
Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0099A.a (ID041924)

% PostScript code to insert PDF bookmark for title
[/Dest /BookTitle /DEST FmPD2
[/Dest /BookTitle /Title <FEFF00410072006D0020004D0065006D006F00720079002000530079007300740065006D0020005200650073006F007500720063006500200050006100720074006900740069006F006E0069006E006700200061006E00640020004D006F006E00690074006F00720069006E006700200028004D00500041004D0029002000530079007300740065006D00200043006F006D0070006F006E0065006E0074002000530070006500630069006600690063006100740069006F006E> /F 2 /OUT FmPD2

Arm® Memory System Resource
Partitioning and Monitoring (MPAM)

System Component Specification

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. ii
ID041924 Non-Confidential

Arm Memory System Resource Partitioning and Monitoring (MPAM)
System Component Specification
Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved.

Release Information

The following releases of this document have been made.

Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm Limited (“Arm”). No license, express
or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically
stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether the subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions,
information, scope, and data.  This document was produced using reasonable efforts based on information available as of the date
of issue of this document.  The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope of its
obligations.  You acknowledge and agree that you possess the necessary expertise in system security and functional safety and that
you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning your
products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible for
any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THE DOCUMENT IS PROVIDED “AS IS”. ARM
PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY,
NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may
make changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade
secrets, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted use, duplication, or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to
Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes
to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of this document shall prevail.

The validity, construction and performance of this License shall be governed by English Law.

Release history

Date Issue Confidentiality Change

19 April 2024 A.a Non-Confidential First release of the MPAM system architecture supplement
after the content was separated from Memory System Resource
Partitioning and Monitoring (MPAM), for A-profile
Architecture, Arm Architecture Reference Manual
Supplement, DDI0598.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. iii
ID041924 Non-Confidential

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. Please follow Arm’s trademark usage guidelines at
https://www.arm.com/company/policies/trademarks. All rights reserved. Other brands and names mentioned in this document
may be the trademarks of their respective owners.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

The information in this manual is at EAC quality, which means that all features of the specification are described in the manual.

Web Address

http://www.arm.com

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. iv
ID073122 Non-Confidential

Contents
Preface
About this book ... viii
Using this book ... ix
Conventions ... xi
Additional reading .. xii
Feedback .. xiii

Chapter 1 Introduction
1.1 Overview .. 1-15
1.2 Memory-system resource partitioning ... 1-16
1.3 Memory-system resource usage monitoring .. 1-17
1.4 Memory-system components ... 1-18
1.5 Versions of the MPAM System Component Architecture 1-19
1.6 Implementation flexibility .. 1-25

Chapter 2 MPAM and Arm Memory-System Architecture
2.1 Overview ... 2-27

Chapter 3 ID Types, Properties, and Spaces
3.1 Introduction ... 3-29
3.2 ID types and properties .. 3-30
3.3 PARTID spaces and properties .. 3-31
3.4 Maximum PARTID number .. 3-32

Chapter 4 Memory System Propagation of MPAM Information
4.1 Introduction ... 4-34
4.2 Requester components .. 4-35
4.3 Terminating Completer components .. 4-36
4.4 Intermediate Completer-Requester components ... 4-37
4.5 Request buffering ... 4-38
4.6 Cache memory ... 4-39
4.7 MPAM for RME propagation of MPAM_SP with requests 4-40

Chapter 5 System Model
5.1 Introduction ... 5-42
5.2 System-level field widths .. 5-44
5.3 Other Requesters with MPAM .. 5-45
5.4 Requesters without MPAM support .. 5-46

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. v
ID073122 Non-Confidential

5.5 Model of a resource partitioning control ... 5-47
5.6 Interconnect behavior ... 5-48
5.7 Cache behavior .. 5-49
5.8 Memory-channel controller behavior .. 5-51
5.9 The MPAM for RME system ... 5-52

Chapter 6 MPAM in MSCs
6.1 Introduction .. 6-60
6.2 Resource controls .. 6-61
6.3 Resource instance selection .. 6-62
6.4 Security in MSCs .. 6-68
6.5 Virtualization support in system MSCs ... 6-69
6.6 PE with integrated MSCs ... 6-70
6.7 System-wide PARTID and PMG widths ... 6-71
6.8 MPAM interrupts .. 6-72
6.9 MSC support of MPAM for RME .. 6-76

Chapter 7 Resource Partitioning Controls
7.1 Introduction .. 7-79
7.2 MPAM partitionable resources ... 7-80
7.3 Standard partitioning control interfaces .. 7-81
7.4 Vendor or implementation-specific partitioning control interfaces 7-93
7.5 Measurements for controlling resource usage ... 7-94
7.6 PARTID narrowing ... 7-95
7.7 System reset of MPAM controls in MSCs .. 7-96
7.8 About the fixed-point fractional format ... 7-97

Chapter 8 Resource Monitors
8.1 Introduction ... 8-100
8.2 MPAM resource monitors ... 8-101
8.3 Common features ... 8-104
8.4 Monitor configuration .. 8-108
8.5 Monitor behavior on overflow ... 8-109

Chapter 9 Memory-mapped Registers
9.1 Overview of MMRs ... 9-113
9.2 Summary of memory-mapped registers ... 9-119
9.3 Memory-mapped ID register description .. 9-122
9.4 Memory-mapped partitioning configuration registers ... 9-164
9.5 Memory-mapped monitoring configuration registers .. 9-208
9.6 Memory-mapped control and status registers .. 9-269

Chapter 10 Errors in MSCs
10.1 Introduction .. 10-288
10.2 Error conditions in accessing memory-mapped registers 10-289
10.3 Overwritten error status .. 10-293
10.4 Behavior of configuration reads and writes with errors 10-294
10.5 Optionality of error detection and reporting .. 10-299

Appendix A Generic Resource Controls
A.1 Introduction ... A-301
A.2 Portion resource controls .. A-302
A.3 Maximum-usage resource controls ... A-303
A.4 Proportional resource allocation facilities .. A-304
A.5 Combining resource controls ... A-306

Appendix B MSC Firmware Data
B.1 Introduction ... B-308

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. vi
ID073122 Non-Confidential

B.2 Partitioning-control parameters ... B-309
B.3 Performance-monitoring parameters ... B-310
B.4 Discovery of resource to RIS mapping .. B-311
B.5 Discovery of wired interrupts ... B-312

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. vii
ID041924 Non-Confidential

Preface

This preface introduces the MPAM System Component specification. It contains the following sections:

• About this book.

• Using this book.

• Conventions.

• Additional reading.

• Feedback.

Preface
 About this book

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. viii
ID041924 Non-Confidential

About this book
This book is the MPAM System Component Specification.

It specifies:

• Memory-mapped registers and standard types of resource control interfaces for Memory-System
Components, or MSCs.

• Memory-mapped registers and resource usage monitors for measuring resource usage in MSCs.

Together, these facilities permit software both to observe memory-system usage and to allocate resources to
software by running that software in a memory-system partition.

This document defines the versions of the MPAM system component architecture. For more information, see
Versions of the MPAM System Component Architecture.

This document primarily describes hardware architecture. As such, it does not include information on either the
software needed to control these facilities or the ways to implement effective controls of the memory system using
the parameters defined by this architecture.

This document does not describe:

• The optional features to implement in a MSC.

• The resources and MSCs to be controlled by MPAM.

Intended audience

This document targets the following audience:

• Hardware and software developers interested in the MPAM system component architecture.

Preface
 Using this book

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. ix
ID041924 Non-Confidential

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the MPAM extension.

Chapter 2 MPAM and Arm Memory-System Architecture

Read this chapter for a description of MPAM and Arm Memory-System Architecture.

Chapter 3 ID Types, Properties, and Spaces

Read this chapter for a description of ID Types, Properties, and Spaces.

Chapter 4 Memory System Propagation of MPAM Information

Read this chapter for a description of MSC Propagation of MPAM Information.

Chapter 5 System Model

Read this chapter for a description of the System model.

Chapter 6 MPAM in MSCs

Read this chapter for a description of MPAM in MSCs.

Chapter 7 Resource Partitioning Controls

Read this chapter for a description of Memory-System Partitioning.

Chapter 8 Resource Monitors

Read this chapter for a description of Performance Monitoring Groups.

Chapter 9 Memory-mapped Registers

Read this chapter for a description of Memory-Mapped Registers.

Chapter 10 Errors in MSCs

Read this chapter for a description of Errors in MSCs.

Appendix A Generic Resource Controls

Read this appendix for a description of Generic Resource Controls.

Appendix B MSC Firmware Data

Read this appendix for a description of MSC Firmware Data.

 Glossary

Read this glossary for definitions of some of the terms that are used in this manual. The Arm
Glossary does not contain terms that are industry standard unless the Arm meaning differs from the
generally accepted meaning.

Note
Arm publishes a single glossary that relates to most Arm products, see the Arm Glossary through
Arm Developer at https://developer.arm.com/documentation/aeg0014/latest. A definition in the
glossary in this supplement might be more detailed than the corresponding definition in Arm
Glossary.

How to read this book

For readers new to MPAM, read Chapters 1 to 5.

For readers interested in MPAM resource controls and memory-system component behaviors, read Chapters 6, 7,
and Appendices A and B.

Preface
 Using this book

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. x
ID041924 Non-Confidential

For readers interested in MPAM resource usage monitoring, read Chapters 8, 9, and 10.

For readers interested in pseudocode and pseudocode definitions, read the Arm® Architecture Reference Manual for
A-profile architecture (ARM DDI 0487).

For readers interested in Realm Management Extension, RME, read the Arm® Architecture Reference Manual for
A-profile architecture (ARM DDI 0487).

Preface
 Conventions

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. xi
ID041924 Non-Confidential

Conventions
The following sections describe conventions that this book can use:

• Typographic conventions.

• Signals.

• Numbers.

• Pseudocode descriptions.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary LINK.

Colored text Indicates a link. This can be:

• A URL, for example, http://developer.arm.com

• A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Signals.

• A link to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term.

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations.

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Preface
 Additional reading

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. xii
ID041924 Non-Confidential

Additional reading
This section lists relevant publications from Arm and third parties.

See Arm Developer, https://developer.arm.com, for access to Arm documentation.

Arm publications

This book contains information that is specific to this product. See the following documents for other relevant
information:

• Arm® Architecture Reference Manual for A-profile architecture (ARM DDI 0487).

• Arm® CoreSight Architecture Specification v2.0 (ARM IHI 0029).

• ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
(ARM IHI 0069).

• Arm® System Memory Management Unit Architecture Specification, SMMU architecture version 3 (ARM IHI
0070).

• The Realm Management Extension (RME), for SMMUv3 Arm® System Memory Management Unit
Architecture Supplement (ARM IHI 0094).

Preface
 Feedback

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. xiii
ID041924 Non-Confidential

Feedback
Arm welcomes feedback on its documentation.

Feedback on this Manual

If you have any comments or queries about this Manual, create a ticket at https://support.developer.arm.com.

As part of the ticket, include:

• The title, Arm® MPAM Memory System Component Specification.

• The number, ARM IHI 0099A.a.

• The section name to which your comments refer.

• The page number(s) to which your comments refer.

• The rule identifier(s) to which your comments refer, if applicable.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note
Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Inclusive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

Previous issues of this document included language that can be offensive. We have replaced this language. To report
offensive language in this document, email terms@arm.com.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-14
ID041924 Non-Confidential

Chapter 1
Introduction

This chapter contains the following sections:

• Overview.

• Memory-system resource partitioning.

• Memory-system resource usage monitoring.

• Memory-system components.

• Versions of the MPAM System Component Architecture.

• Implementation flexibility.

Introduction
1.1 Overview

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-15
ID041924 Non-Confidential

1.1 Overview
Computer systems running multiple applications or virtual machines (VMs) concurrently and on shared memory
often have one or more of the following requirements:

• A requirement to control the performance effects of non-conforming software on the performance of other
software.

• A requirement to bound the performance impact on software by other software.

• A requirement to minimize the performance impact of some software on other software.

These scenarios are common in enterprise networking and server systems. The Memory System Resource
Partitioning and Monitoring (MPAM) architecture addresses these scenarios with two approaches that work
together, under software control, to apportion the performance-giving resources of the memory system. The
apportionment can be used to align the division of memory-system performance between software, to meet
higher-level goals for dividing the performance of the system between software environments.

These approaches are:

• Memory-system resource partitioning.

• Memory-system resource usage monitoring.

The MPAM memory-system component architecture describes:

• Propagation of a Partition ID (PARTID) and Performance Monitoring Group (PMG) through the memory
system.

• A framework for memory-system component (MSC) controls that partition one or more of the performance
resources of the component. See Memory-system components.

• An extension of the framework for MSCs to have performance monitoring that is sensitive to a combination
of PARTID and PMG.

• Some implementation-independent, memory-mapped interfaces to memory-system component controls for
performance resource controls most likely to be deployed in systems.

• Some implementation-independent memory-mapped interfaces to memory-system component resource
monitoring that might be required to monitor the partitioning of memory-system resources.

Note
This specification documents the MPAM memory-system component (MSC) architecture. For more information
about the MPAM PE architecture, see Arm® Architecture Reference Manual, for A-profile architecture (ARM DDI
0487).

There are different versions of this MPAM Extension. For more information, see: Versions of the MPAM System
Component Architecture.

Introduction
1.2 Memory-system resource partitioning

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-16
ID041924 Non-Confidential

1.2 Memory-system resource partitioning
The performance of programs running on a computer system is affected by the memory-system performance, which
is in part controlled by several resources in the memory system. In a memory system shared by multiple virtual
machines, operating systems, and applications, the resources available to one software environment can vary,
depending on the other programs running that might consume more or less of an uncontrolled memory-system
resource.

Memory-system resource partitioning provides controls on the limits and use of previously uncontrolled
memory-system resources.

Shared, partitionable memory-system resources that can affect performance of a virtual machine, operating system,
or application include:

• Shared caches, in which one application can displace the cached data of another application.

• Interconnect bandwidth, in which use by one application can interfere with use by another application due to
contention for buffers, communication links, or other interconnect resources.

• Memory bandwidth, in which use by one application can interfere with the use by another application due to
contention for DRAM bus bandwidth.

Memory-system performance resource partitioning is performed by MPAM resource controls located within the
MSCs. Each memory-system component can implement zero or more MPAM resource controls within that
component.

An MPAM resource control uses the PARTID that is set for one or more software environments. A PARTID for the
current software environment labels each memory-system request. Each MPAM resource control has control
settings for each PARTID. The PARTID in a request selects the control settings for that PARTID, which are then
used to control the partitioning of the performance resources of that memory-system component.

Introduction
1.3 Memory-system resource usage monitoring

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-17
ID041924 Non-Confidential

1.3 Memory-system resource usage monitoring
Memory-system resource-usage monitoring measures memory-system resource usage. MSCs can have resource
monitors. An MPAM monitor must be configured and enabled before it can be queried for resource-usage
information. A monitor can be configured to be sensitive to a particular PARTID, or PARTID and PMG. Some
monitors can be configured to certain subcategories of the resource, such as the memory bandwidth used by writes
that use a PARTID and PMG.

A monitor can measure resource usage or capacity usage, depending on the resource. For example, a cache can have
monitors for cache storage that measure the usage of the cache by a PARTID and PMG.

Monitors can serve several purposes. A memory-system resource monitor might be used to find software
environments to partition, or a monitor’s reads might be used to tune the memory-system partitioning controls. A
PMG value can be used to subdivide the software environments within a PARTID for finer-grained monitoring
results, or to make measurements over prospective partitions.

Introduction
1.4 Memory-system components

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-18
ID041924 Non-Confidential

1.4 Memory-system components
A Memory-System Component (MSC) is a function, unit, or design block in a memory-system that can have
partitionable resources. MSCs consist of all units that handle load or store requests issued by any MPAM Requester.
These include cache memories, interconnects, Memory Management Units, memory channel controllers, queues,
buffers, and rate adapters.

An MSC can be a part of another system component. For example, a PE can contain caches, which can contain
MSCs.

Note
For more information about the MPAM PE architecture, see Arm® Architecture Reference Manual, for A-profile
architecture (ARM DDI 0487).

Introduction
1.5 Versions of the MPAM System Component Architecture

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-19
ID041924 Non-Confidential

1.5 Versions of the MPAM System Component Architecture
This document describes several versions of the MPAM system component architecture. The identification of
architecture versions and the features present within a version are described in:

• MPAM versions for MSCs.

• Relationships between MPAM versions.

• Interoperation of components with different MPAM versions.

1.5.1 MPAM versions for MSCs

The architecture version of the MPAM Extension implemented in an MSC is described in the MPAMF_AIDR
register fields, ArchMajorRev and ArchMinorRev. The MPAM Extension versions used in MSCs are a subset of the
versions used in PEs as the MPAM MSC architecture does not cover the generation of MPAM information by MSCs
that are not PEs. The architecture of the component specifies how that component generates MPAM information for
memory-system requests that it originates.

MPAM Extension versions and the corresponding values of fields in MPAMF_AIDR of the MSC are shown in
Table 1-1:

Most MPAM features in an MSC are optional. The particular MPAM features available in an MSC are described in
the MPAMF_IDR register.

MPAMF_IDR is 32 bits in MPAM v1.0 and is 64 bits in MPAM v1.1.

MPAMF_IDR is permitted to have different MPAM features in different address spaces. If the MPAM feature RIS
is implemented MPAMF_IDR is also permitted to have different features for different Resource Instances in an
MSC.

MSCs can be used in MPAM v1.0 and v1.1, and in v0.1 under certain conditions. For more information on the
conditions on use of MSCs in MPAM v0.1, see MPAM versions in MSCs.

If an MSC does not implement any of the MPAM v1.1 MSC features listed in MPAM versions for MSCs, then the
MSC is of MPAM v1.0.

1.5.1.1 MSC of MPAM v1.1

The MPAM features that can be implemented in an MSC of MPAM v1.1 are:

Expansion of MPAMF_IDR

Table 1-1 MPAM version implemented by an MSC

MPAMF_AIDR MPAM
Extension
version
supported

MSC MPAM supportArchMajor
Rev

ArchMinor
Rev

0b0000 0b0000 None The MSC does not implement MPAM.

0b0000 0b0001 n/a Not a valid MPAM version for an MSC.

0b0001 0b0000 v1.0 The MSC implements MPAM v1.0 with features as described in the 32-bit
MPAMF_IDR.

0b0001 0b0001 v1.1 The MSC implements MPAM v1.1 with features as described in the 64-bit
MPAMF_IDR.
MPAM v1.1 includes all of the MSC MPAM features of MPAM v1.0 plus
additional MPAM features.

Introduction
1.5 Versions of the MPAM System Component Architecture

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-20
ID041924 Non-Confidential

MPAMF_IDR is expanded to 64 bits to support bits that indicate the presence of features added from
MPAM v1.1.

This feature is mandatory when the MSC implements MPAM v1.1.

This feature is implemented when MPAMF_IDR.EXT is set to 1.

For more information, see MPAMF_IDR, MPAM Features Identification Register.

Capturing of IMPLEMENTATION DEFINED resource partitioning controls or resource monitoring

This feature defines two fields that allow discovery of any IMPLEMENTATION DEFINED resource
partitioning controls or IMPLEMENTATION DEFINED resource monitors that are implemented.

This feature is mandatory when the MSC implements MPAM v1.1 and
MPAMF_IDR.HAS_IMPL_IDR is 1.

This feature is implemented when MPAMF_IDR.EXT is 1. Furthermore:

• When MPAMF_IDR.NO_IMPL_PART is 1, MPAMF_IMPL_IDR does not include the
description of any implementation-specific resource partitioning controls.

• When MPAMF_IDR.NO_IMPL_MSMON is 1, MPAMF_IMPL_IDR does not include the
description of any implementation-specific resource monitors.

For more information, see MPAMF_IDR, MPAM Features Identification Register.

Resource instance selection

Resource instance selection, or RIS, provides access to the control settings of multiple resources of
the same type within one MSC.

This feature is optional when the MSC implements MPAM v1.1.

This feature is implemented when MPAMF_IDR.EXT and MPAMF_IDR.HAS_RIS are 1.

For more information, see

• Resource instance selection.

• MPAMCFG_PART_SEL, MPAM Partition Configuration Selection Register.

• MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register.

• Error conditions in accessing memory-mapped registers.

Greater range for MBWU monitors

This feature supports 44-bit and 63-bit memory bandwidth usage counters.

This feature is optional when the MSC implements MPAM v1.1.

This feature is implemented when MPAMF_MBWUMON_IDR.HAS_LONG is 1.

For more information, see Long MBWU counter and capture.

Discovery of MPAMF_ESR and MPAMF_ECR

This feature supports the MPAMF_IDR.HAS_ESR field. This field indicates whether
MPAMF_ESR and MPAMF_ECR are implemented.

This feature is mandatory when the MSC implements MPAM v1.1.

This feature is implemented when MPAMF_IDR.EXT is 1.

For more information, see MPAMF_IDR, MPAM Features Identification Register.

Expansion of MPAMF_ESR

This feature widens MPAMF_ESR to 64 bits to include space for a RIS field.

This feature is optional when the MSC implements MPAM v1.1. Implementation of this feature is
mandatory if MPAMF_IDR.{HAS_ESR, HAS_RIS} are 1.

This feature is implemented when MPAMF_IDR.{EXT, HAS_EXTD_ESR} are 1.

Introduction
1.5 Versions of the MPAM System Component Architecture

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-21
ID041924 Non-Confidential

For more information, see

• MPAMF_ESR, MPAM Error Status Register

• Resource instance selection.

1.5.2 MSC features by MPAM version

MPAM MSC features by MPAM version are shown in Table 1-2:

Table 1-2 MSC features by MPAM version

MPAM feature Subordinate
feature

Subordinate
feature 2

MPAM
v1.0

MPAM
v0.1/v1.1

MPAM
for RME ID field

Cache capacity
partitioning

Optional Optional Optional MPAMF_IDR.HAS_CCAP_PART

Minimum cache
capacity
partitioning

- Prohibited Optional Optional MPAMF_CCAP_IDR.HAS_CMIN

No maximum
cache capacity
partitioning

- Prohibited Optional Optional MPAMF_CCAP_IDR.NO_CMAX

Cache
maximum
associativity
partitioning

- Prohibited Optional Optional MPAMF_CCAP_IDR.HAS_
CASSOC

CMAX soft
limit

- Prohibited Optional Optional MPAMF_CCAP_IDR.HAS_CMAX_
SOFTLIM

No maximum
cache capacity
partitioning

- Prohibited Optional Optional MPAMF_CCAP_IDR.NO_CMAX

Cache portion
partitioning

- - Optional Optional Optional MPAMF_IDR.HAS_CPOR_PART

PARTID disable Prohibited Optional Optional MPAMF_IDR.HAS_ENDIS

No Future Use - Prohibited Optional Optional MPAMF_IDR.HAS_NFU

Memory BW
partitioning

Optional Optional Optional MPAMF_IDR.HAS_MBW_PART

Minimum BW
partitioning

- Optional Optional Optional MPAMF_MBW_IDR.HAS_MIN

Maximum BW
partitioning

- Optional Optional Optional MPAMF_MBW_IDR.HAS_MAX

Maximum BW
partitioning
limit behaviors

- Optional Optional Optional MPAMF_MBW_IDR.MAX_LIM

BW portion
partitioning

- Optional Optional Optional MPAMF_MBW_IDR.HAS_PBM

Proportional
BW partitioning

- Optional Optional Optional MPAMF_MBW_IDR.HAS_PROP

BW window
writable

- Optional Optional Optional MPAMF_MBW_IDR.WINDWR

Introduction
1.5 Versions of the MPAM System Component Architecture

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-22
ID041924 Non-Confidential

Priority
partitioning

Optional Optional Optional MPAMF_IDR.HAS_PRI_PART

Internal priority
partitioning

- Optional Optional Optional MPAMF_PRI_IDR.HAS_INTPRI

Downstream
priority
partitioning

- Optional Optional Optional MPAMF_PRI_IDR.HAS_DSPRI

Memory Sys
resource
monitoring

Optional Optional Optional MPAMF_IDR.HAS_MSMON

Cache storage
usage
monitoring

- Optional Optional Optional MPAMF_MSMON_IDR.MSMON_
CSU

CSU monitor
capture

Optional Optional Optional MPAMF_CSUMON_IDR.HAS_
CAPTURE

CSU monitor
read-only

Optional Optional Optional MPAMF_CSUMON_IDR.CSU_RO

CSU monitor
XCL

Prohibited Optional Optional MPAMF_CSUMON_IDR.HAS_XCL

CSU monitor
overflow
linkage

Prohibited Optional Optional MPAMF_CSUMON_IDR.HAS_
OFLOW_LNKG

CSU monitor
overflow status
Reg

Prohibited Optional Optional MPAMF_CSUMON_IDR.HAS_
OFSR

CSU monitor
overflow
capture

Prohibited Optional Optional MPAMF_CSUMON_IDR.HAS_
CEVNT_OFLW

Memory BW
usage
monitoring

- Optional Optional Optional MPAMF_MSMON_IDR.
MSMON_MBWU

MBWU
monitor capture

Optional Optional Optional MPAMF_MBWUMON_IDR.HAS_
CAPTURE

MBWU
monitor Long

Optional Optional Optional MPAMF_MBWUMON_IDR.HAS_
LONG

MBWU
monitor R/W
filtering

Optional Optional Optional MPAMF_MBWUMON_IDR.HAS_
RWBW

MBWU
monitor scaling

Optional Optional Optional MPAMF_MBWUMON_IDR.
SCALE

MBWU
monitor
overflow
linkage

Prohibited Optional Optional MPAMF_MBWUMON_IDR.HAS_
OFLOW_LNKG

Table 1-2 MSC features by MPAM version (continued)

MPAM feature Subordinate
feature

Subordinate
feature 2

MPAM
v1.0

MPAM
v0.1/v1.1

MPAM
for RME ID field

Introduction
1.5 Versions of the MPAM System Component Architecture

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-23
ID041924 Non-Confidential

MBWU
monitor
overflow status
Reg

Prohibited Optional Optional MPAMF_MBWUMON_IDR.HAS_
OFSR

MBWU
monitor
overflow
capture

Prohibited Optional Optional MPAMF_MBWUMON_IDR.HAS_
CAPTURE

Monitor
overflow status
register

- Prohibited Optional Optional MPAMF_MSMON_IDR.HAS_
OFLOW_SR

Monitor
overflow MSI

- Prohibited Optional Optional MPAMF_MSMON_IDR.HAS_
OFLW_MSI

No hardwired
overflow
interrupt

- Prohibited Optional Optional MPAMF_MSMON_IDR.NO_OFLW
_INTR

Local monitor
capture event
generator

- Optional Optional Optional MPAMF_MSMON_IDR.HAS_
LOCAL_CAPT_EVNT

PARTID
narrowing

 - - Optional Optional Optional MPAMF_IDR.HAS_PARTID_NRW

Implementation
-defined ID Reg

- - Optional Optional Optional MPAMF_IDR.HAS_IMPL_IDR

Impl IDR no
partitioning

- Prohibited Required Required MPAMF_IDR.NO_IMPL_PART

Impl IDR no
monitoring

- Prohibited Required Required MPAMF_IDR.NO_IMPL_MSMON

Extended ID
register

 - - Prohibited Required Required MPAMF_IDR.EXT

Resource
instance
selector

 - - Prohibited Optional Optional MPAMF_IDR.HAS_RIS

Error status
register

Prohibited Optional Optional MPAMF_IDR.HAS_ESR

Extended error
status register

- Prohibited Optional Optional MPAMF_IDR.HAS_EXTD_ESR

Error MSI - - Prohibited Optional Optional MPAMF_IDR.HAS_ERR_MSI

Four PARTID
spaces

 - - Required MPAMF_IDR.SP4

Table 1-2 MSC features by MPAM version (continued)

MPAM feature Subordinate
feature

Subordinate
feature 2

MPAM
v1.0

MPAM
v0.1/v1.1

MPAM
for RME ID field

Introduction
1.5 Versions of the MPAM System Component Architecture

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-24
ID041924 Non-Confidential

1.5.3 Relationships between MPAM versions

This section describes the relationships between MPAM versions.

1.5.3.1 MPAM v0.1

An MPAM v0.1 PE implements any permitted subset of the features of MPAM v1.1 and also implements
MPAM3_EL3.FORCE_NS. The FORCE_NS field cannot be present in any other MPAM version.

1.5.3.2 MPAM v1.0

MPAM v1.0 is the base version of MPAM. Unless explicitly defined, all features from MPAM v1.0 are present in
the other versions of MPAM.

In a PE that implements MPAM v1.0, the MPAM features available (either Required or Optional) are described in
the Arm® Architecture Reference Manual, for A-profile architecture (ARM DDI 0487).

In an MSC that implements MPAM v1.0, the MPAM features available (either Required or Optional) are described
in Table 1-2.

1.5.3.3 MPAM v1.1

MPAM v1.1 adds features beyond the base version of MPAM. Unless explicitly removed, all features from MPAM
v1.1 are present in MPAM v0.1 and in MPAM for RME.

In a PE that implements MPAM v1.1, the MPAM features available (either Required or Optional) are described in
the Arm® Architecture Reference Manual, for A-profile architecture (ARM DDI 0487).

In an MSC that implements MPAM v1.1, the MPAM features available (either Required or Optional) are described
in Table 1-2.

1.5.3.4 MPAM for RME

The MPAM for RME architecture supports the Realm Management Extension (RME) in systems, PEs and MSCs.

MPAM for RME requires MPAM v1.1 or higher.

In a PE that implements both RME and MPAM, MPAM for RME is required.

In a PE, MPAM for RME requires the MPAM feature ALTSP.

In a PE that implements MPAM for RME, the MPAM features available (either Required or Optional) are described
in the Arm® Architecture Reference Manual, for A-profile architecture (ARM DDI 0487).

In an MSC that implements MPAM for RME, the MPAM features available (either Required or Optional) are
described in Table 1-2.

An MPAM for RME implementation requires support for 4 PARTID spaces, see MPAM for RME propagation of
MPAM_SP with requests.

1.5.4 Interoperation of components with different MPAM versions

Hardware must not prevent PEs that implement different versions of the MPAM architecture to coexist within a
system. However, PEs that implement different versions of the MPAM architecture might cause software issues.

There is no required relationship between the MPAM architecture version of a PE and the MPAM architecture
version of an MSC accessed by the PE.

Note
For more information about the MPAM PE architecture, see Arm® Architecture Reference Manual, for A-profile
architecture (ARM DDI 0487).

Introduction
1.6 Implementation flexibility

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 1-25
ID041924 Non-Confidential

1.6 Implementation flexibility
Memory-system partitioning, monitoring capabilities, and certain implementation parameters must be discoverable
by software, and they must be used by software to adapt to the system hardware. Discovery of MPAM
memory-system component topology is expected to be by means of firmware data such as Device Tree or ACPI
interface. MPAM controls and parameters of MSCs are discoverable in memory-mapped ID registers.

The width of memory-system partitioning and monitoring values communicated through the system can be sized to
the needs of the system. The costs can thereby be adjusted to meet the market requirements.

This document defines standard interfaces to some resource partitioning and monitoring features of MSCs. It does
so by defining ID registers that expose implementation parameters and options. It also defines configuration
registers that allow standard programming of these features while giving substantial implementation flexibility. In
addition, this document also defines a mechanism that permits IMPLEMENTATION DEFINED partitioning and
monitoring features that might introduce partitioning or monitoring in new ways or of new resource types.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 2-26
ID041924 Non-Confidential

Chapter 2
MPAM and Arm Memory-System Architecture

This chapter contains the section:

• Overview.

MPAM and Arm Memory-System Architecture
2.1 Overview

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 2-27
ID041924 Non-Confidential

2.1 Overview
This section is informative.

MPAM partitioning of memory-system performance resources must not affect the memory behavior specified in the
Arm® Architecture Reference Manual for A-profile architecture. The Arm memory model, as specified in that
manual, must be followed in all of its particulars, including requirements for observation, coherence, caching, order,
atomicity, endianness, alignment, memory types, and any other requirements defined in the Arm memory model.
Furthermore, these requirements must also be met:

• When the MPAM information in multiple requests to an MSC are the same or are different, and whether those
multiple requests come from a single requestor or from multiple requestors.

• For all MPAM memory-system component resource controls and configurations.

• When MPAM information stored with data accessed from caches is the same as, or different from, MPAM
information in requests that access that data.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 3-28
ID041924 Non-Confidential

Chapter 3
ID Types, Properties, and Spaces

This chapter contains the following sections:

• Introduction.

• ID types and properties.

• PARTID spaces and properties.

• Maximum PARTID number.

ID Types, Properties, and Spaces
3.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 3-29
ID041924 Non-Confidential

3.1 Introduction
This chapter is normative.

MPAM operation is based on the MPAM information that Requesters include with requests made to the
memory-system.

This chapter defines the components of that MPAM information bundle, which consists of:

• Partition ID space (PARTID space).

• Partition number.

• Performance monitoring group.

Together the Partition ID space and Partition number uniquely identify an MPAM resource partition.

The MPAM information bundle is used by each MPAM-controlled resource that is accessed in the handling of a
request. The Partition ID space and Partition number select resource control parameters particular to the resource.

ID Types, Properties, and Spaces
3.2 ID types and properties

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 3-30
ID041924 Non-Confidential

3.2 ID types and properties
A partition is identified by its partition ID space and its partition number.

Partition ID spaces are related to the Security states and the physical address spaces but distinct from them as
described in section PARTID spaces and properties.

A partition number references a particular partition within a partition ID space. A partition number in one partition
ID space does not reference the same partition as the same partition number in a different partition ID space. For
example, partition number 5 in one partition ID space is not the same as partition number 5 in a different partition
ID space.

The numerical value of a partition number has no inherent meaning. The partition ID space and partition number in
a request to the memory-system are used to select resource control parameters in memory-system components
involved in transporting, handling, and completing the request.

Each controlled resource of each memory-system component has resource control parameters. The resource control
settings for a particular partition are independent of the settings for other resources, other memory-system
components and other partitions.

An MPAM resource partition has a single property, the performance monitoring group. The performance monitoring
group is used to provide an additional filter for MPAM resource usage monitors to monitor a subset of software
using a single partition.

In this document, PARTID is used for the partition number fields in registers. In the MPAM information bundle that
accompanies memory-system requests, MPAM_SP or MPAM_NS is used for the partition ID space as it is encoded
on the bus. PMG is used for the performance monitoring group fields in registers and on the bus.

The architectural maximum width of a PARTID field is 16 bits.

The architectural maximum width of a PMG field is 8 bits.

ID Types, Properties, and Spaces
3.3 PARTID spaces and properties

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 3-31
ID041924 Non-Confidential

3.3 PARTID spaces and properties
MPAM has multiple PARTID spaces to permit separate management of the partition numbers and partition resource
configurations by environments that cannot be managed as a single PARTID space due to separation or trust
concerns.

MPAM uses physical PARTID spaces to communicate between Requesters and other memory-system components.
Partitions in physical PARTID spaces are used to select the resource control settings in those memory-system
components. Those control settings regulate the resource usage in that memory-system component. See Chapter 4
Memory System Propagation of MPAM Information.

ID Types, Properties, and Spaces
3.4 Maximum PARTID number

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 3-32
ID041924 Non-Confidential

3.4 Maximum PARTID number
Each component implements a maximum PARTID number in each PARTID space that it supports. Component types
are MSC or other Requester.

The range of valid PARTIDs is 0 to the maximum PARTID, inclusive. The maximum values of a PARTID
implemented by different MSCs need not be the same.

Each MSC has an MPAM identification register with which to discover the maximum PARTID implemented in each
physical PARTID space. The maximum Non-secure PARTID supported by an MSC is indicated in its
MPAMF_IDR.PARTID_MAX. The maximum Secure PARTID supported by an MSC is indicated in its
MPAMF_SIDR.PARTID_MAX.

Software must avoid using PARTIDs that exceed the smallest maximum of any MSCs accessed because the
behavior of an MSC accessed with an out-of-range PARTID is CONSTRAINED UNPREDICTABLE as described
in System-wide PARTID and PMG widths.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 4-33
ID041924 Non-Confidential

Chapter 4
Memory System Propagation of MPAM Information

This chapter contains the following sections:

• Introduction.

• Requester components.

• Terminating Completer components.

• Intermediate Completer-Requester components.

• Request buffering.

• Cache memory.

Memory System Propagation of MPAM Information
4.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 4-34
ID041924 Non-Confidential

4.1 Introduction
This section is normative.

The MPAM information bundle is propagated through the memory system components, or MSCs, that have MPAM
resource controls or monitoring. The MPAM information bundle is described in Introduction.

MPAM information propagates in the direction of requests from Requesters towards terminating Completer
components. This is the downstream direction. The upstream direction is from Completers towards Requesters.

The propagation behavior in the memory system depends on the function of the part of the memory system. Each
MSC must implement at least one of the following behaviors:

• Requester components.

• Terminating Completer components.

• Intermediate Completer-Requester components.

• Request buffering.

• Cache memory.

• MPAM for RME propagation of MPAM_SP with requests.

If an MSC has no downstream components that use MPAM information, the MSC is not required to propagate
MPAM information.

Memory System Propagation of MPAM Information
4.2 Requester components

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 4-35
ID041924 Non-Confidential

4.2 Requester components
Requesters must label all requests to downstream MSCs with MPAM information.

A Requester must have a device-appropriate means of setting the MPAM information in the request:

• The PE must use the scheme described in PE Generation of MPAM Information, Arm® Architecture Reference
Manual, for A-profile architecture (ARM DDI 0487)

• This architecture does not specify a mechanism for determining the MPAM information for requests from a
non-PE Requester. Arm recommends that non-PE Requesters needing to use MPAM facilities specify a
mechanism for determining the MPAM information. This consists of the PARTID space (MPAM_NS or
MPAM_SP), the partition number (PARTID), and the performance monitoring group (PMG) for the memory
system requests that it initiates.

• Arm System Memory Management Unit Architecture Specification, SMMU architecture versions 3.0, 3.1 and
3.2 specifies MPAM information generation on memory system accesses translated by the SMMU and
accesses originated by the SMMU to its tables in memory.

• Arm Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
specifies MPAM information generation on memory system accesses originated by the GIC to its tables in
memory.

If a Requester does not support MPAM, the system must arrange to supply a value for MPAM information required
for the interface. If no other mechanism is available, then these values must be driven to a default value, whether
they are in the Non-secure physical PARTID space, the Secure physical PARTID space, the Root PARTID space or
the Realm PARTID space.

See also Requesters without MPAM support.

Memory System Propagation of MPAM Information
4.3 Terminating Completer components

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 4-36
ID041924 Non-Confidential

4.3 Terminating Completer components
A terminating Completer receives requests from upstream Requesters but does not communicate the requests to a
downstream Completer. Instead, the terminating Completer services the requests. A terminating Completer does not
forward MPAM information from a request. A terminating MSC is the edge of MPAM in a system.

A DRAM controller is a terminating Completer, even though it communicates with DRAM devices to complete the
request. The DRAM devices do not support MPAM communication, so MPAM information is not forwarded to
them. This might also happen elsewhere in a system where there is no downstream Completer that has MPAM
support.

Memory System Propagation of MPAM Information
4.4 Intermediate Completer-Requester components

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 4-37
ID041924 Non-Confidential

4.4 Intermediate Completer-Requester components
Intermediate MSCs have both one or more Completer interfaces and one or more Requester interfaces.

An intermediate component can route a request from an upstream Requester to one of its downstream Requester
ports. When routing a request from upstream to downstream, the intermediate component passes the MPAM
information unaltered to the downstream Requester port.

An intermediate component might terminate some requests from upstream locally without propagating the request
to a downstream Requester port if the request is serviced locally.

Memory System Propagation of MPAM Information
4.5 Request buffering

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 4-38
ID041924 Non-Confidential

4.5 Request buffering
Requests can be buffered in any MSC. A request that is buffered must retain its MPAM information.

Memory System Propagation of MPAM Information
4.6 Cache memory

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 4-39
ID041924 Non-Confidential

4.6 Cache memory
A cache line must store the MPAM information of the request that caused its allocation. See Cache behavior for
requirements on cache memory behavior.

Memory System Propagation of MPAM Information
4.7 MPAM for RME propagation of MPAM_SP with requests

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 4-40
ID041924 Non-Confidential

4.7 MPAM for RME propagation of MPAM_SP with requests
MPAM_SP is 2 bits in an MPAM for RME four PARTID space region. See Four-space region.

MPAM_SP must be propagated to all components within a four-space region.

MPAM_SP must be propagated to all bridges connecting a four-space region to a two-space region. See Two-space
region and Systems with both two PARTID space and four PARTID space components.

MPAM_SP must be propagated from all bridges connecting two-space regions to a four-space region.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-41
ID041924 Non-Confidential

Chapter 5
System Model

This chapter contains the following sections:

• Introduction.

• System-level field widths.

• Other Requesters with MPAM.

• Requesters without MPAM support.

• Model of a resource partitioning control.

• Interconnect behavior.

• Cache behavior.

• Memory-channel controller behavior.

• The MPAM for RME system.

System Model
5.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-42
ID041924 Non-Confidential

5.1 Introduction
This section describes a model of system behavior that can support the MPAM features. In particular, it describes
the behavior of Requesters, interconnects, caches, and memory controllers.

In this system model, a request:

• Begins at a Requester, such as an I/O Requester, DMA controller, or graphics processor:

— MPAM information, consisting of the PARTID space (MPAM_NS or MPAM_SP), the partition
number (PARTID), and the performance monitoring group (PMG), is transported with every request.

• Traverses non-cache nodes that might be a transport component (such as an interconnect), a bus resizer, or
an asynchronous bridge.

• Might reach an MSC that contains or is a cache:

— Caches sometimes generate a response (cache hit) and sometimes pass the request on (cache miss).

— Caches could also allocate entries based on the request.

— Caches must store the MPAM PARTID, PMG, and MPAM_NS associated with an allocation:

- Needed for cache-storage usage monitoring.

- Used during eviction to another cache.

— Cache eviction must attach MPAM fields to the eviction request. The source for MPAM information
on an eviction might depend on whether the eviction is to memory or to another cache. See Eviction
and Optional cache behaviors.

• Might proceed from a cache to a transport component, and to other caches or a memory-channel controller.

• Might result in a memory controller or other terminating Completer device responding to a request it
receives.

Figure 5-1 shows a simplified system model for the downstream flow, in the direction of requests from Requesters
to Completers. In this figure, all objects implement an MSC except the PEs, I/O Requesters, and I/O Completers.
PEs generate MPAM information from MPAM state in their System registers. I/O Requesters typically get their
MPAM information when their requests pass through an SMMU.

The interconnects in Figure 5-1 can represent bus, crossbar, packet, or other interconnect technologies.

An MSC responds to the MPAM information that arrives as part of a request. If the MSC implements partitioning
controls, those controls find partitioning settings by the resource partition in the MPAM information of the request,
and they use those settings to control the allocation of a controlled resource.

For caches, a cache line (which has an address) is always associated with the MPAM information of the request that
allocated the line – or the MPAM information of the request that allocated the line into an inner cache that has now
been evicted to the current cache. The inner cache PARTID must be preserved when the line is evicted to an outer
cache.

An address can be accessed by multiple MPAM resource partitions.

A cache must store the MPAM information of the lines it contains, so that it can measure and control the cache lines
used by a resource partition, and so that it can provide the MPAM information to downstream MSCs when the line
is evicted.

System Model
5.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-43
ID041924 Non-Confidential

Figure 5-1 MPAM system model (downstream flow)

I/O
Requesters

I/O
Completers

SMMU*

Memory Channel
Controller

* . . . Memory Channel
Controller

*

. . .
PE

L1-I L1-D

Private L2

* *

*

Cluster
Cache

*

System
Cache

*

One of N
Clusters

Memory-System Component (MSC) that might contain MPAM resource controls*

PE

L1-I L1-D

Private L2

* *

*

Cluster
Interconnect
*

SoC Coherent
Interconnect

*

System Model
5.2 System-level field widths

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-44
ID041924 Non-Confidential

5.2 System-level field widths
Arm recommends that a system be configured to support common values of maximum partition number
(PARTID_MAX) and maximum PMG (PMG_MAX) in all Requesters and MSCs in the system.

Arm also recommends that when possible, the same PARTID spaces be supported throughout the system. See The
MPAM for RME system.

System Model
5.3 Other Requesters with MPAM

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-45
ID041924 Non-Confidential

5.3 Other Requesters with MPAM
Other Requesters that support MPAM, such as a DMA controller, must issue requests to the system that have the
MPAM information. Non-PE Requesters can have schemes different from those implemented in PEs for associating
MPAM information with requests. These other schemes are not documented in this specification.

System Model
5.4 Requesters without MPAM support

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-46
ID041924 Non-Confidential

5.4 Requesters without MPAM support
A Requester that does not implement support for MPAM must use a system-specific means to provide MPAM
information to MSCs that support MPAM.

Some examples of Requester devices that might not implement support for MPAM include:

• Legacy DMA controller.

• Third-party peripheral IP.

• CoreSight DMA components, such as ETR.

• Older devices which cannot be economically upgraded to include MPAM support.

Some options for adding MPAM information to requests include:

• The MPAM information could be tied off to the default PARTID and PMG values and the PARTID space
(MPAM_NS or MPAM_SP) set as appropriate for the device.

• The MPAM information could be provided by a System Memory Management Unit (SMMU) that supports
adding MPAM information according to the stream and substream of the request.

• The MPAM information could be in added by a bus bridge or other system component that handles the
Requester's memory-system traffic.

Other implementations are permitted.

System Model
5.5 Model of a resource partitioning control

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-47
ID041924 Non-Confidential

5.5 Model of a resource partitioning control
A general model of a resource partitioning controller within an MSC is shown in Figure 5-2. This model shows a
resource partitioning model that measures resource usage by the partition and that controls resource usage by
comparing the measured usage with the control settings for that partition.

Figure 5-2 Model of MPAM resource partitioning controller

In Figure 5-2, a request arrives from an upstream Requester to an MSC that implements MPAM partitioning control.
The request is handled as follows:

1. The PARTID space (MPAM_NS or MPAM_SP) and the partition number (PARTID) values of the incoming
request are used to index into a Settings Table of partition-control settings. (There is one settings table per
implemented resource control.)

2. The table entry for that resource partition specifies its partition-control setting, which is passed to a Resource
Regulator.

3. Conformance of the resource with the setting might require measurement of how the resource is being used
by the partition.

4. The measurement feeds back to the Resource Regulator, where it is compared with the Setting and used to
make a decision about Resource Allocation.

In Figure 5-2, items 1, 2, 3, and 4 are added to the original memory system resource when MPAM resource control
is implemented for the resource, although in some resources there might be sufficient measurement hardware
already in place. Item 1, the Settings Table, is the heart MPAM resource control.

All of the above is separate from normal request-handling by the MSC.

Capacity-based partitioning requires the measurement of current usage of the resource by the partition as shown as
item 3 above. The current resource usage measurement is compared to the resource control to determine whether
the partition is using more or less than the setting.

Portion-based partitioning does not require the measurement in item 3 above as portions are predetermined and
fixed.

Request
Handling
Function

2
Resource
Regulator

4

Settings
Table 1

Setting

PARTID
and

MPAM_NS
or

MPAM_SP

3

Measurement

Resource
Allocation 5

Request

System Model
5.6 Interconnect behavior

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-48
ID041924 Non-Confidential

5.6 Interconnect behavior
Interconnects connect Requesters to Completers, and they must transport MPAM information fields from Requester
to Completer.

Interconnects can support the MPAM control features, such as priority partitioning. Support for MPAM is
discoverable in ID registers and firmware data.

Some interconnect devices can include cache functionality, in which case the cache behavior in Cache behavior
applies.

System Model
5.7 Cache behavior

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-49
ID041924 Non-Confidential

5.7 Cache behavior
A cache must associate the MPAM information of the request that allocated a cache line with any data stored in the
cache line. This stored MPAM information is a property of the data.

The term “data” in this section is intended to indicate the content stored in the cache. It is not intended to indicate
any restriction on the applicability of this section based on the purpose of the cache or of its content.

The MPAM information on a request to the cache from an upstream Requester is used for the following purposes:

• Source for the MPAM information associated with data when the data is allocated into the cache and is stored
in association with the data while the data resides in the cache.

• Optionally updating the stored MPAM information of the cached data on a write hit (Write hits may update
the MPAM information of a cache line).

• Providing MPAM information for downstream requests to fulfill the incoming request such as a read from
downstream on a cache miss that fetches data into the cache.

• Optionally (Eviction), providing MPAM information for downstream requests generated by evict or clean
operations when this cache is the last level of cache upstream of main memory.

• Selecting settings of partitioning controls implemented in the cache.

• Measuring or tracking the resource usage by each partition for a capacity control.

• Measuring or counting to track filtered resource usage for resource usage monitors, if implemented.

• Triggering and filtering events triggered by requests from upstream Requesters for MPAM resource
monitors, if implemented.

The stored MPAM information is used by MPAM for the following purposes:

• Providing the MPAM information for downstream requests generated by evict or clean operations, when this
cache is not the last level of cache.

• Optionally (Eviction) providing MPAM information for downstream requests generated by evict or clean
operations, when this cache is the last level of cache.

• Triggering and filtering events triggered by internal and downstream requests for MPAM resource monitors,
if implemented.

• Tracking resource usage by partitions, as needed by a partitioning control implementation.

5.7.1 Eviction

When a cache line is evicted to another cache, the evicting cache must produce the MPAM information that is
associated with the cache line.

A system cache (last-level cache) might produce the MPAM information of the request that caused the eviction in
its request to a memory-channel controller, or the cache might produce the stored MPAM information associated
with the evicted line.

5.7.2 Cache partitioning

A cache may optionally implement cache-partitioning resource controls, such as a cache-portion partitioning
control.

The cache-portion partitioning control (Cache-portion partitioning) was conceived for use on large, multi-way
associative caches, but cache-portion partitioning can be implemented on caches that are not set-associative. For
example, a single entry or group of entries may be a cache portion in a fully-associative cache.

The cache maximum-capacity partitioning control (Cache maximum-capacity partitioning) was conceived for use
on caches that do not support cache-portion partitioning or that have insufficient portions to meet the needs of the
planned use.

System Model
5.7 Cache behavior

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-50
ID041924 Non-Confidential

Both types of cache partitioning may be used together in a cache memory component. This may be useful, for
example, when the cache has insufficient portions to give adequate control for a planned use.

5.7.3 Resource monitoring

A cache may implement cache-storage usage monitoring (Cache-storage usage monitors). For a monitored
PARTID, the monitor gives the total cache storage used by the by partitions in the monitor's PARTID space and
matching filter criteria programmed for the monitor. Filter criteria may include partition number (PARTID),
performance monitoring group (PMG), and other criteria.

5.7.4 Optional cache behaviors

The following cache behaviors are permitted but not required.

5.7.4.1 Write hits may update the MPAM information of a cache line

If a write access, or a write-back from a cache level, associated with a request MPAM information, updates an entry
that is present in the cache, it is CONSTRAINED UNPREDICTABLE whether the cache entry stays associated with its
stored MPAM information or is updated to be associated with the MPAM information of that write access.

It is possible that a change in the resource partition of the data (without moving the data) leaves the data in a portion
of the cache that the new resource partition does not have permission to allocate. This can occur if the Cache Portion
Bit Map (CPBM) bit for that portion is not set in the CPBM for the new PARTID. The optional behavior in this
subsection does not change the location within the cache, even if the new partition for the data does not have a
CPBM bit that allows allocation in this portion of the cache. Updating the location within the cache is a second
optional behavior that is covered in the next subsection.

5.7.4.2 Write hits that update the resource partition of a cache line may move that line
to a different portion

A write hit to cached data is permitted to change the portion of the cache capacity allocated to the data, if (i) the
resource partition of the cache data is updated due to the write hit, and (ii) the portion of capacity where the data
currently resides is not in the new resource partition’s cache portion bitmap.

System Model
5.8 Memory-channel controller behavior

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-51
ID041924 Non-Confidential

5.8 Memory-channel controller behavior
This section is informative.

A memory-channel controller may implement MPAM features. Some of the features that may be helpful in a
memory-channel controller are:

• Memory-bandwidth minimum and maximum partitioning (Memory-bandwidth minimum and maximum
partitioning).

• Memory-bandwidth portion partitioning (Memory-bandwidth portion partitioning).

• Priority partitioning (internal) (Priority partitioning).

• Memory-bandwidth usage monitors (Memory-bandwidth usage monitors).

System Model
5.9 The MPAM for RME system

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-52
ID041924 Non-Confidential

5.9 The MPAM for RME system

5.9.1 Introduction

The MPAM for RME system supports RME PEs and at least one PE that supports both RME and MPAM for RME.

RME PEs support:

• Four Security states.

• Four physical address spaces.

A PE that supports RME and MPAM must also support MPAM for RME.

MPAM for RME requires support in the PE for:

• MPAM v1.1.

• Four MPAM PARTID spaces.

• MPAM alternative space, ALTSP feature.

There are three types of MPAM PARTID space regions that may be present in an MPAM for RME system. The
regions are:

• Four-space regions.

• Two-space regions.

• Non-MPAM regions. See Non-MPAM components.

Note
The system must include a four-space region, but does not have to include two-space regions or non-MPAM regions.

It may be desirable to divide the system into regions that contain MSCs that support a like number of PARTID
spaces and transport MPAM_SP or MPAM_NS at the width required to support those MSCs. A system may contain
any number of regions of each type. Such regions can be labeled according to the number of PARTID spaces
supported:

• Four-space regions transport MPAM_SP[1:0].

• Two-space regions transport MPAM_SP[0] or MPAM_NS.

Like other MPAM systems, MPAM for RME can also contain non-MPAM components and subsystems. See
Non-MPAM components.

5.9.1.1 Four-space region

This type of region is distinguished by propagating MPAM information containing the 2-bit MPAM_SP:

• Contains one or more application PEs implementing FEAT_RME and FEAT_MPAM1p1.

• Contains caches associated with those PEs.

• Contains cache-coherent interconnect among those PEs that carry MPAM information containing the 2-bit
MPAM_SP with requests.

• Contains only MSCs supporting the Non-secure PARTID space, the Realm PARTID space, the Root PARTID
space and the Secure PARTID space.

All components in a four-space region must support and use four PARTID spaces.

If no Requester implements the Secure PARTID space because the Secure Security state is not implemented, the
MPAM_SP encoding for the Secure PARTID space is unused and can be considered to be RESERVED.

System Model
5.9 The MPAM for RME system

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-53
ID041924 Non-Confidential

5.9.1.2 Two-space region

This type of region contains a single two-space MPAM component or many two-space MPAM components
connected as a subsystem through a two-space interconnect component. This component can connect to a four-space
region using a bridging scheme.

Two-space MPAM components support two PARTID spaces. These are compatible with MPAM v1.0 and MPAM
v1.1 but lack support for the Root and Realm PARTID spaces.

Two-space MPAM components can be used in an MPAM for RME system, but with some loss of functionality and
with some complication to the MPAM software.

If a two-space region is within a system that has no Requesters supporting the Secure physical address space or the
Secure PARTID space, the MPAM_NS encoding for the Secure PARTID space can be considered as RESERVED.

5.9.1.3 Systems with both two PARTID space and four PARTID space components

When two-space MPAM components are included in a four PARTID space system, all four-space MPAM
components receive requests from any four PARTID space Requesters with all four states propagated to the
four-space components.

If the propagation of the four PARTID spaces in the MPAM information labels is blocked by two-space components
between any four-space Requester and any four-space Completers, the interface where the four PARTID spaces are
reduced to two PARTID spaces is the boundary to a two-space region and must reduce the MPAM_SP to
MPAM_NS using a bridge. The Completer is part of a two-space region and uses only two PARTID spaces even
though it supports four.

Figure 5-3 shows an example of a system with a large four-space region with support for four PARTID spaces and
a smaller two-space region. The boxes labeled 2 to 4 and 4 to 2 are bridges chosen from Bridging between
four-space and two-space regions.

Figure 5-3 Example system with a large four PARTID space region and small two PARTID space regions

Figure 5-4 shows a system with a small four-space region and a large two-space region. In this case the bridges are
not shown. Here the PEs can use the ALTSP feature to produce two PARTID space requests without the need for
bridging logic. See Fixed space mapping at a Completer.

4 PARTID Space Region

2 PARTID Space Region

System
Cache

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

L2$ L2$ L2$ L2$ L2$ L2$

Mem Chan CtlrMem Chan Ctlr

Memory

Memory

Memory

Memory

Interconnect

2 PARTID Interconnect

Device

Device

Device

Device

4 to 2

Non-MPAM
Device

SMMU
with

MPAM

I/O

2 to 4

4 to 2

System Model
5.9 The MPAM for RME system

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-54
ID041924 Non-Confidential

Figure 5-4 Example system with a small four PARTID space region and a large two PARTID space region

5.9.2 Requirements on bridges

The requirements on bridges are:

• The physical address space of a request must not be altered by bridging or other mechanisms.

• Bridging requests that use the Secure PARTID space must not be altered to use a different PARTID space.

• Bridging requests that use the Non-secure PARTID space must not be altered to use a different PARTID
space.

5.9.3 Bridging between four-space and two-space regions

This section is informative.

Bridges are needed at the boundary between a four-space region and a two-space region. This section presents
examples of bridging from two PARTID space Requesters to four PARTID space Completers and from four
PARTID space Requesters to two PARTID space Completers. Bridging schemes other than the examples given in
this section can also be implemented.

5.9.3.1 Two-Space Requesters

When a two-space MPAM Requester is upstream from a four-space MSC, the Requester's MPAM labels must have
the MPAM_NS field expanded to the 2-bit MPAM_SP[1:0] while satisfying the requirements in Requirements on
bridges.

When bridging from a two-space region to a four-space region, Arm recommends a static mapping using the fixed
MPAM_NS expansion.

4 PARTID Space Region

2 PARTID Space Region

System
Cache

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

PE

I$ D$

L2$ L2$ L2$ L2$ L2$ L2$

Mem Chan CtlrMem Chan Ctlr

Memory

Memory

Memory

Memory

Interconnect

2 PARTID Interconnect

Device

Device

Device

Device

Non-MPAM
Device

SMMU
for RME

with
MPAM

I/O

System Model
5.9 The MPAM for RME system

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-55
ID041924 Non-Confidential

5.9.3.1.1 Fixed MPAM_NS Expansion at a Requester

The fixed MPAM_NS expansion scheme transforms the MPAM_NS field to 2-bit MPAM_SP[1:0] field according
to Table 5-1:

The fixed expansion scheme preserves the PARTID space across the mapping.

5.9.3.2 Two-Space Completers

When a two-space MPAM Completer is downstream from a four-space Requester, the Requester's MPAM labels
must have the MPAM_SP field reduced to form the 1-bit MPAM_NS while satisfying the requirements in
Requirements on bridges. The reduction function may be static or dynamic.

Note
Arm makes no recommendation for which method to use for bridging between the four-space region of a system
that has four PARTID spaces and a two-space region that supports two PARTID spaces. All known methods affect
the system operation in ways that could cause difficulties for software.

5.9.3.2.1 Control over monitoring of Root and Realm PARTID space requests bridged to Secure
or Non-secure PARTID space

A NO_MON flag is used in some of the examples to indicate that the transaction must not be monitored by MPAM
monitors or other system performance monitors. This capability improves the security by limiting or preventing the
system-level activities of a Realm from being collected in monitors accessible from the Non-secure physical address
space or Secure physical address space.

The choice of not monitoring some transactions is not available on true two-space components. Support for the
ability to mark requests with the NO_MON flag would likely require modifying the two-space component.

The examples that follow show a small number of recommended choices for including two-space MPAM Completer
MSCs that do not have four-space MPAM support in an RME system. Example 5-1 is the most desirable option, but
requires extensive work in that it requires a redesign of the MSC. Example 5-4 requires the least effort but is also
the least desirable option:

Example 5-1 Alter the two-space MSC to support 4 PARTID spaces

This is the recommended option. However, it requires work to redesign the MSC. See Four-space MSC for how this
is implemented.

Example 5-2 Alter the two-space MSC to support a programmable mapping of 4 PARTID spaces
to 2 PARTID spaces

Alter the two-space MSC to support a programmable mapping of 4 PARTID spaces to 2 PARTID spaces with
additional control over whether each of the Root and Realm PARTID spaces can be monitored. See Programmable
PARTID space mapping within a Completer.

Table 5-1 Two-space Requester to four-space fixed expansion scheme

Two-space MPAM_NS Input Four-space MPAM_SP[1:0] Output

0b0 (Secure PARTID space) 0b00 (Secure PARTID space)

0b1 (Non-secure PARTID space) 0b01 (Non-secure PARTID space)

System Model
5.9 The MPAM for RME system

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-56
ID041924 Non-Confidential

Example 5-3 Connect the two-space MSC through a programmable PARTID-space mapping
component

Connect the two-space MSC through a programmable PARTID-space mapping component, or shim. See Space
mapping external to an MSC.

This gives no control of whether the Root or Realm space can be monitored after being mapped into Secure or
Non-secure.

Example 5-4 Connect the two-space MSC to be driven only from MPAM_SP[0]

Connect the two-space MSC so that the single-bit MPAM_NS input of the two-space MSC is driven only from
MPAM_SP[0]. See Fixed space mapping at a Completer.

5.9.3.2.2 Programmable PARTID space mapping within a Completer

See Example 5-2.

A programmable MPAM PARTID space mapping can be performed for a MSC with an PARTID space mapping
built into the component. The PARTID space mapper accepts the request with 4 MPAM spaces, maps requests with
MPAM_SP of Root or Realm to one of the Secure or Non-secure PARTID spaces and passes it on to the two-space
MSC.

The programmable mapper can also produce a flag that indicates the two-space MSC should not perform MPAM
monitoring of the request. See Control over monitoring of Root and Realm PARTID space requests bridged to
Secure or Non-secure PARTID space.

The request mapper programming register is MAP4SPTO2SP. It has the fields shown in Table 5-2:

The MAP4SPTO2SP register must only be accessible in the Root physical address space.

5.9.3.2.3 Space mapping external to an MSC

See Example 5-3.

Table 5-2 Request mapper programming register (MAP4SPTO2SP) fields

Field bits Field name Description

15 Rt_outPARTID_space If a request has a Root PARTID, the output PARTID uses this bit for MPAM_NS.

14 Rt_NO_MON If the request has a Root PARTID, output this bit as the NO_MON flag.

7 Rl_outPARTID_space If a request has a Realm PARTID, the output PARTID uses this bit for MPAM_NS.

6 Rl_NO_MON If the request has a Realm PARTID, output this bit as the NO_MON flag.

System Model
5.9 The MPAM for RME system

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-57
ID041924 Non-Confidential

A two-space Completer can be connected using a small component external to the MSC that implements a
programmable four-space to two-space mapping similar to MAP4SPTO2SP. See Table 5-3:

The external mapping register must only be accessible in the Root physical address space.

If the two-space MSC does not have any way to accept the NO_MON flag at the request input, the NO_MON flag
is not used. Two-space MSCs are not required to support a NO_MON input.

5.9.3.2.4 Fixed space mapping at a Completer

See Example 5-4.

The fixed MPAM_SP reduction scheme transforms MPAM_SP into a 1-bit MPAM_NS according to Table 5-4:

5.9.4 Non-MPAM components

Non-MPAM components do not have the ability to make requests with non-zero MPAM information or to use
MPAM information when completing requests. They also do not propagate MPAM information to downstream
MSCs.

5.9.4.1 Non-MPAM Requesters

Arm strongly recommends that a System MMU is to used to add MPAM information to requests from non-MPAM
Requesters, see Arm® System Memory Management Unit Architecture Specification, SMMU architecture (ARM IHI
0070) and Arm® Realm Management Extension (RME), for SMMUv3 Arm® System Memory Management Unit
Architecture Supplement (ARM IHI 0094).

Requesters attached to an SMMU for RME are only associated with the Secure and Non-secure states, and therefore
use two of the four PARTID spaces.

NoStreamID requesters attached to an SMMU for RME might issue transactions to Root or Realm physical address
space. For these accesses it is permitted to use Secure and Non-secure PARTID spaces respectively.

5.9.4.2 Non-MPAM Completers

Completers that have no support for the MPAM information accompanying requests should be interfaced to the
system by dropping MPAM information from the requests.

Table 5-3 Space mapping external to the MSC MAP4SPTO2SP fields

Field bits Field name Description

15 Rt_outPARTID_space If a request has a Root PARTID, the output PARTID uses this bit for MPAM_NS.

14 Rt_NO_MON If the request has a Root PARTID, output this bit as the NO_MON flag.

7 Rl_outPARTID_space If a request has a Realm PARTID, the output PARTID uses this bit for MPAM_NS.

6 Rl_NO_MON If the request has a Realm PARTID, output this bit as the NO_MON flag.

Table 5-4 Four-space to two-space static reduction scheme

Four-space MPAM_SP Input Two-space MPAM_NS Output

0b00 (Secure PARTID space) 0b0 (Secure PARTID space)

0b01 (Non-secure PARTID space) 0b1 (Non-secure PARTID space)

0b10 (Root PARTID space) 0b0 (Secure PARTID space)

0b11 (Realm PARTID space) 0b1 (Non-secure PARTID space)

System Model
5.9 The MPAM for RME system

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 5-58
ID041924 Non-Confidential

A non-MPAM Completer limits the topology of MPAM in the system because it does not propagate MPAM
information to MPAM components downstream. See Systems with both two PARTID space and four PARTID space
components.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-59
ID041924 Non-Confidential

Chapter 6
MPAM in MSCs

This chapter contains the following sections:

• Introduction.

• Resource controls.

• Resource instance selection.

• Security in MSCs.

• Virtualization support in system MSCs.

• PE with integrated MSCs.

• System-wide PARTID and PMG widths.

• MPAM interrupts.

• MSC support of MPAM for RME.

MPAM in MSCs
6.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-60
ID041924 Non-Confidential

6.1 Introduction
This introduction to Memory-System Components, or MSCs, is informative. Other sections are normative unless
marked as informative.

MSCs consist of all units that handle load or store requests issued by any MPAM Requester. These include cache
memories, interconnects, Memory Management Units, memory channel controllers, queues, buffers, and rate
adapters.

An MSC can be a part of another system component. For example, a PE might contain caches, which are MSCs. An
MSC has resources that are used to process memory requests. The use of a resource can be controlled. A resource
that can be controlled according to the PARTID of memory requests is partitioned. A resource might be monitored
by a resource usage monitor.

6.1.1 MPAM versions in MSCs

MSCs can be used in MPAM v1.0, v1.1, and in v0.1 under certain conditions. If an MSC does not implement any
of the MPAM v1.1 MSC features listed in MPAM versions for PEs, in Arm® Architecture Reference Manual, for
A-profile architecture (ARM DDI 0487), then it is version 1.0.

Note
The MPAM version of an MSC is available in MPAMF_AIDR, see MPAM versions for MSCs.

If an MSC implements the extended MPAMF_IDR, or any of the MPAM v1.1 MSC features, it is either MPAM
v1.1 or MPAM v0.1. An MSC must not use MPAM v0.1 unless all of these conditions are met:

• The MSC can initiate requests.

• Requests can be initiated in the Secure address space.

• Requests to the Secure address space can have MPAM_NS forced to 1.

• Software that configures the MSC to make requests in the Secure address space:

— Cannot control the forcing of MPAM_NS.

— Cannot easily see that MPAM_NS is being forced.

An MSC that supports the four physical address spaces of FEAT_RME must have MPAMF_IDR.SP4 set to 1 and
support an MPAM Feature page in each of the four address spaces. See Four-space MSC.

MPAM in MSCs
6.2 Resource controls

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-61
ID041924 Non-Confidential

6.2 Resource controls
This section is normative.

An MSC optionally contains one or more MPAM resource controls. Although resource controls that control
different performance resources have different control parameters, all resource controls are similar in the following
aspects that form a common framework:

• Each resource control uses the MPAM PARTID and MPAM_NS signals from the incoming request to select
control parameters from an array of Non-secure parameters (when MPAM_NS == 1) or Secure parameters
(when MPAM_NS == 0).

• The selected parameters control the behavior of the MSC, either to partition the performance resources or to
control the monitoring of performance resource usage.

For more information, see:

• Model of a resource partitioning control for a model of a resource partitioning control.

• Chapter 7 Resource Partitioning Controls for more detailed information on resource partitioning controls.

• Resource instance selection for how these controls are affected when resource instance selection is supported.

MPAM in MSCs
6.3 Resource instance selection

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-62
ID041924 Non-Confidential

6.3 Resource instance selection
Resource instance selection, or RIS, allows support for MSCs with multiple resources. This includes multiple
resources with the same resource type or partitioning control.This means that each MSC can only have independent
resource controls and two or more resources of the same type when RIS is implemented. In MPAM v0.1 and from
MPAM v1.1, this optional feature is implemented when MPAMF_IDR.HAS_RIS is 1.

This section provides more detail on:

• RIS values.

• RIS controls in MPAMCFG_PART_SEL.

• RIS controls in MSMON_CFG_MON_SEL.

• Effects of MPAMCFG_PART_SEL.RIS on values read from other registers.

• Selecting a resource to monitor.

• Undefined RIS values.

• Reporting errors involving RIS.

6.3.1 RIS values

Each resource that has MPAM resource partitioning controls or can be monitored by an MPAM resource usage
monitor has a RIS value.

The RIS value in MPAMCFG_PART_SEL.RIS is used to select which resource to describe in ID register fields.
MPAMCFG_PART_SEL.RIS is also used along with MPAMCFG_PART_SEL.PART_SEL to select the resource
and PARTID when accessing MPAMCFG_* resource control registers.

MPAM resource monitors are usually associated with a resource instance, and the RIS value for that resource
instance is also used in MSMON_CFG_MON_SEL.RIS to select the monitors associated with that resource.

RIS values are IMPLEMENTATION DEFINED. Any two resources in an MSC must have different RIS values. The RIS
value is assigned to a resource in the MSC.

MPAMF_IDR.RIS_MAX gives the largest value of RIS that is defined for the MSC. A RIS value from 0 to
RIS_MAX can be assigned to any partitioned or monitored resource. There is no requirement for every RIS value
to be assigned to a partitioned or monitored resource.

As software for MPAMv1.0 would not set the value of the RIS field to any value other than 0, the only resource that
can be identified and controlled by software that is not aware of this feature is resource instance 0.

6.3.2 RIS controls in MPAMCFG_PART_SEL

The value in MPAMCFG_PART_SEL.RIS selects the resource instance that is:

• Described by the MPAMF ID registers.

• Controlled by accessing the MPAMCFG_* registers.

6.3.3 Effects of MPAMCFG_PART_SEL.RIS on partitioning controls

To access control settings for a particular resource instance and PARTID, MPAMCFG_PART_SEL.PART_SEL is
set to the PARTID and MPAMCFG_PART_SEL.RIS is set to the value associated with that resource instance.
Accesses to additional MPAMCFG_* registers made without changing MPAMCFG_PART_SEL can be used to
read and write additional control settings for that resource instance and partition.

If a control applies to all resource instances, this common control must be accessed with
MPAMCFG_PART_SEL.RIS set to 0.

MPAM in MSCs
6.3 Resource instance selection

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-63
ID041924 Non-Confidential

If there is only a single resource instance in an MSC, all controls must be associated with
MPAMCFG_PART_SEL.RIS set to 0.

If an MPAMCFG register is accessed when MPAMCFG_PART_SEL.RIS is set to a resource instance that does not
support the accessed control, then the behavior is CONSTRAINED UNPREDICTABLE, see RIS in
MPAMCFG_PART_SEL.RIS does not have partitioning control (errorcode == 9).

6.3.4 Effects of MPAMCFG_PART_SEL.RIS on values read from other registers

Fields within other registers reflect the capabilities of the resource instance that has been selected by
MPAMCFG_PART_SEL.RIS, and so might have different values in different resource instances.

The effects of RIS on the MPAM identification registers are shown in Table 6-1

Table 6-1 MPAM ID register fields affected by a resource instance

Register Field Affected by MPAMCFG_PART_SEL.RIS

MPAMF_CCAP_IDR CMAX_WD This field is permitted to vary between resource instances.

HAS_CMAX_SOFTLIM This field is permitted to vary between resource instances.

NO_CMAX This field is permitted to vary between resource instances.

HAS_CMIN This field is permitted to vary between resource instances.

HAS_CASSOC This field is permitted to vary between resource instances.

CASSOC_WD This field is permitted to vary between resource instances.

MPAMF_CPOR_IDR CPBM_WD This field is permitted to vary between resource instances.

MPAMF_CSUMON_IDR HAS_CAPTURE This field is permitted to vary between resource instances.

CSU_RO This field is permitted to vary between resource instances.

NUM_MON This field is permitted to vary between resource instances.

HAS_XCL This field is permitted to vary between resource instances.

HAS_CEVNT_OFLW This field is permitted to vary between resource instances.

HAS_CEVNT_CAPT This field is permitted to vary between resource instances.

MPAMF_IDR NO_IMPL_MSMON MPAMF_IMPL_IDR describes no resource usage monitors.

NO_IMPL_PART MPAMF_IMPL_IDR describes no resource partitioning controls.

HAS_MSMON The resource usage monitors described in MPAMF_MSMON_IDR,
otherwise this field is 0b0.

HAS_IMPL_IDR The IMPLEMENTATION DEFINED features described in
MPAMF_IMPL_IDR, otherwise this field is 0b0.

HAS_PRI_PART The priority partitioning described in MPAMF_PRI_IDR, otherwise 0b0.

HAS_MBW_PART The memory bandwidth partitioning described in MPAMF_MBW_IDR,
otherwise 0b0.

HAS_CPOR_PART The cache portion partitioning described in MPAMF_CPOR_IDR,
otherwise 0b0.

HAS_CCAP_PART The cache capacity partitioning described in MPAMF_CCAP_IDR,
otherwise 0b0.

MPAMF_IMPL_IDR IMPLFEAT The IMPLFEAT contents vary according to the resource instance selected,
and cannot be specified by the architecture.

MPAMF_MSMON_IDR MSMON_MBWU The memory bandwidth usage monitors of the resource, otherwise this
field is 0b0.

MSMON_CSU The cache storage usage monitors of the selected resource instance.
Otherwise this field is 0b0.

MPAM in MSCs
6.3 Resource instance selection

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-64
ID041924 Non-Confidential

The following registers re not affected by RIS:

• MPAMF_AIDR.

• MPAMF_ECR.

• MPAMF_ESR.

• MPAMF_IIDR.

• MPAMF_PARTID_NRW_IDR.

• MPAMF_SIDR.

• MPAMCFG_PART_SEL.

• MPAMF_ERR_MSI_ADDR_H.

• MPAMF_ERR_MSI_ADDR_L.

MPAMF_PRI_IDRa DSPRI_WD The downstream priority width. Ignored if
MPAMF_PRI_IDR.HAS_DSPRI is set to 0.

DSPRI_0_IS_LOW The downstream priority encoded with 0 being the low priority. Ignored
if MPAMF_PRI_IDR.HAS_DSPRI is set to 0.

HAS_DSPRI The downstream priority control.

INTPRI_WD The internal priority width. Ignored if MPAMF_PRI_IDR.HAS_INTPRI
is set to 0.

INTPRI_0_IS_LOW The internal priority encoded with 0 being low priority. Ignored if
MPAMF_PRI_IDR.HAS_INTPRI is set to 0.

HAS_INTPRI The internal priority control.

MPAMF_MBW_IDR BWPBM_WD This field is permitted to vary between resource instances.

HAS_PROP This field is permitted to vary between resource instances.

HAS_PBM This field is permitted to vary between resource instances.

HAS_MAX This field is permitted to vary between resource instances.

HAS_MIN This field is permitted to vary between resource instances.

HAS_MAX This field is permitted to vary between resource instances.

MAX_LIM This field is permitted to vary between resource instances.

MPAMF_MBWUMON_IDRHAS_CAPTURE This field is permitted to vary between resource instances.

HAS_RWBW This field is permitted to vary between resource instances.

HAS_LONG This field is permitted to vary between resource instances.

LWD This field is permitted to vary between resource instances.

SCALE This field is permitted to vary between resource instances.

NUM_MON This field is permitted to vary between resource instances.

HAS_OFLOW_LNKG This field is permitted to vary between resource instances.

HAS_OFSR This field is permitted to vary between resource instances.

HAS_CEVNT_OFLW This field is permitted to vary between resource instances.

HAS_CEVNT_CAPT This field is permitted to vary between resource instances.

a. If the priority partitioning is local to the resource instance, then all fields might vary between resource instances. If the priority partitioning
operates at the MSC level, then MPAMF_PRI_IDR should be non-zero only when RIS is 0.

Table 6-1 MPAM ID register fields affected by a resource instance (continued)

Register Field Affected by MPAMCFG_PART_SEL.RIS

MPAM in MSCs
6.3 Resource instance selection

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-65
ID041924 Non-Confidential

• MPAMF_ERR_MSI_ATTR.

• MPAMF_ERR_MSI_DATA.

• MPAMF_ERR_MSI_MPAM.

MPAMCFG resource control settings are selected by the MPAMCFG_PART_SEL register. The RIS field selects the
resource instance and the PARTID_SEL field selects the PARTID of the resource control setting accessed. The
PARTID space of the resource control is selected by the address space accessed.

MPAMCFG_PART_SEL.RIS accesses different resource instances. The resource instance selected can have control
settings registers for accessing the controls for the selected resource.

The following resource configuration registers access resource control settings for different resources as selected by
MPAMCFG_PART_SEL.RIS:

• MPAMCFG_CASSOC.

• MPAMCFG_CASSOC.

• MPAMCFG_CMIN.

• MPAMCFG_CPBM<n>.

• MPAMCFG_MBW_MAX.

• MPAMCFG_MBW_MIN.

• MPAMCFG_MBW_PBM<n>.

• MPAMCFG_MBW_PROP.

• MPAMCFG_PRI.

The following MPAM control settings are global to all resources in the MSC:

• MPAMCFG_DIS.

• MPAMCFG_EN.

• MPAMCFG_EN_FLAGS.

• MPAMCFG_INTPARTID.

• MPAMCFG_MBW_WINWD.

• MPAMCFG_PART_SEL.

6.3.5 RIS controls in MSMON_CFG_MON_SEL

The value in MSMON_CFG_MON_SEL.RIS selects the resource instance that is accessed by:

• The MSMON_CFG_* monitor configuration registers.

• The MSMON_* monitor and monitor capture registers.

• MSMON_CSU_OFSR and MSMON_MBWU_OFSR overflow status registers.

To access the configuration, value and capture registers associated with a monitor, the value of
MSMON_CFG_MON_SEL.RIS should be set to match the RIS value associated with that monitor. Monitors not
associated with any particular resource or associated with the MSC must be associated with
MPAMCFG_PART_SEL.RIS == 0.

Note
Monitoring ID registers, MPAMF_MSMON_IDR, MPAMF_MBWUMON_IDR, and MPAMF_CSUMON_IDR,
are not affected by MSMON_CFG_MON_SEL.RIS. These registers are affected by MPAMCFG_PART_SEL.RIS.

MPAM in MSCs
6.3 Resource instance selection

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-66
ID041924 Non-Confidential

MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA, MSMON_OFLOW_MSI_MPAM, and MSMON_OFLOW_SR are not affected
by MSMON_CFG_MON_SEL.RIS.

6.3.6 Selecting a resource to monitor

To select the monitors for a particular resource instance, the value of MSMON_CFG_MON_SEL.RIS must be the
same value as used in MPAMCFG_PART_SEL.RIS. Monitors that are not associated with an MPAM partitioned
resource instance must be selected with a RIS value of 0.

To access a monitor for a particular resource, the MSMON_CFG_MON_SEL.RIS must be set to the resource
instance. Then one or more MSMON_CFG_* registers for the particular monitor are accessed.

Any access to a MSMON_* register address will access the register associated with the resource instance value held
in MSMON_CFG_MON_SEL.RIS. The exceptions to this are accesses to the MSMON_CFG_MON_SEL and
MSMON_CAPT_EVNT registers, which are not affected by the value held in MSMON_CFG_MON_SEL.RIS.

6.3.7 Undefined RIS values

This section covers behaviors when the value of MPAMCFG_PART_SEL.RIS or MSMON_CFG_MON_SEL.RIS:

• Is greater than MPAMF_IDR.RIS_MAX.

• Does not correspond to an MPAM resource implemented in this MSC.

• Does correspond to an implemented MPAM resource, but the selected resource does not implement the
control or monitor that has been accessed.

An MSC is permitted to:

• Implement fewer RIS bits than the architecture defines, though it must implement at least enough bits to
represent MPAMF_IDR.RIS_MAX.

• Leave some RIS values that are within the range of 0 to MPAMF_IDR.RIS_MAX as undefined.

• Use only the implemented bits to decode RIS for selecting a resource instance.

Undefined resources that are within the range can still be identified. This is because the HAS_* fields within the ID
registers all read as 0 when MPAMCFG_PART_SEL.RIS selects an undefined resource. All RIS values greater than
MPAMF_IDR.RIS_MAX are undefined.

If software honors MPAMF_IDR.RIS_MAX and avoids accessing any Memory-mapped registers (MMR) that are
not indicated with the corresponding HAS_* fields in the ID registers for that resource instance, it will not cause
any RIS-related errors.

For more information on behavior caused by undefined RIS values, see:

• Undefined RIS in MPAMCFG_PART_SEL.RIS (errorcode == 8).

• RIS in MPAMCFG_PART_SEL.RIS does not have partitioning control (errorcode == 9).

• Undefined RIS in MSMON_CFG_MON_SEL.RIS (errorcode == 10).

• RIS selected by MSMON_CFG_MON_SEL.RIS does not have monitor type (errorcode == 11).

6.3.7.1 Reading an MPAMF ID register when MPAMCFG_PART_SEL is an undefined RIS
value

Access to an MPAMF ID register when MPAMCFG_PART_SEL.RIS is an undefined value must produce an ID
register value where all HAS_* fields read as 0. This action does not produce an error in MPAMF_ESR or signal
an error interrupt.

MPAM in MSCs
6.3 Resource instance selection

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-67
ID041924 Non-Confidential

6.3.8 Reporting errors involving RIS

Software can misconfigure the RIS fields in MPAMCFG_PART_SEL and MSMON_CFG_MON_SEL registers,
possibly resulting in errors. See Optionality of error detection and reporting.

When an error is reported that involves a RIS value, the MPAMF_ESR.RIS field must be set to:

• For errors involving MPAMCFG_* register accesses, the MPAMCFG_PART_SEL.RIS.

• For errors involving MSMON_* register accesses, the MSMON_CFG_MON_SEL.RIS value.

For MPAM errors that do not capture the RIS field in MPAMF_ESR.RIS as shown in Table 10-1,
MPAMF_ESR.RIS should be set to 0.

MPAM in MSCs
6.4 Security in MSCs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-68
ID041924 Non-Confidential

6.4 Security in MSCs
MPAM behavior in an MSC is affected in the following ways:

• Certain memory-mapped registers are only accessible from Secure address space (NS == 0).

• PARTIDs communicated to the MSC are augmented with a single MPAM_NS bit as 0, indicating that the
MPAM PARTID in the request is to be interpreted in the Secure PARTID space. This is true even if the access
from Secure state software was to the Non-secure (NS == 1) address space. MPAM_NS is always 0 if the PE
is in the Secure state when the request is made, but the address of the request can be either a Secure or a
Non-secure address. If the PE is in the Non-secure state, both the MPAM_NS bit and the address NS bit must
be 1. See PARTID spaces and properties.

• When an MSC receives a transaction with MPAM_NS == 0, it accesses control settings for the Secure
PARTID. If it receives a request with MPAM_NS == 1 it accesses the control settings for the Non-secure
PARTID space.

• When programming the control settings for a Secure partition in an MSC, the settings must be stored by an
access to the configuration registers in the Secure address space (NS == 0). See Programming configuration
of MPAM settings for Secure IDs.

• When programming the control settings for a Non-secure partition in an MSC, the settings must be stored by
an access to the configuration registers in the Non-secure address space (NS == 1).

6.4.1 Programming configuration of MPAM settings for Secure IDs

Configuration parameters for a Secure PARTID or Secure MPAM monitor can only be programmed from a Secure
memory access (NS == 0):

• There are Secure and Non-secure versions of the MPAMCFG_PART_SEL and MSMON_CFG_MON_SEL.
These two versions are accessed at the same address, differentiated by the value of the NS bit.

• Accessing an MPAMCFG_* register with a Secure (NS == 0) request accesses the configuration of a resource
control of the Secure PARTID space that is selected by the PARTID in MPAMCFG_PART_SEL_S.

• Accessing an MPAMCFG_* register with a Non-secure (NS == 1) request accesses the configuration of a
resource control of the Non-secure PARTID space that is selected by the PARTID in
MPAMCFG_PART_SEL_NS.

6.4.2 Using Secure and Non-secure MPAM PARTIDs

When a request is processed by an MSC with MPAM resource controls, PARTID, PMG, and MPAM_NS control
the partitioning control settings used and monitoring events triggered.

The PARTID and MPAM_NS of a request select the partitioning configuration from a table of PARTID
configurations for each implemented resource control. The MPAM_NS bit in the request selects between the
Non-secure configuration table and the Secure configuration table. The two tables do not need to have the same size.
For example, the Secure configuration table might be much smaller. Tables are not required to be power-of-two
sized.

A monitoring event is triggered if the PARTID, PMG, and MPAM_NS in a request match those configured in a
performance monitor.

MPAM in MSCs
6.5 Virtualization support in system MSCs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-69
ID041924 Non-Confidential

6.5 Virtualization support in system MSCs
MSCs do not see virtual PARTIDs. The PARTID generation in a Requester resolves any virtual PARTID into a
physical PARTID that is communicated with the memory-system request. Therefore, MSCs only handle physical
PARTIDs.

6.5.1 Hypervisor emulates guest accesses to partitioning and monitoring configurations

Accesses from a guest to the configuration registers of all MSCs, and to the System registers that configure the PE
MSCs, may be emulated by the host hypervisor. This allows virtual PARTID mapping to be emulated and hypervisor
policies governing resource partitioning to be applied.

Configuration and reconfiguration of control settings in MSCs are expected to be rare occurrences.

Arm recommends that the memory-mapped configuration registers of an MSC must be placed at a 64-KB-aligned
address to permit an access trap on that page in the stage-2 page tables. The stage-2 access traps are taken to EL2
where the hypervisor can emulate the access. For more information on recommended configurations of
memory-mapped registers of an MSC, see MPAM feature page.

MPAM in MSCs
6.6 PE with integrated MSCs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-70
ID041924 Non-Confidential

6.6 PE with integrated MSCs
A PE might have integrated MSC behaviors. These are discovered and configured in the same way as other MSCs.
See: Chapter 9 Memory-mapped Registers .

MPAM in MSCs
6.7 System-wide PARTID and PMG widths

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-71
ID041924 Non-Confidential

6.7 System-wide PARTID and PMG widths
This section is informative.

The behavior of an MSC is CONSTRAINED UNPREDICTABLE if it receives an MPAM PARTID or PMG outside the
range it supports. For more information, see Behavior of configuration reads and writes with errors.

For predictable behavior, the PARTID on a request by a Requester must be in the range of 0 to:

• If the request is MPAM_NS == 1, the smallest maximum Non-secure PARTID supported by any MSC that
might be accessed by that request.

• If the request is MPAM_NS == 0, the smallest maximum Secure PARTID supported by any MSC that might
be accessed by that request.

And, the PMG on a request by a Requester must be in the range of 0 to:

• If the request is MPAM_NS == 1, the smallest maximum Non-secure PMG supported by any MSC that might
be accessed by that request.

• If the request is MPAM_NS == 0, the smallest maximum Secure PMG supported by any MSC that might be
accessed by that request.

The smallest maximum values for PARTID and PMG in Non-secure and Secure spaces can be computed from
firmware during discovery. PARTID and PMG widths are reported through ID registers in PEs and MSCs. See
sections Appendix B MSC Firmware Data, and Determining presence and location of MMRs.

MPAM in MSCs
6.8 MPAM interrupts

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-72
ID041924 Non-Confidential

6.8 MPAM interrupts
This section is normative.

There are two types of interrupts that an MPAM MSC can generate:

• MPAM Error Interrupt.

• MPAM Overflow Interrupt.

6.8.1 MPAM Error Interrupt

MPAM errors in MSCs are described in Error conditions in accessing memory-mapped registers.

MPAM errors that are detected in an MSC are recorded in MPAMF_ESR and signaled to software via an MPAM
error interrupt if enabled by MPAMF_ECR.INTEN == 1.

If an MSC cannot encounter any of the error conditions listed in Error conditions in accessing memory-mapped
registers, both the MPAMF_ESR and MPAMF_ECR must be RAZ/WI. An error cannot be encountered if the MSC:

• Does not support any feature of MPAM that can raise that error.

• Is designed so that the error cannot occur.

• Is permitted to have no detection for that error and does not implement detection for the error, see Required
error condition detection.

If an MSC supports both Secure and Non-secure address spaces, MPAMF_ESR and MPAMF_ECR will each have
a Secure instance and a Non-secure instance. The Secure registers control and generate Secure MPAM error
interrupts, while the Non-secure registers control and generate Non-secure MPAM error interrupts.

The MPAM error interrupt can be implemented in an MSC as a level-sensitive interrupt or as an edge-triggered
interrupt. The interrupt behavior depends on whether level-sensitive or edge-triggered interrupts are used.

• Arm recommends that the MPAM error interrupt be implemented as a level-sensitive interrupt.

• The mechanism by which an interrupt request from an MSC resource monitor generates an FIQ or IRQ
exception is IMPLEMENTATION DEFINED.

• Arm recommends that an MSC implements two MPAM error interrupt signals, one for the Secure MPAM
error interrupt and another for the Non-secure MPAM error interrupt.

• Arm recommends that MPAM error interrupt requests:

— Translate into an MPAM_ERR_IRQ signal, so that they are observable to external devices.

— If the MSC is integrated into a PE, connect to inputs on an IMPLEMENTATION DEFINED generic interrupt
controller as a Private Peripheral Interrupt (PPI) or a Locality-specific Peripheral Interrupt (LPI) for
that PE. See the Arm Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0 for information about PPIs, LPIs, and SPIs.

— If the MSC is not integrated into a PE, connect to inputs on an IMPLEMENTATION DEFINED generic
interrupt controller as a System Peripheral Interrupt (SPI) or Locality-Specific Peripheral Interrupt
(LPI).

6.8.1.1 Level-sensitive interrupts

When using level-sensitive interrupts, the interrupt is active when MPAMF_ESR.ERRCODE is non-zero.

Software can make a level-sensitive interrupt active by writing non-zero to MPAMF_ESR.ERRCODE.

An interrupt service routine is expected to write 0b0000 into MPAMF_ESR.ERRCODE to clear the interrupt.

If the MSC supports signaling the MPAM error interrupt through a Message signaled interrupt (MSI), the interrupt
must be edge-triggered.

MPAM in MSCs
6.8 MPAM interrupts

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-73
ID041924 Non-Confidential

See also Chapter 10 Errors in MSCs.

6.8.1.2 Edge-triggered interrupts

When using edge-triggered interrupts, the interrupt edge is generated when MPAMF_ESR.ERRCODE is written
due to an error.

An edge-triggered interrupt is not generated when software writes to MPAMF_ESR.

An interrupt service routine does not need to clear an edge-triggered interrupt.

If the MSC supports signaling the MPAM error interrupt through an MSI, the interrupt must be edge-triggered.

See Chapter 10 Errors in MSCs for other reasons for an interrupt service routine to clear MPAMF_ESR.

6.8.1.3 Support for MSI writes to signal error interrupts

Message signaled interrupts (MSIs) are signaled using a memory write that is usually directed at an interrupt
translation service.

The support for error MSIs is identified by the MPAMF_IDR.{HAS_ERR_MSI, HAS_ESR} fields.

The registers that contain the error MSI write configuration are:

• MPAMF_ERR_MSI_ADDR_L.

• MPAMF_ERR_MSI_ADDR_H.

• MPAMF_ERR_MSI_ATTR.

• MPAMF_ERR_MSI_DATA.

• MPAMF_ERR_MSI_MPAM.

Instances of these MSI configuration registers exist in each of the Secure physical address space and the Non-secure
physical address space. The set of these registers in an address space configures the error MSI write for errors from
the MPAMCFG_* or MPAMF_* registers in that address space.

Errors can also be raised by errors in requests. Errors in requests which have the PARTID space selected by
MPAM_NS of 0 are signaled as Secure errors using the MSI write information from the MPAMF_ERR_MSI_*
registers in the Secure address space. Errors in requests which have the PARTID space selected by MPAM_NS of
1 are signaled as Non-secure errors using the MSI write information from the MPAM_ERR_MSI_* registers in the
Non-secure space.

6.8.2 MPAM overflow interrupt

A monitor can overflow, especially if it is a type of monitor that accumulates counts. If it is possible for a type of
monitor to overflow, there are bits in MSMON_CFG_*_CTL to control the behavior on overflow (Overflow status
bit).

Support of an overflow interrupt is optional in an MSC. If the MSC has monitors that can overflow, Arm
recommends that the MPAM overflow interrupt be implemented.

When an MPAM monitor instance overflows, it sets the OFLOW_STATUS flag in the monitor instance's control
register. If the OFLOW_STATUS flag was previously 0 and OFLOW_INTR bit is 1, an overflow interrupt is
signaled if the MSC implements overflow interrupts.

If an MSC supports both Secure and Non-secure address spaces, MSMON_CFG_*_CTL registers and
MSMON_MBWU and MSMON_CSU registers that are implemented have Secure and Non-secure instances.
Secure instances of MSMON_CFG_*_CTL.OFLOW_INTR control whether a Secure MPAM overflow interrupt is

MPAM in MSCs
6.8 MPAM interrupts

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-74
ID041924 Non-Confidential

generated when the corresponding Secure counter instance overflows. Non-secure instances of
MSMON_CFG_*_CTL.OFLOW_INTR control whether a Non-secure MPAM overflow interrupt is generated
when the corresponding Non-secure counter instance overflows.

• The mechanism by which an interrupt request from an MSC resource monitor generates an FIQ or IRQ
exception is IMPLEMENTATION DEFINED.

• Arm recommends that an MSC implements two MPAM overflow interrupt signals, one for the Secure MPAM
overflow interrupt and another for the Non-secure MPAM overflow interrupt.

• Arm recommends that MPAM overflow interrupt requests:

— Translate into an MPAM_OF_IRQ signal, so that they are observable to external devices.

— If the MSC is integrated into a PE, connect to inputs on an IMPLEMENTATION DEFINED generic interrupt
controller as a Private Peripheral Interrupt (PPI) or a Locality-specific Peripheral Interrupt (LPI) for
that PE. See the Arm Generic Interrupt Controller Architecture Specification, GIC architecture
version 3.0 and version 4.0 for information about PPIs, LPIs and SPIs.

— If the MSC is not integrated into a PE, connect to inputs on an IMPLEMENTATION DEFINED generic
interrupt controller as a System Peripheral Interrupt (SPI) or Local Peripheral Interrupt (LPI).

The interrupt is reset by writing 0 to the OFLOW_STATUS field of all overflowed monitor instances
MSMON_CFG_*_CTL register.

If the MSC supports signaling monitor overflow interrupts through an MSI, the MPAM monitor overflow interrupt
must be edge-triggered.

6.8.2.1 Support for MSI writes to signal overflow interrupts

MSIs are signaled using a memory write that is usually directed at an interrupt translation service.

The support for the monitor overflow interrupt is identified by the MPAMF_MSMON_IDR.{HAS_OFLW_INTR,
HAS_OFLW_MSI} fields.

The registers that contain the error MSI write configuration are:

• MSMON_OFLOW_MSI_ADDR_L

• MSMON_OFLOW_MSI_ADDR_H.

• MSMON_OFLOW_MSI_ATTR.

• MSMON_OFLOW_MSI_DATA.

• MSMON_OFLOW_MSI_MPAM.

Instances of these MSI configuration registers exist in each of the Secure physical address space and the Non-secure
physical address space. The set of these registers in an address space configures the overflow MSI write from
overflow events of monitors accessible in that address space.

6.8.2.2 Monitor overflow status register

The optional MSMON_OFLOW_SR register gives a summary of the overflow status flags (OFLOW_STATUS and
OFLOW_STATUS_L) for each RIS and for each monitor type.

This register contains a flag bit per RIS value. Each flag is 0 if all of the OFLOW_STATUS and
OFLOW_STATUS_L bits of all monitor types and all instances of each type for the resource instance are 0. Each
flag is 1 if any of the overflow status bits for any monitor instance of any type for the resource instance are 1.

The register also contains a flag bit for each monitor type. A monitor type flag is 1 if any monitor instance of the
type for the resource instance has the OFLOW_STATUS or OFLOW_STATUS_L bit as 1.

MSMON_OFLOW_SR is read-only. The flags are reset when the OFLOW_STATUS and OFLOW_STATUS_L
bits monitored by that flag have all be reset to zero.

MPAM in MSCs
6.8 MPAM interrupts

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-75
ID041924 Non-Confidential

The presence of MSMON_OFLOW_SR is indicated by MPAMF_MSMON_IDR.HAS_OFLOW_SR == 1.

6.8.2.3 Monitor type overflow status bitmap registers

In an implementation that has many monitor instances of a monitor type, the number of monitor instances to scan
for overflows is large even after consulting MSMON_OFLOW_SR to eliminate most of the RIS and monitor types.
To probe one monitor instance requires that the monitor overflow interrupt service routine set
MSMON_CFG_MON_SEL to a monitor instance, read MSMON_CFG_<type>_CTL and check one or two bits in
that register to see if the OFLOW_STATUS or OFLOW_STATUS_L bit is set.

To assist the scanning of many monitor instances, optional overflow status bitmap registers for a monitor type are
available for implementation. These overflow status bitmaps can greatly accelerate the scanning.

Each MPAM monitor type can have an optional overflow status register that shows the overflow status flags in a
bitmap of 32 monitor instances. The monitor instances shown are selected in MSMON_CFG_MON_SEL where the
RIS field selects the resource instance and the MON_SEL field AND 0xFFE0 selects the lowest of the contiguous
32 monitor instances reported in the bitmap.

For the CSU monitor type, the CSU overflow status register is MSMON_CSU_OFSR. The presence of this register
is discoverable in MPAMF_CSUMON_IDR.HAS_OFSR.

Note
In most implementations, CSU monitor instances will not be able to overflow as the maximum value in
MSMON_CSU is known at design time and will fit within the architectural maximum of MSMON_CSU. In such
an implementation, there will be no CSU monitor instance overflows and MSMON_CSU_OFSR has no value.

For the MBWU monitor type, the MBWU overflow status register is MSMON_MBWU_OFSR. The presence of
this register is discoverable in MPAMF_MBWUMON_IDR.HAS_OFSR.

MPAM in MSCs
6.9 MSC support of MPAM for RME

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-76
ID041924 Non-Confidential

6.9 MSC support of MPAM for RME
An RME system supports 4 physical address spaces. MPAM for RME supports the 4 address spaces and 4 PARTID
spaces. The MPAM system environment of an RME system is described in The MPAM for RME system.

Requirements and definitions are:

• An MSC that supports a PARTID space must support the associated Physical Address Space that is needed
for accessing the control settings configurations of the PARTIDs in that PARTID space.

• An MSC that supports the 4 physical address spaces and 4 PARTID spaces is defined as a four space MPAM
MSC.

• An MSC that supports either 4 or 2 physical address spaces and 2 PARTID spaces is defined as a two space
MPAM MSC.

• Non-MPAM components support either 1, 2 or 4 address spaces but do not support MPAM at all. Non-MPAM
devices have no regulated resources and must not have MPAM devices downstream. See Non-MPAM
components.

• Other combinations of physical address space support and PARTID space support are not permitted.

4 PARTID spaces must be supported in the levels of interconnect that connect RME PEs, but some MSCs might
support MPAM with support for only 2 PARTID spaces. See MPAM for RME propagation of MPAM_SP with
requests.

The MPAM PARTID space in a request and the physical address space accessed by the request are independent in
the request. The associations of physical address space and PARTID space are part of the request generation process
at a Requester. An MSC must not assume any association between the PARTID space of a request and the physical
address space of the request.

A four space MSC is permitted to use either a Non-secure MPAM error interrupt or a Secure MPAM error interrupt
for reporting an error associated with the Root or Realm PARTID spaces.

6.9.1 Four-space MSC

An MSC that fully supports RME and MPAM must have 4 PARTID spaces and 4 physical address spaces.

In an MSC that supports 4 PARTID spaces and 4 physical address spaces, the MPAMF_IDR.SP4 bit must be 1 when
read from any address space and, if RIS is supported, with any MPAMCFG_PART_SEL.RIS value.

MPAMF_BASE_s, MPAMF_BASE_ns, MPAMF_BASE_rt, MPAMF_BASE_rl must all be defined in the
firmware table description of the MSC.

The MPAM memory-mapped registers in each address space are at the offsets from the MPAM Feature Page Base
address in that address space. Table 6-2 shows the relationship of address space, the MPAM feature page base
address symbol and the contents of that MPAM feature page.

Table 6-2 Relationship of address space, MPAM feature page base address symbol and a description of the contents
of that MPAM feature page

Address
Space

MPAM Feature
Page Base Description

Non-Secure MPAMF_BASE_ns MPAM MSC registers in the Non-secure address space describe and access controls and
monitors for Non-secure PARTID space.

Secure MPAMF_BASE_s MPAM MSC registers in the Secure address space describe and access controls and monitors
for Secure PARTIDs.

Realm MPAMF_BASE_rl MPAM MSC registers in the Realm address space describe and access controls and monitors
for the Realm PARTID space.

Root MPAMF_BASE_rt MPAM MSC registers in the Root address space describe and access controls and monitors
for the Root PARTID space.

MPAM in MSCs
6.9 MSC support of MPAM for RME

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 6-77
ID041924 Non-Confidential

The offsets of MPAM memory-mapped registers from the MPAM Feature Page base address are the same for each
MPAM Feature page and in each address space. See Table 9-1 for all MPAM MSC registers. Added fields and
accessors for the two physical address spaces for RME are described in this chapter. See Chapter 9 Memory-mapped
Registers for Memory-mapped registers from the MPAMF_BASE_* for that address space.

See Minimum required MPAM memory-mapped registers for the required minimum set of MPAM registers
accessible from the MPAM Feature Page in any address space. In each address space the MPAM features of the
MSC in that address space are described by decoding the fields in MPAMF_IDR. This indicates that additional ID
registers are present and further describe the features. MPAM has no requirement that the resource controls and
monitors in one address space are the same as those described in another address space.

Instances of the MPAMCFG_* registers must exist in each of the 4 address spaces where MPAMF_*IDR.HAS_*
is 1 for a feature that uses those registers.

There must be an instance of MPAMCFG_PART_SEL in each of the 4 address spaces unless there are no resource
controls or resource instances in the PARTID space whose control registers are accessed through that physical
address space.

Instances of the MSMON_* registers must exist in each address space where the ID registers indicate that the
monitor exists.

There must be an instance of MSMON_CFG_MON_SEL in each of the 4 address spaces that contain any monitor
registers.

MPAMF_ESR and MPAMF_ECR must exist in each address space in each of the 4 address spaces where
MPAMF_IDR.HAS_ESR is 1.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-78
ID041924 Non-Confidential

Chapter 7
Resource Partitioning Controls

This chapter contains the following sections:

• Introduction.

• MPAM partitionable resources.

• Standard partitioning control interfaces.

• Vendor or implementation-specific partitioning control interfaces.

• Measurements for controlling resource usage.

• PARTID narrowing.

• System reset of MPAM controls in MSCs.

• About the fixed-point fractional format.

Resource Partitioning Controls
7.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-79
ID041924 Non-Confidential

7.1 Introduction
This introduction to memory-system partitioning is informative. Other sections are normative unless marked as
informative.

Software assigns VMs and applications to a partition. The hypervisor can assign VMs to partitions, and operating
systems can assign applications to partitions. This specification does not address how such assignments are made
by software.

A memory-system partition is associated with a software environment on a PE by loading an MPAMn_ELx register
with PARTID_I and PARTID_D. An EL2 hypervisor loads MPAM1_EL1 with the partition IDs when
context-switching between VMs. An EL1 operating system loads MPAM0_EL1 with the partition IDs when
context-switching between applications. The PARTIDs loaded into fields of MPAMn_ELx for instruction and data
accesses are used for requests when running software at ELn. The PARTID on memory-system requests connects
the software environment to the resource partitioning controls in the MSCs that handle the requests.

Figure 7-1 Partitioning, VMs, and OS processes

The PARTID of a request controls uses of each MSC’s performance resources. An MSC receives a PARTID with
each request. The PARTID may be used within the component to select resource controls for the component’s
resource allocation and utilization behavior.

All memory-system requests with a given PARTID share the resource control settings for that partition.

Because a PARTID is communicated to shared MSCs and interpreted there, PARTIDs should be managed and
allocated on a system-wide basis.

Resource partitioning controls might be standard or implementation specific.

Standard control interfaces are architected, but optional. Therefore, an MSC that does not require a standard control
interface does not need to implement it. Most MSCs implement few of the standard control interfaces.

An implementation-specific resource control can use a PARTID for unique facilities that either control resources
not envisioned by the standard controls or that implement unique control methods that cannot be mapped onto the
standard control interfaces.

VM3

PARTID 0

PARTID 1

PARTID 2

Process
3741

Process
3974

VM7
Process

1473
Process

3974

Resource Partitioning Controls
7.2 MPAM partitionable resources

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-80
ID041924 Non-Confidential

7.2 MPAM partitionable resources
An MSC contains resources that affect the performance of the memory system. For such a resource to be
partitionable:

• The component must support MPAM at its upstream interface.

• The component must have one or more MPAM resource controls for that resource.

A partitionable resource may be partially allocated to a partition according to the programming of the MPAM
resource control or controls for that resource.

If the implementation supports the RIS MPAM feature, the MSC may have two or more partitionable resources
differentiated by the value of MPAMCFG_PART_SEL.RIS. For more information see Resource instance selection.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-81
ID041924 Non-Confidential

7.3 Standard partitioning control interfaces
The MPAM architecture defines standard partitioning control interfaces. This enables binary distribution of
operating systems supporting MPAM.

The MPAM architecture defines the following standard types of control interfaces for memory-system resources:

• Cache-portion partitioning.

• Cache maximum-capacity partitioning.

• Cache maximum associativity partitioning.

• Memory-bandwidth portion partitioning.

• Memory-bandwidth minimum and maximum partitioning.

• Memory-bandwidth proportional-stride partitioning.

• Priority partitioning.

Each of these standard control interfaces is optional at each MSC. An MSC may implement several controls or none.
Some controls only make sense for certain types of MSCs, or for certain implementations of an MSC. Others may
be possible but too costly for the system’s target market.

Cache-portion partitioning and memory-bandwidth portion partitioning follow the generic portion-control interface
described in Portion resource controls. Cache maximum-capacity partitioning follows the generic maximum-usage
control interface described in Maximum-usage resource controls.

The presence of each standard control is indicated by a bit in MPAMF_IDR, or in a resource-specific
memory-mapped ID register. See Memory-mapped ID register description.

The control settings storage is accessed through the combination of several access indices:

• The address space used to access the Secure or Non-secure MSC register. Controls for PARTIDs in:

— The Secure PARTID space are accessed through registers in the Secure address space

— The Non-secure PARTID space are accessed through registers in the Non-secure address space.

• The MSC that contains the control. This is represented as the base address of the MPAM feature page in the
address space. These are represented here as:

— MPAMF_BASE_s in the Secure address space.

— MPAMF_BASE_ns in the Non-secure address space.

• If MPAMF_IDR.HAS_RIS is 1, MPAMCFG_PART_SEL.RIS. This field selects a resource to access.

• MPAMCFG_PART_SEL.PARTID. This field selects the PARTID from:

— The PARTID space.

— The resource instance to be configured.

• The control settings register. When accessed, this register selects which control is being configured for:

— The PARTID.

— The PARTID space.

— The resource instance.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-82
ID041924 Non-Confidential

For example, to access the memory bandwidth maximum configuration settings for Secure PARTID 15 on resource
instance 2 of an MSC that implements RIS:

1. Secure PARTID 15 must be stored in MPAMCFG_PART_SEL.PARTID at the address MPAMF_BASE_s +
0x0100 and, due to RIS being implemented, the RIS field of that address must be set to 2 to ensure access to
the correct resource instance.

2. Once the store has completed, the new maximum fraction of memory bandwidth for Secure PARTID 15 of
resource instance 2 must be stored into the MPAMCFG_MBW_MAX_s register of this MSC, found at
MPAMF_BASE_s + 0x0208.

Software must ensure mutual exclusion for access to MPAMCFG_* registers of each MSC.

7.3.1 Disabling a PARTID

A PARTID can be enabled or disabled with a single store to the MSC. The enabled status of a PARTID within a
PARTID space is global to the MSC. It applies to all the other partitioning controls in that MSC.

This functionality allows for the rapid reclaim of resources used by a PARTID if the software using the PARTID is
exited or at equipment-wide mode changes.

A disabled PARTID behaves as if it is programmed to allocate no resource or allocate resource only with the lowest
allocation priority.

A PARTID is disabled by MPAMCFG_DIS with the PARTID and an NFU bit. The NFU bit declares that software
has no future use of that PARTID. If MPAMCFG_DIS.NFU is written as 0, hardware must preserve the settings of
MPAMCFG_DIS.PARTID and those settings must immediately be used once the PARTID is enabled at a later time.
If MPAMCFG_DIS.NFU is written as 1, hardware is permitted to either preserve the settings or to discard them and
so requiring new settings to be configured before the PARTID is re-enabled.

The PARTID disabled or enabled is in the PARTID space that corresponds to the MPAMF_BASE page instance used
to access the MPAMCFG_DIS or MPAMCFG_EN register.

The settings for a disabled PARTID can be accessed to read or write the control settings. See
MPAMCFG_PART_SEL and Resource controls.

If Resource instance selection is enabled in the MSC, The MPAMCFG_DIS, MPAMCFG_EN and registers affect
the behavior of all resource instances in the PARTID.

Instances of MPAMCFG_EN, MPAMCFG_DIS and MPAMCFG_EN_FLAGS exist at fixed offsets in each MPAM
feature page. There is an MPAM feature page in each physical address space. These feature pages access the control
settings of the PARTID in the PARTID space associated with that address space by using the
MPAMCFG_PART_SEL register instance in the same physical address space.

To assist in enabling or disabling many PARTIDs, MPAMCFG_EN_FLAGS accesses the enable flags of 32
PARTIDs at once for reading or writing as a bit vector. The block of PARTID enable flags are from
MPAMCFG_PART_SELPARTID_SEL & 0xFFE0 in MPAMCFG_EN_FLAGS[0] for 32 PARTIDs to
MPAMCFG_PART_SELPARTID_SEL & 0xFFE0 + 31 in MPAMCFG_EN_FLAGS[31].

When a PARTID is disabled by writing to MPAMCFG_EN_FLAGS, hardware must preserve the settings for that
PARTID.

A PARTID is re-enabled by storing MPAMCFG_EN with the PARTID to enable.

The enabled status of a PARTID controls the behavior of the request PARTID, even when PARTID narrowing is
implemented.

7.3.1.1 Enabled and disabled behavior of resource controls

The behavior of an enabled control is the normal behavior of that control with the programmed control settings.

The behavior of a disabled control depends on the type of the control:

• A fractional control is the same as if the control were set to zero.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-83
ID041924 Non-Confidential

• A portion-based partitioning control is as if the control were set to allocate no portions.

• In a cache, a disabled PARTID has the second lowest allocation priority. This is higher than the allocation
priority of an empty cache line, meaning it is likely to be replaced.

• For resource controls, only the control for PARTID of 0 must be reset. PARTID 0 must be reset to enabled
0b1. Firmware must initialize all PARTIDs in all PARTID spaces to be enabled at system boot before
transferring to software that might not support this feature.

• When PARTID narrowing is implemented, the resource control settings could be shared by multiple request
PARTIDs. Therefore, disabling a PARTID cannot make the resource control for a shared internal PARTID
act as if it has no resource, Instead it must act as if the request PARTID is temporarily mapped to an internal
PARTID that has no resources assigned. This means that MPAMCFG_DIS.NFU must not be implemented in
an MSC that has PARTID narrowing.

7.3.2 Cache-portion partitioning

A portion is a uniquely identifiable part of a resource. It is of fixed size or capacity and all portions of a resource
are the same size. A particular resource has a constant number of portions. Every partition that is given access to a
portion n shares access to portion n.

The storage portions of caches can be partitioned. Allocating portions of a cache to a partition permits requests
attributed to that partition to allocate within those portions of the cache.

When a request to a cache requires a cache line to be installed in the cache, the PARTID of that request determines
which portions of the cache the request may allocate to install the line.

Cache-portion partitioning uses the generic portion-partitioning interface described in Portion resource controls.

7.3.2.1 Cache-portion bit map

A cache-portion bitmap (CPBM) controls the cache-storage portion allocation for a partition. Each bit of a CPBM
controls whether the partition is permitted to allocate a particular capacity portion of the cache. The number of
capacity portions available in a cache is an IMPLEMENTATION DEFINED parameter that is discoverable in
MPAMF_CPOR_IDR for the cache. The width of the CPBM field is equal to the number of capacity portions
available in the cache.

For example, assume a cache has a 1 MB total capacity in 32 portions. Each portion has a capacity of 1 MB / 32 =
32 KB. A partition has 4 portions allocated (only 4 bits in the CPBM are 1’s). So, this partition can only allocate
into these particular 4 portions, allowing up to 128 KB, or 1/8th of the cache’s total capacity.

CPBM is an instance of the generic portion bitmap (PBM) described in Portion resource controls.

7.3.2.2 Over-allocation of capacity portions

Storage capacity portions cannot be over-allocated. This is true because the CPBM contains bits that control
allocations in the implementation-dependent number of allocable capacity portions of the cache.

7.3.2.3 Changing CPBM for a partition

Software may change the CPBM during system operation. This does not disrupt normal system operation because
the CPBM only affects new allocations and does not reallocate previously allocated cache storage.

If a cache line was allocated under a previous CPBM to a portion that is not set in the new CPBM, the partition is
using more of the cache capacity than it is entitled to under the new CPBM:

• If lines previously allocated in a portion that is not in the new CPBM are not accessed again, they will
eventually be reallocated to a partition that has its CPBM bit set for that portion of the capacity. So, these will
represent a temporary mis-allocation of capacity.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-84
ID041924 Non-Confidential

• If however, a line that is present in the cache in a portion that is not in the new CPBM continues to be
accessed, this can lead to a long-term mis-allocation of capacity. The line’s location optionally might be
updated, see Write hits that update the resource partition of a cache line may move that line to a different
portion.

7.3.2.4 Using cache-portion partitioning with cache maximum-capacity partitioning

When cache-portion partitioning is used with cache maximum-capacity partitioning, both controls are effective as
described in Using cache maximum-capacity partitioning with cache-portion partitioning.

7.3.3 Cache minimum-capacity resource control (CMIN)

Cache minimum-capacity resource control is a memory bandwidth minimum control that gives priority to a portion
of the cache capacity that a PARTID can use. When implemented this control is used in addition to cache maximum
capacity.

The MPAMCFG_CMIN register has the CMIN control setting in 16-bit fixed-point fraction format. A PARTID that
currently occupies less than CMIN fraction of the cache capacity has an elevated allocation priority.

The implemented bit width of the CMIN field is described in MPAMF_CCAP_IDR.CMAX_WD. Implemented bits
are always bit [15:16-CMAX_WD]. If both MPAMCFG_CMAX and MPAMCFG_CMIN are implemented, the
implemented most significant fractional bits of both registers are the same, and that width is CMAX_WD.

7.3.3.1 CMIN and Cache allocation priorities

The partitioning control contributes one level in a cache line allocation priority scheme, as shown in Table 7-1

The request PARTID is evaluated against these criteria and assigned a priority. A request cannot have priority of 0.

The priority values of each line in the set are compared and if there is at least one current cache occupant with lower
priority, the request replaces one lowest priority of these.

If there are no lower priority lines, but one or more lines of the same priority, the request can replace one of those
according to the following exceptions:

• If the request PARTID is currently using > CMAX of the capacity and has MPAMCFG_CMAX.SOFTLIM
== 0, the request may only replace a line currently occupied by the same PARTID.

• If the Cache associativity partitioning (CASSOC) control is implemented, this may limit the request PARTID
to not allocate any new capacity in the associativity unit (cache set) but only to replace one of the request
PARTID's previously allocated cache lines.

• Otherwise, the replacement target is chosen from among the lines at the same priority or lower by some other
mechanism, presumably the cache replacement algorithm.

Table 7-1 Cache allocation priorities

Cache line occupant Priority Description

Unallocated 0 - lowest Always allocatable

Disabled PARTID 1 Line occupied by disabled PARTID

PARTID with capacity
over CMAX

2 Line occupied by PARTID using > CMAX

PARTID between
CMAX and CMIN

3 Line occupied by PARTID in midrange

PARTID under CMIN 4 High priority

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-85
ID041924 Non-Confidential

If there are no current occupants with the same or lower priority than the request PARTID, then the request does not
allocate in the cache.

Note
A request by a PARTID always ties with lines currently occupied by the same PARTID as this priority is determined
solely from the PARTID.

7.3.3.2 Layered filtering of allocation choices

The choice of allocation candidates involves the following steps. They must be performed in order:

1. All implemented MPAM cache partitioning controls are applied:

• If MPAMCFG_CPBM<n> is implemented, only candidates that have the MPAMCFG_CPBM<n> bit
set are included.

• If MPAMCFG_CMAX is implemented and the PARTID currently occupies greater than CMAX
fraction of the cache capacity, the choices are limited to:

— If MPAMCFG_CMAX.SOFTLIM is 0, lines currently occupied by the same PARTID are
treated as the set of candidates.

— If MPAMCFG_CMAX.SOFTLIM is 1 specifying Unallocated lines, those occupied by a
disabled PARTID and those occupied by the same PARTID are treated as the set of candidates.

• If Cache associativity partitioning (CASSOC) is implemented and the request PARTID currently
occupies more than the CASSOC fraction of the associativity in the unit of associativity that the
request addresses, the choices are limited to only those lines already occupied by the request PARTID.

2. The CMIN priority of the request is compared to each of the remaining lines and those candidates that are
occupied by a PARTID of higher priority than the request are removed as candidates.

3. If no replacement candidates remain, no line is allocated. If candidates exist, the implementation's cache
replacement algorithm, for example LRU, is used to select between the remaining candidates.

7.3.4 Cache associativity partitioning (CASSOC)

Cache associativity partitioning gives direct control over the amount of associativity that the PARTID may use
within any unit of associativity. In a set associative cache, the CASSOC control sets the maximum fraction of the
ways that a PARTID could allocate within any cache set. In a fully associate cache, it would set the fraction of the
entries that the PARTID could use.

The cache maximum associativity control setting for a PARTID is accessed through the
MPAMCFG_CASSOC.CASSOC field. This field is encoded in the fixed-point fraction format.

Maximum cache associativity usage in fixed-point fraction format by the partition selected by
MPAMCFG_PART_SEL.

CASSOC sets the maximum fraction of the cache associativity that the PARTID is permitted to allocate. CASSOC
regulates the associativity in each associativity grouping of the cache. In a set associative cache, CASSOC applies
to the fraction of the ways in each set.

The implemented width of the fixed-point fraction is defined by MPAMF_CCAP_IDR.CASSOC_WD.

Unimplemented bits within the MPAMCFG_CASSOC.CASSOC field are RAZ/WI. The implemented bits of the
CASSOC field are always the most-significant bits of the field.

The fixed-point fraction CASSOC is less than 1. The implied binary point is between bits 15 and 16. This
representation has as the largest fraction of the cache that can be represented in an implementation with w
implemented bits is 1 - 1/(2w).

As with the other resource controls, the control for PARTID must reset to all 1s, the maximum fraction.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-86
ID041924 Non-Confidential

An instance of MPAMCFG_CASSOC exists at a fixed offset in each MPAM feature page. There is an MPAM
feature page in each physical address space. Accesses the CASSOC control setting for the PARTID in the PARTID
space associated with that address space using the MPAMCFG_PART_SEL register instance in that same physical
address space.

7.3.5 Cache maximum-capacity partitioning

A limit may be set on the storage capacity of a cache that a memory-system partition may use. Setting a maximum
cache capacity to a partition permits requests attributed to that partition to allocate up to that maximum cache
capacity. Attempts to allocate beyond that capacity must limit a partition’s capacity usage.

Techniques for limiting cache usage by a new request when a partition’s capacity usage is at or above its maximum
include:

• Do not allocate for the new request.

• Replace some data from that partition with data from the new request.

• Evict some data from that partition from the cache before allocating for the new request.

• Defer the required deallocation until a more convenient time.

Cache lookups are not affected by partitioning. A cache lookup must find a valid cache line even if that line was
allocated with a different PARTID.

Cache maximum-capacity partitioning follows the description of the generic maximum-usage resource control
interface described in Maximum-usage resource controls.

7.3.5.1 Cache maximum-capacity control setting

The cache maximum-capacity control setting is programmed by storing a capacity limit into the MSC's cache
maximum capacity control interface, MPAMCFG_CMAX.

This setting is a hard limit on the cache capacity. To set a soft limit, see Cache maximum-capacity control soft limit.

The cache maximum-capacity limit is a fraction of the cache's total capacity. The format of the limit value is a
fixed-point fraction, as described in About the fixed-point fractional format.

For example, to allocate 30% of a 256 KB cache to a partition:

• In the fixed-point fractional format, 1.0 is represented as 216 – 1, or in hex as 0xFFFF. The subtraction makes
1.0 within the range of the representation.

• So, the representation of 30% would be 1.0 * 0.30, which in hex is 0xFFFF * (decimal) 0.30, or 0x4CCC.

— Similarly, 25% would be 0x3FFF; 14% would be 0x23D6; 3% would be 0x07AE; and 3.25% would be
0x0851.

• If you have a cache with 256 KB of capacity, and the resource control setting for a PARTID is set to 0x4CCC
to represent 30%, that partition is permitted to use 30% of the cache, or about 76.75 KB of capacity.

• Since most, but not all, Arm caches have 64-byte lines, a 256 KB cache has 4096 of these 64-byte lines, and
30% of those lines is 1228 or 76.75 KB.

The fixed-point fractional format permits an implementation to leave bits to the right as unimplemented, meaning
that the value would be truncated to the implemented bits, causing some of the right-most bits to be zeros:

• As an example, the 3% value previously mentioned is 0x07AE. If only 8 bits of fraction are implemented, when
software stores 0x07AE into a resource control setting, the value is shortened to the most significant bits and
stored as 0x07--.

• When using the resource control setting, the unimplemented bits would be read as zeros.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-87
ID041924 Non-Confidential

The actual value of the setting is therefore an interval from the value of the control setting up to the value of the
control setting plus one in the right-most implemented bit.

• In the case of the 3% value previously mentioned, that interval is from 0x07 (2.734%) to 0x08 (3.125%).

• An implementation is permitted to regulate the resource to any point within this interval.

7.3.5.2 Cache maximum-capacity control soft limit

When MPAMF_CCAP_IDR.HAS_CMAX_SOFTLIM is 1, MPAMCFG_CMAX implements the SOFTLIM field.

When MPAMCFG_CMAX.SOFTLIM is 0, the cache maximum capacity control sets a hard limit that prevents the
PARTID from allocating more than the maximum fraction of the cache capacity.

When a PARTID's request requires allocation in the cache but the PARTID's cache capacity usage is above the
fraction of the cache capacity set by its MPAMCFG_CMAX register, its capacity use cannot be increased even if
there is unused capacity.

Setting the CMAX control for a PARTID to be set to a soft limit allows unused capacity to be temporarily used. The
control bit MPAMCFG_CMAX.SOFTLIM controls this behavior. When SOFTLIM is 1, a PARTID that is currently
using more than its MPAMCFG_CMAX.CMAX capacity is permitted to allocate more capacity from an
Unallocated line or a line that is in use by a disabled PARTID.

MPAMCFG_CMAX.SOFTLIM for PARTID 0 must reset to 0, hard limit behavior. For compatibility with software
that does not support SOFTLIM, the firmware must reset SOFTLIM to 0 for all PARTIDs in all PARTID spaces
before transferring to software that might not support SOFTLIM.

7.3.5.3 Using cache maximum-capacity partitioning with cache-portion partitioning

When cache-portion partitioning is used with cache maximum-capacity partitioning, both controls are effective.
Cache-portion partitioning controls which portions of the capacity may be allocated to this partition. Cache
maximum-capacity partitioning limits the amount to less than or equal to a cache-capacity limit control setting.

For example, assume several portions of the capacity are shared by several partitions. Any such partition can
allocate within the shared portions. To keep one of the partitions from using too much of the shared allocation, the
maximum-capacity controls for the partitions can each be set to less than the capacity of the portions to which they
may allocate. If each partition is given 50% of the capacity of the shared portions, then no one partition can use more
than 50% of the shared cache portions.

Here is an example of a cache with 1 MB total capacity in 32 portions. Each partition has 4 portions for shared
allocation. To allow a partition to use no more than 50% of its shared allocation, you would set the cache
maximum-capacity limit for this partition as follows:

1. Portions divide the capacity of the cache into distinct parts of the same size. So, for a 1 MB cache divided
into 32 portions, each portion has 1 MB / 32 = 32 KB:

a. In portion partitioning, it is not possible to allocate anything other than an integral number of portions
to a PARTID.

b. A cache portion may be exclusively allocated to a PARTID or it may be shared by 2 or more PARTIDs.

c. A PARTID that has 4 portions allocated to it is permitted to use 32 KB * 4 = 128 KB.

2. The combined behavior of cache-portion partitioning and cache maximum-capacity control has both
controls:

a. To allow a PARTID to use only 50% of the storage in the portions allocated to it, the cache
maximum-capacity control is used.

b. Compute the fraction of the cache that is 50% of the storage in the portions allocated. In this case, it
is 64 KB / 1 MB = 1/16 or 6.25%, which is 0x0FFF in the fixed-point fractional representation.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-88
ID041924 Non-Confidential

c. The combined behavior only permits the PARTID to allocate storage in the 4 portions it may use
according to the cache-portion control, but its use of storage is also limited to 50% of the storage of
those portions.

7.3.5.4 Over-allocation of capacity

Cache capacity can be over-allocated because the sum of the cache-capacity control parameters may exceed 100%
of the cache size. This may be acceptable. The cache-capacity control does not provide a minimum cache capacity
guarantee, only a maximum guarantee. The data of inactive partitions may be evicted from the cache due to the
activity of other partitions.

7.3.6 Memory-bandwidth portion partitioning

An MSC’s downstream bandwidth may be divided into portions, and those portions may be allocated to partitions.

Memory-bandwidth portion partitioning follows the generic portion-control interface described in Portion resource
controls, in which a portion is a quantum of bandwidth. A Time-Division Multiplexing (TDM) scheme that allocates
traffic to time slots is an example of a bandwidth allocation system that has portions.

The BandWidth Portion Bit Map (BWPBM) is the Portion Bit Map (PBM) for bandwidth.

7.3.7 Memory-bandwidth minimum and maximum partitioning

An MSC’s downstream bandwidth may be partitioned by bandwidth usage. There are two bandwidth-usage control
schemes. An MSC can optionally implement each of them:

• Minimum bandwidth to which the PARTID has claim, even in the presence of contention.

• Maximum bandwidth limit available to the PARTID, in the presence of contention.

The minimum and maximum bandwidth partitioning schemes rely on tracking bandwidth usage by PARTIDs.
Because bandwidth is measured in bytes per second, bandwidth measurements have a dependence on time. That
dependence is captured in this specification as the accounting window or accounting period. See
Memory-bandwidth allocation accounting window width

Without contention, the bandwidth may be strictly limited to the maximum or permitted to use more than the
maximum, since no other partition’s traffic is claiming that bandwidth.

Any combination of these control schemes may be used simultaneously in an MSC that supports them.

Each control scheme is described below.

7.3.7.1 Minimum-bandwidth limit partitioning

The minimum-bandwidth control scheme regulates the bandwidth used by a PARTID's requests:

• If the bandwidth usage by the PARTID of the request, as tracked during the accounting period, is currently
less than the partition’s minimum, its requests are preferentially selected to use downstream bandwidth.

• If the bandwidth usage by the PARTID of the request, as tracked during the accounting period, is currently
greater than or equal to the PARTID's minimum, its requests compete with other requests as described under
Maximum-bandwidth limit partitioning, if implemented. If maximum-bandwidth limit partitioning is not
implemented, requests with PARTID that have current bandwidth usage greater than that PARTID's
minimum-bandwidth limit compete with all requests and do not receive preferential treatment under the
minimum-bandwidth limit.

A PARTID's requests below its minimum bandwidth are therefore most likely to be scheduled to use downstream
bandwidth.

Bandwidth that is not used by a partition during an accounting window does not accumulate.

The control parameter is a fixed-point fraction of the available bandwidth. For more information, see About the
fixed-point fractional format.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-89
ID041924 Non-Confidential

7.3.7.2 Maximum-bandwidth limit partitioning

The maximum-bandwidth limit control scheme regulates the bandwidth used by a PARTID's requests:

• If the bandwidth usage by the PARTID as tracked during the accounting period is currently less than the
PARTID's maximum bandwidth but greater than or equal to its minimum bandwidth, if implemented, its
requests are selected to use bandwidth when there are no competing minimum bandwidth requests to service.
Requests for PARTIDs that are above their minimum-bandwidth limits but less than their
maximum-bandwidth limits compete with each other to use bandwidth.

• If the bandwidth usage by the PARTID of the request is greater than or equal to the PARTID's maximum
bandwidth and the HARDLIM bit is not set, the request competes with other such requests to use bandwidth
when there are no competing requests to service for PARTIDs currently below their minimum bandwidth or
maximum bandwidth.

• If the bandwidth usage by the PARTID of the request is greater than or equal to the PARTID's maximum
bandwidth and the Hard Limit (HARDLIM) bit is set, the requests are saved until the PARTID's bandwidth
usage drops below its maximum bandwidth control setting.

If the HARDLIM bit is set, the partition is prevented from using more bandwidth if the current bandwidth usage is
over the maximum bandwidth limit. As the accounting window advances, the current bandwidth usage resets to zero
or otherwise decays, permitting the partition to again use bandwidth.

Bandwidth that is not used by a partition during an accounting window does not accumulate.

The control parameter is a fixed-point fraction of the available bandwidth. For more information, see About the
fixed-point fractional format.

7.3.7.3 Using minimum-bandwidth limit with maximum-bandwidth limit controls

If both minimum-bandwidth limit and maximum-bandwidth limit are implemented, Table 7-2 shows the preference
of requests.

7.3.7.4 Bandwidth control parameters

The control parameters for bandwidth partitioning schemes are all expressed in a fixed-point fraction of the
available bandwidth. See About the fixed-point fractional format.

MPAMCFG_MBW_MAX, the bandwidth control setting register for maximum-bandwidth limit also includes a
Hard Limit (HARDLIM) bit that prevents a partition from using more than the maximum fraction of the available
bandwidth that is set in that register.

Table 7-2 Preference of requests for bandwidth limits

If used bandwidth is
The
preference
is

Description

Below the
minimum

High Only other High requests delay this requesta.

Above the
minimum

Below the maximum limit. Medium High requests are serviced first, then compete with other
Medium requestsa.

Above the maximum limit, with
HARDLIM clear.

Low Requests are not serviced if any High or Medium
requests are availablea.

Above the maximum limit, with
HARDLIM set.

None Requests are not serviced.

a. Implementations may occasionally deviate from preference order in servicing requests to meet other goals, such as starvation avoidance.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-90
ID041924 Non-Confidential

7.3.7.5 Memory-bandwidth allocation accounting window width

For both the minimum- and maximum-bandwidth partitioning schemes, memory-bandwidth regulation occurs over
an accounting window. The accounting may be either a moving window or by resetting bandwidth counts at the
beginning of each accounting-window period.

The width of the window is discoverable and can be read from MPAMCFG_MBW_WINWD for the PARTID
selected by MPAMCFG_PART_SEL.

In implementations that support settable window width per PARTID, MPAMCFG_MBW_WINWD can be written
with a fixed-point format (as described in the register’s description) specifying the accounting window width in
microseconds.

7.3.7.5.1 Fixed accounting window

In fixed-window accounting, bandwidth is apportioned to requests so that each partition gets bandwidth according
to the minimum and maximum for that partition (Over-allocation of minimum bandwidth). Request or local
priorities (Priority partitioning) are used to resolve conflicting requests of the same preference.

When the accounting window’s period is reached, a new window begins with no history except for any queue of
requests that have not been previously serviced. The new window starts accumulating bandwidth for a partition
from zero.

7.3.7.5.2 Moving-window accounting

A moving window tracks partition bandwidth usage by all commands issued in the past window width. There is
never a reset of the accounting of bandwidth usage per partition. Instead, bandwidth is added to the accounting when
a command is processed and removed from the accounting when that command moves out of the window’s history.
This continuous accounting is relatively free from boundary effects.

Moving-window accounting requires hardware to track the history of commands within the window, in addition to
the bandwidth counters per PARTID required by the fixed window.

7.3.7.5.3 Other accounting window schemes

An implementation may use another scheme for maintaining history that is broadly in line with the schemes
described here. For example, the current bandwidth might decay at a fixed rate proportional to the bandwidth
allocation, but not below a current bandwidth of zero.

7.3.7.6 Over-allocation of minimum bandwidth

The minimum bandwidth allocations of all partitions may sum to more bandwidth than is available. This is not a
problem when some partitions are not using their bandwidth allocations, because unused allocations are available
for other partitions to use. However, when minimum bandwidth is over-allocated, the minimum bandwidth that is
programmed for partitions cannot always be met.

If the programmed minimum bandwidth allocation is to be reliably delivered by the system, software must ensure
that minimum bandwidth is not over-allocated.

7.3.7.7 Over-allocation of maximum bandwidth

The maximum bandwidth allocations of all partitions may sum to more bandwidth than is available. This is not a
problem when some partitions are not using their maximum bandwidth allocations, because unused allocations are
available for other partitions to use. If maximum bandwidth is over-allocated, the maximum bandwidth that is
programmed for partitions cannot always be met.

7.3.7.8 Available bandwidth

The bandwidth available downstream from an MSC is not constant, and it affects the operation of minimum and
maximum bandwidth partitioning.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-91
ID041924 Non-Confidential

Available bandwidth may depend on one or more clock frequencies in many systems (for example, DDR clock).
Software may require to reallocate bandwidths when changing clock frequencies that affect available bandwidth.
Lowering clock rates without changing allocations may result in over-allocation of bandwidth.

The available bandwidth on a DRAM channel varies with the mix of reads and writes and the bank-hit rate.
Bandwidth may also vary with burst size.

7.3.8 Memory-bandwidth proportional-stride partitioning

Proportional-stride bandwidth partitioning control is an instance of proportional resource-allocation generic control,
described in Proportional resource allocation facilities. The control parameter for bandwidth proportional-stride
partitioning is expressed as an unsigned integer.

Regulation according to this scheme permits the partition to consume bandwidth in proportion to its stride, in
relation to other requests’ strides that are contending for bandwidth. See Model of stride-based memory bandwidth
scheduling for an example of stride-based proportional bandwidth regulation.

The MPAMF_MBW_IDR.HAS_PROP bit indicates the presence of a memory-bandwidth proportional-stride
partitioning control interface in the MSC.

7.3.8.1 Combining memory-bandwidth proportional stride with other
memory-bandwidth partitioning

There is no setting of the STRIDEM1 control field that disables the effects of proportional-stride partitioning on a
partition’s bandwidth usage. To enable proportional-stride partitioning for a PARTID,
MPAMCFG_MBW_PROP.EN must be set to 1.

When multiple partitioning controls are active, each affects the partition’s bandwidth usage. However, some
combinations of controls may not make sense, because the regulation of that pair of controls cannot be made to work
in concert.

Memory-bandwidth maximum partitioning must work together with proportional-stride partitioning.

7.3.9 Priority partitioning

Unlike the other memory-system resources in this architecture, priority does not directly affect the allocation of
memory-system resources. Instead, it has an effect on conflicts that arise during access to resources. A properly
configured system should rarely have substantial performance effects due to prioritization, but priority does play an
important role in oversubscribed situations, whether instantaneous or sustained. Therefore, we choose to include
priority partitioning here as a tool to aid in isolating memory-system effects between partitions.

A PARTID may be assigned priorities for each component in the memory system that implements a priority
partitioning control. This partitioning control allows different parts of the memory system to handle requests with
different priorities. For example, requests from a PE to system cache may be set to have a higher transport priority
than those from system cache to main memory.

In a system in which the interconnect carries QoS values or priorities, requests arriving at an MSC have an upstream
priority as part of the request. In the absence of an internal priority partitioning control, request priority could be
used by an MSC to prioritize internal operations. In the absence of a downstream priority partitioning control, the
request priority is used as through priority. See Through priorities.

Priority partitioning can override the upstream priority with two types of priorities:

• Internal priorities control priorities used in the internal operation of an MSC.

• Downstream priorities control priorities communicated downstream (for example to an interconnect).

 “Downstream” refers to the communication direction for requests. “Upstream” refers to the response, and it usually
uses the same transport priority as the request that generated it.

Resource Partitioning Controls
7.3 Standard partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-92
ID041924 Non-Confidential

7.3.9.1 Internal priorities

Internal priorities are used within an MSC to prioritize internal operations. For example, a memory controller may
use an internal priority to choose between waiting requests when bandwidth allocation indicates two or more
requests have the same bandwidth preference.

Internal priority partitioning is optional even if downstream priority partitioning is implemented.

7.3.9.2 Downstream priorities

An MSC uses a downstream priority to set transport priorities for downstream requests generated during the
servicing of an incoming request from upstream.

Downstream priority partitioning is optional even if internal priority partitioning is implemented.

7.3.9.3 Through priorities

For a system in which the interconnect carries QoS values or priorities, these priorities arrive with incoming requests
from upstream. An MSC that does not implement priority partitioning, or that does not implement downstream
priority partitioning, must use these upstream priorities on all downstream communication.

If an MSC does not implement priority partitioning, or it does not implement downstream priorities, the downstream
priority is always the same as the request (upstream) priority.

The priority of a response through an MSC (from downstream to upstream) is always the same priority as the
response received (from downstream). Priority partitioning never alters response priorities received from
downstream.

Resource Partitioning Controls
7.4 Vendor or implementation-specific partitioning control interfaces

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-93
ID041924 Non-Confidential

7.4 Vendor or implementation-specific partitioning control interfaces
MPAM provides discoverable vendor extensions to permit partners to invent partitioning controls. These include
controls that do not fit the standard interfaces and controls for types of resources not supported through the standard
controls defined in this document. Such controls provide product differentiation to address market-segment needs
or to provide superior memory-system control.

The MPAMF_IDR.HAS_IMPL_IDR bit indicates the presence of MPAMF_IMPL_IDR and of
implementation-specific or vendor-specific resource partitioning controls.

Vendor, design, or model and version information is present in MPAMF_IIDR. MPAMF_IMPL_IDR is available
for implementations that need to convey additional information about parameters of implementation-specific
partitioning controls.

In MPAM v0.1 and from MPAM v1.1:

• If MPAMF_IMPL_IDR describes no IMPLEMENTATION DEFINED partitioning controls,
MPAMF_IDR.NO_IMPL_PART must be 1.

• If MPAMF_IMPL_IDR describes no IMPLEMENTATION DEFINED monitors,
MPAMF_IDR.NO_IMPL_MSMON must be 1.

Resource Partitioning Controls
7.5 Measurements for controlling resource usage

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-94
ID041924 Non-Confidential

7.5 Measurements for controlling resource usage
This section is informative.

In many cases, resource usage by a partition must be measured so that the resource controller can regulate allocation
of the resource to that partition.

In a memory channel, the bytes delivered to requests from a PARTID might be more costly if delivered in response
to a series of 1-byte requests rather than cache-line-sized bursts. So, it might be reasonable to count the cost of
servicing a 1-byte request to be the same as the cost of servicing a cache-line request rather than as a fraction of a
word access cost.

Resource Partitioning Controls
7.6 PARTID narrowing

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-95
ID041924 Non-Confidential

7.6 PARTID narrowing
An implementation may optionally map input PARTID spaces into smaller internal PARTID spaces. This involves
mapping the PARTID from a request (reqPARTID) into an internal PARTID (intPARTID). The
reqPARTID-to-intPARTID mappings for Secure and Non-secure physical PARTID spaces must be used internally
and not for downstream requests.

This mapping is supported by a memory-mapped register, MPAMCFG_INTPARTID, and an ID register bit for each
of the Secure and Non-secure physical PARTID spaces. The related behavior includes:

• Translate the incoming request’s reqPARTID and MPAM_NS into an intPARTID (with the same
MPAM_NS) before accessing the control settings and regulation state of the partition.

• Use MPAMCFG_INTPARTID to store an association of a reqPARTID in MPAMCFG_PART_SEL to the
intPARTID stored in MPAMCFG_INTPARTID.

• Error code for MPAMF_ESR to indicate a bad intPARTID mapping for the reqPARTID.

• A bit in MPAMCFG_PART_SEL indicates that the value in that register is an intPARTID. The register can
hold either an intPARTID or reqPARTID at any time, but the reqPARTID can only be used for accessing the
association by means of MPAMCFG_INTPARTID. So, at the time MPAMCFG_INTPARTID is read or
written, MPAMCFG_PART_SEL.INTERNAL must be clear. For access to read or write other control
settings registers, the INTERNAL bit must be set.

• With PARTID narrowing implemented, the contents of MPAMCFG_PART_SEL are interpreted as an
intPARTID for accessing control settings through an MPAMCFG_* register other than
MPAMCFG_INTPARTID. The MPAMCFG_PART_SEL.INTERNAL bit must be set to confirm the
intPARTID is being used.

• With PARTID narrowing not implemented, the contents of MPAMCFG_PART_SEL are interpreted as a
reqPARTID. The MPAMCFG_PART_SEL.INTERNAL bit must == 0 to confirm that the reqPARTID is
being used.

Resource Partitioning Controls
7.7 System reset of MPAM controls in MSCs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-96
ID041924 Non-Confidential

7.7 System reset of MPAM controls in MSCs
This section is normative.

After a system reset, the MPAM controls in MSCs must reset the settings for default PARTID so that software can
use all of the resource. Since MPAMn_ELx.MPAMEN for the highest implemented ELx is reset to 0 by a system
reset, the MPAM fields of all requests issued by a PE use the corresponding default PARTID in the Security state
of the PE. Only the resource controls for the default PARTIDs must be reset to full access for the system to behave
as if there were no MPAM.

Only the control settings for the default PARTID must be reset. The reset value should be appropriate to allow the
default PARTID to access all of the resource. This is needed to allow the system to boot up to a point where MPAM
resource controls can be set before non-default PARTIDs are used to make requests.

7.7.1 Suggested reset values for standard control types

Table 7-3 describes the suggested reset values for PARTID == 0 control setting for both MPAM_NS == 0 and
MPAM_NS == 1.

In addition, for PARTID narrowing, Arm recommends that reqPARTID == 0 map to intPARTID == 0 and that the
reset values be applied to the settings of intPARTID == 0 in both values of MPAM_NS.

Table 7-3 Suggested reset values for PARTID0 controls

Control type Reset value

MPAMCFG_CPBM<n> All ones for all
implemented n

MPAMCFG_CMAX.CMAX 0xFFFF

MPAMCFG_CMAX.SOFTLIM 0xb0

MPAMCFG_MBW_PBM<n> All ones for all
implemented n

MPAMCFG_MBW_MAX.MAX 0xFFFF

MPAMCFG_MBW_MAX.HARDLIM 0b0

MPAMCFG_MBW_MIN.MIN 0xFFFF

MPAMCFG_MBW_PROP EN=0

MPAMCFG_CASSOC.CASSOC 0xFFFF

MPAMCFG_EN_FLAGS.EN0 0b1

Resource Partitioning Controls
7.8 About the fixed-point fractional format

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-97
ID041924 Non-Confidential

7.8 About the fixed-point fractional format
This section is normative.

Fractional control parameters use a 16-bit fixed-point format. The format permits implementations to have fewer
than 16 bits by truncating least significant bits from the fraction and implementing these bits as RAZ/WI.

Software can be expected to calculate a 16-bit fractional part to store into the memory-mapped register without the
need to understand the implemented width of the field. If the field width is less than 16 bits, the least significant bits
are silently IGNORED by the implementation. This results in an uncertainty of the intended value.

If software stores an intended fractional value into a field with an implemented width of w, the implementation’s
truncated field sees a value of v. The value v is at the bottom of the range of v to v + 2-w – 2-17 and the intended
fractional value lies somewhere within that range, inclusive of the end points.

Depending on the use of the fractional value, the best choice of value within the range could be the center of the
range, the smallest end of the range, or the greatest end of the range. For examples, a cache maximum-capacity
fraction might best be interpreted as the highest end of the range, and a cache minimum-capacity fraction might best
be interpreted as the lowest end of the range.

Table 7-4 shows the fraction widths and hex representation used for three formats. The values in the table are
suitable for a maximum limit because the Max value for every entry is never greater than the target value.

Table 7-4 Fraction Widths and Hex Representation

Percentage 16 bits 12 bits 8 bits

Hex Min Max Hex Min Max Hex Min Max

1.00% 028E 0.9979% 0.9995% 027 0.9521% 0.9766% 01 0.3906% 0.7813%

12.50% 1FFF 12.4985% 12.5000% 1FF 12.4756% 12.5000% 1F 12.1094% 12.5000%

16.67% 2AAB 16.6672% 16.6687% 2A9 16.6260% 16.6504% 29 16.0156% 16.4063%

25% 3FFF 24.9985% 25.0000% 3FF 24.9756% 25.0000% 3F 24.6094% 25.0000%

33.33% 5552 33.3282% 33.3298% 554 33.3008% 33.3252% 54 32.8125% 33.2031%

35% 5998 34.9976% 34.9991% 598 34.9609% 34.9854% 58 34.3750% 34.7656%

37.25% 5F5B 37.2482% 37.2498% 5F4 37.2070% 37.2314% 5E 36.7188% 37.1094%

42.50% 6CCB 42.4973% 42.4988% 6CB 42.4561% 42.4805% 6B 41.7969% 42.1875%

45% 7332 44.9982% 44.9997% 732 44.9707% 44.9951% 72 44.5313% 44.9219%

50% 7FFF 49.9985% 50.0000% 7FF 49.9756% 50.0000% 7F 49.6094% 50.0000%

52% 851D 51.9974% 51.9989% 850 51.9531% 51.9775% 84 51.5625% 51.9531%

55% 8CCB 54.9973% 54.9988% 8CB 54.9561% 54.9805% 8B 54.2969% 54.6875%

58% 9479 57.9971% 57.9987% 946 57.9590% 57.9834% 93 57.4219% 57.8125%

62.75% A0A2 62.7472% 62.7487% A09 62.7197% 62.7441% 9F 62.1094% 62.5000%

66.67% AAA9 66.6641% 66.6656% AA9 66.6260% 66.6504% A9 66.0156% 66.4063%

75% BFFF 74.9985% 75.0000% BFF 74.9756% 75.0000% BF 74.6094% 75.0000%

82.50% D332 82.4982% 82.4997% D32 82.4707% 82.4951% D2 82.0313% 82.4219%

88% E146 87.9974% 87.9990% E13 87.9639% 87.9883% E0 87.5000% 87.8906%

95% F332 94.9982% 94.9997% F32 94.9707% 94.9951% F2 94.5313% 94.9219%

Resource Partitioning Controls
7.8 About the fixed-point fractional format

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 7-98
ID041924 Non-Confidential

100% FFFF 99.9985% 100.0000% FFF 99.9756% 100.0000% FF 99.6094% 100.0000%

2^n 65536 4096 256

ndigits 4 3 2

shift 0 0 0

Table 7-4 Fraction Widths and Hex Representation (continued)

Percentage 16 bits 12 bits 8 bits

Hex Min Max Hex Min Max Hex Min Max

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-99
ID041924 Non-Confidential

Chapter 8
Resource Monitors

This chapter contains the following sections:

• Introduction.

• MPAM resource monitors.

• Common features.

• Monitor configuration.

• Monitor behavior on overflow.

Resource Monitors
8.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-100
ID041924 Non-Confidential

8.1 Introduction
Software environments may be labeled as belonging to a Performance Monitoring Group (PMG) within a partition.
The PARTID and PMG can be used to filter some performance events so that the performance of a particular
PARTID and PMG can be monitored.

Resource Monitors
8.2 MPAM resource monitors

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-101
ID041924 Non-Confidential

8.2 MPAM resource monitors
MPAM resource monitors provide software with measurements of the resource-type usage that can be partitioned
by MPAM. There are two types of MPAM resource monitors:

• Memory-bandwidth usage monitors

• Cache-storage usage monitors

Each type of monitor measures the usage by memory-system transactions of a PARTID and PMG. An MSC may
implement any number of performance monitor instances, up to 216 of each type. The PARTID for filtering resource
monitors is always a request PARTID, even when PARTID narrowing is implemented.

To access a monitor instance, the instance number is stored into the MSMON_CFG_MON_SEL.MON_SEL field.
All of the monitor access registers for a type of monitor then access that instance of that type. See Monitor
configuration.

If the implementation supports the RIS MPAM feature, the MSC may have two or more partitionable resources
differentiated by the value of Resource Instance Selector (RIS). See Resource instance selection.

MPAM resource monitors are associated with a particular MPAM partitionable resource, but memory bandwidth
monitors may be placed at the top level of an MSC. Monitors at the top level of an MSC are accessed with the RIS
value of 0.

The monitor instance accessed by the MSC's MSMON_* registers is controlled by setting
MSMON_CFG_MON_SEL.MON_SEL to the instance number to access. If the implementation supports the RIS
MPAM feature, the MSC may have two or more partitionable resources differentiated by the value of
MSMON_CFG_MON_SEL.RIS.

8.2.1 Memory-bandwidth usage monitors

A memory-bandwidth usage monitor counts payload bytes meeting the filter criteria that pass the monitoring point
in the downstream direction for writes or the upstream direction for reads. Each monitor has the following set of
memory-mapped configuration registers and functional features:

• A control register MSMON_CFG_MBWU_CTL that configures behavior of the monitor instance.

• A filter register MSMON_CFG_MBWU_FLT that specifies the transfers to be counted. This register has
fields for reads, writes, PARTID, PMG, and other criteria.

• A monitor register MSMON_MBWU that contains an optionally scaled count of bytes transferred
downstream from this MSC that match the conditions of the filter register. This monitor register may be reset
after each capture event. If scaling is enabled, the value read from MSMON_MBWU must be shifted left by
MPAMF_MBWUMON_IDR.SCALE bit positions to scale the value to the number of bytes.

• In MPAM v0.1 and from MPAM v1.1, an optional long monitor register, MSMON_MBWU_L, that contains
a count of 44 bits or 63 bits. A NRDY bit is also present in this register, see Not-ready Bit.

• An optional capture register MSMON_MBWU_CAPTURE that is loaded from the monitor register each
time the selected capture event occurs. When a capture event occurs, the monitor register is copied to the
capture register and the monitor register is optionally reset to zero.

• In MPAM v0.1 and from MPAM v1.1, if MPAMF_MBWUMON_IDR.{HAS_LONG, HAS_CAPTURE}
are 1, the MSMON_MBWU_L_CAPTURE register must be implemented.

• A Not-Ready (NRDY) bit (Not-ready Bit) in the memory-bandwidth usage register MSMON_MBWU is set
when the filter register or the control register is written. The NRDY bit is reset to 0 after a capture event. The
NRDY bit is copied to the capture register along with the rest of the monitor register's content. This copy is
made before the NRDY bit is reset. If the value of the NRDY bit in the capture register is 1, the captured
resource usage should be viewed as representing an incomplete sampling interval. Therefore, the count
should be assumed to be incorrect.

A capture event is needed if the optional capture register is implemented. The capture event causes the transfer of
each monitor’s count register to its capture register and may optionally reset the count register.

Resource Monitors
8.2 MPAM resource monitors

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-102
ID041924 Non-Confidential

If the count register is reset by a capture event, this allows reading the bytes transferred that meet the criteria set in
the filter and control registers:

• During the interval between the last two capture events from MSMON_MBWU_CAPTURE.

• Since the last capture event from MSMON_MBWU.

Bandwidth usage can be computed in software from the count of bytes transferred as read from MSMON_MBWU
or MSMON_MBWU_CAPTURE and the interval over which the count was collected.

There can be several sources of the capture event. The capture event source to use is specified in
MSMON_CFG_MBWU_CTL.CAPT_EVNT (Memory-mapped monitoring configuration registers). It can be
advantageous to use a single event to capture monitors in several MSCs simultaneously. A periodic capture event
for multiple MSCs could be generated at the system level, perhaps using a generic timer, and distributed to the
MSCs.

The source of an external capture event is selected in MSMON_CFG_MBWU_CTL.CAPT_EVNT. A local capture
event generator is present if MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 1, and this generator
generates events when certain values are written into MSMON_CAPT_EVNT.

If MSMON_CFG_MBWU_CTL.OFLOW_LNKG is implemented, a monitor instance with an OFLOW_LNKG
value that is not zero can signal the capture event number in that field when the monitor instance overflows. See
Control of signaling to other monitor instances.

8.2.1.1 Scaled MBWU count value

If MSMON_CFG_MBWU_CTL.SCLEN == 0, the count is not scaled. If MSMON_CFG_MBWU_CTL.SCLEN
== 1, the count in MSMON_MBWU is a scaled count.

The scaled count in MSMON_MBWU is the true count of bytes transferred, rounded to 2^SCALE and then shifted
right by SCALE bit positions. The shift count, SCALE, is MPAMF_MBWUMON_IDR.SCALE.

SCALE is an implementation constant chosen for a monitoring point such that periodic sampling and reset of
MSMON_MBWU_CAPTURE can count the highest traffic rates possible at the monitoring point without
overflowing the VALUE field at a maximum sampling rate. The sampling rate is limited by the target use.

For example, if the maximum traffic that could pass the monitoring point is 300 GBps and the system environment
supports capturing the counter 30 times per second, the counter must be scaled to no more than 2^31 - 1 counts per
thirtieth of a second. This requires scaling the counter by a factor of at least 5, so the SCALE must be at least 3.

If the traffic to memory might be distributed across several MSCs (for example, across several memory channel
controllers), a comprehensive measurement of bandwidth might require reading multiple memory-bandwidth usage
monitors on those MSCs and summing the results. Capturing those monitors with the same system-level capture
event allows correlated monitor values.

8.2.1.2 Long MBWU counter and capture

In MPAM v0.1 and from MPAM v1.0, there is optional support for 44-bit or 63-bit MBWU counters.

MSMON_MBWU_L is optional and only present when MPAMF_MBWUMON_IDR.HAS_LONG is 1. This
indicates that this monitor type supports long counters.

If MPAMF_MBWUMON_IDR.HAS_LONG an d MPAMF_MBWUMON_IDR.HAS_CAPTURE are 1, the
MSMON_MBWU_L_CAPTURE register must also be implemented.

The VALUE field of the long registers is never scaled.

The VALUE field of MSMON_MBWU_L and MSMON_MBWU_L_CAPTURE can be implemented either as a
63-bit VALUE field or a 44-bit VALUE field. The 44-bit VALUE field is indicated when
MPAMF_MBWUMON_IDR.LWD is 0 and has bits[62:44] of each register as RES0. When
MPAMF_MBWUMON_IDR.LWD is 1, the VALUE field of each register is 63 bits.

Resource Monitors
8.2 MPAM resource monitors

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-103
ID041924 Non-Confidential

An overflow occurs in the long counter when the count in the VALUE field exceeds the maximum representable
value. This depends on the length of the VALUE field. In MSMON_MBWU, the VALUE field is always 31 bits.
If MSMON_MBWU_L is implemented, the length of the VALUE field is either 63 or 44 bits as set by
MPAMF_MBWUMON_IDR.LWD.

When any instance of the MSMON_MBWU_L counter overflows, the
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L bit is 1. If MSMON_CFG_MBWU_CTL.OFLOW_INTR_L
is set, this overflow produces an MPAM Overflow interrupt. See MPAM overflow interrupt and Control of monitor
behavior on overflow

When an implementation has both the long counter and the short 31-bit counter, the short counter might overflow
when the long counter has not overflowed and produce an MPAM Overflow interrupt. This can be prevented by
setting MSMON_CFG_MBWU_CTL.OFLOW_INTR to 0, which disables the overflow interrupt for overflow of
the short counter.

The MSMON_CFG_MBWU_CTL.OFLOW_FRZ field is not duplicated, and affects the behaviors of both short
and long counters on overflow.

8.2.2 Cache-storage usage monitors

A cache-storage usage monitor is filtered by a PARTID and PMG. Each monitor has the following memory-mapped
configuration registers:

• A filter register MSMON_CFG_CSU_FLT that sets the PARTID and PMG to be monitored.

• A cache-storage usage register MSMON_CSU that reports the amount of storage currently present within the
cache allocated by the PARTID and PMG. It is an implementation choice whether MSMON_CSU is
implemented as RO or RW.

• A Not-Ready bit in the cache-storage usage register MSMON_CSU that indicates that the value is not
accurate. An implementation may set this NRDY bit if the value in the cache-storage usage register is not
currently accurate, possibly because it is still being computed. For more information on the Not-Ready bit,
see Not-ready Bit.

• An optional capture register MSMON_CSU_CAPTURE that is loaded from the cache-storage usage register
each time the capture event occurs.

A capture event is needed if the optional capture register is implemented. The capture event causes the transfer of
each monitor’s cache-storage usage register to its optional capture register.

The source of an external capture event is not specified here. It can be advantageous to use a single event to capture
monitors in several MSCs simultaneously. A periodic capture event for multiple MSCs could be generated at the
system level, perhaps using a generic timer, and distributed to the several MSCs.

The source of an external capture event is selected in MSMON_CFG_CSU_CTL.CAPT_EVNT. A local capture
event generator is present if MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 1, and this generator
generates events when certain values are written into MSMON_CAPT_EVNT.

If a monitor needs time to become accurate, the NRDY bit signals that the value is not yet accurate. Some methods
of building cache-storage usage monitors might involve (1) a phase in which the monitor collects enough
information to begin accurately tracking usage, or (2) a phase in which the measurement is kept accurate by tracking
resource usage events. For example such a monitor might take tens of microseconds to complete the first phase
before the value accurately tracks the actual resource usage. In this case, the NRDY bit would be kept at 1 until the
monitor value becomes accurate.

The NRDY bit is included because some implementations may have timing restrictions between setting the filter
register and reading the cache-storage usage register that may span thousands of PE cycles. Reading the monitor too
soon is permitted to affect the accuracy of the readout, and it is indicated when the NRDY bit of the cache-storage
usage register is 1.

The cache storage usage monitor architecture supports overflow behavior in CSU monitors. However, Arm
recommends that CSU monitors be designed so that overflow is not possible.

Resource Monitors
8.3 Common features

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-104
ID041924 Non-Confidential

8.3 Common features
All MPAM performance monitors have these features:

• Monitor register.

• Not-ready bit.

• Capture register.

• Overflow bit.

• Enable bit.

These features are described below.

8.3.1 Monitor register

Every monitor instance has a monitor register that contains the VALUE field and the NRDY field. The VALUE
field contains the current count or measurement value of the monitor.

When the monitor is enabled, the VALUE field can change at any time. If this monitor counts events, such as the
memory bandwidth usage monitor counts bytes passing a monitoring point, the count increases as monitored events
occur that match the filter criteria. Software can reset the VALUE field to have this monitor count register produce
a count based entirely on the updated field.

A monitor that measures resource usage, such as a cache storage usage monitor, measures the bytes in cache lines
of a cache. This gives the automatically measured usage in its VALUE field. The measurement can move up and
down as the resource usage, thereby matching the filter criteria changes.

Data written to the monitor register by software would be overwritten by the automatically measured value.

The implementer of a measurement monitor can choose to implement the monitor register as read-only. For
example, see MPAMF_CSUMON_IDR.CSU_RO.

The VALUE field of a measurement monitor register could have an initial period where it is temporarily inaccurate
while converging on the measurement. During this period, the NRDY bit is 1 to indicate an inaccurate measurement.
See Not-ready Bit.

It is not mandatory to disable a monitor to reprogram it. However, if both MSMON_MBWU and
MSMON_MBWU_L are present in an MSC, the VALUE fields of the two registers cannot be reset simultaneously.
In this case the recommended software flow is:

1. Set MSMON_CFG_MON_SEL with the desired monitor instance selector and RIS.

2. Set the MSMON_CFG_MBWU_CTL.EN bit to 0.

3. Reconfigure both monitors by setting their VALUE fields to 0.

4. Change the filter settings of these registers in MSMON_CFG_MBWU_FLT.

5. Set MSMON_CFG_MBWU_CTL to the new configuration settings and set the EN field to 1.

The events counted or the resources measured by a monitor instance depend upon the configuration of the monitor
instance's configuration and filter registers. If either of these are changed, the VALUE field continues counting or
measuring with the new criteria without automatically reseting VALUE to 0.

A counting monitor register can be set by software to any value by storing the new value to the register. Counting
monitors continue counting the monitored event from this new value.

A write to a monitor register sets the NRDY and VALUE fields to the data written. The monitor register can be
written at any time.

When MSMON_CFG_<type>_CTL.EN is 1, the monitor is Enabled to count events or measure resource usage
matching the configuration in MSMON_CFG_<type>_CTL and MSMON_CFG_<type>_FLT. An Enabled
monitor automatically updates as matching events occur or matching resource usage changes.

Resource Monitors
8.3 Common features

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-105
ID041924 Non-Confidential

When MSMON_CFG_<type>_CTL.EN is 0, the monitor is Disabled. A Disabled monitor must not change
automatically, but may be written by software.

A monitor overflows when the VALUE field exceeds its largest representable value. After an overflow, the VALUE
field wraps around by dropping the high-order bit. The resulting truncated value may be zero or greater, depending
on the increment for a counter or the value for a measurement.

When an overflow occurs, the overflow behaviors selected in MSMON_CFG_<type>_CTL are performed
automatically. These independently-selectable behaviors are:

• Freezing the VALUE field or continuing to count or measure.

• Signaling an MPAM overflow interrupt from the MSC.

• Capturing the overflowed VALUE field in the monitor instance's capture register and optionally resetting the
monitor's VALUE and NRDY fields to zeros.

• Signaling a capture event to other monitor instances that are programmed to be sensitive to that capture
event or different types of and for the same or different RIS numbers.

When an overflow occurs, the overflow status bit in MSMON_CFG_<type>_CTL must be set to 1.

8.3.2 Not-ready Bit

The Not-ready (NRDY) bit, in the MSMON_MBWU and MSMON_CSU registers, when set, indicates that the
monitor does not have an accurate count or measurement yet, because the monitor’s settings have been recently
changed. If the monitor requires some time to establish a new count or measurement after its settings are changed,
the NRDY bit must be set automatically when the settings are changed and reset when the count or measurement is
accurately represented in the monitor.

In the absence of another change in settings, the NRDY bit must clear automatically within a maximum length of
time. The maximum time that NRDY may be 1 is an implementation parameter that is discoverable in the firmware
data value of MAX_NRDY_USEC for the MSC’s monitor type. For example, a measurement slow to respond to
changes to what it measures could take up to MAX_NRDY_USEC to converge to a new fresh measurement.

Each instance of each type of monitor keeps its NRDY bit separately. For example, if MBWU monitor instance 3
is collecting memory bytes transferred for one partition and MBWU monitor instance 6 is later configured to collect
for another partition, the configuration of MBWU monitor instance 6 must not disturb the on-going collection in
MBWU monitor instance 3.

The NRDY bit of a monitor or capture register can be written to either state. On a monitor that measures resource
and requires time to reach an accurate value, the NRDY bit must automatically reset when the measurement has
become accurate. On a counting monitor, the NRDY bit remains set until it is reset by software writing it as 0 in the
monitor register, or automatically after the monitor is captured in the capture register by a capture event.

If a monitor supports the automatic behaviors of NRDY, it must clear the NRDY when its measurements are
accurate. The monitor must also clear the NRDY if it is configured for capture, after a capture event causes transfer
to the capture event register.

If a monitor does not support automatic behavior of NRDY, software can use this bit for any purpose.

8.3.3 Capture event and capture register

Fields in MSMON_CFG_CSU_CTL and MSMON_CFG_MBWU_CTL control the behavior of a monitor instance
that receives the capture event. Both registers must have the same fields for all monitor instances of a resource
instance and monitor type.

A capture event causes every monitor that is configured to be sensitive to that event to be copied into that monitor's
capture register.

Resource Monitors
8.3 Common features

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-106
ID041924 Non-Confidential

Capture events may be local to the MSC or external to the MSC and may be software-initiated single events or a
periodically repeating series of events. External capture events are system-defined. A generic counter can be used
as the source of such an event, but this is not required. An external capture event could be distributed to all MSCs
so that system-wide captures occur of all monitors sensitive to the external event. This permits using the various
measurements for sums and differences because they measure the same period and (mostly) related resource usage.

A capture register for a monitor is loaded with the monitor’s count or measurement and its NRDY bit when a capture
event that is selected in the monitor’s control register occurs. A capture event completes almost instantaneously, so
no handshake is used for completion. However, the NRDY bit indicates whether a capture is not an accurate reading.

If the event is periodic, software can read the capture registers at any time to get the results captured when the most
recent capture event occurred.

If it makes sense for the particular monitored value, the count or measurement can optionally be reset by the event.
In this case, the value in the capture register represents a count over the capture-event period or a measurement over
that period.

There are eight capture event codes:

A monitor instance does not respond to any capture event when the CAPT_EVNT field of the control register is set
to 0, no capture event. This field can be set to an event number of 1 through 7. The instance is sensitive to a capture
event matching the event number that CAPT_EVNT is set to.

Capture events are available to all monitors in the MSC. All monitor instances in all resource instances and of all
monitor types can each be sensitive to any of the 7 capture event codes. Every monitor instance monitoring a
PARTID space must be able to be sensitive to the same capture event.

8.3.3.1 Local capture-event generator

If MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 1, the MSMON_CAPT_EVNT register exists and
generates capture events that are local to an MSC when it is written with a value that contains a 1 in the NOW bit
position.

There are separate MSMON_CAPT_EVNT registers for Secure and Non-secure address spaces. The Non-secure
version generates a local capture event to all Non-secure monitors within the MSC that have been configured to use
MSMON_CFG_<type>_FLT.CAPT_EVNT == 7 (Table 8-2). The Secure version of MSMON_CAPT_EVNT
generates a local capture event to all Secure monitors within the MSC that have been configured to use
CAPT_EVNT == 7 when MSMON_CAPT_EVNT is written with ALL == 0 and NOW == 1. When the ALL and
NOW bits both == 1 in a write to Secure MSMON_CAPT_EVNT, the write generates a local capture event to all
Secure and Non-secure monitors within the MSC that have been configured to use CAPT_EVNT == 7.

If MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 0, local capture events are not generated and any
monitors that have their control register set to CAPT_EVNT == 7 do not receive any capture events.

8.3.3.2 Reset on capture

Monitors that keep a count of events, or that accumulate counts such as bytes transferred, may be optionally reset
after a capture event transfers the count to the monitor’s capture register. This behavior on capture is controlled by
the MSMON_CFG_*_CTL.CAPT_RESET bit. If CAPT_RESET == 1, the monitor count is reset to 0 immediately
after the value is captured into the MSMON_*_CAPTURE register.

Monitors that report a current resource value, such as cache-storage usage, that cannot reasonably be reset, do not
need to support reset on capture behavior. Arm recommends that these monitors have the CAPT_RESET bit as
RAZ/WI.

Table 8-1 Capture events code and function

Capture event code Function

0 No capture event

1 - 6 Available for use

7 Local capture event

Resource Monitors
8.3 Common features

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-107
ID041924 Non-Confidential

8.3.4 Overflow status bit

The MSMON_CFG_<type>_CTL.OFLOW_STATUS bit is set to 1 when the monitor counter overflows. This bit
must be reset by writing 0 to the OFLOW_STATUS field.

The MSMON_CFG_<type>_CTL register contains fields to control MPAM behavior on an overflow. The
OFLOW_FRZ bit, when set, freezes the counter after the count that caused it to overflow. When reset to 0, the
counter continues to count after an overflow.

If the overflow changes the OFLOW_STATUS flag from 0 to 1 and the OFLOW_INTR bit is set, an MPAM
overflow interrupt will be signaled if implemented. See also MPAM overflow interrupt.

8.3.5 Enable bit

The MSMON_CFG_<type>_CTL.EN bit is set to 1 when the monitor is enabled to collect information according
to its configuration. When the EN bit is 0, the monitor is disabled and must not count events or measure resources.
The monitor configuration registers can be written and read, regardless of the value of the monitor EN bit field.

Resource Monitors
8.4 Monitor configuration

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-108
ID041924 Non-Confidential

8.4 Monitor configuration
For each type of resource monitor, the number of monitor instances that are available is described in the
corresponding MPAMF_<type>MON_IDR.NUM_MON field.

The MSMON_CFG_MON_SEL.MON_SEL field selects the monitor instance to configure. The MON_SEL
monitor instance of monitor type, type, is accessed when an MSMON_CFG_<type> register is accessed.

All monitor types have two 32-bit configuration registers:

• MSMON_CFG_<type>_FLT (Table 8-2) has fields to select the PARTID and PMG to monitor.

• MSMON_CFG_<type>_CTL (Table 8-2) has controls for counting a subset of events, controlling overflow,
and capture behavior.

Some monitor types may not require all fields, and fields not required must be RAZ/WI or RAO/WI.

Resource Monitors
8.5 Monitor behavior on overflow

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-109
ID041924 Non-Confidential

8.5 Monitor behavior on overflow
When an MPAM monitor instance overflows the OFLOW_STATUS flag in its configuration register is set to 1.
Each monitor instance can be configured for a number of optional behaviors in its configuration register:

• Broadcast a configured capture event number to all other monitors in the MSC. See Control of signaling to
other monitor instances.

• Freeze a monitor instance. See Control of monitor behavior on overflow.

• If the capture register is implemented the monitor instance can be captured to its capture register.

• Signal an overflow interrupt. See Control of monitor behavior on overflow and MPAM overflow interrupt.

A monitor instance can be configured to respond to a capture event as an overflow. A capture event configured to
be received by other monitor instances as an overflow can be caused by the overflow of a monitor that is configured
to broadcast the capture event when the monitor overflows.

A group of monitor instances can be configured so that if any of them overflows, the overflow signals the others on
a particular capture event number and all of the others respond by also performing overflow behaviors. See Control
over behavior of a monitor instance on a capture event.

Capture events are local to the MSC and are not broadcast to other MSCs.

There are seven capture event codes. See Capture events code and function.

8.5.1 Control of monitor behavior on overflow

The behavior of a monitor instance on overflow is governed by fields in the MSMON_CFG_CSU_CTL and
MSMON_CFG_MBWU_CTL registers:

The OFLOW_STATUS field of the MSMON_CFG_CSU_CTL and MSMON_CFG_MBWU_CTL registers for a
monitor instance is set when the monitor instance VALUE overflows.

The monitor does not change the VALUE field to count events or update the resource measurement when it is
frozen. The monitor instance resumes counting or measuring when OFLOW_STATUS is reset, either by writing
MSMON_CFG_CSU_CTL and MSMON_CFG_MBWU_CTL registers with the OFLOW_STATUS field as 0 or
by writing the monitor count register.

Writing the monitor count register resets OFLOW_STATUS as software often writes the monitor count register with
a new starting value, for example 0.

8.5.2 Control of signaling to other monitor instances

The field OFLOW_LNKG in MSMON_CFG_CSU_CTL and MSMON_CFG_MBWU_CTL controls signaling
other monitor instances when the monitor instance overflows.

If the monitor implements overflow linkage as indicated in MPAMF_<type>_MON_IDR.HAS_OFLOW_LNKG
as 1, the monitor instances can be configured to signal a capture event when the count or measurement in a monitor
register overflows.

Table 8-2 Control on overflow

Field Bit Control of behavior

OFLOW_LNKG [10:8] A capture event may be signaled to other monitor instances within the
MSC with the capture event number in this field if it is not zero.

OFLOW_CAPT [23] The monitor instance VALUE field is captured into its capture register
after the overflow occurs.

OFLOW_FRZ [24] The monitor instance VALUE field does not change after it overflows.

OFLOW_INTR [25] An interrupt is signaled after the monitor instance OFLOW_STATUS
changes from 0 to 1.

Resource Monitors
8.5 Monitor behavior on overflow

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-110
ID041924 Non-Confidential

To signal the overflow linkage capture event on the overflow of the VALUE field of an instance of
MSMON_<type>, all of the following conditions must be met in the MSMON_CFG_<type>_CTL register:

• The OFLOW_LNKG field must be set to a non-zero value corresponding to a capture event implemented in
the MSC.

• The OFLOW_INTR bit must be set to 1.

To signal the overflow linkage capture event on the overflow of the VALUE field an instance of
MSMON_<type>_L, all the following conditions must be met in the MSMON_CFG_<type>_CTL register:

• The OFLOW_LNKG field must be set to a value other than zero, corresponding to a capture event
implemented in the MSC.

• The OFLOW_INTR_L bit must be set to 1.

The capture event indicated in the MSMON_CFG_<type>_CTL.OFLOW_LNKG field is to all the monitor
instances in the MSC that monitor the same PARTID space as the instance signaling the overflow.

8.5.3 Control over behavior of a monitor instance on a capture event

An external capture event is distributed to monitors for all PARTID spaces of the of the MSC.

Local capture events are distributed to:

• Monitor instances of the Non-secure PARTID space if originated from the Non-secure address space.

• Monitor instances of the Secure address space if originated from the Secure address space.

• Monitor instances of the Root PARTID address space if originated from the Root address space.

• Monitor instances of the Real PARTID address space if originated from the Realm address space.

• Monitor instances for both the Secure and Non-secure PARTID spaces if originated from the Secure address
space that has the MSMON_CAPT_EVNT.ALL bit set to 1.

• Monitor instances for the same PARTID space as the overflowing monitor instance if the capture events are
raised by overflow of a monitor instance with OFLOW_LNKG set to 1 through 6.

The behavior of a monitor instance that receives a capture event to which it is sensitive is controlled by settings in
its control register. See MSMON_CFG_CSU_CTL and MSMON_CFG_MBWU_CTL.

8.5.3.1 Configuring the handling capture events as linked overflows

A capture event can be handled by a monitor instance as an overflow linkage and processed much as if this monitor
instance had overflowed.

To configure a capture event to be handled as an overflow linkage, the
MSMON_CFG_<type>_CTL.CEVNT_OFLW bit is set to 1 and CAPT_EVNT is set to the capture event number
to be used for overflow linkage. The following controls in MSMON_CFG_<type>_CTL control the processing of
a capture event when CEVNT_OFLW is 1:

• OFLOW_FRZ [24]: The monitor instance’s VALUE is frozen and does not change until the monitor’s
VALUE has been written. If the monitor implements both normal and long versions of the count, both are
frozen and each must be written to unfreeze its VALUE.

• OFLOW_CAPT [23]: The monitor instance’s VALUE and NRDY fields are copied to the capture register.
This field is present when MPAMF_<type>MON_IDR fields HAS_CAPTURE and HAS_OFLOW_CAPT
are both 1.

• OFLOW_CAPT_L [13]: The monitor instance’s long VALUE and NRDY fields are copied to the long
capture register. This field is only in MSMON_CFG_MBWU_CTL. This field is present when
MPAMF_<type>MON_IDR fields HAS_CAPTURE, HAS_LONG and HAS_OFLOW_CAPT are all 1.

CAPT_RESET [27]: After the monitor instance is copied to its capture register, the monitor is reset to zero.

Resource Monitors
8.5 Monitor behavior on overflow

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 8-111
ID041924 Non-Confidential

8.5.4 Monitors with and without capture

If capture is implemented for the monitor type, the following behavior is followed if only some of the control fields
are implemented:

• Overflow linkage for signaling other monitor instances: A monitor that does not implement capture events
can signal instances of other monitors that do if it implements OFLOW_LNKG and OFLOW_INTR in
MSMON_CFG_<type>_CTL. If the long monitor register is also implemented,
MSMON_CFG_MBWU_CTL.OFLOW_INTR_L must also be implemented to control signaling of an
overflow linkage event when the long monitor register's VALUE field overflows.

If capture is not implemented for the monitor type, the following behavior is followed if only some of the control
fields are implemented:

• Freezing a monitor instance on a capture event: If capture is not implemented, a monitor instance that has not
overflowed can be frozen by a capture event if it implements CAPT_EVNT and OFLOW_FRZ. To achieve
this behavior, CAPT_EVNT must be set to a capture event 1 through 7. OFLOW_FRZ must be 1.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-112
ID041924 Non-Confidential

Chapter 9
Memory-mapped Registers

This chapter contains the following sections:
• Overview of MMRs.
• Summary of memory-mapped registers.
• Memory-mapped ID register description.
• Memory-mapped partitioning configuration registers.
• Memory-mapped monitoring configuration registers.
• Memory-mapped control and status registers.

Memory-mapped Registers
9.1 Overview of MMRs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-113
ID041924 Non-Confidential

9.1 Overview of MMRs
The MPAM behavior of an MSC is discovered and configured through memory-mapped registers (MMRs) in the
MSC.

All MPAM MMRs are located on one of the MPAM feature pages for the MSC (MPAM feature page). An MSC's
MPAM feature page is located from information about the device, possibly provided via firmware data such as
device tree or ACPI (Appendix B MSC Firmware Data).

An MPAM feature page exists in the Non-secure address space and another exists in the Secure address space. If
FEAT_RME is supported there is also a Root MPAM feature page in the Root address space and a Realm MPAM
feature page in the Realm address space.

The addresses of the MPAM feature pages of an MSC do not need to have the same base address. Arm recommends
that the numerical base addresses of the MPAM feature pages in different address spaces be sufficiently different
that the numerical address ranges do not overlap.

MPAM MSC MMRs must support 32-bit access as a single access. There is no requirement that accesses of wider
than 32 bits complete atomically.

There are MMRs for identifying MPAM parameters and options, the ID registers. These IDRs have the MPAMF
prefix.

Other registers configure MPAM resource controls. These registers have the MPAMCFG prefix.

The resource monitor configuration and readout registers have the MSMON prefix.

There is a register to report the status of MPAM programming errors encountered in the MSC and a register to
control MPAM interrupts.

9.1.1 Determining presence and location of MMRs

The MPAMF_IDR register is located at offset 0x0000 of the MPAM feature page. It indicates which MPAM resource
controls are present in the MSC and the maximum PARTID and PMG supported in requests to the MSC. Other
MPAMF ID registers are present if the corresponding MPAMF_IDR register bit is set and those registers identify
the implemented values of architecturally-defined parameters associated with the particular class of MPAM
resource control.

The MPAMF_IDR also indicates whether the MSC has MPAM monitors. If so, MPAMF_MSMON_IDR indicates
which monitor types are supported by the MSC. Other monitor MPAMF ID registers are present if the corresponding
bit in MPAMF_MSMON_IDR is set and those registers identify the implemented values of architecturally- defined
parameters associated with the particular type of MPAM monitor.

The address of each MPAM MMR present in an MSC is located within the MPAM feature page for that component
at a register-specific offset into that page. The offsets are given in tables in Summary of memory-mapped registers
and MPAM feature page.

9.1.2 Configuring resource controls for a partition

To configure the MPAM resource controls supported by an MSC for a PARTID:

1. Gain exclusive access to the MSC’s partitioning configuration registers (for example, take a lock for the
memory-mapped partitioning configuration registers, Memory-mapped partitioning configuration registers).

2. Write the PARTID to the component’s MPAMCFG_PART_SEL.

3. Write to the MPAMCFG_* registers for the resource controls of the component.

4. Repeat step 3 to configure additional controls associated with the PARTID selected in step 2.

5. Repeat steps 2 through 4 to configure controls for additional PARTIDs.

6. Release exclusive access to the MSC’s partitioning control configuration registers (for example, release the
lock taken in step 1).

Memory-mapped Registers
9.1 Overview of MMRs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-114
ID041924 Non-Confidential

Repeat this procedure for each MSC.

The configuration registers are all the read-write registers that begin with MPAMCFG_*. That is all of the registers
in Memory-mapped partitioning configuration registers. Before writing any of these registers, software must take
a lock to prevent other software from accessing these registers until the lock is released. This is in part because the
writing involves first putting a PARTID into the MPAMCFG_PART_SEL register and then writing a configuration
value into one or more of the MPAM resource control’s configuration registers (also MPAMCFG_* registers).

Software must also take a lock to read any MPAMCFG_* register, other than MPAMCFG_PART_SEL, because
reading also involves first putting a PARTID into MPAMCFG_PART_SEL register and then reading a configuration
value from one or more of the MPAMCFG_* registers.

There are two copies of MPAMCFG_PART_SEL, one for resource controls for the Secure PARTID space that are
accessed from the Secure address space, and the other for resource controls for the Non-secure PARTID space that
are accessed from the Non-secure address space. Because there are two copies, there can be separate locks for
Secure MPAMCFG_PART_SEL and for Non-secure MPAMCFG_PART_SEL.

9.1.3 Configuring memory-system monitors

To configure the memory-system monitors supported by an MSC for a PARTID and PMG:

1. Gain exclusive access to the MSC’s monitor configuration registers (for example, take a lock for the
memory-mapped monitoring configuration registers, Memory-mapped monitoring configuration registers).

2. Write to the component’s MSMON_CFG_MON_SEL to select one of the monitor instances available in the
component.

3. Write to the MSMON_CFG_* registers for the instance of the monitor type.

4. Repeat step 3 to configure additional registers associated with the monitor instance.

5. Repeat steps 2 through 4 to configure additional monitor instances.

6. Release the exclusive access to the MSC’s monitor configuration registers (for example, release the lock
taken in step 1).

Repeat this procedure for each MSC.

Software must also take the lock to read any MSMON_* register, other than MSMON_CFG_MON_SEL, because
reading involves first writing a monitor index into MSMON_CFG_MON_SEL and then reading an MSMON
register.

The monitor configuration registers are all of the registers in Memory-mapped monitoring configuration registers.
These registers have requirements similar to the MPAMCFG_* registers. The monitor configuration registers can
have a separate lock or share the same lock as for the MPAMCFG_* registers. The selection register for monitors
is MSMON_CFG_MON_SEL.

The configuration reading procedure of this section is also required to read the monitor and capture registers because
these too are addressed by MSMON_CFG_MON_SEL.

There are two copies of MSMON_CFG_MON_SEL, one for Secure monitors that are accessed from the Secure
address space and the other for Non-secure monitors that are accessed from the Non-secure address space. Because
there are two copies, there can be separate locks for Secure MSMON_CFG_MON_SEL and for Non-secure
MSMON_CFG_MON_SEL.

9.1.4 MPAM feature page

An MSC has an MPAM feature page in each of the supported address spaces. An MPAM feature page is a block of
addresses that contains all of the MPAM MSC MMRs in that address space. Each MPAM feature page base address
must be aligned to a 4 KB boundary.

Each MPAM feature page must be completely contained within a single 64 KB aligned block so that it may be
placed within a single 64 KB page. Non-MPAM MMRs of the MSC are permitted within the 64 KB block if those
MMRs are also to be trapped to a hypervisor.

Memory-mapped Registers
9.1 Overview of MMRs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-115
ID041924 Non-Confidential

Secure, Non-secure, Root and Realm address space

If the MSC supports the Secure address space (NS == 0), the Secure MPAM feature page must exist. The
Non-secure MPAM feature page must always exist.

When FEAT_RME is implemented, the Root and Realm MPAM feature pages must exist. See Four-space MSC.

MMRs describing (IDRs) or controlling (MPAMCFG*) Secure PARTIDs are within the Secure MPAM feature
page, and those describing or controlling Non-secure PARTIDs are within the Non-secure MPAM feature page.
MMRs describing or controlling PARTIDs in the Root PARTID space are within the Root MPAM feature page, and
those describing or controlling PARTIDs in the Realm PARTID space are within the Realm MPAM feature page.

MPAM MMRs only in the Secure address space

Certain MPAM MMRs are only present within the MPAM feature page when accessed via the Secure address space
(NS = 0). MPAMF_SIDR is the only MMR accessible only via the Secure address space.

Read-only MPAM MMRs permitted to read the same or differently

Some of the read-only MPAM MMRs are permitted to have the same or different contents between the Secure,
Non-secure, Root and Realm MPAM feature pages This includes all of the MPAMF*IDR registers. If the
information regarding Secure and Non-secure PARTIDs is the same in an MPAMF*IDR, then the register is
permitted to have the same contents.

These registers are permitted to be shared if the same or banked if different in the two address spaces:

MPAM MMRs that must have the same contents

Two registers must have the same contents between the Secure and Non-secure MPAM feature pages. These
registers contain read-only values that must read as the same value in the two address spaces:

MPAM MMRs that must be separate registers for each address space

Most MPAM MMRs, such as the following, must be separate and have Secure, Non-secure, Root and Realm
versions that are accessed through the corresponding Secure, Non-secure, Root and Realm MPAM feature pages:

MPAMF_IDR MPAMF_IMPL_IDR MPAMF_CPOR_IDR

MPAMF_CCAP_IDR MPAMF_MBW_IDR MPAMF_PRI_IDR

MPAMF_PARTID_NRW_IDR MPAMF_MSMON_IDR MPAMF_CSUMON_IDR

MPAMF_MBWUMON_IDR

MPAMF_IIDR MPAMF_AIDR

MPAMF_ECR MPAMCFG_PART_SEL MSMON_CFG_MON_SEL

MPAMF_ESR MPAMCFG_MBW_MAX MSMON_CFG_CSU_CTL

MPAMCFG_MBW_MIN MSMON_CFG_CSU_FLT

MPAMCFG_CMAX MPAMCFG_MBW_PBM MSMON_CSU

MPAMCFG_CPBM MPAMCFG_MBW_PROP MSMON_CSU_CAPTURE

MPAMCFG_MBW_WINWD MSMON_CFG_MBWU_CTL

Memory-mapped Registers
9.1 Overview of MMRs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-116
ID041924 Non-Confidential

Accesses to locations where there is no register in the address space of the access

Access to MPAM MMR address where there is no register in the address space of the access must be treated as
reserved MPAM feature page locations according to IMPLEMENTATION DEFINED memory-mapped registers
and reserved feature page locations, except for the MPAMCFG_MBW_PBM and MPAMCFG_CPBM as described
in Permitted truncation of an MPAM feature page.

Permitted truncation of an MPAM feature page

An MPAM feature page may be shortened in only two cases:

• If MPAMCFG_MBW_PBM is not implemented (MPAMF_IDR.HAS_MBW_PART == 0' ||
(MPAM_IDR.HAS_MBW_PART == 1 && MPAM_MBW_IDR.HAS_PBM == 0)), the maximum offset for
the MPAM feature page is 0x01FFF.

• If MPAMCFG_MBW_PBM is not implemented and MPAMCFG_CPBM is not implemented
(MPAMF_IDR.HAS_CPOR == 0), the maximum offset for the MPAM feature page is 0x00FFF.

9.1.5 Minimum required MPAM memory-mapped registers

If an MSC has any support for MPAM, the following registers are required:
• MPAMF_IDR.
• MPAMF_AIDR.
• MPAMF_IIDR.
• MPAMF_SIDR, if the Secure address space is supported.

If an MSC supports any resource controls, the following registers are also required:
• MPAMCFG_PART_SEL.

If an MSC supports any resource monitors, the following registers are also required:
• MPAMF_MSMON_IDR.
• MSMON_CFG_MON_SEL.

If an MSC can detect any errors, it must implement:
• MPAMF_ESR.
• MPAMF_ECR.

MSC MPAM MMRs not mentioned in this section are optional are expected to be implemented only when the
resource control or monitor that the register supports is implemented.

See Examples of partial MPAM implementations for examples showing MPAMF_*IDR registers in
implementations with few MPAM functions.

9.1.6 IMPLEMENTATION DEFINED memory-mapped registers and reserved feature page locations

IMPLEMENTATION DEFINED MPAM memory-mapped registers are permitted in the MPAM feature page at offsets
equal to or greater than 0x3000.

All locations in the MPAM feature page at offsets less than the maximum MPAM feature page offset defined in
Permitted truncation of an MPAM feature page are reserved to the architecture. Within that address range:

• Reads and writes of unallocated locations are reserved accesses.

MPAMCFG_PRI MSMON_CFG_MBWU_FLT

MPAMCFG_INTPARTID MSMON_MBWU

MSMON_MBWU_CAPTURE

Memory-mapped Registers
9.1 Overview of MMRs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-117
ID041924 Non-Confidential

• Reads and writes of locations for registers that are not implemented are reserved accesses, including register
locations for:

— Optional MPAM MSC features that are not implemented.

— ID registers for optional MPAM MSC features that are not implemented and indicated as not
implemented in ID registers that are implemented.

• Locations that are beyond the implemented width of a register as given in the corresponding ID register but
within the range of locations allocated by the architecture are reserved accesses.

• Reads of WO locations are reserved accesses.

• Writes to RO locations are reserved accesses.

The architecture requires reserved accesses to be implemented as RAZ/WI. However, software must not rely on this
property as the behavior of reserved values might change in a future revision of the MPAM Extension architecture.
Software must treat reserved accesses as RES0.

9.1.7 Examples of partial MPAM implementations

Most MSCs only implement a fraction of the full MSC MPAM architecture. This section gives examples of partial
implementations, some of which have been achieved by partially removing MPAM. The RTL configuration
examples are included to illustrate the MMR issues in partial MPAM implementations.

An MSC that has no partitioning or monitoring, only propagation

An MSC that does not implement any resource partitioning or monitor interfaces only requires a few MMRs:

• The minimum required MMRs, as specified in Minimum required MPAM memory-mapped registers, must be
implemented with the MPAMF_IDR.{PARTID_MAX, PMG_MAX} fields indicating the maximum
PARTID that can be propagated.

• All of the HAS_* and NO_* bits in MPAMF_IDR must be zero.

• MPAMF_AIDR must indicate MPAM v1.0 or MPAM v1.1.

• MPAMF_IIDR must identify the implementation.

• MPAMF_SIDR must indicate PARTID_MAX and PMG_MAX for Secure propagation.

No other registers are required.

An MSC when RTL configuration has removed a partitioning control or resource usage
monitor

An MSC could be designed to have an RTL configuration option that removes a partitioning control or a resource
usage monitor. If so, the HAS_* bits in each of the relevant MPAMF_*IDR registers must be configured to zero
when the feature is removed.

An MSC when RTL configuration has removed all MPAM functionality

An MSC could be designed to have an RTL configuration option that removes all of the MPAM functionality. When
all of MPAM is deconfigured:
• The minimum required MPAM registers must be present.
• MPAMF_IDR, MPAMF_AIDR and MPAMF_SIDR must all be zero.
• MPAMF_IIDR is permitted to be either all zero or to identify the IP.

Note
Software might still attempt to discover MPAM on this RTL configuration, so the minimum MPAM registers must
be present to allow the lack of MPAM function to be discovered.

Memory-mapped Registers
9.1 Overview of MMRs

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-118
ID041924 Non-Confidential

An MSC when RTL configuration removes a resource instance

An MSC could be designed to have an RTL configuration option that completely removes one or more resource
instances. When a resource instance is removed, only the MPAMF_*IDR registers for the corresponding RIS values
are changed. All of the ID registers corresponding to that RIS value have each of their RIS-specific fields set to zero.
For more information on RIS-specific fields, see Effects of MPAMCFG_PART_SEL.RIS on values read from other
registers.

Memory-mapped Registers
9.2 Summary of memory-mapped registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-119
ID041924 Non-Confidential

9.2 Summary of memory-mapped registers
Table 9-1 lists the external MPAM registers in order of register offset.

Table 9-1 Index of external MPAM registers ordered by offset

Register Offset Length Description, see:

MPAMF_IDR 0x0000 64 MPAMF_IDR, MPAM Features Identification Register

MPAMF_SIDR 0x0008 32 MPAMF_SIDR, MPAM Features Secure Identification Register

MPAMF_IIDR 0x0018 32 MPAMF_IIDR, MPAM Implementation Identification Register

MPAMF_AIDR 0x0020 32 MPAMF_AIDR, MPAM Architecture Identification Register

MPAMF_IMPL_IDR 0x0028 32 MPAMF_IMPL_IDR, MPAM Implementation-Specific
Partitioning Feature Identification Register

MPAMF_CPOR_IDR 0x0030 32 MPAMF_CPOR_IDR, MPAM Features Cache Portion
Partitioning ID register

MPAMF_CCAP_IDR 0x0038 32 MPAMF_CCAP_IDR, MPAM Features Cache Capacity
Partitioning ID register

MPAMF_MBW_IDR 0x0040 32 MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning
Identification Register

MPAMF_PRI_IDR 0x0048 32 MPAMF_PRI_IDR, MPAM Priority Partitioning Identification
Register

MPAMF_PARTID_NRW_IDR 0x0050 32 MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID
register

MPAMF_MSMON_IDR 0x0080 32 MPAMF_MSMON_IDR, MPAM Resource Monitoring
Identification Register

MPAMF_CSUMON_IDR 0x0088 32 MPAMF_CSUMON_IDR, MPAM Features Cache Storage
Usage Monitoring ID register

MPAMF_MBWUMON_IDR 0x0090 32 MPAMF_MBWUMON_IDR, MPAM Features Memory
Bandwidth Usage Monitoring ID register

MPAMF_ERR_MSI_MPAM 0x00DC 32 MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM
Information Register

MPAMF_ERR_MSI_ADDR_L 0x00E0 32 MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part
Address Register

MPAMF_ERR_MSI_ADDR_H 0x00E4 32 MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part
Address Register

MPAMF_ERR_MSI_DATA 0x00E8 32 MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register

MPAMF_ERR_MSI_ATTR 0x00EC 32 MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes
Register

MPAMF_ECR 0x00F0 32 MPAMF_ECR, MPAM Error Control Register

MPAMF_ESR 0x00F8 64 MPAMF_ESR, MPAM Error Status Register

MPAMCFG_PART_SEL 0x0100 32 MPAMCFG_PART_SEL, MPAM Partition Configuration
Selection Register

Memory-mapped Registers
9.2 Summary of memory-mapped registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-120
ID041924 Non-Confidential

MPAMCFG_CMAX 0x0108 32 MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition
Configuration Register

MPAMCFG_CMIN 0x0110 32 MPAMCFG_CMIN, MPAM Cache Minimum Capacity Partition
Configuration Register

MPAMCFG_CASSOC 0x0118 32 MPAMCFG_CASSOC, MPAM Cache Maximum Associativity
Partition Configuration Register

MPAMCFG_MBW_MIN 0x0200 32 MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum
Partition Configuration Register

MPAMCFG_MBW_MAX 0x0208 32 MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum
Partition Configuration Register

MPAMCFG_MBW_WINWD 0x0220 32 MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth
Partitioning Window Width Configuration Register

MPAMCFG_EN 0x0300 32 MPAMCFG_EN, MPAM Partition Configuration Enable
Register

MPAMCFG_DIS 0x0310 32 MPAMCFG_DIS, MPAM Partition Configuration Disable
Register

MPAMCFG_EN_FLAGS 0x0320 32 MPAMCFG_EN_FLAGS, MPAM Partition Configuration
Enable Flags Register

MPAMCFG_PRI 0x0400 32 MPAMCFG_PRI, MPAM Priority Partition Configuration
Register

MPAMCFG_MBW_PROP 0x0500 32 MPAMCFG_MBW_PROP, MPAM Memory Bandwidth
Proportional Stride Partition Configuration Register

MPAMCFG_INTPARTID 0x0600 32 MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing
Configuration Register

MSMON_CFG_MON_SEL 0x0800 32 MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection
Register

MSMON_CAPT_EVNT 0x0808 32 MSMON_CAPT_EVNT, MPAM Capture Event Generation
Register

MSMON_CFG_CSU_FLT 0x0810 32 MSMON_CFG_CSU_FLT, MPAM Memory System Monitor
Configure Cache Storage Usage Monitor Filter Register

MSMON_CFG_CSU_CTL 0x0818 32 MSMON_CFG_CSU_CTL, MPAM Memory System Monitor
Configure Cache Storage Usage Monitor Control Register

MSMON_CFG_MBWU_FLT 0x0820 32 MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor
Configure Memory Bandwidth Usage Monitor Filter Register

MSMON_CFG_MBWU_CTL 0x0828 32 MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor
Configure Memory Bandwidth Usage Monitor Control Register

MSMON_CSU 0x0840 32 MSMON_CSU, MPAM Cache Storage Usage Monitor Register

MSMON_CSU_CAPTURE 0x0848 32 MSMON_CSU_CAPTURE, MPAM Cache Storage Usage
Monitor Capture Register

MSMON_CSU_OFSR 0x0858 32 MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status
Register

Table 9-1 Index of external MPAM registers ordered by offset (continued)

Register Offset Length Description, see:

Memory-mapped Registers
9.2 Summary of memory-mapped registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-121
ID041924 Non-Confidential

MSMON_MBWU 0x0860 32 MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor
Register

MSMON_MBWU_CAPTURE 0x0868 32 MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth
Usage Monitor Capture Register

MSMON_MBWU_L 0x0880 64 MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage
Monitor Register

MSMON_MBWU_L_CAPTURE 0x0890 64 MSMON_MBWU_L_CAPTURE, MPAM Long Memory
Bandwidth Usage Monitor Capture Register

MSMON_MBWU_OFSR 0x0898 32 MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow
Status Register

MSMON_OFLOW_MSI_MPAM 0x08DC 32 MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI
Write MPAM Information Register

MSMON_OFLOW_MSI_ADDR_L 0x08E0 32 MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow
MSI Low-part Address Register

MSMON_OFLOW_MSI_ADDR_H 0x08E4 32 MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow
MSI Write High-part Address Register

MSMON_OFLOW_MSI_DATA 0x08E8 32 MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI
Write Data Register

MSMON_OFLOW_MSI_ATTR 0x08EC 32 MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI
Write Attributes Register

MSMON_OFLOW_SR 0x08F0 32 MSMON_OFLOW_SR, MPAM Monitor Overflow Status
Register

MPAMCFG_CPBM<n> 0x1000 32 MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap
Partition Configuration Register, n = 0 - 1023

MPAMCFG_MBW_PBM<n> 0x2000 32 MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion
Bitmap Partition Configuration Register, n = 0 - 127

Table 9-1 Index of external MPAM registers ordered by offset (continued)

Register Offset Length Description, see:

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-122
ID041924 Non-Confidential

9.3 Memory-mapped ID register description
This section lists the external ID registers.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-123
ID041924 Non-Confidential

9.3.1 MPAMF_AIDR, MPAM Architecture Identification Register

The MPAMF_AIDR characteristics are:

Purpose

Identifies the version of the MPAM architecture that this MSC implements.

Note: The following values are defined for bits [7:0]:

• 0x01 == MPAM architecture v0.1

• 0x10 == MPAM architecture v1.0

• 0x11 == MPAM architecture v1.1

Configurations

The power domain of MPAMF_AIDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_AIDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_AIDR is a 32-bit register.

Field descriptions

Bits [31:8]

Reserved, RES0.

ArchMajorRev, bits [7:4]

Major revision of the MPAM architecture implemented by the MSC.

This table shows the only valid combinations of MPAM version numbers in an MSC. FORCE_NS
functionality is only available in MPAM v0.1.

Use of MPAMv0.1 in MSCs is restricted to limited circumstances. The MSC must be able to initiate
requests in the Secure address space which have MPAM PARTID forced to the Non-secure space
with that forcing not controllable or observable by the software that configures the device for Secure
requests. Please contact Arm before setting MPAMF_AIDR to report MPAMv0.1.

ArchMinorRev, bits [3:0]

Minor revision of the MPAM architecture implemented by the MSC.

See the table in the description of the ArchMajorRev field in this register.

ArchMajorRev ArchMinorRev MPAMv Available

0 0 None.

0 1 v0.1 MPAMv1.0 + MPAMv1.1 + FORCE_NS

1 0 v1.0 MPAMv1.0

1 1 v1.1 MPAMv1.0 + MPAMv1.1 - FORCE_NS

RES0

31 8 7 4 3 0

ArchMajorRev ArchMinorRev

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-124
ID041924 Non-Confidential

Accessing the MPAMF_AIDR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

MPAMF_AIDR is read-only.

MPAMF_AIDR must be readable from the Secure, Non-secure, Root, and Realm MPAM feature pages.

MPAMF_AIDR must have the same contents in the Secure, Non-secure, Root, and Realm MPAM feature pages.

MPAMF_AIDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_AIDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_AIDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_AIDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0020 MPAMF_AIDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0020 MPAMF_AIDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0020 MPAMF_AIDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0020 MPAMF_AIDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-125
ID041924 Non-Confidential

9.3.2 MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register

The MPAMF_CCAP_IDR characteristics are:

Purpose

Indicates the number of fractional bits in MPAMCFG_CMAX.CMAX.

MPAMF_CCAP_IDR_s indicates the number of fractional bits in the Secure instance of
MPAMCFG_CMAX. MPAMF_CCAP_IDR_ns indicates the number of fractional bits in the
Non-secure instance of MPAMCFG_CMAX. MPAMF_CCAP_IDR_rt indicates the number of
fractional bits in the Root cache capacity control settings register field,
MPAMCFG_CMAX.CMAX. MPAMF_CCAP_IDR_rl indicates the number of fractional bits in
the Realm cache capacity control settings register field, MPAMCFG_CMAX.CMAX.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selected by MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has information within the field description.

Configurations

The power domain of MPAMF_CCAP_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_CCAP_PART == 1. Otherwise, direct accesses to MPAMF_CCAP_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_CCAP_IDR is a 32-bit register.

Field descriptions

HAS_CMAX_SOFTLIM, bit [31]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Has soft limiting selection field in MPAMCFG_CMAX.

0b0 If MPAMCFG_CMAX is implemented, it has no SOFTLIM field and the maximum
capacity is controlled with a hard limit.

0b1 If MPAMCFG_CMAX is implemented, that register has a SOFTLIMIT field to select
between hard or soft limiting to the CMAX parameter.

If RIS is implemented, this field indicates selectable limiting for the cache maximum capacity
control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

NO_CMAX, bit [30]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Does not have CMAX partitioning.

0b0 MPAMCFG_CMAX is implemented.

0b1 MPAMCFG_CMAX is not implemented.

If RIS is implemented, this field indicates the absence of a cache maximum capacity partitioning
control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

31 30 29 28

RES0

27 13

CASSOC_WD

12 8

RES0

7 6

CMAX_WD

5 0

HAS_CMAX_
SOFTLIM

NO_CMAX

HAS_CASSOC
HAS_CMIN

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-126
ID041924 Non-Confidential

Otherwise:

Reserved, RES0.

HAS_CMIN, bit [29]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Has cache minimum capacity partitioning.

0b0 MPAMCFG_CMIN is not implemented.

0b1 MPAMCFG_CMIN is implemented.

If RIS is implemented, this field indicates the presence of a cache minimum capacity partitioning
control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_CASSOC, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Has cache maximum associativity partitioning.

0b0 MPAMCFG_CASSOC is not implemented.

0b1 MPAMCFG_CASSOC is implemented.

If RIS is implemented, this field indicates the presence of a cache maximum associativity
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [27:13]

Reserved, RES0.

CASSOC_WD, bits [12:8]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Number of fractional bits implemented in the cache associativity partitioning control,
MPAMCFG_CASSOC.CASSOC, of this MSC. See MPAMCFG_CASSOC.

If RIS is implemented, this field indicates the number of fractional bits in the cache capacity
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [7:6]

Reserved, RES0.

CMAX_WD, bits [5:0]

Number of fractional bits implemented in the cache capacity partitioning control,
MPAMCFG_CMAX.CMAX, of this device. See MPAMCFG_CMAX.

This field must contain a value from 1 to 16, inclusive.

If RIS is implemented, this field indicates the number of fractional bits in the cache capacity
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_CCAP_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_CCAP_IDR is read-only.

MPAMF_CCAP_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-127
ID041924 Non-Confidential

MPAMF_CCAP_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_CCAP_IDR_s is permitted to have either the same or different contents to
MPAMF_CCAP_IDR_ns, MPAMF_CCAP_IDR_rt, or MPAMF_CCAP_IDR_rl.

• MPAMF_CCAP_IDR_ns is permitted to have either the same or different contents to
MPAMF_CCAP_IDR_rt or MPAMF_CCAP_IDR_rl.

• MPAMF_CCAP_IDR_rt is permitted to have either the same or different contents to
MPAMF_CCAP_IDR_rl.

There must be separate registers in the Secure (MPAMF_CCAP_IDR_s), Non-secure (MPAMF_CCAP_IDR_ns),
Root (MPAMF_CCAP_IDR_rt), and Realm (MPAMF_CCAP_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_CCAP_IDR shows the configuration of cache capacity partitioning
for the cache resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

MPAMF_CCAP_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_CCAP_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_CCAP_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_CCAP_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0038 MPAMF_CCAP_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0038 MPAMF_CCAP_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0038 MPAMF_CCAP_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0038 MPAMF_CCAP_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-128
ID041924 Non-Confidential

9.3.3 MPAMF_CPOR_IDR, MPAM Features Cache Portion Partitioning ID register

The MPAMF_CPOR_IDR characteristics are:

Purpose

Indicates the number of bits in MPAMCFG_CPBM<n>.

MPAMF_CPOR_IDR_s indicates the number of bits in the Secure instance of
MPAMCFG_CPBM<n>. MPAMF_CPOR_IDR_ns indicates the number of bits in the Non-secure
instance of MPAMCFG_CPBM<n>. MPAMF_CPOR_IDR_rt indicates the number of bits in the
Root instance of MPAMCFG_CPBM<n>. MPAMF_CPOR_IDR_rl indicates the number of bits in
the Realm instance of MPAMCFG_CPBM<n>.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selector, MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has information within the field description.

Configurations

The power domain of MPAMF_CPOR_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_CPOR_PART == 1. Otherwise, direct accesses to MPAMF_CPOR_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_CPOR_IDR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

CPBM_WD, bits [15:0]

Number of bits in the cache portion partitioning bit map of this device. See
MPAMCFG_CPBM<n>.

This field must contain a value from 1 to 32768, inclusive. Values greater than 32 require a group
of 32-bit registers to access the CPBM, up to 1024 if CPBM_WD is the largest value.

If RIS is implemented, this field indicates the number bits in the cache portion bitmap for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_CPOR_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_CPOR_IDR is read-only.

MPAMF_CPOR_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_CPOR_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_CPOR_IDR_s is permitted to have either the same or different contents to
MPAMF_CPOR_IDR_ns, MPAMF_CPOR_IDR_rt, or MPAMF_CPOR_IDR_rl.

RES0

31 16

CPBM_WD

15 0

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-129
ID041924 Non-Confidential

• MPAMF_CPOR_IDR_ns is permitted to have either the same or different contents to
MPAMF_CPOR_IDR_rt or MPAMF_CPOR_IDR_rl.

• MPAMF_CPOR_IDR_rt is permitted to have either the same or different contents to
MPAMF_CPOR_IDR_rl.

There must be separate registers in the Secure (MPAMF_CPOR_IDR_s), Non-secure (MPAMF_CPOR_IDR_ns),
Root (MPAMF_CPOR_IDR_rt), and Realm (MPAMF_CPOR_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_CPOR_IDR shows the configuration of cache portion partitioning
for the cache resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

MPAMF_CPOR_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_CPOR_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_CPOR_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_CPOR_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0030 MPAMF_CPOR_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0030 MPAMF_CPOR_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0030 MPAMF_CPOR_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0030 MPAMF_CPOR_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-130
ID041924 Non-Confidential

9.3.4 MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

The MPAMF_CSUMON_IDR characteristics are:

Purpose

Indicates the number of cache storage usage monitor instances and other properties of the CSU
monitoring.

MPAMF_CSUMON_IDR_s indicates the number and properties of Secure cache storage usage
monitoring. MPAMF_CSUMON_IDR_ns indicates the number and properties of Non-secure cache
storage usage monitoring. MPAMF_CSUMON_IDR_rt indicates the number and properties of Root
cache storage usage monitoring. MPAMF_CSUMON_IDR_rl indicates the number and properties
of Realm cache storage usage monitoring.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource
instance currently selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are
constant across all resource instances.

Configurations

The power domain of MPAMF_CSUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to
MPAMF_CSUMON_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_CSUMON_IDR is a 32-bit register.

Field descriptions

HAS_CAPTURE, bit [31]

The implementation supports copying an MSMON_CSU to the corresponding
MSMON_CSU_CAPTURE on a capture event.

0b0 MSMON_CSU_CAPTURE is not implemented and there is no support for capture
events in the CSU monitor.

0b1 The MSMON_CSU_CAPTURE register is implemented and the CSU monitor supports
the capture event behavior.

If RIS is implemented, this field indicates that CSU monitor capture is implemented for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

CSU_RO, bit [30]

The implementation of MSMON_CSU is read-only.

0b0 MSMON_CSU is read/write.

0b1 MSMON_CSU is read-only.

If RIS is implemented, this field indicates that the MSMON_CSU monitor register is read-only for
the resource instance selected by MPAMCFG_PART_SEL.RIS.

31 30 29 28 27 26 25 24

RES0

23 16

NUM_MON

15 0

HAS_CAPTURE

CSU_RO
HAS_XCL

RES0

HAS_OFLOW_CAPT
HAS_CEVNT_OFLW

HAS_OFSR
HAS_OFLOW_LNKG

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-131
ID041924 Non-Confidential

HAS_XCL, bit [29]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Has filtering to exclude clean data and implements the MSMON_CFG_CSU_FLT.XCL field.

0b0 MSMON_CFG_CSU_FLT does not implement the XCL field.

0b1 MSMON_CFG_CSU_FLT implements the XCL field to exclude counting data in the
clean state in the monitor instance.

If RIS is implemented, this field indicates that the MSMON_CFG_CSU_FLT.XCL field is
implemented in the CSU monitor instances for the resource instance selected by
MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bit [28]

Reserved, RES0.

HAS_OFLOW_LNKG, bit [27]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Supports MSMON_CFG_CSU_CTL.OFLOW_LNKG field to control how overflow on an instance
affects other monitor instances in this MSC.

0b0 Does not support CSU overflow linkage.

0b1 Supports CSU overflow linkage and the MSMON_CFG_CSU_CTL.OFLOW_LNKG
field.

If RIS is implemented, this field indicates that MSMON_CFG_CSU_CTL.OFLOW_LNKG is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_OFSR, bit [26]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

The CSU monitor overflow status bitmap register, MSMON_CSU_OFSR, is implemented.

0b0 MSMON_CSU_OFSR register is not implemented.

0b1 MSMON_CSU_OFSR register is implemented.

If RIS is implemented, this field indicates that CSU monitor overflow status bitmap register is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_CEVNT_OFLW, bit [25]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Supports MSMON_CFG_CSU_CTL.CEVNT_OFLW field which can enable the CSU monitor
instance to perform overflow behaviors on a capture event.

0b0 Does not support MSMON_CFG_CSU_CTL.CEVNT_OFLW.

0b1 Supports MSMON_CFG_CSU_CTL.CEVNT_OFLW.

If RIS is implemented, this field indicates that MSMON_CFG_CSU_CTL.CEVNT_OFLW is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-132
ID041924 Non-Confidential

HAS_OFLOW_CAPT, bit [24]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Supports MSMON_CFG_CSU_CTL.OFLOW_CAPT field which can enable the CSU monitor
instance to capture the monitor on an overflow.

0b0 Does not support MSMON_CFG_CSU_CTL.OFLOW_CAPT.

0b1 Supports MSMON_CFG_CSU_CTL.OFLOW_CAPT.

If RIS is implemented, this field indicates that MSMON_CFG_CSU_CTL.OFLOW_CAPT is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [23:16]

Reserved, RES0.

NUM_MON, bits [15:0]

The number of cache storage usage monitor instances implemented.

The largest MSMON_CFG_MON_SEL.MON_SEL value is NUM_MON minus 1.

If RIS is implemented, this field indicates the number of CSU monitor instances implemented for
the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_CSUMON_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_CSUMON_IDR is read-only.

MPAMF_CSUMON_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_CSUMON_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_CSUMON_IDR_s is permitted to have either the same or different contents to
MPAMF_CSUMON_IDR_ns, MPAMF_CSUMON_IDR_rt, or MPAMF_CSUMON_IDR_rl.

• MPAMF_CSUMON_IDR_ns is permitted to have either the same or different contents to
MPAMF_CSUMON_IDR_rt or MPAMF_CSUMON_IDR_rl.

• MPAMF_CSUMON_IDR_rt is permitted to have either the same or different contents to
MPAMF_CSUMON_IDR_rl.

There must be separate registers in the Secure (MPAMF_CSUMON_IDR_s), Non-secure
(MPAMF_CSUMON_IDR_ns), Root (MPAMF_CSUMON_IDR_rt), and Realm (MPAMF_CSUMON_IDR_rl)
MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_CSUMON_IDR shows the configuration of cache storage usage
monitoring for the cache resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in
their field descriptions have values that track the implemented properties of the resource instance. Fields that do not
mention RIS are constant across all resource instances.

Access to MPAMF_CSUMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_CSUMON_IDR can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0088 MPAMF_CSUMON_IDR_s

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-133
ID041924 Non-Confidential

Accesses to this interface are RO.

MPAMF_CSUMON_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_CSUMON_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_CSUMON_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0088 MPAMF_CSUMON_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0088 MPAMF_CSUMON_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0088 MPAMF_CSUMON_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-134
ID041924 Non-Confidential

9.3.5 MPAMF_IDR, MPAM Features Identification Register

The MPAMF_IDR characteristics are:

Purpose

Indicates which memory partitioning and monitoring features are present on this MSC.

MPAMF_IDR_s indicates the MPAM features accessed from the Secure MPAM feature page.
MPAMF_IDR_ns indicates the MPAM features accessed from the Non-secure MPAM feature page.
MPAMF_IDR_rt indicates the MPAM features accessed from the Root MPAM feature page.
MPAMF_IDR_rl indicates the MPAM features accessed from the Realm MPAM feature page.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selected by MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has that information within the field description.

Configurations

The power domain of MPAMF_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_IDR are RES0.

MPAMF_IDR is 64-bit register when MPAM v0.1 or v1.1 is implemented.

Otherwise, MPAMF_IDR is a 32-bit register.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_IDR is a:

• 64-bit register when FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is
implemented

• 32-bit register otherwise

Field descriptions

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Bits [63:60]

Reserved, RES0.

RIS_MAX, bits [59:56]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Maximum RIS value supported in MPAMCFG_PART_SEL. Must be 0b0000 if
MPAMF_IDR.HAS_RIS == 0.

RES0

63 60

RIS_MAX

59 56

RES0

55 44 43 42 41 40 39 38 37 36

RES0

35 33 32

HAS_NFU
HAS_ENDIS

SP4
HAS_ERR_MSI

HAS_RIS
NO_IMPL_PART

NO_IMPL_MSMON
HAS_EXTD_ESR

HAS_ESR
31 30 29 28 27 26 25 24

PMG_MAX

23 16

PARTID_MAX

15 0

HAS_PARTID_NRW

HAS_MSMON
HAS_IMPL_IDR

EXT

HAS_CCAP_PART
HAS_CPOR_PART

HAS_MBW_PART
HAS_PRI_PART

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-135
ID041924 Non-Confidential

Otherwise:

Reserved, RES0.

Bits [55:44]

Reserved, RES0.

HAS_NFU, bit [43]

When FEAT_MPAMv1p1 is implemented or FEAT_MPAMv0p1 is implemented:

Has No Future Use field in MPAMCFG_DIS. Indicates that MPAMCFG_DIS.NFU is implemented.

0b0 MPAMCFG_DIS.NFU is not implemented. A PARTID disabled through access to
MPAMCFG_DIS must preserve the control settings of the disabled PARTID.

0b1 Implements MPAMCFG_DIS.NFU. A PARTID disabled with NFU as 1 may have its
control settings forgotten.

If MPAMF_IDR.HAS_ENDIS is 0b0, this field must also be 0b0.

This field must be the same in each instance of this register and for any value in
MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_ENDIS, bit [42]

When FEAT_MPAMv1p1 is implemented or FEAT_MPAMv0p1 is implemented:

Has PARTID enable and disable. Indicates that this MSC supports PARTID disable and enable via
MPAMCFG_DIS, MPAMCFG_EN and MPAMCFG_EN_FLAGS registers.

0b0 Does not support PARTID enable and disable functionality, and MPAMCFG_EN,
MPAMCFG_DIS and MPAMCFG_EN_FLAGS registers are not implemented.

0b1 Supports PARTID enable and disable through the MPAMCFG_EN, MPAMCFG_DIS
and MPAMCFG_EN_FLAGS registers.

All three registers must be implemented when this field is 1, MPAMCFG_EN, MPAMCFG_DIS,
and MPAMCFG_EN_FLAGS.

This field must be the same in each instance of this register and for any value in
MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

SP4, bit [41]

When FEAT_RME is implemented:

Indicates whether this MSC supports 4 PARTID spaces.

0b0 This MSC supports two PARTID spaces.

0b1 This MSC supports four PARTID spaces.

This field must read the same in each instance of this register and for any value in
MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-136
ID041924 Non-Confidential

HAS_ERR_MSI, bit [40]

When MPAMF_IDR.EXT == 1:

Has support for MSI writes to signal MPAM error interrupts. These registers are implemented:
MPAMF_ERR_MSI_ADDR_L, MPAMF_ERR_MSI_ADDR_H, MPAMF_ERR_MSI_ATTR,
MPAMF_ERR_MSI_DATA, and MPAMF_ERR_MSI_MPAM.

0b0 MPAMF_ERR_MSI_ADDR_L, MPAMF_ERR_MSI_ADDR_H,
MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA, and
MPAMF_ERR_MSI_MPAM registers are not implemented.

0b1 MPAMF_ERR_MSI_ADDR_L, MPAMF_ERR_MSI_ADDR_H,
MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA, and
MPAMF_ERR_MSI_MPAM are implemented and can be used to generate writes to
signal error interrupts.

If MPAMF_IDR.HAS_ESR is 0, this bit must also be 0.

Otherwise:

Reserved, RES0.

HAS_ESR, bit [39]

When MPAMF_IDR.EXT == 1:

MPAMF_ESR is implemented.

0b0 MPAMF_ESR, MPAMF_ECR, and MPAM error handling are not implemented.

0b1 MPAMF_ESR, MPAMF_ECR, and MPAM error handling are implemented.

If an MSC cannot encounter any of the error conditions listed in Errors in MSCs, both the
MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

Otherwise:

Reserved, RES0.

HAS_EXTD_ESR, bit [38]

When MPAMF_IDR.EXT == 1:

MPAMF_ESR is 64 bits.

0b0 MPAMF_ESR is 32 bits.

0b1 MPAMF_ESR is 64 bits.

When MPAMF_IDR.HAS_RIS and MPAMF_IDR.HAS_ESR, this field must be 1.

Otherwise:

Reserved, RES0.

NO_IMPL_MSMON, bit [37]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource monitors.

0b0 MPAMF_IMPL_IDR defines at least one IMPLEMENTATION DEFINED resource monitor.

0b1 MPAMF_IMPL_IDR does not define any IMPLEMENTATION DEFINED resource
monitors.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource
monitors described in MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-137
ID041924 Non-Confidential

NO_IMPL_PART, bit [36]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource controls.

0b0 MPAMF_IMPL_IDR defines at least one IMPLEMENTATION DEFINED resource control.

0b1 MPAMF_IMPL_IDR does not define any IMPLEMENTATION DEFINED resource controls.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource
controls described in MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

Bits [35:33]

Reserved, RES0.

HAS_RIS, bit [32]

When MPAMF_IDR.EXT == 1:

Has resource instance selector. Indicates that MPAMCFG_PART_SEL contains the RIS field that
selects a resource instance to control.

0b0 MPAMCFG_PART_SEL does not implement the MPAMCFG_PART_SEL.RIS field or
multiple resource instance support.

0b1 MPAMCFG_PART_SEL implements the MPAMCFG_PART_SEL.RIS field and
MPAM resource instance numbers up to and including MPAMF_IDR.RIS_MAX.

Otherwise:

Reserved, RES0.

HAS_PARTID_NRW, bit [31]

Has PARTID narrowing.

0b0 Does not have MPAMF_PARTID_NRW_IDR, MPAMCFG_INTPARTID, or
intPARTID mapping support.

0b1 Supports the MPAMF_PARTID_NRW_IDR, MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource Monitors. Indicates whether this MSC has MPAM resource monitors.

0b0 Does not support MPAM resource monitoring by groups or MPAMF_MSMON_IDR.

0b1 Supports resource monitoring by matching a combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the IMPLEMENTATION SPECIFIC MPAM
features register, MPAMF_IMPL_IDR.

0b0 Does not have MPAMF_IMPL_IDR.

0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

0b0 MPAMF_IDR has no defined bits in [63:32]. The register is effectively 32 bits.

0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-138
ID041924 Non-Confidential

HAS_PRI_PART, bit [27]

Has Priority Partitioning. Indicates that MPAM priority partitioning is implemented and
MPAMF_PRI_IDR exists.

0b0 Does not support priority partitioning or have MPAMF_PRI_IDR.

0b1 Has priority partitioning and MPAMF_PRI_IDR.

If RIS is implemented, this field indicates the presence of priority partitioning resource controls as
described in MPAMF_PRI_IDR for the selected resource instance.

HAS_MBW_PART, bit [26]

Has Memory Bandwidth Partitioning. Indicates whether this MSC implements MPAM memory
bandwidth partitioning and MPAMF_MBW_IDR.

0b0 Does not support memory bandwidth partitioning or have MPAMF_MBW_IDR
register.

0b1 Has MPAMF_MBW_IDR register.

If RIS is implemented, this field indicates the presence of memory bandwidth partitioning resource
controls as described in MPAMF_MBW_IDR for the selected resource instance.

HAS_CPOR_PART, bit [25]

Has Cache Portion Partitioning. Indicates whether this MSC implements MPAM cache portion
partitioning and MPAMF_CPOR_IDR.

0b0 Does not support cache portion partitioning or have MPAMF_CPOR_IDR or
MPAMCFG_CPBM<n> registers.

0b1 Has MPAMF_CPOR_IDR and MPAMCFG_CPBM<n> registers.

If RIS is implemented, this field indicates the presence of cache portion partitioning resource
controls as described in MPAMF_CPOR_IDR for the selected resource instance.

HAS_CCAP_PART, bit [24]

Has Cache Capacity Partitioning. Indicates whether this MSC implements MPAM cache capacity
partitioning and the MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

0b0 Does not support cache capacity partitioning or have MPAMF_CCAP_IDR and
MPAMCFG_CMAX registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

If RIS is implemented, this field indicates the presence of cache capacity partitioning resource
controls as described in MPAMF_CPOR_IDR for the selected resource instance.

PMG_MAX, bits [23:16]

Maximum supported value of PMG.

The value of this field is permitted to vary between the instances of MPAMF_IDR, each reporting
the maximum supported PMG value in the PARTID space associated with that instance.

In MPAMF_IDR_s, this field is permitted to report the maximum PMG value for the Non-secure
PARTID space or for the Secure PARTID space. The maximum PMG value for the Secure PARTID
space can be read from MPAMF_SIDR.PMG_MAX.

PARTID_MAX, bits [15:0]

Maximum supported value of PARTID.

The value of this field is permitted to vary between the instances of MPAMF_IDR, each reporting
the maximum supported PARTID value in the PARTID space associated with that instance.

In MPAMF_IDR_s, this field is permitted to report the maximum PARTID value for the Non-secure
PARTID space or for the Secure PARTID space. The maximum PARTID value for the Secure
PARTID space can be read from MPAMF_SIDR.PARTID_MAX.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-139
ID041924 Non-Confidential

Otherwise:

HAS_PARTID_NRW, bit [31]

Has PARTID Narrowing.

0b0 Does not have MPAMF_PARTID_NRW_IDR, MPAMCFG_INTPARTID, or
intPARTID mapping support.

0b1 Supports the MPAMF_PARTID_NRW_IDR, MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource Monitors. Indicates whether this MSC has MPAM resource monitors.

0b0 Does not support MPAM resource monitoring by groups or MPAMF_MSMON_IDR.

0b1 Supports resource monitoring by matching a combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the IMPLEMENTATION SPECIFIC MPAM
features register, MPAMF_IMPL_IDR.

0b0 Does not have MPAMF_IMPL_IDR.

0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

0b0 MPAMF_IDR has no defined bits in [63:32]. The register is effectively 32 bits.

0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

HAS_PRI_PART, bit [27]

Has Priority Partitioning. Indicates whether this MSC implements MPAM priority partitioning and
MPAMF_PRI_IDR.

0b0 Does not support priority partitioning or have MPAMF_PRI_IDR.

0b1 Has MPAMF_PRI_IDR.

HAS_MBW_PART, bit [26]

Has Memory Bandwidth Partitioning. Indicates whether this MSC implements MPAM memory
bandwidth partitioning and MPAMF_MBW_IDR.

0b0 Does not support memory bandwidth partitioning or have MPAMF_MBW_IDR
register.

0b1 Has MPAMF_MBW_IDR register.

31 30 29 28 27 26 25 24

PMG_MAX

23 16

PARTID_MAX

15 0

HAS_PARTID_NRW

HAS_MSMON
HAS_IMPL_IDR

EXT

HAS_CCAP_PART
HAS_CPOR_PART

HAS_MBW_PART
HAS_PRI_PART

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-140
ID041924 Non-Confidential

HAS_CPOR_PART, bit [25]

Has Cache Portion Partitioning. Indicates whether this MSC implements MPAM cache portion
partitioning and MPAMF_CPOR_IDR.

0b0 Does not support cache portion partitioning or have MPAMF_CPOR_IDR or
MPAMCFG_CPBM<n> registers.

0b1 Has MPAMF_CPOR_IDR and MPAMCFG_CPBM<n> registers.

HAS_CCAP_PART, bit [24]

Has Cache Capacity Partitioning. Indicates whether this MSC implements MPAM cache capacity
partitioning and the MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

0b0 Does not support cache capacity partitioning or have MPAMF_CCAP_IDR and
MPAMCFG_CMAX registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

PMG_MAX, bits [23:16]

Maximum supported value of PMG.

The value of this field is permitted to vary between the instances of MPAMF_IDR, each reporting
the maximum supported PMG value in the PARTID space associated with that instance.

In MPAMF_IDR_s this field is permitted to report the maximum PMG value for the Non-secure
PARTID space or for the Secure PARTID space. The maximum PMG value for the Secure PARTID
space can be read from MPAMF_SIDR.PMG_MAX.

PARTID_MAX, bits [15:0]

Maximum supported value of PARTID.

The value of this field is permitted to vary between the instances of MPAMF_IDR, each reporting
the maximum supported PARTID value in the PARTID space associated with that instance.

In MPAMF_IDR_s this field is permitted to report the maximum PARTID value for the Non-secure
PARTID space or for the Secure PARTID space. The maximum PARTID value for the Secure
PARTID space can be read from MPAMF_SIDR.PARTID_MAX.

Accessing the MPAMF_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_IDR is read-only.

MPAMF_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and Realm
MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_IDR_s is permitted to have either the same or different contents to MPAMF_IDR_ns,
MPAMF_IDR_rt, or MPAMF_IDR_rl.

• MPAMF_IDR_ns is permitted to have either the same or different contents to MPAMF_IDR_rt or
MPAMF_IDR_rl.

• MPAMF_IDR_rt is permitted to have either the same or different contents to MPAMF_IDR_rl.

There must be separate registers in the Secure (MPAMF_IDR_s), Non-secure (MPAMF_IDR_ns), Root
(MPAMF_IDR_rt), and Realm (MPAMF_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_IDR shows the configuration of MSC MPAM for the resource
instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions have values
that track the implemented properties of the resource instance. Fields that do not mention RIS are constant across
all resource instances.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-141
ID041924 Non-Confidential

MPAMF_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0000 MPAMF_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0000 MPAMF_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0000 MPAMF_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0000 MPAMF_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-142
ID041924 Non-Confidential

9.3.6 MPAMF_IIDR, MPAM Implementation Identification Register

The MPAMF_IIDR characteristics are:

Purpose

Uniquely identifies the MSC implementation by the combination of implementer, product ID,
variant, and revision.

Configurations

The power domain of MPAMF_IIDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_IIDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_IIDR is a 32-bit register.

Field descriptions

ProductID, bits [31:20]

The MSC implementer as identified in the MPAMF_IIDR.Implementer field must assure each
product has a unique ProductID from any other with the same Implementer value.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Variant, bits [19:16]

This field distinguishes product variants or major revisions of the product.

Note
Implementations of ProductID with differing software interfaces are expected to have different
values in the MPAMF_IIDR.Variant field.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [15:12]

This field distinguishes minor revisions of the product.

Note
This field is intended to differentiate product revisions that are minor changes and are largely
software compatible with previous revisions.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the MPAM MSC.

[11:8] must contain the JEP106 continuation code of the implementer.

[7] must always be 0.

[6:0] must contain the JEP106 identity code of the implementer.

ProductID

31 20

Variant

19 16

Revision

15 12

Implementer

11 0

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-143
ID041924 Non-Confidential

For an Arm implementation, bits[11:0] are 0x43B.

Accessing the MPAMF_IIDR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps.

MPAMF_IIDR is read-only.

MPAMF_IIDR must be readable from the Secure, Non-secure, Root, and Realm MPAM feature pages.

MPAMF_IIDR must have the same contents in the Secure, Non-secure, Root, and Realm MPAM feature pages.

MPAMF_IIDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_IIDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_IIDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_IIDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0018 MPAMF_IIDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0018 MPAMF_IIDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0018 MPAMF_IIDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0018 MPAMF_IIDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-144
ID041924 Non-Confidential

9.3.7 MPAMF_IMPL_IDR, MPAM Implementation-Specific Partitioning Feature Identification Register

The MPAMF_IMPL_IDR characteristics are:

Purpose

Indicates the implementation-defined partitioning and monitoring features and parameters of the
MSC.

MPAMF_IMPL_IDR_s indicates IMPLEMENTATION DEFINED partitioning and monitoring features
accessed from the Secure MPAM feature page. MPAMF_IMPL_IDR_ns indicates those accessed
from the Non-secure MPAM feature page. MPAMF_IMPL_IDR_rt indicates IMPLEMENTATION
DEFINED partitioning and monitoring features accessed from the Root MPAM feature page.
MPAMF_IMPL_IDR_rl indicates those accessed from the Realm MPAM feature page.

If MPAMF_IDR.HAS_RIS is 1, this register gives the implementation-specific features and
parameters of the resource instance selected by MPAMCFG_PART_SEL.RIS for any features that
are specific to the resource.

Configurations

The power domain of MPAMF_IMPL_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_IMPL_IDR == 1. Otherwise, direct accesses to MPAMF_IMPL_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_IMPL_IDR is a 32-bit register.

Field descriptions

IMPLFEAT, bits [31:0]

All 32 bits of this register are available to be used as the implementer sees fit to indicate the presence
of IMPLEMENTATION DEFINED MPAM features in this MSC and to give additional
implementation-specific read-only information about the parameters of implementation-specific
MPAM features to software.

If RIS is implemented, this register indicates the implementation-specific features and parameters
of the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_IMPL_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_IMPL_IDR is read-only.

MPAMF_IMPL_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_IMPL_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_IMPL_IDR_s is permitted to have either the same or different contents to
MPAMF_IMPL_IDR_ns, MPAMF_IMPL_IDR_rt, or MPAMF_IMPL_IDR_rl.

• MPAMF_IMPL_IDR_ns is permitted to have either the same or different contents to
MPAMF_IMPL_IDR_rt or MPAMF_IMPL_IDR_rl.

IMPLFEAT

31 0

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-145
ID041924 Non-Confidential

• MPAMF_IMPL_IDR_rt is permitted to have either the same or different contents to
MPAMF_IMPL_IDR_rl.

There must be separate registers in the Secure (MPAMF_IMPL_IDR_s), Non-secure (MPAMF_IMPL_IDR_ns),
Root (MPAMF_IMPL_IDR_rt), and Realm (MPAMF_IMPL_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_IMPL_IDR shows the configuration of implementation-specific
features for the resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

MPAMF_IMPL_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_IMPL_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_IMPL_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_IMPL_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0028 MPAMF_IMPL_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0028 MPAMF_IMPL_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0028 MPAMF_IMPL_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0028 MPAMF_IMPL_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-146
ID041924 Non-Confidential

9.3.8 MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning Identification Register

The MPAMF_MBW_IDR characteristics are:

Purpose

Indicates which MPAM bandwidth partitioning features are present on this MSC.

MPAMF_MBW_IDR_s indicates bandwidth partitioning features accessed from the Secure MPAM
feature page. MPAMF_MBW_IDR_ns indicates bandwidth partitioning features accessed from the
Non-secure MPAM feature page. MPAMF_MBW_IDR_rt indicates bandwidth partitioning
features accessed from the Root MPAM feature page. MPAMF_MBW_IDR_rl indicates bandwidth
partitioning features accessed from the Realm MPAM feature page.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selected by MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has that information within the field description.

Configurations

The power domain of MPAMF_MBW_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_MBW_PART == 1. Otherwise, direct accesses to MPAMF_MBW_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_MBW_IDR is a 32-bit register.

Field descriptions

Bits [31:29]

Reserved, RES0.

BWPBM_WD, bits [28:16]

Bandwidth portion bitmap width.

The number of bandwidth portion bits in the MPAMCFG_MBW_PBM<n> register array.

If MPAMF_MBW_IDR.HAS_PBM is 1, this field must contain a value from 1 to 4096, inclusive.
Values greater than 32 require a group of 32-bit registers to access the BWPBM, up to 128 if
BWPBM_WD is the largest value.

If MPAMF_MBW_IDR.HAS_PBM is 0, this field must be ignored by software.

If RIS is implemented, this field indicates the width of the memory bandwidth portion bitmap
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Bit [15]

Reserved, RES0.

WINDWR, bit [14]

Indicates the bandwidth accounting period register is writable.

0b0 The bandwidth accounting period is readable from MPAMCFG_MBW_WINWD
which might be fixed or vary due to clock rate reconfiguration of the memory channel
or memory controller.

RES0

31 29

BWPBM_WD

28 16 15 14 13 12 11 10

RES0

9 6

BWA_WD

5 0

RES0
WINDWR
HAS_PROP

HAS_MIN
HAS_MAX

HAS_PBM

8

MAX_LIM

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-147
ID041924 Non-Confidential

0b1 The bandwidth accounting width is readable and writable per partition in
MPAMCFG_MBW_WINWD.

HAS_PROP, bit [13]

Indicates that this MSC implements proportional stride bandwidth partitioning and the
MPAMCFG_MBW_PROP register can be accessed.

0b0 There is no memory bandwidth proportional stride control and the
MPAMCFG_MBW_PROP register is RES0.

0b1 The proportional stride memory bandwidth partitioning scheme is supported and the
MPAMCFG_MBW_PROP register can be accessed.

If RIS is implemented, this field indicates the presence of the memory bandwidth proportional stride
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

HAS_PBM, bit [12]

Indicates that bandwidth portion partitioning is implemented and the MPAMCFG_MBW_PBM<n>
register array can be accessed.

0b0 There is no memory bandwidth portion control and the MPAMCFG_MBW_PBM<n>
is RES0.

0b1 The memory bandwidth portion allocation scheme exists and the
MPAMCFG_MBW_PBM<n> register can be accessed.

If RIS is implemented, this field indicates the presence of the memory bandwidth portion
partitioning control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

HAS_MAX, bit [11]

Indicates that this MSC implements maximum bandwidth partitioning and the
MPAMCFG_MBW_MAX register can be accessed.

0b0 There is no maximum memory bandwidth control and the MPAMCFG_MBW_MAX
register is RES0.

0b1 The maximum memory bandwidth allocation scheme is supported and the
MPAMCFG_MBW_MAX register can be accessed.Software can discover which limit
behaviors are implemented by reading from MPAMF_MBW_IDR.MAX_LIM, and can
set the limit behavior by writing into MPAMCFG_MBW_MAX.HARDLIM.

If RIS is implemented, this field indicates the presence of the maximum bandwidth partitioning
control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

HAS_MIN, bit [10]

Indicates that this MSC implements minimum bandwidth partitioning and the
MPAMCFG_MBW_MIN register can be accessed.

0b0 There is no minimum memory bandwidth control and the MPAMCFG_MBW_MIN
register is RES0.

0b1 The minimum memory bandwidth allocation scheme is supported and the
MPAMCFG_MBW_MIN register can be accessed.

If RIS is implemented, this field indicates the presence of the minimum bandwidth partitioning
control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

MAX_LIM, bits [9:8]

When MPAMF_MBW_IDR.HAS_MAX == 1:

Implemented maximum-bandwidth limit partitioning behaviors.

0b00 Both soft limit and hard limit behaviors are implemented.

0b01 Soft limit behavior is implemented.

0b10 Hard limit behavior is implemented.

0b11 Reserved.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-148
ID041924 Non-Confidential

Software can set the limit behavior by writing into MPAMCFG_MBW_MAX.HARDLIM.

If RIS is implemented, this field indicates the presence of the minimum bandwidth partitioning
control for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [7:6] Reserved, RES0.

BWA_WD, bits [5:0]

Number of implemented bits in the bandwidth allocation fields: MIN, MAX, and STRIDE. See
MPAMCFG_MBW_MIN, MPAMCFG_MBW_MAX, and MPAMCFG_MBW_PROP.

In any of these bandwidth allocation fields exist, this field must have a value from 1 to 16, inclusive.
Otherwise, it is permitted to be 0.

If RIS is implemented, this field indicates the number of implemented bits in the bandwidth
allocation control fields for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_MBW_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_MBW_IDR is read-only.

MPAMF_MBW_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_MBW_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_MBW_IDR_s is permitted to have either the same or different contents to
MPAMF_MBW_IDR_ns, MPAMF_MBW_IDR_rt, or MPAMF_MBW_IDR_rl.

• MPAMF_MBW_IDR_ns is permitted to have either the same or different contents to
MPAMF_MBW_IDR_rt or MPAMF_MBW_IDR_rl.

• MPAMF_MBW_IDR_rt is permitted to have either the same or different contents to
MPAMF_MBW_IDR_rl.

There must be separate registers in the Secure (MPAMF_MBW_IDR_s), Non-secure (MPAMF_MBW_IDR_ns),
Root (MPAMF_MBW_IDR_rt), and Realm (MPAMF_MBW_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MBW_IDR shows the configuration of memory bandwidth
partitioning for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS
in their field descriptions have values that track the implemented properties of the resource instance. Fields that do
not mention RIS are constant across all resource instances.

MPAMF_MBW_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_MBW_IDR can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0040 MPAMF_MBW_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0040 MPAMF_MBW_IDR_ns

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-149
ID041924 Non-Confidential

Accesses to this interface are RO.

MPAMF_MBW_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_MBW_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0040 MPAMF_MBW_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0040 MPAMF_MBW_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-150
ID041924 Non-Confidential

9.3.9 MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

The MPAMF_MBWUMON_IDR characteristics are:

Purpose

Indicates the number of memory bandwidth usage monitor instances implemented. This register
also indicates several properties of MBWU monitoring, including whether the implementation
supports capture, scaling, or long counters.

MPAMF_MBWUMON_IDR_s indicates the number of Secure memory bandwidth usage monitor
instances. MPAMF_MBWUMON_IDR_ns indicates the number of Non-secure memory
bandwidth usage monitor instances. MPAMF_MBWUMON_IDR_rt indicates the number of Root
memory bandwidth usage monitor instances. MPAMF_MBWUMON_IDR_rl indicates the number
of Realm memory bandwidth usage monitor instances.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource
instance currently selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are
constant across all resource instances.

Configurations

The power domain of MPAMF_MBWUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to
MPAMF_MBWUMON_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_MBWUMON_IDR is a 32-bit register.

Field descriptions

HAS_CAPTURE, bit [31]

The implementation supports copying an MSMON_MBWU to the corresponding
MSMON_MBWU_CAPTURE on a capture event.

0b0 MSMON_MBWU_CAPTURE is not implemented and there is no support for capture
events in the MBWU monitor.

0b1 The MSMON_MBWU_CAPTURE register is implemented and the MBWU monitor
supports the capture event behavior.

If RIS is implemented, this field indicates that MBWU monitor capture is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

If MPAMF_MBWUMON_IDR.HAS_LONG is 1, this also indicates that
MSMON_MBWU_L_CAPTURE is implemented.

HAS_LONG, bit [30]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Indicates whether MSMON_MBWU_L is implemented.

If HAS_CAPTURE is 1, indicates whether MSMON_MBWU_L_CAPTURE is implemented.

0b0 Does not implement MSMON_MBWU_L or MSMON_MBWU_L_CAPTURE.

31 30 29 28 27 26 25 24

RES0

23 21

SCALE

20 16

NUM_MON

15 0

HAS_CAPTURE

HAS_LONG
LWD

HAS_RWBW

HAS_OFLOW_CAPT
HAS_CEVNT_OFLW

HAS_OFSR
HAS_OFLOW_LNKG

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-151
ID041924 Non-Confidential

0b1 Implements MSMON_MBWU_L. If HAS_CAPTURE == 1,
MSMON_MBWU_L_CAPTURE is also implemented.

If RIS is implemented, this field indicates that the long MBWU monitor is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

If MPAMF_MBWUMON_IDR.HAS_CAPTURE is 1, this also indicates that
MSMON_MBWU_L_CAPTURE is implemented.

Otherwise:

Reserved, RES0.

LWD, bit [29]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Long register VALUE width.

If MPAMF_MBWUMON_IDR.HAS_LONG is 0, MPAMF_MBWUMON_IDR.LWD must also
be 0.

0b0 If MPAMF_MBWUMON_IDR.HAS_LONG is 1, MSMON_MBWU_L has 44-bit
VALUE field in bits [43:0]. Bits [62:44] are RES0. If HAS_LONG is 1 and
MPAMF_MBWUMON_IDR.HAS_CAPTURE is 1,
MSMON_MBWU_L_CAPTURE also has 44-bit VALUE field in bits [43:0].

0b1 MSMON_MBWU_L has 63-bit VALUE field in bits [62:0]. If
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1,
MSMON_MBWU_L_CAPTURE also has 63-bit VALUE field in bits [62:0].

If RIS is implemented, this field indicates the length of the MSMON_MBWU_L.VALUE field
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_RWBW, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Read/write bandwidth selection is implemented in MSMON_CFG_MBWU_FLT.

0b0 Read/write bandwidth selection is not implemented.

0b1 Read/write bandwidth selection is implemented.

If RIS is implemented, this field indicates whether read/write bandwidth collection selection is
available in MSMON_CFG_MBWU_FLT for resource instance selected by
MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_OFLOW_LNKG, bit [27]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Supports MSMON_CFG_MBWU_CTL.OFLOW_LNKG field to control how overflow on an
instance affects other monitor instances in this MSC.

0b0 Does not support MBWU overflow linkage.

0b1 Supports MBWU overflow linkage and the
MSMON_CFG_MBWU_CTL.OFLOW_LNKG field.

If RIS is implemented, this field indicates that MSMON_CFG_MBWU_CTL.OFLOW_LNKG is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-152
ID041924 Non-Confidential

HAS_OFSR, bit [26]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

The MBWU monitor overflow status bitmap register, MSMON_MBWU_OFSR, is implemented.

0b0 MSMON_MBWU_OFSR register is not implemented.

0b1 MSMON_MBWU_OFSR register is implemented.

If RIS is implemented, this field indicates that MBWU monitor overflow status bitmap register is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_CEVNT_OFLW, bit [25]

Supports MSMON_CFG_MBWU_CTL.CEVNT_OFLW field which can enable the MBWU
monitor instance to perform overflow behaviors on a capture event.

0b0 Does not support MSMON_CFG_MBWU_CTL.CEVNT_OFLW.

0b1 Supports MSMON_CFG_MBWU_CTL.CEVNT_OFLW.

If RIS is implemented, this field indicates that MSMON_CFG_MBWU_CTL.CEVNT_OFLW is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

HAS_OFLOW_CAPT, bit [24]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Supports MSMON_CFG_MBWU_CTL.OFLOW_CAPT field which can enable the MBWU
monitor instance to capture the monitor on an overflow.

0b0 Does not support MSMON_CFG_MBWU_CTL.OFLOW_CAPT.

0b1 Supports MSMON_CFG_MBWU_CTL.OFLOW_CAPT.

If RIS is implemented, this field indicates that MSMON_CFG_MBWU_CTL.OFLOW_CAPT is
implemented for the resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [23:21]

Reserved, RES0.

SCALE, bits [20:16]

Scaling of MSMON_MBWU.VALUE in bits. If scaling is enabled by
MSMON_CFG_MBWU_CTL.SCLEN, the byte count in the VALUE field has been shifted by
SCALE bits to the right.

0b00000 Scaling is not implemented.

0bxxxxx Other values are right shift count when scaling is enabled.

If RIS is implemented, this field indicates the scale value for MSMON_MBWU.VALUE field for
the resource instance selected by MPAMCFG_PART_SEL.RIS.

NUM_MON, bits [15:0]

The number of memory bandwidth usage monitor instances implemented. The largest monitor
instance selector, MSMON_CFG_MON_SEL.MON_SEL, is NUM_MON minus 1.

If RIS is implemented, this field indicates the number of MBWU monitor instances for
MSMON_MBWU.VALUE field for the resource instance selected by
MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_MBWUMON_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-153
ID041924 Non-Confidential

MPAMF_MBWUMON_IDR is read-only.

MPAMF_MBWUMON_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature
pages.

MPAMF_MBWUMON_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root,
and Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_MBWUMON_IDR_s is permitted to have either the same or different contents to
MPAMF_MBWUMON_IDR_ns, MPAMF_MBWUMON_IDR_rt, or MPAMF_MBWUMON_IDR_rl.

• MPAMF_MBWUMON_IDR_ns is permitted to have either the same or different contents to
MPAMF_MBWUMON_IDR_rt or MPAMF_MBWUMON_IDR_rl.

• MPAMF_MBWUMON_IDR_rt is permitted to have either the same or different contents to
MPAMF_MBWUMON_IDR_rl.

There must be separate registers in the Secure (MPAMF_MBWUMON_IDR_s), Non-secure
(MPAMF_MBWUMON_IDR_ns), Root (MPAMF_MBWUMON_IDR_rt), and Realm
(MPAMF_MBWUMON_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MBWUMON_IDR shows the configuration of memory bandwidth
monitoring for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS
in their field descriptions have values that track the implemented properties of the resource instance. Fields that do
not mention RIS are constant across all resource instances.

Access to MPAMF_MBWUMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_MBWUMON_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_MBWUMON_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_MBWUMON_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_MBWUMON_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0090 MPAMF_MBWUMON_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0090 MPAMF_MBWUMON_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0090 MPAMF_MBWUMON_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0090 MPAMF_MBWUMON_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-154
ID041924 Non-Confidential

9.3.10 MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register

The MPAMF_MSMON_IDR characteristics are:

Purpose

Indicates which MPAM monitoring features are present on this MSC.

MPAMF_MSMON_IDR_s indicates Secure monitoring features. MPAMF_MSMON_IDR_ns
indicates Non-secure monitoring features. MPAMF_MSMON_IDR_rt indicates Root monitoring
features. MPAMF_MSMON_IDR_rl indicates Realm monitoring features.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource
instance currently selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are
constant across all resource instances.

Configurations

The power domain of MPAMF_MSMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_MSMON == 1. Otherwise, direct accesses to MPAMF_MSMON_IDR are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_MSMON_IDR is a 32-bit register.

Field descriptions

HAS_LOCAL_CAPT_EVNT, bit [31]

Has local capture event generator. Indicates whether this MSC has the MPAM local capture event
generator and the MSMON_CAPT_EVNT register.

0b0 Does not support MPAM local capture event generator or MSMON_CAPT_EVNT.

0b1 Supports the MPAM local capture event generator and the MSMON_CAPT_EVNT
register.

NO_HW_OFLW_INTR, bit [30]

When FEAT_MPAMv1p1 is implemented:

Does not have hardwired MPAM monitor overflow interrupt.

0b0 Supports generating a hardwired interrupt to signal MPAM monitor overflow.

0b1 No support for a hardwired interrupt to signal MPAM monitor overflow.

If this field is 0, the MSC supports generating a hardwired interrupt for monitor overflow events.

If this field is 0 and the HAS_OFLW_MSI field in this register is 1, the MSC supports generating
both hardwired interrupts and MSI writes to signal interrupts.

Otherwise:

Reserved, RES0.

31 30 29 28

RES0

27 18 17 16

RES0

15 0

HAS_LOCAL_CAPT_EVNT

NO_HW_OFLW_INTR

HAS_OFLW_MSI

MSMON_CSU
MSMON_MBWU

HAS_OFLOW_SR

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-155
ID041924 Non-Confidential

HAS_OFLW_MSI, bit [29]

When FEAT_MPAMv1p1 is implemented:

Has support for MSI writes to signal MPAM monitor overflow interrupts. These registers are
implemented: MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA and
MSMON_OFLOW_MSI_MPAM.

0b0 MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA and
MSMON_OFLOW_MSI_MPAM registers are not implemented.

0b1 MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA and
MSMON_OFLOW_MSI_ATTR are implemented and can be used to generate writes to
signal MPAM monitor overflow interrupts.

If MPAMF_MSMON_IDR.NO_HW_OFLW_INTR is 1 and this bit is 0, this MSC does not support
monitor overflow interrupts.

Otherwise:

Reserved, RES0.

HAS_OFLOW_SR, bit [28]

When FEAT_MPAMv1p1 is implemented:

Has MPAM monitor overflow status register MSMON_OFLOW_SR.

0b0 Does not have MSMON_OFLOW_SR.

0b1 Supports MSMON_OFLOW_SR.

Otherwise:

Reserved, RES0.

Bits [27:18]

Reserved, RES0.

MSMON_MBWU, bit [17]

Memory bandwidth usage monitoring. Indicates whether MPAM monitoring for Memory
Bandwidth Usage by PARTID and PMG is implemented and whether the following bandwidth
usage registers are accessible:

• MPAMF_MBWUMON_IDR, MSMON_CFG_MBWU_CTL,
MSMON_CFG_MBWU_FLT, MSMON_MBWU.

• The optional MSMON_MBWU_CAPTURE.

• If MPAM v0.1 or MPAM v1.1 is implemented, the optional MSMON_MBWU_L and the
optional MSMON_MBWU_L_CAPTURE.

0b0 Does not have monitoring for memory bandwidth usage and does not use the bandwidth
usage registers.

0b1 Has monitoring of memory bandwidth usage and uses the bandwidth usage registers.

If RIS is implemented, this field indicates that memory bandwidth usage monitoring is implemented
for the resource instance selected by MPAMCFG_PART_SEL.RIS as described in
MPAMF_MBWUMON_IDR.

MSMON_CSU, bit [16]

Cache storage usage monitoring. Indicates whether MPAM monitoring of cache storage usage by
PARTID and PMG is implemented and the following registers are accessible:

• MPAMF_CSUMON_IDR, MSMON_CFG_CSU_CTL, MSMON_CFG_CSU_FLT,
MSMON_CSU.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-156
ID041924 Non-Confidential

• The optional MSMON_CSU_CAPTURE.

0b0 Does not have monitoring for cache storage usage or the MPAMF_CSUMON_IDR,
MSMON_CFG_CSU_CTL, MSMON_CFG_CSU_FLT, MSMON_CSU or
MSMON_CSU_CAPTURE registers.

0b1 Has monitoring of cache storage usage and the MPAMF_CSUMON_IDR,
MSMON_CFG_CSU_CTL, MSMON_CFG_CSU_FLT, MSMON_CSU and optional
MSMON_CSU_CAPTURE registers.

If RIS is implemented, this field indicates that cache storage usage monitoring is implemented for
the resource instance selected by MPAMCFG_PART_SEL.RIS as described in
MPAMF_CSUMON_IDR.

Bits [15:0]

Reserved, RES0.

Accessing the MPAMF_MSMON_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_MSMON_IDR is read-only.

MPAMF_MSMON_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_MSMON_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and
Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_MSMON_IDR_s is permitted to have either the same or different contents to
MPAMF_MSMON_IDR_ns, MPAMF_MSMON_IDR_rt, or MPAMF_MSMON_IDR_rl.

• MPAMF_MSMON_IDR_ns is permitted to have either the same or different contents to
MPAMF_MSMON_IDR_rt or MPAMF_MSMON_IDR_rl.

• MPAMF_MSMON_IDR_rt is permitted to have either the same or different contents to
MPAMF_MSMON_IDR_rl.

There must be separate registers in the Secure (MPAMF_MSMON_IDR_s), Non-secure
(MPAMF_MSMON_IDR_ns), Root (MPAMF_MSMON_IDR_rt), and Realm (MPAMF_MSMON_IDR_rl)
MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MSMON_IDR shows the configuration of memory system
monitoring for the resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

Access to MPAMF_MSMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_MSMON_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_MSMON_IDR can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0080 MPAMF_MSMON_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0080 MPAMF_MSMON_IDR_ns

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-157
ID041924 Non-Confidential

Accesses to this interface are RO.

MPAMF_MSMON_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_MSMON_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0080 MPAMF_MSMON_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0080 MPAMF_MSMON_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-158
ID041924 Non-Confidential

9.3.11 MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID register

The MPAMF_PARTID_NRW_IDR characteristics are:

Purpose

Indicates the largest internal PARTID for this MSC.

MPAMF_PARTID_NRW_IDR_s indicates the largest Secure internal PARTID.
MPAMF_PARTID_NRW_IDR_ns indicates the largest Non-secure internal PARTID.

When FEAT_RME is implemented: MPAMF_PARTID_NRW_rt indicates the largest Root internal
PARTID. MPAMF_PARTID_NRW_rl indicates the largest Realm internal PARTID.

PARTID narrowing is global to the MSC and does not vary by resource instance.

Configurations

The power domain of MPAMF_PARTID_NRW_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_PARTID_NRW == 1. Otherwise, direct accesses to
MPAMF_PARTID_NRW_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_PARTID_NRW_IDR is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

INTPARTID_MAX, bits [15:0]

The largest intPARTID supported in this MSC.

Accessing the MPAMF_PARTID_NRW_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_PARTID_NRW_IDR is read-only.

MPAMF_PARTID_NRW_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature
pages.

MPAMF_PARTID_NRW_IDR is permitted to have the same contents when read from the Secure, Non-secure,
Root, and Realm MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_PARTID_NRW_IDR_s is permitted to have either the same or different contents to
MPAMF_PARTID_NRW_IDR_ns, MPAMF_PARTID_NRW_IDR_rt, or
MPAMF_PARTID_NRW_IDR_rl.

• MPAMF_PARTID_NRW_IDR_ns is permitted to have either the same or different contents to
MPAMF_PARTID_NRW_IDR_rt or MPAMF_PARTID_NRW_IDR_rl.

• MPAMF_PARTID_NRW_IDR_rt is permitted to have either the same or different contents to
MPAMF_PARTID_NRW_IDR_rl.

RES0

31 16

INTPARTID_MAX

15 0

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-159
ID041924 Non-Confidential

There must be separate registers in the Secure (MPAMF_PARTID_NRW_IDR_s), Non-secure
(MPAMF_PARTID_NRW_IDR_ns), Root (MPAMF_PARTID_NRW_IDR_rt), and Realm
(MPAMF_PARTID_NRW_IDR_rl) MPAM feature pages.

MPAMF_PARTID_NRW_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_PARTID_NRW_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_PARTID_NRW_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_PARTID_NRW_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0050 MPAMF_PARTID_NRW_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0050 MPAMF_PARTID_NRW_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0050 MPAMF_PARTID_NRW_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0050 MPAMF_PARTID_NRW_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-160
ID041924 Non-Confidential

9.3.12 MPAMF_PRI_IDR, MPAM Priority Partitioning Identification Register

The MPAMF_PRI_IDR characteristics are:

Purpose

Indicates which MPAM priority partitioning features are present on this MSC.

MPAMF_PRI_IDR_s indicates priority partitioning features accessed from the Secure MPAM
feature page. MPAMF_PRI_IDR_ns indicates priority partitioning features accessed from the
Non-secure MPAM feature page. MPAMF_PRI_IDR_rt indicates priority partitioning features
accessed from the Root MPAM feature page. MPAMF_PRI_IDR_rl indicates priority partitioning
features accessed from the Realm MPAM feature page.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource
instance selected by MPAMCFG_PART_SEL.RIS. The description of every field that is affected by
MPAMCFG_PART_SEL.RIS has that information within the field description.

Configurations

The power domain of MPAMF_PRI_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_PRI_PART == 1. Otherwise, direct accesses to MPAMF_PRI_IDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_PRI_IDR is a 32-bit register.

Field descriptions

Bits [31:26]

Reserved, RES0.

DSPRI_WD, bits [25:20]

Number of implemented bits in the downstream priority field (DSPRI) of MPAMCFG_PRI.

If HAS_DSPRI == 1, this field must contain a value from 1 to 16, inclusive.

If HAS_DSPRI == 0, this field must be 0.

If RIS is implemented, this field indicates the number of downstream priority bits for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Bits [19:18]

Reserved, RES0.

DSPRI_0_IS_LOW, bit [17]

Indicates whether 0 in MPAMCFG_PRI.DSPRI is the lowest or the highest downstream priority.

0b0 In the MPAMCFG_PRI.DSPRI field, a value of 0 means the highest priority.

0b1 In the MPAMCFG_PRI.DSPRI field, a value of 0 means the lowest priority.

If RIS is implemented, this field indicates that 0 is the lowest downstream priority for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

RES0

31 26

DSPRI_WD

25 20

RES0

19 18 17 16

RES0

15 10

INTPRI_WD

9 4

RES0

3 2 1 0

DSPRI_0_IS_LOW HAS_DSPRI INTPRI_0_IS_LOW HAS_INTPR
I

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-161
ID041924 Non-Confidential

HAS_DSPRI, bit [16]

Indicates that the MPAMCFG_PRI register implements the DSPRI field.

0b0 This MSC supports priority partitioning, but does not implement a downstream priority
(DSPRI) field in the MPAMCFG_PRI register.

0b1 This MSC supports downstream priority partitioning and implements the downstream
priority (DSPRI) field in the MPAMCFG_PRI register.

If RIS is implemented, this field indicates that downstream priority is implemented for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Bits [15:10]

Reserved, RES0.

INTPRI_WD, bits [9:4]

Number of implemented bits in the internal priority field (INTPRI) in the MPAMCFG_PRI register.

If HAS_INTPRI == 1, this field must contain a value from 1 to 16, inclusive.

If HAS_INTPRI == 0, this field must be 0.

If RIS is implemented, this field indicates the number of internal priority bits for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Bits [3:2]

Reserved, RES0.

INTPRI_0_IS_LOW, bit [1]

Indicates whether 0 in MPAMCFG_PRI.INTPRI is the lowest or the highest internal priority.

0b0 In the MPAMCFG_PRI.INTPRI field, a value of 0 means the highest priority.

0b1 In the MPAMCFG_PRI.INTPRI field, a value of 0 means the lowest priority.

If RIS is implemented, this field indicates that 0 is the lowest internal priority for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

HAS_INTPRI, bit [0]

Indicates that this MSC implements the INTPRI field in the MPAMCFG_PRI register.

0b0 This MSC supports priority partitioning, but does not implement the internal priority
(INTPRI) field in the MPAMCFG_PRI register.

0b1 This MSC supports internal priority partitioning and implements the internal priority
(INTPRI) field in the MPAMCFG_PRI register.

If RIS is implemented, this field indicates that internal priority is implemented for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_PRI_IDR:

This register is within the MPAM feature page memory frames. In a system that supports Secure, Non-secure, Root,
and Realm memory maps, there must be MPAM feature pages in all four address maps.

MPAMF_PRI_IDR is read-only.

MPAMF_PRI_IDR must be readable from the Non-secure, Secure, Root, and Realm MPAM feature pages.

MPAMF_PRI_IDR is permitted to have the same contents when read from the Secure, Non-secure, Root, and Realm
MPAM feature pages unless the register contents are different for the different versions:

• MPAMF_PRI_IDR_s is permitted to have either the same or different contents to MPAMF_PRI_IDR_ns,
MPAMF_PRI_IDR_rt, or MPAMF_PRI_IDR_rl.

• MPAMF_PRI_IDR_ns is permitted to have either the same or different contents to MPAMF_PRI_IDR_rt or
MPAMF_PRI_IDR_rl.

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-162
ID041924 Non-Confidential

• MPAMF_PRI_IDR_rt is permitted to have either the same or different contents to MPAMF_PRI_IDR_rl.

There must be separate registers in the Secure (MPAMF_PRI_IDR_s), Non-secure (MPAMF_PRI_IDR_ns), Root
(MPAMF_PRI_IDR_rt), and Realm (MPAMF_PRI_IDR_rl) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_PRI_IDR shows the configuration of priority partitioning for the
resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions have
values that track the implemented properties of the resource instance. Fields that do not mention RIS are constant
across all resource instances.

MPAMF_PRI_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_PRI_IDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MPAMF_PRI_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MPAMF_PRI_IDR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0048 MPAMF_PRI_IDR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0048 MPAMF_PRI_IDR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0048 MPAMF_PRI_IDR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0048 MPAMF_PRI_IDR_rl

Memory-mapped Registers
9.3 Memory-mapped ID register description

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-163
ID041924 Non-Confidential

9.3.13 MPAMF_SIDR, MPAM Features Secure Identification Register

The MPAMF_SIDR characteristics are:

Purpose

The MPAMF_SIDR is a 32-bit read-only register that indicates the maximum Secure PARTID and
Secure PMG on this MSC.

Configurations

The power domain of MPAMF_SIDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_SIDR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_SIDR is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

S_PMG_MAX, bits [23:16]

Maximum value of Secure PMG supported by this component.

S_PARTID_MAX, bits [15:0]

Maximum value of Secure PARTID supported by this component.

Accessing the MPAMF_SIDR:

This register is only within the Secure MPAM feature page memory frame.

MPAMF_SIDR is read-only.

MPAMF_SIDR must only be readable from the Secure MPAM feature page. If the system or the MSC does not
support the Secure address map, this register must not be accessible.

MPAMF_SIDR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0008 MPAMF_SIDR_s

RES0

31 24

S_PMG_MAX

23 16

S_PARTID_MAX

15 0

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-164
ID041924 Non-Confidential

9.4 Memory-mapped partitioning configuration registers
This section lists the external partitioning configuration registers.

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-165
ID041924 Non-Confidential

9.4.1 MPAMCFG_CASSOC, MPAM Cache Maximum Associativity Partition Configuration Register

The MPAMCFG_CASSOC characteristics are:

Purpose

The MPAMCFG_CASSOC is a 32-bit read/write register that controls the maximum fraction of the
cache associativity that the PARTID selected by MPAMCFG_PART_SEL is permitted to allocate.

MPAMCFG_CASSOC_s controls the cache maximum associativity for the Secure PARTID
selected by the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_CASSOC_ns controls
the cache maximum associativity for the Non-secure PARTID selected by the Non-secure instance
of MPAMCFG_PART_SEL. MPAMCFG_CASSOC_rl controls the cache maximum associativity
for the Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL.
MPAMCFG_CASSOC_rt controls the cache maximum associativity for the Root PARTID selected
by the Root instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_CASSOC is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_CCAP_PART == 1, (FEAT_MPAMv0p1 is
implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_CCAP_IDR.HAS_CASSOC
== 1. Otherwise, direct accesses to MPAMCFG_CASSOC are RES0.

Attributes

MPAMCFG_CASSOC is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

CASSOC, bits [15:0]

Maximum cache associativity usage in fixed-point fraction format by the partition selected by
MPAMCFG_PART_SEL. The fraction represents the portion of the cache associativity that the
PARTID is permitted to allocate. CASSOC controls the fraction of associativity in each associativity
grouping of the cache. In a set associative cache, CASSOC applies to the fraction of the ways in
each set.

The implemented width of the fixed-point fraction is given in
MPAMF_CCAP_IDR.CASSOC_WD. Unimplemented bits within the field are RAZ/WI. The
implemented bits of the CASSOC field are always the most significant bits of the field.

The fixed-point fraction CASSOC is less than 1. The implied binary point is between bits 15 and
16. This representation has as the largest fraction of the cache that can be represented in an
implementation with w implemented bits is 1.0 minus one half to the power w.

Accessing the MPAMCFG_CASSOC:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_CASSOC_s must only be accessible from the Secure MPAM feature page.

RES0

31 16

CASSOC

15 0

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-166
ID041924 Non-Confidential

• MPAMCFG_CASSOC_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_CASSOC_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_CASSOC_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_CASSOC_s, MPAMCFG_CASSOC_ns, MPAMCFG_CASSOC_rt, and MPAMCFG_CASSOC_rl
must be separate registers:

• The Secure instance (MPAMCFG_CASSOC_s) accesses the cache maximum associativity partitioning used
for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_CASSOC_ns) accesses the cache maximum associativity
partitioning used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_CASSOC_rt) accesses the cache maximum associativity partitioning used
for Root PARTIDs.

• The Realm instance (MPAMCFG_CASSOC_rl) accesses the cache maximum associativity partitioning used
for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CASSOC access the cache maximum associativity
partitioning configuration settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CASSOC access the cache maximum associativity
partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CASSOC access the cache maximum
associativity partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CASSOC access the cache
maximum associativity partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CASSOC can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_CASSOC can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_CASSOC can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0118 MPAMCFG_CASSOC_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0118 MPAMCFG_CASSOC_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0118 MPAMCFG_CASSOC_rt

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-167
ID041924 Non-Confidential

MPAMCFG_CASSOC can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0118 MPAMCFG_CASSOC_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-168
ID041924 Non-Confidential

9.4.2 MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register

The MPAMCFG_CMAX characteristics are:

Purpose

The MPAMCFG_CMAX is a 32-bit read/write register that controls the maximum fraction of the
cache capacity that the PARTID selected by MPAMCFG_PART_SEL is permitted to allocate.

MPAMCFG_CMAX_s controls the cache maximum capacity for the Secure PARTID selected by
the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_CMAX_ns controls the cache
maximum capacity for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL. MPAMCFG_CMAX_rt controls the cache maximum capacity for the
Root PARTID selected by the Root instance of MPAMCFG_PART_SEL. MPAMCFG_CMAX_rl
controls the cache maximum capacity for the Realm PARTID selected by the Realm instance of
MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_CMAX is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented,
MPAMF_IDR.HAS_CCAP_PART == 1 and MPAMF_CCAP_IDR.NO_CMAX == 0. Otherwise,
direct accesses to MPAMCFG_CMAX are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_CMAX is a 32-bit register.

Field descriptions

SOFTLIM, bit [31]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_CCAP_IDR.HAS_CMAX_SOFTLIM == 1:

Soft limiting of CMAX. Soft limiting allows some allocations by a PARTID when its cache use is
above the CMAX maximum cache capacity.

0b0 When CMAX cache capacity is exceeded, the partition is not allowed to increase its
cache capacity usage. It is only permitted to replace a line that was previously occupied
by a line allocated by that PARTID.

0b1 When CMAX cache capacity is exceeded, the partition is permitted to allocate capacity
beyond CMAX, but only from invalid lines or lines belonging to disabled PARTIDs.

Otherwise:

Reserved, RES0.

Bits [30:16]

Reserved, RES0.

CMAX, bits [15:0]

Maximum cache capacity usage in fixed-point fraction format by the partition selected by
MPAMCFG_PART_SEL. The fraction represents the portion of the total cache capacity that the
PARTID is permitted to allocate.

31

RES0

30 16

CMAX

15 0

SOFTLIM

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-169
ID041924 Non-Confidential

The implemented width of the fixed-point fraction is given in MPAMF_CCAP_IDR.CMAX_WD.
Unimplemented bits within the field are RAZ/WI. The implemented bits of the CMAX field are
always the most significant bits of the field.

The fixed-point fraction CMAX is less than 1. The implied binary point is between bits 15 and 16.
This representation has as the largest fraction of the cache that can be represented in an
implementation with w implemented bits is 1.0 minus one half to the power w.

Accessing the MPAMCFG_CMAX:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_CMAX_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_CMAX_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_CMAX_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_CMAX_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_CMAX_s, MPAMCFG_CMAX_ns, MPAMCFG_CMAX_rt, and MPAMCFG_CMAX_rl must be
separate registers:

• The Secure instance (MPAMCFG_CMAX_s) accesses the cache capacity partitioning used for Secure
PARTIDs.

• The Non-secure instance (MPAMCFG_CMAX_ns) accesses the cache capacity partitioning used for
Non-secure PARTIDs.

• The Root instance (MPAMCFG_CMAX_rt) accesses the cache capacity partitioning used for Root
PARTIDs.

• The Realm instance (MPAMCFG_CMAX_rl) accesses the cache capacity partitioning used for Realm
PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CMAX access the cache maximum capacity
partitioning configuration settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CMAX access the cache maximum capacity
partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CMAX access the cache maximum
capacity partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CMAX access the cache maximum
capacity partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CMAX can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0108 MPAMCFG_CMAX_s

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-170
ID041924 Non-Confidential

MPAMCFG_CMAX can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_CMAX can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMCFG_CMAX can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0108 MPAMCFG_CMAX_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0108 MPAMCFG_CMAX_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0108 MPAMCFG_CMAX_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-171
ID041924 Non-Confidential

9.4.3 MPAMCFG_CMIN, MPAM Cache Minimum Capacity Partition Configuration Register

The MPAMCFG_CMIN characteristics are:

Purpose

The MPAMCFG_CMIN is a 32-bit read/write register that controls the fraction of the cache
capacity that the PARTID selected by MPAMCFG_PART_SEL has priority to allocate.

MPAMCFG_CMIN_s controls the cache minimum capacity for the Secure PARTID selected by the
Secure instance of MPAMCFG_PART_SEL. MPAMCFG_CMIN_ns controls the cache minimum
capacity for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL. MPAMCFG_CMIN_rl controls the cache minimum capacity for the
Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL. MPAMCFG_CMIN_rt
controls the cache minimum capacity for the Root PARTID selected by the Root instance of
MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_CMIN is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_CCAP_PART == 1, (FEAT_MPAMv0p1 is
implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_CCAP_IDR.HAS_CMIN == 1.
Otherwise, direct accesses to MPAMCFG_CMIN are RES0.

Attributes

MPAMCFG_CMIN is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

CMIN, bits [15:0]

Minimum cache capacity usage in fixed-point fraction format by the partition selected by
MPAMCFG_PART_SEL. The fraction represents the portion of the total cache capacity that the
PARTID has priority to allocate.

The implemented width of the fixed-point fraction is the same as the width of
MPAMCFG_CMAX.CMAX which is given in MPAMF_CCAP_IDR.CMAX_WD.
Unimplemented bits within the field are RAZ/WI. The implemented bits of the CMIN field are
always the most significant bits of the field.

The fixed-point fraction CMIN is less than 1. The implied binary point is between bits 15 and 16.
This representation has as the largest fraction of the cache that can be represented in an
implementation with w implemented bits is 1.0 minus one half to the power w.

Accessing the MPAMCFG_CMIN:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_CMIN_s must only be accessible from the Secure MPAM feature page.

RES0

31 16

CMIN

15 0

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-172
ID041924 Non-Confidential

• MPAMCFG_CMIN_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_CMIN_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_CMIN_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_CMIN_s, MPAMCFG_CMIN_ns, MPAMCFG_CMIN_rt, and MPAMCFG_CMIN_rl must be
separate registers:

• The Secure instance (MPAMCFG_CMIN_s) accesses the cache minimum capacity partitioning used for
Secure PARTIDs.

• The Non-secure instance (MPAMCFG_CMIN_ns) accesses the cache minimum capacity partitioning used
for Non-secure PARTIDs.

• The Root instance (MPAMCFG_CMIN_rt) accesses the cache minimum capacity partitioning used for Root
PARTIDs.

• The Realm instance (MPAMCFG_CMIN_rl) accesses the cache minimum capacity partitioning used for
Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CMIN access the cache minimum capacity partitioning
configuration settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID
selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CMIN access the cache minimum capacity
partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CMIN access the cache minimum
capacity partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CMIN access the cache minimum
capacity partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CMIN can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_CMIN can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_CMIN can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0110 MPAMCFG_CMIN_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0110 MPAMCFG_CMIN_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0110 MPAMCFG_CMIN_rt

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-173
ID041924 Non-Confidential

MPAMCFG_CMIN can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0110 MPAMCFG_CMIN_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-174
ID041924 Non-Confidential

9.4.4 MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap Partition Configuration Register, n = 0 -
1023

The MPAMCFG_CPBM<n> characteristics are:

Purpose

The MPAMCFG_CPBM<n> register array gives access to the cache portion bitmap. Each register
in the array is a read/write register that configures the cache portions numbered from <n * 32> to
<31 + (n * 32)> that a PARTID is allowed to allocate.

After setting MPAMCFG_PART_SEL with a PARTID, software writes to the
MPAMCFG_CPBM<n> register to configure which cache portions the PARTID is allowed to
allocate.

The MPAMCFG_CPBM<n> register that contains the bitmap bit corresponding to cache portion p
has n equal to p[15:5]. The field, P<x>, of that MPAMCFG_CPBM<n> register that contains the
bitmap bit corresponding to cache portion p has x equal to p[4:0].

MPAMCFG_CPBM<n>_s controls cache portions for the Secure PARTID selected by the Secure
instance of MPAMCFG_PART_SEL. MPAMCFG_CPBM<n>_ns controls the cache portions for
the Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.
MPAMCFG_CPBM<n>_rt controls cache portions for the Root PARTID selected by the Root
instance of MPAMCFG_PART_SEL. MPAMCFG_CPBM<n>_rl controls the cache portions for
the Realm PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_CPBM<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_CPOR_PART == 1. Otherwise, direct accesses to MPAMCFG_CPBM<n> are
RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_CPBM<n> is a 32-bit register.

Field descriptions

P<x>, bit [x], for x = 31 to 0

Portion allocation control bit. Each cache portion allocation control bit,
MPAMCFG_CPBM<n>.P<x>, grants permission to the PARTID selected by
MPAMCFG_PART_SEL to allocate cache lines within cache portion <n*32> + x.

0b0 The PARTID is not permitted to allocate into cache portion <n * 32> + x.

0b1 The PARTID is permitted to allocate within cache portion <n * 32> + x.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-175
ID041924 Non-Confidential

The number of bits in the cache portion partitioning bit map of this component is given in
MPAMF_CPOR_IDR.CPBM_WD. MPAMF_CPOR_IDR.CPBM_WD contains a value from 1 to
215, inclusive. Values of MPAMF_CPOR_IDR.CPBM_WD greater than 32 require an array of
32-bit MPAMCFG_CPBM<n> registers to access the cache portion bitmap, up to 1024 registers.

When (n * 32) + x > UInt(MPAMF_CPOR_IDR.CPBM_WD), access to this field is RES0.

Accessing the MPAMCFG_CPBM<n>:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_CPBM<n>_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_CPBM<n>_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_CPBM<n>_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_CPBM<n>_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_CPBM<n>_s, MPAMCFG_CPBM<n>_ns, MPAMCFG_CPBM<n>_rt, and
MPAMCFG_CPBM<n>_rl must be separate registers:

• The Secure instance (MPAMCFG_CPBM<n>_s) accesses the cache portion bitmap used for Secure
PARTIDs.

• The Non-secure instance (MPAMCFG_CPBM<n>_ns) accesses the cache portion bitmap used for
Non-secure PARTIDs.

• The Root instance (MPAMCFG_CPBM<n>_rt) accesses the cache portion bitmap used for Root PARTIDs.

• The Realm instance (MPAMCFG_CPBM<n>_rl) accesses the cache portion bitmap used for Realm
PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion bitmap
configuration settings for the cache resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID
selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion bitmap
configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion
bitmap configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_CPBM<n> access the cache portion
bitmap configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_CPBM<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x1000 + (4 * n) MPAMCFG_CPBM<n>_s

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-176
ID041924 Non-Confidential

MPAMCFG_CPBM<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_CPBM<n> can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMCFG_CPBM<n> can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x1000 + (4 * n) MPAMCFG_CPBM<n>_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x1000 + (4 * n) MPAMCFG_CPBM<n>_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x1000 + (4 * n) MPAMCFG_CPBM<n>_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-177
ID041924 Non-Confidential

9.4.5 MPAMCFG_DIS, MPAM Partition Configuration Disable Register

The MPAMCFG_DIS characteristics are:

Purpose

Disables a PARTID configuration as set in other MPAMCFG registers.

MPAMCFG_DIS_s disables a Secure PARTID. MPAMCFG_DIS_ns disables a Non-secure
PARTID. MPAMCFG_DIS_rl disables a Realm PARTID. MPAMCFG_DIS_rt disables a Root
PARTID.

Configurations

The power domain of MPAMCFG_DIS is IMPLEMENTATION DEFINED.

This register is present only when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is
implemented) and MPAMF_IDR.HAS_ENDIS == 1. Otherwise, direct accesses to
MPAMCFG_DIS are RES0.

Attributes

MPAMCFG_DIS is a 32-bit register.

Field descriptions

NFU, bit [31]

When MPAMF_IDR.HAS_NFU == 1:

No Future Use.

0b0 Control settings of the disabled PARTID must be retained.

0b1 Control settings of the disabled PARTID may take an UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [30:16]

Reserved, RES0.

PARTID, bits [15:0]

Selects the PARTID to disable.

Accessing the MPAMCFG_DIS:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_DIS_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_DIS_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_DIS_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_DIS_rl must only be accessible from the Realm MPAM feature page.

31

RES0

30 16

PARTID

15 0

NFU

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-178
ID041924 Non-Confidential

MPAMCFG_DIS_s, MPAMCFG_DIS_ns, MPAMCFG_DIS_rt, and MPAMCFG_DIS_rl must be separate
registers:

• The Secure instance (MPAMCFG_DIS_s) accesses the PARTID disable used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_DIS_ns) accesses the PARTID disable used for Non-secure
PARTIDs.

• The Root instance (MPAMCFG_DIS_rt) accesses the PARTID disable used for Root PARTIDs.

• The Realm instance (MPAMCFG_DIS_rl) accesses the PARTID disable used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_DIS access the PARTID disable configuration settings
for the PARTID disable resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_DIS access the PARTID disable configuration
settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_DIS access the PARTID disable
configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_DIS access the PARTID disable
configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_DIS can be accessed through its memory-mapped interface:

Accesses to this interface are WO/RAZ.

MPAMCFG_DIS can be accessed through its memory-mapped interface:

Accesses to this interface are WO/RAZ.

MPAMCFG_DIS can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are WO/RAZ.

MPAMCFG_DIS can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are WO/RAZ.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0310 MPAMCFG_DIS_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0310 MPAMCFG_DIS_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0310 MPAMCFG_DIS_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0310 MPAMCFG_DIS_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-179
ID041924 Non-Confidential

9.4.6 MPAMCFG_EN, MPAM Partition Configuration Enable Register

The MPAMCFG_EN characteristics are:

Purpose

Enables a PARTID configuration as set in other MPAMCFG registers.

MPAMCFG_EN_s enables a Secure PARTID. MPAMCFG_EN_ns enables a Non-secure PARTID.
MPAMCFG_EN_rl enables a Realm PARTID. MPAMCFG_EN_rt enables a Root PARTID.

Configurations

The power domain of MPAMCFG_EN is IMPLEMENTATION DEFINED.

This register is present only when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is
implemented) and MPAMF_IDR.HAS_ENDIS == 1. Otherwise, direct accesses to
MPAMCFG_EN are RES0.

Attributes

MPAMCFG_EN is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

PARTID, bits [15:0]

Selects the PARTID to enable.

Accessing the MPAMCFG_EN:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_EN_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_EN_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_EN_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_EN_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_EN_s, MPAMCFG_EN_ns, MPAMCFG_EN_rt, and MPAMCFG_EN_rl must be separate registers:

• The Secure instance (MPAMCFG_EN_s) accesses the PARTID enable used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_EN_ns) accesses the PARTID enable used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_EN_rt) accesses the PARTID enable used for Root PARTIDs.

• The Realm instance (MPAMCFG_EN_rl) accesses the PARTID enable used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_EN access the PARTID enable configuration settings
for the PARTID enable resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_EN access the PARTID enable configuration
settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

RES0

31 16

PARTID

15 0

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-180
ID041924 Non-Confidential

When PARTID narrowing is implemented, loads and stores to MPAMCFG_EN access the PARTID enable
configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_EN access the PARTID enable
configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_EN can be accessed through its memory-mapped interface:

Accesses to this interface are WO/RAZ.

MPAMCFG_EN can be accessed through its memory-mapped interface:

Accesses to this interface are WO/RAZ.

MPAMCFG_EN can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are WO/RAZ.

MPAMCFG_EN can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are WO/RAZ.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0300 MPAMCFG_EN_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0300 MPAMCFG_EN_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0300 MPAMCFG_EN_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0300 MPAMCFG_EN_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-181
ID041924 Non-Confidential

9.4.7 MPAMCFG_EN_FLAGS, MPAM Partition Configuration Enable Flags Register

The MPAMCFG_EN_FLAGS characteristics are:

Purpose

Enable flags for 32 PARTIDs.

MPAMCFG_EN_FLAGS_s gives read/write access to 32 Secure PARTIDs.
MPAMCFG_EN_FLAGS_ns gives read/write access to 32 Non-secure PARTIDs.
MPAMCFG_EN_FLAGS_rl gives read/write access to 32 Realm PARTIDs.
MPAMCFG_EN_FLAGS_rt gives read/write access to 32 Root PARTIDs.

Configurations

The power domain of MPAMCFG_EN_FLAGS is IMPLEMENTATION DEFINED.

This register is present only when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is
implemented) and MPAMF_IDR.HAS_ENDIS == 1. Otherwise, direct accesses to
MPAMCFG_EN_FLAGS are RES0.

Attributes

MPAMCFG_EN_FLAGS is a 32-bit register.

Field descriptions

EN<x>, bit [x], for x = 31 to 0

PARTID Enable flags. The group of flags accessed is selected by
MPAMCFG_PART_SEL.PARTID_SEL & 0xFFE0 in bit [0] to
(MPAMCFG_PART_SEL.PARTID_SEL & 0xFFE0) + 31 in bit [31].

0b0 The PARTID is disabled.

0b1 The PARTID is enabled.

Each bit in MPAMCFG_EN_FLAGS gives access to the same state as controlled by
MPAMCFG_EN and MPAMCFG_DIS.

Bits MPAMCFG_EN_FLAGS.EN<x>, where (MPAMCFG_PART_SEL.PARTID_SEL & 0xFFE0)
+ x is greater than MPAMF_IDR.PARTID_MAX, are not required to be implemented.

As with other partitioning controls, the enable flag for PARTID 0 must be reset to 0b1 (enabled).

Accessing the MPAMCFG_EN_FLAGS:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_EN_FLAGS_s must only be accessible from the Secure MPAM feature page.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN31
EN30

EN29
EN28

EN27
EN26

EN25
EN24

EN23
EN22

EN21
EN20

EN19
EN18

EN17
EN16

EN0
EN1

EN2
EN3

EN4
EN5

EN6
EN7

EN8
EN9

EN10
EN11

EN12
EN13

EN14
EN15

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-182
ID041924 Non-Confidential

• MPAMCFG_EN_FLAGS_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_EN_FLAGS_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_EN_FLAGS_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_EN_FLAGS_s, MPAMCFG_EN_FLAGS_ns, MPAMCFG_EN_FLAGS_rt, and
MPAMCFG_EN_FLAGS_rl must be separate registers:

• The Secure instance (MPAMCFG_EN_FLAGS_s) accesses the PARTID enable used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_EN_FLAGS_ns) accesses the PARTID enable used for Non-secure
PARTIDs.

• The Root instance (MPAMCFG_EN_FLAGS_rt) accesses the PARTID enable used for Root PARTIDs.

• The Realm instance (MPAMCFG_EN_FLAGS_rl) accesses the PARTID enable used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_EN_FLAGS access the PARTID enable configuration
settings for the PARTID enable resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID
selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_EN_FLAGS access the PARTID enable
configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_EN_FLAGS access the PARTID enable
configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_EN_FLAGS access the PARTID
enable configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_EN_FLAGS can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_EN_FLAGS can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_EN_FLAGS can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0320 MPAMCFG_EN_FLAGS_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0320 MPAMCFG_EN_FLAGS_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0320 MPAMCFG_EN_FLAGS_rt

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-183
ID041924 Non-Confidential

MPAMCFG_EN_FLAGS can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0320 MPAMCFG_EN_FLAGS_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-184
ID041924 Non-Confidential

9.4.8 MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register

The MPAMCFG_INTPARTID characteristics are:

Purpose

MPAMCFG_INTPARTID is a 32-bit read/write register that controls the mapping of the PARTID
selected by MPAMCFG_PART_SEL into a narrower internal PARTID (intPARTID).

MPAMCFG_INTPARTID_s controls the mapping for the Secure PARTID selected by the Secure
instance of MPAMCFG_PART_SEL. MPAMCFG_INTPARTID_ns controls the mapping for the
Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.
MPAMCFG_INTPARTID_rt controls the mapping for the Root PARTID selected by the Root
instance of MPAMCFG_PART_SEL. MPAMCFG_INTPARTID_rl controls the mapping for the
Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

The MPAMCFG_INTPARTID register associates the request PARTID (reqPARTID) in the
MPAMCFG_PART_SEL register with an internal PARTID (intPARTID) in this register. To set that
association, store reqPARTID into the MPAMCFG_PART_SEL register and then store the
intPARTID into the MPAMCFG_INTPARTID register. To read the association, store reqPARTID
into the MPAMCFG_PART_SEL register and then read MPAMCFG_INTPARTID.

If the intPARTID stored into MPAMCFG_INTPARTID is out-of-range or does not have the
INTERNAL bit set, the association of reqPARTID to intPARTID is not written and MPAMF_ESR
is set to indicate an intPARTID_Range error.

If MPAMCFG_PART_SEL.INTERNAL is 1 when MPAMCFG_INTPARTID is read or written,
MPAMF_ESR is set to indicate an Unexpected_INTERNAL error.

Configurations

The power domain of MPAMCFG_INTPARTID is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_PARTID_NRW == 1. Otherwise, direct accesses to MPAMCFG_INTPARTID
are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_INTPARTID is a 32-bit register.

Field descriptions

Bits [31:17]

Reserved, RES0.

INTERNAL, bit [16]

Internal PARTID flag.

This bit must be 1 when written to the register. If written as 0, the write will not update the
reqPARTID to intPARTID association.

On a read of this register, the bit will always read the value last written.

INTPARTID, bits [15:0]

This field contains the intPARTID mapped to the reqPARTID in MPAMCFG_PART_SEL.

The maximum intPARTID supported is MPAMF_PARTID_NRW_IDR.INTPARTID_MAX.

RES0

31 17 16

INTPARTID

15 0

INTERNAL

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-185
ID041924 Non-Confidential

Accessing the MPAMCFG_INTPARTID:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_INTPARTID_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_INTPARTID_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_INTPARTID_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_INTPARTID_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_INTPARTID_s, MPAMCFG_INTPARTID_ns, MPAMCFG_INTPARTID_rt, and
MPAMCFG_INTPARTID_rl must be separate registers:

• The Secure instance (MPAMCFG_INTPARTID_s) accesses the PARTID narrowing used for Secure
PARTIDs.

• The Non-secure instance (MPAMCFG_INTPARTID_ns) accesses the PARTID narrowing used for
Non-secure PARTIDs.

• The Root instance (MPAMCFG_INTPARTID_rt) accesses the PARTID narrowing used for Root PARTIDs.

• The Realm instance (MPAMCFG_INTPARTID_rl) accesses the PARTID narrowing used for Realm
PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_INTPARTID access the PARTID narrowing
configuration settings without being affected by MPAMCFG_PART_SEL.RIS.

Loads and stores to MPAMCFG_INTPARTID access the PARTID narrowing configuration settings for the request
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be
0.

MPAMCFG_INTPARTID can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_INTPARTID can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_INTPARTID can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0600 MPAMCFG_INTPARTID_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0600 MPAMCFG_INTPARTID_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0600 MPAMCFG_INTPARTID_rt

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-186
ID041924 Non-Confidential

MPAMCFG_INTPARTID can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0600 MPAMCFG_INTPARTID_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-187
ID041924 Non-Confidential

9.4.9 MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register

The MPAMCFG_MBW_MAX characteristics are:

Purpose

MPAMCFG_MBW_MAX is a 32-bit read/write register that controls the maximum fraction of
memory bandwidth that the PARTID selected by MPAMCFG_PART_SEL is permitted to use.

MPAMCFG_MBW_MAX_s controls maximum bandwidth for the Secure PARTID selected by the
Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_MAX_ns controls the maximum
bandwidth for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL. MPAMCFG_MBW_MAX_rt controls the maximum bandwidth for the
Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_MAX_rl controls the maximum bandwidth for the Realm PARTID selected by
the Realm instance of MPAMCFG_PART_SEL.

A PARTID that has used more than MAX is given no access to additional bandwidth if HARDLIM
== 1 or is given additional bandwidth only if there are no requests from PARTIDs that have not
exceeded their MAX if HARDLIM == 0.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_MAX is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented,
MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_MAX == 1. Otherwise,
direct accesses to MPAMCFG_MBW_MAX are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_MAX is a 32-bit register.

Field descriptions

HARDLIM, bit [31]

Maximum-bandwidth limit behavior selection.

0b0 Soft limit: when MAX bandwidth is exceeded, the partition contends with a low
preference for downstream bandwidth beyond MAX.

0b1 Hard limit: when MAX bandwidth is exceeded, the partition does not use any more
bandwidth until the memory bandwidth measurement for the partition falls below
MAX.

Accessing this field has the following behavior:

• When MPAMF_MBW_IDR.MAX_LIM == 0b00, access to this field is RW.

• When MPAMF_MBW_IDR.MAX_LIM == 0b01, access to this field is RAZ/WI.

• When MPAMF_MBW_IDR.MAX_LIM == 0b10, access to this field is RAO/WI.

Bits [30:16]

Reserved, RES0.

31

RES0

30 16

MAX

15 0

HARDLIM

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-188
ID041924 Non-Confidential

MAX, bits [15:0]

Memory maximum bandwidth allocated to the partition selected by MPAMCFG_PART_SEL.
MAX is in fixed-point fraction format. The fraction represents the portion of the total memory
bandwidth capacity through the controlled component that the PARTID is permitted to allocate.

The implemented width of the fixed-point fraction is given in MPAMF_MBW_IDR.BWA_WD.
Unimplemented bits are RAZ/WI. The implemented bits of the MAX field are always to the left of
the field. For example, if BWA_WD = 3, the implemented bits are
MPAMCFG_MBW_MAX[15:13] and MPAMCFG_MBW_MAX[12:0] are unimplemented.

The fixed-point fraction MAX is less than 1. The implied binary point is between bits 15 and 16.
This representation has as the largest fraction of the bandwidth that can be represented in an
implementation with w implemented bits is 1.0 minus one half to the power w.

Accessing the MPAMCFG_MBW_MAX:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_MBW_MAX_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_MAX_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_MAX_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_MAX_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_MAX_s, MPAMCFG_MBW_MAX_ns, MPAMCFG_MBW_MAX_rt, and
MPAMCFG_MBW_MAX_rl must be separate registers:

• The Secure instance (MPAMCFG_MBW_MAX_s) accesses the memory maximum bandwidth partitioning
used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_MAX_ns) accesses the memory maximum bandwidth
partitioning used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_MAX_rt) accesses the memory maximum bandwidth partitioning
used for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_MAX_rl) accesses the memory maximum bandwidth partitioning
used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_MAX access the memory maximum bandwidth
partitioning configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS
and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_MAX access the memory maximum
bandwidth partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_MAX access the memory
maximum bandwidth partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_MAX access the memory
maximum bandwidth partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_MAX can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0208 MPAMCFG_MBW_MAX_s

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-189
ID041924 Non-Confidential

Accesses to this interface are RW.

MPAMCFG_MBW_MAX can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_MBW_MAX can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMCFG_MBW_MAX can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0208 MPAMCFG_MBW_MAX_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0208 MPAMCFG_MBW_MAX_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0208 MPAMCFG_MBW_MAX_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-190
ID041924 Non-Confidential

9.4.10 MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum Partition Configuration Register

The MPAMCFG_MBW_MIN characteristics are:

Purpose

MPAMCFG_MBW_MIN is a 32-bit read/write register that controls the minimum fraction of
memory bandwidth that the PARTID selected by MPAMCFG_PART_SEL is permitted to use.

MPAMCFG_MBW_MIN_s controls the minimum bandwidth for the Secure PARTID selected by
the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_MIN_ns controls the
minimum bandwidth for the Non-secure PARTID selected by the Non-secure instance of
MPAMCFG_PART_SEL. MPAMCFG_MBW_MIN_rt controls the minimum bandwidth for the
Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_MIN_rl controls the minimum bandwidth for the Realm PARTID selected by
the Realm instance of MPAMCFG_PART_SEL.

A PARTID that has used less than MIN is given preferential access to bandwidth.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_MIN is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented,
MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_MIN == 1. Otherwise,
direct accesses to MPAMCFG_MBW_MIN are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_MIN is a 32-bit register.

Field descriptions

Bits [31:16]

Reserved, RES0.

MIN, bits [15:0]

Memory minimum bandwidth allocated to the partition selected by MPAMCFG_PART_SEL. MIN
is in fixed-point fraction format. The fraction represents the portion of the total memory bandwidth
capacity through the controlled component that the PARTID is permitted to allocate.

The implemented width of the fixed-point fraction is given in MPAMF_MBW_IDR.BWA_WD.
Unimplemented bits are RAZ/WI. The implemented bits of the MIN field are always to the left of
the field. For example, if BWA_WD = 4, the implemented bits are MPAMCFG_MBW_MIN[15:12]
and MPAMCFG_MBW_MIN[11:0] are unimplemented.

The fixed-point fraction MIN is less than 1. The implied binary point is between bits 15 and 16. This
representation has as the largest fraction of the bandwidth that can be represented in an
implementation with w implemented bits is 1.0 minus one half to the power w.

Accessing the MPAMCFG_MBW_MIN:

This register is within the MPAM feature page memory frames.

RES0

31 16

MIN

15 0

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-191
ID041924 Non-Confidential

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_MBW_MIN_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_MIN_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_MIN_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_MIN_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_MIN_s, MPAMCFG_MBW_MIN_ns, MPAMCFG_MBW_MIN_rt, and
MPAMCFG_MBW_MIN_rl must be separate registers:

• The Secure instance (MPAMCFG_MBW_MIN_s) accesses the memory minimum bandwidth partitioning
used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_MIN_ns) accesses the memory minimum bandwidth
partitioning used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_MIN_rt) accesses the memory minimum bandwidth partitioning
used for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_MIN_rl) accesses the memory minimum bandwidth partitioning
used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_MIN access the memory minimum bandwidth
partitioning configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS
and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_MIN access the memory minimum
bandwidth partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_MIN access the memory
minimum bandwidth partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_MIN access the memory
minimum bandwidth partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_MIN can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_MBW_MIN can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_MBW_MIN can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0200 MPAMCFG_MBW_MIN_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0200 MPAMCFG_MBW_MIN_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0200 MPAMCFG_MBW_MIN_rt

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-192
ID041924 Non-Confidential

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMCFG_MBW_MIN can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0200 MPAMCFG_MBW_MIN_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-193
ID041924 Non-Confidential

9.4.11 MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion Bitmap Partition Configuration Register,
n = 0 - 127

The MPAMCFG_MBW_PBM<n> characteristics are:

Purpose

The MPAMCFG_MBW_PBM<n> register array gives access to the memory bandwidth portion
bitmap. Each register in the array is a read/write register that configures whether a PARTID is
allowed to allocate bandwidth portions within a range.

The range of portions covered in MPAMCFG_MBW_PBM<n> is from portion <32*n> to portion
<32*n +31>.

After setting MPAMCFG_PART_SEL with a PARTID, software writes to one or more of the
MPAMCFG_MBW_PBM<n> registers to configure with bandwidth portions the PARTID is
allowed to allocate.

The MPAMCFG_MBW_PBM<n> register that contains the bitmap bit corresponding to memory
bandwidth portion p has n equal to p[11:5]. The field, P<x> of that MPAMCFG_MBW_PBM<n>
register that contains the bitmap bit corresponding to memory bandwidth portion p has <x> equal
to p[4:0].

The MPAMCFG_MBW_PBM<n>_s registers control the bandwidth portion bitmap for the Secure
PARTID selected by the Secure instance of MPAMCFG_PART_SEL. The
MPAMCFG_MBW_PBM<n>_ns registers control the bandwidth portion bitmap for the
Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL. The
MPAMCFG_MBW_PBM<n>_rt registers control the bandwidth portion bitmap for the Root
PARTID selected by the Root instance of MPAMCFG_PART_SEL. The
MPAMCFG_MBW_PBM<n>_rl registers control the bandwidth portion bitmap for the Realm
PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_PBM<n> is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented,
MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_PBM == 1. Otherwise,
direct accesses to MPAMCFG_MBW_PBM<n> are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_PBM<n> is a 32-bit register.

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-194
ID041924 Non-Confidential

Field descriptions

P<x>, bit [x], for x = 31 to 0

Portion allocation control bit. Each bandwidth portion allocation control bit
MPAMCFG_MBW_PBM<n>.P<x> grants permission to the PARTID selected by
MPAMCFG_PART_SEL to allocate bandwidth within bandwidth portion <32*n> + <x>.

0b0 The PARTID is not permitted to allocate into bandwidth portion <32*n> + <x>.

0b1 The PARTID is permitted to allocate within bandwidth portion <32*n> + <x>.

The number of bits in the bandwidth portion partitioning bit map of this component is given in
MPAMF_MBW_IDR.BWPBM_WD. BWPBM_WD contains a value from 1 to 212, inclusive.
Values of MPAMF_MBW_IDR.BWPBM_WD greater than 32 require a group of 32-bit registers
to access the bandwidth portion bitmap, up to 128 32-bit registers.

When (n * 32) + x > UInt(MPAMF_MBW_IDR.BWPBM_WD), access to this field is RES0.

Accessing the MPAMCFG_MBW_PBM<n>:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_MBW_PBM<n>_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_PBM<n>_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_PBM<n>_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_PBM<n>_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_PBM<n>_s, MPAMCFG_MBW_PBM<n>_ns, MPAMCFG_MBW_PBM<n>_rt, and
MPAMCFG_MBW_PBM<n>_rl must be separate registers:

• The Secure instance (MPAMCFG_MBW_PBM<n>_s) accesses the memory bandwidth portion bitmap used
for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_PBM<n>_ns) accesses the memory bandwidth portion
bitmap used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_PBM<n>_rt) accesses the memory bandwidth portion bitmap used
for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_PBM<n>_rl) accesses the memory bandwidth portion bitmap used
for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory bandwidth portion
bitmap configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory bandwidth
portion bitmap configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-195
ID041924 Non-Confidential

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the memory
bandwidth portion bitmap configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_PBM<n> access the
memory bandwidth portion bitmap configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_PBM<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_MBW_PBM<n> can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_MBW_PBM<n> can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMCFG_MBW_PBM<n> can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n>_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n>_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n>_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n>_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-196
ID041924 Non-Confidential

9.4.12 MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration
Register

The MPAMCFG_MBW_PROP characteristics are:

Purpose

Controls the proportional stride of memory bandwidth that the PARTID selected by
MPAMCFG_PART_SEL uses.

MPAMCFG_MBW_PROP_s controls the bandwidth proportional stride for the Secure PARTID
selected by the Secure instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_PROP_ns
controls the bandwidth proportional stride for the Non-secure PARTID selected by the Non-secure
instance of MPAMCFG_PART_SEL. MPAMCFG_MBW_PROP_rt controls the bandwidth
proportional stride for the Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_PROP_rl controls the bandwidth proportional stride for the Realm PARTID
selected by the Realm instance of MPAMCFG_PART_SEL.

Proportional stride is a relative cost of bandwidth requested by one PARTID in relation to the costs
of the bandwidths requested by each other PARTID also competing to use the bandwidth.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_PROP is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented,
MPAMF_IDR.HAS_MBW_PART == 1 and MPAMF_MBW_IDR.HAS_PROP == 1. Otherwise,
direct accesses to MPAMCFG_MBW_PROP are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_PROP is a 32-bit register.

Field descriptions

EN, bit [31]

Enable proportional stride bandwidth partitioning.

0b0 The selected partition is not regulated by proportional stride bandwidth partitioning.

0b1 The selected partition has bandwidth usage regulated by proportional stride bandwidth
partitioning as controlled by STRIDEM1.

Bits [30:16]

Reserved, RES0.

STRIDEM1, bits [15:0]

Memory bandwidth stride minus 1 allocated to the partition selected by MPAMCFG_PART_SEL.
STRIDEM1 represents the normalized cost of bandwidth consumption by the partition.

The proportional stride partitioning control parameter is an unsigned integer representing the
normalized cost to a partition for consuming bandwidth. Larger values have a larger cost and
correspond to a lesser allocation of bandwidth while smaller values indicate a lesser cost and
therefore a higher allocation of bandwidth.

The implemented width of STRIDEM1 is given in MPAMF_MBW_IDR.BWA_WD.

EN

31

RES0

30 16

STRIDEM1

15 0

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-197
ID041924 Non-Confidential

Accessing the MPAMCFG_MBW_PROP:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_MBW_PROP_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_PROP_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_PROP_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_PROP_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_PROP_s, MPAMCFG_MBW_PROP_ns, MPAMCFG_MBW_PROP_rt, and
MPAMCFG_MBW_PROP_rl must be separate registers:

• The Secure instance (MPAMCFG_MBW_PROP_s) accesses the memory proportional stride bandwidth
partitioning used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_PROP_ns) accesses the memory proportional stride
bandwidth partitioning used for Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_PROP_rt) accesses the memory proportional stride bandwidth
partitioning used for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_PROP_rl) accesses the memory proportional stride bandwidth
partitioning used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_PROP access the memory proportional stride
bandwidth partitioning configuration settings for the bandwidth resource instance selected by
MPAMCFG_PART_SEL.RIS and the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_PROP access the memory proportional
stride bandwidth partitioning configuration settings for the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_PROP access the memory
proportional stride bandwidth partitioning configuration settings for the internal PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_PROP access the memory
proportional stride bandwidth partitioning configuration settings for the request PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_PROP can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_MBW_PROP can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0500 MPAMCFG_MBW_PROP_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0500 MPAMCFG_MBW_PROP_ns

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-198
ID041924 Non-Confidential

MPAMCFG_MBW_PROP can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMCFG_MBW_PROP can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0500 MPAMCFG_MBW_PROP_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0500 MPAMCFG_MBW_PROP_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-199
ID041924 Non-Confidential

9.4.13 MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration
Register

The MPAMCFG_MBW_WINWD characteristics are:

Purpose

MPAMCFG_MBW_WINWD is a 32-bit register that shows and sets the value of the window width
for the PARTID in MPAMCFG_PART_SEL.

MPAMCFG_MBW_WINWD_s reads and controls the bandwidth control window width for the
Secure PARTID selected by the Secure instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_WINWD_ns reads and controls the bandwidth control window width for the
Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_WINWD_rt reads and controls the bandwidth control window width for the
Root PARTID selected by the Root instance of MPAMCFG_PART_SEL.
MPAMCFG_MBW_WINWD_rl reads and controls the bandwidth control window width for the
Real PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

MPAMCFG_MBW_WINWD is read-only if MPAMF_MBW_IDR.WINDWR == 0, and the
window width is set by the hardware, even if variable.

MPAMCFG_MBW_WINWD is read/write if MPAMF_MBW_IDR.WINDWR == 1, permitting
configuration of the window width for each PARTID independently on hardware that supports this
functionality.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_MBW_WINWD is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_MBW_PART == 1. Otherwise, direct accesses to
MPAMCFG_MBW_WINWD are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_MBW_WINWD is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

US_INT, bits [23:8]

Window width, integer microseconds.

This field reads (and sets) the integer part of the window width in microseconds for the PARTID
selected by MPAMCFG_PART_SEL.

US_FRAC, bits [7:0]

Window width, fractional microseconds.

This field reads (and sets) the fractional part of the window width in microseconds for the PARTID
selected by MPAMCFG_PART_SEL.

RES0

31 24

US_INT

23 8

US_FRAC

7 0

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-200
ID041924 Non-Confidential

Accessing the MPAMCFG_MBW_WINWD:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_MBW_WINWD_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_MBW_WINWD_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_MBW_WINWD_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_MBW_WINWD_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_MBW_WINWD_s, MPAMCFG_MBW_WINWD_ns, MPAMCFG_MBW_WINWD_rt, and
MPAMCFG_MBW_WINWD_rl must be separate registers:

• The Secure instance (MPAMCFG_MBW_WINWD_s) accesses the window width used for Secure
PARTIDs.

• The Non-secure instance (MPAMCFG_MBW_WINWD_ns) accesses the window width used for
Non-secure PARTIDs.

• The Root instance (MPAMCFG_MBW_WINWD_rt) accesses the window width used for Root PARTIDs.

• The Realm instance (MPAMCFG_MBW_WINWD_rl) accesses the window width used for Realm
PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_MBW_WINWD access the window width
configuration settings for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS and the
PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_MBW_WINWD access the window width
configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_MBW_WINWD access the window
width configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_MBW_WINWD access the window
width configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_MBW_WINWD can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.

• When MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are RW.

MPAMCFG_MBW_WINWD can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0220 MPAMCFG_MBW_WINWD_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0220 MPAMCFG_MBW_WINWD_ns

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-201
ID041924 Non-Confidential

This interface is accessible as follows:

• When MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are RO.

• When MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are RW.

MPAMCFG_MBW_WINWD can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are
RO.

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are
RW.

MPAMCFG_MBW_WINWD can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 0 accesses to this register are
RO.

• When FEAT_RME is implemented and MPAMF_MBW_IDR.WINDWR == 1 accesses to this register are
RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0220 MPAMCFG_MBW_WINWD_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0220 MPAMCFG_MBW_WINWD_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-202
ID041924 Non-Confidential

9.4.14 MPAMCFG_PART_SEL, MPAM Partition Configuration Selection Register

The MPAMCFG_PART_SEL characteristics are:

Purpose

Selects a partition ID to configure.

MPAMCFG_PART_SEL_s selects a Secure PARTID to configure. MPAMCFG_PART_SEL_ns
selects a Non-secure PARTID to configure. MPAMCFG_PART_SEL_rt selects a Root PARTID to
configure. MPAMCFG_PART_SEL_rl selects a Realm PARTID to configure.

After setting this register with a PARTID, software (usually a hypervisor) can perform a series of
accesses to MPAMCFG registers to configure parameters for MPAM resource controls to use when
requests have that PARTID.

Configurations

The power domain of MPAMCFG_PART_SEL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
(MPAMF_IDR.HAS_CCAP_PART == 1, or MPAMF_IDR.HAS_CPOR_PART == 1, or
MPAMF_IDR.HAS_MBW_PART == 1, or MPAMF_IDR.HAS_PRI_PART == 1, or
MPAMF_IDR.HAS_PARTID_NRW == 1, or (MPAMF_IDR.EXT == 0 and
MPAMF_IDR.HAS_IMPL_IDR == 1) or (MPAMF_IDR.EXT == 1,
MPAMF_IDR.HAS_IMPL_IDR == 1 and MPAMF_IDR.NO_IMPL_PART == 0)). Otherwise,
direct accesses to MPAMCFG_PART_SEL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_PART_SEL is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

RIS, bits [27:24]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented),
MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. RIS selects one resource to configure through MPAMCFG registers and
describe with MPAMF ID registers.

Otherwise:

Reserved, RES0.

Bits [23:17]

Reserved, RES0.

INTERNAL, bit [16]

Internal PARTID.

If MPAMF_IDR.HAS_PARTID_NRW =0, this field is RAZ/WI.

If MPAMF_IDR.HAS_PARTID_NRW = 1:

0b0 PARTID_SEL is interpreted as a request PARTID and ignored except for use with
MPAMCFG_INTPARTID register access.

RES0

31 28

RIS

27 24

RES0

23 17 16

PARTID_SEL

15 0

INTERNAL

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-203
ID041924 Non-Confidential

0b1 PARTID_SEL is interpreted as an internal PARTID and used for access to MPAMCFG
control settings except for MPAMCFG_INTPARTID.

If PARTID narrowing is implemented as indicated by MPAMF_IDR.HAS_PARTID_NRW = 1,
when accessing other MPAMCFG registers the value of the MPAMCFG_PART_SEL.INTERNAL
bit is checked for these conditions:

• When the MPAMCFG_INTPARTID register is read or written, if the value of
MPAMCFG_PART_SEL.INTERNAL is not 0, an Unexpected_INTERNAL error is set in
MPAMF_ESR.

• When an MPAMCFG register other than MPAMCFG_INTPARTID is read or written, if the
value of MPAMCFG_PART_SEL.INTERNAL is not 1, MPAMF_ESR is set to indicate an
intPARTID_Range error.

In either error case listed here, the value returned by a read operation is UNPREDICTABLE, and the
control settings are not affected by a write.

PARTID_SEL, bits [15:0]

Selects the partition ID to configure.

Reads and writes to other MPAMCFG registers are indexed by PARTID_SEL and by the NS bit used
to access MPAMCFG_PART_SEL to access the configuration for a single partition.

Accessing the MPAMCFG_PART_SEL:

This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMCFG_PART_SEL_s must only be accessible from the Secure MPAM feature page.
MPAMCFG_PART_SEL_ns must only be accessible from the Non-secure MPAM feature page.

MPAMCFG_PART_SEL_s and MPAMCFG_PART_SEL_ns must be separate registers. The Secure instance
(MPAMCFG_PART_SEL_s) accesses the PARTID selector used for Secure PARTIDs, and the Non-secure instance
(MPAMCFG_PART_SEL_ns) accesses the PARTID selector used for Non-secure PARTIDs.

MPAMCFG_PART_SEL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_PART_SEL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_PART_SEL can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0100 MPAMCFG_PART_SEL_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0100 MPAMCFG_PART_SEL_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0100 MPAMCFG_PART_SEL_rt

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-204
ID041924 Non-Confidential

MPAMCFG_PART_SEL can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0100 MPAMCFG_PART_SEL_rl

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-205
ID041924 Non-Confidential

9.4.15 MPAMCFG_PRI, MPAM Priority Partition Configuration Register

The MPAMCFG_PRI characteristics are:

Purpose

Controls the internal and downstream priority of requests attributed to the PARTID selected by
MPAMCFG_PART_SEL.

MPAMCFG_PRI_s controls the priorities for the Secure PARTID selected by the Secure instance
of MPAMCFG_PART_SEL. MPAMCFG_PRI_ns controls the priorities for the Non-secure
PARTID selected by the Non-secure instance of MPAMCFG_PART_SEL. MPAMCFG_PRI_rt
controls the priorities for the Root PARTID selected by the Root instance of
MPAMCFG_PART_SEL. MPAMCFG_PRI_rl controls the priorities for the Realm PARTID
selected by the Realm instance of MPAMCFG_PART_SEL.

If MPAMF_IDR.HAS_RIS is 1, the control settings accessed are those of the resource instance
currently selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

Configurations

The power domain of MPAMCFG_PRI is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
MPAMF_IDR.HAS_PRI_PART == 1. Otherwise, direct accesses to MPAMCFG_PRI are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_PRI is a 32-bit register.

Field descriptions

DSPRI, bits [31:16]

Downstream priority.

If MPAMF_PRI_IDR.HAS_DSPRI == 0, bits of this field are RES0 as this field is not used.

If MPAMF_PRI_IDR.HAS_DSPRI == 1, this field is a priority value applied to downstream
communications from this MSC for transactions of the partition selected by
MPAMCFG_PART_SEL.

The implemented width of this field is MPAMF_PRI_IDR.DSPRI_WD bits. If the implemented
width is less than the width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of
MPAMF_PRI_IDR.DSPRI_0_IS_LOW.

INTPRI, bits [15:0]

Internal priority.

If MPAMF_PRI_IDR.HAS_INTPRI == 0, bits of this field are RES0 as this field is not used.

If MPAMF_PRI_IDR.HAS_INTPRI == 1, this field is a priority value applied internally inside this
MSC for transactions of the partition selected by MPAMCFG_PART_SEL.

The implemented width of this field is MPAMF_PRI_IDR.INTPRI_WD bits. If the implemented
width is less than the width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of
MPAMF_PRI_IDR.INTPRI_0_IS_LOW.

DSPRI

31 16

INTPRI

15 0

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-206
ID041924 Non-Confidential

Accessing the MPAMCFG_PRI:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMCFG_PRI_s must only be accessible from the Secure MPAM feature page.

• MPAMCFG_PRI_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMCFG_PRI_rt must only be accessible from the Root MPAM feature page.

• MPAMCFG_PRI_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_PRI_s, MPAMCFG_PRI_ns, MPAMCFG_PRI_rt, and MPAMCFG_PRI_rl must be separate
registers:

• The Secure instance (MPAMCFG_PRI_s) accesses the priority partitioning used for Secure PARTIDs.

• The Non-secure instance (MPAMCFG_PRI_ns) accesses the priority partitioning used for Non-secure
PARTIDs.

• The Root instance (MPAMCFG_PRI_rt) accesses the priority partitioning used for Root PARTIDs.

• The Realm instance (MPAMCFG_PRI_rl) accesses the priority partitioning used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration
settings for the priority resource instance selected by MPAMCFG_PART_SEL.RIS and the PARTID selected by
MPAMCFG_PART_SEL.PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration
settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_PRI access the priority partitioning
configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_PRI access the priority partitioning
configuration settings for the request PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and
MPAMCFG_PART_SEL.INTERNAL must be 0.

MPAMCFG_PRI can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMCFG_PRI can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0400 MPAMCFG_PRI_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0400 MPAMCFG_PRI_ns

Memory-mapped Registers
9.4 Memory-mapped partitioning configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-207
ID041924 Non-Confidential

MPAMCFG_PRI can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMCFG_PRI can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0400 MPAMCFG_PRI_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0400 MPAMCFG_PRI_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-208
ID041924 Non-Confidential

9.5 Memory-mapped monitoring configuration registers
This section lists the external monitoring configuration registers.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-209
ID041924 Non-Confidential

9.5.1 MSMON_CAPT_EVNT, MPAM Capture Event Generation Register

The MSMON_CAPT_EVNT characteristics are:

Purpose

Generates a local capture event when written with bit[0] as 1.

MSMON_CAPT_EVNT_s generates local capture events for Secure monitor instances only or for
Secure and Non-secure monitor instances. MSMON_CAPT_EVNT_ns generates local capture
events for Non-secure monitor instances only. MSMON_CAPT_EVNT_rt generates local capture
events for Root monitor instances only or for Root, Secure, Realm, and Non-secure monitor
instances. MSMON_CAPT_EVNT_rl generates local capture events for Realm monitor instances
or for for Realm monitor instances or Realm and Non-secure monitor instances.

Configurations

The power domain of MSMON_CAPT_EVNT is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.HAS_LOCAL_CAPT_EVNT == 1. Otherwise, direct accesses
to MSMON_CAPT_EVNT are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CAPT_EVNT is a 32-bit register.

Field descriptions

Bits [31:2]

Reserved, RES0.

ALL, bit [1]

In the Secure instance of this register:

• If ALL is written as 1 and NOW is also written as 1, signal a capture event to Secure and
Non-secure monitor instances in this MSC that are configured with CAPT_EVNT = 7.

• If ALL is written as 0 and NOW is written as 1, signal a capture event to Secure monitor
instances in this MSC that are configured with CAPT_EVNT = 7.

In the Non-secure instance of this register, this bit is RAZ/WI.

In the Root instance of this register:

• If ALL is written as 1 and NOW is also written as 1, signal a capture event to Root, Realm,
Secure, and Non-secure monitor instances in this MSC that are configured with
CAPT_EVNT = 7.

• If ALL is written as 0 and NOW is written as 1, signal a capture event to Root monitor
instances within this MSC that are configured with CAPT_EVNT = 7.

In the Realm instance of this register:

• If ALL is written as 1 and NOW is also written as 1, signal a capture event to Realm and
Non-secure monitor instances in this MSC that are configured with CAPT_EVNT = 7.

• If ALL is written as 0 and NOW is written as 1, signal a capture event to Realm monitor
instances within this MSC that are configured with CAPT_EVNT = 7.

This bit always reads as zero.

0b0 Send capture event only to monitor instances in the same MPAM feature page as this
register.

RES0

31 2 1 0

ALL NOW

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-210
ID041924 Non-Confidential

0b1 Send capture event to monitor instances in certain MPAM feature pages as described in
the ALL field of this register.

NOW, bit [0]

When written as 1, this bit causes an event to those monitor instances described in the ALL field
that have CAPT_EVNT set to the value of 7.

When this bit is written as 0, no event is signaled.

This bit always reads as zero.

Accessing the MSMON_CAPT_EVNT:

This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CAPT_EVNT_s must only be accessible from the Secure MPAM feature page.
MSMON_CAPT_EVNT_ns must only be accessible from the Non-secure MPAM feature page.

MSMON_CAPT_EVNT_s and MSMON_CAPT_EVNT_ns must be separate registers. The Secure instance
(MSMON_CAPT_EVNT_s) can generate local capture events for Secure monitor instances only or for Secure and
Non-secure monitor instances, and the Non-secure instance (MSMON_CAPT_EVNT_ns) can generate local
capture events for Non-secure monitor instances only.

MSMON_CAPT_EVNT can be accessed through its memory-mapped interface:

Accesses to this interface are WO/RAZ.

MSMON_CAPT_EVNT can be accessed through its memory-mapped interface:

Accesses to this interface are WO/RAZ.

MSMON_CAPT_EVNT can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are WO/RAZ.

MSMON_CAPT_EVNT can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are WO/RAZ.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0808 MSMON_CAPT_EVNT_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0808 MSMON_CAPT_EVNT_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0808 MSMON_CAPT_EVNT_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0808 MSMON_CAPT_EVNT_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-211
ID041924 Non-Confidential

9.5.2 MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage
Monitor Control Register

The MSMON_CFG_CSU_CTL characteristics are:

Purpose

Controls the CSU monitor selected by MSMON_CFG_MON_SEL.

MSMON_CFG_CSU_CTL_s controls the Secure cache storage usage monitor instance selected by
the Secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_ns controls
Non-secure cache storage usage monitor instance selected by the Non-secure instance of
MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_rt controls the monitor configuration for
the Root PARTID selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_CTL_rl controls the monitor configuration for the Realm PARTID selected
by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance configuration accessed is for the resource
instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that
resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CFG_CSU_CTL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to
MSMON_CFG_CSU_CTL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_CSU_CTL is a 32-bit register.

Field descriptions

EN, bit [31]

Enabled.

0b0 The monitor instance is disabled and must not collect any information.

0b1 The monitor instance is enabled to collect information according to the configuration of
the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

Select the event that triggers capture from the following:

0b000 No capture event is triggered.

0b001 External capture event 1 (optional, but recommended)

0b010 External capture event 2 (optional)

0b011 External capture event 3 (optional)

0b100 External capture event 4 (optional)

0b101 External capture event 5 (optional)

EN

31 30 28 27 26 25 24 23 22 20 19 18 17 16

RES0

15 11 10 8

0 1 0 0 0 0 1 1

7 0

CAPT_EVNT
CAPT_RESET
OFLOW_STATUS

OFLOW_INTR
OFLOW_FRZ
OFLOW_CAPT

TYPE
OFLOW_LNKG

MATCH_PARTID
MATCH_PMG

CEVNT_OFLW
RES0

SUBTYPE

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-212
ID041924 Non-Confidential

0b110 External capture event 6 (optional)

0b111 Capture occurs when a MSMON_CAPT_EVNT register in this MSC is written and
causes a capture event for the Security state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an
implementation. Those values representing non-implemented event sources must not trigger a
capture event.

When MPAMF_CSUMON_IDR.HAS_CAPTURE == 0, access to this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset after capture.

Controls whether the value of MSMON_CSU is reset to zero immediately after being copied to
MSMON_CSU_CAPTURE.

0b0 Monitor is not reset on capture.

0b1 Monitor is reset on capture.

Because the CSU monitor type produces a measurement rather than a count, it might not make sense
to ever reset the value after a capture. If there is no reason to ever reset a CSU monitor, this field is
RAZ/WI.

When MPAMF_CSUMON_IDR.HAS_CAPTURE == 0, access to this field is RAZ/WI.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_CSU has overflowed.

If MPAMF_CSUMON_IDR.HAS_CEVNT_OFLW is 1 or
MPAMF_CSUMON_IDR.HAS_OFLOW_LNKG is 1, then a store to MSMON_CSU when this
field is 1 resets this field to 0.

0b0 No overflow has occurred.

0b1 At least one overflow has occurred since this bit was last written to zero.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

OFLOW_INTR, bit [25]

Overflow Interrupt.

Controls whether an overflow interrupt is generated when the value of MSMON_CSU has
overflowed.

0b0 No interrupt is signaled on an overflow of MSMON_CSU.

0b1 On overflow, an implementation-specific interrupt is signaled.

If OFLOW_INTR is not supported by the implementation, this field is RAZ/WI.

OFLOW_FRZ, bit [24]

Freeze Monitor on Overflow.

Controls whether the value of MSMON_CSU.VALUE freezes on an overflow.

0b0 Monitor count wraps on overflow.

0b1 Monitor count freezes on overflow. The frozen value might be 0 or another value if the
monitor overflowed with an increment larger than 1.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

When a MSMON_CSU.VALUE of a monitor instance is frozen it does not change until
MSMON_CSU register for that instance has been written.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-213
ID041924 Non-Confidential

OFLOW_CAPT, bit [23]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_CSUMON_IDR.HAS_OFLOW_CAPT == 1:

Capture Monitor on Overflow.

0b0 Monitor is not captured on an overflow or when affected by an overflow linkage event.

0b1 Monitor is captured and the MSMON_CSU.{NRDY, VALUE} fields are copied to the
monitor instance's capture register on an overflow or when affected by an overflow
linkage event. The monitor instance treats an overflow of this monitor instance as a
private capture event. If MSMON_CFG_MBWU_CTL.CEVNT_OFLW is 1, this
monitor instance also treats an overflow linkage event as a capture event.
If the OFLOW_FRZ field is 1, the monitor does not continue to count after the overflow
or overflow linkage event. If the CAPT_RESET field is 1, the monitor instance resets
to 0.

Otherwise:

Reserved, RES0.

SUBTYPE, bits [22:20]

Subtype. Type of cache storage usage counted by this monitor.

This field is not currently used for CSU monitors, but reserved for future use.

This field is RAZ/WI.

Bit [19]

Reserved, RES0.

CEVNT_OFLW, bit [18]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_CSUMON_IDR.HAS_CEVNT_OFLW == 1:

Capture Event performs overflow behavior.

0b0 On a capture event matching the CAPT_EVNT field, the capture behaviors are
performed.
The MSMON_CSU.{VALUE, NRDY} fields are transferred to the monitor instance's
capture register.

0b1 On a capture event matching the CAPT_EVNT field, the monitor instance treats a
capture event as an overflow and the overflow behaviors are performed.
The behavior is controlled by the MSMON_CFG_CSU_CTL.{OFLOW_FRZ,
OFLOW_CAPT, CAPT_RESET} fields. The
MSMON_CFG_CSU_CTL.OFLOW_STATUS field is set for this monitor instance.

Otherwise:

Reserved, RES0.

MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor measures only storage used with PMG matching
MSMON_CFG_CSU_FLT.PMG.

0b0 The monitor measures storage used with any PMG value.

0b1 The monitor only measures storage used with the PMG value matching
MSMON_CFG_CSU_FLT.PMG.

If MATCH_PMG is 1 and MATCH_PARTID is 0, it is CONSTRAINED UNPREDICTABLE whether the
monitor instance:

• Measures the storage used with matching PMG and with any PARTID.

• Measures no storage usage, that is, MSMON_CSU.VALUE is zero.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-214
ID041924 Non-Confidential

• Measures the storage used with matching PMG and PARTID, that is, treats
MATCH_PARTID as == 1.

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor measures only storage used with PARTID matching
MSMON_CFG_CSU_FLT.PARTID.

0b0 The monitor measures storage used with any PARTID value.

0b1 The monitor only measures storage used with the PARTID value matching
MSMON_CFG_CSU_FLT.PARTID.

Bits [15:11]

Reserved, RES0.

OFLOW_LNKG, bits [10:8]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_CSUMON_IDR.HAS_OFLOW_LNKG == 1:

Overflow linkage event.

Controls signaling of a capture event on overflow of this monitor instance.

0b000 Overflow of the monitor instance only affects this monitor instance.

0b001 Overflow of this monitor instance signals Capture Event 1.

0b010 Overflow of this monitor instance signals Capture Event 2.

0b011 Overflow of this monitor instance signals Capture Event 3.

0b100 Overflow of this monitor instance signals Capture Event 4.

0b101 Overflow of this monitor instance signals Capture Event 5.

0b110 Overflow of this monitor instance signals Capture Event 6.

0b111 Reserved.

Otherwise:

Reserved, RES0.

TYPE, bits [7:0]

Monitor Type Code. The CSU monitor is TYPE = 0x43.

TYPE is a read-only constant indicating the type of the monitor.

Reads as 0x43.

Access to this field is RO.

Accessing the MSMON_CFG_CSU_CTL:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_CFG_CSU_CTL_s must only be accessible from the Secure MPAM feature page.

• MSMON_CFG_CSU_CTL_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_CSU_CTL_rt must only be accessible from the Root MPAM feature page.

• MSMON_CFG_CSU_CTL_rl must only be accessible from the Realm MPAM feature page.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-215
ID041924 Non-Confidential

MSMON_CFG_CSU_CTL_s, MSMON_CFG_CSU_CTL_ns, MSMON_CFG_CSU_CTL_rt, and
MSMON_CFG_CSU_CTL_rl must be separate registers:

• The Secure instance (MSMON_CFG_CSU_CTL_s) accesses the cache storage usage monitor controls used
for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_CSU_CTL_ns) accesses the cache storage usage monitor controls
used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_CSU_CTL_rt) accesses the cache storage usage monitor controls used
for Root PARTIDs.

• The Realm instance (MSMON_CFG_CSU_CTL_rl) accesses the cache storage usage monitor controls used
for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_CSU_CTL access the cache storage usage monitor
configuration settings for the cache resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache
storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_CSU_CTL access the cache storage usage
monitor configuration settings for the cache storage usage monitor instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_CSU_CTL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_CSU_CTL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_CSU_CTL can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_CFG_CSU_CTL can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0818 MSMON_CFG_CSU_CTL_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0818 MSMON_CFG_CSU_CTL_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0818 MSMON_CFG_CSU_CTL_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0818 MSMON_CFG_CSU_CTL_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-216
ID041924 Non-Confidential

9.5.3 MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage
Monitor Filter Register

The MSMON_CFG_CSU_FLT characteristics are:

Purpose

Configures PARTID and PMG to measure or count in the CSU monitor selected by
MSMON_CFG_MON_SEL.

MSMON_CFG_CSU_FLT_s sets filter conditions for the Secure cache storage usage monitor
instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_CTL_ns sets filter conditions for the Non-secure cache storage usage
monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_FLT_rt sets the filter conditions for the Root PARTID selected by the Root
instance of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_FLT_rl sets the filter conditions for
the Realm PARTID selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance filter configuration accessed is for the
resource instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance
of that resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CFG_CSU_FLT is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to
MSMON_CFG_CSU_FLT are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_CSU_FLT is a 32-bit register.

Field descriptions

XCL, bit [31]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_CSUMON_IDR.HAS_XCL == 1:

Exclude Clean. The monitor instance does not count cache storage used by lines in an unmodified
cache state.

0b0 Monitor instance counts cache storage in modified and unmodified cache lines.

0b1 Monitor instance counts cache storage in modified cache lines only.

Otherwise:

Reserved, RES0.

Bits [30:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group to filter cache storage usage monitoring.

If MSMON_CFG_CSU_CTL.MATCH_PMG is 0, this field is not used to match cache storage to a
PMG and the contents of this field is ignored.

31

RES0

30 24

PMG

23 16

PARTID

15 0

XCL

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-217
ID041924 Non-Confidential

If MSMON_CFG_CSU_CTL.MATCH_PMG is 1 and
MSMON_CFG_CSU_CTL.MATCH_PARTID is 1, the monitor instance selected by
MSMON_CFG_MON_SEL measures or counts cache storage labeled with PMG equal to this field
and PARTID equal to the PARTID field.

If MSMON_CFG_CSU_CTL.MATCH_PMG is 1 and
MSMON_CFG_CSU_CTL.MATCH_PARTID is 0, the behavior of the monitor instance selected
by MSMON_CFG_MON_SEL is CONSTRAINED UNPREDICTABLE. See
MSMON_CFG_CSU_CTL.MATCH_PMG for more information.

PARTID, bits [15:0]

Partition ID to filter cache storage usage monitoring.

If MSMON_CFG_CSU_CTL.MATCH_PARTID is 0 and
MSMON_CFG_CSU_CTL.MATCH_PMG is 0, the monitor measures all allocated cache storage.

If MSMON_CFG_CSU_CTL.MATCH_PARTID is 0 and
MSMON_CFG_CSU_CTL.MATCH_PMG is 1, the behavior of the monitor is CONSTRAINED
UNPREDICTABLE. See the description of MSMON_CFG_CSU_CTL.MATCH_PMG.

If MSMON_CFG_CSU_CTL.MATCH_PARTID is 1 and
MSMON_CFG_CSU_CTL.MATCH_PMG is 0, the monitor selected by
MSMON_CFG_MON_SEL measures or counts cache storage labeled with PARTID equal to this
field.

If MSMON_CFG_CSU_CTL.MATCH_PARTID is 1 and
MSMON_CFG_CSU_CTL.MATCH_PMG is 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts cache storage labeled with PARTID equal to this
field and PMG equal to the PMG field.

Accessing the MSMON_CFG_CSU_FLT:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_CFG_CSU_FLT_s must only be accessible from the Secure MPAM feature page.

• MSMON_CFG_CSU_FLT_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_CSU_FLT_rt must only be accessible from the Root MPAM feature page.

• MSMON_CFG_CSU_FLT_rl must only be accessible from the Realm MPAM feature page.

MSMON_CFG_CSU_FLT_s, MSMON_CFG_CSU_FLT_ns, MSMON_CFG_CSU_FLT_rt, and
MSMON_CFG_CSU_FLT_rl must be separate registers:

• The Secure instance (MSMON_CFG_CSU_FLT_s) accesses the PARTID and PMG matching for a cache
storage usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_CSU_FLT_ns) accesses the PARTID and PMG matching for a
cache storage usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_CSU_FLT_rt) accesses the PARTID and PMG matching for a cache
storage usage monitor used for Root PARTIDs.

• The Realm instance (MSMON_CFG_CSU_FLT_rl) accesses the PARTID and PMG matching for a cache
storage usage monitor used for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_CSU_FLT access the monitor configuration settings
for the resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage usage monitor instance
selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_CSU_FLT access the monitor configuration
settings for the cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-218
ID041924 Non-Confidential

MSMON_CFG_CSU_FLT can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_CSU_FLT can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_CSU_FLT can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_CFG_CSU_FLT can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0810 MSMON_CFG_CSU_FLT_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0810 MSMON_CFG_CSU_FLT_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0810 MSMON_CFG_CSU_FLT_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0810 MSMON_CFG_CSU_FLT_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-219
ID041924 Non-Confidential

9.5.4 MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth
Usage Monitor Control Register

The MSMON_CFG_MBWU_CTL characteristics are:

Purpose

Controls the MBWU monitor selected by MSMON_CFG_MON_SEL.

MSMON_CFG_MBWU_CTL_s controls the Secure memory bandwidth usage monitor instance
selected by the Secure instance of MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_ns
controls Non-secure memory bandwidth usage monitor instance selected by the Non-secure
instance of MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_rt controls the monitor
configuration for the Root PARTID selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_CFG_MBWU_CTL_rl controls the monitor configuration for the Realm PARTID
selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance configuration accessed is for the resource
instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that
resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CFG_MBWU_CTL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to
MSMON_CFG_MBWU_CTL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_MBWU_CTL is a 32-bit register.

Field descriptions

EN, bit [31]

Enabled.

0b0 The monitor instance is disabled and must not collect any information.

0b1 The monitor instance is enabled to collect information according to the configuration of
the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

When the selected capture event occurs, MSMON_MBWU of the monitor instance is copied to
MSMON_MBWU_CAPTURE of the same instance. If the long counter is also implemented,
MSMON_MBWU_L is also copied to MSMON_MBWU_L_CAPTURE.

Select the event that triggers capture from the following:

0b000 No capture event is triggered.

0b001 External capture event 1 (optional, but recommended)

0b010 External capture event 2 (optional)

EN

31 30 28 27 26 25 24 23 22 20 19 18 17 16 15 14 13

RES0

12 11 10 8

0 1 0 0 0 0 1 0

7 0

CAPT_EVNT
CAPT_RESET
OFLOW_STATUS

OFLOW_INTR
OFLOW_FRZ
OFLOW_CAPT

SUBTYPE
SCLEN

TYPE
OFLOW_LNKG

OFLOW_CAPT_L
OFLOW_INTR_L

OFLOW_STATUS_L
MATCH_PARTID

MATCH_PMG
CEVNT_OFLW

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-220
ID041924 Non-Confidential

0b011 External capture event 3 (optional)

0b100 External capture event 4 (optional)

0b101 External capture event 5 (optional)

0b110 External capture event 6 (optional)

0b111 Capture occurs when a MSMON_CAPT_EVNT register in this MSC is written and
causes a capture event for the Security state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an
implementation. Those values representing non-implemented event sources must not trigger a
capture event.

If capture is not implemented for the MBWU monitor type as indicated by
MPAMF_MBWUMON_IDR.HAS_CAPTURE = 0, this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset MSMON_MBWU.VALUE after capture.

Controls whether the VALUE field of the monitor instance is reset to zero immediately after being
copied to the corresponding capture register.

0b0 MSMON_MBWU.VALUE field of the monitor instance is not reset on capture.

0b1 MSMON_MBWU.VALUE field of the monitor instance is reset on capture.

If capture is not implemented for the MBWU monitor type as indicated by
MPAMF_MBWUMON_IDR.HAS_CAPTURE = 0, this field is RAZ/WI.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that
include MSMON_MBWU_L.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_MBWU has overflowed.

0b0 MSMON_MBWU.VALUE has not overflowed.

0b1 MSMON_MBWU.VALUE has overflowed at least once since this bit was last written
to zero.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

Overflow status for MSMON_MBWU_L.VALUE is reported in
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L.

If MPAMF_MBWUMON_IDR.HAS_CEVNT_OFLW is 1 or
MPAMF_MBWUMON_IDR.HAS_OFLOW_LNKG is 1, then a store to MSMON_MBWU when
this field is 1 resets this field to 0.

OFLOW_INTR, bit [25]

Enable interrupt on overflow of MSMON_MBWU.VALUE.

0b0 No interrupt is signaled on an overflow of MSMON_MBWU.VALUE.

0b1 An implementation-specific interrupt is signaled on an overflow of
MSMON_MBWU.VALUE.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

If overflow interrupt is not supported by the MSC implementation, this field is RAZ/WI.

Interrupt enable for overflow of MSMON_MBWU_L.VALUE is controlled by
MSMON_CFG_MBWU_CTL.OFLOW_INTR_L.

OFLOW_FRZ, bit [24]

Freeze monitor instance on overflow.

Controls whether MSMON_MBWU.VALUE field of the monitor instance freezes on an overflow.

0b0 MSMON_MBWU.VALUE field of the monitor instance wraps on overflow.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-221
ID041924 Non-Confidential

0b1 MSMON_MBWU.VALUE field of the monitor instance freezes on overflow. If the
increment that caused the overflow was 1, the frozen value is the post-increment value
of 0. If the increment that caused the overflow was larger than 1, the frozen value of the
monitor might be 0 or a larger value less than the final increment.

If overflow is not possible for the instance of the MBWU monitor in the implementation, this field
is RAZ/WI.

When a MSMON_MBWU.VALUE of a monitor instance is frozen it does not change until
MSMON_CSU register for that instance has been written. If the monitor implements both
MSMON_MBWU and MSMON_MBWU_L registers, both are frozen. A write to a frozen register
unfreezes the count for just that register.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that
include MSMON_MBWU_L.

OFLOW_CAPT, bit [23]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_MBWUMON_IDR.HAS_OFLOW_CAPT == 1:

Capture Monitor on Overflow.

0b0 Monitor register MSMON_MBWU is not captured on an overflow or when affected by
an overflow linkage event.

0b1 Monitor register MSMON_MBWU is captured and the MSMON_MBWU.{NRDY,
VALUE} fields are copied to the monitor instance's MSMON_MBWU_CAPTURE
register on an overflow or when affected by an overflow linkage event. The monitor
instance treats an overflow of this monitor instance as a private capture event. If
MSMON_CFG_MBWU_CTL.CEVNT_OFLW is 1, this monitor instance also treats
an overflow linkage event as a capture event.
If OFLOW_FRZ is 1, the monitor does not continue to count after the overflow or
overflow linkage event. If CAPT_RESET is 1, the monitor instance resets to 0.

This bit does not control whether MSMON_MBWU_L is captured on an overflow or overflow
linkage event. See MSMON_CFG_MBWU_CTL.OFLOW_CAPT_L.

Otherwise:

Reserved, RES0.

SUBTYPE, bits [22:20]

Subtype. Type of bandwidth counted by this monitor.

This field is not currently used for MBWU monitors, but reserved for future use.

This field is RAZ/WI.

SCLEN, bit [19]

MSMON_MBWU.VALUE Scaling Enable.

Enables scaling of MSMON_MBWU.VALUE by MPAMF_MBWUMON_IDR.SCALE.

0b0 MSMON_MBWU.VALUE has bytes counted by the monitor instance.

0b1 MSMON_MBWU.VALUE has bytes counted by the monitor instance, shifted right by
MPAMF_MBWUMON_IDR.SCALE.

CEVNT_OFLW, bit [18]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_MBWUMON_IDR.HAS_CEVNT_OFLW == 1:

Capture Event performs overflow behavior.

0b0 On a capture event matching the CAPT_EVNT field the capture behaviors are
performed.
The NRDY and VALUE fields are transferred to the monitor instance's capture register.

0b1 On a capture event matching the CAPT_EVNT field the monitor instance treats a
capture event as an overflow and the overflow behaviors are performed.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-222
ID041924 Non-Confidential

The behavior is controlled by the MSMON_CFG_MBWU_CTL.{OFLOW_FRZ,
OFLOW_CAPT, OFLOW_CAPT_L, CAPT_RESET} fields. The
MSMON_CFG_MBWU_CTL.{OFLOW_STATUS, OFLOW_STATUS_L} fields are
set for this monitor instance.

Otherwise:

Reserved, RES0.

MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor instance only counts data transferred with PMG matching
MSMON_CFG_MBWU_FLT.PMG.

0b0 The monitor instance counts data transferred with any PMG value.

0b1 The monitor instance only counts data transferred with the PMG value matching
MSMON_CFG_MBWU_FLT.PMG.

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor instance counts only data transferred with PARTID matching
MSMON_CFG_MBWU_FLT.PARTID.

0b0 The monitor instance counts data transferred with any PARTID value.

0b1 The monitor instance only counts data transferred with the PARTID value matching
MSMON_CFG_MBWU_FLT.PARTID.

OFLOW_STATUS_L, bit [15]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Overflow Status of MSMON_MBWU_L.VALUE of the monitor instance.

Indicates whether MSMON_MBWU_L.VALUE has overflowed.

0b0 MSMON_MBWU_L.VALUE has not overflowed.

0b1 MSMON_MBWU_L.VALUE has overflowed at least once since this bit was last
written to zero.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, this bit is RES0.

Overflow status of MSMON_MBWU.VALUE is reported in
MSMON_CFG_MBWU_CTL.OFLOW_STATUS.

If MPAMF_MBWUMON_IDR.HAS_CEVNT_OFLW is 1 or
MPAMF_MBWUMON_IDR.HAS_OFLOW_LNKG is 1, then a store to MSMON_MBWU_L
when this field is 1 resets this field to 0.

Otherwise:

Reserved, RES0.

OFLOW_INTR_L, bit [14]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_MBWUMON_IDR.HAS_LONG == 1:

Overflow Interrupt for MSMON_MBWU_L.

Controls whether an MPAM overflow interrupt is generated when MSMON_MBWU_L.VALUE
overflows.

0b0 No interrupt is signaled on an overflow of MSMON_MBWU_L.VALUE.

0b1 An implementation-specific interrupt is signaled on overflow of
MSMON_MBWU_L.VALUE.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

If the overflow interrupt is not supported by the MSC implementation, this field is RAZ/WI.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-223
ID041924 Non-Confidential

Otherwise:

Reserved, RES0.

OFLOW_CAPT_L, bit [13]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented),
MPAMF_MBWUMON_IDR.HAS_LONG == 1 and
MPAMF_MBWUMON_IDR.HAS_OFLOW_CAPT == 1:

Capture Long Monitor on Overflow.

Controls whether MSMON_MBWU_L is copied to MSMON_MBWU_L_CAPTURE on an
overflow or an overflow linkage event.

0b0 Monitor register MSMON_MBWU_L is not captured on an overflow or when affected
by an overflow linkage event.

0b1 Monitor register MSMON_MBWU_L is captured on an overflow or when affected by
an overflow linkage event. If OFLOW_FRZ is 1, the monitor does not continue to count
after the overflow or overflow linkage event. If CAPT_RESET is 1, the monitor
instance resets to 0.

If this bit is 1, this monitor instance treats an overflow of this monitor instance as a private capture
event.

If this bit is 1, this monitor instance also treats overflow linkage events for which it qualifies as a
private capture event.

Otherwise:

Reserved, RES0.

Bits [12:11]

Reserved, RES0.

OFLOW_LNKG, bits [10:8]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_MBWUMON_IDR.HAS_OFLOW_LNKG == 1:

Overflow linkage event.

Controls signaling of a capture event on overflow of this monitor instance.

0b000 Overflow of the monitor instance only affects this monitor instance.

0b001 Overflow of this monitor instance signals Capture Event 1.

0b010 Overflow of this monitor instance signals Capture Event 2.

0b011 Overflow of this monitor instance signals Capture Event 3.

0b100 Overflow of this monitor instance signals Capture Event 4.

0b101 Overflow of this monitor instance signals Capture Event 5.

0b110 Overflow of this monitor instance signals Capture Event 6.

0b111 Reserved.

Otherwise:

Reserved, RES0.

TYPE, bits [7:0]

Monitor Type Code. The MBWU monitor is TYPE = 0x42.

TYPE is a read-only constant indicating the type of the monitor.

Reads as 0x42.

Access to this field is RO.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-224
ID041924 Non-Confidential

Accessing the MSMON_CFG_MBWU_CTL:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_CFG_MBWU_CTL_s must only be accessible from the Secure MPAM feature page.

• MSMON_CFG_MBWU_CTL_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_MBWU_CTL_rt must only be accessible from the Root MPAM feature page.

• MSMON_CFG_MBWU_CTL_rl must only be accessible from the Realm MPAM feature page.

MSMON_CFG_MBWU_CTL_s, MSMON_CFG_MBWU_CTL_ns, MSMON_CFG_MBWU_CTL_rt, and
MSMON_CFG_MBWU_CTL_rl must be separate registers:

• The Secure instance (MSMON_CFG_MBWU_CTL_s) accesses the memory bandwidth usage monitor
controls used for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_MBWU_CTL_ns) accesses the memory bandwidth usage
monitor controls used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_MBWU_CTL_rt) accesses the memory bandwidth usage monitor
controls used for Root PARTIDs.

• The Realm instance (MSMON_CFG_MBWU_CTL_rl) accesses the memory bandwidth usage monitor
controls used for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_MBWU_CTL access the monitor configuration
settings for the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory
bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_MBWU_CTL access the monitor configuration
settings for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_MBWU_CTL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_MBWU_CTL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_MBWU_CTL can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0828 MSMON_CFG_MBWU_CTL_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0828 MSMON_CFG_MBWU_CTL_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0828 MSMON_CFG_MBWU_CTL_rt

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-225
ID041924 Non-Confidential

MSMON_CFG_MBWU_CTL can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0828 MSMON_CFG_MBWU_CTL_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-226
ID041924 Non-Confidential

9.5.5 MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth
Usage Monitor Filter Register

The MSMON_CFG_MBWU_FLT characteristics are:

Purpose

Controls PARTID and PMG to measure or count in the MBWU monitor selected by
MSMON_CFG_MON_SEL.

MSMON_CFG_MBWU_FLT_s sets filter conditions for the Secure memory bandwidth usage
monitor instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_MBWU_CTL_ns sets filter conditions for the Non-secure memory bandwidth
usage monitor instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_FLT_rt sets the filter conditions for the Root PARTID selected by the Root
instance of MSMON_CFG_MON_SEL. MSMON_CFG_CSU_FLT_rl sets the filter conditions for
the Realm PARTID selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance filter configuration accessed is for the
resource instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance
of that resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CFG_MBWU_FLT is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to
MSMON_CFG_MBWU_FLT are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_MBWU_FLT is a 32-bit register.

Field descriptions

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

RW filtering.

RWBW, bits [31:30]

When MPAMF_MBWUMON_IDR.HAS_RWBW == 1:

Read/write bandwidth filter. Configures the selected monitor instance to count all bandwidth, only
read bandwidth or only write bandwidth.

0b00 Monitor instance counts read bandwidth and write bandwidth.

0b01 Monitor instance counts write bandwidth only.

0b10 Monitor instance counts read bandwidth only.

0b11 Reserved.

Otherwise:

Reserved, RES0.

Bits [29:24]

Reserved, RES0.

RWBW

31 30

RES0

29 24

PMG

23 16

PARTID

15 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-227
ID041924 Non-Confidential

PMG, bits [23:16]

Performance monitoring group to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 0, this field is not used to match memory
bandwidth to a PMG and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts memory bandwidth labeled with PMG equal to this
field.

PARTID, bits [15:0]

Partition ID to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 0, this field is not used to match memory
bandwidth to a PARTID and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts memory bandwidth labeled with PARTID equal to
this field.

Otherwise:

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 0, this field is not used to match memory
bandwidth to a PMG and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PMG == 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts memory bandwidth labeled with PMG equal to this
field.

PARTID, bits [15:0]

Partition ID to filter memory bandwidth usage monitoring.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 0, this field is not used to match memory
bandwidth to a PARTID and the contents of this field is ignored.

If MSMON_CFG_MBWU_CTL.MATCH_PARTID == 1, the monitor selected by
MSMON_CFG_MON_SEL measures or counts memory bandwidth labeled with PARTID equal to
this field.

Accessing the MSMON_CFG_MBWU_FLT:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_CFG_MBWU_FLT_s must only be accessible from the Secure MPAM feature page.

• MSMON_CFG_MBWU_FLT_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_MBWU_FLT_rt must only be accessible from the Root MPAM feature page.

• MSMON_CFG_MBWU_FLT_rl must only be accessible from the Realm MPAM feature page.

RES0

31 24

PMG

23 16

PARTID

15 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-228
ID041924 Non-Confidential

MSMON_CFG_MBWU_FLT_s, MSMON_CFG_MBWU_FLT_ns, MSMON_CFG_MBWU_FLT_rt, and
MSMON_CFG_MBWU_FLT_rl must be separate registers:

• The Secure instance (MSMON_CFG_MBWU_FLT_s) accesses the PARTID and PMG matching for a
memory bandwidth usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_CFG_MBWU_FLT_ns) accesses the PARTID and PMG matching for a
memory bandwidth usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_CFG_MBWU_FLT_rt) accesses the PARTID and PMG matching for a
memory bandwidth usage monitor used for Root PARTIDs.

• The Realm instance (MSMON_CFG_MBWU_FLT_rl) accesses the PARTID and PMG matching for a
memory bandwidth usage monitor used for Realm PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_MBWU_FLT access the monitor configuration
settings for the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory
bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_MBWU_FLT access the monitor configuration
settings for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_MBWU_FLT can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_MBWU_FLT can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_MBWU_FLT can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_CFG_MBWU_FLT can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0820 MSMON_CFG_MBWU_FLT_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0820 MSMON_CFG_MBWU_FLT_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0820 MSMON_CFG_MBWU_FLT_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0820 MSMON_CFG_MBWU_FLT_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-229
ID041924 Non-Confidential

9.5.6 MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register

The MSMON_CFG_MON_SEL characteristics are:

Purpose

Selects a monitor instance to access through the MSMON configuration and counter registers.

MSMON_CFG_MON_SEL_s selects a Secure monitor instance to access via the Secure MPAM
feature page. MSMON_CFG_MON_SEL_ns selects a Non-secure monitor instance to access via
the Non-secure MPAM feature page. MSMON_CFG_MON_SEL_rt selects a Root monitor
instance to access via the Root MPAM feature page. MSMON_CFG_MON_SEL_rl selects a Realm
monitor instance to access via the Realm MPAM feature page.

Note
Different performance monitoring features within an MSC could have different numbers of monitor
instances. See the NUM_MON field in the corresponding ID register. This means that a monitor
out-of-bounds error might be signaled when an MSMON_CFG register is accessed because the
value in MSMON_CFG_MON_SEL.MON_SEL is too large for the particular monitoring feature.

To configure a monitor, set MON_SEL in this register to the index of the monitor instance to
configure, then write to the MSMON_CFG_x register to set the configuration of the monitor. At a
later time, read the monitor register (for example, MSMON_MBWU) to get the value of the
monitor.

Configurations

The power domain of MSMON_CFG_MON_SEL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and
(MPAMF_IDR.HAS_MSMON == 1, or (MPAMF_IDR.HAS_IMPL_IDR == 1 and
MPAMF_IDR.EXT == 0) or (MPAMF_IDR.HAS_IMPL_IDR == 1, MPAMF_IDR.EXT == 1 and
MPAMF_IDR.NO_IMPL_MSMON == 0)). Otherwise, direct accesses to
MSMON_CFG_MON_SEL are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CFG_MON_SEL is a 32-bit register.

Field descriptions

Bits [31:28]

Reserved, RES0.

RIS, bits [27:24]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented),
MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. RIS selects one resource to configure through MSMON_CFG registers.

Otherwise:

Reserved, RES0.

Bits [23:16]

Reserved, RES0.

MON_SEL, bits [15:0]

Selects the monitor instance to configure or read.

RES0

31 28

RIS

27 24

RES0

23 16

MON_SEL

15 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-230
ID041924 Non-Confidential

Reads and writes to other MSMON registers are indexed by MON_SEL and by the NS bit used to
access MSMON_CFG_MON_SEL to access the configuration for a single monitor.

Accessing the MSMON_CFG_MON_SEL:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_CFG_MON_SEL_s must only be accessible from the Secure MPAM feature page.

• MSMON_CFG_MON_SEL_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_CFG_MON_SEL_rt must only be accessible from the Root MPAM feature page.

• MSMON_CFG_MON_SEL_rl must only be accessible from the Realm MPAM feature page.

MSMON_CFG_MON_SEL_s, MSMON_CFG_MON_SEL_ns, MSMON_CFG_MON_SEL_rt, and
MSMON_CFG_MON_SEL_rl must be separate registers:

• The Secure instance (MSMON_CFG_MON_SEL_s) accesses the monitor instance selector used for Secure
PARTIDs.

• The Non-secure instance (MSMON_CFG_MON_SEL_ns) accesses the monitor instance selector used for
Non-secure PARTIDs.

• The Root instance (MSMON_CFG_MON_SEL_rt) accesses the monitor instance selector used for Root
PARTIDs.

• The Realm instance (MSMON_CFG_MON_SEL_rl) accesses the monitor instance selector used for Realm
PARTIDs.

MSMON_CFG_MON_SEL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_MON_SEL can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CFG_MON_SEL can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0800 MSMON_CFG_MON_SEL_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0800 MSMON_CFG_MON_SEL_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0800 MSMON_CFG_MON_SEL_rt

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-231
ID041924 Non-Confidential

MSMON_CFG_MON_SEL can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0800 MSMON_CFG_MON_SEL_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-232
ID041924 Non-Confidential

9.5.7 MSMON_CSU, MPAM Cache Storage Usage Monitor Register

The MSMON_CSU characteristics are:

Purpose

Accesses the CSU monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_CSU_s is a Secure cache storage usage monitor instance selected by the Secure instance
of MSMON_CFG_MON_SEL. MSMON_CSU_ns is a Non-secure cache storage usage monitor
instance selected by the Non-secure instance of MSMON_CFG_MON_SEL. MSMON_CSU_rt is
a Root cache storage usage monitor instance selected by the Root instance of
MSMON_CFG_MON_SEL. MSMON_CSU_rl is a Realm cache storage usage monitor instance
selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance
selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CSU is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to
MSMON_CSU are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CSU is a 32-bit register.

Field descriptions

NRDY, bit [31]

Not Ready. Indicates whether the monitor instance has possibly inaccurate data.

0b0 The monitor instance is ready and the MSMON_CSU.VALUE field is accurate.

0b1 The monitor instance is not ready and the contents of the MSMON_CSU.VALUE field
might be inaccurate or otherwise not represent the actual cache storage usage.

VALUE, bits [30:0]

Cache storage usage measurement value if MSMON_CSU.NRDY is 0. Invalid if
MSMON_CSU.NRDY is 1.

VALUE is the cache storage usage measured in bytes meeting the criteria set in
MSMON_CFG_CSU_FLT and MSMON_CFG_CSU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

Accessing the MSMON_CSU:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_CSU_s must only be accessible from the Secure MPAM feature page.

• MSMON_CSU_ns must only be accessible from the Non-secure MPAM feature page.

31

VALUE

30 0

NRDY

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-233
ID041924 Non-Confidential

• MSMON_CSU_rt must only be accessible from the Root MPAM feature page.

• MSMON_CSU_rl must only be accessible from the Realm MPAM feature page.

MSMON_CSU_s, MSMON_CSU_ns, MSMON_CSU_rt, and MSMON_CSU_rl must be separate registers:

• The Secure instance (MSMON_CSU_s) accesses the cache storage usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_CSU_ns) accesses the cache storage usage monitor used for Non-secure
PARTIDs.

• The Root instance (MSMON_CSU_rt) accesses the cache storage usage monitor used for Root PARTIDs.

• The Realm instance (MSMON_CSU_rl) accesses the cache storage usage monitor used for Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_CSU access the cache storage usage monitor instance for
the cache resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage usage monitor
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_CSU access the cache storage usage monitor instance
for the cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CSU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register are RW.

• When MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register are RO.

MSMON_CSU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register are RW.

• When MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register are RO.

MSMON_CSU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register
are RW.

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register
are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0840 MSMON_CSU_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0840 MSMON_CSU_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0840 MSMON_CSU_rt

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-234
ID041924 Non-Confidential

MSMON_CSU can be accessed through its memory-mapped interface:

This interface is accessible as follows:

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 0 accesses to this register
are RW.

• When FEAT_RME is implemented and MPAMF_CSUMON_IDR.CSU_RO == 1 accesses to this register
are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0840 MSMON_CSU_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-235
ID041924 Non-Confidential

9.5.8 MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register

The MSMON_CSU_CAPTURE characteristics are:

Purpose

MSMON_CSU_CAPTURE is a 32-bit read/write register that accesses the captured
MSMON_CSU monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_CSU_CAPTURE_s is the Secure cache storage usage monitor capture instance selected
by the Secure instance of MSMON_CFG_MON_SEL. MSMON_CSU_CAPTURE_ns is the
Non-secure cache storage usage monitor capture instance selected by the Non-secure instance of
MSMON_CFG_MON_SEL. MSMON_CSU_CAPTURE_rt is a Root cache storage usage monitor
capture instance selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_CSU_CAPTURE_rl is a Realm cache storage usage monitor capture instance selected by
the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance capture register accessed is for the resource
instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that
resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_CSU_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1, MPAMF_MSMON_IDR.MSMON_CSU == 1 and
MPAMF_CSUMON_IDR.HAS_CAPTURE == 1. Otherwise, direct accesses to
MSMON_CSU_CAPTURE are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CSU_CAPTURE is a 32-bit register.

Field descriptions

NRDY, bit [31]

Not Ready. Indicates whether the captured monitor value has possibly inaccurate data.

0b0 The captured monitor instance was ready and the MSMON_CSU_CAPTURE.VALUE
field is accurate.

0b1 The captured monitor instance was not ready and the contents of the
MSMON_CSU_CAPTURE.VALUE field might be inaccurate or otherwise not
represent the actual cache storage usage.

VALUE, bits [30:0]

Captured cache storage usage measurement if MSMON_CSU_CAPTURE.NRDY is 0. Invalid if
MSMON_CSU_CAPTURE.NRDY is 1.

VALUE is the captured cache storage usage measurement in bytes meeting the criteria set in
MSMON_CFG_CSU_FLT and MSMON_CFG_CSU_CTL for the monitor instance selected by
MSMON_CFG_MON_SEL.

Accessing the MSMON_CSU_CAPTURE:

This register is within the MPAM feature page memory frames.

31

VALUE

30 0

NRDY

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-236
ID041924 Non-Confidential

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_CSU_CAPTURE_s must only be accessible from the Secure MPAM feature page.

• MSMON_CSU_CAPTURE_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_CSU_CAPTURE_rt must only be accessible from the Root MPAM feature page.

• MSMON_CSU_CAPTURE_rl must only be accessible from the Realm MPAM feature page.

MSMON_CSU_CAPTURE_s, MSMON_CSU_CAPTURE_ns, MSMON_CSU_CAPTURE_rt, and
MSMON_CSU_CAPTURE_rl must be separate registers:

• The Secure instance (MSMON_CSU_CAPTURE_s) accesses the captured cache storage usage monitor used
for Secure PARTIDs.

• The Non-secure instance (MSMON_CSU_CAPTURE_ns) accesses the captured cache storage usage
monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_CSU_CAPTURE_rt) accesses the captured cache storage usage monitor used
for Root PARTIDs.

• The Realm instance (MSMON_CSU_CAPTURE_rl) accesses the captured cache storage usage monitor used
for Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_CSU_CAPTURE access the monitor instance for the
cache resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage usage monitor instance
selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_CSU_CAPTURE access the monitor instance for the
cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CSU_CAPTURE can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CSU_CAPTURE can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_CSU_CAPTURE can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0848 MSMON_CSU_CAPTURE_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0848 MSMON_CSU_CAPTURE_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0848 MSMON_CSU_CAPTURE_rt

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-237
ID041924 Non-Confidential

MSMON_CSU_CAPTURE can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0848 MSMON_CSU_CAPTURE_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-238
ID041924 Non-Confidential

9.5.9 MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register

The MSMON_CSU_OFSR characteristics are:

Purpose

MSMON_CSU_OFSR is a 32-bit read-only register that shows bitmap of CSU monitor instance
overflow status for a contiguous group of 32 monitor instances.

MSMON_CSU_OFSR_s gives a bitmap of pending CSU overflow status for 32 Secure CSU
monitor instances. MSMON_CSU_OFSR_ns gives a bitmap of pending CSU overflow status for
32 Non-secure CSU monitor instances. MSMON_CSU_OFSR_rt gives a bitmap of pending CSU
overflow status for 32 Root CSU monitor instances. MSMON_CSU_OFSR_rl gives a bitmap of
pending CSU overflow status for 32 Realm CSU monitor instances.

Configurations

The power domain of MSMON_CSU_OFSR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_CSUMON_IDR.HAS_OFSR == 1. Otherwise, direct
accesses to MSMON_CSU_OFSR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_CSU_OFSR is a 32-bit register.

Field descriptions

OFPND<i>, bit [i], for i = 31 to 0

Overflow status bitmap for CSU monitor instances. The RIS and the contiguous range of CSU
monitor instances are set in MSMON_CFG_MON_SEL. i of 0 corresponds to the CSU monitor
instance MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0.

0b0 CSU monitor instance (MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) does not
have a pending overflow.

0b1 CSU monitor instance (MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) has a
pending overflow.

After reading MSMON_OFLOW_SR to determine that a CSU monitor instance has a pending
overflow and which RIS values have pending overflows, an interrupt service routine could poll
groups of 32 monitor instances in a RIS for pending monitors by reading this bitmap and
incrementing MSMON_CFG_MON_SEL.MON_SEL by 32.

Accessing the MSMON_CSU_OFSR:

This register is within the MPAM feature page memory frames.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFPND31
OFPND30

OFPND29
OFPND28

OFPND27
OFPND26

OFPND25
OFPND24

OFPND23
OFPND22

OFPND21
OFPND20

OFPND19
OFPND18

OFPND17
OFPND16

OFPND0
OFPND1

OFPND2
OFPND3

OFPND4
OFPND5

OFPND6
OFPND7

OFPND8
OFPND9

OFPND10
OFPND11

OFPND12
OFPND13

OFPND14
OFPND15

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-239
ID041924 Non-Confidential

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_CSU_OFSR_s must only be accessible from the Secure MPAM feature page.

• MSMON_CSU_OFSR_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_CSU_OFSR_rt must only be accessible from the Root MPAM feature page.

• MSMON_CSU_OFSR_rl must only be accessible from the Realm MPAM feature page.

MSMON_CSU_OFSR_s, MSMON_CSU_OFSR_ns, MSMON_CSU_OFSR_rt, and MSMON_CSU_OFSR_rl
must be separate registers:

• The Secure instance (MSMON_CSU_OFSR_s) accesses the CSU monitor overflow status bitmap used for
Secure PARTIDs.

• The Non-secure instance (MSMON_CSU_OFSR_ns) accesses the CSU monitor overflow status bitmap used
for Non-secure PARTIDs.

• The Root instance (MSMON_CSU_OFSR_rt) accesses the CSU monitor overflow status bitmap used for
Root PARTIDs.

• The Realm instance (MSMON_CSU_OFSR_rl) accesses the CSU monitor overflow status bitmap used for
Realm PARTIDs.

MSMON_CSU_OFSR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MSMON_CSU_OFSR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MSMON_CSU_OFSR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MSMON_CSU_OFSR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0858 MSMON_CSU_OFSR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0858 MSMON_CSU_OFSR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0858 MSMON_CSU_OFSR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0858 MSMON_CSU_OFSR_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-240
ID041924 Non-Confidential

9.5.10 MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register

The MSMON_MBWU characteristics are:

Purpose

Accesses the monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_MBWU_s is the Secure memory bandwidth usage monitor instance selected by
MSMON_CFG_MON_SEL_s. MSMON_MBWU_ns is the Non-secure memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL_ns. MSMON_MBWU_rt is the Root
memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL_rt.
MSMON_MBWU_rl is the Realm memory bandwidth usage monitor instance selected by
MSMON_CFG_MON_SEL_rl.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance register accessed is for the resource instance
currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_MBWU is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1 and MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to
MSMON_MBWU are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU is a 32-bit register.

Field descriptions

NRDY, bit [31]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

0b0 The monitor instance is ready and the MSMON_MBWU.VALUE field is accurate.

0b1 The monitor instance is not ready and the contents of the MSMON_MBWU.VALUE
field might be inaccurate or otherwise not represent the actual memory bandwidth
usage.

VALUE, bits [30:0]

Memory bandwidth usage counter value if MSMON_MBWU.NRDY is 0. Invalid if
MSMON_MBWU.NRDY is 1.

VALUE is the scaled count of bytes transferred since the monitor was last reset that met the criteria
set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance
selected by MSMON_CFG_MON_SEL.

If MSMON_CFG_MBWU_CTL.SCLEN enables scaling, the count in VALUE is the number of
bytes shifted right by MPAMF_MBWUMON_IDR.SCALE bit positions and rounded.

Accessing the MSMON_MBWU:

This register is within the MPAM feature page memory frames.

31

VALUE

30 0

NRDY

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-241
ID041924 Non-Confidential

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_MBWU_s must only be accessible from the Secure MPAM feature page.

• MSMON_MBWU_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_rt must only be accessible from the Root MPAM feature page.

• MSMON_MBWU_rl must only be accessible from the Realm MPAM feature page.

MSMON_MBWU_s, MSMON_MBWU_ns, MSMON_MBWU_rt, and MSMON_MBWU_rl must be separate
registers:

• The Secure instance (MSMON_MBWU_s) accesses the memory bandwidth usage monitor used for Secure
PARTIDs.

• The Non-secure instance (MSMON_MBWU_ns) accesses the memory bandwidth usage monitor used for
Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_rt) accesses the memory bandwidth usage monitor used for Root
PARTIDs.

• The Realm instance (MSMON_MBWU_rl) accesses the memory bandwidth usage monitor used for Realm
PARTIDs.

When RIS is implemented, reads and writes to MSMON_MBWU access the memory bandwidth usage monitor
instance for the resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU access the memory bandwidth usage monitor
instance for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_MBWU can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_MBWU can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0860 MSMON_MBWU_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0860 MSMON_MBWU_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0860 MSMON_MBWU_rt

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-242
ID041924 Non-Confidential

MSMON_MBWU can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0860 MSMON_MBWU_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-243
ID041924 Non-Confidential

9.5.11 MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register

The MSMON_MBWU_CAPTURE characteristics are:

Purpose

Accesses the captured MSMON_MBWU monitor instance selected by
MSMON_CFG_MON_SEL.

MSMON_MBWU_CAPTURE_s is the Secure memory bandwidth usage monitor capture instance
selected by the Secure instance of MSMON_CFG_MON_SEL. MSMON_MBWU_CAPTURE_ns
is the Non-secure memory bandwidth usage monitor capture instance selected by the Non-secure
instance of MSMON_CFG_MON_SEL. MSMON_MBWU_CAPTURE_rt is the Root memory
bandwidth usage monitor capture instance selected by the Root instance of
MSMON_CFG_MON_SEL. MSMON_MBWU_CAPTURE_rl is the Realm memory bandwidth
usage monitor capture instance selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance capture register accessed is for the resource
instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that
resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_MBWU_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1, MPAMF_MSMON_IDR.MSMON_MBWU == 1 and
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1. Otherwise, direct accesses to
MSMON_MBWU_CAPTURE are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU_CAPTURE is a 32-bit register.

Field descriptions

NRDY, bit [31]

Not Ready. The captured NRDY bit from the corresponding instance of MSMON_MBWU. This bit
indicates whether the captured monitor value has possibly inaccurate data.

0b0 The captured monitor instance was ready and the
MSMON_MBWU_CAPTURE.VALUE field is accurate.

0b1 The captured monitor instance was not ready and the contents of the
MSMON_MBWU_CAPTURE.VALUE field might be inaccurate or otherwise not
represent the actual memory bandwidth usage.

VALUE, bits [30:0]

Captured memory bandwidth usage counter value if MSMON_MBWU_CAPTURE.NRDY is 0.
Invalid if MSMON_MBWU_CAPTURE.NRDY is 1.

VALUE is the captured VALUE field from the corresponding instance of MSMON_MBWU, the
count of bytes transferred since the monitor was last reset that meet the criteria set in
MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance selected
by MSMON_CFG_MON_SEL.

VALUE captures the MSMON_MBWU.VALUE and preserves any scaling that had been
performed on the VALUE field in that register.

31

VALUE

30 0

NRDY

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-244
ID041924 Non-Confidential

Accessing the MSMON_MBWU_CAPTURE:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_MBWU_CAPTURE_s must only be accessible from the Secure MPAM feature page.

• MSMON_MBWU_CAPTURE_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_CAPTURE_rt must only be accessible from the Root MPAM feature page.

• MSMON_MBWU_CAPTURE_rl must only be accessible from the Realm MPAM feature page.

MSMON_MBWU_CAPTURE_s, MSMON_MBWU_CAPTURE_ns, MSMON_MBWU_CAPTURE_rt, and
MSMON_MBWU_CAPTURE_rl must be separate registers:

• The Secure instance (MSMON_MBWU_CAPTURE_s) accesses the captured memory bandwidth usage
monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_CAPTURE_ns) accesses the captured memory bandwidth
usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_CAPTURE_rt) accesses the captured memory bandwidth usage
monitor used for Root PARTIDs.

• The Realm instance (MSMON_MBWU_CAPTURE_rl) accesses the captured memory bandwidth usage
monitor used for Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_MBWU_CAPTURE access the monitor instance for the
bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU_CAPTURE access the monitor instance for
the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU_CAPTURE can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_MBWU_CAPTURE can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_MBWU_CAPTURE can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0868 MSMON_MBWU_CAPTURE_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0868 MSMON_MBWU_CAPTURE_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0868 MSMON_MBWU_CAPTURE_rt

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-245
ID041924 Non-Confidential

MSMON_MBWU_CAPTURE can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0868 MSMON_MBWU_CAPTURE_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-246
ID041924 Non-Confidential

9.5.12 MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register

The MSMON_MBWU_L characteristics are:

Purpose

Accesses the monitor instance selected by MSMON_CFG_MON_SEL.

MSMON_MBWU_L_s is the Secure long memory bandwidth usage monitor instance selected by
the Secure instance of MSMON_CFG_MON_SEL. MSMON_MBWU_L_ns is the Non-secure
long memory bandwidth usage monitor instance selected by the Non-secure instance of
MSMON_CFG_MON_SEL. MSMON_MBWU_L_rt is the Root long memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL_rt. MSMON_MBWU_L_rl is the Realm
long memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL_rl.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance long monitor register accessed is for the
resource instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance
of that resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_MBWU_L is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1, MPAMF_MSMON_IDR.MSMON_MBWU == 1 and
MPAMF_MBWUMON_IDR.HAS_LONG == 1. Otherwise, direct accesses to
MSMON_MBWU_L are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU_L is a 64-bit register.

Field descriptions

When MPAMF_MBWUMON_IDR.LWD == 0:

NRDY, bit [63]

Not Ready. Indicates whether the monitor instance has possibly inaccurate data.

0b0 The monitor instance is ready and the MSMON_MBWU_L.VALUE field is accurate.

0b1 The monitor instance is not ready and the contents of the MSMON_MBWU_L.VALUE
field might be inaccurate or otherwise not represent the actual memory bandwidth
usage.

Bits [62:44]

Reserved, RES0.

VALUE, bits [43:0]

Long (44-bit) memory bandwidth usage counter value if MSMON_MBWU_L.NRDY is 0. Invalid
if MSMON_MBWU_L.NRDY is 1.

VALUE is the long count of bytes transferred since the monitor was last reset that met the criteria
set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor instance
selected by MSMON_CFG_MON_SEL.

63

RES0

62 44

VALUE

43 32

NRDY

VALUE

31 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-247
ID041924 Non-Confidential

When MPAMF_MBWUMON_IDR.LWD == 1:

NRDY, bit [63]

Not Ready. Indicates whether the monitor instance has possibly inaccurate data.

0b0 The monitor instance is ready and the MSMON_MBWU_L.VALUE field is accurate.

0b1 The monitor instance is not ready and the contents of the MSMON_MBWU_L.VALUE
field might be inaccurate or otherwise not represent the actual memory bandwidth
usage.

VALUE, bits [62:0]

Long (63-bit) memory bandwidth usage counter value if MSMON_MBWU_L.NRDY is 0. Invalid
if MSMON_MBWU_L.NRDY is 1.

VALUE is the long count of bytes transferred since the monitor instance was last reset that met the
criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the monitor
instance selected by MSMON_CFG_MON_SEL.

Accessing the MSMON_MBWU_L:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_MBWU_L_s must only be accessible from the Secure MPAM feature page.

• MSMON_MBWU_L_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_L_rt must only be accessible from the Root MPAM feature page.

• MSMON_MBWU_L_rl must only be accessible from the Realm MPAM feature page.

MSMON_MBWU_L_s, MSMON_MBWU_L_ns, MSMON_MBWU_L_rt, and MSMON_MBWU_L_rl must be
separate registers:

• The Secure instance (MSMON_MBWU_L_s) accesses the long memory bandwidth usage monitor used for
Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_L_ns) accesses the long memory bandwidth usage monitor
used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_L_rt) accesses the long memory bandwidth usage monitor used for
Root PARTIDs.

• The Realm instance (MSMON_MBWU_L_rl) accesses the long memory bandwidth usage monitor used for
Realm PARTIDs.

When RIS is implemented, reads and writes to MSMON_MBWU_L access the long memory bandwidth usage
monitor instance for the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the monitor
instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU_L access the long memory bandwidth usage
monitor instance for the monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

63

VALUE

62 32

NRDY

VALUE

31 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-248
ID041924 Non-Confidential

MSMON_MBWU_L can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_MBWU_L can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_MBWU_L can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_MBWU_L can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0880 MSMON_MBWU_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0880 MSMON_MBWU_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0880 MSMON_MBWU_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0880 MSMON_MBWU_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-249
ID041924 Non-Confidential

9.5.13 MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register

The MSMON_MBWU_L_CAPTURE characteristics are:

Purpose

Accesses the captured MSMON_MBWU_L monitor instance selected by
MSMON_CFG_MON_SEL.

MSMON_MBWU_L_CAPTURE_s is the Secure long memory bandwidth usage monitor capture
instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_MBWU_L_CAPTURE_ns is the Non-secure long memory bandwidth usage monitor
capture instance selected by the Non-secure instance of MSMON_CFG_MON_SEL.
MSMON_MBWU_L_CAPTURE_rt is the Root long memory bandwidth usage monitor capture
instance selected by the Root instance of MSMON_CFG_MON_SEL.
MSMON_MBWU_L_CAPTURE_rl is the Realm long memory bandwidth usage monitor capture
instance selected by the Realm instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance long capture register accessed is for the
resource instance currently selected by MSMON_CFG_MON_SEL.RIS and the monitor instance
of that resource instance selected by MSMON_CFG_MON_SEL.MON_SEL.

Configurations

The power domain of MSMON_MBWU_L_CAPTURE is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON
== 1, MPAMF_MSMON_IDR.MSMON_MBWU == 1,
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1 and
MPAMF_MBWUMON_IDR.HAS_LONG == 1. Otherwise, direct accesses to
MSMON_MBWU_L_CAPTURE are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU_L_CAPTURE is a 64-bit register.

Field descriptions

When MPAMF_MBWUMON_IDR.LWD == 0:

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

0b0 The captured monitor instance was ready and the
MSMON_MBWU_L_CAPTURE.VALUE field is accurate.

0b1 The captured monitor instance was not ready and the contents of the
MSMON_MBWU_L_CAPTURE.VALUE field might be inaccurate or otherwise not
represent the actual memory bandwidth usage.

Bits [62:44]

Reserved, RES0.

VALUE, bits [43:0]

Captured long memory bandwidth usage counter value if MSMON_MBWU_L_CAPTURE.NRDY
is 0. Invalid if MSMON_MBWU_L_CAPTURE.NRDY is 1.

63

RES0

62 44

VALUE

43 32

NRDY

VALUE

31 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-250
ID041924 Non-Confidential

VALUE is the captured 44-bit count of bytes transferred since the monitor instance was last reset
that met the criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the
monitor instance selected by MSMON_CFG_MON_SEL.

When MPAMF_MBWUMON_IDR.LWD == 1:

NRDY, bit [63]

Not Ready. Indicates whether the monitor has possibly inaccurate data.

0b0 The captured monitor instance was ready and the
MSMON_MBWU_L_CAPTURE.VALUE field is accurate.

0b1 The captured monitor instance was not ready and the contents of the
MSMON_MBWU_L_CAPTURE.VALUE field might be inaccurate or otherwise not
represent the actual memory bandwidth usage.

VALUE, bits [62:0]

The captured long memory bandwidth usage counter value if
MSMON_MBWU_L_CAPTURE.NRDY is 0. Invalid if MSMON_MBWU_L_CAPTURE.NRDY
is 1.

VALUE is the captured 63-bit count of bytes transferred since the monitor instance was last reset
that met the criteria set in MSMON_CFG_MBWU_FLT and MSMON_CFG_MBWU_CTL for the
monitor instance selected by MSMON_CFG_MON_SEL.

Accessing the MSMON_MBWU_L_CAPTURE:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_MBWU_L_CAPTURE_s must only be accessible from the Secure MPAM feature page.

• MSMON_MBWU_L_CAPTURE_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_L_CAPTURE_rt must only be accessible from the Root MPAM feature page.

• MSMON_MBWU_L_CAPTURE_rl must only be accessible from the Realm MPAM feature page.

MSMON_MBWU_L_CAPTURE_s, MSMON_MBWU_L_CAPTURE_ns, MSMON_MBWU_L_CAPTURE_rt,
and MSMON_MBWU_L_CAPTURE_rl must be separate registers:

• The Secure instance (MSMON_MBWU_L_CAPTURE_s) accesses the captured long memory bandwidth
usage monitor used for Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_L_CAPTURE_ns) accesses the captured long memory
bandwidth usage monitor used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_L_CAPTURE_rt) accesses the captured long memory bandwidth
usage monitor used for Root PARTIDs.

• The Realm instance (MSMON_MBWU_L_CAPTURE_rl) accesses the captured long memory bandwidth
usage monitor used for Realm PARTIDs.

63

VALUE

62 32

NRDY

VALUE

31 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-251
ID041924 Non-Confidential

When RIS is implemented, reads and writes to MSMON_MBWU_L_CAPTURE access the monitor instance for
the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, reads and writes to MSMON_MBWU_L_CAPTURE access the monitor instance
for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_MBWU_L_CAPTURE can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_MBWU_L_CAPTURE can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_MBWU_L_CAPTURE can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_MBWU_L_CAPTURE can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0890 MSMON_MBWU_CAPTURE_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0890 MSMON_MBWU_CAPTURE_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0890 MSMON_MBWU_CAPTURE_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0890 MSMON_MBWU_CAPTURE_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-252
ID041924 Non-Confidential

9.5.14 MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register

The MSMON_MBWU_OFSR characteristics are:

Purpose

MSMON_MBWU_OFSR is a 32-bit read-only register that shows bitmap of MBWU monitor
instance overflow status for a contiguous group of 32 monitor instances.

MSMON_MBWU_OFSR_s gives a bitmap of pending MBWU overflow status for 32 Secure
MBWU monitor instances. MSMON_MBWU_OFSR_ns gives a bitmap of pending MBWU
overflow status for 32 Non-secure MBWU monitor instances. MSMON_MBWU_OFSR_rt gives a
bitmap of pending MBWU overflow status for 32 Root MBWU monitor instances.
MSMON_MBWU_OFSR_rl gives a bitmap of pending MBWU overflow status for 32 Realm
MBWU monitor instances.

Configurations

The power domain of MSMON_MBWU_OFSR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_MBWUMON_IDR.HAS_OFSR == 1. Otherwise,
direct accesses to MSMON_MBWU_OFSR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_MBWU_OFSR is a 32-bit register.

Field descriptions

OFPND<i>, bit [i], for i = 31 to 0

Overflow status bitmap for MBWU monitor instances. The RIS and the contiguous range of
MBWU monitor instances are set in MSMON_CFG_MON_SEL. i of 0 corresponds to the MBWU
monitor instance MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0.

0b0 MBWU monitor instance (MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) does
not have a pending overflow.

0b1 MBWU monitor instance (MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) has a
pending overflow.

After reading MSMON_OFLOW_SR to determine that an MBWU monitor instance has a pending
overflow and which RIS values have pending overflows, an interrupt service routine could poll
groups of 32 monitor instances in a RIS for pending monitors by reading this bitmap and
incrementing MSMON_CFG_MON_SEL.MON_SEL by 32.

A pending overflow may be in either the MSMON_CFG_MBWU_CTL.OFLOW_STATUS or
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L field.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFPND31
OFPND30

OFPND29
OFPND28

OFPND27
OFPND26

OFPND25
OFPND24

OFPND23
OFPND22

OFPND21
OFPND20

OFPND19
OFPND18

OFPND17
OFPND16

OFPND0
OFPND1

OFPND2
OFPND3

OFPND4
OFPND5

OFPND6
OFPND7

OFPND8
OFPND9

OFPND10
OFPND11

OFPND12
OFPND13

OFPND14
OFPND15

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-253
ID041924 Non-Confidential

Accessing the MSMON_MBWU_OFSR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_MBWU_OFSR_s must only be accessible from the Secure MPAM feature page.

• MSMON_MBWU_OFSR_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_MBWU_OFSR_rt must only be accessible from the Root MPAM feature page.

• MSMON_MBWU_OFSR_rl must only be accessible from the Realm MPAM feature page.

MSMON_MBWU_OFSR_s, MSMON_MBWU_OFSR_ns, MSMON_MBWU_OFSR_rt, and
MSMON_MBWU_OFSR_rl must be separate registers:

• The Secure instance (MSMON_MBWU_OFSR_s) accesses the MBWU monitor overflow status bitmap
used for Secure PARTIDs.

• The Non-secure instance (MSMON_MBWU_OFSR_ns) accesses the MBWU monitor overflow status
bitmap used for Non-secure PARTIDs.

• The Root instance (MSMON_MBWU_OFSR_rt) accesses the MBWU monitor overflow status bitmap used
for Root PARTIDs.

• The Realm instance (MSMON_MBWU_OFSR_rl) accesses the MBWU monitor overflow status bitmap
used for Realm PARTIDs.

MSMON_MBWU_OFSR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MSMON_MBWU_OFSR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MSMON_MBWU_OFSR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MSMON_MBWU_OFSR can be accessed through its memory-mapped interface:

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x0898 MSMON_MBWU_OFSR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x0898 MSMON_MBWU_OFSR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x0898 MSMON_MBWU_OFSR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x0898 MSMON_MBWU_OFSR_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-254
ID041924 Non-Confidential

When FEAT_RME is implemented, accesses to this interface are RO.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-255
ID041924 Non-Confidential

9.5.15 MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register

The MSMON_OFLOW_MSI_ADDR_H characteristics are:

Purpose

MSMON_OFLOW_MSI_ADDR_H is a 32-bit read/write register for the high part of the MPAM
monitor overflow MSI address.

MSMON_OFLOW_MSI_ADDR_H_s is the high part of the MSI write address for monitor
overflow interrupts from Secure monitor instances. MSMON_OFLOW_MSI_ADDR_H_ns is the
high part of the MSI write address for monitor overflow interrupts from Non-secure monitor
instances. MSMON_OFLOW_MSI_ADDR_H_rt is the high part of the MSI write address for
monitor overflow interrupts from Root monitor instances. MSMON_OFLOW_MSI_ADDR_H_rl
is the high part of the MSI write address for monitor overflow interrupts from Realm monitor
instances.

Configurations

The power domain of MSMON_OFLOW_MSI_ADDR_H is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_ADDR_H are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_ADDR_H is a 32-bit register.

Field descriptions

Bits [31:20]

Reserved, RES0.

MSI_ADDR_H, bits [19:0]

MSI write address bits[51:32].

Accessing the MSMON_OFLOW_MSI_ADDR_H:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_OFLW_MSI_ADDR_H_s must only be accessible from the Secure MPAM feature page.

• MSMON_OFLW_MSI_ADDR_H_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_OFLW_MSI_ADDR_H_rt must only be accessible from the Root MPAM feature page.

• MSMON_OFLW_MSI_ADDR_H_rl must only be accessible from the Realm MPAM feature page.

RES0

31 20

MSI_ADDR_H

19 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-256
ID041924 Non-Confidential

MSMON_OFLW_MSI_ADDR_H_s, MSMON_OFLW_MSI_ADDR_H_ns,
MSMON_OFLW_MSI_ADDR_H_rt, and MSMON_OFLW_MSI_ADDR_H_rl must be separate registers:

• The Secure instance (MSMON_OFLW_MSI_ADDR_H_s) accesses the high part of the monitor overflow
MSI write address of Secure monitors.

• The Non-secure instance (MSMON_OFLW_MSI_ADDR_H_ns) accesses the high part of the monitor
overflow MSI write address of Non-secure monitors.

• The Root instance (MSMON_OFLW_MSI_ADDR_H_rt) accesses the high part of the monitor overflow
MSI write address of Root monitors.

• The Realm instance (MSMON_OFLW_MSI_ADDR_H_rl) accesses the high part of the monitor overflow
MSI write address of Realm monitors.

MSMON_OFLOW_MSI_ADDR_H can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_ADDR_H can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_ADDR_H can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_OFLOW_MSI_ADDR_H can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08E4 MSMON_OFLW_MSI_ADDR_H_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08E4 MSMON_OFLW_MSI_ADDR_H_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08E4 MSMON_OFLW_MSI_ADDR_H_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08E4 MSMON_OFLW_MSI_ADDR_H_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-257
ID041924 Non-Confidential

9.5.16 MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register

The MSMON_OFLOW_MSI_ADDR_L characteristics are:

Purpose

MSMON_OFLOW_MSI_ADDR_L is a 32-bit read/write register for the low part of the MPAM
monitor MSI address.

MSMON_OFLOW_MSI_ADDR_L_s is the low part of the MSI write address for overflow
interrupts from Secure monitor intances. MSMON_OFLOW_MSI_ADDR_L_ns is the low part of
the MSI write address for overflow interrupts from Non-secure monitor instances.
MSMON_OFLOW_MSI_ADDR_L_rt is the low part of the MSI write address for overflow
interrupts from Root monitor intances. MSMON_OFLOW_MSI_ADDR_L_rl is the low part of the
MSI write address for overflow interrupts from Realm monitor instances.

Configurations

The power domain of MSMON_OFLOW_MSI_ADDR_L is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_ADDR_L are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_ADDR_L is a 32-bit register.

Field descriptions

MSI_ADDR_L, bits [31:2]

MSI write address bits[31:2].

Bits [1:0]

Reads as 0b00.

Access to this field is RO.

Accessing the MSMON_OFLOW_MSI_ADDR_L:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_OFLOW_MSI_ADDR_L_s must only be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_MSI_ADDR_L_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_MSI_ADDR_L_rt must only be accessible from the Root MPAM feature page.

• MSMON_OFLOW_MSI_ADDR_L_rl must only be accessible from the Realm MPAM feature page.

MSI_ADDR_L

31 2

0 0

1 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-258
ID041924 Non-Confidential

MSMON_OFLOW_MSI_ADDR_L_s, MSMON_OFLOW_MSI_ADDR_L_ns,
MSMON_OFLOW_MSI_ADDR_L_rt, and MSMON_OFLOW_MSI_ADDR_L_rl must be separate registers:

• The Secure instance (MSMON_OFLOW_MSI_ADDR_L_s) accesses the low part of the overflow MSI
write address used for Secure PARTIDs.

• The Non-secure instance (MSMON_OFLOW_MSI_ADDR_L_ns) accesses the low part of the overflow
MSI write address used for Non-secure PARTIDs.

• The Root instance (MSMON_OFLOW_MSI_ADDR_L_rt) accesses the low part of the overflow MSI write
address used for Root PARTIDs.

• The Realm instance (MSMON_OFLOW_MSI_ADDR_L_rl) accesses the low part of the overflow MSI
write address used for Realm PARTIDs.

MSMON_OFLOW_MSI_ADDR_L can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_ADDR_L can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_ADDR_L can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_OFLOW_MSI_ADDR_L can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08E0 MSMON_OFLOW_MSI_ADDR_L_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08E0 MSMON_OFLOW_MSI_ADDR_L_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08E0 MSMON_OFLOW_MSI_ADDR_L_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08E0 MSMON_OFLOW_MSI_ADDR_L_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-259
ID041924 Non-Confidential

9.5.17 MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register

The MSMON_OFLOW_MSI_ATTR characteristics are:

Purpose

MSMON_OFLOW_MSI_ATTR is a 32-bit read/write register that controls MPAM monitor
overflow MSI write attributes for MPAM monitor overflows in this MSC.

MSMON_OFLOW_MSI_ATTR_s controls Secure MPAM monitor overflow MSI writes.
MSMON_OFLOW_MSI_ATTR_ns controls Non-secure MPAM monitor overflow MSI writes.
MSMON_OFLOW_MSI_ATTR_rt controls Root MPAM monitor overflow MSI writes.
MSMON_OFLOW_MSI_ATTR_rl controls Realm MPAM monitor overflow MSI writes.

Configurations

The power domain of MSMON_OFLOW_MSI_ATTR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_ATTR are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_ATTR is a 32-bit register.

Field descriptions

Bits [31:30]

Reserved, RES0.

MSI_SH, bits [29:28]

Sharability attribute of MSI writes.

0b00 Non-shareable.

0b01 Reserved, CONSTRAINED UNPREDICTABLE.

0b10 Outer Shareable.

0b11 Inner Shareable.

When MSMON_OFLOW_MSI_ATTR.MSI_MEMATTR specifies a Device memory type, the
contents of this field are IGNORED and Shareability is effectively Outer Shareable.

MSI_MEMATTR, bits [27:24]

Memory attributes of MSI writes.

Note: This encoding matches the VMSAv8-64 stage 2 MemAttr[3:0] field as described in the Arm
ARM, except that the following encodings are Reserved (not UNPREDICTABLE) and behave as
DEvice-nGnRnE: 0b0100, 0b1000, and 0b1100.

0b0000 Device-nGnRnE.

0b0001 Device-nGnRE.

0b0010 Device-nGRE.

RES0

31 30 29 28 27 24

RES0

23 1 0

MSI_SH MSI_MEMATTR MSIEN

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-260
ID041924 Non-Confidential

0b0011 Device-GRE.

0b0100 Reserved. Behave as Device-nGnRnE, 0b0000.

0b0101 Normal Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal Inner Write-Through Cacheable, Outer Non-cacheable.

0b0111 Normal Inner Write-Back Cacheable, Outer Non-cacheable.

0b1000 Reserved. Behave as Device-nGnRnE, 0b0000.

0b1001 Normal Inner Non-Cachable, Outer Write-Through Cacheable.

0b1010 Normal Inner Write-Through Cacheable, Outer Write-Through Cachable.

0b1011 Normal Inner Write-Back Cacheable, Outer Write-Through Cachable.

0b1100 Reserved. Behave as Device-nGnRnE, 0b0000.

0b1101 Normal Inner Non-cacheable, Outer Write-Back Cacheable.

0b1110 Normal Inner Write-Through Cacheable, Outer Write-Back Cacheable.

0b1111 Normal Inner Write-Back Cacheable, Outer Write-Back Cacheable.

When this field specifies a Device memory type, the contents of
MSMON_OFLOW_MSI_ATTR.MSI_SH are IGNORED and Shareability is effectively Outer
Shareable.

Device types may be implemented as any Device type with more n characters. For example, if this
field is set to 0b0010, an implementation may treat the MSI write as the specified type,
Device-nGRE, or as Device-nGnRE or as Device-nGnRnE.

Reserved encodings 0b0100, 0b1000, and 0b1100 must be implemented to behave the same as the
0b0000 encoding.

Bits [23:1]

Reserved, RES0.

MSIEN, bit [0]

Monitor overflow MSI write enable.

0b0 MPAM monitor overflow MSI writes are not generated to signal enabled MPAM
monitor overflow interrupts. When monitor overflow MSI writes are disabled,
hardwired monitor overflow interrupt could be generated if hardwired monitor overflow
interrupt is implemented.

0b1 MPAM monitor overflow MSI writes are generated to signal enabled MPAM monitor
overflow interrupts. When monitor overflow MSI writes are enabled, hardwired
monitor overflow interrupts are not generated.

This enable affects whether a hardwired overlow interrupt is generated.

The reset behavior of this field is:

• On a MSC reset, this field resets to 0.

Accessing the MSMON_OFLOW_MSI_ATTR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_OFLOW_MSI_ATTR_s must only be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_MSI_ATTR_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_MSI_ATTR_rt must only be accessible from the Root MPAM feature page.

• MSMON_OFLOW_MSI_ATTR_rl must only be accessible from the Realm MPAM feature page.

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-261
ID041924 Non-Confidential

MSMON_OFLOW_MSI_ATTR_s, MSMON_OFLOW_MSI_ATTR_ns, MSMON_OFLOW_MSI_ATTR_rt, and
MSMON_OFLOW_MSI_ATTR_rl must be separate registers:

• The Secure instance (MSMON_OFLOW_MSI_ATTR_s) accesses the monitor overflow MSI write attributes
of Secure monitors.

• The Non-secure instance (MSMON_OFLOW_MSI_ATTR_ns) accesses the monitor overflow MSI write
attributes of Non-secure monitors.

• The Root instance (MSMON_OFLOW_MSI_ATTR_rt) accesses the monitor overflow MSI write attributes
of Root monitors.

• The Realm instance (MSMON_OFLOW_MSI_ATTR_rl) accesses the monitor overflow MSI write
attributes of Realm monitors.

MSMON_OFLOW_MSI_ATTR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_ATTR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_ATTR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_OFLOW_MSI_ATTR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08EC MSMON_OFLOW_MSI_ATTR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08EC MSMON_OFLOW_MSI_ATTR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08EC MSMON_OFLOW_MSI_ATTR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08EC MSMON_OFLOW_MSI_ATTR_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-262
ID041924 Non-Confidential

9.5.18 MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register

The MSMON_OFLOW_MSI_DATA characteristics are:

Purpose

MSMON_OFLOW_MSI_DATA is a 32-bit read/write register for the MPAM monitor overflow
MSI data.

MSMON_OFLOW_MSI_DATA_s is the data for the MSI write for monitor overflow from Secure
monitor instances. MSMON_OFLOW_MSI_DATA_ns is the data for the MSI writes for monitor
overflow interrupts from Non-secure monitor instances. MSMON_OFLOW_MSI_DATA_rt is the
data for the MSI write for monitor overflow from Root monitor instances.
MSMON_OFLOW_MSI_DATA_rl is the data for the MSI writes for monitor overflow interrupts
from Realm monitor instances.

Configurations

The power domain of MSMON_OFLOW_MSI_DATA is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_DATA are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_DATA is a 32-bit register.

Field descriptions

MSI_DATA, bits [31:0]

MSI write data word.

Accessing the MSMON_OFLOW_MSI_DATA:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_OFLOW_MSI_DATA_s must only be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_MSI_DATA_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_MSI_DATA_rt must only be accessible from the Root MPAM feature page.

• MSMON_OFLOW_MSI_DATA_rl must only be accessible from the Realm MPAM feature page.

MSMON_OFLOW_MSI_DATA_s, MSMON_OFLOW_MSI_DATA_ns, MSMON_OFLOW_MSI_DATA_rt,
and MSMON_OFLOW_MSI_DATA_rl must be separate registers:

• The Secure instance (MSMON_OFLOW_MSI_DATA_s) accesses the monitor overflow MSI write data of
Secure monitors.

MSI_DATA

31 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-263
ID041924 Non-Confidential

• The Non-secure instance (MSMON_OFLOW_MSI_DATA_ns) accesses the monitor overflow MSI write
data of Non-secure monitors.

• The Root instance (MSMON_OFLOW_MSI_DATA_rt) accesses the monitor overflow MSI write data of
Root monitors.

• The Realm instance (MSMON_OFLOW_MSI_DATA_rl) accesses the monitor overflow MSI write data of
Realm monitors.

MSMON_OFLOW_MSI_DATA can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_DATA can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_DATA can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_OFLOW_MSI_DATA can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08E8 MSMON_OFLOW_MSI_DATA_
s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08E8 MSMON_OFLOW_MSI_DATA_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08E8 MSMON_OFLOW_MSI_DATA_r
t

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08E8 MSMON_OFLOW_MSI_DATA_r
l

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-264
ID041924 Non-Confidential

9.5.19 MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register

The MSMON_OFLOW_MSI_MPAM characteristics are:

Purpose

MSMON_OFLOW_MSI_MPAM is a 32-bit read/write register that sets the MPAM information for
a monitor overflow MSI write.

MSMON_OFLOW_MSI_MPAM_s controls MPAM information labeling of Secure monitor
overflow MSI writes. MSMON_OFLOW_MSI_MPAM_ns controls MPAM information labeling
of Non-secure monitor overflow MSI writes. MSMON_OFLOW_MSI_MPAM_rt controls MPAM
information labeling of Root monitor overflow MSI writes. MSMON_OFLOW_MSI_MPAM_rl
controls MPAM information labeling of Realm monitor overflow MSI writes.

Configurations

The power domain of MSMON_OFLOW_MSI_MPAM is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and
MPAMF_MSMON_IDR.HAS_OFLW_MSI == 1. Otherwise, direct accesses to
MSMON_OFLOW_MSI_MPAM are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR, MSMON_OFLOW_MSI_DATA, and
MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for monitor
overflow interrupts.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_MSI_MPAM is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group property for an MSC monitor overflow MSI write.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition ID for an MSC monitor overflow MSI write.

The PARTID in this field is in the Secure PARTID space in the MSMON_OFLOW_MSI_MPAM_s
instance and in the Non-secure PARTID space in the MSMON_OFLOW_MSI_MPAM_ns instance
of this register.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

Accessing the MSMON_OFLOW_MSI_MPAM:

This register is within the MPAM feature page memory frames.

RES0

31 24

PMG

23 16

PARTID

15 0

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-265
ID041924 Non-Confidential

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_OFLOW_MSI_MPAM_s must only be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_MSI_MPAM_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_MSI_MPAM_rt must only be accessible from the Root MPAM feature page.

• MSMON_OFLOW_MSI_MPAM_rl must only be accessible from the Realm MPAM feature page.

MSMON_OFLOW_MSI_MPAM_s, MSMON_OFLOW_MSI_MPAM_ns, MSMON_OFLOW_MSI_MPAM_rt,
and MSMON_OFLOW_MSI_MPAM_rl must be separate registers:

• The Secure instance (MSMON_OFLOW_MSI_MPAM_s) accesses the monitor overflow MSI MPAM
information of Secure monitors.

• The Non-secure instance (MSMON_OFLOW_MSI_MPAM_ns) accesses the monitor overflow MSI MPAM
information of Non-secure monitors.

• The Root instance (MSMON_OFLOW_MSI_MPAM_rt) accesses the monitor overflow MSI MPAM
information of Root monitors.

• The Realm instance (MSMON_OFLOW_MSI_MPAM_rl) accesses the monitor overflow MSI MPAM
information of Realm monitors.

MSMON_OFLOW_MSI_MPAM can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_MPAM can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MSMON_OFLOW_MSI_MPAM can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MSMON_OFLOW_MSI_MPAM can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08DC MSMON_OFLOW_MSI_MPAM_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08DC MSMON_OFLOW_MSI_MPAM_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08DC MSMON_OFLOW_MSI_MPAM_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08DC MSMON_OFLOW_MSI_MPAM_rl

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-266
ID041924 Non-Confidential

9.5.20 MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register

The MSMON_OFLOW_SR characteristics are:

Purpose

MSMON_OFLOW_SR is a 32-bit read-only register that shows MPAM monitor overflow status for
this MSC.

MSMON_OFLOW_SR_s gives the status of overflows of Secure MPAM monitors.
MSMON_OFLOW_SR_ns gives the status of overflows of Non-secure MPAM monitors.
MSMON_OFLOW_SR_rt gives the status of overflows of Root MPAM monitors.
MSMON_OFLOW_SR_rl gives the status of overflows of Realm MPAM monitors.

Configurations

The power domain of MSMON_OFLOW_SR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_MSMON_IDR.HAS_OFLOW_SR == 1. Otherwise,
direct accesses to MSMON_OFLOW_SR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MSMON_OFLOW_SR is a 32-bit register.

Field descriptions

CSU_OFLOW_PND, bit [31]

At least one cache storage usage monitor has OFLOW_STATUS of 1 in
MSMON_CFG_CSU_CTL.

0b0 There are no cache storage usage monitor instances where
MSMON_CFG_CSU_CTL.OFLOW_STATUS is 1.

0b1 MSMON_CFG_CSU_CTL for at least one of the cache storage usage monitor instances
has OFLOW_STATUS set to 1.

This field clears when MSMON_CFG_CSU_CTL.OFLOW_STATUS has been reset to 0 for all
CSU monitor instances in this MSC.

MBWU_OFLOW_PND, bit [30]

At least one memory bandwidth usage monitor instance has OFLOW_STATUS or
OFLOW_STATUS_L of 1 in MSMON_CFG_MBWU_CTL.

0b0 There are no memory bandwidth usage monitor instances where
MSMON_CFG_MBWU_CTL.OFLOW_STATUS is 1.

0b1 MSMON_CFG_MBWU_CTL for at least one of the memory bandwidth usage monitor
instances has either OFLOW_STATUS or OFLOW_STATUS_L set to 1.

This field clears when MSMON_CFG_MBWU_CTL.OFLOW_STATUS and
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L have been reset to 0 for all MBWU monitor
instances in this MSC.

31 30

RES0

29 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSU_OFLOW_PND MBWU_OFLOW_PND RIS_PND15
RIS_PND14

RIS_PND13
RIS_PND12

RIS_PND11
RIS_PND10

RIS_PND9
RIS_PND8

RIS_PND0
RIS_PND1

RIS_PND2
RIS_PND3

RIS_PND4
RIS_PND5

RIS_PND6
RIS_PND7

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-267
ID041924 Non-Confidential

Bits [29:16]

Reserved, RES0.

RIS_PND<r>, bit [r], for r = 15 to 0

Overflow status by RIS.

0b0 RIS r has no unread overflows of any type of monitor.

0b1 RIS r has at least one unread overflow in at least one of the monitor types.

Combined with the CSU_OFLOW_PND and MBWU_OFLOW_PND flags in this register, an
interrupt service routine could poll only the monitor types indicated in monitors for the resource
instances flagged in this field.

Bit r is set when any monitor instance of any type in resource instance r has OFLOW_STATUS or
OFLOW_STATUS_L set to 1.

Accessing the MSMON_OFLOW_SR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MSMON_OFLOW_SR_s must only be accessible from the Secure MPAM feature page.

• MSMON_OFLOW_SR_ns must only be accessible from the Non-secure MPAM feature page.

• MSMON_OFLOW_SR_rt must only be accessible from the Root MPAM feature page.

• MSMON_OFLOW_SR_rl must only be accessible from the Realm MPAM feature page.

MSMON_OFLOW_SR_s, MSMON_OFLOW_SR_ns, MSMON_OFLOW_SR_rt, and MSMON_OFLOW_SR_rl
must be separate registers:

• The Secure instance (MSMON_OFLOW_SR_s) accesses the monitor overflow status summary of Secure
monitors.

• The Non-secure instance (MSMON_OFLOW_SR_ns) accesses the monitor overflow status summary of
Non-secure monitors.

• The Root instance (MSMON_OFLOW_SR_rt) accesses the monitor overflow status summary of Root
monitors.

• The Realm instance (MSMON_OFLOW_SR_rl) accesses the monitor overflow status summary of Realm
monitors.

MSMON_OFLOW_SR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

MSMON_OFLOW_SR can be accessed through its memory-mapped interface:

Accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x08F0 MSMON_OFLOW_SR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x08F0 MSMON_OFLOW_SR_ns

Memory-mapped Registers
9.5 Memory-mapped monitoring configuration registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-268
ID041924 Non-Confidential

MSMON_OFLOW_SR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

MSMON_OFLOW_SR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RO.

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x08F0 MSMON_OFLOW_SR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x08F0 MSMON_OFLOW_SR_rl

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-269
ID041924 Non-Confidential

9.6 Memory-mapped control and status registers
This section lists the external control and status registers.

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-270
ID041924 Non-Confidential

9.6.1 MPAMF_ECR, MPAM Error Control Register

The MPAMF_ECR characteristics are:

Purpose

MPAMF_ECR is a 32-bit read/write register that controls MPAM error interrupts for this MSC.

MPAMF_ECR_s controls Secure MPAM error handling. MPAMF_ECR_ns controls Non-secure
MPAM error handling. MPAMF_ECR_rt controls Root MPAM error handling. MPAMF_ECR_rl
controls Realm MPAM error handling.

Configurations

The power domain of MPAMF_ECR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_ECR are RES0.

If an MSC cannot encounter any of the error conditions listed in Errors in MSCs, both the
MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ECR is a 32-bit register.

Field descriptions

Bits [31:1]

Reserved, RES0.

INTEN, bit [0]

Interrupt Enable.

0b0 MPAM error interrupts are not signaled.

0b1 MPAM error interrupts are signaled.

Accessing the MPAMF_ECR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMF_ECR_s must only be accessible from the Secure MPAM feature page.

• MPAMF_ECR_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMF_ECR_rt must only be accessible from the Root MPAM feature page.

• MPAMF_ECR_rl must only be accessible from the Realm MPAM feature page.

MPAMF_ECR_s, MPAMF_ECR_ns, MPAMF_ECR_rt, and MPAMF_ECR_rl must be separate registers:

• The Secure instance (MPAMF_ECR_s) accesses the error interrupt controls used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ECR_ns) accesses the error interrupt controls used for Non-secure
PARTIDs.

• The Root instance (MPAMF_ECR_rt) accesses the error interrupt controls used for Root PARTIDs.

RES0

31 1 0

INTEN

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-271
ID041924 Non-Confidential

• The Realm instance (MPAMF_ECR_rl) accesses the error interrupt controls used for Realm PARTIDs.

MPAMF_ECR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ECR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ECR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMF_ECR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00F0 MPAMF_ECR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00F0 MPAMF_ECR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00F0 MPAMF_ECR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00F0 MPAMF_ECR_rl

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-272
ID041924 Non-Confidential

9.6.2 MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register

The MPAMF_ERR_MSI_ADDR_H characteristics are:

Purpose

MPAMF_ERR_MSI_ADDR_H is a 32-bit read/write register for the high part of the MPAM error
MSI address.

MPAMF_ERR_MSI_ADDR_H_s is the high part of the MSI write address for error interrupts
related to Secure PARTIDs. MPAMF_ERR_MSI_ADDR_H_ns is the high part of the MSI write
address for error interrupts related to Non-secure PARTIDs. MPAMF_ERR_MSI_ADDR_H_rt is
the high part of the MSI write address for error interrupts related to Root PARTIDs.
MPAMF_ERR_MSI_ADDR_H_rl is the high part of the MSI write address for error interrupts
related to Realm PARTIDs.

Configurations

The power domain of MPAMF_ERR_MSI_ADDR_H is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_ADDR_H are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_ADDR_H is a 32-bit register.

Field descriptions

Bits [31:20]

Reserved, RES0.

MSI_ADDR_H, bits [19:0]

MSI write address bits[51:32].

Accessing the MPAMF_ERR_MSI_ADDR_H:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMF_ERR_MSI_ADDR_H_s must only be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_ADDR_H_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMF_ERR_MSI_ADDR_H_rt must only be accessible from the Root MPAM feature page.

• MPAMF_ERR_MSI_ADDR_H_rl must only be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_ADDR_H_s, MPAMF_ERR_MSI_ADDR_H_ns, MPAMF_ERR_MSI_ADDR_H_rt, and
MPAMF_ERR_MSI_ADDR_H_rl must be separate registers:

• The Secure instance (MPAMF_ERR_MSI_ADDR_H_s) accesses the high part of the memory address for
MSI write to signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_ADDR_H_ns) accesses the high part of the memory address
for MSI write to signal an MPAM error used for Non-secure PARTIDs.

RES0

31 20

MSI_ADDR_H

19 0

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-273
ID041924 Non-Confidential

• The Root instance (MPAMF_ERR_MSI_ADDR_H_rt) accesses the high part of the memory address for MSI
write to signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_ADDR_H_rl) accesses the high part of the memory address for
MSI write to signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_ADDR_H can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_ADDR_H can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_ADDR_H can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMF_ERR_MSI_ADDR_H can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00E4 MPAMF_ERR_MSI_ADDR_H_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00E4 MPAMF_ERR_MSI_ADDR_H_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00E4 MPAMF_ERR_MSI_ADDR_H_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00E4 MPAMF_ERR_MSI_ADDR_H_rl

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-274
ID041924 Non-Confidential

9.6.3 MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register

The MPAMF_ERR_MSI_ADDR_L characteristics are:

Purpose

MPAMF_ERR_MSI_ADDR_L is a 32-bit read/write register for the low part of the MPAM error
MSI address.

MPAMF_ERR_MSI_ADDR_L_s is the low part of the MSI write address for error interrupts
related to Secure PARTIDs. MPAMF_ERR_MSI_ADDR_L_ns is the low part of the MSI write
address for error interrupts related to Non-secure PARTIDs. MPAMF_ERR_MSI_ADDR_L_rt is
the low part of the MSI write address for error interrupts related to Root PARTIDs.
MPAMF_ERR_MSI_ADDR_L_rl is the low part of the MSI write address for error interrupts
related to Realm PARTIDs.

Configurations

The power domain of MPAMF_ERR_MSI_ADDR_L is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_ADDR_L are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_ADDR_L is a 32-bit register.

Field descriptions

MSI_ADDR_L, bits [31:2]

MSI write address bits[31:2].

Bits [1:0]

Reads as 0b00.

Access to this field is RO.

Accessing the MPAMF_ERR_MSI_ADDR_L:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMF_ERR_MSI_ADDR_L_s must only be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_ADDR_L_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMF_ERR_MSI_ADDR_L_rt must only be accessible from the Root MPAM feature page.

• MPAMF_ERR_MSI_ADDR_L_rl must only be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_ADDR_L_s, MPAMF_ERR_MSI_ADDR_L_ns, MPAMF_ERR_MSI_ADDR_L_rt, and
MPAMF_ERR_MSI_ADDR_L_rl must be separate registers:

• The Secure instance (MPAMF_ERR_MSI_ADDR_L_s) accesses the low part of the memory address for
MSI write to signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_ADDR_L_ns) accesses the low part of the memory address
for MSI write to signal an MPAM error used for Non-secure PARTIDs.

MSI_ADDR_L

31 2

0 0

1 0

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-275
ID041924 Non-Confidential

• The Root instance (MPAMF_ERR_MSI_ADDR_L_rt) accesses the low part of the memory address for MSI
write to signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_ADDR_L_rl) accesses the low part of the memory address for
MSI write to signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_ADDR_L can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_ADDR_L can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_ADDR_L can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMF_ERR_MSI_ADDR_L can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00E0 MPAMF_ERR_MSI_ADDR_L_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00E0 MPAMF_ERR_MSI_ADDR_L_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00E0 MPAMF_ERR_MSI_ADDR_L_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00E0 MPAMF_ERR_MSI_ADDR_L_rl

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-276
ID041924 Non-Confidential

9.6.4 MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register

The MPAMF_ERR_MSI_ATTR characteristics are:

Purpose

MPAMF_ERR_MSI_ATTR is a 32-bit read/write register that controls MPAM error MSI write
attributes for MPAM errors in this MSC.

MPAMF_ERR_MSI_ATTR_s controls the attributes of Secure MPAM error MSI writes.
MPAMF_ERR_MSI_ATTR_ns controls the attributes of Non-secure MPAM error MSI writes.
MPAMF_ERR_MSI_ATTR_rt controls the attributes of Root MPAM error MSI writes.
MPAMF_ERR_MSI_ATTR_rl controls the attributes of Realm MPAM error MSI writes.

Configurations

The power domain of MPAMF_ERR_MSI_ATTR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_ATTR are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_ATTR is a 32-bit register.

Field descriptions

Bits [31:30]

Reserved, RES0.

MSI_SH, bits [29:28]

Sharability attribute of MSI writes.

0b00 Non-shareable.

0b01 Reserved, CONSTRAINED UNPREDICTABLE.

0b10 Outer Shareable.

0b11 Inner Shareable.

When MPAMF_ERR_MSI_ATTR.MSI_MEMATTR specifies a Device memory type, the contents
of this field are IGNORED and Shareability is effectively Outer Shareable.

MSI_MEMATTR, bits [27:24]

Memory attributes of MSI writes.

Note: This encoding matches the VMSAv8-64 stage 2 MemAttr[3:0] field as described in the Arm
ARM, except that the following encodings are Reserved (not UNPREDICTABLE) and behave as
DEvice-nGnRnE: 0b0100, 0b1000, and 0b1100.

0b0000 Device-nGnRnE.

0b0001 Device-nGnRE.

0b0010 Device-nGRE.

0b0011 Device-GRE.

0b0100 Reserved. Behave as Device-nGnRnE, 0b0000.

0b0101 Normal Inner Non-cacheable, Outer Non-cacheable.

0b0110 Normal Inner Write-Through Cacheable, Outer Non-cacheable.

RES0

31 30 29 28 27 24

RES0

23 1 0

MSI_SH MSI_MEMATTR MSIEN

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-277
ID041924 Non-Confidential

0b0111 Normal Inner Write-Back Cacheable, Outer Non-cacheable.

0b1000 Reserved. Behave as Device-nGnRnE, 0b0000.

0b1001 Normal Inner Non-Cachable, Outer Write-Through Cacheable.

0b1010 Normal Inner Write-Through Cacheable, Outer Write-Through Cacheable.

0b1011 Normal Inner Write-Back Cacheable, Outer Write-Through Cacheable.

0b1100 Reserved. Behave as Device-nGnRnE, 0b0000.

0b1101 Normal Inner Non-cacheable, Outer Write-Back Cacheable.

0b1110 Normal Inner Write-Through Cacheable, Outer Write-Back Cacheable.

0b1111 Normal Inner Write-Back Cacheable, Outer Write-Back Cacheable.

When this field specifies a Device memory type, the contents of
MPAMF_ERR_MSI_ATTR.MSI_SH are IGNORED and Shareability is effectively Outer
Shareable.

Device types may be implemented as any Device type with more than 'n' characters. For example,
if this field is set to 0b0010, an implementation may treat the MSI write as the specified type,
Device-nGRE, or as Device-nGnRE or as Device-nGnRnE.

Reserved encodings 0b0100, 0b1000, and 0b1100 must be implemented to behave the same as the
0b0000 encoding.

Bits [23:1]

Reserved, RES0.

MSIEN, bit [0]

Error interrupt MSI Enable.

0b0 MPAM error MSI writes are not generated to signal enabled MPAM error interrupts.
When error MSI writesare disabled, hardwired error interrupts could be generated.

0b1 MPAM error MSI writes are generated to signal enabled MPAM error interrupts. When
error MSI writes are enabled, hardwired error interrupts are not generated.

The value of this field affects whether hardwired error interrupts are generated.

The reset behavior of this field is:

• On a MSC reset, this field resets to 0.

Accessing the MPAMF_ERR_MSI_ATTR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMF_ERR_MSI_ATTR_s must only be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_ATTR_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMF_ERR_MSI_ATTR_rt must only be accessible from the Root MPAM feature page.

• MPAMF_ERR_MSI_ATTR_rl must only be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_ATTR_s, MPAMF_ERR_MSI_ATTR_ns, MPAMF_ERR_MSI_ATTR_rt, and
MPAMF_ERR_MSI_ATTR_rl must be separate registers:

• The Secure instance (MPAMF_ERR_MSI_ATTR_s) accesses the memory access attributes for MSI write to
signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_ATTR_ns) accesses the memory access attributes for MSI
write to signal an MPAM error used for Non-secure PARTIDs.

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-278
ID041924 Non-Confidential

• The Root instance (MPAMF_ERR_MSI_ATTR_rt) accesses the memory access attributes for MSI write to
signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_ATTR_rl) accesses the memory access attributes for MSI write to
signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_ATTR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_ATTR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_ATTR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMF_ERR_MSI_ATTR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00EC MPAMF_ERR_MSI_ATTR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00EC MPAMF_ERR_MSI_ATTR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00EC MPAMF_ERR_MSI_ATTR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00EC MPAMF_ERR_MSI_ATTR_rl

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-279
ID041924 Non-Confidential

9.6.5 MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register

The MPAMF_ERR_MSI_DATA characteristics are:

Purpose

MPAMF_ERR_MSI_DATA is a 32-bit read/write register for the MPAM error MSI data.

MPAMF_ERR_MSI_DATA_s is the data for the MSI write for error interrupts related to Secure
PARTIDs. MPAMF_ERR_MSI_DATA_ns is the data for the MSI write for error interrupts related
to Non-secure PARTIDs. MPAMF_ERR_MSI_DATA_rt is the data for the MSI write for error
interrupts related to Root PARTIDs. MPAMF_ERR_MSI_DATA_rl is the data for the MSI write for
error interrupts related to Realm PARTIDs.

Configurations

The power domain of MPAMF_ERR_MSI_DATA is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_DATA are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_DATA is a 32-bit register.

Field descriptions

MSI_DATA, bits [31:0]

MSI data to be written to ITS to signal an MSI.

Accessing the MPAMF_ERR_MSI_DATA:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMF_ERR_MSI_DATA_s must only be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_DATA_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMF_ERR_MSI_DATA_rt must only be accessible from the Root MPAM feature page.

• MPAMF_ERR_MSI_DATA_rl must only be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_DATA_s, MPAMF_ERR_MSI_DATA_ns, MPAMF_ERR_MSI_DATA_rt, and
MPAMF_ERR_MSI_DATA_rl must be separate registers:

• The Secure instance (MPAMF_ERR_MSI_DATA_s) accesses the data for MSI write to signal an MPAM
error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_DATA_ns) accesses the data for MSI write to signal an
MPAM error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_DATA_rt) accesses the data for MSI write to signal an MPAM error
used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_DATA_rl) accesses the data for MSI write to signal an MPAM
error used for Realm PARTIDs.

MSI_DATA

31 0

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-280
ID041924 Non-Confidential

MPAMF_ERR_MSI_DATA can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_DATA can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_DATA can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMF_ERR_MSI_DATA can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00E8 MPAMF_ERR_MSI_DATA_
s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00E8 MPAMF_ERR_MSI_DATA_n
s

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00E8 MPAMF_ERR_MSI_DATA_r
t

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00E8 MPAMF_ERR_MSI_DATA_r
l

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-281
ID041924 Non-Confidential

9.6.6 MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register

The MPAMF_ERR_MSI_MPAM characteristics are:

Purpose

MPAMF_ERR_MSI_MPAM is a 32-bit read/write register that sets the MPAM information for
error MSI write attributes for MPAM errors in this MSC.

MPAMF_ERR_MSI_MPAM_s controls MPAM information labeling of Secure MPAM error MSI
writes. MPAMF_ERR_MSI_MPAM_ns controls MPAM information labeling of Non-secure
MPAM error MSI writes. MPAMF_ERR_MSI_MPAM_rt controls MPAM information labeling of
Root MPAM error MSI writes. MPAMF_ERR_MSI_MPAM_rl controls MPAM information
labeling of Realm MPAM error MSI writes.

Configurations

The power domain of MPAMF_ERR_MSI_MPAM is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses
to MPAMF_ERR_MSI_MPAM are RES0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ERR_MSI_MPAM is a 32-bit register.

Field descriptions

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group property for PARTID MSC error interrupt write.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition ID for MSC error interrupt write.

The PARTID in this register is in the Secure PARTID space in the MPAMF_ERR_MSI_MPAM_s
instance and in the Non-secure PARTID space in the MPAMF_ERR_MSI_MPAM_ns instance of
this register.

The reset behavior of this field is:

• On a MSC reset, this field resets to an architecturally UNKNOWN value.

Accessing the MPAMF_ERR_MSI_MPAM:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMF_ERR_MSI_MPAM_s must only be accessible from the Secure MPAM feature page.

• MPAMF_ERR_MSI_MPAM_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMF_ERR_MSI_MPAM_rt must only be accessible from the Root MPAM feature page.

RES0

31 24

PMG

23 16

PARTID

15 0

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-282
ID041924 Non-Confidential

• MPAMF_ERR_MSI_MPAM_rl must only be accessible from the Realm MPAM feature page.

MPAMF_ERR_MSI_MPAM_s, MPAMF_ERR_MSI_MPAM_ns, MPAMF_ERR_MSI_MPAM_rt, and
MPAMF_ERR_MSI_MPAM_rl must be separate registers:

• The Secure instance (MPAMF_ERR_MSI_MPAM_s) accesses the MPAM information for MSI write request
to signal an MPAM error used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ERR_MSI_MPAM_ns) accesses the MPAM information for MSI write
request to signal an MPAM error used for Non-secure PARTIDs.

• The Root instance (MPAMF_ERR_MSI_MPAM_rt) accesses the MPAM information for MSI write request
to signal an MPAM error used for Root PARTIDs.

• The Realm instance (MPAMF_ERR_MSI_MPAM_rl) accesses the MPAM information for MSI write
request to signal an MPAM error used for Realm PARTIDs.

MPAMF_ERR_MSI_MPAM can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_MPAM can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ERR_MSI_MPAM can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMF_ERR_MSI_MPAM can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00DC MPAMF_ERR_MSI_MPAM_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00DC MPAMF_ERR_MSI_MPAM_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00DC MPAMF_ERR_MSI_MPAM_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00DC MPAMF_ERR_MSI_MPAM_rl

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-283
ID041924 Non-Confidential

9.6.7 MPAMF_ESR, MPAM Error Status Register

The MPAMF_ESR characteristics are:

Purpose

Indicates MPAM error status for this MSC.

MPAMF_ESR_s reports Secure MPAM errors. MPAMF_ESR_ns reports Non-secure MPAM
errors. MPAMF_ESR_rt reports Root MPAM errors. MPAMF_ESR_rl reports Realm MPAM
errors.

Software should write this register after reading the status of an error to reset ERRCODE to 0x0000
and OVRWR to 0 so that future errors are not reported with OVRWR set.

Configurations

The power domain of MPAMF_ESR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAMF_ESR are RES0.

MPAMF_ESR is 64-bit register when MPAM v0.1 or v1.1 is implemented and
MPAMF_IDR.HAS_EXTD_ESR == 1.

Otherwise, MPAMF_ESR is a 32-bit register.

If an MSC cannot encounter any of the error conditions listed in Errors in MSCs, both the
MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ESR is a:

• 64-bit register when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is
implemented) and MPAMF_IDR.HAS_EXTD_ESR == 1

• 32-bit register otherwise

Field descriptions

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMF_IDR.HAS_EXTD_ESR == 1:

Bits [63:36]

Reserved, RES0.

RIS, bits [35:32]

When MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. Where applicable to the ERRCODE, captures the RIS value for the
error.

Otherwise:

Reserved, RES0.

OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

RES0

63 36

RIS

35 32

31

RES0

30 28

ERRCODE

27 24

PMG

23 16

PARTID_MON

15 0

OVRWR

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-284
ID041924 Non-Confidential

If 0 and ERRCODE is non-zero, a single error has occurred and is recorded in this register.

If 1 and ERRCODE is non-zero, multiple errors have occurred and this register records the most
recent error.

The state where this bit is 1 and ERRCODE is zero must not be produced by hardware and is only
reached when software writes this combination into this register.

Bits [30:28]

Reserved, RES0.

ERRCODE, bits [27:24]

Error code.

0b0000 No error.

0b0001 PARTID_SEL_Range.

0b0010 Req_PARTID_Range.

0b0011 MSMONCFG_ID_RANGE.

0b0100 Req_PMG_Range.

0b0101 Monitor_Range.

0b0110 intPARTID_Range.

0b0111 Unexpected_INTERNAL.

0b1000 Undefined_RIS_PART_SEL.

0b1001 RIS_No_Control.

0b1010 Undefined_RIS_MON_SEL.

0b1011 RIS_No_Monitor.

0b1100 Reserved.

0b1101 Reserved.

0b1110 Reserved.

0b1111 Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0x00 on an error that does not
capture PMG.

PARTID_MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0.

Otherwise:

OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

If 0 and ERRCODE is non-zero, a single error has occurred and is recorded in this register.

31

RES0

30 28

ERRCODE

27 24

PMG

23 16

PARTID_MON

15 0

OVRWR

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-285
ID041924 Non-Confidential

If 1 and ERRCODE is non-zero, multiple errors have occurred and this register records the most
recent error.

The state where this bit is 1 and ERRCODE is 0 must not be produced by hardware and is only
reached when software writes this combination into this register.

Bits [30:28]

Reserved, RES0.

ERRCODE, bits [27:24]

Error code.

0b0000 No error.

0b0001 PARTID_SEL_Range.

0b0010 Req_PARTID_Range.

0b0011 MSMONCFG_ID_RANGE.

0b0100 Req_PMG_Range.

0b0101 Monitor_Range.

0b0110 intPARTID_Range.

0b0111 Unexpected_INTERNAL.

0b1000 Reserved.

0b1001 Reserved.

0b1010 Reserved.

0b1011 Reserved.

0b1100 Reserved.

0b1101 Reserved.

0b1110 Reserved.

0b1111 Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0x00 on an error that does not
capture PMG.

PARTID_MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0x0000.

Accessing the MPAMF_ESR:

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages
in all four address maps:

• MPAMF_ESR_s must only be accessible from the Secure MPAM feature page.

• MPAMF_ESR_ns must only be accessible from the Non-secure MPAM feature page.

• MPAMF_ESR_rt must only be accessible from the Root MPAM feature page.

• MPAMF_ESR_rl must only be accessible from the Realm MPAM feature page.

Memory-mapped Registers
9.6 Memory-mapped control and status registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 9-286
ID041924 Non-Confidential

MPAMF_ESR_s, MPAMF_ESR_ns, MPAMF_ESR_rt, and MPAMF_ESR_rl must be separate registers:

• The Secure instance (MPAMF_ESR_s) accesses the error status used for Secure PARTIDs.

• The Non-secure instance (MPAMF_ESR_ns) accesses the error status used for Non-secure PARTIDs.

• The Root instance (MPAMF_ESR_rt) accesses the error status used for Root PARTIDs.

• The Realm instance (MPAMF_ESR_rl) accesses the error status used for Realm PARTIDs.

MPAMF_ESR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ESR can be accessed through its memory-mapped interface:

Accesses to this interface are RW.

MPAMF_ESR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

MPAMF_ESR can be accessed through its memory-mapped interface:

When FEAT_RME is implemented, accesses to this interface are RW.

Component Frame Offset Instance

MPAM MPAMF_BASE_s 0x00F8 MPAMF_ESR_s

Component Frame Offset Instance

MPAM MPAMF_BASE_ns 0x00F8 MPAMF_ESR_ns

Component Frame Offset Instance

MPAM MPAMF_BASE_rt 0x00F8 MPAMF_ESR_rt

Component Frame Offset Instance

MPAM MPAMF_BASE_rl 0x00F8 MPAMF_ESR_rl

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-287
ID041924 Non-Confidential

Chapter 10
Errors in MSCs

This chapter contains the following sections:

• Introduction.

• Error conditions in accessing memory-mapped registers.

• Overwritten error status.

• Behavior of configuration reads and writes with errors.

• Optionality of error detection and reporting.

Errors in MSCs
10.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-288
ID041924 Non-Confidential

10.1 Introduction
When an MSC detects an error on an access to a memory-mapped register, information about the error must be
captured in the MPAMF_ESR register and signaled to software through an interrupt. The errors covered by this
mechanism might be caused by software errors.

Errors, whether detected or not, must not prevent the handling of the request by the MSC, but errors can cause the
MSC to use different MPAM resource control settings than expected or cause monitors to misattribute monitored
events. See Optionality of error detection and reporting.

Note
Implementation choices in an MSC might make certain errors impossible. For example, if the request interface only
implements sufficient bits to exactly cover the range of 0 to PARTID_MAX and does not detect whether the
unimplemented high-order bits of the PARTID are all zero, then the request PARTID cannot be detected as
out-of-range, so ERRCODE == 2 cannot occur.

MPAM errors that an implementation detects are recorded in MPAMF_ESR_s or MPAMF_ESR_ns. The error
condition descriptions in Error conditions in accessing memory-mapped registers describe whether the Security
state of the PARTID or of the request address are used to determine which instance of MPAMF_ESR records the
error status.

MSCs signal errors in accesses to memory-mapped registers using an error interrupt. See MPAM Error Interrupt.
Errors recorded in MPAMF_ESR_s signal a Secure MPAM error interrupt if enabled by MPAMF_ECR_s.INTEN
== 1. Errors recorded in MPAM_ESR_ns signal a Non-secure MPAM error interrupt if enabled by
MPAMF_ECR_ns.INTEN.

The MPAMF_ESR in an MSC captures the reason for an error, so that it can be accurately reported to software.

When Resource instance selection is implemented, hardware is permitted to make choices regarding CONSTRAINED
UNPREDICTABLE behaviors and unimplemented RIS bits that could reduce or remove the need to detect or report any
of the RIS-related errors. For more information on RIS, see Resource instance selection.

Errors in MSCs
10.2 Error conditions in accessing memory-mapped registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-289
ID041924 Non-Confidential

10.2 Error conditions in accessing memory-mapped registers
When an MSC detects an error condition, information about the error is captured in MPAMF_ESR.
MPAMF_ESR.ERRCODE encodes the reason for the error as shown in Table 10-1. Other fields are captured in
MPAMF_ESR as shown in the Fields Captured column of Table 10-1.

10.2.1 No error (errorcode == 0)

No error is captured in MPAMF_ESR.

10.2.2 PARTID_SEL out-of-range error (errorcode == 1)

The value of the MPAMCFG_PART_SEL.PARTID_SEL field is out-of-range for the PARTID space selected by the
NS bit on a store to an MPAMCFG memory-mapped register.

Table 10-1 Error conditions in accessing memory-mapped registers

MPAM Error Code
(ERRCODE) Error Name Error Description Fields Captured

0 No Error No error captured in MPAMF_ESR. None

1 PARTID_SEL_Range MPAMCFG_PART_SEL stored with
an out-of-range PARTID.

PARTID and RISa

2 Req_PARTID_Range A request has out-of-range PARTID. PARTID, PMG

3 MSMONCFG_ID_RANGE MSMON configuration request has
out-of-range PARTID or PMG.

PARTID, PMG, RISa

4 Req_PMG_Range A request has out-of-range PMG. PARTID and PMG

5 Monitor_Range MSMON_CFG_MON_SEL has
out-of-range monitor selector.

MON_SEL, RISa

6 intPARTID_Range The intPARTID in
MPAMCFG_INTPARTID is out of the
intPARTID range for the PARTID in
MPAMCFG_PART_SEL.

intPARTID

7 Unexpected_INTERNAL MPAMCFG_PART_SEL.INTERNAL
is set when a reqPARTID is expected.

PARTID

8 Undefined_RIS_PART_SEL Unimplemented RIS in
MPAMCFG_PART_SEL.RIS.

PART_SEL, RIS

9 RIS_No_Control Resource instance selected by
MPAMCFG_PART_SEL.RIS does
not have the accessed partitioning
control.

PART_SEL, RIS

10 Undefined_RIS_MON_SEL Unimplemented RIS in
MSMON_CFG_MON_SEL.

MON_SEL, RIS

11 RIS_No_Monitor Resource instance selected by
MSMON_CFG_MON_SEL.RIS does
not have the accessed monitor type.

MON_SEL, RIS

12:18 Reserved Reserved for future use. --

a. This field is only available when MPAMF_IDR.EXT and MPAMF_IDR.HAS_RIS are 1.

Errors in MSCs
10.2 Error conditions in accessing memory-mapped registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-290
ID041924 Non-Confidential

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the NS bit.

10.2.3 Request PARTID out-of-range error (errorcode == 2)

The value of PARTID in a request is out-of-range for the MSC’s MPAM implementation of PARTID space selected
by the MPAM_NS bit.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the MPAM_NS bit.

The MPAM behavior of an MSC for a request that causes this error is CONSTRAINED UNPREDICTABLE:

• The request may be processed as if the PARTID is any valid PARTID in the same MPAM Security state
(MPAM_NS) as the request’s PARTID.

• Arm recommends that the default PARTID for the MPAM_NS Security state is used.

10.2.4 MSMON configuration ID out-of-range error (errorcode == 3)

A write to configure a monitor contains an out-of-range value for either the PARTID or PMG for the PARTID space
selected by the Secure address space bit, NS.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the NS bit.

10.2.5 Request PMG out-of-range error (errorcode == 4)

The value of PMG in a request is out of range for the MSC’s MPAM implementation of the PMG space selected by
the MPAM security space bit, MPAM_NS.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the MPAM_NS bit.

The MPAM behavior of an MSC for a request that causes this error is CONSTRAINED UNPREDICTABLE:

• The request may be processed as if the PARTID and PMG are any valid PARTID and PMG in the same
MPAM Security state as the request.

— Arm recommends that the request be processed as if the PMG is the default.

• The default PARTID and PMG may be used for the request’s MPAM_NS Security state. The request may be
IGNORED for performance monitoring, as if the PMG value does not match the monitor’s PMG filter even
if the PARTID matches.

10.2.6 Monitor out-of-range error (errorcode == 5)

The value of the monitor selector register, MSMON_CFG_MON_SEL.MON_SEL, is out of range on a store to an
MSMON_* memory-mapped register selected by the Secure address space bit, NS.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is also
controlled by the NS bit.

10.2.7 intPARTID out-of-range error (errorcode == 6)

This error can only occur if PARTID narrowing is implemented. MPAMF_IDR.HAS_PARTID_NRW == 1
indicates that an implementation has PARTID narrowing.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is controlled
by the Secure address space bit, NS.

Errors in MSCs
10.2 Error conditions in accessing memory-mapped registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-291
ID041924 Non-Confidential

These conditions cause this error:

• MPAMCFG_INTPARTID.INTPARTID is out-of-range for the intPARTID space selected by the Secure
address space bit, NS, on a store to a memory-mapped register to configure the association of reqPARTID to
intPARTID.

• MPAMCFG_INTPARTIDINTERNAL == 0 on any write to configure MPAMCFG_INTPARTID.

• MPAMCFG_PART_SEL.INTERNAL is not set when an intPARTID is expected. These expected cases
include a read or write to any MPAMCFG_* register, other than MPAMCFG_INTPARTID.

10.2.8 Unexpected INTERNAL error (errorcode == 7)

This error can only occur if PARTID narrowing is implemented. MPAMF_IDR.HAS_PARTID_NRW == 1
indicates that an implementation has PARTID narrowing.

If PARTID narrowing is implemented in the MSC, this error is detected if the MPAMCFG_PART_SEL.INTERNAL
bit is set when a reqPARTID is expected. When PARTID narrowing is implemented, the only cases in which a
reqPARTID is expected in MPAMCFG_PART_SEL are a read or write access to MPAMCFG_INTPARTID.

The selection of the Secure or Non-secure version of MPAMF_ESR for capturing the error information is controlled
by the Secure address space bit, NS.

Reads that cause this error return an UNKNOWN value.

10.2.9 Undefined RIS in MPAMCFG_PART_SEL.RIS (errorcode == 8)

This error occurs when an access to an MPAMCFG_* register occurs when MPAMCFG_PART_SEL.RIS does not
correspond to a RIS value allocated to an MPAM resource of the MSC. The MPAM behavior of an MSC for a
request that causes this error is a CONSTRAINED UNPREDICTABLE choice between:

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 8 and capturing MPAMCFG_PART_SEL.{RIS, PARTID_SEL}.

10.2.10 RIS in MPAMCFG_PART_SEL.RIS does not have partitioning control (errorcode == 9)

This error occurs when an access to an MPAMCFG_* register occurs when MPAMCFG_PART_SEL.RIS selects a
resource that exists but does not have the partitioning control accessed. The MPAM behavior of an MSC for a
request that causes this error is a CONSTRAINED UNPREDICTABLE choice between:

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 9 and capturing MPAMCFG_PART_SEL.{RIS, PARTID_SEL}.

10.2.11 Undefined RIS in MSMON_CFG_MON_SEL.RIS (errorcode == 10)

This error occurs when an access to an MSMON_CFG_* register occurs when MSMON_CFG_MON_SEL.RIS
does not correspond to an MPAM resource of the MSC. The MPAM behavior of an MSC for a request that causes
this error is a CONSTRAINED UNPREDICTABLE choice between:

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 10 and capturing MSMON_CFG_MON_SEL.{RIS, MON_SEL}.

Errors in MSCs
10.2 Error conditions in accessing memory-mapped registers

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-292
ID041924 Non-Confidential

10.2.12 RIS selected by MSMON_CFG_MON_SEL.RIS does not have monitor type (errorcode == 11)

Access to an MSMON_<type> or MSMON_<type>_CAPTURE register when MSMON_CFG_MON_SEL.RIS
does not correspond to an MPAM resource of the MSC or that does not have the type of monitor accessed by the
MSMON_<type> or MSMON_<type>_CAPTURE register. The MPAM behavior of an MSC for a request that
causes this error is a CONSTRAINED UNPREDICTABLE choice between:

• Read as 0xFFFFFFFE, NRDY == 1 with value of 0x7FFFFFFE, and WI. This value is highly unlikely as a normal
return value in any monitor.

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 11 and capturing MSMON_CFG_MON_SEL.{RIS, MON_SEL}.

Access to an MSMON_<type>_* register when MSMON_CFG_MON_SEL.RIS does not correspond to an MPAM
resource that has the type of monitor accessed by the MSMON_<type> _* register is CONSTRAINED
UNPREDICTABLE, one of:

• RAZ/WI.

• RAZ/WI and record an MPAM error in the MPAMF_ESR associated with that MSC, using the error code
ERRCODE == 11 and capturing MSMON_CFG_MON_SEL.{RIS, MON_SEL}.

10.2.13 Reserved (errcodes 12 – 15)

These error codes are reserved for future use.

Errors in MSCs
10.3 Overwritten error status

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-293
ID041924 Non-Confidential

10.3 Overwritten error status
When MPAMF_ESR is written due to an error, and the ERRCODE field was not previously 0, the OVRWR bit is
set. Error status is always written to MPAMF_ESR, whether or not it contains a previously recorded error syndrome.

The interrupt service routine should clear both the ERRCODE and OVRWR fields of MPAMF_ESR after its
contents have been read. This allows the OVRWR bit to accurately indicate when one or more errors have been
overwritten before servicing future MPAM error interrupts.

Table 10-2 Overwritten error status

OVRWR ERRCODE Description

0 0b0000 No errors have been recorded in MPAMF_ESR.

0 Non-zero Not overwritten. A single error has been written to MPAMF_ESR since it was
last cleared.

1 0b0000 This state is not produced by hardware, only by a software write.

1 Non-zero Overwritten. Two or more errors have been written to MPAMF_ESR with only
the syndrome information from the latest error recorded into the fields.

Errors in MSCs
10.4 Behavior of configuration reads and writes with errors

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-294
ID041924 Non-Confidential

10.4 Behavior of configuration reads and writes with errors

10.4.1 Writing an out-of-range PARTID to MPAMCFG_PART_SEL.PARTID_SEL

If a write to MPAMCFG_PART_SEL has a PARTID_SEL value that is out-of-range, it is IMPLEMENTATION
DEFINED whether:

• The contents written to MPAMCFG_PART_SEL.PARTID_SEL are not checked at the time of the write and
store the new value into MPAMCFG_PART_SEL.PARTID_SEL. The written out-of-range value could later
cause a PARTID_SEL out-of-range error (ERRCODE = 1) when used to index an access to another
configuration register by PARTID_SEL. See Required error condition detection for more information about
the optionality of error detection.

• The contents being written to MPAMCFG_PART_SEL.PARTID_SEL are checked before updating the
MPAMCFG_PART_SEL register. If the error is detected, the MPAMCFG_PART_SEL register is not updated
and the PARTID_SEL out-of-range error (ERRCODE = 1) is raised. To implement this behavior, the
implementation must detect the error.

10.4.2 Reading another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL contains an
out-of-range PARTID

A read of any MPAMCFG_* register other than MPAMCFG_PART_SEL when
MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID raises a PARTID_SEL out-of-range
error (ERRCODE = 1) if that error is detected. See Required error condition detection for more information about
the optionality of error detection.

It is IMPLEMENTATION DEFINED whether the value returned by a read of another MPAMCFG_* register when
MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID that is detected:

• Is an UNKNOWN value.

• Is a constant value of zero in all fields.

The value returned by a read of another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL
contains an out-of-range PARTID that is not detected is an UNKNOWN value.

Note
In an implementation that chooses the IMPLEMENTATION DEFINED option to detect out-of-range PARTID_SEL
values and to not update the MPAMCFG_PART_SEL register, it is not possible to have an out-of-range
PARTID_SEL value in that register and the precondition for this section cannot occur. See Writing an out-of-range
PARTID to MPAMCFG_PART_SEL.PARTID_SEL.

10.4.3 Writing another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL contains an
out-of-range PARTID

A write of any MPAMCFG_* register other than MPAMCFG_PART_SEL when
MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID raises a PARTID_SEL out-of-range
error (ERRCODE = 1) if that error is detected. See Required error condition detection for more information about
the optionality of error detection.

If a write to an MPAMCFG_* register other than MPAMCFG_PART_SEL has a PARTID_SEL out-of-range error
(ERRCODE = 1), whether that error is detected or not detected, it is IMPLEMENTATION DEFINED whether:

• The write updates the configuration register indexed by an UNKNOWN in-range PARTID.

• The write is ignored (WI).

Errors in MSCs
10.4 Behavior of configuration reads and writes with errors

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-295
ID041924 Non-Confidential

Note
In an implementation that chooses the IMPLEMENTATION DEFINED option to detect out-of-range PARTID_SEL
values and to not update the MPAMCFG_PART_SEL register, it is not possible to have an out-of-range
PARTID_SEL value in that register and the precondition for this section cannot occur. See Writing an out-of-range
PARTID to MPAMCFG_PART_SEL.PARTID_SEL.

10.4.4 Writing an undefined RIS to MPAMCFG_PART_SEL.RIS

If RIS is implemented and a configuration write to MPAMCFG_PART_SEL.RIS has an Undefined RIS error
(ERRCODE = 8), it is IMPLEMENTATION DEFINED whether:

• The contents written to MPAMCFG_PART_SEL.RIS are not checked at the time of the write and store the
new value in MPAMCFG_PART_SEL.RIS. This undefined RIS value could cause an Undefined RIS error
(ERRCODE = 8) when later used to select a resource on an access to a configuration register by
PARTID_SEL and RIS.

• The contents being written to MPAMCFG_PART_SEL.RIS are checked before updating the
MPAMCFG_PART_SEL register. If the error is detected, the MPAMCFG_PART_SEL register is not updated
and the Undefined RIS error (ERRCODE = 8) is raised. To implement this behavior, the implementation
must detect the error.

10.4.5 Reading other MSC MPAM registers when MPAMCFG_PART_SEL.RIS contains an undefined
RIS value

A read of an MPAMF*IDR register or an MPAMCFG_* register other than MPAMCFG_PART_SEL when
MPAMCFG_PART_SEL.RIS contains an undefined RIS value raises an Undefined RIS error (ERRCODE = 8) if
the implementation detects that error. See Required error condition detection for more information about the
optionality of error detection. If the error is not detected, the value returned is UNKNOWN.

The value read from an MPAMF*IDR or an MPAMCFG_* register other than MPAMCFG_PART_SEL when
MPAMCFG_PART_SEL.RIS contains a RIS value that does not correspond to an implemented resource instance
returns an UNKNOWN value.

Note
In an implementation that chooses the IMPLEMENTATION DEFINED option to detect undefined RIS values and to not
update the MPAMCFG_PART_SEL register, it is not possible to have an undefined RIS value in that register and
the precondition for this section cannot occur. See Writing an undefined RIS to MPAMCFG_PART_SEL.RIS.

10.4.6 Writing other MSC MPAM registers when MPAMCFG_PART_SEL.RIS contains an undefined RIS
value

A write of an MPAMCFG_* register other than MPAMCFG_PART_SEL when MPAMCFG_PART_SEL.RIS
contains an undefined RIS value raises an Undefined RIS error (ERRCODE = 8) if that error is detected. See
Required error condition detection for more information about the optionality of error detection.

If a configuration write to an MPAMCFG_* register other than MPAMCFG_PART_SEL has a RIS value that does
not correspond to an implemented resource instance, whether the undefined RIS error is detected or not detected, it
is IMPLEMENTATION DEFINED whether:

• The write might update the configuration register for any implemented resource instance.

• The write is ignored (WI).

Note
In an implementation that chooses the IMPLEMENTATION DEFINED option to detect undefined RIS values and to not
update the MPAMCFG_PART_SEL register, it is not possible to have an undefined RIS value in that register and
the precondition for this section cannot occur. See Writing an undefined RIS to MPAMCFG_PART_SEL.RIS.

Errors in MSCs
10.4 Behavior of configuration reads and writes with errors

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-296
ID041924 Non-Confidential

10.4.7 Reads of MSC MPAM registers with other errors

If there is no PARTID_SEL out-of-range error (ERRCODE = 1) and no Undefined RIS error (ERRCODE = 8), a
configuration read to an MPAM*IDR or an MPAMCFG_* register that has any other errors detected returns an
UNKNOWN value.

10.4.8 Writes to MSC MPAM registers with other errors

If there is no PARTID_SEL out-of-range error (ERRCODE = 1) and no Undefined RIS error (ERRCODE = 8), a
configuration write to an MPAMCFG_* register that has any other errors detected leaves the control settings for the
partition selected by MPAMCFG_PART_SEL.PARTID_SEL and MPAMCFG_PART_SEL.RIS in an UNKNOWN
state.

10.4.9 Writes to MSMON_CFG_MON_SEL.MON_SEL

Writes to MSMON_CFG_MON_SEL that have the MON_SEL field out-of-range for the monitors of the MSC
cannot generally be detected when the MON_SEL register is written because different types of monitors could have
different numbers of supported monitor instances. If RIS is also implemented, then the resource instance selector
being written into the RIS field could change which monitor types are available and how many monitor instances
of each type are implemented because different resource instances could have different numbers of monitor
instances from the same resource type.

There are limited cases where MSMON_CFG_MON_SEL.MON_SEL could be checked when written:

• RIS is not implemented and only a single monitor type is supported.

• RIS is not supported and all supported monitor types have exactly the same number of monitor instances.

• RIS is supported and all monitor types of all resource instances support exactly the same number of monitor
instances.

• RIS is supported, different resource instances support a different number of monitor instances, and all
monitor types of each resource instance support exactly the same number of monitor instances. In this case
the RIS value must be used to determine the maximum number of monitor instances to check the MON_SEL
value.

Checking for out-of-range MON_SEL when MSMON_CFG_MON_SEL is written is an implementation option
because some of the detectable cases could be common.

If a configuration write to MSMON_CFG_MON_SEL has a MON_SEL value that is out-of-range, it is
IMPLEMENTATION DEFINED whether:

• The contents written to MSMON_CFG_MON_SEL.MON_SEL are not checked at the time of the write and
store the new value into the register. The written out-of-range value could later cause a MON_SEL
out-of-range error (ERRCODE = 5) when used to index an access to a MSMON_CFG_* configuration
register or MSMON_* monitor or capture register by MON_SEL.

• The contents being written to MSMON_CFG_MON_SEL.MON_SEL are checked before updating the
MSMON_CFG_MON_SEL register. If the error is detected, the MSMON_CFG_MON_SEL register is not
updated and the MON_SEL out-of-range error (ERRCODE = 5) is raised. See Required error condition
detection for more information about the optionality of error detection.

10.4.10 Reading another MSMON_* register when MSMON_CFG_MON_SEL.MON_SEL out of range

A read of any MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.MON_SEL contains an out-of-range monitor instance selector raises a Monitor Range
error (ERRCODE == 5) if that error is detected. See Required error condition detection for more information about
the optionality of error detection.

The value read from any MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.MON_SEL contains an out-of-range monitor instance selector returns an UNKNOWN
value whether the Monitor Range error is detected or not detected.

Errors in MSCs
10.4 Behavior of configuration reads and writes with errors

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-297
ID041924 Non-Confidential

Note
In an implementation that chooses the IMPLEMENTATION DEFINED option to detect out-of-range MON_SEL values
and to not update the MSMON_CFG_MON_SEL register, it might not be possible to have an out-of-range
MON_SEL value in that register and the precondition for this section cannot occur. Section Writes to
MSMON_CFG_MON_SEL.MON_SEL lists the conditions necessary to permit the choice of this option.

10.4.11 Writes to MSMON_* registers with MSMON_CFG_MON_SEL.MON_SEL out of range

A write of any MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.MON_SEL contains an out-of-range monitor instance selector, raises a Monitor Range
error (ERRCODE == 5) if that error is detected. See Required error condition detection for more information about
the optionality of error detection.

If a write is to an MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.MON_SEL is out-of-range, whether the error is detected or not detected, it is
IMPLEMENTATION DEFINED whether:

• The write could update an MSMON_* register indexed by any in-range monitor instance selector.

• The write is ignored (WI).

Note
In an implementation that chooses the IMPLEMENTATION DEFINED option to detect out-of-range MON_SEL values
and to not update the MSMON_CFG_MON_SEL register, it might not be possible to have an out-of-range
MON_SEL value in that register and the precondition for this section cannot occur. Writes to
MSMON_CFG_MON_SEL.MON_SEL lists the conditions necessary to permit the choice of this option.

10.4.12 Writing an undefined RIS to MSMON_CFG_MON_SEL.RIS

If RIS is implemented and a configuration write to MSMON_CFG_MON_SEL.RIS has a value that does not
correspond to an implemented resource instance, it is IMPLEMENTATION DEFINED whether:

• The value written to MSMON_CFG_MON_SEL.RIS is not checked at the time of the write and the new
values are stored in that register. This undefined RIS value could cause an Undefined_RIS_MON_SEL error
(ERRCODE = 10) when later used to select a resource on an access to an MSMON_* register by MON_SEL
and RIS.

• The contents being written to MSMON_CFG_MON_SEL.RIS are checked before updating the
MSMON_CFG_MON_SEL register. If the error is detected, the register is not updated and the
Undefined_RIS_MON_SEL error (ERRCODE = 10) is raised.

10.4.13 Reading another MSMON_* register when MSMON_CFG_MON_SEL.RIS contains an undefined
RIS value

A read of an MSMON_* register other than MSMON_CFG_MON_SEL when MSMON_CFG_MON_SEL.RIS
contains a RIS value that does not correspond to an implemented resource instance raises an
Undefined_RIS_MON_SEL error (ERRCODE = 10) if that error is detected. See Required error condition
detection for more information about the optionality of error detection.

The value read from an MSMON_* register other than MSMON_CFG_MON_SEL when
MSMON_CFG_MON_SEL.RIS contains a RIS value that does not correspond to an implemented resource
instance returns an UNKNOWN value whether the error is detected or not detected.

Note
In an implementation that chooses the IMPLEMENTATION DEFINED option to detect undefined RIS values and to not
update the MSMON_CFG_MON_SEL register, it is not possible to have an undefined RIS value in that register and
the precondition for this section cannot occur. See Writing an undefined RIS to MSMON_CFG_MON_SEL.RIS.

Errors in MSCs
10.4 Behavior of configuration reads and writes with errors

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-298
ID041924 Non-Confidential

10.4.14 Writing another MSMON_* register when MSMON_CFG_MON_SEL.RIS contains an undefined
RIS value

A write of an MSMON_* register other than MSMON_CFG_MON_SEL when MSMON_CFG_MON_SEL.RIS
contains a RIS value that does not correspond to an implemented resource instance raises an
Undefined_RIS_MON_SEL error (ERRCODE = 10) if that error is detected. See Required error condition
detection for more information about the optionality of error detection.

If a write to an MSMON_* register other than MSMON_CFG_MON_SEL has a RIS value that does not correspond
to an implemented resource, whether the undefined RIS error is detected or not detected, it is IMPLEMENTATION
DEFINED whether:

• The write might update the MSMON_* register indexed by any implemented resource instance.

• The write is ignored (WI).

Note
In an implementation that chooses the IMPLEMENTATION DEFINED option to detect undefined RIS values and to not
update the MSMON_CFG_MON_SEL register, it is not possible to have an undefined RIS value in that register and
the precondition for this section cannot occur. See Writing an undefined RIS to MSMON_CFG_MON_SEL.RIS.

Errors in MSCs
10.5 Optionality of error detection and reporting

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. 10-299
ID041924 Non-Confidential

10.5 Optionality of error detection and reporting
Error detection and reporting are required for an error condition when all of the following are true:

• The MSC supports at least one MPAM feature that can raise the error condition.

• The MSC is designed so that the particular error condition can occur.

• The MSC is required to detect the error condition, see Required error condition detection.

If there are no error conditions that meet these criteria, then in MPAM v0.1 and from MPAM v1.1,
MPAMF_IDR.HAS_ESR is permitted to be 0. If MPAMF_IDR.HAS_ESR is 1, then MPAMF_ESR and
MPAMF_ECR must be implemented.

In MPAM v1.0, if no error conditions are detected, MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

10.5.1 Required error condition detection

This section describes the conditions under which each of the MPAM MSC error conditions must be detected. In
cases where detection is not required, an implementation might choose not to implement detection and reporting
logic for that error condition.

10.5.1.1Selector out-of-range errors

The following requirements apply to each of the types of selectors used in MPAM in MSCs, including:

• PARTID.

• PMG.

• Monitor selectors.

• In MPAM v0.1 and from MPAM v1.1, RIS values.

The selector interface is permitted to be narrower than the full width specified in the architecture. Even if the MSC
interface is of one size, the internal implementation might be smaller than that size. Bits beyond the implemented
width of any selector are permitted to be silently truncated without any requirement to detect or report should those
bits be non-zero.

An MSC implementation that supports a range that is not 0 to 2n -1 in a field of n bits for any selector is required to
detect and report values that lie within the field size but are not valid in the implementation. Such detection can be
applied after performing the silent truncation to the bit-width supported.

10.5.1.2PARTID narrowing errors

If PARTID narrowing is supported, the Unexpected Internal error condition must be detected and reported.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. A-300
ID041924 Non-Confidential

Appendix A
Generic Resource Controls

This chapter contains the following sections:

• Introduction.

• Portion resource controls.

• Maximum-usage resource controls.

• Proportional resource allocation facilities.

• Combining resource controls.

Generic Resource Controls
A.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. A-301
ID041924 Non-Confidential

A.1 Introduction
This appendix is Informative.

Several of the resource controls defined in this specification fit one of the generic models for resource controls in
this appendix.

Generic Resource Controls
A.2 Portion resource controls

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. A-302
ID041924 Non-Confidential

A.2 Portion resource controls
Some resources may be divided into fixed quanta, termed portions, that can be allocated for the exclusive use of a
partition or shared between two or more partitions. Figure A-1 shows how partitions can have private and shared
Portion Bit Map (PBM) allocations.

Figure A-1 Generic portion shared and exclusive allocations.

In portion resource controls, the control setting is a bitmap in which each bit corresponds to a particular portion of
the resource, as shown in Figure A-2. Each bit grants the PARTID using this control setting to allocate the portion
corresponding to that bit.

Figure A-2 Generic portion bit map.

PBMs can be wide. Generic PBMs can be up to 215 bits in width.

A PBM is a vector of single-bit elements. Element 0 is bit 0 at the address (MPAMF_BASE + PBM_offset) where
PBM_offset is the offset of the particular PBM register. Both the bitmap and the register to access the bitmap extend
in length at increasing 32-bit word addresses for the width in bits of the PBM (PBM_WD). If the 32-bit word
containing the highest byte of the bitmap (MPAMF_BASE + PBM_offset + (PBM_WD>>3)) has unused bits, those
bits are RES0.

To access the PBM for portion n, access the 32-bit word of the PBM register at the address MPAMF_BASE +
PBM_offset + ((n >> 3) & ~3). Then access bit (n & 31).

Uses portions 0 and 1

Uses portions 1 and 2

Paritition 1
(PBM = 0b0011)

Paritition 2
(PBM = 0b0110)

Portion Allocation

Exclusively
PARTID = 1

Shared
by both

Exclusively
PARTID = 2 Unallocated

63

0: May not allocate portion 23 of 32
1: May allocate portion 23 of 32

31 023

Generic Resource Controls
A.3 Maximum-usage resource controls

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. A-303
ID041924 Non-Confidential

A.3 Maximum-usage resource controls
Many resources can be controlled by a maximum-usage resource control. With this control, resources may be
allocated to a partition as long as the partition’s maximum usage is not exceeded. If the maximum usage is reached,
further allocation must be prevented, or deferred, or lowered in priority, or caused to reclaim a previous allocation,
or caused to replace a previous allocation.

Maximum-usage control settings are a maximum fraction of the resource that the PARTID may use. The parameter
is represented as a 16-bit fixed-point fraction of the capacity of the resource with a discoverable number of fractional
bits. For example, if a resource has an 8-bit fractional width, bits [15:8] of the setting are used to control the resource
allocation. To ensure that the range includes 100% of the resource, the control value is increased by 1 in the least
significant implemented bit before being used to limit the usage to the maximum. See About the fixed-point
fractional format for the fixed-point fractional format.

Generic Resource Controls
A.4 Proportional resource allocation facilities

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. A-304
ID041924 Non-Confidential

A.4 Proportional resource allocation facilities
MPAM proportional stride partitioning is related to two software resource-management interfaces:

• The Linux cgroup weights interface assigns integer weights to indicate the relative proportion of the resource
given to a process.

• The VMware shares interface similarly assigns an integer share to indicate the relative proportion of the
resource that a virtual machine is given.

Weight and share values are positive integers. For example, Linux group weights are in the range of 1 to 10000,
with a default value of 100.

The value of weight or share is used to compute the fraction of the resource, f, for partition, p, as:

A partition’s stride is the scaled reciprocal of its weight:

The scaling factor, S, should be chosen as equal to the largest f(p) so as to normalize stride values and give the
smallest stride in the system = 1. All strides should be scaled by the same S.

Stride-based proportional allocation is well-suited to temporal or rate-of-occurrence resources, such as bandwidth.

The standard interface for proportional allocation is a positive unsigned integer, STRIDEM1, with an
IMPLEMENTATION DEFINED field width of w. STRIDEM1 has the range [0 … 2w-1] so stride has the range [1 … 2w].
If a stride after normalization is greater than 2w, it should be programmed into the control as 2w – 1, the largest
representable STRIDEM1.

Properties of proportional allocation include:

• Proportion of resource shrinks and grows as partitions come and go.

• Subdividable: If VM A has ½ fraction of the whole resource and its child application, y, has 2/3 fraction of
the VM’s resource, then y is given 1/2 * 2/3 == 1/3 fraction of the whole resource.

• Proportional allocation only needs to consider the current contenders for a temporal resource, such as
memory bandwidth.

• A proportional allocation scheme is called work-conserving if it does not idle the resource when only
low-proportion requests are available, but instead uses as much of the resource as it has requests to use. A
proportional allocation scheme might allocate the resource to those lower-proportion requests, in proportion
to their relative weights.

A.4.1 Model of stride-based memory bandwidth scheduling

This model is intended to explain the operation of stride-based memory bandwidth scheduling without dictating an
implementation. Arm believes that a variety of implementations are possible.

In this model, each partition has an offset[p] that tracks the time since the partition, p, consumed bandwidth but is
bounded to be less than offset_limit. When a request, r, arrives it is given a deadline, of the current_time plus
stride(p) minus offset(p). The offset(p) is set to current_time – deadline, and the offset(p) is incremented in
event-time units until it reaches the offset_limit.

In the model, requests are serviced as quickly as possible in deadline order. Newly arriving requests with small
strides (highest access to bandwidth) may go ahead of earlier requests with large strides.

Weightp
∑ WeightW

all w

f(p) =

S
f (p)

Stride of p =

Generic Resource Controls
A.4 Proportional resource allocation facilities

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. A-305
ID041924 Non-Confidential

If there are requests to process, this model does not prevent servicing a request with a distant future deadline if there
are no requests available with earlier deadlines. As such, this model scheme is work-conserving.

Generic Resource Controls
A.5 Combining resource controls

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. A-306
ID041924 Non-Confidential

A.5 Combining resource controls
Maximum-usage resource controls, portion resource controls, and other resource controls may coexist on the same
resource. Combined resource controls should produce a combined effect. For example, combining portion control
and maximum-usage control for the same resource should allocate the resource while satisfying both controls.

All resource controls should have at least one setting that does not limit access to the resource. When an
implementation contains multiple controls for the same resource, the limits imposed on a partition’s usage by each
control are all applied. By selecting which controls limit a partition’s usage and which do not, software can exercise
a variety of regulation styles within a single system.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. B-307
ID041924 Non-Confidential

Appendix B
MSC Firmware Data

This chapter contains the following sections:

• Introduction.

• Partitioning-control parameters.

• Performance-monitoring parameters.

• Discovery of resource to RIS mapping.

• Discovery of wired interrupts.

MSC Firmware Data
B.1 Introduction

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. B-308
ID041924 Non-Confidential

B.1 Introduction
In a system containing MPAM, discovery of the memory-system topology and certain implementation parameters
of MPAM controls and monitors must be provided to MPAM-aware software via firmware data. The
software-to-firmware interface to the MPAM firmware data is beyond the scope of this description. Examples of
firmware data interfaces include:

• ACPI.

• Device Tree.

Firmware data for static devices can be pre-configured for an implementation and stored as part of the firmware, or
it can be dynamically discovered through probing and other tests, or some combination of these two approaches.

MSC Firmware Data
B.2 Partitioning-control parameters

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. B-309
ID041924 Non-Confidential

B.2 Partitioning-control parameters

Table B-1 Partitioning-control parameters.

Control Parameter Data Format Description

MPAM MPAMF_BASE_NS Address Every MPAM-capable device has the MPAMF_IDR MMR at offset 0 from the
MPAMF_BASE_NS in the Non-secure address space. Other MPAM
memory-mapped registers are at known offsets from this address. See Chapter 9
Memory-mapped Registers .

MPAM MPAMF_BASE_S Address Every MPAM-capable device has the MPAMF_IDR MMR at offset 0 from the
MPAMF_BASE_S in the Secure address space. Other MPAM memory-mapped
registers are at known offsets from this address. See Chapter 9 Memory-mapped
Registers .

MSC Firmware Data
B.3 Performance-monitoring parameters

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. B-310
ID041924 Non-Confidential

B.3 Performance-monitoring parameters

Table B-2 Performance-monitoring parameters

Monitor Parameter Data Format Description

CSU MAX_NRDY_USEC Uint32 Maximum number of microseconds that the NRDY signal can remain 1 in the
absence of additional reconfiguration of the monitor or writes to the
MSMON_CSU register. This firmware value is the maximum time when
NRDY can be 1, so that software can know this value.
MSMON_CSU.VALUE is accurate and MSMON_CSU.NRDY is zero before
MAX_NRDY_USEC microseconds have elapsed since the monitor was
configured, reconfigured, or written.

MSC Firmware Data
B.4 Discovery of resource to RIS mapping

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. B-311
ID041924 Non-Confidential

B.4 Discovery of resource to RIS mapping
Software needs to know which RIS value to use to control a resource instance of the MSC.

This mapping is not available from MSC IDRs. It might be given as a firmware data table or other means beyond
the hardware ID registers.

MSC Firmware Data
B.5 Discovery of wired interrupts

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. B-312
ID041924 Non-Confidential

B.5 Discovery of wired interrupts
There are two interrupt sources in an MPAM MSC and they are replicated in the Secure and Non-secure MPAM
behaviors. It is not possible to discover the connection of the four interrupts to GIC inputs from the MSC MPAM
ID registers. This information must come from the firmware information.

Firmware must provide information on the connection and grouping of MPAM wired interrupts.

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. Glossary-313
ID041924 Non-Confidential

Glossary

This glossary describes some of the terms that are used in this document. Some of these terms are unique to MPAM
and are introduced in this document while others are standard terms that can be found in the Glossary of the Arm®
Architecture Reference Manual for A-profile architecture.

Abort An exception caused by an illegal memory access. Aborts can be caused by the external memory system or the
MMU.

Aligned A data item stored at an address that is exactly divisible by the highest power of 2 that divides exactly into its size
in bytes. Aligned halfwords, words and doublewords therefore have addresses that are divisible by 2, 4, and 8,
respectively.

ALTSP Alternative PARTID space.

AMBA Advanced Microcontroller Bus Architecture. The AMBA family of protocol specifications is the Arm open standard
for on-chip buses. AMBA provides solutions for the interconnection and management of the functional blocks that
make up a System-on-Chip (SoC). Applications include the development of embedded systems with one or more
processors or signal processors and multiple peripherals.

Banked register A register that has multiple instances, with the instance that is in use depending on the PE mode, Security state, or
other PE state.

Glossary

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. Glossary-314
ID041924 Non-Confidential

Burst A group of transfers that form a single transaction. With AMBA protocols, only the first transfer of the burst
includes address information, and the transfer type determines the addresses used for subsequent transfers.

BWA BandWidth Allocation.

BWPBM BandWidth Portion Bit Map.

CONSTRAINED UNPREDICTABLE
Where an instruction can result in UNPREDICTABLE behavior, the Armv8 architecture specifies a narrow range of
permitted behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that
are compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

Execution at Non-secure EL1 or EL0 of an instruction that is CONSTRAINED UNPREDICTABLE can be implemented
as generating a trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE
and is not CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.

See also UNPREDICTABLE.

Core See Processing element (PE).

CPBM Cache-Portion Bit Map.

CSU Cache-Storage Usage.

Downstream Information propagating in the direction from Requesters towards terminating Completer components.

DSB Data Synchronization Barrier.

E2H EL2 Host. A bit field in the HCR_EL2 register. This configuration executes a type-2 hypervisor and its host
operating system in EL2 rather than EL1, for better performance.

Type-2 hypervisors run on a host operating system rather then running as a small, standalone OS-like program. For
example, kvm is a type-2 hypervisor.

HCR An abbreviated reference to the Hypervisor Configuration Registers in AArch64 HCR_EL2 and in AArch32 HCR
and HCR2.

ICN InterConnect Network.

ID An identifier or label.

Intermediate physical address (IPA)
An implementation of virtualization, the address to which a Guest OS maps a VA. A hypervisor might then map the
IPA to a PA. Typically, the Guest OS is unaware of the translation from IPA to PA.

See also Physical address (PA), Virtual address (VA).

IPA See Intermediate physical address (IPA).

kvm Kernel-based Virtual Machine, an open-source software package that implements a type-2 hypervisor within Linux.

LPI Locality-specific Peripheral Interrupt.

MBWU Memory BandWidth Usage.

Memory-system component
MSC. A function, unit, or design block in a memory system that can have partitionable resources. MSCs consist of
all units that handle load or store requests issued by any MPAM Requester. These include cache memories,
interconnects, memory management units, memory channel controllers, queues, buffers, rate adaptors, etc. An MSC
may contain one or more resources that each may have zero or more resource partitioning controls. For example, a
PE may contain several caches, each of which might have zero or more resource partitioning controls.

Memory-system resource
A resource that affects the performance of software's use of the memory system and is either local to an MSC (such
as cache-memory capacity) or non-local (such as memory bandwidth, which is present over an entire path, from
Requester to Completer, that may pass through multiple MSCs).

Glossary

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. Glossary-315
ID041924 Non-Confidential

MMR Memory-mapped Register.

MPAM Memory system resource Partitioning and Monitoring.

MPAM information
The MPAM information bundle, comprising PARTID, PMG, and MPAM_NS.

MPAM_NS MPAM security-space bit. It is not stored in a PE register; it comes from the current Security state of a PE and is
communicated to MSCs as part of the MPAM information bundle. In non-PE Requesters, the Security state can be
determined in other ways.

MPAM resource
partition

See Resource partition.

MPAM_SP In MPAM for RME the MPAM PARTID space indication.

MSC Memory-system Component. See Memory-system component.

MSI Message signaled interrupts. Signaled using a memory write that is usually directed at an interrupt translation
service.

NRDY Not-Ready bit. MPAM resource monitors set this bit to indicate that the monitor register does not currently have an
accurate value.

NS Non-Secure. A bit indicating that an address space is not Secure.

PA See Physical address (PA).

PARTID The partition number component of an MPAM resource partition ID. See Resource partition

Partition A division of resources. A partition is manifest in a PARTID and MPAM_NS. In an MSC, the PARTID and
MPAM_NS select partitioning control settings that affect the partitioning by regulating the allocation of the resource
to requests using that PARTID and MPAM_NS.

PE See Processing element (PE).

Physical address (PA)
An address that identifies a location in the physical memory map.

See also Intermediate physical address (IPA), Virtual address (VA).

Physical PARTID
A partition ID that is transmitted with memory requests and can be used by MSCs to control resources usage. A
physical PARTID is in either the Non-secure or Secure PARTID space. If MPAM for RME is implemented, there
are two additional PARTID spaces, Realm PARTID space and Root PARTID space.

PMG Performance Monitoring Group, a property of a partition used in MSCs by MPAM performance monitors that can
be programmed to be sensitive to the particular PARTID and PMG combination.

Portion A uniquely identifiable part of the resource. It is of fixed size or capacity. A particular resource has a constant
number of portions. Portions are distinct. Portion n is the same part of the resource for every partition. Thus, every
partition that is given access to a portion n shares access to portion n.

PPI Private Peripheral Interrupt.

Processing element (PE)
The abstract machine defined in the Arm architecture, as documented in an Arm Architecture Reference Manual. A
PE implementation compliant with the Arm architecture must conform with the behaviors described in the
corresponding Arm Architecture Reference Manual.

RAZ See Read-As-Zero (RAZ).

RAZ/WI Read-As-Zero, Writes Ignored.

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field.

Software can rely on the field reading as all 0s, and on writes being ignored.

Glossary

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. Glossary-316
ID041924 Non-Confidential

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ).

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s.

Software:

• Can rely on the field reading as all 0s.

• Must use a SBZP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also RAZ/WI, RES0.

RES0 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

• Is RES0 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note
• RES0 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES0 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

This means the definition of RES0 for fields in read/write registers is:

If a bit is RES0 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 0. In this case:

• Reads of the bit always return 0.

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 0.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES0 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.

Glossary

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. Glossary-317
ID041924 Non-Confidential

If a bit is RES0 only in some contexts

For a bit in a read/write register, when the bit is described as RES0:

• An indirect write to the register sets the bit to 0.

• A read of the bit must return the value last successfully written to the bit, by either a direct or
an indirect write, regardless of the use of the register when the bit was written.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES0, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES0 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES0 indicates that the bit reads as 0, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES0 indicates that software must treat the bit as SBZ.

A bit that is RES0 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 0.

• Must use an SBZP policy to write to the bit.

This RES0 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES0.

In body text, the term RES0 is shown in SMALL CAPITALS.

See also Read-As-Zero (RAZ), RES1, UNKNOWN.

RES1 A reserved bit. Used for fields in register descriptions, and for fields in architecturally-defined data structures that
are held in memory, for example in translation table descriptors.

Within the architecture, there are some cases where a register bit or field:

• Is RES1 in some defined architectural context.

• Has different defined behavior in a different architectural context.

Note
• RES1 is not used in descriptions of instruction encodings.

• Where an AArch32 System register is Architecturally mapped to an AArch64 System register, and a bit or
field in that register is RES1 in one Execution state and has defined behavior in the other Execution state, this
is an example of a bit or field with behavior that depends on the architectural context.

Glossary

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. Glossary-318
ID041924 Non-Confidential

This means the definition of RES1 for fields in read/write registers is:

If a bit is RES1 in all contexts

For a bit in a read/write register, it is IMPLEMENTATION DEFINED whether:

1. The bit is hardwired to 1. In this case:

• Reads of the bit always return 1.

• Writes to the bit are ignored.

2. The bit can be written. In this case:

• An indirect write to the register sets the bit to 1.

• A read of the bit returns the last value successfully written, by either a direct or an
indirect write, to the bit.

If the bit has not been successfully written since reset, then the read of the bit returns
the reset value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• The value of the bit must have no effect on the operation of the PE, other than
determining the value read back from the bit, unless this Manual explicitly defines
additional properties for the bit.

Whether RES1 bits or fields follow behavior 1 or behavior 2 is IMPLEMENTATION DEFINED on a
field-by-field basis.

If a bit is RES1 only in some contexts

For a bit in a read/write register, when the bit is described as RES1:

• An indirect write to the register sets the bit to 1.

• A read of the bit must return the value last successfully written to the bit, regardless of the
use of the register when the bit was written.

Note
As indicated in this list, this value might be written by an indirect write to the register.

If the bit has not been successfully written since reset, then the read of the bit returns the reset
value if there is one, or otherwise returns an UNKNOWN value.

• A direct write to the bit must update a storage location associated with the bit.

• While the use of the register is such that the bit is described as RES1, the value of the bit must
have no effect on the operation of the PE, other than determining the value read back from
that bit, unless this Manual explicitly defines additional properties for the bit.

Considering only contexts that apply to a particular implementation, if there is a context in which a
bit is defined as RES0, another context in which the same bit is defined as RES1, and no context in
which the bit is defined as a functional bit, then it is IMPLEMENTATION DEFINED whether:

• Writes to the bit are ignored, and reads of the bit return an UNKNOWN value.

• The value of the bit can be written, and a read returns the last value written to the bit.

The RES1 description can apply to bits or fields that are read-only, or are write-only:

• For a read-only bit, RES1 indicates that the bit reads as 1, but software must treat the bit as UNKNOWN.

• For a write-only bit, RES1 indicates that software must treat the bit as SBO.

Glossary

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. Glossary-319
ID041924 Non-Confidential

A bit that is RES1 in a context is reserved for possible future use in that context. To preserve forward compatibility,
software:

• Must not rely on the bit reading as 1.

• Must use an SBOP policy to write to the bit.

This RES1 description can apply to a single bit, or to a field for which each bit of the field must be treated as RES1.

In body text, the term RES1 is shown in SMALL CAPITALS.

See also RES0, UNKNOWN.

Reserved Unless otherwise stated:

• Instructions that are reserved or that access reserved registers have UNPREDICTABLE or CONSTRAINED
UNPREDICTABLE behavior.

• Bit positions described as reserved are:

— In an RW or WO register, RES0.

— In an RO register, UNK.

Resource
partition

The collection of MPAM resource control settings associated with a software environment and identified by the
combination of a physical PARTID space and a partition number.

RIS Resource instance selection. The value in MPAMCFG_PART_SEL.RIS selects the resource instance that is
configured through MPAMCFG_* registers and described by the MPAMF ID registers. SeeRIS controls in
MPAMCFG_PART_SEL.

RME Realm Management Extension. RME specifies how PE execution context is mapped to Security states.

SCR Part of the name of a Secure Configuration Register.

SMMU System Memory-Management Unit.

SPE Statistical Profiling Extension.

SPI Shared Peripheral Interrupt.

TGE Trap General Exception. A field in the HCR_EL2 register. It causes EL0 exceptions, that would normally trap to
EL1, to instead trap to EL2. This function can be used to run an EL2 host’s applications at EL0, so that any
exceptions in the application trap to the host OS at EL2.

UNDEFINED Indicates cases where an attempt to execute a particular encoding bit pattern generates an exception, that is taken to
the current Exception level, or to the default Exception level for taking exceptions if the UNDEFINED encoding was
executed at EL0. This applies to:

• Any encoding that is not allocated to any instruction.

• Any encoding that is defined as never accessible at the current Exception level.

• Some cases where an enable, disable, or trap control means an encoding is not accessible at the current
Exception level.

If the generated exception is taken to an Exception level that is using AArch32 then it is taken as an Undefined
Instruction exception.

Note
On reset, the default Exception level for taking exceptions from EL0 is EL1. However, an implementation might
include controls that can change this, effectively making EL1 inactive. See the description of the Exception model
for more information.

In body text, the term UNDEFINED is shown in SMALL CAPITALS.

Glossary

ARM IHI 0099A.a Copyright © 2018-2024 Arm Limited or its affiliates. All rights reserved. Glossary-320
ID041924 Non-Confidential

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not return information that cannot be accessed at
the current or a lower level of privilege using instructions that are not UNPREDICTABLE, are not CONSTRAINED
UNPREDICTABLE, and do not return UNKNOWN values.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

In body text, the term UNKNOWN is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED, UNPREDICTABLE.

UNPREDICTABLE
Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not perform any function that cannot be
performed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a defined effect.

An instruction that is UNPREDICTABLE can be implemented as UNDEFINED.

Execution at Non-secure EL1 or EL0 of an instruction that is UNPREDICTABLE can be implemented as generating a
trap exception that is taken to EL2, provided that at least one instruction that is not UNPREDICTABLE and is not
CONSTRAINED UNPREDICTABLE causes a trap exception that is taken to EL2.

In body text, the term UNPREDICTABLE is shown in SMALL CAPITALS.

See also CONSTRAINED UNPREDICTABLE, UNDEFINED.

Upstream Information propagating in the direction from terminating Completer components towards Requesters.

VA See Virtual address (VA).

Virtual address (VA)
An address generated by an Arm PE. This means it is an address that might be held in the program counter of the
PE. For a PMSA implementation, the virtual address is identical to the physical address.

See also Intermediate physical address (IPA), Physical address (PA).

Virtual PARTID One of a small range of PARTIDs that can be used by a virtual machine (VM). Virtual PARTIDs are mapped into
physical PARTIDs using the virtual partition mapping entries in the MPAMVPM0 - MPAMVPM7 registers.

VM Virtual Machine.

VMM Virtual Machine Monitor. An alias for “hypervisor”.

Word A 32-bit data item. Words are normally word-aligned in Arm systems.

Word-aligned Means that the address is divisible by 4.

	Contents
	Preface
	About this book
	Intended audience

	Using this book
	How to read this book

	Conventions
	Typographic conventions
	Signals
	Numbers

	Additional reading
	Arm publications

	Feedback
	Feedback on this Manual
	Inclusive terminology commitment

	Chapter 1: Introduction
	1.1 Overview
	1.2 Memory-system resource partitioning
	1.3 Memory-system resource usage monitoring
	1.4 Memory-system components
	1.5 Versions of the MPAM System Component Architecture
	1.5.1 MPAM versions for MSCs
	1.5.1.1 MSC of MPAM v1.1

	1.5.2 MSC features by MPAM version
	1.5.3 Relationships between MPAM versions
	1.5.3.1 MPAM v0.1
	1.5.3.2 MPAM v1.0
	1.5.3.3 MPAM v1.1
	1.5.3.4 MPAM for RME

	1.5.4 Interoperation of components with different MPAM versions

	1.6 Implementation flexibility

	Chapter 2: MPAM and Arm Memory-System Architecture
	2.1 Overview

	Chapter 3: ID Types, Properties, and Spaces
	3.1 Introduction
	3.2 ID types and properties
	3.3 PARTID spaces and properties
	3.4 Maximum PARTID number

	Chapter 4: Memory System Propagation of MPAM Information
	4.1 Introduction
	4.2 Requester components
	4.3 Terminating Completer components
	4.4 Intermediate Completer-Requester components
	4.5 Request buffering
	4.6 Cache memory
	4.7 MPAM for RME propagation of MPAM_SP with requests

	Chapter 5: System Model
	5.1 Introduction
	5.2 System-level field widths
	5.3 Other Requesters with MPAM
	5.4 Requesters without MPAM support
	5.5 Model of a resource partitioning control
	5.6 Interconnect behavior
	5.7 Cache behavior
	5.7.1 Eviction
	5.7.2 Cache partitioning
	5.7.3 Resource monitoring
	5.7.4 Optional cache behaviors
	5.7.4.1 Write hits may update the MPAM information of a cache line
	5.7.4.2 Write hits that update the resource partition of a cache line may move that line to a different portion

	5.8 Memory-channel controller behavior
	5.9 The MPAM for RME system
	5.9.1 Introduction
	5.9.1.1 Four-space region
	5.9.1.2 Two-space region
	5.9.1.3 Systems with both two PARTID space and four PARTID space components

	5.9.2 Requirements on bridges
	5.9.3 Bridging between four-space and two-space regions
	5.9.3.1 Two-Space Requesters
	5.9.3.2 Two-Space Completers

	5.9.4 Non-MPAM components
	5.9.4.1 Non-MPAM Requesters
	5.9.4.2 Non-MPAM Completers

	Chapter 6: MPAM in MSCs
	6.1 Introduction
	6.1.1 MPAM versions in MSCs

	6.2 Resource controls
	6.3 Resource instance selection
	6.3.1 RIS values
	6.3.2 RIS controls in MPAMCFG_PART_SEL
	6.3.3 Effects of MPAMCFG_PART_SEL.RIS on partitioning controls
	6.3.4 Effects of MPAMCFG_PART_SEL.RIS on values read from other registers
	6.3.5 RIS controls in MSMON_CFG_MON_SEL
	6.3.6 Selecting a resource to monitor
	6.3.7 Undefined RIS values
	6.3.7.1 Reading an MPAMF ID register when MPAMCFG_PART_SEL is an undefined RIS value

	6.3.8 Reporting errors involving RIS

	6.4 Security in MSCs
	6.4.1 Programming configuration of MPAM settings for Secure IDs
	6.4.2 Using Secure and Non-secure MPAM PARTIDs

	6.5 Virtualization support in system MSCs
	6.5.1 Hypervisor emulates guest accesses to partitioning and monitoring configurations

	6.6 PE with integrated MSCs
	6.7 System-wide PARTID and PMG widths
	6.8 MPAM interrupts
	6.8.1 MPAM Error Interrupt
	6.8.1.1 Level-sensitive interrupts
	6.8.1.2 Edge-triggered interrupts
	6.8.1.3 Support for MSI writes to signal error interrupts

	6.8.2 MPAM overflow interrupt
	6.8.2.1 Support for MSI writes to signal overflow interrupts
	6.8.2.2 Monitor overflow status register
	6.8.2.3 Monitor type overflow status bitmap registers

	6.9 MSC support of MPAM for RME
	6.9.1 Four-space MSC

	Chapter 7: Resource Partitioning Controls
	7.1 Introduction
	7.2 MPAM partitionable resources
	7.3 Standard partitioning control interfaces
	7.3.1 Disabling a PARTID
	7.3.1.1 Enabled and disabled behavior of resource controls

	7.3.2 Cache-portion partitioning
	7.3.2.1 Cache-portion bit map
	7.3.2.2 Over-allocation of capacity portions
	7.3.2.3 Changing CPBM for a partition
	7.3.2.4 Using cache-portion partitioning with cache maximum-capacity partitioning

	7.3.3 Cache minimum-capacity resource control (CMIN)
	7.3.3.1 CMIN and Cache allocation priorities
	7.3.3.2 Layered filtering of allocation choices

	7.3.4 Cache associativity partitioning (CASSOC)
	7.3.5 Cache maximum-capacity partitioning
	7.3.5.1 Cache maximum-capacity control setting
	7.3.5.2 Cache maximum-capacity control soft limit
	7.3.5.3 Using cache maximum-capacity partitioning with cache-portion partitioning
	7.3.5.4 Over-allocation of capacity

	7.3.6 Memory-bandwidth portion partitioning
	7.3.7 Memory-bandwidth minimum and maximum partitioning
	7.3.7.1 Minimum-bandwidth limit partitioning
	7.3.7.2 Maximum-bandwidth limit partitioning
	7.3.7.3 Using minimum-bandwidth limit with maximum-bandwidth limit controls
	7.3.7.4 Bandwidth control parameters
	7.3.7.5 Memory-bandwidth allocation accounting window width
	7.3.7.6 Over-allocation of minimum bandwidth
	7.3.7.7 Over-allocation of maximum bandwidth
	7.3.7.8 Available bandwidth

	7.3.8 Memory-bandwidth proportional-stride partitioning
	7.3.8.1 Combining memory-bandwidth proportional stride with other memory-bandwidth partitioning

	7.3.9 Priority partitioning
	7.3.9.1 Internal priorities
	7.3.9.2 Downstream priorities
	7.3.9.3 Through priorities

	7.4 Vendor or implementation-specific partitioning control interfaces
	7.5 Measurements for controlling resource usage
	7.6 PARTID narrowing
	7.7 System reset of MPAM controls in MSCs
	7.7.1 Suggested reset values for standard control types

	7.8 About the fixed-point fractional format

	Chapter 8: Resource Monitors
	8.1 Introduction
	8.2 MPAM resource monitors
	8.2.1 Memory-bandwidth usage monitors
	8.2.1.1 Scaled MBWU count value
	8.2.1.2 Long MBWU counter and capture

	8.2.2 Cache-storage usage monitors

	8.3 Common features
	8.3.1 Monitor register
	8.3.2 Not-ready Bit
	8.3.3 Capture event and capture register
	8.3.3.1 Local capture-event generator
	8.3.3.2 Reset on capture

	8.3.4 Overflow status bit
	8.3.5 Enable bit

	8.4 Monitor configuration
	8.5 Monitor behavior on overflow
	8.5.1 Control of monitor behavior on overflow
	8.5.2 Control of signaling to other monitor instances
	8.5.3 Control over behavior of a monitor instance on a capture event
	8.5.3.1 Configuring the handling capture events as linked overflows

	8.5.4 Monitors with and without capture

	Chapter 9: Memory-mapped Registers
	9.1 Overview of MMRs
	9.1.1 Determining presence and location of MMRs
	9.1.2 Configuring resource controls for a partition
	9.1.3 Configuring memory-system monitors
	9.1.4 MPAM feature page
	Secure, Non-secure, Root and Realm address space
	MPAM MMRs only in the Secure address space
	Read-only MPAM MMRs permitted to read the same or differently
	MPAM MMRs that must have the same contents
	MPAM MMRs that must be separate registers for each address space
	Accesses to locations where there is no register in the address space of the access
	Permitted truncation of an MPAM feature page

	9.1.5 Minimum required MPAM memory-mapped registers
	9.1.6 IMPLEMENTATION DEFINED memory-mapped registers and reserved feature page locations
	9.1.7 Examples of partial MPAM implementations
	An MSC that has no partitioning or monitoring, only propagation
	An MSC when RTL configuration has removed a partitioning control or resource usage monitor
	An MSC when RTL configuration has removed all MPAM functionality
	An MSC when RTL configuration removes a resource instance

	9.2 Summary of memory-mapped registers
	9.3 Memory-mapped ID register description
	9.3.1 MPAMF_AIDR, MPAM Architecture Identification Register
	Field descriptions
	Accessing the MPAMF_AIDR:

	9.3.2 MPAMF_CCAP_IDR, MPAM Features Cache Capacity Partitioning ID register
	Field descriptions
	Accessing the MPAMF_CCAP_IDR:

	9.3.3 MPAMF_CPOR_IDR, MPAM Features Cache Portion Partitioning ID register
	Field descriptions
	Accessing the MPAMF_CPOR_IDR:

	9.3.4 MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register
	Field descriptions
	Accessing the MPAMF_CSUMON_IDR:

	9.3.5 MPAMF_IDR, MPAM Features Identification Register
	Field descriptions
	Accessing the MPAMF_IDR:

	9.3.6 MPAMF_IIDR, MPAM Implementation Identification Register
	Field descriptions
	Accessing the MPAMF_IIDR:

	9.3.7 MPAMF_IMPL_IDR, MPAM Implementation-Specific Partitioning Feature Identification Register
	Field descriptions
	Accessing the MPAMF_IMPL_IDR:

	9.3.8 MPAMF_MBW_IDR, MPAM Memory Bandwidth Partitioning Identification Register
	Field descriptions
	Accessing the MPAMF_MBW_IDR:

	9.3.9 MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register
	Field descriptions
	Accessing the MPAMF_MBWUMON_IDR:

	9.3.10 MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register
	Field descriptions
	Accessing the MPAMF_MSMON_IDR:

	9.3.11 MPAMF_PARTID_NRW_IDR, MPAM PARTID Narrowing ID register
	Field descriptions
	Accessing the MPAMF_PARTID_NRW_IDR:

	9.3.12 MPAMF_PRI_IDR, MPAM Priority Partitioning Identification Register
	Field descriptions
	Accessing the MPAMF_PRI_IDR:

	9.3.13 MPAMF_SIDR, MPAM Features Secure Identification Register
	Field descriptions
	Accessing the MPAMF_SIDR:

	9.4 Memory-mapped partitioning configuration registers
	9.4.1 MPAMCFG_CASSOC, MPAM Cache Maximum Associativity Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_CASSOC:

	9.4.2 MPAMCFG_CMAX, MPAM Cache Maximum Capacity Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_CMAX:

	9.4.3 MPAMCFG_CMIN, MPAM Cache Minimum Capacity Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_CMIN:

	9.4.4 MPAMCFG_CPBM<n>, MPAM Cache Portion Bitmap Partition Configuration Register, n = 0 - 1023
	Field descriptions
	Accessing the MPAMCFG_CPBM<n>:

	9.4.5 MPAMCFG_DIS, MPAM Partition Configuration Disable Register
	Field descriptions
	Accessing the MPAMCFG_DIS:

	9.4.6 MPAMCFG_EN, MPAM Partition Configuration Enable Register
	Field descriptions
	Accessing the MPAMCFG_EN:

	9.4.7 MPAMCFG_EN_FLAGS, MPAM Partition Configuration Enable Flags Register
	Field descriptions
	Accessing the MPAMCFG_EN_FLAGS:

	9.4.8 MPAMCFG_INTPARTID, MPAM Internal PARTID Narrowing Configuration Register
	Field descriptions
	Accessing the MPAMCFG_INTPARTID:

	9.4.9 MPAMCFG_MBW_MAX, MPAM Memory Bandwidth Maximum Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_MBW_MAX:

	9.4.10 MPAMCFG_MBW_MIN, MPAM Memory Bandwidth Minimum Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_MBW_MIN:

	9.4.11 MPAMCFG_MBW_PBM<n>, MPAM Bandwidth Portion Bitmap Partition Configuration Register, n = 0 - 127
	Field descriptions
	Accessing the MPAMCFG_MBW_PBM<n>:

	9.4.12 MPAMCFG_MBW_PROP, MPAM Memory Bandwidth Proportional Stride Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_MBW_PROP:

	9.4.13 MPAMCFG_MBW_WINWD, MPAM Memory Bandwidth Partitioning Window Width Configuration Register
	Field descriptions
	Accessing the MPAMCFG_MBW_WINWD:

	9.4.14 MPAMCFG_PART_SEL, MPAM Partition Configuration Selection Register
	Field descriptions
	Accessing the MPAMCFG_PART_SEL:

	9.4.15 MPAMCFG_PRI, MPAM Priority Partition Configuration Register
	Field descriptions
	Accessing the MPAMCFG_PRI:

	9.5 Memory-mapped monitoring configuration registers
	9.5.1 MSMON_CAPT_EVNT, MPAM Capture Event Generation Register
	Field descriptions
	Accessing the MSMON_CAPT_EVNT:

	9.5.2 MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register
	Field descriptions
	Accessing the MSMON_CFG_CSU_CTL:

	9.5.3 MSMON_CFG_CSU_FLT, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register
	Field descriptions
	Accessing the MSMON_CFG_CSU_FLT:

	9.5.4 MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control Register
	Field descriptions
	Accessing the MSMON_CFG_MBWU_CTL:

	9.5.5 MSMON_CFG_MBWU_FLT, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter Register
	Field descriptions
	Accessing the MSMON_CFG_MBWU_FLT:

	9.5.6 MSMON_CFG_MON_SEL, MPAM Monitor Instance Selection Register
	Field descriptions
	Accessing the MSMON_CFG_MON_SEL:

	9.5.7 MSMON_CSU, MPAM Cache Storage Usage Monitor Register
	Field descriptions
	Accessing the MSMON_CSU:

	9.5.8 MSMON_CSU_CAPTURE, MPAM Cache Storage Usage Monitor Capture Register
	Field descriptions
	Accessing the MSMON_CSU_CAPTURE:

	9.5.9 MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register
	Field descriptions
	Accessing the MSMON_CSU_OFSR:

	9.5.10 MSMON_MBWU, MPAM Memory Bandwidth Usage Monitor Register
	Field descriptions
	Accessing the MSMON_MBWU:

	9.5.11 MSMON_MBWU_CAPTURE, MPAM Memory Bandwidth Usage Monitor Capture Register
	Field descriptions
	Accessing the MSMON_MBWU_CAPTURE:

	9.5.12 MSMON_MBWU_L, MPAM Long Memory Bandwidth Usage Monitor Register
	Field descriptions
	Accessing the MSMON_MBWU_L:

	9.5.13 MSMON_MBWU_L_CAPTURE, MPAM Long Memory Bandwidth Usage Monitor Capture Register
	Field descriptions
	Accessing the MSMON_MBWU_L_CAPTURE:

	9.5.14 MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register
	Field descriptions
	Accessing the MSMON_MBWU_OFSR:

	9.5.15 MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_ADDR_H:

	9.5.16 MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_ADDR_L:

	9.5.17 MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_ATTR:

	9.5.18 MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_DATA:

	9.5.19 MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register
	Field descriptions
	Accessing the MSMON_OFLOW_MSI_MPAM:

	9.5.20 MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register
	Field descriptions
	Accessing the MSMON_OFLOW_SR:

	9.6 Memory-mapped control and status registers
	9.6.1 MPAMF_ECR, MPAM Error Control Register
	Field descriptions
	Accessing the MPAMF_ECR:

	9.6.2 MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_ADDR_H:

	9.6.3 MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_ADDR_L:

	9.6.4 MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_ATTR:

	9.6.5 MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_DATA:

	9.6.6 MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register
	Field descriptions
	Accessing the MPAMF_ERR_MSI_MPAM:

	9.6.7 MPAMF_ESR, MPAM Error Status Register
	Field descriptions
	Accessing the MPAMF_ESR:

	Chapter 10: Errors in MSCs
	10.1 Introduction
	10.2 Error conditions in accessing memory-mapped registers
	10.2.1 No error (errorcode == 0)
	10.2.2 PARTID_SEL out-of-range error (errorcode == 1)
	10.2.3 Request PARTID out-of-range error (errorcode == 2)
	10.2.4 MSMON configuration ID out-of-range error (errorcode == 3)
	10.2.5 Request PMG out-of-range error (errorcode == 4)
	10.2.6 Monitor out-of-range error (errorcode == 5)
	10.2.7 intPARTID out-of-range error (errorcode == 6)
	10.2.8 Unexpected INTERNAL error (errorcode == 7)
	10.2.9 Undefined RIS in MPAMCFG_PART_SEL.RIS (errorcode == 8)
	10.2.10 RIS in MPAMCFG_PART_SEL.RIS does not have partitioning control (errorcode == 9)
	10.2.11 Undefined RIS in MSMON_CFG_MON_SEL.RIS (errorcode == 10)
	10.2.12 RIS selected by MSMON_CFG_MON_SEL.RIS does not have monitor type (errorcode == 11)
	10.2.13 Reserved (errcodes 12 – 15)

	10.3 Overwritten error status
	10.4 Behavior of configuration reads and writes with errors
	10.4.1 Writing an out-of-range PARTID to MPAMCFG_PART_SEL.PARTID_SEL
	10.4.2 Reading another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID
	10.4.3 Writing another MPAMCFG_* register when MPAMCFG_PART_SEL.PARTID_SEL contains an out-of-range PARTID
	10.4.4 Writing an undefined RIS to MPAMCFG_PART_SEL.RIS
	10.4.5 Reading other MSC MPAM registers when MPAMCFG_PART_SEL.RIS contains an undefined RIS value
	10.4.6 Writing other MSC MPAM registers when MPAMCFG_PART_SEL.RIS contains an undefined RIS value
	10.4.7 Reads of MSC MPAM registers with other errors
	10.4.8 Writes to MSC MPAM registers with other errors
	10.4.9 Writes to MSMON_CFG_MON_SEL.MON_SEL
	10.4.10 Reading another MSMON_* register when MSMON_CFG_MON_SEL.MON_SEL out of range
	10.4.11 Writes to MSMON_* registers with MSMON_CFG_MON_SEL.MON_SEL out of range
	10.4.12 Writing an undefined RIS to MSMON_CFG_MON_SEL.RIS
	10.4.13 Reading another MSMON_* register when MSMON_CFG_MON_SEL.RIS contains an undefined RIS value
	10.4.14 Writing another MSMON_* register when MSMON_CFG_MON_SEL.RIS contains an undefined RIS value

	10.5 Optionality of error detection and reporting
	10.5.1 Required error condition detection
	10.5.1.1 Selector out-of-range errors
	10.5.1.2 PARTID narrowing errors

	Appendix A: Generic Resource Controls
	A.1 Introduction
	A.2 Portion resource controls
	A.3 Maximum-usage resource controls
	A.4 Proportional resource allocation facilities
	A.4.1 Model of stride-based memory bandwidth scheduling

	A.5 Combining resource controls

	Appendix B: MSC Firmware Data
	B.1 Introduction
	B.2 Partitioning-control parameters
	B.3 Performance-monitoring parameters
	B.4 Discovery of resource to RIS mapping
	B.5 Discovery of wired interrupts

	Glossary

