All of the above is separate from normal request-handling by the MSC.

When doing cache-way partitioning, a significant part of the above mechanism can be eliminated. It is not necessary
to make measurements. The cache ways that can be allocated into are known.

The upside of cache-way partitioning is that it is simple and cheap. The downside is that caches do not have many
ways, so fine-grained control is not possible. In addition, resources can be strained if one or more ways are allocated
to only one partition, without sharing.

Request
Handling
Function

2
Resource
Regulator

4

Settings
Table 1

Setting

MPAM_NS

3

Measurement

Resource
Allocation 5

Request
5-54 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Model
5.7 Interconnect behavior
5.7 Interconnect behavior

Interconnects connect Requesters to Completers, and they must transport MPAM information fields from Requester
to Completer.

Interconnects may support the MPAM control features, such as priority partitioning. Support for MPAM is
discoverable in ID registers and firmware data.

Some interconnect devices may include cache functionality, in which case the cache behavior in Cache behavior on
page 5-56 applies.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-55
ID012521 Non-Confidential

System Model
5.8 Cache behavior
5.8 Cache behavior

A cache must associate the MPAM information of the request that allocated a cache line with any data stored in the
cache line. This stored MPAM information is a property of the data.

The term “data” in this section is intended to indicate the content stored in the cache. It is not intended to indicate
any restriction on the applicability of this section based on the purpose of the cache or of its content.

The MPAM information on a request to the cache from an upstream Requester is used for the following purposes:

• Source for the MPAM information associated with data when the data is allocated into the cache and is stored
in association with the data while the data resides in the cache.

• Optionally updating the stored MPAM information of the cached data on a store hit (Write hits may update
the MPAM information of a cache line on page 5-57).

• Providing MPAM information for downstream requests to fulfill the incoming request such as a read from
downstream on a cache miss that fetches data into the cache.

• Optionally (Eviction on page 5-56), providing MPAM information for downstream requests generated by
evict or clean operations when this cache is the last level of cache upstream of main memory.

• Selecting settings of partitioning controls implemented in the cache.

• Tracking resource usage needed by partitions for a control implementation.

• Performing accounting, if necessary, to track resource usage for resource usage monitors, if implemented.

• Triggering and filtering resource monitors, if implemented, for events triggered by requests from upstream
Requesters.

The stored MPAM information is used by MPAM for the following purposes:

• Providing the MPAM information for downstream requests generated by evict or clean operations, when this
cache is not the last level of cache.

• Optionally (Eviction on page 5-56) providing MPAM information for downstream requests generated by
evict or clean operations, when this cache is the last level of cache.

• Triggering and filtering resource monitors by MPAM PARTID and PMG, if implemented for events triggered
by internal and downstream requests.

• Tracking resource usage by partitions, as needed by a partitioning control implementation.

5.8.1 Eviction

When a cache line is evicted to another cache, the evicting cache must produce the MPAM information that was
used in the request that originally allocated the cache line.

A system cache (last-level cache) may produce the MPAM information of the request that caused the eviction in its
request to a memory-channel controller, or the cache may produce the stored MPAM information associated with
the evicted line.

5.8.2 Cache partitioning

A cache may optionally implement cache-partitioning resource controls, such as a cache-portion partitioning
control.

The cache-portion partitioning control (Cache-portion partitioning on page 9-177) was conceived for use on large,
multi-way associative caches, but cache-portion partitioning can be implemented on caches that are not
set-associative. For example, a single entry or group of entries may be a cache portion in a fully-associative cache.

The cache maximum-capacity partitioning control (Cache maximum-capacity partitioning on page 9-177) was
conceived for use on caches that do not support cache-portion partitioning or that have insufficient portions to meet
the needs of the planned use.
5-56 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Model
5.8 Cache behavior
Both types of cache partitioning may be used together in a cache memory component. This may be useful, for
example, when the cache has insufficient portions to give adequate control for a planned use.

5.8.3 Resource monitoring

A cache may implement cache-storage usage monitoring (Cache-storage usage monitors on page 10-195). For a
monitored PARTID, the monitor gives the total cache storage used by the PARTID.

5.8.4 Optional cache behaviors

The following cache behaviors are permitted but not required.

Write hits may update the MPAM information of a cache line

On a write hit to cached data that has different request MPAM information than the stored MPAM information
associated with the data, the stored MPAM information is permitted to be updated to the request MPAM
information.

It is possible that a change in the PART_ID of the data (without moving the data) leaves the data in a portion of the
cache that the new PARTID does not have permission to allocate. This can occur if the Cache Portion Bit Map
(CPBM) bit for that portion is not set in the CPBM for the new PARTID. The optional behavior in this subsection
does not change the location within the cache, even if the new partition for the data does not have a CPBM bit that
allows allocation in this portion of the cache. Updating the location within the cache is a second optional behavior
that is covered in the next subsection.

Write hits that update the PARTID of a cache line may move that line to a different
portion

A write hit to cached data is permitted to change the portion of the cache capacity allocated to the data, if (i) the
PARTID of the cache data is updated due to the write hit, and (ii) the portion of capacity where the data currently
resides is not in the new PARTID’s cache portion bitmap.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-57
ID012521 Non-Confidential

System Model
5.9 Memory-channel controller behavior
5.9 Memory-channel controller behavior

This section is informative.

A memory-channel controller may implement MPAM features. Some of the features that may be helpful in a
memory-channel controller are:

• Memory-bandwidth minimum and maximum partitioning (Memory-bandwidth minimum and maximum
partitioning on page 9-179).

• Memory-bandwidth portion partitioning (Memory-bandwidth portion partitioning on page 9-179).

• Priority partitioning (internal) (Priority partitioning on page 9-183).

• Memory-bandwidth usage monitors (Memory-bandwidth usage monitors on page 10-193).
5-58 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Model
5.10 The MPAM for RME system
5.10 The MPAM for RME system

5.10.1 The MPAM for RME system

The MPAM for RME system supports RME PEs and at least one PE that supports both RME and MPAM for RME.

RME PEs support:

• Four Security states.

• Four physical address spaces.

A PE that supports RME and MPAM must also support MPAM for RME.

MPAM for RME requires support in the PE for:

• MPAM v1.1.

• Four MPAM PARTID spaces.

• MPAM alternative space (ALTSP) feature.

There are two possible space regions in an MPAM for RME system:

• A four-space region.

• A two-space region.

Like other MPAM systems, MPAM for RME can also contain non-MPAM components and subsystems. See
Non-MPAM components on page 5-64.

Four-space region

This type of region:

• Contains one or more RME application PEs.

• Contains caches associated with those PEs.

• Contains cache-coherent interconnect among those PEs.

• Supports four MPAM PARTID spaces.

All components in a four-space region must support and use four PARTID spaces. If a component that can support
four PARTID spaces is in a two-space region, then only those two PARTID spaces can be used.

Two-space region

This type of region contains a single two-space MPAM component or many two-space MPAM components
connected as a subsystem through a two-space interconnect component. This component connects to the four-space
region using a bridging scheme.

Two-space MPAM components support two PARTID spaces. These are compatible with MPAM v1.0 and MPAM
v1.1 but lack support for the Root and Realm PARTID spaces.

Two-space MPAM components can be used in an MPAM for RME system, but with some loss of functionality and
with some complication to the MPAM software.

Systems with both two PARTID space and four PARTID space components

When two-space MPAM components are included in a four PARTID space system, all four-space MPAM
components receive requests from any four PARTID space Requesters with all four states propagated to the
four-space components.

If the propagation of the four PARTID spaces in the MPAM information labels is blocked by two-space components
between any four-space Requester and any four-space Completers, the interface where the four PARTID spaces are
reduced to two PARTID spaces is the boundary to a two-space region and must reduce the MPAM_SP to
MPAM_NS using a bridge. The Completer is part of a two-space region and uses only two PARTID spaces even
though it supports four.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-59
ID012521 Non-Confidential

System Model
5.10 The MPAM for RME system
Figure 5-3 on page 5-60 shows a system with a large four-space region with support for four PARTID spaces and a
smaller two-space region. The boxes labeled 2 to 4 and 4 to 2 are bridges chosen from Bridging between four-space
and two-space regions on page 5-61.

Figure 5-3 Example system with a large four PARTID space region and small two PARTID space regions

Figure 5-4 on page 5-61 shows a system with a small four-space region and a large two-space region. In this case
the bridges are not shown. Here the PEs can use the ALTSP feature to produce two PARTID space requests without
the need for bridging logic, using just the static bridge of the Completer. See Alternative PARTID space and PARTID
virtualization on page 6-89 and Fixed space mapping at a Completer on page 5-64.

4 PARTID Space Region

2 PARTID Space Region

System
Cache

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

L2$ L2$ L2$ L2$ L2$ L2$

Mem Chan CtlrMem Chan Ctlr

Memory

Memory

Memory

Memory

Interconnect

2 PARTID Interconnect

Device

Device

Device

Device

4 to 2

Non-MPAM
Device

SMMU
for with
MPAM

I/O

2 to 4

4 to 2
5-60 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Model
5.10 The MPAM for RME system
Figure 5-4 Example system with a small four PARTID space region and a large two PARTID space region

Requirements on bridges

The requirements on bridges are:

• The physical address space of a request must not be altered by bridging or other mechanisms.

• Bridging requests that use the Secure PARTID space must not be altered to use a different PARTID space.

• Bridging requests that use the Non-secure PARTID space must not be altered to use a different PARTID
space.

5.10.2 Bridging between four-space and two-space regions

This section is informative.

Bridges are needed at the boundary between a four-space region and a two-space region. This section presents
examples of bridging from two PARTID space Requesters to four PARTID space Completers and in the other
direction from four PARTID space Requesters to two PARTID space Completers. Bridging schemes other than the
examples given in this section can also be implemented.

Two-Space Requesters

When a two-space MPAM Requester is upstream from a four-space MSC, the Requester's MPAM labels must have
the MPAM_NS field expanded to the 2-bit MPAM_SP[1:0] while satisfying the requirements in Requirements on
bridges on page 5-61.

When bridging from a two-space region to a four-space region, Arm recommends a static mapping using the fixed
MPAM_NS expansion.

4 PARTID Space Region

2 PARTID Space Region

System
Cache

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

L2$ L2$ L2$ L2$ L2$ L2$

Mem Chan CtlrMem Chan Ctlr

Memory

Memory

Memory

Memory

Interconnect

2 PARTID Interconnect

Device

Device

Device

Device

Non-MPAM
Device

SMMU
with

MPAM

I/O
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-61
ID012521 Non-Confidential

System Model
5.10 The MPAM for RME system
Fixed MPAM_NS Expansion at a Requester

The fixed MPAM_NS expansion scheme transforms the MPAM_NS field to 2-bit MPAM_SP[1:0] field according
to Table 5-1 on page 5-62:

The fixed expansion scheme preserves the PARTID space across the mapping.

Two-Space Completers

When a two-space MPAM Completer is downstream from a four-space Requester, the Requester's MPAM labels
must have the MPAM_SP field reduced to form the 1-bit MPAM_NS while satisfying the requirements in
Requirements on bridges on page 5-61. The reduction function may be static or dynamic.

Note

Arm makes no recommendation for which method to use for bridging between the four-space region of a system
that has four PARTID spaces and a two-space region that supports two PARTID spaces. All known methods affect
the system operation in ways that could cause difficulties for software.

Control over monitoring of Root and Realm PARTID space requests bridged to Secure or
Non-secure PARTID space

A NO_MON flag is used in some of the examples to indicate that the transaction must not be monitored by MPAM
monitors or other system performance monitors. This capability improves the security by limiting or preventing the
system-level activities of a Realm from being collected in monitors accessible from the Non-secure physical address
space or Secure physical address space.

The choice of not monitoring some transactions is not available on true two-space components. Support for the
ability to mark requests with the NO_MON flag would likely require modifying the two-space component.

The examples that follow show a small number of recommended choices for including two-space MPAM Completer
MSCs that do not have four-space MPAM support in an RME system. Example 5-1 on page 5-62 is the most
desirable option, but requires extensive work in that it requires a redesign of the MSC. Example 5-4 on page 5-63
requires the least effort but is also the least desirable option:

Example 5-1 Alter the two-space MSC to support 4 PARTID spaces

This is the recommended option. However, it requires work to redesign the MSC. See Four-space MSC on
page 8-170 for how this is implemented.

Example 5-2 Alter the two-space MSC to support a programmable mapping of 4 PARTID spaces
to 2 PARTID spaces

Alter the two-space MSC to support a programmable mapping of 4 PARTID spaces to 2 PARTID spaces with
additional control over whether each of the Root and Realm PARTID spaces can be monitored. See Programmable
PARTID space mapping within a Completer on page 5-63.

Table 5-1 Two-space Requester to four-space fixed expansion scheme

Two-space MPAM_NS Input
Four-space MPAM_SP[1:0]
Output

0b0 (Secure PARTID space) 0b00 (Secure PARTID space)

0b1 (Non-secure PARTID space) 0b01 (Non-secure PARTID space)
5-62 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Model
5.10 The MPAM for RME system
Example 5-3 Connect the two-space MSC through a programmable PARTID-space mapping
component

Connect the two-space MSC through a programmable PARTID-space mapping component, or shim. See Space
mapping external to an MSC on page 5-63.

This gives no control of whether the Root or Realm space can be monitored after being mapped into Secure or
Non-secure.

Example 5-4 Connect the two-space MSC to be driven only from MPAM_SP[0]

Connect the two-space MSC so that the single-bit MPAM_NS input of the two-space MSC is driven only from
MPAM_SP[0]. See Fixed space mapping at a Completer on page 5-64.

Programmable PARTID space mapping within a Completer

See Example 5-2 on page 5-62.

A programmable MPAM PARTID space mapping can be performed for a MSC with an PARTID space mapping
built into the component. The PARTID space mapper accepts the request with 4 MPAM spaces, maps requests with
MPAM_SP of Root or Realm to one of the Secure or Non-secure PARTID spaces and passes it on to the two-space
MSC.

The programmable mapper can also produce a flag that indicates the two-space MSC should not perform MPAM
monitoring of the request. See Control over monitoring of Root and Realm PARTID space requests bridged to
Secure or Non-secure PARTID space on page 5-62.

The request mapper programming register is MAP4SPTO2SP. It has the fields shown in Table 5-2 on page 5-63:

The MAP4SPTO2SP register must only be accessible in the Root physical address space.

Space mapping external to an MSC

See Example 5-3 on page 5-63.

Table 5-2 Request mapper programming register (MAP4SPTO2SP) fields

Field bits Field name Description

15 Rt_outPARTID_space If a request has a Root PARTID, the output PARTID uses this bit for
MPAM_NS.

14 Rt_NO_MON If the request has a Root PARTID, output this bit as the NO_MON flag.

7 Rl_outPARTID_space If a request has a Realm PARTID, the output PARTID uses this bit for
MPAM_NS.

6 Rl_NO_MON If the request has a Realm PARTID, output this bit as the NO_MON flag.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-63
ID012521 Non-Confidential

System Model
5.10 The MPAM for RME system
A two-space Completer can be connected using a small component external to the MSC that implements a
programmable four-space to two-space mapping similar to MAP4SPTO2SP. See Table 5-3 on page 5-64:

The external mapping register must only be accessible in the Root physical address space.

If the two-space MSC does not have any way to accept the NO_MON flag at the request input, the NO_MON flag
is not used. Two-space MSCs are not required to support a NO_MON input.

Fixed space mapping at a Completer

See Example 5-4 on page 5-63.

The fixed MPAM_SP reduction scheme transforms MPAM_SP into a 1-bit MPAM_NS according to Table 5-4 on
page 5-64:

5.10.3 Non-MPAM components

Non-MPAM components do not have the ability to make requests with non-zero MPAM information or to use
MPAM information when completing requests. They also do not propagate MPAM information to downstream
MSCs.

Non-MPAM Requesters

Note

Arm strongly recommends that an SMMU for RME, see Arm® System Memory Management Unit Architecture
Specification, SMMU architecture (ARM IHI 0070) with the SMMUv3.2-MPAM feature, see Arm® Realm
Management Extension (RME), for SMMUv3 Arm® System Memory Management Unit Architecture Supplement
(ARM IHI 0094) is used to add MPAM information to requests from non-MPAM Requesters.

Requesters attached to an SMMU for RME are only associated with the Secure and Non-secure states, and therefore
use two of the four PARTID spaces.

NoStreamID requesters attached to an SMMU for RME might issue transactions to Root or Realm physical address
space. For these accesses it is permitted to use Secure and Non-secure PARTID spaces respectively.

Table 5-3 Space mapping external to the MSC MAP4SPTO2SP fields

Field bits Field name Description

15 Rt_outPARTID_space If a request has a Root PARTID, the output PARTID uses this bit for
MPAM_NS.

14 Rt_NO_MON If the request has a Root PARTID, output this bit as the NO_MON flag.

7 Rl_outPARTID_space If a request has a Realm PARTID, the output PARTID uses this bit for
MPAM_NS.

6 Rl_NO_MON If the request has a Realm PARTID, output this bit as the NO_MON flag.

Table 5-4 Four-space to two-space static reduction scheme

Four-space MPAM_SP Input Two-space MPAM_NS Output

0b00 (Secure PARTID space) 0b0 (Secure PARTID space)

0b01 (Non-secure PARTID space) 0b1 (Non-secure PARTID space)

0b10 (Root PARTID space) 0b0 (Secure PARTID space)

0b11 (Realm PARTID space) 0b1 (Non-secure PARTID space)
5-64 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Model
5.10 The MPAM for RME system
Non-MPAM Completers

Completers that have no support for the MPAM information accompanying requests should be interfaced to the
system by dropping MPAM information from the requests.

A non-MPAM Completer limits the topology of MPAM in the system because it does not propagate MPAM
information to MPAM components downstream. See Systems with both two PARTID space and four PARTID space

components on page 5-59.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 5-65
ID012521 Non-Confidential

System Model
5.10 The MPAM for RME system
5-66 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 6
PE Generation of MPAM Information

This chapter contains the following sections:

• Introduction on page 6-68.

• MPAM System registers on page 6-69.

• Instruction, data, translation table walk, and other accesses on page 6-72.

• Security on page 6-73.

• PARTID virtualization on page 6-76.

• MPAM AArch32 interoperability on page 6-81.

• Support for nested virtualization on page 6-82.

• MPAM errors and default ID generation on page 6-85.

• MPAM for RME PE generation of MPAM information on page 6-87.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-67
ID012521 Non-Confidential

PE Generation of MPAM Information
6.1 Introduction
6.1 Introduction

This introduction is informative. Other sections and subsections are normative unless marked as informative.

In a PE, the generation of PARTID, PMG, and PARTID space MPAM_SP, if RME is implemented, and MPAM_NS
if not, labels for memory-system requests are controlled by software running at the current Exception level or
higher. The set of MPAM information for:

• An application running at EL0 is controlled from EL1.

• An OS or guest OS running at EL1 is controlled from EL1 or EL2, according to settings controlled at EL2
and EL3.

• A hypervisor or host OS running at EL2 is controlled from EL2 or EL3, according to settings controlled at
EL3.

• A guest hypervisor running at EL1 is controlled from EL1 or EL2, according to settings controlled at EL2
and EL3.

• Secure instances of all of the above.

• Monitor software running at EL3 is controlled only from EL3.

Note

For information on the presence of MPAM functionality in a PE, see MPAM versions for PEs on page 1-22.
6-68 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.2 MPAM System registers
6.2 MPAM System registers

This section is normative.

The MPAM PARTIDs are assigned to software by hypervisor and/or kernel software, and a PARTID, PMG, and
MPAM_NS are associated with all memory-system requests originated by the PE.

The MPAMn_ELx System registers contain fields for two PARTIDs and the PMG property for each as shown in
Table 6-1 on page 6-69.

The MPAMn_ELx System registers use the register-name syntax shown in Figure 6-1 on page 6-69. These registers
control MPAM PARTID and PMG, as shown in Table 6-2 on page 6-70 and Summary of System registers on
page 7-94 and System register descriptions on page 7-95.

Figure 6-1 MPAM System register name syntax

Table 6-1 MPAM System register PARTID and PMG fields

Field name Description

PARTID_D PARTID used for data requests.

PARTID_I PARTID used for instruction requests.

PMG_D PMG property for PARTID_D.

PMG_I PMG property for PARTID_I.

MPAMn_ELx

x: Lowest Exception level at which
this register can be accessed.

n: Exception level at which
MPAMn_ELx register is the source of
PARTID and PMG values during
execution at ELx.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-69
ID012521 Non-Confidential

PE Generation of MPAM Information
6.2 MPAM System registers
Table 6-2 on page 6-70 shows the PE MPAM System registers. The table does not include the following System
registers: MPAMIDR_EL1, MPAMVPMn_EL2, MPAMVPMV_EL2, MPAMHCR_EL2.

Table 6-3 on page 6-71 shows the selection of MPAMn_ELx System register for MPAM generation. All of the fields
named are in MPAMHCR_EL2:

• GSTAPP_PLK is MPAMHCR_EL2.GSTAPP_PLK.

• EL0_VPMEN is MPAMHCR_EL2.EL0_VPMEN.

• EL1_VPMEN is MPAMHCR_EL2.EL1_VPMEN.

Table 6-2 PE MPAM System registers

System
register

Controlled
from

Supplies PARTID and
PMG when Executing in

Notes

MPAM0_EL1 EL3

EL2

EL1

EL0

(Applications)

With the virtualization option and
MPAMHCR_EL2.EL0_VPMEN == 1, MPAM0_EL1 PARTIDs
can be treated as virtual and mapped to a physical PARTID with
virtualization option.

Overridden by MPAM1_EL1 when
MPAMHCR_EL2.GSTAPP_PLK is set.

MPAM0_EL1 may be controlled from only EL3 if
MPAM3_EL3.TRAPLOWER == 1, from only EL2 or EL3 if
MPAM3_EL3.TRAPLOWER == 0 and
MPAMHCR_EL2.TRAPMPAM0EL1 == 1 or from EL1, EL2 or
EL3 if MPAM3_EL3.TRAPLOWER == 0 and
MPAMHCR_EL2.TRAPMPAM0EL1 == 0.

MPAM1_EL1 EL3

EL2

EL1

EL1

(Guest OS)

Overrides MPAM0_EL1 when
MPAMHCR_EL2.GSTAPP_PLK is set.

With the virtualization option and
MPAMHCR_EL2.EL1_VPMEN == 1, MPAM1_EL1 PARTIDs
are treated as virtual and mapped to a physical PARTID.

MPAM1_EL1 may be controlled only from EL3 if
MPAM3_EL3.TRAPLOWER == 1, only from EL2 or EL3 if
MPAM3_EL3.TRAPLOWER == 0 and
MPAMHCR_EL2.TRAPMPAM1EL1 == 1, or from EL1, EL2
or EL3 if MPAM3_EL3.TRAPLOWER == 0 and
MPAMHCR_EL2.TRAPMPAM1_EL1 == 0.

When HCR_EL2.E2H == 1, accesses to MPAM1_EL1 through
the MSR and MRS instructions are aliased to access
MPAM2_EL2 instead.

MPAM2_EL2 EL3

EL2

EL2

(Hypervisor or host OS)

MPAM2_EL2 is controlled only from EL3 if
MPAM3_EL3.TRAPLOWER == 1, or from EL2 or EL3 if
MPAM3_EL3.TRAPLOWER == 0.

MPAM3_EL3 EL3 EL3

(Monitor)

MPAM3_EL3 is controlled only from EL3.

MPAM1_EL12 EL2 EL1 Alias to MPAM1_EL1 for type 2 hypervisor host executing with
HCR_EL2.E2H == 1.
6-70 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.2 MPAM System registers
Table 6-3 Selection of MPAMn_ELx System register for MPAM generation

Current Exception level Use PARTID and PMG fields from: Perform MPAM virtual PARTID mapping

EL0 with GSTAPP_PLK == 0 MPAM0_EL1 If EL0_VPMEN == 1

EL0 with GSTAPP_PLK == 1 MPAM1_EL1 If EL1_VPMEN == 1

EL1 MPAM1_EL1 If EL1_VPMEN == 1

EL2 MPAM2_EL2 Never

EL3 MPAM3_EL3 Never
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-71
ID012521 Non-Confidential

PE Generation of MPAM Information
6.3 Instruction, data, translation table walk, and other accesses
6.3 Instruction, data, translation table walk, and other accesses

When a PE generates a memory-system request for an instruction access, the PARTID_I field of an MPAMn_ELx
register is used, as shown in Table 6-3 on page 6-71. All translation table walk accesses for instructions use the same
PARTID_I field that their instruction accesses use.

When a PE generates a memory-system request for a data access, the PARTID_D field of an MPAMn_ELx register
is used, as shown in Table 6-3 on page 6-71. All translation table walk accesses for data access use the same
PARTID_D field that their data accesses use.

PARTID_D and PARTID_I fields of an MPAMn_ELx register may be set by software to the same or different
PARTIDs. If PARTID_D is used for an access, PMG_D from the same register must also be used. If PARTID_I is
used for an access, PMG_I from the same register must also be used.

6.3.1 Load unprivileged and store unprivileged instructions

When executed at EL1 or at EL2 with EL2 Host (E2H), load unprivileged and store unprivileged instructions
perform an access using permission-checking for an unprivileged access. These instructions do not change the
MPAM labeling of the resulting memory-system requests from the labels that would be generated by other load or
store instructions.

6.3.2 Accesses by enhanced support for nested virtualization

In Armv8.4, enhanced support for nested virtualization turns MRS and MSR instructions to certain EL2 registers
from EL1 into accesses to a data structure in EL2 memory. As such, these accesses generate PARTID and PMG
using MPAM2_EL2.PARTID_D and MPAM2_EL2.PMG_D, respectively.

See Support for nested virtualization on page 6-82.

6.3.3 Accesses by statistical profiling extension

Armv8.2 introduced the Statistical Profiling Extension (SPE). A PE with SPE can be configured to record
statistically sampled events into a Profiling Buffer in memory. The buffer is accessed through the owning Exception
level's translation regime.

MPAM PARTID, PMG, and MPAM_NS for SPE writes to the Profiling Buffer must use the SPE’s owning
Exception level MPAM data access values.

For example, if the owning Exception level is EL2, the Profiling Buffer writes must be performed with
MPAM2_EL2.PARTID_D, MPAM2_EL2.PMG_D, and MPAM_NS reflecting the Security state of the owning
Exception level.

6.3.4 Translation table accesses by AT instructions

Accesses to translation tables by AT instructions are given the MPAM information specified for translation table
accesses by a data load instruction that is issued from the Exception level that the AT instruction was executed from.
The stage and Exception level specified in the AT instructions do not affect the MPAM information to use.

6.3.5 MPAM information for Granule Protection Table access

In MPAM for RME, accesses to the Granule Protection Table (GPT) use MPAM information according to the
current execution Exception Level and Security state and the type of access. See MPAM information for Granule
Protection Table access on page 6-90.
6-72 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.4 Security
6.4 Security

MPAM behavior in the PE and in MSCs is affected by the Security state. While the physical address spaces for
memory-system accesses are distinct, the memory-system resources are potentially shared in an implementation.
For higher security, running with segregated resources can reduce the effectiveness for side-channel attacks.

The generation of PARTID and PMG for a memory-system request is the same at an ELn in any Security state for
the same n. The difference is that requests have the PARTID space derived from the Security state indicated on
MPAM_NS by PEs that do not implement RME and on MPAM_SP by PEs that implement RME.

MPAM security behavior in MSCs is covered in Security in MSCs on page 8-162.

6.4.1 Secure and Non-secure PARTID space

In a two-space and four-space PE, generation of Secure PARTIDs are governed by the following Secure MPAM
PARTID space rules, described in PARTID spaces and properties on page 3-37:

• PARTIDs in the Secure PARTID space are communicated with MPAM_NS as 0b0 when RME is not
implemented or with MPAM_SP as 0b00 if RME is implemented.

• PARTIDs in the Non-secure PARTID space are communicated with MPAM_NS as 0b1 when RME is not
implemented or MPAM_SP as 0b01 when RME is implemented.

• When in Secure state:

— If the MPAM version is v1.0 or greater, MPAM_NS is always 0b0.

— If the MPAM version is less than v1.0, MPAM_NS might be 0b0 or 0b1. For more information, see
SDEFLT and FORCE_NS settings to control Secure MPAM PARTID use on page 6-73.

— In MPAM for RME, MPAM_SP in the Secure state can be either 0b00 or 0b01. For more information,
see MPAM for RME PE generation of MPAM information on page 6-87.

In Secure execution, the sourcing of PARTID and PMG in a PE are as described in this specification for Non-secure
execution. The PARTID and PMG generation uses MPAMn_ELx to source the labels for the request when executing
at Exception level ELn. Non-secure and Secure PARTID generation is the same, including virtual-to-physical
PARTID translation, if Secure EL2 is present and enabled, and the MPAM virtualization feature is present and
enabled for the MPAM0_EL1 or MPAM1_EL1 register used.

See also PARTID virtualization on page 6-76.

6.4.2 Relationship of PARTID space and physical address space

The PARTID space and the physical address space of a memory transaction initiated by a PE are both based on the
Security state, either the current Security state of the PE or in some limited situations, the Security state of the
owning Exception level.

The primary PARTID space is always based on the Security state as given in Primary PARTID space for each
Exception level and Security state in RME on page 3-37. However, the PARTID space may be changed by
MPAM3_EL3.FORCE_NS in MPAM v0.1 or by the alternative PARTID space MPAM feature in MPAM for RME.
See Settings to control Secure MPAM PARTID use in MPAM v0.1 implementations on page 6-74 and Settings to
control MPAM PARTID use in MPAM for RME on page 6-75.

The physical address space is also based on the PE Security state but may be altered by the MMU in limited
situations. For more information, see Arm® Architecture Reference Manual Armv8, for Armv8-A architecture
profile (ARM DDI 0487), Control of Secure or Non-secure memory access.

6.4.3 SDEFLT and FORCE_NS settings to control Secure MPAM PARTID use

The settings to control the use of Secure MPAM PARTIDs vary depending on the version of MPAM implemented.
MPAMv1.0 does not implement MPAM3_EL3.{SDEFLT, FORCE_NS} and so the settings are as described in
Secure and Non-secure PARTID space on page 6-73. The Secure MPAM PARTID use settings for MPAMv1.1 and
MPAMv0.1 are detailed in:

• Settings to control Secure MPAM PARTID use in MPAM v1.1 implementations on page 6-74
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-73
ID012521 Non-Confidential

PE Generation of MPAM Information
6.4 Security
• Settings to control Secure MPAM PARTID use in MPAM v0.1 implementations on page 6-74

Settings to control Secure MPAM PARTID use in MPAM v1.1 implementations

The MPAM3_EL3.SDEFLT control enables partial support of Secure PARTIDs as in Table 6-4 on page 6-74.

Settings to control Secure MPAM PARTID use in MPAM v0.1 implementations

The MPAM3_EL3.SDEFLT and MPAM3_EL3.FORCE_NS controls enable partial support of Secure PARTIDs as
in Table 6-5 on page 6-74.

If an implementation has MPAMIDR_EL1.HAS_FORCE_NS enabled, the implementation has two options:

• Secure PARTIDs are not implemented. MPAM3_EL3.FORCE_NS is RAO/WI.

• MPAM3_EL3.FORCE_NS can be written by software. MPAM3_EL3.FORCE_NS is RW.

Software can discover which of these options is implemented by testing whether MPAM3_EL3.FORCE_NS is
writable to zero.

Table 6-4 Behaviors of MPAM3_EL3.SDEFLT in MPAMv1.1 implementations

MPAM3_EL3.SDEFLT
Behavior

Non-secure state Secure state

0b0 Compatible with MPAMv1.0.
PARTID is in the Non-secure PARTID
space.
PARTID and PMG are generated from
MPAMn_ELx registers.

Compatible with MPAMv1.0

PARTID is in the Secure PARTID space.

PARTID and PMG are generated from
MPAMn_ELx registers.

0b1 PARTID is in the Secure PARTID space.

PARTID and PMG are generated as the default
PARTID and default PMG.

Table 6-5 Behaviors of MPAM3_EL3.SDEFLT and MPAM3_EL3.FORCE_NS

MPAM3_EL3 Behavior

SDEFLT FORCE_NS Non-secure state Secure state

0b0 0b0 Compatible with MPAMv1.0.

PARTID is in the Non-secure PARTID
space.

PARTID and PMG are generated from
MPAMn_ELx registers.

Compatible with MPAMv1.0.

PARTID is in the Secure PARTID space.

PARTID and PMG are generated from MPAMn_ELx
registers.

0b1 PARTID is in the Non-secure PARTID space.

PARTID and PMG are generated from MPAMn_ELx
registers.

0b1 0b0 PARTID is in the Secure PARTID space.

PARTID and PMG are generated as the default
PARTID and default PMG.

0b1 PARTID is in the Non-secure PARTID space.

PARTID and PMG are generated as the default
PARTID and default PMG.
6-74 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.4 Security
Settings to control MPAM PARTID use in MPAM for RME

When RME is implemented, the PE has four Security states. The controls that affect PARTID space and value
involve alternative PARTID space selection with fields in MPAM3_EL3 and MPAM2_EL2 affecting the behavior
in all ELs and Security states. The MPAM3_EL3.SDEFLT control uses only PARTID 0 for all PARTIDs generated
in the Secure Security state. The behaviors are also dependent on whether the feature ALTSP is used (see Alternative
PARTID spaces and selection on page 6-87).

These behaviors are described in Table 6-6 on page 6-75. The Alternative space selected column indicates whether
the alternative PARTID space is selected instead of the primary PARTID space. If alternative PARTID space MPAM
feature is not implemented, the alternative PARTID space is never selected.

Table 6-6 Behaviors of MPAM3_EL3 and MPAM2_EL2 controls on PARTID use in MPAM for RME

MPAM3_EL3.SDEFLT
Alternative
space
selected

Root state
behavior

Secure state
behavior

Realm state
behavior

Non-secure
state behavior

0 No EL3 PARTID
generated from
MPAM3_EL3 in
the Root PARTID
space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Secure PARTID
space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Realm PARTID
space.

EL2-EL0 PARTID
generated normally
from
MPAMn_ELx
registers in the
Non-secure
PARTID space.

1 No EL3 PARTID
generated from
MPAM3_EL3 in
the Root PARTID
space.

EL2-EL0 PARTID
generated as
PARTID 0 in the
Secure PARTID
space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Realm PARTID
space.

EL2-EL0 PARTID
generated normally
from
MPAMn_ELx
registers in the
Non-secure
PARTID space.

0 Yes EL3 PARTID
generated from
MPAM3_EL3 in
the Secure or
Non-secure
PARTID space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Non-secure PARTID
space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Non-secure
PARTID space.

EL2-EL0 PARTID
generated normally
from
MPAMn_ELx
registers in the
Non-secure
PARTID space.

1 Yes EL3 PARTID
generated from
MPAM3_EL3 in
the Secure or
Non-secure
PARTID space.

EL2-EL0 PARTID
generated as
PARTID 0 in the
Non-secure PARTID
space.

EL2-EL0 PARTID
generated normally
from MPAMn_ELx
registers in the
Non-secure
PARTID space.

EL2-EL0 PARTID
generated normally
from
MPAMn_ELx
registers in the
Non-secure
PARTID space.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-75
ID012521 Non-Confidential

PE Generation of MPAM Information
6.5 PARTID virtualization
6.5 PARTID virtualization

This introduction to MPAM virtualization support is informative, but subsections are individually marked as
normative or informative.

The PARTID virtualization features described in this section are only available in a Security state in which all of the
following conditions are met:

• EL2 is implemented and enabled in the Security state. See also Unimplemented Exception levels on
page 7-152.

• MPAM virtualization is supported, as indicated by MPAMIDR_EL1.HAS_HCR == 1.

The hardware and software involved in supporting MPAM virtualization includes:

• Accesses made from EL1 to the MPAMIDR_EL1 register are trapped to EL2 under control of the
MPAMHCR_EL2.TRAP_MPAMIDR_EL1 and MPAM2_EL2.TIDR bits. This is done so that the hypervisor
can emulate an MPAMIDR_EL1 access and present an altered view of the register to the guest OS running
at EL1. This altered view shows that the PARTID_MAX field is a maximum that is equal to the largest virtual
PARTID that the hypervisor has set up for the guest OS to use. See Trap accesses to EL2 and EL1 System
registers on page 6-80.

Note

MPAM2_EL2.TIDR is present when MPAM v0.1 or MPAM v1.1 are implemented and
MPAMIDR_EL1.HAS_TIDR is 1.

• Guest accesses to MPAM MSC control interfaces page-fault in the stage-2 page tables, thereby trapping to
EL2 so that the virtual PARTID used can be access-controlled and mapped to the correct physical PARTID
by the hypervisor. The hypervisor can give IPA mappings to an MSC’s MPAM feature page that fault at stage
2 to produce this behavior.

• Mapping of guest OS-assigned virtual PARTID values into the physical PARTID space when running guest
applications at EL0 and the guest OS at EL1.

• Optionally, an invalid virtual PARTID (that is, one in which the valid bit, MPAMVPMV_EL2, is 0) can cause
a default virtual PARTID to be used. See PARTID space on error on page 6-85.

• Support for type-2 hypervisors (for example, kvm) with the HCR_EL2.E2H bit set when running the host OS
in EL2 with hypervisor functionality. See Support for type-2 hypervisors on page 6-77.

These functions work together to give a guest OS the ability to control its virtual partitions and not trap to the
hypervisor when context-switching between applications.

6.5.1 MPAM virtual ID spaces

This section is normative.

MPAM virtual ID spaces only exist if the MPAM virtualization option is implemented, as indicated in
MPAMIDR_EL1.HAS_HCR.

When MPAMEN is 0, the default physical PARTID must be generated for all memory-system requests.

Virtual PARTID spaces can be independently enabled for MPAM0_EL1 and MPAM1_EL1 in MPAMHCR_EL2.
See Table 6-3 on page 6-71. These virtual spaces are mapped into physical PARTID spaces by MPAM virtual
PARTID mapping System registers (MPAMVPM0_EL2 through MPAMVPM7_EL2) in PEs. The virtual PARTID
mapping registers are set up from EL2 by the hypervisor.

When PARTID is being virtualized, the virtual PARTID is used to index an array of physical IDs contained in the
virtual PARTID mapping registers. The index is also used to check the valid flag for that virtual PARTID mapping
entry. If the virtual PARTID has a valid mapping, the physical PARTID from the selected virtual PARTID mapping
register is used for the memory-system request.
6-76 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.5 PARTID virtualization
If the virtual PARTID is greater than (4 * VPMR_MAX) + 3, it is outside of the range of virtual PARTID mapping
register indices. An out-of-range virtual PARTID is permitted to be replaced by any other in-range virtual PARTID,
and this replacement virtual PARTID is used to access the virtual PARTID mapping registers and valid bits. See
Example of virtual-to-physical PARTID mapping on page 6-79.

If the virtual PARTID mapping entry accessed is invalid, the default virtual PARTID is used, if it is valid. If neither
the accessed virtual PARTID mapping entry nor the default virtual PARTID mapping entry is valid, the default
physical PARTID is used for the memory-system request. See Default PARTID on page 3-38.

6.5.2 Support for type-2 hypervisors

The beginning of this section is normative.

Arm introduced virtual host extensions in Armv8.1 Extensions to better support type-2 hypervisors, such as kvm.
These extensions included the EL2 Host (E2H) bit in the hypervisor control register.

With type-2 hypervisors, the host runs at EL2 and runs host applications at EL0. The host runs guest OSs at EL1
with their applications at EL0. Type-2 hypervisors run with HCR_EL2.E2H == 1. In this case, some MPAM System
register addresses access different MPAM System registers. This allows the host OS to run at EL2 while using the
same System register addresses it would use when running at EL1.

At EL2, accesses to an associated EL2 register using the normal (op1=4) encoding need explicit synchronization to
be ordered with respect to accesses to the same register using this new mechanism.

In this configuration, the following aliases for the same set of EL1 registers are introduced for access at EL2 or EL3
(these registers are UNDEFINED at EL1 and EL0). A different register name is used to access the registers. When at
EL3, accesses to the EL1 register using the normal (op1=0) value need explicit synchronization to be ordered with
respect to accesses to the same register using this new mechanism.

The remainder of this section is informative. It describes how a type-2 hypervisor (host OS) might use the MPAM
hardware:

• MPAM1_EL12 is accessed by the host OS running at EL2 and is an alias for MPAM1_EL1. This register
controls the MPAM PARTIDs and PMGs used when running a guest at EL1.

• MPAM1_EL1 is accessed by the host OS running at EL2 and is an alias for MPAM2_EL2. This register
controls the host’s access to its own MPAM controls.

• MPAM0_EL1 is accessed by the host OS running at EL2. This permits the host OS to control the MPAM
PARTIDs and PMGs used by its applications. E2H does not alter this access. When running host applications
at EL0, the host also sets HCR_EL2_TGE == 1 to route exceptions in the EL0 application to the host in EL2
rather than EL1.

• MPAMHCR_EL2 access is used by the host at EL2 to control the enables for virtual PARTID mapping and
the trapping of MPAMIDR_EL1. E2H does not alter this access.

• MPAMVPMV_EL2 is used by the host at EL2 to control the validity of virtual PARTID mapping entries used
to virtualize the guest’s PARTIDs. E2H does not alter this access.

Table 6-7 MPAM1_EL1 register accessed at EL2

System register accessing instruction Named register Associated register accessed at EL2

op1=0, CRn=10, CRm=5, op2=0 MPAM1_EL1 MPAM2_EL2

Table 6-8 MPAM1_EL12 register accessed at EL2

System register accessing instruction Named register Associated register accessed at EL2

op1=5, CRn=10, CRm=5, op2=0 MPAM1_EL12 MPAM1_EL1
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-77
ID012521 Non-Confidential

PE Generation of MPAM Information
6.5 PARTID virtualization
• MPAMVPMn_EL2 registers are used by the host at EL2 to contain the virtual PARTID mapping entries.
These are set by the hypervisor at EL2 and used when running the guest OS and its applications. E2H does
not alter this access.

The use of MPAM System registers by a guest OS is not altered by E2H:

• MPAM0_EL1 is accessed from EL1. This permits a guest OS to control the MPAM PARTIDs and PMGs used
by its applications. E2H does not alter this access.

• MPAM1_EL1 is accessed by the guest OS running at EL1 to change MPAM context for the guest OS running
at EL1, unless trapped to EL2 by MPAM2_EL2.TRAPMPAM1EL1 == 1, or trapped to EL3 by
MPAM3_EL3.TRAPLOWER == 1. E2H does not alter this access.

6.5.3 Mapping of guest OS virtual PARTIDs

This section is informative. It describes how software might use MPAM hardware.

When virtualizing MPAM, the hypervisor controls the use of PARTIDs by guest OSs. The hypervisor can:

• Set the number of virtual PARTIDs that a guest OS is permitted to assign and use. This number is
communicated by trapping access by the guest to MPAMIDR_EL1.

• Permit the guest OS to use virtual PARTIDs for applications running at EL0 and to change them by writing
to MPAM0_EL1.

• Permit the guest OS to also use virtual PARTIDs when running at EL1 and to change them by writing to
MPAM1_EL1.

• Map each of the guest’s virtual PARTIDs from the range of 0 to the maximum guest PARTID into a physical
PARTID for the current Security state. It does this by means of the MPAMVPMn virtual PARTID mapping
registers that are managed by the hypervisor.

PMGs modify PARTID and do not need any further virtualization support.

Virtualized guests are limited to using PARTIDs in the range of 0 to n, where n is the implemented virtual PARTID
mapping entries. The parameters are:

• MPAMIDR_EL1.VPMR_MAX has the number of virtual PARTID mapping registers implemented. Each
virtual PARTID mapping register contains four mapping entries.

• The largest virtual PARTID is n = (4 * VPMR_MAX) + 3.

If VPMR_MAX == 0, there is only one virtual PARTID mapping register, 4 virtual PARTID mapping entries, and
the maximum corresponding virtual PARTID is 3.

The following registers and fields are used to control virtualization:

MPAMHCR_EL2 control fields:

• EL0_VPMEN: Enable virtual PARTID mapping from MPAM0_EL1 when executing an application at EL0.
If HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1, MPAM is not virtualized EL0. If GSTAPP_PLK == 1,
MPAM1_EL1 is used instead of MPAM0_EL1 when executing at EL0 and virtualization of PARTIDs is
controlled by EL1_VPMEN.

• EL1_VPMEN: Enable virtual PARTID mapping from MPAM1_EL1 when executing a guest OS at EL1. If
GSTAPP_PLK == 1 when executing at EL0, MPAM1_EL1 is used instead of MPAM0_EL1 and MPAM
virtualization is controlled by EL1_VPMEN instead of EL0_VPMEN.

MPAMVPM0_EL2 to MPAMVPM7_EL2 registers:

• Each register has four 16-bit fields. Each field contains a physical PARTID.

• Together they form a virtual PARTID mapping vector that maps the virtual PARTIDs into the physical
PARTID space.
6-78 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.5 PARTID virtualization
• Within each physical PARTID field, only sufficient low-order bits are required to represent the
MPAMIDR_EL1.PARTID_MAX. Higher-order bits may be implemented as RAZ/WI.

MPAMVPMV_EL2 register:

• MPAMVPMV_EL2 contains 4*(m+1) valid bits, indexed from 0 to (4*m + 3), one bit for each of the
implemented virtual PARTIDs supported in the MPAMVPMn_EL2 registers, where m =
MPAMIDR_EL1.VPMR_MAX and n ranges from 0 to n.

• There can be up to 32 virtual-to-physical PARTID mappings. If a virtual PARTID is greater than the
maximum index supported, an in-range virtual PARTID is permitted to be accessed instead (MPAM AArch32
interoperability on page 6-81).

Example of virtual-to-physical PARTID mapping

This section is informative.

• If the current execution level is EL1:

— If EL1_VPMEN == 0, then virtualization is disabled at EL1, and MPAM1_EL1.PARTID_D and
MPAM1_EL1.PARTID_I are physical PARTIDs.

— If EL1_VPMEN == 1, then virtualization is enabled at EL1 and MPAM1_EL1.PARTID_D and
MPAM1_EL1.PARTID_I are virtual PARTIDs that are to be mapped to physical PARTIDs.

• Assume MPAMIDR_EL1.VPMR_MAX == 0b010. That means the largest virtual PARTID is 4*2+3 = 11.
Therefore, 12 virtual PARTIDs, from 0 to 11, can be mapped to physical PARTIDs.

• Assume MPAM1_EL1.PARTID_D contains 6:

— MPAMVPMV_EL2.VPM_V<6> is checked to determine if the mapping for virtual PARTID 6 is
valid. MPAMVPMV_EL2.VPM_V<6> == 1 means virtual PARTID 6 is valid.
MPAMVPMV_EL2.VPM_V<6> == 0 means virtual PARTID 6 is invalid.

— If a valid mapping exists (VPM_V<6> == 1), the physical PARTID is in
MPAMVPM1_EL2.Phys_PARTID6.

— If a valid mapping does not exist (VPM_V<6> == 0), the mapping for the default virtual PARTID is
used.

If a valid mapping does not exist for the default virtual PARTID, the default physical PARTID is used.

• For out-of-range virtual PARTIDs, an implementation can choose any other virtual PARTID to use instead.
This permits truncation of inputs that have too many bits. It also permits other reductions to in-range
PARTIDs. For example, if VPMR_MAX is 2, the virtual PARTID 13 is out of range. In this example, an
implementation might save time by forcing the 8s bit (bit number 4) to 0 when both the 8s bit and 4s bit (bit
number 3) are 1 in the virtual PARTID. This technique selects virtual PARTID mapping entry 5 instead of
out-of-range 13. The technique is sometimes called “replacement virtual PARTID”. One must still do the
steps of bullet 3, above, on the replacement virtual PARTID.

6.5.4 Guest OS and all its applications under single PARTID

This section is normative.

GSTAPP_PLK is a control bit in MPAMHCR_EL2. The bit causes MPAM1_EL1 to be used instead of
MPAM0_EL1 when executing at EL0. This GSTAPP_PLK function runs all EL0 applications of a VM in the same
partition as the EL1 guest OS.

When GSTAPP_PLK is active, MPAM0_EL1 is not used for PARTID or PMG generation. If virtual PARTID
mapping is enabled for EL1, the EL1 PARTID_I or PARTID_D is mapped to a physical PARTID before being used
for requests originating from applications at EL0, as well as for the guest OS at EL1.

Note

The guest OS at EL1 cannot determine whether GSTAPP_PLK is active or not. EL1 access to read and write
MPAM0_EL1 is not affected by GSTAPP_PLK == 1.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-79
ID012521 Non-Confidential

PE Generation of MPAM Information
6.5 PARTID virtualization
6.5.5 Trap accesses to EL2 and EL1 System registers

The available traps include those that:

• Virtualize MPAMIDR_EL1.

• Control access by EL1 to MPAM1_EL1 and MPAM0_EL1.

• Control access to MPAM registers from EL2 and EL1.

Virtualizing MPAMIDR_EL1

EL2 software can force accesses to MPAMIDR_EL1 to trap to EL2 by setting
MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == 1 or MPAM2_EL2.TIDR == 1. By trapping MPAMIDR_EL1, an
EL2 hypervisor can provide an emulated value for MPAMIDR_EL1 to the EL1 software.

Note

MPAM2_EL2.TIDR is present when MPAMIDR_EL1.HAS_TIDR is 1. Arm recommends that when MPAM v0.1
or MPAM v1.1 are implemented, MPAMIDR_EL1.HAS_TIDR is set to 1 and MPAM2_EL2.TIDR is implemented.

Trapping accesses to MPAM2_EL2

Accesses to MPAM2_EL2 from EL2 are trapped to EL3 when MPAM3_EL3.TRAPLOWER == 1.

Controlling accesses to MPAM1_EL1

EL2 software can control whether EL1 software can access MPAM1_EL1. Accesses to MPAM1_EL1 from EL1 are
trapped to EL2 when MPAM2_EL2.TRAPMPAM1EL1 == 1.

MPAM1_EL12 is an alias for MPAM1_EL1 accessed from EL2. It is therefore not subject to traps from
MPAM2_EL2.TRAPMPAM1EL1.

When HCR_EL2.E2H == 1, MPAM1_EL1 is an alias for MPAM2_EL2 accessed from EL2. It is therefore not
subject to traps from MPAM2_EL2.TRAPMPAM1EL1.

Controlling accesses to MPAM0_EL1

EL2 software can control whether EL1 software can access MPAM0_EL1. Accesses to MPAM0_EL1 from EL1 are
trapped to EL2 when MPAM2_EL2.TRAPMPAM0EL1 == 1.

Trapping all MPAM registers

When EL2 or EL1 software does not context switch MPAM state, such as when the software does not support
MPAM at all, the MPAM System registers might be used to pass information between virtual machines or
applications.

EL3 software can trap accesses to MPAM registers from all lower Exception levels to EL3 by setting
MPAM3_EL3.TRAPLOWER == 1.

TRAPLOWER protects against misuse of the MPAM state registers when EL2 software does not support MPAM
context switching.

If EL2 software is present and supports MPAM but EL1 software does not, MPAM2_EL2.TRAPMPAM1EL1 and
TRAPMPAM0EL1 protect against misuse by an unaware guest while permitting EL2 to set up an MPAM
environment for that guest.

If there is no EL2 or no EL2 software, TRAPLOWER can prevent misuse of MPAM registers by EL1 software.

MPAM3_EL3.TRAPLOWER traps have priority over all traps controlled by MPAM2_EL2 and MPAMHCR_EL2.
6-80 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.6 MPAM AArch32 interoperability
6.6 MPAM AArch32 interoperability

This section is normative.

MPAM System registers are not accessible from AArch32, so the MPAM PARTIDs and PMGs for any Exception
level that uses AArch32 state must be set up by a higher Exception level that uses AArch64 state.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-81
ID012521 Non-Confidential

PE Generation of MPAM Information
6.7 Support for nested virtualization
6.7 Support for nested virtualization

This section is normative.

Armv8.3 Extensions added FEAT_NV for nested virtualization, and Armv8.4 Extensions added FEAT_NV2 to the
nested virtualization support. This section describes the support of MPAM with these extensions.

6.7.1 Nested virtualization extension

Armv8.3 Extensions added support for nested virtualization. This subsection only applies if Armv8.3 nested
virtualization extension is implemented.

Table 6-9 on page 6-82 lists the System registers that are trapped from EL1 to EL2 rather than being UNDEFINED
when HCR_EL2.NV == 1, and HCR_EL2.NV2 == 0, and MPAM3_EL3.TRAPLOWER == 0.

When HCR_EL2.NV == 1, and HCR_EL2.NV2 == 0, and MPAM3_EL3.TRAPLOWER == 1, access to any of the
listed MPAM System registers from EL1 traps to EL3.

There are no other changes to the v8.3 nested virtualization extension to support the MPAM Extension.

6.7.2 Enhanced nested virtualization extension

Armv8.4 Extensions introduced FEAT_NV2, an enhancement for nested virtualization. This enhancement
transforms direct reads or writes (the terms “direct reads” and “direct writes” are defined in the Arm ARM) of
several registers (that is, the target System register names in an MRS or MSR instruction) from EL1 to loads or
stores, respectively, in the same Security state.

The remainder of this section applies only if both the FEAT_NV and FEAT_NV2 extensions are implemented.

If HCR_EL2.NV2 == 0, MSR or MRS instructions do not cause reads or writes to occur to the memory, and the
behavior of the HCR_EL2.NV and HCR_EL2.NV1 bits is as described in the Armv8.3 architecture.

Table 6-9 Registers trapped from EL1 to EL2 when HCR_EL2.NV == 1

MPAM1_EL12 MPAMVPMV_EL2 MPAMVPM2_EL2 MPAMVPM5_EL2

MPAM2_EL2 MPAMVPM0_EL2 MPAMVPM3_EL2 MPAMVPM6_EL2

MPAMHCR_EL2 MPAMVPM1_EL2 MPAMVPM4_EL2 MPAMVPM7_EL2
6-82 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.7 Support for nested virtualization
If HCR_EL2.NV2 == 1:

• If HCR_EL2.NV == 1 and HCR_EL2.NV1 ==0 for a Security state, direct reads or writes of any of the
following MPAM register names (that is, the target System register names in the MRS or MSR instruction)
from EL1 in the same Security state to be treated as loads or stores respectively. The memory address access
is VNCR_EL2.BADDR<<12 + Offset from Table 6-10 on page 6-83 as described in Armv8.4 Extensions.

• If HCR_EL2.NV == 1 and HCR_EL2.NV1 == 1 for a Security state, direct reads or writes of any of the
registers in Table 6-11 on page 6-83 (that is, the target System register names in an MRS or MSR instruction)
from EL1 in the same Security state are treated as loads or stores, respectively, in the same Security state.
The memory address access is VNCR_EL2.BADDR<<12 + Offset from Table 6-9 on page 6-82 as described
in Armv8.4 Extensions.

Table 6-10 Enhanced nested virtualization offsets of System registers (NV2 == 1, NV1 == 0, and NV
==1)

Register Name Offset

MPAM1_EL12 0x900

MPAMHCR_EL2 0x930

MPAMVPMV_EL2 0x938

MPAMVPM0_EL2 0x940

MPAMVPM1_EL2 0x948

MPAMVPM2_EL2 0x950

MPAMVPM3_EL2 0x958

MPAMVPM4_EL2 0x960

MPAMVPM5_EL2 0x968

MPAMVPM6_EL2 0x970

MPAMVPM7_EL2 0x978

Table 6-11 Enhanced nested virtualization offsets of System registers (NV2 == 1, NV1 == 1 and NV
== 1)

Register Name Offset

MPAM1_EL1 0x900

MPAMHCR_EL2 0x930

MPAMVPMV_EL2 0x938

MPAMVPM0_EL2 0x940

MPAMVPM1_EL2 0x948

MPAMVPM2_EL2 0x950

MPAMVPM3_EL2 0x958

MPAMVPM4_EL2 0x960
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-83
ID012521 Non-Confidential

PE Generation of MPAM Information
6.7 Support for nested virtualization
When HCR_EL2.NV == 1 and HCR_EL2.NV2 == 1, MPAM3_EL3.TRAPLOWER is overridden for those
registers listed in Table 6-10 on page 6-83 if HCR_EL2.NV1 == 0 or in Table 6-11 on page 6-83 if HCR_EL2.NV1
== 1. When HCR_EL2.NV == 1 and HCR_EL2.NV2 == 1, MPAM3_EL3.TRAPLOWER == 1 does not cause an
access from EL1 to an MPAM System register in the tables to be trapped to EL3, but that access is converted to a
memory read or write as described in this subsection.

6.7.3 MPAM PARTID and PMG for enhanced nested virtualization loads and stores

For Armv8.4 enhanced nested virtualization support, when HCR_EL2.NV2 == 1 and HCR_EL2.NV == 1, MRS or
MSR instructions to any System register that are converted to loads or stores must be performed with the MPAM
PARTID_D and PMG_D from MPAM2_EL2.

MPAMVPM5_EL2 0x968

MPAMVPM6_EL2 0x970

MPAMVPM7_EL2 0x978

Table 6-11 Enhanced nested virtualization offsets of System registers (NV2 == 1, NV1 == 1 and NV
== 1) (continued)

Register Name Offset
6-84 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.8 MPAM errors and default ID generation
6.8 MPAM errors and default ID generation

MPAM errors are detected when a memory request is generated by a load, store, fetch, or table-walk with the
following conditions:

• Physical or virtual PARTID or PMG is out of range.

• Virtual PARTID n is invalid, as indicated by MPAMVPMV_EL2<n>.

In a given implementation, some errors may never occur. For example, an implementation with only w bits of
PARTID and MPAMIDR.PARTID_MAX as (2w – 1), and that truncates PARTID values with non-zero bits higher
than w – 1, can never have a physical PARTID out-of-range error. See Default PARTID on page 3-38.

6.8.1 Out-of-range PARTID behavior

The behavior of a PE when a physical or virtual PARTID from PARTID_I or PARTID_D of an MPAMn_ELx
register is out of range is CONSTRAINED UNPREDICTABLE as one of:

• The out-of-range PARTID is replaced by the default PARTID in the same PARTID space.

• The out-of-range PARTID is replaced by any in-range PARTID in the same PARTID space.

6.8.2 Out-of-range PMG behavior

The behavior of a PE when an MPAMn_ELx register’s PMG_I or PMG_D is out-of-range CONSTRAINED
UNPREDICTABLE is one of:

• The out-of-range PMG is replaced by the default PMG.

• The out-of-range PMG is replaced by any in-range PMG.

6.8.3 Invalid virtual PARTID behavior

The behavior of a PE, when (i) a PARTID_I or PARTID_D from an MPAMn_ELx register (or a replacement
PARTID as in Out-of-range PARTID behavior on page 6-85) is used as a virtual PARTID n, and (ii) the
corresponding bit MPAM_VMPV_EL2<n> == 0, the default virtual PARTID must be used if it is valid
(MPAM_VPMV_EL2<0> == 1). If neither the accessed virtual PARTID mapping entry nor the default virtual
PARTID mapping entry is valid, the default physical PARTID must be used for the memory-system request. See
Default PARTID on page 3-38.

6.8.4 PARTID space on error

When an error is encountered in the generation of PARTID, the replacement PARTID is generated in the PARTID
space as shown in Table 6-12 on page 6-85.

Table 6-12 PARTID space for PARTID generation errors

Error Space of replacement PARTID

NS virtual PARTID out of range NS virtual PARTID

NS virtual PARTID mapping entry invalid NS virtual PARTID

NS default virtual PARTID is invalid NS physical PARTID

S virtual PARTID out of range S virtual PARTID

S virtual PARTID mapping entry invalid S virtual PARTID

NS physical PARTID out of range NS physical PARTID

S physical PARTID out of range S virtual PARTID
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-85
ID012521 Non-Confidential

PE Generation of MPAM Information
6.8 MPAM errors and default ID generation
6.8.5 MPAM3_EL3.SDEFLT and MPAM generation errors

When executing in Secure state, MPAM3_EL3.SDEFLT sets the MPAM generation to produce only zero for
PARTIDs. The default PARTID is always valid, so PARTID Out-of-range errors cannot occur in Secure state when
MPAM3_EL3.SDEFLT is 1.

Note

MPAM3_EL3.MPAMEN and MPAM3_EL3.SDEFLT have a similar function. However, when
MPAM3_EL3.MPAMEN is 0 in Secure or Non-secure state:

• MPAM generation produces only zero for the physical PARTID in all memory-system requests.

• Virtual PARTID mapping is not performed.

• PARTIDs cannot generate Out-of-range errors.

When MPAM3_EL3.SDEFLT is 1, PMG is always 0, and always valid. PMG generation is not virtualized.

6.8.6 MPAM3_EL3.FORCE_NS and MPAM generation errors

MPAM3_EL3.FORCE_NS is only present in MPAM v0.1. When in Secure state, MPAM3_EL3.FORCE_NS
changes the MPAM generation in the PE so that MPAM_NS is set to 1 rather than 0. This means that only
Non-secure MPAM information will accompany memory system requests from a PE, so MSCs will receive
Non-secure PARTIDs from those requests.

FORCE_NS does not change the way that the value of the PARTID is produced, only whether the generated
PARTID is a Secure PARTID or a Non-secure PARTID. This means that generation of the physical PARTID and
PMG for the MPAM information to label memory system requests are unchanged by FORCE_NS. The generation
of MPAM information in the PE can produce any of the MPAM generation error behaviors described in MPAM
errors and default ID generation on page 6-85.
6-86 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.9 MPAM for RME PE generation of MPAM information
6.9 MPAM for RME PE generation of MPAM information

A PE that implements FEAT_RME has the capability to execute in the Realm and Root Security states and to
generate accesses to the Realm and Root physical address spaces.

6.9.1 PE and MPAM

A PE that implements FEAT_RME must generate the PARTID space according to the Security state from which the
memory system request is made.

Each Security state has a primary PARTID space named for that Security state as shown in Table 6-13 on page 6-87.

The alternative PARTID space MPAM feature, ALTSP, allows an alternative PARTID space to be used in each
Security space rather than the primary PARTID space. See Alternative PARTID spaces and selection on page 6-87.

Support by the PE for the four PARTID spaces is identified in MPAMIDR_EL1. In a PE that implements RME and
MPAM, MPAMIDR_EL1.SP4 must be 1.

6.9.2 Alternative PARTID spaces and selection

The Alternative PARTID Space feature, ALTSP, defines alternative PARTID spaces for each of the Security states.

MPAM3_EL3 and MPAM2_EL2 have fields to control whether the primary or alternative PARTID space is used at
those Exception levels and lower Exception levels.

The ALTSP feature permits the selection of either the primary PARTID space or the alternative PARTID space for
PARTIDs in the MPAMn_ELx registers. The primary and alternative PARTID spaces for each Security state are
shown in Table 6-14 on page 6-87. The primary PARTID space is shown, where the PARTID space name is the same
as the Security state.

The choice of the alternative space for Root is made in MPAM3_EL3 in the RT_ALTSP_NS field:

• 0b1 selects the Non-secure PARTID space as the alternative PARTID space for the Root Security state.

• 0b0 selects the Secure PARTID space as the alternative PARTID space for the Root Security state.

The ALTSP feature controls do not affect the PARTID space when used in the Non-secure state. The Non-secure
PARTID space is always used in the Non-secure Security state.

Table 6-13 MPAM_SP encoding for each PARTID space

PARTID Space MPAM_SP[1:0]

Non-secure PARTID space 0b01

Secure PARTID space 0b00

Realm PARTID space 0b11

Root PARTID space 0b10

Table 6-14 Primary and alternative PARTID spaces

Security state Primary PARTID space Alternative PARTID Space

Non-secure Non-secure PARTID space Same

Secure Secure PARTID space Non-secure PARTID space

Realm Realm PARTID space Non-secure PARTID space

Root Root PARTID space Secure or Non-secure PARTID space
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-87
ID012521 Non-Confidential

PE Generation of MPAM Information
6.9 MPAM for RME PE generation of MPAM information
See MPAM3_EL3 and MPAM2_EL2 for details of these controls. The ALTSP feature is identified in
MPAMIDR_EL1.HAS_ALTSP.

Selection of primary or alternative PARTID space when executing at EL3

When executing at EL3, the PE is in the Root Security state.

The selection of primary or alternative PARTID space for memory system requests generated in the Root Security
state is controlled by these bits in MPAM3_EL3:

• RT_ALTSP_NS sets whether the alternative PARTID space in the Root Security state is the Non-secure
PARTID space or the Secure PARTID space.

• ALTSP_EL3 sets whether memory system requests generated from EL3 use the alternative PARTID space
or the primary PARTID space. The selected PARTID space is used for all accesses that use
MPAM3_EL3.PARTID_I or MPAM3_EL3.PARTID_D.

These two bits combine to give three combinations for PARTID space used for accesses from EL3 in the Root state.

Selection of primary or alternative PARTID space when executing at EL2, EL1 and EL0

When executing at EL2, EL1 or EL0, the Security state can be one of Secure, Non-secure, or Realm. The current
Security state for all Exception levels below EL3 is set in SCR_EL3 by the NS and NSE bits.

The Root firmware running in EL3 can either permit EL2 to control its own PARTID space and the PARTID space
used by EL1 and EL0, or it can force the primary or alternative space to be selected for EL2, EL1, and EL0.

If EL3 is not forcing a selection on EL2, EL2 can select whether PARTIDs generated at EL2 use the primary or
alternative PARTID space using MPAM2_EL2.ALTSP_EL2. When EL3 is not forcing a selection on EL2, EL2 can
also select whether the primary or alternative PARTID space is used by EL1 and EL0.

EL3 forces a selection on all lower ELs by clearing MPAM3_EL3.ALTSP_HEN and setting
MPAM3_EL3.ALTSP_HFC to force the alternative PARTID space or clearing ALTSP_HFC to force the primary
PARTID space on all lower ELs.

When EL2 is implemented but is disabled for the Security state, the alternative PARTID space is selected for EL1
and EL0 when MPAM3_EL3.ALTSP_HEN is 0 and MPAM3_EL3.ALTSP_HFC is 1. Otherwise the primary
PARTID space is selected.

The set of combinations for EL2 PARTID space selection are shown in Table 6-16 on page 6-88.

Table 6-15 EL3 PARTID space selection

MPAM3_EL3.RT_ALTSP_NS MPAM3_EL3.ALTSP_EL3 PARTID space

x 0 Root PARTID space

0 1 Secure PARTID space

1 1 Non-secure PARTID space

Table 6-16 EL2 PARTID space selection

MPAM3_EL3. ALTSP_HEN MPAM3_EL3. ALTSP_HFC MPAM2_EL2. ALTSP_EL2 EL2 PARTID space

0 0 x Primary

0 1 x Alternative

1 x 0 Primary

1 x 1 Alternative
6-88 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

PE Generation of MPAM Information
6.9 MPAM for RME PE generation of MPAM information
The set of combinations for EL1 and EL0 PARTID space selection are shown in Table 6-17 on page 6-89. When
EL2 is not implemented or when EL2 is implemented but not enabled for the Security state, read Table 6-17 on
page 6-89 as if MPAM2_EL2.ALTSP_HFC is 0.

Determining forced PARTID space in EL2, EL1 and EL0

In each of MPAM2_EL2 and MPAM1_EL1, the ALTSP_FRCD bit indicates that the alternative PARTID space has
been forced on PARTIDs in MPAM2_EL2 and on PARTIDs in MPAM1_EL1 and MPAM0_EL1, respectively.
Since EL1 and EL0 selection is always identical and EL1 controls PARTIDs in MPAM0_EL1, there is no need for
a separate indication in MPAM0_EL1.

There is no means provided for software running in EL0 to determine whether it is using the primary or alternative
PARTID space. The PARTID space selection at EL0 is the same as for the Exception level of the operating system
that controls the EL0 application. That OS is at EL2 if the virtualization host extension, host mode, is being used as
indicated when MPAMHCR_EL2.E2H and MPAMHCR_EL2.TGE are both set to 1. Otherwise, the controlling
operating system is at EL1.

Alternative PARTID space and PARTID virtualization

Because the choice of primary or alternative PARTID spaces at EL1 and EL0 can be controlled from EL2 and
because MPAM1_EL1.PARTID_I and MPAM1_EL1.PARTID_D are in the same PARTID space, EL2 can set up
PARTID virtualization into the correct PARTID space for EL1.

Similarly, MPAM1_EL1.PARTID_I and MPAM0_EL1.PARTID_D are in the same PARTID space as the
MPAM1_EL1 PARTIDs so that the PARTID virtualization setup for EL1 can also be used for EL0.

PARTID virtualization is enabled for MPAM1_EL1 PARTIDs by setting MPAMHCR_EL2.EL1_VPMEN and for
MPAM0_EL1 PARTIDs by setting MPAMHCR_EL2.EL0_VPMEN. Setting up PARTID virtualization also
requires EL2 software to program physical PARTIDs from the selected PARTID space into the
MPAMVPM<n>_EL2 registers, and enable those translations in the MPAMVPMV_EL2 register.

ALTSP and FORCE_NS

ALTSP can have the same effect of forcing PARTIDs in the Secure state to be in the Non-secure PARTID space as
MPAM3_EL3.FORCE_NS. ALTSP also provides controls for the Root and Realm Security state selection of
PARTID space.

Note

ALTSP and FORCE_NS are conflicting MPAM features. The ALTSP feature is required and the FORCE_NS
feature is prohibited in PEs that implement MPAM for RME.

ALTSP in Host mode at EL0

When a host OS running at EL2 executes an application, it expects the same behavior as if it was an EL1 OS running
an application. The behaviors to support running a host OS at EL2 are controlled by HCR_EL2.E2H. The control
bit HCR_EL2.TGE supports running an application of the host OS at EL0.

Table 6-17 EL1 and EL0 PARTID space selection

MPAM3_EL3.
ALTSP_HEN

MPAM3_EL3.
ALTSP_HFC

MPAM2_EL2.
ALTSP_HFC

EL1 and EL0 PARTID space

0 0 x Primary

0 1 x Alternative

1 x 0 Primary

1 x 1 Alternative
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 6-89
ID012521 Non-Confidential

PE Generation of MPAM Information
6.9 MPAM for RME PE generation of MPAM information
When running at EL0 in host mode, the EL2 selection of primary versus alternative PARTID space is used to govern
the selection in EL0.

When HCR_EL2.E2H and HCR_EL2.TGE are both 1, the alternative PARTID space in EL0 is selected only if the
alternative space would be selected in EL2. When either ofE2H or TGE is 0, the alternative PARTID space in EL0
is selected only if the alternative space would be selected in EL1.

6.9.3 MPAM information for Granule Protection Table access

In MPAM for RME, accesses to the Granule Protection Table (GPT) as a result of a data access, instruction access
or translation table walk use the same MPAM information as the original access.

• A GPT access as the result of a data access uses PARTID_D and PMG_D for the current Exception level.

• A GPT access as the result of an instruction access uses PARTID_I and PMG_I for the current Exception
level.

• A GPT access as the result of a translation table walk uses the PARTID_D and PMG_D for the current
Exception level.

• A GPT access uses the PARTID space selected from the current Security state and current Exception level
according to Alternative PARTID spaces and selection on page 6-87.
6-90 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 7
System Registers

This chapter contains the following sections:

• Overview on page 7-92.

• Synchronization of System register changes on page 7-93.

• Summary of System registers on page 7-94.

• System register descriptions on page 7-95.

• MPAM enable on page 7-147.

• SDEFLT on page 7-148.

• Lower-EL MPAM register access trapping on page 7-149.

• Reset on page 7-151.

• Unimplemented Exception levels on page 7-152.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-91
ID012521 Non-Confidential

System Registers
7.1 Overview
7.1 Overview

System registers are implemented in PEs and accessed using the MRS and MSR instructions.
7-92 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.2 Synchronization of System register changes
7.2 Synchronization of System register changes

Direct writes to System registers are only guaranteed to be visible to indirect reads after a Context synchronization
event, as described in the Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Writes to MPAM System registers must be visible for generation of MPAM information in new memory requests
after a Context synchronization event.

When MPAM System registers are set at one Exception level and used for generation of MPAM information at
another Exception level, the change of Exception level is a Context synchronization event that makes the previous
direct writes to MPAM registers visible for generating MPAM information.

If an MPAM register is updated at the same Exception level at which it is used for generation of MPAM information
on memory-system requests, software must ensure that a Context synchronization event, such as an Instruction
Synchronization Barrier, is executed after the direct write to the MPAM System register and before the changed
System register value is certain to be used for labeling memory system requests.

The Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile requires that a direct write to a
System register must not affect instructions before the direct System register write in program order.

If System registers are used for configuration of memory-system controls that are implemented in the PE, a Data
Synchronization Barrier must ensure that the prior memory accesses are completed before the update. No such
System registers are defined here. Additional requirements will be described if and when such requirements are
added.

When MPAM System registers are updated, TLB maintenance is not required. Only a Context synchronization
event is required before the updated value is guaranteed to be used for memory requests. This means that MPAM
information is not permitted to be cached in a TLB and used instead of using System registers for the generation of
MPAM information.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-93
ID012521 Non-Confidential

System Registers
7.3 Summary of System registers
7.3 Summary of System registers

In a PE, the MPAM System registers shown in Table 7-1 on page 7-94 control the generation of PARTID and PMG
by the PE, according to the Exception level and configuration of MPAM. See Versions of the MPAM Extension on
page 1-22.

Table 7-1 Summary of System registers

op1 CRn CRm op2 System register Description

0 10 5 1 MPAM0_EL1 MPAM context for EL0 execution.

0 10 5 0 MPAM1_EL1 MPAM context for EL1 execution.

4 10 5 0 MPAM2_EL2 MPAM context for EL2 execution.

6 10 5 0 MPAM3_EL3 MPAM context for EL3 execution.

5 10 5 0 MPAM1_EL12 MPAM context for EL1 execution on type-2 hypervisor.

4 10 4 0 MPAMHCR_EL2 Hypervisor configuration register for virtualization of PARTID
in EL0.

4 10 4 1 MPAMVPMV_EL2 Virtual PARTID map valid bits.

4 10 6 0-7 MPAMVPM0_EL2 through
MPAMVPM7_EL2

Virtual PARTID mapping for virtualization.

0 10 4 4 MPAMIDR_EL1 MPAM identification register.
7-94 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
7.4 System register descriptions

This section lists the MPAM System registers in AArch64.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-95
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
7.4.1 MPAM0_EL1, MPAM0 Register (EL1)

The MPAM0_EL1 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL0. When
EL2 is implemented and enabled in the current Security state, the MPAM virtualization option is
present, MPAMHCR_EL2.GSTAPP_PLK == 1 and HCR_EL2.TGE == 0, MPAM1_EL1 is used
instead of MPAM0_EL1 to generate MPAM information to label memory requests.

If EL2 is implemented and enabled in the current Security state, and HCR_EL2.E2H == 0 or
HCR_EL2.TGE == 0, the MPAM virtualization option is present and
MPAMHCR_EL2.EL0_VPMEN == 1, then MPAM PARTIDs in MPAM0_EL1 are virtual and
mapped into physical PARTIDs for the current Security state.

Configurations

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM0_EL1 are UNDEFINED.

Attributes

MPAM0_EL1 is a 64-bit register.

Field descriptions

Bits [63:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group property for PARTID_I.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 48

PMG_D

47 40

PMG_I

39 32

PARTID_D

31 16

PARTID_I

15 0
7-96 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
Accessing MPAM0_EL1

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM0_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM0EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return MPAM0_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAM0_EL1;
elsif PSTATE.EL == EL3 then
 return MPAM0_EL1;

MSR MPAM0_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM0EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 MPAM0_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAM0_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b001

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b001
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-97
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
elsif PSTATE.EL == EL3 then
 MPAM0_EL1 = X[t];

7-98 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
7.4.2 MPAM1_EL1, MPAM1 Register (EL1)

The MPAM1_EL1 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL1.

When EL2 is implemented and enabled in the current Security state, the MPAM virtualization
option is present, MPAMHCR_EL2.GSTAPP_PLK == 1 and HCR_EL2.TGE == 0, MPAM1_EL1
is used instead of MPAM0_EL1 to generate MPAM labels for memory requests when executing at
EL0.

MPAM1_EL1 is an alias for MPAM2_EL2 when executing at EL2 with HCR_EL2.E2H == 1.

MPAM1_EL12 is an alias for MPAM1_EL1 when executing at EL2 or EL3 with HCR_EL2.E2H
== 1.

If EL2 is implemented and enabled in the current Security state, the MPAM virtualization option is
present and MPAMHCR_EL2.EL1_VPMEN == 1, MPAM PARTIDs in MPAM1_EL1 are virtual
and mapped into physical PARTIDs for the current Security state. This mapping of MPAM1_EL1
virtual PARTIDs to physical PARTIDs when EL1_VPMEN is 1 also applies when MPAM1_EL1 is
used at EL0 due to MPAMHCR_EL2.GSTAPP_PLK.

Configurations

AArch64 System register MPAM1_EL1 bit [63] is architecturally mapped to AArch64 System
register MPAM3_EL3[63] when EL3 is implemented.

AArch64 System register MPAM1_EL1 bit [63] is architecturally mapped to AArch64 System
register MPAM2_EL2[63] when EL3 is not implemented and EL2 is implemented.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM1_EL1 are UNDEFINED.

Attributes

MPAM1_EL1 is a 64-bit register.

Field descriptions

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs
are output as their default value in the corresponding ID space.

0b0 The default PARTID and default PMG are output in MPAM information.

0b1 MPAM information is output based on the MPAMn_ELx register for ELn according the
MPAM configuration.

If neither EL3 nor EL2 is implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write bit
MPAM3_EL3.MPAMEN.

If EL3 is not implemented and EL2 is implemented, this field is read-only and reads the current
value of the read/write bit MPAM2_EL2.MPAMEN.

63

RES0

62 61 60

RES0

59 55 54

RES0

53 48

PMG_D

47 40

PMG_I

39 32

MPAMEN ALTSP_FRCD
FORCED_NS

PARTID_D

31 16

PARTID_I

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-99
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When EL3 is not implemented and EL2 is not implemented, access to this field is RW.

• Otherwise, access to this field is RO.

Bits [62:61]

Reserved, RES0.

FORCED_NS, bit [60]

When FEAT_MPAMv0p1 is implemented:

In the Secure state, FORCED_NS indicates the state of MPAM3_EL3.FORCE_NS.

0b0 In the Non-secure state, always reads as 0.

In the Secure state, indicates that MPAM3_EL3.FORCE_NS == 0.

0b1 In the Secure state, indicates that MPAM3_EL3.FORCE_NS == 1.

Always reads as 0 in the Non-secure state.

Writes are ignored.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [59:55]

Reserved, RES0.

ALTSP_FRCD, bit [54]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Alternative PARTID forced for PARTIDs in this register.

0b0 The PARTIDs in MPAM1_EL1 and MPAM0_EL1 are using the primary PARTID
space.

0b1 The PARTIDs in MPAM1_EL1 and MPAM0_EL1 are using the alternative PARTID
space.

This bit indicates that a higher Exception level has forced the PARTIDs in this register to use the
alternative PARTID space defined for the current Security state.

In MPAM1_EL1, it also indicates that MPAM0_EL1 is forced to use alternative PARTID space.

For more information, see Alternative PARTID space and PARTID virtualization on page 6-89.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [53:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group property for PARTID_I.
7-100 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAM1_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, accesses from EL3 using the mnemonic MPAM1_EL1
or MPAM1_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x900];
 else
 return MPAM1_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return MPAM2_EL2;
 else
 return MPAM1_EL1;
elsif PSTATE.EL == EL3 then
 return MPAM1_EL1;

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-101
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
MSR MPAM1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x900] = X[t];
 else
 MPAM1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 MPAM2_EL2 = X[t];
 else
 MPAM1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 MPAM1_EL1 = X[t];

MRS <Xt>, MPAM1_EL12

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 return NVMem[0x900];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAM1_EL1;
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0101 0b000
7-102 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 return MPAM1_EL1;
 else
 UNDEFINED;

MSR MPAM1_EL12, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
 NVMem[0x900] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HCR_EL2.E2H == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAM1_EL1 = X[t];
 else
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
 MPAM1_EL1 = X[t];
 else
 UNDEFINED;

op0 op1 CRn CRm op2

0b11 0b101 0b1010 0b0101 0b000
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-103
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
7.4.3 MPAM2_EL2, MPAM2 Register (EL2)

The MPAM2_EL2 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL2.

Configurations

AArch64 System register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 System
register MPAM3_EL3[63] when EL3 is implemented.

AArch64 System register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 System
register MPAM1_EL1[63].

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM2_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAM2_EL2 is a 64-bit register.

Field descriptions

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs
are output as their default value in the corresponding ID space.

0b0 The default PARTID and default PMG are output in MPAM information from all
Exception levels.

0b1 MPAM information is output based on the MPAMn_ELx register for ELn according to
the MPAM configuration.

If EL3 is not implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write
MPAM3_EL3.MPAMEN bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing this field has the following behavior:

• When EL3 is not implemented, access to this field is RW.

• Otherwise, access to this field is RO.

Bits [62:59]

Reserved, RES0.

63

RES0

62 59 58 57 56 55 54

RES0

53 51 50 49 48

PMG_D

47 40

PMG_I

39 32

MPAMEN
TIDR

RES0
ALTSP_HFC

TRAPMPAM1EL1
TRAPMPAM0EL1

EnMPAMSM
ALTSP_FRCD

ALTSP_EL2

PARTID_D

31 16

PARTID_I

15 0
7-104 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
TIDR, bit [58]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMIDR_EL1.HAS_TIDR == 1:

TIDR traps accesses to MPAMIDR_EL1 from EL1 to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 Trap accesses to MPAMIDR_EL1 from EL1 to EL2.

MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == 1 also traps MPAMIDR_EL1 accesses from EL1 to
EL2. If either TIDR or TRAP_MPAMIDR_EL1 are 1, accesses are trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [57]

Reserved, RES0.

ALTSP_HFC, bit [56]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Hierarchical force of alternative PARTID space controls. When MPAM3_EL3.ALTSP_HEN is 0,
ALTSP controls in MPAM2_EL2 have no effect. When MPAM3_EL3.ALTSP_HEN is 1, this bit
selects whether the PARTIDs in MPAM1_EL1 and MPAM0_EL1 are in the primary (0) or
alternative (1) PARTID space for the security state.

0b0 When MPAM3_EL3.ALTSP_HEN is 1, the PARTID space of
MPAM1_EL1.PARTID_I, MPAM1_EL1.PARTID_D, MPAM0_EL1.PARTID_I, and
MPAM0_EL1.PARTID_D are in the primary PARTID space for the Security state.

0b1 When MPAM3_EL3.ALTSP_HEN is 1, the PARTID space of
MPAM1_EL1.PARTID_I, MPAM1_EL1.PARTID_D, MPAM0_EL1.PARTID_I, and
MPAM0_EL1.PARTID_D are in the alternative PARTID space for the Security state.

This control has no effect when MPAM3_EL3.ALTSP_HEN is 0.

For more information, see Alternative PARTID space and PARTID virtualization on page 6-89.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ALTSP_EL2, bit [55]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Select alternative PARTID space for PARTIDs in MPAM2_EL2 when MPAM3_EL3.ALTSP_HEN
is 1.

0b0 When MPAM3_EL3.ALTSP_HEN is 1, selects the primary PARTID space for
MPAM2_EL2.PARTID_I and MPAM2_EL2.PARTID_D.

0b1 When MPAM3_EL3.ALTSP_HEN is 1, selects the alternative PARTID space for
MPAM2_EL2.PARTID_I and MPAM2_EL2.PARTID_D.

For more information see Alternative PARTID space and PARTID virtualization on page 6-89.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-105
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
ALTSP_FRCD, bit [54]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Alternative PARTID forced for PARTIDs in this register.

0b0 The PARTIDs in this register are using the primary PARTID space.

0b1 The PARTIDs in this register are using the alternative PARTID space.

This bit indicates that a higher Exception level has forced the PARTIDs in this register to use the
alternative PARTID space defined for the current Security state. In EL2, it is also 1 when
MPAM2_EL2.ALTSP_EL2 is 1.

For more information, see Alternative PARTID space and PARTID virtualization on page 6-89.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

Otherwise:

Reserved, RES0.

Bits [53:51]

Reserved, RES0.

EnMPAMSM, bit [50]

When FEAT_SME is implemented:

Traps execution at EL1 of instructions that directly access the MPAMSM_EL1 register to EL2. The
exception is reported using ESR_ELx.EC value 0x18.

0b0 This control causes execution of these instructions at EL1 to be trapped.

0b1 This control does not cause execution of any instructions to be trapped.

This field has no effect on accesses to MPAMSM_EL1 from EL2 or EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TRAPMPAM0EL1, bit [49]

Trap accesses from EL1 to the MPAM0_EL1 register trap to EL2.

0b0 Accesses to MPAM0_EL1 from EL1 are not trapped.

0b1 Accesses to MPAM0_EL1 from EL1 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When EL3 is not implemented, this field resets to 1

— When EL3 is implemented, this field resets to an architecturally UNKNOWN value.

TRAPMPAM1EL1, bit [48]

Trap accesses from EL1 to the MPAM1_EL1 register trap to EL2.

0b0 Accesses to MPAM1_EL1 from EL1 are not trapped.

0b1 Accesses to MPAM1_EL1 from EL1 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When EL3 is not implemented,this field resets to 1.

— When EL3 is implemented, this field resets to an architecturally UNKNOWN value.
7-106 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
PMG_D, bits [47:40]

Performance monitoring group for data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group for instruction accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAM2_EL2

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAM2_EL2;
elsif PSTATE.EL == EL3 then
 return MPAM2_EL2;

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0101 0b000
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-107
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
MSR MPAM2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAM2_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAM2_EL2 = X[t];

MRS <Xt>, MPAM1_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 return NVMem[0x900];
 else
 return MPAM1_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 return MPAM2_EL2;
 else
 return MPAM1_EL1;
elsif PSTATE.EL == EL3 then
 return MPAM1_EL1;

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000
7-108 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
MSR MPAM1_EL1, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
 NVMem[0x900] = X[t];
 else
 MPAM1_EL1 = X[t];
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif HCR_EL2.E2H == '1' then
 MPAM2_EL2 = X[t];
 else
 MPAM1_EL1 = X[t];
elsif PSTATE.EL == EL3 then
 MPAM1_EL1 = X[t];

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-109
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
7.4.4 MPAM3_EL3, MPAM3 Register (EL3)

The MPAM3_EL3 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL3.

Configurations

AArch64 System register MPAM3_EL3 bit [63] is architecturally mapped to AArch64 System
register MPAM2_EL2[63] when EL2 is implemented.

AArch64 System register MPAM3_EL3 bit [63] is architecturally mapped to AArch64 System
register MPAM1_EL1[63].

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM3_EL3 are UNDEFINED.

Attributes

MPAM3_EL3 is a 64-bit register.

Field descriptions

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs
are output as their default value in the corresponding ID space.

Values of this field are:

0b0 The default PARTID and default PMG are output in MPAM information when
executing at any ELn.

0b1 MPAM information is output based on the MPAMn_ELx register for ELn according the
MPAM configuration.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Access to this field is RW.

TRAPLOWER, bit [62]

Trap direct accesses to MPAM System registers that are not UNDEFINED from all ELn lower than
EL3.

0b0 Do not force trapping of direct accesses of MPAM System registers to EL3.

0b1 Force direct accesses of MPAM System registers to trap to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 1.

63 62 61 60

RES0

59 58 57 56 55

RES0

54 53 52

RES0

51 48

PMG_D

47 40

PMG_I

39 32

MPAMEN
TRAPLOWER

SDEFLT
FORCE_NS

RT_ALTSP_NS
ALTSP_EL3

ALTSP_HFC
ALTSP_HEN

PARTID_D

31 16

PARTID_I

15 0
7-110 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
SDEFLT, bit [61]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMIDR_EL1.HAS_SDEFLT == 1:

SDEFLT overrides the PARTID and PMG with the default PARTID and default PMG when
executing in the Secure state.

0b0 The PARTID and PMG are determined normally in the Secure state.

0b1 When executing in the Secure state, the PARTID is always PARTID 0, and the PMG is
always PMG 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FORCE_NS, bit [60]

When FEAT_MPAMv0p1 is implemented and MPAMIDR_EL1.HAS_FORCE_NS == 1:

FORCE_NS forces MPAM_NS to always be 1 in the Secure state.

0b0 MPAM_NS is 0 when executing in the Secure state.

0b1 MPAM_NS is 1 when executing in the Secure state.

An implementation is permitted to have this field as RAO if the implementation does not support
generating MPAM_NS as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [59:58]

Reserved, RES0.

ALTSP_HEN, bit [57]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Hierarchical enable for alternative PARTID space controls. Alternative PARTID space controls in
MPAM2_EL2 have no effect when this field is zero.

0b0 Disable alternative PARTID space controls in MPAM2_EL2. The PARTID space for
PARTIDs in MPAM2_EL2, MPAM1_EL1, and MPAM0_EL1 is selected by
MPAM3_EL3.ALTSP_HFC.

0b1 Enable alternative PARTID space controls in MPAM2_EL2 to control the PARTID
space used for PARTIDs in MPAM2_EL2, MPAM1_EL1, and MPAM0_EL1.

For more information, see Alternative PARTID space and PARTID virtualization on page 6-89.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-111
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
ALTSP_HFC, bit [56]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Hierarchical force of alternative PARTID space controls. When MPAM3_EL3.ALTSP_HEN is 0,
the PARTID space for PARTIDs in MPAM2_EL2, MPAM1_EL1, and MPAM0_EL1 is selected by
the value of this bit.

0b0 When MPAM3_EL3.ALTSP_HEN is 0, the PARTID space of MPAM2_EL2.PARTID,
MPAM1_EL1.PARTID and MPAM0_EL1.PARTID are the primary PARTID space for
the security state.

0b1 When MPAM3_EL3.ALTSP_HEN is 0, the PARTID space of MPAM2_EL2.PARTID
and MPAM1_EL1.PARTID and MPAM0_EL1.PARTID are the alternative PARTID
space for the security state.

For more information, see Alternative PARTID space and PARTID virtualization on page 6-89.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ALTSP_EL3, bit [55]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Select alternative PARTID space for PARTIDs in MPAM3_EL3.

0b0 Selects the primary PARTID space of MPAM3_EL3.PARTID_I and
MPAM3_EL3.PARTID_D.

0b1 Selects the alternative PARTID space of MPAM3_EL3.PARTID_I and
MPAM3_EL3.PARTID_D.

For more information, see Alternative PARTID space and PARTID virtualization on page 6-89.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [54:53]

Reserved, RES0.

RT_ALTSP_NS, bit [52]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Alternative PARTID space selection for the Root security state.

0b0 The alternative PARTID space in the Root security state is the Secure PARTID space.

0b1 The alternative PARTID space in the Root security state is the Non-secure PARTID
space.

This field has no effect except in the Root security state (EL3).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [51:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group for data accesses.
7-112 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group for instruction accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAM3_EL3

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM3_EL3

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 return MPAM3_EL3;

MSR MPAM3_EL3, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 UNDEFINED;
elsif PSTATE.EL == EL3 then
 MPAM3_EL3 = X[t];

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0101 0b000

op0 op1 CRn CRm op2

0b11 0b110 0b1010 0b0101 0b000
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-113
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
7.4.5 MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)

The MPAMHCR_EL2 characteristics are:

Purpose

Controls the PARTID virtualization features of MPAM. It controls the mapping of virtual PARTIDs
into physical PARTIDs in MPAM0_EL1 when EL0_VPMEN == 1 and in MPAM1_EL1 when
EL1_VPMEN == 1.

Configurations

This register is present only when FEAT_MPAM is implemented and MPAMIDR_EL1.HAS_HCR
== 1. Otherwise, direct accesses to MPAMHCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMHCR_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

TRAP_MPAMIDR_EL1, bit [31]

Trap accesses from EL1 to MPAMIDR_EL1 to EL2.

0b0 This control does not cause any instructions to be trapped.

0b1 Direct accesses to MPAMIDR_EL1 from EL1 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:

— When EL3 is not implemented,this field resets to 1.

— When EL3 is implemented, this field resets to an architecturally UNKNOWN value.

Bits [30:9]

Reserved, RES0.

GSTAPP_PLK, bit [8]

Make the PARTIDs at EL0 the same as the PARTIDs at EL1. When executing at EL0, EL2 is
enabled, HCR_EL2.TGE == 0 and GSTAPP_PLK = 1, MPAM1_EL1 is used instead of
MPAM0_EL1 to generate MPAM labels for memory requests.

0b0 MPAM0_EL1 is used to generate MPAM labels when executing at EL0.

0b1 MPAM1_EL1 is used to generate MPAM labels when executing at EL0 with EL2
enabled and HCR_EL2.TGE == 0. Otherwise MPAM0_EL1 is used.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RES0

63 32

31

RES0

30 9 8

RES0

7 2 1 0

TRAP_MPAMIDR_EL1 GSTAPP_PLK EL0_VPMEN
EL1_VPMEN
7-114 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
Bits [7:2]

Reserved, RES0.

EL1_VPMEN, bit [1]

Enable the virtual PARTID mapping of the PARTID fields in MPAM1_EL1 when executing at EL1.
This bit also enables virtual PARTID mapping when MPAM1_EL1 is used to generate MPAM
labels for memory requests at EL0 due to GSTAPP_PLK == 1.

0b0 MPAM1_EL1.PARTID_I and MPAM1_EL1.PARTID_D are physical PARTIDs that
are used to label memory system requests.

0b1 MPAM1_EL1.PARTID_I and MPAM1_EL1.PARTID_D are virtual PARTIDs that are
used to index the PhyPARTID fields of MPAMVPM0_EL2 to MPAMVPM7_EL2
registers to map the virtual PARTID into a physical PARTID to label memory system
requests.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EL0_VPMEN, bit [0]

Enable the virtual PARTID mapping of the PARTID fields of MPAM0_EL1 unless HCR_EL2.E2H
== 1 and HCR_EL2.TGE == 1.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1, EL0_VPMEN is ignored and MPAM0_EL1
PARTID fields are not mapped.

When MPAMHCR_EL2.GSTAPP_PLK == 1 and HCR_EL2.TGE == 0, MPAM1_EL1 is used as
the source of PARTIDs and the virtual PARTID mapping of MPAM1_EL1 PARTIDs is controlled
by MPAMHCR_EL2.EL1_VPMEN.

0b0 MPAM0_EL1.PARTID_I and MPAM0_EL1.PARTID_D are physical PARTIDs that
are used to label memory system requests.

0b1 MPAM0_EL1.PARTID_I and MPAM0_EL1.PARTID_D are virtual PARTIDs that are
used to index the PhyPARTID fields of MPAMVPM0_EL2 to MPAMVPM7_EL2
registers to map the virtual PARTID into a physical PARTID to label memory system
requests.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMHCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMHCR_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x930];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0100 0b000
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-115
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMHCR_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMHCR_EL2;

MSR MPAMHCR_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x930] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMHCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAMHCR_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0100 0b000
7-116 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
7.4.6 MPAMIDR_EL1, MPAM ID Register (EL1)

The MPAMIDR_EL1 characteristics are:

Purpose

Indicates the presence and maximum PARTID and PMG values supported in the implementation. It
also indicates whether the implementation supports MPAM virtualization.

Configurations

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMIDR_EL1 are UNDEFINED.

Attributes

MPAMIDR_EL1 is a 64-bit register.

Field descriptions

MPAMIDR_EL1 indicates the MPAM implementation parameters of the PE.

Bits [63:62]

Reserved, RES0.

HAS_SDEFLT, bit [61]

HAS_SDEFLT indicates support for MPAM3_EL3.SDEFLT bit. Defined values are:

0b0 The SDEFLT bit is not implemented in MPAM3_EL3.

0b1 The SDEFLT bit is implemented in MPAM3_EL3.

When MPAM3_EL3.SDEFLT == 1, accesses from the Secure Execution state use the default
PARTID, PARTID == 0.

HAS_FORCE_NS, bit [60]

HAS_FORCE_NS indicates support for MPAM3_EL3.FORCE_NS bit. Defined values are:

0b0 The FORCE_NS bit is not implemented in MPAM3_EL3.

0b1 The FORCE_NS bit is implemented in MPAM3_EL3.

When MPAM3_EL3.FORCE_NS == 1, accesses from the Secure Execution state have MPAM_NS
== 1.

SP4, bit [59]

Supports 4 MPAM PARTID spaces.

0b0 MPAM supports 2 PARTID spaces.

0b1 MPAM supports 4 PARTID spaces.

RES0

63 62 61 60 59 58 57

RES0

56 40

PMG_MAX

39 32

HAS_SDEFLT
HAS_FORCE_NS

HAS_ALTSP
HAS_TIDR

SP4

RES0

31 21 20 18 17 16

PARTID_MAX

15 0

VPMR_MAX RES0
HAS_HCR
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-117
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
HAS_TIDR, bit [58]

HAS_TIDR indicates support for MPAM2_EL2.TIDR bit. Defined values are:

0b0 The TIDR bit is not implemented in MPAM2_EL2.

0b1 The TIDR bit is implemented in MPAM2_EL2.

HAS_ALTSP, bit [57]

HAS_ALTSP indicates support for alternative PARTID spaces.

0b0 Alternative PARTID spaces are not implemented.

0b1 Alternative PARTID spaces are implemented with control bits in MPAM3_EL3 and
MPAM2_EL2.

Bits [56:40]

Reserved, RES0.

PMG_MAX, bits [39:32]

The largest value of PMG that the implementation can generate. The PMG_I and PMG_D fields of
every MPAMn_ELx must implement at least enough bits to represent PMG_MAX.

Bits [31:21]

Reserved, RES0.

VPMR_MAX, bits [20:18]

When MPAMIDR_EL1.HAS_HCR == 1:

Indicates the maximum register index n for the MPAMVPM<n>_EL2 registers.

Otherwise:

Reserved, RAZ.

HAS_HCR, bit [17]

HAS_HCR indicates that the PE implementation supports MPAM virtualization, including
MPAMHCR_EL2, MPAMVPMV_EL2, and MPAMVPM<n>_EL2 with n in the range 0 to
VPMR_MAX. Must be 0 if EL2 is not implemented in either Security state.

0b0 MPAM virtualization is not supported.

0b1 MPAM virtualization is supported.

Bit [16]

Reserved, RES0.

PARTID_MAX, bits [15:0]

The largest value of PARTID that the implementation can generate. The PARTID_I and PARTID_D
fields of every MPAMn_ELx must implement at least enough bits to represent PARTID_MAX.

Accessing MPAMIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMIDR_EL1

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0100 0b100
7-118 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 elsif EL2Enabled() && MPAMIDR_EL1.HAS_HCR == '1' && MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 elsif EL2Enabled() && MPAMIDR_EL1.HAS_TIDR == '1' && MPAM2_EL2.TIDR == '1' then
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 return MPAMIDR_EL1;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMIDR_EL1;
elsif PSTATE.EL == EL3 then
 return MPAMIDR_EL1;

ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-119
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
7.4.7 MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0

The MPAMVPM0_EL2 characteristics are:

Purpose

MPAMVPM0_EL2 provides mappings from virtual PARTIDs 0 - 3 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 register. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented and MPAMIDR_EL1.HAS_HCR
== 1. Otherwise, direct accesses to MPAMVPM0_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM0_EL2 is a 64-bit register.

Field descriptions

PhyPARTID3, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 3. P. PhyPARTID3 gives the mapping of virtual
PARTID 3 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID2, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 2. PhyPARTID2 gives the mapping of virtual
PARTID 2 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID1, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 1. PhyPARTID1 gives the mapping of virtual
PARTID 1 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID0, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 0. PhyPARTID0 gives the mapping of virtual
PARTID 0 to a physical PARTID.

PhyPARTID3

63 48

PhyPARTID2

47 32

PhyPARTID1

31 16

PhyPARTID0

15 0
7-120 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM0_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM0_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x940];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMVPM0_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMVPM0_EL2;

MSR MPAMVPM0_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x940] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b000

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b000
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-121
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM0_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAMVPM0_EL2 = X[t];

7-122 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
7.4.8 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1

The MPAMVPM1_EL2 characteristics are:

Purpose

MPAMVPM1_EL2 provides mappings from virtual PARTIDs 4 - 7 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM0_EL2 to MPAMVPM7_EL2 registers. VPMR_MAX can be as large as 7 (8 registers)
or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single
MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and MPAMIDR_EL1.VPMR_MAX > 0. Otherwise, direct accesses to MPAMVPM1_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM1_EL2 is a 64-bit register.

Field descriptions

PhyPARTID7, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 7. PhyPARTID7 gives the mapping of virtual
PARTID 7 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID6, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 6. PhyPARTID6 gives the mapping of virtual
PARTID 6 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID5, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 5. PhyPARTID5 gives the mapping of virtual
PARTID 5 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID4, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 4. PhyPARTID4 gives the mapping of virtual
PARTID 4 to a physical PARTID.

PhyPARTID7

63 48

PhyPARTID6

47 32

PhyPARTID5

31 16

PhyPARTID4

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-123
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM1_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM1_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x948];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMVPM1_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMVPM1_EL2;

MSR MPAMVPM1_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x948] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b001
7-124 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM1_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAMVPM1_EL2 = X[t];

ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-125
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
7.4.9 MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2

The MPAMVPM2_EL2 characteristics are:

Purpose

MPAMVPM2_EL2 provides mappings from virtual PARTIDs 8 - 11 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM0_EL2 to MPAMVPM7_EL2 registers. VPMR_MAX can be as large as 7 (8 registers)
or 32 virtual PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single
MPAMVPM<n>_EL2 register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and MPAMIDR_EL1.VPMR_MAX > 1. Otherwise, direct accesses to MPAMVPM2_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM2_EL2 is a 64-bit register.

Field descriptions

PhyPARTID11, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 11. PhyPARTID11 gives the mapping of virtual
PARTID 11 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID10, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 10. PhyPARTID10 gives the mapping of virtual
PARTID 10 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID9, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 9. PhyPARTID9 gives the mapping of virtual
PARTID 9 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID8, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 8. PhyPARTID8 gives the mapping of virtual
PARTID 8 to a physical PARTID.

PhyPARTID11

63 48

PhyPARTID10

47 32

PhyPARTID9

31 16

PhyPARTID8

15 0
7-126 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM2_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM2_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x950];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMVPM2_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMVPM2_EL2;

MSR MPAMVPM2_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x950] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b010

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b010
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-127
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM2_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAMVPM2_EL2 = X[t];

7-128 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
7.4.10 MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3

The MPAMVPM3_EL2 characteristics are:

Purpose

MPAMVPM3_EL2 provides mappings from virtual PARTIDs 12 - 15 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and MPAMIDR_EL1.VPMR_MAX > 2. Otherwise, direct accesses to MPAMVPM3_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM3_EL2 is a 64-bit register.

Field descriptions

PhyPARTID15, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 15. PhyPARTID15 gives the mapping of virtual
PARTID 15 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID14, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 14. PhyPARTID14 gives the mapping of virtual
PARTID 14 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID13, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 13. PhyPARTID13 gives the mapping of virtual
PARTID 13 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID12, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 12. PhyPARTID12 gives the mapping of virtual
PARTID 12 to a physical PARTID.

PhyPARTID15

63 48

PhyPARTID14

47 32

PhyPARTID13

31 16

PhyPARTID12

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-129
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM3_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM3_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x958];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMVPM3_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMVPM3_EL2;

MSR MPAMVPM3_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x958] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b011

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b011
7-130 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM3_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAMVPM3_EL2 = X[t];

ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-131
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
7.4.11 MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4

The MPAMVPM4_EL2 characteristics are:

Purpose

MPAMVPM4_EL2 provides mappings from virtual PARTIDs 16 - 19 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and MPAMIDR_EL1.VPMR_MAX > 3. Otherwise, direct accesses to MPAMVPM4_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM4_EL2 is a 64-bit register.

Field descriptions

PhyPARTID19, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 19. PhyPARTID19 gives the mapping of virtual
PARTID 19 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID18, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 18. PhyPARTID18 gives the mapping of virtual
PARTID 18 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID17, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 17. PhyPARTID17 gives the mapping of virtual
PARTID 17 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID16, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 16. PhyPARTID16 gives the mapping of virtual
PARTID 16 to a physical PARTID.

PhyPARTID19

63 48

PhyPARTID18

47 32

PhyPARTID17

31 16

PhyPARTID16

15 0
7-132 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM4_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM4_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x960];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMVPM4_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMVPM4_EL2;

MSR MPAMVPM4_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x960] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b100

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b100
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-133
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM4_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAMVPM4_EL2 = X[t];

7-134 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
7.4.12 MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5

The MPAMVPM5_EL2 characteristics are:

Purpose

MPAMVPM5_EL2 provides mappings from virtual PARTIDs 20 - 23 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and MPAMIDR_EL1.VPMR_MAX > 4. Otherwise, direct accesses to MPAMVPM5_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM5_EL2 is a 64-bit register.

Field descriptions

PhyPARTID23, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 23. PhyPARTID23 gives the mapping of virtual
PARTID 23 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID22, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 22. PhyPARTID22 gives the mapping of virtual
PARTID 22 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID21, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 21. PhyPARTID21 gives the mapping of virtual
PARTID 21 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID20, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 20. PhyPARTID20 gives the mapping of virtual
PARTID 20 to a physical PARTID.

PhyPARTID23

63 48

PhyPARTID22

47 32

PhyPARTID21

31 16

PhyPARTID20

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-135
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM5_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM5_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x968];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMVPM5_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMVPM5_EL2;

MSR MPAMVPM5_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x968] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b101

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b101
7-136 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM5_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAMVPM5_EL2 = X[t];

ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-137
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
7.4.13 MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6

The MPAMVPM6_EL2 characteristics are:

Purpose

MPAMVPM6_EL2 provides mappings from virtual PARTIDs 24 - 27 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for PARTIDs in MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and MPAMIDR_EL1.VPMR_MAX > 5. Otherwise, direct accesses to MPAMVPM6_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM6_EL2 is a 64-bit register.

Field descriptions

PhyPARTID27, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 27. P. PhyPARTID27 gives the mapping of
virtual PARTID 27 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID26, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 26. PhyPARTID26 gives the mapping of virtual
PARTID 26 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID25, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 25. PhyPARTID25 gives the mapping of virtual
PARTID 25 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID24, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 24. PhyPARTID24 gives the mapping of virtual
PARTID 24 to a physical PARTID.

PhyPARTID27

63 48

PhyPARTID26

47 32

PhyPARTID25

31 16

PhyPARTID24

15 0
7-138 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM6_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM6_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x970];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMVPM6_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMVPM6_EL2;

MSR MPAMVPM6_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x970] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b110

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b110
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-139
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM6_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAMVPM6_EL2 = X[t];

7-140 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
7.4.14 MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7

The MPAMVPM7_EL2 characteristics are:

Purpose

MPAMVPM7_EL2 provides mappings from virtual PARTIDs 28 - 31 to physical PARTIDs.

MPAMIDR_EL1.VPMR_MAX field gives the index of the highest implemented
MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual
PARTIDs. If MPAMIDR_EL1.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2
register, MPAMVPM0_EL2.

Virtual PARTID mapping is enabled by MPAMHCR_EL2.EL1_VPMEN for PARTIDs in
MPAM1_EL1 and by MPAMHCR_EL2.EL0_VPMEN for MPAM0_EL1.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is only valid when the
MPAMVPMV_EL2.VPM_V bit in bit position n is set to 1.

Configurations

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR ==
1 and MPAMIDR_EL1.VPMR_MAX == 7. Otherwise, direct accesses to MPAMVPM7_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM7_EL2 is a 64-bit register.

Field descriptions

PhyPARTID31, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 31. PhyPARTID31 gives the mapping of virtual
PARTID 31 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID30, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 30. PhyPARTID30 gives the mapping of virtual
PARTID 30 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID29, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 29. PhyPARTID29 gives the mapping of virtual
PARTID 29 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PhyPARTID28, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 28. PhyPARTID28 gives the mapping of virtual
PARTID 28 to a physical PARTID.

PhyPARTID31

63 48

PhyPARTID30

47 32

PhyPARTID29

31 16

PhyPARTID28

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-141
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPM7_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM7_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x978];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMVPM7_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMVPM7_EL2;

MSR MPAMVPM7_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x978] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b111

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0110 0b111
7-142 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPM7_EL2 = X[t];
elsif PSTATE.EL == EL3 then
 MPAMVPM7_EL2 = X[t];

ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-143
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
7.4.15 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register

The MPAMVPMV_EL2 characteristics are:

Purpose

Valid bits for virtual PARTID mapping entries. Each bit m corresponds to virtual PARTID mapping
entry m in the MPAMVPM<n>_EL2 registers where n = m >> 2.

Configurations

This register is present only when FEAT_MPAM is implemented and MPAMIDR_EL1.HAS_HCR
== 1. Otherwise, direct accesses to MPAMVPMV_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPMV_EL2 is a 64-bit register.

Field descriptions

Bits [63:32]

Reserved, RES0.

VPM_V<m>, bit [m], for m = 31 to 0

Contains valid bit for virtual PARTID mapping entry corresponding to virtual PARTID<m>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAMVPMV_EL2

Accesses to this register use the following encodings in the System register encoding space:

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPM_V31
VPM_V30

VPM_V29
VPM_V28

VPM_V27
VPM_V26

VPM_V25
VPM_V24

VPM_V23
VPM_V22

VPM_V21
VPM_V20

VPM_V19
VPM_V18

VPM_V17
VPM_V16

VPM_V0
VPM_V1

VPM_V2
VPM_V3

VPM_V4
VPM_V5

VPM_V6
VPM_V7

VPM_V8
VPM_V9

VPM_V10
VPM_V11

VPM_V12
VPM_V13

VPM_V14
VPM_V15
7-144 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.4 System register descriptions
MRS <Xt>, MPAMVPMV_EL2

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 return NVMem[0x938];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 return MPAMVPMV_EL2;
elsif PSTATE.EL == EL3 then
 return MPAMVPMV_EL2;

MSR MPAMVPMV_EL2, <Xt>

if PSTATE.EL == EL0 then
 UNDEFINED;
elsif PSTATE.EL == EL1 then
 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
 NVMem[0x938] = X[t];
 elsif EL2Enabled() && HCR_EL2.NV == '1' then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 AArch64.SystemAccessTrap(EL2, 0x18);
 else
 UNDEFINED;
elsif PSTATE.EL == EL2 then
 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
 if Halted() && EDSCR.SDD == '1' then
 UNDEFINED;
 else
 AArch64.SystemAccessTrap(EL3, 0x18);
 else
 MPAMVPMV_EL2 = X[t];

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0100 0b001

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0100 0b001
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-145
ID012521 Non-Confidential

System Registers
7.4 System register descriptions
elsif PSTATE.EL == EL3 then
 MPAMVPMV_EL2 = X[t];

7-146 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.5 MPAM enable
7.5 MPAM enable

A single, writable MPAMEN bit exists only in the MPAMn_ELx register for the highest implemented ELn. The
highest Exception level might be EL3, EL2, or EL1. For example, if the highest implemented level is EL3,
MPAM3_EL3 would contain the MPAMEN bit. A read-only copy of MPAMEN is present in each of MPAM2_EL2
and MPAM1_EL1 that is implemented and not the highest implemented Exception level.

When the MPAMEN bit is set, MPAM PARTID and PMG are generated as described in this document. When the
MPAMEN bit is clear, default values are generated for MPAM physical PARTID and PMG with MPAM_NS
reflecting the PE’s current security state. See PARTID spaces and properties on page 3-37 for more on default IDs.

The MPAMEN bit is reset to 0.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-147
ID012521 Non-Confidential

System Registers
7.6 SDEFLT
7.6 SDEFLT

In MPAM v0.1 and from MPAM v1.1, when MPAMIDR_EL1.HAS_SDEFLT is 1, the writeable
MPAM3_EL3.SDEFLT is implemented. When MPAMIDR_EL1.HAS_SDEFLT is 0, MPAM3_EL3.SDEFLT is
RES0, and Secure PARTID generation is as if no SDEFLT functionality is present.

The SDEFLT bit only affects the generation of MPAM PARTIDs from the Secure state. When
MPAM3_EL3.SDEFLT is 1:

• A Secure physical PARTID is always generated as the default Secure PARTID. If
MPAMIDR_EL1.HAS_FORCE_NS is 1 and MPAM3_EL3.FORCE_NS is 1, the generated PARTID is the
default Non-secure PARTID, otherwise it is the default Secure PARTID.

• A PMG is always generated as the default PMG.

When the SDEFLT bit is 0, all accesses have the PARTID and PMG generated as normal. For more information on
default IDs, see PARTID spaces and properties on page 3-37.

The SDEFLT bit is reset to an UNKNOWN value.

7.6.1 Interaction of SDEFLT and MPAMEN

In MPAM v0.1 and from MPAM v1.1, when MPAMIDR_EL1.HAS_SDEFLT is 1, the writeable
MPAM3_EL3.SDEFLT is implemented:

• When MPAMEN is 0, all accesses from Secure and Non-secure states have the physical PARTID and the
PMG generated as 0.

• When MPAMEN is 1 and SDEFLT is 0, all accesses from Secure and Non-secure states have the PARTID
and PMG generated as normal.

• When MPAMEN is 1 and SDEFLT is 1:

— All accesses from Secure state have the physical PARTID as 0 and PMG as 0.

— All accesses from Non-secure state have the PARTID and PMG generated as normal.
7-148 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.7 Lower-EL MPAM register access trapping
7.7 Lower-EL MPAM register access trapping

When MPAM3_EL3.TRAPLOWER == 1, direct accesses to MPAM System registers from EL1 or EL2 that are not
UNDEFINED trap to EL3. These registers remain accessible from EL3, thus allowing EL3 to set up the MPAM
environments for lower levels that are not MPAM-aware.

MPAM3_EL3.TRAPLOWER traps have priority over traps controlled by MPAM2_EL2 and MPAMHCR_EL2.

HCR_EL2.NV == 1 alters the behavior of TRAPLOWER because it makes some _EL2 and _EL12 registers that
would be UNDEFINED at EL1 trap to EL2. HCR_EL2.NV == 1 does not affect accesses from EL0, EL2, or EL3.
When HCR_EL2.NV == 1 and MPAM3_EL3.TRAPLOWER == 1, accesses to MPAM registers from EL2 are
trapped to EL3. See Nested virtualization extension on page 6-82 for details.

HCR_EL2.NV2 == 1 alters the behavior of MPAM3_EL3.TRAPLOWER because it converts accesses to some
_EL2 and EL12 registers from EL1 that would be undefined into accesses to memory. See Enhanced nested
virtualization extension on page 6-82 for details.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-149
ID012521 Non-Confidential

System Registers
7.8 FORCE_NS
7.8 FORCE_NS

In MPAMv0.1, when MPAMIDR_EL1.HAS_FORCE_NS is 1, MPAM3_EL3.FORCE_NS is implemented, and
must implement either one of two behaviors:

• Secure PARTIDs are not implemented.

• FORCE_NS can be written by software.

If an implementation does not implement Secure PARTIDs, then MPAM3_EL3.FORCE_NS is RAO/WI and
MPAM_NS is always generated as 1 on accesses from Secure state and Non-secure state.

If an implementation allows MPAM3_EL3.FORCE_NS to be written by software, then:

• MPAM3_EL3.FORCE_NS is reset to 0.

• When MPAM3_EL3.FORCE_NS is 0, MPAM_NS is generated as 0 on accesses from Secure state.

• When MPAM3_EL3.FORCE_NS is 1, MPAM_NS is generated as 1 on accesses from Secure state.

• Generation of MPAM_NS from Non-secure state is unaffected.

When MPAMIDR_EL1.HAS_FORCE_NS is 0, MPAM3_EL3.FORCE_NS is RES0, and Secure PARTID
generation is as if no FORCE_NS functionality is present.

The FORCE_NS bit is reset to an UNKNOWN value.
7-150 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.9 Reset
7.9 Reset

MPAM System registers are only minimally reset.

• The MPAMEN bit must be set to 0 by Warm or Cold reset of the PE.

• The MPAM3_EL3.TRAPLOWER bit must be set to 1 by Warm or Cold reset of the PE.

• If MPAMIDR_EL1.HAS_FORCE_NS is 1 and MPAM3_EL3.FORCE_NS is implemented as writeable,
MPAM3_EL3.FORCE_NS must be reset to 0 on a Warm or Cold reset of the PE.

• The power and reset domain of each MSC component is specific to that component.

The MPAM2_EL2.TRAPMPAM1EL1, MPAM2_EL2.TRAPMPAM0EL1, and
MPAMHCR_EL2.TRAP_MPAMIDR_EL1 bits are not reset if EL3 exists, but all three bits are reset to 1 if EL3
does not exist.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-151
ID012521 Non-Confidential

System Registers
7.10 Unimplemented Exception levels
7.10 Unimplemented Exception levels

The Armv8-A architecture permits implementations with or without EL3. Independent from the choice of whether
EL3 is implemented or implemented but disabled, the architecture permits implementations with or without EL2.

Even if FEAT_SEL2 is implemented, Secure EL2 does not exist in the Armv8 Architecture before v8.4.
FEAT_SEL2 is permitted to be implemented or not implemented in v8.4 or later implementations. If FEAT_SEL2
is implemented, it may be enabled or disabled by SCR_EL3.EEL2.

EL1 and EL0 are required in all implementations.

Generally, control bits in the MPAMn_ELx registers and MPAMHCR_EL2 for an unimplemented Exception level
are treated as inactive by all other MPAM Exception levels. Details are given in the following subsections.

7.10.1 Effects if EL3 is not implemented

• MPAM3_EL3 is UNDEFINED.

• MPAM3_EL3.TRAPLOWER: All references to this bit behave as if it == 0.

• MPAM2_EL2.MPAMEN is present and RW if EL2 exists. If EL2 does not exist, MPAM1_EL1.MPAMEN
is present and RW.

7.10.2 Effects if EL2 is implemented in neither Security state
• MPAM2_EL2 is RES0 when accessed from EL3. It is UNDEFINED from all other Exception levels.

• MPAM2_EL2.TRAPMPAM1EL1: All references to it behave as if it == 0.

• MPAM2_EL2.TRAPMPAM0EL1: All references to it behave as if it == 0.

• MPAM1_EL12 is UNDEFINED when accessed from any Exception level.

• MPAMHCR_EL2 is RES0 when accessed from EL3.

• MPAMHCR_EL2.TRAP_MPAM_IDR_EL1: All references to it behave as if it == 0.

• MPAMHCR_EL2.GSTAPP_PLK: All references to it behave as if it == 0.

• MPAMHCR_EL2.EL1_VPMEN: All references to it behave as if it == 0.

• MPAMHCR_EL2.EL0_VPMEN: All references to it behave as if it == 0.

• MPAMVPMV_EL2 is RES0 when accessed from EL3.

• MPAMVPM0_EL2 through MPAMVPM7_EL2 are RES0 when accessed from EL3.

7.10.3 Effects if EL2 is implemented only in Non-secure state, or if implemented but disabled by
SCR_EL2.EEL2 = 0 in Secure state

• MPAM2_EL2 is RW when accessed from EL3 or from Non-secure EL2. This register is UNDEFINED from all
other Exception levels.

• MPAM2_EL2.TRAPMPAM1EL1: All references to it behave as if it == 0 in the Secure state.

• MPAM2_EL2.TRAPMPAM0EL1: All references to it behave as if it == 0 in the Secure state.

• MPAM1_EL12 is RW from EL3 or from NS_EL2 when HCR_EL2.E2H == 1. This register is UNDEFINED
when accessed from EL1 or EL0 or when HCR_EL2.E2H == 0.

• MPAMHCR_EL2 is RW when accessed from EL3 or from Non-secure EL2. This register is UNDEFINED from
all other EL.

• MPAMHCR_EL2.TRAP_MPAM_IDR_EL1: All references to it behave as if it == 0 in the Secure state.

• MPAMHCR_EL2.GSTAPP_PLK: All references to it behave as if it == 0 in the Secure state.

• MPAMHCR_EL2.EL1_VPMEN: All references to it behave as if it == 0 in the Secure state.
7-152 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

System Registers
7.10 Unimplemented Exception levels
• MPAMHCR_EL2.EL0_VPMEN: All references to it behave as if it == 0 in the Secure state.

• MPAMVPMV_EL2 is RW when accessed from EL3 or from Non-secure EL2. This register is UNDEFINED
from all other Exception levels.

• MPAMVPM0_EL2 through MPAMVPM7_EL2 are RW when accessed from EL3 or Non-secure EL2. These
registers are UNDEFINED from all other Exception levels.

If an implementation supports Secure state and Secure EL2 does not exist, all behaviors listed in Effects if EL2 is
implemented only in Non-secure state, or if implemented but disabled by SCR_EL2.EEL2 = 0 in Secure state on
page 7-152 must be followed by the MPAM implementation on the Secure side.

If SCR_EL3.EEL2 == 0, Secure EL2 behaves as if it is not implemented, and all behaviors listed in Effects if EL2
is implemented only in Non-secure state, or if implemented but disabled by SCR_EL2.EEL2 = 0 in Secure state on
page 7-152 must be followed by the MPAM implementation on the Secure side.

If Non-secure EL2 exists, the behaviors in Effects if EL2 is implemented in neither Security state on page 7-152 do
not apply to the MPAM implementation on the Non-secure side.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 7-153
ID012521 Non-Confidential

System Registers
7.10 Unimplemented Exception levels
7-154 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 8
MPAM in MSCs

This chapter contains the following sections:

• Introduction on page 8-156.

• Resource controls on page 8-157.

• Resource instance selection on page 8-158.

• Security in MSCs on page 8-162.

• Virtualization support in system MSCs on page 8-163.

• PE with integrated MSCs on page 8-164.

• System-wide PARTID and PMG widths on page 8-165.

• MPAM interrupts on page 8-166.

• MSC support of MPAM for RME on page 8-170.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 8-155
ID012521 Non-Confidential

MPAM in MSCs
8.1 Introduction
8.1 Introduction

This introduction to Memory-System Components, or MSCs, is informative. Other sections are normative unless
marked as informative.

MSCs consist of all units that handle load or store requests issued by any MPAM Requester. These include cache
memories, interconnects, memory management units, memory channel controllers, queues, buffers, and rate
adaptors.

An MSC could be a part of another system component. For example, a PE might contain caches, which are MSCs.
An MSC has resources that are used to process memory requests. The use of a resource could be controlled. A
resource that can be controlled according to the PARTID of memory requests is partitioned. A resource might be
monitored by a resource usage monitor.

8.1.1 MPAM versions in MSCs

MSCs can be used in MPAM v1.0, v1.1, and in v0.1 under certain conditions. If an MSC does not implement any
of the MPAM v1.1 MSC features listed in MPAM versions for PEs on page 1-22, it is version 1.0.

Note

The MPAM version of an MSC is available in MPAMF_AIDR, see MPAM versions for MSCs on page 1-22.

If an MSC implements the extended MPAMF_IDR, or any of the MPAM v1.1 MSC features, it is either MPAM
v1.1 or MPAM v0.1. An MSC must not use MPAM v0.1 unless all of these conditions are met:

• The MSC can initiate requests.

• Requests can be initiated in the Secure address space.

• Requests to the Secure address space can have MPAM_NS forced to 1.

• Software that configures the MSC to make requests in the Secure address space:

— Cannot control the forcing of MPAM_NS.

— Cannot easily see that MPAM_NS is being forced.
8-156 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MPAM in MSCs
8.2 Resource controls
8.2 Resource controls

This section is normative.

An MSC optionally contains one or more MPAM resource controls. Although resource controls that control
different performance resources have different control parameters, all resource controls are similar in the following
aspects that form a common framework:

• Each resource control uses the MPAM PARTID and MPAM_NS signals from the incoming request to select
control parameters from an array of Non-secure parameters (when MPAM_NS == 1) or Secure parameters
(when MPAM_NS == 0).

• The selected parameters control the behavior of the MSC, either to partition the performance resources or to
control the monitoring of performance resource usage.

For more information, see:

• Model of a resource partitioning control on page 5-54 for a model of a resource partitioning control.

• Chapter 9 Resource Partitioning Controls for more detailed information on resource partitioning controls.

• Resource instance selection on page 8-158 for how these controls are affected when resource instance
selection is supported.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 8-157
ID012521 Non-Confidential

MPAM in MSCs
8.3 Resource instance selection
8.3 Resource instance selection

Resource instance selection, or RIS, allows support for MSCs with multiple resources, including multiple resources
with the same type or partitioning control. This means that each MSC can only have independent resource controls
and two or more resources of the same type when RIS is implemented. In MPAM v0.1 and from MPAM v1.1, this
optional feature is implemented when MPAMF_IDR.HAS_RIS is 1.

This section provides more details on:

• RIS values on page 8-158.

• RIS controls in MPAMCFG_PART_SEL on page 8-158.

• RIS controls in MSMON_CFG_MON_SEL on page 8-160.

• Effects of MPAMCFG_PART_SEL.RIS on values read from other registers on page 8-159.

• Selecting a resource to monitor on page 8-160.

• Undefined RIS values on page 8-160.

• Reporting errors involving RIS on page 8-161.

8.3.1 RIS values

Each partitionable or monitorable resource is associated with a unique RIS value.

MPAM resource monitors are usually associated with a resource instance, and the RIS value for that resource
instance is also used in MSMON_CFG_MON_SEL.RIS to select the monitors associated with that resource.

Information on what RIS value is assigned to which resource instance of the MSC is not available from MSC IDRs,
and must be provided by means other than the hardware ID registers.

MPAMF_IDR.RIS_MAX gives the largest value of RIS that is defined for the MSC. A RIS value from 0 to
RIS_MAX can be assigned to any partitioned or monitored resource. There is no requirement for every RIS value
to be assigned to a partitioned or monitored resource.

As software for MPAMv1.0 would not set the value of the RIS field to any value other than 0, the only resource that
can be identified and controlled by software that is not aware of this feature is resource instance 0.

8.3.2 RIS controls in MPAMCFG_PART_SEL

The value in MPAMCFG_PART_SEL.RIS selects the resource instance that is:

• Described by the MPAMF ID registers.

• Controlled by accessing the MPAMCFG_* registers.

8.3.3 Effects of MPAMCFG_PART_SEL.RIS on partitioning controls

To access control settings for a particular resource instance and PARTID, MPAMCFG_PART_SEL.PART_SEL is
set to the PARTID and MPAMCFG_PART_SEL.RIS is set to the value associated with that resource instance.
Accesses to additional MPAMCFG_* registers made without changing MPAMCFG_PART_SEL can be used to
read and write additional control settings for that resource instance and partition.

If a control applies to all resource instances, this common control must be accessed with
MPAMCFG_PART_SEL.RIS set to 0.

If there is only a single resource instance in an MSC, all controls must be associated with
MPAMCFG_PART_SEL.RIS set to 0.

If an MPAMCFG register is accessed when MPAMCFG_PART_SEL.RIS is set to a resource instance that does not
support the accessed control, then the behavior is CONSTRAINED UNPREDICTABLE, see RIS in
MPAMCFG_PART_SEL.RIS does not have partitioning control (errorcode == 9) on page 12-367.
8-158 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MPAM in MSCs
8.3 Resource instance selection
8.3.4 Effects of MPAMCFG_PART_SEL.RIS on values read from other registers

Fields within other registers reflect the capabilities of the resource instance that has been selected by
MPAMCFG_PART_SEL.RIS, and so might have different values in different resource instances, as in Table 8-1 on
page 8-159.

Table 8-1 Fields affected by a resource instance

Register Field Description for resource instance

MPAMF_CCAP_IDR CMAX_WD This field is permitted to vary between resource instances.

MPAMF_CPOR_IDR CPBM_WD This field is permitted to vary between resource instances.

MPAMF_CSUMON_IDR HAS_CAPTURE This field is permitted to vary between resource instances.

CSU_RO This field is permitted to vary between resource instances.

NUM_MON This field is permitted to vary between resource instances.

MPAMF_IDR NO_IMPL_MSMON MPAMF_IMPL_IDR describes no resource usage monitors.

NO_IMPL_PART MPAMF_IMPL_IDR describes no resource partitioning controls.

HAS_MSMON The resource usage monitors described in MPAMF_MSMON_IDR,
otherwise this field is 0b0.

HAS_IMPL_IDR The IMPLEMENTATION DEFINED features described in
MPAMF_IMPL_IDR, otherwise this field is 0b0.

HAS_PRI_PART The priority partitioning described in MPAMF_PRI_IDR, otherwise 0b0.

HAS_MBW_PART The memory bandwidth partitioning described in MPAMF_MBW_IDR,
otherwise 0b0.

HAS_CPOR_PART The cache portion partitioning described in MPAMF_CPOR_IDR,
otherwise 0b0.

HAS_CCAP_PART The cache capacity partitioning described in MPAMF_CCAP_IDR,
otherwise 0b0.

MPAMF_IMPL_IDR IMPLEMENTATION DEFINEDThe IMPLEMENTATION DEFINED contents of this register vary according to
the resource instance selected, and cannot be specified by the architecture.

MPAMF_MSMON_IDR MSMON_MBWU The memory bandwidth usage monitors of the resource, otherwise this
field is 0b0.

MSMON_CSU The cache storage usage monitors of the selected resource instance.
Otherwise this field is 0b0.

MPAMF_PRI_IDRa DSPRI_WD The downstream priority width. Ignored if
MPAMF_PRI_IDR.HAS_DSPRI is set to 0.

DSPRI_0_IS_LOW The downstream priority encoded with 0 being the low priority. Ignored
if MPAMF_PRI_IDR.HAS_DSPRI is set to 0.

HAS_DSPRI The downstream priority control.

INTPRI_WD The internal priority width. Ignored if MPAMF_PRI_IDR.HAS_INTPRI
is set to 0.

INTPRI_0_IS_LOW The internal priority encoded with 0 being low priority. Ignored if
MPAMF_PRI_IDR.HAS_INTPRI is set to 0.

HAS_INTPRI The internal priority control.

MPAMF_MBW_IDR All fields These fields are permitted to vary between resource instances.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 8-159
ID012521 Non-Confidential

MPAM in MSCs
8.3 Resource instance selection
MPAMF_AIDR, MPAMF_ECR, MPAMF_ESR, MPAMF_IIDR, MPAMF_PARTID_NRW_IDR, MPAMF_SIDR,
and MPAMCFG_PART_SEL are not affected by RIS.

8.3.5 RIS controls in MSMON_CFG_MON_SEL

The value in MSMON_CFG_MON_SEL.RIS selects the resource instance that is accessed by:

• The MSMON_CFG_* monitor configuration registers.

• The MSMON_* monitor and monitor capture registers.

To access the configuration, value and capture registers associated with a monitor, the value of
MSMON_CFG_MON_SEL.RIS should be set to match the RIS value associated with that monitor. Monitors not
associated with any particular resource or associated with the MSC must be associated with
MPAMCFG_PART_SEL.RIS == 0.

Note

Monitoring ID registers, MPAMF_MSMON_IDR, MPAMF_MBWUMON_IDR, and MPAMF_CSUMON_IDR,
are not affected by MSMON_CFG_MON_SEL.RIS. These registers are affected by MPAMCFG_PART_SEL.RIS.

8.3.6 Selecting a resource to monitor

To select the monitors for a particular resource instance, the value of MSMON_CFG_MON_SEL.RIS must be the
same value as used in MPAMCFG_PART_SEL.RIS. Monitors that are not associated with an MPAM partitioned
resource instance must be selected with a RIS value of 0.

To access a monitor for a particular resource, the MSMON_CFG_MON_SEL.RIS must be set to the resource
instance. Then one or more MSMON_CFG_* registers for the particular monitor are accessed.

Any access to a MSMON_* register address will access the register associated with the resource instance value held
in MSMON_CFG_MON_SEL.RIS. The exceptions to this are accesses to the MSMON_CFG_MON_SEL and
MSMON_CAPT_EVNT registers, which are not affected by the value held in MSMON_CFG_MON_SEL.RIS.

8.3.7 Undefined RIS values

This section covers behaviors when the value of MPAMCFG_PART_SEL.RIS or MSMON_CFG_MON_SEL.RIS:

• Is greater than MPAMF_IDR.RIS_MAX.

• Does not correspond to an MPAM resource implemented in this MSC.

• Does correspond to an implemented MPAM resource, but the selected resource does not implement the
control or monitor that has been accessed.

An MSC is permitted to:

• Implement fewer RIS bits than the architecture defines, though it must implement at least enough bits to
represent MPAMF_IDR.RIS_MAX.

MPAMF_MBWUMON_IDRHAS_CAPTURE This field is permitted to vary between resource instances.

HAS_RWBW This field is permitted to vary between resource instances.

HAS_LONG This field is permitted to vary between resource instances.

LWD This field is permitted to vary between resource instances.

SCALE This field is permitted to vary between resource instances.

NUM_MON This field is permitted to vary between resource instances.

a. If the priority partitioning is local to the resource instance, then all fields might vary between resource instances. If the
priority partitioning operates at the MSC level, then MPAMF_PRI_IDR should be non-zero only for when RIS is 0.

Table 8-1 Fields affected by a resource instance (continued)

Register Field Description for resource instance
8-160 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MPAM in MSCs
8.3 Resource instance selection
• Leave some RIS values that are within the range of 0 to MPAMF_IDR.RIS_MAX as undefined.

• Use only the implemented bits to decode RIS for selecting a resource instance.

Undefined resources that are within the range can still be identified. This is because the HAS_* fields within the ID
registers all read as 0 when MPAMCFG_PART_SEL.RIS selects an undefined resource. All RIS values greater than
MPAMF_IDR.RIS_MAX are undefined.

If software honors MPAMF_IDR.RIS_MAX and avoids accessing any MMR that are not indicated with the
corresponding HAS_* fields in the ID registers for that resource instance, it will not cause any RIS-related errors.

For more information on behavior caused by undefined RIS values, see:

• Undefined RIS in MPAMCFG_PART_SEL.RIS (errorcode == 8) on page 12-367.

• RIS in MPAMCFG_PART_SEL.RIS does not have partitioning control (errorcode == 9) on page 12-367.

• Undefined RIS in MSMON_CFG_MON_SEL.RIS (errorcode == 10) on page 12-367.

• RIS selected by MSMON_CFG_MON_SEL.RIS does not have monitor type (errorcode == 11) on
page 12-368.

Reading an MPAMF ID register when MPAMCFG_PART_SEL is an undefined RIS value

Access to an MPAMF ID register when MPAMCFG_PART_SEL.RIS is an undefined value must produce an ID
register value where all HAS_* fields read as 0. This action does not produce an error in MPAMF_ESR or signal
an error interrupt.

8.3.8 Reporting errors involving RIS

Software could misconfigure the RIS fields in MPAMCFG_PART_SEL and MSMON_CFG_MON_SEL registers,
possibly resulting in errors. See Optionality of error detection and reporting on page 12-375.

When an error is reported that involves a RIS value, the MPAMF_ESR.RIS field must be set to:

• For errors involving MPAMCFG_* register accesses, the MPAMCFG_PART_SEL.RIS

• For errors involving MSMON_* register accesses, the MSMON_CFG_MON_SEL.RIS value.

For MPAM errors that do not capture the RIS field in MPAMF_ESR.RIS as shown in Table 12-1 on page 12-365,
MPAMF_ESR.RIS should be set to 0.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 8-161
ID012521 Non-Confidential

MPAM in MSCs
8.4 Security in MSCs
8.4 Security in MSCs

MPAM behavior in an MSC is affected in the following ways:

• Certain memory-mapped registers are only accessible from Secure address space (NS == 0).

• PARTIDs communicated to the MSC are augmented with a single MPAM_NS bit as 0, indicating that the
MPAM PARTID in the request is to be interpreted in the Secure PARTID space. This is true even if the access
from Secure state software was to the Non-secure (NS == 1) address space. MPAM_NS is always 0 if the PE
is in the Secure state when the request is made, but the address of the request could be either a Secure or a
Non-secure address. If the PE is in the Non-secure state, both the MPAM_NS bit and the address NS bit must
be 1. See PARTID spaces and properties on page 3-37.

• When an MSC receives a transaction with MPAM_NS == 0, it accesses control settings for the Secure
PARTID. If it receives a request with MPAM_NS == 1 it accesses the control settings for the Non-secure
PARTID space.

• When programming the control settings for a Secure partition in an MSC, the settings must be stored by an
access to the configuration registers in the Secure address space (NS == 0). See Programming configuration
of MPAM settings for Secure IDs on page 8-162.

• When programming the control settings for a Non-secure partition in an MSC, the settings must be stored by
an access to the configuration registers in the Non-secure address space (NS == 1).

8.4.1 Programming configuration of MPAM settings for Secure IDs

Configuration parameters for a Secure PARTID or Secure MPAM monitor can only be programmed from a Secure
memory access (NS == 0):

• There are Secure and Non-secure versions of the MPAMCFG_PART_SEL and MSMON_CFG_MON_SEL.
These two versions are accessed at the same address, differentiated by the value of the NS bit.

• Accessing an MPAMCFG_* register with a Secure (NS == 0) request accesses the configuration of a resource
control of the Secure PARTID space that is selected by the PARTID in MPAMCFG_PART_SEL_S.

• Accessing an MPAMCFG_* register with a Non-secure (NS == 1) request accesses the configuration of a
resource control of the Non-secure PARTID space that is selected by the PARTID in
MPAMCFG_PART_SEL_NS.

8.4.2 Using Secure and Non-secure MPAM PARTIDs

When a request is processed by an MSC with MPAM resource controls, PARTID, PMG, and MPAM_NS control
the partitioning control settings used and monitoring events triggered.

The PARTID and MPAM_NS of a request select the partitioning configuration from a table of PARTID
configurations for each implemented resource control. The MPAM_NS bit in the request selects between the
Non-secure configuration table and the Secure configuration table. The two tables do not need to have the same size.
For example, the Secure configuration table might be much smaller. Tables are not required to be power-of-two
sized.

A monitoring event is triggered if the PARTID, PMG, and MPAM_NS in a request match those configured in a
performance monitor.
8-162 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MPAM in MSCs
8.5 Virtualization support in system MSCs
8.5 Virtualization support in system MSCs

MSCs do not see virtual PARTIDs. The PARTID generation in a Requester resolves any virtual PARTID into a
physical PARTID that is communicated with the memory-system request. Therefore, MSCs only handle physical
PARTIDs.

8.5.1 Hypervisor emulates guest accesses to partitioning and monitoring configurations

Accesses from a guest to the configuration registers of all MSCs, and to the System registers that configure the PE
MSCs, may be emulated by the host hypervisor. This allows virtual PARTID mapping to be emulated and hypervisor
policies governing resource partitioning to be applied.

Configuration and reconfiguration of control settings in MSCs are expected to be rare occurrences.

Arm recommends that the memory-mapped configuration registers of an MSC should be placed at a 64-KB-aligned
address to permit an access trap on that page in the stage-2 page tables. The stage-2 access traps are taken to EL2
where the hypervisor can emulate the access. For more information on recommended configurations of
memory-mapped registers of an MSC, see MPAM feature page on page 11-203.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 8-163
ID012521 Non-Confidential

MPAM in MSCs
8.6 PE with integrated MSCs
8.6 PE with integrated MSCs

A PE might have integrated MSC behaviors. These are discovered and configured as are other MSCs. See
Chapter 11 Memory-Mapped Registers .
8-164 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MPAM in MSCs
8.7 System-wide PARTID and PMG widths
8.7 System-wide PARTID and PMG widths

This section is informative.

The behavior of an MSC is CONSTRAINED UNPREDICTABLE if it receives an MPAM PARTID or PMG outside the
range it supports. For more information, see Behavior of configuration reads and writes with errors on page 12-370.

For predictable behavior, the PARTID on a request by a Requester should be in the range of 0 to:

• If the request is MPAM_NS == 1 (to Non-secure ID spaces), the smallest maximum Non-secure PARTID
supported by any MSC that might be accessed by that request.

• If the request is MPAM_NS == 0 (to Secure ID spaces), the smallest maximum Secure PARTID supported
by any MSC that might be accessed by that request.

And, the PMG on a request by a Requester should be in the range of 0 to:

• If the request is MPAM_NS == 1 (to Non-secure ID spaces), the smallest maximum Non-secure PMG
supported by any MSC that might be accessed by that request.

• If the request is MPAM_NS == 0 (to Secure ID spaces), the smallest maximum Secure PMG supported by
any MSC that might be accessed by that request.

The smallest maximum values for PARTID and PMG in Non-secure and Secure spaces can be computed from
firmware during discovery. PARTID and PMG widths are reported through ID registers in PEs and MSCs. See
sections Appendix B MSC Firmware Data, System register descriptions on page 7-95, and Determining presence
and location of MMRs on page 11-202.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 8-165
ID012521 Non-Confidential

MPAM in MSCs
8.8 MPAM interrupts
8.8 MPAM interrupts

This section is normative.

There are two types of interrupts that an MPAM MSC could produce:

• MPAM Error Interrupt.

• MPAM Overflow Interrupt.

8.8.1 MPAM Error Interrupt

MPAM errors in MSCs are described in Error conditions in accessing memory-mapped registers on page 12-365.

MPAM errors that are detected in an MSC are recorded in MPAMF_ESR and signaled to software via an MPAM
error interrupt if enabled by MPAMF_ECR.INTEN == 1.

If an MSC cannot encounter any of the error conditions listed in Error conditions in accessing memory-mapped
registers on page 12-365, both the MPAMF_ESR and MPAMF_ECR must be RAZ/WI. An error cannot be
encountered if the MSC:

• Does not support any feature of MPAM that can raise that error.

• Is designed so that the error cannot occur.

• Is permitted to have no detection for that error and does not implement detection for the error, see Required
error condition detection on page 12-375.

If an MSC supports both Secure and Non-secure address spaces, MPAMF_ESR and MPAMF_ECR will each have
a Secure instance and a Non-secure instance. The Secure registers control and generate Secure MPAM error
interrupts, while the Non-secure registers control and generate Non-secure MPAM error interrupts.

The MPAM error interrupt can be implemented in an MSC as a level-sensitive interrupt or as an edge-triggered
interrupt. The interrupt behavior depends on whether level-sensitive or edge-triggered interrupts are used.

• Arm recommends that the MPAM error interrupt be implemented as a level-sensitive interrupt.

• The mechanism by which an interrupt request from an MSC resource monitor generates an FIQ or IRQ
exception is IMPLEMENTATION DEFINED.

• Arm recommends that an MSC implements two MPAM error interrupt signals, one for the Secure MPAM
error interrupt and another for the Non-secure MPAM error interrupt.

• Arm recommends that MPAM error interrupt requests:

— Translate into an MPAM_ERR_IRQ signal, so that they are observable to external devices.

— If the MSC is integrated into a PE, connect to inputs on an IMPLEMENTATION DEFINED generic interrupt
controller as a Private Peripheral Interrupt (PPI) or a Locality-specific Peripheral Interrupt (LPI) for
that PE. See the Arm Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0 for information about PPIs, LPIs, and SPIs.

— If the MSC is not integrated into a PE, connect to inputs on an IMPLEMENTATION DEFINED generic
interrupt controller as a System Peripheral Interrupt (SPI) or Locality-Specific Peripheral Interrupt
(LPI).

Level-sensitive interrupts

When using level-sensitive interrupts, the interrupt is active when MPAMF_ESR.ERRCODE is non-zero.

Software can make a level-sensitive interrupt active by writing non-zero to MPAMF_ESR.ERRCODE.

An interrupt service routine is expected to write 0b0000 into MPAMF_ESR.ERRCODE to clear the interrupt.

If the MSC supports signaling the MPAM error interrupt through an MSI, the interrupt must be edge-triggered.

See also Chapter 12 Errors in MSCs.
8-166 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MPAM in MSCs
8.8 MPAM interrupts
Edge-triggered interrupts

When using edge-triggered interrupts, the interrupt edge is generated when MPAMF_ESR.ERRCODE is written
due to an error.

An edge-triggered interrupt is not generated when software writes to MPAMF_ESR.

An interrupt service routine does not need to clear an edge-triggered interrupt.

If the MSC supports signaling the MPAM error interrupt through an MSI, the interrupt must be edge-triggered.

See Chapter 12 Errors in MSCs for other reasons for an interrupt service routine to clear MPAMF_ESR.

Support for MSI writes to signal error interrupts

Message signaled interrupts (MSIs) are signaled using a memory write that is usually directed at an interrupt
translation service.

The support for error MSIs is identified by the MPAMF_IDR.{HAS_ERR_MSI, HAS_ESR} fields.

The registers that contain the error MSI write configuration are:

• MPAMF_ERR_MSI_ADDR_L.

• MPAMF_ERR_MSI_ADDR_H.

• MPAMF_ERR_MSI_ATTR.

• MPAMF_ERR_MSI_DATA.

• MPAMF_ERR_MSI_MPAM.

Instances of these MSI configuration registers exist in each of the Secure physical address space and the Non-secure
physical address space. The set of these registers in an address space configures the error MSI write for errors from
the MPAMCFG_* or MPAMF_* registers in that address space.

Errors can also be raised by errors in requests. Errors in requests which have the PARTID space selected by
MPAM_NS of 0 are signaled as Secure errors using the MSI write information from the MPAMF_ERR_MSI_*
registers in the Secure address space. Errors in requests which have the PARTID space selected by MPAM_NS of
1 are signaled as Non-secure errors using the MSI write information from the MPAM_ERR_MSI_* registers in the
Non-secure space.

8.8.2 MPAM overflow interrupt

A monitor could overflow, especially if it is a type of monitor that accumulates counts. If it is possible for a type of
monitor to overflow, there are bits in MSMON_CFG_*_CTL to control the behavior on overflow (Overflow bit on
page 10-197).

Support of an overflow interrupt is optional in an MSC. If the MSC has monitors that can overflow, Arm
recommends that the MPAM overflow interrupt be implemented.

When an MPAM monitor instance overflows, it sets the OFLOW_STATUS flag in the monitor instance's control
register. If the OFLOW_STATUS flag was previously 0 and OFLOW_INTR bit is 1, an overflow interrupt is
signaled if the MSC implements overflow interrupts.

If an MSC supports both Secure and Non-secure address spaces, MSMON_CFG_*_CTL registers and
MSMON_MBWU and MSMON_CSU registers that are implemented have Secure and Non-secure instances.
Secure instances of MSMON_CFG_*_CTL.OFLOW_INTR control whether a Secure MPAM overflow interrupt is
generated when the corresponding Secure counter instance overflows. Non-secure instances of
MSMON_CFG_*_CTL.OFLOW_INTR control whether a Non-secure MPAM overflow interrupt is generated
when the corresponding Non-secure counter instance overflows.

• The mechanism by which an interrupt request from an MSC resource monitor generates an FIQ or IRQ
exception is IMPLEMENTATION DEFINED.

• Arm recommends that an MSC implements two MPAM overflow interrupt signals, one for the Secure MPAM
overflow interrupt and another for the Non-secure MPAM overflow interrupt.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 8-167
ID012521 Non-Confidential

MPAM in MSCs
8.8 MPAM interrupts
• Arm recommends that MPAM overflow interrupt requests:

— Translate into an MPAM_OF_IRQ signal, so that they are observable to external devices.

— If the MSC is integrated into a PE, connect to inputs on an IMPLEMENTATION DEFINED generic interrupt
controller as a Private Peripheral Interrupt (PPI) or a Locality-specific Peripheral Interrupt (LPI) for
that PE. See the Arm Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0 for information about PPIs, LPIs and SPIs.

— If the MSC is not integrated into a PE, connect to inputs on an IMPLEMENTATION DEFINED generic
interrupt controller as a System Peripheral Interrupt (SPI) or Local Peripheral Interrupt (LPI).

The interrupt is reset by writing 0 to the OFLOW_STATUS field of all overflowed monitor instances
MSMON_CFG_*_CTL register.

If the MSC supports signaling monitor overflow interrupts through an MSI, the MPAM monitor overflow interrupt
must be edge-triggered.

Support for MSI writes to signal overflow interrupts

MSIs are signaled using a memory write that is usually directed at an interrupt translation service.

The support for the monitor overflow interrupt is identified by the MPAMF_MSMON_IDR.{HAS_OFLW_INTR,
HAS_OFLW_MSI} fields.

The registers that contain the error MSI write configuration are:

• MSMON_OFLOW_MSI_ADDR_L

• MSMON_OFLOW_MSI_ADDR_H.

• MSMON_OFLOW_MSI_ATTR.

• MSMON_OFLOW_MSI_DATA.

• MSMON_OFLOW_MSI_MPAM.

Instances of these MSI configuration registers exist in each of the Secure physical address space and the Non-secure
physical address space. The set of these registers in an address space configures the overflow MSI write from
overflow events of monitors accessible in that address space.

Monitor overflow status register

The optional MSMON_OFLOW_SR register gives a summary of the overflow status flags (OFLOW_STATUS and
OFLOW_STATUS_L) for each RIS and for each monitor type.

This register contains a flag bit per RIS value. Each flag is 0 if all of the OFLOW_STATUS and
OFLOW_STATUS_L bits of all monitor types and all instances of each type for the resource instance are 0. Each
flag is 1 if any of the overflow status bits for any monitor instance of any type for the resource instance are 1

The register also contains a flag bit for each monitor type. A monitor type flag is 1 if any monitor instance of the
type for the resource instance has the OFLOW_STATUS or OFLOW_STATUS_L bit as 1.

MSMON_OFLOW_SR is read-only. The flags are reset when the OFLOW_STATUS and OFLOW_STATUS_L
bits monitored by that flag have all be reset to zero.

The presence of MSMON_OFLOW_SR is indicated by MPAMF_MSMON_IDR.HAS_OFLOW_SR == 1.

Monitor type overflow status bitmap registers

In an implementation that has many monitor instances of a monitor type, the number of monitor instances to scan
for overflows is large even after consulting MSMON_OFLOW_SR to eliminate most of the RIS and monitor types.
To probe one monitor instance requires that the monitor overflow interrupt service routine set
MSMON_CFG_MON_SEL to a monitor instance, read MSMON_CFG_<type>_CTL and check one or two bits in
value of that register to see if the OFLOW_STATUS or OFLOW_STATUS_L bit is set.

To assist the scanning of many monitor instances, optional overflow status bitmap registers for a monitor type are
available for implementation. These overflow status bitmaps can greatly accelerate the scanning.
8-168 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MPAM in MSCs
8.8 MPAM interrupts
Each MPAM monitor type can have an optional overflow status register that shows the overflow status flags in a
bitmap of 32 monitor instances. The monitor instances shown are selected in MSMON_CFG_MON_SEL where the
RIS field selects the resource instance and the MON_SEL field AND 0xFFE0 selects the lowest of the contiguous
32 monitor instances reported in the bitmap.

For the CSU monitor type, the CSU overflow status register is MSMON_CSU_OFSR. The presence of this register
is discoverable in MPAMF_CSUMON_IDR.HAS_OFSR.

Note

In most implementations, CSU monitor instances will not be able to overflow as the maximum value in
MSMON_CSU is known at design time and will fit within the architectural maximum of MSMON_CSU. In such
an implementation, there will be no CSU monitor instance overflows and MSMON_CSU_OFSR has no value.

For the MBWU monitor type, the MBWU overflow status register is MSMON_MBWU_OFSR. The presence of
this register is discoverable in MPAMF_MBWUMON_IDR.HAS_OFSR.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 8-169
ID012521 Non-Confidential

MPAM in MSCs
8.9 MSC support of MPAM for RME
8.9 MSC support of MPAM for RME

An RME system supports 4 physical address spaces. MPAM for RME supports the 4 address spaces and 4 PARTID
spaces. The MPAM system environment of an RME system is described in The MPAM for RME system on
page 5-59.

• An MSC that supports the 4 physical address spaces and 4 PARTID spaces is defined as a four space MPAM
MSC.

• An MSC that supports only 2 physical address spaces and 2 PARTID spaces is defined as a two space MPAM
MSC.

• Non-MPAM components support either 1, 2 or 4 address spaces but do not support MPAM at all. Non-MPAM
devices have no regulated resources and must not have MPAM devices downstream. See Non-MPAM
components on page 5-64.

• Other combinations of physical address space support and PARTID space support are not permitted.

4 PARTID spaces must be supported in the levels of interconnect that connect RME PEs, but some MSCs might
support MPAM with support for only 2 PARTID spaces. See MPAM for RME propagation of MPAM_SP with
requests on page 4-46.

The MPAM PARTID space in a request and the physical address space accessed by the request are independent in
the request. The associations of physical address space and PARTID space are part of the request generation process
at a Requester. An MSC must not assume any association between the PARTID space of a request and the physical
address space of the request.

8.9.1 Four-space MSC

An MSC that fully supports RME and MPAM must have 4 PARTID spaces and 4 physical address spaces.

In an MSC that supports 4 PARTID spaces and 4 physical address spaces, the MPAMF_IDR.SP4 bit must be 1 when
read from any address space and, if RIS is supported, with any MPAMCFG_PART_SEL.RIS value.

MPAMF_BASE_s, MPAMF_BASE_ns, MPAMF_BASE_rt, MPAMF_BASE_rl must all be defined in the
firmware table description of the MSC.

The MPAM memory-mapped registers in each address space are at the offsets from the MPAM Feature Page Base
address in that address space. Table 8-2 on page 8-170 shows the relationship of address space, the MPAM feature
page base address symbol and the contents of that MPAM feature page.

The offsets of MPAM memory-mapped registers from the MPAM Feature Page base address are the same for each
MPAM Feature page and in each address space. See Table 11-1 on page 11-208 for all MPAM MSC registers.
Added fields and accessors for the two physical address spaces for RME are described in this chapter. See
Chapter 11 Memory-Mapped Registers for Memory-mapped registers from the MPAMF_BASE_* for that address
space.

Table 8-2 Relationship of address space, MPAM feature page base address symbol and a description of the contents
of that MPAM feature page

Address
Space

MPAM Feature
Page Base

Description

Non-Secure MPAMF_BASE_ns MPAM MSC registers in the Non-secure address space describe and access controls and
monitors for Non-secure PARTID space.

Secure MPAMF_BASE_s MPAM MSC registers in the Secure address space describe and access controls and monitors
for Secure PARTIDs.

Realm MPAMF_BASE_rl MPAM MSC registers in the Realm address space describe and access controls and monitors
for the Realm PARTID space

Root MPAMF_BASE_rt MPAM MSC registers in the Root address space describe and access controls and monitors
for the Root PARTID space
8-170 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MPAM in MSCs
8.9 MSC support of MPAM for RME
See Minimum required MPAM memory-mapped registers on page 11-205 for the required minimum set of MPAM
registers accessible from the MPAM Feature Page in any address space. In each address space the MPAM features
of the MSC in that address space are described by decoding the fields in MPAMF_IDR. This indicates that
additional ID registers are present and further describe the features. MPAM has no requirement that the resource
controls and monitors in one address space are the same as those described in another address space.

Instances of the MPAMCFG_* registers must exist in each of the 4 address spaces where MPAMF_*IDR.HAS_*
is 1 for a feature that uses those registers.

There must be an instance of MPAMCFG_PART_SEL in each of the 4 address spaces unless there are no resource
controls or resource instances in the PARTID space whose control registers are accessed through that physical
address space.

Instances of the MSMON_* registers must exist in each address space where the ID registers indicate that the
monitor exists.

There must be an instance of MSMON_CFG_MON_SEL in each of the 4 address spaces that contain any monitor
registers.

MPAMF_ESR and MPAMF_ECR must exist in each address space in each of the 4 address spaces where

MPAMF_IDR.HAS_ESR is 1.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 8-171
ID012521 Non-Confidential

MPAM in MSCs
8.9 MSC support of MPAM for RME
8-172 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 9
Resource Partitioning Controls

This chapter contains the following sections:

• Introduction on page 9-174.

• Partition resources on page 9-175.

• Standard partitioning control interfaces on page 9-176.

• Vendor or implementation-specific partitioning control interfaces on page 9-185.

• Measurements for controlling resource usage on page 9-186.

• PARTID narrowing on page 9-187.

• System reset of MPAM controls in MSCs on page 9-188.

• About the fixed-point fractional format on page 9-189.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 9-173
ID012521 Non-Confidential

Resource Partitioning Controls
9.1 Introduction
9.1 Introduction

This introduction to memory-system partitioning is informative. Other sections are normative unless marked as
informative.

Software assigns VMs and applications to a partition. The hypervisor can assign VMs to partitions, and operating
systems can assign applications to partitions. This specification does not address how such assignments are made
by software.

A memory-system partition is associated with a software environment on a PE by loading an MPAMn_ELx register
with PARTID_I and PARTID_D. An EL2 hypervisor loads MPAM1_EL1 with the partition IDs when
context-switching between VMs. An EL1 operating system loads MPAM0_EL1 with the partition IDs when
context-switching between applications. The PARTIDs loaded into fields of MPAMn_ELx for instruction and data
accesses are used for requests when running software at ELn. The PARTID on memory-system requests connects
the software environment to the resource partitioning controls in the MSCs that handle the requests.

Figure 9-1 Partitioning, VMs, and OS processes

The PARTID of a request controls uses of each MSC’s performance resources. An MSC receives a PARTID with
each request. The PARTID may be used within the component to select resource controls for the component’s
resource allocation and utilization behavior.

All memory-system requests with a given PARTID share the resource control settings for that partition.

Because a PARTID is communicated to shared MSCs and interpreted there, PARTIDs should be managed and
allocated on a system-wide basis.

Resource partitioning controls might be standard or implementation specific.

Standard control interfaces are architected, but optional. Therefore, an MSC that does not require a standard control
interface does not need to implement it. Most MSCs implement few of the standard control interfaces.

An implementation-specific resource control can use a PARTID for unique facilities that either control resources
not envisioned by the standard controls or that implement unique control methods that cannot be mapped onto the
standard control interfaces.

VM3

PARTID 0

PARTID 1

PARTID 2

Process
3741

Process
3974

VM7
Process

1473
Process

3974
9-174 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Partitioning Controls
9.2 Partition resources
9.2 Partition resources

An MSC contains resources that affect the performance of the memory system. For such a resource to be
partitionable:

• The component must support MPAM at its upstream interface.

• The component must have one or more MPAM resource controls for that resource.

A partitionable resource may be partially allocated to a partition according to the programming of the MPAM
resource control or controls for that resource.

If the implementation supports the RIS MPAM feature, the MSC may have two or more partitionable resources
differentiated by the value of MPAMCFG_PART_SEL.RIS. For more information see Resource instance selection
on page 8-158.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 9-175
ID012521 Non-Confidential

Resource Partitioning Controls
9.3 Standard partitioning control interfaces
9.3 Standard partitioning control interfaces

The MPAM architecture defines standard partitioning control interfaces. This enables binary distribution of
operating systems supporting MPAM.

The MPAM architecture defines the following standard types of control interfaces for memory-system resources:

• Cache-portion partitioning.

• Cache maximum-capacity partitioning.

• Memory-bandwidth portion partitioning.

• Memory-bandwidth minimum and maximum partitioning.

• Memory-bandwidth proportional-stride partitioning.

• Priority partitioning.

Each of these standard control interfaces is optional at each MSC. An MSC may implement several controls or none.
Some controls only make sense for certain types of MSCs, or for certain implementations of an MSC. Others may
be possible but too costly for the system’s target market.

Cache-portion partitioning and memory-bandwidth portion partitioning follow the generic portion-control interface
described in Portion resource controls on page A-391. Cache maximum-capacity partitioning follows the generic
maximum-usage control interface described in Maximum-usage resource controls on page A-392.

The presence of each standard control is indicated by a bit in MPAMF_IDR, or in a resource-specific
memory-mapped ID register. See Memory-mapped ID register description on page 11-211.

The control settings storage is accessed through the combination of several access indices:

• The address space used to access the Secure or Non-secure MSC register. Controls for PARTIDs in:

— The Secure PARTID space are accessed through registers in the Secure address space

— The Non-secure PARTID space are accessed through registers in the Non-secure address space.

• The MSC that contains the control. This is represented as the base address of the MPAM feature page in the
address space. These are represented here as:

— MPAMF_BASE_s in the Secure address space

— MPAMF_BASE_ns in the Non-secure address space.

• If MPAMF_IDR.HAS_RIS is 1, MPAMCFG_PART_SEL.RIS. This field selects a resource to access.

• MPAMCFG_PART_SEL.PARTID. This field selects the PARTID from:

— The PARTID space

— The resource instance to be configured.

• The control settings register. When accessed, this register selects which control is being configured for:

— The PARTID.

— The PARTID space.

— The resource instance.

For example, to access the memory bandwidth maximum configuration settings for Secure PARTID 15 on resource
instance 2 of an MSC that implements RIS:

1. Secure PARTID 15 must be stored in MPAMCFG_PART_SEL.PARTID at the address MPAMF_BASE_s +
0x0100 and, due to RIS being implemented, the RIS field of that address must be set to 2 to ensure access to
the correct resource instance.

2. Once the store has completed, the new maximum fraction of memory bandwidth for Secure PARTID 15 of
resource instance 2 must be stored into the MPAMCFG_MBW_MAX_s register of this MSC, found at
MPAMF_BASE_s + 0x0208.

Software must ensure mutual exclusion for access to MPAMCFG_* registers of each MSC.
9-176 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Partitioning Controls
9.3 Standard partitioning control interfaces
9.3.1 Cache-portion partitioning

A portion is a uniquely identifiable part of a resource. It is of fixed size or capacity and all portions of a resource
are the same size. A particular resource has a constant number of portions. Every partition that is given access to a
portion n shares access to portion n.

The storage portions of caches may be partitioned. Allocating portions of a cache to a partition permits requests
attributed to that partition to allocate within those portions of the cache.

When a request to a cache requires a cache line to be installed in the cache, the PARTID of that request determines
which portions of the cache the request may allocate to install the line.

Cache-portion partitioning uses the generic portion-partitioning interface described in Portion resource controls on
page A-391.

Cache-portion bit map

A cache-portion bitmap (CPBM) controls the cache-storage portion allocation for a partition. Each bit of a CPBM
controls whether the partition is permitted to allocate a particular capacity portion of the cache. The number of
capacity portions available in a cache is an IMPLEMENTATION DEFINED parameter that is discoverable in
MPAMF_CPOR_IDR for the cache. The width of the CPBM field is equal to the number of capacity portions
available in the cache.

For example, assume a cache has a 1 MB total capacity in 32 portions. Each portion has a capacity of 1 MB / 32 =
32 KB. A partition has 4 portions allocated (only 4 bits in the CPBM are 1’s). So, this partition can only allocate
into these particular 4 portions, allowing up to 128 KB, or 1/8th of the cache’s total capacity.

CPBM is an instance of the generic portion bitmap (PBM) described in Portion resource controls on page A-391.

Over-allocation of capacity portions

Storage capacity portions cannot be over-allocated. This is true because the CPBM contains bits that control
allocations in the implementation-dependent number of allocable capacity portions of the cache.

Changing CPBM for a partition

Software may change the CPBM during system operation. This does not disrupt normal system operation because
the CPBM only affects new allocations and does not reallocate previously allocated cache storage.

If a cache line was allocated under a previous CPBM to a portion that is not set in the new CPBM, the partition is
using more of the cache capacity than it is entitled to under the new CPBM:

• If lines previously allocated in a portion that is not in the new CPBM are not accessed again, they will
eventually be reallocated to a partition that has its CPBM bit set for that portion of the capacity. So, these will
represent a temporary misallocation of capacity.

• If however, a line that is present in the cache in a portion that is not in the new CPBM continues to be
accessed, this can lead to a long-term mis-allocation of capacity. The line’s location optionally might be
updated, see Write hits that update the PARTID of a cache line may move that line to a different portion on
page 5-57.

Using cache-portion partitioning with cache maximum-capacity partitioning

When cache-portion partitioning is used with cache maximum-capacity partitioning, both controls are effective as
described in Using cache maximum-capacity partitioning with cache-portion partitioning on page 9-178.

9.3.2 Cache maximum-capacity partitioning

A limit may be set on the storage capacity of a cache that a memory-system partition may use. Setting a maximum
cache capacity to a partition permits requests attributed to that partition to allocate up to that maximum cache
capacity. Attempts to allocate beyond that capacity must limit a partition’s capacity usage.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 9-177
ID012521 Non-Confidential

Resource Partitioning Controls
9.3 Standard partitioning control interfaces
 (informative) Examples of techniques for limiting cache usage by a new request when a partition’s capacity usage
is at or above its maximum include:

• Do not allocate for the new request.

• Replace some data from that partition with data from the new request.

• Evict some data from that partition from the cache before allocating for the new request.

• Defer the required deallocation until a more convenient time.

Cache lookups are not affected by partitioning. A cache lookup must find a valid cache line even if that line was
allocated with a different PARTID.

Cache maximum-capacity partitioning follows the description of the generic maximum-usage resource control
interface described in Maximum-usage resource controls on page A-392.

Cache maximum-capacity control setting

The cache maximum-capacity control setting is programmed by storing a capacity limit into the MSC's cache
maximum capacity control interface, MPAMCFG_CMAX.

The cache maximum-capacity limit is a fraction of the cache's total capacity. The format of the limit value is a
fixed-point fraction, as described in About the fixed-point fractional format on page 9-189.

For example, to allocate 30% of a 256 KB cache to a partition:

• In the fixed-point fractional format, 1.0 is represented as 216 – 1, or in hex as 0xFFFF. The subtraction makes
1.0 within the range of the representation.

• So, the representation of 30% would be 1.0 * 0.30, which in hex is 0xFFFF * (decimal) 0.30, or 0x4CCC.

— Similarly, 25% would be 0x3FFF; 14% would be 0x23D6; 3% would be 0x07AE; and 3.25% would be
0x0851.

• If you have a cache with 256 KB of capacity, and the resource control setting for a PARTID is set to 0x4CCC
to represent 30%, that partition is permitted to use 30% of the cache, or about 76.75 KB of capacity.

• Since most, but not all, Arm caches have 64-byte lines, a 256 KB cache has 4096 of these 64-byte lines, and
30% of those lines is 1228 or 76.75 KB.

The fixed-point fractional format permits an implementation to leave bits to the right as unimplemented, meaning
that the value would be truncated to the implemented bits, causing some of the right-most bits to be zeros:

• As an example, the 3% value previously mentioned is 0x07AE. If only 8 bits of fraction are implemented, when
software stores 0x07AE into a resource control setting, the value is shortened to the most significant bits and
stored as 0x07--.

• When using the resource control setting, the unimplemented bits would be read as zeros.

The actual value of the setting is therefore an interval from the value of the control setting up to the value of the
control setting plus one in the right-most implemented bit.

• In the case of the 3% value previously mentioned, that interval is from 0x07 (2.734%) to 0x08 (3.125%).

• An implementation is permitted to regulate the resource to any point within this interval.

Using cache maximum-capacity partitioning with cache-portion partitioning

When cache-portion partitioning is used with cache maximum-capacity partitioning, both controls are effective.
Cache-portion partitioning controls which portions of the capacity may be allocated to this partition. Cache
maximum-capacity partitioning limits the amount to less than or equal to a cache-capacity limit control setting.

For example, assume several portions of the capacity are shared by several partitions. Any such partition can
allocate within the shared portions. To keep one of the partitions from using too much of the shared allocation, the
maximum-capacity controls for the partitions can each be set to less than the capacity of the portions to which they
may allocate. If each partition is given 50% of the capacity of the shared portions, then no one partition can use more
than 50% of the shared cache portions.
9-178 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Partitioning Controls
9.3 Standard partitioning control interfaces
Here is an example of a cache with 1 MB total capacity in 32 portions. Each partition has 4 portions for shared
allocation. To allow a partition to use no more than 50% of its shared allocation, you would set the cache
maximum-capacity limit for this partition as follows:

1. Portions divide the capacity of the cache into distinct parts of the same size. So, for a 1 MB cache divided
into 32 portions, each portion has 1 MB / 32 = 32 KB:

a. In portion partitioning, it is not possible to allocate anything other than an integral number of portions
to a PARTID.

b. A cache portion may be exclusively allocated to a PARTID or it may be shared by 2 or more PARTIDs.

c. A PARTID that has 4 portions allocated to it is permitted to use 32 KB * 4 = 128 KB.

2. The combined behavior of cache-portion partitioning and cache maximum-capacity control has both
controls:

a. To allow a PARTID to use only 50% of the storage in the portions allocated to it, the cache
maximum-capacity control is used.

b. Compute the fraction of the cache that is 50% of the storage in the portions allocated. In this case, it
is 64 KB / 1 MB = 1/16 or 6.25%, which is 0x0FFF in the fixed-point fractional representation.

c. The combined behavior only permits the PARTID to allocate storage in the 4 portions it may use
according to the cache-portion control, but its use of storage is also limited to 50% of the storage of
those portions.

Over-allocation of capacity

Cache capacity can be over-allocated because the sum of the cache-capacity control parameters may exceed 100%
of the cache size. This may be acceptable. The cache-capacity control does not provide a minimum cache capacity
guarantee, only a maximum guarantee. The data of inactive partitions may be evicted from the cache due to the
activity of other partitions.

9.3.3 Memory-bandwidth portion partitioning

An MSC’s downstream bandwidth may be divided into portions, and those portions may be allocated to partitions.

Memory-bandwidth portion partitioning follows the generic portion-control interface described in Portion resource
controls on page A-391, in which a portion is a quantum of bandwidth. A Time-Division Multiplexing (TDM)
scheme that allocates traffic to time slots is an example of a bandwidth allocation system that has portions.

The BandWidth Portion Bit Map (BWPBM) is the Portion Bit Map (PBM) for bandwidth.

9.3.4 Memory-bandwidth minimum and maximum partitioning

An MSC’s downstream bandwidth may be partitioned by bandwidth usage. There are two bandwidth-usage control
schemes. An MSC can optionally implement each of them:

• Minimum bandwidth to which the PARTID has claim, even in the presence of contention.

• Maximum bandwidth limit available to the PARTID, in the presence of contention.

The minimum and maximum bandwidth partitioning schemes rely on tracking bandwidth usage by PARTIDs.
Because bandwidth is measured in bytes per second, bandwidth measurements have a dependence on time. That
dependence is captured in this specification as the accounting window or accounting period. See
Memory-bandwidth allocation accounting window width on page 9-181

Without contention, the bandwidth may be strictly limited to the maximum or permitted to use more than the
maximum, since no other partition’s traffic is claiming that bandwidth.

Any combination of these control schemes may be used simultaneously in an MSC that supports them.

Each control scheme is described below.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 9-179
ID012521 Non-Confidential

Resource Partitioning Controls
9.3 Standard partitioning control interfaces
Minimum-bandwidth limit partitioning

The minimum-bandwidth control scheme regulates the bandwidth used by a PARTID's requests:

• If the bandwidth usage by the PARTID of the request, as tracked during the accounting period, is currently
less than the partition’s minimum, its requests are preferentially selected to use downstream bandwidth.

• If the bandwidth usage by the PARTID of the request, as tracked during the accounting period, is currently
greater than or equal to the PARTID's minimum, its requests compete with other requests as described under
Maximum-bandwidth limit partitioning on page 9-180, if implemented. If maximum-bandwidth limit
partitioning is not implemented, requests with PARTID that have current bandwidth usage greater than that
PARTID's minimum-bandwidth limit compete with all requests and do not receive preferential treatment
under the minimum-bandwidth limit.

A PARTID's requests below its minimum bandwidth are therefore most likely to be scheduled to use downstream
bandwidth.

Bandwidth that is not used by a partition during an accounting window does not accumulate.

The control parameter is a fixed-point fraction of the available bandwidth. For more information, see About the
fixed-point fractional format on page 9-189.

Maximum-bandwidth limit partitioning

The maximum-bandwidth limit control scheme regulates the bandwidth used by a PARTID's requests:

• If the bandwidth usage by the PARTID as tracked during the accounting period is currently less than the
PARTID's maximum bandwidth but greater than or equal to its minimum bandwidth, if implemented, its
requests are selected to use bandwidth when there are no competing minimum bandwidth requests to service.
Requests for PARTIDs that are above their minimum-bandwidth limits but less than their
maximum-bandwidth limits compete with each other to use bandwidth.

• If the bandwidth usage by the PARTID of the request is greater than or equal to the PARTID's maximum
bandwidth and the HARDLIM bit is not set, the request competes with other such requests to use bandwidth
when there are no competing requests to service for PARTIDs currently below their minimum bandwidth or
maximum bandwidth.

• If the bandwidth usage by the PARTID of the request is greater than or equal to the PARTID's maximum
bandwidth and the Hard Limit (HARDLIM) bit is set, the requests are saved until the PARTID's bandwidth
usage drops below its maximum bandwidth control setting.

If the HARDLIM bit is set, the partition is prevented from using more bandwidth if the current bandwidth usage is
over the maximum bandwidth limit. As the accounting window advances, the current bandwidth usage resets to zero
or otherwise decays, permitting the partition to again use bandwidth.

Bandwidth that is not used by a partition during an accounting window does not accumulate.

The control parameter is a fixed-point fraction of the available bandwidth. For more information, see About the
fixed-point fractional format on page 9-189.
9-180 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Partitioning Controls
9.3 Standard partitioning control interfaces
Using minimum-bandwidth limit with maximum-bandwidth limit controls

If both minimum-bandwidth limit and maximum-bandwidth limit are implemented, Table 9-1 on page 9-181 shows
the preference of requests.

Bandwidth control parameters

The control parameters for bandwidth partitioning schemes are all expressed in a fixed-point fraction of the
available bandwidth. See About the fixed-point fractional format on page 9-189.

MPAMCFG_MBW_MAX, the bandwidth control setting register for maximum-bandwidth limit also includes a
Hard Limit (HARDLIM) bit that prevents a partition from using more than the maximum fraction of the available
bandwidth that is set in that register.

Memory-bandwidth allocation accounting window width

For both the minimum- and maximum-bandwidth partitioning schemes, memory-bandwidth regulation occurs over
an accounting window. The accounting may be either a moving window or by resetting bandwidth counts at the
beginning of each accounting-window period.

The width of the window is discoverable and can be read from MPAMCFG_MBW_WINWD for the PARTID
selected by MPAMCFG_PART_SEL.

In implementations that support settable window width per PARTID, MPAMCFG_MBW_WINWD can be written
with a fixed-point format (as described in the register’s description) specifying the accounting window width in
microseconds.

Fixed accounting window

In fixed-window accounting, bandwidth is apportioned to requests so that each partition gets bandwidth according
to the minimum and maximum for that partition (Over-allocation of minimum bandwidth on page 9-182). Request
or local priorities (Priority partitioning on page 9-183) are used to resolve conflicting requests of the same
preference.

When the accounting window’s period is reached, a new window begins with no history except for any queue of
requests that have not been previously serviced. The new window starts accumulating bandwidth for a partition
from zero.

Table 9-1 Preference of requests for bandwidth limits

If used bandwidth is The preference is Description

Below the minimum High Only other High requests delay
this requesta.

a. Implementations may occasionally deviate from preference order in servicing requests to meet other
goals, such as starvation avoidance.

Above the minimum Below the maximum
limit.

Medium High requests are serviced first,
then compete with other Medium
requestsa.

Above the maximum
limit, with
HARDLIM clear.

Low Requests are not serviced if any
High or Medium requests are
availablea.

Above the maximum
limit, with
HARDLIM set.

None Requests are not serviced.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 9-181
ID012521 Non-Confidential

Resource Partitioning Controls
9.3 Standard partitioning control interfaces
Moving-window accounting

A moving window tracks partition bandwidth usage by all commands issued in the past window width. There is
never a reset of the accounting of bandwidth usage per partition. Instead, bandwidth is added to the accounting when
a command is processed and removed from the accounting when that command moves out of the window’s history.
This continuous accounting is relatively free from boundary effects.

Moving-window accounting requires hardware to track the history of commands within the window, in addition to
the bandwidth counters per PARTID required by the fixed window.

Other accounting window schemes

An implementation may use another scheme for maintaining history that is broadly in line with the schemes
described here. For example, the current bandwidth might decay at a fixed rate proportional to the bandwidth
allocation, but not below a current bandwidth of zero.

Over-allocation of minimum bandwidth

The minimum bandwidth allocations of all partitions may sum to more bandwidth than is available. This is not a
problem when some partitions are not using their bandwidth allocations, because unused allocations are available
for other partitions to use. However, when minimum bandwidth is over-allocated, the minimum bandwidth that is
programmed for partitions cannot always be met.

If the programmed minimum bandwidth allocation is to be reliably delivered by the system, software must ensure
that minimum bandwidth is not over-allocated.

Over-allocation of maximum bandwidth

The maximum bandwidth allocations of all partitions may sum to more bandwidth than is available. This is not a
problem when some partitions are not using their maximum bandwidth allocations, because unused allocations are
available for other partitions to use. If maximum bandwidth is over-allocated, the maximum bandwidth that is
programmed for partitions cannot always be met.

Available bandwidth

The bandwidth available downstream from an MSC is not constant, and it affects the operation of minimum and
maximum bandwidth partitioning.

Available bandwidth may depend on one or more clock frequencies in many systems (for example, DDR clock).
Software may require to reallocate bandwidths when changing clock frequencies that affect available bandwidth.
Lowering clock rates without changing allocations may result in over-allocation of bandwidth.

The available bandwidth on a DRAM channel varies with the mix of reads and writes and the bank-hit rate.
Bandwidth may also vary with burst size.

9.3.5 Memory-bandwidth proportional-stride partitioning

Proportional-stride bandwidth partitioning control is an instance of proportional resource-allocation generic control,
described in Proportional resource allocation facilities on page A-393. The control parameter for bandwidth
proportional-stride partitioning is expressed as an unsigned integer.

Regulation according to this scheme permits the partition to consume bandwidth in proportion to its stride, in
relation to other requests’ strides that are contending for bandwidth. See Model of stride-based memory bandwidth
scheduling on page A-393 for an example of stride-based proportional bandwidth regulation.

The MPAMF_MBW_IDR.HAS_PROP bit indicates the presence of a memory-bandwidth proportional-stride
partitioning control interface in the MSC.
9-182 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Partitioning Controls
9.3 Standard partitioning control interfaces
Combining memory-bandwidth proportional stride with other memory-bandwidth
partitioning

There is no setting of the STRIDEM1 control field that disables the effects of proportional-stride partitioning on a
partition’s bandwidth usage. To enable proportional-stride partitioning for a PARTID,
MPAMCFG_MBW_PROP.EN must be set to 1.

When multiple partitioning controls are active, each affects the partition’s bandwidth usage. However, some
combinations of controls may not make sense, because the regulation of that pair of controls cannot be made to work
in concert.

Memory-bandwidth maximum partitioning must work together with proportional-stride partitioning.

9.3.6 Priority partitioning

Unlike the other memory-system resources in this architecture, priority does not directly affect the allocation of
memory-system resources. Instead, it has an effect on conflicts that arise during access to resources. A properly
configured system should rarely have substantial performance effects due to prioritization, but priority does play an
important role in oversubscribed situations, whether instantaneous or sustained. Therefore, we choose to include
priority partitioning here as a tool to aid in isolating memory-system effects between partitions.

A PARTID may be assigned priorities for each component in the memory system that implements a priority
partitioning control. This partitioning control allows different parts of the memory system to handle requests with
different priorities. For example, requests from a PE to system cache may be set to have a higher transport priority
than those from system cache to main memory.

In a system in which the interconnect carries QoS values or priorities, requests arriving at an MSC have an upstream
priority as part of the request. In the absence of an internal priority partitioning control, request priority could be
used by an MSC to prioritize internal operations. In the absence of a downstream priority partitioning control, the
request priority is used as through priority. See Through priorities on page 9-183.

Priority partitioning can override the upstream priority with two types of priorities:

• Internal priorities control priorities used in the internal operation of an MSC.

• Downstream priorities control priorities communicated downstream (for example to an interconnect).

 “Downstream” refers to the communication direction for requests. “Upstream” refers to the response, and it usually
uses the same transport priority as the request that generated it.

Internal priorities

Internal priorities are used within an MSC to prioritize internal operations. For example, a memory controller may
use an internal priority to choose between waiting requests when bandwidth allocation indicates two or more
requests have the same bandwidth preference.

Internal priority partitioning is optional even if downstream priority partitioning is implemented.

Downstream priorities

An MSC uses a downstream priority to set transport priorities for downstream requests generated during the
servicing of an incoming request from upstream.

Downstream priority partitioning is optional even if internal priority partitioning is implemented.

Through priorities

For a system in which the interconnect carries QoS values or priorities, these priorities arrive with incoming requests
from upstream. An MSC that does not implement priority partitioning, or that does not implement downstream
priority partitioning, must use these upstream priorities on all downstream communication.

If an MSC does not implement priority partitioning, or it does not implement downstream priorities, the downstream
priority is always the same as the request (upstream) priority.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 9-183
ID012521 Non-Confidential

Resource Partitioning Controls
9.3 Standard partitioning control interfaces
The priority of a response through an MSC (from downstream to upstream) is always the same priority as the
response received (from downstream). Priority partitioning never alters response priorities received from
downstream.
9-184 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Partitioning Controls
9.4 Vendor or implementation-specific partitioning control interfaces
9.4 Vendor or implementation-specific partitioning control interfaces

MPAM provides discoverable vendor extensions to permit partners to invent partitioning controls. These include
controls that do not fit the standard interfaces and controls for types of resources not supported through the standard
controls defined in this document. Such controls provide product differentiation to address market-segment needs
or to provide superior memory-system control.

The MPAMF_IDR.HAS_IMPL_IDR bit indicates the presence of MPAMF_IMPL_IDR and of
implementation-specific or vendor-specific resource partitioning controls.

Vendor, design, or model and version information is present in MPAMF_IIDR. MPAMF_IMPL_IDR is available
for implementations that need to convey additional information about parameters of implementation-specific
partitioning controls.

In MPAM v0.1 and from MPAM v1.1:

• If MPAMF_IMPL_IDR describes no IMPLEMENTATION DEFINED partitioning controls,
MPAMF_IDR.NO_IMPL_PART must be 1.

• If MPAMF_IMPL_IDR describes no IMPLEMENTATION DEFINED monitors,
MPAMF_IDR.NO_IMPL_MSMON must be 1.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 9-185
ID012521 Non-Confidential

Resource Partitioning Controls
9.5 Measurements for controlling resource usage
9.5 Measurements for controlling resource usage

This section is informative.

In many cases, resource usage by a partition must be measured so that the resource controller can regulate allocation
of the resource to that partition.

In a memory channel, the bytes delivered to requests from a PARTID might be more costly if delivered in response
to a series of 1-byte requests rather than cache-line-sized bursts. So, it might be reasonable to count the cost of
servicing a 1-byte request to be the same as the cost of servicing a cache-line request rather than as a fraction of a
word access cost.
9-186 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Partitioning Controls
9.6 PARTID narrowing
9.6 PARTID narrowing

An implementation may optionally map input PARTID spaces into smaller internal PARTID spaces. This involves
mapping the PARTID from a request (reqPARTID) into an internal PARTID (intPARTID). The
reqPARTID-to-intPARTID mappings for Secure and Non-secure physical PARTID spaces must be used internally
and not for downstream requests.

This mapping is supported by a memory-mapped register, MPAMCFG_INTPARTID, and an ID register bit for each
of the Secure and Non-secure physical PARTID spaces. The related behavior includes:

• Translate the incoming request’s reqPARTID and MPAM_NS into an intPARTID (with the same
MPAM_NS) before accessing the control settings and regulation state of the partition.

• Use MPAMCFG_INTPARTID to store an association of a reqPARTID in MPAMCFG_PART_SEL to the
intPARTID stored in MPAMCFG_INTPARTID.

• Error code for MPAMF_ESR to indicate a bad intPARTID mapping for the reqPARTID.

• A bit in MPAMCFG_PART_SEL indicates that the value in that register is an intPARTID. The register can
hold either an intPARTID or reqPARTID at any time, but the reqPARTID can only be used for accessing the
association by means of MPAMCFG_INTPARTID. So, at the time MPAMCFG_INTPARTID is read or
written, MPAMCFG_PART_SEL.INTERNAL must be clear. For access to read or write other control
settings registers, the INTERNAL bit must be set.

• With PARTID narrowing implemented, the contents of MPAMCFG_PART_SEL are interpreted as an
intPARTID for accessing control settings through an MPAMCFG_* register other than
MPAMCFG_INTPARTID. The MPAMCFG_PART_SEL.INTERNAL bit must be set to confirm the
intPARTID is being used.

• With PARTID narrowing not implemented, the contents of MPAMCFG_PART_SEL are interpreted as a
reqPARTID. The MPAMCFG_PART_SEL.INTERNAL bit must == 0 to confirm that the reqPARTID is
being used.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 9-187
ID012521 Non-Confidential

Resource Partitioning Controls
9.7 System reset of MPAM controls in MSCs
9.7 System reset of MPAM controls in MSCs

This section is normative.

After a system reset, the MPAM controls in MSCs must reset the settings for default PARTID (Default PARTID on
page 3-38) so that software can use all of the resource. Since MPAMn_ELx.MPAMEN for the highest implemented
ELx is reset to 0 by a system reset, the MPAM fields of all requests issued by a PE use the corresponding default
PARTID in the PE’s current Security state. Only the resource controls for the default PARTIDs must be reset to full
access for the system to behave as if there were no MPAM.

Only the control settings for the default PARTID must be reset. The reset value should be appropriate to allow the
default PARTID to access all of the resource. This is needed to allow the system to boot up to a point where MPAM
resource controls can be set before non-default PARTIDs are used to make requests.

9.7.1 Suggested reset values for standard control types

Table 9-2 on page 9-188 shows the suggested reset values for PARTID == 0 control setting for both MPAM_NS ==
0 and MPAM_NS == 1.

In addition, for PARTID narrowing, Arm suggests that reqPARTID == 0 map to intPARTID == 0 and that the reset
values be applied to the settings of intPARTID == 0 in both values of MPAM_NS.

Table 9-2 Suggested reset values for standard control types

Control type Reset value

MPAMCFG_CPOR All ones

MPAMCFG_CMAX 0xFFFF

MPAMCFG_MBW_PBM<n> All ones

MPAMCFG_MBW_MAX 0xFFFF

MPAMCFG_MBW_PROP EN=0
9-188 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Partitioning Controls
9.8 About the fixed-point fractional format
9.8 About the fixed-point fractional format

This section is normative.

Fractional control parameters use a 16-bit fixed-point format. The format permits implementations to have fewer
than 16 bits by truncating least significant bits from the fraction and implementing these bits as RAZ/WI.

Software can be expected to calculate a 16-bit fractional part to store into the memory-mapped register without the
need to understand the implemented width of the field. If the field width is less than 16 bits, the least significant bits
are silently IGNORED by the implementation. This results in an uncertainty of the intended value.

If software stores an intended fractional value into a field with an implemented width of w, the implementation’s
truncated field sees a value of v. The value v is at the bottom of the range of v to v + 2-w – 2-17 and the intended
fractional value lies somewhere within that range, inclusive of the end points.

Depending on the use of the fractional value, the best choice of value within the range could be the center of the
range, the smallest end of the range, or the greatest end of the range. For examples, a cache maximum-capacity
fraction might best be interpreted as the highest end of the range, and a cache minimum-capacity fraction might best
be interpreted as the lowest end of the range.

Table 9-3 on page 9-189 shows the fraction widths and hex representation used for three formats. The values in the
table are suitable for a maximum limit because the Max value for every entry is never greater than the target value.

Table 9-3 Fraction Widths and Hex Representation

Percentage 16 bits 12 bits 8 bits

Hex Min Max Hex Min Max Hex Min Max

1.00% 028E 0.9979% 0.9995% 027 0.9521% 0.9766% 01 0.3906% 0.7813%

12.50% 1FFF 12.4985% 12.5000% 1FF 12.4756% 12.5000% 1F 12.1094% 12.5000%

16.67% 2AAB 16.6672% 16.6687% 2A9 16.6260% 16.6504% 29 16.0156% 16.4063%

25% 3FFF 24.9985% 25.0000% 3FF 24.9756% 25.0000% 3F 24.6094% 25.0000%

33.33% 5552 33.3282% 33.3298% 554 33.3008% 33.3252% 54 32.8125% 33.2031%

35% 5998 34.9976% 34.9991% 598 34.9609% 34.9854% 58 34.3750% 34.7656%

37.25% 5F5B 37.2482% 37.2498% 5F4 37.2070% 37.2314% 5E 36.7188% 37.1094%

42.50% 6CCB 42.4973% 42.4988% 6CB 42.4561% 42.4805% 6B 41.7969% 42.1875%

45% 7332 44.9982% 44.9997% 732 44.9707% 44.9951% 72 44.5313% 44.9219%

50% 7FFF 49.9985% 50.0000% 7FF 49.9756% 50.0000% 7F 49.6094% 50.0000%

52% 851D 51.9974% 51.9989% 850 51.9531% 51.9775% 84 51.5625% 51.9531%

55% 8CCB 54.9973% 54.9988% 8CB 54.9561% 54.9805% 8B 54.2969% 54.6875%

58% 9479 57.9971% 57.9987% 946 57.9590% 57.9834% 93 57.4219% 57.8125%

62.75% A0A2 62.7472% 62.7487% A09 62.7197% 62.7441% 9F 62.1094% 62.5000%

66.67% AAA9 66.6641% 66.6656% AA9 66.6260% 66.6504% A9 66.0156% 66.4063%

75% BFFF 74.9985% 75.0000% BFF 74.9756% 75.0000% BF 74.6094% 75.0000%

82.50% D332 82.4982% 82.4997% D32 82.4707% 82.4951% D2 82.0313% 82.4219%

88% E146 87.9974% 87.9990% E13 87.9639% 87.9883% E0 87.5000% 87.8906%

95% F332 94.9982% 94.9997% F32 94.9707% 94.9951% F2 94.5313% 94.9219%
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 9-189
ID012521 Non-Confidential

Resource Partitioning Controls
9.8 About the fixed-point fractional format
100% FFFF 99.9985% 100.0000% FFF 99.9756% 100.0000% FF 99.6094% 100.0000%

2^n 65536 4096 256

ndigits 4 3 2

shift 0 0 0

Table 9-3 Fraction Widths and Hex Representation (continued)

Percentage 16 bits 12 bits 8 bits

Hex Min Max Hex Min Max Hex Min Max
9-190 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 10
Resource Monitors

This chapter contains the following sections:

• Introduction on page 10-192.

• MPAM resource monitors on page 10-193.

• Common features on page 10-196.

• Monitor configuration on page 10-198.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 10-191
ID012521 Non-Confidential

Resource Monitors
10.1 Introduction
10.1 Introduction

Software environments may be labeled as belonging to a Performance Monitoring Group (PMG) within a partition.
The PARTID and PMG can be used to filter some performance events so that the performance of a particular
PARTID and PMG can be monitored.
10-192 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Monitors
10.2 MPAM resource monitors
10.2 MPAM resource monitors

MPAM resource monitors provide software with measurements of the resource-type usage that can be partitioned
by MPAM. There are two types of MPAM resource monitors:

• Memory-bandwidth usage monitors on page 10-193

• Cache-storage usage monitors on page 10-195

Each type of monitor measures the usage by memory-system transactions of a PARTID and PMG. An MSC may
implement any number of performance monitor instances, , up to 216 of each type. The PARTID for filtering
resource monitors is always a request PARTID, even when PARTID narrowing is implemented.

To access a monitor instance, the instance number is stored into the MSMON_CFG_MON_SEL.MON_SEL field.
All of the monitor access registers for a type of monitor then access that instance of that type. See Monitor
configuration on page 10-198.

10.2.1 Memory-bandwidth usage monitors

A memory-bandwidth usage monitor counts payload bytes meeting the filter criteria that pass the monitoring point
in the downstream direction for writes or the upstream direction for reads. Each monitor has the following set of
memory-mapped configuration registers and functional features:

• A control register MSMON_CFG_MBWU_CTL that configures behavior of the monitor instance.

• A filter register MSMON_CFG_MBWU_FLT that specifies the transfers to be counted. This register has
fields for reads, writes, PARTID, PMG, and other criteria.

• A monitor register MSMON_MBWU that contains an optionally scaled count of bytes transferred
downstream from this MSC that match the conditions of the filter register. This monitor register may be reset
after each capture event. If scaling is enabled, the value read from MSMON_MBWU must be shifted left by
MPAMF_MBWUMON_IDR.SCALE bit positions to scale the value to the number of bytes.

• In MPAM v0.1 and from MPAM v1.1, an optional long monitor register, MSMON_MBWU_L, that contains
a count of 44 bits or 63 bits. A NRDY bit is also present in this register, see Not-Ready Bit on page 10-196.

• An optional capture register MSMON_MBWU_CAPTURE that is loaded from the monitor register each
time the selected capture event occurs. When a capture event occurs, the monitor register is copied to the
capture register and the monitor register is optionally reset to zero.

• In MPAM v0.1 and from MPAM v1.1, if MPAMF_MBWUMON_IDR.{HAS_LONG, HAS_CAPTURE}
are 1, the MSMON_MBWU_L_CAPTURE register must be implemented.

• A Not-Ready (NRDY) bit (Not-Ready Bit on page 10-196) in the memory-bandwidth usage register
MSMON_MBWU is set when the filter register or the control register is written. The NRDY bit is reset to 0
after a capture event. The NRDY bit is copied to the capture register along with the rest of the monitor
register's content. This copy is made before the NRDY bit is reset. If the value of the NRDY bit in the capture
register is 1, the captured resource usage should be viewed as representing an incomplete sampling interval.
Therefore, the count should be assumed to be incorrect.

A capture event is needed if the optional capture register is implemented. The capture event causes the transfer of
each monitor’s count register to its capture register and may optionally reset the count register.

If the count register is reset by a capture event, this allows reading the bytes transferred that meet the criteria set in
the filter and control registers:

• During the interval between the last two capture events from MSMON_MBWU_CAPTURE.

• Since the last capture event from MSMON_MBWU.

Bandwidth usage can be computed in software from the count of bytes transferred as read from MSMON_MBWU
or MSMON_MBWU_CAPTURE and the interval over which the count was collected.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 10-193
ID012521 Non-Confidential

Resource Monitors
10.2 MPAM resource monitors
There can be several sources of the capture event. The capture event source to use is specified in
MSMON_CFG_MBWU_CTL.CAPT_EVNT (Memory-mapped monitoring configuration registers on
page 11-283). It can be advantageous to use a single event to capture monitors in several MSCs simultaneously. A
periodic capture event for multiple MSCs could be generated at the system level, perhaps using a generic timer, and
distributed to the several MSCs.

The source of an external capture event is selected in MSMON_CFG_MBWU_CTL.CAPT_EVNT. A local capture
event generator is present if MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 1, and this generator
generates events when certain values are written into MSMON_CAPT_EVNT.

Scaled MBWU count value

If MSMON_CFG_MBWU_CTL.SCLEN == 0, the count is not scaled. If MSMON_CFG_MBWU_CTL.SCLEN
== 1, the count in MSMON_MBWU is a scaled count.

The scaled count in MSMON_MBWU is the true count of bytes transferred, rounded to 2^SCALE and then shifted
right by SCALE bit positions. The shift count, SCALE, is MPAMF_MBWUMON_IDR.SCALE.

SCALE is an implementation constant chosen for a monitoring point such that periodic sampling and reset of
MSMON_MBWU_CAPTURE can count the highest traffic rates possible at the monitoring point without
overflowing the VALUE field at a maximum sampling rate. The sampling rate is limited by the target use.

For example, if the maximum traffic that could pass the monitoring point is 300 GBps and the system environment
supports capturing the counter 30 times per second, the counter must be scaled to no more than 2^31 - 1 counts per
thirtieth of a second. This requires scaling the counter by a factor of at least 5, so the SCALE must be at least 3.

If the traffic to memory might be distributed across several MSCs (for example, across several memory channel
controllers), a comprehensive measurement of bandwidth might require reading multiple memory-bandwidth usage
monitors on those MSCs and summing the results. Capturing those monitors with the same system-level capture
event allows correlated monitor values.

Long MBWU counter and capture

In MPAM v0.1 and from MPAM v1.0, there is optional support for 44-bit or 63-bit MBWU counters.

MSMON_MBWU_L is optional and only present when MPAMF_MBWUMON_IDR.HAS_LONG is 1. This
indicates that this monitor type supports long counters.

If MPAMF_MBWUMON_IDR.{HAS_LONG, HAS_CAPTURE} are both 1, the
MSMON_MBWU_L_CAPTURE register must also be implemented.

The VALUE field of the long registers is never scaled.

The VALUE field of MSMON_MBWU_L and MSMON_MBWU_L_CAPTURE can be implemented either as a
63-bit VALUE field or a 44-bit VALUE field. The 44-bit VALUE field is indicated when
MPAMF_MBWUMON_IDR.LWD is 0 and has bits[62:44] of each register as RES0. When
MPAMF_MBWUMON_IDR.LWD is 1, the VALUE field of each register is 63 bits.

An overflow occurs in the long counter when the count in the VALUE field exceeds the maximum representable
value. This depends on the length of the VALUE field set by MPAMF_MBWUMON_IDR.LWD.

When any instance of the MSMON_MBWU_L counter overflows, the
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L bit is set. If
MSMON_CFG_MBWU_CTL.OFLOW_INTR_L is set, this overflow produces an MPAM Overflow interrupt. See
MPAM overflow interrupt on page 8-167.

When an implementation has both the long counter and the short 31-bit counter, the short counter might overflow
when the long counter has not overflowed and produce an MPAM Overflow interrupt. This can be prevented by
setting MSMON_CFG_MBWU_CTL.OFLOW_INTR to 0, which disables the overflow interrupt for overflow of
the short counter.

The MSMON_CFG_MBWU_CTL.OFLOW_FRZ field is not duplicated, and affects the behaviors of both short
and long counters on overflow.
10-194 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Monitors
10.2 MPAM resource monitors
10.2.2 Cache-storage usage monitors

A cache-storage usage monitor is filtered by a PARTID and PMG. Each monitor has the following memory-mapped
configuration registers:

• A filter register MSMON_CFG_CSU_FLT that sets the PARTID and PMG to be monitored.

• A cache-storage usage register MSMON_CSU that reports the amount of storage currently present within the
cache allocated by the PARTID and PMG. It is an implementation choice whether MSMON_CSU is
implemented as RO or RW.

• A Not-Ready bit in the cache-storage usage register MSMON_CSU that indicates that the value is not
accurate. An implementation may set this NRDY bit if the value in the cache-storage usage register is not
currently accurate, possibly because it is still being computed. For more information on the Not-Ready bit,
see Not-Ready Bit on page 10-196.

• An optional capture register MSMON_CSU_CAPTURE that is loaded from the cache-storage usage register
each time the capture event occurs.

A capture event is needed if the optional capture register is implemented. The capture event causes the transfer of
each monitor’s cache-storage usage register to its optional capture register.

The source of the capture event is not specified here. It can be advantageous to use a single event to capture monitors
in several MSCs simultaneously. A periodic capture event for multiple MSCs could be generated at the system level,
perhaps using a generic timer, and distributed to the several MSCs.

The source of an external capture event is selected in MSMON_CFG_CSU_CTL.CAPT_EVNT. A local capture
event generator is present if MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 1, and this generator
generates events when certain values are written into MSMON_CAPT_EVNT.

If a monitor needs time to become accurate, the NRDY bit signals that the value is not yet accurate. Some methods
of building cache-storage usage monitors might involve (1) a phase in which the monitor collects enough
information to begin accurately tracking usage, or (2) a phase in which the measurement is kept accurate by tracking
resource usage events. For example such a monitor might take tens of microseconds to complete the first phase
before the value accurately tracks the actual resource usage. In this case, the NRDY bit would be kept at 1 until the
monitor value becomes accurate.

The NRDY bit is included because some implementations may have timing restrictions between setting the filter
register and reading the cache-storage usage register that may span thousands of PE cycles. Reading the monitor too
soon is permitted to affect the accuracy of the readout, and it is indicated when the NRDY bit of the cache-storage
usage register is 1.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 10-195
ID012521 Non-Confidential

Resource Monitors
10.3 Common features
10.3 Common features

All MPAM performance monitors have these features:

• Not-ready bit.

• Capture register.

• Overflow bit.

These features are described below.

10.3.1 Not-Ready Bit

The Not-Ready (NRDY) bit, in the MSMON_MBWU and MSMON_CSU registers, when set, indicates that the
monitor does not have an accurate count or measurement yet, because the monitor’s settings have been recently
changed. If the monitor requires some time to establish a new count or measurement after its settings are changed,
the NRDY bit must be set automatically when the settings are changed and reset when the count or measurement is
accurately represented in the monitor.

In the absence of another change in settings, the NRDY bit must clear automatically within a maximum length of
time. The maximum time that NRDY may be 1 is an implementation parameter that is discoverable in the firmware
data value of MAX_NRDY_USEC for the MSC’s monitor type.

Each instance of each type of monitor keeps its NRDY bit separately. For example, if MBWU monitor instance 3
is collecting memory bytes transferred for one partition and MBWU monitor instance 6 is later configured to collect
for another partition, the configuration of MBWU monitor instance 6 must not disturb the on-going collection in
MBWU monitor instance 3.

The NRDY bit of a monitor or capture register can be written to either state and may subsequently change state due
to a capture event or a change in the configuration of the monitor.

If a monitor does not support the automatic behaviors of NRDY, this bit is permitted to be an RW bit with no
additional functionality.

10.3.2 Capture event and capture register

A capture event causes every monitor that is configured to be sensitive to that event to be copied into that monitor's
capture register.

Capture events may be local to the MSC or external to the MSC and may be software-initiated single events or a
periodically repeating series of events. External capture events are system-defined. A generic counter can be used
as the source of such an event, but this is not required. An external capture event could be distributed to all MSCs
so that system-wide captures occur of all monitors sensitive to the external event. This permits using the various
measurements for sums and differences because they measure the same period and (mostly) related resource usage.

A capture register for a monitor is loaded with the monitor’s count or measurement and its NRDY bit when a capture
event that is selected in the monitor’s control register occurs. A capture event completes almost instantaneously, so
no handshake is used for completion. However, the NRDY bit indicates whether a capture is not an accurate reading.

If the event is periodic, software can read the capture registers at any time to get the results captured when the most
recent capture event occurred.

If it makes sense for the particular monitored value, the count or measurement can optionally be reset by the event.
In this case, the value in the capture register represents a count over the capture-event period or a measurement over
that period.

Local capture-event generator

If MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 1, the MSMON_CAPT_EVNT register exists and
generates capture events that are local to an MSC when it is written with a value that contains a 1 in the NOW bit
position.
10-196 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Monitors
10.3 Common features
There are separate MSMON_CAPT_EVNT registers for Secure and Non-secure address spaces. The Non-secure
version generates a local capture event to all Non-secure monitors within the MSC that have been configured to use
MSMON_CFG_type_FLT.CAPT_EVNT == 7 (Table 10-1 on page 10-198). The Secure version of
MSMON_CAPT_EVNT generates a local capture event to all Secure monitors within the MSC that have been
configured to use CAPT_EVNT == 7 when MSMON_CAPT_EVNT is written with ALL == 0 and NOW == 1.
When the ALL and NOW bits both == 1 in a write to Secure MSMON_CAPT_EVNT, the write generates a local
capture event to all Secure and Non-secure monitors within the MSC that have been configured to use
CAPT_EVNT == 7.

If MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 0, local capture events are not generated and any
monitors that have their control register set to CAPT_EVNT == 7 do not receive any capture events.

Reset on capture

Monitors that keep a count of events, or that accumulate counts such as bytes transferred, may be optionally reset
after a capture event transfers the count to the monitor’s capture register. This behavior on capture is controlled by
the MSMON_CFG_*_CTL.CAPT_RESET bit. If CAPT_RESET == 1, the monitor count is reset to 0 immediately
after the value is captured into the MSMON_*_CAPTURE register.

Monitors that report a current resource value, such as cache-storage usage, that cannot reasonably be reset, do not
need to support reset on capture behavior. Arm recommends that these monitors have the CAPT_RESET bit as
RAZ/WI.

10.3.3 Overflow bit

The MSMON_CFG_*_CTL.OFLOW_STATUS bit is set to 1 when the monitor counter overflows. This bit must
be reset by writing 0 to the OFLOW_STATUS field.

The MSMON_CFG_*_CTL register contains fields to control MPAM behavior on an overflow. The OFLOW_FRZ
bit, when set, freezes the counter after the count that caused it to overflow. When reset to 0, the counter continues
to count after an overflow.

If the overflow changes the OFLOW_STATUS flag from 0 to 1 and the OFLOW_INTR bit is set, an MPAM
overflow interrupt will be signaled if implemented. See also MPAM overflow interrupt on page 8-167.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 10-197
ID012521 Non-Confidential

Resource Monitors
10.4 Monitor configuration
10.4 Monitor configuration

For each type of resource monitor, the number of monitor instances that are available is described in the
corresponding MPAMF_<type>MON_IDR.NUM_MON field.

The MSMON_CFG_MON_SEL.MON_SEL field selects the monitor instance to configure. The MON_SEL
monitor instance of monitor type, type, is accessed when an MSMON_CFG_<type> register is accessed.

All monitor types have two 32-bit configuration registers:

• MSMON_CFG_<type>_FLT (Table 10-1 on page 10-198) has fields to select the PARTID and PMG to
monitor.

• MSMON_CFG_<type>_CTL (Table 10-2 on page 10-198) has controls for counting a subset of events,
controlling overflow, and capture behavior.

Some monitor types may not require all fields, and fields not required must be RAZ/WI or RAO/WI.

Table 10-1 MSMON_CFG_<type>_FLT register template

Bits Name Description

15:0 PARTID Configures the PARTID for the selected monitor to match. Matching of
PARTID is enabled by MSMON_CFG_<type>_CTL.MATCH_PARTID.
The PARTID for filtering resource monitors is always a request PARTID,
even when PARTID narrowing is implemented.

23:16 PMG Configures the PMG for the selected monitor to match. Matching of PMG
is enabled by MSMON_CFG_<type>_CTL.MATCH_PMG.

31:24 Reserved RAZ/WI.

Table 10-2 MSMON_CFG_<type>_CTL register template

Bits Name Description

7:0 TYPE RO: Constant type indicating the type of the monitor. Currently assigned
values are 0x42 for MBWU monitor, and 0x43 for CSU monitor. Other
values less than 0x80 are reserved. Values greater than 0x80 are for use by
IMPLEMENTATION DEFINED monitors.

15:8 Reserved RAZ/WI.

16 MATCH_PARTID 0 Monitor events with any PARTID.

1 Only monitor events with the PARTID matching
MSMON_CFG_<type>_FLT.PARTID.

17 MATCH_PMG 0 Monitor events with any PMG.

1 Only monitor events with the PMG matching
MSMON_CFG_type_FLT.PMG.

19:18 Reserved RAZ/WI

23:20 SUBTYPE A monitor can have other event-matching criteria. The meaning of values
in this field can vary by monitor type.
If not used by the monitor type, this field is RAZ/WI.

24 OFLOW_FRZ 0 Monitor count wraps on overflow and continues to count.

1 Monitor count freezes on overflow. The frozen value may
be 0 or another value, if the monitor overflowed with an
increment larger than 1.
10-198 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Resource Monitors
10.4 Monitor configuration
25 OFLOW_INTR 0 No interrupt.

1 On overflow, an implementation-specific interrupt is
signaled.

26 OFLOW_STATUS 1 No overflow has occurred.

1 At least one overflow has occurred since this bit was last
written to 0.

27 CAPT_RESET 0 Monitor is not reset on capture.

1 Monitor is reset on capture.

If capture is not implemented for this monitor type, or the monitor is not
a count that can be reasonably reset, this field is RAZ/WI.

30:28 CAPT_EVNT Select the event that triggers capture from the following:

0 External capture event 1 (optional but recommended).

1 External capture event 2 (optional).

2 External capture event 2 (optional).

3 External capture event 3 (optional).

4 External capture event 4 (optional).

5 External capture event 5 (optional).

6 External capture event 6 (optional).

7 Capture occurs when the MSMON_CAPT_EVNT
register is written. (optional).

External capture events are system-defined. An external capture event
could be distributed to many MSCs.

The values marked as optional indicate capture-event sources that can be
omitted in an implementation. Those values representing
non-implemented event sources must not trigger a capture event.

If capture is not implemented for the monitor, as indicated by
MPAMF_<type>MON_IDR.HAS_CAPTURE == 0, this field is
RAZ/WI.

31 EN 0 The monitor is disabled and must not collect any
information.

1 The monitor is enabled to collect information according to
its configuration.

Table 10-2 MSMON_CFG_<type>_CTL register template (continued)

Bits Name Description
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 10-199
ID012521 Non-Confidential

Resource Monitors
10.4 Monitor configuration
10-200 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 11
Memory-Mapped Registers

This chapter contains the following sections:

• Overview of MMRs on page 11-202.

• Summary of memory-mapped registers on page 11-208.

• Memory-mapped ID register description on page 11-211.

• Memory-mapped partitioning configuration registers on page 11-250.

• Memory-mapped monitoring configuration registers on page 11-283.

• Memory-mapped control and status registers on page 11-345.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-201
ID012521 Non-Confidential

Memory-Mapped Registers
11.1 Overview of MMRs
11.1 Overview of MMRs

The MPAM behavior of an MSC is discovered and configured via memory-mapped registers (MMRs) in the MSC.

All MPAM MMRs are located on the MPAM feature page for the MSC (MPAM feature page on page 11-203). An
MSC's MPAM feature page is located from information about the device, possibly provided via firmware data such
as device tree or ACPI (Appendix B MSC Firmware Data).

An MPAM feature page exists in the Non-secure address space and another exists in the Secure address space. The
addresses of the two MPAM feature pages of an MSC do not need to have the same base address. Arm recommends
that the numerical base addresses of the Non-secure and Secure be sufficiently different that the numerical address
ranges do not overlap.

MPAM MSC MMRs must support 32-bit access as a single access. There is no requirement that accesses of wider
than 32 bits complete atomically.

There are MMRs for identifying MPAM parameters and options, the ID registers. These IDRs have the MPAMF
prefix.

Other registers configure MPAM resource controls. These registers have the MPAMCFG prefix.

The resource monitor configuration and readout registers have the MSMON prefix.

Finally, there is a register to report the status of MPAM programming errors encountered in the MSC and a register
to control MPAM interrupts.

11.1.1 Determining presence and location of MMRs

The MPAMF_IDR register is located at offset 0x0000 of the MPAM feature page. It indicates which MPAM resource
controls are present in the MSC and the maximum PARTID and PMG supported in requests to the MSC. Other
MPAMF ID registers are present if the corresponding MPAMF_IDR register bit is set and those registers identify
the implemented values of architecturally-defined parameters associated with the particular class of MPAM
resource control.

The MPAMF_IDR also indicates whether the MSC has MPAM monitors. If so, MPAMF_MSMON_IDR indicates
which monitor types are supported by the MSC. Other monitor MPAMF ID registers are present if the corresponding
bit in MPAMF_MSMON_IDR is set and those registers identify the implemented values of architecturally- defined
parameters associated with the particular type of MPAM monitor.

The address of each MPAM MMR present in an MSC is located within the MPAM feature page for that component
at a register-specific offset into that page. The offsets are given in tables in Summary of memory-mapped registers
on page 11-208 and MPAM feature page on page 11-203.

11.1.2 Configuring resource controls for a partition

To configure the MPAM resource controls supported by an MSC for a PARTID:

1. Gain exclusive access to the MSC’s partitioning configuration registers (for example, take a lock for the
memory-mapped partitioning configuration registers, Memory-mapped partitioning configuration registers
on page 11-250).

2. Write the PARTID to the component’s MPAMCFG_PART_SEL.

3. Write to the MPAMCFG_* registers for the resource controls of the component.

4. Repeat step 3 to configure additional controls associated with the PARTID selected in step 2.

5. Repeat steps 2 through 4 to configure controls for additional PARTIDs.

6. Release exclusive access to the MSC’s partitioning control configuration registers (for example, release the
lock taken in step 1).

Repeat this procedure for each MSC.
11-202 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.1 Overview of MMRs
The configuration registers are all the read-write registers that begin with MPAMCFG_*. That is all of the registers
in Memory-mapped partitioning configuration registers on page 11-250. Before writing any of these registers,
software must take a lock to prevent other software from accessing these registers until the lock is released. This is
in part because the writing involves first putting a PARTID into the MPAMCFG_PART_SEL register and then
writing a configuration value into one or more of the MPAM resource control’s configuration registers (also
MPAMCFG_* registers).

Software must also take a lock to read any MPAMCFG_* register, other than MPAMCFG_PART_SEL, because
reading also involves first putting a PARTID into MPAMCFG_PART_SEL register and then reading a configuration
value from one or more of the MPAMCFG_* registers.

There are two copies of MPAMCFG_PART_SEL, one for resource controls for the Secure PARTID space that are
accessed from the Secure address space, and the other for resource controls for the Non-secure PARTID space that
are accessed from the Non-secure address space. Because there are two copies, there can be separate locks for
Secure MPAMCFG_PART_SEL and for Non-secure MPAMCFG_PART_SEL.

11.1.3 Configuring memory-system monitors

To configure the memory-system monitors supported by an MSC for a PARTID and PMG:

1. Gain exclusive access to the MSC’s monitor configuration registers (for example, take a lock for the
memory-mapped monitoring configuration registers, Memory-mapped monitoring configuration registers on
page 11-283).

2. Write to the component’s MSMON_CFG_MON_SEL to select one of the monitor instances available in the
component.

3. Write to the MSMON_CFG_* registers for the instance of the monitor type.

4. Repeat step 3 to configure additional registers associated with the monitor instance.

5. Repeat steps 2 through 4 to configure additional monitor instances.

6. Release the exclusive access to the MSC’s monitor configuration registers (for example, release the lock
taken in step 1).

Repeat this procedure for each MSC.

Software must also take the lock to read any MSMON_* register, other than MSMON_CFG_MON_SEL, because
reading involves first writing a monitor index into MSMON_CFG_MON_SEL and then reading an MSMON
register.

The monitor configuration registers are all of the registers in Memory-mapped monitoring configuration registers
on page 11-283. These registers have requirements similar to the MPAMCFG_* registers. The monitor
configuration registers can have a separate lock or share the same lock as for the MPAMCFG_* registers. The
selection register for monitors is MSMON_CFG_MON_SEL.

The configuration reading procedure of this section is also required to read the monitor and capture registers because
these too are addressed by MSMON_CFG_MON_SEL.

There are two copies of MSMON_CFG_MON_SEL, one for Secure monitors that are accessed from the Secure
address space and the other for Non-secure monitors that are accessed from the Non-secure address space. Because
there are two copies, there can be separate locks for Secure MSMON_CFG_MON_SEL and for Non-secure
MSMON_CFG_MON_SEL.

11.1.4 MPAM feature page

An MSC has an MPAM feature page in each of the Secure and Non-secure address spaces. An MPAM feature page
is a block of addresses that contains all of the MPAM MSC MMRs in that address space. Each MPAM feature page
base address must be aligned to a 4 KB boundary.

Each MPAM feature page must be completely contained within a single 64 KB aligned block so that it may be
placed within a single 64KB page. Non-MPAM MMRs of the MSC are permitted within the 64 KB block if those
MMRs are also to be trapped to a hypervisor.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-203
ID012521 Non-Confidential

Memory-Mapped Registers
11.1 Overview of MMRs
Secure and Non-secure address space

If the MSC supports the Secure address space (NS == 0), the Secure MPAM feature page must exist. The
Non-secure MPAM feature page must always exist.

MMRs describing (IDRs) or controlling (MPAMCFG*) Secure PARTIDs are within the Secure MPAM feature
page, and those describing or controlling Non-secure PARTIDs are within the Non-secure MPAM feature page.

MPAM MMRs only in the Secure address space

Certain MPAM MMRs are only present within the MPAM feature page when accessed via the Secure address space
(NS = 0). MPAMF_SIDR is the only MMR accessible only via the Secure address space.

Read-only MPAM MMRs permitted to read the same or differently

Some of the read-only MPAM MMRs are permitted to have the same or different contents between the Secure and
Non-secure MPAM feature pages This includes all of the MPAMF*IDR registers. If the information regarding
Secure and Non-secure PARTIDs is the same in an MPAMF*IDR, then the register is permitted to have the same
contents.

These registers are permitted to be shared if the same or banked if different in the two address spaces:

MPAM MMRs that must have the same contents

Two registers must have the same contents between the Secure and Non-secure MPAM feature pages. These
registers contain read-only values that must read as the same value in the two address spaces:

MPAM MMRs that must be separate registers for each address space

Most MPAM MMRs, such as the following, must be separate and have Secure and Non-secure versions that are
accessed via the corresponding Secure and Non-secure MPAM feature pages:

MPAMF_IDR MPAMF_IMPL_IDR MPAMF_CPOR_IDR

MPAMF_CCAP_IDR MPAMF_MBW_IDR MPAMF_PRI_IDR

MPAMF_PARTID_NRW_IDR MPAMF_MSMON_IDR MPAMF_CSUMON_IDR

MPAMF_MBWUMON_IDR

MPAMF_IIDR MPAMF_AIDR

MPAMF_ECR MPAMCFG_PART_SEL MSMON_CFG_MON_SEL

MPAMF_ESR MPAMCFG_MBW_MAX MSMON_CFG_CSU_CTL

MPAMCFG_MBW_MIN MSMON_CFG_CSU_FLT

MPAMCFG_CMAX MPAMCFG_MBW_PBM MSMON_CSU

MPAMCFG_CPBM MPAMCFG_MBW_PROP MSMON_CSU_CAPTURE

MPAMCFG_MBW_WINWD MSMON_CFG_MBWU_CTL

MPAMCFG_PRI MSMON_CFG_MBWU_FLT

MPAMCFG_INTPARTID MSMON_MBWU

MSMON_MBWU_CAPTURE
11-204 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.1 Overview of MMRs
Accesses to locations where there is no register in the address space of the access

Access to MPAM MMR address where there is no register in the address space of the access must be treated as
reserved MPAM feature page locations according to IMPLEMENTATION DEFINED memory-mapped registers
and reserved feature page locations on page 11-205, except for the MPAMCFG_MBW_PBM and
MPAMCFG_CPBM as described in Permitted truncation of an MPAM feature page on page 11-205.

Permitted truncation of an MPAM feature page

An MPAM feature page may be shortened in only two cases:

• If MPAMCFG_MBW_PBM is not implemented (MPAMF_IDR.HAS_MBW_PART == 0' ||
(MPAM_IDR.HAS_MBW_PART == 1 && MPAM_MBW_IDR.HAS_PBM == 0)), the maximum offset for
the MPAM feature page is 0x01FFF.

• If MPAMCFG_MBW_PBM is not implemented and MPAMCFG_CPBM is not implemented
(MPAMF_IDR.HAS_CPOR == 0), the maximum offset for the MPAM feature page is 0x00FFF.

11.1.5 Minimum required MPAM memory-mapped registers

If an MSC has any support for MPAM, the following registers are required:

• MPAMF_IDR.

• MPAMF_AIDR.

• MPAMF_IIDR.

• MPAMF_SIDR, if the Secure address space is supported.

If an MSC supports any resource controls, the following registers are also required:

• MPAMCFG_PART_SEL.

If an MSC supports any resource monitors, the following registers are also required:

• MPAMF_MSMON_IDR.

• MSMON_CFG_MON_SEL.

If an MSC can detect any errors, it must implement:

• MPAMF_ESR.

• MPAMF_ECR.

MSC MPAM MMRs not mentioned in this section are optional and expected to be implemented only when the
resource control or monitor that the register supports is implemented.

See Examples of partial MPAM implementations on page 11-206 for examples showing MPAMF_*IDR registers in
implementations with few MPAM functions.

11.1.6 IMPLEMENTATION DEFINED memory-mapped registers and reserved feature page locations

IMPLEMENTATION DEFINED MPAM memory-mapped registers are permitted in the MPAM feature page at offsets
equal to or greater than 0x3000.

All locations in the MPAM feature page at offsets less than the maximum MPAM feature page offset defined in
Permitted truncation of an MPAM feature page on page 11-205 are reserved to the architecture. Within that address
range:

• Reads and writes of unallocated locations are reserved accesses.

• Reads and writes of locations for registers that are not implemented are reserved accesses, including register
locations for:

— Optional MPAM MSC features that are not implemented.

— ID registers for optional MPAM MSC features that are not implemented and indicated as not
implemented in ID registers that are implemented.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-205
ID012521 Non-Confidential

Memory-Mapped Registers
11.1 Overview of MMRs
• Locations that are beyond the implemented width of a register as given in the corresponding ID register but
within the range of locations allocated by the architecture are reserved accesses.

• Reads of WO locations are reserved accesses.

• Writes to RO locations are reserved accesses.

The architecture requires reserved accesses to be implemented as RAZ/WI. However, software must not rely on this
property as the behavior of reserved values might change in a future revision of the MPAM Extension architecture.
Software must treat reserved accesses as RES0.

11.1.7 Examples of partial MPAM implementations

Most MSCs only implement a fraction of the full MSC MPAM architecture. This section gives examples of partial
implementations, some of which have been achieved by partially removing MPAM. The RTL configuration
examples are included to illustrate the MMR issues in partial MPAM implementations.

An MSC that has no partitioning or monitoring, only propagation

An MSC that does not implement any resource partitioning or monitor interfaces only requires a few MMRs:

• The minimum required MMRs, as specified in Minimum required MPAM memory-mapped registers on
page 11-205, must be implemented with the MPAMF_IDR.{PARTID_MAX, PMG_MAX} fields indicating
the maximum PARTID that can be propagated.

• All of the HAS_* and NO_* bits in MPAMF_IDR must be zero.

• MPAMF_AIDR must indicate MPAM v1.0 or MPAM v1.1.

• MPAMF_IIDR must identify the implementation.

• MPAMF_SIDR must indicate PARTID_MAX and PMG_MAX for Secure propagation.

No other registers are required.

An MSC when RTL configuration has removed a partitioning control or resource usage
monitor

An MSC could be designed to have an RTL configuration option that removes a partitioning control or a resource
usage monitor. If so, the HAS_* bits in each of the relevant MPAMF_*IDR registers must be configured to zero
when the feature is removed.

An MSC when RTL configuration has removed all MPAM functionality

An MSC could be designed to have an RTL configuration option that removes all of the MPAM functionality. When
all of MPAM is deconfigured:

• The minimum required MPAM registers must be present.

• MPAMF_IDR, MPAMF_AIDR and MPAMF_SIDR must all be zero.

• MPAMF_IIDR is permitted to be either all zero or to identify the IP.

Note

Software might still attempt to discover MPAM on this RTL configuration, so the minimum MPAM registers must
be present to allow the lack of MPAM function to be discovered.
11-206 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.1 Overview of MMRs
An MSC when RTL configuration removes a resource instance

An MSC could be designed to have an RTL configuration option that completely removes one or more resource
instances. When a resource instance is removed, only the MPAMF_*IDR registers for the corresponding RIS values
are changed. All of the ID registers corresponding to that RIS value have each of their RIS-specific fields set to zero.
For more information on RIS-specific fields, see Effects of MPAMCFG_PART_SEL.RIS on values read from other
registers on page 8-159.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-207
ID012521 Non-Confidential

Memory-Mapped Registers
11.2 Summary of memory-mapped registers
11.2 Summary of memory-mapped registers

Table 11-1 on page 11-208 lists the external MPAM registers in order of register offset.

Table 11-1 Index of external MPAM registers ordered by offset

Register Offset Length Description, see

MPAMF_IDR 0x0000 64 MPAMF_IDR, MPAM Features Identification Register on page 11-221

MPAMF_SIDR 0x0008 32 MPAMF_SIDR, MPAM Features Secure Identification Register on
page 11-249

MPAMF_IIDR 0x0018 32 MPAMF_IIDR, MPAM Implementation Identification Register on
page 11-228

MPAMF_AIDR 0x0020 32 MPAMF_AIDR, MPAM Architecture Identification Register on
page 11-212

MPAMF_IMPL_IDR 0x0028 32 MPAMF_IMPL_IDR, MPAM Implementation-Specific Partitioning
Feature Identification Register on page 11-230

MPAMF_CPOR_IDR 0x0030 32 MPAMF_CPOR_IDR, MPAM Features Cache Portion Partitioning ID
register on page 11-216

MPAMF_CCAP_IDR 0x0038 32 MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID
register on page 11-214

MPAMF_MBW_IDR 0x0040 32 MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning
Identification Register on page 11-232

MPAMF_PRI_IDR 0x0048 32 MPAMF_PRI_IDR, MPAM Priority Partitioning Identification Register
on page 11-246

MPAMF_PARTID_NRW_IDR 0x0050 32 MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID register
on page 11-244

MPAMF_MSMON_IDR 0x0080 32 MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification
Register on page 11-240

MPAMF_CSUMON_IDR 0x0088 32 MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage
Monitoring ID register on page 11-218

MPAMF_MBWUMON_IDR 0x0090 32 MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth
Usage Monitoring ID register on page 11-236

MPAMF_ERR_MSI_MPAM 0x00DC 32 MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM
Information Register on page 11-357

MPAMF_ERR_MSI_ADDR_L 0x00E0 32 MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address
Register on page 11-350

MPAMF_ERR_MSI_ADDR_H 0x00E4 32 MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address
Register on page 11-348

MPAMF_ERR_MSI_DATA 0x00E8 32 MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register on
page 11-355

MPAMF_ERR_MSI_ATTR 0x00EC 32 MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register
on page 11-352

MPAMF_ECR 0x00F0 32 MPAMF_ECR, MPAM Error Control Register on page 11-346

MPAMF_ESR 0x00F8 64 MPAMF_ESR, MPAM Error Status Register on page 11-359
11-208 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.2 Summary of memory-mapped registers
MPAMCFG_PART_SEL 0x0100 32 MPAMCFG_PART_SEL, MPAM Partition Configuration Selection
Register on page 11-277

MPAMCFG_CMAX 0x0108 32 MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition
Configuration Register on page 11-251

MPAMCFG_MBW_MIN 0x0200 32 MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum
Partition Configuration Register on page 11-264

MPAMCFG_MBW_MAX 0x0208 32 MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum
Partition Configuration Register on page 11-261

MPAMCFG_MBW_WINWD 0x0220 32 MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning
Window Width Configuration Register on page 11-274

MPAMCFG_PRI 0x0400 32 MPAMCFG_PRI, MPAM Priority Partition Configuration Register on
page 11-280

MPAMCFG_MBW_PROP 0x0500 32 MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional
Stride Partition Configuration Register on page 11-271

MPAMCFG_INTPARTID 0x0600 32 MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing
Configuration Register on page 11-258

MSMON_CFG_MON_SEL 0x0800 32 MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register
on page 11-303

MSMON_CAPT_EVNT 0x0808 32 MSMON_CAPT_EVNT, MPAM Capture Event Generation Register on
page 11-284

MSMON_CFG_CSU_FLT 0x0810 32 MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure
Cache Storage Usage Monitor Filter Register on page 11-291

MSMON_CFG_CSU_CTL 0x0818 32 MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure
Cache Storage Usage Monitor Control Register on page 11-287

MSMON_CFG_MBWU_FLT 0x0820 32 MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor
Configure Memory Bandwidth Usage Monitor Filter Register on
page 11-299

MSMON_CFG_MBWU_CTL 0x0828 32 MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor
Configure Memory Bandwidth Usage Monitor Control Register on
page 11-294

MSMON_CSU 0x0840 32 MSMON_CSU, MPAM Cache Storage Usage Monitor Register on
page 11-306

MSMON_CSU_CAPTURE 0x0848 32 MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor
Capture Register on page 11-309

MSMON_CSU_OFSR 0x0858 32 MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register
on page 11-312

MSMON_MBWU 0x0860 32 MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register
on page 11-315

MSMON_MBWU_CAPTURE 0x0868 32 MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage
Monitor Capture Register on page 11-318

Table 11-1 Index of external MPAM registers ordered by offset (continued)

Register Offset Length Description, see
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-209
ID012521 Non-Confidential

Memory-Mapped Registers
11.2 Summary of memory-mapped registers
MSMON_MBWU_L 0x0880 64 MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor
Register on page 11-321

MSMON_MBWU_L_CAPTURE 0x0890 64 MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth
Usage Monitor Capture Register on page 11-324

MSMON_MBWU_OFSR 0x0898 32 MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status
Register on page 11-327

MSMON_OFLOW_MSI_MPAM 0x08DC 32 MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write
MPAM Information Register on page 11-339

MSMON_OFLOW_MSI_ADDR_
L

0x08E0 32 MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI
Low-part Address Register on page 11-332

MSMON_OFLOW_MSI_ADDR_
H

0x08E4 32 MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI
Write High-part Address Register on page 11-330

MSMON_OFLOW_MSI_DATA 0x08E8 32 MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write
Data Register on page 11-337

MSMON_OFLOW_MSI_ATTR 0x08EC 32 MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write
Attributes Register on page 11-334

MSMON_OFLOW_SR 0x08F0 32 MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register on
page 11-342

MPAMCFG_CPBM<n> 0x1000 32 MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap Partition
Configuration Register, n = 0 - 1023 on page 11-254

MPAMCFG_MBW_PBM<n> 0x2000 32 MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion Bitmap
Partition Configuration Register, n = 0 - 127 on page 11-267

Table 11-1 Index of external MPAM registers ordered by offset (continued)

Register Offset Length Description, see
11-210 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3 Memory-mapped ID register description

This section lists the external ID registers.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-211
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.1 MPAMF_AIDR, MPAM Architecture Identification Register

The MPAMF_AIDR characteristics are:

Purpose

Identifies the version of the MPAM architecture that this MSC implements.

Note: The following values are defined for bits [7:0]:

• 0x01 == MPAM architecture v0.1

• 0x10 == MPAM architecture v1.0

• 0x11 == MPAM architecture v1.1

Configurations

The power domain of MPAMF_AIDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_AIDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_AIDR is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

ArchMajorRev, bits [7:4]

Major revision of the MPAM architecture implemented by the MSC.

This table shows the only valid combinations of MPAM version numbers in an MSC. FORCE_NS
functionality is only available in MPAM v0.1.

Use of MPAMv0.1 in MSCs is restricted to limited circumstances. The MSC must be able to initiate
requests in the Secure address space which have MPAM PARTID forced to the Non-secure space
with that forcing not controllable or observable by the software that configures the device for Secure
requests. Please contact Arm before setting MPAMF_AIDR to report MPAMv0.1.

ArchMinorRev, bits [3:0]

Minor revision of the MPAM architecture implemented by the MSC.

See the table in the description of the ArchMajorRev field in this register.

RES0

31 8 7 4 3 0

ArchMajorRev ArchMinorRev

ArchMajorRev ArchMinorRev MPAMv Available

0 0 None.

0 1 v0.1 MPAMv1.0 + MPAMv1.1 + FORCE_NS

1 0 v1.0 MPAMv1.0

1 1 v1.1 MPAMv1.0 + MPAMv1.1 - FORCE_NS
11-212 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
Accessing the MPAMF_AIDR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

MPAMF_AIDR is read-only.

MPAMF_AIDR must be readable from the Secure, Non-secure, Root, and Realm MPAM feature pages.

MPAMF_AIDR must have the same contents in the Secure, Non-secure, Root, and Realm MPAM feature pages.

MPAMF_AIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_AIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_AIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_AIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0020 MPAMF_AIDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0020 MPAMF_AIDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0020 MPAMF_AIDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0020 MPAMF_AIDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-213
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.2 MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register

The MPAMF_CCAP_IDR characteristics are:

Purpose

Indicates the number of fractional bits in MPAMCFG_CMAX.CMAX.

MPAMF_CCAP_IDR_s indicates the number of fractional bits in the Secure instance of
MPAMCFG_CMAX. MPAMF_CCAP_IDR_ns indicates the number of fractional bits in the
Non-secure instance of MPAMCFG_CMAX. MPAMF_CCAP_IDR_rt indicates the number of
fractional bits in the Root cache capacity control settings register field,
MPAMCFG_CMAX.CMAX. MPAMF_CCAP_IDR_rl indicates the number of fractional bits in
the Realm cache capacity control settings register field, MPAMCFG_CMAX.CMAX.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selected by MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has information within the field description.

Configurations

The power domain of MPAMF_CCAP_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_CCAP_PART == 1. Otherwise, direct accesses to MPAMF_CCAP_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_CCAP_IDR is a 32-bit register.

Field descriptions

Bits [31:6]

Reserved, RES0.

CMAX_WD, bits [5:0]

Number of fractional bits implemented in the cache capacity partitioning control,
MPAMCFG_CMAX.CMAX, of this device. See MPAMCFG_CMAX.

This field must contain a value from 1 to 16, inclusive.

If RIS is implemented, this field indicates the number of fractional bits in the cache capacity
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_CCAP_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_CCAP_IDR is read-only.

MPAMF_CCAP_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_CCAP_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_CCAP_IDR_s is permitted to have either the same or different contents to
MPAMF_CCAP_IDR_ns, MPAMF_CCAP_IDR_rt, or MPAMF_CCAP_IDR_rl.

RES0

31 6

CMAX_WD

5 0
11-214 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
• MPAMF_CCAP_IDR_ns is permitted to have either the same or different contents to
MPAMF_CCAP_IDR_rt or MPAMF_CCAP_IDR_rl.

• MPAMF_CCAP_IDR_rt is permitted to have either the same or different contents to
MPAMF_CCAP_IDR_rl.

There must be separate registers in the Secure (MPAMF_CCAP_IDR_s), Non-secure (MPAMF_CCAP_IDR_ns),
Root (MPAMF_CCAP_IDR_rt), and Realm (MPAMF_CCAP_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_CCAP_IDR shows the configuration of cache capacity partitioning
for the cache resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

MPAMF_CCAP_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_CCAP_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_CCAP_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_CCAP_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0038 MPAMF_CCAP_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0038 MPAMF_CCAP_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0038 MPAMF_CCAP_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0038 MPAMF_CCAP_IDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-215
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.3 MPAMF_CPOR_IDR, MPAM Features Cache Portion Partitioning ID register

The MPAMF_CPOR_IDR characteristics are:

Purpose

Indicates the number of bits in MPAMCFG_CPBM<n>.

MPAMF_CPOR_IDR_s indicates the number of bits in the Secure instance of
MPAMCFG_CPBM<n>. MPAMF_CPOR_IDR_ns indicates the number of bits in the Non-secure
instance of MPAMCFG_CPBM<n>. MPAMF_CPOR_IDR_rt indicates the number of bits in the
Root instance of MPAMCFG_CPBM<n>. MPAMF_CPOR_IDR_rl indicates the number of bits in
the Realm instance of MPAMCFG_CPBM<n>.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selector, MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has information within the field description.

Configurations

The power domain of MPAMF_CPOR_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_CPOR_PART == 1. Otherwise, direct accesses to MPAMF_CPOR_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_CPOR_IDR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

CPBM_WD, bits [15:0]

Number of bits in the cache portion partitioning bit map of this device. See
MPAMCFG_CPBM<n>.

This field must contain a value from 1 to 32768, inclusive. Values greater than 32 require a group
of 32-bit registers to access the CPBM, up to 1024 if CPBM_WD is the largest value.

If RIS is implemented, this field indicates the number bits in the cache portion bitmap for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_CPOR_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_CPOR_IDR is read-only.

MPAMF_CPOR_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_CPOR_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_CPOR_IDR_s is permitted to have either the same or different contents to
MPAMF_CPOR_IDR_ns, MPAMF_CPOR_IDR_rt, or MPAMF_CPOR_IDR_rl.

RES0

31 16

CPBM_WD

15 0
11-216 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
• MPAMF_CPOR_IDR_ns is permitted to have either the same or different contents to
MPAMF_CPOR_IDR_rt or MPAMF_CPOR_IDR_rl.

• MPAMF_CPOR_IDR_rt is permitted to have either the same or different contents to
MPAMF_CPOR_IDR_rl.

There must be separate registers in the Secure (MPAMF_CPOR_IDR_s), Non-secure (MPAMF_CPOR_IDR_ns),
Root (MPAMF_CPOR_IDR_rt), and Realm (MPAMF_CPOR_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_CPOR_IDR shows the configuration of cache portion partitioning
for the cache resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

MPAMF_CPOR_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_CPOR_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_CPOR_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_CPOR_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0030 MPAMF_CPOR_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0030 MPAMF_CPOR_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0030 MPAMF_CPOR_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0030 MPAMF_CPOR_IDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-217
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.4 MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

The MPAMF_CSUMON_IDR characteristics are:

Purpose

Indicates the number of cache storage usage monitor instances and other properties of the CSU
monitoring.

MPAMF_CSUMON_IDR_s indicates the number and properties of Secure cache storage usage
monitoring. MPAMF_CSUMON_IDR_ns indicates the number and properties of Non-secure cache
storage usage monitoring. MPAMF_CSUMON_IDR_rt indicates the number and properties of Root
cache storage usage monitoring. MPAMF_CSUMON_IDR_rl indicates the number and properties
of Realm cache storage usage monitoring.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource
instance currently selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are
constant across all resource instances.

Configurations

The power domain of MPAMF_CSUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to
MPAMF_CSUMON_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_CSUMON_IDR is a 32-bit register.

Field descriptions

HAS_CAPTURE, bit [31]

The implementation supports copying an MSMON_CSU to the corresponding
MSMON_CSU_CAPTURE on a capture event.

0b0 MSMON_CSU_CAPTURE is not implemented and there is no support for capture
events in the CSU monitor.

0b1 The MSMON_CSU_CAPTURE register is implemented and the CSU monitor supports
the capture event behavior.

If RIS is implemented, this field indicates that CSU monitor capture is implemented for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

CSU_RO, bit [30]

The implementation of MSMON_CSU is read-only.

0b0 MSMON_CSU is read/write.

0b1 MSMON_CSU is read-only.

If RIS is implemented, this field indicates that the MSMON_CSU monitor register is read-only for
the resource instance selected by MPAMCFG_PART_SEL.RIS.

Bits [29:27]

Reserved, RES0.

31 30

RES0

29 27 26

RES0

25 16

NUM_MON

15 0

HAS_CAPTU
RE

HAS_OFSR
CSU_RO
11-218 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
HAS_OFSR, bit [26]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

The CSU monitor overflow status bitmap register, MSMON_CSU_OFSR, is implemented.

0b0 MSMON_CSU_OFSR register is not implemented.

0b1 MSMON_CSU_OFSR register is implemented.

If RIS is implemented, this field indicates that CSU monitor overflow status bitmap register is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [25:16]

Reserved, RES0.

NUM_MON, bits [15:0]

The number of cache storage usage monitor instances implemented.

The largest MSMON_CFG_MON_SEL.MON_SEL value is NUM_MON minus 1.

If RIS is implemented, this field indicates the number of CSU monitor instances implemented for
the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_CSUMON_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_CSUMON_IDR is read-only.

MPAMF_CSUMON_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_CSUMON_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_CSUMON_IDR_s is permitted to have either the same or different contents to
MPAMF_CSUMON_IDR_ns, MPAMF_CSUMON_IDR_rt, or MPAMF_CSUMON_IDR_rl.

• MPAMF_CSUMON_IDR_ns is permitted to have either the same or different contents to
MPAMF_CSUMON_IDR_rt or MPAMF_CSUMON_IDR_rl.

• MPAMF_CSUMON_IDR_rt is permitted to have either the same or different contents to
MPAMF_CSUMON_IDR_rl.

There must be separate registers in the Secure (MPAMF_CSUMON_IDR_s), Non-secure
(MPAMF_CSUMON_IDR_ns), Root (MPAMF_CSUMON_IDR_rt), and Realm (MPAMF_CSUMON_IDR_rl)
MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_CSUMON_IDR shows the configuration of cache storage usage
monitoring for the cache resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in
their field descriptions have values that track the implemented properties of the resource instance. Fields that do not
mention RIS are constant across all resource instances.

Access to MPAMF_CSUMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_CSUMON_IDR can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0088 MPAMF_CSUMON_IDR_s
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-219
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_CSUMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_CSUMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_CSUMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0088 MPAMF_CSUMON_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0088 MPAMF_CSUMON_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0088 MPAMF_CSUMON_IDR_rl
11-220 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.5 MPAMF_IDR, MPAM Features Identification Register

The MPAMF_IDR characteristics are:

Purpose

Indicates which memory partitioning and monitoring features are present on this MSC.

MPAMF_IDR_s indicates the MPAM features accessed from the Secure MPAM feature page.
MPAMF_IDR_ns indicates the MPAM features accessed from the Non-secure MPAM feature page.
MPAMF_IDR_rt indicates the MPAM features accessed from the Root MPAM feature page.
MPAMF_IDR_rl indicates the MPAM features accessed from the Realm MPAM feature page.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selected by MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has that information within the field description.

Configurations

The power domain of MPAMF_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_IDR are RES0.

MPAMF_IDR is 64-bit register when MPAM v0.1 or v1.1 is implemented.

Otherwise, MPAMF_IDR is a 32-bit register.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_IDR is a:

• 64-bit register when FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is
implemented

• 32-bit register otherwise

Field descriptions

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Bits [63:60]

Reserved, RES0.

RIS_MAX, bits [59:56]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Maximum RIS value supported in MPAMCFG_PART_SEL. Must be 0b0000 if
MPAMF_IDR.HAS_RIS == 0.

RES0

63 60

RIS_MAX

59 56

RES0

55 42 41 40 39 38 37 36

RES0

35 33 32

SP4
HAS_ERR_MSI

HAS_ESR

HAS_RIS
NO_IMPL_PART

NO_IMPL_MSMON
HAS_EXTD_ESR

31 30 29 28 27 26 25 24

PMG_MAX

23 16

PARTID_MAX

15 0

HAS_PARTI
D_NRW

HAS_MSMON
HAS_IMPL_IDR

EXT

HAS_CCAP_PART
HAS_CPOR_PART

HAS_MBW_PART
HAS_PRI_PART
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-221
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
Otherwise:

Reserved, RES0.

Bits [55:44]

Reserved, RES0.

SP4, bit [41]

When FEAT_RME is implemented:

Indicates whether this MSC supports 4 PARTID spaces.

0b0 This MSC supports two PARTID spaces.

0b1 This MSC supports four PARTID spaces.

This field must read the same in each instance of this register and for any value in
MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_ERR_MSI, bit [40]

When MPAMF_IDR.EXT == 1:

Has support for MSI writes to signal MPAM error interrupts. These registers are implemented:
MPAMF_ERR_MSI_ADDR_L, MPAMF_ERR_MSI_ADDR_H, MPAMF_ERR_MSI_ATTR,
MPAMF_ERR_MSI_DATA, and MPAMF_ERR_MSI_MPAM.

0b0 MPAMF_ERR_MSI_ADDR_L, MPAMF_ERR_MSI_ADDR_H,
MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA, and
MPAMF_ERR_MSI_MPAM registers are not implemented.

0b1 MPAMF_ERR_MSI_ADDR_L, MPAMF_ERR_MSI_ADDR_H,
MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA, and
MPAMF_ERR_MSI_MPAM are implemented and can be used to generate writes to
signal error interrupts.

If MPAMF_IDR.HAS_ESR is 0, this bit must also be 0.

Otherwise:

Reserved, RES0.

HAS_ESR, bit [39]

When MPAMF_IDR.EXT == 1:

MPAMF_ESR is implemented.

0b0 MPAMF_ESR, MPAMF_ECR, and MPAM error handling are not implemented.

0b1 MPAMF_ESR, MPAMF_ECR, and MPAM error handling are implemented.

If an MSC cannot encounter any of the error conditions listed in Errors in MSCs, both the
MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

Otherwise:

Reserved, RES0.

HAS_EXTD_ESR, bit [38]

When MPAMF_IDR.EXT == 1:

MPAMF_ESR is 64 bits.

0b0 MPAMF_ESR is 32 bits.

0b1 MPAMF_ESR is 64 bits.

When MPAMF_IDR.HAS_RIS and MPAMF_IDR.HAS_ESR, this field must be 1.

Otherwise:

Reserved, RES0.
11-222 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
NO_IMPL_MSMON, bit [37]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource monitors.

0b0 MPAMF_IMPL_IDR defines at least one IMPLEMENTATION DEFINED resource monitor.

0b1 MPAMF_IMPL_IDR does not define any IMPLEMENTATION DEFINED resource
monitors.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource
monitors described in MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

NO_IMPL_PART, bit [36]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource controls.

0b0 MPAMF_IMPL_IDR defines at least one IMPLEMENTATION DEFINED resource control.

0b1 MPAMF_IMPL_IDR does not define any IMPLEMENTATION DEFINED resource controls.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource
controls described in MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

Bits [35:33]

Reserved, RES0.

HAS_RIS, bit [32]

When MPAMF_IDR.EXT == 1:

Has resource instance selector. Indicates that MPAMCFG_PART_SEL contains the RIS field that
selects a resource instance to control.

0b0 MPAMCFG_PART_SEL does not implement the MPAMCFG_PART_SEL.RIS field or
multiple resource instance support.

0b1 MPAMCFG_PART_SEL implements the MPAMCFG_PART_SEL.RIS field and
MPAM resource instance numbers up to and including MPAMF_IDR.RIS_MAX.

Otherwise:

Reserved, RES0.

HAS_PARTID_NRW, bit [31]

Has PARTID narrowing.

0b0 Does not have MPAMF_PARTID_NRW_IDR, MPAMCFG_INTPARTID, or
intPARTID mapping support.

0b1 Supports the MPAMF_PARTID_NRW_IDR, MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource monitors. Indicates whether this MSC has MPAM resource monitors.

0b0 Does not support MPAM resource monitoring by groups or MPAMF_MSMON_IDR.

0b1 Supports resource monitoring by matching a combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the IMPLEMENTATION SPECIFIC MPAM
features register, MPAMF_IMPL_IDR.

0b0 Does not have MPAMF_IMPL_IDR.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-223
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

0b0 MPAMF_IDR has no defined bits in [63:32]. The register is effectively 32 bits.

0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

HAS_PRI_PART, bit [27]

Has priority partitioning. Indicates that MPAM priority partitioning is implemented and
MPAMF_PRI_IDR exists.

0b0 Does not support priority partitioning or have MPAMF_PRI_IDR.

0b1 Has priority partitioning and MPAMF_PRI_IDR.

If RIS is implemented, this field indicates the presence of priority partitioning resource controls as
described in MPAMF_PRI_IDR for the selected resource instance.

HAS_MBW_PART, bit [26]

Has memory bandwidth partitioning. Indicates whether this MSC implements MPAM memory
bandwidth partitioning and MPAMF_MBW_IDR.

0b0 Does not support memory bandwidth partitioning or have MPAMF_MBW_IDR
register.

0b1 Has MPAMF_MBW_IDR register.

If RIS is implemented, this field indicates the presence of memory bandwidth partitioning resource
controls as described in MPAMF_MBW_IDR for the selected resource instance.

HAS_CPOR_PART, bit [25]

Has cache portion partitioning. Indicates whether this MSC implements MPAM cache portion
partitioning and MPAMF_CPOR_IDR.

0b0 Does not support cache portion partitioning or have MPAMF_CPOR_IDR or
MPAMCFG_CPBM<n> registers.

0b1 Has MPAMF_CPOR_IDR and MPAMCFG_CPBM<n> registers.

If RIS is implemented, this field indicates the presence of cache portion partitioning resource
controls as described in MPAMF_CPOR_IDR for the selected resource instance.

HAS_CCAP_PART, bit [24]

Has cache capacity partitioning. Indicates whether this MSC implements MPAM cache capacity
partitioning and the MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

0b0 Does not support cache capacity partitioning or have MPAMF_CCAP_IDR and
MPAMCFG_CMAX registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

If RIS is implemented, this field indicates the presence of cache capacity partitioning resource
controls as described in MPAMF_CPOR_IDR for the selected resource instance.

PMG_MAX, bits [23:16]

Maximum supported value of PMG.

The value of this field is permitted to vary between the instances of MPAM_IDR, each reporting the
maximum supported PMG value in the PARTID space associated with that instance.

In MPAMF_IDR_s, this field is permitted to report the maximum PMG value for the Non-secure
PARTID space or for the Secure PARTID space. The maximum PMG value for the Secure PARTID
space can be read from MPAMF_SIDR.PMG_MAX.
11-224 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
PARTID_MAX, bits [15:0]

Maximum supported value of PARTID.

The value of this field is permitted to vary between the instances of MPAM_IDR, each reporting the
maximum supported PARTID value in the PARTID space associated with that instance.

In MPAMF_IDR_s this field is permitted to report the maximum PARTID value for the Non-secure
PARTID space or for the Secure PARTID space. The maximum PARTID value for the Secure
PARTID space can be read from MPAMF_SIDR.PARTID_MAX.

Otherwise:

HAS_PARTID_NRW, bit [31]

Has PARTID narrowing.

0b0 Does not have MPAMF_PARTID_NRW_IDR, MPAMCFG_INTPARTID, or
intPARTID mapping support.

0b1 Supports the MPAMF_PARTID_NRW_IDR, MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource monitors. Indicates whether this MSC has MPAM resource monitors.

0b0 Does not support MPAM resource monitoring by groups or MPAMF_MSMON_IDR.

0b1 Supports resource monitoring by matching a combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the IMPLEMENTATION SPECIFIC MPAM
features register, MPAMF_IMPL_IDR.

0b0 Does not have MPAMF_IMPL_IDR.

0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

0b0 MPAMF_IDR has no defined bits in [63:32]. The register is effectively 32 bits.

0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

HAS_PRI_PART, bit [27]

Has priority partitioning. Indicates whether this MSC implements MPAM priority partitioning and
MPAMF_PRI_IDR.

0b0 Does not support priority partitioning or have MPAMF_PRI_IDR.

0b1 Has MPAMF_PRI_IDR.

31 30 29 28 27 26 25 24

PMG_MAX

23 16

PARTID_MAX

15 0

HAS_PARTI
D_NRW

HAS_MSMON
HAS_IMPL_IDR

EXT

HAS_CCAP_PART
HAS_CPOR_PART

HAS_MBW_PART
HAS_PRI_PART
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-225
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
HAS_MBW_PART, bit [26]

Has memory bandwidth partitioning. Indicates whether this MSC implements MPAM memory
bandwidth partitioning and MPAMF_MBW_IDR.

0b0 Does not support memory bandwidth partitioning or have MPAMF_MBW_IDR
register.

0b1 Has MPAMF_MBW_IDR register.

HAS_CPOR_PART, bit [25]

Has cache portion partitioning. Indicates whether this MSC implements MPAM cache portion
partitioning and MPAMF_CPOR_IDR.

0b0 Does not support cache portion partitioning or have MPAMF_CPOR_IDR or
MPAMCFG_CPBM<n> registers.

0b1 Has MPAMF_CPOR_IDR and MPAMCFG_CPBM<n> registers.

HAS_CCAP_PART, bit [24]

Has cache capacity partitioning. Indicates whether this MSC implements MPAM cache capacity
partitioning and the MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

0b0 Does not support cache capacity partitioning or have MPAMF_CCAP_IDR and
MPAMCFG_CMAX registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

PMG_MAX, bits [23:16]

Maximum value of Non-secure PMG supported by this component.

PARTID_MAX, bits [15:0]

Maximum value of Non-secure PARTID supported by this component.

Accessing the MPAMF_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_IDR is read-only.

MPAMF_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and Realm
MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_IDR_s is permitted to have either the same or different contents to MPAMF_IDR_ns,
MPAMF_IDR_rt, or MPAMF_IDR_rl.

• MPAMF_IDR_ns is permitted to have either the same or different contents to MPAMF_IDR_rt or
MPAMF_IDR_rl.

• MPAMF_IDR_rt is permitted to have either the same or different contents to MPAMF_IDR_rl.

There must be separate registers in the Secure (MPAMF_IDR_s), Non-secure (MPAMF_IDR_ns), Root
(MPAMF_IDR_rt), and Realm (MPAMF_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_IDR shows the configuration of MSC MPAM for the resource
instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions have values
that track the implemented properties of the resource instance. Fields that do not mention RIS are constant across
all resource instances.
11-226 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
MPAMF_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0000 MPAMF_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0000 MPAMF_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0000 MPAMF_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0000 MPAMF_IDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-227
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.6 MPAMF_IIDR, MPAM Implementation Identification Register

The MPAMF_IIDR characteristics are:

Purpose

Uniquely identifies the MSC implementation by the combination of implementer, product ID,
variant, and revision.

Configurations

The power domain of MPAMF_IIDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_IIDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_IIDR is a 32-bit register.

Field descriptions

ProductID, bits [31:20]

The MSC implementer as identified in the MPAMF_IIDR.Implementer field must assure each
product has a unique ProductID from any other with the same Implementer value.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [19:16]

This field distinguishes product variants or major revisions of the product.

Note

Implementations of ProductID with differing software interfaces are expected to have different
values in the MPAMF_IIDR.Variant field.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

This field distinguishes minor revisions of the product.

Note

This field is intended to differentiate product revisions that are minor changes and are largely
software compatible with previous revisions.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the MPAM MSC.

[11:8] must contain the JEP106 continuation code of the implementer.

[7] must always be 0.

ProductID

31 20

Variant

19 16

Revision

15 12

Implementer

11 0
11-228 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
[6:0] must contain the JEP106 identity code of the implementer.

For an Arm implementation, bits[11:0] are 0x43B.

Accessing the MPAMF_IIDR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

MPAMF_IIDR is read-only.

MPAMF_IIDR must be readable from the Secure, Non-secure, Root, and Realm MPAM feature pages.

MPAMF_IIDR must have the same contents in the Secure, Non-secure, Root, and Realm MPAM feature pages.

MPAMF_IIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_IIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_IIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_IIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0018 MPAMF_IIDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0018 MPAMF_IIDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0018 MPAMF_IIDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0018 MPAMF_IIDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-229
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.7 MPAMF_IMPL_IDR, MPAM Implementation-Specific Partitioning Feature Identification Register

The MPAMF_IMPL_IDR characteristics are:

Purpose

Indicates the implementation-defined partitioning and monitoring features and parameters of the
MSC.

MPAMF_IMPL_IDR_s indicates IMPLEMENTATION DEFINED partitioning and monitoring features
accessed from the Secure MPAM feature page. MPAMF_IMPL_IDR_ns indicates those accessed
from the Non-secure MPAM feature page. MPAMF_IMPL_IDR_rt indicates IMPLEMENTATION
DEFINED partitioning and monitoring features accessed from the Root MPAM feature page.
MPAMF_IMPL_IDR_rl indicates those accessed from the Realm MPAM feature page.

If MPAMF_IDR.HAS_RIS is 1, this register gives the implementation-specific features and
parameters of the resource instance selected by MPAMCFG_PART_SEL.RIS for any features that
are specific to the resource.

Configurations

The power domain of MPAMF_IMPL_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_IMPL_IDR == 1. Otherwise, direct accesses to MPAMF_IMPL_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_IMPL_IDR is a 32-bit register.

Field descriptions

IMPLFEAT, bits [31:0]

All 32 bits of this register are available to be used as the implementer sees fit to indicate the presence
of IMPLEMENTATION DEFINED MPAM features in this MSC and to give additional
implementation-specific read-only information about the parameters of implementation-specific
MPAM features to software.

If RIS is implemented, this register indicates the implementation-specific features and parameters
of the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_IMPL_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_IMPL_IDR is read-only.

MPAMF_IMPL_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_IMPL_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_IMPL_IDR_s is permitted to have either the same or different contents to
MPAMF_IMPL_IDR_ns, MPAMF_IMPL_IDR_rt, or MPAMF_IMPL_IDR_rl.

• MPAMF_IMPL_IDR_ns is permitted to have either the same or different contents to
MPAMF_IMPL_IDR_rt or MPAMF_IMPL_IDR_rl.

IMPLFEAT

31 0
11-230 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
• MPAMF_IMPL_IDR_rt is permitted to have either the same or different contents to
MPAMF_IMPL_IDR_rl.

There must be separate registers in the Secure (MPAMF_IMPL_IDR_s), Non-secure (MPAMF_IMPL_IDR_ns),
Root (MPAMF_IMPL_IDR_rt), and Realm (MPAMF_IMPL_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_IMPL_IDR shows the configuration of implementation-specific
features for the resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

MPAMF_IMPL_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_IMPL_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_IMPL_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_IMPL_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0028 MPAMF_IMPL_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0028 MPAMF_IMPL_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0028 MPAMF_IMPL_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0028 MPAMF_IMPL_IDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-231
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.8 MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning Identification Register

The MPAMF_MBW_IDR characteristics are:

Purpose

Indicates which MPAM bandwidth partitioning features are present on this MSC.

MPAMF_MBW_IDR_s indicates bandwidth partitioning features accessed from the Secure MPAM
feature page. MPAMF_MBW_IDR_ns indicates bandwidth partitioning features accessed from the
Non-secure MPAM feature page. MPAMF_MBW_IDR_rt indicates bandwidth partitioning
features accessed from the Root MPAM feature page. MPAMF_MBW_IDR_rl indicates bandwidth
partitioning features accessed from the Realm MPAM feature page.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selected by MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has that information within the field description.

Configurations

The power domain of MPAMF_MBW_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_MBW_PART == 1. Otherwise, direct accesses to MPAMF_MBW_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_MBW_IDR is a 32-bit register.

Field descriptions

Bits [31:29]

Reserved, RES0.

BWPBM_WD, bits [28:16]

Bandwidth portion bitmap width.

The number of bandwidth portion bits in the MPAMCFG_MBW_PBM<n> register array.

If MPAMF_MBW_IDR.HAS_PBM is 1, this field must contain a value from 1 to 4096, inclusive.
Values greater than 32 require a group of 32-bit registers to access the BWPBM, up to 128 if
BWPBM_WD is the largest value.

If MPAMF_MBW_IDR.HAS_PBM is 0, this field must be ignored by software.

If RIS is implemented, this field indicates the width of the memory bandwidth portion bitmap
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Bit [15]

Reserved, RES0.

RES0

31 29

BWPBM_WD

28 16 15 14 13 12 11 10

RES0

9 6

BWA_WD

5 0

RES0
WINDWR
HAS_PROP

HAS_MIN
HAS_MAX

HAS_PBM
11-232 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
WINDWR, bit [14]

Indicates the bandwidth accounting period register is writable.

0b0 The bandwidth accounting period is readable from MPAMCFG_MBW_WINWD
which might be fixed or vary due to clock rate reconfiguration of the memory channel
or memory controller.

0b1 The bandwidth accounting width is readable and writable per partition in
MPAMCFG_MBW_WINWD.

HAS_PROP, bit [13]

Indicates that this MSC implements proportional stride bandwidth partitioning and the
MPAMCFG_MBW_PROP register can be accessed.

0b0 There is no memory bandwidth proportional stride control and the
MPAMCFG_MBW_PROP register is RES0.

0b1 The proportional stride memory bandwidth partitioning scheme is supported and the
MPAMCFG_MBW_PROP register can be accessed.

If RIS is implemented, this field indicates the presence of the memory bandwidth proportional stride
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

HAS_PBM, bit [12]

Indicates that bandwidth portion partitioning is implemented and the MPAMCFG_MBW_PBM<n>
register array can be accessed.

0b0 There is no memory bandwidth portion control and the MPAMCFG_MBW_PBM<n>
is RES0.

0b1 The memory bandwidth portion allocation scheme exists and the
MPAMCFG_MBW_PBM<n> register can be accessed.

If RIS is implemented, this field indicates the presence of the memory bandwidth portion
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

HAS_MAX, bit [11]

Indicates that this MSC implements maximum bandwidth partitioning and the
MPAMCFG_MBW_MAX register can be accessed.

0b0 There is no maximum memory bandwidth control and the MPAMCFG_MBW_MAX
register is RES0.

0b1 The maximum memory bandwidth allocation scheme is supported and the
MPAMCFG_MBW_MAX register can be accessed.

If RIS is implemented, this field indicates the presence of the maximum bandwidth partitioning
control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

HAS_MIN, bit [10]

Indicates that this MSC implements minimum bandwidth partitioning and the
MPAMCFG_MBW_MIN register can be accessed.

0b0 There is no minimum memory bandwidth control and the MPAMCFG_MBW_MIN
register is RES0.

0b1 The minimum memory bandwidth allocation scheme is supported and the
MPAMCFG_MBW_MIN register can be accessed.

If RIS is implemented, this field indicates the presence of the minimum bandwidth partitioning
control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Bits [9:6]

Reserved, RES0.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-233
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
BWA_WD, bits [5:0]

Number of implemented bits in the bandwidth allocation fields: MIN, MAX, and STRIDE. See
MPAMCFG_MBW_MIN, MPAMCFG_MBW_MAX, and MPAMCFG_MBW_PROP.

In any of these bandwidth allocation fields exist, this field must have a value from 1 to 16, inclusive.
Otherwise, it is permitted to be 0.

If RIS is implemented, this field indicates the number of implemented bits in the bandwidth
allocation control fields for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_MBW_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_MBW_IDR is read-only.

MPAMF_MBW_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_MBW_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_MBW_IDR_s is permitted to have either the same or different contents to
MPAMF_MBW_IDR_ns, MPAMF_MBW_IDR_rt, or MPAMF_MBW_IDR_rl.

• MPAMF_MBW_IDR_ns is permitted to have either the same or different contents to
MPAMF_MBW_IDR_rt or MPAMF_MBW_IDR_rl.

• MPAMF_MBW_IDR_rt is permitted to have either the same or different contents to
MPAMF_MBW_IDR_rl.

There must be separate registers in the Secure (MPAMF_MBW_IDR_s), Non-secure (MPAMF_MBW_IDR_ns),
Root (MPAMF_MBW_IDR_rt), and Realm (MPAMF_MBW_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MBW_IDR shows the configuration of memory bandwidth
partitioning for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS
in their field descriptions have values that track the implemented properties of the resource instance. Fields that do
not mention RIS are constant across all resource instances.

MPAMF_MBW_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_MBW_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0040 MPAMF_MBW_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0040 MPAMF_MBW_IDR_ns
11-234 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
MPAMF_MBW_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_MBW_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0040 MPAMF_MBW_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0040 MPAMF_MBW_IDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-235
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.9 MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

The MPAMF_MBWUMON_IDR characteristics are:

Purpose

Indicates the number of memory bandwidth usage monitor instances implemented. This register
also indicates several properties of MBWU monitoring, including whether the implementation
supports capture, scaling, or long counters.

MPAMF_MBWUMON_IDR_s indicates the number of Secure memory bandwidth usage monitor
instances. MPAMF_MBWUMON_IDR_ns indicates the number of Non-secure memory
bandwidth usage monitor instances. MPAMF_MBWUMON_IDR_rt indicates the number of Root
memory bandwidth usage monitor instances. MPAMF_MBWUMON_IDR_rl indicates the number
of Realm memory bandwidth usage monitor instances.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource
instance currently selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are
constant across all resource instances.

Configurations

The power domain of MPAMF_MBWUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to
MPAMF_MBWUMON_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_MBWUMON_IDR is a 32-bit register.

Field descriptions

HAS_CAPTURE, bit [31]

The implementation supports copying an MSMON_MBWU to the corresponding
MSMON_MBWU_CAPTURE on a capture event.

0b0 MSMON_MBWU_CAPTURE is not implemented and there is no support for capture
events in the MBWU monitor.

0b1 The MSMON_MBWU_CAPTURE register is implemented and the MBWU monitor
supports the capture event behavior.

If RIS is implemented, this field indicates that MBWU monitor capture is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

If MPAMF_MBWUMON_IDR.HAS_LONG is 1, this also indicates that
MSMON_MBWU_L_CAPTURE is implemented.

HAS_LONG, bit [30]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Indicates whether MSMON_MBWU_L is implemented.

If HAS_CAPTURE is 1, indicates whether MSMON_MBWU_L_CAPTURE is implemented.

0b0 Does not implement MSMON_MBWU_L or MSMON_MBWU_L_CAPTURE.

31 30 29 28 27 26

RES0

25 21

SCALE

20 16

NUM_MON

15 0

HAS_CAPTU
RE

HAS_LONG
LWD

HAS_OFSR
RES0

HAS_RWBW
11-236 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
0b1 Implements MSMON_MBWU_L. If HAS_CAPTURE == 1,
MSMON_MBWU_L_CAPTURE is also implemented.

If RIS is implemented, this field indicates that the long MBWU monitor is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

If MPAMF_MBWUMON_IDR.HAS_CAPTURE is 1, this also indicates that
MSMON_MBWU_L_CAPTURE is implemented.

Otherwise:

Reserved, RES0.

LWD, bit [29]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Long register VALUE width.

If MPAMF_MBWUMON_IDR.HAS_LONG is 0, MPAMF_MBWUMON_IDR.LWD must also
be 0.

0b0 If MPAMF_MBWUMON_IDR.HAS_LONG is 1, MSMON_MBWU_L has 44-bit
VALUE field in bits [43:0]. Bits [62:44] are RES0. If HAS_LONG is 1 and
MPAMF_MBWUMON_IDR.HAS_CAPTURE is 1,
MSMON_MBWU_L_CAPTURE also has 44-bit VALUE field in bits [43:0].

0b1 MSMON_MBWU_L has 63-bit VALUE field in bits [62:0]. If
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1,
MSMON_MBWU_L_CAPTURE also has 63-bit VALUE field in bits [62:0].

If RIS is implemented, this field indicates the length of the MSMON_MBWU_L.VALUE field
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_RWBW, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Read/write bandwidth selection is implemented in MSMON_CFG_MBWU_FLT.

0b0 Read/write bandwidth selection is not implemented.

0b1 Read/write bandwidth selection is implemented.

If RIS is implemented, this field indicates whether read/write bandwidth collection selection is
available in MSMON_CFG_MBWU_FLT for resource instance selected by
MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bit [27]

Reserved, RES0.

HAS_OFSR, bit [26]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

The MBWU monitor overflow status bitmap register, MSMON_MBWU_OFSR, is implemented.

0b0 MSMON_MBWU_OFSR register is not implemented.

0b1 MSMON_MBWU_OFSR register is implemented.

If RIS is implemented, this field indicates that MBWU monitor overflow status bitmap register is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-237
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
Bits [25:21]

Reserved, RES0.

SCALE, bits [20:16]

Scaling of MSMON_MBWU.VALUE in bits. If scaling is enabled by
MSMON_CFG_MBWU_CTL.SCLEN, the byte count in the VALUE field has been shifted by
SCALE bits to the right.

0b00000 Scaling is not implemented.

0bxxxxx Other values are right shift count when scaling is enabled.

If RIS is implemented, this field indicates the scale value for MSMON_MBWU.VALUE field for
the resource instance selected by MPAMCFG_PART_SEL.RIS.

NUM_MON, bits [15:0]

The number of memory bandwidth usage monitor instances implemented. The largest monitor
instance selector, MSMON_CFG_MON_SEL.MON_SEL, is NUM_MON minus 1.

If RIS is implemented, this field indicates the number of MBWU monitor instances for
MSMON_MBWU.VALUE field for the resource instance selected by
MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_MBWUMON_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_MBWUMON_IDR is read-only.

MPAMF_MBWUMON_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature
pages.

MPAMF_MBWUMON_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root,
and Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_MBWUMON_IDR_s is permitted to have either the same or different contents to
MPAMF_MBWUMON_IDR_ns, MPAMF_MBWUMON_IDR_rt, or MPAMF_MBWUMON_IDR_rl.

• MPAMF_MBWUMON_IDR_ns is permitted to have either the same or different contents to
MPAMF_MBWUMON_IDR_rt or MPAMF_MBWUMON_IDR_rl.

• MPAMF_MBWUMON_IDR_rt is permitted to have either the same or different contents to
MPAMF_MBWUMON_IDR_rl.

There must be separate registers in the Secure (MPAMF_MBWUMON_IDR_s), Non-secure
(MPAMF_MBWUMON_IDR_ns), Root (MPAMF_MBWUMON_IDR_rt), and Realm
(MPAMF_MBWUMON_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MBWUMON_IDR shows the configuration of memory bandwidth
monitoring for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS
in their field descriptions have values that track the implemented properties of the resource instance. Fields that do
not mention RIS are constant across all resource instances.

Access to MPAMF_MBWUMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_MBWUMON_IDR can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0090 MPAMF_MBWUMON_IDR_s
11-238 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_MBWUMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_MBWUMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_MBWUMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0090 MPAMF_MBWUMON_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0090 MPAMF_MBWUMON_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0090 MPAMF_MBWUMON_IDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-239
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.10 MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register

The MPAMF_MSMON_IDR characteristics are:

Purpose

Indicates which MPAM monitoring features are present on this MSC.

MPAMF_MSMON_IDR_s indicates Secure monitoring features. MPAMF_MSMON_IDR_ns
indicates Non-secure monitoring features. MPAMF_MSMON_IDR_rt indicates Root monitoring
features. MPAMF_MSMON_IDR_rl indicates Realm monitoring features.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource
instance currently selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are
constant across all resource instances.

Configurations

The power domain of MPAMF_MSMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_MSMON == 1. Otherwise, direct accesses to MPAMF_MSMON_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_MSMON_IDR is a 32-bit register.

Field descriptions

HAS_LOCAL_CAPT_EVNT, bit [31]

Has local capture event generator. Indicates whether this MSC has the MPAM local capture event
generator and the MSMON_CAPT_EVNT register.

0b0 Does not support MPAM local capture event generator or MSMON_CAPT_EVNT.

0b1 Supports the MPAM local capture event generator and the MSMON_CAPT_EVNT
register.

NO_HW_OFLW_INTR, bit [30]

When FEAT_MPAMv1p1 is implemented:

Does not have hardwired MPAM monitor overflow interrupt.

0b0 Supports generating a hardwired interrupt to signal MPAM monitor overflow.

0b1 No support for a hardwired interrupt to signal MPAM monitor overflow.

If this field is 0, the MSC supports generating a hardwired interrupt for monitor overflow events.

If this field is 0 and the HAS_OFLW_MSI field in this register is 1, the MSC supports generating
both hardwired interrupts and MSI writes to signal interrupts.

Otherwise:

Reserved, RES0.

31 30 29 28

RES0

27 18 17 16

RES0

15 0

HAS_LOCAL
_CAPT_EVN

T
NO_HW_OFLW_

INTR
HAS_OFLW_MSI

MSMON_CSU
MSMON_MBWU

HAS_OFLOW_SR
11-240 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
HAS_OFLW_MSI, bit [29]

When FEAT_MPAMv1p1 is implemented:

Has support for MSI writes to signal MPAM monitor overflow interrupts. These registers are
implemented: MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA and
MSMON_OFLOW_MSI_MPAM.

0b0 MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA and
MSMON_OFLOW_MSI_MPAM registers are not implemented.

0b1 MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA and
MSMON_OFLOW_MSI_ATTR are implemented and can be used to generate writes to
signal MPAM monitor overflow interrupts.

If MPAMF_MSMON_IDR.NO_HW_OFLW_INTR is 1 and this bit is 0, this MSC does not support
monitor overflow interrupts.

Otherwise:

Reserved, RES0.

HAS_OFLOW_SR, bit [28]

When FEAT_MPAMv1p1 is implemented:

Has MPAM monitor overflow status register MSMON_OFLOW_SR.

0b0 Does not have MSMON_OFLOW_SR.

0b1 Supports MSMON_OFLOW_SR.

Otherwise:

Reserved, RES0.

Bits [27:18]

Reserved, RES0.

MSMON_MBWU, bit [17]

Memory bandwidth usage monitoring. Indicates whether MPAM monitoring for Memory
Bandwidth Usage by PARTID and PMG is implemented and whether the following bandwidth
usage registers are accessible:

• MPAMF_MBWUMON_IDR, MSMON_CFG_MBWU_CTL,
MSMON_CFG_MBWU_FLT, MSMON_MBWU.

• The optional MSMON_MBWU_CAPTURE.

• If MPAM v0.1 or MPAM v1.1 is implemented, the optional MSMON_MBWU_L and the
optional MSMON_MBWU_L_CAPTURE.

0b0 Does not have monitoring for memory bandwidth usage and does not use the bandwidth
usage registers.

0b1 Has monitoring of memory bandwidth usage and uses the bandwidth usage registers.

If RIS is implemented, this field indicates that memory bandwidth usage monitoring is implemented
for the resource instance selected by MPAMCFG_PART_SEL.RIS as described in
MPAMF_MBWUMON_IDR.

MSMON_CSU, bit [16]

Cache storage usage monitoring. Indicates whether MPAM monitoring of cache storage usage by
PARTID and PMG is implemented and the following registers are accessible:

• MPAMF_CSUMON_IDR, MSMON_CFG_CSU_CTL, MSMON_CFG_CSU_FLT,
MSMON_CSU.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-241
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
• The optional MSMON_CSU_CAPTURE.

0b0 Does not have monitoring for cache storage usage or the MPAMF_CSUMON_IDR,
MSMON_CFG_CSU_CTL, MSMON_CFG_CSU_FLT, MSMON_CSU or
MSMON_CSU_CAPTURE registers.

0b1 Has monitoring of cache storage usage and the MPAMF_CSUMON_IDR,
MSMON_CFG_CSU_CTL, MSMON_CFG_CSU_FLT, MSMON_CSU and optional
MSMON_CSU_CAPTURE registers.

If RIS is implemented, this field indicates that cache storage usage monitoring is implemented for
the resource instance selected by MPAMCFG_PART_SEL.RIS as described in
MPAMF_CSUMON_IDR.

Bits [15:0]

Reserved, RES0.

Accessing the MPAMF_MSMON_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_MSMON_IDR is read-only.

MPAMF_MSMON_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_MSMON_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_MSMON_IDR_s is permitted to have either the same or different contents to
MPAMF_MSMON_IDR_ns, MPAMF_MSMON_IDR_rt, or MPAMF_MSMON_IDR_rl.

• MPAMF_MSMON_IDR_ns is permitted to have either the same or different contents to
MPAMF_MSMON_IDR_rt or MPAMF_MSMON_IDR_rl.

• MPAMF_MSMON_IDR_rt is permitted to have either the same or different contents to
MPAMF_MSMON_IDR_rl.

There must be separate registers in the Secure (MPAMF_MSMON_IDR_s), Non-secure
(MPAMF_MSMON_IDR_ns), Root (MPAMF_MSMON_IDR_rt), and Realm (MPAMF_MSMON_IDR_rl)
MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MSMON_IDR shows the configuration of memory system
monitoring for the resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their
field descriptions have values that track the implemented properties of the resource instance. Fields that do not
mention RIS are constant across all resource instances.

Access to MPAMF_MSMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_MSMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0080 MPAMF_MSMON_IDR_s
11-242 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
MPAMF_MSMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_MSMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_MSMON_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0080 MPAMF_MSMON_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0080 MPAMF_MSMON_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0080 MPAMF_MSMON_IDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-243
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.11 MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID register

The MPAMF_PARTID_NRW_IDR characteristics are:

Purpose

Indicates the largest internal PARTID for this MSC.

MPAMF_PARTID_NRW_IDR_s indicates the largest Secure internal PARTID.
MPAMF_PARTID_NRW_IDR_ns indicates the largest Non-secure internal PARTID.

When FEAT_RME is implemented: MPAMF_PARTID_NRW_rt indicates the largest Root internal
PARTID. MPAMF_PARTID_NRW_rl indicates the largest Realm internal PARTID.

PARTID narrowing is global to the MSC and does not vary by resource instance.

Configurations

The power domain of MPAMF_PARTID_NRW_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_PARTID_NRW == 1. Otherwise, direct accesses to
MPAMF_PARTID_NRW_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_PARTID_NRW_IDR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

INTPARTID_MAX, bits [15:0]

The largest intPARTID supported in this MSC.

Accessing the MPAMF_PARTID_NRW_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_PARTID_NRW_IDR is read-only.

MPAMF_PARTID_NRW_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature
pages.

MPAMF_PARTID_NRW_IDR is permitted to have the same contents when read from the Secure, Non-secure,
Root, and Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_PARTID_NRW_IDR_s is permitted to have either the same or different contents to
MPAMF_PARTID_NRW_IDR_ns, MPAMF_PARTID_NRW_IDR_rt, or
MPAMF_PARTID_NRW_IDR_rl.

• MPAMF_PARTID_NRW_IDR_ns is permitted to have either the same or different contents to
MPAMF_PARTID_NRW_IDR_rt or MPAMF_PARTID_NRW_IDR_rl.

• MPAMF_PARTID_NRW_IDR_rt is permitted to have either the same or different contents to
MPAMF_PARTID_NRW_IDR_rl.

RES0

31 16

INTPARTID_MAX

15 0
11-244 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
There must be separate registers in the Secure (MPAMF_PARTID_NRW_IDR_s), Non-secure
(MPAMF_PARTID_NRW_IDR_ns), Root (MPAMF_PARTID_NRW_IDR_rt), and Realm
(MPAMF_PARTID_NRW_IDR_rl) MPAM feature pages.

MPAMF_PARTID_NRW_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_PARTID_NRW_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_PARTID_NRW_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_PARTID_NRW_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0050 MPAMF_PARTID_NRW_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0050 MPAMF_PARTID_NRW_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0050 MPAMF_PARTID_NRW_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0050 MPAMF_PARTID_NRW_IDR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-245
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.12 MPAMF_PRI_IDR, MPAM Priority Partitioning Identification Register

The MPAMF_PRI_IDR characteristics are:

Purpose

Indicates which MPAM priority partitioning features are present on this MSC.

MPAMF_PRI_IDR_s indicates priority partitioning features accessed from the Secure MPAM
feature page. MPAMF_PRI_IDR_ns indicates priority partitioning features accessed from the
Non-secure MPAM feature page. MPAMF_PRI_IDR_rt indicates priority partitioning features
accessed from the Root MPAM feature page. MPAMF_PRI_IDR_rl indicates priority partitioning
features accessed from the Realm MPAM feature page.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selected by MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has that information within the field description.

Configurations

The power domain of MPAMF_PRI_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_PRI_PART == 1. Otherwise, direct accesses to MPAMF_PRI_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_PRI_IDR is a 32-bit register.

Field descriptions

Bits [31:26]

Reserved, RES0.

DSPRI_WD, bits [25:20]

Number of implemented bits in the downstream priority field (DSPRI) of MPAMCFG_PRI.

If HAS_DSPRI == 1, this field must contain a value from 1 to 16, inclusive.

If HAS_DSPRI == 0, this field must be 0.

If RIS is implemented, this field indicates the number of downstream priority bits for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Bits [19:18]

Reserved, RES0.

DSPRI_0_IS_LOW, bit [17]

Indicates whether 0 in MPAMCFG_PRI.DSPRI is the lowest or the highest downstream priority.

0b0 In the MPAMCFG_PRI.DSPRI field, a value of 0 means the highest priority.

0b1 In the MPAMCFG_PRI.DSPRI field, a value of 0 means the lowest priority.

If RIS is implemented, this field indicates that 0 is the lowest downstream priority for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

RES0

31 26

DSPRI_WD

25 20

RES0

19 18 17 16

RES0

15 10

INTPRI_WD

9 4

RES0

3 2 1 0

DSPRI_0_IS_LOW HAS_DSPRI INTPRI_0_IS_LOW HAS_INTPR
I

11-246 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
HAS_DSPRI, bit [16]

Indicates that the MPAMCFG_PRI register implements the DSPRI field.

0b0 This MSC supports priority partitioning, but does not implement a downstream priority
(DSPRI) field in the MPAMCFG_PRI register.

0b1 This MSC supports downstream priority partitioning and implements the downstream
priority (DSPRI) field in the MPAMCFG_PRI register.

If RIS is implemented, this field indicates that downstream priority is implemented for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Bits [15:10]

Reserved, RES0.

INTPRI_WD, bits [9:4]

Number of implemented bits in the internal priority field (INTPRI) in the MPAMCFG_PRI register.

If HAS_INTPRI == 1, this field must contain a value from 1 to 16, inclusive.

If HAS_INTPRI == 0, this field must be 0.

If RIS is implemented, this field indicates the number of internal priority bits for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Bits [3:2]

Reserved, RES0.

INTPRI_0_IS_LOW, bit [1]

Indicates whether 0 in MPAMCFG_PRI.INTPRI is the lowest or the highest internal priority.

0b0 In the MPAMCFG_PRI.INTPRI field, a value of 0 means the highest priority.

0b1 In the MPAMCFG_PRI.INTPRI field, a value of 0 means the lowest priority.

If RIS is implemented, this field indicates that 0 is the lowest internal priority for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

HAS_INTPRI, bit [0]

Indicates that this MSC implements the INTPRI field in the MPAMCFG_PRI register.

0b0 This MSC supports priority partitioning, but does not implement the internal priority
(INTPRI) field in the MPAMCFG_PRI register.

0b1 This MSC supports internal priority partitioning and implements the internal priority
(INTPRI) field in the MPAMCFG_PRI register.

If RIS is implemented, this field indicates that internal priority is implemented for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_PRI_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_PRI_IDR is read-only.

MPAMF_PRI_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_PRI_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and Realm
MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_PRI_IDR_s is permitted to have either the same or different contents to MPAMF_PRI_IDR_ns,
MPAMF_PRI_IDR_rt, or MPAMF_PRI_IDR_rl.

• MPAMF_PRI_IDR_ns is permitted to have either the same or different contents to MPAMF_PRI_IDR_rt or
MPAMF_PRI_IDR_rl.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-247
ID012521 Non-Confidential

Memory-Mapped Registers
11.3 Memory-mapped ID register description
• MPAMF_PRI_IDR_rt is permitted to have either the same or different contents to MPAMF_PRI_IDR_rl.

There must be separate registers in the Secure (MPAMF_PRI_IDR_s), Non-secure (MPAMF_PRI_IDR_ns), Root
(MPAMF_PRI_IDR_rt), and Realm (MPAMF_PRI_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_PRI_IDR shows the configuration of priority partitioning for the
resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions have
values that track the implemented properties of the resource instance. Fields that do not mention RIS are constant
across all resource instances.

MPAMF_PRI_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_PRI_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MPAMF_PRI_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MPAMF_PRI_IDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0048 MPAMF_PRI_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0048 MPAMF_PRI_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0048 MPAMF_PRI_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0048 MPAMF_PRI_IDR_rl
11-248 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.3 Memory-mapped ID register description
11.3.13 MPAMF_SIDR, MPAM Features Secure Identification Register

The MPAMF_SIDR characteristics are:

Purpose

The MPAMF_SIDR is a 32-bit read-only register that indicates the maximum Secure PARTID and
Secure PMG on this MSC.

Configurations

The power domain of MPAMF_SIDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_SIDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_SIDR is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

S_PMG_MAX, bits [23:16]

Maximum value of Secure PMG supported by this component.

S_PARTID_MAX, bits [15:0]

Maximum value of Secure PARTID supported by this component.

Accessing the MPAMF_SIDR:

This register is only within the Secure MPAM feature page memory frame.

MPAMF_SIDR is read-only.

MPAMF_SIDR must only be readable from the Secure MPAM feature page. If the system or the MSC does not
support the Secure address map, this register must not be accessible.

MPAMF_SIDR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

RES0

31 24

S_PMG_MAX

23 16

S_PARTID_MAX

15 0

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0008 MPAMF_SIDR_s
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-249
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4 Memory-mapped partitioning configuration registers

This section lists the external partitioning configuration registers.
11-250 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.1 MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register

The MPAMCFG_CMAX characteristics are:

Purpose

The MPAMCFG_CMAX is a 32-bit read/write register that controls the maximum fraction of the
cache capacity that the PARTID selected by MPAMCFG_PART_SEL is permitted to allocate.

MPAMCFG_CMAX_s controls the cache maximum capacity for the Secure PARTID selected by
the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_CMAX_ns controls the cache
maximum capacity for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL. MPAMCFG_CMAX_rt controls the cache maximum capacity for the
Root PARTID selected by the Root instance of MPAMCFG_PART_SEL. MPAMCFG_CMAX_rl
controls the cache maximum capacity for the Realm PARTID selected by the Realm instance of
MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_CMAX is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_CCAP_PART == 1. Otherwise, direct accesses to MPAMCFG_CMAX are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_CMAX is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

CMAX, bits [15:0]

Maximum cache capacity usage in fixed-point fraction format by the partition selected by
MPAMCFG_PART_SEL. The fraction represents the portion of the total cache capacity that the
PARTID is permitted to allocate.

The implemented width of the fixed-point fraction is given in MPAMF_CCAP_IDR.CMAX_WD.
Unimplemented bits within the field are RAZ/WI. The implemented bits of the CMAX field are
always the most significant bits of the field.

The fixed-point fraction CMAX is less than 1. The implied binary point is between bits 15 and 16.
This representation has as the largest fraction of the cache that can be represented in an
implementation with w implemented bits is 1.0 minus one half to the power w.

Accessing the MPAMCFG_CMAX:

This register is within the MPAM feature page memory frames.

RES0

31 16

CMAX

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-251
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMCFG_CMAX_s must be accessible from the Secure MPAM feature page.

• MPAMCFG_CMAX_ns must be accessible from the Non-secure MPAM feature page.

• MPAMCFG_CMAX_rt must be accessible from the Root MPAM feature page.

• MPAMCFG_CMAX_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_CMAX_s, MPAMCFG_CMAX_ns, MPAMCFG_CMAX_rt, and MPAMCFG_CMAX_rl must be
separate registers.

• The Secure instance (MPAMCFG_CMAX_s) accesses the cache capacity partitioning used for Secure
PARTIDs.

• The Non-secure instance (MPAMCFG_CMAX_ns) accesses the cache capacity partitioning used for
Non-secure PARTIDs.

• The Root instance (MPAMCFG_CMAX_rt) accesses the cache capacity partitioning used for Root
PARTIDs.

• The Realm instance (MPAMCFG_CMAX_rl) accesses the cache capacity partitioning used for Realm
PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CMAX access the cache maximum capacity
partitioning configuration settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CMAX access the cache maximum capacity
partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CMAX access the cache maximum
capacity partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CMAX access the cache maximum
capacity partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CMAX can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_CMAX can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0108 MPAMCFG_CMAX_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0108 MPAMCFG_CMAX_ns
11-252 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
MPAMCFG_CMAX can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMCFG_CMAX can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0108 MPAMCFG_CMAX_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0108 MPAMCFG_CMAX_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-253
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.2 MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap Partition Configuration Register, n = 0 -
1023

The MPAMCFG_CPBM<n> characteristics are:

Purpose

The MPAMCFG_CPBM<n> register array gives access to the cache portion bitmap. Each register
in the array is a read/write register that configures the cache portions numbered from <n * 32> to
<31 + (n * 32)> that a PARTID is allowed to allocate.

After setting MPAMCFG_PART_SEL with a PARTID, software writes to the
MPAMCFG_CPBM<n> register to configure which cache portions the PARTID is allowed to
allocate.

The MPAMCFG_CPBM<n> register that contains the bitmap bit corresponding to cache portion p
has n equal to p[15:5]. The field, P<x>, of that MPAMCFG_CPBM<n> register that contains the
bitmap bit corresponding to cache portion p has x equal to p[4:0].

MPAMCFG_CPBM<n>_s controls cache portions for the Secure PARTID selected by the Secure
instance of MPAMCFG_PART_SEL. MPAMCFG_CPBM<n>_ns controls the cache portions for
the Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.
MPAMCFG_CPBM<n>_rt controls cache portions for the Root PARTID selected by the Root
instance of MPAMCFG_PART_SEL. MPAMCFG_CPBM<n>_rl controls the cache portions for
the Realm PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_CPBM<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_CPOR_PART == 1. Otherwise, direct accesses to MPAMCFG_CPBM<n> are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_CPBM<n> is a 32-bit register.
11-254 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
Field descriptions

P<x + (n * 32)>, bit [x], for x = 31 to 0

Portion allocation control bit. Each cache portion allocation control bit,
MPAMCFG_CPBM<n>.P<x>, grants permission to the PARTID selected by
MPAMCFG_PART_SEL to allocate cache lines within cache portion <x + (n * 32)>.

0b0 The PARTID is not permitted to allocate into cache portion <x + (n * 32)>.

0b1 The PARTID is permitted to allocate within cache portion <x + (n * 32)>.

The number of bits in the cache portion partitioning bit map of this component is given in
MPAMF_CPOR_IDR.CPBM_WD. CPBM_WD contains a value from 1 to 215, inclusive. Values
of CPBM_WD greater than 32 require an array of 32-bit MPAMCFG_CPBM<n> registers to access
the cache portion bitmap, up to 1024 registers.

Bits MPAMCFG_CPBM<n>.P<<x + (n * 32)>>, where <x + (n * 32)> is greater than or equal to
CPBM_WD, are RES0:

• If n > MPAMF_CPOR_IDR.CPBM_WD[15:5], the entire 32 P<x> are RES0.

• If n == MPAMF_CPOR_IDR.CPBM_WD[15:5], bits [31: CPBM_WD[4:0]] are RES0 and
the remaining bits are valid.

• If n < MPAMF_CPOR_IDR.CPBM_WD[15:5], the entire 32 P<x> are valid.

Accessing the MPAMCFG_CPBM<n>:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMCFG_CPBM<n>_s must be accessible from the Secure MPAM feature page.

• MPAMCFG_CPBM<n>_ns must be accessible from the Non-secure MPAM feature page.

• MPAMCFG_CPBM<n>_rt must be accessible from the Root MPAM feature page.

• MPAMCFG_CPBM<n>_rl must be accessible from the Realm MPAM feature page.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P<32 * n
+ 31>

P<32 * n +
30>

P<32 * n +
29>

P<32 * n + 28>
P<32 * n + 27>

P<32 * n + 26>
P<32 * n + 25>

P<32 * n + 24>
P<32 * n + 23>

P<32 * n + 22>
P<32 * n + 21>

P<32 * n + 20>
P<32 * n + 19>

P<32 * n + 18>
P<32 * n + 17>

P<32 * n + 16>

P<32 * n>
P<32 * n +
1>

P<32 * n + 2>
P<32 * n + 3>

P<32 * n + 4>
P<32 * n + 5>

P<32 * n + 6>
P<32 * n + 7>

P<32 * n + 8>
P<32 * n + 9>

P<32 * n + 10>
P<32 * n + 11>

P<32 * n + 12>
P<32 * n + 13>

P<32 * n + 14>
P<32 * n + 15>
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-255
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
MPAMCFG_CPBM<n>_s, MPAMCFG_CPBM<n>_ns, MPAMCFG_CPBM<n>_rt, and
MPAMCFG_CPBM<n>_rl must be separate registers.

• The Secure instance (MPAMCFG_CPBM<n>_s) accesses the cache portion bitmap used for Secure
PARTIDs.

• The Non-secure instance (MPAMCFG_CPBM<n>_ns) accesses the cache portion bitmap used for
Non-secure PARTIDs.

• The Root instance (MPAMCFG_CPBM<n>_rt) accesses the cache portion bitmap used for Root PARTIDs.

• The Realm instance (MPAMCFG_CPBM<n>_rl) accesses the cache portion bitmap used for Realm
PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion bitmap
configuration settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID
selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion bitmap
configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion
bitmap configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion
bitmap configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CPBM<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_CPBM<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_CPBM<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x1000 + (4 * n) MPAMCFG_CPBM<n>_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x1000 + (4 * n) MPAMCFG_CPBM<n>_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x1000 + (4 * n) MPAMCFG_CPBM<n>_rt
11-256 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
MPAMCFG_CPBM<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x1000 + (4 * n) MPAMCFG_CPBM<n>_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-257
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.3 MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register

The MPAMCFG_INTPARTID characteristics are:

Purpose

MPAMCFG_INTPARTID is a 32-bit read/write register that controls the mapping of the PARTID
selected by MPAMCFG_PART_SEL into a narrower internal PARTID (intPARTID).

MPAMCFG_INTPARTID_s controls the mapping for the Secure PARTID selected by the Secure
instance of MPAMCFG_PART_SEL. MPAMCFG_INTPARTID_ns controls the mapping for the
Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.
MPAMCFG_INTPARTID_rt controls the mapping for the Root PARTID selected by the Root
instance of MPAMCFG_PART_SEL. MPAMCFG_INTPARTID_rl controls the mapping for the
Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

The MPAMCFG_INTPARTID register associates the request PARTID (reqPARTID) in the
MPAMCFG_PART_SEL register with an internal PARTID (intPARTID) in this register. To set that
association, store reqPARTID into the MPAMCFG_PART_SEL register and then store the
intPARTID into the MPAMCFG_INTPARTID register. To read the association, store reqPARTID
into the MPAMCFG_PART_SEL register and then read MPAMCFG_INTPARTID.

If the intPARTID stored into MPAMCFG_INTPARTID is out-of-range or does not have the
INTERNAL bit set, the association of reqPARTID to intPARTID is not written and MPAMF_ESR
is set to indicate an intPARTID_Range error.

If MPAMCFG_PART_SEL.INTERNAL is 1 when MPAMCFG_INTPARTID is read or written,
MPAMF_ESR is set to indicate an Unexpected_INTERNAL error.

Configurations

The power domain of MPAMCFG_INTPARTID is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_PARTID_NRW == 1. Otherwise, direct accesses to MPAMCFG_INTPARTID
are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_INTPARTID is a 32-bit register.

Field descriptions

Bits [31:17]

Reserved, RES0.

INTERNAL, bit [16]

Internal PARTID flag.

This bit must be 1 when written to the register. If written as 0, the write will not update the
reqPARTID to intPARTID association.

On a read of this register, the bit will always read the value last written.

INTPARTID, bits [15:0]

This field contains the intPARTID mapped to the reqPARTID in MPAMCFG_PART_SEL.

The maximum intPARTID supported is MPAMF_PARTID_NRW_IDR.INTPARTID_MAX.

RES0

31 17 16

INTPARTID

15 0

INTERNAL
11-258 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
Accessing the MPAMCFG_INTPARTID:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMCFG_INTPARTID_s must be accessible from the Secure MPAM feature page.

• MPAMCFG_INTPARTID_ns must be accessible from the Non-secure MPAM feature page.

• MPAMCFG_INTPARTID_rt must be accessible from the Root MPAM feature page.

• MPAMCFG_INTPARTID_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_INTPARTID_s, MPAMCFG_INTPARTID_ns, MPAMCFG_INTPARTID_rt, and
MPAMCFG_INTPARTID_rl must be separate registers.

• The Secure instance (MPAMCFG_INTPARTID_s) accesses the PARTID narrowing used for Secure
PARTIDs.

• The Non-secure instance (MPAMCFG_INTPARTID_ns) accesses the PARTID narrowing used for
Non-secure PARTIDs.

• The Root instance (MPAMCFG_INTPARTID_rt) accesses the PARTID narrowing used for Root PARTIDs.

• The Realm instance (MPAMCFG_INTPARTID_rl) accesses the PARTID narrowing used for Realm
PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_INTPARTID access the PARTID narrowing
configuration settings without being affected by MPAMCFG_PART_SEL.RIS.

Loads and stores to MPAMCFG_INTPARTID access the PARTID narrowing configuration settings for the request
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be
0.

MPAMCFG_INTPARTID can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_INTPARTID can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_INTPARTID can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0600 MPAMCFG_INTPARTID_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0600 MPAMCFG_INTPARTID_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0600 MPAMCFG_INTPARTID_rt
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-259
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMCFG_INTPARTID can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0600 MPAMCFG_INTPARTID_rl
11-260 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.4 MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register

The MPAMCFG_MBW_MAX characteristics are:

Purpose

MPAMCFG_MBW_MAX is a 32-bit read/write register that controls the maximum fraction of
memory bandwidth that the PARTID selected by MPAMCFG_PART_SEL is permitted to use.

MPAMCFG_MBW_MAX_s controls maximum bandwidth for the Secure PARTID selected by the
Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_MAX_ns controls the maximum
bandwidth for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL. MPAMCFG_MBW_MAX_rt controls the maximum bandwidth for the
Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_MAX_rl controls the maximum bandwidth for the Realm PARTID selected by
the Realm instance of MPAMCFG_PART_SEL.

A PARTID that has used more than MAX is given no access to additional bandwidth if HARDLIM
== 1 or is given additional bandwidth only if there are no requests from PARTIDs that have not
exceeded their MAX if HARDLIM == 0.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_MAX is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented,
MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_MAX == 1. Otherwise,
direct accesses to MPAMCFG_MBW_MAX are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_MAX is a 32-bit register.

Field descriptions

HARDLIM, bit [31]

Hard bandwidth limiting.

0b0 When MAX bandwidth is exceeded, the partition contends with a low preference for
downstream bandwidth beyond MAX.

0b1 When MAX bandwidth is exceeded, the partition does not use any more bandwidth until
the memory bandwidth measurement for the partition falls below MAX.

Bits [30:16]

Reserved, RES0.

MAX, bits [15:0]

Memory maximum bandwidth allocated to the partition selected by MPAMCFG_PART_SEL.
MAX is in fixed-point fraction format. The fraction represents the portion of the total memory
bandwidth capacity through the controlled component that the PARTID is permitted to allocate.

31

RES0

30 16

MAX

15 0

HARDLIM
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-261
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
The implemented width of the fixed-point fraction is given in MPAMF_MBW_IDR.BWA_WD.
Unimplemented bits are RAZ/WI. The implemented bits of the MAX field are always to the left of
the field. For example, if BWA_WD = 3, the implemented bits are
MPAMCFG_MBW_MAX[15:13] and MPAMCFG_MBW_MAX[12:0] are unimplemented.

The fixed-point fraction MAX is less than 1. The implied binary point is between bits 15 and 16.
This representation has as the largest fraction of the bandwidth that can be represented in an
implementation with w implemented bits is 1.0 minus one half to the power w.

Accessing the MPAMCFG_MBW_MAX:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMCFG_MBW_MAX_s must be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_MAX_ns must be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_MAX_rt must be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_MAX_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_MAX_s, MPAMCFG_MBW_MAX_ns, MPAMCFG_MBW_MAX_rt, and
MPAMCFG_MBW_MAX_rl must be separate registers.

• The Secure instance (MPAMCFG_MBW_MAX_s) accesses the memory maximum bandwidth partitioning
used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_MAX_ns) accesses the memory maximum bandwidth
partitioning used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_MAX_rt) accesses the memory maximum bandwidth partitioning
used for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_MAX_rl) accesses the memory maximum bandwidth partitioning
used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_MAX access the memory maximum bandwidth
partitioning configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS
and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_MAX access the memory maximum
bandwidth partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_MAX access the memory
maximum bandwidth partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_MAX access the memory
maximum bandwidth partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_MAX can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0208 MPAMCFG_MBW_MAX_s
11-262 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
MPAMCFG_MBW_MAX can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_MBW_MAX can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMCFG_MBW_MAX can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0208 MPAMCFG_MBW_MAX_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0208 MPAMCFG_MBW_MAX_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0208 MPAMCFG_MBW_MAX_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-263
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.5 MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum Partition Configuration Register

The MPAMCFG_MBW_MIN characteristics are:

Purpose

MPAMCFG_MBW_MIN is a 32-bit read/write register that controls the minimum fraction of
memory bandwidth that the PARTID selected by MPAMCFG_PART_SEL is permitted to use.

MPAMCFG_MBW_MIN_s controls the minimum bandwidth for the Secure PARTID selected by
the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_MIN_ns controls the
minimum bandwidth for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL. MPAMCFG_MBW_MIN_rt controls the minimum bandwidth for the
Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_MIN_rl controls the minimum bandwidth for the Realm PARTID selected by
the Realm instance of MPAMCFG_PART_SEL.

A PARTID that has used less than MIN is given preferential access to bandwidth.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_MIN is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented,
MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_MIN == 1. Otherwise,
direct accesses to MPAMCFG_MBW_MIN are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_MIN is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

MIN, bits [15:0]

Memory minimum bandwidth allocated to the partition selected by MPAMCFG_PART_SEL. MIN
is in fixed-point fraction format. The fraction represents the portion of the total memory bandwidth
capacity through the controlled component that the PARTID is permitted to allocate.

The implemented width of the fixed-point fraction is given in MPAMF_MBW_IDR.BWA_WD.
Unimplemented bits are RAZ/WI. The implemented bits of the MIN field are always to the left of
the field. For example, if BWA_WD = 4, the implemented bits are MPAMCFG_MBW_MIN[15:12]
and MPAMCFG_MBW_MIN[11:0] are unimplemented.

The fixed-point fraction MIN is less than 1. The implied binary point is between bits 15 and 16. This
representation has as the largest fraction of the bandwidth that can be represented in an
implementation with w implemented bits is 1.0 minus one half to the power w.

Accessing the MPAMCFG_MBW_MIN:

This register is within the MPAM feature page memory frames.

RES0

31 16

MIN

15 0
11-264 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMCFG_MBW_MIN_s must be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_MIN_ns must be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_MIN_rt must be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_MIN_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_MIN_s, MPAMCFG_MBW_MIN_ns, MPAMCFG_MBW_MIN_rt, and
MPAMCFG_MBW_MIN_rl must be separate registers.

• The Secure instance (MPAMCFG_MBW_MIN_s) accesses the memory minimum bandwidth partitioning
used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_MIN_ns) accesses the memory minimum bandwidth
partitioning used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_MIN_rt) accesses the memory minimum bandwidth partitioning
used for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_MIN_rl) accesses the memory minimum bandwidth partitioning
used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_MIN access the memory minimum bandwidth
partitioning configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS
and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_MIN access the memory minimum
bandwidth partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_MIN access the memory
minimum bandwidth partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_MIN access the memory
minimum bandwidth partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_MIN can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_MBW_MIN can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0200 MPAMCFG_MBW_MIN_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0200 MPAMCFG_MBW_MIN_ns
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-265
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
MPAMCFG_MBW_MIN can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMCFG_MBW_MIN can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0200 MPAMCFG_MBW_MIN_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0200 MPAMCFG_MBW_MIN_rl
11-266 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.6 MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion Bitmap Partition Configuration Register,
n = 0 - 127

The MPAMCFG_MBW_PBM<n> characteristics are:

Purpose

The MPAMCFG_MBW_PBM<n> register array gives access to the memory bandwidth portion
bitmap. Each register in the array is a read/write register that configures the bandwidth portions <32
* n> to <(32 * n) + 31> that a PARTID is allowed to allocate.

After setting MPAMCFG_PART_SEL with a PARTID, software writes to one or more of the
MPAMCFG_MBW_PBM<n> registers to configure which bandwidth portions the PARTID is
allowed to allocate.

The MPAMCFG_MBW_PBM<n> register that contains the bitmap bit corresponding to memory
bandwidth portion p has n equal to p[11:5]. The field, P<<x + (32 * n)>> of that
MPAMCFG_MBW_PBM<n> register that contains the bitmap bit corresponding to memory
bandwidth portion p has x equal to p[4:0].

The MPAMCFG_MBW_PBM<n>_s registers control the bandwidth portion bitmap for the Secure
PARTID selected by the Secure instance of MPAMCFG_PART_SEL. The
MPAMCFG_MBW_PBM<n>_ns registers control the bandwidth portion bitmap for the
Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL. The
MPAMCFG_MBW_PBM<n>_rt registers control the bandwidth portion bitmap for the Root
PARTID selected by the Root instance of MPAMCFG_PART_SEL. The
MPAMCFG_MBW_PBM<n>_rl registers control the bandwidth portion bitmap for the Realm
PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_PBM<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented,
MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_PBM == 1. Otherwise,
direct accesses to MPAMCFG_MBW_PBM<n> are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_PBM<n> is a 32-bit register.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-267
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
Field descriptions

P<x + (32 * n)>, bit [x], for x = 31 to 0

Portion allocation control bit. Each bandwidth portion allocation control bit
MPAMCFG_MBW_PBM<n>.P<<x + (32 * n)>> grants permission to the PARTID selected by
MPAMCFG_PART_SEL to allocate bandwidth within bandwidth portion <x + (32 * n)>.

0b0 The PARTID is not permitted to allocate into bandwidth portion <x + (32 * n)>.

0b1 The PARTID is permitted to allocate within bandwidth portion <x + (32 * n)>.

The number of bits in the bandwidth portion partitioning bit map of this component is given in
MPAMF_MBW_IDR.BWPBM_WD. BWPBM_WD contains a value from 1 to 212, inclusive.
Values of BWPBM_WD greater than 32 require a group of 32-bit registers to access the bandwidth
portion bitmap, up to 128 32-bit registers.

Bits MPAMCFG_MBW_PBM<n>.P<<x + (32 * n)>>, where <x + (32 * n)>is greater than or equal
to BWPBM_WD are RES0:

• If n > MPAMF_MBW_IDR.BWPBM_WD[11:5], the entire 32 P<x> are RES0.

• If n == MPAMF_MBW_IDR.BWPBM_WD[11:5], bits [31: BWPBM_WD[4:0]] are RES0
and the remaining bits are valid.

• If n < MPAMF_MBW_IDR.BWPBM_WD[11:5], the entire 32 P<x> are valid.

Accessing the MPAMCFG_MBW_PBM<n>:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMCFG_MBW_PBM<n>_s must be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_PBM<n>_ns must be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_PBM<n>_rt must be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_PBM<n>_rl must be accessible from the Realm MPAM feature page.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P<32 * n
+ 31>

P<32 * n +
30>

P<32 * n +
29>

P<32 * n + 28>
P<32 * n + 27>

P<32 * n + 26>
P<32 * n + 25>

P<32 * n + 24>
P<32 * n + 23>

P<32 * n + 22>
P<32 * n + 21>

P<32 * n + 20>
P<32 * n + 19>

P<32 * n + 18>
P<32 * n + 17>

P<32 * n + 16>

P<32 * n>
P<32 * n +
1>

P<32 * n + 2>
P<32 * n + 3>

P<32 * n + 4>
P<32 * n + 5>

P<32 * n + 6>
P<32 * n + 7>

P<32 * n + 8>
P<32 * n + 9>

P<32 * n + 10>
P<32 * n + 11>

P<32 * n + 12>
P<32 * n + 13>

P<32 * n + 14>
P<32 * n + 15>
11-268 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
MPAMCFG_MBW_PBM<n>_s, MPAMCFG_MBW_PBM<n>_ns, MPAMCFG_MBW_PBM<n>_rt, and
MPAMCFG_MBW_PBM<n>_rl must be separate registers.

• The Secure instance (MPAMCFG_MBW_PBM<n>_s) accesses the memory bandwidth portion bitmap used
for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_PBM<n>_ns) accesses the memory bandwidth portion
bitmap used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_PBM<n>_rt) accesses the memory bandwidth portion bitmap used
for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_PBM<n>_rl) accesses the memory bandwidth portion bitmap used
for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory bandwidth portion
bitmap configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory bandwidth
portion bitmap configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory
bandwidth portion bitmap configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the
memory bandwidth portion bitmap configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_PBM<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_MBW_PBM<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_MBW_PBM<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n>_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n>_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n>_rt
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-269
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
MPAMCFG_MBW_PBM<n> can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n>_rl
11-270 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.7 MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration
Register

The MPAMCFG_MBW_PROP characteristics are:

Purpose

Controls the proportional stride of memory bandwidth that the PARTID selected by
MPAMCFG_PART_SEL uses.

MPAMCFG_MBW_PROP_s controls the bandwidth proportional stride for the Secure PARTID
selected by the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_PROP_ns
controls the bandwidth proportional stride for the Non-secure PARTID selected by the Non-secure
instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_PROP_rt controls the bandwidth
proportional stride for the Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_PROP_rl controls the bandwidth proportional stride for the Realm PARTID
selected by the Realm instance of MPAMCFG_PART_SEL.

Proportional stride is a relative cost of bandwidth requested by one PARTID in relation to the costs
of the bandwidths requested by each other PARTID also competing to use the bandwidth.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_PROP is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented,
MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_PROP == 1. Otherwise,
direct accesses to MPAMCFG_MBW_PROP are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_PROP is a 32-bit register.

Field descriptions

EN, bit [31]

Enable proportional stride bandwidth partitioning.

0b0 The selected partition is not regulated by proportional stride bandwidth partitioning.

0b1 The selected partition has bandwidth usage regulated by proportional stride bandwidth
partitioning as controlled by STRIDEM1.

Bits [30:16]

Reserved, RES0.

STRIDEM1, bits [15:0]

Memory bandwidth stride minus 1 allocated to the partition selected by MPAMCFG_PART_SEL.
STRIDEM1 represents the normalized cost of bandwidth consumption by the partition.

The proportional stride partitioning control parameter is an unsigned integer representing the
normalized cost to a partition for consuming bandwidth. Larger values have a larger cost and
correspond to a lesser allocation of bandwidth while smaller values indicate a lesser cost and
therefore a higher allocation of bandwidth.

The implemented width of STRIDEM1 is given in MPAMF_MBW_IDR.BWA_WD.

EN

31

RES0

30 16

STRIDEM1

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-271
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
Accessing the MPAMCFG_MBW_PROP:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMCFG_MBW_PROP_s must be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_PROP_ns must be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_PROP_rt must be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_PROP_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_PROP_s, MPAMCFG_MBW_PROP_ns, MPAMCFG_MBW_PROP_rt, and
MPAMCFG_MBW_PROP_rl must be separate registers.

• The Secure instance (MPAMCFG_MBW_PROP_s) accesses the memory proportional stride bandwidth
partitioning used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_PROP_ns) accesses the memory proportional stride
bandwidth partitioning used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_PROP_rt) accesses the memory proportional stride bandwidth
partitioning used for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_PROP_rl) accesses the memory proportional stride bandwidth
partitioning used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_PROP access the memory proportional stride
bandwidth partitioning configuration settings for the bandwidth resource instance selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_PROP access the memory proportional
stride bandwidth partitioning configuration settings for the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_PROP access the memory
proportional stride bandwidth partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_PROP access the memory
proportional stride bandwidth partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_PROP can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_MBW_PROP can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0500 MPAMCFG_MBW_PROP_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0500 MPAMCFG_MBW_PROP_ns
11-272 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_MBW_PROP can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMCFG_MBW_PROP can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0500 MPAMCFG_MBW_PROP_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0500 MPAMCFG_MBW_PROP_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-273
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.8 MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration
Register

The MPAMCFG_MBW_WINWD characteristics are:

Purpose

MPAMCFG_MBW_WINWD is a 32-bit register that shows and sets the value of the window width
for the PARTID in MPAMCFG_PART_SEL.

MPAMCFG_MBW_WINWD_s reads and controls the bandwidth control window width for the
Secure PARTID selected by the Secure instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_WINWD_ns reads and controls the bandwidth control window width for the
Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_WINWD_rt reads and controls the bandwidth control window width for the
Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_WINWD_rl reads and controls the bandwidth control window width for the
Real PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

MPAMCFG_MBW_WINWD is read-only if MPAMF_MBW_IDR.WINDWR == 0, and the
window width is set by the hardware, even if variable.

MPAMCFG_MBW_WINWD is read/write if MPAMF_MBW_IDR.WINDWR == 1, permitting
configuration of the window width for each PARTID independently on hardware that supports this
functionality.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_WINWD is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_MBW_PART == 1. Otherwise, direct accesses to
MPAMCFG_MBW_WINWD are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_WINWD is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

US_INT, bits [23:8]

Window width, integer microseconds.

This field reads (and sets) the integer part of the window width in microseconds for the PARTID
selected by MPAMCFG_PART_SEL.

US_FRAC, bits [7:0]

Window width, fractional microseconds.

This field reads (and sets) the fractional part of the window width in microseconds for the PARTID
selected by MPAMCFG_PART_SEL.

RES0

31 24

US_INT

23 8

US_FRAC

7 0
11-274 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
Accessing the MPAMCFG_MBW_WINWD:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMCFG_MBW_WINWD_s must be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_WINWD_ns must be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_WINWD_rt must be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_WINWD_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_WINWD_s, MPAMCFG_MBW_WINWD_ns, MPAMCFG_MBW_WINWD_rt, and
MPAMCFG_MBW_WINWD_rl must be separate registers.

• The Secure instance (MPAMCFG_MBW_WINWD_s) accesses the window width used for Secure
PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_WINWD_ns) accesses the window width used for
Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_WINWD_rt) accesses the window width used for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_WINWD_rl) accesses the window width used for Realm
PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_WINWD access the window width
configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_WINWD access the window width
configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_WINWD access the window
width configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_WINWD access the window
width configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_WINWD can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.

• When MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are RW.

MPAMCFG_MBW_WINWD can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0220 MPAMCFG_MBW_WINWD_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0220 MPAMCFG_MBW_WINWD_n
s

ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-275
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
This interface is accessible as follows:

• When MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.

• When MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are RW.

MPAMCFG_MBW_WINWD can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are
RO.

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are
RW.

MPAMCFG_MBW_WINWD can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are
RO.

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are
RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0220 MPAMCFG_MBW_WINWD_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0220 MPAMCFG_MBW_WINWD_rl
11-276 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.9 MPAMCFG_PART_SEL, MPAM Partition Configuration Selection Register

The MPAMCFG_PART_SEL characteristics are:

Purpose

Selects a partition ID to configure.

MPAMCFG_PART_SEL_s selects a Secure PARTID to configure. MPAMCFG_PART_SEL_ns
selects a Non-secure PARTID to configure. MPAMCFG_PART_SEL_rt selects a Root PARTID to
configure. MPAMCFG_PART_SEL_rl selects a Realm PARTID to configure.

After setting this register with a PARTID, software (usually a hypervisor) can perform a series of
accesses to MPAMCFG registers to configure parameters for MPAM resource controls to use when
requests have that PARTID.

Configurations

The power domain of MPAMCFG_PART_SEL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
(MPAMF_IDR.HAS_CCAP_PART == 1, or MPAMF_IDR.HAS_CPOR_PART == 1, or
MPAMF_IDR.HAS_MBW_PART == 1, or MPAMF_IDR.HAS_PRI_PART == 1, or
MPAMF_IDR.HAS_PARTID_NRW == 1, or (MPAMF_IDR.EXT == 0 and
MPAMF_IDR.HAS_IMPL_IDR == 1) or (MPAMF_IDR.EXT == 1,
MPAMF_IDR.HAS_IMPL_IDR == 1 and MPAMF_IDR.NO_IMPL_PART == 0)). Otherwise,
direct accesses to MPAMCFG_PART_SEL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_PART_SEL is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

RIS, bits [27:24]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented),
MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. RIS selects one resource to configure through MPAMCFG registers and
describe with MPAMF ID registers.

Otherwise:

Reserved, RES0.

Bits [23:17]

Reserved, RES0.

INTERNAL, bit [16]

Internal PARTID.

If MPAMF_IDR.HAS_PARTID_NRW =0, this field is RAZ/WI.

If MPAMF_IDR.HAS_PARTID_NRW = 1:

0b0 PARTID_SEL is interpreted as a request PARTID and ignored except for use with
MPAMCFG_INTPARTID register access.

RES0

31 28

RIS

27 24

RES0

23 17 16

PARTID_SEL

15 0

INTERNAL
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-277
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
0b1 PARTID_SEL is interpreted as an internal PARTID and used for access to MPAMCFG
control settings except for MPAMCFG_INTPARTID.

If PARTID narrowing is implemented as indicated by MPAMF_IDR.HAS_PARTID_NRW = 1,
when accessing other MPAMCFG registers the value of the MPAMCFG_PART_SEL.INTERNAL
bit is checked for these conditions:

• When the MPAMCFG_INTPARTID register is read or written, if the value of
MPAMCFG_PART_SEL.INTERNAL is not 0, an Unexpected_INTERNAL error is set in
MPAMF_ESR.

• When an MPAMCFG register other than MPAMCFG_INTPARTID is read or written, if the
value of MPAMCFG_PART_SEL.INTERNAL is not 1, MPAMF_ESR is set to indicate an
intPARTID_Range error.

In either error case listed here, the value returned by a read operation is UNPREDICTABLE, and the
control settings are not affected by a write.

PARTID_SEL, bits [15:0]

Selects the partition ID to configure.

Reads and writes to other MPAMCFG registers are indexed by PARTID_SEL and by the NS bit used
to access MPAMCFG_PART_SEL to access the configuration for a single partition.

Accessing the MPAMCFG_PART_SEL:

This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_PART_SEL_s must be accessible from the Secure MPAM feature page. MPAMCFG_PART_SEL_ns
must be accessible from the Non-secure MPAM feature page.

MPAMCFG_PART_SEL_s and MPAMCFG_PART_SEL_ns must be separate registers. The Secure instance
(MPAMCFG_PART_SEL_s) accesses the PARTID selector used for Secure PARTIDs, and the Non-secure instance
(MPAMCFG_PART_SEL_ns) accesses the PARTID selector used for Non-secure PARTIDs.

MPAMCFG_PART_SEL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_PART_SEL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_PART_SEL can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0100 MPAMCFG_PART_SEL_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0100 MPAMCFG_PART_SEL_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0100 MPAMCFG_PART_SEL_rt
11-278 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMCFG_PART_SEL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0100 MPAMCFG_PART_SEL_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-279
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
11.4.10 MPAMCFG_PRI, MPAM Priority Partition Configuration Register

The MPAMCFG_PRI characteristics are:

Purpose

Controls the internal and downstream priority of requests attributed to the PARTID selected by
MPAMCFG_PART_SEL.

MPAMCFG_PRI_s controls the priorities for the Secure PARTID selected by the Secure instance
of MPAMCFG_PART_SEL. MPAMCFG_PRI_ns controls the priorities for the Non-secure
PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_PRI_rt
controls the priorities for the Root PARTID selected by the Root instance of
MPAMCFG_PART_SEL. MPAMCFG_PRI_rl controls the priorities for the Realm PARTID
selected by the Realm instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_PRI is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_PRI_PART == 1. Otherwise, direct accesses to MPAMCFG_PRI are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_PRI is a 32-bit register.

Field descriptions

DSPRI, bits [31:16]

Downstream priority.

If MPAMF_PRI_IDR.HAS_DSPRI == 0, bits of this field are RES0 as this field is not used.

If MPAMF_PRI_IDR.HAS_DSPRI == 1, this field is a priority value applied to downstream
communications from this MSC for transactions of the partition selected by
MPAMCFG_PART_SEL.

The implemented width of this field is MPAMF_PRI_IDR.DSPRI_WD bits. If the implemented
width is less than the width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of
MPAMF_PRI_IDR.DSPRI_0_IS_LOW.

INTPRI, bits [15:0]

Internal priority.

If MPAMF_PRI_IDR.HAS_INTPRI == 0, bits of this field are RES0 as this field is not used.

If MPAMF_PRI_IDR.HAS_INTPRI == 1, this field is a priority value applied internally inside this
MSC for transactions of the partition selected by MPAMCFG_PART_SEL.

The implemented width of this field is MPAMF_PRI_IDR.INTPRI_WD bits. If the implemented
width is less than the width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of
MPAMF_PRI_IDR.INTPRI_0_IS_LOW.

DSPRI

31 16

INTPRI

15 0
11-280 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
Accessing the MPAMCFG_PRI:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMCFG_PRI_s must be accessible from the Secure MPAM feature page.

• MPAMCFG_PRI_ns must be accessible from the Non-secure MPAM feature page.

• MPAMCFG_PRI_rt must be accessible from the Root MPAM feature page.

• MPAMCFG_PRI_rl must be accessible from the Realm MPAM feature page.

MPAMCFG_PRI_s, MPAMCFG_PRI_ns, MPAMCFG_PRI_rt, and MPAMCFG_PRI_rl must be separate
registers.

• The Secure instance (MPAMCFG_PRI_s) accesses the priority partitioning used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_PRI_ns) accesses the priority partitioning used for Non-secure
PARTIDs.

• The Root instance (MPAMCFG_PRI_rt) accesses the priority partitioning used for Root PARTIDs.

• The Realm instance (MPAMCFG_PRI_rl) accesses the priority partitioning used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration
settings for the priority resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration
settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_PRI access the priority partitioning
configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_PRI access the priority partitioning
configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_PRI can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMCFG_PRI can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0400 MPAMCFG_PRI_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0400 MPAMCFG_PRI_ns
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-281
ID012521 Non-Confidential

Memory-Mapped Registers
11.4 Memory-mapped partitioning configuration registers
MPAMCFG_PRI can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMCFG_PRI can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0400 MPAMCFG_PRI_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0400 MPAMCFG_PRI_rl
11-282 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5 Memory-mapped monitoring configuration registers

This section lists the external monitoring configuration registers.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-283
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.1 MSMON_CAPT_EVNT, MPAM Capture Event Generation Register

The MSMON_CAPT_EVNT characteristics are:

Purpose

Generates a local capture event when written with bit[0] as 1.

MSMON_CAPT_EVNT_s generates local capture events for Secure monitor instances only or for
Secure and Non-secure monitor instances. MSMON_CAPT_EVNT_ns generates local capture
events for Non-secure monitor instances only. MSMON_CAPT_EVNT_rt generates local capture
events for Root monitor instances only or for Root, Secure, Realm, and Non-secure monitor
instances. MSMON_CAPT_EVNT_rl generates local capture events for Realm monitor instances
or for for Realm monitor instances or Realm and Non-secure monitor instances.

Configurations

The power domain of MSMON_CAPT_EVNT is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 1. Otherwise, direct accesses
to MSMON_CAPT_EVNT are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CAPT_EVNT is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

ALL, bit [1]

In the Secure instance of this register:

• If ALL is written as 1 and NOW is also written as 1, signal a capture event to Secure and
Non-secure monitor instances in this MSC that are configured with CAPT_EVNT = 7.

• If ALL is written as 0 and NOW is written as 1, signal a capture event to Secure monitor
instances in this MSC that are configured with CAPT_EVNT = 7.

In the Non-secure instance of this register, this bit is RAZ/WI.

In the Root instance of this register:

• If ALL is written as 1 and NOW is also written as 1, signal a capture event to Root, Realm,
Secure, and Non-secure monitor instances in this MSC that are configured with
CAPT_EVNT = 7.

• If ALL is written as 0 and NOW is written as 1, signal a capture event to Root monitor
instances within this MSC that are configured with CAPT_EVNT = 7.

In the Realm instance of this register:

• If ALL is written as 1 and NOW is also written as 1, signal a capture event to Realm and
Non-secure monitor instances in this MSC that are configured with CAPT_EVNT = 7.

• If ALL is written as 0 and NOW is written as 1, signal a capture event to Realm monitor
instances within this MSC that are configured with CAPT_EVNT = 7.

RES0

31 2 1 0

ALL NOW
11-284 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
This bit always reads as zero.

0b0 Send capture event only to monitor instances in the same MPAM feature page as this
register.

0b1 Send capture event to monitor instances in certain MPAM feature pages as described in
the ALL field of this register.

NOW, bit [0]

When written as 1, this bit causes an event to those monitor instances described in the ALL field
that have CAPT_EVNT set to the value of 7.

When this bit is written as 0, no event is signaled.

This bit always reads as zero.

Accessing the MSMON_CAPT_EVNT:

This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CAPT_EVNT_s must be accessible from the Secure MPAM feature page. MSMON_CAPT_EVNT_ns
must be accessible from the Non-secure MPAM feature page.

MSMON_CAPT_EVNT_s and MSMON_CAPT_EVNT_ns must be separate registers. The Secure instance
(MSMON_CAPT_EVNT_s) can generate local capture events for Secure monitor instances only or for Secure and
Non-secure monitor instances, and the Non-secure instance (MSMON_CAPT_EVNT_ns) can generate local
capture events for Non-secure monitor instances only.

MSMON_CAPT_EVNT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CAPT_EVNT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CAPT_EVNT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0808 MSMON_CAPT_EVNT_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0808 MSMON_CAPT_EVNT_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0808 MSMON_CAPT_EVNT_rt
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-285
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_CAPT_EVNT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0808 MSMON_CAPT_EVNT_rl
11-286 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.2 MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage
Monitor Control Register

The MSMON_CFG_CSU_CTL characteristics are:

Purpose

Controls the CSU monitor selected by MSMON_CFG_MON_SEL.

MSMON_CFG_CSU_CTL_s controls the Secure cache storage usage monitor instance selected by
the Secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_ns controls
Non-secure cache storage usage monitor instance selected by the Non-secure instance of
MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_rt controls the monitor configuration for
the Root PARTID selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_CTL_rl controls the monitor configuration for the Realm PARTID selected
by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance configuration accessed is for the resource
instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that
resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CFG_CSU_CTL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to
MSMON_CFG_CSU_CTL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_CSU_CTL is a 32-bit register.

Field descriptions

EN, bit [31]

Enabled.

0b0 The monitor instance is disabled and must not collect any information.

0b1 The monitor instance is enabled to collect information according to the configuration of
the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

Select the event that triggers capture from the following:

0b000 No capture event is triggered.

0b001 External capture event 1 (optional but recommended)

0b010 External capture event 2 (optional)

0b011 External capture event 3 (optional)

0b100 External capture event 4 (optional)

0b101 External capture event 5 (optional)

EN

31 30 28 27 26 25 24

SUBTYPE

23 20

RES0

19 18 17 16

RES0

15 8

1000011

7 0

CAPT_EVNT
CAPT_RESET
OFLOW_STATUS

MATCH_PARTID
MATCH_PMG

OFLOW_FRZ
OFLOW_INTR

TYPE
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-287
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
0b110 External capture event 6 (optional)

0b111 Capture occurs when a MSMON_CAPT_EVNT register in this MSC is written and
causes a capture event for the security state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an
implementation. Those values representing non-implemented event sources must not trigger a
capture event.

If capture is not implemented for the CSU monitor type as indicated by
MPAMF_CSUMON_IDR.HAS_CAPTURE = 0, this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset after capture.

Controls whether the value of MSMON_CSU is reset to zero immediately after being copied to
MSMON_CSU_CAPTURE.

0b0 Monitor is not reset on capture.

0b1 Monitor is reset on capture.

If capture is not implemented for the CSU monitor type as indicated by
MPAMF_CSUMON_IDR.HAS_CAPTURE = 0, this field is RAZ/WI.

Because the CSU monitor type produces a measurement rather than a count, it might not make sense
to ever reset the value after a capture. If there is no reason to ever reset a CSU monitor, this field is
RAZ/WI.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_CSU has overflowed.

0b0 No overflow has occurred.

0b1 At least one overflow has occurred since this bit was last written to zero.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

OFLOW_INTR, bit [25]

Overflow Interrupt.

Controls whether an overflow interrupt is generated when the value of MSMON_CSU has
overflowed.

0b0 No interrupt is signaled on an overflow of MSMON_CSU.

0b1 On overflow, an implementation-specific interrupt is signaled.

If OFLOW_INTR is not supported by the implementation, this field is RAZ/WI.

OFLOW_FRZ, bit [24]

Freeze Monitor on Overflow.

Controls whether the value of MSMON_CSU freezes on an overflow.

0b0 Monitor count wraps on overflow.

0b1 Monitor count freezes on overflow. The frozen value might be 0 or another value if the
monitor overflowed with an increment larger than 1.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

SUBTYPE, bits [23:20]

Subtype. Type of cache storage usage counted by this monitor.

This field is not currently used for CSU monitors, but reserved for future use.

This field is RAZ/WI.

Bits [19:18]

Reserved, RES0.
11-288 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor measures only storage used with PMG matching
MSMON_CFG_CSU_FLT.PMG.

0b0 The monitor measures storage used with any PMG value.

0b1 The monitor only measures storage used with the PMG value matching
MSMON_CFG_CSU_FLT.PMG.

If MATCH_PMG == 1 and MATCH_PARTID == 0, it is CONSTRAINED UNPREDICTABLE whether
the monitor instance:

• Measures the storage used with matching PMG and with any PARTID.

• Measures no storage usage, that is, MSMON_CSU.VALUE is zero.

• Measures the storage used with matching PMG and PARTID, that is, treats
MATCH_PARTID as == 1.

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor measures only storage used with PARTID matching
MSMON_CFG_CSU_FLT.PARTID.

0b0 The monitor measures storage used with any PARTID value.

0b1 The monitor only measures storage used with the PARTID value matching
MSMON_CFG_CSU_FLT.PARTID.

Bits [15:8]

Reserved, RES0.

TYPE, bits [7:0]

Monitor Type Code. The CSU monitor is TYPE = 0x43.

TYPE is a read-only constant indicating the type of the monitor.

Reads as 0x43.

Access to this field is RO.

Accessing the MSMON_CFG_CSU_CTL:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_CFG_CSU_CTL_s must be accessible from the Secure MPAM feature page.

• MSMON_CFG_CSU_CTL_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_CSU_CTL_rt must be accessible from the Root MPAM feature page.

• MSMON_CFG_CSU_CTL_rl must be accessible from the Realm MPAM feature page.

MSMON_CFG_CSU_CTL_s, MSMON_CFG_CSU_CTL_ns, MSMON_CFG_CSU_CTL_rt, and
MSMON_CFG_CSU_CTL_rl must be separate registers.

• The Secure instance (MSMON_CFG_CSU_CTL_s) accesses the cache storage usage monitor controls used
for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_CSU_CTL_ns) accesses the cache storage usage monitor controls
used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_CSU_CTL_rt) accesses the cache storage usage monitor controls used
for Root PARTIDs.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-289
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
• The Realm instance (MSMON_CFG_CSU_CTL_rl) accesses the cache storage usage monitor controls used
for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_CSU_CTL access the cache storage usage monitor
configuration settings for the cache resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache
storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_CSU_CTL access the cache storage usage
monitor configuration settings for the cache storage usage monitor instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_CSU_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CFG_CSU_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CFG_CSU_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_CFG_CSU_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0818 MSMON_CFG_CSU_CTL_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0818 MSMON_CFG_CSU_CTL_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0818 MSMON_CFG_CSU_CTL_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0818 MSMON_CFG_CSU_CTL_rl
11-290 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.3 MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage
Monitor Filter Register

The MSMON_CFG_CSU_FLT characteristics are:

Purpose

Configures PARTID and PMG to measure or count in the CSU monitor selected by
MSMON_CFG_MON_SEL.

MSMON_CFG_CSU_FLT_s sets filter conditions for the Secure cache storage usage monitor
instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_CTL_ns sets filter conditions for the Non-secure cache storage usage
monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_FLT_rt sets the filter conditions for the Root PARTID selected by the Root
instance of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_FLT_rl sets the filter conditions for
the Realm PARTID selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance filter configuration accessed is for the
resource instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance
of that resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CFG_CSU_FLT is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to
MSMON_CFG_CSU_FLT are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_CSU_FLT is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group to filter cache storage usage monitoring.

If MSMON_CFG_CSU_CTL.MATCH_PMG == 0, this field is not used to match cache storage to
a PMG and the contents of this field is ignored.

If MSMON_CFG_CSU_CTL.MATCH_PMG == 1 and
MSMON_CFG_CSU_CTL.MATCH_PARTID == 1, the monitor instance selected by
MSMON_CFG_MON_SEL measures or counts cache storage labeled with PMG equal to this field
and PARTID equal to the PARTID field.

If MSMON_CFG_CSU_CTL.MATCH_PMG == 1 and
MSMON_CFG_CSU_CTL.MATCH_PARTID == 0, the behavior of the monitor instance selected
by MSMON_CFG_MON_SEL is CONSTRAINED UNPREDICTABLE. See
MSMON_CFG_CSU_CTL.MATCH_PMG for more information.

PARTID, bits [15:0]

Partition ID to filter cache storage usage monitoring.

RES0

31 24

PMG

23 16

PARTID

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-291
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
If MSMON_CFG_CSU_CTL.MATCH_PARTID == 0 and
MSMON_CFG_CSU_CTL.MATCH_PMG == 0, the monitor measures all allocated cache storage.

If MSMON_CFG_CSU_CTL.MATCH_PARTID == 0 and
MSMON_CFG_CSU_CTL.MATCH_PMG == 1, the behavior of the monitor is CONSTRAINED
UNPREDICTABLE. See the description of MSMON_CFG_CSU_CTL.MATCH_PMG.

If MSMON_CFG_CSU_CTL.MATCH_PARTID == 1 and
MSMON_CFG_CSU_CTL.MATCH_PMG == 0, the monitor selected by
MSMON_CFG_MON_SEL measures or counts cache storage labeled with PARTID equal to this
field.

If MSMON_CFG_CSU_CTL.MATCH_PARTID == 1 and
MSMON_CFG_CSU_CTL.MATCH_PMG == 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts cache storage labeled with PARTID equal to this
field and PMG equal to the PMG field.

Accessing the MSMON_CFG_CSU_FLT:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_CFG_CSU_FLT_s must be accessible from the Secure MPAM feature page.

• MSMON_CFG_CSU_FLT_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_CSU_FLT_rt must be accessible from the Root MPAM feature page.

• MSMON_CFG_CSU_FLT_rl must be accessible from the Realm MPAM feature page.

MSMON_CFG_CSU_FLT_s, MSMON_CFG_CSU_FLT_ns, MSMON_CFG_CSU_FLT_rt, and
MSMON_CFG_CSU_FLT_rl must be separate registers.

• The Secure instance (MSMON_CFG_CSU_FLT_s) accesses the PARTID and PMG matching for a cache
storage usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_CSU_FLT_ns) accesses the PARTID and PMG matching for a
cache storage usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_CSU_FLT_rt) accesses the PARTID and PMG matching for a cache
storage usage monitor used for Root PARTIDs.

• The Realm instance (MSMON_CFG_CSU_FLT_rl) accesses the PARTID and PMG matching for a cache
storage usage monitor used for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_CSU_FLT access the monitor configuration settings
for the resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage usage monitor instance
selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_CSU_FLT access the monitor configuration
settings for the cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_CSU_FLT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0810 MSMON_CFG_CSU_FLT_s
11-292 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_CFG_CSU_FLT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CFG_CSU_FLT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_CFG_CSU_FLT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0810 MSMON_CFG_CSU_FLT_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0810 MSMON_CFG_CSU_FLT_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0810 MSMON_CFG_CSU_FLT_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-293
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.4 MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth
Usage Monitor Control Register

The MSMON_CFG_MBWU_CTL characteristics are:

Purpose

Controls the MBWU monitor selected by MSMON_CFG_MON_SEL.

MSMON_CFG_MBWU_CTL_s controls the Secure memory bandwidth usage monitor instance
selected by the Secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_ns
controls Non-secure memory bandwidth usage monitor instance selected by the Non-secure
instance of MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_rt controls the monitor
configuration for the Root PARTID selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_CFG_MBWU_CTL_rl controls the monitor configuration for the Realm PARTID
selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance configuration accessed is for the resource
instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that
resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CFG_MBWU_CTL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to
MSMON_CFG_MBWU_CTL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_MBWU_CTL is a 32-bit register.

Field descriptions

EN, bit [31]

Enabled.

0b0 The monitor instance is disabled and must not collect any information.

0b1 The monitor instance is enabled to collect information according to the configuration of
the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

When the selected capture event occurs, MSMON_MBWU of the monitor instance is copied to
MSMON_MBWU_CAPTURE of the same instance. If the long counter is also implemented,
MSMON_MBWU_L is also copied to MSMON_MBWU_L_CAPTURE.

Select the event that triggers capture from the following:

0b000 No capture event is triggered.

0b001 External capture event 1 (optional but recommended)

EN

31 30 28 27 26 25 24

SUBTYPE

23 20 19 18 17 16 15 14

RES0

13 8

1000010

7 0

CAPT_EVNT
CAPT_RESET
OFLOW_STATUS

OFLOW_INTR
OFLOW_FRZ

OFLOW_INTR_L
OFLOW_STATUS_L

MATCH_PARTID
MATCH_PMG

RES0
SCLEN

TYPE
11-294 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
0b010 External capture event 2 (optional)

0b011 External capture event 3 (optional)

0b100 External capture event 4 (optional)

0b101 External capture event 5 (optional)

0b110 External capture event 6 (optional)

0b111 Capture occurs when a MSMON_CAPT_EVNT register in this MSC is written and
causes a capture event for the security state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an
implementation. Those values representing non-implemented event sources must not trigger a
capture event.

If capture is not implemented for the MBWU monitor type as indicated by
MPAMF_MBWUMON_IDR.HAS_CAPTURE = 0, this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset MSMON_MBWU.VALUE after capture.

Controls whether the VALUE field of the monitor instance is reset to zero immediately after being
copied to the corresponding capture register.

0b0 MSMON_MBWU.VALUE field of the monitor instance is not reset on capture.

0b1 MSMON_MBWU.VALUE field of the monitor instance is reset on capture.

If capture is not implemented for the MBWU monitor type as indicated by
MPAMF_MBWUMON_IDR.HAS_CAPTURE = 0, this field is RAZ/WI.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that
include MSMON_MBWU_L.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_MBWU has overflowed.

0b0 MSMON_MBWU.VALUE has not overflowed.

0b1 MSMON_MBWU.VALUE has overflowed at least once since this bit was last written
to zero.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

Overflow status for MSMON_MBWU_L.VALUE is reported in
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L.

OFLOW_INTR, bit [25]

Enable interrupt on overflow of MSMON_MBWU.VALUE.

0b0 No interrupt is signaled on an overflow of MSMON_MBWU.VALUE.

0b1 An implementation-specific interrupt is signaled on an overflow of
MSMON_MBWU.VALUE.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

If overflow interrupt is not supported by the MSC implementation, this field is RAZ/WI.

Interrupt enable for overflow of MSMON_MBWU_L.VALUE is controlled by
MSMON_CFG_MBWU_CTL.OFLOW_INTR_L.

OFLOW_FRZ, bit [24]

Freeze monitor instance on overflow.

Controls whether MSMON_MBWU.VALUE field of the monitor instance freezes on an overflow.

0b0 MSMON_MBWU.VALUE field of the monitor instance wraps on overflow.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-295
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
0b1 MSMON_MBWU.VALUE field of the monitor instance freezes on overflow. If the
increment that caused the overflow was 1, the frozen value is the post-increment value
of 0. If the increment that caused the overflow was larger than 1, the frozen value of the
monitor might be 0 or a larger value less than the final increment.

If overflow is not possible for the instance of the MBWU monitor in the implementation, this field
is RAZ/WI.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that
include MSMON_MBWU_L.

SUBTYPE, bits [23:20]

Subtype. Type of bandwidth counted by this monitor.

This field is not currently used for MBWU monitors, but reserved for future use.

This field is RAZ/WI.

SCLEN, bit [19]

MSMON_MBWU.VALUE Scaling Enable.

Enables scaling of MSMON_MBWU.VALUE by MPAMF_MBWUMON_IDR.SCALE.

0b0 MSMON_MBWU.VALUE has bytes counted by the monitor instance.

0b1 MSMON_MBWU.VALUE has bytes counted by the monitor instance, shifted right by
MPAMF_MBWUMON_IDR.SCALE.

Bit [18]

Reserved, RES0.

MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor instance only counts data transferred with PMG matching
MSMON_CFG_MBWU_FLT.PMG.

0b0 The monitor instance counts data transferred with any PMG value.

0b1 The monitor instance only counts data transferred with the PMG value matching
MSMON_CFG_MBWU_FLT.PMG.

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor instance counts only data transferred with PARTID matching
MSMON_CFG_MBWU_FLT.PARTID.

0b0 The monitor instance counts data transferred with any PARTID value.

0b1 The monitor instance only counts data transferred with the PARTID value matching
MSMON_CFG_MBWU_FLT.PARTID.

OFLOW_STATUS_L, bit [15]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Overflow Status of MSMON_MBWU_L.VALUE of the monitor instance.

Indicates whether MSMON_MBWU_L.VALUE has overflowed.

0b0 MSMON_MBWU_L.VALUE has not overflowed.

0b1 MSMON_MBWU_L.VALUE has overflowed at least once since this bit was last
written to zero.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, this bit is RES0.

Overflow status of MSMON_MBWU.VALUE is reported in
MSMON_CFG_MBWU_CTL.OFLOW_STATUS.
11-296 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
Otherwise:

Reserved, RES0.

OFLOW_INTR_L, bit [14]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Overflow Interrupt for MSMON_MBWU_L.

Controls whether an MPAM overflow interrupt is generated when MSMON_MBWU_L.VALUE
overflows.

0b0 No interrupt is signaled on an overflow of MSMON_MBWU_L.VALUE.

0b1 An implementation-specific interrupt is signaled on overflow of
MSMON_MBWU_L.VALUE.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

If the overflow interrupt is not supported by the MSC implementation, this field is RAZ/WI.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, this bit is RES0.

Otherwise:

Reserved, RES0.

Bits [13:8]

Reserved, RES0.

TYPE, bits [7:0]

Monitor Type Code. The MBWU monitor is TYPE = 0x42.

TYPE is a read-only constant indicating the type of the monitor.

Reads as 0x42.

Access to this field is RO.

Accessing the MSMON_CFG_MBWU_CTL:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_CFG_MBWU_CTL_s must be accessible from the Secure MPAM feature page.

• MSMON_CFG_MBWU_CTL_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_MBWU_CTL_rt must be accessible from the Root MPAM feature page.

• MSMON_CFG_MBWU_CTL_rl must be accessible from the Realm MPAM feature page.

MSMON_CFG_MBWU_CTL_s, MSMON_CFG_MBWU_CTL_ns, MSMON_CFG_MBWU_CTL_rt, and
MSMON_CFG_MBWU_CTL_rl must be separate registers.

• The Secure instance (MSMON_CFG_MBWU_CTL_s) accesses the memory bandwidth usage monitor
controls used for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_MBWU_CTL_ns) accesses the memory bandwidth usage
monitor controls used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_MBWU_CTL_rt) accesses the memory bandwidth usage monitor
controls used for Root PARTIDs.

• The Realm instance (MSMON_CFG_MBWU_CTL_rl) accesses the memory bandwidth usage monitor
controls used for Realm PARTIDs.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-297
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
When RIS is implemented, loads and stores to MSMON_CFG_MBWU_CTL access the monitor configuration
settings for the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory
bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_MBWU_CTL access the monitor configuration
settings for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_MBWU_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CFG_MBWU_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CFG_MBWU_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_CFG_MBWU_CTL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0828 MSMON_CFG_MBWU_CTL_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0828 MSMON_CFG_MBWU_CTL_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0828 MSMON_CFG_MBWU_CTL_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0828 MSMON_CFG_MBWU_CTL_rl
11-298 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.5 MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth
Usage Monitor Filter Register

The MSMON_CFG_MBWU_FLT characteristics are:

Purpose

Controls PARTID and PMG to measure or count in the MBWU monitor selected by
MSMON_CFG_MON_SEL.

MSMON_CFG_MBWU_FLT_s sets filter conditions for the Secure memory bandwidth usage
monitor instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_MBWU_CTL_ns sets filter conditions for the Non-secure memory bandwidth
usage monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_FLT_rt sets the filter conditions for the Root PARTID selected by the Root
instance of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_FLT_rl sets the filter conditions for
the Realm PARTID selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance filter configuration accessed is for the
resource instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance
of that resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CFG_MBWU_FLT is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to
MSMON_CFG_MBWU_FLT are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_MBWU_FLT is a 32-bit register.

Field descriptions

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

RW filtering.

RWBW, bits [31:30]

When MPAMF_MBWUMON_IDR.HAS_RWBW == 1:

Read/write bandwidth filter. Configures the selected monitor instance to count all bandwidth, only
read bandwidth or only write bandwidth.

0b00 Monitor instance counts read bandwidth and write bandwidth.

0b01 Monitor instance counts write bandwidth only.

0b10 Monitor instance counts read bandwidth only.

0b11 Reserved.

Otherwise:

Reserved, RES0.

Bits [29:24]

Reserved, RES0.

RWBW

31 30

RES0

29 24

PMG

23 16

PARTID

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-299
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
PMG, bits [23:16]

Performance monitoring group to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 0, this field is not used to match memory
bandwidth to a PMG and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts memory bandwidth labeled with PMG equal to this
field.

PARTID, bits [15:0]

Partition ID to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 0, this field is not used to match memory
bandwidth to a PARTID and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts memory bandwidth labeled with PARTID equal to
this field.

Otherwise:

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 0, this field is not used to match memory
bandwidth to a PMG and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts memory bandwidth labeled with PMG equal to this
field.

PARTID, bits [15:0]

Partition ID to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 0, this field is not used to match memory
bandwidth to a PARTID and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts memory bandwidth labeled with PARTID equal to
this field.

Accessing the MSMON_CFG_MBWU_FLT:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_CFG_MBWU_FLT_s must be accessible from the Secure MPAM feature page.

• MSMON_CFG_MBWU_FLT_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_MBWU_FLT_rt must be accessible from the Root MPAM feature page.

• MSMON_CFG_MBWU_FLT_rl must be accessible from the Realm MPAM feature page.

RES0

31 24

PMG

23 16

PARTID

15 0
11-300 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_CFG_MBWU_FLT_s, MSMON_CFG_MBWU_FLT_ns, MSMON_CFG_MBWU_FLT_rt, and
MSMON_CFG_MBWU_FLT_rl must be separate registers.

• The Secure instance (MSMON_CFG_MBWU_FLT_s) accesses the PARTID and PMG matching for a
memory bandwidth usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_MBWU_FLT_ns) accesses the PARTID and PMG matching for a
memory bandwidth usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_MBWU_FLT_rt) accesses the PARTID and PMG matching for a
memory bandwidth usage monitor used for Root PARTIDs.

• The Realm instance (MSMON_CFG_MBWU_FLT_rl) accesses the PARTID and PMG matching for a
memory bandwidth usage monitor used for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_MBWU_FLT access the monitor configuration
settings for the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory
bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_MBWU_FLT access the monitor configuration
settings for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_MBWU_FLT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CFG_MBWU_FLT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CFG_MBWU_FLT can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_CFG_MBWU_FLT can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0820 MSMON_CFG_MBWU_FLT_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0820 MSMON_CFG_MBWU_FLT_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0820 MSMON_CFG_MBWU_FLT_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0820 MSMON_CFG_MBWU_FLT_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-301
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.
11-302 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.6 MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register

The MSMON_CFG_MON_SEL characteristics are:

Purpose

Selects a monitor instance to access through the MSMON configuration and counter registers.

MSMON_CFG_MON_SEL_s selects a Secure monitor instance to access via the Secure MPAM
feature page. MSMON_CFG_MON_SEL_ns selects a Non-secure monitor instance to access via
the Non-secure MPAM feature page. MSMON_CFG_MON_SEL_rt selects a Root monitor
instance to access via the Root MPAM feature page. MSMON_CFG_MON_SEL_rl selects a Realm
monitor instance to access via the Realm MPAM feature page.

Note

Different performance monitoring features within an MSC could have different numbers of monitor
instances. See the NUM_MON field in the corresponding ID register. This means that a monitor
out-of-bounds error might be signaled when an MSMON_CFG register is accessed because the
value in MSMON_CFG_MON_SEL.MON_SEL is too large for the particular monitoring feature.

To configure a monitor, set MON_SEL in this register to the index of the monitor instance to
configure, then write to the MSMON_CFG_x register to set the configuration of the monitor. At a
later time, read the monitor register (for example, MSMON_MBWU) to get the value of the
monitor.

Configurations

The power domain of MSMON_CFG_MON_SEL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
(MPAMF_IDR.HAS_MSMON == 1, or (MPAMF_IDR.HAS_IMPL_IDR == 1 and
MPAMF_IDR.EXT == 0) or (MPAMF_IDR.HAS_IMPL_IDR == 1, MPAMF_IDR.EXT == 1 and
MPAMF_IDR.NO_IMPL_MSMON == 0)). Otherwise, direct accesses to
MSMON_CFG_MON_SEL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_MON_SEL is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

RIS, bits [27:24]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented),
MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. RIS selects one resource to configure through MSMON_CFG registers.

Otherwise:

Reserved, RES0.

Bits [23:16]

Reserved, RES0.

RES0

31 28

RIS

27 24

RES0

23 16

MON_SEL

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-303
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MON_SEL, bits [15:0]

Selects the monitor instance to configure or read.

Reads and writes to other MSMON registers are indexed by MON_SEL and by the NS bit used to
access MSMON_CFG_MON_SEL to access the configuration for a single monitor.

Accessing the MSMON_CFG_MON_SEL:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_CFG_MON_SEL_s must be accessible from the Secure MPAM feature page.

• MSMON_CFG_MON_SEL_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_MON_SEL_rt must be accessible from the Root MPAM feature page.

• MSMON_CFG_MON_SEL_rl must be accessible from the Realm MPAM feature page.

MSMON_CFG_MON_SEL_s, MSMON_CFG_MON_SEL_ns, MSMON_CFG_MON_SEL_rt, and
MSMON_CFG_MON_SEL_rl must be separate registers.

• The Secure instance (MSMON_CFG_MON_SEL_s) accesses the monitor instance selector used for Secure
PARTIDs.

• The Non-secure instance (MSMON_CFG_MON_SEL_ns) accesses the monitor instance selector used for
Non-secure PARTIDs.

• The Root instance (MSMON_CFG_MON_SEL_rt) accesses the monitor instance selector used for Root
PARTIDs.

• The Realm instance (MSMON_CFG_MON_SEL_rl) accesses the monitor instance selector used for Realm
PARTIDs.

MSMON_CFG_MON_SEL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CFG_MON_SEL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CFG_MON_SEL can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0800 MSMON_CFG_MON_SEL_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0800 MSMON_CFG_MON_SEL_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0800 MSMON_CFG_MON_SEL_rt
11-304 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_CFG_MON_SEL can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0800 MSMON_CFG_MON_SEL_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-305
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.7 MSMON_CSU, MPAM Cache Storage Usage Monitor Register

The MSMON_CSU characteristics are:

Purpose

Accesses the CSU monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_CSU_s is a Secure cache storage usage monitor instance selected by the Secure instance
of MSMON_CFG_MON_SEL. MSMON_CSU_ns is a Non-secure cache storage usage monitor
instance selected by the Non-secure instance of MSMON_CFG_MON_SEL. MSMON_CSU_rt is
a Root cache storage usage monitor instance selected by the Root instance of
MSMON_CFG_MON_SEL. MSMON_CSU_rl is a Realm cache storage usage monitor instance
selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance
selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CSU is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to
MSMON_CSU are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CSU is a 32-bit register.

Field descriptions

NRDY, bit [31]

Not Ready. Indicates whether the monitor instance has possibly inaccurate data.

0b0 The monitor instance is ready and the MSMON_CSU.VALUE field is accurate.

0b1 The monitor instance is not ready and the contents of the MSMON_CSU.VALUE field
might be inaccurate or otherwise not represent the actual cache storage usage.

VALUE, bits [30:0]

Cache storage usage measurement value if MSMON_CSU.NRDY is 0. Invalid if
MSMON_CSU.NRDY is 1.

VALUE is the cache storage usage measured in bytes meeting the criteria set in
MSMON_CFG_CSU_FLT and MSMON_CFG_CSU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

Accessing the MSMON_CSU:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_CSU_s must be accessible from the Secure MPAM feature page.

• MSMON_CSU_ns must be accessible from the Non-secure MPAM feature page.

31

VALUE

30 0

NRDY
11-306 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
• MSMON_CSU_rt must be accessible from the Root MPAM feature page.

• MSMON_CSU_rl must be accessible from the Realm MPAM feature page.

MSMON_CSU_s, MSMON_CSU_ns, MSMON_CSU_rt, and MSMON_CSU_rl must be separate registers.

• The Secure instance (MSMON_CSU_s) accesses the cache storage usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_CSU_ns) accesses the cache storage usage monitor used for Non-secure
PARTIDs.

• The Root instance (MSMON_CSU_rt) accesses the cache storage usage monitor used for Root PARTIDs.

• The Realm instance (MSMON_CSU_rl) accesses the cache storage usage monitor used for Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_CSU access the cache storage usage monitor monitor
instance for the cache resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage usage
monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_CSU access the cache storage usage monitor monitor
instance for the cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CSU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register are RW.

• When MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register are RO.

MSMON_CSU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register are RW.

• When MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register are RO.

MSMON_CSU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register
are RW.

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register
are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0840 MSMON_CSU_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0840 MSMON_CSU_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0840 MSMON_CSU_rt
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-307
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_CSU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register
are RW.

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register
are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0840 MSMON_CSU_rl
11-308 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.8 MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register

The MSMON_CSU_CAPTURE characteristics are:

Purpose

MSMON_CSU_CAPTURE is a 32-bit read-write register that accesses the captured
MSMON_CSU monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_CSU_CAPTURE_s is the Secure cache storage usage monitor capture instance selected
by the Secure instance of MSMON_CFG_MON_SEL. MSMON_CSU_CAPTURE_ns is the
Non-secure cache storage usage monitor capture instance selected by the Non-secure instance of
MSMON_CFG_MON_SEL. MSMON_CSU_CAPTURE_rt is a Root cache storage usage monitor
capture instance selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_CSU_CAPTURE_rl is a Realm cache storage usage monitor capture instance selected by
the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance capture register accessed is for the resource
instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that
resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CSU_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1, MPAMF_MSMON_IDR.MSMON_CSU == 1 and
MPAMF_CSUMON_IDR.HAS_CAPTURE == 1. Otherwise, direct accesses to
MSMON_CSU_CAPTURE are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CSU_CAPTURE is a 32-bit register.

Field descriptions

NRDY, bit [31]

Not Ready. Indicates whether the captured monitor value has possibly inaccurate data.

0b0 The captured monitor instance was ready and the MSMON_CSU_CAPTURE.VALUE
field is accurate.

0b1 The captured monitor instance was not ready and the contents of the
MSMON_CSU_CAPTURE.VALUE field might be inaccurate or otherwise not
represent the actual cache storage usage.

VALUE, bits [30:0]

Captured cache storage usage measurement if MSMON_CSU_CAPTURE.NRDY is 0. Invalid if
MSMON_CSU_CAPTURE.NRDY is 1.

VALUE is the captured cache storage usage measurement in bytes meeting the criteria set in
MSMON_CFG_CSU_FLT and MSMON_CFG_CSU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

Accessing the MSMON_CSU_CAPTURE:

This register is within the MPAM feature page memory frames.

31

VALUE

30 0

NRDY
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-309
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_CSU_CAPTURE_s must be accessible from the Secure MPAM feature page.

• MSMON_CSU_CAPTURE_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_CSU_CAPTURE_rt must be accessible from the Root MPAM feature page.

• MSMON_CSU_CAPTURE_rl must be accessible from the Realm MPAM feature page.

MSMON_CSU_CAPTURE_s, MSMON_CSU_CAPTURE_ns, MSMON_CSU_CAPTURE_rt, and
MSMON_CSU_CAPTURE_rl must be separate registers.

• The Secure instance (MSMON_CSU_CAPTURE_s) accesses the captured cache storage usage monitor used
for Secure PARTIDs.

• The Non-secure instance (MSMON_CSU_CAPTURE_ns) accesses the captured cache storage usage
monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_CSU_CAPTURE_rt) accesses the captured cache storage usage monitor used
for Root PARTIDs.

• The Realm instance (MSMON_CSU_CAPTURE_rl) accesses the captured cache storage usage monitor used
for Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_CSU_CAPTURE access the monitor instance for the
cache resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage usage monitor instance
selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_CSU_CAPTURE access the monitor instance for the
cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CSU_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CSU_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_CSU_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0848 MSMON_CSU_CAPTURE_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0848 MSMON_CSU_CAPTURE_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0848 MSMON_CSU_CAPTURE_rt
11-310 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_CSU_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0848 MSMON_CSU_CAPTURE_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-311
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.9 MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register

The MSMON_CSU_OFSR characteristics are:

Purpose

MSMON_CSU_OFSR is a 32-bit read-only register that shows bitmap of CSU monitor instance
overflow status for a contiguous group of 32 monitor instances.

MSMON_CSU_OFSR_s gives a bitmap of pending CSU overflow status for 32 Secure CSU
monitor instances. MSMON_CSU_OFSR_ns gives a bitmap of pending CSU overflow status for
32 Non-secure CSU monitor instances. MSMON_CSU_OFSR_rt gives a bitmap of pending CSU
overflow status for 32 Root CSU monitor instances. MSMON_CSU_OFSR_rl gives a bitmap of
pending CSU overflow status for 32 Realm CSU monitor instances.

Configurations

The power domain of MSMON_CSU_OFSR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_CSUMON_IDR.HAS_OFSR == 1. Otherwise, direct
accesses to MSMON_CSU_OFSR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CSU_OFSR is a 32-bit register.

Field descriptions

OFPND<i>, bit [i], for i = 31 to 0

Overflow status bitmap for CSU monitor instances. The RIS and the contiguous range of CSU
monitor instances are set in MSMON_CFG_MON_SEL. i of 0 corresponds to the CSU monitor
instance MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0.

0b0 CSU monitor instance (MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) does not
have a pending overflow.

0b1 CSU monitor instance (MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) has a
pending overflow.

After reading MSMON_OFLOW_SR to determine that a CSU monitor instance has a pending
overflow and which RIS values have pending overflows, an interrupt service routine could poll
groups of 32 monitor instances in a RIS for pending monitors by reading this bitmap and
incrementing MSMON_CFG_MON_SEL.MON_SEL by 32.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFPND31
OFPND30

OFPND29
OFPND28

OFPND27
OFPND26

OFPND25
OFPND24

OFPND23
OFPND22

OFPND21
OFPND20

OFPND19
OFPND18

OFPND17
OFPND16

OFPND0
OFPND1

OFPND2
OFPND3

OFPND4
OFPND5

OFPND6
OFPND7

OFPND8
OFPND9

OFPND10
OFPND11

OFPND12
OFPND13

OFPND14
OFPND15
11-312 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
Accessing the MSMON_CSU_OFSR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_CSU_OFSR_s must be accessible from the Secure MPAM feature page.

• MSMON_CSU_OFSR_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_CSU_OFSR_rt must be accessible from the Root MPAM feature page.

• MSMON_CSU_OFSR_rl must be accessible from the Realm MPAM feature page.

MSMON_CSU_OFSR_s, MSMON_CSU_OFSR_ns, MSMON_CSU_OFSR_rt, and MSMON_CSU_OFSR_rl
must be separate registers.

• The Secure instance (MSMON_CSU_OFSR_s) accesses the CSU monitor overflow status bitmap used for
Secure PARTIDs.

• The Non-secure instance (MSMON_CSU_OFSR_ns) accesses the CSU monitor overflow status bitmap used
for Non-secure PARTIDs.

• The Root instance (MSMON_CSU_OFSR_rt) accesses the CSU monitor overflow status bitmap used for
Root PARTIDs.

• The Realm instance (MSMON_CSU_OFSR_rl) accesses the CSU monitor overflow status bitmap used for
Realm PARTIDs.

MSMON_CSU_OFSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MSMON_CSU_OFSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MSMON_CSU_OFSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0858 MSMON_CSU_OFSR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0858 MSMON_CSU_OFSR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0858 MSMON_CSU_OFSR_rt
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-313
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_CSU_OFSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0858 MSMON_CSU_OFSR_rl
11-314 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.10 MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register

The MSMON_MBWU characteristics are:

Purpose

Accesses the monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_MBWU_s is the Secure memory bandwidth usage monitor instance selected by
MSMON_CFG_MON_SEL_s. MSMON_MBWU_ns is the Non-secure memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL_ns. MSMON_MBWU_rt is the Root
memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL_rt.
MSMON_MBWU_rl is the Realm memory bandwidth usage monitor instance selected by
MSMON_CFG_MON_SEL_rl.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance register accessed is for the resource instance
currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_MBWU is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to
MSMON_MBWU are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU is a 32-bit register.

Field descriptions

NRDY, bit [31]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

0b0 The monitor instance is ready and the MSMON_MBWU.VALUE field is accurate.

0b1 The monitor instance is not ready and the contents of the MSMON_MBWU.VALUE
field might be inaccurate or otherwise not represent the actual memory bandwidth
usage.

VALUE, bits [30:0]

Memory bandwidth usage counter value if MSMON_MBWU.NRDY is 0. Invalid if
MSMON_MBWU.NRDY is 1.

VALUE is the scaled count of bytes transferred since the monitor was last reset that met the criteria
set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance
selected by MSMON_CFG_MON_SEL.

If MSMON_CFG_MBWU_CTL.SCLEN enables scaling, the count in VALUE is the number of
bytes shifted right by MPAMF_MBWUMON_IDR.SCALE bit positions and rounded.

Accessing the MSMON_MBWU:

This register is within the MPAM feature page memory frames.

31

VALUE

30 0

NRDY
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-315
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_MBWU_s must be accessible from the Secure MPAM feature page.

• MSMON_MBWU_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_rt must be accessible from the Root MPAM feature page.

• MSMON_MBWU_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_s, MSMON_MBWU_ns, MSMON_MBWU_rt, and MSMON_MBWU_rl must be separate
registers.

• The Secure instance (MSMON_MBWU_s) accesses the memory bandwidth usage monitor used for Secure
PARTIDs.

• The Non-secure instance (MSMON_MBWU_ns) accesses the memory bandwidth usage monitor used for
Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_rt) accesses the memory bandwidth usage monitor used for Root
PARTIDs.

• The Realm instance (MSMON_MBWU_rl) accesses the memory bandwidth usage monitor used for Realm
PARTIDs.

When RIS is implemented, reads and writes to MSMON_MBWU access the memory bandwidth usage monitor
instance for the resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU access the memory bandwidth usage monitor
instance for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_MBWU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_MBWU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0860 MSMON_MBWU_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0860 MSMON_MBWU_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0860 MSMON_MBWU_rt
11-316 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_MBWU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0860 MSMON_MBWU_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-317
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.11 MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register

The MSMON_MBWU_CAPTURE characteristics are:

Purpose

Accesses the captured MSMON_MBWU monitor instance selected by
MSMON_CFG_MON_SEL.

MSMON_MBWU_CAPTURE_s is the Secure memory bandwidth usage monitor capture instance
selected by the Secure instance of MSMON_CFG_MON_SEL. MSMON_MBWU_CAPTURE_ns
is the Non-secure memory bandwidth usage monitor capture instance selected by the Non-secure
instance of MSMON_CFG_MON_SEL. MSMON_MBWU_CAPTURE_rt is the Root memory
bandwidth usage monitor capture instance selected by the Root instance of
MSMON_CFG_MON_SEL. MSMON_MBWU_CAPTURE_rl is the Realm memory bandwidth
usage monitor capture instance selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance capture register accessed is for the resource
instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that
resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_MBWU_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1, MPAMF_MSMON_IDR.MSMON_MBWU == 1 and
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1. Otherwise, direct accesses to
MSMON_MBWU_CAPTURE are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU_CAPTURE is a 32-bit register.

Field descriptions

NRDY, bit [31]

Not Ready. The captured NRDY bit from the corresponding instance of MSMON_MBWU. This bit
indicates whether the captured monitor value has possibly inaccurate data.

0b0 The captured monitor instance was ready and the
MSMON_MBWU_CAPTURE.VALUE field is accurate.

0b1 The captured monitor instance was not ready and the contents of the
MSMON_MBWU_CAPTURE.VALUE field might be inaccurate or otherwise not
represent the actual memory bandwidth usage.

VALUE, bits [30:0]

Captured memory bandwidth usage counter value if MSMON_MBWU_CAPTURE.NRDY is 0.
Invalid if MSMON_MBWU_CAPTURE.NRDY is 1.

VALUE is the captured VALUE field from the corresponding instance of MSMON_MBWU, the
count of bytes transferred since the monitor was last reset that meet the criteria set in
MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected
by MSMON_CFG_MON_SEL.

VALUE captures the MSMON_MBWU.VALUE and preserves any scaling that had been performed
on the VALUE field in that register.

31

VALUE

30 0

NRDY
11-318 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
Accessing the MSMON_MBWU_CAPTURE:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_MBWU_CAPTURE_s must be accessible from the Secure MPAM feature page.

• MSMON_MBWU_CAPTURE_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_CAPTURE_rt must be accessible from the Root MPAM feature page.

• MSMON_MBWU_CAPTURE_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_CAPTURE_s, MSMON_MBWU_CAPTURE_ns, MSMON_MBWU_CAPTURE_rt, and
MSMON_MBWU_CAPTURE_rl must be separate registers.

• The Secure instance (MSMON_MBWU_CAPTURE_s) accesses the captured memory bandwidth usage
monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_CAPTURE_ns) accesses the captured memory bandwidth
usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_CAPTURE_rt) accesses the captured memory bandwidth usage
monitor used for Root PARTIDs.

• The Realm instance (MSMON_MBWU_CAPTURE_rl) accesses the captured memory bandwidth usage
monitor used for Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_MBWU_CAPTURE access the monitor instance for the
bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU_CAPTURE access the monitor instance for
the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_MBWU_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_MBWU_CAPTURE can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0868 MSMON_MBWU_CAPTURE_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0868 MSMON_MBWU_CAPTURE_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0868 MSMON_MBWU_CAPTURE_rt
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-319
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_MBWU_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0868 MSMON_MBWU_CAPTURE_rl
11-320 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.12 MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register

The MSMON_MBWU_L characteristics are:

Purpose

Accesses the monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_MBWU_L_s is the Secure long memory bandwidth usage monitor instance selected by
the Secure instance of MSMON_CFG_MON_SEL. MSMON_MBWU_L_ns is the Non-secure
long memory bandwidth usage monitor instance selected by the Non-secure instance of
MSMON_CFG_MON_SEL. MSMON_MBWU_L_rt is the Root long memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL_rt. MSMON_MBWU_L_rl is the Realm
long memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL_rl.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance long monitor register accessed is for the
resource instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance
of that resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_MBWU_L is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1, MPAMF_MSMON_IDR.MSMON_MBWU == 1 and
MPAMF_MBWUMON_IDR.HAS_LONG == 1. Otherwise, direct accesses to
MSMON_MBWU_L are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU_L is a 64-bit register.

Field descriptions

When MPAMF_MBWUMON_IDR.LWD == 0:

NRDY, bit [63]

Not Ready. Indicates whether the monitor instance has possibly inaccurate data.

0b0 The monitor instance is ready and the MSMON_MBWU_L.VALUE field is accurate.

0b1 The monitor instance is not ready and the contents of the MSMON_MBWU_L.VALUE
field might be inaccurate or otherwise not represent the actual memory bandwidth
usage.

Bits [62:44]

Reserved, RES0.

VALUE, bits [43:0]

Long (44-bit) memory bandwidth usage counter value if MSMON_MBWU_L.NRDY is 0. Invalid
if MSMON_MBWU_L.NRDY is 1.

VALUE is the long count of bytes transferred since the monitor was last reset that met the criteria
set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance
selected by MSMON_CFG_MON_SEL.

63

RES0

62 44

VALUE

43 32

NRDY

VALUE

31 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-321
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
When MPAMF_MBWUMON_IDR.LWD == 1:

NRDY, bit [63]

Not Ready. Indicates whether the monitor instance has possibly inaccurate data.

0b0 The monitor instance is ready and the MSMON_MBWU_L.VALUE field is accurate.

0b1 The monitor instance is not ready and the contents of the MSMON_MBWU_L.VALUE
field might be inaccurate or otherwise not represent the actual memory bandwidth
usage.

VALUE, bits [62:0]

Long (63-bit) memory bandwidth usage counter value if MSMON_MBWU_L.NRDY is 0. Invalid
if MSMON_MBWU_L.NRDY is 1.

VALUE is the long count of bytes transferred since the monitor instance was last reset that met the
criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor
instance selected by MSMON_CFG_MON_SEL.

Accessing the MSMON_MBWU_L:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_MBWU_L_s must be accessible from the Secure MPAM feature page.

• MSMON_MBWU_L_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_L_rt must be accessible from the Root MPAM feature page.

• MSMON_MBWU_L_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_L_s, MSMON_MBWU_L_ns, MSMON_MBWU_L_rt, and MSMON_MBWU_L_rl must be
separate registers.

• The Secure instance (MSMON_MBWU_L_s) accesses the long memory bandwidth usage monitor used for
Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_L_ns) accesses the long memory bandwidth usage monitor
used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_L_rt) accesses the long memory bandwidth usage monitor used for
Root PARTIDs.

• The Realm instance (MSMON_MBWU_L_rl) accesses the long memory bandwidth usage monitor used for
Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_MBWU_L access the long memory bandwidth usage
monitor instance for the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the monitor
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU_L access the long memory bandwidth usage
monitor instance for the monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

63

VALUE

62 32

NRDY

VALUE

31 0
11-322 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_MBWU_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_MBWU_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_MBWU_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_MBWU_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0880 MSMON_MBWU_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0880 MSMON_MBWU_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0880 MSMON_MBWU_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0880 MSMON_MBWU_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-323
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.13 MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register

The MSMON_MBWU_L_CAPTURE characteristics are:

Purpose

Accesses the captured MSMON_MBWU_L monitor instance selected by
MSMON_CFG_MON_SEL.

MSMON_MBWU_L_CAPTURE_s is the Secure long memory bandwidth usage monitor capture
instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_MBWU_L_CAPTURE_ns is the Non-secure long memory bandwidth usage monitor
capture instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_MBWU_L_CAPTURE_rt is the Root long memory bandwidth usage monitor capture
instance selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_MBWU_L_CAPTURE_rl is the Realm long memory bandwidth usage monitor capture
instance selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance long capture register accessed is for the
resource instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance
of that resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_MBWU_L_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1, MPAMF_MSMON_IDR.MSMON_MBWU == 1,
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1 and
MPAMF_MBWUMON_IDR.HAS_LONG == 1. Otherwise, direct accesses to
MSMON_MBWU_L_CAPTURE are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU_L_CAPTURE is a 64-bit register.

Field descriptions

When MPAMF_MBWUMON_IDR.LWD == 0:

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

0b0 The captured monitor instance was ready and the
MSMON_MBWU_L_CAPTURE.VALUE field is accurate.

0b1 The captured monitor instance was not ready and the contents of the
MSMON_MBWU_L_CAPTURE.VALUE field might be inaccurate or otherwise not
represent the actual memory bandwidth usage.

Bits [62:44]

Reserved, RES0.

63

RES0

62 44

VALUE

43 32

NRDY

VALUE

31 0
11-324 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
VALUE, bits [43:0]

Captured long memory bandwidth usage counter value if MSMON_MBWU_L_CAPTURE.NRDY
is 0. Invalid if MSMON_MBWU_L_CAPTURE.NRDY is 1.

VALUE is the captured 44-bit count of bytes transferred since the monitor instance was last reset
that met the criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the
monitor instance selected by MSMON_CFG_MON_SEL.

When MPAMF_MBWUMON_IDR.LWD == 1:

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

0b0 The captured monitor instance was ready and the
MSMON_MBWU_L_CAPTURE.VALUE field is accurate.

0b1 The captured monitor instance was not ready and the contents of the
MSMON_MBWU_L_CAPTURE.VALUE field might be inaccurate or otherwise not
represent the actual memory bandwidth usage.

VALUE, bits [62:0]

The captured long memory bandwidth usage counter value if
MSMON_MBWU_L_CAPTURE.NRDY is 0. Invalid if MSMON_MBWU_L_CAPTURE.NRDY
is 1.

VALUE is the captured 63-bit count of bytes transferred since the monitor instance was last reset
that met the criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the
monitor instance selected by MSMON_CFG_MON_SEL.

Accessing the MSMON_MBWU_L_CAPTURE:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_MBWU_L_CAPTURE_s must be accessible from the Secure MPAM feature page.

• MSMON_MBWU_L_CAPTURE_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_L_CAPTURE_rt must be accessible from the Root MPAM feature page.

• MSMON_MBWU_L_CAPTURE_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_L_CAPTURE_s, MSMON_MBWU_L_CAPTURE_ns, MSMON_MBWU_L_CAPTURE_rt,
and MSMON_MBWU_L_CAPTURE_rl must be separate registers.

• The Secure instance (MSMON_MBWU_L_CAPTURE_s) accesses the captured long memory bandwidth
usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_L_CAPTURE_ns) accesses the captured long memory
bandwidth usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_L_CAPTURE_rt) accesses the captured long memory bandwidth
usage monitor used for Root PARTIDs.

63

VALUE

62 32

NRDY

VALUE

31 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-325
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
• The Realm instance (MSMON_MBWU_L_CAPTURE_rl) accesses the captured long memory bandwidth
usage monitor used for Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_MBWU_L_CAPTURE access the monitor instance for
the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU_L_CAPTURE access the monitor instance
for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU_L_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_MBWU_L_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_MBWU_L_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_MBWU_L_CAPTURE can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0890 MSMON_MBWU_CAPTURE_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0890 MSMON_MBWU_CAPTURE_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0890 MSMON_MBWU_CAPTURE_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0890 MSMON_MBWU_CAPTURE_rl
11-326 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.14 MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register

The MSMON_MBWU_OFSR characteristics are:

Purpose

MSMON_MBWU_OFSR is a 32-bit read-only register that shows bitmap of MBWU monitor
instance overflow status for a contiguous group of 32 monitor instances.

MSMON_MBWU_OFSR_s gives a bitmap of pending MBWU overflow status for 32 Secure
MBWU monitor instances. MSMON_MBWU_OFSR_ns gives a bitmap of pending MBWU
overflow status for 32 Non-secure MBWU monitor instances. MSMON_MBWU_OFSR_rt gives a
bitmap of pending MBWU overflow status for 32 Root MBWU monitor instances.
MSMON_MBWU_OFSR_rl gives a bitmap of pending MBWU overflow status for 32 Realm
MBWU monitor instances.

Configurations

The power domain of MSMON_MBWU_OFSR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_MBWUMON_IDR.HAS_OFSR == 1. Otherwise,
direct accesses to MSMON_MBWU_OFSR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU_OFSR is a 32-bit register.

Field descriptions

OFPND<i>, bit [i], for i = 31 to 0

Overflow status bitmap for MBWU monitor instances. The RIS and the contiguous range of
MBWU monitor instances are set in MSMON_CFG_MON_SEL. i of 0 corresponds to the MBWU
monitor instance MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0.

0b0 MBWU monitor instance (MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) does
not have a pending overflow.

0b1 MBWU monitor instance (MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) has a
pending overflow.

After reading MSMON_OFLOW_SR to determine that an MBWU monitor instance has a pending
overflow and which RIS values have pending overflows, an interrupt service routine could poll
groups of 32 monitor instances in a RIS for pending monitors by reading this bitmap and
incrementing MSMON_CFG_MON_SEL.MON_SEL by 32.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFPND31
OFPND30

OFPND29
OFPND28

OFPND27
OFPND26

OFPND25
OFPND24

OFPND23
OFPND22

OFPND21
OFPND20

OFPND19
OFPND18

OFPND17
OFPND16

OFPND0
OFPND1

OFPND2
OFPND3

OFPND4
OFPND5

OFPND6
OFPND7

OFPND8
OFPND9

OFPND10
OFPND11

OFPND12
OFPND13

OFPND14
OFPND15
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-327
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
A pending overflow may be in either the MSMON_CFG_MBWU_CTL.OFLOW_STATUS or
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L field.

Accessing the MSMON_MBWU_OFSR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_MBWU_OFSR_s must be accessible from the Secure MPAM feature page.

• MSMON_MBWU_OFSR_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_OFSR_rt must be accessible from the Root MPAM feature page.

• MSMON_MBWU_OFSR_rl must be accessible from the Realm MPAM feature page.

MSMON_MBWU_OFSR_s, MSMON_MBWU_OFSR_ns, MSMON_MBWU_OFSR_rt, and
MSMON_MBWU_OFSR_rl must be separate registers.

• The Secure instance (MSMON_MBWU_OFSR_s) accesses the MBWU monitor overflow status bitmap
used for Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_OFSR_ns) accesses the MBWU monitor overflow status
bitmap used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_OFSR_rt) accesses the MBWU monitor overflow status bitmap used
for Root PARTIDs.

• The Realm instance (MSMON_MBWU_OFSR_rl) accesses the MBWU monitor overflow status bitmap
used for Realm PARTIDs.

MSMON_MBWU_OFSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MSMON_MBWU_OFSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MSMON_MBWU_OFSR can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0898 MSMON_MBWU_OFSR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0898 MSMON_MBWU_OFSR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0898 MSMON_MBWU_OFSR_rt
11-328 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MSMON_MBWU_OFSR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0898 MSMON_MBWU_OFSR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-329
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.15 MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register

The MSMON_OFLOW_MSI_ADDR_H characteristics are:

Purpose

MSMON_OFLOW_MSI_ADDR_H is a 32-bit read/write register for the high part of the MPAM
monitor overflow MSI address.

MSMON_OFLOW_MSI_ADDR_H_s is the high part of the MSI write address for monitor
overflow interrupts from Secure monitor instances. MSMON_OFLOW_MSI_ADDR_H_ns is the
high part of the MSI write address for monitor overflow interrupts from Non-secure monitor
instances. MSMON_OFLOW_MSI_ADDR_H_rt is the high part of the MSI write address for
monitor overflow interrupts from Root monitor instances. MSMON_OFLOW_MSI_ADDR_H_rl
is the high part of the MSI write address for monitor overflow interrupts from Realm monitor
instances.

Configurations

The power domain of MSMON_OFLOW_MSI_ADDR_H is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_ADDR_H are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_ADDR_H is a 32-bit register.

Field descriptions

Bits [31:20]

Reserved, RES0.

MSI_ADDR_H, bits [19:0]

MSI write address bits[51:32].

Accessing the MSMON_OFLOW_MSI_ADDR_H:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_OFLW_MSI_ADDR_H_s must be accessible from the Secure MPAM feature page.

• MSMON_OFLW_MSI_ADDR_H_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_OFLW_MSI_ADDR_H_rt must be accessible from the Root MPAM feature page.

• MSMON_OFLW_MSI_ADDR_H_rl must be accessible from the Realm MPAM feature page.

RES0

31 20

MSI_ADDR_H

19 0
11-330 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_OFLW_MSI_ADDR_H_s, MSMON_OFLW_MSI_ADDR_H_ns,
MSMON_OFLW_MSI_ADDR_H_rt, and MSMON_OFLW_MSI_ADDR_H_rl must be separate registers.

• The Secure instance (MSMON_OFLW_MSI_ADDR_H_s) accesses the high part of the monitor overflow
MSI write address of Secure monitors.

• The Non-secure instance (MSMON_OFLW_MSI_ADDR_H_ns) accesses the high part of the monitor
overflow MSI write address of Non-secure monitors.

• The Root instance (MSMON_OFLW_MSI_ADDR_H_rt) accesses the high part of the monitor overflow
MSI write address of Root monitors.

• The Realm instance (MSMON_OFLW_MSI_ADDR_H_rl) accesses the high part of the monitor overflow
MSI write address of Realm monitors.

MSMON_OFLOW_MSI_ADDR_H can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_ADDR_H can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_ADDR_H can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_OFLOW_MSI_ADDR_H can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08E4 MSMON_OFLW_MSI_ADDR_H_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08E4 MSMON_OFLW_MSI_ADDR_H_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08E4 MSMON_OFLW_MSI_ADDR_H_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08E4 MSMON_OFLW_MSI_ADDR_H_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-331
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.16 MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register

The MSMON_OFLOW_MSI_ADDR_L characteristics are:

Purpose

MSMON_OFLOW_MSI_ADDR_L is a 32-bit read/write register for the low part of the MPAM
monitor MSI address.

MSMON_OFLOW_MSI_ADDR_L_s is the low part of the MSI write address for overflow
interrupts from Secure monitor intances. MSMON_OFLOW_MSI_ADDR_L_ns is the low part of
the MSI write address for overflow interrupts from Non-secure monitor instances.
MSMON_OFLOW_MSI_ADDR_L_rt is the low part of the MSI write address for overflow
interrupts from Root monitor intances. MSMON_OFLOW_MSI_ADDR_L_rl is the low part of the
MSI write address for overflow interrupts from Realm monitor instances.

Configurations

The power domain of MSMON_OFLOW_MSI_ADDR_L is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_ADDR_L are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_ADDR_L is a 32-bit register.

Field descriptions

MSI_ADDR_L, bits [31:2]

MSI write address bits[31:2].

Bits [1:0]

Reads as 0b00.

Access to this field is RO.

Accessing the MSMON_OFLOW_MSI_ADDR_L:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_OFLOW_MSI_ADDR_L_s must be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_MSI_ADDR_L_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_MSI_ADDR_L_rt must be accessible from the Root MPAM feature page.

• MSMON_OFLOW_MSI_ADDR_L_rl must be accessible from the Realm MPAM feature page.

MSI_ADDR_L

31 2

0 0

1 0
11-332 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_OFLOW_MSI_ADDR_L_s, MSMON_OFLOW_MSI_ADDR_L_ns,
MSMON_OFLOW_MSI_ADDR_L_rt, and MSMON_OFLOW_MSI_ADDR_L_rl must be separate registers.

• The Secure instance (MSMON_OFLOW_MSI_ADDR_L_s) accesses the low part of the overflow MSI
write address used for Secure PARTIDs.

• The Non-secure instance (MSMON_OFLOW_MSI_ADDR_L_ns) accesses the low part of the overflow
MSI write address used for Non-secure PARTIDs.

• The Root instance (MSMON_OFLOW_MSI_ADDR_L_rt) accesses the low part of the overflow MSI write
address used for Root PARTIDs.

• The Realm instance (MSMON_OFLOW_MSI_ADDR_L_rl) accesses the low part of the overflow MSI
write address used for Realm PARTIDs.

MSMON_OFLOW_MSI_ADDR_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_ADDR_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_ADDR_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_OFLOW_MSI_ADDR_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08E0 MSMON_OFLOW_MSI_ADDR_L_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08E0 MSMON_OFLOW_MSI_ADDR_L_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08E0 MSMON_OFLOW_MSI_ADDR_L_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08E0 MSMON_OFLOW_MSI_ADDR_L_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-333
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.17 MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register

The MSMON_OFLOW_MSI_ATTR characteristics are:

Purpose

MSMON_OFLOW_MSI_ATTR is a 32-bit read/write register that controls MPAM monitor
overflow MSI write attributes for MPAM monitor overflows in this MSC.

MSMON_OFLOW_MSI_ATTR_s controls Secure MPAM monitor overflow MSI writes.
MSMON_OFLOW_MSI_ATTR_ns controls Non-secure MPAM monitor overflow MSI writes.
MSMON_OFLOW_MSI_ATTR_rt controls Root MPAM monitor overflow MSI writes.
MSMON_OFLOW_MSI_ATTR_rl controls Realm MPAM monitor overflow MSI writes.

Configurations

The power domain of MSMON_OFLOW_MSI_ATTR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_ATTR are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_ATTR is a 32-bit register.

Field descriptions

Bits [31:30]

Reserved, RES0.

MSI_SH, bits [29:28]

Sharability attribute of MSI writes.

0b00 Non-shareable.

0b01 Reserved, CONSTRAINED UNPREDICTABLE.

0b10 Outer Shareable.

0b11 Inner Shareable.

When MSMON_OFLOW_MSI_ATTR.MSI_MEMATTR specifies a Device memory type, the
contents of this field are IGNORED and Shareability is effectively Outer Shareable.

MSI_MEMATTR, bits [27:24]

Memory attributes of MSI writes.

Note: This encoding matches the VMSAv8-64 stage 2 MemAttr[3:0] field as described in the Arm
ARM, except that the following encodings are Reserved (not UNPREDICTABLE) and behave as
DEvice-nGnRnE: 0b0100, 0b1000, and 0b1100.

0b0000 Device-nGnRnE.

0b0001 Device-nGnRE.

0b0010 Device-nGRE.

RES0

31 30 29 28 27 24

RES0

23 1 0

MSI_SH MSI_MEMATTR MSIEN
11-334 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
0b0011 Device-GRE.

0b0100 Reserved. Behave as Device-nGnRnE, 0b0000.

0b0101 Normal Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal Inner Write-Through Cacheable, Outer Non-cacheable.

0b0111 Normal Inner Write-Back Cacheable, Outer Non-cacheable.

0b1000 Reserved. Behave as Device-nGnRnE, 0b0000.

0b1001 Normal Inner Non-Cachable, Outer Write-Through Cacheable.

0b1010 Normal Inner Write-Through Cacheable, Outer Write-Through Cachable.

0b1011 Normal Inner Write-Back Cacheable, Outer Write-Through Cachable.

0b1100 Reserved. Behave as Device-nGnRnE, 0b0000.

0b1101 Normal Inner Non-cacheable, Outer Write-Back Cacheable.

0b1110 Normal Inner Write-Through Cacheable, Outer Write-Back Cacheable.

0b1111 Normal Inner Write-Back Cacheable, Outer Write-Back Cacheable.

When this field specifies a Device memory type, the contents of
MSMON_OFLOW_MSI_ATTR.MSI_SH are IGNORED and Shareability is effectively Outer
Shareable.

Device types may be implemented as any Device type with more n characters. For example, if this
field is set to 0b0010, an implementation may treat the MSI write as the specified type,
Device-nGRE, or as Device-nGnRE or as Device-nGnRnE.

Reserved encodings 0b0100, 0b1000, and 0b1100 must be implemented to behave the same as the
0b0000 encoding.

Bits [23:1]

Reserved, RES0.

MSIEN, bit [0]

Monitor overflow MSI write enable.

0b0 MPAM monitor overflow MSI writes are not generated to signal enabled MPAM
monitor overflow interrupts. When monitor overflow MSI writes are disabled,
hardwired monitor overflow interrupt could be generated if hardwired monitor overflow
interrupt is implemented.

0b1 MPAM monitor overflow MSI writes are generated to signal enabled MPAM monitor
overflow interrupts. When monitor overflow MSI writes are enabled, hardwired
monitor overflow interrupts are not generated.

This enable affects whether a hardwired overlow interrupt is generated.

The reset behavior of this field is:

• On a MSC reset, this field resets to 0.

Accessing the MSMON_OFLOW_MSI_ATTR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_OFLOW_MSI_ATTR_s must be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_MSI_ATTR_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_MSI_ATTR_rt must be accessible from the Root MPAM feature page.

• MSMON_OFLOW_MSI_ATTR_rl must be accessible from the Realm MPAM feature page.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-335
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_OFLOW_MSI_ATTR_s, MSMON_OFLOW_MSI_ATTR_ns, MSMON_OFLOW_MSI_ATTR_rt, and
MSMON_OFLOW_MSI_ATTR_rl must be separate registers.

• The Secure instance (MSMON_OFLOW_MSI_ATTR_s) accesses the monitor overflow MSI write attributes
of Secure monitors.

• The Non-secure instance (MSMON_OFLOW_MSI_ATTR_ns) accesses the monitor overflow MSI write
attributes of Non-secure monitors.

• The Root instance (MSMON_OFLOW_MSI_ATTR_rt) accesses the monitor overflow MSI write attributes
of Root monitors.

• The Realm instance (MSMON_OFLOW_MSI_ATTR_rl) accesses the monitor overflow MSI write
attributes of Realm monitors.

MSMON_OFLOW_MSI_ATTR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_ATTR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_ATTR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_OFLOW_MSI_ATTR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08EC MSMON_OFLOW_MSI_ATTR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08EC MSMON_OFLOW_MSI_ATTR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08EC MSMON_OFLOW_MSI_ATTR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08EC MSMON_OFLOW_MSI_ATTR_rl
11-336 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.18 MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register

The MSMON_OFLOW_MSI_DATA characteristics are:

Purpose

MSMON_OFLOW_MSI_DATA is a 32-bit read/write register for the MPAM monitor overflow
MSI data.

MSMON_OFLOW_MSI_DATA_s is the data for the MSI write for monitor overflow from Secure
monitor instances. MSMON_OFLOW_MSI_DATA_ns is the data for the MSI writes for monitor
overflow interrupts from Non-secure monitor instances. MSMON_OFLOW_MSI_DATA_rt is the
data for the MSI write for monitor overflow from Root monitor instances.
MSMON_OFLOW_MSI_DATA_rl is the data for the MSI writes for monitor overflow interrupts
from Realm monitor instances.

Configurations

The power domain of MSMON_OFLOW_MSI_DATA is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_DATA are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_DATA is a 32-bit register.

Field descriptions

MSI_DATA, bits [31:0]

MSI write data word.

Accessing the MSMON_OFLOW_MSI_DATA:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_OFLOW_MSI_DATA_s must be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_MSI_DATA_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_MSI_DATA_rt must be accessible from the Root MPAM feature page.

• MSMON_OFLOW_MSI_DATA_rl must be accessible from the Realm MPAM feature page.

MSMON_OFLOW_MSI_DATA_s, MSMON_OFLOW_MSI_DATA_ns, MSMON_OFLOW_MSI_DATA_rt,
and MSMON_OFLOW_MSI_DATA_rl must be separate registers.

• The Secure instance (MSMON_OFLOW_MSI_DATA_s) accesses the monitor overflow MSI write data of
Secure monitors.

MSI_DATA

31 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-337
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
• The Non-secure instance (MSMON_OFLOW_MSI_DATA_ns) accesses the monitor overflow MSI write
data of Non-secure monitors.

• The Root instance (MSMON_OFLOW_MSI_DATA_rt) accesses the monitor overflow MSI write data of
Root monitors.

• The Realm instance (MSMON_OFLOW_MSI_DATA_rl) accesses the monitor overflow MSI write data of
Realm monitors.

MSMON_OFLOW_MSI_DATA can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_DATA can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_DATA can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MSMON_OFLOW_MSI_DATA can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08E8 MSMON_OFLOW_MSI_DATA_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08E8 MSMON_OFLOW_MSI_DATA_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08E8 MSMON_OFLOW_MSI_DATA_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08E8 MSMON_OFLOW_MSI_DATA_rl
11-338 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.19 MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register

The MSMON_OFLOW_MSI_MPAM characteristics are:

Purpose

MSMON_OFLOW_MSI_MPAM is a 32-bit read/write register that sets the MPAM information for
a monitor overflow MSI write.

MSMON_OFLOW_MSI_MPAM_s controls MPAM information labeling of Secure monitor
overflow MSI writes. MSMON_OFLOW_MSI_MPAM_ns controls MPAM information labeling
of Non-secure monitor overflow MSI writes. MSMON_OFLOW_MSI_MPAM_rt controls MPAM
information labeling of Root monitor overflow MSI writes. MSMON_OFLOW_MSI_MPAM_rl
controls MPAM information labeling of Realm monitor overflow MSI writes.

Configurations

The power domain of MSMON_OFLOW_MSI_MPAM is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_MPAM are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_MPAM is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group property for an MSC monitor overflow MSI write.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition ID for an MSC monitor overflow MSI write.

The PARTID in this field is in the Secure PARTID space in the MSMON_OFLOW_MSI_MPAM_s
instance and in the Non-secure PARTID space in the MSMON_OFLOW_MSI_MPAM_ns instance
of this register.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

Accessing the MSMON_OFLOW_MSI_MPAM:

This register is within the MPAM feature page memory frames.

RES0

31 24

PMG

23 16

PARTID

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-339
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_OFLOW_MSI_MPAM_s must be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_MSI_MPAM_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_MSI_MPAM_rt must be accessible from the Root MPAM feature page.

• MSMON_OFLOW_MSI_MPAM_rl must be accessible from the Realm MPAM feature page.

MSMON_OFLOW_MSI_MPAM_s, MSMON_OFLOW_MSI_MPAM_ns, MSMON_OFLOW_MSI_MPAM_rt,
and MSMON_OFLOW_MSI_MPAM_rl must be separate registers.

• The Secure instance (MSMON_OFLOW_MSI_MPAM_s) accesses the monitor overflow MSI MPAM
information of Secure monitors.

• The Non-secure instance (MSMON_OFLOW_MSI_MPAM_ns) accesses the monitor overflow MSI MPAM
information of Non-secure monitors.

• The Root instance (MSMON_OFLOW_MSI_MPAM_rt) accesses the monitor overflow MSI MPAM
information of Root monitors.

• The Realm instance (MSMON_OFLOW_MSI_MPAM_rl) accesses the monitor overflow MSI MPAM
information of Realm monitors.

MSMON_OFLOW_MSI_MPAM can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_MPAM can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MSMON_OFLOW_MSI_MPAM can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08DC MSMON_OFLOW_MSI_MPAM_
s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08DC MSMON_OFLOW_MSI_MPAM_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08DC MSMON_OFLOW_MSI_MPAM_rt
11-340 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
MSMON_OFLOW_MSI_MPAM can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08DC MSMON_OFLOW_MSI_MPAM_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-341
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
11.5.20 MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register

The MSMON_OFLOW_SR characteristics are:

Purpose

MSMON_OFLOW_SR is a 32-bit read-only register that shows MPAM monitor overflow status for
this MSC.

MSMON_OFLOW_SR_s gives the status of overflows of Secure MPAM monitors.
MSMON_OFLOW_SR_ns gives the status of overflows of Non-secure MPAM monitors.
MSMON_OFLOW_SR_rt gives the status of overflows of Root MPAM monitors.
MSMON_OFLOW_SR_rl gives the status of overflows of Realm MPAM monitors.

Configurations

The power domain of MSMON_OFLOW_SR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_MSMON_IDR.HAS_OFLOW_SR == 1. Otherwise,
direct accesses to MSMON_OFLOW_SR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_SR is a 32-bit register.

Field descriptions

CSU_OFLOW_PND, bit [31]

At least one cache storage usage monitor has OFLOW_STATUS of 1 in
MSMON_CFG_CSU_CTL.

0b0 There are no cache storage usage monitor instances where
MSMON_CFG_CSU_CTL.OFLOW_STATUS is 1.

0b1 MSMON_CFG_CSU_CTL for at least one of the cache storage usage monitor instances
has OFLOW_STATUS set to 1.

This field clears when MSMON_CFG_CSU_CTL.OFLOW_STATUS has been reset to 0 for all
CSU monitor instances in this MSC.

MBWU_OFLOW_PND, bit [30]

At least one memory bandwidth usage monitor instance has OFLOW_STATUS or
OFLOW_STATUS_L of 1 in MSMON_CFG_MBWU_CTL.

0b0 There are no memory bandwidth usage monitor instances where
MSMON_CFG_MBWU_CTL.OFLOW_STATUS is 1.

0b1 MSMON_CFG_MBWU_CTL for at least one of the memory bandwidth usage monitor
instances has either OFLOW_STATUS or OFLOW_STATUS_L set to 1.

This field clears when MSMON_CFG_MBWU_CTL.OFLOW_STATUS and
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L have been reset to 0 for all MBWU monitor
instances in this MSC.

31 30

RES0

29 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSU_OFLOW
_PND

MBWU_OFLOW_PND RIS_PND15
RIS_PND14

RIS_PND13
RIS_PND12

RIS_PND11
RIS_PND10

RIS_PND9
RIS_PND8

RIS_PND0
RIS_PND1

RIS_PND2
RIS_PND3

RIS_PND4
RIS_PND5

RIS_PND6
RIS_PND7
11-342 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
Bits [29:16]

Reserved, RES0.

RIS_PND<r>, bit [r], for r = 15 to 0

Overflow status by RIS.

0b0 RIS r has no unread overflows of any type of monitor.

0b1 RIS r has at least one unread overflow in at least one of the monitor types.

Combined with the CSU_OFLOW_PND and MBWU_OFLOW_PND flags in this register, an
interrupt service routine could poll only the monitor types indicated in monitors for the resource
instances flagged in this field.

Bit r is set when any monitor instance of any type in resource instance r has OFLOW_STATUS or
OFLOW_STATUS_L set to 1.

Accessing the MSMON_OFLOW_SR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MSMON_OFLOW_SR_s must be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_SR_ns must be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_SR_rt must be accessible from the Root MPAM feature page.

• MSMON_OFLOW_SR_rl must be accessible from the Realm MPAM feature page.

MSMON_OFLOW_SR_s, MSMON_OFLOW_SR_ns, MSMON_OFLOW_SR_rt, and MSMON_OFLOW_SR_rl
must be separate registers.

• The Secure instance (MSMON_OFLOW_SR_s) accesses the monitor overflow status summary of Secure
monitors.

• The Non-secure instance (MSMON_OFLOW_SR_ns) accesses the monitor overflow status summary of
Non-secure monitors.

• The Root instance (MSMON_OFLOW_SR_rt) accesses the monitor overflow status summary of Root
monitors.

• The Realm instance (MSMON_OFLOW_SR_rl) accesses the monitor overflow status summary of Realm
monitors.

MSMON_OFLOW_SR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RO.

MSMON_OFLOW_SR can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08F0 MSMON_OFLOW_SR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08F0 MSMON_OFLOW_SR_ns
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-343
ID012521 Non-Confidential

Memory-Mapped Registers
11.5 Memory-mapped monitoring configuration registers
This interface is accessible as follows:

• Accesses to this register are RO.

MSMON_OFLOW_SR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

MSMON_OFLOW_SR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08F0 MSMON_OFLOW_SR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08F0 MSMON_OFLOW_SR_rl
11-344 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
11.6 Memory-mapped control and status registers

This section lists the external control and status registers.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-345
ID012521 Non-Confidential

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
11.6.1 MPAMF_ECR, MPAM Error Control Register

The MPAMF_ECR characteristics are:

Purpose

MPAMF_ECR is a 32-bit read/write register that controls MPAM error interrupts for this MSC.

MPAMF_ECR_s controls Secure MPAM error handling. MPAMF_ECR_ns controls Non-secure
MPAM error handling. MPAMF_ECR_rt controls Root MPAM error handling. MPAMF_ECR_rl
controls Realm MPAM error handling.

Configurations

The power domain of MPAMF_ECR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_ECR are RES0.

If an MSC cannot encounter any of the error conditions listed in Errors in MSCs, both the
MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ECR is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

INTEN, bit [0]

Interrupt Enable.

0b0 MPAM error interrupts are not signaled.

0b1 MPAM error interrupts are signaled.

Accessing the MPAMF_ECR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMF_ECR_s must be accessible from the Secure MPAM feature page.

• MPAMF_ECR_ns must be accessible from the Non-secure MPAM feature page.

• MPAMF_ECR_rt must be accessible from the Root MPAM feature page.

• MPAMF_ECR_rl must be accessible from the Realm MPAM feature page.

MPAMF_ECR_s, MPAMF_ECR_ns, MPAMF_ECR_rt, and MPAMF_ECR_rl must be separate registers.

• The Secure instance (MPAMF_ECR_s) accesses the error interrupt controls used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ECR_ns) accesses the error interrupt controls used for Non-secure
PARTIDs.

RES0

31 1 0

INTEN
11-346 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
• The Root instance (MPAMF_ECR_rt) accesses the error interrupt controls used for Root PARTIDs.

• The Realm instance (MPAMF_ECR_rl) accesses the error interrupt controls used for Realm PARTIDs.

MPAMF_ECR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ECR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ECR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMF_ECR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00F0 MPAMF_ECR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00F0 MPAMF_ECR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00F0 MPAMF_ECR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00F0 MPAMF_ECR_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-347
ID012521 Non-Confidential

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
11.6.2 MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register

The MPAMF_ERR_MSI_ADDR_H characteristics are:

Purpose

MPAMF_ERR_MSI_ADDR_H is a 32-bit read/write register for the high part of the MPAM error
MSI address.

MPAMF_ERR_MSI_ADDR_H_s is the high part of the MSI write address for error interrupts
related to Secure PARTIDs. MPAMF_ERR_MSI_ADDR_H_ns is the high part of the MSI write
address for error interrupts related to Non-secure PARTIDs. MPAMF_ERR_MSI_ADDR_H_rt is
the high part of the MSI write address for error interrupts related to Root PARTIDs.
MPAMF_ERR_MSI_ADDR_H_rl is the high part of the MSI write address for error interrupts
related to Realm PARTIDs.

Configurations

The power domain of MPAMF_ERR_MSI_ADDR_H is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_ADDR_H are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_ADDR_H is a 32-bit register.

Field descriptions

Bits [31:20]

Reserved, RES0.

MSI_ADDR_H, bits [19:0]

MSI write address bits[51:32].

Accessing the MPAMF_ERR_MSI_ADDR_H:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMF_ERR_MSI_ADDR_H_s must be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_ADDR_H_ns must be accessible from the Non-secure MPAM feature page.

• MPAMF_ERR_MSI_ADDR_H_rt must be accessible from the Root MPAM feature page.

• MPAMF_ERR_MSI_ADDR_H_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_ADDR_H_s, MPAMF_ERR_MSI_ADDR_H_ns, MPAMF_ERR_MSI_ADDR_H_rt, and
MPAMF_ERR_MSI_ADDR_H_rl must be separate registers.

• The Secure instance (MPAMF_ERR_MSI_ADDR_H_s) accesses the high part of the memory address for
MSI write to signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_ADDR_H_ns) accesses the high part of the memory address
for MSI write to signal an MPAM error used for Non-secure PARTIDs.

RES0

31 20

MSI_ADDR_H

19 0
11-348 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
• The Root instance (MPAMF_ERR_MSI_ADDR_H_rt) accesses the high part of the memory address for MSI
write to signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_ADDR_H_rl) accesses the high part of the memory address for
MSI write to signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_ADDR_H can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_ADDR_H can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_ADDR_H can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMF_ERR_MSI_ADDR_H can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00E4 MPAMF_ERR_MSI_ADDR_H_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00E4 MPAMF_ERR_MSI_ADDR_H_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00E4 MPAMF_ERR_MSI_ADDR_H_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00E4 MPAMF_ERR_MSI_ADDR_H_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-349
ID012521 Non-Confidential

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
11.6.3 MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register

The MPAMF_ERR_MSI_ADDR_L characteristics are:

Purpose

MPAMF_ERR_MSI_ADDR_L is a 32-bit read/write register for the low part of the MPAM error
MSI address.

MPAMF_ERR_MSI_ADDR_L_s is the low part of the MSI write address for error interrupts
related to Secure PARTIDs. MPAMF_ERR_MSI_ADDR_L_ns is the low part of the MSI write
address for error interrupts related to Non-secure PARTIDs. MPAMF_ERR_MSI_ADDR_L_rt is
the low part of the MSI write address for error interrupts related to Root PARTIDs.
MPAMF_ERR_MSI_ADDR_L_rl is the low part of the MSI write address for error interrupts
related to Realm PARTIDs.

Configurations

The power domain of MPAMF_ERR_MSI_ADDR_L is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_ADDR_L are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_ADDR_L is a 32-bit register.

Field descriptions

MSI_ADDR_L, bits [31:2]

MSI write address bits[31:2].

Bits [1:0]

Reads as 0b00.

Access to this field is RO.

Accessing the MPAMF_ERR_MSI_ADDR_L:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMF_ERR_MSI_ADDR_L_s must be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_ADDR_L_ns must be accessible from the Non-secure MPAM feature page.

• MPAMF_ERR_MSI_ADDR_L_rt must be accessible from the Root MPAM feature page.

• MPAMF_ERR_MSI_ADDR_L_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_ADDR_L_s, MPAMF_ERR_MSI_ADDR_L_ns, MPAMF_ERR_MSI_ADDR_L_rt, and
MPAMF_ERR_MSI_ADDR_L_rl must be separate registers.

• The Secure instance (MPAMF_ERR_MSI_ADDR_L_s) accesses the low part of the memory address for
MSI write to signal an MPAM error used for Secure PARTIDs.

MSI_ADDR_L

31 2

0 0

1 0
11-350 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
• The Non-secure instance (MPAMF_ERR_MSI_ADDR_L_ns) accesses the low part of the memory address
for MSI write to signal an MPAM error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_ADDR_L_rt) accesses the low part of the memory address for MSI
write to signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_ADDR_L_rl) accesses the low part of the memory address for
MSI write to signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_ADDR_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_ADDR_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_ADDR_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMF_ERR_MSI_ADDR_L can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00E0 MPAMF_ERR_MSI_ADDR_L_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00E0 MPAMF_ERR_MSI_ADDR_L_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00E0 MPAMF_ERR_MSI_ADDR_L_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00E0 MPAMF_ERR_MSI_ADDR_L_rl
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-351
ID012521 Non-Confidential

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
11.6.4 MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register

The MPAMF_ERR_MSI_ATTR characteristics are:

Purpose

MPAMF_ERR_MSI_ATTR is a 32-bit read/write register that controls MPAM error MSI write
attributes for MPAM errors in this MSC.

MPAMF_ERR_MSI_ATTR_s controls the attributes of Secure MPAM error MSI writes.
MPAMF_ERR_MSI_ATTR_ns controls the attributes of Non-secure MPAM error MSI writes.
MPAMF_ERR_MSI_ATTR_rt controls the attributes of Root MPAM error MSI writes.
MPAMF_ERR_MSI_ATTR_rl controls the attributes of Realm MPAM error MSI writes.

Configurations

The power domain of MPAMF_ERR_MSI_ATTR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_ATTR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_ATTR is a 32-bit register.

Field descriptions

Bits [31:30]

Reserved, RES0.

MSI_SH, bits [29:28]

Sharability attribute of MSI writes.

0b00 Non-shareable.

0b01 Reserved, CONSTRAINED UNPREDICTABLE.

0b10 Outer Shareable.

0b11 Inner Shareable.

When MPAMF_ERR_MSI_ATTR.MSI_MEMATTR specifies a Device memory type, the contents
of this field are IGNORED and Shareability is effectively Outer Shareable.

MSI_MEMATTR, bits [27:24]

Memory attributes of MSI writes.

Note: This encoding matches the VMSAv8-64 stage 2 MemAttr[3:0] field as described in the Arm
ARM, except that the following encodings are Reserved (not UNPREDICTABLE) and behave as
DEvice-nGnRnE: 0b0100, 0b1000, and 0b1100.

0b0000 Device-nGnRnE.

0b0001 Device-nGnRE.

0b0010 Device-nGRE.

0b0011 Device-GRE.

0b0100 Reserved. Behave as Device-nGnRnE, 0b0000.

0b0101 Normal Inner Non-cacheable, Outer Non-cacheable.

RES0

31 30 29 28 27 24

RES0

23 1 0

MSI_SH MSI_MEMATTR MSIEN
11-352 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
0b0110 Normal Inner Write-Through Cacheable, Outer Non-cacheable.

0b0111 Normal Inner Write-Back Cacheable, Outer Non-cacheable.

0b1000 Reserved. Behave as Device-nGnRnE, 0b0000.

0b1001 Normal Inner Non-Cachable, Outer Write-Through Cacheable.

0b1010 Normal Inner Write-Through Cacheable, Outer Write-Through Cacheable.

0b1011 Normal Inner Write-Back Cacheable, Outer Write-Through Cacheable.

0b1100 Reserved. Behave as Device-nGnRnE, 0b0000.

0b1101 Normal Inner Non-cacheable, Outer Write-Back Cacheable.

0b1110 Normal Inner Write-Through Cacheable, Outer Write-Back Cacheable.

0b1111 Normal Inner Write-Back Cacheable, Outer Write-Back Cacheable.

When this field specifies a Device memory type, the contents of
MPAMF_ERR_MSI_ATTR.MSI_SH are IGNORED and Shareability is effectively Outer
Shareable.

Device types may be implemented as any Device type with more than 'n' characters. For example,
if this field is set to 0b0010, an implementation may treat the MSI write as the specified type,
Device-nGRE, or as Device-nGnRE or as Device-nGnRnE.

Reserved encodings 0b0100, 0b1000, and 0b1100 must be implemented to behave the same as the
0b0000 encoding.

Bits [23:1]

Reserved, RES0.

MSIEN, bit [0]

Error interrupt MSI Enable.

0b0 MPAM error MSI writes are not generated to signal enabled MPAM error interrupts.
When error MSI writesare disabled, hardwired error interrupts could be generated.

0b1 MPAM error MSI writes are generated to signal enabled MPAM error interrupts. When
error MSI writes are enabled, hardwired error interrupts are not generated.

The value of this field affects whether hardwired error interrupts are generated.

The reset behavior of this field is:

• On a MSC reset, this field resets to 0.

Accessing the MPAMF_ERR_MSI_ATTR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMF_ERR_MSI_ATTR_s must be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_ATTR_ns must be accessible from the Non-secure MPAM feature page.

• MPAMF_ERR_MSI_ATTR_rt must be accessible from the Root MPAM feature page.

• MPAMF_ERR_MSI_ATTR_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_ATTR_s, MPAMF_ERR_MSI_ATTR_ns, MPAMF_ERR_MSI_ATTR_rt, and
MPAMF_ERR_MSI_ATTR_rl must be separate registers.

• The Secure instance (MPAMF_ERR_MSI_ATTR_s) accesses the memory access attributes for MSI write to
signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_ATTR_ns) accesses the memory access attributes for MSI
write to signal an MPAM error used for Non-secure PARTIDs.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-353
ID012521 Non-Confidential

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
• The Root instance (MPAMF_ERR_MSI_ATTR_rt) accesses the memory access attributes for MSI write to
signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_ATTR_rl) accesses the memory access attributes for MSI write to
signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_ATTR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_ATTR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_ATTR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMF_ERR_MSI_ATTR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00EC MPAMF_ERR_MSI_ATTR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00EC MPAMF_ERR_MSI_ATTR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00EC MPAMF_ERR_MSI_ATTR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00EC MPAMF_ERR_MSI_ATTR_rl
11-354 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
11.6.5 MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register

The MPAMF_ERR_MSI_DATA characteristics are:

Purpose

MPAMF_ERR_MSI_DATA is a 32-bit read/write register for the MPAM error MSI data.

MPAMF_ERR_MSI_DATA_s is the data for the MSI write for error interrupts related to Secure
PARTIDs. MPAMF_ERR_MSI_DATA_ns is the data for the MSI write for error interrupts related
to Non-secure PARTIDs. MPAMF_ERR_MSI_DATA_rt is the data for the MSI write for error
interrupts related to Root PARTIDs. MPAMF_ERR_MSI_DATA_rl is the data for the MSI write for
error interrupts related to Realm PARTIDs.

Configurations

The power domain of MPAMF_ERR_MSI_DATA is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_DATA are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_DATA is a 32-bit register.

Field descriptions

MSI_DATA, bits [31:0]

MSI data to be written to ITS to signal an MSI.

Accessing the MPAMF_ERR_MSI_DATA:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMF_ERR_MSI_DATA_s must be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_DATA_ns must be accessible from the Non-secure MPAM feature page.

• MPAMF_ERR_MSI_DATA_rt must be accessible from the Root MPAM feature page.

• MPAMF_ERR_MSI_DATA_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_DATA_s, MPAMF_ERR_MSI_DATA_ns, MPAMF_ERR_MSI_DATA_rt, and
MPAMF_ERR_MSI_DATA_rl must be separate registers.

• The Secure instance (MPAMF_ERR_MSI_DATA_s) accesses the data for MSI write to signal an MPAM
error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_DATA_ns) accesses the data for MSI write to signal an
MPAM error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_DATA_rt) accesses the data for MSI write to signal an MPAM error
used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_DATA_rl) accesses the data for MSI write to signal an MPAM
error used for Realm PARTIDs.

MSI_DATA

31 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-355
ID012521 Non-Confidential

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
MPAMF_ERR_MSI_DATA can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_DATA can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_DATA can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMF_ERR_MSI_DATA can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00E8 MPAMF_ERR_MSI_DATA_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00E8 MPAMF_ERR_MSI_DATA_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00E8 MPAMF_ERR_MSI_DATA_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00E8 MPAMF_ERR_MSI_DATA_rl
11-356 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
11.6.6 MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register

The MPAMF_ERR_MSI_MPAM characteristics are:

Purpose

MPAMF_ERR_MSI_MPAM is a 32-bit read/write register that sets the MPAM information for
error MSI write attributes for MPAM errors in this MSC.

MPAMF_ERR_MSI_MPAM_s controls MPAM information labeling of Secure MPAM error MSI
writes. MPAMF_ERR_MSI_MPAM_ns controls MPAM information labeling of Non-secure
MPAM error MSI writes. MPAMF_ERR_MSI_MPAM_rt controls MPAM information labeling of
Root MPAM error MSI writes. MPAMF_ERR_MSI_MPAM_rl controls MPAM information
labeling of Realm MPAM error MSI writes.

Configurations

The power domain of MPAMF_ERR_MSI_MPAM is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_MPAM are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_MPAM is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group property for PARTID MSC error interrupt write.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition ID for MSC error interrupt write.

The PARTID in this register is in the Secure PARTID space in the MPAMF_ERR_MSI_MPAM_s
instance and in the Non-secure PARTID space in the MPAMF_ERR_MSI_MPAM_ns instance of
this register.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

Accessing the MPAMF_ERR_MSI_MPAM:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMF_ERR_MSI_MPAM_s must be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_MPAM_ns must be accessible from the Non-secure MPAM feature page.

RES0

31 24

PMG

23 16

PARTID

15 0
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-357
ID012521 Non-Confidential

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
• MPAMF_ERR_MSI_MPAM_rt must be accessible from the Root MPAM feature page.

• MPAMF_ERR_MSI_MPAM_rl must be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_MPAM_s, MPAMF_ERR_MSI_MPAM_ns, MPAMF_ERR_MSI_MPAM_rt, and
MPAMF_ERR_MSI_MPAM_rl must be separate registers.

• The Secure instance (MPAMF_ERR_MSI_MPAM_s) accesses the MPAM information for MSI write request
to signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_MPAM_ns) accesses the MPAM information for MSI write
request to signal an MPAM error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_MPAM_rt) accesses the MPAM information for MSI write request
to signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_MPAM_rl) accesses the MPAM information for MSI write
request to signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_MPAM can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_MPAM can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ERR_MSI_MPAM can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMF_ERR_MSI_MPAM can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00DC MPAMF_ERR_MSI_MPAM_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00DC MPAMF_ERR_MSI_MPAM_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00DC MPAMF_ERR_MSI_MPAM_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00DC MPAMF_ERR_MSI_MPAM_rl
11-358 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
11.6.7 MPAMF_ESR, MPAM Error Status Register

The MPAMF_ESR characteristics are:

Purpose

Indicates MPAM error status for this MSC.

MPAMF_ESR_s reports Secure MPAM errors. MPAMF_ESR_ns reports Non-secure MPAM
errors. MPAMF_ESR_rt reports Root MPAM errors. MPAMF_ESR_rl reports Realm MPAM
errors.

Software should write this register after reading the status of an error to reset ERRCODE to 0x0000
and OVRWR to 0 so that future errors are not reported with OVRWR set.

Configurations

The power domain of MPAMF_ESR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_ESR are RES0.

MPAMF_ESR is 64-bit register when MPAM v0.1 or v1.1 is implemented and
MPAMF_IDR.HAS_EXTD_ESR == 1.

Otherwise, MPAMF_ESR is a 32-bit register.

If an MSC cannot encounter any of the error conditions listed in Errors in MSCs, both the
MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ESR is a:

• 64-bit register when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is
implemented) and MPAMF_IDR.HAS_EXTD_ESR == 1

• 32-bit register otherwise

Field descriptions

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_IDR.HAS_EXTD_ESR == 1:

Bits [63:36]

Reserved, RES0.

RIS, bits [35:32]

When MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. Where applicable to the ERRCODE, captures the RIS value for the
error.

Otherwise:

Reserved, RES0.

RES0

63 36

RIS

35 32

31

RES0

30 28

ERRCODE

27 24

PMG

23 16

PARTID_MON

15 0

OVRWR
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-359
ID012521 Non-Confidential

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

If 0 and ERRCODE is non-zero, a single error has occurred and is recorded in this register.

If 1 and ERRCODE is non-zero, multiple errors have occurred and this register records the most
recent error.

The state where this bit is 1 and ERRCODE is zero must not be produced by hardware and is only
reached when software writes this combination into this register.

Bits [30:28]

Reserved, RES0.

ERRCODE, bits [27:24]

Error code.

0b0000 No error.

0b0001 PARTID_SEL_Range.

0b0010 Req_PARTID_Range.

0b0011 MSMONCFG_ID_RANGE.

0b0100 Req_PMG_Range.

0b0101 Monitor_Range.

0b0110 intPARTID_Range.

0b0111 Unexpected_INTERNAL.

0b1000 Undefined_RIS_PART_SEL.

0b1001 RIS_No_Control.

0b1010 Undefined_RIS_MON_SEL.

0b1011 RIS_No_Monitor.

0b1100 Reserved.

0b1101 Reserved.

0b1110 Reserved.

0b1111 Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0x00 on an error that does not
capture PMG.

PARTID_MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0.

Otherwise:

31

RES0

30 28

ERRCODE

27 24

PMG

23 16

PARTID_MON

15 0

OVRWR
11-360 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

If 0 and ERRCODE is non-zero, a single error has occurred and is recorded in this register.

If 1 and ERRCODE is non-zero, multiple errors have occurred and this register records the most
recent error.

The state where this bit is 1 and ERRCODE is 0 must not be produced by hardware and is only
reached when software writes this combination into this register.

Bits [30:28]

Reserved, RES0.

ERRCODE, bits [27:24]

Error code.

0b0000 No error.

0b0001 PARTID_SEL_Range.

0b0010 Req_PARTID_Range.

0b0011 MSMONCFG_ID_RANGE.

0b0100 Req_PMG_Range.

0b0101 Monitor_Range.

0b0110 intPARTID_Range.

0b0111 Unexpected_INTERNAL.

0b1000 Reserved.

0b1001 Reserved.

0b1010 Reserved.

0b1011 Reserved.

0b1100 Reserved.

0b1101 Reserved.

0b1110 Reserved.

0b1111 Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0x00 on an error that does not
capture PMG.

PARTID_MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0x0000.

Accessing the MPAMF_ESR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

• MPAMF_ESR_s must be accessible from the Secure MPAM feature page.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 11-361
ID012521 Non-Confidential

Memory-Mapped Registers
11.6 Memory-mapped control and status registers
• MPAMF_ESR_ns must be accessible from the Non-secure MPAM feature page.

• MPAMF_ESR_rt must be accessible from the Root MPAM feature page.

• MPAMF_ESR_rl must be accessible from the Realm MPAM feature page.

MPAMF_ESR_s, MPAMF_ESR_ns, MPAMF_ESR_rt, and MPAMF_ESR_rl must be separate registers.

• The Secure instance (MPAMF_ESR_s) accesses the error status used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ESR_ns) accesses the error status used for Non-secure PARTIDs.

• The Root instance (MPAMF_ESR_rt) accesses the error status used for Root PARTIDs.

• The Realm instance (MPAMF_ESR_rl) accesses the error status used for Realm PARTIDs.

MPAMF_ESR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ESR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• Accesses to this register are RW.

MPAMF_ESR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

MPAMF_ESR can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented accesses to this register are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00F8 MPAMF_ESR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00F8 MPAMF_ESR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00F8 MPAMF_ESR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00F8 MPAMF_ESR_rl
11-362 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 12
Errors in MSCs

This chapter contains the following sections:

• Introduction on page 12-364.

• Error conditions in accessing memory-mapped registers on page 12-365.

• Overwritten error status on page 12-369.

• Behavior of configuration reads and writes with errors on page 12-370.

• Optionality of error detection and reporting on page 12-375.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 12-363
ID012521 Non-Confidential

Errors in MSCs
12.1 Introduction
12.1 Introduction

When an MSC detects an error on an access to a memory-mapped register, information about the error must be
captured in the MPAMF_ESR register and signaled to software via an interrupt. The errors covered by this
mechanism could be caused by software errors.

Errors, whether detected or not, must not prevent the handling of the request by the MSC, but errors can cause the
MSC to use different MPAM resource control settings than expected or cause monitors to mis-attribute monitored
events. See Optionality of error detection and reporting on page 12-375.

Note

Implementation choices in an MSC may make certain errors impossible. For example, if the request interface only
implements enough bits to exactly cover the range of 0 to PARTID_MAX and does not detect whether the
unimplemented high-order bits of the PARTID are all zero, then the request PARTID cannot be detected as
out-of-range, so ERRCODE == 2 could not occur.

MPAM errors that an implementation detects are recorded in MPAMF_ESR_s or MPAMF_ESR_ns. The error
condition descriptions in Error conditions in accessing memory-mapped registers on page 12-365 describe whether
the security state of the PARTID or of the request address are used to determine which instance of MPAMF_ESR
records the error status.

MSCs signal errors in accesses to memory-mapped registers using an error interrupt. See MPAM Error Interrupt on
page 8-166. Errors recorded in MPAMF_ESR_s signal a Secure MPAM error interrupt if enabled by
MPAMF_ECR_s.INTEN == 1. Errors recorded in MPAM_ESR_ns signal a Non-secure MPAM error interrupt if
enabled by MPAMF_ECR_ns.INTEN.

The MPAMF_ESR in an MSC captures the reason for an error, so that it can be accurately reported to software.

When Resource instance selection is implemented, hardware is permitted to make choices regarding CONSTRAINED
UNPREDICTABLE behaviors and unimplemented RIS bits that could reduce or remove the need to detect or report any
of the RIS-related errors. For more information on RIS, see Resource instance selection on page 8-158.
12-364 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Errors in MSCs
12.2 Error conditions in accessing memory-mapped registers
12.2 Error conditions in accessing memory-mapped registers

When an MSC detects an error condition, information about the error is captured in MPAMF_ESR.
MPAMF_ESR.ERRCODE encodes the reason for the error as shown in Table 12-1 on page 12-365. Other fields are
captured in MPAMF_ESR as shown in the “Fields Captured” column of Table 12-1 on page 12-365.

12.2.1 No error (errorcode == 0)

No error is captured in MPAMF_ESR.

12.2.2 PARTID_SEL out-of-range error (errorcode == 1)

The value of the MPAMCFG_PART_SEL.PARTID_SEL field is out-of-range for the PARTID space selected by the
NS bit on a store to an MPAMCFG memory-mapped register.

Table 12-1 Error conditions in accessing memory-mapped registers

MPAM Error
Code
(ERRCODE)

Error Name Error Description Fields Captured

0 No Error No error captured in MPAMF_ESR. None

1 PARTID_SEL_Range MPAMCFG_PART_SEL stored with
an out-of-range PARTID.

PARTID and RISa

a. This field is only available when MPAMF_IDR.EXT and MPAMF_IDR.HAS_RIS are 1.

2 Req_PARTID_Range A request has out-of-range PARTID. PARTID, PMG

3 MSMONCFG_ID_RANGE MSMON configuration request has
out-of-range PARTID or PMG.

PARTID, PMG, RISa

4 Req_PMG_Range A request has out-of-range PMG. PARTID and PMG

5 Monitor_Range MSMON_CFG_MON_SEL has
out-of-range monitor selector.

MON_SEL, RISa

6 intPARTID_Range The intPARTID in
MPAMCFG_INTPARTID is out of the
intPARTID range for the PARTID in
MPAMCFG_PART_SEL.

intPARTID

7 Unexpected_INTERNAL MPAMCFG_PART_SEL.INTERNAL
is set when a reqPARTID is expected.

PARTID

8 Undefined_RIS_PART_SEL Unimplemented RIS in
MPAMCFG_PART_SEL.RIS.

PART_SEL, RIS

9 RIS_No_Control Resource instance selected by
MPAMCFG_PART_SEL.RIS does
not have the accessed partitioning
control.

PART_SEL, RIS

10 Undefined_RIS_MON_SEL Unimplemented RIS in
MSMON_CFG_MON_SEL.

MON_SEL, RIS

11 RIS_No_Monitor Resource instance selected by
MSMON_CFG_MON_SEL.RIS does
not have the accessed monitor type.

MON_SEL, RIS

12:18 Reserved Reserved for future use. --
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 12-365
ID012521 Non-Confidential

Errors in MSCs
12.2 Error conditions in accessing memory-mapped registers
The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the NS bit.

12.2.3 Request PARTID out-of-range error (errorcode == 2)

The value of PARTID in a request is out-of-range for the MSC’s MPAM implementation of PARTID space selected
by the MPAM_NS bit.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the MPAM_NS bit.

The MPAM behavior of an MSC for a request that causes this error is CONSTRAINED UNPREDICTABLE:

• The request may be processed as if the PARTID is any valid PARTID in the same MPAM Security state
(MPAM_NS) as the request’s PARTID.

• Arm recommends that the default PARTID for the MPAM_NS Security state is used. See Default PARTID
on page 3-38.

12.2.4 MSMON configuration ID out-of-range error (errorcode == 3)

A write to configure a monitor contains an out-of-range value for either the PARTID or PMG for the PARTID space
selected by the Secure address space bit, NS.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the NS bit.

12.2.5 Request PMG out-of-range error (errorcode == 4)

The value of PMG in a request is out of range for the MSC’s MPAM implementation of the PMG space selected by
the MPAM security space bit, MPAM_NS.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the MPAM_NS bit.

The MPAM behavior of an MSC for a request that causes this error is CONSTRAINED UNPREDICTABLE:

• The request may be processed as if the PARTID and PMG are any valid PARTID and PMG in the same
MPAM Security state as the request.

— Arm recommends that the request be processed as if the PMG is the default. See Default PARTID on
page 3-38.

• The default PARTID and PMG may be used for the request’s MPAM_NS Security state. See Default PARTID
on page 3-38. The request may be IGNORED for performance monitoring, as if the PMG value does not
match the monitor’s PMG filter even if the PARTID matches.

12.2.6 Monitor out-of-range error (errorcode == 5)

The value of the monitor selector register, MSMON_CFG_MON_SEL.MON_SEL, is out of range on a store to an
MSMON_* memory-mapped register selected by the Secure address space bit, NS.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the NS bit.

12.2.7 intPARTID out-of-range error (errorcode == 6)

This error can only occur if PARTID narrowing is implemented. MPAMF_IDR.HAS_PARTID_NRW == 1
indicates that an implementation has PARTID narrowing.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is controlled
by the Secure address space bit, NS.
12-366 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Errors in MSCs
12.2 Error conditions in accessing memory-mapped registers
These conditions cause this error:

• MPAMCFG_INTPARTID.INTPARTID is out-of-range for the intPARTID space selected by the Secure
address space bit, NS, on a store to a memory-mapped register to configure the association of reqPARTID to
intPARTID.

• MPAMCFG_INTPARTIDINTERNAL == 0 on any write to configure MPAMCFG_INTPARTID.

• MPAMCFG_PART_SEL.INTERNAL is not set when an intPARTID is expected. These expected cases
include a read or write to any MPAMCFG_* register, other than MPAMCFG_INTPARTID.

12.2.8 Unexpected INTERNAL error (errorcode == 7)

This error can only occur if PARTID narrowing is implemented. MPAMF_IDR.HAS_PARTID_NRW == 1
indicates that an implementation has PARTID narrowing.

If PARTID narrowing is implemented in the MSC, this error is detected if the MPAMCFG_PART_SEL.INTERNAL
bit is set when a reqPARTID is expected. When PARTID narrowing is implemented, the only cases in which a
reqPARTID is expected in MPAMCFG_PART_SEL are a read or write access to MPAMCFG_INTPARTID.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is controlled
by the Secure address space bit, NS.

Reads that cause this error return an UNKNOWN value.

12.2.9 Undefined RIS in MPAMCFG_PART_SEL.RIS (errorcode == 8)

This error occurs when an access to an MPAMCFG_* register occurs when MPAMCFG_PART_SEL.RIS does not
correspond to a RIS value allocated to an MPAM resource of the MSC. The MPAM behavior of an MSC for a
request that causes this error is a CONSTRAINED UNPREDICTABLE choice between:

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 8 and capturing MPAMCFG_PART_SEL.{RIS, PARTID_SEL}.

12.2.10 RIS in MPAMCFG_PART_SEL.RIS does not have partitioning control (errorcode == 9)

This error occurs when an access to an MPAMCFG_* register occurs when MPAMCFG_PART_SEL.RIS selects a
resource that exists but does not have the partitioning control accessed. The MPAM behavior of an MSC for a
request that causes this error is a CONSTRAINED UNPREDICTABLE choice between:

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 9 and capturing MPAMCFG_PART_SEL.{RIS, PARTID_SEL}.

12.2.11 Undefined RIS in MSMON_CFG_MON_SEL.RIS (errorcode == 10)

This error occurs when an access to an MSMON_CFG_* register occurs when MSMON_CFG_MON_SEL.RIS
does not correspond to an MPAM resource of the MSC. The MPAM behavior of an MSC for a request that causes
this error is a CONSTRAINED UNPREDICTABLE choice between:

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 10 and capturing MSMON_CFG_MON_SEL.{RIS, MON_SEL}.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 12-367
ID012521 Non-Confidential

Errors in MSCs
12.2 Error conditions in accessing memory-mapped registers
12.2.12 RIS selected by MSMON_CFG_MON_SEL.RIS does not have monitor type (errorcode == 11)

Access to an MSMON_<type> or MSMON_<type>_CAPTURE register when MSMON_CFG_MON_SEL.RIS
does not correspond to an MPAM resource of the MSC or that does not have the type of monitor accessed by the
MSMON_<type> or MSMON_<type>_CAPTURE register. The MPAM behavior of an MSC for a request that
causes this error is a CONSTRAINED UNPREDICTABLE choice between:

• Read as 0xFFFFFFFE, NRDY == 1 with value of 0x7FFFFFFE, and WI. This value is highly unlikely as a normal
return value in any monitor.

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 11 and capturing MSMON_CFG_MON_SEL.{RIS, MON_SEL}.

Access to an MSMON_<type>_* register when MSMON_CFG_MON_SEL.RIS does not correspond to an MPAM
resource that has the type of monitor accessed by the MSMON_<type> _* register is CONSTRAINED
UNPREDICTABLE, one of:

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 11 and capturing MSMON_CFG_MON_SEL.{RIS, MON_SEL}.

12.2.13 Reserved (errcodes 12 – 15)

These error codes are reserved for future use.
12-368 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Errors in MSCs
12.3 Overwritten error status
12.3 Overwritten error status

When MPAMF_ESR is written due to an error, and the ERRCODE field was not previously 0, the OVRWR bit is
set. Error status is always written to MPAMF_ESR, whether or not it contains a previously recorded error syndrome.

The interrupt service routine should clear both the ERRCODE and OVRWR fields of MPAMF_ESR after its
contents have been read. This allows the OVRWR bit to accurately indicate when one or more errors have been
overwritten before servicing future MPAM error interrupts.

Table 12-2 Overwritten error status

OVRWR ERRCODE Description

0 0b0000 No errors have been recorded in MPAMF_ESR.

0 Non-zero Not overwritten. A single error has been written to MPAMF_ESR since it was
last cleared.

1 0b0000 This state is not produced by hardware, only by a software write.

1 Non-zero Overwritten. Two or more errors have been written to MPAMF_ESR with only
the syndrome information from the latest error recorded into the fields.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 12-369
ID012521 Non-Confidential

Errors in MSCs
12.4 Behavior of configuration reads and writes with errors
12.4 Behavior of configuration reads and writes with errors

12.4.1 Writing an out-of-range PARTID to MPAMCFG_PART_SEL.PARTID_SEL

If a write to MPAMCFG_PART_SEL has a PARTID_SEL value that is out-of-range, it is IMPLEMENTATION
DEFINED whether:

• The contents written to MPAMCFG_PART_SEL.PARTID_SEL are not checked at the time of the write and
store the new value into MPAMCFG_PART_SEL.PARTID_SEL. The written out-of-range value could later
cause a PARTID_SEL out-of-range error (ERRCODE = 1) when used to index an access to another
configuration register by PARTID_SEL. See Required error condition detection on page 12-375 for more
information about the optionality of error detection.

• The contents being written to MPAMCFG_PART_SEL.PARTID_SEL are checked before updating the
MPAMCFG_PART_SEL register. If the error is detected, the MPAMCFG_PART_SEL register is not updated
and the PARTID_SEL out-of-range error (ERRCODE = 1) is raised. To implement this behavior, the
implementation must detect the error.

12.4.2 Reading another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL contains an
out-of-range PARTID

A read of any MPAMCFG_* register other than MPAMCFG_PART_SEL when
MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID raises a PARTID_SEL out-of-range
error (ERRCODE = 1) if that error is detected. See Required error condition detection on page 12-375 for more
information about the optionality of error detection.

It is IMPLEMENTATION DEFINED whether the value returned by a read of another MPAMCFG_* register when
MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID that is detected:

• Is an UNKNOWN value.

• Is a constant value of zero in all fields.

The value returned by a read of another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL
contains an out-of-range PARTID that is not detected is an UNKNOWN value.

Note

In an implementation that chooses the IMPLEMENTATION DEFINED option to detect out-of-range PARTID_SEL
values and to not update the MPAMCFG_PART_SEL register, it is not possible to have an out-of-range
PARTID_SEL value in that register and the precondition for this section cannot occur. See Writing an out-of-range
PARTID to MPAMCFG_PART_SEL.PARTID_SEL on page 12-370.

12.4.3 Writing another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL contains an
out-of-range PARTID

A write of any MPAMCFG_* register other than MPAMCFG_PART_SEL when
MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID raises a PARTID_SEL out-of-range
error (ERRCODE = 1) if that error is detected. See Required error condition detection on page 12-375 for more
information about the optionality of error detection.

If a write to an MPAMCFG_* register other than MPAMCFG_PART_SEL has a PARTID_SEL out-of-range error
(ERRCODE = 1), whether that error is detected or not detected, it is IMPLEMENTATION DEFINED whether:

• The write updates the configuration register indexed by an UNKNOWN in-range PARTID.

• The write is ignored (WI).
12-370 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Errors in MSCs
12.4 Behavior of configuration reads and writes with errors
Note

In an implementation that chooses the IMPLEMENTATION DEFINED option to detect out-of-range PARTID_SEL
values and to not update the MPAMCFG_PART_SEL register, it is not possible to have an out-of-range
PARTID_SEL value in that register and the precondition for this section cannot occur. See Writing an out-of-range
PARTID to MPAMCFG_PART_SEL.PARTID_SEL on page 12-370.

12.4.4 Writing an undefined RIS to MPAMCFG_PART_SEL.RIS

If RIS is implemented and a configuration write to MPAMCFG_PART_SEL.RIS has an Undefined RIS error
(ERRCODE = 8), it is IMPLEMENTATION DEFINED whether:

• The contents written to MPAMCFG_PART_SEL.RIS are not checked at the time of the write and store the
new value in MPAMCFG_PART_SEL.RIS. This undefined RIS value could cause an Undefined RIS error
(ERRCODE = 8) when later used to select a resource on an access to a configuration register by
PARTID_SEL and RIS.

• The contents being written to MPAMCFG_PART_SEL.RIS are checked before updating the
MPAMCFG_PART_SEL register. If the error is detected, the MPAMCFG_PART_SEL register is not updated
and the Undefined RIS error (ERRCODE = 8) is raised. To implement this behavior, the implementation must
detect the error.

12.4.5 Reading other MSC MPAM registers when MPAMCFG_PART_SEL.RIS contains an undefined RIS
value

A read of an MPAMF*IDR register or an MPAMCFG_* register other than MPAMCFG_PART_SEL when
MPAMCFG_PART_SEL.RIS contains an undefined RIS value raises an Undefined RIS error (ERRCODE = 8) if
the implementation detects that error. See Required error condition detection on page 12-375 for more information
about the optionality of error detection. If the error is not detected, the value returned is UNKNOWN.

The value read from an MPAMF*IDR or an MPAMCFG_* register other than MPAMCFG_PART_SEL when
MPAMCFG_PART_SEL.RIS contains a RIS value that does not correspond to an implemented resource instance
returns an UNKNOWN value.

Note

In an implementation that chooses the IMPLEMENTATION DEFINED option to detect undefined RIS values and to not
update the MPAMCFG_PART_SEL register, it is not possible to have an undefined RIS value in that register and
the precondition for this section cannot occur. See Writing an undefined RIS to MPAMCFG_PART_SEL.RIS on
page 12-371.

12.4.6 Writing other MSC MPAM registers when MPAMCFG_PART_SEL.RIS contains an undefined RIS
value

A write of an MPAMCFG_* register other than MPAMCFG_PART_SEL when MPAMCFG_PART_SEL.RIS
contains an undefined RIS value raises an Undefined RIS error (ERRCODE = 8) if that error is detected. See
Required error condition detection on page 12-375 for more information about the optionality of error detection.

If a configuration write to an MPAMCFG_* register other than MPAMCFG_PART_SEL has a RIS value that does
not correspond to an implemented resource instance, whether the undefined RIS error is detected or not detected, it
is IMPLEMENTATION DEFINED whether:

• The write might update the configuration register for any implemented resource instance.

• The write is ignored (WI).
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 12-371
ID012521 Non-Confidential

Errors in MSCs
12.4 Behavior of configuration reads and writes with errors
Note

In an implementation that chooses the IMPLEMENTATION DEFINED option to detect undefined RIS values and to not
update the MPAMCFG_PART_SEL register, it is not possible to have an undefined RIS value in that register and
the precondition for this section cannot occur. See Writing an undefined RIS to MPAMCFG_PART_SEL.RIS on
page 12-371.

12.4.7 Reads of MSC MPAM registers with other errors

If there is no PARTID_SEL out-of-range error (ERRCODE = 1) and no Undefined RIS error (ERRCODE = 8), a
configuration read to an MPAM*IDR or an MPAMCFG_* register that has any other errors detected returns an
UNKNOWN value.

12.4.8 Writes to MSC MPAM registers with other errors

If there is no PARTID_SEL out-of-range error (ERRCODE = 1) and no Undefined RIS error (ERRCODE = 8), a
configuration write to an MPAMCFG_* register that has any other errors detected leaves the control settings for the
partition selected by MPAMCFG_PART_SEL.PARTID_SEL and MPAMCFG_PART_SEL.RIS in an UNKNOWN
state.

12.4.9 Writes to MSMON_CFG_MON_SEL.MON_SEL

Writes to MSMON_CFG_MON_SEL that have the MON_SEL field out-of-range for the monitors of the MSC
cannot generally be detected when the MON_SEL register is written because different types of monitors could have
different numbers of supported monitor instances. If RIS is also implemented, then the resource instance selector
being written into the RIS field could change which monitor types are available and how many monitor instances
of each type are implemented because different resource instances could have different numbers of monitor
instances from the same resource type.

There are limited cases where MSMON_CFG_MON_SEL.MON_SEL could be checked when written:

• RIS is not implemented and only a single monitor type is supported.

• RIS is not supported and all supported monitor types have exactly the same number of monitor instances.

• RIS is supported and all monitor types of all resource instances support exactly the same number of monitor
instances.

• RIS is supported, different resource instances support a different number of monitor instances, and all
monitor types of each resource instance support exactly the same number of monitor instances. In this case
the RIS value must be used to determine the maximum number of monitor instances to check the MON_SEL
value.

Checking for out-of-range MON_SEL when MSMON_CFG_MON_SEL is written is an implementation option
because some of the detectable cases could be common.

If a configuration write to MSMON_CFG_MON_SEL has a MON_SEL value that is out-of-range, it is
IMPLEMENTATION DEFINED whether:

• The contents written to MSMON_CFG_MON_SEL.MON_SEL are not checked at the time of the write and
store the new value into the register. The written out-of-range value could later cause a MON_SEL
out-of-range error (ERRCODE = 5) when used to index an access to a MSMON_CFG_* configuration
register or MSMON_* monitor or capture register by MON_SEL.

• The contents being written to MSMON_CFG_MON_SEL.MON_SEL are checked before updating the
MSMON_CFG_MON_SEL register. If the error is detected, the MSMON_CFG_MON_SEL register is not
updated and the MON_SEL out-of-range error (ERRCODE = 5) is raised. See Required error condition
detection on page 12-375 for more information about the optionality of error detection.
12-372 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Errors in MSCs
12.4 Behavior of configuration reads and writes with errors
12.4.10 Reading another MSMON_* register when MSMON_CFG_MON_SEL.MON_SEL out of range

A read of any MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.MON_SEL contains an out-of-range monitor instance selector raises a Monitor Range
error (ERRCODE == 5) if that error is detected. See Required error condition detection on page 12-375 for more
information about the optionality of error detection.

The value read from any MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.MON_SEL contains an out-of-range monitor instance selector returns an UNKNOWN
value whether the Monitor Range error is detected or not detected.

Note

In an implementation that chooses the IMPLEMENTATION DEFINED option to detect out-of-range MON_SEL values
and to not update the MSMON_CFG_MON_SEL register, it might not be possible to have an out-of-range
MON_SEL value in that register and the precondition for this section cannot occur. Section Writes to
MSMON_CFG_MON_SEL.MON_SEL on page 12-372 lists the conditions necessary to permit the choice of this
option.

12.4.11 Writes to MSMON_* registers with MSMON_CFG_MON_SEL.MON_SEL out of range

A write of any MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.MON_SEL contains an out-of-range monitor instance selector, raises a Monitor Range
error (ERRCODE == 5) if that error is detected. See Required error condition detection on page 12-375 for more
information about the optionality of error detection.

If a write is to an MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.MON_SEL is out-of-range, whether the error is detected or not detected, it is
IMPLEMENTATION DEFINED whether:

• The write could update an MSMON_* register indexed by any in-range monitor instance selector.

• The write is ignored (WI).

Note

In an implementation that chooses the IMPLEMENTATION DEFINED option to detect out-of-range MON_SEL values
and to not update the MSMON_CFG_MON_SEL register, it might not be possible to have an out-of-range
MON_SEL value in that register and the precondition for this section cannot occur. Writes to
MSMON_CFG_MON_SEL.MON_SEL on page 12-372 lists the conditions necessary to permit the choice of this
option.

12.4.12 Writing an undefined RIS to MSMON_CFG_MON_SEL.RIS

If RIS is implemented and a configuration write to MSMON_CFG_MON_SEL.RIS has a value that does not
correspond to an implemented resource instance, it is IMPLEMENTATION DEFINED whether:

• The value written to MSMON_CFG_MON_SEL.RIS is not checked at the time of the write and the new
values are stored in that register. This undefined RIS value could cause an Undefined_RIS_MON_SEL error
(ERRCODE = 10) when later used to select a resource on an access to an MSMON_* register by MON_SEL
and RIS.

• The contents being written to MSMON_CFG_MON_SEL.RIS are checked before updating the
MSMON_CFG_MON_SEL register. If the error is detected, the register is not updated and the
Undefined_RIS_MON_SEL error (ERRCODE = 10) is raised.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 12-373
ID012521 Non-Confidential

Errors in MSCs
12.4 Behavior of configuration reads and writes with errors
12.4.13 Reading another MSMON_* register when MSMON_CFG_MON_SEL.RIS contains an undefined
RIS value

A read of an MSMON_* register other than MSMON_CFG_MON_SEL when MSMON_CFG_MON_SEL.RIS
contains a RIS value that does not correspond to an implemented resource instance raises an
Undefined_RIS_MON_SEL error (ERRCODE = 10) if that error is detected. See Required error condition
detection on page 12-375 for more information about the optionality of error detection.

The value read from an MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.RIS contains a RIS value that does not correspond to an implemented resource
instance returns an UNKNOWN value whether the error is detected or not detected.

Note

In an implementation that chooses the IMPLEMENTATION DEFINED option to detect undefined RIS values and to not
update the MSMON_CFG_MON_SEL register, it is not possible to have an undefined RIS value in that register and
the precondition for this section cannot occur. See Writing an undefined RIS to MSMON_CFG_MON_SEL.RIS on
page 12-373.

12.4.14 Writing another MSMON_* register when MSMON_CFG_MON_SEL.RIS contains an undefined
RIS value

A write of an MSMON_* register other than MSMON_CFG_MON_SEL when MSMON_CFG_MON_SEL.RIS
contains a RIS value that does not correspond to an implemented resource instance raises an
Undefined_RIS_MON_SEL error (ERRCODE = 10) if that error is detected. See Required error condition
detection on page 12-375 for more information about the optionality of error detection.

If a write to an MSMON_* register other than MSMON_CFG_MON_SEL has a RIS value that does not correspond
to an implemented resource, whether the undefined RIS error is detected or not detected, it is IMPLEMENTATION
DEFINED whether:

• The write might update the MSMON_* register indexed by any implemented resource instance.

• The write is ignored (WI).

Note

In an implementation that chooses the IMPLEMENTATION DEFINED option to detect undefined RIS values and to not
update the MSMON_CFG_MON_SEL register, it is not possible to have an undefined RIS value in that register and
the precondition for this section cannot occur. See Writing an undefined RIS to MSMON_CFG_MON_SEL.RIS on
page 12-373.
12-374 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Errors in MSCs
12.5 Optionality of error detection and reporting
12.5 Optionality of error detection and reporting

Error detection and reporting are required for an error condition when all of the following are true:

• The MSC supports at least one MPAM feature that can raise the error condition.

• The MSC is designed so that the particular error condition can occur.

• The MSC is required to detect the error condition, see Required error condition detection on page 12-375.

If there are no error conditions that meet these criteria, then in MPAM v0.1 and from MPAM v1.1,
MPAMF_IDR.HAS_ESR is permitted to be 0. If MPAMF_IDR.HAS_ESR is 1, then MPAMF_ESR and
MPAMF_ECR must be implemented.

In MPAM v1.0, if no error conditions are detected, MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

12.5.1 Required error condition detection

This section describes the conditions under which each of the MPAM MSC error conditions must be detected. In
cases where detection is not required, an implementation might choose not to implement detection and reporting
logic for that error condition.

Selector out-of-range errors

The following requirements apply to each of the types of selectors used in MPAM in MSCs, including:

• PARTID.

• PMG.

• Monitor selectors.

• In MPAM v0.1 and from MPAM v1.1, RIS values.

The selector interface is permitted to be narrower than the full width specified in the architecture. Even if the MSC
interface is of one size, the internal implementation might be smaller than that size. Bits beyond the implemented
width of any selector are permitted to be silently truncated without any requirement to detect or report should those
bits be non-zero.

An MSC implementation that supports a range that is not 0 to 2n -1 in a field of n bits for any selector is required to
detect and report values that lie within the field size but are not valid in the implementation. Such detection can be
applied after performing the silent truncation to the bit-width supported.

PARTID narrowing errors

If PARTID narrowing is supported, the Unexpected Internal error condition must be detected and reported.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 12-375
ID012521 Non-Confidential

Errors in MSCs
12.5 Optionality of error detection and reporting
12-376 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Chapter 13
Pseudocode

This chapter contains pseudocode that describes the generation of MPAM information by a PE following the MPAM
architecture. It contains the following section:

• Shared pseudocode on page 13-378.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 13-377
ID012521 Non-Confidential

Pseudocode
13.1 Shared pseudocode
13.1 Shared pseudocode

This section holds the pseudocode that is common to execution in AArch64 state and in AArch32 state. Functions
listed in this section are identified only by a FunctionName, without an AArch64. or AArch32. prefix. This section is
organized by functional groups, with the functional groups being indicated by hierarchical path names, for example
shared/functions/extension.

The sections of the shared pseudocode hierarchy containing MPAM pseudocode are:

• shared/functions/extension on page 13-378.

• shared/functions/memory on page 13-378.

• shared/functions/mpam on page 13-379.

13.1.1 shared/functions/extension

This section includes the following pseudocode functions:

• shared/functions/extension/HaveEMPAMExt on page 13-378.

• shared/functions/extension/HaveMPAMExt on page 13-378.

shared/functions/extension/HaveEMPAMExt

// HaveEMPAMExt()
// ==============
// Returns TRUE if Enhanced MPAM is implemented, and FALSE otherwise.
boolean HaveEMPAMExt()
 return (HasArchVersion(ARMv8p6) && HaveMPAMExt() &&
 boolean IMPLEMENTATION_DEFINED "Has enhanced MPAM extension");

shared/functions/extension/HaveMPAMExt

// HaveMPAMExt()
// =============
// Returns TRUE if MPAM is implemented, and FALSE otherwise.

boolean HaveMPAMExt()
 return (HasArchVersion(ARMv8p2) &&
 boolean IMPLEMENTATION_DEFINED "Has MPAM extension");

13.1.2 shared/functions/memory

This section includes the following pseudocode functions:

• shared/functions/memory/AccessDescriptor on page 13-378.

• shared/functions/memory/CreateAccessDescriptor on page 13-378.

• shared/functions/memory/MPAM on page 13-379.

shared/functions/memory/AccessDescriptor

type AccessDescriptor is (
 boolean transactional,
 MPAMinfo mpam,
 AccType acctype)

shared/functions/memory/CreateAccessDescriptor

// CreateAccessDescriptor()
// ========================

AccessDescriptor CreateAccessDescriptor(AccType acctype)
 AccessDescriptor accdesc;
 accdesc.acctype = acctype;
 accdesc.transactional = FALSE;
13-378 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Pseudocode
13.1 Shared pseudocode
 accdesc.mpam = GenMPAMcurEL(acctype);
 return accdesc;

shared/functions/memory/MPAM

// MPAM Types
// ==========

type PARTIDtype = bits(16);
type PMGtype = bits(8);
type PARTIDspaceType = bits(2);
constant PARTIDspaceType PIdSpace_Secure = '00';
constant PARTIDspaceType PIdSpace_NonSecure = '01';
constant PARTIDspaceType PIdSpace_Root = '10';
constant PARTIDspaceType PIdSpace_Realm = '11';

type MPAMinfo is (
 PARTIDspaceType mpam_sp,
 PARTIDtype partid,
 PMGtype pmg
)

13.1.3 shared/functions/mpam

This section includes the following pseudocode functions:

• shared/functions/mpam/AltPARTIDspace on page 13-379

• shared/functions/mpam/AltPIdRealm on page 13-380

• shared/functions/mpam/AltPIdSecure on page 13-380

• shared/functions/mpam/DefaultMPAMinfo on page 13-381.

• shared/functions/mpam/DefaultPARTID on page 13-381.

• shared/functions/mpam/DefaultPMG on page 13-381.

• shared/functions/mpam/GenMPAMcurEL on page 13-381.

• shared/functions/mpam/MAP_vPARTID on page 13-382.

• shared/functions/mpam/MPAMisEnabled on page 13-383.

• shared/functions/mpam/MPAMisVirtual on page 13-383.

• shared/functions/mpam/PARTIDspaceFromSS on page 13-383

• shared/functions/mpam/UsePrimarySpaceEL10 on page 13-383

• shared/functions/mpam/UsePrimarySpaceEL2 on page 13-384

• shared/functions/mpam/genMPAM on page 13-384.

• shared/functions/mpam/genMPAMel on page 13-384.

• shared/functions/mpam/genPARTID on page 13-384.

• shared/functions/mpam/genPMG on page 13-385.

• shared/functions/mpam/getMPAM_PARTID on page 13-385.

• shared/functions/mpam/getMPAM_PMG on page 13-386.

• shared/functions/mpam/mapvpmw on page 13-386.

shared/functions/mpam/AltPARTIDspace

// AltPARTIDspace()
// ================
// From the Security state, EL and ALTSP configuration, determine
// whether to primary space or the alt space is selected and which
// PARTID space is the alternative space. Return that alternative
// PARTID space if selected or the primary space if not.

PARTIDspaceType AltPARTIDspace(bits(2) el, SecurityState security,
 PARTIDspaceType primaryPIdSpace)
 case security of
 when SS_NonSecure
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 13-379
ID012521 Non-Confidential

Pseudocode
13.1 Shared pseudocode
 assert el != EL3;
 return primaryPIdSpace; // there is no ALTSP for Non_secure
 when SS_Secure
 assert el != EL3;
 if primaryPIdSpace == PIdSpace_NonSecure then
 return primaryPIdSpace;
 return AltPIdSecure(el, primaryPIdSpace);
 when SS_Root
 assert el == EL3;
 if MPAM3_EL3.ALTSP_EL3 == '1' then
 if MPAM3_EL3.RT_ALTSP_NS == '1' then
 return PIdSpace_NonSecure;
 else
 return PIdSpace_Secure;
 else
 return primaryPIdSpace;
 when SS_Realm
 assert el != EL3;
 return AltPIdRealm(el, primaryPIdSpace);
 otherwise
 Unreachable();

shared/functions/mpam/AltPIdRealm

// AltPIdRealm()
// =============
// Compute PARTID space as either the primary PARTID space or
// alternative PARTID space in the Realm Security state.
// Helper for AltPARTIDspace.

PARTIDspaceType AltPIdRealm(bits(2) el, PARTIDspaceType primaryPIdSpace)
 PARTIDspaceType PIdSpace = primaryPIdSpace;
 case el of
 when EL0
 if ELIsInHost(EL0) then
 if !UsePrimarySpaceEL2() then
 PIdSpace = PIdSpace_NonSecure;
 elseif !UsePrimarySpaceEL10() then
 PIdSpace = PIdSpace_NonSecure;
 when EL1
 if !UsePrimarySpaceEL10() then
 PIdSpace = PIdSpace_NonSecure;
 when EL2
 if !UsePrimarySpaceEL2() then
 PIdSpace = PIdSpace_NonSecure;
 otherwise
 Unreachable();
 return PIdSpace;

shared/functions/mpam/AltPIdSecure

// AltPIdSecure()
// ==============
// Compute PARTID space as either the primary PARTID space or
// alternative PARTID space in the Secure Security state.
// Helper for AltPARTIDspace.

PARTIDspaceType AltPIdSecure(bits(2) el, PARTIDspaceType primaryPIdSpace)
 PARTIDspaceType PIdSpace = primaryPIdSpace;
 boolean el2en = EL2Enabled();
 case el of
 when EL0
 if el2en then
 if ELIsInHost(EL0) then
 if !UsePrimarySpaceEL2() then
13-380 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Pseudocode
13.1 Shared pseudocode
 PIdSpace = PIdSpace_NonSecure;
 elsif !UsePrimarySpaceEL10() then
 PIdSpace = PIdSpace_NonSecure;
 elsif MPAM3_EL3.ALTSP_HEN == '0' && MPAM3_EL3.ALTSP_HFC == '1' then
 PIdSpace = PIdSpace_NonSecure;
 when EL1
 if el2en then
 if !UsePrimarySpaceEL10() then
 PIdSpace = PIdSpace_NonSecure;
 elsif MPAM3_EL3.ALTSP_HEN == '0' && MPAM3_EL3.ALTSP_HFC == '1' then
 PIdSpace = PIdSpace_NonSecure;
 when EL2
 if !UsePrimarySpaceEL2() then
 PIdSpace = PIdSpace_NonSecure;
 otherwise
 Unreachable();
 return PIdSpace;

shared/functions/mpam/DefaultMPAMinfo

// DefaultMPAMinfo()
// =================
// Returns default MPAM info. The partidspace argument sets
// the PARTID space of the default MPAM information returned.

MPAMinfo DefaultMPAMinfo(PARTIDspaceType partidspace)
 MPAMinfo DefaultInfo;
 DefaultInfo.mpam_sp = partidspace;
 DefaultInfo.partid = DefaultPARTID;
 DefaultInfo.pmg = DefaultPMG;
 return DefaultInfo;

shared/functions/mpam/DefaultPARTID

constant PARTIDtype DefaultPARTID = 0<15:0>;

shared/functions/mpam/DefaultPMG

constant PMGtype DefaultPMG = 0<7:0>;

shared/functions/mpam/GenMPAMcurEL

// GenMPAMcurEL()
// ==============
// Returns MPAMinfo for the current EL and security state.
// May be called if MPAM is not implemented (but in an version that supports
// MPAM), MPAM is disabled, or in AArch32. In AArch32, convert the mode to
// EL if can and use that to drive MPAM information generation. If mode
// cannot be converted, MPAM is not implemented, or MPAM is disabled return
// default MPAM information for the current security state.

MPAMinfo GenMPAMcurEL(AccType acctype)
 bits(2) mpamEL;
 boolean validEL = FALSE;
 SecurityState security = AArch64.CurrentSecurityState();
 boolean InD = FALSE;
 PARTIDspaceType pspace = PARTIDspaceFromSS(security);
 if pspace == PIdSpace_NonSecure && !MPAMisEnabled() then
 return DefaultMPAMinfo(pspace);
 if UsingAArch32() then
 (validEL, mpamEL) = ELFromM32(PSTATE.M);
 else
 mpamEL = PSTATE.EL;
 validEL = TRUE;
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 13-381
ID012521 Non-Confidential

Pseudocode
13.1 Shared pseudocode
 case acctype of
 when AccType_IFETCH, AccType_IC
 InD = TRUE;
 otherwise
 // other access types are DATA accesses
 InD = FALSE;
 if !validEL then
 return DefaultMPAMinfo(pspace);
 elsif MPAMIDR_EL1.HAS_ALTSP == '1' then
 // Substitute alternative PARTID space if selected
 pspace = AltPARTIDspace(mpamEL, security, pspace);
 if HaveEMPAMExt() && security == SS_Secure then
 if MPAM3_EL3.FORCE_NS == '1' then
 pspace = PIdSpace_NonSecure;
 if MPAM3_EL3.SDEFLT == '1' then
 return DefaultMPAMinfo(pspace);
 if !MPAMisEnabled() then
 return DefaultMPAMinfo(pspace);
 else
 return genMPAM(mpamEL, InD, pspace);

shared/functions/mpam/MAP_vPARTID

// MAP_vPARTID()
// =============
// Performs conversion of virtual PARTID into physical PARTID
// Contains all of the error checking and implementation
// choices for the conversion.

(PARTIDtype, boolean) MAP_vPARTID(PARTIDtype vpartid)
 // should not ever be called if EL2 is not implemented
 // or is implemented but not enabled in the current
 // security state.
 PARTIDtype ret;
 boolean err;
 integer virt = UInt(vpartid);
 integer vpmrmax = UInt(MPAMIDR_EL1.VPMR_MAX);

 // vpartid_max is largest vpartid supported
 integer vpartid_max = (vpmrmax << 2) + 3;

 // One of many ways to reduce vpartid to value less than vpartid_max.
 if UInt(vpartid) > vpartid_max then
 virt = virt MOD (vpartid_max+1);

 // Check for valid mapping entry.
 if MPAMVPMV_EL2<virt> == '1' then
 // vpartid has a valid mapping so access the map.
 ret = mapvpmw(virt);
 err = FALSE;

 // Is the default virtual PARTID valid?
 elsif MPAMVPMV_EL2<0> == '1' then
 // Yes, so use default mapping for vpartid == 0.
 ret = MPAMVPM0_EL2<0 +: 16>;
 err = FALSE;

 // Neither is valid so use default physical PARTID.
 else
 ret = DefaultPARTID;
 err = TRUE;

 // Check that the physical PARTID is in-range.
 // This physical PARTID came from a virtual mapping entry.
 integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
 if UInt(ret) > partid_max then
13-382 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Pseudocode
13.1 Shared pseudocode
 // Out of range, so return default physical PARTID
 ret = DefaultPARTID;
 err = TRUE;
 return (ret, err);

shared/functions/mpam/MPAMisEnabled

// MPAMisEnabled()
// ===============
// Returns TRUE if MPAMisEnabled.

boolean MPAMisEnabled()
 el = HighestEL();
 case el of
 when EL3 return MPAM3_EL3.MPAMEN == '1';
 when EL2 return MPAM2_EL2.MPAMEN == '1';
 when EL1 return MPAM1_EL1.MPAMEN == '1';

shared/functions/mpam/MPAMisVirtual

// MPAMisVirtual()
// ===============
// Returns TRUE if MPAM is configured to be virtual at EL.

boolean MPAMisVirtual(bits(2) el)
 return (MPAMIDR_EL1.HAS_HCR == '1' && EL2Enabled() &&
 ((el == EL0 && MPAMHCR_EL2.EL0_VPMEN == '1' &&
 (HCR_EL2.E2H == '0' || HCR_EL2.TGE == '0')) ||
 (el == EL1 && MPAMHCR_EL2.EL1_VPMEN == '1')));

shared/functions/mpam/PARTIDspaceFromSS

// PARTIDspaceFromSS()
// ===================
// Returns the primary PARTID space from the Security State.

PARTIDspaceType PARTIDspaceFromSS(SecurityState security)
 case security of
 when SS_NonSecure
 return PIdSpace_NonSecure;
 when SS_Root
 return PIdSpace_Root;
 when SS_Realm
 return PIdSpace_Realm;
 when SS_Secure
 return PIdSpace_Secure;
 otherwise
 Unreachable();

shared/functions/mpam/UsePrimarySpaceEL10

// UsePrimarySpaceEL10()
// =====================
// Checks whether Primary space is configured in the
// MPAM3_EL3 and MPAM2_EL2 ALTSP control bits that affect
// MPAM ALTSP use at EL1 and EL0.

boolean UsePrimarySpaceEL10()
 boolean hen3 = MPAM3_EL3.ALTSP_HEN == '1';
 return ((!hen3 && MPAM3_EL3.ALTSP_HFC == '0') ||
 (hen3 && MPAM2_EL2.ALTSP_HFC == '0'));
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 13-383
ID012521 Non-Confidential

Pseudocode
13.1 Shared pseudocode
shared/functions/mpam/UsePrimarySpaceEL2

// UsePrimarySpaceEL2()
// ====================
// Checks whether Primary space is configured in the
// MPAM3_EL3 and MPAM2_EL2 ALTSP control bits that affect
// MPAM ALTSP use at EL2.

boolean UsePrimarySpaceEL2()
 boolean hen3 = MPAM3_EL3.ALTSP_HEN == '1';
 return ((!hen3 && MPAM3_EL3.ALTSP_HFC == '0') ||

 (hen3 && MPAM2_EL2.ALTSP_EL2 == '0'));

shared/functions/mpam/genMPAM

// genMPAM()
// =========
// Returns MPAMinfo for exception level el.
// If InD is TRUE returns MPAM information using PARTID_I and PMG_I fields
// of MPAMel_ELx register and otherwise using PARTID_D and PMG_D fields.
// Produces a PARTID in PARTID space pspace.

MPAMinfo genMPAM(bits(2) el, boolean InD, PARTIDspaceType pspace)
 MPAMinfo returninfo;
 PARTIDtype partidel;
 boolean perr;
 // gstplk is guest OS application locked by the EL2 hypervisor to
 // only use EL1 the virtual machine's PARTIDs.
 boolean gstplk = (el == EL0 && EL2Enabled() &&
 MPAMHCR_EL2.GSTAPP_PLK == '1' &&
 HCR_EL2.TGE == '0');
 bits(2) eff_el = if gstplk then EL1 else el;
 (partidel, perr) = genPARTID(eff_el, InD);
 PMGtype groupel = genPMG(eff_el, InD, perr);
 returninfo.mpam_sp = pspace;
 returninfo.partid = partidel;
 returninfo.pmg = groupel;
 return returninfo;

shared/functions/mpam/genMPAMel

// genMPAMel()
// ===========
// Returns MPAMinfo for specified EL in the current security state.
// InD is TRUE for instruction access and FALSE otherwise.

MPAMinfo genMPAMel(bits(2) el, boolean InD)
 SecurityState security = SecurityStateAtEL(el);
 PARTIDspaceType space = PARTIDspaceFromSS(security);
 boolean use_default = !(HaveMPAMExt() && MPAMisEnabled());
 PARTIDspaceType altspace = AltPARTIDspace(el, security, space);
 space = altspace;
 if HaveEMPAMExt() && security == SS_Secure then
 if MPAM3_EL3.FORCE_NS == '1' then
 space = PIdSpace_NonSecure;
 if MPAM3_EL3.SDEFLT == '1' then
 use_default = TRUE;
 if !use_default then
 return genMPAM(el, InD, space);
 else
 return DefaultMPAMinfo(space);

shared/functions/mpam/genPARTID

// genPARTID()
13-384 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Pseudocode
13.1 Shared pseudocode
// ===========
// Returns physical PARTID and error boolean for exception level el.
// If InD is TRUE then PARTID is from MPAMel_ELx.PARTID_I and
// otherwise from MPAMel_ELx.PARTID_D.

(PARTIDtype, boolean) genPARTID(bits(2) el, boolean InD)
 PARTIDtype partidel = getMPAM_PARTID(el, InD);
 PARTIDtype partid_max = MPAMIDR_EL1.PARTID_MAX;
 if UInt(partidel) > UInt(partid_max) then
 return (DefaultPARTID, TRUE);
 if MPAMisVirtual(el) then
 return MAP_vPARTID(partidel);
 else
 return (partidel, FALSE);

shared/functions/mpam/genPMG

// genPMG()
// ========
// Returns PMG for exception level el and I- or D-side (InD).
// If PARTID generation (genPARTID) encountered an error, genPMG() should be
// called with partid_err as TRUE.

PMGtype genPMG(bits(2) el, boolean InD, boolean partid_err)
 integer pmg_max = UInt(MPAMIDR_EL1.PMG_MAX);
 // It is CONSTRAINED UNPREDICTABLE whether partid_err forces PMG to
 // use the default or if it uses the PMG from getMPAM_PMG.
 if partid_err then
 return DefaultPMG;
 PMGtype groupel = getMPAM_PMG(el, InD);
 if UInt(groupel) <= pmg_max then
 return groupel;
 return DefaultPMG;

shared/functions/mpam/getMPAM_PARTID

// MAP_vPARTID()
// =============
// Performs conversion of virtual PARTID into physical PARTID
// Contains all of the error checking and implementation
// choices for the conversion.

(PARTIDtype, boolean) MAP_vPARTID(PARTIDtype vpartid)
 // should not ever be called if EL2 is not implemented
 // or is implemented but not enabled in the current
 // security state.
 PARTIDtype ret;
 boolean err;
 integer virt = UInt(vpartid);
 integer vpmrmax = UInt(MPAMIDR_EL1.VPMR_MAX);

 // vpartid_max is largest vpartid supported
 integer vpartid_max = (vpmrmax << 2) + 3;

 // One of many ways to reduce vpartid to value less than vpartid_max.
 if UInt(vpartid) > vpartid_max then
 virt = virt MOD (vpartid_max+1);

 // Check for valid mapping entry.
 if MPAMVPMV_EL2<virt> == '1' then
 // vpartid has a valid mapping so access the map.
 ret = mapvpmw(virt);
 err = FALSE;

 // Is the default virtual PARTID valid?
 elsif MPAMVPMV_EL2<0> == '1' then
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 13-385
ID012521 Non-Confidential

Pseudocode
13.1 Shared pseudocode
 // Yes, so use default mapping for vpartid == 0.
 ret = MPAMVPM0_EL2<0 +: 16>;
 err = FALSE;

 // Neither is valid so use default physical PARTID.
 else
 ret = DefaultPARTID;
 err = TRUE;

 // Check that the physical PARTID is in-range.
 // This physical PARTID came from a virtual mapping entry.
 integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
 if UInt(ret) > partid_max then
 // Out of range, so return default physical PARTID
 ret = DefaultPARTID;
 err = TRUE;
 return (ret, err);

shared/functions/mpam/getMPAM_PMG

// getMPAM_PMG()
// =============
// Returns a PMG from one of the MPAMn_ELx registers.
// MPAMn selects the MPAMn_ELx register used.
// If InD is TRUE, selects the PMG_I field of that
// register. Otherwise, selects the PMG_D field.

PMGtype getMPAM_PMG(bits(2) MPAMn, boolean InD)
 PMGtype pmg;
 boolean el2avail = EL2Enabled();

 if InD then
 case MPAMn of
 when '11' pmg = MPAM3_EL3.PMG_I;
 when '10' pmg = if el2avail then MPAM2_EL2.PMG_I else Zeros();
 when '01' pmg = MPAM1_EL1.PMG_I;
 when '00' pmg = MPAM0_EL1.PMG_I;
 otherwise pmg = PMGtype UNKNOWN;
 else
 case MPAMn of
 when '11' pmg = MPAM3_EL3.PMG_D;
 when '10' pmg = if el2avail then MPAM2_EL2.PMG_D else Zeros();
 when '01' pmg = MPAM1_EL1.PMG_D;
 when '00' pmg = MPAM0_EL1.PMG_D;
 otherwise pmg = PMGtype UNKNOWN;
 return pmg;

shared/functions/mpam/mapvpmw

// mapvpmw()
// =========
// Map a virtual PARTID into a physical PARTID using
// the MPAMVPMn_EL2 registers.
// vpartid is now assumed in-range and valid (checked by caller)
// returns physical PARTID from mapping entry.

PARTIDtype mapvpmw(integer vpartid)
 bits(64) vpmw;
 integer wd = vpartid DIV 4;
 case wd of
 when 0 vpmw = MPAMVPM0_EL2;
 when 1 vpmw = MPAMVPM1_EL2;
 when 2 vpmw = MPAMVPM2_EL2;
 when 3 vpmw = MPAMVPM3_EL2;
 when 4 vpmw = MPAMVPM4_EL2;
 when 5 vpmw = MPAMVPM5_EL2;
13-386 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Pseudocode
13.1 Shared pseudocode
 when 6 vpmw = MPAMVPM6_EL2;
 when 7 vpmw = MPAMVPM7_EL2;
 otherwise vpmw = Zeros(64);
 // vpme_lsb selects LSB of field within register
 integer vpme_lsb = (vpartid MOD 4) * 16;
 return vpmw<vpme_lsb +: 16>;
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. 13-387
ID012521 Non-Confidential

Pseudocode
13.1 Shared pseudocode
13-388 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Appendix A
Generic Resource Controls

This chapter contains the following sections:

• Introduction on page A-390.

• Portion resource controls on page A-391.

• Maximum-usage resource controls on page A-392.

• Proportional resource allocation facilities on page A-393.

• Combining resource controls on page A-395.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. A-389
ID012521 Non-Confidential

Generic Resource Controls
A.1 Introduction
A.1 Introduction

This appendix is informative.

Several of the resource controls defined in this specification fit one of the generic models for resource controls in
this appendix.
A-390 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Generic Resource Controls
A.2 Portion resource controls
A.2 Portion resource controls

Some resources may be divided into fixed quanta, termed portions, that can be allocated for the exclusive use of a
partition or shared between two or more partitions. Figure A-1 on page A-391 shows how partitions can have
private and shared Portion Bit Map (PBM) allocations.

Figure A-1 Generic portion shared and exclusive allocations.

In portion resource controls, the control setting is a bitmap in which each bit corresponds to a particular portion of
the resource, as shown in Figure A-2 on page A-391. Each bit grants the PARTID using this control setting to
allocate the portion corresponding to that bit.

Figure A-2 Generic portion bit map.

PBMs may be wide. Generic PBMs could be up to 215 bits in width.

A PBM is a vector of single-bit elements. Element 0 is bit 0 at the address (MPAMF_BASE + PBM_offset) where
PBM_offset is the offset of the particular PBM register. Both the bitmap and the register to access the bitmap extend
in length at increasing 32-bit word addresses for the width in bits of the PBM (PBM_WD). If the 32-bit word
containing the highest byte of the bitmap (MPAMF_BASE + PBM_offset + (PBM_WD>>3)) has unused bits, those
bits are RES0.

To access the PBM for portion n, access the 32-bit word of the PBM register at the address MPAMF_BASE +
PBM_offset + ((n >> 3) & ~3). Then access bit (n & 31).

Uses portions 0 and 1

Uses portions 1 and 2

Paritition 1
(PBM = 0b0011)

Paritition 2
(PBM = 0b0110)

Portion Allocation

Exclusively
PARTID = 1

Shared
by both

Exclusively
PARTID = 2 Unallocated

63

0: May not allocate portion 23 of 32
1: May allocate portion 23 of 32

31 023
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. A-391
ID012521 Non-Confidential

Generic Resource Controls
A.3 Maximum-usage resource controls
A.3 Maximum-usage resource controls

Many resources can be controlled by a maximum-usage resource control. With this control, resources may be
allocated to a partition as long as the partition’s maximum usage is not exceeded. If the maximum usage is reached,
further allocation must be prevented, or deferred, or lowered in priority, or caused to reclaim a previous allocation,
or caused to replace a previous allocation.

Maximum-usage control settings are a maximum fraction of the resource that the PARTID may use. The parameter
is represented as a 16-bit fixed-point fraction of the capacity of the resource with a discoverable number of fractional
bits. For example, if a resource has an 8-bit fractional width, bits [15:8] of the setting are used to control the resource
allocation. To ensure that the range includes 100% of the resource, the control value is increased by 1 in the least
significant implemented bit before being used to limit the usage to the maximum. See About the fixed-point
fractional format on page 9-189 for the fixed-point fractional format.
A-392 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Generic Resource Controls
A.4 Proportional resource allocation facilities
A.4 Proportional resource allocation facilities

MPAM proportional stride partitioning is related to two software resource-management interfaces:

• The Linux cgroup weights interface assigns integer weights to indicate the relative proportion of the resource
given to a process.

• The VMware shares interface similarly assigns an integer share to indicate the relative proportion of the
resource that a virtual machine is given.

Weight and share values are positive integers. For example, Linux group weights are in the range of 1 to 10000, with
a default value of 100.

The value of weight or share is used to compute the fraction of the resource, f, for partition, p, as:

A partition’s stride is the scaled reciprocal of its weight:

The scaling factor, S, should be chosen as equal to the largest f(p) so as to normalize stride values and give the
smallest stride in the system = 1. All strides should be scaled by the same S.

Stride-based proportional allocation is well-suited to temporal or rate-of-occurrence resources, such as bandwidth.

The standard interface for proportional allocation is a positive unsigned integer, STRIDEM1, with an
IMPLEMENTATION DEFINED field width of w. STRIDEM1 has the range [0 … 2w-1] so stride has the range [1 … 2w].
If a stride after normalization is greater than 2w, it should be programmed into the control as 2w – 1, the largest
representable STRIDEM1.

Properties of proportional allocation include:

• Proportion of resource shrinks and grows as partitions come and go.

• Subdividable: If VM A has ½ fraction of the whole resource and its child application, y, has 2/3 fraction of
the VM’s resource, then y is given 1/2 * 2/3 == 1/3 fraction of the whole resource.

• Proportional allocation only needs to consider the current contenders for a temporal resource, such as
memory bandwidth.

• A proportional allocation scheme is called work-conserving if it does not idle the resource when only
low-proportion requests are available, but instead uses as much of the resource as it has requests to use. A
proportional allocation scheme might allocate the resource to those lower-proportion requests, in proportion
to their relative weights.

A.4.1 Model of stride-based memory bandwidth scheduling

This model is intended to explain the operation of stride-based memory bandwidth scheduling without dictating an
implementation. Arm believes that a variety of implementations are possible.

In this model, each partition has an offset[p] that tracks the time since the partition, p, consumed bandwidth but is
bounded to be less than offset_limit. When a request, r, arrives it is given a deadline, of the current_time plus
stride(p) minus offset(p). The offset(p) is set to current_time – deadline, and the offset(p) is incremented in
event-time units until it reaches the offset_limit.

In the model, requests are serviced as quickly as possible in deadline order. Newly arriving requests with small
strides (highest access to bandwidth) may go ahead of earlier requests with large strides.

Weightp
∑ WeightW

all w

f(p) =

S
f (p)

Stride of p =
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. A-393
ID012521 Non-Confidential

Generic Resource Controls
A.4 Proportional resource allocation facilities
If there are requests to process, this model does not prevent servicing a request with a distant future deadline if there
are no requests available with earlier deadlines. As such, this model scheme is work-conserving.
A-394 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Generic Resource Controls
A.5 Combining resource controls
A.5 Combining resource controls

Maximum-usage resource controls, portion resource controls, and other resource controls may coexist on the same
resource. Combined resource controls should produce a combined effect. For example, combining portion control
and maximum-usage control for the same resource should allocate the resource while satisfying both controls.

All resource controls should have at least one setting that does not limit access to the resource. When an
implementation contains multiple controls for the same resource, the limits imposed on a partition’s usage by each
control are all applied. By selecting which controls limit a partition’s usage and which do not, software can exercise
a variety of regulation styles within a single system.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. A-395
ID012521 Non-Confidential

Generic Resource Controls
A.5 Combining resource controls
A-396 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Appendix B
MSC Firmware Data

This chapter contains the following sections:

• Introduction on page B-398.

• Partitioning-control parameters on page B-399.

• Performance-monitoring parameters on page B-400.

• Discovery of resource to RIS mapping on page B-401.

• Discovery of wired interrupts on page B-402.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. B-397
ID012521 Non-Confidential

MSC Firmware Data
B.1 Introduction
B.1 Introduction

In a system containing MPAM, discovery of the memory-system topology and certain implementation parameters
of MPAM controls and monitors must be provided to MPAM-aware software via firmware data. The
software-to-firmware interface to the MPAM firmware data is beyond the scope of this description. Examples of
firmware data interfaces include:

• ACPI.

• Device Tree.

Firmware data for static devices can be pre-configured for an implementation and stored as part of the firmware, or
it can be dynamically discovered through probing and other tests, or some combination of these two approaches.
B-398 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MSC Firmware Data
B.2 Partitioning-control parameters
B.2 Partitioning-control parameters

Table B-1 Partitioning-control parameters.

Control Parameter Data Format Description

MPAM MPAMF_BASE_NS Address Every MPAM-capable device has the MPAMF_IDR MMR at offset 0 from the
MPAMF_BASE_NS in the Non-secure address space. Other MPAM
memory-mapped registers are at known offsets from this address. See
Chapter 11 Memory-Mapped Registers .

MPAM MPAMF_BASE_S Address Every MPAM-capable device has the MPAMF_IDR MMR at offset 0 from the
MPAMF_BASE_S in the Secure address space. Other MPAM memory-mapped
registers are at known offsets from this address. See Chapter 11
Memory-Mapped Registers .
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. B-399
ID012521 Non-Confidential

MSC Firmware Data
B.3 Performance-monitoring parameters
B.3 Performance-monitoring parameters

Table B-2 Performance-monitoring parameters

Monitor Parameter Data Format Description

CSU MAX_NRDY_USEC Uint32 Maximum number of microseconds that the NRDY signal can remain 1 in the
absence of additional reconfiguration of the monitor or writes to the
MSMON_CSU register. This firmware value is the maximum time when
NRDY can be 1, so that software can know this value.
MSMON_CSU.VALUE is accurate and MSMON_CSU.NRDY is zero before
MAX_NRDY_USEC microseconds have elapsed since the monitor was
configured, reconfigured, or written.
B-400 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

MSC Firmware Data
B.4 Discovery of resource to RIS mapping
B.4 Discovery of resource to RIS mapping

Software needs to know which RIS value to use to control a resource instance of the MSC.

This mapping is not available from MSC IDRs. It might be given as a firmware data table or other means beyond
the hardware ID registers.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. B-401
ID012521 Non-Confidential

MSC Firmware Data
B.5 Discovery of wired interrupts
B.5 Discovery of wired interrupts

There are two interrupt sources in an MPAM MSC and they are replicated in the Secure and Non-secure MPAM
behaviors. It is not possible to discover the connection of the four interrupts to GIC inputs from the MSC MPAM
ID registers. This information must come from the firmware information.

Firmware must provide information on the connection and grouping of MPAM wired interrupts.
B-402 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Glossary

This glossary describes some of the terms that are used in this document. Some of these terms are unique to MPAM
and are introduced in this document while others are standard terms that can be found in the Glossary of the Arm
Architecture Reference Manual Armv8, for Armv8-A architecture profile.

Abort
An exception caused by an illegal memory access. Aborts can be caused by the external memory system or the
MMU.

Aligned A data item stored at an address that is exactly divisible by the highest power of 2 that divides exactly into its size
in bytes. Aligned halfwords, words and doublewords therefore have addresses that are divisible by 2, 4, and 8,
respectively.

ALTSP Alternative PARTID space.

AMBA Advanced Microcontroller Bus Architecture. The AMBA family of protocol specifications is the Arm open standard
for on-chip buses. AMBA provides solutions for the interconnection and management of the functional blocks that
make up a System-on-Chip (SoC). Applications include the development of embedded systems with one or more
processors or signal processors and multiple peripherals.

Banked register A register that has multiple instances, with the instance that is in use depending on the PE mode, Security state, or
other PE state.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. Glossary-403
ID012521 Non-Confidential

Glossary

Burst A group of transfers that form a single transaction. With AMBA protocols, only the first transfer of the burst
includes address information, and the transfer type determines the addresses used for subsequent transfers.

BWA BandWidth Allocation.

BWPBM BandWidth Portion Bit Map.

CONSTRAINED UNPREDICTABLE
Where an instruction can result in UNPREDICTABLE behavior, the Armv8 architecture specifies a narrow range of
permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that
are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Execution at Non-secure EL1 or EL0 of an instruction that is CONSTRAINED UNPREDICTABLE can be implemented
as generating a trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE
and is not CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.

See also UNPREDICTABLE.

Core See Processing element (PE).

CPBM Cache-Portion Bit Map.

CSU Cache-Storage Usage.

Downstream Information propagating in the direction from Requesters towards terminating Completer components.

DSB Data Synchronization Barrier.

E2H EL2 Host. A bit field in the HCR_EL2 register. This configuration executes a type-2 hypervisor and its host
operating system in EL2 rather than EL1, for better performance.

Type-2 hypervisors run on a host operating system rather then running as a small, standalone OS-like program. For
example, kvm is a type-2 hypervisor.

HCR An abbreviated reference to the Hypervisor Configuration Registers in AArch64 HCR_EL2 and in AArch32 HCR
and HCR2.

ICN InterConnect Network.

ID An identifier or label.

Intermediate physical address (IPA)
An implementation of virtualization, the address to which a Guest OS maps a VA. A hypervisor might then map the
IPA to a PA. Typically, the Guest OS is unaware of the translation from IPA to PA.

See also Physical address (PA), Virtual address (VA).

IPA See Intermediate physical address (IPA).

kvm Kernel-based Virtual Machine, an open-source software package that implements a type-2 hypervisor within Linux.

LPI Locality-specific Peripheral Interrupt.

MBWU Memory BandWidth Usage.

Memory-system component
MSC. A function, unit, or design block in a memory system that can have partitionable resources. MSCs consist of
all units that handle load or store requests issued by any MPAM Requester. These include cache memories,
interconnects, memory management units, memory channel controllers, queues, buffers, rate adaptors, etc. An MSC
may contain one or more resources that each may have zero or more resource partitioning controls. For example, a
PE may contain several caches, each of which might have zero or more resource partitioning controls.

Memory-system resource
A resource that affects the performance of software's use of the memory system and is either local to an MSC (such
as cache-memory capacity) or non-local (such as memory bandwidth, which is present over an entire path, from
Requester to Completer, that may pass through multiple MSCs).
Glossary-404 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Glossary

MMR Memory-mapped Register.

MPAM Memory system resource Partitioning and Monitoring.

MPAM information
The MPAM information bundle, comprising PARTID, PMG, and MPAM_NS.

MPAM_NS MPAM security-space bit. It is not stored in a PE register; it comes from the current security state of a PE and is
communicated to MSCs as part of the MPAM information bundle. In non-PE Requesters, the security state can be
determined in other ways.

MPAM_SP In MPAM for RME the MPAM PARTID space indication.

MSC Memory-system Component. See Memory-system component.

NRDY Not-Ready bit. MPAM resource monitors set this bit to indicate that the monitor register does not currently have an
accurate value.

NS Non-Secure. A bit indicating that an address space is not Secure.

PA See Physical address (PA).

PARTID Partition ID. Together with the MPAM_NS bit, it selects a memory-system resource partition to use in the MSCs.
For each resource with a resource partitioning control in each MSC, the PARTID and MPAM_NS select resource
control levels, limits, or allocations from local control-setting tables.

Partition A division of resources. A partition is manifest in a PARTID and MPAM_NS. In an MSC, the PARTID and
MPAM_NS select partitioning control settings that affect the partitioning by regulating the allocation of the resource
to requests using that PARTID and MPAM_NS.

PE See Processing element (PE).

Physical address (PA)
An address that identifies a location in the physical memory map.

See also Intermediate physical address (IPA), Virtual address (VA).

Physical PARTID
A partition ID that is transmitted with memory requests and can be used by MSCs to control resources usage. A
physical PARTID is in either the Non-secure or Secure PARTID space.

PMG Performance Monitoring Group, a property of a partition used in MSCs by MPAM performance monitors that can
be programmed to be sensitive to the particular PARTID and PMG combination.

Portion A uniquely identifiable part of the resource. It is of fixed size or capacity. A particular resource has a constant
number of portions. Portions are distinct. Portion n is the same part of the resource for every partition. Thus, every
partition that is given access to a portion n shares access to portion n.

PPI Private Peripheral Interrupt.

Processing element (PE)
The abstract machine defined in the Arm architecture, as documented in an Arm Architecture Reference Manual. A
PE implementation compliant with the Arm architecture must conform with the behaviors described in the
corresponding Arm Architecture Reference Manual.

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-As-Zero, Writes Ignored.

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field.

Software can rely on the field reading as all 0s, and on writes being ignored.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ).

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. Glossary-405
ID012521 Non-Confidential

Glossary

Software:

• Can rely on the field reading as all 0s

• Must use a SBZP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also RAZ/WI, RES0.

RES0 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note

• RES0 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES0 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES0 for fields in read/write registers is:

If a bit is RES0 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:

• Reads of the bit always return 0.

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.

If a bit is RES0 only in some contexts

For a bit in a read/write register, when the bit is described as RES0:

• An indirect write to the register sets the bit to 0.

• A read of the bit must return the value last successfully written to the bit, by either a direct or
an indirect write, regardless of the use of the register when the bit was written.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.
Glossary-406 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Glossary

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES0 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

A bit that is RES0 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 0.

• Must use an SBZP policy to write to the bit.

This RES0 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES0.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), RES1, UNKNOWN.

RES1 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note

• RES1 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES1 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES1 for fields in read/write registers is:

If a bit is RES1 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:

• Reads of the bit always return 1.

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. Glossary-407
ID012521 Non-Confidential

Glossary

If a bit is RES1 only in some contexts

For a bit in a read/write register, when the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES1 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 1.

• Must use an SBOP policy to write to the bit.

This RES1 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES1.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also RES0, UNKNOWN.

Reserved Unless otherwise stated:

• Instructions that are reserved or that access reserved registers have UNPREDICTABLE or CONSTRAINED
UNPREDICTABLE behavior.

• Bit positions described as reserved are:

— In an RW or WO register, RES0.

— In an RO register, UNK.

RIS Resource instance selection.

RME Realm Management Extension. RME specifies how PE execution context is mapped to Security states.

SCR Part of the name of a Secure Configuration Register.

SMMU System Memory-Management Unit.

SPE Statistical Profiling Extension.

SPI Shared Peripheral Interrupt.

TGE Trap General Exception. A field in the HCR_EL2 register. It causes EL0 exceptions, that would normally trap to
EL1, to instead trap to EL2. This function can be used to run an EL2 host’s applications at EL0, so that any
exceptions in the application trap to the host OS at EL2.
Glossary-408 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

Glossary

UNDEFINED Indicates cases where an attempt to execute a particular encoding bit pattern generates an exception, that is taken to
the current Exception level, or to the default Exception level for taking exceptions if the UNDEFINED encoding was
executed at EL0. This applies to:

• Any encoding that is not allocated to any instruction.

• Any encoding that is defined as never accessible at the current Exception level.

• Some cases where an enable, disable, or trap control means an encoding is not accessible at the current
Exception level.

If the generated exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined
Instruction exception.

Note

On reset, the default Exception level for taking exceptions from EL0 is EL1. However, an implementation might
include controls that can change this, effectively making EL1 inactive. See the description of the Exception model
for more information.

In body text, the term UNDEFINED is shown in SMALL CAPITALS.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not return information that cannot be accessed at
the current or a lower level of privilege using instructions that are not UNPREDICTABLE, are not CONSTRAINED
UNPREDICTABLE, and do not return UNKNOWN values.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

In body text, the term UNKNOWN is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNPREDICTABLE.

UNPREDICTABLE
Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

Execution at Non-secure EL1 or EL0 of an instruction that is UNPREDICTABLE can be implemented as generating a
trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE and is not
CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term UNPREDICTABLE is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

Upstream Information propagating in the direction from terminating Completer components towards Requesters.

VA See Virtual address (VA).

Virtual address (VA)
An address generated by an Arm PE. This means it is an address that might be held in the program counter of the
PE. For a PMSA implementation, the virtual address is identical to the physical address.

See also Intermediate physical address (IPA), Physical address (PA).

Virtual PARTID One of a small range of PARTIDs that can be used by a virtual machine (VM). Virtual PARTIDs are mapped into
physical PARTIDs using the virtual partition mapping entries in the MPAMVPM0 - MPAMVPM7 registers.

VM Virtual Machine.

VMM Virtual Machine Monitor. An alias for “hypervisor”.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.
ARM DDI 0598C.b Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. Glossary-409
ID012521 Non-Confidential

Glossary

Word-aligned Means that the address is divisible by 4.
Glossary-410 Copyright © 2018-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0598C.b
Non-Confidential ID012521

	Arm Architecture Reference Manual Supplement Memory System Resource Partitioning and Monitoring (MPAM), for A-profile archite…
	Contents
	Preface
	About this book
	Intended audience

	Using this book
	How to read this book

	Conventions
	Typographic conventions
	Signals
	Numbers
	Pseudocode descriptions

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this book
	Progressive Terminology Commitment

	1: Introduction�
	1.1 Overview
	1.2 Memory-system resource partitioning
	1.3 Memory-system resource usage monitoring
	1.4 Memory-system components
	1.5 Versions of the MPAM Extension
	1.5.1 MPAM versions for PEs
	1.5.2 MPAM versions for MSCs
	MSC of MPAM v1.1

	1.5.3 MPAM system features by MPAM version
	1.5.4 MPAM PE features by MPAM version
	1.5.5 MSC features by MPAM version
	1.5.6 Relationships between MPAM versions
	MPAM v0.1
	MPAM v1.0
	MPAM v1.1
	MPAM for RME

	1.5.7 Interoperation of components with different MPAM versions

	1.6 Implementation flexibility
	1.7 Example uses
	1.7.1 Separate systems combined
	1.7.2 Foreground and background job optimization
	1.7.3 Service-level provisioning in multi-tenant VM servers

	2: MPAM and Arm Memory-System Architecture �
	2.1 MPAM and Arm memory-system architecture

	3: ID Types, Properties, and Spaces�
	3.1 Introduction
	3.2 ID types and properties
	3.3 Physical address spaces and Security state
	3.4 PARTID spaces and properties
	3.4.1 Default PARTID
	3.4.2 Default PMG

	4: Memory System Propagation of MPAM Information�
	4.1 Introduction
	4.2 Requester components
	4.3 Terminating Completer components
	4.4 Intermediate Completer-Requester components
	4.5 Request buffering
	4.6 Cache memory
	4.7 MPAM for RME propagation of MPAM_SP with requests

	5: System Model�
	5.1 Introduction
	5.2 System-level field widths
	5.3 PE behavior
	5.3.1 PARTID generation
	5.3.2 Information flow
	5.3.3 Resource partitioning
	5.3.4 Resource-usage monitoring

	5.4 Other Requesters with MPAM
	5.5 Requesters without MPAM support
	5.6 Model of a resource partitioning control
	5.7 Interconnect behavior
	5.8 Cache behavior
	5.8.1 Eviction
	5.8.2 Cache partitioning
	5.8.3 Resource monitoring
	5.8.4 Optional cache behaviors
	Write hits may update the MPAM information of a cache line
	Write hits that update the PARTID of a cache line may move that line to a different portion

	5.9 Memory-channel controller behavior
	5.10 The MPAM for RME system
	5.10.1 The MPAM for RME system
	Four-space region
	Two-space region
	Systems with both two PARTID space and four PARTID space components

	5.10.2 Bridging between four-space and two-space regions
	Two-Space Requesters
	Two-Space Completers

	5.10.3 Non-MPAM components
	Non-MPAM Requesters
	Non-MPAM Completers

	6: PE Generation of MPAM Information�
	6.1 Introduction
	6.2 MPAM System registers
	6.3 Instruction, data, translation table walk, and other accesses
	6.3.1 Load unprivileged and store unprivileged instructions
	6.3.2 Accesses by enhanced support for nested virtualization
	6.3.3 Accesses by statistical profiling extension
	6.3.4 Translation table accesses by AT instructions
	6.3.5 MPAM information for Granule Protection Table access

	6.4 Security
	6.4.1 Secure and Non-secure PARTID space
	6.4.2 Relationship of PARTID space and physical address space
	6.4.3 SDEFLT and FORCE_NS settings to control Secure MPAM PARTID use
	Settings to control Secure MPAM PARTID use in MPAM v1.1 implementations
	Settings to control Secure MPAM PARTID use in MPAM v0.1 implementations
	Settings to control MPAM PARTID use in MPAM for RME

	6.5 PARTID virtualization
	6.5.1 MPAM virtual ID spaces
	6.5.2 Support for type-2 hypervisors
	6.5.3 Mapping of guest OS virtual PARTIDs
	Example of virtual-to-physical PARTID mapping

	6.5.4 Guest OS and all its applications under single PARTID
	6.5.5 Trap accesses to EL2 and EL1 System registers
	Virtualizing MPAMIDR_EL1
	Trapping accesses to MPAM2_EL2
	Controlling accesses to MPAM1_EL1
	Controlling accesses to MPAM0_EL1
	Trapping all MPAM registers

	6.6 MPAM AArch32 interoperability
	6.7 Support for nested virtualization
	6.7.1 Nested virtualization extension
	6.7.2 Enhanced nested virtualization extension
	6.7.3 MPAM PARTID and PMG for enhanced nested virtualization loads and stores

	6.8 MPAM errors and default ID generation
	6.8.1 Out-of-range PARTID behavior
	6.8.2 Out-of-range PMG behavior
	6.8.3 Invalid virtual PARTID behavior
	6.8.4 PARTID space on error
	6.8.5 MPAM3_EL3.SDEFLT and MPAM generation errors
	6.8.6 MPAM3_EL3.FORCE_NS and MPAM generation errors

	6.9 MPAM for RME PE generation of MPAM information
	6.9.1 PE and MPAM
	6.9.2 Alternative PARTID spaces and selection
	Selection of primary or alternative PARTID space when executing at EL3
	Selection of primary or alternative PARTID space when executing at EL2, EL1 and EL0
	Determining forced PARTID space in EL2, EL1 and EL0
	Alternative PARTID space and PARTID virtualization
	ALTSP and FORCE_NS
	ALTSP in Host mode at EL0

	6.9.3 MPAM information for Granule Protection Table access

	7: System Registers�
	7.1 Overview
	7.2 Synchronization of System register changes
	7.3 Summary of System registers
	7.4 System register descriptions
	7.4.1 MPAM0_EL1, MPAM0 Register (EL1)
	Field descriptions
	Accessing MPAM0_EL1

	7.4.2 MPAM1_EL1, MPAM1 Register (EL1)
	Field descriptions
	Accessing MPAM1_EL1

	7.4.3 MPAM2_EL2, MPAM2 Register (EL2)
	Field descriptions
	Accessing MPAM2_EL2

	7.4.4 MPAM3_EL3, MPAM3 Register (EL3)
	Field descriptions
	Accessing MPAM3_EL3

	7.4.5 MPAMHCR_EL2, MPAM Hypervisor Control Register (EL2)
	Field descriptions
	Accessing MPAMHCR_EL2

	7.4.6 MPAMIDR_EL1, MPAM ID Register (EL1)
	Field descriptions
	Accessing MPAMIDR_EL1

	7.4.7 MPAMVPM0_EL2, MPAM Virtual PARTID Mapping Register 0
	Field descriptions
	Accessing MPAMVPM0_EL2

	7.4.8 MPAMVPM1_EL2, MPAM Virtual PARTID Mapping Register 1
	Field descriptions
	Accessing MPAMVPM1_EL2

	7.4.9 MPAMVPM2_EL2, MPAM Virtual PARTID Mapping Register 2
	Field descriptions
	Accessing MPAMVPM2_EL2

	7.4.10 MPAMVPM3_EL2, MPAM Virtual PARTID Mapping Register 3
	Field descriptions
	Accessing MPAMVPM3_EL2

	7.4.11 MPAMVPM4_EL2, MPAM Virtual PARTID Mapping Register 4
	Field descriptions
	Accessing MPAMVPM4_EL2

	7.4.12 MPAMVPM5_EL2, MPAM Virtual PARTID Mapping Register 5
	Field descriptions
	Accessing MPAMVPM5_EL2

	7.4.13 MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6
	Field descriptions
	Accessing MPAMVPM6_EL2

	7.4.14 MPAMVPM7_EL2, MPAM Virtual PARTID Mapping Register 7
	Field descriptions
	Accessing MPAMVPM7_EL2

	7.4.15 MPAMVPMV_EL2, MPAM Virtual Partition Mapping Valid Register
	Field descriptions
	Accessing MPAMVPMV_EL2

	7.5 MPAM enable
	7.6 SDEFLT
	7.6.1 Interaction of SDEFLT and MPAMEN

	7.7 Lower-EL MPAM register access trapping
	7.8 FORCE_NS
	7.9 Reset
	7.10 Unimplemented Exception levels
	7.10.1 Effects if EL3 is not implemented
	7.10.2 Effects if EL2 is implemented in neither Security state
	7.10.3 Effects if EL2 is implemented only in Non-secure state, or if implemented but disabled by SCR_EL2.EEL2 = 0 in Secure state

	8: MPAM in MSCs�
	8.1 Introduction
	8.1.1 MPAM versions in MSCs

	8.2 Resource controls
	8.3 Resource instance selection
	8.3.1 RIS values
	8.3.2 RIS controls in MPAMCFG_PART_SEL
	8.3.3 Effects of MPAMCFG_PART_SEL.RIS on partitioning controls
	8.3.4 Effects of MPAMCFG_PART_SEL.RIS on values read from other registers
	8.3.5 RIS controls in MSMON_CFG_MON_SEL
	8.3.6 Selecting a resource to monitor
	8.3.7 Undefined RIS values
	Reading an MPAMF ID register when MPAMCFG_PART_SEL is an undefined RIS value

	8.3.8 Reporting errors involving RIS

	8.4 Security in MSCs
	8.4.1 Programming configuration of MPAM settings for Secure IDs
	8.4.2 Using Secure and Non-secure MPAM PARTIDs

	8.5 Virtualization support in system MSCs
	8.5.1 Hypervisor emulates guest accesses to partitioning and monitoring configurations

	8.6 PE with integrated MSCs
	8.7 System-wide PARTID and PMG widths
	8.8 MPAM interrupts
	8.8.1 MPAM Error Interrupt
	Level-sensitive interrupts
	Edge-triggered interrupts
	Support for MSI writes to signal error interrupts

	8.8.2 MPAM overflow interrupt
	Support for MSI writes to signal overflow interrupts
	Monitor overflow status register
	Monitor type overflow status bitmap registers

	8.9 MSC support of MPAM for RME
	8.9.1 Four-space MSC

	9: Resource Partitioning Controls �
	9.1 Introduction
	9.2 Partition resources
	9.3 Standard partitioning control interfaces
	9.3.1 Cache-portion partitioning
	Cache-portion bit map
	Over-allocation of capacity portions
	Changing CPBM for a partition
	Using cache-portion partitioning with cache maximum-capacity partitioning

	9.3.2 Cache maximum-capacity partitioning
	Cache maximum-capacity control setting
	Using cache maximum-capacity partitioning with cache-portion partitioning
	Over-allocation of capacity

	9.3.3 Memory-bandwidth portion partitioning
	9.3.4 Memory-bandwidth minimum and maximum partitioning
	Minimum-bandwidth limit partitioning
	Maximum-bandwidth limit partitioning
	Using minimum-bandwidth limit with maximum-bandwidth limit controls
	Bandwidth control parameters
	Memory-bandwidth allocation accounting window width
	Over-allocation of minimum bandwidth
	Over-allocation of maximum bandwidth
	Available bandwidth

	9.3.5 Memory-bandwidth proportional-stride partitioning
	Combining memory-bandwidth proportional stride with other memory-bandwidth partitioning

	9.3.6 Priority partitioning
	Internal priorities
	Downstream priorities
	Through priorities

	9.4 Vendor or implementation-specific partitioning control interfaces
	9.5 Measurements for controlling resource usage
	9.6 PARTID narrowing
	9.7 System reset of MPAM controls in MSCs
	9.7.1 Suggested reset values for standard control types

	9.8 About the fixed-point fractional format

	10: Resource Monitors�
	10.1 Introduction
	10.2 MPAM resource monitors
	10.2.1 Memory-bandwidth usage monitors
	Scaled MBWU count value
	Long MBWU counter and capture

	10.2.2 Cache-storage usage monitors

	10.3 Common features
	10.3.1 Not-Ready Bit
	10.3.2 Capture event and capture register
	Local capture-event generator
	Reset on capture

	10.3.3 Overflow bit

	10.4 Monitor configuration

	11: Memory-Mapped Registers �
	11.1 Overview of MMRs
	11.1.1 Determining presence and location of MMRs
	11.1.2 Configuring resource controls for a partition
	11.1.3 Configuring memory-system monitors
	11.1.4 MPAM feature page
	Secure and Non-secure address space
	MPAM MMRs only in the Secure address space
	Read-only MPAM MMRs permitted to read the same or differently
	MPAM MMRs that must have the same contents
	MPAM MMRs that must be separate registers for each address space
	Accesses to locations where there is no register in the address space of the access
	Permitted truncation of an MPAM feature page

	11.1.5 Minimum required MPAM memory-mapped registers
	11.1.6 IMPLEMENTATION DEFINED memory-mapped registers and reserved feature page locations
	11.1.7 Examples of partial MPAM implementations
	An MSC that has no partitioning or monitoring, only propagation
	An MSC when RTL configuration has removed a partitioning control or resource usage monitor
	An MSC when RTL configuration has removed all MPAM functionality
	An MSC when RTL configuration removes a resource instance

	11.2 Summary of memory-mapped registers
	11.3 Memory-mapped ID register description
	11.3.1 MPAMF_AIDR, MPAM Architecture Identification Register
	Field descriptions
	Accessing the MPAMF_AIDR:

	11.3.2 MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register
	Field descriptions
	Accessing the MPAMF_CCAP_IDR:

	11.3.3 MPAMF_CPOR_IDR, MPAM Features Cache Portion Partitioning ID register
	Field descriptions
	Accessing the MPAMF_CPOR_IDR:

	11.3.4 MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register
	Field descriptions
	Accessing the MPAMF_CSUMON_IDR:

	11.3.5 MPAMF_IDR, MPAM Features Identification Register
	Field descriptions
	Accessing the MPAMF_IDR:

	11.3.6 MPAMF_IIDR, MPAM Implementation Identification Register
	Field descriptions
	Accessing the MPAMF_IIDR:

	11.3.7 MPAMF_IMPL_IDR, MPAM Implementation-Specific Partitioning Feature Identification Register
	Field descriptions
	Accessing the MPAMF_IMPL_IDR:

	11.3.8 MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning Identification Register
	Field descriptions
	Accessing the MPAMF_MBW_IDR:

	11.3.9 MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register
	Field descriptions
	Accessing the MPAMF_MBWUMON_IDR:

	11.3.10 MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register
	Field descriptions
	Accessing the MPAMF_MSMON_IDR:

	11.3.11 MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID register
	Field descriptions
	Accessing the MPAMF_PARTID_NRW_IDR:

	11.3.12 MPAMF_PRI_IDR, MPAM Priority Partitioning Identification Register
	Field descriptions
	Accessing the MPAMF_PRI_IDR:

	11.3.13 MPAMF_SIDR, MPAM Features Secure Identification Register
	Field descriptions
	Accessing the MPAMF_SIDR:

	11.4 Memory-mapped partitioning configuration registers
	11.4.1 MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_CMAX:

	11.4.2 MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap Partition Configuration Register, n = 0 - 1023
	Field descriptions
	Accessing the MPAMCFG_CPBM<n>:

	11.4.3 MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register
	Field descriptions
	Accessing the MPAMCFG_INTPARTID:

	11.4.4 MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_MBW_MAX:

	11.4.5 MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_MBW_MIN:

	11.4.6 MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion Bitmap Partition Configuration Register, n = 0 - 127
	Field descriptions
	Accessing the MPAMCFG_MBW_PBM<n>:

	11.4.7 MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_MBW_PROP:

	11.4.8 MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration Register
	Field descriptions
	Accessing the MPAMCFG_MBW_WINWD:

	11.4.9 MPAMCFG_PART_SEL, MPAM Partition Configuration Selection Register
	Field descriptions
	Accessing the MPAMCFG_PART_SEL:

	11.4.10 MPAMCFG_PRI, MPAM Priority Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_PRI:

	11.5 Memory-mapped monitoring configuration registers
	11.5.1 MSMON_CAPT_EVNT, MPAM Capture Event Generation Register
	Field descriptions
	Accessing the MSMON_CAPT_EVNT:

	11.5.2 MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register
	Field descriptions
	Accessing the MSMON_CFG_CSU_CTL:

	11.5.3 MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register
	Field descriptions
	Accessing the MSMON_CFG_CSU_FLT:

	11.5.4 MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control Register
	Field descriptions
	Accessing the MSMON_CFG_MBWU_CTL:

	11.5.5 MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter Register
	Field descriptions
	Accessing the MSMON_CFG_MBWU_FLT:

	11.5.6 MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register
	Field descriptions
	Accessing the MSMON_CFG_MON_SEL:

	11.5.7 MSMON_CSU, MPAM Cache Storage Usage Monitor Register
	Field descriptions
	Accessing the MSMON_CSU:

	11.5.8 MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register
	Field descriptions
	Accessing the MSMON_CSU_CAPTURE:

	11.5.9 MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register
	Field descriptions
	Accessing the MSMON_CSU_OFSR:

	11.5.10 MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register
	Field descriptions
	Accessing the MSMON_MBWU:

	11.5.11 MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register
	Field descriptions
	Accessing the MSMON_MBWU_CAPTURE:

	11.5.12 MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register
	Field descriptions
	Accessing the MSMON_MBWU_L:

	11.5.13 MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register
	Field descriptions
	Accessing the MSMON_MBWU_L_CAPTURE:

	11.5.14 MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register
	Field descriptions
	Accessing the MSMON_MBWU_OFSR:

	11.5.15 MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_ADDR_H:

	11.5.16 MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_ADDR_L:

	11.5.17 MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_ATTR:

	11.5.18 MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_DATA:

	11.5.19 MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_MPAM:

	11.5.20 MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register
	Field descriptions
	Accessing the MSMON_OFLOW_SR:

	11.6 Memory-mapped control and status registers
	11.6.1 MPAMF_ECR, MPAM Error Control Register
	Field descriptions
	Accessing the MPAMF_ECR:

	11.6.2 MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_ADDR_H:

	11.6.3 MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_ADDR_L:

	11.6.4 MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_ATTR:

	11.6.5 MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_DATA:

	11.6.6 MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_MPAM:

	11.6.7 MPAMF_ESR, MPAM Error Status Register
	Field descriptions
	Accessing the MPAMF_ESR:

	12: Errors in MSCs�
	12.1 Introduction
	12.2 Error conditions in accessing memory-mapped registers
	12.2.1 No error (errorcode == 0)
	12.2.2 PARTID_SEL out-of-range error (errorcode == 1)
	12.2.3 Request PARTID out-of-range error (errorcode == 2)
	12.2.4 MSMON configuration ID out-of-range error (errorcode == 3)
	12.2.5 Request PMG out-of-range error (errorcode == 4)
	12.2.6 Monitor out-of-range error (errorcode == 5)
	12.2.7 intPARTID out-of-range error (errorcode == 6)
	12.2.8 Unexpected INTERNAL error (errorcode == 7)
	12.2.9 Undefined RIS in MPAMCFG_PART_SEL.RIS (errorcode == 8)
	12.2.10 RIS in MPAMCFG_PART_SEL.RIS does not have partitioning control (errorcode == 9)
	12.2.11 Undefined RIS in MSMON_CFG_MON_SEL.RIS (errorcode == 10)
	12.2.12 RIS selected by MSMON_CFG_MON_SEL.RIS does not have monitor type (errorcode == 11)
	12.2.13 Reserved (errcodes 12 – 15)

	12.3 Overwritten error status
	12.4 Behavior of configuration reads and writes with errors
	12.4.1 Writing an out-of-range PARTID to MPAMCFG_PART_SEL.PARTID_SEL
	12.4.2 Reading another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID
	12.4.3 Writing another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID
	12.4.4 Writing an undefined RIS to MPAMCFG_PART_SEL.RIS
	12.4.5 Reading other MSC MPAM registers when MPAMCFG_PART_SEL.RIS contains an undefined RIS value
	12.4.6 Writing other MSC MPAM registers when MPAMCFG_PART_SEL.RIS contains an undefined RIS value
	12.4.7 Reads of MSC MPAM registers with other errors
	12.4.8 Writes to MSC MPAM registers with other errors
	12.4.9 Writes to MSMON_CFG_MON_SEL.MON_SEL
	12.4.10 Reading another MSMON_* register when MSMON_CFG_MON_SEL.MON_SEL out of range
	12.4.11 Writes to MSMON_* registers with MSMON_CFG_MON_SEL.MON_SEL out of range
	12.4.12 Writing an undefined RIS to MSMON_CFG_MON_SEL.RIS
	12.4.13 Reading another MSMON_* register when MSMON_CFG_MON_SEL.RIS contains an undefined RIS value
	12.4.14 Writing another MSMON_* register when MSMON_CFG_MON_SEL.RIS contains an undefined RIS value

	12.5 Optionality of error detection and reporting
	12.5.1 Required error condition detection
	Selector out-of-range errors
	PARTID narrowing errors

	13: Pseudocode�
	13.1 Shared pseudocode
	13.1.1 shared/functions/extension
	shared/functions/extension/HaveEMPAMExt
	shared/functions/extension/HaveMPAMExt

	13.1.2 shared/functions/memory
	shared/functions/memory/AccessDescriptor
	shared/functions/memory/CreateAccessDescriptor
	shared/functions/memory/MPAM

	13.1.3 shared/functions/mpam
	shared/functions/mpam/AltPARTIDspace
	shared/functions/mpam/AltPIdRealm
	shared/functions/mpam/AltPIdSecure
	shared/functions/mpam/DefaultMPAMinfo
	shared/functions/mpam/DefaultPARTID
	shared/functions/mpam/DefaultPMG
	shared/functions/mpam/GenMPAMcurEL
	shared/functions/mpam/MAP_vPARTID
	shared/functions/mpam/MPAMisEnabled
	shared/functions/mpam/MPAMisVirtual
	shared/functions/mpam/PARTIDspaceFromSS
	shared/functions/mpam/UsePrimarySpaceEL10
	shared/functions/mpam/UsePrimarySpaceEL2
	shared/functions/mpam/genMPAM
	shared/functions/mpam/genMPAMel
	shared/functions/mpam/genPARTID
	shared/functions/mpam/genPMG
	shared/functions/mpam/getMPAM_PARTID
	shared/functions/mpam/getMPAM_PMG
	shared/functions/mpam/mapvpmw

	A: Generic Resource Controls �
	A.1 Introduction
	A.2 Portion resource controls
	A.3 Maximum-usage resource controls
	A.4 Proportional resource allocation facilities
	A.4.1 Model of stride-based memory bandwidth scheduling

	A.5 Combining resource controls

	B: MSC Firmware Data�
	B.1 Introduction
	B.2 Partitioning-control parameters
	B.3 Performance-monitoring parameters
	B.4 Discovery of resource to RIS mapping
	B.5 Discovery of wired interrupts

	Glossary

