
ARM® System Memory Management
Unit Architecture Specification

SMMU architecture version 2.0
Beta
Copyright © 2012-2013 ARM Limited. All rights reserved.
ARM IHI 0062C (ID091613)

ARM System Memory Management Unit Architecture Specification
SMMU architecture version 2.0

Copyright © 2012-2013 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this
document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php.

Copyright © 2012-2013, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Note
 ARM believes this document to be a complete and accurate description of the SMMUv2 architecture. However, the Beta status of
the document indicates that ARM is carrying out a more extensive internal engineering review of the document.

Change History

Date Issue Confidentiality Change

23 March 2012 A Confidential Beta Issue A. Beta release for architecture version 1.0.

18 December 2012 B Non-Confidential Issue B. Final release for architecture version 1.0.

16 September 2013 C Non-Confidential Beta Issue C. Beta release for architecture version 2.0.
ii Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Web Address

http://www.arm.com
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. iii
ID091613 Non-Confidential - Beta

iv Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Contents
ARM System Memory Management Unit
Architecture Specification SMMU architecture
version 2.0

Preface
About this specification ... x
Using this specification ... xi
Conventions .. xiii
Additional reading ... xiv
Feedback .. xv

Chapter 1 Introduction
1.1 About the ARM System MMU architecture ... 1-18
1.2 ARM Processor Exception levels and Execution states ... 1-20
1.3 ARM translation regimes .. 1-21
1.4 SMMU translation schemes ... 1-24
1.5 SMMU address support ... 1-28

Chapter 2 SMMU Operation
2.1 Overview of SMMU operation .. 2-34
2.2 TLB operation ... 2-41
2.3 Security State Determination (SSD) ... 2-43
2.4 Memory type and shareability attribute determination .. 2-45
2.5 Context determination .. 2-58
2.6 Translation context ... 2-64
2.7 Translation and protection checks ... 2-69
2.8 Hypervisor contexts .. 2-71
2.9 Monitor contexts ... 2-74
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. v
ID091613 Non-Confidential - Beta

Chapter 3 The Fault Model
3.1 Overview of fault types ... 3-76
3.2 Fault-handling terminology ... 3-77
3.3 Handling multiple memory faults .. 3-78
3.4 Recording memory attributes ... 3-79
3.5 Recording stage 1 followed by stage 2 translation faults 3-80
3.6 Fault interrupts ... 3-82
3.7 Context faults ... 3-84
3.8 Global faults ... 3-95
3.9 Configuration access .. 3-100
3.10 External faults .. 3-101
3.11 Reporting exclusive access transactions ... 3-103
3.12 Fault behavior in virtualized context banks .. 3-104

Chapter 4 Address Translation Operations
4.1 About address translation operations ... 4-106
4.2 Address translation registers in a stage 1 translation context 4-107
4.3 Address translation registers in the global address space 4-110

Chapter 5 Coherency Issues and Cache Maintenance Operations
5.1 Updating the state of a context bank .. 5-114
5.2 Translation table walk coherency ... 5-116
5.3 Broadcast TLB maintenance operations .. 5-117
5.4 TLB maintenance registers .. 5-118
5.5 Cache maintenance operations ... 5-121

Chapter 6 SMMU Performance Monitors Extension
6.1 About the SMMU Performance Monitors Extension ... 6-126
6.2 The register map .. 6-127
6.3 Event classes ... 6-128
6.4 StreamID groups .. 6-129
6.5 Counter groups .. 6-130
6.6 Event filtering ... 6-131
6.7 Translation context bank assignment ... 6-132
6.8 Event counter overflow interrupt .. 6-133

Chapter 7 SMMU Support for Two Security States
7.1 Sharing resources between Secure and Non-secure domains 7-136
7.2 Providing SMMU support for only a single security state 7-137
7.3 Providing SMMU support for two security states .. 7-138

Chapter 8 SMMU Address Space
8.1 About the SMMU address space ... 8-144
8.2 The global address space .. 8-145
8.3 The translation context bank address space .. 8-147

Chapter 9 SMMU Global Register Space 0
9.1 SMMU Global Register Space 0 register summary .. 9-150
9.2 Reset values .. 9-155
9.3 Secure alias for Non-secure registers .. 9-157
9.4 Memory attribute, MemAttr ... 9-159
9.5 Multi-format registers and reserved fields .. 9-160
9.6 SMMU Global Register Space 0 register descriptions ... 9-161

Chapter 10 SMMU Global Register Space 1
10.1 SMMU Global Register Space 1 register summary .. 10-208
10.2 SMMU Global Register Space 1 register descriptions 10-209
vi Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 11 SMMU implementation defined Address Space
11.1 About the SMMU implementation defined address space 11-218

Chapter 12 SMMU Performance Monitors Extension Register Map
12.1 SMMU Performance Monitors Extension register summary 12-220
12.2 SMMU Performance Monitors Extension register descriptions 12-222

Chapter 13 The Security State Determination Address Space
13.1 SMMU SSD address space .. 13-238

Chapter 14 Stage 1 Translation Context Bank Format
14.1 Stage 1 translation context bank address space ... 14-242
14.2 Reset values .. 14-246
14.3 Memory attribute indirection ... 14-247
14.4 Multi-format registers and reserved fields .. 14-249
14.5 Stage 1 translation context bank register descriptions 14-250

Chapter 15 Stage 2 Translation Context Bank Format
15.1 Stage 1 and stage 2 context bank format differences .. 15-296
15.2 Stage 2 translation context bank address space ... 15-297
15.3 Stage 2 translation context bank register descriptions 15-300

Appendix A Register Names
A.1 Summary of corresponding SMMU and ARM registers A-314

Glossary
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. vii
ID091613 Non-Confidential - Beta

viii Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Preface

This preface introduces the ARM® System Memory Management Unit Architecture Specification. It contains the
following sections:
• About this specification on page x.
• Using this specification on page xi.
• Conventions on page xiii.
• Additional reading on page xiv.
• Feedback on page xv.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. ix
ID091613 Non-Confidential - Beta

 Preface
 About this specification
About this specification
This specification introduces the ARM System MMU (SMMU) architecture.

Intended audience

This specification is written for readers who are familiar with system memory management concepts, but who do
not necessarily have any experience of the ARM architecture.
x Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

 Preface
 Using this specification
Using this specification
The information in this specification is organized into the following chapters:

Chapter 1 Introduction

Read this for an introduction to the SMMU architecture.

Chapter 2 SMMU Operation

Read this for information about the steps that the SMMU performs on receiving a memory access
request.

Chapter 3 The Fault Model

Read this for information about fault conditions the SMMU might encounter, and how the SMMU
handles these faults.

Chapter 4 Address Translation Operations

Read this for information about address translation operations that are initiated using
software-accessible registers.

Chapter 5 Coherency Issues and Cache Maintenance Operations

Read this for information about the relationship between controlling software and the SMMU,
including optional support for coherent translation table walks and cache maintenance operations.

Chapter 6 SMMU Performance Monitors Extension

Read this for information about OPTIONAL SMMU support for performance monitoring
functionality.

Chapter 7 SMMU Support for Two Security States

Read this for information about OPTIONAL SMMU support for two security states.

Chapter 8 SMMU Address Space

Read this for information about the SMMU register address map in terms of the SMMU address
spaces.

Chapter 9 SMMU Global Register Space 0

Read this for information about the contents of Global Register Space 0. This address space
provides high-level control of the SMMU resources.

Chapter 10 SMMU Global Register Space 1

Read this for information about the contents of Global Register Space 1. In addition to providing
high-level SMMU resource control, this space accommodates the number of addresses in the global
register space exceeding the capacity of a single memory page, when the page size is 4KB.

Chapter 11 SMMU implementation defined Address Space

Read this for information about address space reserved for IMPLEMENTATION DEFINED purposes.

Chapter 12 SMMU Performance Monitors Extension Register Map

Read this for information about the recommended memory-mapped and external debug interface to
the Performance Monitors Extension.

Chapter 13 The Security State Determination Address Space

Read this for information about the address space used by the Security State Determination part of
the translation process.

Chapter 14 Stage 1 Translation Context Bank Format

Read this for information about the stage 1 translation context bank format.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. xi
ID091613 Non-Confidential - Beta

 Preface
 Using this specification
Chapter 15 Stage 2 Translation Context Bank Format

Read this for information about the stage 2 translation context bank format.

Appendix A Register Names

Read this for information about differences in register names between SMMU architecture versions.

 Glossary Read this for definitions of some terms used in this specification.
xii Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

 Preface
 Conventions
Conventions
The following sections describe conventions that this book can use:
• Typographic conventions
• Register names
• Numbers
• Pseudocode descriptions.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used for a few terms that have specific technical meanings, and are included in the glossary.

Colored text Indicates a link. This can be:

• a URL, for example http://infocenter.arm.com

• a cross-reference, that includes the page number of the referenced information if it is
not on the current page, for example, Pseudocode descriptions

• a link, to a chapter or appendix, or to a glossary entry, or to the section of the
document that defines the colored term, for example Translation context bank.

Register names

In a register name, s denotes the presence or absence of the Secure register prefix, S. For example, in an
implementation that supports two security states, the register SMMU_sACR is implemented as both:
• the Secure register SMMU_SACR
• the Non-secure register SMMU_ACR.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. xiii
ID091613 Non-Confidential - Beta

 Preface
 Additional reading
Additional reading
This section lists relevant publications from ARM and third parties.

See the Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications

See the following documents for other information.
• ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).
• ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile (ARM DDI 0487)
• CoreSight™ Architecture Specification (ARM IHI 0029).
xiv Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

 Preface
 Feedback
Feedback
ARM welcomes feedback on its documentation.

Feedback on this manual

If you have comments on the content of this manual, send e-mail to errata@arm.com. Give:
• The title.
• The number, ARM IHI 0062C.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. xv
ID091613 Non-Confidential - Beta

 Preface
 Feedback
xvi Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 1
Introduction

This chapter provides an introduction to the ARM System Memory Management Unit (SMMU) architecture. It
contains the following sections:
• About the ARM System MMU architecture on page 1-18.
• ARM Processor Exception levels and Execution states on page 1-20.
• ARM translation regimes on page 1-21.
• SMMU translation schemes on page 1-24.
• SMMU address support on page 1-28.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 1-17
ID091613 Non-Confidential - Beta

1 Introduction
1.1 About the ARM System MMU architecture
1.1 About the ARM System MMU architecture
The ARM System MMU (SMMU) architecture provides a flexible implementation framework for a Memory
Management Unit (MMU) implementation, with a number of IMPLEMENTATION DEFINED options.

The architecture can be used for a system-level MMU. It supports address translation from an input address to an
output address, based on address mapping and memory attribute information held in translation tables.

An address translation from an input address to an output address is described as a stage of address translation.

The SMMU architecture also supports the concept of translation regimes, in which a required memory access might
require two stages of address translation. For example, in a virtualized processor implementation:

• An operating system defines the translation tables for its own memory accesses, and for accesses by
applications running under it. It does this believing it is mapping the virtual addresses (VAs) used by the
processor to physical addresses (PAs) in the physical memory system. However, it actually defines addresses
in an intermediate physical address (IPA) memory map.

• A hypervisor defines the translation tables that translate the IPAs for a particular guest operating system to
PAs.

This means that any memory access by a Guest OS, or by an application, requires two stages of translation, that
together define a single translation regime:
• Stage 1, from VA to IPA.
• Stage 2, from IPA to PA.

Within this system, the hypervisor must also define the required translation tables for its own memory accesses.
These are in a separate translation regime, with only one stage of translation in which the stage 1 translation maps
VAs to PAs.

A single stage of address translation can require multiple translation table lookups. In this case, each translation
table lookup is described as a level of address lookup.

An implementation of the ARM SMMU architecture can provide:
• Multiple transaction contexts, that apply to specific streams of transactions.
• Single or two stage translation.
• For any stage of translation, multiple levels of address lookup, to provide fine-grained memory control.
• Fault handling, logging, and signaling functionality.
• Debug and OPTIONAL performance monitoring functionality.

1.1.1 Debug support

The SMMU architecture does not require the provision of debug support features. However, if an implementation
supports two security states, a Non-secure debug agent must not be able to read any data relating to Secure
transaction handling.

1.1.2 TLB visibility

ARM strongly recommends that an implementation provides a mechanism to read the content of any Translation
Lookaside Buffer (TLB) structure in the implementation. The method by which the SMMU provides this feature is
IMPLEMENTATION DEFINED, but it must ensure that Non-secure resources cannot access Secure TLB entries. The
SMMU global register map reserves space to provide access to such a function. See Chapter 9 SMMU Global
Register Space 0 for more information.

1.1.3 SMMU architecture version

This specification defines version 2.0 of the SMMU architecture (SMMUv2), and also describes version 1.0 of the
architecture (SMMUv1).
1-18 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

1 Introduction
1.1 About the ARM System MMU architecture
1.1.4 Changes in version 2.0 of the SMMU architecture

Version 2.0 of the SMMU architecture contains the following changes and additions to version 1.0:

• Support for the address translations required by both Execution states of ARMv8 processors, where the
AArch32 state processes addresses in 32-bit registers, and the AArch64 state processes addresses in 64-bit
registers. This means SMMUv2 supports the following translation schemes:
— AArch32 Short-descriptor.
— AArch32 Long-descriptor.
— AArch64.

• Modified address translation and TLB invalidate registers, and new SMMUv2-only registers. See.
— Chapter 9 SMMU Global Register Space 0.
— Chapter 14 Stage 1 Translation Context Bank Format.
— Chapter 15 Stage 2 Translation Context Bank Format.

• Changed status of address translation registers. These registers are OPTIONAL in SMMUv2. See Address
translation registers in SMMUv2 on page 4-106.

• New SMMU_CBA2Rn register that extends the configuration attributes for the translation context bank. See
SMMU_CBA2Rn, Context Bank Attribute Registers on page 10-214.

• Support for Translation Table Base Register (TTBR) determination for Secure and Non-secure translation
context banks. See The translation context bank table on page 2-64.

• Support for a 16KB and 64KB translation granule size. See SMMU translation schemes on page 1-24 and
SMMU_IDR2 on page 9-165.

• Support for Monitor context for the Secure EL3 translation regime. See Monitor contexts on page 2-74.

• Modified context interrupt behavior. See Context interrupts on page 3-82.

• Modified invalid context fault behavior. See Global faults on page 3-95.

• Modified configuration access fault behavior. See Configuration access on page 3-100 and SMMU_SCR1,
Secure Configuration Register 1 on page 9-197.

• Modified external fault behavior. See External faults on page 3-101.

• Modified MemAttr encoding. See Memory attribute, MemAttr on page 9-159 and SMMU_CBn_MAIRm,
Memory Attribute Indirection Registers on page 14-259.

• Renaming of SMMU_CBn_ TTBCR registers to SMMU_CBn_TCR registers.

• New SMMU_CBn_TCR2 register that extends the SMMU_CBn_TCR functionality. See
SMMU_CBn_TCR2, Translation Control Register 2 on page 14-290.

• Modified SMMU_CBn_RESUME behavior. See SMMU_CBn_RESUME, Transaction Resume register on
page 14-270.

• New SMMU_CBn_IPAFAR register that records the IPA for transactions that fault during stage 2 translation.
See SMMU_CBn_IPAFAR, IPA Fault Address Register on page 15-302.

• Modified behavior when certain register fields are encoded as Reserved. See Reserved memory type and
shareability attributes on page 2-48.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 1-19
ID091613 Non-Confidential - Beta

1 Introduction
1.2 ARM Processor Exception levels and Execution states
1.2 ARM Processor Exception levels and Execution states
The ARMv8 exception model defines the exception level ELn, where n can have the values 0-3. Software execution
privilege increases with increase in the value of n, with EL0 software having the lowest level of privilege. Execution
at EL0 is described as unprivileged execution. It is IMPLEMENTATION DEFINED whether a processor implementation
includes EL2 or EL3. The typical use of the different Exception levels is:
EL0 Application software. Secure or Non-secure state.
EL1 Operating system. Secure or Non-secure state.
EL2 Hypervisor. Non-secure state only.
EL3 Secure monitor.

The permitted processor exception levels depend on the processor security state, as Table 1-1 shows.

ARMv8 defines AArch64 and AArch32 execution states that define the supported instruction set, and whether the
processor uses 64-bit or 32-bit PC, LR, SP, and general-purpose registers.

Based on the AArch32 and AArch64 execution states and the associated translation table formats, the SMMU
architecture defines the following translation schemes:
• AArch32 Short-descriptor.
• AArch32 Long-descriptor.
• AArch64.

The remainder of this chapter provides more information about the SMMU translation schemes.

Table 1-1 Exception level implementation by security state

Non-secure Secure

- EL3

EL2 -

EL1 EL1

EL0 EL0
1-20 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

1 Introduction
1.3 ARM translation regimes
1.3 ARM translation regimes
The ARM architecture supports different translation regimes and stages for AArch32 and AArch64. Figure 1-1 and
Figure 1-2 show the ARM architecture translation regimes, where.
• VA is Virtual Address.
• PA is Physical Address.
• IPA is Intermediate Physical Address.

Figure 1-1 AArch32 translation regimes and stages

Figure 1-2 AArch64 translation regimes and stages

In Figure 1-1 and Figure 1-2:
• The Non-secure EL1&0 translation regime comprises two stages of translation.
• The other translation regimes comprise only a single stage of translation.

Typically, software executing in different translation regimes controls certain SMMU registers, as Table 1-2 on
page 1-22 shows.

Translation regime

Secure EL1&0 VA PA, Secure or Non-secure

VANon-secure EL1&0 Non-secure EL1&0
stage 1

IPA

PA, Non-secure onlyNon-securea EL2 VA

Secure EL1&0 stage 1

Non-secure EL2 stage 1

Non-secure EL1&0
stage 2

PA, Non-secure only

a. The SMMU also includes a Secure EL2 translation regime

Secure EL1&0 VA PA, Secure or Non-secure

VANon-secure EL1&0
Controlled from EL1b IPA

PA, Non-secure onlyNon-securea EL2 VA

Secure EL1&0 stage 1

Non-secure EL2 stage 1

PA, Non-secure only

Secure EL3 VA PA, Secure or Non-secureSecure EL3 stage 1

Non-secure EL1&0 stage 1 Non-secure EL1&0 stage 2
Controlled from EL2

Controlled from EL2

Controlled from Secure EL1

Controlled from Secure EL3

Translation regimes, when EL3 is using AArch64

b. Or higher
a. The SMMU also includes a Secure EL2 translation regime
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 1-21
ID091613 Non-Confidential - Beta

1 Introduction
1.3 ARM translation regimes
Table 1-2 Translation regime control of SMMU registers

Translation
regime Register Description Notes

Secure EL3
Secure EL1&0

SMMU_CBA2Rn SMMU_CBA2Rn, Context Bank Attribute
Registers on page 10-214.

Register applies to Secure
context banks.

SMMU_CBARn SMMU_CBARn, Context Bank Attribute
Registers on page 10-209.

Register applies to Secure
context banks.

SMMU_CBFRSYNRAn SMMU_CBFRSYNRAn, Context Bank Fault
Restricted Syndrome Register A on page 10-216

-

SMMU_SCR0 SMMU_sCR0, Configuration Register 0 on
page 9-167

-

SMMU_SCR1 SMMU_SCR1, Secure Configuration Register 1
on page 9-197

-

SMMU_SGATS* SMMU Global Register Space 0 register
descriptions on page 9-161.

Secure global address
translation registers.

SMMU_SGF* SMMU Global Register Space 0 register
descriptions on page 9-161.

Secure global fault registers.

SMMU_SGPAR SMMU_sGPAR, Global Physical Address
Register on page 9-185

-

SMMU_NSGATS* Secure alias for Non-secure registers on
page 9-157.

Secure aliases for Non-secure
copies of Global address
translation registers.

SMMU_NSGF* Secure alias for Non-secure registers on
page 9-157

Secure aliases for Non-secure
copies of Global fault registers.

SMMU_NSGPAR Secure alias for Non-secure registers on
page 9-157.

Secure alias for Non-secure
copy of SMMU_sGPAR.

SMMU_sTLBGSTATUS SMMU_sTLBGSTATUS, Global TLB Status
register on page 9-190

Secure alias for Non-secure
copies of Global TLB registers.

SMMU_sTLBGSYNC SMMU_sTLBGSYNC, Global Synchronize TLB
Invalidate on page 9-190.

SMMU_SSDRn SMMU SSD address space on page 13-238. Security state determination
registers.

SMMU_STLBI Chapter 9 SMMU Global Register Space 0. Secure TLB Invalidate
registers.

SMMU_S2CRn SMMU_S2CRn, Stream-to-Context Register on
page 9-191

Registers apply to Secure
Stream Match Register groups.

SMMU_SMRn SMMU_SMRn, Stream Match Register on
page 9-201

Registers apply to Secure
Stream Match Register groups.

Secure EL3 SMMU_CBn_* Chapter 15 Stage 2 Translation Context Bank
Format

Monitor context, Secure only.

Secure EL2 SMMU_CBn_* Chapter 15 Stage 2 Translation Context Bank
Format

Hypervisor context, Secure and
Non-secure.
1-22 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

1 Introduction
1.3 ARM translation regimes
Non-secure
EL2

SMMU_CR0 SMMU_sCR0, Configuration Register 0 on
page 9-167

-

SMMU_GATS* SMMU Global Register Space 0 register
descriptions on page 9-161.

Non-secure global address
translation registers.

SMMU_GF* Non-secure global fault
registers.

SMMU_GPAR SMMU_sGPAR, Global Physical Address
Register on page 9-185

-

SMMU_CBARn SMMU_CBARn, Context Bank Attribute
Registers on page 10-209.

Register applies to Non-secure
context banks

SMMU_CBA2Rn SMMU_CBA2Rn, Context Bank Attribute
Registers on page 10-214.

Register applies to Non-secure
context banks

SMMU_S2CRn SMMU_S2CRn, Stream-to-Context Register on
page 9-191.

Registers apply to Non-secure
Stream Match Register groups.

SMMU_SMRn SMMU_SMRn, Stream Match Register on
page 9-201.

Registers apply to Non-secure
Stream Match Register groups.

SMMU_CBn_* Chapter 15 Stage 2 Translation Context Bank
Format.

Registers apply to stage 2
translation context banks.

Secure EL1&0 SMMU_CBn_* Chapter 14 Stage 1 Translation Context Bank
Format.

For Secure context banks.

Non-secure
EL1&0

SMMU_CBn_* For Non-secure context banks..

Table 1-2 Translation regime control of SMMU registers (continued)

Translation
regime Register Description Notes
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 1-23
ID091613 Non-Confidential - Beta

1 Introduction
1.4 SMMU translation schemes
1.4 SMMU translation schemes
The SMMUv2 translation schemes support address translations required by both the AArch 32 and AArch64
Execution states, for each translation regime, as follows:

AArch32 Short-descriptor translation scheme

This translation scheme:
• Uses 32-bit entries, or descriptors, in its translation tables.
• Is compatible with the ARMv7 architecture.
• Supports the translation of VAs of up to 32 bits.
• Supports output addresses of up to 32 bits, or up to 40 bits with loss of granularity.
• Can be used only from the AArch32 processor execution state.
• Can be used only for stage 1 translation.

AArch32 Long-descriptor translation scheme

This translation scheme:
• Uses 64-bit descriptors in its translation tables.
• Is added to the ARMv7 architecture by the Large Physical Address Extension (LPAE).
• Supports the translation of VAs of up to 32 bits.
• Supports output addresses of up to 40 bits, that can be IPAs or VAs.

AArch64 translation scheme

This translation scheme:
• Uses 64-bit descriptors in its translation tables.
• Is defined by the ARMv8 architecture.
• Supports the translation of VAs of up to 49 bits.
• Supports output addresses of up to 48 bits, as two independent address ranges.

In the ARM architecture, a translation granule is the smallest region of input address space that an SMMU
implementation can be configured to support. A translation granule defines both:
• The maximum size of a single translation table.
• The memory page size, that is, the granularity at which attributes can be assigned to memory regions.

The AArch32 translation schemes use a translation granule of 4KB, meaning that the translation tables can define
the attributes of memory regions at a granularity of 4KB.

Although the AArch32 Short-descriptor translation scheme has a translation granule of 4KB, it can support output
addresses of more than 32 bits by using page sizes larger than 4KB.

The AArch32 Long-descriptor translation scheme:
• Has a translation granule of 4KB for stage 1 translations.
• By default, has a translation granule of 4KB for stage 2 translations.

The AArch64 translation scheme supports a translation granule of 4KB, 16KB, or 64KB.

For EL1&0 stage 1 translations, the ARM architecture supports two VA subranges, determined by the
SMMU_CBn_TCR.T0SZ and SMMU_CBn_TCR.T1SZ size fields:

• The AArch32 translation schemes provide these two subranges by splitting the available 32-bit VA range.

• In the AArch64 translation scheme, the two subranges are completely independent ranges of up to 48-bits,
where:

— The lower VA range runs from 0x0000_0000_0000_0000 to (Size indicated by T0SZ).

— The upper VA range runs from (0xFFFF_FFFF_FFFF_FFFF - (Size indicated by T1SZ)) to
0xFFFF_FFFF_FFFF_FFFF.

In the AArch32 Long descriptor translation scheme, there can be a gap between the two VA subranges. In the
AArch64 translation scheme there is always a gap between the two subranges.
1-24 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

1 Introduction
1.4 SMMU translation schemes
The VA model for the AArch64 translation scheme can be described as using a 49-bit VA range, where VA[48]
indicates the VA subrange for the address.

Table 1-3 shows the AArch64 translation regimes. All of these regimes use the AArch64 translation scheme, for all
translations.

Table 1-4 shows the AArch32 translation regimes, and translation schemes that can be used with each regime

Table 1-3 AArch64 translation regimes

Translation regime Translation context Note

Secure EL3 Stage 1 context with stage 2 bypass Monitor context only. See Monitor contexts on page 2-74 for
more information.

Secure EL1 -

Non-secure EL2 Hypervisor context (HYPC) only. See Hypervisor contexts
on page 2-71 for more information.

Secure EL2

Non-secure EL1&0, no EL2a -

Non-secure EL1&0, with EL2b Stage 1 followed by stage 2 For stage 2, VMSAv8 Long-descriptor

Non-secure IPA address spacec Stage 2 Applies to device-based stage 1 translation and IPA
generation.

a. The implementation does not include EL2.
b. The implementation includes EL2.
c. This translation regime does not correspond to an ARM architecture translation regime.

Table 1-4 AArch32 translation regimes

Translation regime Translation context Note

Secure EL1 Stage 1 context with stage 2 bypass Either of:
• AArch32 Short-descriptor.
• AArch32 Long-descriptor.

Non-secure EL2 AArch32 Long-descriptor, hypervisor context (HYPC) only.
See Hypervisor contexts on page 2-71 for more information.

Secure EL2

Non-secure EL1&0, no EL2a Either of:
• AArch32 Short-descriptor.
• AArch32 Long-descriptor.

Non-secure EL1&0, with EL2b Stage 1 followed by stage 2 Stage 1 can use either AArch32 translation scheme.
Stage 2 can use either of:
• AArch32 Long-descriptor translation scheme.
• AArch64 translation scheme.

Non-secure IPA address spacec Stage 2 Applies to device-based stage 1 translation and IPA
generation.

a. The implementation does not include EL2.
b. The implementation includes EL2.
c. This translation regime does not correspond to an ARM architecture translation regime.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 1-25
ID091613 Non-Confidential - Beta

1 Introduction
1.4 SMMU translation schemes
1.4.1 Differences between the ARM architecture and SMMU translation schemes

Although the SMMU architecture is based on the ARM translation regimes, differences exist between the SMMU
architecture and the ARM architecture. This section describes these differences.

Transient allocation hint

The ARM architecture does not support the transient allocation hint when using a Short-descriptor
translation table format. An ARM processor using this format marks all transactions as
non-transient.

In SMMUv2, when using the AArch32 Short-descriptor translation scheme, the attributes provided
by the incoming transaction, which might be modified by SMMU_S2CRn, provide the transient
allocation hint for stage 1 attributes.

HYPC and MONC

The SMMUv2 definition of HYPC (hypervisor context) and MONC (Monitor context) banks closely
match the ARM Non-secure EL2 and Secure EL3 address translation regimes. However, this section
describes some differences.

The ARM architecture TTBR does not permit translation table walks to be disabled, and provides
no equivalent to the SMMU_CBn_TCR.EPD, the Translation Walk Disable bits. However, the
SMMU architecture does not ignore SMMU_CBn_TCR.EPD0, and ARM recommends that this is
set to 0.

In SMMUv2, subject to the restrictions described in Hypervisor contexts on page 2-71, software can
configure HYPC banks as Secure. This means that SMMU HYPC banks must adhere to the
appropriate SMMU_CBn_TCR.NSCFG0 or SMMU_CBn_TCR2.NSCFG0 settings.

See Hypervisor contexts on page 2-71 and Monitor contexts on page 2-74 for more information.

Translation stages

In both SMMUv1 and SMMUv2, there is always a second stage of translation, even for the
following ARM architecture translation regimes that have only a single stage:
• Hypervisor
• Monitor
• Secure EL1&0.
• Non-secure EL1&0, when there is no hypervisor.

The SMMU equivalent to these single stage translation regimes are where SMMU_CBARn
specifies a Stage 1 context with stage 2 bypass format for a context bank. This format provides an
attribute-only transformation stage, where SMMU_CBARn provides the stage 2 attributes. This
stage applies also to any translation table walks generated during stage 1 translation.

Note
 For Non-secure, non-HYPC banks a virtual machine identifier (VMID) is still required, even if the

context bank is stage 1 with stage 2 bypass, as in the ARM architecture.

If a Guest OS uses multiple VMIDs in SMMU_CBARn, the hypervisor must virtualize the
SMMU_CBARn.VMID values. To minimize the virtualization effort on the hypervisor, ARM
recommends that a Guest OS uses a single fixed VMID value of zero.

Shared translation tables

When the SMMU and the processor share translation tables, and a peripheral device marks the
instruction fetch attribute for a transaction as instruction, software must treat regions that are marked
as Execute-never (XN) or Execute-only (XO) in one of the following ways:
• XN and XO regions apply to both execution by the processor and by peripheral devices.
• XN and XO regions apply only to processor execution.

When XN and XO regions apply only to the processor, software can use the
SMMU_S2CRn.INSTCFG field to configure the SMMU to treat such transactions as data..
1-26 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

1 Introduction
1.4 SMMU translation schemes
Note
 • SMMUv1 does not support XO marking.

• The SMMU performs the SMMU_SCR1.SIF protection check after applying the INSTCFG
attribute. The SMMU_SCR1.SIF protection check therefore has no effect when INSTCFG
overrides the marking of a region marked as instruction.

When XN and XO regions apply to processor and peripheral device execution, there is a risk of the
processor being able to execute instructions device instructions held in memory.. To prevent this,
software must:
1. Set the permissions so that software is permitted write access to the region.
2. Write the device instructions to the region.
3. Change the permissions to permit the device to execute the instructions.

Note
 Device literal pools are classed as data. Where a peripheral issues both instruction and data

transactions, software must ensure that setting a region as XO does not prevent the peripheral from
accessing device literal pools.

When the SMMU shares translation tables with the processor, it is possible for the SMMU TLB to
contain obsolete descriptors. See the stage 1 SMMU_CBn_SCTLR.AFFD, or the stage 2
SMMU_CBn_SCTLR.AFFD bit description for more information.

Cache maintenance operations

In both the SMMU and the ARM architecture, it is possible to disable EL0 cache maintenance
operations. However, in the SMMU, this control applies regardless of whether SMMU operation is
enabled. See the UCI bit description in SMMU_CBn_SCTLR, System Control Register on
page 14-271.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 1-27
ID091613 Non-Confidential - Beta

1 Introduction
1.5 SMMU address support
1.5 SMMU address support
The SMMUv2 architecture supports:
• VAs of up to.

— 32 bits when held in 32-bit registers.
— 49 bits when held in 64-bit registers.

• IPAs of up to 48 bits.
• PAs of up to 48 bits.

In SMMUv2, the SMMU_IDR2.UBS field specifies the maximum width of any upstream SMMU address port, and
therefore the maximum address width accepted from an upstream client device.

The SMMUv1 architecture supports:
• VAs of up to 32 bits.
• IPAs of up to 40 bits.
• When using the AArch32 Short-descriptor translation scheme, PAs of up to:

— 32 bits, at 4KB, 64KB, or 1MB granularity
— Optionally, 40 bits, but only at 16MB granularity.

• When using the AArch32 Long-descriptor translation scheme, PAs of up to 40 bits.

In any SMMU implementation:
• The T0SZ and T1SZ fields, as applicable, indicate the supported VA ranges.
• The supported IPA and PA sizes are IMPLEMENTATION DEFINED.

1.5.1 SMMU address size parameters

The SMMU_IDR2 register provides the following information about the physical hardware that is available for
representing addresses within an SMMU implementation:

• The UBS field defines the physical width of the largest upstream address port of the SMMU, and represents
the maximum input address to the first stage of translation.

• The IAS field defines the supported width of the SMMU hardware. The SMMU cannot represent an IPA
larger than this value.

• The OAS field defines the width of the downstream bus. The SMMU cannot represent a PA larger than this
value.

The UBS, IAS, and OAS values represent the absolute maximum that the hardware can support. However, software
can use various configuration mechanisms to restrict these ranges. These mechanisms are described in SMMU
treatment of addresses on page 1-29.

If stage 1 translation is not supported, that is when SMMU_IDR0.S1TS==0, then SMMU_IDR2.UBS and
SMMU_IDR2.IAS must specify the same value.

If stage 2 translation is not supported, that is when SMMU_IDR0.S2TS==0, then SMMU_IDR2.IAS and
SMMU_IDR2.OAS must specify the same value.

To support fault checks, the SMMU architecture defines the following terms:

IPA size

The IPA size is the maximum IPA size, as defined by SMMU_IDR2.IAS.

Effective IPA size

The effective IPA size depends on the translation context, and is defined as:

• SMMU_IDR2.IAS, for stage 1 followed by stage 2 translations

• For stage 1 context with stage 2 bypass translations, the minimum of:
— SMMU_IDR2.IAS.
— SMMU_IDR2.OAS.
1-28 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

1 Introduction
1.5 SMMU address support
Output address size

The output address size is the maximum PA size, as defined by SMMU_IDR2.OAS.

PA size The SMMU might support more address space than a device provides. In AArch64, PA size, as
defined by the PASize field, enables software to reduce the amount of address space to meet such
requirements. The PA size can also restrict the operation of a process to a particular section of the
available PA address space. The SMMUv2 provides both:
• SMMU_CBn_TCR2.PASize, for stage 1 translation.
• SMMU_CBn_TCR.PASize, for stage 2 translation.

1.5.2 SMMU treatment of addresses

Conceptually, the SMMU address handling sequence is as follows:

1. If a transaction bypasses SMMU translation before reaching a context bank, the SMMU truncates any input
address that exceeds the value of SMMU_IDR2.OAS. See SMMU translation bypass conditions.

In all other cases, the SMMU passes the transaction to a translation context bank, and proceeds with steps 2
and 3.

2. In certain cases the input address is sign-extended, as described in Sign-extension of input addresses.

3. For each stage of translation, the SMMU performs checks on the input address and the output address. These
checks might result in a fault being generated, Various factors that affect how the SMMU performs these
checks, including:

• Whether a stage 1 or stage 2 translation context bank is used.

• The value of SMMU_CBn_SCTLR.M for the context bank.

• Whether a 32-bit or 64-bit descriptor format is used, as defined by the SMMU_CBA2Rn.VA64 bit.

Translation faults on page 3-85 and Address size faults on page 3-86 provide more information about input
and output address size checks.

1.5.3 SMMU translation bypass conditions

A transaction bypasses SMMU translation when any of the following apply:
• The SMMU_sCR0.CLIENTPD bit is set to 1.
• No transaction match is found in the Stream mapping table, and the SMMU_sCR0.USFCFG bit is set to 0.
• Multiple transaction matches are found, and the SMMU_sCR0.SMCFCFG bit is set to 0.
• The SMMU_S2CRn.TYPE is configured as Bypass mode.

1.5.4 Sign-extension of input addresses

The SMMU can support an upstream bus size of 49 bits, enabling the SMMU to support peripherals that provide a
virtual address larger than 48 bits. In such cases, VA[63:48] must be compressed to form VA[48] of the SMMU input
address. The compression mechanism is IMPLEMENTATION DEFINED but the SMMU architecture requires that
bits[47:0] are preserved.

Note
 If bits[63:48] are not all 0s or all 1s and therefore cannot be compressed, a fault occurs. Whether such a fault is
reported, and how it might be reported, is IMPLEMENTATION DEFINED.

The input address is sign-extended when all of the following apply:
• A stage 1 translation context bank is used.
• The AArch64 translation scheme is selected.
• SMMU_CBn_SCTLR.M == 1 for the context bank.
• The context bank is not a HYPC bank.
• The context bank is not a MONC bank.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 1-29
ID091613 Non-Confidential - Beta

1 Introduction
1.5 SMMU address support
The SMMU_CBn_TCR2.SEP field indicates the bit position that must be used for sign-extending the address. If
bits above the sign-extension position are non-zero then a level 0 translation fault is generated.

Note
 If the value of SMMU_CBn_TCR2.SEP changes for a context bank, software must invalidate any affected TLB
entries.

1.5.5 Address space identifiers

Note
 SMMUv2 and ARMv8 support 16-bit ASIDs. Although it might be necessary to reuse ASIDs in SMMUv2, the
requirement to do so, and therefore the information in this section, is less likely to apply.

In the ARMv7 architecture, Address Space Identifiers (ASIDs) are 8-bits. This limitation means that, after allocating
256 ASIDs, software might be required to reuse ASIDs for different, unrelated processes. For increased efficiency,
the SMMU architecture includes an SMMU_CBn_SCTLR.ASIDPNE bit that enables the SMMU to maintain a
private ASID space for each VMID. These private ASID spaces are not subject to broadcast TLB invalidation
operations. A TLB entry that is allocated when SMMU_CBn_SCTLR.ASIDPNE==1 might contain a hint that the
entry is excluded from broadcast TLB invalidation operations that target that ASID value. If the SMMU
implementation does not support ASIDPNE, broadcast TLB invalidate operations ignore this hint and might
invalidate TLB entries.

The ASIDPNE hint applies only to broadcast TLB maintenance operations, and does not apply to:

• Global TLB entries.

• Broadcast TLB operations that perform TLB invalidation by VMID matching, unless both ASID and VMID
are used.

• TLB invalidation operations initiated by register writes.

Note
 Whether broadcast TLB maintenance operations affect SMMU operation depends on the value of the PTM and
VMIDPNE bits in SMMU_sCR0. See Fault behavior in virtualized context banks on page 3-104 for more
information.

For an SMMU implementation that supports ASIDPNE, software can reuse an ASID corresponding to an SMMU
translation context by making the process that is using an ASID unavailable. Software must:

1. Ensure that SMMU_CBn_SCTLR.ASIDPNE is set to 1.

2. Reallocate the ASID to another process.

3. If the device using the context bank requires new TLB entries, the SMMU tags these so that they are not
visible to broadcast TLB invalidate operations that target TLB entries tagged with the corresponding ASID.

4. ASIDPNE has no effect on TLB matching for client transactions. Therefore, to make it possible for a new
device to use the re-allocated ASID, software must ensure that:
• All the old TLB entries are invalidated.
• No other device is using the ASID, including use as a private ASID space.

In reallocating the ASID to another process, software issues TLB invalidate commands for that ASID on the
processors. If these commands are broadcast to the SMMU, and the SMMU is set to respond to them, the
corresponding entries in the SMMU are invalidated. However, the entries in the SMMU are still valid for that
particular ASID in the SMMU, and do not have to be invalidated explicitly. They are available to be invalidated in
the SMMU and no TLB maintenance on the SMMU is required at this stage.
1-30 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

1 Introduction
1.5 SMMU address support
To make the process available again software must allocate an ASID to the process, both in the processor and in the
SMMU. To allocate an ASID, software must.
1. Ensure that SMMU_CBn_SCTLR.ASIDPNE is set to 0.
2. Set the ASID in the context bank to a different value.
3. Invalidate any TLB entries tagged with the previous ASID, using SMMU_CBn_TLBIASID.

Note
 Alternatively, software can proceed, using different ASID values for the main process and the SMMU context, in
which case it must manually invalidate TLB entries as required.

1.5.6 Virtual machine identifiers

In general, for stage 1 followed by stage 2 translation, the same VMID is used in both context banks. However, in
SMMUv2, all TLB entries created using a stage 1 followed by stage 2 translation context are tagged with the stage
1 VMID; even when the stage 2 context bank has a different VMID. If a transaction is directed to stage 2, it uses
the stage 2 VMID.

In SMMUv2, there is no requirement for a TLB invalidate operation using the stage 2 VMID to affect any TLB
entry allocated by a process using a stage 1 VMID that is different to the stage 2 VMID.

An SMMU implementation might provide a VMID for Secure translation regimes. Such a VMID is not used for:
• TLB matching for client transactions.
• TLB invalidate operations.
• Broadcast TLB maintenance operations.

A VMID provided for Secure translation regimes might be visible on downstream bus transactions and can be used
in an IMPLEMENTATION DEFINED manner. Whether such VMIDs are visible during a translation table walk is
IMPLEMENTATION DEFINED.

Where the SMMU implementation does not provide support for a VMID for Secure translation regimes, all Secure
VMIDs are ignored. In such implementations the following fields are ignored for Secure transactions:
• SMMU_SCR2.BPVMID.
• SMMU_S2CRn.VMID, Bypass mode.
• SMMU_CBARn.VMID, stage 1 context with stage 2 bypass.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 1-31
ID091613 Non-Confidential - Beta

1 Introduction
1.5 SMMU address support
1-32 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 2
SMMU Operation

This chapter describes the steps that the SMMU performs on receiving a memory access request. It contains the
following sections:
• Overview of SMMU operation on page 2-34.
• TLB operation on page 2-41.
• Security State Determination (SSD) on page 2-43.
• Memory type and shareability attribute determination on page 2-45.
• Context determination on page 2-58.
• Translation context on page 2-64.
• Translation and protection checks on page 2-69.
• Hypervisor contexts on page 2-71.
• Monitor contexts on page 2-74.

Note
 This specification uses a register name scheme described in Register names on page xiii. An understanding of this
scheme is essential for the correct interpretation of register names.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-33
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.1 Overview of SMMU operation
2.1 Overview of SMMU operation
At the memory system level, in performing address translation, an SMMU controls:
• TLB operation. See TLB operation on page 2-41.
• Security state determination. See Security State Determination (SSD) on page 2-43.
• Context determination. See Context determination on page 2-58.
• Memory access permissions and determination of memory attributes. See Memory type and shareability

attribute determination on page 2-45.
• Memory attribute checks.

Figure 2-1 shows the SMMU partitioning and the different SMMU transactions.

Figure 2-1 SMMU partitioning

The SMMU architecture supports the use of TLBs to accelerate the translation process, and provides TLB
maintenance operations to manage the TLBs.

Security state determination identifies whether a transaction is from a Secure or Non-secure device.

Context determination identifies the stage 1 or stage 2 context resources the SMMU uses to process a transaction.
In some cases, the SMMU can be configured to permit a transaction to bypass the translation process, or to fault a
transaction, regardless of the requested translation.

A StreamID uniquely identifies a stream of transactions that can originate from different devices, but are associated
with the same context, and are therefore subject to the same type of SMMU processing. The mechanism by which
the he StreamID is obtained from the incoming bus transaction is IMPLEMENTATION DEFINED. See Context
determination on page 2-58 for more information.

In addition to address translation, the SMMU can modify the memory attributes that a transaction specifies. In some
cases, the SMMU performs attribute transformation only, with no address translation. This is shown for StreamID
4 in Figure 2-1, where the input address is the same as the output address. See Stream-to-Context Register,
SMMU_S2CRn on page 2-59 for more information.

Additionally, software can access SMMU address translation registers to initiate address translation operations,
where the SMMU returns address information to software. Software-initiated address translation operations are
OPTIONAL in SMMUv2. See Chapter 4 Address Translation Operations for more information.

Devicea Devicea

SMMU

IPA

Stage 2
translation

PA

PA

Attribute
transformation

PA

Translation tables

Main memory

StreamID 2 StreamID 4

Devicea

VA

Stage 1
translation

PA

StreamID 1

Devicea

VA

Stage 1
translation

IPA

Stage 2
translation

PA

StreamID 3

a. Devices can operate in Secure or Non-secure state.
2-34 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.1 Overview of SMMU operation
An access to the SMMU is referred to as a transaction:
• A client transaction is an access by a client device, that the SMMU is to process.
• A configuration transaction is a device access to a register in the SMMU configuration address space.

Figure 2-2 on page 2-36 shows the generic SMMU process flow, described in the remaining sections of this chapter.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-35
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.1 Overview of SMMU operation
Figure 2-2 SMMU process flow

Context is
bypass?

Context is
fault?

Stage 1
translation
required?

Perform stage 1
look-upYes

Bypass

Translation result Fault

Stage 2
translation
required?

Error?

Yes

Error? Yes

No

NoNo

Multiple
contexts? Yes

Bypass?

Yes

Yes

NoValid
context? No

Transaction

Determine
security state

Determine
context

No

Yes

No

No

No

Perform stage 2
look-upYes

Yes

Context match
found?

Yes

Bypass?

No

Bypass

Bypass? No

Bypass

Yes

No
2-36 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.1 Overview of SMMU operation
Note
 For a transaction that requires two stages of address translation, as described in About the ARM System MMU
architecture on page 1-18, translation table addresses for the stage 1 translation are defined in the IPA address space.
In this case, for each stage 1 lookup the SMMU must perform a stage 2 translation of the translation table address,
to map the IPA to the corresponding PA. This stage 2 translation might fail, generating an error. Figure 2-2 on
page 2-36 does not show this possible dependence of a stage 1 lookup on a stage 2 translation.

2.1.1 SMMU translation processing

This section describes how the SMMU processes transactions. It provides an overview of context determination,
and information about the registers it uses to perform each operation.

Figure 2-3 on page 2-38 shows an example of how the SMMU processes a transaction. Depending on
IMPLEMENTATION DEFINED choices, other processing flows are possible. For example, StreamID indexing can
replace StreamID matching.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-37
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.1 Overview of SMMU operation
Figure 2-3 Example SMMU transaction processing

Transaction

SMMU_sCR0.
CLIENTPD==1?

Search Stream
mapping table

Search
result?

SMMU_sCR0.
USFCFG==1?

Unidentified
stream fault

Bypass1

SMMU_S2CRn.
TYPE? Bypass2

SMMU_CBAR
lookup

Invalid
context

fault

Stage 1 with
stage 2 fault?

Stage 1 with
stage 2 bypass?

Valid stage 2?

1

No match

Multiple
matches

Stream
match

conflict fault

2

1

SMMU_sCR0.
SMCFCFG==1?

Apply SMMU_sCR0
attributes

Apply SMMU_sCR0
attributes

Apply SMMU_sCR0
attributes

Apply SMMU_S2CRn
attributes

Apply SMMU_S2CRn
preconditioning

No

Yes

Yes

No

Yes

Yes

Yes

Yes

No

No

No

Single
match

No

BypassTranslation context

Fault

Bypass SMMU

Bypass subsequent
SMMU processing

See remainder of this section for details

See remainder of this section for details

See remainder of this section for details
Valid stage 1 followed by stage 2
2-38 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.1 Overview of SMMU operation
If SMMU_sCR0.CLIENTPD==1, the transaction bypasses:
• SMMU translation.
• Protection checking.
• Attribute generation.

An instruction fetch by a Secure client is subject to a protection check based on the value of SMMU_SCR1.SIF.
SMMU_sCR0.CLIENTPD controls whether other protection checks are bypassed.

If the transaction bypasses the SMMU:
• The address is not translated, meaning that the output address is identical to the input address.
• Output attributes of the transaction are a function of the input attributes and SMMU_sCR0 fields.

If SMMU_sCR0.CLIENTPD indicates that the transaction is to be processed, the SMMU searches the Stream
mapping table for a matching Stream mapping register group. See The Stream mapping table on page 2-58.

If no match is found, SMMU_sCR0.USFCFG determines how to handle the match failure. If bypass action is
specified, the address is not translated, and the output attributes are the same as those for bypass at the earlier
SMMU_sCR0.CLIENTPD stage.

If a search of the Stream mapping table yields multiple matches, SMMU_sCR0.SMCFCFG determines whether the
transaction bypasses subsequent SMMU processing or incurs a Stream match conflict fault.

If the transaction is successfully matched in the Stream mapping table, SMMU_S2CRn determines the initial
context. If SMMU_S2CRn specifies Bypass mode:
• The address is not translated, meaning that the output address is identical to the input address.
• Output attributes are a function of the input attributes and the SMMU_S2CRn fields.

If SMMU_S2CRn specifies that the initial context is a translation context bank, the input attributes to the translation
process are those specified by the transaction, unless the SMMU_S2CRn fields specify replacement attributes.
SMMU_CBARn defines additional configuration for the translation context bank.

Figure 2-4 provides details of stage 1 with stage 2 bypass processing, or stage 2 processing.

Figure 2-4 Stage 1 with stage 2 bypass, or stage 2 translation context

For a stage 1 with stage 2 bypass translation context:

1. If the stage 1 context is valid, SMMU_CBn_SCTLR.M is read to see if the SMMU is enabled.

2. If the SMMU is enabled, a result is obtained from stage 1 translation tables and SMMU_CBARn. Otherwise,
a result is obtained from default input attributes, stage 1 SMMU_CBn_SCTLR, SMMU_CBARn and
SMMU_S2CRn.

For a stage 2 translation context:

1. SMMU_CBn_SCTLR.M controls whether the SMMU is enabled.

Yes

Valid context?1 Unimplemented
context bank faultNo

Stage n MMU
enabled? No

Yes

Obtain result by stage n translation

Obtain result by
stage n defaults
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-39
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.1 Overview of SMMU operation
2. If the stage 2 context is valid and the SMMU is enabled, the result is obtained from the default input attributes
and a stage 2 translation table lookup. Otherwise, the result is obtained from the default input attributes and
stage 2 SMMU_CBn_SCTLR.

Figure 2-5 provides details of stage 1 followed by stage 2 transaction processing.

Figure 2-5 Stage 1 followed by stage 2 translation context

For stage 1 followed by stage 2 translation context:

• The stage 1 SMMU_CBn_SCTLR.M bit controls whether the SMMU is enabled for stage 1 translation, and
the stage 2 SMMU_CBn_SCTLR.M bit controls whether the SMMU is enabled for stage 2 translation.

• If the stage 1 and stage 2 contexts are valid, but the SMMU is not enabled for stage 1 translation:

— If the SMMU is enabled for stage 2 translation, the result is obtained from the default input attributes,
SMMU_S2CRn, the stage 1 SMMU_CBn_SCTLR fields, and a stage 2 translation table lookup

— If the SMMU is not enabled for stage 2 translation, the result is obtained from the default input
attributes, SMMU_S2CRn, the stage 1 SMMU_CBn_SCTLR fields, and the stage 2
SMMU_CBn_SCTLR fields.

• If the stage 1 and stage 2 contexts are valid, and the SMMU is enabled for stage 1 translation:

— If the SMMU is enabled for stage 2 translation, the result is obtained from the stage 1 translation table
lookup, and the stage 2 translation table lookup

— If the SMMU is not enabled for stage 2 translation, the result is obtained from the stage 1 translation
table lookup and the stage 2 SMMU_CBn_SCTLR fields.

Unimplemented
context bank fault

Yes

No

No Yes

Valid stage 1 and
stage 2 contexts?

SMMU_CBn_
SCTLR.Ma==1?

SMMU_CBn_
SCTLR.Mb==1?

SMMU_CBn_
SCTLR.Mb==1?

Obtain result by stage 1
translation and stage 2 translation

Obtain result by stage 1 defaultsc

and stage 2 translation

Obtain result by stage 1
defaultsc and stage 2 defaults

Obtain result by stage 1
translation and stage 2 defaultsc

2

Stage 1 MMU is enabledStage 1 MMU not enabled

a. Stage 1 translation context bank register.
b. Stage 2 translation context bank register.
c. Obtained from corresponding SMMU_CBn_SCTLR.

Stage 2 MMU
is enabled

Stage 2 MMU
not enabled

NoYes NoYes

Stage 2 MMU
is enabled

Stage 2 MMU
not enabled
2-40 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.2 TLB operation
2.2 TLB operation
The SMMU architecture supports the use of TLBs to accelerate the translation process, and provides TLB
maintenance operations to manage the TLBs. See TLB maintenance registers on page 5-118 for more information.
If a TLB does not contain an appropriate translation, then the SMMU uses translation tables to translate the address.
Stage 1 and stage 2 translation tables provide translation and memory attribute information. The transaction is then
processed subject to required checks on the memory access.

The TLB lookup process uses a tag that provides a key to the information in a TLB entry. For example, the tag might
consist of the input address, the security state, and the translation context. The result of the TLB lookup might
contain an output address and memory attribute information.

Note
 • The exact behavior of any TLB functionality is IMPLEMENTATION DEFINED.

• TLB entries can cache data for any level and stage or combination of levels and stages of the translation
process. The SMMU architecture does not limit how a TLB is implemented, provided it obeys the TLB
Invalidate operations.

• In SMMUv2, after a reset hardware must ensure that no valid TLB entries exist. This ensures that there are
no valid Secure TLB entries that:
— Might be unaffected by a Non-secure TLB invalidation sequence.
— Cannot be replaced by a Non-secure entry.

TLB maintenance operations can be initiated either by:
• Broadcast TLB operations, as described in Broadcast TLB maintenance operations on page 5-117.
• Accessing TLB maintenance registers, as described in TLB maintenance registers on page 5-118.

A TLB entry, or combination of TLB entries, provides the required translation address and the memory attribute
information for that address. The tags used in the lookup determine both:
• The set of TLB entries that are considered when the SMMU attempts to locate a translation.
• The entry, or entries, that the SMMU selects when processing a TLB Invalidate operation.

Software must treat all TLB entries as being tagged with the input address. For other attributes, TLB entries are
categorized so that the tagging applied to an entry depends on the translation regime. For a particular translation
regime, a TLB entry must specify appropriate information, and certain conditions must be satisfied. For example, a
Non-secure stage 1 TLB entry must specify an ASID. Table 2-1 shows the types of TLB entry that the SMMU
architecture supports, and the corresponding attribute tagging requirements.

Table 2-1 SMMU TLB entry types and attribute tagging requirements

Translation context
Attribute required?

Notes
ASID ASIDPNEa VMID

Hypervisor - - - See Hypervisor contexts on page 2-71.

Monitor - - - See Monitor contexts on page 2-74.

Non-secure stage 1 with stage 2 bypass Y Y Y Uses SMMU_CBARn.VMID.

N N Y Global entry.
Uses SMMU_CBARn.VMID.

Non-secure stage 1 followed by stage 2 N N Y Global entry.

SCTLR.M==0.
TLB entries and the VMID are produced by stage 2
translation.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-41
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.2 TLB operation
If the SMMU implementation does not support transient marking, that is, when SMMU_S2CRn.TRANSIENTCFG
== 0b10, there is no requirement for TLBs to include any transient information.

TLB entries are not required to specify a context bank identifier. This means that in general, all context banks that
have the same translation context can share TLB entries, and a TLB invalidation operation affects all context banks
that have the same attributes. Typically, all context banks that have the same translation context can share TLB
entries. However, such sharing of TLB entries is not an SMMU architectural requirement.

If multiple context banks have the same attributes but describe different translations, the results of a TLB lookup
are UNPREDICTABLE. For example, where two context banks use the same ASID and VMID, each context bank
might use TLB entries that are intended to be used by the other context bank.

An SMMUv2 implementation might provide IMPLEMENTATION DEFINED mechanisms to lock and unlock particular
TLB entries. The SMMU cannot invalidate locked TLB entries.

The SMMU architecture permits any TLB invalidation operation to invalidate more TLB entries than the operation
specifies, provided the entries are not locked. The extent to which an operation over-invalidates is IMPLEMENTATION
DEFINED.

Software can use SMMU_sTLBGSTATUS to verify completion of all the TLB invalidate operations initiated before
the most recent write to SMMU_sTLBGSYNC. See TLB maintenance operation processing on page 5-119 for more
information.

It is IMPLEMENTATION DEFINED whether an SMMU supports broadcast TLB maintenance operations. See Broadcast
TLB maintenance operations on page 5-117 for more information.

2.2.1 Prefetch behavior for TLB entries

If transactions are using a context bank, the SMMU is permitted to prefetch TLB entries for that context, even if it
is not related to the original transaction. However, where a context bank is quiescent, there is no guarantee that the
SMMU stops prefetching TLB entries. There is therefore a risk of prefetching invalid TLB entries. To prevent this,
the SMMU architecture places constraints on prefetch behavior. See SMMUv2 support for updating context bank
state on page 5-114 for more information.

Non-secure stage 1 followed by stage 2 Y Y Y SCTLR.M==1.

Secure stage 1 Y Y N -

N N N Global entry.

Non-secure stage 2 N N Y -

a. Using the ASIDPNE attribute to tag TLB entries is optional. See Address space identifiers on page 1-30 for more information.

Table 2-1 SMMU TLB entry types and attribute tagging requirements (continued)

Translation context
Attribute required?

Notes
ASID ASIDPNEa VMID
2-42 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.3 Security State Determination (SSD)
2.3 Security State Determination (SSD)
The SMMU architecture supports shared use of an SMMU between Secure and Non-secure execution domains. The
Secure execution domain can:
• Access Secure and Non-secure registers.
• Request translations that result in Secure or Non-secure downstream transactions.

The Non-secure domain can:
• Access Non-secure registers.
• Request translations that result in Non-secure downstream transactions.

The first step of transaction processing identifies which of these domains a transaction belongs to, and therefore the
set of resources that process the transaction.

Note
 SMMU support for two security states is OPTIONAL. See Chapter 7 SMMU Support for Two Security States for more
information.

In an SMMU implementation that supports two security states, Security State Determination (SSD) provides a
means of identifying whether an upstream device or stream is Secure or Non-secure. In such an SMMU
implementation:
• Secure software can transition a device between Secure and Non-secure ownership dynamically.
• A Secure device might be able to produce both Secure and Non-secure bus-marked transactions.
• There is no guarantee that a device cannot mark a transaction as Secure when it is in the Non-secure state.

For these reasons, the bus-marked security state of a transaction arriving at the SMMU might be insufficient to
determine whether a memory access originated from a Secure or a Non-secure device. The SMMU architecture
therefore defines the SSD security state, that indicates whether a particular device or stream is in the Secure or the
Non-secure domain at the time it initiates a memory access. For a given transaction, the upstream device is either
SSD Secure or SSD Non-secure.

An upstream SSD Secure device can access both Non-secure and Secure downstream devices and memory. An
upstream SSD Non-secure device can access only Non-secure downstream devices and memory,

The SSD security state is independent of any upstream security marking that the underlying bus system might apply
to a transaction. This Specification refers to Secure bus markings or Non-secure bus markings in cases where a bus
system applies a security state attribute to a transaction. For example, an SSD Secure device might issue a
Non-secure transaction, in which case:
• The SSD security state is Secure.
• The transaction has a Non-secure bus marking.

Where several devices issue transactions as part of a single stream, the stream has a single SSD security state. A
single device might also issue transactions to multiple streams, each of which might have different SSD security
states.

The SMMU architecture defines the following rules for the SSD security state. Where the incoming transaction is:
• SSD Non-secure, the SMMU cannot generate downstream transactions with a Secure bus marking.
• SSD Secure, the SMMU can generate downstream transactions with a Secure or a Non-secure bus marking.

The mechanism by which a system determines the SSD security state depends on whether the SSD address space is
present, as defined by the SMMU_IDR1 SSDTP bit. When this address space is present, SMMU_SSDR registers
are provided in the SMMU address space.

SSD address space is present

An IMPLEMENTATION DEFINED mechanism associates each transaction with an SSD_Index. The
SSD_Index is used to select a bit in the SMMU_SSDRn register, the value of which determines the
SSD security state of the transaction. See SMMU SSD address space on page 13-238 for more
information.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-43
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.3 Security State Determination (SSD)
Before transferring control to Non-secure software, Secure software must access the the appropriate
SMMU_SSDRn register and:
1. Set to 0 all bits corresponding to devices that must be Secure.
2. Set to 1 all other bits.
3. Read all bits to verify correct operation, ensuring that any IMPLEMENTATION DEFINED bits are

set correctly.

SSD address space is not present

An SMMU implementation and the system that incorporates it can adopt alternative
IMPLEMENTATION DEFINED approaches to determine the security state of a transaction. For example:

• The transaction source can determine a security state and propagate this with the transaction
to the SMMU. For example, a SSD secure device might issue Secure and Non-secure
transactions on the upstream bus and provide an additional signal indicating that the
transaction belongs to an SSD secure device.

• If an SSD Secure device can issue only Secure upstream bus transactions, and no SSD
Non-secure device can issue Secure upstream bus transactions, an SMMU implementation
might obtain the SSD security state from the upstream bus transaction security marking..

• The SMMU can use other platform-specific knowledge to determine the security status of
each transaction.

In either case, to prevent any device incorrectly being configured as SSD Secure, Secure software must:
• Be aware of the security state determination mechanism.
• Be aware of all devices that are permitted to be classed as Secure.
• Be able to identify the system to ensure the appropriate security state determination mechanism is used.

2.3.1 Banked registers

Some SMMU registers are Banked for security. A Non-secure access to a register address accesses the Non-secure
copy of the register. A Secure access accesses the Secure copy in the Secure address space, at the same address offset
as its Non-secure counterpart.

Not all registers available in both the Secure and Non-secure security states are Banked. For example, registers in
translation context banks that are allocated for Secure or Non-secure access are not Banked. All registers in Secure
translation context banks are invisible to Non-secure accesses.

For information about Banked registers and naming conventions, see Register names on page xiii.

Additional alias registers are provided at different offset addresses, permitting Secure software to access Non-secure
versions of the resources. See Secure alias for Non-secure registers on page 9-157 for more information.
2-44 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.4 Memory type and shareability attribute determination
2.4 Memory type and shareability attribute determination
A transaction can pass through a number of steps as part of the SMMU translation process. The memory type and
shareability attributes can be obtained by combining from a number of sources.

If the final attributes for a memory location is Strongly-ordered or device then the shareability is treated as Outer
Shareable.

In SMMUv2, the SMMU treats final attributes that are Normal Inner Non-cacheable or Normal Outer
Non-cacheable as Outer Shareable. In SMMUv1, it is IMPLEMENTATION DEFINED how the SMMU treats such
attributes.

See the ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition for information about shareability
for these memory types.

In general, the final attributes used for a transaction depend on fields in several registers, in addition to the contents
of the translation table. Table 2-2 shows, for each transaction type, whether each register field applies.

Note
 In SMMUv2, when any of the attributes in Table 2-2 are encoded as Reserved, the meanings are as described in
Reserved memory type and shareability attributes on page 2-48.

Table 2-2 Location and applicability of final memory and shareability attribute information

Location NSCFGa WACFG RACFG MemAttr MTCFG SHCFG INSTCFG PRIVCFG

Stage 1 translation table Y SMMU_CBn_MAIRm provides
memory attribute selection.

N Y Partially determine
permission fault

Stage 2 translation table N Yb Yb Y N Y Partially determine
permission fault

SMMU_S2CRn, Bypass
mode

Y Y Y Y Y Y N N

SMMU_S2CRn, translation
context

Y Y Y Y Y Y Yc Y

Stage 1
SMMU_CBn_SCTLRd

Y Y Y Y Y Y N N

Stage 2
SMMU_CBn_SCTLRe

N Y Y Y Y Y N N

SMMU_CBARnf N Y Y Y N Y N N

a. This bit exists only for Secure transactions.
b. Read Allocate and Write Allocate are not defined for processor stage 2 translation tables. However, bits are reserved for the SMMU for this

purpose See Table 2-7 on page 2-69 for more information.
c. For reads only. In SMMUv2, all writes are forced to 0b10, indicating data. In SMMUv1, it is IMPLEMENTATION DEFINED whether this applies

to writes.
d. When stage 1 context bank MMU behavior is disabled.
e. When stage 2 context bank MMU behavior is disabled.
f. When SMMU_CBARn.TYPE specifies stage 1 with stage 2 bypass, this register specifies the stage 2 attributes that are combined with the

stage 1 attributes..
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-45
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.4 Memory type and shareability attribute determination
Table 2-3 shows how the SMMU must treat the upstream bus marking in cases where the upstream bus system does
not support a particular bus marking.

If the downstream bus system does not support a particular bus marking, an SMMU implementation might not
provide storage for the attribute and, with the exception of NSCFG and PRIVCFG, the corresponding field in
Table 2-3 might be RAZ/WI.

Note
 NSCFG and PRIVCFG interact with the security and permission models and must be retained.

If any SMMU_sCR0 settings result in a transaction bypassing the Stream mapping table, as Bypassing the Stream
mapping table on page 2-60 describes, then SMMU_sCR0 specifies memory attribute transformation for the
transaction.

Similarly, if the SMMU_S2CRn.TYPE field specifies that the initial context is Bypass mode, SMMU_S2CRn
specifies memory attribute transformation for the transaction.

For translations that use a stage 1 translation context bank, SMMU_S2CRn specifies the first memory attribute
transformation, and then either:

• If the SMMU_CBn_SCTLR.M bit is set to 0, that is, context bank MMU behavior is disabled,
SMMU_CBn_SCTLR specifies the next attribute transformation applied.

• If the SMMU_CBn_SCTLR.M bit is set to 1, the translation table specifies the attributes.

When a stage 1 descriptor specifies the attributes, this overrides all attributes except those used for permission
checking. Therefore, the only SMMU_S2CRn fields that affect such transactions are INSTCFG and PRIVCFG.

The resultant attributes are then combined with the stage 2 attributes, depending on the context bank format that the
SMMU_CBARn.TYPE field specifies:

• For stage 1 context with stage 2 bypass format, the stage 1 context SMMU_CBARn specifies the stage 2
memory attributes.

• For stage 1 context with stage 2 context, the setting of the SMMU_CBn_SCTLR.M bit defines the
mechanism for determining the stage 2 attributes. When the SMMU_CBn_SCTLR.M bit:
— Is set to 0, the stage 2 context SMMU_CBn_SCTLR specifies the stage 2 attributes.
— Is set to 1, the translation tables specify the stage 2 attributes.

If SMMU_S2CRn specifies that the initial context is translation context, and SMMU_CBARn specifies a stage 2
translation context bank, the stage 1 attributes are treated as the incoming attributes after the SMMU_S2CRn
transformation has been applied. The stage 2 attributes are considered to be created in the same way as those for the
stage 1 context with stage 2 context.

Table 2-3 SMMU treatment of unsupported upstream bus marking

Attribute Treated as

NSCFG Non-secure

RACFG
WACFG

Allocate

MemAttr Write-Back, Write-Allocate

SHCFG Non-shared

INSTCFG Data

PRIVCFG Unprivileged

TRANSIENTCFG Non-transient
2-46 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.4 Memory type and shareability attribute determination
Stage 1 and stage 2 attributes are combined in accordance with ARM architectural requirements. The stage 2
attributes can only strengthen memory types, where the memory types are listed strongest to weakest:
• Strongly-ordered.
• Device.
• Non-cacheable to normal memory.
• Write-through to normal memory.
• Write-Back to normal memory.

In addition, for ARMv8 the Device memory type consists of the following Device memory types, listed strongest
to weakest:
Device-nGnRnE

Device non-Gathering, non Re-ordering, no Early Write Acknowledgement
Equivalent to the Strongly-ordered memory type in ARMv7.

Device-nGnRE
Device non-Gathering, non Re-ordering, Early Write Acknowledgement.
Equivalent to the Device memory type in ARMv7.

Device-nGRE
Device non-Gathering, Re-ordering, Early Write Acknowledgement.
ARMv8 adds this memory type to the translation table formats found in ARMv7. The use of barriers
is required to order accesses to Device-nGRE memory.

Device-GRE
Device Gathering, Re-ordering, Early Write Acknowledgement.
ARMv8 adds this memory type to the translation table formats found in ARMv7. Device-GRE
memory has the fewest constraints. It behaves similar to Normal memory, with the restriction that
speculative accesses to Device-GRE memory is forbidden.

See the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile for more information.

Similarly, the following shareabilities are listed strongest to weakest:
• Outer Shareable.
• Inner Shareable.
• Non-shareable.

In the ARM architecture, stage 2 attributes do not include a read or write allocation hints. In the SMMU architecture
when context bank translation is disabled, the stage 2 SMMU_CBn_SCTLR RACFG and WACFG fields can be
used with stage 1 translation. If the stage 2 SMMU_CBn_SCTLR.M bit is set to 1 then there are extra fields in the
descriptor that specify RACFG and WACFG fields that are used. See Table 2-7 on page 2-69 for more information.

For memory type and shareability attributes, the following behaviors depend on the SMMU architecture version:

Combining Read and Write hint allocations

In SMMUv1, it is IMPLEMENTATION DEFINED how read and write allocate hints from stage 2
attributes combine with stage 1 attributes, as defined by the appropriate RACFG and WACFG
fields.

In SMMUv2, the stage 2 attributes are used unless the stage 2 translation table format specifies that
the value supplied from the previous stage is used, that is, if WACFG==0b00 or RACFG==0b00.

Transforming bypassed transaction encodings

In SMMUv1, when the appropriate MTCFG field is set to 0, it is IMPLEMENTATION DEFINED
whether certain bypassed client transactions have encodings that cannot be transformed. For
example, an implementation might specify that incoming Strongly-ordered or Device transactions
are not subject to any memory attribute transformation by RACFG or WACFG.

Note
 • In such cases the NSCFG field is guaranteed to be applied if security state determination

classes the transaction as Secure.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-47
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.4 Memory type and shareability attribute determination
• If the appropriate MTCFG field is set to 1, the transformation is always applied, regardless
of the encoding of the incoming transaction.

In SMMUv2, when the appropriate MTCFG field is set to 0, Memory attribute, MemAttr on
page 9-159 specifies the applicable encodings.

Instruction fetch configuration

In SMMUv1, it is IMPLEMENTATION DEFINED whether a SMMU_S2CRn.INSTCFG field
transformation is applied to writes if that transformation would convert the transaction to an
instruction write.

In SMMUv2, all writes are forced to 0b10, indicating data.

2.4.1 Reserved memory type and shareability attributes

Many memory type and shareability attributes can be encoded as Reserved. In SMMUv2, these Reserved settings
must be treated as shown in Table 2-4. In SMMUv1, the effect of using a Reserved value is UNPREDICTABLE.

Note
 If software sets any of the attributes in Table 2-4 to a Reserved value, the Reserved value is returned on subsequent
reads.

2.4.2 Pseudocode for memory attribute operations

SMMU operations that are performed on memory attributes are:

• Combine operation, that outputs the stronger of two attribute types.

• Override operation, that applies a transformation serially from left to right, using the output of one
transformation as the input to the next.

Table 2-4 Memory type and shareability attributes in SMMUv2

Attribute Reserved value SMMUv2 meaning

NSCFG 0b01 0b11, indicating Non-secure.

WACFG 0b01 0b00, indicating default attributes.

RACFG 0b01 0b00, indicating default attributes.

MemAttr[3:0]a

a. In SMMUv1, the values 0b0010 and 0b0011 are Reserved also.

Any of:
• 0b0100.
• 0x1000.
• 0b1100.

0b00, indicating Strongly-ordered or Device.

BPSHCFG 0b00 0b01, indicating Outer Shareable.

INSTCFG 0b01 0b11, indicating instruction.

PRIVCFG 0b01 0b10, indicating unprivileged.

TRANSIENTCFG 0b01 0b00, indicating default attributes.

Note
 In systems that do not support transient marking
of attributes, this attribute is RAZ/WI.
2-48 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.4 Memory type and shareability attribute determination
Note
 • When any non-cacheable or Device attributes are mapped to cacheable memory by a MemAttr

transformation, the pseudocode treats the memory as non-allocateable unless overridden by RACFG,
WACFG or TRANSIENTCFG.

• Hypervisor and Monitor contexts include a stage 2 attribute transformation stage even when the translation
context is stage 1 context with stage 2 bypass. For the stage 2 attribute transformation to have no effect,
software must set all transformations specified in SMMU_CBARn to use the default allocation attributes,
with the following exceptions:
— MemAttr must be set to 0b1111, indicating Inner Write-Back and Outer Write-Back.
— BPSHCFG must be set to 0b11, indicating Non-shareable.

The following pseudocode generates final memory attributes.

// The following fields have reserved values, and in SMMUv1, if these reserved
// values are used the effects are UNPREDICTABLE.
// In SMMUv2, these reserved values should not used by the programmer but
// the hardware must interpret them as below:
// - NSCFG, encoding 0b01. Must be treated as 0b11 (Non-secure).
// - WACFG, encoding 0b01. Must be treated as 0b00 (Default Attributes)
// - RACFG, encoding 0b01. Must be treated as 0b00 (Default Attributes)
// - TRANSIENTCFG, encoding 0b01. Must be treated as 0b00 (Default Attributes).
// Note: this field is RAZ/WI for bus systems that do not support transient marking.
// - PRIVCFG, encoding 0b01. Must be treated as 0b10 (Unprivileged).
// - INSTCFG, encoding 0b01. Must be treated as 0b11 (Instruction).
// - BPSHCFG, encoding 0b00. Must be treated as 0b01 (Outer shareable).
// - MemAttr, encodings 0x4, 0x8 and 0xC. Must be treated as 0x0 (Strongly Ordered)

attribute_transformations(attributes incoming)
{
 if (incoming is cache maintenance operation)
 {
 // A cache maintenance operation only has NS, shareability and whether the
 // operation must propagate to PointOfUnification or PointOfCoherency
 //
 // NOTE for AMBA systems, they also have:
 // - User or Privileged
 // - Instruction or Data
 // These interact with the permission model

 bool saved_PoU = incoming.IsPoU();

 incoming.inner = ("read allocate", "write allocate", "write back", "non transient");
 incoming.outer = ("read allocate", "write allocate", "write back", "non transient");
 // Note: NS, Inst, Priv and shareability are preserved

 attributes = data_attribute_transformations(incoming);

 // If the memory attributes end up being:
 // - Any device type
 // - inner non-cacheable, outer non-cacheable normal memory
 // Then architecturally these are outer shared and the cache maintenance
 // operation must be outer shared

 // NOTE: if the downstream bus system can represent any allocation or
 // transient hints on a CMO then these are forced to zero.
 attributes.inner.read_allocate = no_allocate;
 attributes.inner.write_allocate = no_allocate;
 attributes.inner.transient_allocate = no_allocate;
 attributes.outer.read_allocate = no_allocate;
 attributes.outer.write_allocate = no_allocate;
 attributes.outer.transient_allocate = no_allocate;

 // Restore what where the operation should propagate to
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-49
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.4 Memory type and shareability attribute determination
 attributes.SetPoU(saved_PoU);

 if (IMP DEF option)
 {
 // It is implementation defined what Transient attribute

 // is marked on CMOs. It may be defined by the bus standard
 // or it may be upto the implementation dependent on the SoC's

 // needs.
 attributes.SetInnerTransient(IMP DEF InnerTransient);
 attributes.SetOuterTransient(IMP DEF OuterTransient);
 }

 return attributes;
 }
 else if (incoming is barrier operation)
 {
 return barrier_attribute_transformation(incoming);
 }
 else
 {
 return data_attribute_transformations(incoming);
 }
}

attributes data_attribute_tranformations(attributes incoming)
{
 if (CLIENTPD)
 {
 return Override(incoming, SMMU_sCR0);
 }

 switch (stream_match(incoming))
 {
 case unique:
 break;

 case multi_match:
 if (SMMU_sCR0.SMCFCFG)
 {
 // Stream Match Conflict Fault
 return FAULT;
 }
 return Override(incoming, SMMU_sCR0);

 case no_match:
 if (SMMU_sCR0.USFCFG)
 {
 // Unidentified Stream Fault
 return FAULT;
 }
 return Override(incoming, SMMU_sCR0);
 }

 switch (S2CR.TYPE)
 {
 case reserved:
 if (is_SMMUv1)
 {
 UNPREDICTABLE;
 }
 fallthrough;
 case fault:
 // Invalid Context Fault
 return FAULT;

 case bypass:
 return Override(incoming, S2CR);

2-50 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.4 Memory type and shareability attribute determination
 case translation:
 break;
 }

 if (! CheckBankValidityAndRecordFaults())
 {
 return FAULT;
 }

 return Combine(
 Override(incoming, S2CR, Stage1Attributes()),
 Stage2Attributes()
);

 // The above line reduces to the following expressions:
 // TYPE == st1_st2bypass:
 // Combine(Override(incoming, s2cr, Stage1Attributes()), st1.cbar)
 // TYPE == st1_st2nested:
 // Combine(Override(incoming, s2cr, Stage1Attributes()),
 // (s2.sctlr.M ? s2.descriptor : s2.sctlr))
 // TYPE == st2only:
 // Combine(Override(incoming, s2cr),
 // (s2.sctlr.M ? s2.descriptor : s2.sctlr))
}

attributes barrier_attribute_tranformations(attributes incoming)
{
 // Barriers conceptually only have:
 // - shareability
 // - security state
 // - propagation point (Point of Unification / Point of Coherency)
 //
 // In AMBA systems they also have:
 // - Instruction not data
 // - Privileged not user
 //
 // NOTE everything except the propagation point can be transformed
 // NOTE barriers cannot be terminated by the SMMU unless unsupported
 // downstream (in which case they are terminated if they don't fault)
 //
 // Barriers cannot generate:
 // - SIF faults
 // - Translation faults
 // - Address Size faults
 // - Permission faults
 // - Access faults
 //
 // Barriers can generate:
 // - Unidentified Stream Fault
 // - Stream Match Conflict Fault
 // - Invalid Context Fault
 // - Unimplemented Context Bank Fault
 //
 // Note: in SMMUv1 it is acceptable that even if a fault occurs, barriers
 // are always sent downstream.
 // However, the attribute transformation is UNPREDICTABLE. This is
 // mostly harmless.

 if (CLIENTPD)
 {
 return BSU_Combine(incoming, SMMU_sCR0);
 }

 switch (stream_match(incoming))
 {
 case unique:
 break;
 case multi_match:
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-51
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.4 Memory type and shareability attribute determination
 if (SMMU_sCR0.SMCFCFG)
 {
 // Stream Match Conflict Fault
 return FAULT;
 }
 return BSU_Combine(incoming, SMMU_sCR0);
 case no_match:
 if (SMMU_sCR0.USFCFG)
 {
 // Unidentified Stream Fault
 return FAULT;
 }
 return BSU_Combine(incoming, SMMU_sCR0);
 }

 switch (S2CR.TYPE)
 {
 case fault:
 fallthrough;
 case reserved:
 // Invalid Context Fault
 return FAULT;

 case bypass:
 return BSU_Combine(incoming, S2CR);
 case translation:
 break;
 }

 if (! CheckBankValidityAndRecordFaults())
 {
 return FAULT;
 }

 return BSU_Combine(
 BSU_Combine(incoming, S2CR, BarrierStage1Attributes()),
 BarrierStage2Attributes()
);
}

Stage1Attributes()
{
 if (st1_st2bypass || st1_st2nested)
 {
 // In SMMUv2, for V7S the transient attribute is not transformed
 attribute_transform_t trans = s1.sctlr.M == 1 ? s1.descriptor : s1.sctlr;

 // HYPC and MONC banks force privileged on the downstream bus if
 // supported by the bus. It is IMP DEF if this forced attribute
 // is visible in the SMMU_sGFSYNR0.PNU or SMMU_CBn_FSYNR0.PNU.
 if (context bank is HYPC or MONC)
 trans.PRIVCFG = "Privileged";

 return trans;
 }
 else
 {
 return <no-attributes>;
 }
}

BarrierStage1Attributes()
{
 if (st1_st2bypass || st1_st2nested)
 {
 return s1.sctlr;
 }
 else
2-52 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.4 Memory type and shareability attribute determination
 {
 return <no-attributes>;
 }
}

Stage2Attributes()
{
 if (st1_st2bypass)
 {
 return s1.cbar;
 }
 return s2.sctlr.M == 1 ? s2.descriptor : s2.sctlr;
}

BarrierStage2Attributes()
{
 if (st1_st2bypass)
 {
 return s1.cbar;
 }
 return s2.sctlr;
}

// The complete attributes form a total order where one value is stronger than
// another:
//
// Shareability: osh > ish > nsh
// Memory type : so(nGnRnE) > dv(nGnRE) > nGRE > GRE > nc_nb > nc > wt > wb
// World : non-secure > secure
//
// Secure can ONLY be downgraded, hence non-secure > secure
//
attributes StrongerOf(attributes s1_attributes, attributes s2_attributes);

attributes Combine(attributes s1_attributes, attributes s2_attributes)
{
 attributes attributes;

 // For each of the attribute fields then choose the stronger of the
 // two.
 foreach field F in attributes
 {
 if (F in {read_allocate, write_allocate, transient_allocate})
 {
 attributes.F = Combine_allocate(s1_attributes.F, s2_attributes.F);
 }
 else
 {
 attributes.F = StrongerOf(s1_attributes.F, s2_attributes.F);
 }
 }

 //
 // Normalize attributes
 //
 // We can end up with strange attributes that do not obey the
 // architectural properties required. This stage normalizes these
 // cases
 //
 if (is_any_device(is_SMMUv1, attributes)
 || is_inner_and_outer_non_cacheable_normal(attributes))
 {
 attributes.shareability = outer_shared;
 attributes.inner.read_allocate = no_allocate;
 attributes.inner.write_allocate = no_allocate;
 attributes.inner.transient_allocate = no_allocate;
 attributes.outer.read_allocate = no_allocate;
 attributes.outer.write_allocate = no_allocate;
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-53
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.4 Memory type and shareability attribute determination
 attributes.outer.transient_allocate = no_allocate;
 }
 else
 {
 if (attributes.inner is not cacheable)
 {
 attributes.inner.read_allocate = no_allocate;
 attributes.inner.write_allocate = no_allocate;
 attributes.inner.transient_allocate = no_allocate;
 }

 if (attributes.outer is not cacheable)
 {
 attributes.outer.read_allocate = no_allocate;
 attributes.outer.write_allocate = no_allocate;
 attributes.outer.transient_allocate = no_allocate;
 }
 }

 return attributes;
}

Combine_allocate(s1_attributes, s2_attributes)
{
 // There is no intuitive 'stronger-than' relation for allocation and so we
 // choose to always obey the s2 attributes if they are anything other than
 // 'no-transform'. The rationale is that the hypervisor should have more
 // SoC-specific knowledge than the guest OS and should know if it is
 // appropriate to allocate into the downstream cache or not (weak argument).
 //
 // This is different to MMU-400 behaviour where 'no_allocate' wins and
 // failing that then always use s1_attributes. SMMUv1 didn't specify the
 // behaviour (essentially IMP DEF). In SMMUv2 then we are specifying the
 // behaviour (though differently to MMU-400).
 //
 if (s2_attributes != 0b00 /*no-transform*/)
 {
 return s2_attributes; // Ignore s1_attributes
 }
 return s1_attributes;
}

MemoryAttributes map_MemAttr_to_attributes[16] = {
 // Outer Inner
 // ----- -----
/* 00 */ { so, so },
/* 01 */ { dv, dv },
/* 02 */ { nGRE, nGRE }, // new to V8, UNPRED in v7
/* 03 */ { GRE, GRE }, // new to V8, UNPRED in v7

/* 04 */ { BAD, BAD },
/* 05 */ { nc, nc },
/* 06 */ { nc, naWT },
/* 07 */ { nc, naWB },

/* 08 */ { BAD , BAD },
/* 09 */ { naWT, nc },
/* 10 */ { naWT, naWT },
/* 11 */ { naWT, naWB },

/* 12 */ { BAD , BAD },
/* 13 */ { naWB, nc },
/* 14 */ { naWB, naWT },
/* 15 */ { naWB, naWB }
};

transaction transform_by_register(register reg, transaction incoming)
{

2-54 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.4 Memory type and shareability attribute determination
 // NOTE that not all fields are present in all registers, but we present
 // them as all present. In these cases then the corresponding field will
 // be treated as ‘use value supplied from previous attribute transformation step’.
 //
 // NOTE not all bus systems signal both inner and outer attributes. It is
 // IMP DEF which set will be used (but will be consistent throughout the
 // device).
 //

 if (reg.MTCFG)
 {
 // v8 adds new device types so is_any_device() needs to know the
 // architecture version to determine if it is any type of device

 attributes = map_MemAttr_to_attributes[reg.MemAttr];

 if (attributes == BAD
 || (is_SMMUv1 && (attributes is nGRE or GRE)))
 {
 if (is_SMMUv1)
 {
 attributes = UNPREDICTABLE; // maybe FAULT
 }
 else
 {
 // Treat as strongly ordered
 attributes = { so, so };
 }
 }

 //
 // NOTE that if the original transaction was non-cacheable then
 // the MemAttr field encodes no-allocate.
 //
 // If the incoming transaction is cacheable then the allocation attributes
 // will come from the incoming transaction
 //
 if (incoming.attributes().inner is cacheable
 && attributes.inner is cacheable)
 {
 attributes.inner.read_allocate = incoming.attributes().inner.read_allocate;
 attributes.inner.write_allocate = incoming.attributes().inner.write_allocate;
 attributes.inner.transient_allocate = incoming.attributes().inner.transient_allocate;
 }

 if (incoming.attributes().outer is cacheable
 && attributes.outer is cacheable)
 {
 attributes.outer.read_allocate = incoming.attributes().outer.read_allocate;
 attributes.outer.write_allocate = incoming.attributes().outer.write_allocate;
 attributes.outer.transient_allocate = incoming.attributes().outer.transient_allocate;
 }
 }
 else
 {
 // Not MTCFG
 attributes = incoming.attributes();
 }

 if (is_any_device(is_SMMUv1, attributes) || is_iNC_oNC(is_SMMUv1, attributes))
 {
 // Device
 shareability = outer_shared;

 inner_read_allocate = false;
 inner_write_allocate = false;
 inner_transient = false;
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-55
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.4 Memory type and shareability attribute determination
 outer_read_allocate = false;
 outer_write_allocate = false;
 outer_transient = false;
 }
 else
 {
 // Normal memory

 shareability = reg.SHCFG(incoming.shareability());

 if (attributes.inner_is_cacheable())
 {
 inner_read_allocate = reg.RACFG(attributes.inner.read_allocate);
 inner_write_allocate = reg.WACFG(attributes.inner.write_allocate);
 inner_transient = reg.TRANSIENT(attributes.inner.transient_allocate);
 }
 else
 {
 inner_read_allocate = false;
 inner_write_allocate = false;
 inner_transient = false;
 }

 if (attributes.outer_is_cacheable())
 {
 outer_read_allocate = reg.RACFG(attributes.outer.read_allocate);
 outer_write_allocate = reg.WACFG(attributes.outer.write_allocate);
 outer_transient = reg.TRANSIENT(attributes.outer.transient_allocate);
 }
 else
 {
 outer_read_allocate = false;
 outer_write_allocate = false;
 outer_transient = false;
 }
 }

 ns = ssd_is_non_secure ? NON_SECURE : reg.NSCFG(incoming.ns());

 if (is_read)
 {
 inst = reg.INSTCFG(incoming.inst());
 }
 else
 {
 inst = "data"; // All writes are represented as Data (not instruction) writes
 // even if the upstream system marks it as Instruction
 }

 if (is_SMMUv1 && ! is_read && reg.INSTCFG == instcfg_instruction)
 {
 // MMU-400 will mark it as an 'instruction write'.
 inst = IMP_DEF;
 }

 priv = reg.PRIVCFG(incoming.priv());

 // Set up the outgoing transaction

 Transaction outgoing = incoming;

 outgoing.attributes
 = (inst, priv, ns
 shareability,
 attributes,
 inner_read_allocate, inner_write_allocate, inner_transient,
2-56 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.4 Memory type and shareability attribute determination
 outer_read_allocate, outer_write_allocate, outer_transient);

 return outgoing;
}

transaction Override(transaction incoming, register[] regs)
{
 transaction outgoing = incoming;

 foreach(register reg in regs)
 {
 outgoing = transform_by_register(outgoing, reg);
 }

 return outgoing;
}

transaction BSU_Combine(transaction incoming, register[] regs)
{
 transaction outgoing = incoming;

 foreach(register reg in regs)
 {
 outgoing.shareability = StrongerOf(reg.BSU, outgoing.shareability);
 }

 return outgoing;
}
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-57
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.5 Context determination
2.5 Context determination
The SMMU processes a transaction in one of the following ways:

• Bypass address translation but transform attributes.

• Fault the transaction.

• Require the resources of either one or two translation context banks, each having its own set of translations,
attributes and permissions that apply to a transaction being processed by that context bank.

Context determination determines the resources the SMMU uses to process a transaction.

In an SMMU that supports two stages of translation, a transaction can be associated with up to two translation
context banks.

2.5.1 Transaction streams

The SMMU can process transactions from multiple sources, potentially using a different context for each
transaction. A transaction stream is a sequence of transactions associated with a particular thread of activity in the
system.

Transactions from the same transaction stream are associated with the same context, and are therefore subject to the
same type of processing in the SMMU. A device in the system can issue transactions using more than one
transaction stream, and a single transaction stream can contain transactions from more than one device.

A Stream Identifier (StreamID) associates a transaction with a transaction stream. The StreamID is derived from
transaction identification information, such as:
• The transaction ID.
• The read and write status.
• The security state of the upstream bus transaction.

As a result of the system-specific nature of transaction identification, and the variety of system interconnect
protocols that exist, the encoding of the StreamID used by a specific SMMU instance is IMPLEMENTATION DEFINED.

The StreamID uniquely identifies a stream of transactions, and can commonly be derived from identifier
information conveyed on the bus interconnect, such as the NS bit, the Read not Write (RnW) bit indicating whether
a transaction is a read or a write operation, and the transaction ID.

The number of implemented StreamID bits:
• Is defined by SMMU_IDR0.NUMSIDB[3:0], with possible extension to 16 bits in SMMUv2.
• Lies in the range:

— 0-15, in SMMUv1.
— 0-16, in SMMUv2.

In SMMUv2, optional 16 bit Stream IDs are supported when both:
• SMMU_IDR0.EXIDS==1.
• SMMU_IDR0.NUMSIDB==15.

When SMMU_sCR0.EXIDENABLE==1, 16 bit Stream ID functionality is enabled. and the stream matching
process uses the extended ID SMMU_SMRn register format.

A zero-bit StreamID might exist if the source of a single StreamID has a dedicated SMMU.

2.5.2 The Stream mapping table

In the SMMU, the Stream mapping table maps transaction streams to a context. An SMMU implementation
supports one of the following stream mapping schemes:
• StreamID matching
• StreamID indexing.
2-58 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.5 Context determination
It is IMPLEMENTATION DEFINED whether a Stream mapping table implements the StreamID matching or StreamID
indexing scheme. SMMU_IDR0.SMS identifies the implemented scheme.

The Stream mapping table consists of a number of entries. Each entry is a Stream mapping register group containing
the following registers, where n defines the Stream mapping register group number:
• SMMU_SMRn
• SMMU_S2CRn.

In an implementation that uses StreamID matching, SMMU_SMRn determines whether a transaction matches the
group. In an implementation that uses StreamID indexing, the StreamID is an index into the Stream mapping table
and the SMMU_SMRn registers do not exist.

SMMU_S2CRn specifies the initial context for the translation process. This can be either a translation context,
Bypass mode, or fault condition.

SMMU_IDR0.NUMSMRG specifies the number of IMPLEMENTATION DEFINED Stream mapping register groups. In
an implementation that supports two security states, Secure and Non-secure register groups can be implemented.
Secure software can access both Secure and Non-secure register groups. An attempt by Non-secure software to
access a Secure group, or by any software to access a group above the reported implemented number, results in one
of the following IMPLEMENTATION DEFINED behaviors:
• The access is treated as RAZ/WI.
• A configuration access fault is raised, as Chapter 3 The Fault Model describes.

In an implementation that includes StreamID matching, ARM recommends that Secure software gives Non-secure
software at least one Stream Match Register group.

2.5.3 Stream-to-Context Register, SMMU_S2CRn

SMMU_S2CRn specifies the initial context for processing a transaction. Optionally, SMMU_S2CRn also
preconditions the incoming attributes. This preconditioning stage can alter incorrect attributes from a client device,
or can override the incoming permission attributes as required for correct interaction in the translation tables.

n is in the range 0-127, and identifies the Stream mapping register group for the transaction. This means that the
other register in the Stream mapping register group is SMMU_SMRn.

SMMU_S2CRn specifies one of the following initial contexts:
• A translation context

— A stage 1 translation context bank, if the implementation supports stage 1 translation.
— A stage 2 translation context bank, if the implementation supports stage 2 translation.

• Bypass mode, optionally overlaying memory attributes
• Fault.

Translation context bank

The SMMU includes separate stage 1 and stage 2 translation context banks that provide functionality for stage 1
and stage 2 translation, such as translation process configuration and TLB maintenance operations.

An implementation can support the following types of translation:
• Stage 1 only.
• Stage 2 only.
• Stage 1 followed by stage 2.

If SMMU_S2CRn specifies a stage 1 translation context bank or a stage 2 translation context bank as the initial
context, the SMMU_CBARn register associated with the translation context bank can specify additional translation
attributes.

Additionally, in an implementation that supports stage 1 followed by stage 2 translation, when SMMU_S2CRn
specifies a stage 1 translation context bank, the SMMU_CBARn register associated with the initial translation
context bank can specify a subsequent stage 2 context bank.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-59
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.5 Context determination
The number of SMMU_CBARn registers matches the number of entries in the translation context bank table, and
is IMPLEMENTATION DEFINED. SMMU_IDR1.NUMCB specifies the number of implemented SMMU_CBARn
registers.

For more information about attributes associated with a translation context bank, see The Context Bank Attribute
Register, SMMU_CBARn on page 2-67.

SMMU_S2CRn can specify:

• The following memory attributes to replace those specified by the transaction:
— Memory type, using the MemAttr field when MTCFG is set to 1.
— Shareable attributes, using the SHCFG field.
— Cache allocation hints, using the WACFG and RACFG fields.
— For Secure Stream mapping register groups only, Non-secure configuration, using the NSCFG field.

• The following permission attributes that indicate device privilege level:
— Instruction fetch attributes, using the INSTCFG field.
— Privilege attribute, using the PRIVCFG field.

These attributes are the starting point for translation. The translation context bank can modify them. See Memory
type and shareability attribute determination on page 2-45 for more information.

It is IMPLEMENTATION DEFINED whether an SMMU implementation supports:
• Stage 1 translation. SMMU_IDR0.S1TS specifies whether stage 1 translation is supported.
• Stage 2 translation. SMMU_IDR0.S2TS specifies whether stage 2 translation is supported.
• Stage 1 followed by stage 2 translation. SMMU_IDR0.NTS specifies whether stage 1 followed by stage 2

translation is supported.

Note
 If stage 1 followed by stage 2 translation is supported, then both stage 1 and stage 2 translation must be supported.
That is, if the SMMU_IDR0.NTS bit is set to 1, then both the SMMU_IDR0.S1TS and SMMU_IDR0.S2TS bits
must be set to 1.

The number of translation context bank entries for stage 1 or stage 2 translation is IMPLEMENTATION DEFINED. If
SMMU_S2CRn is configured to specify an unimplemented translation context bank for stage 1 or stage 2, any
transaction processed as part of that stream results in an Unimplemented context bank fault.

Bypass mode

If SMMU_S2CRn.TYPE is configured as Bypass mode, no address translation is applied to the transaction.
However, SMMU_S2CRn can specify memory and permission attributes for the transaction.

No protection check is applied, except where an instruction fetch by a Secure client is subject to a protection check,
based on the value of SMMU_SCR1.SIF.

Fault

If SMMU_S2CRn specifies a fault, all transactions associated with that Stream mapping register group are subject
to an invalid context fault. See Global faults on page 3-95 for more information.

2.5.4 Bypassing the Stream mapping table

A transaction bypasses the Stream mapping table if any of the following apply:
• SMMU_sCR0.CLIENTPD is 1.
• The transaction does not match any entries in the Stream mapping table and SMMU_sCR0.USFCFG is 0.
• The transaction is detected to match multiple entries in the Stream mapping table and

SMMU_sCR0.SMCFCFG is 0.
2-60 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.5 Context determination
A transaction that bypasses the Stream mapping table is not subject to address translation, but is subject to an
attribute-only transformation from the appropriate copy of SMMU_sCR0. In most cases, such a transaction is not
subject to any protection checking. In particular:
• A data access is not subject to any protection checking.
• An instruction fetch might be subject to a permission check if the implementation supports two security

states.

In an implementation that supports two security states:
• SMMU_CR0.CLIENTPD only applies to Non-secure transactions
• SMMU_SCR0.CLIENTPD is an equivalent field that applies to Secure transactions.

See SMMU_sCR0, Configuration Register 0 on page 9-167.

Secure instruction fetch transactions that bypass the Stream mapping table can be subject to a protection check. If
the SMMU_SCR1.SIF bit is set to 1, a permission fault is recorded for any incoming SSD Secure transaction where
the SMMU generates a downstream transaction with a Non-secure instruction bus marking.

This check applies globally, and records faults to SMMU_SGFSR. If a transaction is associated with a particular
translation context bank, faults are recorded in SMMU_CBn_FSR instead of SMMU_SGFSR.

Instruction fetches by a Non-secure client are not subject to any protection checking.

Note
 Whether Secure Instruction Fetch checks apply to instruction writes is IMPLEMENTATION DEFINED.

2.5.5 No match handling

If no match for a transaction is found in the Stream mapping table, the SMMU can either:
• Permit the transaction to bypass the SMMU translation process.
• Fault the transaction, resulting in an unidentified stream fault.

SMMU_sCR0.USFCFG can be used to configure the handling of a transaction that does not match any Stream
mapping table entry. In an implementation that supports two security states:
• SMMU_CR0.USFCFG only applies to Non-secure transactions.
• SMMU_SCR0.USFCFG applies to Secure transactions.

Transactions that bypass the SMMU translation process are not subject to address translation. SMMU_sCR0 can be
used to configure a set of bypass memory attributes that apply to all such transactions.

2.5.6 StreamID matching

In a register group that uses StreamID matching, SMMU_SMRn specifies conditions that must be met for a
transaction to be associated with the Stream mapping register group to which SMMU_SMRn belongs.

The SMMU_SMRn registers form a table that is searched associatively to find a match for the StreamID of a
transaction. For more information about StreamIDs, see Transaction streams on page 2-58.

If a transaction matches all of the conditions specified in SMMU_SMRn, the translation context, Bypass mode, or
fault context specified by SMMU_S2CRn is used to process the transaction.

SMMU_SMRn provides StreamID and mask fields that permit the masking of StreamID bits irrelevant to the
matching process.

The Stream mapping table permits a number of StreamID values to be mapped to the same context. This means the
state describing that context can be shared. Mapping multiple StreamID values to the same context is achieved using
multiple Stream mapping table entries, or using the mask facilities in the SMMU_SMRn encoding.

The Stream mapping table must be configured so that a StreamID matches, at most, one entry in the Stream mapping
table. During configuration, software must ensure that there is no overlap in Stream mapping table entries for all
StreamIDs that are active.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-61
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.5 Context determination
If the StreamID of a transaction matches multiple Stream mapping table entries, either of the following
IMPLEMENTATION DEFINED options are possible:

• The SMMU detects the multiple match and either:
— permits the transaction to bypass the SMMU translation process
— faults the transaction with a Stream match conflict fault.

• The SMMU does not detect the multiple match, and processes the transaction using one of the matching
entries in the Stream mapping table.

SMMU_IDR1.SMCD indicates whether the SMMU detects all Stream match conflicts. This value is
IMPLEMENTATION DEFINED.

SMMU_sCR0.SMCFCFG specifies whether the SMMU permits bypass or raises a Stream match conflict fault. It
is IMPLEMENTATION DEFINED whether this setting is configurable. If it is not configurable,
SMMU_sCR0.SMCFCFG has a fixed value and writes are ignored.

SMMU_sCR0.USFCFG specifies how transactions with no match in the Stream mapping table are handled. It is
IMPLEMENTATION DEFINED whether the SMMU supports all of the possible handling options.

Unimplemented SMMU_SMRn registers, or those allocated for use by Secure software and therefore invisible to
Non-secure accesses, behave as RAZ/WI. These registers have an IMPLEMENTATION DEFINED option to trap
accesses to unimplemented registers and raise a configuration access fault. See Chapter 3 The Fault Model.

2.5.7 StreamID indexing

In an implementation that uses StreamID indexing, a one-to-one stream mapping associates a transaction with a
Stream mapping register group. The StreamID associated with the transaction is an index into the Stream mapping
table, and directly selects the Stream mapping register group for processing the transaction. The maximum
StreamID size in a register group that uses StreamID indexing is 7 bits.

It is IMPLEMENTATION DEFINED whether the Stream mapping table implements Stream Match Register functionality.
SMMU_IDR0.SMS indicates whether the register group supports Stream Match Register functionality. In an
implementation that supports StreamID indexing, a Stream Match Register has no effect on the stream mapping
process and is UNK/SBPZ.

2.5.8 The Stream mapping table in an implementation that supports two security states

In an implementation that supports two security states, the Stream mapping table is a common resource. Secure
software can reduce the size of the Stream mapping table seen by Non-secure software using
SMMU_SCR1.NSNUMSMRGO. Non-secure accesses see only the table size defined by
SMMU_SCR1.NSNUMSMRGO, and this value determines the size of the table seen by a Non-secure read of
SMMU_IDR0.NUMSMRG. This functionality permits Secure software to allocate a number of Stream mapping
register groups to be used by Secure software.

Secure software can access all implemented entries in the table. This means Secure software can inspect Non-secure
Stream mapping table entries.

The stream mapping process uses the Secure status indication from the security state determination to prevent
Non-secure access, as follows:
• Transactions from Non-secure devices can only match Stream mapping table entries not allocated for use by

Secure software.
• Transactions from Secure devices can only match Stream mapping table entries allocated for use by Secure

software.

Where using SMMU_SCR1.NSNUMSMRGO to allocate the SMMU_S2CRn registers for Secure use,
SMMU_S2CRn must specify a translation context bank of appropriate security, as follows:

• An SMMU_S2CRn register allocated for use by Secure software can only specify a translation context bank
that is allocated for use by Secure software. If Secure software fails to comply with this requirement, the
result is UNPREDICTABLE.
2-62 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.5 Context determination
• An SMMU_S2CRn register not allocated for use by Secure software can only specify a translation context
bank that is not allocated for use by Secure software. If Non-secure software fails to comply with this
requirement, an Unimplemented context bank fault is raised for any transactions mapped to that
SMMU_S2CRn register.

2.5.9 Reset state

On reset, no initialization is performed on Stream mapping table entries. The required contents of the Stream
mapping table must be initialized before the SMMU is enabled.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-63
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.6 Translation context
2.6 Translation context
A translation context provides information and resources required by the SMMU to process a transaction.

The SMMU can process multiple transaction streams from different threads of execution, and supports multiple live
translation contexts.

A translation context bank includes state for configuring the translation process and capturing fault status, and
operations for maintaining cached translations. A translation context bank specifies largely the same state used by
the ARM processor architecture translation process, principally:
• The translation table base addresses.
• Memory attributes to use during the translation table walk.
• Translation table attribute remapping.

The format of a translation context bank depends on whether it is used for stage 1 or stage 2 translation.

Context bank determination determines the translation context bank that is to be used during the processing of a
transaction. Up to two translation context banks can be specified:
• In implementations that do not support stage 1 followed by stage 2 translations, only one translation context

bank can be specified.
• In implementations that support stage 1 followed by stage 2 translations:

— One translation context bank is specified for single-stage translation.
— Two translation context banks are specified for two-stage translation.

2.6.1 The translation context bank table

Translation context banks are arranged as a table in the SMMU configuration address map. Each entry in the table
occupies a PAGESIZE address space, where PAGESIZE is 4KB or 64KB. See PAGESIZE and NUMPAGENDXB
on page 8-144.

The SMMU architecture provides space for up to 128 translation context banks. The PAGESIZE alignment means
a hypervisor can give a Guest OS direct access to a specific translation context bank by using the stage 2 translation
functionality provided by an MMU on the processor. Similarly, a hypervisor can use address translation to give the
illusion of a contiguous translation context bank table to a Guest OS.

A single translation context bank table contains all of the translation context banks, regardless of whether they are
stage 1 or stage 2 format.

The number of translation context banks an SMMU implements is IMPLEMENTATION DEFINED, and is specified by
SMMU_IDR1.NUMCB. An attempt to access an unimplemented translation context bank results in one of the
following IMPLEMENTATION DEFINED behaviors:
• The access is treated as RAZ/WI.
• The access generates a configuration access fault, as Chapter 3 The Fault Model describes.

Some translation context banks might only support stage 2 translations.

SMMU_IDR1.NUMS2CB specifies the IMPLEMENTATION DEFINED number of translation context banks that only
support stage 2 translation. The remaining translation context banks support either stage 1 or stage 2 translation.
Translation context banks that only support stage 2 translation are grouped together, starting at location 0 in the
translation context bank table. The remaining translation context banks are similarly grouped and start immediately
after the translation context banks that only support stage 2 translations.

For translation context banks that can be used for either stage 1 or stage 2 translations, the translation format is
specified by the SMMU_CBARn.TYPE field associated with the translation context bank.

Translation context bank table in an implementation that supports two security states

In an implementation that supports two security states, SMMU_SCR1.NSNUMCBO can be used to allocate a
number of translation context banks for Secure use. This field allocates translation context banks from the top of the
translation context bank table. Because only stage 1 translation is supported for Secure transactions, only translation
context banks that can support stage 1 translation can be allocated for Secure use.
2-64 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.6 Translation context
An SMMU_S2CRn register that is allocated for use by Secure software must specify a translation context bank of
appropriate security, as The Stream mapping table in an implementation that supports two security states on
page 2-62 describes.

For configuration accesses, Secure software can access all translation context banks, and Non-secure software can
only access translation context banks that are not allocated for use by Secure software. This means Secure software
can inspect Non-secure translation context banks.

The value written to SMMU_SCR1.NSNUMCBO affects the value read from SMMU_IDR1.NUMCB.

Figure 2-6 gives an overview of the translation context bank table, SMMU_IDR1 fields and the effect of the
override registers.

Figure 2-6 Translation context bank table

TTBR determination is different for Secure and Non-secure translation context banks. For a stage 1 translation
context bank, the applicable TTBR is determined by whether:
• A 32-bit or 64-bit descriptor format is used, as defined by the SMMU_CBA2Rn.VA64 bit.
• The context bank is a HYPC bank, as defined by the SMMU_CBARn.HYPC bit.
• The context bank is a Secure bank, as defined by the SMMU_CBA2Rn.MONC bit, as defined by the rules

in Table 2-5 and Table 2-6 on page 2-66.

Note
 In SMMUv2, if any of these bits do not specify a valid configuration the SMMU records a global invalid context
fault. See Global faults on page 3-95 for more information.

Table 2-5 shows the TTBR determination for Non-secure translation context banks.

Unimplemented

0

Unimplemented

Secure stage 1

Secure stage 1

Non-secure stage 1 or stage 2

Non-secure stage 1 or stage 2

Non-secure stage 1 or stage 2

Non-secure stage 1 or stage 2

Non-secure stage 1 or stage 2

Non-secure stage 2

Non-secure stage 2

Non-secure stage 2

Non-secure stage 2

127

SMMU_IDR1 NUMCB

SMMU_SCR1 NSNUMCBO

Overridden value

SMMU_IDR1 NUMS2CB

Table 2-5 TTBR determination for Non-secure translation context banks

VA64 bit HYPC bit MONC bit Translation
stage TTBR Description

0 0 - Stage 1 TTBR0 and
TTBR1

A Non-secure 32-bit OS translation context.

0 1 - Stage 1 TTBR0a A Non-secure 32-bit Hypervisor translation context.

0 - - Stage 2 TTBR0 A Non-secure stage 2 translation context.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-65
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.6 Translation context
Table 2-6 shows the TTBR determination for Secure translation context banks.

Translation context bank for stage 1 translation

A translation context bank for stage 1 translation contains the following:
• Context control registers.
• Translation table base and control registers.
• Fault address and status registers.
• OPTIONAL address translation registers that permit software to initiate address translation operations.
• Physical address and status registers.
• Registers that initiate TLB maintenance operations.

See Chapter 14 Stage 1 Translation Context Bank Format for more details.

Translation context bank for stage 2 translation

The format of a translation context bank configured for stage 2 translation is similar to the stage 1 format. See Stage
1 and stage 2 context bank format differences on page 15-296 for information about the differences, and see
Chapter 15 Stage 2 Translation Context Bank Format for more information about the stage 2 format.

Reset state

On reset, no translation context bank table entry initialization is required. Typically, the SMMU implementation
initializes the required values before use.

1 0 - Stage 1 TTBR0 and
TTBR1

A Non-secure 64-bit OS translation context.

1 1 - Stage 1 TTBR0 A Non-secure 64-bit Hypervisor translation context.

1 - - Stage 2 TTBR0 A Non-secure stage 2 translation context.

a. Although the value of the SMMU_CBn_TCR.EAE bit is ignored, ARM recommends that it is set to 1.

Table 2-5 TTBR determination for Non-secure translation context banks (continued)

VA64 bit HYPC bit MONC bit Translation
stage TTBR Description

Table 2-6 TTBR determination for Secure translation context banks

VA64 bit HYPC bit MONC bit Translation stage TTBR Description

0 0 - Stage 1 TTBR0 and
TTBR1

A Secure 32-bit OS translation context.

1 - Stage 1 TTBR0 A Securea 32-bit Hypervisor translation context.

1 0 0 Stage 1 TTBR0 and
TTBR1

A Secure 64-bit OS translation context.

1 0 Stage 1 TTBR0 A Securea 64-bit Hypervisor translation context.

1 - 1 Stage 1 TTBR0 A Secure 64-bit Monitor translation context.

a. Although a hypervisor exists only in Non-secure state in the ARM architecture, Secure Hypervisor contexts are specific to the SMMU
architecture. See Hypervisor contexts on page 2-71.
2-66 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.6 Translation context
2.6.2 The Context Bank Attribute Register, SMMU_CBARn

Each translation context bank has an associated SMMU_CBARn register. A translation context bank of index n is
associated with an SMMU_CBARn. This register provides additional attributes for the translation context bank.
This means an SMMU implementation must implement the same number of SMMU_CBARn registers as the
number of implemented translation context banks. Each SMMU_CBARn is part of the corresponding translation
context bank, but has a different access mechanism.

If SMMU_CBARn configures the associated translation context bank for stage 1 translation, it can specify one of
the following additional contexts:

• In an implementation that supports stage 1 followed by stage 2 translation, a second translation context bank.

• Bypass mode, performing no stage 2 translation or address protection, but applying stronger memory
attributes than those applied by the stage 1 translation, in a similar way to the possible strengthening of
memory attributes by a stage 2 translation context bank. See Memory type and shareability attribute
determination on page 2-45 for more information.

In SMMUv1, if a translation context bank is configured to raise an interrupt in the event of a context fault,
SMMU_CBARn specifies the interrupt to be asserted if the context fault occurs. In SMMUv2, each context bank
has a dedicated interrupt pin. See Context interrupts on page 3-82 for more information.

The SMMU_CBARn registers are organized as a table in the SMMU configuration address space. A configuration
access to an unimplemented SMMU_CBARn register results in one of the following IMPLEMENTATION DEFINED
behaviors:
• The access is treated as RAZ/WI.
• The access generates a configuration access fault, as Chapter 3 The Fault Model describes.

SMMU_CBARn.VMID specifies the Virtual Machine Identifier for the corresponding translation context bank.
When associated with a Non-secure, non-hypervisor stage 1 translation context bank, the VMID field is used as
follows:

• The VMID is associated with a transaction being translated using this translation context bank. The VMID
is used for TLB tagging and matching purposes.

• The VMID is used for TLB maintenance operations issued in the corresponding translation context bank. The
VMID is used for TLB matching purposes.

See SMMU_CBARn, Context Bank Attribute Registers on page 10-209 for more information.

Note
 The use of VMID is modified for:
• Secure context banks, as this section describes.
• Hypervisor contexts. See Effect of HYPC on TLBs on page 2-72.

In an implementation that supports two security states, using SMMU_SCR1.NSNUMCBO to allocate a translation
context bank for Non-secure use also allocates the corresponding SMMU_CBARn register. This also determines
the number of SMMU_CBARn registers visible to Non-secure software.

Secure software must only use Stage 1 context with stage 2 bypass, TYPE==0b01 on page 10-210. Using any other
type generates an invalid context fault.

A VMID can be associated with Secure transactions in both translation and bypass contexts. This provides support
in legacy systems where VMID is propagated to the endpoint in the system, as an attribute to the transaction, at
which point more checks are made. When associated with a Secure transaction:
• A VMID has no involvement in translation matching.
• It is IMPLEMENTATION DEFINED whether the VMID is visible in translation table walks and client

transactions.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-67
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.6 Translation context
Reset state

On reset, the SMMU_CBARn. registers are not initialized. They must be initialized before use.

2.6.3 The translation tables

Translation tables specifying the output address and memory attributes for a context are stored in memory. The
SMMU_CBn_TTBRm register, or registers, specify the translation table base address for a corresponding
translation context, where m is 1 or 0. See:
• SMMU_CBn_TTBRm, Translation Table Base Registers on page 14-291.
• SMMU_CBn_TTBR0, Translation Table Base Register on page 15-311.
2-68 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.7 Translation and protection checks
2.7 Translation and protection checks
If SMMU_S2CRn specifies a translation context, a translation table walk retrieves translation and memory attribute
information for the transaction. The transaction might require two stages of translation, as configured in the Stream
mapping table and SMMU_CBARn registers.

2.7.1 Translation table format

When using the AArch32 Short-descriptor or the AArch32 Long-descriptor translation schemes, the translation
table formats and translation process are mainly the same as those in the ARM® Architecture Reference Manual,
ARMv7-A and ARMv7-R edition.

When using the AArch64 translation scheme, the translation table formats and translation process are mainly the
same as those in the ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile

Stage 2 translation table format

The processor architecture reserves bits [63:60] of the stage 2 translation table format for use by the SMMU.

Table 2-7 shows the SMMU architecture use of these bits.

The values 0b10 and 0b11 cause the allocation hint supplied as part of the transaction to be overridden with the
specified value.

2.7.2 Domains

The SMMU translation process does not support the Domain feature of the ARM Virtual Memory System
Architecture (VMSAv7) before the addition of the Large Physical Address Extension.

2.7.3 Implemented address size

For each stage of translation, the SMMU performs checks on the input address and the output address, These checks
might result in a fault being generated. See SMMU treatment of addresses on page 1-29 and Context faults on
page 3-84 for more information.

2.7.4 Global translation table entries and security states

In common with the processor architecture, the SMMU architecture supports global and non-global memory
regions.

Table 2-7 SMMU stage 2 translation table bits

PTE bits[63:60] Name Description

63:62 WACFG Write-Allocate Configuration
0b00 Use value supplied from previous stage
0b01 Reserved. See Reserved memory type and shareability

attributes on page 2-48.
0b10 Write-Allocate
0b11 No Write-Allocate.

61:60 RACFG Read-Allocate Configuration
0b00 Use value supplied from previous stage
0b01 Reserved. See Reserved memory type and shareability

attributes on page 2-48.
0b10 Read-Allocate
0b11 No Read-Allocate.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-69
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.7 Translation and protection checks
When using the AArch32 Long-descriptor or the AArch64 translation scheme, the processor architecture can permit
fetching of translation tables from Non-secure memory when the processor is in Secure state. Similarly, the SMMU
architecture permits Secure context banks to access Non-secure memory during lookups.

The SMMU architecture extends this behavior so that the first level descriptor can be fetched from Non-secure
memory by using the NSCFG0 and NSCFG1 fields in SMMU_CBn_TCR. This behavior is also permitted when
using the Short-descriptor format.

As with the processor architecture, a Secure translation must be treated as non-global, regardless of the value of the
nG bit in the final descriptor, if either or both of the following apply:
• The NS bit of the descriptor is set to 1.
• The descriptor is fetched from Non-secure memory, regardless of the mechanism that caused this behavior.

The purpose of this restriction is to provide a safety measure that prevents a Secure process from accidentally
polluting the memory space of another process with a global entry that maps Non-secure memory.
2-70 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.8 Hypervisor contexts
2.8 Hypervisor contexts
If the implementation supports stage 1 translation, that is, if the SMMU_IDR0.S1TS bit is set to 1, hypervisor
context (HYPC) is available.

Translation banks for the hypervisor context are called HYPC banks, and are intended to be used by the hypervisor
for translating devices that it owns and are operating on its own behalf. Hypervisor context applies when the
SMMU_CBARn.HYPC bit for a bank is set to 1.

Software can configure HYPC banks as Secure or Non-secure.

Note
 The register formats do not permit HYPC banks to use the stage 1 followed by stage 2 translation context.

2.8.1 Architectural effects of HYPC

In any system that includes an ARM processor, the processor contains registers that perform a similar role to certain
SMMU registers. In general, the effects of HYPC in the SMMU is analogous to Hypervisor control of Non-secure
access privileges, as described in:
• ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.
• ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

Table 2-8 shows the applicable SMMU registers, and the corresponding processor registers.

Table 2-8 Corresponding SMMU and ARMv8 processor hypervisor registers

SMMU register ARMv8 processor
register short name Notes

SMMU_CBn_TTBR0 HTTBR SMMU_CBn_TTBR1 is ignored.
The SMMU_CBn_TTBR0.ASID field is ignored
The following fields have no effect:
• SMMU_CBn_SCTLR.AFE
• SMMU_CBn_SCTLR.TEX.
• SMMU_CBARn.VMID
In the AArch32 Long-descriptor translation scheme, the APTable[0],
PXNTable, and PXN bits are reserved, SBZ.
The permissions model that HYPC banks use is different to that used by
EL1&0 translation regimes, and HYPC banks do not support the following
memory attributes:
• Privileged execute-never (PXN).
• AP[1]. Access Permission bit.
• APTable, Access Permissions limit for subsequent levels of lookup.
• PXNTable, PXN limit for subsequent levels of lookup.
• UWXN, behavior for regions with unprivileged write permission.
• nG bit, indicating non-global marking in the TLB.

SMMU_CBn_TCRa HTCR The SMMU_CBn_TCRa.EAE bit is ignored and considered to be set to 1,
indicating stage 1 Long-descriptor format.

SMMU_CBn_MAIRm HMAIRn Includes register 0 and register 1 in each case.

a. In SMMUv1, this register is SMMU_CBn_TTBCR.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-71
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.8 Hypervisor contexts
Note
 See Appendix A Register Names for more information about the ARM processor register short names, and the
specific registers that apply to different execution states.

Because there is no separation of privileged and unprivileged execution in HYPC, the stage 1 address translation
registers in Table 4-1 on page 4-107 might result in different behavior. In any SMMU implementation that uses
HYPC, the following registers are guaranteed to work correctly:
• SMMU_CBn_ATS1PR.
• SMMU_CBn_ATS1PW.

When targeting a HYPC bank, the global stage 1 address translation operations in Table 4-2 on page 4-110 might
result in different behavior, and the following registers are guaranteed to work correctly:
• SMMU_sGATS1PR.
• SMMU_sGATS1PW.

In SMMUv2, HYPC banks use TTBR0 only, and do not use TTBR1, meaning that SMMU_CBn_TTBR1 and all
fields associated with TTBR1 in SMMU_CBn_TCR and SMMU_CBn_TCR2 are disabled for HYPC banks.

2.8.2 Effect of HYPC on TLBs

TLB entries that are allocated as a result of HYPC accesses are Hyp tagged. All Hyp tagged TLB entries are
considered to belong to the same software entity and have no associated ASID or VMID.

2.8.3 HYPC and security states

In the ARM architecture, a hypervisor exists only in Non-secure state. In the SMMU architecture, there is no
requirement for HYPC banks to store and check security state, that is, there is no architectural definition of Secure
or Non-secure Hyp tagged TLB entries.

It is therefore possible for a Secure HYPC bank to encounter a TLB entry allocated by a Non-secure HYPC bank,
resulting in a security violation. To prevent this, Secure software must either:

• Avoid using HYPC banks, by ensuring that the SMMU_CBARn.HYPC bit is set to 0 for all Secure
translation context banks.

• Prevent Non-secure software from configuring a bank as HYPC, by ensuring that:
— The SMMU_SCR1.GASRAE bit is set to 1, to prevent Non-secure access to SMMU_CBARn.
— A Non-secure bank is never configured with SMMU_CBARn.HYPC bit set to 1.

In addition, because software can configure a HYPC bank as Secure or Non-secure, HYPC banks must adhere to
the appropriate SMMU_CBn_TCR.NSCFG0 or SMMU_CBn_TCR2.NSCFG0 settings.

2.8.4 HYPC and sign-extension

The SMMU_CBn_TCR2.SEP field, that indicates the Sign Extension Position, is ignored for HYPC banks. See
Sign-extension of input addresses on page 1-29 for more information.

2.8.5 Effect of permission checking and bus marking

Depending on the bus standard, a hypervisor privilege tag might be included in the transaction.

If a privilege tag is not included, then the permission model for HYPC banks is independent of the bus tag. For
example, a bus might only transport the concept of privileged and unprivileged, and the permission model of a
HYPC bank is independent of these attributes.
2-72 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

2 SMMU Operation
2.8 Hypervisor contexts
Note
 In SMMUv2, HYPC banks are treated as privileged on the downstream bus system, provided the downstream bus
system supports such marking. It is IMPLEMENTATION DEFINED whether this attribute is recorded in
SMMU_CBn_FSYNR0.PNU.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 2-73
ID091613 Non-Confidential - Beta

2 SMMU Operation
2.9 Monitor contexts
2.9 Monitor contexts
In SMMUv2 Monitor context (MONC) is available. Translation context banks for the Monitor context are called
Secure context banks, and are intended to be used by the Secure EL3 translation regime. Monitor context applies
when the SMMU_CBA2Rn.MONC bit for a bank is set to 1. For Non-secure context banks the
SMMU_CBA2Rn.MONC bit is ignored and treated as zero. ARM recommends that this bit is written as zero.

2.9.1 Architectural effects of MONC

The permissions model that HYPC and MONC banks use is different to that used by EL1&0 translation regimes.
For example, HYPC and MONC banks do not support the following memory attributes:
• Privileged execute-never (PXN).
• AP[1]. Access Permission bit.
• APTable, Access Permissions limit for subsequent levels of lookup.
• PXNTable, PXN limit for subsequent levels of lookup.
• UWXN, behavior for regions with unprivileged write permission.
• nG bit, indicating non-global marking in the TLB.

In SMMUv2, MONC banks use TTBR0 only, and do not use TTBR1, meaning that SMMU_CBn_TTBR1 and all
fields associated with TTBR1 in SMMU_CBn_TCR and SMMU_CBn_TCR2 are disabled for MONC banks.

2.9.2 Effects of MONC on TLBs

SMMUv2 provides the following global TLB invalidation operations:
• SMMU_STLBIALLM invalidates all EL3 Monitor entries.
• SMMU_STLBIVAM. invalidates all EL3 Monitor entries that are associated with a 64 bit VA.
• SMMU_STLBIVALM invalidate all EL3 Monitor entries that are associated with a 64 bit VA, last level only.

Note
 These operations are not required to invalidate other Secure TLB entries.

2.9.3 MONC and sign-extension

The SMMU_CBn_TCR2.SEP field, that indicates the Sign Extension Position, is ignored for MONC banks. See
Sign-extension of input addresses on page 1-29 for more information.

2.9.4 Effect of permission checking and bus marking

In SMMUv2, MONC banks are treated as privileged on the downstream bus system, provided the downstream bus
system supports such marking. It is IMPLEMENTATION DEFINED whether this attribute is recorded in
SMMU_CBn_FSYNR0.PNU.
2-74 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 3
The Fault Model

This chapter describes SMMU fault handling. It contains the following sections:
• Overview of fault types on page 3-76.
• Fault-handling terminology on page 3-77.
• Handling multiple memory faults on page 3-78.
• Recording memory attributes on page 3-79.
• Recording stage 1 followed by stage 2 translation faults on page 3-80.
• Fault interrupts on page 3-82.
• Context faults on page 3-84.
• Global faults on page 3-95.
• Configuration access on page 3-100.
• External faults on page 3-101.
• Reporting exclusive access transactions on page 3-103.
• Fault behavior in virtualized context banks on page 3-104.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-75
ID091613 Non-Confidential - Beta

3 The Fault Model
3.1 Overview of fault types
3.1 Overview of fault types
An SMMU implementation might encounter any of the following types of fault:

• A fault on a translation context bank:
— Translation fault.
— Permission fault.
— External fault.
— Unsupported upstream transaction fault.

See Context faults on page 3-84 for more information.

• A global fault:
— Invalid context fault.
— Unidentified stream fault.
— Stream match conflict fault.
— Unimplemented context bank fault.
— Unimplemented context interrupt fault.
— Configuration access fault.
— Permission fault.
— External fault.
— Unsupported upstream transaction fault.
— In SMMUv2, address size fault.

See Global faults on page 3-95 for more information.

The SMMU provides resources to record, process and report these faults.
3-76 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.2 Fault-handling terminology
3.2 Fault-handling terminology
The following terminology applies to faults:

encounter An SMMU encounters a fault as a result of either:
• Processing a transaction in the SMMU
• A transaction response returned to the SMMU by an external agent.

record An SMMU records a fault by:

• The appropriate Fault Status Register capturing fault status information. See:
— SMMU_sGFSR, Global Fault Status Register on page 9-180
— SMMU_CBn_FSR, Fault Status Register on page 14-254.

• The corresponding Fault Address Register capturing the fault address. See:
— SMMU_sGFAR, Global Fault Address Register on page 9-179
— SMMU_CBn_FAR, Fault Address Register on page 14-254.

• One or more Fault Syndrome Registers capturing additional details. See:
— SMMU_sGFSYNR0, Global Fault Syndrome Register 0 on page 9-182
— SMMU_sGFSYNR1, Global Fault Syndrome Register 1 on page 9-184
— SMMU_sGFSYNR2, Global Fault Syndrome Register 2 on page 9-185
— SMMU_CBFRSYNRAn, Context Bank Fault Restricted Syndrome Register A on

page 10-216
— SMMU_CBn_FSYNRm, Fault Syndrome Registers on page 14-257.

report An SMMU reports a fault by returning an error to the initiator of the transaction that caused the
fault. Alternatively, an external system component processing a transaction issued by the SMMU
might report a fault to the SMMU.

Support for fault reporting in the initiating device and in the interconnect between the device and
the SMMU is IMPLEMENTATION DEFINED.

For exclusive access transactions, In the context of the SMMU, reporting means specifically
reporting an exclusive access transaction as aborting.

interrupt An SMMU might assert an interrupt signal because of a fault.

client A client access is a memory transaction issued by a client device, that the SMMU is to process.

configuration A configuration access is a memory transaction issued by a device that accesses a register in the
SMMU configuration address space.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-77
ID091613 Non-Confidential - Beta

3 The Fault Model
3.3 Handling multiple memory faults
3.3 Handling multiple memory faults
The ARM processor architecture only has to handle a single memory fault at any given time. In contrast, an SMMU
implementation is a shared resource that might receive simultaneous memory access requests from multiple agents.
Such concurrency means that the SMMU could encounter multiple faults in a short period of time, or could
encounter a second fault before the first fault is acknowledged by software.

For a fault on a translation context bank, SMMU_CBn_FSR.MULTI is set to 1 if a fault is encountered when this
register already has information about a previous fault that has not yet been acknowledged by software. Similarly,
in the case of a global fault, SMMU_sGFSR.MULTI is set to 1. In both cases, the register records full details of the
first fault, and only the Multiple Fault Status flag is set on a subsequent fault.

For details specific to translation context faults, see Multiple faults on page 3-87. For details specific to global
faults, see Multiple fault conditions on page 3-96.
3-78 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.4 Recording memory attributes
3.4 Recording memory attributes
Fault syndrome registers record the memory attributes of a transaction that caused a fault, as follows:
• For a fault on a translation context bank, SMMU_CBn_FSYNRm.
• For a global fault, SMMU_sGFSYNR0.

The SMMU architecture defines specific handling of the following memory attributes:
• Instruction, not Data (IND).
• Privileged, not Unprivileged (PNU).
• Non-secure Attribute (NSATTR).

The handling of these attributes is:

• If a global fault is recorded, the default input attributes IND, PNU and NSATTR are recorded.

• If a stage 1 or a stage 2 context fault is recorded, the memory attributes IND, PNU and NSATTR, as presented
to the SMMU after Context determination, are recorded. This means that the values of IND, PNU and
NSATTR are possibly overridden by one of:
— SMMU_S2CRn.INSTCFG.
— SMMU_S2CRn.PRIVCFG.
— SMMU_S2CRn.NSCFG., for Secure transactions

ARM recommends that other memory attributes recorded in the Fault Syndrome Registers are handled in the same
way as the IND, PNU and NSATTR attributes, although the handling of other memory attributes is
IMPLEMENTATION DEFINED.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-79
ID091613 Non-Confidential - Beta

3 The Fault Model
3.5 Recording stage 1 followed by stage 2 translation faults
3.5 Recording stage 1 followed by stage 2 translation faults
For a stage 1 followed by stage 2 translation, faults encountered at stage 2 are recorded either in the stage 2 context
bank or in the SMMU_sGFSR, Global Fault Status Register on page 9-180.

The following fault types are recorded in the stage 2 context bank:
• Stage 2 permission faults.
• Stage 2 translation faults.
• External aborts.

The following fault types are recorded in the SMMU_sGFSR, Global Fault Status Register on page 9-180:
• Stage 1 or stage 2 invalid context fault.
• Unimplemented context bank fault.
• Unimplemented context interrupt fault.

Note
 Software executing in global register space must not transfer control of a context bank to software executing at a
lower privilege until the bank is fully configured. For example, this might apply to a hypervisor transferring control
to a Guest OS. This can result in low privilege software affecting accesses to SMMU_sGFSR by higher privilege
software.

3.5.1 Stage 2 faults for different translation contexts

In SMMUv1, there is no simple mechanism for a hypervisor to establish whether a fault in a stage 2 context bank
is either:
• A result of a client transaction mapping to the stage 1 followed by stage 2 translation context, and faulting in

stage 2, in which case:
— SMMU_CBn_FAR contains the VA of the client transaction.
— The SMMU_CBn_FSYNR0.S1PTWF bit indicates a fault on the stage 1 translation table walk

• A result of a client transaction mapping to the stage 2 context, in which case SMMU_CBn_FAR contains the
IPA of the client transaction.

This means that in SMMUv1, software must be capable of distinguishing such differences, either by:
• Using separate stage 2 banks for these different cases.
• Matching SMMU_CBFRSYNRAn with the Stream Match Register groups to determine the context.

In SMMUv2, the SMMU_sGFSYNR0.Nested bit indicates the reason for stage 2 context bank faults.

3.5.2 Behavior of stage 2 faults within stage 1 followed by stage 2 translations

This section describes behaviors associated with handling faults that occur during stage 2 translation, within a stage
1 followed by stage 2 translation that is either:
• A client transaction.
• A software-initiated address translation operation.

The behavior depends on whether stage 2 transactions are configured to terminate or to stall on a fault, as Handling
a context fault on page 3-87 describes.

Behavior when stage 2 transactions terminate on a fault

If the client transaction is terminated when a stage 2 fault occurs, no fault is recorded in stage 1, even for a stage 1
translation table walk that faults. However, depending on the setting of stage 2 SMMU_CBn_SCTLR.CFRE bit, the
transaction might report an abort to the client device.
3-80 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.5 Recording stage 1 followed by stage 2 translation faults
If a stage 2 fault is encountered during an address translation operation initiated in a stage 1 translation context bank,
the fault is always recorded as Address Translation Operation Terminated (ATOT) in the stage 1
SMMU_CBn_PAR. See Fault handling within stage 1 followed by stage 2 translations initiated in a context bank
on page 4-107.

If a transaction aborts in stage 2, the stage 2 SMMU_CBn_SCTLR.HUPCF determines the behavior of any
subsequent transactions that do not abort at stage 1:

• When SMMU_CBn_SCTLR.HUPCF==0, all subsequent transactions using the stage 2 context bank
terminate and record no faults in either the stage 1 or stage 2.

• When SMMU_CBn_SCTLR.HUPCF==1, the SMMU attempts to translate subsequent transactions in the
stage 2 context bank. If a fault is encountered, the syndrome information is lost and a multiple fault is
recorded.

This means that, if multiple stage 1 contexts share a single stage 2 context, transactions issued to a particular stage
1 context can generate a fault that affects all other stage 1 contexts. In particular, if a stage 2 context bank is
configured where SMMU_CBn_SCTLR.HUPCF==0, all transactions issued by any of the connected stage 1
contexts fault silently, and no fault is recorded. However, an abort might still be reported to the client device,
depending on the setting of the stage 2 SMMU_CBn_SCTLR.CFRE bit.

 See Fault behavior in virtualized context banks on page 3-104 for more information.

Note
 This is very different from the behavior for translations other than stage 1 followed by stage 2, where each
transaction in the downstream memory system aborts independently.

Behavior when stage 2 transactions stall on a fault

If stage 2 transactions are configured to stall when a fault occurs, the hypervisor has more control than it does for
transactions configured to terminate. The hypervisor is not required to ensure that all IPAs for a device have valid
translations, and can:
• Make translations available on a stage 2 fault that stalls.
• Use stage 2 access flags to discover faults.
• Inject synchronous faults manually into stage 1 translation.

Independence of address translation operation faults and client transaction faults

Faults encountered during a client transaction and those encountered during an address translation operation are
independent and require different SMMU resources. In general:

• Multiple independent context bank address translation operations might be in progress at any one time.

• Fault recording for global address translation operations is independent from that for client transactions.

• Fault recording for context bank address translation operations is independent from that for client
transactions, except where they share a stage 2 context bank that faults.

• The SMMU records faults encountered during client transactions in SMMU_CBn_FSR.

• An address translation operation might be issued even if the SMMU records a fault in SMMU_CBn_FSR.

Note
 If a context bank is configured incorrectly, this could permit inappropriate Guest OS access to SMMU_sGFSR. This
could happen if, for example, an invalid stage 2 context identifier exists within a stage 1 followed by stage 2
transaction.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-81
ID091613 Non-Confidential - Beta

3 The Fault Model
3.6 Fault interrupts
3.6 Fault interrupts
An SMMU can communicate faults to software using the following types of interrupt:
• Global interrupt.
• Context interrupt.

3.6.1 Global interrupts

An SMMU implements at least the following logical Global interrupts:
• SMMU_NsgCfgIrpt.
• SMMU_NSgIrpt.

SMMU_NsgCfgIrpt is used when a configuration access fault is recorded. SMMU_NSgIrpt is used when any other
type of global fault is recorded.

In an implementation that supports two security states, the SMMU also implements SMMU_gCfgIrpt and
SMMU_gIrpt. These are the Secure equivalents of SMMU_NsgCfgIrpt and SMMU_NSgIrpt respectively.

3.6.2 Context interrupts

This section describes the differences in context interrupt behavior between SMMUv1 and SMMUv2.

Context interrupts in SMMUv1

In SMMUv1, a Context interrupt is raised for a fault on a translation context bank. SMMU_IDR0.NUMIRPT
specifies the IMPLEMENTATION DEFINED number of Context interrupts supported by the SMMU.
SMMU_CBARn.IRPTNDX specifies the interrupt number to assert in the event of a translation context bank fault.

ARM recommends that:

• SMMU_CBARn.IRPTNDX is software configured in the range specified by SMMU_IDR0.NUMIRPT.

• If Secure software gives Non-secure software at least one translation context bank, the Secure software
provides the Non-secure software with at least one Context interrupt.

An Unimplemented context interrupt fault occurs when all of the following conditions are true:
• SMMU_CBARn.IRPTNDX is configured outside the range reported by SMMU_IDR0.NUMIRPT.
• Stage 1 SMMU_CBn_SCTLR.CFIE or stage 2 SMMU_CBn_SCTLR.CFIE is 1.
• A context fault causes the assertion of a Context interrupt.

Note
 It is IMPLEMENTATION DEFINED whether SMMU_CBARn.IRPTNDX is fully implemented with writable storage. A
portion of this field is permitted to behave as RAZ/WI, because the implementation might not provide sufficient
interrupts for some of the upper bits of SMMU_CBARn.IRPTNDX to be relevant. The implemented range of this
field is the same for all SMMU_CBARn registers in an implementation.

In an implementation that supports two security states, SMMU_SCR1.NSNUMIRPTO allocates Context interrupts
for use by Secure software.

An SMMU_CBARn register allocated for use by Secure software must only specify a Context interrupt allocated
for use by Secure software. Otherwise, UNPREDICTABLE behavior results.

An SMMU_CBARn register not allocated for use by Secure software can only specify a Context interrupt not
allocated for use by Secure software. Otherwise, an Unimplemented context interrupt fault could occur.

Context interrupts in SMMUv2

SMMUv2 supports one of the following interrupt mechanisms:

• When SMMU_IDR0.NUMIRPT==0b00000001, each context bank has a dedicated interrupt pin.
3-82 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.6 Fault interrupts
• When SMMU_IDR0.NUMIRPT is greater than 0b00000001, this specifies the number of interrupts provided.
Each interrupt can be assigned to any context bank, as for SMMUv1.

When each context bank has a dedicated interrupt pin, there is no requirement for software to specify the interrupt
number, and:
• The SMMU_IDR0.NUMIRPT field is always 0b00000001.
• The SMMU_CBARn.IRPTNDX field is 0b00000000.
• The SMMU_SCR1.NSNUMIRPTO field is always 0b00000001.

3.6.3 Interrupt assertion

An SMMU interrupt is asserted in response to a fault recorded in the Fault Status Register, providing interrupts are
enabled, using the stage 1 SMMU_CBn_SCTLR.CFIE or stage 2 SMMU_CBn_SCTLR.CFIE bit as appropriate.
See SMMU_CBn_FSR and SMMU_sGFSR for details.

An interrupt is asserted regardless of whether the Fault Status Register is set by a fault or by a non-zero value written
to SMMU_sGFSRRESTORE or SMMU_CBn_FSRRESTORE.

With the exception of the SS and Format bits, a value of 1 written to any non-reserved bit in SMMU_CBn_FSR or
SMMU_sGFSR clears that bit. A value of 0 written to any of these bits leaves the bit unchanged.

In SMMUv1, when all of the relevant bits in a Fault Status Register are cleared, the corresponding interrupt is
deasserted, providing no other Fault Status Register is contributing to the assertion of the interrupt. This does not
apply in SMMUv2, because each context bank has a dedicated interrupt pin.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-83
ID091613 Non-Confidential - Beta

3 The Fault Model
3.7 Context faults
3.7 Context faults
A context fault is associated with a particular translation context bank. The following types of context fault exist:
• Translation fault.
• Permission fault.
• External fault.
• In SMMUv2, address size fault.

A translation fault occurs if the SMMU does not obtain a translation for a transaction, or in SMMUv1, if an input
address is out of range.

A permission fault occurs if the SMMU retrieves a translation for a transaction, but the transaction has insufficient
privileges to reach completion.

An external fault occurs if an external abort is reported to the SMMU during transaction processing.

In SMMUv2:
• An address size fault can occur when an output address contains an unexpected number of bits.
• An unsupported upstream transaction fault can occur for certain client transactions.

3.7.1 Secure Instruction Fetch (SIF) permission faults

In an implementation that supports two security states, Secure instruction fetches can result in permission faults
when the Secure Instruction Fetch (SIF) bit in SMMU_SCR1 is set to 1. A permission fault results when a Secure
domain client access attempts to exit as a Non-secure instruction after any transformation indicated by the
SMMU_S2CRn.INSTCFG bit has been applied.

For transactions associated with a particular translation context bank, a SIF permission fault is recorded using the
SMMU_CBn_FSR.PF bit when all of the following apply:
• The SMMU_SCR1.SIF bit is set to 1.
• The transaction has been routed to a Secure context bank.
• The transaction is classified as Instruction, after applying any SMMU_S2CRn.INSTCFG transformation.
• The outgoing transaction is Non-secure.

If the fault is associated with a translation table walk, the last level of address lookup is recorded in the
SMMU_CBn_FSYNR0.PLVL field. If no translation table was performed, the value written to PLVL is:
• 0, if using AArch64.
• 1, if using AArch32.

This check is also applied to transactions that bypass the Stream mapping table. See Bypassing the Stream mapping
table on page 2-60 for more information.

Note
 For client transactions that use stage 1 or stage 2 context resources, the instruction fetch configuration attribute
specified by the SMMU_S2CRn.INSTCFG bit can override the incoming memory attributes. See
Stream-to-Context Register, SMMU_S2CRn on page 2-59. When referring to instruction fetches in this document,
it is assumed that any such overrides are accounted for.

3.7.2 Recording a context fault

The registers that record information about a transaction causing a fault on a translation context bank are:
• SMMU_CBn_FSR.
• SMMU_CBn_FAR.
• SMMU_CBn_FSYNRm.

SMMU_CBFRSYNRAn records additional fault syndrome details about the fault, where n is the index into the
translation context bank.
3-84 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.7 Context faults
Two-stage translation faults

A context fault is only recorded for one stage of translation. This means that in an implementation supporting two
translation stages:
• If no stage 2 fault is encountered, a context fault that occurs is recorded for the stage 1 translation context.
• If a stage 2 fault is encountered, the fault is recorded for the stage 2 translation context.

External faults

If an external fault is reported to the SMMU in response to a fetch issued as part of a translation table walk, the fault
is recorded synchronously in the translation context bank. If any other external fault is reported to the SMMU in
response to a transaction associated with a translation context bank, it is IMPLEMENTATION DEFINED whether the
fault is:
• Recorded synchronously.
• Recorded asynchronously.
• Not recorded.

Synchronous recording of an external fault updates the following registers:
• SMMU_CBn_FSR.
• SMMU_CBn_FAR.
• SMMU_CBn_FSYNRm.
• SMMU_CBFRSYNRAn.

Asynchronous recording of an external fault updates the following registers:

• SMMU_CBn_FSR.

• SMMU_CBn_FSYNR0.AFR is set to 1, as SMMU_CBn_FSYNRm, Fault Syndrome Registers on
page 14-257 describes.

• For an external fault on a translation table walk, SMMU_CBn_FSYNR0.PTWF is set to 1. Otherwise, it is
cleared to 0, as SMMU_CBn_FSYNRm, Fault Syndrome Registers on page 14-257 describes.

• Other fields in the following registers are UNK/SBZP:
— SMMU_CBn_FSYNRm.
— SMMU_CBn_FAR.

For more information about external faults, see External faults on page 3-101.

Unsupported upstream transaction faults

Depending on the upstream bus system, certain client transactions might result in an unsupported upstream
transaction fault. These can either be context faults or global faults.

Where the client device is associated with a context bank, the SMMU records unsupported upstream transactions
as context faults. To record an unsupported upstream transaction fault, the SMMU:
• Updates the appropriate SMMU_CBn_FSR.
• Aborts the transaction if the SMMU_CBn_SCTLR.CFRE bit is set to 1.

Note
 It is IMPLEMENTATION DEFINED whether the SMMU records a particular unsupported upstream transaction fault.

Translation faults

ARMv7 provides no mechanism for representing a fault where the incoming address is greater than the permitted
input address. Therefore, in SMMUv1, this condition results in a translation fault. Because ARMv8 supports all
input address sizes, SMMUv2 provides no input address checks when SCTLR_CBn_SCTLR.M== 0.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-85
ID091613 Non-Confidential - Beta

3 The Fault Model
3.7 Context faults
Table 3-1 specifies, for each stage of translation, the input address check conditions that result in a translation fault.

See SMMU address size parameters on page 1-28 for definitions of the terms in Table 3-1.

Address size faults

SMMUv2 supports address size faults. The SMMU checks the output address size for each stage of translation, and
reports an address size fault if an address contains more bits than it expects. The output address that the SMMU
checks:
• Can be either an IPA or a PA, for stage 1 translation.
• Is always a PA, for stage 2 translation.

For transactions that requires only stage 2 translation, the SMMU might also check the input address.

Table 3-2 specifies, for each stage of translation, the input address check conditions that result in an address size
fault.

See SMMU address size parameters on page 1-28 for definitions of the terms in Table 3-2.

For Stage 1 contexts, the conditions in Table 3-2 apply to an IPA that is either:
• An IPA produced by a stage 1 translation.
• An IPA that is the result of a translation table walk.
• The 48-bit address in SMMU_CBn_TTBR0 or SMMU_CBn_TTBR1.

For Stage 2 contexts, the conditions in Table 3-2 apply to a PA that is either:
• A PA produced by a stage 1 or stage 2 translation.

Table 3-1 Conditions where an input address generates a translation fault

SMMU_CBA2Rn.VA64
SMMU_CBn_SCTLR.M==0 SMMU_CBn_SCTLR.M==1

Stage 1 Stage 2 Stage 1 Stage 2

0 VA > 32 bits. IPA > IPA size. VA > 32 bits. IPA > IPA size.

1 - - Bits with higher order than that
specified by
SMMU_CBn_TCR2.SEP are
eitherab:
• Non-zero.
• Out of range, as specified by

the T0SZ or T1SZ bit in
SMMU_CBn_TCR.

IPA is greater than the
minimum of:
• IPA size.
• SMMU_CBn_TCR.T0SZ.

a. See Sign-extension of input addresses on page 1-29 for more information.
b. This condition does not apply to HYPC banks or MONC banks.

Table 3-2 Conditions where an output address generates an address size fault

SMMU_CBA2Rn.
VA64

SMMU_CBn_SCTLR.M==0 SMMU_CBn_SCTLR.M==1

Stage 1 Stage 2 Stage 1 Stage 2

0 IPA > 40 bits. PA > 40 bits. IPA > 40 bits. PA > 40 bits.

1 IPA > effective
IPA size.

PA > Output address size. IPA is greater than the
minimum of:
• Effective IPA size.
• PA size.

PA is greater than the
minimum of:
• Output address size.
• PA size.
3-86 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.7 Context faults
• A PA that is the result of a translation table walk.
• The 48-bit address in SMMU_CBn_TTBR0.

Multiple faults

SMMU_CBn_FSR.MULTI indicates the presence of multiple outstanding faults.

If a fault is encountered when all of the fields in SMMU_CBn_FSR are zero, including SMMU_CBn_FSR.MULTI,
the following registers record full details of the fault:
• SMMU_CBn_FSR.
• SMMU_CBn_FAR.
• SMMU_CBn_FSYNRm.

If a fault is encountered when SMMU_CBn_FSR is non-zero:
• The SMMU_CBn_FSR.MULTI bit is set to 1.
• Details of the fault are not recorded.

Context Bank Fault Restricted Syndrome Register, SMMU_CBFRSYNRAn

There is an SMMU_CBFRSYNRAn register for each translation context bank. n, the translation context bank index,
denotes the matching SMMU_CBFRSYNRAn register in the range 0-127. The register provides information about
the fault recorded in the SMMU_CBn_FSR register of a stage 1 or a stage 2 translation context bank.

The information recorded in SMMU_CBFRSYNRAn could present a virtualization hole if the register were to
reside in the translation context bank address space, potentially accessible by a Guest OS. Therefore, each
SMMU_CBFRSYNRAn register is in the global address space. For information about processor virtualization,
including what is meant by a Guest OS in this context, see the ARM® Architecture Reference Manual, ARMv7-A and
ARMv7-R edition.

The SMMU_CBFRSYNRAn registers are organized as a table. Because a SMMU_CBFRSYNRAn register exists
for each translation context bank, an SMMU implementation must implement the same number of
SMMU_CBFRSYNRAn registers as the number of translation context banks. This means that the number of
SMMU_CBFRSYNRAn registers implemented must match the number of translation context bank table entries.

A configuration access to an unimplemented SMMU_CBFRSYNRAn register results in either of the following
IMPLEMENTATION DEFINED behaviors:
• The access is RAZ/WI.
• A configuration access fault.

For more information about configuration access faults, see Configuration access on page 3-100.

In an implementation that supports two security states, SMMU_SCR1.NSNUMCBO reduces the number of
translation context banks, and therefore the number of SMMU_CBFRSYNRAn registers, that are visible to
Non-secure software.

SMMU_IDR1.NUMCB indicates the number of implemented SMMU_CBFRSYNRAn registers.

3.7.3 Handling a context fault

An SMMU handles a context fault by either terminating or stalling the transaction that caused the fault.

If the SMMU terminates the fault, the SMMU does not perform the final memory access, and client transactions
behave as RAZ/WI. Depending on the value of the stage 1 or stage 2 SMMU_CBn_SCTLR.CFRE field, the SMMU
reports the fault to the initiator of the faulty transaction. See Context interrupts on page 3-82 for more information.

If the SMMU stalls the fault, software can subsequently write to SMMU_CBn_RESUME to retry or terminate the
stalled transaction. The SMMU_CBn_FSR.SS field is cleared as a result of invoking the operation to resume the
transaction.

The stage 1 SMMU_CBn_SCTLR.CFCFG and stage 2 SMMU_CBn_SCTLR.CFCFG registers handle context
faults on a per context basis.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-87
ID091613 Non-Confidential - Beta

3 The Fault Model
3.7 Context faults
It is IMPLEMENTATION DEFINED whether the SMMU supports the stall mode of operation.

The Stall fault model

If a fault is encountered by the SMMU when the Stall fault model is enabled, the SMMU stalls the transaction that
caused the fault, pending action to rectify the cause.

ARM recommends that the Stall fault model generally be used with fault interrupting. This is so that a supervisory
agent can be signaled to rectify the cause and restart the transaction.

Stage 1 SMMU_CBn_SCTLR.CFCFG and stage 2 SMMU_CBn_SCTLR.CFCFG enable the Stall fault model, per
translation context.

It is IMPLEMENTATION DEFINED whether an SMMU implementation includes the Stall fault model. If an
implementation does not include the Stall fault model, stage 1 SMMU_CBn_SCTLR.CFCFG and stage 2
SMMU_CBn_SCTLR.CFCFG each have a fixed value and are RAZ/WI.

Stage 1 SMMU_CBn_SCTLR.HUPCF and stage 2 SMMU_CBn_SCTLR.HUPCF provide more configuration
options for the Stall fault model, as follows:

• If stage 1 SMMU_CBn_SCTLR.HUPCF or stage 2 SMMU_CBn_SCTLR.HUPCF is 0 and a fault occurs,
no more transactions for that translation context bank are processed until the fault is cleared.

• If stage 1 SMMU_CBn_SCTLR.HUPCF or stage 2 SMMU_CBn_SCTLR are 1 and a fault occurs, more
transactions can be processed for that translation context bank before the original fault is cleared. See
Hit-under-fault on page 3-89 for more information.

It is IMPLEMENTATION DEFINED whether an SMMU implementation includes functionality for processing a
transaction under an existing fault. If the implementation does not provide this functionality:

— The behavior is identical to stage 1 SMMU_CBn_SCTLR.HUPCF or stage 2
SMMU_CBn_SCTLR.HUPCF being 0.

— Stage 1 SMMU_CBn_SCTLR.HUPCF and stage 2 SMMU_CBn_SCTLR.HUPCF remain writable.

The number of transactions processed after the original faulty transaction is IMPLEMENTATION DEFINED.

The number of subsequent transactions that can raise a fault before no more transactions are processed for
that translation context bank until the original fault condition is cleared, is also IMPLEMENTATION DEFINED.

Depending on the SMMU implementation, system topology, and devices connected to the SMMU, it might not be
possible to guarantee that a transaction in one translation context is unaffected by a stalled transaction in another
context. Therefore, use of the Stall fault model in a translation context might not be appropriate.

SMMU_sCR0.STALLD can be configured to globally disable the Stall fault model. This forces each stage 1
SMMU_CBn_SCTLR.CFCFG or stage 2 SMMU_CBn_SCTLR.CFCFG to be RAZ/WI.

In an implementation that supports two security states:

• SMMU_CR0.STALLD must apply to Non-secure contexts banks, and optionally, can apply to Secure
translation context banks.

• SMMU_SCR0.STALLD is an override bit that has equivalent behavior to SMMU_CR0.STALLD.

SMMU_sCR0.STALLD is expected to be configured as part of the reset initialization process.

In response to a stalled context fault, if the SMMU is configured to raise an interrupt, supervisory software typically
performs one of the following actions:

• Fixes the faulty translation and retries processing the stalled transaction by writing the appropriate value to
SMMU_CBn_RESUME. Fixing the faulty transaction might involve updating translation tables and TLB
maintenance.

• Terminates the stalled transaction by writing the appropriate value to SMMU_CBn_RESUME. A transaction
terminated in this way returns no data for reads, and writes are ignored.

Depending on the setting of stage 1 SMMU_CBn_SCTLR.CFRE or stage 2 SMMU_CBn_SCTLR.CFRE,
the SMMU can report an abort to the initiator of the transaction. See Context interrupts on page 3-82.
3-88 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.7 Context faults
Fault recording does not occur for a transaction terminated by the SMMU_CBn_RESUME operation. This
is because the fault is logged when the transaction first stalls.

In SMMUv2, if a context bank has a stalled transaction, indicated by SMMU_CBn_FSR.SS==1, when the
corresponding SMMU_CBARn or SMMU_CBA2Rn is written, an implementation might retry the stalled
transaction immediately after SMMU_CBARn or SMMU_CBA2Rn is updated. That is, the implementation might
exhibit behavior corresponding to SMMU_CBn_RESUME.TnR==0. An implementation might also retry a
transaction in all context banks affected by a change to SMMU_SCR1.NSNUMCBO.

Hit-under-fault

Optionally, an SMMU can continue to process a transaction before the condition causing an existing fault is
rectified. For a translation context, Hit-under-fault behavior, if enabled, means that any subsequent transaction
mapped to that context is processed, regardless of whether an outstanding fault is recorded for that context.

The following types of behavior apply:

• If termination behavior is selected for a translation context and a fault is active for that context, each
subsequent transaction is processed separately. If a fault is raised on a subsequent transaction, it terminates
and SMMU_CBn_FSR records a multiple fault condition.

• If stall behavior is selected for a translation context and a fault is active for that context, each subsequent
transaction is processed separately. If a fault is raised on a subsequent transaction, that transaction waits, no
fault status information is recorded on it, and it is retried after the original fault condition clears.

If Hit-under-fault is not enabled, any subsequent transaction mapped to that translation context is processed the
same as the original faulty transaction, as follows:

• If termination behavior is selected for a translation context and a fault is active for that context, each
subsequent transaction terminates. SMMU_CBn_FSR does not record any fault condition for any subsequent
transaction beyond the original transaction. The termination of a subsequent transaction is regarded as a
side-effect of the original fault.

• If stall behavior is selected for a translation context and a fault is active for that context, any subsequent
transaction stalls, and only resumes after the original fault condition is cleared.

Regardless of whether Hit-under-fault is enabled, whether an active fault is recorded depends on the setting of the
stage 1 or stage 2 SMMU_CBn_SCTLR.CFRE bit, as Reporting a context fault on page 3-94 describes.

Stage 1 SMMU_CBn_SCTLR.HUPCF and stage 2 SMMU_CBn_SCTLR.HUPCF adjust the Hit-under-fault
model.

Note
 For stage 2 translations, when SMMU_CBn_SCTLR.HUPCF is set to 0, all subsequent transactions that use stage
1 translation are stalled or terminated, including when a matching TLB entry is located.

Context fault model pseudocode

To perform a translation request, the SMMU:
1. Determines whether any of the context banks that the translation uses are faulting,
2. For any faulting context bank, determines whether this transaction is required to perform an action.
3. Performs the translation operation.
4. If the translation process fails, re-examines the associated Fault Status Register groups to determine:

• Whether the fault is to be recorded.
• How the fault is to be recorded.
• Whether the SMMU is required to report to the upstream client device.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-89
ID091613 Non-Confidential - Beta

3 The Fault Model
3.7 Context faults
In general, the SMMU handles transactions in an unknown order. However, any bus ordering requirements must be
satisfied. For example, an SMMU that receives transactions A, B, and C from the same device can process these
requests in any order, unless the underlying bus system specifies a particular order. For example, in an AMBA
system, barriers affect the ordering of processing of transactions and this must be preserved by the SMMU.

Note
 The SMMU might prefetch any TLB entry for any reason at any time, subject to TLB prefetch behavior rules
described in Updating the state of a context bank on page 5-114. This means that sometimes step 3 might be
speculatively performed before or during steps 1 and 2.

The following pseudocode describes how the SMMU processes translation requests and records faults, including
the interactions between stall, terminate, and Hit-under-fault behaviors.

///
/// Conceptually transactions are received into request buffers that
/// run the following state machine once they have determined a valid
/// context bank
///
/// Note: request buffers containing data transactions can exit from a "wait"
/// in a different order to the order transactions were received or entered a "wait"
///
/// Note: the restart of these buffers must be consistent with ARM ARM sections:
/// - A3.5 Memory types and attributes and the memory order model
/// - B2.2.9 Ordering of cache and branch predictor maintenance operations
///
/// Note: for barrier operations, request buffers must restart in an order
/// consistent with the ARM ARM. For example earlier transactions from the
/// same master that issued the barrier are restarted before the barrier and
/// later transactions are restarted after the barrier. For a distributed
/// SMMU implementation where separate TLBs are associated with individual bus
/// segments, then the request buffers associate with each TLB are unordered
/// with respect to the TLBs associated with other bus segments because each bus
/// segment can be assumed to belong to different sets of masters.
///
/// Note: this pseudocode executes atomically between "wait" calls so there
/// are no race conditions on reading and writing registers unless there
/// is an intervening "wait"
///
/// This function returns true if an abort whether be generated to the
/// upstream client device and whether the transaction can be sent downstream
///
/// The intent is that this pseudocode describes a simple to implement
/// hardware state machine and ensure a programmers model that is easy
/// to reason about

enum RequestAction
{
 OkaySendDownStream,
 AbortReportToClient,
 AbortDoNotReportToClient,
 GotoStart, // Never returned from RequestBufferStateMachine
 CheckPassed // Never returned from RequestBufferStateMachine
}

RequestAction RequestBufferStateMachine()
{
 bool first = true;

 // A variable that holds any data that can be reused between different
 // invocations of DoTranslation()
 IMP_DEF_TYPE restartData = new IMP_DEF_TYPE();

 start:
 // See the section on "Enabling Global stall mode"
 if (GSErequiresStalling() && any bank is stalled && imp_def_option_1)
3-90 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.7 Context faults
 WaitForWriteToResume(bankThatIsStalled);
 goto start;

 RequestAction action = CheckForFaultsInBank(initial_bank);

 if (action == GotoStart)
 goto start;
 else if (action != CheckPassed)
 return action;

 // NOTE: even if a transaction would abort in the stage 1 bank
 // without using stage 2, an existing fault in stage 2 will cause
 // this transaction to stall or terminate. Examples of this are:
 // -- Translation Fault due to T*SZ or EPD0/1
 // -- Address Size Fault due to TTBR0/1
 // This means such a transaction might stall or terminate immediately
 // without recording in Stage 1. In the case where such a transaction
 // stalls, after the existing stage 2 fault has been cleared, the
 // transaction will restart and (in the normal case) record the stage 1
 // fault.

 if (this is stage 1 and stage 2 exists)
 {
 action = CheckForFaultsInBank(stage2_bank);
 if (action == GotoStart)
 goto start;
 else if (action != CheckPassed)
 return action;
 }

 // At this point we have decided that this transaction can go ahead
 // and be translated. We do NOT resample FSR, CFCFG or HUPCF for this stage
 // of translation.
 //
 // NOTE: DoTranslation() does not read or write any of the fault status
 // register groups. Therefore if this translation context bank or
 // any associated stage 2 context bank becomes faulting due to a
 // different transaction, it does not affect the behaviour of
 // DoTranslation(). If DoTranslation() itself encounters a
 // fault condition, it returns false and the fault recording is as
 // below. This allows a distributed page table walk mechanism.
 bool translationOK = DoTranslation(first, &restartData);

 first = false;

 if (translationOK)
 {
 // Does NOT resample FSR, HUPCF or CFCFG as the translation was okay
 // Note: if HUPCF is zero and a separate request has recorded a fault
 // in FSR then we still go downstream. This means a programmer
 // cannot rely on reading FSR != 0 and HUPCF == 0 meaning that no
 // new downstream transactions can be started.
 return OkaySendDownstream;
 }

 // We have a fault and must resample FSR, CFCFG and HUPCF
 if (FaultSetIn(faultingBank.SMMU_CBn_FSR))
 {
 // A fault is already recorded in the FSR. Note: we do not sample
 // CFCFG here.

 if (faultingBank.SMMU_CBn_FSR.SS == 1)
 {
 // There is a stalled request awaiting a resume however
 // CFCFG might have change and might currently be Terminate
 // but we still obey the stall model active when the fault
 // was initially recorded
 WaitForWriteToResume(faultingBank);
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-91
ID091613 Non-Confidential - Beta

3 The Fault Model
3.7 Context faults
 goto start; // We must resample CFCFG
 }

 // CFCFG is either Terminate or has been changed to Stall but this
 // change will not take effect until the FSR has been cleared.

 if (faultingBank.SMMU_CBn_SCTLR.HUPCF == 0)
 {
 // FSR is not updated
 // Return abort to upstream device depending on value
 // of SMMU_CBn_SCTLR.CFRE
 return ClientAbort(faultingBank);
 }
 else
 {
 // There is already a fault recorded in the FSR
 // so set MULTI
 faultingBank.SMMU_CBn_FSR.MULTI= 1;
 // Return abort to upstream device depending on value
 // of SMMU_CBn_SCTLR.CFRE
 return ClientAbort(faultingBank);
 }
 }
 else
 {
 // No prior fault recorded in FSR

 if (InTerminateMode(faultingBank))
 {
 // Terminate model
 RecordFaultInFSR(faultingBank, .SS = 0);
 // Return abort to upstream device depending on value
 // of SMMU_CBn_SCTLR.CFRE
 return ClientAbort(faultingBank);
 }
 else
 {
 // Stall model
 RecordFaultInFSR(faultingBank, .SS = 1);
 bool terminate = WaitForWriteToResume(faultingBank);

 if (terminate)
 {
 // Return abort to upstream device depending on value
 // of SMMU_CBn_SCTLR.CFRE
 return ClientAbort(faultingBank);
 }
 goto start; // We must resample CFCFG
 }
 }

 // Unreachable
 Assert(0);

 /// Local methods

 RequestAction CheckForFaultsInBank(context_bank_t bank)
 {
 if (FaultSetIn(bank.SMMU_CBn_FSR))
 {
 if (InTerminateMode(bank))
 {
 // Terminate model
 if (bank.SMMU_CBn_FSR.SS == 1
 && bank.SMMU_CBn_SCTLR.HUPCF == 0)
 {
 // If previous transactions are stalled (by the Stall Model)
 // then CFCFG has been changed dynamically and HUPCF is
3-92 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.7 Context faults
 // not allowed so wait for these previous transactions
 // to be resumed or terminated
 // by a write to SMMU_CBn_RESUME (this clears SS)
 WaitForWriteToResume(bank);
 return GotoStart; // We need to re-sample CFCFG
 }

 if (bank.SMMU_CBn_SCTLR.HUPCF == 0)
 {
 // FSR is not updated
 // Return abort to upstream device depending on value
 // of the current bank's SMMU_CBn_SCTLR.CFRE
 return ClientAbort(bank);
 }

 ; // Fall through and allow translation
 }
 else
 {
 // Stall model
 if (bank.SMMU_CBn_SCTLR.HUPCF == 0)
 {
 // In the stall model, we wait for the FSR
 // to be free if HUPCF is zero and there is a
 // stalled transaction
 if (bank.SMMU_CBn_FSR.SS == 1)
 {
 WaitForWriteToResume(bank);
 return GotoStart;
 }
 else
 {
 // If SS is zero but other bits are non-zero, a prior fault
 // has terminated but CFCFG has since been changed
 //
 // Obey the new mode (which is Terminate) and abort
 // the transaction.
 return ClientAbort(bank);
 }
 }

 // There is a fault recorded in the FSR and SS may or may not
 // be set. If SS is zero, then if this transaction faults,
 // FSR.MULTI might be set (see above).

 ; // Fall through and allow translation
 }
 }

 return OkaySendDownstream; // sentinel value to mean passed this check
 }

 RequestAction ClientAbort(context_bank_t bank)
 {
 if (bank.SMMU_CBn_SCTLR.CFRE == 1)
 {
 return AbortReportToClient;
 }

 return AbortDoNotReportToClient;
 }

 bool InTerminateMode(context_bank_t bank)
 {
 return bank.SMMU_CBn_SCTLR.CFCFG == 0
 || (bank is secure
 && (SMMU_SCR0.STALLD == 1
 || (SMMU_CR0.STALLD && imp_def_option_0)))
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-93
ID091613 Non-Confidential - Beta

3 The Fault Model
3.7 Context faults
 || (bank is non secure
 && (SMMU_CR0.STALLD == 1 || SMMU_SCR0.STALLD == 1))
 }

 bool FaultSetIn(bits(32) fsr)
 {
 // Mask out the Format field in bits [10:9]
 return (fsr & ~0x00000600) != 0;
 }
}

3.7.4 Reporting a context fault

The SMMU can be configured to report a context fault. The value of SMMU_CBn_SCTLR.CFRE in the stage of
translation that encounters the fault indicates whether an abort is reported to the initiator of a terminated transaction.

3.7.5 Enabling Global stall mode

The SMMU might give the ability to globally stall the processing of each translation that arrives after a stall fault
is raised in a translation context bank. The global stall applies to all transactions arriving at the SMMU, regardless
of the translation context they map to.

SMMU_sCR0.GSE enables global stalling.

It is IMPLEMENTATION DEFINED whether global stall is supported:

• In an implementation that does not support global stalling, SMMU_sCR0.GSE is RAZ/WI.

• In an implementation that supports global stalling, SMMU_sCR0.STALLD can disable global stalling. When
SMMU_sCR0.STALLD is 1, SMMU_sCR0.GSE is RAZ/WI.

In an implementation that supports two security states:

• SMMU_CR0.GSE must apply to Non-secure translation context banks, and an implementation is permitted
to apply the setting of SMMU_CR0.GSE to transactions processed by Secure translation context banks.

• SMMU_SCR0.GSE provides functionality that is equivalent to the functionality provided by
SMMU_CR0.GSE.

• SMMU_CR0.STALLD must apply to SMMU_CR0.GSE, and optionally, can apply to SMMU_SCR0.GSE.
Equivalent requirements exist for SMMU_SCR0.STALLD.
3-94 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.8 Global faults
3.8 Global faults
A global fault is a fault that occurs when either:
• A transaction being processed by the SMMU has no associated translation context bank.
• A translation context bank is not the appropriate place to record the fault.

A global fault can occur because of:

• An invalid context fault, where the fault context has been selected in either:
— the Stream mapping register group that matches the transaction
— the SMMU_CBARn register of the initial context specified by the Stream Mapping process.

In SMMUv1, whether the SMMU records an invalid context fault as a response to the initial context specified
in SMMU_CBARn is UNPREDICTABLE

In SMMUv2, the SMMU always records an invalid context fault if an invalid configuration is specified by
any of:
— SMMU_CBARn.TYPE.
— SMMU_CBARn.HYPC.
— SMMU_CBA2Rn.VA64.
— SMMU_CBA2Rn.MONC.

See Invalid context checking pseudocode on page 3-97 for more information.

• An unidentified stream fault, where both:
— No match for the transaction is found in the stream matching registers.
— SMMU_sCR0.USFCFG has enabled the relevant fault reporting.

• A stream match conflict fault, where multiple matches for a transaction are detected in the stream matching
registers and SMMU_sCR0.SMCFCFG has enabled the relevant fault reporting capability.

• An unimplemented context bank fault, where the transaction maps to a an unimplemented translation context.
For example, in an implementation that does not include stage 2 translation as part of a stage 1 followed by
stage 2 translation, an attempt to use a stage 2 translation context bank might result in an Unimplemented
context bank fault.

• An unimplemented context interrupt fault, where a transaction causes a fault in a translation context bank,
and that translation context has been configured to assert a context interrupt that is not implemented.

• A configuration access fault, where a configuration access is made to a non-existent SMMU configuration
register.

• A permission fault, where a transaction has insufficient permission to be processed.

• An external fault, where an external abort has been reported during the processing of a transaction.

• An unsupported transaction fault, as a result of certain client transactions.

3.8.1 Recording a global fault

To record a configuration access fault, the SMMU updates:
• SMMU_sGFSR.
• SMMU_sGFSYNR0, with the following exceptions:

— Nested is captured as the value 0.
— NSSTATE is UNK.

• SMMU_sGFAR.
• SMMU_sGFSYNR1 is UNK.

To record an external fault, the SMMU updates SMMU_sGFSR. SMMU_sGFAR, SMMU_sGFSYNR0 and
SMMU_sGFSYNR1 are UNK
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-95
ID091613 Non-Confidential - Beta

3 The Fault Model
3.8 Global faults
To record an unsupported upstream transaction fault, the SMMU:
• Updates SMMU_sGFSR, regardless of the state of SMMU_SCR1.GEFRO.
• Aborts the transaction if the SMMU_sCR0.GCFGFRE bit is set to 1.

In an implementation that supports two security states, SMMU_sGFSR is Banked for security. The security state of
the transaction causing the global fault determines the banked SMMU_sGFSR register that has information about
the transaction.

Multiple fault conditions

The Global Fault Status Registers record details of one outstanding fault. If a subsequent fault occurs before an
outstanding fault is serviced, the subsequent fault is recorded, but without the full details that accompany the initial
fault. SMMU_sGFSR.MULTI indicates the existence of multiple outstanding faults recorded in SMMU_sGFSR.

If a global fault is encountered when SMMU_sGFSR is 0, including SMMU_sGFSR.MULTI, the fault status and
syndrome details are recorded in:
• SMMU_sGFSR.
• SMMU_sGFAR.
• SMMU_sGFSYNR0.
• SMMU_sGFSYNR1.

If a global fault occurs when SMMU_sGFSR is non-zero, including SMMU_sGFSR.MULTI, the
SMMU_sGFSR.MULTI bit is set to 1 and no other fault status or syndrome state is updated.

Two-stage faults

SMMU_sGFSYNR0.Nested provides information for the following types of fault in SMMU_sGFSR:
• Invalid context fault.
• Unimplemented context bank fault.
• Unimplemented context interrupt fault.

The Nested bit indicates whether the fault condition occurred as a result of either:
• The initial translation function specified by the stream mapping process in SMMU_S2CRn.
• The stage 1 followed by stage 2 translation context specified in the SMMU_CBARn register of the initial

context.

Permission faults

Secure instruction fetch transactions can be subject to a protection check. If the SMMU_SCR1.SIF bit is set to 1, a
permission fault is recorded when a Secure domain access attempts to exit the SMMU as a Non-secure instruction.

This check applies globally, and if not associated with a translation context bank records faults to SMMU_SGFSR.
Otherwise, faults are recorded in the associated SMMU_CBn_FSR.

3.8.2 Handling a Global fault

A transaction is terminated by the SMMU on encountering a global fault. The accesses behave as RAZ/WI. The
appropriate Fault Status Register is updated.

3.8.3 Reporting a Global fault

An SMMU can be configured to report a global fault by:
• Reporting client transactions if SMMU_sCR0.GFRE is enabled.
• Reporting configuration transactions if SMMU_sCR0.GCFGFRE is enabled.
3-96 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.8 Global faults
Global fault interrupts

An SMMU can be configured to use the following interrupt mechanisms in response to encountering a global fault:

• SMMU_NSgCfgIrpt, to indicate that a configuration access fault has been recorded, where
SMMU_sCR0.GCFGFIE enables reporting of the fault. SMMU_sGFSR.CAF specifies whether a
configuration access fault has been recorded.

• SMMU_NSgIrpt, to indicate whether any other global fault has been recorded, where SMMU_sCR0.GFIE
enables reporting of the fault. SMMU_sGFSR specifies whether such a fault has been recorded.

Note
 If SMMU_sGFSR.MULTI is 1 because of a configuration access fault, SMMU_NSgIrpt is asserted instead of
SMMU_NSgCfgIrpt.

In an implementation that supports two security states, the interrupt for communicating these fault classes depends
on the Banked copy of SMMU_sGFSR that is updated. If the global fault updates SMMU_sGFSR, interrupt
signaling is as previously stated. If the global fault updates SMMU_sGFSR:
• SMMU_gCfgIrpt indicates configuration access faults. SMMU_SCR0.GCFGFIE enables its assertion.
• SMMU_gIrpt indicates all other global faults. SMMU_SCR0.GFIE enables its assertion.

See SMMU_sCR0, Configuration Register 0 on page 9-167 for more information.

Global faults and untranslated address operations

Client transaction classes that are not subject to translation might be processed by the SMMU. An untranslated
address operation might be a barrier transaction, or a TLB maintenance operation that does not specify an address.

When an SMMU processes such a transaction, the transaction remains subject to the stream mapping process.
Therefore, any of the following types of fault can occur:
• Invalid context fault.
• Unidentified stream fault.
• Stream match conflict fault.
• Unimplemented context bank fault.

Inclusion of fault reporting in the initiating device and the interconnect between the device and the SMMU is
IMPLEMENTATION DEFINED.

3.8.4 Invalid context checking pseudocode

The following pseudocode describes the required order for context bank configuration checks that the SMMU
performs after the stream mapping stage. The pseudocode applies to both client transactions and address translation
operations.

//
// This checks whether a context bank is configured correctly
// If so, it returns true
// Otherwise, it attempts to record a fault in the appropriate FSR and
// returns false
//

bool CheckBankValidityAndRecordFaults()
{
 if (First is not implemented or is of a different security domain)
 {
 AttemptToRecordGlobalFault(.sGFSR_value(UCBF), .Nested_flag(false));
 return false;
 }
 else if (
 (First.SMMU_CBAR.TYPE == st1_st2nested && ! SMMU_IDR0.NTS)
 || (First.SMMU_CBAR.TYPE == st1_st2bypass && ! SMMU_IDR0.S1TS)
 || (First.SMMU_CBAR.TYPE == st2_only && ! SMMU_IDR0.S2TS)
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-97
ID091613 Non-Confidential - Beta

3 The Fault Model
3.8 Global faults
 || (First is HW stage 2 only && First.SMMU_CBAR.TYPE != st2_only)
)
 {
 // Unsupported translation format for the implementation.
 // Chosen to be ICF for SMMUv2
 //
 AttemptToRecordGlobalFault(.sGFSR_value(ICF), .Nested_flag(true));
 return false;
 }
 else if (
 (First.SMMU_CBAR.TYPE == st1_st2fault)
 || (First is secure && First.SMMU_CBAR.TYPE != st1_st2bypass) // SMMUv1 & SMMUv2
)
 {
 // S1+S2 nested illegal for secure banks, if a secure bank is
 // not S1+S2 bypass then ICF

 AttemptToRecordGlobalFault(.sGFSR_value(ICF), .Nested_flag(true));
 return false;
 }
 else if (First.SMMU_CBAR.TYPE == st1_st2nested,
 but Second is not implemented or is of a different security domain)
 {
 AttemptToRecordGlobalFault(.sGFSR_value(UCBF), .Nested_flag(true));
 return false;
 }
 else if (
 First.SMMU_CBAR.TYPE == st1_st2nested
 && (Second.SMMU_CBAR.TYPE != st2_only
 || (First.SMMU_CBA2R.VA64 && ! Second.SMMU_CBA2R.VA64))
)
 {
 // S1 Aarch64 and S2 Aarch32 nested combinations are not valid.
 AttemptToRecordGlobalFault(.sGFSR_value(ICF), .Nested_flag(true));
 return false;
 }
 else if (
 // All ATS operations that are not representable as an upstream bus
 // transaction will TranslationFault.
 //
 // The intent is that the HW need not have a page walk mechanism
 // that can deal with any VA solely for the purposes of supplying
 // ATS functionality.
 Is an ATS operation and not representable_as_upstream_bus(VA)
)
 {
 // Generate Translation Fault into first context.
 AttemptToRecordContextFault(
 .FSR_value(TF),
 .PLVL_value(SMMU_CBA2R.VA64 ? 0 : 1),
 ...
);
 return false;
 }
 else if (
 // Check that VA is <= 32 bits for Stage 1 V7 contexts
 operation has an address // Not true for barriers
 && First.SMMU_CBA2R.VA64 == 0
 && First.SMMU_CBAR.TYPE in {st1_st2bypass, st1_st2nested}
 && VA > 0xffff_ffff
)
 {
 // Generate Translation Fault into first context.
 AttemptToRecordContextFault(
 .FSR_value(TF),
 .PLVL_value(1),
 ...
);
3-98 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.8 Global faults
 return false;
 }
 else if (
 // Check that IPA is <= 40 bits for Stage 2 V7 contexts
 operation has an address // Not true for barriers
 && First.SMMU_CBA2R.VA64 == 0
 && First.SMMU_CBAR.TYPE == st2_only
 && IPA > 0xff_ffff_ffff
)
 {
 // If the MMU is on then this fails the input address check
 // and generates a TranslationFault.
 //
 // If the MMU is off then this fails the output address check
 // and generates an AddressSizeFault
 //
 // NOTE that this is conditional on SMMU_CBn_SCTLR whereas
 // for a VA > 0xFFFF_ffff to a v7s/l stage 1 bank then it
 // unconditionally generates TranslationFault. This is for
 // backwards compatible behaviour with SMMUv1.
 //
 // This equivalent scenario could not exist in SMMUv1 as the
 // upstream bus size was <= 40 bits and could not occur.
 //
 AttemptToRecordContextFault(
 .FSR_value(First.SMMU_CBn_SCTLR.M ? TF : ASF),
 .PLVL_value(1),
 ...
);
 return false;
 }

 return true;
}

ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-99
ID091613 Non-Confidential - Beta

3 The Fault Model
3.9 Configuration access
3.9 Configuration access
SMMU configuration is performed through a register space in the system address map. This address map might be
partially populated, with the possibility of fully implemented, partially implemented and unimplemented registers
throughout that address space.

The following behaviors are permitted for access to an unimplemented register or an unimplemented register bit in
the SMMU configuration space:

• Access to an unimplemented configuration register can be RAZ/WI, or can result in a configuration access
fault. Such behavior is also permitted for a Non-secure access to a configuration resource that is allocated for
use by Secure software.

• Access to an unimplemented bit in a configuration register where at least one bit is implemented can behave
as RAZ/WI.

An SMMU implementation can restrict access to some or all of the configuration addresses based on the privilege
of the access, with the following behaviors permitted where the transaction does not have sufficient access
permissions:
• Treat the access as RAZ/WI.
• Raise a configuration access fault.

Unless explicitly specified in relation to a particular configuration address or range of addresses, it is
IMPLEMENTATION DEFINED as to which of the permitted behaviors occurs.

In SMMUv2, accesses to memory locations in a translation context bank cannot result in a configuration access
fault. This means that accesses to UNDEFINED translation context bank registers are RAZ/WI, including accesses to:
• Unallocated addresses.
• Any register field that is reserved.

Warning
 In SMMUv1, accesses to UNDEFINED translation context bank registers might generate a configuration access fault
that corrupts SMMU_sGFSR.

If an implementation generates a configuration access fault in response to Non-secure software accessing a Secure
register such as SMMU_SCR1, or a Secure resource such as a context bank allocated for use by Secure software,
the fault is reported to SMMU_SGFSR. The fault also:
• Raises an interrupt, if the SMMU_SCR0.GCFGFIE bit is set to 1
• Returns an abort, if the SMMU_SCR0.GCFGFRE bit is set to 1.

In SMMUv2, the SMMU_SCR1.NSCAFRO bit provides an override whereby such configuration access faults are
instead recorded in SMMU_GFSR.

For configuration access faults recorded to SMMU_SGFSR, Secure software can read the
SMMU_SGFSYNR0.NSSTATE bit to determine whether the fault was generated by an SSD Non-secure
transaction. Configuration access faults recorded to SMMU_GFSR do not affect SMMU_SGFSYNR0.

When the SMMU_SCR1.GASRAE bit is set to 1, the global SMMU address space is accessible only by Secure
configuration memory accesses. This means that all configuration access faults generated to global SMMU address
space registers are also reported to SMMU_SGFSR, unless the SMMUv2 SMMU_SCR1.NSCAFRO bit is set to 1.
This permits Secure software to detect potential security violations by Non-secure software.

Note
 The SMMU_SCR1.NSCAFRO override prevents Non-secure software from injecting faults into SMMU_SGFSR
and preventing Secure software from detecting or managing other faults.
3-100 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.10 External faults
3.10 External faults
A fault encountered outside the SMMU can be reported to the SMMU across the system interconnect.

An external fault encountered in an instruction read, a data read or a data write can be reported to the SMMU, and
the SMMU might record the fault synchronously or asynchronously.

External faults in an SMMU implementation are generated in response to:
• A read issued as part of a translation table walk.
• Optionally:

— A translated client transaction where the downstream system returns an abort.
— In SMMUv1 only, an unsupported upstream transaction.
SMMUv2 supports a dedicated unsupported upstream transaction fault. See Unsupported upstream
transaction faults on page 3-85.

For external faults returned in response to a translation table walk read:

• If the translation table walk is part of processing a client transaction, the SMMU records the external fault in
the appropriate Fault Status Register.

• If the translation table walk is part of processing an address translation operation initiated by a configuration
access, the fault status is generally captured in SMMU_sGPAR or SMMU_CBn_PAR. An exception to this
is where an external fault is encountered during a stage 2 translation table walk that is performed as part of
processing an address translation operation initiated in a stage 1 translation context bank. In this case, stage
2 SMMU_CBn_FSR and related registers might capture a fault status. Depending on how the fault is
serviced, the corresponding stage 1 translation context bank SMMU_CBn_PAR captures an Address
Translation Operation Terminated (ATOT) status.

In SMMUv2, for external fault that are generated when the downstream system returns an abort, where an
implementation supports two security states and the SMMU_SCR1.GEFRO bit is set to 1, the SMMU records the
fault in SMMU_SGFSR. In all other cases, the SMMU records the fault in either
• The appropriate SMMU_sGFSR, if the security state is known.
• SMMU_GFSR.

Note
 Where SMMU_SCR1.GEFRO bit is set to 1, the software agent controlling the Secure space permits Non-secure
agents to report faults to the Secure state, potentially interfering with the use of SMMU_SGFSR by the Secure state.

In SMMUv2, an SMMU implementation might record an external fault in response to a translated client transaction
if the upstream bus system does not support transaction error reporting, In such cases, synchronous external faults
that are associated with a context bank must be recorded in the context bank. All other external faults must be
recorded globally.

Note
 • In AMBA systems, instead of recording such faults, the SMMU must transfer the faults to the upstream client

device. This means that all of the following bits must be RAZ/WI:
— SMMU_sGFSR.EF.
— SMMU_SCR1.GEFRO.
— SMMU_SGFSYNR0.NSSTATE.

• In non-AMBA systems that do not support transferring faults to upstream client devices, Secure software
permits Non-secure software to report faults to the Secure state. This can interfere with Secure access to
SMMU_SGFSR.

In SMMUv1, for external faults reported to the SMMU in all cases other than those returned in response to a
translation table walk read, it is IMPLEMENTATION DEFINED which external faults, if any, the SMMU records.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-101
ID091613 Non-Confidential - Beta

3 The Fault Model
3.10 External faults
An external abort reported by the SMMU selects a Fault Status Register group and updates the Fault Status Register
in this group with a fault status code. A synchronously recorded external abort selects the Fault Status Register
group corresponding to the SMMU resources that processed the faulty transaction. If the transaction bypassed
translation, the global fault status group is used. If the transaction was processed with one or more translation
context banks, the fault status group belonging to the translation context bank is used.

For stage 1 followed by stage 2 translation, the stage 2 translation context bank is always used.

For an asynchronously recorded external abort, the Fault Status Register group selected is IMPLEMENTATION
DEFINED. The selected register group can be a Fault Status Register group as specified for synchronous reporting or
the global Fault Status Register group.

A synchronously recorded external abort updates the Fault Status Register and the fault address and Fault Syndrome
Registers. The Fault Status Register is updated to indicate that an external fault has occurred. The fault address and
Fault Syndrome Registers are updated with syndrome information about the transaction that caused the fault.

An asynchronously recorded external abort updates the Fault Status Register to indicate that an external fault has
occurred. The fault address and syndrome registers are UNKNOWN.

In an implementation that supports two security states, an external fault recorded in the global fault status group can
update either SMMU_GFSR or SMMU_SGFSR, depending on the security state of the transaction that caused the
external fault. See SMMU_sGFSR, Global Fault Status Register on page 9-180.

For an asynchronously recorded external abort in the global fault status group, all external faults are permitted to be
recorded in SMMU_GFSR. Secure software is provided with an override, SMMU_SCR1.GEFRO, which when set,
causes all such faults to instead be recorded in SMMU_SGFSR.
3-102 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

3 The Fault Model
3.11 Reporting exclusive access transactions
3.11 Reporting exclusive access transactions
Depending on the bus system used, an implementation might support exclusive access transactions, in which case
the possible return responses indicate that the transaction has:
• Succeeded.
• Failed.
• Aborted.

In the SMMU, reporting means specifically reporting an exclusive access transaction as aborting. When the SMMU
is configured so that aborts are not reported, that is, when either the SMMU_sCR0.GFRE bit or the
SMMU_CBn_SCTLR.CFRE bit is set to 0, ARM recommends that an implementation reports that the transaction
has failed.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 3-103
ID091613 Non-Confidential - Beta

3 The Fault Model
3.12 Fault behavior in virtualized context banks
3.12 Fault behavior in virtualized context banks
When a hypervisor virtualizes a Guest OS that expects a particular set of virtual upstream client devices, these
devices might not map to the set of physical upstream client devices present in the system.

This means that the following Stage 1 context virtualization holes exist in SMMUv1 and SMMUv2:

• The SMMU_CBn_SCTLR.CFRE bit controls whether Context faults encountered when processing an
upstream client transaction are reported to the physical device managed by the hypervisor, rather than being
reported to the virtual device.

• The SMMU_CBn_SCTLR.CFCFG bit controls whether a fault encountered when processing an upstream
client transaction causes the physical device managed by the hypervisor to stall or terminate, rather than the
virtual device. This is a problem if the physical device requires use of the stall model and cannot be restarted
correctly following a terminated transaction.

• It is possible for non-faulting stage 1 context banks to terminate transactions silently when both of the
following apply:
— Multiple stage 1 context banks use a stage 2 context bank that is configured to use the terminate model.
— The appropriate stage 1 SMMU_CBn_SCTLR.HUPCF==0.

This affects other stage 1 banks that use the same stage 2 context. ARM recommends that
SMMU_CBn_SCTLR.HUPCF is set to 1 when multiple stage 1 devices share a stage 2 context bank.

Note
 This also applies where different independent devices use the stage 2 context bank directly.

• Whether broadcast TLB maintenance operations affect SMMU operation depends on the value of the PTM
and VMIDPNE bits in SMMU_sCR0. SMMU TLBs are not required to respond to broadcast TLB operations
when either:
— SMMU_sCR0.PTM==1.
— SMMU_sCR0.VMIDPNE==1.
3-104 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 4
Address Translation Operations

This chapter describes address translation operations that are initiated using software-accessible registers. It
contains the following sections:
• About address translation operations on page 4-106.
• Address translation registers in a stage 1 translation context on page 4-107.
• Address translation registers in the global address space on page 4-110.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 4-105
ID091613 Non-Confidential - Beta

4 Address Translation Operations
4.1 About address translation operations
4.1 About address translation operations
Software can access registers to initiate address translation operations. Using a specified translation context bank,
software can access address translation registers to initiate:
• Stage 1 translation from a virtual address to an intermediate physical address.
• Single-step translation from a virtual address to a physical address.

The address translation registers are in the global address space and the stage 1 translation context bank address
space. They are equivalent to the registers in the processor architecture, with some minor differences in the usage
model and in the fault handling.

The remainder of this chapter describes the address translation registers.

4.1.1 Address translation registers in SMMUv2

In SMMUv2, the address translation registers are OPTIONAL. The address translation registers are implemented only
when both:
• The SMMU_IDR0.S1TS bit is set to 1.
• The SMMU_IDR0.ATOSNS bit is set to 0.

When not implemented, the address translation operations are reserved locations in the register space. This means
that any context bank address translation registers are RAZ/WI, and any global address translation registers are
either RAZ/WI or generate a configuration access fault, depending on the implementation.

The input address provided to address translation operations is always independent of the selected translation
granule size. That is, the input address must include all high-order bits down to, and including, bit[12]. These bits
are translated and provided to the appropriate SMMU_CBn_PAR.

In SMMUv2, when address translation registers are implemented, operations that perform two stages of translation,
such as SMMU_sGATS12*, are available even when an implementation does not support stage 1 followed by stage
2 translations.

The address provided to an address translation operation is not subject to sign-extension and software must provide
a complete address. See Sign-extension of input addresses on page 1-29 for more information.
4-106 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

4 Address Translation Operations
4.2 Address translation registers in a stage 1 translation context
4.2 Address translation registers in a stage 1 translation context
Table 4-1 shows the registers that are available in a stage 1 translation context bank.

To begin translation, software writes the address that is to be translated, to the required register address. The stage
1 translation tables give the result of a successful translation. This result is an intermediate physical address.

4.2.1 Usage model

Address translation operations are initiated using the following registers, from the same translation context bank:
• SMMU_CBn_PAR.
• SMMU_CBn_ATSR.

If the operation succeeds, SMMU_CBn_PAR holds the translated address.

SMMU_CBn_ATSR tracks the progress of an address translation operation. SMMU_CBn_ATSR.ACTIVE is set to
1 when a new address translation operation starts, and remains set at this value until the previously requested
operation completes. UNPREDICTABLE behavior arises if an address translation operation is requested in the same
translation context bank before the previously requested address translation operation completes.

4.2.2 Fault handling

If an address translation operation fails, SMMU_CBn_PAR generally captures a fault code. See also Fault handling
within stage 1 followed by stage 2 translations initiated in a context bank.

Note
 Address translation operations in a stage 1 translation context operate independently from the translation of client
transactions within that stage 1 translation context bank. A fault in a stage 1 context bank, indicated by
SMMU_CBn_FSR having a non-zero value, does not restrict address translation operations.

4.2.3 Stage 1 followed by stage 2 translation effect

In an implementation that supports stage 1 followed by stage 2 translation, if a stage 1 translation context bank is
associated with a stage 2 translation context bank, the stage 1 address translation operation locates the stage 1
translation tables necessary to perform the operation using the translations specified by the stage 2 translation
context bank.

The result of a successful operation is the address specified by the stage 1 translation context bank. This is the
intermediate physical address, specific to stage 1 followed by stage 2 translation.

4.2.4 Fault handling within stage 1 followed by stage 2 translations initiated in a context bank

This section applies to address translation operations initiated in a context bank. See Fault handling on page 4-111
for information about fault handling for global address translations.

Table 4-1 Stage 1 address translation registers

Register Operation

SMMU_CBn_ATS1UR Stage 1 unprivileged read

SMMU_CBn_ATS1UW Stage 1 unprivileged write

SMMU_CBn_ATS1PR Stage 1 privileged read

SMMU_CBn_ATS1PW Stage 1 privileged write
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 4-107
ID091613 Non-Confidential - Beta

4 Address Translation Operations
4.2 Address translation registers in a stage 1 translation context
If an address translation operation is initiated in a stage 1 translation context bank that is associated with a stage 2
translation context bank, the handling of a fault that is encountered when processing an address translation operation
is modified for the following conditions:
• An external abort.
• A fault during stage 2 translation required by a stage 1 initiated address translation.

Depending on the nature of the fault, it is recorded either in the stage 2 context bank or in SMMU_sGFSR. The
address translation operation is either suspended or terminated.

Handling faults that are recorded in a stage 2 context bank

This section applies to address translation operations initiated in a context bank. See Fault handling on page 4-111
for information about fault handling for global address translations.

A fault encountered during an address translation operation initiated in a stage 1 translation context bank is recorded
in a stage 2 context bank if it is a result of any of the following conditions:

• An external abort.

• A fault during stage 2 translation required by a stage 1 initiated address translation, including:
— A stage 2 permission fault.
— A stage 2 translation fault.
— An external abort on a stage 2 translation table walk.

In such cases, the address translation operation is either suspended or terminated.

If the fault is recorded, that is, if the value in the stage 2 SMMU_CBn_FSR register is 0 prior to the fault, then:
• SMMU_CBn_FSR captures the appropriate fault status.
• The stage 2 SMMU_CBn_FAR register captures the input address to the address translation operation

Note
 This is the virtual address, as would be the case for a stage 1 followed by stage 2 client transaction faulting

in stage 2.

• The stage 2 SMMU_CBn_FSYNR0 register captures other syndrome information about the fault, including:
— The ATOF bit, to indicate that the fault is a result of a stage 1 address translation operation.
— The S1PTWF bit, to indicate that the fault is related to a stage 1 translation table walk.
— The S1CBNDX bit, that records the stage 1 context bank.

• The value in SMMU_CBFRSYNRAn is UNKNOWN, because no Stream ID or SSD_Index can be associated
with the address translation operation.

If the fault is not recorded, that is, if the value in the stage 2 SMMU_CBn_FSR register is not 0 prior to the fault,
the stage 2 SMMU_CBn_FSR.MULTI bit is set to 1.

If the fault is recorded and stalling is permitted in stage 2 then the address translation operation is stalled in the same
way as a client transaction, and:
• The stage 1 SMMU_CBn_ATSR.ACTIVE register bit is not reset, indicating that the operation is active.
• The stage 1 SMMU_CBn_PAR register value remains unknown.
• The stage 2 SMMU_CBn_RESUME register can be used to resume the operation in stage 2

If the stage 2 context is configured to use the Terminate fault model, the SMMU terminates the address translation
operation, as follows:

• The stage 1 SMMU_CBn_ATSR.ACTIVE field resets.

• The stage 1 SMMU_CBn_PAR register updates with the Address Translation Operation Terminated (ATOT)
fault code, regardless of the value of the stage 2 SMMU_CBn_SCTLR.CFRE bit.
4-108 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

4 Address Translation Operations
4.2 Address translation registers in a stage 1 translation context
Note
 If stage 2 is already faulting and the stage 2 SMMU_CBn_SCTLR.HUPCF bit is set to 0 so that the bank

terminates subsequent transactions, then the address translation operation is terminated regardless of whether
the operation might have completed successfully.

Handling faults that are recorded in the Global Fault Status Registers

This category of fault handling applies to faults encountered during a stage 2 translation operation that is required
by an address translation operation initiated in a stage 1 context bank. These include:
• Stage 2 invalid context faults.
• Stage 2 unimplemented context faults.
• Stage 2 invalid context interrupt faults.

Such faults are never stalled as there is no stage 2 to configure the stall model. The SMMU attempts to record these
faults in SMMU_sGFSR

If the fault is recorded, that is, if the value in SMMU_sGFSR is 0 prior to the fault:

• SMMU_sGFSR captures the appropriate fault status.

• In SMMU_sGFSYNR0, the following bits are set to 1:
— Nested.
— NSSTATE.
— NSATTR.
— ATS.

• In SMMU_sGFSYNR0, the value of the following bits is UNKNOWN:
— WNR.
— PNU.
— IND.

• The value of the following registers is UNKNOWN:
— SMMU_sGFAR.
— SMMU_sGFSYNR1.

• SMMU_sGFSYNR2 is updated with an IMPLEMENTATION DEFINED value.

Note
 These address translation operations are not recoverable, because these faults are caused by the hypervisor failing
to configure the SMMU correctly. The UNKNOWN fields cannot be used for diagnostic purposes.

If the fault is not recorded, that is, if the value in SMMU_sGFSR is not 0 prior to the fault:

• The SMMU_sGFSR.MULTI bit is set to 1 and the other bits in SMMU_sGFSR are not updated

• The following registers are not updated:
— SMMU_sGFAR.
— SMMU_sGFSYNR0.
— SMMU_sGFSYNR1.
— SMMU_sGFSYNR2.

• The address translation operation is terminated, meaning that:
— The stage 1 SMMU_CBn_ATSR.ACTIVE bit is reset.
— The stage 1 SMMU_CBn_PAR register is updated with the ATOT fault code.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 4-109
ID091613 Non-Confidential - Beta

4 Address Translation Operations
4.3 Address translation registers in the global address space
4.3 Address translation registers in the global address space
Table 4-2 shows software-accessible registers in the global address space.

To begin translation, software writes to the required register address. All of the registers require an input address
and a stage 1 translation context bank index as arguments.

If a register receives as its input argument, an invalid index from the software, an Unimplemented context bank fault
is recorded by the SMMU in the global context bank. An example of an invalid index is an index that corresponds
to either:
• A non-existent translation context bank.
• A translation context bank configured in the format of a stage 2 translation context bank.

A Secure register, for example SMMU_SGATS1UR, accepts an index of either a Secure or a Non-secure stage 1
translation context bank. A Non-secure register, for example SMMU_GATS1UR, accepts an index of a Non-secure
translation context bank.

In an implementation that supports two security states, equivalent functionality provides Secure configuration
accesses in the form of SMMU_SGPAR, SMMU_SGATSR and SMMU_SGATxx operations. See SMMU_sGPAR,
SMMU_sGATSR and Table 4-2 for more information.

The Secure global address translation operations operate independently to the Non-secure global address translation
operations. A Secure register accepts an index of either a Secure or a Non-secure translation context bank. A
Non-secure register accepts an index of a Non-secure translation context bank. Aliases in the global address space
give Secure software access to the Non-secure address translation registers.

See the following sections for more information:
• Usage model.
• Fault handling on page 4-111.
• Effect of stage 1 followed by stage 2 translations on page 4-111.

4.3.1 Usage model

Address translation operations are initiated using the following registers, from the same translation context bank:
• SMMU_sGPAR.
• SMMU_sGATSR.

If the operation is successful, the corresponding SMMU_sGPAR register holds the translated address.

SMMU_sGATSR tracks translation progress. When an address translation operation starts,
SMMU_sGATSR.ACTIVE is set to 1, and remains set at 1 until the previously requested operation completes.

Table 4-2 Global address translation registers

Register Operation

SMMU_sGATS1UR Stage 1 unprivileged read

SMMU_sGATS1UW Stage 1 unprivileged write

SMMU_sGATS1PR Stage 1 privileged read

SMMU_sGATS1PW Stage 1 privileged write

SMMU_sGATS12UR Stage 1 and 2 unprivileged read

SMMU_sGATS12UW Stage 1 and 2 unprivileged write

SMMU_sGATS12PR Stage 1 and 2 privileged read

SMMU_sGATS12PW Stage 1 and 2 privileged write
4-110 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

4 Address Translation Operations
4.3 Address translation registers in the global address space
If software invokes an address translation operation before the previously requested operation completes, the
resulting behavior is UNPREDICTABLE.

Secure address translation operations work in combination with SMMU_SGPAR and SMMU_SGATSR.
Non-secure address translation operations work in combination with SMMU_GPAR and SMMU_GATSR.

After accessing any of these registers, software must read SMMU_sGATSR.ACTIVE to determine whether:
• SMMU_sGPAR has been updated to show the outcome of the last requested address translation operation.
• A new address translation operation can be initiated.

4.3.2 Fault handling

If a global translation fails, the corresponding SMMU_sGPAR register captures a fault code. The handling of faults
arising from global address translation operations is more simple than that of translation context bank address
translation operations, because global address translation operations do not require any consideration for the
interaction between a hypervisor and an operating system.

Global address translation operations that are initiated in global register space are not subject to stalls. For these
operations, the SMMU reports faults to SMMU_sGPAR rather than the stage 1 or stage 2 context resources,
regardless of whether:
• The translation is stage 1 followed by stage 2.
• The context banks identified are configured to stall or terminate.
• The context bank is already faulting.

In addition, these operations are not queued behind client transactions and other translation requests in a stalling
context bank that is recording a fault.

If a fault is encountered during a local address translation operation, the SMMU_sGPAR records the type of fault
and the address translation stage in which it occurred.

4.3.3 Effect of stage 1 followed by stage 2 translations

In an implementation that supports stage 1 followed by stage 2 translation, if a stage 1 translation context bank is
associated with a stage 2 translation context bank, the stage 1 address translation operation locates the stage 1
translation tables necessary to perform the operation using the translations specified by the stage 2 translation
context bank.

If the stage 1 translation context bank is associated with a stage 2 fault context, the address translation operation
fails and an invalid context fault occurs.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 4-111
ID091613 Non-Confidential - Beta

4 Address Translation Operations
4.3 Address translation registers in the global address space
4-112 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 5
Coherency Issues and Cache Maintenance
Operations

This chapter describes the relationship between controlling software and the SMMU, including optional support for
coherent translation table walks. It also describes cache maintenance operations. This chapter contains the following
sections:
• Updating the state of a context bank on page 5-114.
• Translation table walk coherency on page 5-116.
• Broadcast TLB maintenance operations on page 5-117.
• TLB maintenance registers on page 5-118.
• Cache maintenance operations on page 5-121.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 5-113
ID091613 Non-Confidential - Beta

5 Coherency Issues and Cache Maintenance Operations
5.1 Updating the state of a context bank
5.1 Updating the state of a context bank
The mechanism by which the SMMU updates context bank state depends on the SMMU architecture version.

5.1.1 SMMUv1 support for updating context bank state

SMMUv1 does not provide any special support for updating context bank state.

Controlling software is responsible for coordinating the update of SMMU state so that an update does not interfere
with concurrent accesses. Before a write, controlling software must ensure that no transaction that might be affected
by a change of SMMU state is in progress. A transaction that is unaffected by a change of state is permitted to
continue concurrently with the change in SMMU state.

The following areas might require special care:
• The context mapping group registers.
• The stage 1 SMMU_CBn_TTBRm and stage 2 SMMU_CBn_TTBR0 registers.
• The Address Space IDentifier (ASID) registers.
• The Virtual Machine ID (VMID) registers.
• The action of clearing fault status values.

5.1.2 SMMUv2 support for updating context bank state

ARM recommends that a device is quiescent before software updates any SMMU state that affects processing of
transactions from the device. However, if this is not possible, SMMUv2 guarantees that:
• Within a security state, register updates are viewed in order.
• All register updates occurring before a transaction reaches the SMMU are visible to that transaction.
• Register updates occurring during the processing of a transaction are visible to that transaction.

Note
 Although these guarantees mean that a transaction can never see a partial register update, the transaction might still
produce UNPREDICTABLE results.

These guarantees mean that SMMUv2 provides support for the following specific types of update:

Prefetch behavior for TLB entries

When software updates a context bank configuration when an upstream client device is quiescent,
there is a risk of prefetching invalid TLB entries. To prevent this, the SMMU architecture places
constraints on prefetch behavior.

If an SMMU implementation prefetches TLB entries after completing the last transaction to use a
particular context bank, the prefetch operation must use a valid context bank configuration. This can
be achieved by observing the context bank configuration while the SMMU processes the
transaction, and ensuring that the prefetch operation uses a context bank configuration that matches
the observed configuration.

Where an implementation prefetches TLB entries for address translation operations, the prefetch
operations must be completed before the appropriate status register indicates completion of the
address translation operation.

When the client device is quiescent, it cannot generate any more transactions. All prefetch
operations associated with a context bank are guaranteed to be completed provided software takes
appropriate action, as follows.

Stage 1 HYPC banks and MONC banks
Before reclaiming memory that is associated with a translation table, software must:

1. Issue a TLB invalidation operation that applies to any prefetch operations that
might be in progress. Typically, this is either SMMU_TLBIALLH,
SMMU_STLBIALLM, or stronger.

2. Issue a write to SMMU_sTLBGSYNC.
5-114 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

5 Coherency Issues and Cache Maintenance Operations
5.1 Updating the state of a context bank
3. Wait until SMMU_sTLBGSTATUS.GSACTIVE==0.

Stage 1 context banks, non-HYPC and non-MONC
Before reclaiming memory that is associated with a translation table, software must:

1. Issue a TLB invalidation operation that applies to any prefetch operations that
might be in progress. Typically, this is either SMMU_CBn_TLBIASID or
SMMU_CBn_TLBIALL.

Note
 Software must provide SMMU_CBn_TLBIASID with the ASID that matches

the ASID of any ongoing prefetch operations.

2. Issue a write to SMMU_CBn_TLBSYNC.

3. Wait until SMMU_CBn_TLBSTATUS.SACTIVE==0.

Stage 2 context banks
Before reclaiming memory that is associated with a translation table, software must:

1. Ensure all associated stage 1 context banks, and corresponding upstream client
devices. are quiescent.

2. Issue a TLB invalidation operation that applies to any prefetch operations that
might be in progress. Typically, this is SMMU_TLBIVMID or stronger.

Note
 Software must provide SMMU_TLBIVMID with the VMID of any ongoing

prefetch operations

3. Issue a write to SMMU_sTLBGSYNC.

4. Wait until SMMU_sTLBGSTATUS.GSACTIVE==0.

Updating SMMU_CBARn.VMID, SMMU_CBn_TCR2, TTBR0, and TTBR1

Provided there are no transactions in progress for a translation context bank, software can update
SMMU_CBARn.VMID, SMMU_CBn_TCR2, TTBR0, and TTBR1 in any order. Software must
then invalidate all affected TLB entries before re-enabling the upstream client device.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 5-115
ID091613 Non-Confidential - Beta

5 Coherency Issues and Cache Maintenance Operations
5.2 Translation table walk coherency
5.2 Translation table walk coherency
The diverse range of system topologies that an SMMU might be deployed in means it is not always possible to
guarantee a coherent translation table walk. Therefore, it is IMPLEMENTATION DEFINED whether an SMMU
translation table walk is coherent.

SMMU_IDR0.CTTW indicates whether support for coherent translation table walks is implemented.

For a system that is being designed to support mainstream platform operating systems, ARM strongly recommends
the inclusion of coherent translation table walks.

An ARM processor translation table walk must access its own data or unified cache, or the data or unified cache of
another agent participating in the coherency protocol, according to the shareability attributes described in the stage
1 SMMU_CBn_TTBRm or stage 2 SMMU_CBn_TTBR0 register. The shareability attributes described in these
registers must be consistent with the shareability attributes for the translation tables.
5-116 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

5 Coherency Issues and Cache Maintenance Operations
5.3 Broadcast TLB maintenance operations
5.3 Broadcast TLB maintenance operations
Some systems support broadcast TLB maintenance operations, where instead of writing to a memory-mapped
register, the SMMU can use a message-based mechanism to apply an operation to all components in the system. For
example, in AMBA-based systems, Distributed Virtual Memory (DVM) messages can provide broadcast TLB
functionality.

The diverse range of system topologies that an SMMU might be deployed in means it is not always possible to
guarantee support for broadcast TLB maintenance operations. Therefore, it is IMPLEMENTATION DEFINED whether
an SMMU supports broadcast TLB maintenance operations.

SMMU_IDR0.BTM indicates support for broadcast TLB maintenance operations.

For a system that is being designed to include mainstream platform operating systems, ARM strongly recommends
the provision of support for broadcast TLB maintenance operations.

5.3.1 Private VMID namespace

In a system where the system software has a different VMID namespace between the processor and the SMMU,
software can hint to the SMMU that any broadcast TLB maintenance operation specifying a VMID is to be ignored.
SMMU_sCR0.VMIDPNE provides this hint.

For example, a broadcast Non-secure SMMU_CBn_TLBIVA operation that specifies a VMID is not required to
affect the TLB entries. However, a broadcast SMMU_TLBIALLNSNH must affect all TLB entries that are tagged
Non-secure and non-hypervisor.

Note
 This hint has no effect on Secure broadcast TLB Invalidate operations because they have no associated VMID.

5.3.2 Private ASID namespace

In a system where the system software has a different ASID namespace between the processor and the SMMU,
software can hint to the SMMU that any broadcast TLB maintenance operation specifying an ASID is to be ignored.
SMMU_CBn_SCTLR.ASIDPNE provides this hint.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 5-117
ID091613 Non-Confidential - Beta

5 Coherency Issues and Cache Maintenance Operations
5.4 TLB maintenance registers
5.4 TLB maintenance registers
The memory-mapped TLB maintenance registers enable software to initiate TLB maintenance operations. Software
accesses these registers to invalidate translation table entries held in a TLB by the SMMU implementation. The TLB
maintenance registers are provided in both:

• The translation context bank address space. See:
— SMMU_CBn_TLBIALL, TLB Invalidate All on page 14-276.
— SMMU_CBn_TLBIASID, TLB Invalidate by ASID on page 14-277.
— SMMU_CBn_TLBIIPAS2, Invalidate TLB by IPA, Last level on page 15-306.
— SMMU_CBn_TLBIIPAS2L, Invalidate TLB by IPA, Last level on page 15-307.
— SMMU_CBn_TLBIVA, TLB Invalidate by VA on page 14-277.
— SMMU_CBn_TLBIVAA, TLB Invalidate by VA All ASID on page 14-279.
— SMMU_CBn_TLBIVAAL, TLB Invalidate by VA, All ASID, Last level on page 14-280.
— SMMU_CBn_TLBIVAL, TLB Invalidate by VA, Last level on page 14-281.
— SMMU_CBn_TLBSTATUS, TLB Status on page 14-282.
— SMMU_CBn_TLBSYNC, TLB Synchronize Invalidate on page 14-283.

• The global address space. See:
— SMMU_sTLBGSTATUS, Global TLB Status register on page 9-190.
— SMMU_sTLBGSYNC, Global Synchronize TLB Invalidate on page 9-190.
— SMMU_STLBIALL, TLB Invalidate All on page 9-202.
— SMMU_STLBIALL, TLB Invalidate All on page 9-202.
— SMMU_STLBIALLM, TLB Invalidate All MONC on page 9-202.
— SMMU_STLBIVAM, TLB Invalidate All MONC by VA on page 9-204.
— SMMU_STLBIVALM, TLB Invalidate All MONC by VA, last level only on page 9-203.
— SMMU_TLBIALLH, TLB Invalidate All Hyp on page 9-203.
— SMMU_TLBIALLNSNH, TLB Invalidate All Non-Secure Non-Hyp on page 9-203.
— SMMU_TLBIVAH, Invalidate Hyp TLB by VA on page 9-204.
— SMMU_TLBIVAH64, Invalidate Hyp TLB by VA, AArch64 on page 9-205.
— SMMU_TLBIVALH64, Invalidate Last Hyp TLB by VA, AArch64 on page 9-205.
— SMMU_TLBIVMID, TLB Invalidate by VMID on page 9-205.
— SMMU_TLBIVMIDS1, TLB Invalidate Stage 1 by VMID on page 9-206.

Registers in the translation context bank address space are for the maintenance of translation tables associated with
a particular translation context. Because of the location of these registers, a Guest OS can directly maintain its own
translations.

The global address space registers are for supervisory code that might have to confirm completion of TLB
maintenance operations globally across the SMMU instance.

Software initiates an invalidation request by writing to any of the following registers:
• SMMU_CBn_TLBIALL.
• SMMU_CBn_TLBIASID.
• SMMU_CBn_TLBIVA.
• SMMU_CBn_TLBIVAA.
• SMMU_CBn_TLBIVAAL.
• SMMU_CBn_TLBIVAL.

The SMMU_CBn_TLBSYNC register and the SMMU_CBn_TLBSTATUS register manage the completion of
these requests.

Software initiates a synchronization request by writing to SMMU_CBn_TLBSYNC, and
SMMU_CBn_TLBSTATUS indicates the completion of the request.

Software initiates a global invalidation request by writing to any of the following registers:
• SMMU_STLBIALL.
5-118 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

5 Coherency Issues and Cache Maintenance Operations
5.4 TLB maintenance registers
• SMMU_TLBIALLH.
• SMMU_TLBIALLNSNH.
• SMMU_TLBIVMID.

Software initiates a synchronization operation by writing to SMMU_sTLBGSYNC. As a minimum, the
synchronization operation applies to the specified security state, and includes all TLB Invalidate operations initiated
in context banks associated with that security state.

SMMU_sTLBGSTATUS indicates completion of all the TLB invalidate operations initiated before the most recent
write to SMMU_sTLBGSYNC.

5.4.1 TLB maintenance operation processing

TLB maintenance operations initiated by a register access have a post and synchronize model, where a TLB
Invalidate operation is requested by writing to the appropriate register, and completion is confirmed by a subsequent
synchronization operation.

An accepted TLB Invalidate operation is not complete until:
• Every translation held in a TLB that is a target of a TLB Invalidate operation is discarded.
• Every transaction already in progress that has used the translations held in the TLB is globally observed.

An SMMU must accept an unbounded number of memory-mapped TLB maintenance operations without relying
on the forward progress of client transactions.

Software can use a SYNC operation to determine that a memory-mapped TLB maintenance operation is complete.
After issuing the SYNC operation, software polls the TLB status until the context bank is no longer active.

Note
 Software must ensure that it limits the number of TLB Invalidate and SYNC operations issued to the same TLB
invalidation resource. Failure to adhere to this can result in a situation where new operations are continuously added
at a rate that prevents all operations being completed, preventing the TLB status from reporting that the context bank
is inactive.

A SYNC operation accepted in a translation context bank only ensures the completion of a TLB maintenance
operation accepted in that translation context bank. A SYNC operation accepted in the global address space ensures
the completion of a TLB maintenance operation accepted in either the global address space or in any translation
context bank.

POST

The outline assembly language source code for posting a new TLB Invalidate operation is as follows, assuming the
operation is to invalidate by virtual address:

MOV R0,#VA
MOV R1,#SMMU_CBn_TLBIVA
STR R0,[R1]

SYNC

The outline assembly language source code for ensuring the completion of one or more posted TLB Invalidate
operations is as follows:

MOV R0,#SMMU_CBn_TLBSYNC
MOV R1,#SMMU_CBn_TLBSTATUS
STR R0,[R0] ; Initiate TLB SYNC

Loop:
LDR R0,[R1]
ANDS R0,R0, #1 ; TLB SYNC ACTIVE STATUS
BNE Loop
DSB
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 5-119
ID091613 Non-Confidential - Beta

5 Coherency Issues and Cache Maintenance Operations
5.4 TLB maintenance registers
5.4.2 Thread safety

TLB maintenance operations initiated by a register access do not provide atomic behavior. However, the state
necessary for initiating and tracking the completion of a TLB maintenance operation is duplicated so that multiple
threads can work independently:

• In an implementation that supports two security states, the global TLB maintenance operation state is banked
by security.

• The translation context bank TLB maintenance operation state is provided per translation context bank.

Software arbitration is required if there is the potential for multiple threads of activity to use the same TLB
maintenance operation state concurrently. For example, a software lock is required if it is possible for multiple
threads to attempt to perform TLB maintenance operations in a single translation context bank.
5-120 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

5 Coherency Issues and Cache Maintenance Operations
5.5 Cache maintenance operations
5.5 Cache maintenance operations
In SMMUv2, client devices might perform cache maintenance operations on data and instruction caches, such as
evicting data to memory. The stage 1 SMMU_CBn_SCTLR.UCI bit can define whether such operations are
permitted from EL0.

Note
 Cache maintenance operations are not classed as instruction fetches, and are therefore not subject to SIF permission
faults.

The SMMU performs permissions checks on attempts by a client device to initiate a cache maintenance operation.
The following pseudocode describes these SMMU permission checks.

CheckCacheMaintenanceForPermissionFaultAndRecordFault()
{
 //
 // This function only decodes a Permission Fault for cache maintenance
 // operations (CMOs).
 //
 // The intent is that a cache maintenance operation and a normal access are
 // treated identically except for the permission model.
 //
 // Thus the following code does _not_ include the reporting of:
 // * External Faults on page walks
 // * Translation Faults
 // * Access Faults
 // * Address Size Faults
 // which would be reported and treated almost identically to normal accesses.
 //
 // The cache maintenance operation permission model may take part in two
 // separate phases -- an early check that might fault even before any
 // descriptor is fetched (and hence, for example, could Permission Fault
 // before an External Fault could occur), and a check that occurs at the
 // same time as if the operation was a data/instruction access. This is not
 // fully expressed in the pseudo-code below.
 //

 //
 // The SMMU Architecture cache maintenance permission model has to cope with
 // the full outer product of:
 // - cache invalidate (in ACE MakeInvalid)
 // - cache clean and invalidate (in ACE CleanInvalid)
 // - cache clean (in ACE CleanShared)
 // and
 // - User
 // - Privileged
 // and
 // - Instruction
 // - Data
 // and
 // - Point of Unification
 // - Point of Coherency
 //
 // Much of the CMO permission model is implementation defined (IMP DEF) to
 // accommodate the variety of bus standards, types of caches, devices and
 // topological needs of the SoC. In addition, reads, writes and CMO for a
 // device might be mapped to different contexts by incorporating that
 // information into the stream id.
 //
 // The SMMU architecture provides minimal safety guarantees for CMOs:
 //
 // * in SMMUv1, then the SMMU can destroy data by using cache-invalidate.
 // However, if there is a stage 2 and it is turned on then write
 // permissions must exist for this to be able to occur. Under the core
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 5-121
ID091613 Non-Confidential - Beta

5 Coherency Issues and Cache Maintenance Operations
5.5 Cache maintenance operations
 // architecture then this is reasonable as the guest OS could have used
 // a write to alter the data. However, in the SMMU architecture, then
 // there is no guarantee that CMOs would have been routed to the same
 // context as writes, so technically one cannot deduce that a write
 // from the device could have altered data. It is up to the programmer
 // to ensure the required semantics are maintained.
 //
 // * in SMMUv2, all cache invalidate operations CMOs will be upgraded to
 // clean-and-invalidate operations. Thus, under no circumstances will
 // SMMUv2 provide a mechanism for a cache maintenance operation to
 // destroy data. In SMMUv2, then permission faults on CMOs the user to
 // detect when a device generates CMOs when it is not expected to and
 // potentially catch programming errors.
 //
 // * the only allowed IMP DEF behavior is to produce more permission
 // faults or to upgrade a clean-cache maintenance operation to
 // clean-and-invalidate.
 //
 // * IMP DEF behavior must not lead to security violation.
 //
 // * IMP DEF permission faults may only use the state in:
 // * the transaction
 // * the matching SMMU_S2CRn.INSTCFG/PRIVCFG
 // * SMMU_CBA2Rn.VA64
 // * SMMU_CBA2Rn.MONC
 // * SMMU_CBARn.HYPC
 // * SMMU_CBn_SCTLR.UCI for stage 1 context
 // * SMMU_CBn_SCTLR.M
 // * SMMU_CBn_ACTLR for any involved context banks
 // * SMMU_sACR, with the SMMU_ACR not being able to affect
 // SSD Secure CMOs.
 // * the read, write and execute permissions for non-CMO
 // operations. This may indirectly depend on
 // SMMU_CBn_SCTLR.UWXN/WXN
 //
 // * IMP DEF permission faults must not allow a guest OS to
 // distinguish that it is running under a stage 1 followed
 // by stage 2 context where the MMU is on for stage 2.
 // That is, any permission faults reported to stage 1 should
 // be identical to if the operation was received by a
 // stage 1 with stage 2 bypass context bank.
 // The hypervisor should not be required to fix up a permission
 // fault to inject into the stage 1 for these cases.
 //
 // NOTE that the architecture does not allow permission faults generated by
 // cache maintenance operations to be distinguished from normal
 // data/instruction accesses. An implementation might chose to provide this
 // information in SMMU_CBn_FSYNR1.
 //

 //
 // NOTE: SIF checks do not apply to any CMOs as they are not instruction
 // "fetches"
 //

 if (bypassed before context bank determined)
 {
 UpgradeToCacheCleanAndInvalidate();
 return allowed;
 }

 if (SMMUv1)
 {
 if (stage 2 exists && stage 2 MMU is on)
 {
 if (no write permissions at stage 2
 && operation is cache invalidate to PoC/PoU)
 {
5-122 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

5 Coherency Issues and Cache Maintenance Operations
5.5 Cache maintenance operations
 if (imp def option)
 {
 return st2.PermissionFault();
 }
 else
 {
 UpgradeToCacheCleanAndInvalidate();
 }
 }
 }

 if (imp def option)
 // There is always the IMP DEF option to upgrade everything to
 // cache clean and invalidate.
 UpgradeToCacheCleanAndInvalidate();

 return allowed;
 }
 else
 {
 // SMMUv2

 if (stage 1 exists and imp def permission fault stage 1)
 {
 return st1.permission_fault();
 }

 if (stage 2 exists and imp def permission fault stage 2)
 {
 return st2.permission_fault();
 }

 // SMMUv2 always upgrades cache-invalidate to cache-clean-and-invalidate
 // and so no data should be able to be destroyed and no permission
 // faults are required.

 if (operation is cache invalidate)
 // cache invalidate is always upgraded
 UpgradeToCacheCleanAndInvalidate();

 if (imp def)
 // it is imp def if all operations are upgraded.
 UpgradeToCacheCleanAndInvalidate();
 return allowed;
 }
}

ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 5-123
ID091613 Non-Confidential - Beta

5 Coherency Issues and Cache Maintenance Operations
5.5 Cache maintenance operations
5-124 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 6
SMMU Performance Monitors Extension

This chapter describes the SMMU Performance Monitors Extension. It contains the following sections:
• About the SMMU Performance Monitors Extension on page 6-126.
• The register map on page 6-127.
• Event classes on page 6-128.
• StreamID groups on page 6-129.
• Counter groups on page 6-130.
• Event filtering on page 6-131.
• Translation context bank assignment on page 6-132.
• Event counter overflow interrupt on page 6-133.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 6-125
ID091613 Non-Confidential - Beta

6 SMMU Performance Monitors Extension
6.1 About the SMMU Performance Monitors Extension
6.1 About the SMMU Performance Monitors Extension
The SMMU Performance Monitors Extension is an OPTIONAL memory-mapped extension. If required, the extension
can be implemented as a CoreSight component, by including the CoreSight Component and Peripheral ID registers
defined in the CoreSight™ Architecture Specification. Whether an SMMU includes the Performance Monitors
Extension is IMPLEMENTATION DEFINED. If not supported, the register map corresponding to the Performance
Monitors registers is UNK/SBZP.

If implemented, the SMMU Performance Monitors Extension provides event counter resources and event filtering
based on a translation context or a StreamID. Event counter resources are revealed in the address map of a
translation context bank. The configuration of these resources permits a Guest OS to use them without the
intervention of a hypervisor.

There are no facilities for Secure software to reserve performance monitoring resources. If required, this can be
achieved through a collaborative software protocol between the Secure and the Non-secure software domains.

By default, an event that results from processing a Secure transaction does not contribute to performance monitor
counting. SMMU_SCR1.SPMEN enables the counting of such events, as does the external Secure PL1
Non-invasive debug enable input signal, SPNIDEN.
6-126 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

6 SMMU Performance Monitors Extension
6.2 The register map
6.2 The register map
The SMMU Performance Monitors Extension supports a memory-mapped register interface in the SMMU global
address space. This interface occupies a PAGESIZE region starting at an offset of (3 × PAGESIZE) from the SMMU
base address. See Chapter 8 SMMU Address Space and PAGESIZE and NUMPAGENDXB on page 8-144 for more
information.

The SMMU Performance Monitors Extension also provides the capability to reveal a group of performance
monitoring resources in the register map of a translation context bank. See Translation context bank assignment on
page 6-132 for more information.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 6-127
ID091613 Non-Confidential - Beta

6 SMMU Performance Monitors Extension
6.3 Event classes
6.3 Event classes
Table 6-1 shows the event classes of the SMMU Performance Monitors Extension.

It is IMPLEMENTATION DEFINED which event classes are included in an implementation. See PMCEID0,
Performance Monitors Common Event Identifier 0 register on page 12-225 for more information.

All unused encodings are reserved:
• Unused encodings in the range 0x00-to 0x7F are reserved for future architectural event classes.
• Unused encodings in the range 0x80-to 0xFF are reserved for IMPLEMENTATION DEFINED event classes.

Table 6-1 SMMU performance monitoring events

Category Event Number Description

Cycle 0x00 Cycle count, occurs every SMMU clock cycle.

0x01 Cycle count divided by 64 event, occurs every 64th SMMU clock cycle.

TLB 0x08 TLB Refill, occurs when an SMMU refills a TLB to load a translation.

0x09 TLB Refill Read.

0x0A TLB Refill Write.

Access 0x10 Access, occurs when a SMMU processes a new transaction.

0x11 Access Read.

0x12 Access Write.
6-128 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

6 SMMU Performance Monitors Extension
6.4 StreamID groups
6.4 StreamID groups
The SMMU Performance Monitors Extension includes the concept of a StreamID group. A StreamID group is a set
of StreamIDs. Transactions with a StreamID that is a member of a StreamID group are associated with that group.
The number of StreamID groups, and the mapping of StreamIDs to StreamID groups, is IMPLEMENTATION DEFINED.

Event counters are affiliated with a StreamID group. An event counter can only count events caused by the
processing of transactions associated with that group.

It is permissible to define a number of StreamID groups with potentially overlapping membership. A global
StreamID group can be defined to contain all StreamIDs as members. ARM suggests StreamID group 0 be reserved
for this purpose.

The concept of StreamID groups caters for distributed systems where a remote TLB might service only a subset of
client devices, therefore only having visibility of a subset of transactions processed by the SMMU. The StreamID
group definition makes counting events limited to such a subset of transactions permissible.

Event counters are affiliated with a StreamID group on a fixed basis. There is no mechanism to change the
relationship. The affiliation with a StreamID is made on a per-counter group basis.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 6-129
ID091613 Non-Confidential - Beta

6 SMMU Performance Monitors Extension
6.5 Counter groups
6.5 Counter groups
The SMMU Performance Monitors Extension provides:
• Translation context event filtering.
• StreamID event filtering.
• Translation context bank assignment.

These mechanisms are configured by controls that operate on a group of counters known as a Counter group.

The number of event counters implemented, and the number of Counter Groups, is IMPLEMENTATION DEFINED:

• PMCFGR.N indicates the total number of implemented event counters.

• PMCFGR.NCG indicates the number of Counter groups.

• For each Counter group, PMCGCRn.CGNC indicates the IMPLEMENTATION DEFINED number of event
counters associated with Counter group n.

The SMMU architecture permits a maximum of:
• 256 implemented event counters in total.
• 256 Counter groups.
• 15 counters in a Counter group.

Event counters are arranged by their Counter group, with counters associated with Counter group 0 occurring first
in the event counter address map.

PMCGCRn and PMCGSMRn configure the following features by Counter group:
• Translation context event filtering.
• StreamID event filtering.
• Translation context bank assignment features.
6-130 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

6 SMMU Performance Monitors Extension
6.6 Event filtering
6.6 Event filtering
A Counter group counts events on a global, translation context, or StreamID basis:

• If configured to count all events, it considers all transactions associated with the StreamID group that the
Counter group is affiliated with.

• If configured to filter events on a translation context basis, it only considers transactions processed by the
SMMU translation context designated by PMCGCRn.NDX, and limited by the scope of the StreamID group
that the Counter group is affiliated with.

• If configured to filter events on a StreamID basis, it only considers transactions that match the ID and the
mask designated by PMCGSMRn.ID and PMCGSMRn.MASK, and limited by the scope of the StreamID
group that the Counter group is affiliated with. An implementation must provide the same number of
PMCGSMRn.ID and PMCGSMRn.MASK bits for every implemented PMCGSMRn register.

PMCGCRn.TCEFCFG selects the type of filtering on which the event counting is based.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 6-131
ID091613 Non-Confidential - Beta

6 SMMU Performance Monitors Extension
6.7 Translation context bank assignment
6.7 Translation context bank assignment
The SMMU Performance Monitors Extension provides the capability to reveal a Counter group in the register map
of a translation context bank. A hypervisor can use this functionality to give a Guest OS direct access to performance
monitoring resources, to profile the behavior of any device associated with the translation context that the Guest OS
uses.

A Counter group and its related registers can be revealed in a translation context bank register map using the
PMCGCRn registers associated with that Counter group:

• PMCGCRn.CBAEN enables translation context bank assignment.

• If enabled by PMCGCRn.CBAEN, PMCGCRn.NDX specifies the translation context bank to which to
assign the Counter group.

Only one Counter group can be revealed in a translation context bank. Behavior is UNPREDICTABLE if multiple
PMCGCRn registers specify the same translation context bank.

Translation context bank assignment can only be enabled after the following event filtering modes of operation are
configured:
• Translation context event filtering.
• StreamID event filtering.

Behavior is UNPREDICTABLE if translation context bank assignment is enabled when global event monitoring and
filtering is enabled.

PMCGCRn and PMCGSMRn are not revealed in the translation context bank register map. This would cause a
virtualization hole.

When a Counter group is revealed in a translation context bank, one of the registers revealed is an
SMMU_CBn_PMCR register associated with that group. This is a Banked register.

6.7.1 Translation context register map

The translation context bank register map occupies an address space defined by PAGESIZE. When a Counter group
is revealed in a translation context bank register map, a more compressed register layout balances the use of
available space versus future expansion. The layout of performance monitor controls in a translation context bank
register map places an upper limit on the number of event counters that can exist in a Counter group.

A Counter group that is revealed in a translation context register map is self-contained. The event counters revealed
in the translation context register map are numbered beginning at 0. The Performance Monitor ID and configuration
registers in the translation context register map indicate the number of event counters contained in the Counter
group, not the total number implemented in the SMMU.

6.7.2 SMMU_CBn_PMCR banking

PMCR only operates on event counters of Counter groups that are not revealed in a translation context bank.

A separate register, SMMU_CBn_PMCR, controls event counters in a Counter group that is revealed in a translation
context bank. This register is revealed as part of the designated translation context bank. For state save and restore
purposes, the active RW bits of this Banked register are available in the PMCGCRn register associated with that
Counter group.

6.7.3 Counter group absent

If no Counter group is revealed in a translation context bank, default read-only RAZ/WI values are presented at the
Performance Monitors register locations in that translation context bank.
6-132 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

6 SMMU Performance Monitors Extension
6.8 Event counter overflow interrupt
6.8 Event counter overflow interrupt
The SMMU Performance Monitors Extension provides the capability to assert an interrupt in the event of an event
counter overflowing. PMINTENSETx and PMINTENCLRx enable and disable interrupt assertion on a per event
counter basis.

The interrupt that is asserted depends on the Counter group that the event counter is a member of. One interrupt
output is provided per Counter group.

These interrupt outputs are separate from the global and translation context interrupt outputs, because different
software modules are generally involved in performance monitoring.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 6-133
ID091613 Non-Confidential - Beta

6 SMMU Performance Monitors Extension
6.8 Event counter overflow interrupt
6-134 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 7
SMMU Support for Two Security States

This chapter describes the relationship between the SMMU architecture and OPTIONAL support for two security
states. It contains the following sections:
• Sharing resources between Secure and Non-secure domains on page 7-136.
• Providing SMMU support for only a single security state on page 7-137.
• Providing SMMU support for two security states on page 7-138.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 7-135
ID091613 Non-Confidential - Beta

7 SMMU Support for Two Security States
7.1 Sharing resources between Secure and Non-secure domains
7.1 Sharing resources between Secure and Non-secure domains
When the SMMU is implemented in a system with an ARM processor that supports two security states, SMMU
support for two security states is OPTIONAL. In an SMMU implementation that supports two security states, the
resources of an SMMU are shared between Secure and Non-secure domains. For information about processor
support for two security states, see the ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

The SMMU architecture permits support for two security states to be an IMPLEMENTATION DEFINED choice.
SMMU_IDR0.SES indicates whether the SMMU supports two security states.
7-136 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

7 SMMU Support for Two Security States
7.2 Providing SMMU support for only a single security state
7.2 Providing SMMU support for only a single security state
An SMMU implementation might support only a single security state. However, this does not mean that a
transaction from a Secure device cannot arrive at the SMMU. If an SMMU does not support two security states, and
is expected to receive and process any transaction from a Secure device, SSD must ensure that this transaction
bypasses all subsequent SMMU transaction processing.

If SMMU_IDR0.SES is 0:
• The SMMU implementation does not translate transactions from Secure devices.
• Stream Match Register groups, translation context banks and interrupts are not allocated to a security state.
• The Secure Banked control and status registers are not present.

Note
 Regardless of whether an SMMU implementation supports two security states, the introduction of an SMMU must
not create any type of security loophole.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 7-137
ID091613 Non-Confidential - Beta

7 SMMU Support for Two Security States
7.3 Providing SMMU support for two security states
7.3 Providing SMMU support for two security states
If SMMU_IDR0.SES is 1, Secure software might arrange for an SMMU to process and translate transactions from
one or more Secure devices.

7.3.1 Translation restrictions

In an SMMU implementation that supports two security states, the following restrictions apply to a transaction from
a Secure device:
• Transactions must be processed using a stage 1 with stage 2 bypass translation context.
• The stage 1 context must be allocated for use by Secure software.

7.3.2 Resource allocation

In an SMMU implementation that supports two security states, a number of resources are partitioned between
Secure and Non-secure domains. For some of these resources, Secure software might allocate some or all of the
resource for the sole use by the Secure software. Such shared resources include:
• Stream mapping register groups. See SMMU_SCR1.NSNUMSMRGO.
• In SMMUv1, context interrupts. See SMMU_SCR1.NSNUMIRPTO.
• Translation context banks. See SMMU_SCR1.NSNUMCBO.

The Non-secure view of the SMMU_IDRx registers takes into account the number of registers allocated for use by
Secure software when reporting the number of resources. See SMMU_IDR0-7, Identification registers on
page 9-162.

If Secure software allocates an SMMU resource for use in a particular security state, one of the following generally
applies:

• The reservation occurs at Secure system boot time and is static for the duration of system uptime.

• A software interface between Secure and Non-secure domains is implemented that supports the dynamic
partitioning of SMMU resources.

As a consequence of the restrictions specified in Translation restrictions, the following conditions apply:

• A transaction that is determined to be SSD Secure is matched only against Stream mapping register groups
that are allocated for use by Secure software.

• A Stream mapping register group that is allocated for use by Secure software must specify only one of the
following:
— A translation context bank allocated for use by Secure software.
— Bypass mode.
— The fault context.

• In SMMUv1, the SMMU_CBARn register associated with a translation context bank allocated for use by
Secure software must only specify a Context interrupt that is allocated for use by Secure software.

• Any translation context bank allocated for use by Secure software must be placed above the translation
context bank indicated by SMMU_IDR1.NUMS2CB. This field indicates the last translation context bank
that only supports the stage 2 translation format.

7.3.3 Permitted transaction resource usage

This section specifies whether a transaction is permitted to interact with Secure or Non-secure resources, or both.

Processor support for two security states provides a Secure domain and a Non-secure domain, based on the
following fundamental concepts:

• The Secure domain must be able to operate in isolation from the Non-secure domain.
7-138 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

7 SMMU Support for Two Security States
7.3 Providing SMMU support for two security states
This implies that the Secure domain must have access to registers, instruction memory, and data memory that
the Non-secure domain does not have access to. This is achieved by a combination of dedicated Secure
resources and shared resources that the Secure domain acts as a gatekeeper for. In the SMMU architecture,
this concept is extended by the ability of Secure software to allocate the following SMMU resources to a
particular security state:
— Stream mapping register groups.
— Translation context banks.
— Context interrupts.

• Secure and Non-secure domains must be able to communicate. This is facilitated primarily by permitting the
Secure domain to access Non-secure memory.

Under the processor architecture, the basic model is extended in the following ways:

• It is generally useful to give the Secure domain read and write access to any Non-secure domain state in the
system.

Note
 Read and write access to the Non-secure state is not equivalent to being able to use that state in all cases. For

example, Secure software can read from and write to the Non-secure SMMU_CBn_TCR registers, but cannot
execute a LDR or STR instruction using those registers.

• Inside Non-secure memory, the Secure domain can store translation table mappings that specify translations
to Non-secure memory. This reduces the requirements to use Secure memory, which is generally an on-chip,
and therefore expensive, resource.

Figure 7-1 shows the relationship between transaction processing and resource usage. The connections shown are
required for enabling basic and fundamental operation.

Figure 7-1 Relationship between processing transactions and using resources

With regard to boundary control between Secure and Non-secure resources:

• Secure software controls the boundary between Secure and Non-secure resources.

• In the Stream mapping table, Secure software can claim Stream mapping register groups using
SMMU_SCR0.NSNUMSMRGO. See SMMU_sCR0, Configuration Register 0 on page 9-167.

• In the translation context bank space, SMMU_SCR0.NSNUMCBO enables Secure software to adjust the
number of translation context banks visible to Non-secure accesses.

• For SMMUv1, in the Context interrupts space, SMMU_SCR1.NSNUMIRPTO can be configured to allocate
some of the interrupts for use by Secure software.

S

NS
L1 L2 L3 MEM

S = Secure resource managed by Secure software
NS = Non-secure resource managed by Non-secure software

S

NS

S

NS

L1 L2 L3 MEM

Non-secure stage 1
followed by stage 2

translation

Context
interrupts

Stream
mapping table

Translation
context bank

S

NS

Translation table walk,
memory access

SSD Secure
transaction

SSD Non-secure
transaction L0

L0
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 7-139
ID091613 Non-Confidential - Beta

7 SMMU Support for Two Security States
7.3 Providing SMMU support for two security states
In addition to the basic relationship between transaction processing and resource usage, the following connections
are permitted:
• Connections that are not ruled out by security requirements.
• Connections that have existing equivalent functionality.
• Connections that are permitted because of other perceived benefits.

Figure 7-2 illustrates these connections.

Figure 7-2 Permitted relationships between Secure and Non-secure resource usage

Figure 7-1 on page 7-139 and Figure 7-2 show all permitted relationships between Secure and Non-secure resource
usage. No other relationships are permitted.

Prohibited relationships

Security requirements mean that the following relationships are not permitted:

• A transaction originating from a bus master operating for the Non-secure domain must never be permitted to
map to a transaction stream or translation context in the Secure part of the Stream mapping table.

• A transaction associated with the Non-secure part of the Stream mapping table must never be associated with
a Secure translation context bank.

• A transaction associated with a Non-secure translation context bank must never be associated with a Secure
Context interrupt.

• A transaction associated with a Non-secure translation context bank must never be associated with a Secure
level 1 translation table walk

• A transaction in the Non-secure level 1 part of a translation table walk must never be permitted to enter the
Secure level 2 part of a translation table walk

• A transaction in the Non-secure level 2 part of a translation table walk must never be permitted to enter the
Secure level 3 part of a translation table walk.

• A transaction in the Non-secure level 3 part of a translation table walk must never be associated with target
memory managed by Secure software.

In addition, the SMMU architecture prohibits:

• A transaction originating from a bus master operating for the Secure domain must not be permitted to map
to a transaction stream or translation context in the Non-secure part of the Stream mapping table.

• A transaction associated with the Secure part of the Stream mapping table must not be associated with a
Non-secure translation context bank.

• Stage 1 followed by stage 2 translation in the Secure part of the translation context bank.

L1 L2 L3

S, L1, L2 = Secure resource managed by Secure software
NS, L1, L2, L3 = Non-secure resource managed by Non-secure software

S

NS

L1 L2

Context bank

S

NS

Translation table walk,
memory access

Secure
transaction
7-140 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

7 SMMU Support for Two Security States
7.3 Providing SMMU support for two security states
• In SMMUv1, a transaction associated with a Secure translation context bank must not be associated with a
Non-secure Context interrupt.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 7-141
ID091613 Non-Confidential - Beta

7 SMMU Support for Two Security States
7.3 Providing SMMU support for two security states
7-142 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 8
SMMU Address Space

This chapter specifies the address space of an SMMU implementation. It contains the following sections:
• About the SMMU address space on page 8-144.
• The global address space on page 8-145.
• The translation context bank address space on page 8-147.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 8-143
ID091613 Non-Confidential - Beta

8 SMMU Address Space
8.1 About the SMMU address space
8.1 About the SMMU address space
An SMMU is configured through a memory-mapped register frame. The total size of the SMMU address depends
on the number of implemented translation contexts.

The SMMU address map consists of the following equally sized portions:
• The global address space.
• The translation context bank address space.

The global address space is at the bottom of the SMMU address space, SMMU_BASE, where SMMU_BASE is
aligned to (PAGESIZE * NUMPAGE * 2). The translation context bank address space is located above the top of
the global address space, as shown in Figure 8-1.

Figure 8-1 SMMU address space

The following register fields indicate the size of the SMMU address space:
• SMMU_IDR1.PAGESIZE.
• SMMU_IDR1.NUMPAGENDXB.

8.1.1 PAGESIZE and NUMPAGENDXB

An SMMU register map arranges state into a number of pages. Each page occupies, and is aligned to, a PAGESIZE
space in the address map. Such organization permits a hypervisor to permit or deny access to SMMU state on a
page-by-page basis.

The SMMU architecture permits an implementation to support either 4KB or 64KB PAGESIZE options.

SMMU_IDR1.PAGESIZE specifies the implemented PAGESIZE.

NUMPAGE, the number of pages implemented in the global address space or translation context bank address space
is determined from SMMU_IDR1.NUMPAGENDXB, where NUMPAGE = 2(NUMPAGENDXB+1).

8.1.2 Address space calculation

The following byte address calculations give the sizes and base addresses in the SMMU address space:
• SMMU_GLOBAL_SIZE = SMMU_CB_SIZE = (NUMPAGE × PAGESIZE).
• SMMU_TOP = SMMU_BASE + SMMU_GLOBAL_SIZE + SMMU_CB_SIZE − 1.
• SMMU_GLOBAL_TOP = SMMU_BASE + SMMU_GLOBAL_SIZE − 1.
• SMMU_CB_BASE = SMMU_BASE + SMMU_GLOBAL_SIZE.
• SMMU_CBn_BASE = SMMU_CB_BASE + (n × PAGESIZE).

Translation context
bank address space

SMMU_TOP

SMMU_CB_BASE

Global address
space

SMMU_GLOBAL_TOP

SMMU_BASE
8-144 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

8 SMMU Address Space
8.2 The global address space
8.2 The global address space
In an implementation that supports two security states, the global address space is generally accessible by both
Secure and Non-secure configuration accesses. Some address ranges can only be accessed by Secure configuration
accesses.

Several registers are Banked. The security status of a configuration access selects the appropriate resource. Alias
registers are provided at distinct addresses to give Secure software access to Non-secure versions of the resources.

Setting SMMU_SCR1.GASRAE to 1 enables a restricted access mode of operation. In this mode, with the possible
exception of the IMPLEMENTATION DEFINED address space, all of the global address space and the stage 2 format
translation context banks are accessible by Secure configuration access only. It is IMPLEMENTATION DEFINED
whether SMMU_SCR1.GASRAE only permits Secure accesses to the IMPLEMENTATION DEFINED address space.

These restrictions are in addition to any underlying Secure-only resource that might exist.

Table 8-1 shows the SMMU global address space.

8.2.1 Global address space base addresses

The global address space base addresses defined in Table 8-2 are referred to in subsequent sections.

For more information, see:
• Chapter 9 SMMU Global Register Space 0.
• Chapter 10 SMMU Global Register Space 1.
• Chapter 11 SMMU implementation defined Address Space.

Table 8-1 SMMU Global address space

Offset from SMMU_BASE Description Notes

0x00000 to ((1 × PAGESIZE) − 0x4) SMMU Global Register Space 0 PAGESIZE global address space

(1 × PAGESIZE) to ((2 × PAGESIZE) − 0x4) SMMU Global Register Space 1 PAGESIZE global address space

(2 × PAGESIZE) to ((3 × PAGESIZE) − 0x4) SMMU IMPLEMENTATION DEFINED
address space

PAGESIZE global address space

 (3 × PAGESIZE) to ((4 × PAGESIZE) − 0x4) SMMU performance monitoring
address space

PAGESIZE global address space

(4 × PAGESIZE) to ((5 × PAGESIZE) − 0x4) SMMU SSD address space PAGESIZE global address space, Secure only

(5 × PAGESIZE) to ((6 × PAGESIZE) − 0x4) In SMMUv2, continuation of
SMMU address space.
In SMMUv1, reserved.

-

(6 × PAGESIZE) to SMMU_GLOBAL_TOP SMMU IMPLEMENTATION DEFINED
address space

-

Table 8-2 Global address space base addresses

Base address name Description Value

SMMU_GR0_BASE Base address of SMMU Global Register Space 0 SMMU_BASE + (0 × PAGESIZE)

SMMU_GR1_BASE Base address of SMMU Global Register Space 1 SMMU_BASE + (1 × PAGESIZE)

SMMU_GID_BASE Base address of SMMU IMPLEMENTATION DEFINED address space SMMU_BASE + (2 × PAGESIZE)

SMMU_PM_BASE Base address of SMMU performance monitoring address space SMMU_BASE + (3 × PAGESIZE)

SMMU_SSD_BASE Base address of SMMU SSD address space SMMU_BASE + (4 × PAGESIZE)
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 8-145
ID091613 Non-Confidential - Beta

8 SMMU Address Space
8.2 The global address space
• Chapter 12 SMMU Performance Monitors Extension Register Map.
• Chapter 13 The Security State Determination Address Space.
8-146 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

8 SMMU Address Space
8.3 The translation context bank address space
8.3 The translation context bank address space
Table 8-3 shows how the SMMU translation context bank address space is organized, relative to the SMMU context
bank base address, SMMU_CB_BASE.

SMMU_IDR1.NUMCB specifies the IMPLEMENTATION DEFINED number of translation context banks.

In an implementation that supports stage 1 followed by stage 2 translation, some translation context banks must be
configured as stage 1 translation contexts, and the remaining translation context banks as stage 2 translation
contexts. Because of the increased state requirements of stage 1 translation contexts, some translation contexts
might only support stage 2 translation. SMMU_IDR1.NUMS2CB provides more information about discovering
whether an implementation uses such contexts.

Any address above the upper implemented translation context bank address and below SMMU_TOP behaves as
RAZ/WI.

Each translation context bank is defined in terms of its Context Bank Base Address, SMMU_CBn_BASE. The base
address for translation context bank n is defined as SMMU_CBn_BASE = SMMU_CB_BASE + (n × PAGESIZE).

For more information, see:
• Chapter 14 Stage 1 Translation Context Bank Format.
• Chapter 15 Stage 2 Translation Context Bank Format.

Table 8-3 Translation context bank address space

Offset Description Notes

0x00000 to ((1 × PAGESIZE) − 0x4) Translation context bank 0 PAGESIZE per translation
context bank

(1 × PAGESIZE) to ((2 × PAGESIZE) − 0x4) Translation context bank 1 -

(n × PAGESIZE) to ((n + 1 × PAGESIZE) − 0x4) Translation context bank n -
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 8-147
ID091613 Non-Confidential - Beta

8 SMMU Address Space
8.3 The translation context bank address space
8-148 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 9
SMMU Global Register Space 0

This chapter specifies SMMU Global Register Space 0. It contains the following sections:
• SMMU Global Register Space 0 register summary on page 9-150.
• Reset values on page 9-155.
• Secure alias for Non-secure registers on page 9-157.
• Memory attribute, MemAttr on page 9-159.
• Multi-format registers and reserved fields on page 9-160.
• SMMU Global Register Space 0 register descriptions on page 9-161.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-149
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.1 SMMU Global Register Space 0 register summary
9.1 SMMU Global Register Space 0 register summary
SMMU Global Register Space 0 provides high-level SMMU resource control. The size of this address space is
defined by PAGESIZE. See PAGESIZE and NUMPAGENDXB on page 8-144 for more information.

The SMMU architecture supports 32-bit atomic access to all Global Register Space 0 registers, and where
applicable, 64-bit atomic access. Whether 8-bit, 16-bit, or 128-bit transactions are supported is IMPLEMENTATION
DEFINED.

Table 9-1 shows the address of each register relative to the offset from SMMU_GR0_BASE. Unless otherwise
stated, registers are present in any version of the SMMU architecture.

Table 9-1 SMMU Global Register Space 0

Offset Name Type Description Notes

0x00000 SMMU_sCR0 RW SMMU_sCR0, Configuration Register 0 on
page 9-167

Banked with
security

0x00004 SMMU_SCR1 RW SMMU_SCR1, Secure Configuration Register 1 on
page 9-197

Secure only

0x00008 SMMU_sCR2 RW SMMU_sCR2, Configuration Register 2 on
page 9-172

Banked with
security

0x0000C Reserved - - -

0x00010 SMMU_sACR RW SMMU_sACR, Auxiliary Configuration Register on
page 9-167

Banked with
security

0x00014-
0x0001C

Reserved - - -

0x00020 SMMU_IDR0 RO SMMU_IDR0-7, Identification registers on
page 9-162

-

0x00024 SMMU_IDR1

0x00028-
0x0003C

SMMU_IDR2-SMMU_IDR7

0x00040 SMMU_sGFAR[31:0] RW SMMU_sGFAR, Global Fault Address Register on
page 9-179

Banked with
security

0x00044 SMMU_sGFAR[63:32]

0x00048 SMMU_sGFSR RW SMMU_sGFSR, Global Fault Status Register on
page 9-180

Banked with
security

0x0004C SMMU_sGFSRRESTORE WO SMMU_sGFSRRESTORE, Global Fault Status
Restore Register on page 9-182

Banked with
security

0x00050 SMMU_sGFSYNR0 RW SMMU_sGFSYNR0, Global Fault Syndrome Register
0 on page 9-182

Banked with
security

0x00054 SMMU_sGFSYNR1 RW SMMU_sGFSYNR1, Global Fault Syndrome Register
1 on page 9-184

Banked with
security

0x00058 SMMU_sGFSYNR2 RW SMMU_sGFSYNR2, Global Fault Syndrome Register
2 on page 9-185

Banked with
security

0x0005C Reserved - - -

0x00060 SMMU_STLBIALL WO SMMU_STLBIALL, TLB Invalidate All on page 9-202 Secure only

0x00064 SMMU_TLBIVMID WO SMMU_TLBIVMID, TLB Invalidate by VMID on
page 9-205

-

9-150 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.1 SMMU Global Register Space 0 register summary
0x00068 SMMU_TLBIALLNSNH WO SMMU_TLBIALLNSNH, TLB Invalidate All
Non-Secure Non-Hyp on page 9-203

-

0x0006C SMMU_TLBIALLH WO SMMU_TLBIALLH, TLB Invalidate All Hyp on
page 9-203

-

0x00070 SMMU_sTLBGSYNC WO SMMU_sTLBGSYNC, Global Synchronize TLB
Invalidate on page 9-190

Banked with
security

0x00074 SMMU_sTLBGSTATUS RO SMMU_sTLBGSTATUS, Global TLB Status register
on page 9-190

Banked with
security

0x00078 SMMU_TLBIVAH[31:0] WO SMMU_TLBIVAH, Invalidate Hyp TLB by VA on
page 9-204

-

0x0007C SMMU_TLBIVAH[63:32]

0x00080-
0x0009C

IMPLEMENTATION DEFINED - Reserved for TLB Debug features -

0x000A0 SMMU_STLBIVALM[31:0] WO SMMU_STLBIVALM, TLB Invalidate All MONC by
VA, last level only on page 9-203

SMMUv2 only
Secure only

0x000A4 SMMU_STLBIVALM[63:32]

0x000A8 SMMU_STLBIVAM[31:0] WO SMMU_STLBIVAM, TLB Invalidate All MONC by VA
on page 9-204

SMMUv2 only
Secure only

0x000AC SMMU_STLBIVAM[63:32]

0x000B0 SMMU_TLBIVALH64[31:0] WO SMMU_TLBIVALH64, Invalidate Last Hyp TLB by
VA, AArch64 on page 9-205

SMMUv2 only

0x000B4 SMMU_TLBIVALH64[63:32]

0x000B8 SMMU_TLBIVMIDS1 WO SMMU_TLBIVMIDS1, TLB Invalidate Stage 1 by
VMID on page 9-206

SMMUv2 only

0x000BC SMMU_STLBIALLM WO SMMU_STLBIALLM, TLB Invalidate All MONC on
page 9-202

SMMUv2 only
Secure only

0x000C0 SMMU_TLBIVAH64[31:0] WO SMMU_TLBIVAH64, Invalidate Hyp TLB by VA,
AArch64 on page 9-205

SMMUv2 only

0x000C4 SMMU_TLBIVAH64[63:32]

0x000C8-
0x000FC

Reserved - - -

0x00100 SMMU_sGATS1UR[31:0] WO SMMU_sGATS1UR, GAT Stage 1 Unprivileged Read
on page 9-174

-

0x00104 SMMU_sGATS1UR[63:32]

0x00108 SMMU_sGATS1UW[31:0] WO SMMU_sGATS1UW, GAT Stage 1 Unprivileged Write
on page 9-175

-

0x0010C SMMU_sGATS1UW[63:32]

0x00110 SMMU_sGATS1PR[31:0] WO SMMU_sGATS1PR, GAT Stage 1 Privileged Read on
page 9-173

-

0x00114 SMMU_sGATS1PR[63:32]

0x00118 SMMU_sGATS1PW[31:0] WO SMMU_sGATS1PW, GAT Stage 1 Privileged Write on
page 9-173

-

0x0011C SMMU_sGATS1PW[63:32]

Table 9-1 SMMU Global Register Space 0 (continued)

Offset Name Type Description Notes
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-151
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.1 SMMU Global Register Space 0 register summary
0x00120 SMMU_sGATS12UR[31:0] WO SMMU_sGATS12UR, GAT Stages 1 and 2
Unprivileged Read on page 9-177

-

0x00124 SMMU_sGATS12UR[63:32]

0x00128 SMMU_sGATS12UW[31:0] WO SMMU_sGATS12UW, GAT Stages 1 and 2
Unprivileged Write on page 9-178

-

0x0012C SMMU_sGATS12UW[63:32]

0x00130 SMMU_sGATS12PR[31:0] WO SMMU_sGATS12PR, GAT Stages 1 and 2 Privileged
Read on page 9-176

-

0x00134 SMMU_sGATS12PR[63:32]

0x00138 SMMU_sGATS12PW[31:0] WO SMMU_sGATS12PW, GAT Stages 1 and 2 Privileged
Write on page 9-176

-

0x0013C SMMU_sGATS12PW[63:32]

0x00140-
0x0017C

Reserved - - -

0x00180 SMMU_sGPAR[31:0] RW SMMU_sGPAR, Global Physical Address Register on
page 9-185

Banked with
security

0x00184 SMMU_sGPAR[63:32]

0x00188 SMMU_sGATSR RO SMMU_sGATSR, Global Address Translation Status
Register on page 9-179

Banked with
security

0x0018C-
0x003FC

Reserved - - -

0x00400 SMMU_NSCR0 RW Secure alias for Non-secure copy of SMMU_sCR0,
Configuration Register 0 on page 9-167

Secure only

0x00404 Reserved - - -

0x00408 SMMU_NSCR2 RW Secure alias for Non-secure copy of SMMU_sCR2,
Configuration Register 2 on page 9-172

Secure only

0x0040C Reserved - - -

0x00410 SMMU_NSACR RW Secure alias for Non-secure copy of SMMU_sACR,
Auxiliary Configuration Register on page 9-167

Secure only

0x00414-
0x0041C

Reserved - - -

0x00420-
0x0043C

Reserved - - -

0x00440 SMMU_NSGFAR[31:0] RW Secure alias for Non-secure copy of SMMU_sGFAR,
Global Fault Address Register on page 9-179

Secure only,
64-bit

0x00444 SMMU_NSGFAR[63:32]

0x00448 SMMU_NSGFSR RW Secure alias for Non-secure copy of SMMU_sGFSR,
Global Fault Status Register on page 9-180

Secure only

0x0044C SMMU_NSGFSRRESTORE WO Secure alias for Non-secure copy of
SMMU_sGFSRRESTORE, Global Fault Status
Restore Register on page 9-182

Secure only

0x00450 SMMU_NSGFSYNR0 RW Secure alias for Non-secure copy of
SMMU_sGFSYNR0, Global Fault Syndrome Register
0 on page 9-182

Secure only

Table 9-1 SMMU Global Register Space 0 (continued)

Offset Name Type Description Notes
9-152 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.1 SMMU Global Register Space 0 register summary
0x00454 SMMU_NSGFSYNR1 RW Secure alias for Non-secure copy of
SMMU_sGFSYNR1, Global Fault Syndrome Register
1 on page 9-184

Secure only

0x00458 SMMU_NSGFSYNR2 RW Secure alias for Non-secure copy of
SMMU_sGFSYNR2, Global Fault Syndrome Register
2 on page 9-185

Secure only

0x0045C -
0x0046C

Reserved - - -

0x00470 SMMU_NSTLBGSYNC WO Secure alias for Non-secure copy of
SMMU_sTLBGSYNC, Global Synchronize TLB
Invalidate on page 9-190

Secure only

0x00474 SMMU_NSTLBGSTATUS RO Secure alias for Non-secure copy of
SMMU_sTLBGSTATUS, Global TLB Status register
on page 9-190

Secure only

0x00478-
0x0047C

Reserved - - -

0x00480-
0x0049C

IMPLEMENTATION DEFINED - Reserved for Secure alias to Non-secure TLB debug
features

Secure only

0x004A0-
0x004FC

Reserved - - -

0x00500 SMMU_NSGATS1UR[31:0] WO Secure alias for Non-secure copy of
SMMU_sGATS1UR, GAT Stage 1 Unprivileged Read
on page 9-174

Secure only

0x00504 SMMU_NSGATS1UR[63:32]

0x00508 SMMU_NSGATS1UW[31:0] WO Secure alias for Non-secure copy of
SMMU_sGATS1UW, GAT Stage 1 Unprivileged Write
on page 9-175

Secure only

0x0050C SMMU_NSGATS1UW[63:32]

0x00510 SMMU_NSGATS1PR[31:0] - Secure alias for Non-secure copy of
SMMU_sGATS1PR, GAT Stage 1 Privileged Read on
page 9-173

Secure only

0x00514 SMMU_NSGATS1PR[63:32]

0x00518 SMMU_NSGATS1PW[31:0] WO Secure alias for Non-secure copy of
SMMU_sGATS1PW, GAT Stage 1 Privileged Write on
page 9-173

Secure only

0x0051C SMMU_NSGATS1PW[63:32]

0x00520 SMMU_NSGATS12UR[31:0] WO Secure alias for Non-secure copy of
SMMU_sGATS12UR, GAT Stages 1 and 2
Unprivileged Read on page 9-177

Secure only

0x00524 SMMU_NSGATS12UR[63:32]

0x00528 SMMU_NSGATS12UW[31:0] WO Secure alias for Non-secure copy of
SMMU_sGATS12UW, GAT Stages 1 and 2
Unprivileged Write on page 9-178

Secure only

0x0052C SMMU_NSGATS12UW[63:32]

0x00530 SMMU_NSGATS12PR[31:0] WO Secure alias for Non-secure copy of
SMMU_sGATS12PR, GAT Stages 1 and 2 Privileged
Read on page 9-176

Secure only

0x00534 SMMU_NSGATS12PR[63:32]

0x00538 SMMU_NSGATS12PW[31:0] WO Secure alias for Non-secure copy of
SMMU_sGATS12PW, GAT Stages 1 and 2 Privileged
Write on page 9-176

Secure only

0x0053C SMMU_NSGATS12PW[63:32]

Table 9-1 SMMU Global Register Space 0 (continued)

Offset Name Type Description Notes
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-153
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.1 SMMU Global Register Space 0 register summary
0x00540-
0x0057C

Reserved - - -

0x0580 SMMU_NSGPAR[31:0] RW Secure alias for Non-secure copy of SMMU_sGPAR,
Global Physical Address Register on page 9-185

Secure only

0x00584 SMMU_NSGPAR[63:32]

0x00588 SMMU_NSGATSR RO Secure alias for Non-secure copy of SMMU_sGATSR,
Global Address Translation Status Register on
page 9-179

Secure only

0x0058C-
0x007FC

Reserved - - -

0x00800 SMMU_SMR0 RW SMMU_SMRn, Stream Match Register on page 9-201 RAZ/WI in an
implementation
with StreamID
indexing

0x00804 SMMU_SMR1

0x00808-
0x009FC

SMMU_SMR2 to
SMMU_SMR127

0x00A00-
0x00BFC

Reserved - - -

0x00C00 SMMU_S2CR0 RW SMMU_S2CRn, Stream-to-Context Register on
page 9-191

-

0x00C04 SMMU_S2CR1

0x00C08-
0x00DFC

SMMU_S2CR2 to
SMMU_S2CR127

0x00E00-
0x00FCC

Reserved - - -

0x00FD0-
0x00FFC

IMPLEMENTATION DEFINED - Reserved for PrimeCell ID -

Table 9-1 SMMU Global Register Space 0 (continued)

Offset Name Type Description Notes
9-154 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.2 Reset values
9.2 Reset values
Table 9-2 shows the register field values in SMMU Global Register Space 0 following a system reset. The fields
that do not appear in Table 9-2 reset to UNKNOWN values.

Table 9-2 Reset values

Field Reset Notes

SMMU_CBA2Rn.VA64 0b0 In SMMUv2, enable AArch64 translation scheme. This must also be reset
to 0 when a context bank changes security state.

SMMU_sCR0.CLIENTPD 0b1 Client transaction bypasses SMMU translation.

SMMU_sCR0.GFIE 0b0 For SMMU_CR0.GFIE, disable assertion of interrupt from
UNPREDICTABLE SMMU_GFSR content. For SMMU_SCR0.GFIE, disable
assertion of interrupt from UNPREDICTABLE SMMU_SGFSR content. See
SMMU_sGFSR, Global Fault Status Register on page 9-180.

SMMU_sCR0.GFRE 0b0 For SMMU_CR0.GFRE, disable spurious abort from UNPREDICTABLE
SMMU_GFSR content. For SMMU_SCR0.GFRE, disable spurious abort
from UNPREDICTABLE SMMU_SGFSR content. See SMMU_sGFSR,
Global Fault Status Register on page 9-180.

SMMU_sCR0.GCFGFIE 0b0 For SMMU_CR0.GCFGFIE, disable assertion of interrupt from
UNPREDICTABLE SMMU_GFSR content. For SMMU_SCR0.GCFGFIE,
disable assertion of interrupt from UNPREDICTABLE SMMU_SGFSR
content. See SMMU_sGFSR, Global Fault Status Register on page 9-180.

SMMU_sCR0.GCFGFRE 0b0 For SMMU_CR0.GCFGFRE, disable spurious abort from UNPREDICTABLE
SMMU_GFSR content. For SMMU_SCR0.GCFGFRE, disable spurious
abort from UNPREDICTABLE SMMU_SGFSR content. See SMMU_sGFSR,
Global Fault Status Register on page 9-180.

SMMU_sCR0.GSE 0b0 Disable global stalling across translation context banks.

SMMU_sCR0.MTCFG 0b0 No override of input memory attributes.

SMMU_sCR0.SHCFG 0b00 No override of input shareability attributes.

SMMU_sCR0.RACFG 0b00 No override of input read allocate attribute.

SMMU_sCR0.WACFG 0b00 No override of input write allocate attribute.

SMMU_sCR0.TRANSIENTCFG 0b00 No override of input transient allocate attribute.

SMMU_SCR0.STALLD 0b0 Permit per context stalling on context faults. See SMMU_sCR0,
Configuration Register 0 on page 9-167.

SMMU_SCR0.NSCFG 0b00 No override of input NS-Attr. See SMMU_sCR0, Configuration Register 0
on page 9-167.

SMMU_sTLBGSTATUS.GSACTIVE 0b0 No active Global TLB Invalidate operation Sync.

SMMU_SCR1.NSNUMCBO Implemented
NUMCB

Do not require Secure software to write NSNUMCBO if such software is
not using any SMMU context.

SMMU_SCR1.GASRAE 0b0 Permit Secure and Non-secure configuration accesses.

SMMU_SCR1.SPMEN 0b0 No contribution to performance monitor counters from any Secure
transaction processing event.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-155
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.2 Reset values
SMMU_SCR1.SIF 0b0 Secure state instruction fetch permitted to Non-secure memory.

SMMU_SCR1.NSNUMIRPTO Implemented
NUMIRPT

It is IMPLEMENTATION DEFINED whether this field is read-only. See
SMMU_SCR1, Secure Configuration Register 1 on page 9-197.

SMMU_SCR1.NSNUMSMRGO Implemented
NUMSMRG

-

Table 9-2 Reset values (continued)

Field Reset Notes
9-156 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.3 Secure alias for Non-secure registers
9.3 Secure alias for Non-secure registers
In an implementation that supports two security states, additional alias registers are provided at different offset
addresses, permitting Secure software to access Non-secure versions of the resources.

In general, the aliases are accessed in the following usage cases:

Secure software manages Non-secure context resources

When the SMMU_SCR1.GASRAE bit is set to 1, the Global address space is only accessible by
Secure configuration memory accesses, This means that Non-secure software must request that
Secure software performs certain operations. In such cases it might be necessary for Secure software
to access any of:
• SMMU_NSCR0.
• SMMU_NSCR2.
• SMMU_NSACR.
• SMMU_NSGFAR.
• SMMU_NSGFSR.
• SMMU_NSGFSRRESTORE.
• SMMU_NSGFSYNRn.
• SMMU_NSGPAR.
• SMMU_NSGATSR.
• SMMU_NSGATS1*.

For example, a Secure access to SMMU_NSGFSYNR1 is the only mechanism for obtaining the
SSD_Index for a faulty Non-secure transaction.

The SMMU architecture provides separate Secure and Non-secure address translation resources. If
Secure software is managing the Non-secure resources, it can use the Non-secure address translation
registers, and the Secure resources remain available for Secure software to use as required..

Note
 Although the SMMU architecture provides separate Secure and Non-secure TLB Invalidation

resources, Secure software cannot initiate a TLB Invalidate operation directly using Non-secure
resources. In this usage case, Secure software must use Secure resources to initiate these operations.

Save and restore, or Powerdown operations

During save and restore operations, such as before Powerdown, Secure software can save the
Non-secure state by accessing the following aliases:
• SMMU_NSCR0.
• SMMU_NSCR2.
• SMMU_NSACR.
• SMMU_NSGFAR.
• SMMU_NSGFSR.
• SMMU_NSGFSRRESTORE.
• SMMU_NSGFSYNRn.
• SMMU_NSGPAR.

During Powerdown, Secure software must ensure that the SMMU is quiescent by:
• Completing all TLB Invalidate operations.
• Completing all address translation operations.
• Ensuring that all upstream devices are quiescent.

To ensure that any queued Non-secure TLB Invalidate operations are issued and completed, Secure
software accesses SMMU_NSTLBGSYNC to start the operations, then polls
SMMU_NSTLBGSTATUS to check for completion. Similarly, Secure software polls
SMMU_NSGATSR to ensure that all Non-secure address translation operations are complete.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-157
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.3 Secure alias for Non-secure registers
Note
 When Secure software issues an SMMU_TLBIALLNSNH or SMMU_TLBIALLH operation, it

uses Secure TLB Invalidate resources, and manages them using SMMU_STLBGSYNC and
SMMU_STLBGSTATUS. This is distinct from a requirement to use SMMU_NSTLBGSYNC or
SMMU_NSTLBGSTATUS. In general, the Secure alias must only be used when an operation is not
otherwise possible.
9-158 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.4 Memory attribute, MemAttr
9.4 Memory attribute, MemAttr
The MemAttr field is common to a number of registers. MemAttr[3:2] gives a top-level definition of the memory
type, and of the cacheability of a Normal memory region. See Table 9-3.

The encoding of MemAttr[1:0] depends on the memory type indicated by MemAttr[3:2]:

• When MemAttr[3:2] == 0b00, indicating Strongly-ordered or Device memory, Table 9-4 shows the encoding
of MemAttr[1:0].

• When MemAttr[3:2] != 0b00, indicating Normal memory, Table 9-5 shows the encoding of MemAttr[1:0].

Table 9-3 MemAttr[3:2] encoding

MemAttr[3:2] Memory type Cacheability

0b00 Strongly-ordered or Device, determined by MemAttr[1:0] Not applicable

0b01 Normal Outer Non-cacheable

0b10 Outer Write-Through Cacheable

0b11 Outer Write-Back Cacheable

Table 9-4 MemAttr[1:0] encoding for Strongly-ordered or Device memory

MemAttr[1:0]
Meaning when MemAttr[3:2] == 0b00

SMMUv2 SMMUv1

0b00 Device-nGnRnE Strongly-ordered memory

0b01 Device-nGnRE Device memory

0b10 Device-nGRE UNPREDICTABLE

0b11 Device-GRE UNPREDICTABLE

Table 9-5 MemAttr[1:0] encoding for Normal memory

MemAttr[1:0]
Meaning when MemAttr[3:2] != 0b00

SMMUv2 SMMUv1

0b00 Reserved. See Reserved memory type
and shareability attributes on page 2-48.

UNPREDICTABLE

0b01 Inner Non-cacheable Inner Non-cacheable

0b10 Inner Write-Through Cacheable Inner Write-Through Cacheable

0b11 Inner Write-Back Cacheable Inner Write-Back Cacheable
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-159
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.5 Multi-format registers and reserved fields
9.5 Multi-format registers and reserved fields
Some registers have a number of possible formats, where the format depends on:
• The format that the register has been configured to.
• The format of the data recorded in the register.

Several register formats have a TYPE field, that has different encodings for different registers, and some registers
are written with data whose format depends on the outcome of the operation for which the result is to be written.

For such a register, where a field is reserved:

• A read must return the value that was last successfully written to that field, regardless of how the register is
used. If the field has not been written to since reset, the read must return the specified reset value, if one exists,
or an UNKNOWN value. See Reset values on page 9-155.

• A write must update a storage location associated with the written field.

• The state of the storage location associated with a field must have no other effect on the processor behavior,
other than determining the value to be read back while the use of the register means that the field is reserved.

If the TYPE field changes so that a reserved field becomes a field with defined behavior, the value last written to
that field takes effect as specified by the individual register descriptions.

Each behavior only applies to a field that is:
• Reserved in one format with an allocated meaning in a different format.
• Being processed by hardware.

A field processed by software is to be preserved if appropriate, or written to with the value required by the should
be value if being written with a new value. Otherwise, the effect is UNPREDICTABLE.
9-160 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
9.6 SMMU Global Register Space 0 register descriptions
This section describes all of the Global Register Space 0 registers that might be present in an SMMU
implementation. Unless otherwise stated, registers are present in any version of the SMMU architecture. Registers
are shown in register name order.

The names of some registers indicates the security of the register. For more information, see:
• Register names on page xiii.
• Banked registers on page 2-44.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-161
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
9.6.1 SMMU_IDR0-7, Identification registers

The SMMU_IDR0-7 characteristics are:

Purpose Provides SMMU capability information.

Usage constraints There are no usage constraints.

Configurations In an implementation that supports two security states, the behavior of some fields depends
on whether Secure or Non-secure software is accessing the register. See the field
descriptions for more information.

Attributes 32-bit RO registers with UNKNOWN reset values. See also Table 9-1 on page 9-150.

SMMU_IDR0

The SMMU_IDR0 bit assignments are:

SES, bit[31] Security Support. The possible values of this bit are:
0 The implementation does not support two security states.
1 The implementation supports two security states.

This field is RAZ for Non-secure reads of SMMU_IDR0.

S1TS, bit[30] Stage 1 Translation Support. The possible values of this bit are:
0 Stage 1 translation is not supported.
1 Stage 1 translation is supported.

If the NTS bit is set to 1, this bit must also be set to 1.

S2TS, bit[29] Stage 2 Translation Support. The possible values of this bit are:
0 Stage 2 translation is not supported.
1 Stage 2 translation is supported.

This field only applies to Non-secure client transactions.

If the NTS bit is set to 1, this bit must also be set to 1.

NTS, bit[28] Nested Translation Support. The possible values of this bit are:
0 Stage 1 followed by stage 2 translation is not supported.
1 Stage 1 followed by stage 2 translation is supported.

This field only applies to Non-secure client transactions.

Note
 If this bit is set to 1, then both the S1TS and S2TS bits must be set to 1 also.

SMS, bit[27] Stream Match Support. The possible values of this bit are:
0 Stream Match Register functionality is not included.
1 Stream Match Register functionality is included.

31 30 29 28 27 26 25 24 23 16 15 14 13 12 9 8 7 0

NUMIRPT[7:0] NUMSMRG[7:0]

SES
S1TS

S2TS
NTS

SMS
ATOSNS

PTFSa EXIDSb

NUMSIDB[3:0]
BTM

CTTW
Reserved

a. In SMMUv1, bit[25] is reserved, and bit[24] is PTFS

b. Reserved in SMMUv1
9-162 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
ATOSNS, bit[26]

Address Translation Operations Not Supported. The possible values of this bit are:
0 Address translation operations are supported. Stage 1 translation is not supported, that

is, the S1TS bit is set to 0.
1 Address translation operations are not supported. Stage 1 translation is supported, that

is, the S1TS bit is set to 1.

In SMMUv1, this bit is reserved.

See Address translation registers in SMMUv2 on page 4-106 for more information.

PTFS, bits[25:24]

Translation format support. This field indicates the supported translation schemes, and therefore the
translation table format. The possible values of this field are:
0b00 AArch32 Short-descriptor and AArch32 Long-descriptor translation schemes are

supported.
0b01 AArch32 Long-descriptor translation scheme is supported.
0b10 Only the AArch64 translation scheme is supported.
0b11 Only the AArch64 translation scheme is supported.

Note
 • In SMMUv1, bit[25] is reserved, and PTFS is bit[24], with possible values 0 and 1.

• In SMMUv2, the SMMU_IDR2 PTFSv8_* fields define the translation granule size.

NUMIRPT[7:0], bits[23:16]

Number of implemented context fault interrupts.

In SMMUv1, this field indicates the number of context fault interrupts supported by the SMMU, in
the range 0-128. NUMIRPT==0 is permitted in an implementation that does not provide any context
fault interrupts.

In any implementation that supports two security states, access to this field by Non-secure software
gives the value configured in SMMU_SCR1.NSNUMIRPTO.

In SMMUv2, each context bank has a dedicated interrupt pin, and there is therefore no requirement
to specify the number of implemented context fault interrupts. See Context interrupts on page 3-82
for more information.

Bit[15] Reserved.

CTTW, bit[14] Coherent Translation Table Walk. The possible values of this bit are:
0 Coherent translation table walks are unsupported.
1 Coherent translation table walks are supported.

BTM, bit[13] Broadcast TLB Maintenance. The possible values of this bit are:
0 Broadcast TLB maintenance is unsupported.
1 Broadcast TLB maintenance is supported.

NUMSIDB[3:0], bits[12:9]

Number of StreamID Bits.

Indicates the number of implemented StreamID bits, in the range 0-15.

In SMMUv2, the SMMU_S2CRn.EXIDVALID bit provides optional support for 16-bit StreamIDs.
When EXIDS==0, this field indicates the number of implemented StreamID bits, in the range 0-15.
Otherwise this field is 15.

EXIDS, bit[8] Extended Stream ID Support. The possible values of this bit are:
0 Extended Stream IDs are unsupported, and the NUMSIDB field indicates the maximum

supported Stream ID size.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-163
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
1 Extended Stream IDs are supported. The number of supported Stream ID bits is 16 and
the NUMSIDB field is 15.

In SMMUv1, this bit is reserved.

NUMSMRG[7:0], bits[7:0]

Number of Stream Mapping Register Groups.

Indicates the number of Stream mapping register groups in the Stream match table, in the range
0-127.

In an implementation that includes Stream matching, the value of this field is greater than or equal
to 1.

In an implementation that supports two security states, access to this field by Non-secure software
gives the value configured in SMMU_SCR1.NSNUMSMRGO.

SMMU_IDR1

The SMMU_IDR1 bit assignments are:

PAGESIZE, bit[31]

SMMU Page Size.

Indicates the size of each page in the SMMU register map.

The possible values of this bit are:
0 4KB.
1 64KB.

NUMPAGENDXB, bits[30:28]

SMMU Number of Page Index Bits.

Indicates how many PAGESIZE pages occupy the global address space or the translation context
address space, where NUMPAGE = 2(SMMU_IDR.NUMPAGENDXB + 1).

Bits[27:24] Reserved.

NUMS2CB[7:0], bits[23:16]

Number of stage 2 Context Banks.

Indicates the number of translation context banks that only support the stage 2 translation format,
in the range 0-127.

This field is validated by SMMU_IDR0.S2TS.

SMCD, bit[15] Stream Match Conflict Detection.

The possible values of this bit are:
0 The detection of all Stream match conflicts is not guaranteed.
1 The detection of all Stream match conflicts is guaranteed.

See StreamID matching on page 2-61 for more information about stream matching.

Bits[14:13] Reserved.

31 30 28 27 24 23 16 15 13 12 11 8 7 0

Reserved NUMS2CB[7:0] NUMCB[7:0]

PAGESIZE
NUMPAGENDXB

Reserved
SSDTP

NUMSSDNDXB[3:0]
SMCD

14

In SMMUv1, bit[13] is reserved and bit[12] is SSDTP
9-164 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
SSDTP, bits[13:12]

SSD Table Present. The possible values of this field are:
0b00 The SSD address space is UNK/WI.
0b01 The SSD address space is populated and supports the SSD_Index size that

NUMSSDNDXB specifies.
0b10 Reserved.
0b11 The extended SSD address space is present and supports a 16-bit SSD_Index.

Note
 In SMMUv1, bit[13] is reserved, and SSDTP is bit[12], with possible values 0 and 1.

In an implementation that supports two security states, Non-secure access to this field is RAZ.

NUMSSDNDXB[3:0], bits[11:8]

Number of SSD_Index bits.

Indicates the number of SSD_Index bits for indexing the SSD table.

In SMMUv2, if the SSDTP field is 0b11, this field is 0b1111 for backwards compatibility

In SMMUv1, this field is only valid if SSDTP==1. Otherwise, it is reserved.

In an implementation that supports two security states Non-secure access to this field is RAZ.

NUMCB, bits[7:0]

Number of Context Banks.

Indicates the total number of implemented translation context banks, in the range 0-128.

The value reported in NUMCB includes translation context banks that only support the stage 2
format. If an implementation includes stage 1 translation, the number of translation context banks
that support the stage 1 format is given by SMMU_IDR1.NUMCB – SMMU_IDR1.NUMS2CB.

In an implementation that supports two security states, a read of this field by Non-secure software
gives the value configured in SMMU_SCR1.NSNUMCBO.

SMMU_IDR2

The SMMU_IDR2 bit assignments are:

Bits[31:15] Reserved.

PTFSv8_64kB, bit[14]

Support for 64KB translation granule size. The possible values of this bit are:

0 The 64KB translation granule is not supported.

1 The 64KB translation granule is supported.

In SMMUv1, this bit is reserved.

PTFSv8_16kB, bit[13]

Support for 16KB translation granule size. The possible values of this bit are:

0 The 16KB translation granule is not supported.

UBSa

31 8 7 4 3 0

Reserved OAS IAS

1112131415

PTFSv8_4kBa

PTFSv8_64kBa

a. Reserved in SMMUv1

PTFSv8_16kBa
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-165
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
1 The 16KB translation granule is supported.

In SMMUv1, this bit is reserved.

PTFSv8_4kB, bit[12]

Support for 4KB translation granule size. The possible values of this bit are:

0 The 4KB translation granule is not supported.

1 The 4KB translation granule is supported.

In SMMUv1, this bit is reserved.

UBS, bits[11:8]

Upstream Bus Size. The encoding of this field is:

0b0000 32-bit upstream bus size.

0b0001 36-bit upstream bus size.

0b0010 40-bit upstream bus size.

0b0011 42-bit upstream bus size.

0b0100 44-bit upstream bus size.

0b0101 49-bit upstream bus size. See Sign-extension of input addresses on page 1-29 for more
information.

All other encodings are reserved.

In SMMUv1, this field is reserved.

OAS, bits[7:4] Output Address Size. This specifies the maximum number of PA bits that an SMMU
implementation supports:
0b0000 32-bit.
0b0001 36-bit.
0b0010 40-bit.
0b0011 42-bit.
0b0100 44-bit.
0b0101 48-bit.

All other encodings are reserved.

IAS, bits[3:0] IPA Address Size. This specifies the maximum number of IPA bits that an SMMU implementation
supports:
0b0000 32-bit.
0b0001 36-bit.
0b0010 40-bit.
0b0011 42-bit.
0b0100 44-bit.
0b0101 48-bit.

All other encodings are reserved.
9-166 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
SMMU_IDR3

The SMMU_IDR3 bit assignments are reserved.

SMMU_sIDR4-5

The SMMU_IDR4-5 bit assignments are IMPLEMENTATION DEFINED.

SMMU_IDR6

The SMMU_IDR6 bit assignments are reserved.

SMMU_IDR7

The SMMU_IDR7 bit assignments are:

Bits[31:8] Reserved.

MAJOR, bits[7:4] The major part of the implementation version number.

MINOR, bits[3:0] The minor part of the implementation version number.

9.6.2 SMMU_sACR, Auxiliary Configuration Register

The SMMU_sACR characteristics are:

Purpose Provides IMPLEMENTATION DEFINED functionality.

Usage constraints There are no usage constraints.

Configurations In an implementation that supports two security states, this register is Banked.

SMMU_NSACR is provided as a Secure alias of the Non-secure SMMU_ACR. See
Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

Attributes A 32-bit RW register with an UNKNOWN reset value. See also Table 9-1 on page 9-150.

The SMMU_sACR bit assignments are IMPLEMENTATION DEFINED.

9.6.3 SMMU_sCR0, Configuration Register 0

The SMMU_sCR0 characteristics are:

Purpose Provides top-level control of the SMMU.

Usage constraints The Non-secure register, SMMU_CR0, does not provide full top-level control of the
SMMU for Secure transactions.

Configurations In an implementation that supports two security states:
• Some SMMU_CR0 fields only apply to Non-secure transactions.
• This register is Banked.

SMMU_NSCR0 is provided as a Secure alias of the Non-secure SMMU_CR0. See
Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

Attributes A 32-bit RW register. See the field descriptions for information about the reset values. See
also Table 9-1 on page 9-150.

MAJOR MINOR

31 8 7 4 3 0

Reserved
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-167
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
The SMMU_sCR0 bit assignments are:

Bits[31:30] Reserved.

NSCFG, bits[29:28]

Non-secure configuration.

This field only exists in SMMU_SCR0. In SMMU_CR0, these bits are reserved.

This field applies only to SSD Secure transactions bypassing the SMMU stream mapping process.
See Bypassing the Stream mapping table on page 2-60.

The encoding of this field is:
0b00 Use the default NS attribute
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Secure
0b11 Non-secure.

These bits reset to 0.

WACFG, bits[27:26]

Write-Allocate configuration, controls the allocation hint for write accesses.

This field applies to transactions that bypass the Stream mapping table. See Bypassing the Stream
mapping table on page 2-60.

The encoding of this field is:
0b00 Default attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Write-Allocate.
0b11 No Write-Allocate.

These bits reset to 0.

RACFG, bits[25:24]

Read-Allocate configuration. Controls the allocation hint for read accesses.

Applies to transactions that bypass the Stream mapping table. See Bypassing the Stream mapping
table on page 2-60.

31 28 27 26 25 24 23 22 21 20 19 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved WACFG
RACFG

SHCFG
SMCFCFG

MTCFG

MemAttr

PTM

CLIENTPD
GFRE
GFIE

EXIDENABLEa
GCFGFRE
GCFGFIE

TRANSIENTCFG
STALLD

USFCFG
VMIDPNE

14

FB
BSU

GSE

30 29

NSCFG

a. Reserved in SMMUv1
9-168 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
The encoding of this field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Read-Allocate.
0b11 No Read-Allocate.

These bits reset to 0.

SHCFG, bits[23:22] Shared configuration.

Applies to transactions that bypass the Stream mapping table. See Bypassing the Stream mapping
table on page 2-60.

The encoding of this field is:
0b00 Default Shareable attribute.
0b01 Outer Shareable.
0b10 Inner Shareable.
0b11 Non-shareable.

These bits reset to 0.

SMCFCFG, bit[21]

Stream match conflict fault configuration. Controls transactions with multiple matches in the
Stream mapping table.

The possible values of this bit are:
0 Permit the transaction to bypass the SMMU.
1 Raise a Stream match conflict fault.

It is IMPLEMENTATION DEFINED whether:

• The SMMU guarantees the detection of every Stream match conflict. See StreamID matching
on page 2-61 for more information.

• Stream match conflict handling is configurable. If not configurable, the value of SMCFCFG
is fixed and writes are ignored.

This bit resets to an UNKNOWN value.

MTCFG, bit[20]

Memory Type Configuration, applies to transactions that bypass the Stream mapping table. See
Bypassing the Stream mapping table on page 2-60.

The possible values of this bit are:
0 Use the default memory attributes.
1 Use the MemAttr field for memory attributes.

This bit resets to 0.

MemAttr, bits[19:16]

Memory Attributes. See Memory attribute, MemAttr on page 9-159.

If SMMU_CR0.MTCFG==1, the memory attributes can be overlaid.

Note
 When SMMU_CR0.MTCFG==1, restrictions apply when the memory is either Strongly-ordered or

Device, or Normal Outer Non-cacheable or Inner Non-cacheable. See SMMU_S2CRn,
Stream-to-Context Register on page 9-191 for more information.

These bits reset to an UNKNOWN value.

BSU, bits[15:14]

Barrier Shareability Upgrade.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-169
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
Upgrades the required shareability domain of barriers issued by client devices that are not mapped
to a translation context bank, by setting the minimum shareability domain applied to any barrier.

Applies to transactions bypassing the Stream mapping table. See Bypassing the Stream mapping
table on page 2-60.

The encoding of this field is:
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

This functionality might not be supported by all system topologies. In an implementation that does
not support it, BSU is RAZ/SBZP.

These bits reset to an UNKNOWN value.

FB, bit[13] Force Broadcast of TLB, branch predictor and instruction cache maintenance operations. Applies to
transactions bypassing the Stream mapping table. See Bypassing the Stream mapping table on
page 2-60.

Affects client TLB maintenance, BPIALL and ICIALLU operations. If FB==1, any affected
operation is modified to the equivalent broadcast variant in the Inner Shareable domain. The
possible values of this bit are:
0 Process affected operations as presented.
1 Upgrade affected operations to be broadcast within the Inner Shareable domain.

This bit resets to an UNKNOWN value.

PTM, bit[12] Private TLB Maintenance. The possible values of this bit are:

0 The SMMU participates in broadcast TLB maintenance with the wider system, if
supported in the implementation and as indicated by SMMU_IDR0.BTM.

1 SMMU TLBs are privately managed and are not required to respond to broadcast TLB
maintenance operations from the wider system.

The PTM field is a hint. A broadcast TLB Invalidate operation is still permitted to affect all cached
translations that are unlocked in the SMMU.

This bit resets to an UNKNOWN value.

VMIDPNE, bit[11]

VMID Private Namespace Enable. The possible values of this bit are:

0 SMMU values are coordinated with the wider system.

1 SMMU VMID values are a private namespace, not coordinated with the wider system.

If VMIDPNE==1, broadcast TLB Invalidate operations specifying a VMID value are not required
to apply to cached translations in the SMMU.

The VMIDPNE field is a hint. A broadcast TLB Invalidate operation is still permitted to affect all
cached translations that are unlocked in the SMMU.

This bit resets to an UNKNOWN value.

In SMMU_SCR0, VMIDPNE is reserved.

USFCFG, bit[10]

Unidentified stream fault configuration. The possible values of this bit are:

0 Permit any transaction that does not match any entries in the Stream mapping table to
pass through.

1 Raise an Unidentified stream fault on any transaction that does not match any Stream
mapping table entries.

This bit resets to an UNKNOWN value.
9-170 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
GSE, bit[9] Global Stall Enable. The possible values of this bit are:
0 Do not enforce global stalling across contexts.
1 Enforce global stalling across contexts.

This field is only writable if the implementation has global stall behavior. Otherwise, it is RAZ/WI.

This bit resets to 0.

STALLD, bit[8]

Stall Disable. The possible values of this bit are:
0 Permit per-context stalling on context faults.
1 Disable per-context stalling on context faults.

Setting this bit to 1 disables SMMU_sCR0.GSE and causes SMMU_sCR0.GSE to be RAZ/WI.

It is IMPLEMENTATION DEFINED whether the stall model is supported. When the stall model is not
supported, this bit is RAZ/WI.

In an implementation that supports two security states, SMMU_CR0.STALLD must apply to a
Non-secure translation context bank, and must affect SMMU_CR0.GSE. It is permitted to apply to
a Secure translation context bank, and is permitted to affect SMMU_SCR0.GSE.

In an implementation that supports two security states, this bit resets to 0. In an implementation that
does not support two security states, it resets to an UNKNOWN value.

TRANSIENTCFG, bits[7:6]

Transient Configuration, controls the transient allocation hint.

Applies to any transaction that bypasses the Stream mapping table. See Bypassing the Stream
mapping table on page 2-60.

The encoding of this field is:
0b00 Default transient allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Non-transient.
0b11 Transient.

These bits reset to 0.

It is IMPLEMENTATION DEFINED whether this field is present. If not present, these bits are RAZ/WI.

GCFGFIE, bit[5]

Global configuration fault interrupt enable. The possible values of this bit are:
0 Do not raise an interrupt on a Global configuration fault.
1 Raise an interrupt on a Global configuration fault.

This bit resets to 0.

This bit is RAZ/WI in implementations that do not support generation of configuration faults.

GCFGFRE, bit[4]

Global configuration fault report enable. The possible values of this bit are:
0 Do not return an abort on a Global configuration fault.
1 Return an abort on a Global configuration fault.

This bit resets to 0.

This bit is RAZ/WI in implementations that do not support generation of configuration faults.

EXIDENABLE, Bit[3]

Extended ID Enable. The possible values of this bit are:
0 Use the SMMUv1 format SMMU_SMRn.
1 Use the Extended ID format SMMU_SMRn.

In SMMUv1, this bit is reserved.

This bit resets to zero.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-171
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
This feature is optional, and is supported when SMMU_IDR0.EXIDS==1. If not supported, this bit
is RAZ/WI.

If stream matching is not supported, that is, when SMMU_IDR0.SMS==0, this bit is RAZ/WI.

Caution
 • Changing the value of this bit under certain circumstances can result in UNPREDICTABLE

behavior. ARM recommends changing the value of this bit only when, for all Stream Match
Register groups of the appropriate security state, both:
— SMMU_S2CRn.EXIDVALID==0.
— SMMU_SMRn.EXMASK[15]==0 or SMMU_SMRn.VALID==0, as appropriate.

• The reset values of SMMU_SMRn and SMMU_S2CRn are UNKNOWN, and therefore must
be initialized before changing the value of this bit.

GFIE, bit[2] Global fault interrupt enable. The possible values of this bit are:
0 Do not raise an interrupt on a Global fault.
1 Raise an interrupt on a Global fault.

This bit resets to 0.

GFRE, bit[1] Global fault report enable. The possible values of this bit are:
0 Do not return an abort on a Global fault.
1 Return an abort on a Global fault.

This bit resets to 0.

For exclusive access transactions, when this bit is set to 0, ARM recommends that the SMMU
reports the transaction as failed. See Reporting exclusive access transactions on page 3-103 for
more information.

CLIENTPD, bit[0]

Client Port Disable. The possible values of this bit are:
0 Each SMMU client access is subject to SMMU translation, access control, and attribute

generation.
1 Each SMMU client access bypasses SMMU translation, access control, and attribute

generation.

This bit resets to 1.

9.6.4 SMMU_sCR2, Configuration Register 2

The SMMU_sCR2 characteristics are:

Purpose Provides top-level control of the SMMU.

Usage constraints There are no usage constraints.

Configurations In an implementation that supports two security states, this register is Banked.

SMMU_NSCR2 is provided as a Secure alias of the Non-secure SMMU_CR2. See
Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

Attributes A 32-bit RW register. See Table 9-1 on page 9-150.

The SMMU_sCR2 bit assignments are:

Bits[31:8] Reserved.

Reserved

31 8 7 0

BPVMID
9-172 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
BPVMID, bits[7:0]

Bypass VMID.

This field is reserved for IMPLEMENTATION DEFINED use as a VMID field applied to client
transactions that bypass the SMMU. See Bypassing the Stream mapping table on page 2-60.

Whether this field is implemented, and the effect it has, is IMPLEMENTATION DEFINED.

In an implementation that does not support this field, these bits are RAZ/WI.

If an implementation that supports two security states does not provide a VMID for Secure
translation regimes, any Secure VMID field is ignored. See The Context Bank Attribute Register,
SMMU_CBARn on page 2-67 for more information.

9.6.5 SMMU_sGATS1PR, GAT Stage 1 Privileged Read

The SMMU_sGATS1PR characteristics are:

Purpose Translates an argument-supplied address. Writes the result to SMMU_sGPAR.

Usage constraints The security state of the transaction determines whether SMMU_GATS1PR or
SMMU_SGATS1PR is used.

When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations If the implementation supports two security states, this register is in SMMU_SGATS1PR.
Otherwise, it is in SMMU_GATS1PR.

SMMU_NSGATS1PR is provided as a Secure alias of the Non-secure SMMU_GATS1PR.
See Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

In SMMUv2, all address translation registers are OPTIONAL.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

See also Table 9-1 on page 9-150.

The SMMU_sGATS1PR bit assignments are:

Addr, bits[63:12]

The input address.

The translation is performed as though the address is associated with a privileged read.

In SMMUv1, Addr is bits[31:12].

Bits[11:8] Reserved.

NDX, bits[7:0] Translation context bank index for stage 1 translation.

See Address translation registers in the global address space on page 4-110.

9.6.6 SMMU_sGATS1PW, GAT Stage 1 Privileged Write

The SMMU_sGATS1PW characteristics are:

Purpose Translates an argument-supplied input address. Writes the result to SMMU_sGPAR.

Addra NDX

63 12 11 8 7 0

Reserved

a. In SMMUv1, Addr is [31:12]
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-173
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
Usage constraints The security state of the transaction determines whether SMMU_GATS1PW or
SMMU_SGATS1PW is used.

When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations If the implementation supports two security states, this register is in SMMU_SGATS1PW.
Otherwise, it is in SMMU_GATS1PW.

SMMU_NSGATS1PW is provided as a Secure alias of the Non-secure SMMU_GATS1PW.
See Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

In SMMUv2, all address translation registers are OPTIONAL.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

See also Table 9-1 on page 9-150.

The SMMU_sGATS1PW bit assignments are:

Addr, bits[63:12]

The input address.

The translation is performed as though the address is associated with a privileged write.

In SMMUv1, Addr is bits[31:12].

Bits[11:8] Reserved.

NDX, bits[7:0] Translation context bank index for stage 1 translation.

See Address translation registers in the global address space on page 4-110.

9.6.7 SMMU_sGATS1UR, GAT Stage 1 Unprivileged Read

The SMMU_sGATS1UR characteristics are:

Purpose Translates an argument-supplied input address. Writes the result to SMMU_sGPAR.

Usage constraints The security state of the transaction determines whether SMMU_GATS1UR or
SMMU_SGATS1UR is used.

When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations If the implementation supports two security states, this register is available in
SMMU_SGATS1UR. Otherwise, it is in SMMU_GATS1UR.

SMMU_NSGATS1UR is provided as a Secure alias of the Non-secure SMMU_GATS1UR.
See Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

In SMMUv2, all address translation registers are OPTIONAL.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

See also Table 9-1 on page 9-150.

Addra NDX

63 12 11 8 7 0

Reserved

a. In SMMUv1, Addr is [31:12]
9-174 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
The SMMU_sGATS1UR bit assignments are:

Addr, bits[63:12]

The input address.

Performed as though the address is associated with an unprivileged read.

In SMMUv1, Addr is bits[31:12].

Bits[11:8] Reserved.

NDX, bits[7:0] Translation context bank index for stage 1 translation.

See Address translation registers in the global address space on page 4-110.

9.6.8 SMMU_sGATS1UW, GAT Stage 1 Unprivileged Write

The SMMU_sGATS1UW characteristics are:

Purpose Translates an argument-supplied input address. Writes the result to SMMU_sGPAR.

Usage constraints The security state of the transaction determines whether SMMU_GATS1UW or
SMMU_SGATS1UW is used.

When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations If the implementation supports two security states, this register is in SMMU_SGATS1UW.
Otherwise, it is in SMMU_GATS1UW.

SMMU_NSGATS1UW is provided as a Secure alias of the Non-secure
SMMU_GATS1UW. See Table 9-1 on page 9-150 and Secure alias for Non-secure registers
on page 9-157.

In SMMUv2, all address translation registers are OPTIONAL.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

See also Table 9-1 on page 9-150.

The SMMU_sGATS1UW bit assignments are:

Addr, bits[63:12]

The input address.

The translation is performed as though the address is associated with an unprivileged write.

In SMMUv1, Addr is bits[31:12].

Bits[11:8] Reserved.

NDX, bits[7:0] Translation context bank index for stage 1 translation.

Addr NDX

63 12 11 8 7 0

Reserved

a. In SMMUv1, Addr is [31:12]

Addra NDX

63 12 11 8 7 0

Reserved

a. In SMMUv1, Addr is [31:12]
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-175
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
See Address translation registers in the global address space on page 4-110.

9.6.9 SMMU_sGATS12PR, GAT Stages 1 and 2 Privileged Read

The SMMU_sGATS12PR characteristics are:

Purpose Translates an argument-supplied input address. Writes the result to SMMU_sGPAR.

Usage constraints The security state of the transaction determines whether SMMU_GATS12PR or
SMMU_SGATS12PR is used.

When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations If the implementation supports two security states, this register is available in
SMMU_SGATS12PR. Otherwise, it is in SMMU_GATS12PR.

SMMU_NSGATS12PR is provided as a Secure alias of the Non-secure
SMMU_GATS12PR. See Table 9-1 on page 9-150. See also Secure alias for Non-secure
registers on page 9-157 for general information.

In SMMUv2, all address translation registers are OPTIONAL.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

See also Table 9-1 on page 9-150.

The SMMU_sGATS12PR bit assignments are:

Addr, bits[63:12]

The input address.

The translation is performed as though the address is associated with a privileged read.

Bits[11:8] Reserved.

NDX, bits[7:0] Translation context bank index for stage 1 translation.

See Address translation registers in the global address space on page 4-110.

9.6.10 SMMU_sGATS12PW, GAT Stages 1 and 2 Privileged Write

The SMMU_sGATS12PW characteristics are:

Purpose Translates an argument-supplied input address. Writes the result to SMMU_sGPAR.

Usage constraints The security state of the transaction determines whether SMMU_GATS12PW or
SMMU_SGATS12PW is used.

When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations If the implementation supports two security states, this register is in SMMU_SGATS12PW.
Otherwise, it is in SMMU_GATS12PW.

Addra NDX

63 12 11 8 7 0

Reserved

a. In SMMUv1, Addr is [31:12]
9-176 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
SMMU_NSGATS12PW is provided as a Secure alias of the Non-secure
SMMU_GATS12PW. See Table 9-1 on page 9-150. See also Secure alias for Non-secure
registers on page 9-157 for general information.

In SMMUv2, all address translation registers are OPTIONAL.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

See also Table 9-1 on page 9-150.

The SMMU_sGATS12PW bit assignments are:

Addr, bits[63:12]

The input address.

The translation is performed as though the address is associated with a privileged write.

Bits[11:8] Reserved.

NDX, bits[7:0] Translation context bank index for stage 1 translation.

See Address translation registers in the global address space on page 4-110.

9.6.11 SMMU_sGATS12UR, GAT Stages 1 and 2 Unprivileged Read

The SMMU_sGATS12UR characteristics are:

Purpose Translates an argument-supplied input address. Writes the result to SMMU_sGPAR.

Usage constraints The security state of the transaction determines whether SMMU_GATS12UR or
SMMU_SGATS12UR is used.

When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations If the implementation supports two security states, this register is in SMMU_SGATS12UR.
Otherwise, it is in SMMU_GATS12UR.

SMMU_NSGATS12UR is provided as a Secure alias of the Non-secure
SMMU_GATS12UR. See Table 9-1 on page 9-150. See also Secure alias for Non-secure
registers on page 9-157 for general information.

In SMMUv2, all address translation registers are OPTIONAL.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

See also Table 9-1 on page 9-150.

Addra NDX

63 12 11 8 7 0

Reserved

a. In SMMUv1, Addr is [31:12]
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-177
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
The SMMU_sGATS12UR bit assignments are:

Addr, bits[63:12]

The input address.

The translation is performed as though the address is associated with an unprivileged read.

Bits[11:8] Reserved.

NDX, bits[7:0]

Translation context bank index for stage 1 translation.

See Address translation registers in the global address space on page 4-110.

9.6.12 SMMU_sGATS12UW, GAT Stages 1 and 2 Unprivileged Write

The SMMU_sGATS12UW characteristics are:

Purpose Translates an argument-supplied input address. Writes the result to SMMU_sGPAR.

Usage constraints The security state of the transaction determines whether SMMU_GATS12UW or
SMMU_SGATS12UW is used.

When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations If the implementation supports two security states, this register is in SMMU_SGATS12UW.
Otherwise, it is in SMMU_GATS12UW.

SMMU_NSGATS12UW is provided as a Secure alias of the Non-secure
SMMU_GATS12UW. See Table 9-1 on page 9-150. See also Secure alias for Non-secure
registers on page 9-157 for general information.

In SMMUv2, all address translation registers are OPTIONAL.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

See also Table 9-1 on page 9-150.

The SMMU_sGATS12UW bit assignments are:

Addr, bits[63:12]

The input address.

The translation is performed as though the address is associated with an unprivileged write.

Bits[11:8] Reserved.

NDX, bits[7:0]

Translation context bank index for stage 1 translation.

Addra NDX

63 12 11 8 7 0

Reserved

a. In SMMUv1, Addr is [31:12]

Addr NDX

63 12 11 8 7 0

Reserved

a. In SMMUv1, Addr is [31:12]
9-178 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
See Address translation registers in the global address space on page 4-110.

9.6.13 SMMU_sGATSR, Global Address Translation Status Register

The SMMU_sGATSR characteristics are:

Purpose Gives status information pertaining to active global address translation operations.

Usage constraints If software requests a new address translation operation while an existing operation is
active, the result is UNPREDICTABLE. See Usage model on page 4-107 for more information.

Configurations If the implementation supports two security states, this register is Banked.

SMMU_NSGATSR is provided as a Secure alias of the Non-secure SMMU_GATSR. See
Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

Attributes A 32-bit RO register with an UNKNOWN reset value. See also Table 9-1 on page 9-150.

The SMMU_sGATSR bit assignments are:

Bits[31:1] Reserved.

ACTIVE, bit[0]

Address Translation Active.

The possible values of this bit are:
0 Address translation not active.
1 Address translation active, SMMU_sGPAR is yet to be updated.

9.6.14 SMMU_sGFAR, Global Fault Address Register

The SMMU_sGFAR characteristics are:

Purpose Contains the input address of an erroneous request reported by SMMU_sGFSR.

Usage constraints See Handling multiple memory faults on page 3-78 for information about when this register
is updated. See also Multiple faults on page 3-87.

Configurations If an implementation includes 64-bit atomic access, this register can be accessed as a 64-bit
quantity.

In an implementation that supports two security states, this register is Banked.

SMMU_NSGFAR is provided as a Secure alias of the Non-secure SMMU_GFAR. See
Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

Attributes A 64-bit RW register with an UNKNOWN reset value. See also Table 9-1 on page 9-150.

The SMMU_sGFAR bit assignments are:

Bits[63:N] Reserved.

Reserved

31 1 0

ACTIVE

FADDRReserved, RAZ

63 0N N-1
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-179
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
FADDR, bits[N-1:0]

Fault address, the input address of the faulty access. For a configuration access fault, this is the offset
from SMMU_BASE. For other fault classes, it is the input address of the faulting access, that the
system can interpret in a number of ways.

In SMMUv2, the value of N depends on the implemented upstream bus size, as defined by
SMMU_IDR2.UBS.

In SMMUv1, the value of N depends on the implemented input address space, as defined by
SMMU_IDR2.IAS, and can be:
• 32, for 4GB of address space.
• 36, for 64GB of address space.
• 40, for 1TB of address space.

SMMU_IDR2.UBS gives the implemented upstream bus size.

9.6.15 SMMU_sGFSR, Global Fault Status Register

The SMMU_sGFSR characteristics are:

Purpose Gives the fault status for each of the following possible faults:
• Invalid context fault.
• Unidentified stream fault.
• Stream match conflict fault.
• Unimplemented context bank fault.
• Unimplemented context interrupt fault.
• Configuration access fault.
• External fault.

Usage constraints There are no usage constraints.

Configurations In an implementation that supports two security states, this register is Banked.

SMMU_NSGFSR is provided as a Secure alias of the Non-secure SMMU_GFSR. See
Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

Attributes A 32-bit RW clear register. A value of 1 written to any non-reserved bit clears that bit. A
value of 0 written to any of these bits leaves the bit unchanged.

This register resets to an UNKNOWN value. See also Table 9-1 on page 9-150.
9-180 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
The SMMU_sGFSR bit assignments are:

MULTI, bit[31]

Multiple error condition. The possible values of this bit are:
0 No multiple error condition was encountered.
1 An error occurred while the value in SMMU_sGFSR was nonzero.

Bits[30:9] Reserved.

UUT, bit 8 Unsupported Upstream Transaction. The possible values of this bit are:

0 No unsupported upstream transaction fault

1 Unsupported upstream transaction fault caused by receipt of an unsupported client
transaction from an upstream device.

In SMMUv1, this bit is reserved.

PF, bit[7] Permission fault.

In SMMU_GFSR, this field is reserved.

In SMMU_SGFSR, this field records global SMMU_SCR1.SIF faults.

The possible values of this bit are:
0 No permission fault.
1 Permission fault.

Note
 If a transaction is associated with a particular translation context bank, faults are recorded in

SMMU_CBn_FSR instead of SMMU_SGFSR.

EF, bit[6] External fault. The possible values of this bit are:
0 No external fault.
1 External fault caused by an external abort.

Note
 This bit might be RAZ/WI.

CAF, bit[5] Configuration access fault. The possible values of this bit are:
0 No configuration access fault.
1 Configuration access fault.

Reserved

MULTI

EF
CAF

UCIF
UCBF
SMCF
USF
ICF

31 30 7 6 5 4 3 2 1 08

PF
UUTa

9

a. Reserved in SMMUv1
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-181
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
Note
 In implementations that do not support configuration access faults, this bit is RAZ/WI.

UCIF, bit[4] Unimplemented context interrupt fault. The possible values of this bit are:
0 No Unimplemented context interrupt fault.
1 Unimplemented context interrupt fault.

UCBF, bit[3] Unimplemented context bank fault. The possible values of this bit are:
0 No Unimplemented context bank fault.
1 Unimplemented context bank fault.

SMCF, bit[2] Stream match conflict fault. The possible values of this bit are:
0 No Stream match conflict fault.
1 Stream match conflict fault.

USF, bit[1] Unidentified stream fault. The possible values of this bit are:
0 No Unidentified stream fault.
1 Unidentified stream fault.

ICF, bit[0] Invalid context fault. The possible values of this bit are:
0 Invalid context fault.
1 No invalid context fault.

9.6.16 SMMU_sGFSRRESTORE, Global Fault Status Restore Register

The SMMU_sGFSRRESTORE characteristics are:

Purpose Restores the state of SMMU_sGFSR, after a reset, for example.

Usage constraints The SMMU_sGFSR register restored depends on the SMMU_sGFSRRESTORE register
written to:
• Writing to SMMU_GFSRRESTORE restores SMMU_GFSR.
• Writing to SMMU_SGFSRRESTORE restores SMMU_SGFSR.

Configurations If the implementation supports two security states, this register is Banked.

SMMU_NSGFSRRESTORE is provided as a Secure alias of the Non-secure
SMMU_GFSRRESTORE. See Table 9-1 on page 9-150 and Secure alias for Non-secure
registers on page 9-157.

Attributes A 32-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_sGFSRRESTORE bit assignments are identical to SMMU_sGFSR. The value of this register
overwrites the value of SMMU_sGFSR.

9.6.17 SMMU_sGFSYNR0, Global Fault Syndrome Register 0

The SMMU_sGFSYNR0 characteristics are:

Purpose Contains fault syndrome information relating to SMMU_sGFSR.

Usage constraints SMMU_GFSYNR0 is for Non-secure accesses. In an implementation that supports two
security states, SMMU_SGFSYNR0 is for Secure accesses.

See Multiple faults on page 3-87 for information about when this register is updated. See
also Multiple fault conditions on page 3-96.

Configurations In an implementation that supports two security states, this register is Banked.

SMMU_NSGFSYNR0 is provided as a Secure alias of the Non-secure SMMU_GFSYNR0.
See Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.
9-182 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
Attributes A 32-bit RW register that resets to an UNKNOWN value. See also Table 9-1 on page 9-150.

The SMMU_sGFSYNR0 bit assignments are:

Bits[31:16] Reserved.

Bits[15:8] IMPLEMENTATION DEFINED.

Bit[7] Reserved.

ATS, Bit[6] Address translation operation fault. The possible values of this bit are:
0 The fault was not caused by the processing of an SMMU_CBn_ATS operation initiated

in a stage 1 translation context bank.
1 The fault was caused by the processing of an SMMU_CBn_ATS operation initiated in

a stage 1 translation context bank. See Fault handling within stage 1 followed by stage
2 translations initiated in a context bank on page 4-107 for more information.

In SMMU_SGFSYNR0 this field is reserved.

NSATTR, bit[5]

Non-Secure Attribute.The possible values of this bit are:
0 The faulty transaction has the Secure attribute.
1 The faulty transaction has the Non-secure attribute.

In SMMU_GFSYNR0 this field is reserved.

NSSTATE, bit[4]

Non-Secure State. The possible values of this bit are:
0 The faulty transaction is associated with a Secure device.
1 The faulty transaction is associated with a Non-secure device.

In SMMU_GFSYNR0 this field is reserved.

This field is set to 1 if a fault encountered when processing a Non-secure client transaction is
reported to SMMU_SGFSR, for example, when:

• A configuration access fault occurs as a response to a Non-secure attempt to access a
Secure-only resource, such as SMMU_SCR1, or a context bank allocated for use by Secure
software.

• An external abort associated with Non-secure execution occurs, when the
SMMU_SCR1.GEFRO bit is set to 1.

IND, bit[3] Instruction Not Data. The possible values of this bit are:
0 The faulty transaction has the data access attribute.
1 The faulty transaction has the instruction access attribute.

PNU, bit[2] Privileged Not Unprivileged. The possible values of this bit are:
0 The faulty transaction has the unprivileged attribute.
1 The faulty transaction is privileged.

IMPLEMENTATION DEFINEDReserved

31 16 15 8 7 6 5 4 3 2 1 0

NSATTR
NSSTATE

IND
PNU
WNR

Nested

Reserved
ATS
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-183
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
WNR, bit[1] Write Not Read. The possible values of this bit are:
0 The faulty transaction is a read.
1 The faulty transaction is a write.

Nested, bit[0] Nested fault. The possible values of this bit are:
0 The fault occurred in the initial stream context.
1 The fault occurred in the stage 2 context associated with a stage 1 followed by stage 2

translation.

In SMMU_SGFSYNR0 this field is reserved.

9.6.18 SMMU_sGFSYNR1, Global Fault Syndrome Register 1

The SMMU_sGFSYNR1 characteristics are:

Purpose Contains fault syndrome information relating to SMMU_sGFSR.

Usage constraints The security state of the faulty transaction determines whether SMMU_GFSYNR1 or
SMMU_SGFSYNR1 is used.

Configurations In an implementation that supports two security states, this register is Banked.

SMMU_NSGFSYNR1 is provided as a Secure alias of the Non-secure SMMU_GFSYNR1.
See Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

Attributes A 32-bit RW register that resets to an UNKNOWN value. See also Table 9-1 on page 9-150.

The SMMU_sGFSYNR1 bit assignments are:

SSD_Index, bits[31:16]

SSD_Index of the transaction that caused the fault.

The number of SSD_Index bits is IMPLEMENTATION DEFINED. Unimplemented bits behave as
RAZ/WI.

The SSD_Index field is only accessible to configuration accesses by Secure software, using
SMMU_NSGFSYNR1. Non-secure configuration accesses treat this field as RAZ/WI. This means
that software must access SMMU_NSGFSYNR1 to obtain the SSD_Index for a faulty Non-secure
transaction.

Note
 When SMMU_SSDR registers are not provided in the SMMU address space, the SSD_Index field

is UNKNOWN. See TLB operation on page 2-41 for more information about the SMMU_SSDR
registers.

SMMUv1 does not support 16-bit StreamIDs, and bit[31] is reserved.

StreamID, bits[15:0]

StreamID of the transaction that caused the fault.

The number of StreamID bits is IMPLEMENTATION DEFINED. Unimplemented bits behave as
RAZ/WI.

SMMUv1 does not support 16-bit StreamIDs, and bit[15] is reserved.

SSD_Indexa

31 16 15 0

StreamIDb

b. In SMMUv1, bit[15] is reserved and bits[14:0] are StreamID.
a. In SMMUv1, bit[31] is reserved and bits[30:16] are SSD_Index.
9-184 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
9.6.19 SMMU_sGFSYNR2, Global Fault Syndrome Register 2

The SMMU_sGFSYNR2 characteristics are:

Purpose Contains fault syndrome information relating to faults in SMMU_sGFSR.

Usage constraints Any usage constraints are IMPLEMENTATION DEFINED.

Configurations In an implementation that supports two security states, this register is Banked.

SMMU_NSGFSYNR2 is provided as a Secure alias of the Non-secure SMMU_GFSYNR2.
See Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

Attributes A 32-bit RW register that resets to an UNKNOWN value. See also Table 9-1 on page 9-150.

The SMMU_sGFSYNR2 bit assignments are IMPLEMENTATION DEFINED.

9.6.20 SMMU_sGPAR, Global Physical Address Register

The SMMU_sGPAR characteristics are:

Purpose Holds the result of a global address translation operation.

Usage constraints The security state of the transaction determines whether SMMU_GPAR or SMMU_SGPAR
is used.

Configurations The format of this register depends on the translation scheme selected, and whether the last
global address translation operation was successful. See:
• AArch32 Short-descriptor translation scheme.
• AArch32 Long-descriptor and AArch64 translation schemes on page 9-187.
• Fault format on page 9-188.

See also Multi-format registers and reserved fields on page 9-160.

In an implementation that supports two security states, this register is Banked.

SMMU_NSGPAR is provided as a Secure alias of the Non-secure SMMU_GPAR. See
Table 9-1 on page 9-150 and Secure alias for Non-secure registers on page 9-157.

Attributes A 64-bit RW register with an UNKNOWN reset value. See also Table 9-1 on page 9-150.

AArch32 Short-descriptor translation scheme

When using the AArch32 Short-descriptor translation scheme, if the translation completes successfully, the format
of the SMMU_sGPAR bit assignments is:

Bits[63:32] Reserved.

PA, bits[31:12] Bits[31:12] of the physical address.

(0)(0)

NOS
NS

IMP
SH

Inner[2:0]
Outer[1:0]

F

SS

PAReserved, RAZ

63 013 231 467810 9111232
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-185
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
NOS, bit[10] Not Outer Shareable attribute. Indicates whether the physical memory is Outer Shareable. The
possible values of this bit are:
0 Memory is Outer Shareable.
1 Memory is not Outer Shareable.

Whether an implementation distinguishes between Inner Shareable and Outer Shareable memory is
IMPLEMENTATION DEFINED. If an implementation does not make this distinction, NOS is
UNK/SBZP.

NS, bit[9] Non-Secure. The NS attribute for a translation table entry read from a Secure translation context
bank.

This bit is UNKNOWN for a translation table entry read from a Non-secure translation context bank.

In SMMU_GPAR this field is reserved.

IMP, bit[8] IMPLEMENTATION DEFINED.

SH, bit[7] Shareable attribute. Indicates whether the physical memory is shareable. The possible values of this
bit are:
0 Physical memory is not shareable.
1 Physical memory is shareable.

Inner[2:0], bits[6:4]

Inner memory attributes from the translation table entry.

The encoding of this field is:
0b111 Write-Back, no Write-Allocate.
0b110 Write-Through.
0b101 Write-Back, Write-Allocate.
0b011 Device.
0b001 Strongly-ordered.
0b000 Non-cacheable.

All other values are reserved.

Outer[1:0], bits[3:2]

Outer memory attributes from the translation table. The encoding of this field is:
0b00 Write-Back, no Write-Allocate.
0b10 Write-Through, no Write-Allocate.
0b01 Write-Back, Write-Allocate.
0b11 Non-cacheable.

SS, bit[1] SuperSection, indicates whether the result is a supersection. The possible values of this bit are:

0 The page is not a supersection.
PAR[31:12] contains PAR[31:12] regardless of page size.

1 The page is part of a supersection.
PAR[31:24] contains PA[31:24].
PAR[23:16] contains PA[39:32].
PAR[15:12] contains 0b0000.

F(0), bit[0] Fault, contains the value 0 on successful completion.
9-186 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
AArch32 Long-descriptor and AArch64 translation schemes

When using either the AArch32 Long-descriptor or the AArch64 translation scheme, if a translation completes
successfully, the format of the SMMU_sGPAR bit assignments is:

MATTR, bits[63:56]

Memory Attributes. These attributes have the encoding of the MAIR field. See
SMMU_CBn_MAIRm, Memory Attribute Indirection Registers on page 14-259 for more
information.

Bits[55:48] Reserved.

PA[47:12], bits[47:12]

Bits[47:12] of the physical address.

The number of storage bits is determined by the maximum of SMMU_IDR2.IAS and
SMMU_IDR2.OAS. Unimplemented bits are RAZ/WI.

Note
 • This field always contains an IPA and is unsigned.

• In SMMUv1, bits[47:40] are reserved.

IMP, bit[10] IMPLEMENTATION DEFINED.

NS, bit[9] Non-secure, the NS attribute for a translation table entry read from a Secure translation context
bank.

This bit is UNKNOWN for a translation table entry read from a Non-secure translation context bank.

In SMMU_GPAR this field is reserved.

SH[1:0], bits[8:7]

Shareability.

Bits[6:1] Reserved.

F(0), bit[0] Fault, contains the value 0 on successful completion.

MATTR (0)(1) Reserved

IMP
NS

F

PA[47:12]Reserved

63 0147 67810 91112485556

a. In SMMUv1, bits[47:40] are reserved.

SH[1:0]
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-187
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
Fault format

If a translation fails to complete successfully, the format of the SMMU_sGPAR bit assignments, irrespective of the
translation format, is:

Bits[63:36] Reserved.

STAGE, bit[35]

The stage of translation that encountered the fault. The possible values of this bit are:
0 Fault encountered in stage 1 translation.
1 Fault encountered in stage 2 translation.

Bit[34] Reserved.

PLVL, bit[33:32]

Page Level.

Level of translation table walk that encountered the fault. The possible values of this field are:
0b00 Level 0. SMMUv2 only.
0b01 Level 1.
0b10 Level 2.
0b11 Level 3.

Bit[31] Reserved.

UCBF, bit[30] Unimplemented context bank fault. The possible values of this bit are:
0 No fault.
1 Fault encountered because an unimplemented context bank was specified.

ICF, Bit[29] Invalid context fault. The possible values of this bit are:
0 No fault.
1 Fault encountered because an invalid context was specified during address translation.

This fault condition occurs if the stage 1 translation context bank is associated with a
stage 2 fault context in the SMMU_CBARn corresponding to the stage 1 context.

Bits[28:10] Reserved.

Format, bits[9:8]

Translation scheme. This field indicates the translation scheme, and therefore the translation table
format for which the recorded fault occurred. The possible values for this field are:

0b00 AArch32 Short-descriptor translation scheme. This value is not valid for stage 2
translation contexts.

0b01 AArch32 Long-descriptor translation scheme.

PLVL

TLBLKF
TLBMCF

F(1)

ReservedReserved

63 016728

TF
AFF
PF
EF

35 34 323336 5 4 3 2293031

Reserved
UCBF

ICFa

STAGE
Reserved

8910

ASFa
Formata

a. Reserved in SMMUv1
9-188 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
0b10 AArch64 translation scheme.

0b11 Reserved. Treated as AArch64 translation scheme.

In SMMUv1, this field is reserved.

Note
 This field requires storage.

ASF, bit[7] Address size fault. The possible values for this field are:

0 No fault.

1 Fault is a result of an incorrect address size.

In SMMUv1, this bit is reserved.

TLBLKF, bit[6]

TLB lock fault. The possible values of this bit are:
0 No fault.
1 TLB Lock fault.

Note
 In implementations that do not support TLB locking, this bit might be RAZ/WI.

TLBMCF, bit[5]

TLB match conflict fault. The possible values of this bit are:
0 No fault.
1 Fault is a result of multiple matches detected in the TLB.

Note
 In implementations that do not support TLB match conflict detection, this bit might be RAZ/WI.

EF, bit[4] External fault. The possible values of this bit are:
0 No fault.
1 An external fault.

Note
 In implementations that do not support external fault detection, this bit might be RAZ/WI.

PF, bit[3] Permission fault. The possible values of this bit are:
0 No fault.
1 Fault caused by insufficient permission to complete access.

AFF, bit[2] Access flag fault. The possible values of this bit are:
0 No fault.
1 Access flag fault occurred.

TF, bit[1] Translation fault. The possible values of this bit are:
0 No fault.
1 Invalid mapping for the address being accessed.

F(1), bit[0] Fault.

This bit is set to 1 if the translation aborts.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-189
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
9.6.21 SMMU_sTLBGSTATUS, Global TLB Status register

The SMMU_sTLBGSTATUS characteristics are:

Purpose Gives the status of a TLB maintenance operation. See TLB maintenance registers on
page 5-118 for more information.

Usage constraints The security state of the transaction determines whether SMMU_TLBGSTATUS or
SMMU_STLBGSTATUS is used.

Configurations In an implementation that supports two security states, this register is Banked.

SMMU_NSTLBGSTATUS is provided as a Secure alias of the Non-secure
SMMU_TLBGSTATUS. See Table 9-1 on page 9-150. See also Secure alias for Non-secure
registers on page 9-157 for general information.

Attributes A 32-bit RO register. See also Table 9-1 on page 9-150.

The SMMU_sTLBGSTATUS bit assignments are:

Bits[31:1] Reserved.

GSACTIVE, bit[0]

Global Synchronize TLB Invalidate Active. The possible values of this bit are:
0 No Global TLB synchronization operation is active.
1 A Global TLB synchronization operation is active.

This bit resets to 0.

9.6.22 SMMU_sTLBGSYNC, Global Synchronize TLB Invalidate

The SMMU_sTLBGSYNC characteristics are:

Purpose Starts a global synchronization operation that ensures the completion of any previously
accepted TLB Invalidate operation. As a minimum, the operation applies to the specified
security state, and includes all TLB Invalidate operations initiated in context banks
associated with that security state. See TLB maintenance registers on page 5-118 for more
information.

Usage constraints The security state of the transaction determines whether SMMU_TLBGSYNC or
SMMU_STLBGSYNC is used.

Configurations In an implementation that supports two security states:
• This register is Banked.
• SMMU_TLBGSYNC only has to apply to Non-secure TLB Invalidate operations.
• SMMU_STLBGSYNC only has to apply to Secure TLB Invalidate operations.

SMMU_NSTLBGSYNC is provided as a Secure alias of the Non-secure
SMMU_TLBGSYNC. See Table 9-1 on page 9-150. See also Secure alias for Non-secure
registers on page 9-157 for general information.

Attributes A 32-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_sTLBGSYNC bit assignments are reserved.

31 1 0

Reserved

GSACTIVE
9-190 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
9.6.23 SMMU_S2CRn, Stream-to-Context Register

The SMMU_S2CRn characteristics are:

Purpose Specifies an initial context for processing a transaction, where the transaction matches the
Stream mapping group that this register belongs to.

Usage constraints An SMMU_S2CRn register reserved by Secure software using
SMMU_SCR1.NSNUMSMRGO must only specify a translation context bank that is
reserved by Secure software.

An SMMU_S2CRn register that is accessible from the Non-secure state must only specify
a translation context bank that is not reserved by Secure software.

If SMMU_sCR0.MTCFG==1, restrictions apply when the memory is either:
• Strongly-ordered or Device, that is, when MemAttr[3:2]==0b00.
• Normal Outer Non-cacheable or Inner Non-cacheable, that is, when

MemAttr[3:0]==0b0101.

In either of these cases, ARM recommends that:
• RACFG is set to 0b11, indicating No Read-Allocate.
• WACFG is set to 0b11, indicating No Write-Allocate.
• TRANSIENTCFG is set to 0b10, indicating Non-transient.
• SHCFG is set to 0b01, indicating Outer Shareable.

Configurations The format of this register depends on the state of its TYPE[17:16] field. See:
• Translation context, type 0b00.
• Bypass mode, type 0b01 on page 9-194.
• Fault context, type 0b10 on page 9-196.

See also Multi-format registers and reserved fields on page 9-160.

The number of SMMU_S2CRn registers is IMPLEMENTATION DEFINED.

Unimplemented registers are RAZ/WI.

Attributes 32-bit RW registers with UNKNOWN reset values. See also Table 9-1 on page 9-150.

Translation context, type 0b00

This register format specifies that the initial context is a translation context.

The format of the bit assignments is:

Bits[31:30] IMPLEMENTATION DEFINED.

TRANSIENTCFG, bits[29:28]

Transient Allocate Configuration, controls the transient allocation hint.

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

MemAttr CBNDX

INSTCFG

IMPLEMENTATION DEFINED

TYPE
NSCFG
RACFG
WACFG
PRIVCFG

SHCFG
EXIDVALIDa

MTCFG

30 29

TRANSIENTCFG

a. Reserved in SMMUv1
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-191
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
The encoding of this field is:
0b00 Use the default transient allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Non-transient.
0b11 Transient.

It is IMPLEMENTATION DEFINED whether this field is present. If not present, these bits are RAZ/WI.

INSTCFG, bits[27:26]

Instruction Fetch Attribute Configuration. The encoding of this field is:
0b00 Default instruction fetch attribute.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Data.
0b11 Instruction.

In SMMUv1, it is IMPLEMENTATION DEFINED whether:

• This field transforms writes.

• The following transactions are restricted by Execute Never permission checking:
— Incoming write transactions already classified as Instruction.
— Write transactions that INSTCFG encodes as Instruction

In SMMUv2, this field does not apply to writes. All downstream writes are bus-marked as data.

PRIVCFG, bits[25:24]

Privileged Attribute Configuration. The encoding of this field is:
0b00 Default privilege attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Unprivileged.
0b11 Privileged.

Note
 In SMMUv2, HYPC and MONC banks are treated as privileged on the downstream bus system,

provided the downstream bus system supports such marking. It is IMPLEMENTATION DEFINED
whether this attribute is recorded in SMMU_CBn_FSYNR0.PNU.

WACFG, bits[23:22]

Write Allocation Configuration, controls the allocation hint for write accesses. The encoding of this
field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Write-Allocate.
0b11 No Write-Allocate.

It is IMPLEMENTATION DEFINED whether this field is present. If not present, these bits are RAZ/WI.

RACFG, bits[21:20]

Read Allocate Configuration, controls the allocation hint for read accesses. The encoding of this
field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Read-Allocate.
0b11 No Read-Allocate.

It is IMPLEMENTATION DEFINED whether this field is present. If not present, these bits are RAZ/WI.
9-192 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
NSCFG, bits[19:18]

Non-Secure Configuration. The encoding of this field is:
0b00 Default security attribute.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Secure configuration that only affects Secure SMMU_S2CRn entry.
0b11 Non-secure.

This field exists only for Secure Stream mapping register groups. For Non-secure Stream mapping
register groups, it is reserved.

TYPE, bits[17:16]

Initial context type. Indicates the initial context for processing the transaction. The value of this field
affects the meaning of the remaining fields in this register. The encoding of this field is:
0b00 Translation context bank index.
0b01 Bypass.mode
0b10 Fault, no index.
0b11 Reserved. Treated as a fault context.

MemAttr, bits[15:12]

Memory Attributes. See Memory attribute, MemAttr on page 9-159.

In an implementation that supports two security states, a Secure SMMU_S2CRn register configured
to specify a translation context bank is only permitted to:

• Specify a CBNDX corresponding to a translation context bank that is also reserved by Secure
software.

• Specify a translation context bank configured for the Stage 1 context with stage 2 bypass
format.

MTCFG, bit[11]

Memory Type Configuration. The possible values of this bit are:
0 Default memory attributes.
1 MemAttr field attributes.

EXIDVALID, bit[10]

Extended ID Valid. This bit is ignored if SMMU_sCR0.EXIDENABLE==0, otherwise the possible
values of this bit are:
0 The Stream Match Register group is invalid.
1 The Stream Match Register group is valid and SMMU_SMRn follows the Extended ID

format.

Extended Stream IDs are supported when SMMU_IDR0.EXIDS==1.

In SMMUv1, or when an SMMUV2 implementation does not support 16 bit stream IDs, that is,
when SMMU_IDR0.EXIDS==0, this bit is reserved.

SHCFG, bits[9:8]

Shared Configuration. The encoding of this field is:
0b00 Default Shareable attribute.
0b01 Outer Shareable.
0b10 Inner Shareable.
0b11 Non-shareable.

It is IMPLEMENTATION DEFINED whether this field is present. If not present, these bits are RAZ/WI.

CBNDX, bits[7:0]

Context Bank Index. The translation context bank index for a stage 1 or a stage 2 translation.

The number of CBNDX bits implemented is IMPLEMENTATION DEFINED. This field must be capable
of selecting all of the implemented translation context banks.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-193
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
An implementation provides the same number of CBNDX bits for every implemented
SMMU_S2CRn.

Unimplemented bits behave as RAZ/WI.

Bypass mode, type 0b01

This register format specifies that Bypass mode is to be used.

No address translation is applied. Memory attributes can be specified to overlay or override those associated with
the transaction.

The format of the bit assignments is:

Bits[31:30] IMPLEMENTATION DEFINED.

TRANSIENTCFG, bits[29:28]

Transient Allocate Configuration.

The encoding of this field is:
0b00 Use default transient allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Non-transient.
0b11 Transient.

It is IMPLEMENTATION DEFINED whether this field is present. If not present, it is RAZ/WI.

Bit[27] Reserved.

FB, bits[26] Force Broadcast. Force Broadcast of TLB, branch predictor and instruction cache maintenance
operations.

This field affects client TLB maintenance, BPIALL and ICIALLU operations. If it has the value 1,
any affected operation is modified to the equivalent broadcast variant within the Inner Shareable
domain.

The possible values of this bit are:
0 Process affected operations as presented.
1 Upgrade affected operations to be broadcast within the Inner Shareable domain.

BSU, bits[25:24]

Barrier Shareability Upgrade.

This field upgrades the required shareability domain of barriers issued by client devices mapped to
this Stream mapping register group by setting the minimum shareability domain applied to any
barrier.

IMPLEMENTATION DEFINED

TYPE
NSCFG
RACFG
WACFG

SHCFG
EXIDVALIDa

MTCFG

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 0

MemAttr VMID

FB
Reserved

30 29

BSU

TRANSIENTCFG

a. Reserved in SMMUv1
9-194 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
The encoding of this field is:
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

Upgrade of the barrier shareability domain might not be supported in all system topologies. In an
implementation that does not have this upgrade behavior, this field is RAZ/SBZP.

WACFG, bits[23:22]

Write-Allocate Configuration, an allocation hint for write accesses. The encoding of this field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Write-Allocate.
0b11 No Write-Allocate.

It is IMPLEMENTATION DEFINED whether this field is present. If not present, these bits are RAZ/WI.

RACFG, bits[21:20]

Read-Allocate Configuration. Gives an allocation hint for read accesses. The encoding of this field
is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Read-Allocate.
0b11 No Read-Allocate.

It is IMPLEMENTATION DEFINED whether this field is present. If not present, these bits are RAZ/WI.

NSCFG, bits[19:18]

Non-Secure Configuration. The encoding of this field is:
0b00 Default security attribute.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Secure configuration that only affects Secure SMMU_S2CRn entry.
0b11 Non-secure.

This field exists only for Secure Stream mapping register groups. For Non-secure Stream mapping
register groups, it is reserved.

TYPE, bits[17:16]

Register type. Indicates the meaning of the remaining fields in this register. The encoding of this
field is:
0b00 Translation context bank index.
0b01 Bypass mode.
0b10 Fault, no index.
0b11 Reserved. Treated as a fault context.

MemAttr, bits[15:12]

Memory Attributes. See Memory attribute, MemAttr on page 9-159.

In an implementation that supports two security states, a Secure SMMU_S2CRn register configured
to specify a translation context bank is only permitted to:

• Specify a CBNDX corresponding to a translation context bank that is also reserved by Secure
software.

• Specify a translation context bank configured to the Stage 1 context with stage 2 bypass
format.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-195
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
MTCFG, bit[11]

Memory Type Configuration. The possible values of this bit are:
0 Default memory attributes.
1 MemAttr field attributes.

EXIDVALID, bit[10]

Extended ID Valid. This bit is ignored if SMMU_sCR0.EXIDENABLE==0, otherwise the possible
values of this bit are:
0 The Stream Match Register group is invalid.
1 The Stream Match Register group is valid and SMMU_SMRn follows the Extended ID

format.

Extended Stream IDs are supported when SMMU_IDR0.EXIDS==1.

In SMMUv1, or when an SMMUV2 implementation does not support 16 bit stream IDs, that is,
when SMMU_IDR0.EXIDS==0, this bit is reserved.

SHCFG, bits[9:8]

Shared Configuration. The encoding of this field is:
0b00 Default Shareable attribute.
0b01 Outer Shareable.
0b10 Inner Shareable.
0b11 Non-shareable.

It is IMPLEMENTATION DEFINED whether this field is present. If not present, these bits are RAZ/WI.

VMID, bits[7:0]

Reserved for IMPLEMENTATION DEFINED use of a VMID field, where such use is relevant to all
transactions, including those not subject to any translation.

It is IMPLEMENTATION DEFINED whether this field is implemented, and what effect it has.

In an implementation that does not include this behavior, this field is RAZ/WI.

If an implementation that supports two security states does not support a VMID for Secure
translation regimes, any Secure VMID field is ignored. See The Context Bank Attribute Register,
SMMU_CBARn on page 2-67 for more information.

Fault context, type 0b10

This format specifies that the Fault context is to be used. Any transaction that maps to this Stream mapping group
incurs an invalid context fault.

The format of the bit assignments is:

Bits[31:28] IMPLEMENTATION DEFINED.

Bits[27:18] Reserved.

TYPE, bits[17:16]

Register Type. Indicates the meaning of the remaining fields in this register. The encoding of this
field is:
0b00 Translation context bank index.
0b01 Bypass mode.
0b10 Fault, no index.

IMPLEMENTATION
DEFINED

31 28 27 18 17 16 15 0

Reserved TYPE Reserved
9-196 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
0b11 Reserved.

Bits[15:0] Reserved.

9.6.24 SMMU_SCR1, Secure Configuration Register 1

The SMMU_SCR1 characteristics are:

Purpose Provides top-level Secure control of the SMMU.

Usage constraints Secure access only.

Configurations Only present in an implementation that supports two security states.

Attributes A 32-bit RW register. See the field descriptions for information about the reset values. See
also Table 9-1 on page 9-150.

The SMMU_SCR1 bit assignments are:

Bits[31:29] Reserved.

NSCAFRO, bit[28]

Non-Secure configuration access fault report override. The possible values of this bit are:

0 Permit SMMU_SGFSR to report configuration access faults caused by Non-secure
accesses to Secure registers.

1 SMMU_GFSR reports all configuration access faults.

If SMMU_SCR1.NSCAFRO==1, all configuration access faults caused by Non-secure accesses
that would have been recorded in SMMU_SGFSR are instead recorded in SMMU_GFSR. See
SMMU_sGFSR, Global Fault Status Register on page 9-180.

Generation of configuration access faults is an IMPLEMENTATION DEFINED feature. If an
implementation can generate configuration access faults, the implementation might either make this
bit programmable or a fixed, IMPLEMENTATION DEFINED value. If this bit is programmable, it resets
to zero. If an implementation cannot generate configuration access faults, this bit is RAZ/WI.

This bit does not apply to configuration access faults caused by Non-secure accesses to Common or
Non-secure registers.

In SMMUv1, this bit is reserved.

Note
 In implementations where this bit has an effect and is set to 1, Secure software permits Non-secure

software to report faults to the Secure state. This might interfere with the use of SMMU_SGFSR by
Secure software.

31 28 27 26 25 24 23 16 15 8 7 0

NSNUMIRPTO NSNUMSMRGO NSNUMCBO

SPMEN
SIF
GEFRO
GASRAE

29

Reserved
NSCAFROa

a. Reserved in SMMUv1
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-197
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
SPMEN, bit[27]

Secure Performance Monitor Enable. The possible values of this bit are:

0 Any event caused by Secure transaction processing does not contribute towards
performance monitor counting.

1 Any events caused by Secure transaction processing is permitted to contribute towards
performance monitor counting.

This bit resets to 0.

SIF, bit[26] Secure Instruction Fetch. The possible values of this bit are:

0 Secure instruction fetches are permitted to Non-secure memory locations.

1 Raise a permission fault if a Secure domain access attempts to exit the SMMU as a
Non-secure instruction.

See Secure Instruction Fetch (SIF) permission faults on page 3-84 for more information.

This bit resets to 0.

Note
 If a transaction is associated with a particular translation context bank, faults are recorded in

SMMU_CBn_FSR. Otherwise they are recorded in SMMU_SGFSR.

GEFRO, bit[25]

Global external fault report override. The possible values of this bit are:
0 Permit SMMU_GFSR to report external faults.
1 SMMU_SGFSR reports all external faults.

If SMMU_SCR1.GEFRO==1, all external aborts that would have been recorded in SMMU_GFSR
are instead recorded in SMMU_SGFSR. See SMMU_sGFSR, Global Fault Status Register on
page 9-180.

In SMMUv1, this bit resets to an UNKNOWN value.

GASRAE, bit[24]

Global Address Space Restricted Access Enable. The possible values of this bit are:

0 The Global address space has default access permission, permitting Secure and
Non-secure configuration memory accesses.

1 The Global address space is only accessible by Secure configuration memory accesses.
Stage 2 format context banks are accessible only by Secure configuration accesses. The
PrimeCell peripheral register and the Component ID register remain readable by
Non-secure accesses.
Whether SMMU_SCR1.GASRAE==1 affects the IMPLEMENTATION DEFINED address
space is IMPLEMENTATION DEFINED.

The following additional constraints apply:

• If SMMU_SCR1.GASRAE==0, Secure software must avoid setting SMMU_CBARn.HYPC
to 1 when configuring a Secure stage 1 translation context bank.

• If SMMU_SCR1.GASRAE==1, Secure software must avoid setting SMMU_CBARn.HYPC
to 1 when configuring a Non-secure stage 1 translation context bank.

UNPREDICTABLE behavior results if Secure software does not follow these constraints.

This bit resets to 0.

NSNUMIRPTO, bits[23:16]

Non-Secure Number of Interrupts Override.
9-198 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
In SMMUv1, it is IMPLEMENTATION DEFINED whether this field is fully implemented with writable
storage. A portion of this field might behave as RAZ/WI because the implementation might not
provide a sufficient number of interrupts for some of the upper bits of NSNUMIRPTO to be
relevant.

In implementations that do not support Secure translation contexts, such as those that support stage
2 translation format only, it is also IMPLEMENTATION DEFINED whether this field is read-only. In such
implementations, Secure software does not manage translation contexts and therefore there is no
requirement to reserve context interrupts for Secure use.

These bits reset to the implemented number of interrupts. See SMMU_IDR0-7, Identification
registers on page 9-162.

For more information, see:
• Resource allocation on page 7-138.
• SMMU_IDR0 on page 9-162.

In SMMUv2, each context bank has a dedicated interrupt pin, and there is therefore no requirement
to specify the number of implemented context fault interrupts. See Context interrupts on page 3-82
for more information.

NSNUMSMRGO, bits[15:8]

Non-Secure Number of Stream Mapping Register Groups Override.

Adjusts the number of Stream mapping register groups visible to Non-secure accesses. The number
of Stream mapping register groups reported in SMMU_IDR0 is reduced to the number indicated by
SMMU_SCR1.NSNUMSMRGO. See SMMU_IDR0-7, Identification registers on page 9-162.

These bits reset to the implemented number of Stream mapping register groups. See
SMMU_IDR0-7, Identification registers on page 9-162.

Note
 If the value in NSNUMSMRGO exceeds the number of implemented Stream Match Register

groups, Non-secure software might attempt to access an unimplemented Stream Match Register
group. It is IMPLEMENTATION DEFINED whether Non-secure accesses to unimplemented Stream
Match Register groups result in configuration access faults or are ignored.

It is IMPLEMENTATION DEFINED whether this field is fully implemented with writable storage. A
portion of this field might be RAZ/WI because the implementation might not provide sufficient
Stream mapping register groups for some of the upper bits of SMMU_SCR1.NSNUMSMRGO to
be relevant.

These bits reset to the implemented number of stream mapping register groups.

For more information, see:
• The Stream mapping table on page 2-58.
• Resource allocation on page 7-138.
• Permitted transaction resource usage on page 7-138.
• SMMU_IDR0 on page 9-162.

NSNUMCBO, bits[7:0]

Non-Secure Number of Context Banks Override.

Specifies the number of translation context banks visible to Non-secure accesses. For Non-secure
accesses, the number of translation context banks reported in SMMU_IDR1.NUMCB is reduced to
the number indicated by SMMU_SCR1.NSNUMCBO. See SMMU_IDR0-7, Identification
registers on page 9-162.

Note
 Allocating translation context banks for Non-secure use includes the SMMU_CBARn registers and

SMMU_CBFRSYNRAn registers associated with the affected translation context banks.

This field resets to the physically implemented number of translation context banks.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-199
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
This field must not be set to a value below that reported by SMMU_IDR1.NUMS2CB. Stage 2
format translation is not available to Secure transactions.

It is IMPLEMENTATION DEFINED whether this field is fully implemented with writable storage. A
portion of this field might behave as RAZ/WI. This is permitted because the implementation might
not provide sufficient contexts for some of the upper bits of SMMU_SCR1.NSNUMCBO to be
relevant.

In implementations that do not support Secure translation contexts, such as those that support stage
2 translation format only, it is also IMPLEMENTATION DEFINED whether this field is read-only. In such
implementations, Secure software does not manage translation contexts and there is therefore no
requirement to reserve context interrupts for Secure use.

In SMMUv2, if a context bank has a stalled transaction when the corresponding SMMU_CBARn,
or SMMU_CBA2Rn is written, an implementation might retry the stalled transaction immediately
after SMMU_CBARn or SMMU_CBA2Rn is updated. An implementation might also retry a
transaction in all context banks affected by a change to SMMU_SCR1.NSNUMCBO. See The Stall
fault model on page 3-88 for more information.

For more information, see:
• The translation context bank table on page 2-64.
• The Context Bank Attribute Register, SMMU_CBARn on page 2-67.
• Recording a context fault on page 3-84.
• Resource allocation on page 7-138.
• SMMU_IDR1 on page 9-164.
9-200 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
9.6.25 SMMU_SMRn, Stream Match Register

The SMMU_SMRn characteristics are:

Purpose Matches a transaction with a particular Stream mapping register group.

Usage constraints During configuration, the Stream Match Register table can have multiple entries that match
the same Stream Identifier value, possibly resulting in UNPREDICTABLE behavior. See
StreamID matching on page 2-61 for more information about multiple matches. To prevent
multiple matches, software must ensure that no transactions that might match the StreamID
are received, by:
• Disabling any source client devices that might match.
• Ensuring that no outstanding transactions from these client devices are in progress.

As an extra precaution, software can first disable all affected SMMU_SMRn table entries
by setting the SMMU_SMRn.VALID bit to 0, then reprogramming the entries as
appropriate.

An implementation must provide the same number of ID and MASK bits for every
implemented Stream Match Register.

Configurations The number of SMMU_SMRn registers is IMPLEMENTATION DEFINED.

In an implementation that includes StreamID matching, each of these registers has RW
access. In an implementation that includes StreamID indexing, each register is RAZ/WI.

In SMMUv2, the format of this register depends on the state of the
SMMU_sCR0.EXIDENABLE bit.

Attributes 32-bit RW registers with access attributes that depend on the configuration of the
implementation. See the configuration details for information.

This register resets to an UNKNOWN value.

See also Table 9-1 on page 9-150.

SMMU_SMRn bit assignments for SMMUv1, or when SMMU_sCR0.EXIDENABLE==0

The SMMU_SMRn bit assignments are:

VALID, bit[31]

The possible values of this bit are:
0 Entry is not included in the Stream mapping table search.
1 Entry is included in the Stream mapping table search.

MASK, bits[30:16]

Masking of StreamID bits irrelevant to the matching process:
• If MASK[i]==1, ID[i] is ignored.
• If MASK[i]==0, ID[i] is relevant for matching.

The actual number of MASK bits is IMPLEMENTATION DEFINED. Unimplemented bits are RAZ/WI.

Unless an SMMU implementation has a particular requirement for non-contiguous MASK bits,
ARM recommends that:
• The MASK bits are contiguous.
• The number of MASK bits implemented is [SMMU_IDR0.NUMSIDB - 1].

Bit[15] Reserved.

ID

31 30 16 15 14 0

MASK

VALID
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-201
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
ID, bits[14:0] The Stream Identifier to match.

The actual number of ID bits is IMPLEMENTATION DEFINED. Unimplemented bits are RAZ/WI.

SMMU_SMRn bit assignments for SMMUv2, when SMMU_sCR0.EXIDENABLE==1

The SMMU_SMRn bit assignments are:

EXMASK, bits[31:16]

Extended Mask. Masking of StreamID bits irrelevant to the matching process:
• If EXMASK[i]==1, EXID[i] is ignored.
• If EXMASK[i]==0, EXID[i] is relevant for matching.

EXID, bits[15:0]

Extended ID. The Stream Identifier to match.

The entry is valid if the corresponding SMMU_S2CRn.EXIDVALID==1.

9.6.26 SMMU_STLBIALL, TLB Invalidate All

The SMMU_STLBIALL characteristics are:

Purpose Invalidates all unlocked Secure entries in the TLB. See TLB maintenance registers on
page 5-118 for more information.

Usage constraints This register must apply to all unlocked Secure entries. Optionally, it can apply to other
individual unlocked entries, regardless of their tagging.

Note
 SMMU_STLBIALL operations might not invalidate TLB entries allocated by Secure

HYPC banks, and a separate write to SMMU_TLBIALLH might be required.

Configurations In an implementation that does not support two security states, this register is reserved.

Attributes A 32-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_STLBIALL bit assignments are reserved.

9.6.27 SMMU_STLBIALLM, TLB Invalidate All MONC

The SMMU_STLBIALLM characteristics are:

Purpose Invalidates all unlocked entries associated with MONC banks in the TLB. See TLB
maintenance registers on page 5-118 for more information.

Usage constraints This register must apply to all unlocked MONC entries. Optionally, it can apply to other
individual unlocked entries, regardless of their tagging.

Configurations This register is not provided in SMMUv1.

In an implementation that does not supports two security states, this register is reserved.

Attributes A 32-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_STLBIALLM bit assignments are reserved.

EXID

31 16 15 0

EXMASK
9-202 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
9.6.28 SMMU_TLBIALLH, TLB Invalidate All Hyp

The SMMU_TLBIALLH characteristics are:

Purpose Invalidates all Hyp tagged entries in the TLB. See TLB maintenance registers on page 5-118
for more information.

Usage constraints This register must apply to all unlocked Hyp-tagged entries. Optionally, it can apply to other
individual unlocked entries, regardless of their tagging.

Configurations None.

Attributes A 32-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_TLBIALLH bit assignments are reserved.

9.6.29 SMMU_TLBIALLNSNH, TLB Invalidate All Non-Secure Non-Hyp

The SMMU_TLBIALLNSNH characteristics are:

Purpose Invalidates all Non-secure non-Hyp tagged entries in the TLB. See TLB maintenance
registers on page 5-118 for more information.

Usage constraints This register must apply to all unlocked Non-secure non-Hyp tagged entries. Optionally, it
can apply to other individual unlocked entries, regardless of their tagging.

Configurations None.

Attributes A 32-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_TLBIALLNSNH bit assignments are reserved.

9.6.30 SMMU_STLBIVALM, TLB Invalidate All MONC by VA, last level only

The SMMU_STLBIVALM characteristics are:

Purpose Invalidates all unlocked entries associated with MONC banks, that match the specified
virtual address. See TLB maintenance registers on page 5-118 for more information.

Usage constraints This register is similar to SMMU_STLBIVAM, but it is only required to invalidate cached
copies of the last level of translation table walk of the translation.

Configurations This register is not provided in SMMUv1.

In an implementation that does not supports two security states, this register is reserved.

Attributes A 64-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_STLBIVALM bit assignments are:

Bits[63:44] Reserved.

Address[55:12], bits[43:0]

Bits[55:12] of the address to be invalidated.

• If the translation granularity is 64KB, then bits corresponding to Address[15:12] are ignored.

• The address extends to bit[63] by copying bit[55].

• For AArch32 translation schemes, bits[55:32] are treated as zero.

Reserved

63 44 43 0

Address[55:12]
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-203
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
9.6.31 SMMU_STLBIVAM, TLB Invalidate All MONC by VA

The SMMU_STLBIVAM characteristics are:

Purpose Invalidates all unlocked entries associated with MONC banks, that match the specified
virtual address. See TLB maintenance registers on page 5-118 for more information.

Usage constraints This register must apply to all unlocked MONC entries. Optionally, it can apply to other
individual unlocked entries, regardless of their tagging.

Configurations This register is not provided in SMMUv1.

In an implementation that does not supports two security states, this register is reserved.

Attributes A 64-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_STLBIVAM bit assignments are:

Bits[63:44] Reserved.

Address[55:12], bits[43:0]

Bits[55:12] of the address to be invalidated.
• If the translation granularity is 64KB, then bits corresponding to Address[15:12] are ignored.
• The address extends to bit[63] by copying bit[55].
• For AArch32 translation schemes, bits[55:32] are treated as zero.

9.6.32 SMMU_TLBIVAH, Invalidate Hyp TLB by VA

The SMMU_TLBIVAH characteristics are:

Purpose Invalidates all Hyp TLB entries that match the specified virtual address. See TLB
maintenance registers on page 5-118 for more information.

Usage constraints This register must operate on all unlocked Hyp-tagged TLB entries associated with the
specified virtual address. Optionally, it can apply to other individual unlocked entries in a
TLB, regardless of their tagging.

When accessing this register using an atomic 32-bit access, only the lower word of the VA
is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to the upper
word of this register are ignored.

In an SMMU implementation that does not support the AArch32 translation schemes, this
register is RAZ/WI.

Configurations None.

Attributes A 32-bit WO register.

See also Table 9-1 on page 9-150.

The SMMU_TLBIVAH bit assignments are:

Address, bits[31:12]

The virtual address to use.

Bits[11:0] Reserved.

Reserved

63 44 43 0

Address[55:12]

31 12 11 0

Address Reserved
9-204 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
9.6.33 SMMU_TLBIVAH64, Invalidate Hyp TLB by VA, AArch64

The SMMU_TLBIVAH64 characteristics are:

Purpose Invalidates all Hyp TLB entries that match the specified virtual address, for the ARMv8
TLB invalidate address format. See TLB maintenance registers on page 5-118 for more
information.

Usage constraints This register must operate on all unlocked Hyp-tagged TLB entries associated with the
specified virtual address. Optionally, it can apply to other individual unlocked entries in a
TLB, regardless of their tagging.

When accessing this register using an atomic 32-bit access, only the lower word of the VA
is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to the upper
word of this register are ignored.

Configurations This register is not provided in SMMUv1.

Attributes A 64-bit WO register.

See also Table 9-1 on page 9-150.

The SMMU_TLBIVAH64 bit assignments are:

Bits[63:44] Reserved.

Address[55:12], bits[43:0]

Bits[55:12] of the address to be invalidated.
• If the translation granularity is 64KB, then bits corresponding to Address[15:12] are ignored.
• The address extends to bit[63] by copying bit[55].
• For AArch32 translation schemes, bits[55:32] are treated as zero.

9.6.34 SMMU_TLBIVALH64, Invalidate Last Hyp TLB by VA, AArch64

The SMMU_TLBIVALH64 characteristics are:

Purpose Invalidates Hyp TLB entries created during the most recent translation table walk, that
match the specified virtual address. See TLB maintenance registers on page 5-118 for more
information.

Usage constraints This register must operate on all unlocked Hyp-tagged TLB entries associated with the
specified virtual address, provided the the entry was created during the most recent
translation table walk.

When accessing this register using an atomic 32-bit access, only the lower word of the VA
is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to the upper
word of this register are ignored.

Configurations This register is not provided in SMMUv1

Attributes A 64-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_TLBIVALH64 bit assignments are the same as those for SMMU_TLBIVAH64.

9.6.35 SMMU_TLBIVMID, TLB Invalidate by VMID

The SMMU_TLBIVMID characteristics are:

Purpose Invalidates all Non-secure non-Hyp TLB entries having the specified VMID. See TLB
maintenance registers on page 5-118 for more information.

Reserved

63 44 43 0

Address[55:12]
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 9-205
ID091613 Non-Confidential - Beta

9 SMMU Global Register Space 0
9.6 SMMU Global Register Space 0 register descriptions
Usage constraints This register must operate on all unlocked Non-secure non-Hyp TLB entries associated with
the specified VMID. Optionally, it can apply to other individual unlocked entries in a TLB,
regardless of their tagging.

This register does not affect Secure TLB entries.

Note
 In implementations that support a VMID for Secure context banks, TLB entries created by

Secure banks are not tagged with the VMID. This register does not affect such entries. See
The Context Bank Attribute Register, SMMU_CBARn on page 2-67 for more information.

Configurations None.

Attributes A 32-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_sTLBIVMID bit assignments are:

Bits[31:8] Reserved.

VMID, bits[7:0] The Virtual Machine Identifier to use in the Invalidate operation.

9.6.36 SMMU_TLBIVMIDS1, TLB Invalidate Stage 1 by VMID

The SMMU_TLBIVMIDS1 characteristics are:

Purpose Invalidates all stage 1 Non-secure non-Hyp TLB entries having the specified VMID. See
TLB maintenance registers on page 5-118 for more information.

Usage constraints This register must operate on all unlocked stage 1 Non-secure non-Hyp TLB entries
associated with the specified VMID. Optionally, it can apply to other individual unlocked
entries in a TLB, regardless of their tagging.

This register does not affect Secure TLB entries.

In an implementation that supports stage 1 followed by stage 2 translation, this register must
invalidate any entries tagged with a valid matching VMID.

Note
 In implementations that support a VMID for Secure context banks, TLB entries created by

Secure banks are not tagged with the VMID. This register does not affect such entries. See
The Context Bank Attribute Register, SMMU_CBARn on page 2-67 for more information.

Configurations This register is not provided in SMMUv1.

Attributes A 32-bit WO register. See also Table 9-1 on page 9-150.

The SMMU_sTLBIVMID bit assignments are:

Bits[31:8] Reserved.

VMID, bits[7:0]

The Virtual Machine Identifier to use in the Invalidate operation.

31 8 7 0

Reserved VMID

31 8 7 0

Reserved VMID
9-206 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 10
SMMU Global Register Space 1

This chapter defines SMMU Global Register Space 1. It contains the following sections:
• SMMU Global Register Space 1 register summary on page 10-208.
• SMMU Global Register Space 1 register descriptions on page 10-209.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 10-207
ID091613 Non-Confidential - Beta

10 SMMU Global Register Space 1
10.1 SMMU Global Register Space 1 register summary
10.1 SMMU Global Register Space 1 register summary
SMMU Global Register Space 1 provides high-level SMMU resource control, and accommodates the number of
addresses in the global register space exceeding the capacity of a single memory page, when the page size is 4KB.
The size of this address space is defined by PAGESIZE. See PAGESIZE and NUMPAGENDXB on page 8-144.

The SMMU architecture supports 32-bit atomic access to all Global Register Space 1 registers. Whether 8-bit,
16-bit, or 64-bit atomic transactions are supported is IMPLEMENTATION DEFINED.

Table 10-1 shows the register space relative to the offset from SMMU_GR1_BASE.

Table 10-1 SMMU Global Register Space 1

Offset Name Type Description

0x00000 SMMU_CBAR0 RW SMMU_CBARn, Context Bank
Attribute Registers on page 10-209

0x00004 SMMU_CBAR1

0x00008-0x001FC SMMU_CBAR2 to
SMMU_CBAR127

0x00200-0x003FC Reserved - -

0x00400 SMMU_CBFRSYNRA0 RW SMMU_CBFRSYNRAn, Context
Bank Fault Restricted Syndrome
Register A on page 10-2160x00404 SMMU_CBFRSYNRA1

0x00408-0x005FC SMMU_CBFRSYNRA2 to
SMMU_CBFRSYNRA127

0x00600-0x007FC Reserved - -

0x00800 SMMU_CBA2R0 RW SMMU_CBA2Rn, Context Bank
Attribute Registers on page 10-214

0x00804 SMMU_CBA2R1

0x00808-0x009FC SMMU_CBA2R2 to
SMMU_CBA2R127

0x00A00-(PAGESIZE−0x4) Reserved - -
10-208 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

10 SMMU Global Register Space 1
10.2 SMMU Global Register Space 1 register descriptions
10.2 SMMU Global Register Space 1 register descriptions
This section describes all of the Global Register Space 1 registers that might be present in an SMMU
implementation. Registers are shown in register name order.

10.2.1 SMMU_CBARn, Context Bank Attribute Registers

The SMMU_CBARn characteristics are:

Purpose When SMMU_S2CRn specifies that the initial context for a transaction is a translation
context bank, then the SMMU_CBARn registers specify configuration attributes for
translation context bank n.

Usage constraints If SMMU_IDR0.NTS is 0, stage 1 followed by stage 2 translation is not supported, and
using Stage 1 followed by stage 2 translation context, TYPE==0b11 on page 10-213
generates an invalid context fault.

SMMU_IDR1.NUMS2CB specifies the IMPLEMENTATION DEFINED number of translation
context banks that only support stage 2 translation. See The translation context bank table
on page 2-64 for more information about discovering whether an implementation uses such
context banks.

In an implementation that supports two security states, Secure context banks must only use
Stage 1 context with stage 2 bypass, TYPE==0b01 on page 10-210. Using any other type
generates an invalid context fault.

If a context bank has a stalled transaction, indicated by SMMU_CBn_FSR.SS==1, when the
corresponding SMMU_CBARn register is written, an implementation might choose to retry
the stalled transaction immediately after SMMU_CBARn is updated. That is, the
implementation might exhibit behavior corresponding to
SMMU_CBn_RESUME.TnR==0.

Configurations The format of this register depends on the value of its TYPE field. See:
• SMMU_CBARn format.
• Stage 2 context, TYPE==0b00 on page 10-210.
• Stage 1 context with stage 2 bypass, TYPE==0b01 on page 10-210.
• Stage 1 context with stage 2 fault, TYPE==0b10 on page 10-212.
• Stage 1 followed by stage 2 translation context, TYPE==0b11 on page 10-213.

The number of SMMU_CBARn registers is IMPLEMENTATION DEFINED.

See also Multi-format registers and reserved fields on page 9-160.

Attributes 32-bit RW registers. See also Table 10-1 on page 10-208.

SMMU_CBARn format

The SMMU_CBARn.TYPE field indicates the translation context that this context bank provides for the
transaction. The value of this field affects the meaning of the remaining SMMU_CBARn fields. The encoding of
SMMU_CBARn.TYPE is:

0b00 Stage 2 context. The context bank provides only stage 2 translation.

0b01 Stage 1 context with stage 2 bypass. The context bank provides stage 1 translation, and stage 2
memory attribute transformation. This enables a hypervisor to modify the memory attributes that
the stage 1 translation provides.

0b10 Stage 1 context with stage 2 fault. The context bank generates an invalid context fault.

0b11 Stage 1 followed by stage 2 translation context. The context bank provides stage 1 translation
followed by stage 2 translation, and specifies an additional translation context bank for the stage 2
translation.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 10-209
ID091613 Non-Confidential - Beta

10 SMMU Global Register Space 1
10.2 SMMU Global Register Space 1 register descriptions
If stage 1 followed by stage 2 translation is not supported, that is, if SMMU_IDR0.NTS==0, then
SMMU_CBARn.TYPE=0b11 is invalid and results in an invalid context fault.

An SMMU implementation can configure the SMMU_CBARn.TYPE field to be read-only. For example, in an
implementation that supports only stage 2 translation, this could hold a read-only value of 0b00, removing any
requirement to implement storage for this field.

Stage 2 context, TYPE==0b00

The format of the bit assignments is:

IRPTNDX[7:0], bits[31:24]

Interrupt Index.

In SMMUv1, this provides the Context interrupt number to assert in the event of an interrupt raising
a fault in the associated translation context bank. SMMU_IDR0.NUMIRPT specifies the range of
values that software can configure this field in.

It is IMPLEMENTATION DEFINED whether this field is fully implemented with writable storage. See
Context interrupts on page 3-82 for more information.

In SMMUv2, each context bank has a dedicated interrupt pin, and there is therefore no requirement
for a Context interrupt number. See Context interrupts on page 3-82 for more information.

Bits[23:20] Reserved.

SBZ, bits[19:18]

Should-Be-Zero.

TYPE, bits[17:16]

Translation context type. See SMMU_CBARn format on page 10-209 for more information.

Bits[15:8] Reserved.

VMID, bits[7:0]

The Virtual Machine Identifier to be associated with the translation context bank. ARM
recommends that a Guest OS uses a single fixed VMID value of zero. See Differences between the
ARM architecture and SMMU translation schemes on page 1-26.

Stage 1 context with stage 2 bypass, TYPE==0b01

The format of the bit assignments is:

IRPTNDX[7:0], bits[31:24]

Interrupt Index. The Context interrupt number to assert in the event of an interrupt raising a fault in
the associated translation context bank. SMMU_IDR0.NUMIRPT specifies the range of values that
software can configure this field in.

It is IMPLEMENTATION DEFINED whether this field is fully implemented with writable storage. See
Context interrupts on page 3-82 for more information.

31 24 23 20 19 18 17 16 15 8 7 0

IRPTNDX[7:0] Reserved SBZ TYPE Reserved VMID

IRPTNDX[7:0]

31 24 23 20 19 18 17 16 15 12 11 10 9 8 7 0

BSU TYPE MemAttr VMID

BPSHCFG
HYPC

FB

22 21

WACFG
RACFG
10-210 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

10 SMMU Global Register Space 1
10.2 SMMU Global Register Space 1 register descriptions
In SMMUv2, each context bank has a dedicated interrupt pin, and there is therefore no requirement
for a Context interrupt number. See Context interrupts on page 3-82 for more information.

WACFG, bits[23:22]

Write-Allocate Configuration, allocation hint for write accesses. The encoding of this field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Write-Allocate.
0b11 No Write-Allocate.

RACFG, bits[21:20]

Read-Allocate Configuration, allocation hint for read accesses. The encoding of this field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Read-Allocate.
0b11 No Read-Allocate.

BSU, bits[19:18]

Barrier Shareability Upgrade.

This field upgrades the required shareability domain of barriers issued by client devices mapped to
this Stream mapping register group by setting the minimum shareability domain that is applied to
any barrier.

The encoding of this field is:
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

Upgrade of the barrier shareability domain might not be supported in all system topologies. In an
implementation that does not include this upgrade behavior, BSU is RAZ/SBZP.

TYPE, bits[17:16]

Translation context type. See SMMU_CBARn format on page 10-209 for more information.

MemAttr, bits[15:12]

Memory Attributes. See Memory attribute, MemAttr on page 9-159.

This field is combined with the shared attributes of the previous translation stage. See Table 10-2
on page 10-212.

FB, bit[11] Force Broadcast.

Force Broadcast of TLB, branch predictor and instruction cache maintenance operations.

This field affects client TLB maintenance, BPIALL and ICIALLU operations. If this field is 1, the
affected operation is modified to the equivalent broadcast variant in the Inner Shareable domain.

The possible values of this bit are:
0 Process the affected operations as presented.
1 Upgrade the affected operations to be broadcast in the Inner Shareable domain.

HYPC, bit[10] Hypervisor Context. The possible values of this bit are:
0 Non-hypervisor context. Use VMID and ASID for TLB tagging.
1 Hypervisor context. Do not use VMID and ASID for TLB tagging.

In an implementation that supports two security states, the following restrictions apply to Secure
software:

• If SMMU_SCR1.GASRAE==0, Secure software must not set HYPC to 1 for any Secure
translation context bank.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 10-211
ID091613 Non-Confidential - Beta

10 SMMU Global Register Space 1
10.2 SMMU Global Register Space 1 register descriptions
• If SMMU_SCR1.GASRAE==1, Secure software must not set HYPC to 1 for any Non-secure
translation context bank.

Otherwise, UNPREDICTABLE behavior might occur.

See Hypervisor contexts on page 2-71 for more information.

BPSHCFG, bits[9:8]

Bypass Shared Configuration. The encoding of this field is:
0b00 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b01 Outer Shareable.
0b10 Inner Shareable.
0b11 Non-shareable.

This field is combined with the shared attributes of the previous translation stage, as shown in
Table 10-2.

VMID, bits[7:0]

The Virtual Machine Identifier to be associated with the translation context bank.

If an implementation that supports two security states does not support a VMID for Secure
translation regimes, any Secure VMID field is ignored. See The Context Bank Attribute Register,
SMMU_CBARn on page 2-67 for more information.

ARM recommends that a Guest OS uses a single fixed VMID value of zero. See Differences
between the ARM architecture and SMMU translation schemes on page 1-26.

Stage 1 context with stage 2 fault, TYPE==0b10

This format configures the associated translation context bank to provide stage 1 translation, additionally specifying
the fault context instead of a stage 2 translation context. Any transaction that maps to the corresponding translation
context bank incurs an invalid context fault.

The format of the bit assignments is:

IRPTNDX[7:0], bits[31:24]

Interrupt Index. The Context interrupt number to assert in the event of an interrupt raising a fault in
the associated translation context bank. SMMU_IDR0.NUMIRPT specifies the range of values that
software can configure this field in.

Table 10-2 Shared attribute combination results

Stage 1 shareability Stage 2 shareability Resulting shareability

Outer Shareable - Outer Shareable

Inner Shareable Outer Shareable Outer Shareable

Inner Shareable Inner Shareable Inner Shareable

Inner Shareable Non-Shareable Inner Shareable

Non-Shareable Outer Shareable Outer Shareable

Non-Shareable Outer Shareable Outer Shareable

Non-Shareable Inner Shareable Inner Shareable

Non-Shareable Non-Shareable Non-Shareable

31 24 23 20 19 18 17 16 15 8 7 0

IRPTNDX[7:0] Reserved SBZ TYPE Reserved VMID
10-212 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

10 SMMU Global Register Space 1
10.2 SMMU Global Register Space 1 register descriptions
It is IMPLEMENTATION DEFINED whether this field is fully implemented with writable storage. See
Context interrupts on page 3-82 for more information.

In SMMUv2, each context bank has a dedicated interrupt pin, and there is therefore no requirement
for a Context interrupt number. See Context interrupts on page 3-82 for more information.

Bits[23:20] Reserved.

SBZ, bits[19:18]

Should-Be-Zero.

TYPE, bits[17:16]

Translation context type. See SMMU_CBARn format on page 10-209 for more information.

Bits[15:8] Reserved.

VMID, bits[7:0]

The Virtual Machine Identifier to be associated with the translation context bank.

ARM recommends that a Guest OS uses a single fixed VMID value of zero. See Differences
between the ARM architecture and SMMU translation schemes on page 1-26.

Stage 1 followed by stage 2 translation context, TYPE==0b11

This format configures the associated translation context bank to provide stage 1 translation, and specifies an
additional translation context bank as the stage 2 translation context bank in a stage 1 followed by stage 2
translation.

The format of the bit assignments is:

IRPTNDX[7:0], bits[31:24]

Interrupt Index. The Context interrupt number to assert in the event of an interrupt raising a fault in
the associated translation context bank. SMMU_IDR0.NUMIRPT specifies the range of values that
software must configure this field in.

It is IMPLEMENTATION DEFINED whether this field is fully implemented with writable storage. See
Context interrupts on page 3-82 for more information.

In SMMUv2, each context bank has a dedicated interrupt pin, and there is therefore no requirement
for a Context interrupt number. See Context interrupts on page 3-82 for more information.

Bits[23:20] Reserved.

SBZ, bits[19:18] Should-Be-Zero.

TYPE, bits[17:16]

Translation context type. See SMMU_CBARn format on page 10-209 for more information.

CBNDX, bits[15:8]

Context Bank Index. The translation context bank index used for the stage 2 translation context bank
in a stage 1 followed by stage 2 translation.

Behavior is UNPREDICTABLE if the SMMU_CBARn register associated with the translation context
specified by SMMU_CBARn.CBNDX has any value other than 0b00 to specify a stage 2 translation
context bank.

31 24 23 20 19 18 17 16 15 8 7 0

IRPTNDX[7:0] Reserved SBZ TYPE CBNDX VMID
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 10-213
ID091613 Non-Confidential - Beta

10 SMMU Global Register Space 1
10.2 SMMU Global Register Space 1 register descriptions
It is IMPLEMENTATION DEFINED whether this field is fully implemented with writable storage. A
portion of this field is permitted to behave as RAZ/WI, because the implementation might not
support a sufficient number of translation context banks for some of the upper bits of
SMMU_CBARn.CBNDX to be relevant. The implemented range of this field is the same for all
SMMU_CBARn registers in an implementation.

VMID, bits[7:0]

The Virtual Machine Identifier to be associated with the translation context bank.

ARM recommends that a Guest OS uses a single fixed VMID value of zero. See Differences
between the ARM architecture and SMMU translation schemes on page 1-26.

10.2.2 SMMU_CBA2Rn, Context Bank Attribute Registers

The SMMU_CBA2Rn characteristics are:

Purpose Extends the configuration attributes for the translation context bank that SMMU_CBARn
specifies. This register provides support for configuring a context bank to use the AArch64
translation scheme, and as Monitor context.

Usage constraints This register is used when a translation context bank provides stage 2 translation only, that
is, when the value of the SMMU_CBARn.TYPE field is 0b00.

SMMU_IDR1.NUMS2CB specifies the IMPLEMENTATION DEFINED number of translation
context banks that only support stage 2 translation. See The translation context bank table
on page 2-64 for more information about discovering whether an implementation uses such
context banks.

If a context bank has a stalled transaction, indicated by SMMU_CBn_FSR.SS==1, when the
corresponding SMMU_CBA2Rn register is written, an implementation might choose to
retry the stalled transaction immediately after SMMU_CBA2Rn is updated. That is, the
implementation might exhibit behavior corresponding to
SMMU_CBn_RESUME.TnR==0.

Configurations The number of SMMU_CBA2Rn registers is IMPLEMENTATION DEFINED.

Attributes 32-bit RW registers. See also Table 10-1 on page 10-208.

The SMMU_CBA2Rn bit assignments are:

Bits[31:2] Reserved.

MONC, bit[1]

Monitor context bank. The possible values of this bit are:
0 Non-monitor context. Use VMID or ASID for TLB tagging.
1 Monitor context. Do not use VMID or ASID for TLB tagging.

This bit is ignored when any of the following conditions exist:
• SMMU_CBA2Rn.VA64 == 0.
• SMMU_CBARn.TYPE != 0b01.
• The bank is Non-secure.

In implementations that do not support two security states, this bit is RAZ/WI.

31 0

Reserved

1

MONC
VA64

2

10-214 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

10 SMMU Global Register Space 1
10.2 SMMU Global Register Space 1 register descriptions
VA64, bit[0]

Descriptor format. The possible values of this bit are:

0 32-bit. The AArch32 Long-descriptor or the AArch32 Short-descriptor translation
scheme is permitted.

1 64-bit. Only AArch64 translation scheme is permitted.

The SMMU_CBn_TCR.EAE bit selects the format of the 32-bit context bank. This bit is ignored
for 32-bit HYPC banks.

Support is provided for stage 2 translation context banks using only the AArch32 Long-descriptor
translation scheme.

Note
 This bit must reset to 0. It must also become 0 if the security state of the context bank changes.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 10-215
ID091613 Non-Confidential - Beta

10 SMMU Global Register Space 1
10.2 SMMU Global Register Space 1 register descriptions
10.2.3 SMMU_CBFRSYNRAn, Context Bank Fault Restricted Syndrome Register A

The SMMU_CBFRSYNRAn characteristics are:

Purpose Gives fault syndrome information about the access that caused an exception in the
associated translation context bank.

Usage constraints The value of this register is UNKNOWN if the recorded fault was an address translation fault,
that is, if the SMMU_CBn_FSYNR0.ATOF bit is set to 1.

Configurations The number of SMMU_CBFRSYNRA registers is IMPLEMENTATION DEFINED. See also
SMMU_IDR1.NUMCB.

For more information about SMMU_CBFRSYNRAn. See Context Bank Fault Restricted
Syndrome Register, SMMU_CBFRSYNRAn on page 3-87.

Attributes 32-bit RW registers. See also Table 10-1 on page 10-208.

The SMMU_CBFRSYNRAn bit assignments are:

SSD_Index, bits[31:16]

The SSD_Index of the transaction that caused the fault.

The number of SSD_Index bits is IMPLEMENTATION DEFINED. Unimplemented bits behave as
RAZ/WI.

This field is only accessible to configuration accesses by Secure software. Non-secure configuration
accesses treat this field as RAZ/WI.

Note
 When SMMU_SSDR registers are not provided in the SMMU address space, the SSD_Index field

is UNKNOWN. See TLB operation on page 2-41 for more information about the SMMU_SSDR
registers.

SMMUv1 does not support 16-bit StreamIDs, and bit[31] is reserved.

StreamID, bits[15:0]

The StreamID of the transaction that caused the fault.

The number of StreamID bits is IMPLEMENTATION DEFINED. Unimplemented bits behave as
RAZ/WI.

SMMUv1 does not support 16-bit StreamIDs, and bit[15] is reserved.

31 16 15 0

SSD_Indexa StreamIDb

b. In SMMUv1, bit[15] is reserved and bits[14:0] are StreamID.
a. In SMMUv1, bit[31] is reserved and bits[30:16] are SSD_Index.
10-216 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 11
SMMU IMPLEMENTATION DEFINED Address Space

This chapter specifies the SMMU IMPLEMENTATION DEFINED address space. It contains the following section:

• About the SMMU implementation defined address space on page 11-218.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 11-217
ID091613 Non-Confidential - Beta

11 SMMU implementation defined Address Space
11.1 About the SMMU implementation defined address space
11.1 About the SMMU IMPLEMENTATION DEFINED address space
The SMMU IMPLEMENTATION DEFINED address space is reserved for IMPLEMENTATION DEFINED purposes.

The size of this address space is defined by PAGESIZE. See PAGESIZE and NUMPAGENDXB on page 8-144.

The content of this address space is relative to the offset from address SMMU_GID_BASE, as Table 11-1 shows.

Table 11-1 SMMU IMPLEMENTATION DEFINED address space

Offset Name Description

0x00000-(PAGESIZE − 0x4) IMPLEMENTATION DEFINED Reserved for IMPLEMENTATION DEFINED purposes
11-218 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 12
SMMU Performance Monitors Extension Register
Map

This chapter describes the recommended memory-mapped and external debug interface to the Performance
Monitors Extension. It contains the following sections:
• SMMU Performance Monitors Extension register summary on page 12-220.
• SMMU Performance Monitors Extension register descriptions on page 12-222.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 12-219
ID091613 Non-Confidential - Beta

12 SMMU Performance Monitors Extension Register Map
12.1 SMMU Performance Monitors Extension register summary
12.1 SMMU Performance Monitors Extension register summary
A memory-mapped interface is available for software running on any processor in the system to access counters in
the Performance Monitors Extension. Table 12-1 shows a list of the memory-mapped registers for the Performance
Monitors Extension.

Table 12-1 SMMU Performance Monitors Extension register map

Offset Name Type Description

0x00000+m PMEVCNTRn RW PMEVCNTRn, Performance Monitors Event Count Registers on
page 12-231. m is 4 times the event counter number.

(0x00000+m)-0x003FC - - Reserved. m is 4 times the number of event counters.

0x00400+m PMEVTYPERn RW PMEVTYPERn, Performance Monitors Event Type Registers on
page 12-231. m is 4 times the event counter number.

(0x00400+m)-0x007FC - - Reserved. m is 4 times the number of event counters.

0x00800+m PMCGCRn RWa PMCGCRn, Performance Monitors Counter Group Configuration
Registers on page 12-227. m is 4 times the Counter group number.

(0x00800+m)-0x009FC - - Reserved. m is 4 times the number of Counter groups.

0x00A00+m PMCGSMRn RW PMCGSMRn, Performance Monitors Counter Group Stream Match
Registers on page 12-228. m is 4 times the Counter group number.

(0x00A00+m) -0x00BFC - - Reserved. m is 4 times the number of Counter groups.

0x00C00-0x00C1C PMCNTENSETx RW PMCNTENSETx, Performance Monitors Count Enable Set registers
on page 12-229.

0x00C20-0x00C3C PMCNTENCLRx RW PMCNTENCLRx, Performance Monitors Counter Enable Clear
registers on page 12-228.

0x00C40-0x00C5C PMINTENSETx RW PMINTENSETx, Performance Monitors Interrupt Enable Set
registers on page 12-233.

0x00C60-0x00C7C PMINTENCLRx RW PMINTENCLRx, Performance Monitors Interrupt Enable Clear
registers on page 12-232.

0x00C80-0x00C9C PMOVSCLRx RW PMOVSCLRx, Performance Monitors Overflow Status Clear
registers on page 12-234.

0x00CA0-0x00CBC - - Reserved.

0x00CC0-0x00CDC PMOVSSETx RW PMOVSSETx, Performance Monitors Overflow Status Set registers
on page 12-234.

0x00CE0-0x00D7C - - Reserved.

0x00D80-0x00DFC - - IMPLEMENTATION DEFINED.

0x00E00 PMCFGR ROa PMCFGR, Performance Monitors Configuration Register on
page 12-226.

0x00E04 PMCR RW PMCR, Performance Monitors Control Register on page 12-230.

0x00E08 - - Reserved.

0x00E0C-0x00E1C - - Reserved.
12-220 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

12 SMMU Performance Monitors Extension Register Map
12.1 SMMU Performance Monitors Extension register summary
0x00E20 PMCEID0 RO PMCEID0, Performance Monitors Common Event Identifier 0
register on page 12-225, PMCEID1, Performance Monitors Common
Event Identifier 1 register on page 12-226.0x00E24 PMCEID1

0x00E28-0x00E7C - - Reserved.

0x00E80-0x00EFC IMPLEMENTATION
DEFINED

- -

0x00F00 - - Reserved for integration mode control register.

0x00F04-0x00FB4 - - Reserved.

0x00FB8 PMAUTHSTATUS RO PMAUTHSTATUS, Performance Monitors Authentication Status
register on page 12-223.

0x00FBC-0x00FC8 - - Reserved.

0x00FCC PMDEVTYPE RO PMDEVTYPE, Performance Monitors Device Type Register on
page 12-231.

0x00FD0-0x00FFC PMPIDy, PMCIDz RO Performance Monitors Peripheral Identification and Component
Identification Registers.

0x01000-
(PAGESIZE–0x4)

Reserved - -

a. See individual field descriptions for variations.

Table 12-1 SMMU Performance Monitors Extension register map (continued)

Offset Name Type Description
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 12-221
ID091613 Non-Confidential - Beta

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
12.2 SMMU Performance Monitors Extension register descriptions
This section describes the SMMU Performance Monitors Extension registers that might be present in an SMMU
implementation. Registers are shown in register name order.

The following applies to some of the registers described in this section:

• PMCFGR.N indicates the number of event counters, where:
— Counters are numbered continuously from 0 to PMCFGR.N.
— The number of implemented instances of the specified register is (PMCFGR.N DIV 32) +1.

• For performance monitor counter i, use:
— Register x, where x = i DIV 32.
— Register bit j, where j = i MOD 32.

For register x, j takes values from 0 to (m-1), where m is defined by the following pseudocode:
if (x == PMCFGR.N DIV 32) then

m = (PMCFGR.N MOD 32) + 1;
else if (x ≥ PMCFGR.N DIV 32) then

m = 0; // the register is RAZ/WI
else

x = 32; // all bits are RW.

The affected registers are:
• PMCNTENSETx.
• PMCNTENCLRx.
• PMINTENSETx.
• PMINTENCLRx.
• PMOVSCLRx.
• PMOVSSETx.
12-222 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
12.2.1 PMAUTHSTATUS, Performance Monitors Authentication Status register

The PMAUTHSTATUS characteristics are:

Purpose Indicates the implemented debug features and provides the current values of the
configuration inputs that determine the debug permissions.

Usage constraints There are no usage constraints.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RO register.

In an implementation that supports two security states, the PMAUTHSTATUS bit assignments are:

Bits[31:8] Reserved.

SNI, bit[7] Secure non-invasive debug features implemented. This bit is RAO, Secure non-invasive debug
features are implemented.

SNE, bit[6] Secure non-invasive debug enabled. This bit indicates whether counting of Secure transactions is
permitted. For the recommended external debug interface, this bit is the logical result of
(DBGEN OR NIDEN) AND (SPIDEN OR SPNIDEN).

SI, bit[5] Secure invasive debug features implemented. This bit is RAZ, Secure invasive debug features are
not implemented.

SE, bit[4] Secure invasive debug enabled. This bit is RAZ.

NSNI, bit[3] Non-secure non-invasive debug features implemented. This bit is RAO, Non-secure non-invasive
debug features are implemented.

NSNE, bit[2] Non-secure non-invasive debug enabled. For the recommended external debug interface, this bit
indicates the logical result of DBGEN OR NIDEN.

NSI, bit[1] Non-secure invasive debug features implemented. This bit is RAZ, Non-secure invasive debug
features are not implemented.

NSE, bit[0] Non-secure invasive debug enabled. This bit is RAZ.

See About the SMMU Performance Monitors Extension on page 6-126 for more information.

Reserved

31 8 7 6 5 4 3 2 1 0

1 0 1 0

SNI
SNE

SI
SE

NSNI
NSNE

NSI
NSE

0 0
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 12-223
ID091613 Non-Confidential - Beta

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
In an implementation that does not support two security states, the PMAUTHSTATUS bit assignments are:

Bits[31:8] Reserved.

SNI, bit[7] Secure non-invasive debug features implemented. This bit is RAO, Secure non-invasive debug
features are implemented.

SNE, bit[6] Secure non-invasive debug enabled. This bit indicates whether non-invasive debug is permitted in
Secure PL1 modes. For the recommended external debug interface, this bit is the logical result of
DBGEN OR NIDEN.

SI, bit[5] Secure invasive debug features implemented. This bit is RAZ, Secure invasive debug features are
not implemented.

SE, bit[4] Secure invasive debug enabled. This bit is RAZ. It indicates whether invasive halting debug is
permitted in Secure PL1 modes.

NSNI, bit[3] Non-secure non-invasive debug features implemented. This bit is RAZ, Non-secure non-invasive
debug features are not implemented.

NSNE, bit[2] Non-secure non-invasive debug enabled. This bit is RAZ, Non-secure non-invasive debug is not
enabled.

NSI, bit[1] Non-secure invasive debug features implemented. This bit is RAZ, Non-secure invasive debug
features are not implemented.

NSE, bit[0] Non-secure invasive debug enabled. This bit is RAZ, Non-secure invasive debug is not enabled.

0 0Reserved

31 8 7 6 5 4 3 2 1 0

1 0 0 0 0

SNI
SNE

SI
SE

NSNI
NSNE

NSI
NSE
12-224 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
12.2.2 PMCEID0, Performance Monitors Common Event Identifier 0 register

The PMCEID0 register characteristics are:

Purpose Describes the event classes supported by the SMMU implementation.

Usage constraints There are no usage constraints.

Configurations See About the SMMU Performance Monitors Extension on page 6-126 for information
about when this register is configured.

Attributes A 32-bit RO register.

The PMCEID0 bit assignments are:

Bits[31:19] Reserved.

Event 0x12, bit[18]

The possible values of this bit are:
0 Access write event not implemented.
1 Access write event implemented.

Event 0x11, bit[17]

The possible values of this bit are:
0 Access read event not implemented.
1 Access read event implemented.

Event 0x10, bit[16]

The possible values of this bit are:
0 Access event not implemented.
1 Access event implemented.

Bits[15:11] Reserved.

Event 0x0A, bit[10]

The possible values of this bit are:
0 TLB refill write event not implemented.
1 TLB refill write event implemented.

Event 0x09, bit[9]

The possible values of this bit are:
0 TLB refill read event not implemented.
1 TLB refill read event implemented.

Event 0x08, bit[8]

The possible values of this bit are:
0 TLB refill event not implemented.
1 TLB refill event implemented.

Bits[7:2] Reserved.

Reserved

31 19 18 17 16 15 11 10 9 8 7 2 1 0

Reserved Reserved

Event 0x12
Event 0x11
Event 0x10

Event 0x0A
Event 0x09
Event 0x08

Event 0x01
Event 0x00
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 12-225
ID091613 Non-Confidential - Beta

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
Event 0x01, bit[1]

The possible values of this bit are:
0 Cycle count divided by 64 event not implemented.
1 Cycle count divided by 64 event implemented.

Event 0x00, bit[0]

The possible values of this bit are:
0 Cycle count event not implemented.
1 Cycle count event implemented.

12.2.3 PMCEID1, Performance Monitors Common Event Identifier 1 register

Whether an SMMU supports the Performance Monitors Extension is IMPLEMENTATION DEFINED:

• If this extension is supported, all of the bits in this 32-bit read-only register are reserved and are UNK.

• If this extension is not supported, the register map corresponding to the Performance Monitors registers is
UNK/SBZP.

12.2.4 PMCFGR, Performance Monitors Configuration Register

The PMCFGR characteristics are:

Purpose Provides Performance Monitoring Unit (PMU) configuration data.

Usage constraints There are no usage constraints.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RO register.

The PMCFGR bit assignments are:

NCG, bit[31:24] Number of Counter Groups.

The number of Counter groups implemented is calculated as NCG+1. For example, if NCG==0x00,
there is one implemented Counter group.

Bits[23:20] Reserved.

UEN, bit[19] Unprivileged-mode Enable, reads as the value 0 indicating that this feature is not supported.

Bits[18:17] Reserved.

EX, bit[16] Event export. The possible values of this bit are:
0 Event export is not supported. PMCR.X is RAZ/WI.
1 Event export is supported. PMCR.X is writable.

CCD, bit[15] Cycle Counter pre-scale, reads as the value 0 indicating that there is no cycle counter pre-scale.

CC, bit[14] Cycle Counter, reads as the value 0 indicating that a dedicated cycle counter is not implemented.

SIZE, bits[13:8]

Counter size, reads as the value 0b011111 indicating 32-bit event counters.

NCG

31 24 23 20 19 18 17 16 15 14 13 8 7 0

Reserved (0) (0) (0) SIZE N

EX CC
Reserved CCD

UEN
12-226 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
N, bits[7:0] Indicates the number of implemented event counters, up to a maximum of 256 counters. The number
of counters implemented is N+1.

Note
 In the processor PMU, the number of counters implemented is N. This is because the CPU PMU

implements an extra counter, PMCCNTR, that is not defined in the SMMU architecture.

12.2.5 PMCGCRn, Performance Monitors Counter Group Configuration Registers

The PMCGCRn characteristics are:

Purpose Controls Counter group behavior.

Usage constraints There are no usage constraints.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMCGCRn bit assignments are:

Bits[31:28] Reserved.

CGNC, bits[27:24]

Counter Group Number of Counters, is the number of counters in this Counter group, in the range
1-15, so that a value of 0b0001 == 1 counter.

This field is RO/WI.

Bit[23] Reserved.

SIDG, bits[22:16]

StreamID Group, indicates the StreamID group that this Counter group is affiliated with.

This field is RO/WI.

Bits[15:13] Reserved.

X, bit[12] Export, corresponds to the Performance Monitors Event Export field, SMMU_CBn_PMCR.X, for
this Counter group.

E, bit[11] Count Enable, corresponds to the Performance Monitors Count Enable field,
SMMU_CBn_PMCR.E, for this Counter group.

CBAEN, bit[10]

Context Bank Assignment Enable.

The possible values of this bit are:

0 Do not reveal Counter group n in the translation context bank specified by
PMCGCRn.NDX.

1 Reveal Counter group n in the translation context bank specified by PMCGCRn.NDX.

If PMCGCRn.CBAEN==1 and PMCGCRn.TCEFCFG != (0b10 or 0b01), behavior is
UNPREDICTABLE.

E
CBAEN

NDXReserved

31 28 27 24 23 22 16 15 12 11 10 9 8 7 0

CGNC SIDG

TCEFCFGReserved

13

Reserved
X

ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 12-227
ID091613 Non-Confidential - Beta

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
TCEFCFG, bits[9:8]

Translation Context Event Filtering Configuration.

The possible values of this bit are:

0b00 Count events on a global basis.

0b01 Counter events are restricted to matches in the corresponding PMCGSMRn register.

0b10 Counter events are restricted to the translation context bank indicated by
PMCGCRn.NDX.

0b11 Reserved.

NDX, bits[7:0] Index, only relevant when PMCGCRn.CBAEN==0b1 or PMCGCRn.TCEFCFG==0b10.
Otherwise, PMCGCRn.NDX is SBZ.

12.2.6 PMCGSMRn, Performance Monitors Counter Group Stream Match Registers

The PMCGSMRn characteristics are:

Purpose Specifies StreamID filtering of the events counted in a Counter group.

For information about enabling StreamID event filtering, see the corresponding
PMCGCRn.TCEFCFG field.

Usage constraints There are no usage constraints.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMCGSMRn bit assignments are:

Bit[31] Reserved.

MASK, bits[30:16]

if MASK[i] == 1, ID[i] is ignored and SBZ.

if MASK[i] == 0, ID[i] is valid for matching.

The number of MASK bits actually present is IMPLEMENTATION DEFINED. Unimplemented bits are
RAZ/WI.

Bit[15] Reserved.

ID, bits[14:0] The StreamID to match.

The number of ID bits actually present is IMPLEMENTATION DEFINED. Unimplemented bits are
RAZ/WI.

12.2.7 PMCNTENCLRx, Performance Monitors Counter Enable Clear registers

The PMCNTENCLRx registers characteristics are:

Purpose Disables any implemented event counter, PMNi, for i in the range (x × 32) to (x × 32) + 31.

Reading this register indicates the counters that are enabled.

Usage constraints Used in conjunction with PMCNTENSETx.

Configurations Implemented only as part of the Performance Monitors Extension.

Reserved

31 30 16 15 14 0

MASK ID

Reserved
12-228 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMCNTENCLRx register bit assignments are:

Note
 See SMMU Performance Monitors Extension register descriptions on page 12-222 for the definitions of m, x and j.

Bits[31:m] RAZ/WI.

Pi, bit[j], for j = 0 to (m–1)

Event counter i disable bit, where i = (x × 32) + j.

Table B4-3 shows the behavior of this bit on reads and writes.

Note
 PMCR.E can override the settings in this register and disable all counters. PMCNTENCLRx retains its value when
PMCR.E is 0, even though its settings are ignored.

12.2.8 PMCNTENSETx, Performance Monitors Count Enable Set registers

The PMCNTENSETx registers characteristics are:

Purpose Enables any implemented event counters, PMNi, for i in the range (x × 32) to (x × 32) + 31.

Reading a PMCNTENSETx register indicates the counters that are enabled.

Usage constraints Use in conjunction with PMCNTENCLRx.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMCNTENSETx register bit assignments are:

Note
 See SMMU Performance Monitors Extension register descriptions on page 12-222 for the definitions of m, x and j.

Bits[31:m] RAZ/WI.

Pi, bit[j], for j = 0 to (m–1)

Event counter i enable bit, where i = (x × 32) + j.

Table 12-2 Read and write values for the PMCNTENCLRx.Pi bits

Px value Meaning on read Action on write

0 PMNi event counter disabled. No action, write is ignored.

1 PMNi event counter enabled. Disable the PMNi event counter.

31 m m-1 0

RAZ/WI Event counter disable for event counter i, i = (x * 32) + j

31 m m-1 0

RAZ/WI Event counter enable bits, Pi, for event counter i, i = (x * 32) + j
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 12-229
ID091613 Non-Confidential - Beta

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
Table B4-5 shows the behavior of this bit on reads and writes.

12.2.9 PMCR, Performance Monitors Control Register

The PMCR characteristics are:

Purpose PMCR provides controls for the Performance Monitors.

Usage constraints There are no usage constraints.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMCR bit assignments are:

IMP, bits[31:24] Implementor code that is either:
• Allocated by ARM.
• The value 0.

This RO field is IMPLEMENTATION DEFINED.

Bits[23:5] Reserved.

X, bit[4] Export enable. The possible values of this bit are:
0 Export of events is disabled.
1 Export of events is enabled.

See SMMU_CBn_PMCR banking on page 6-132 for more information.

Bits[3:2] Reserved.

P, bit[1] Event counter reset. This bit is WO. The effects of writing to this bit are:
0 No action.
1 Reset all event counters to zero.

See SMMU_CBn_PMCR banking on page 6-132 for more information.

E, bit[0] Enable. The possible values of this bit are:
0 All counters, including PMCCNTR, are disabled.
1 All counters are enabled.

Overflow interrupts are only enabled if the event counters are enabled.

See SMMU_CBn_PMCR banking on page 6-132 for more information.

Table 12-3 Read and write values for the PMCNTENSETx.Pi bits

Px value Meaning on read Action on write

0 PMNi event counter disabled. No action, write is ignored.

1 PMNi event counter enabled. Enable the PMNi event counter.

EIMP

31 24 23 5 4 3 2 1 0

Reserved X P

Reserved
12-230 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
12.2.10 PMDEVTYPE, Performance Monitors Device Type Register

The PMDEVTYPE characteristics are:

Purpose Provides the CoreSight device type information for the Performance Monitors, and
indicates the type of debug component.

Usage constraints There are no usage constraints.

Configurations Must be implemented in all CoreSight components.

Attributes A 32-bit RO register.

The PMDEVTYPE bit assignments are:

Bits[31:0] Reserved.

T, bits[7:4] Sub-type, a fixed value of 0x5, indicating association with a memory management unit conforming
to the ARM SMMU architecture.

C, bits[3:0] Class, a fixed value of 0x6, indicating a Performance Monitor device type.

12.2.11 PMEVCNTRn, Performance Monitors Event Count Registers

The PMEVCNTRn characteristics are:

Purpose Reads or writes the value of the selected event counter, PMNn.

Usage constraints There are no usage constraints.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMEVCNTRn bit assignments are:

PMNx, bits[31:0] The value of the selected event counter, PMNn.

Note
 PMEVCNTRn can be written to by software even when the counter is disabled. This is true regardless of whether
the counter is disabled because either:
• A 1 has been written to the appropriate bit in PMCNTENCLRx.
• PMCR.E is 0.

12.2.12 PMEVTYPERn, Performance Monitors Event Type Registers

The PMEVTYPERn characteristics are:

Purpose Controls which events are counted by the corresponding event counter.

Usage constraints There are no usage constraints.

Configurations Implemented only as part of the Performance Monitors Extension.

C

31 8 7 4 3 0

Reserved T

PMNn

31 0
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 12-231
ID091613 Non-Confidential - Beta

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMEVTYPERn bit assignments are:

P, bit[31] Privileged transactions filtering bit. Controls the counting of Secure privileged transactions.

The possible values of this bit are:
0 Count events relating to Secure privileged transactions.
1 Do not count events relating to Secure privileged transactions.

U, bit[30] Unprivileged transactions filtering bit. Controls the counting of Secure unprivileged transactions.

The possible values of this bit are:
0 Count events relating to Secure unprivileged transactions.
1 Do not count events relating to Secure unprivileged transactions.

NSP, bit[29] Non-secure Privileged transactions filtering bit. Controls the counting of Non-secure privileged
transactions.

The behavior depends on the combined values of the P and NSP bits. The possible values of this bit
are:
P==NSP Count events relating to Non-secure privileged transactions.
P!=NSP Do not count events relating to Non-secure privileged transactions.

NSU, bit[28] Non-secure unprivileged transactions filtering bit. Controls counting of Non-secure unprivileged
transactions.

The behavior depends on the combined values of the U and NSU bits. The possible values of this
bit are:
U==NSU Count events relating to Non-secure unprivileged transactions.
U!=NSU Do not count events relating to Non-secure unprivileged transactions.

Bits[27:8] Reserved.

EVENT, bits[7:0]

Event type. See Event classes on page 6-128.

12.2.13 PMINTENCLRx, Performance Monitors Interrupt Enable Clear registers

The PMINTENCLRx registers characteristics are:

Purpose Disables the generation of interrupt requests on overflows from each implemented event
counter, PMNi, for i in the range (x × 32) to (x × 32) + 31.

Reading the register indicates the overflow interrupt requests that are enabled.

Usage constraints Used in conjunction with the PMINTENSETx register.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMINTENCLRx register bit assignments are:

NSP
NSU

EVENTP

31 30 29 28 27 8 7 0

U Reserved

31 m m-1 0

RAZ/WI Event counter overflow interrupt request disable bits, Pi, i = (x * 32) + j
12-232 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
Note
 See SMMU Performance Monitors Extension register descriptions on page 12-222 for the definitions of m, x and j.

Bits[31:m] RAZ/WI.

Pi, bit[j], for j = 0 to (m–1)

Event counter i, overflow interrupt request disable bit, where i = (x × 32) + j.

Table B4-7 shows the behavior of this bit on reads and writes.

12.2.14 PMINTENSETx, Performance Monitors Interrupt Enable Set registers

The PMINTENSETx registers characteristics are:

Purpose Enables the generation of interrupt requests on overflows from each implemented event
counter, PMNi, for i in the range (x × 32) to (x × 32) + 31.

Reading PMINTENSETx indicates the overflow interrupt requests that are enabled.

Usage constraints Used in conjunction with PMINTENCLRx.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMINTENSETx register bit assignments are:

Note
 See SMMU Performance Monitors Extension register descriptions on page 12-222 for the definitions of m, x and j.

Bits[31:m] RAZ/WI.

Pi, bit[j], for j = 0 to (m–1)

Event counter i, overflow interrupt request enable bit, where i = (x × 32) + j.

Table B4-9 shows the behavior of this bit on reads and writes.

When an interrupt is signaled, software can remove it by writing a 1 to the corresponding overflow bit in
PMOVSCLRx.

Table 12-4 Read and write values for the PMINTENCLRx.Pi bits

Pi value Meaning on read Action on write

0 PMNi interrupt request disabled. No action, write is ignored.

1 PMNi interrupt request enabled. Disable the PMNi interrupt request.

Table 12-5 Read and write values for the PMINTENSETx.Pi bits

Pi value Meaning on read Action on write

0 PMNi interrupt request disabled. No action, write is ignored.

1 PMNi interrupt request enabled. Enable the PMNi interrupt request.

31 m m-1 0

RAZ/WI Event counter overflow interrupt enable request bits, Pi, i = (x * 32) + j
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 12-233
ID091613 Non-Confidential - Beta

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
Note
 ARM expects that the interrupt request that can be generated on a counter overflow is exported from the processor,
meaning it can be factored into a system interrupt controller if applicable. This means that normally the system has
more levels of control of the interrupt generated.

12.2.15 PMOVSCLRx, Performance Monitors Overflow Status Clear registers

The PMOVSCLRx registers characteristics are:

Purpose Clears the state of the overflow bit for each implemented event counter, PMNi, for i in the
range (x × 32) to (x × 32) + 31.

Reading the register shows the current overflow status.

Usage constraints There are no usage constraints.

Configurations Implemented only as part of the Performance Monitors Extension.

Attributes A 32-bit RW register with an UNKNOWN reset value.

The PMOVSCLRx bit assignments are:

Note
 See SMMU Performance Monitors Extension register descriptions on page 12-222 for the definitions of m, x and j.

Bits[31:m] RAZ/WI.

Pi, bit[j], for j = 0 to (m–1)

Event counter i, overflow status clear bit, where i = (x × 32) + j.

Table B4-7 shows the behavior of this bit on reads and writes.

12.2.16 PMOVSSETx, Performance Monitors Overflow Status Set registers

The PMOVSSETx registers characteristics are:

Purpose Sets the state of the overflow bit for each of the implemented event counters, PMNi, for i in
the range (x × 32) to (x × 32) + 31.

Reading the register shows the current overflow status.

Usage constraints Implemented only as part of the Performance Monitors Extension.

Configurations See About the SMMU Performance Monitors Extension on page 6-126 for information
about when this register is configured.

Attributes A 32-bit RW register with an UNKNOWN reset value.

Table 12-6 Read and write values for the PMOVSCLRx.Pi bits

Pi value Meaning on read Action on write

0 Counter PMNi has not overflowed. No action, write is ignored.

1 Counter PMNi has overflowed. Set bit to 0.

31 m m-1 0

Reserved Overflow status clear for event counter Pi, i = (x * 32) + j
12-234 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
The PMOVSSETx bit assignments are:

Note
 See SMMU Performance Monitors Extension register descriptions on page 12-222 for the definitions of m, x and j.

Bits[31:m] RAZ/WI.

Pi, bit[j], for j = 0 to (m–1)

Event counter i, overflow status set bit, where i = (x × 32) + j.

Table B4-7 shows the behavior of this bit on reads and writes.

12.2.17 PMPIDy, PMCIDz, Performance Monitors Peripheral ID and Component ID registers

The Peripheral ID and Component ID registers, PMPID0-PMPID7 and PMCID0-PMCID3, are RO registers that
provide standard CoreSight peripheral and component identification. For details, see the definitions of DBGPIDn
and DBGCIDn in the ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

Note
 The part number defined by PMPID1[3:0] and PMPID0[7:0] must be a different part number to that defined by
DBGPID1[3:0] and DBGPID0[7:0].

Table 12-7 Read and write values for the PMINTENCLRx.Pi bits

Pi value Meaning on read Action on write

0 Counter PMNi has not overflowed. No action, write is ignored.

1 Counter PMNi has overflowed. Set bit to 1.

31 m m-1 0

Reserved Overflow status set for event counter Pi, i = (x * 32) + j
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 12-235
ID091613 Non-Confidential - Beta

12 SMMU Performance Monitors Extension Register Map
12.2 SMMU Performance Monitors Extension register descriptions
12-236 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 13
The Security State Determination Address Space

This chapter gives an overview of the SSD address space. It contains the following section:

• SMMU SSD address space on page 13-238.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 13-237
ID091613 Non-Confidential - Beta

13 The Security State Determination Address Space
13.1 SMMU SSD address space
13.1 SMMU SSD address space
The SSD address space can indicate whether each SSD_Index is acting for the Secure domain or the Non-secure
domain. This address space is only accessible to Secure memory transactions. In SMMUv1, a single page is reserved
for the SSD address space, and SMMUv2 contains an additional page.

The address space might not be fully populated, depending on the implemented PAGESIZE and the SSD_Index
width. The SSD_Index width can be read from SMMU_IDR1.NUMSSDNDXB:

• In SMMUv1, the SSD_Index width is SMMU_IDR1.NUMSSDNDXB.

• In SMMUv2, when SMMU_IDR1.SSDTP==0b11 the SSD_Index is 16 bits wide, otherwise it is
SMMU_IDR1.NUMSSDNDXB bits wide

Unimplemented SSD_Index bits behave as though they are zero. SSD register bits corresponding to values above
the implemented SSD_Index size behave as UNK/WI.

One bit is provided for each SSD_Index value. An SMMU implementation supports an SSD_Index of up to:
• 15 bits in size for SMMUv1, meaning that 4KB of storage is required, occupying a complete page.
• 16 bits in size for SMMUv2, meaning that 8KB of storage is required, and:

— If PAGESIZE is 4KB SMMU_SSDRn occupies two pages.
— If PAGESIZE is 64KB, all SMMU_SSDRn fit in a single page and the remainder of the two pages are

reserved.

Note
 The calculation of the offset of a given SMMU_SSDRn from the start of the SSD address space is independent of
the implemented PAGESIZE.

SSD bits can have fixed values that correspond to SSD_Index values having fixed Secure or Non-secure ownership.
Software can detect programmable bits by using a read-modify-write sequence.

Whether the SSD registers are implemented is IMPLEMENTATION DEFINED. An SMMU implementation and the
system it is integrated in can use alternative means to resolve the Secure status of transactions.
SMMU_IDR1.SSDTP indicates the presence of the SSD table. In an implementation where the registers are not
present, this address space behaves as UNK/WI.

The SSD address space layout is shown in terms of offsets from SMMU_GSSD_BASE. See Table 13-1.

If the SSD register space is implemented, the behavior of each SMMU_SSDRn bit is:

// SMMU_SSDRn selected using SSD_Index<15:5>
if (SMMU_SSDRn[SSD_Index<4:0>] == 1) {

// Transaction is Non-secure

Table 13-1 SSD address space

Offset Name Description

0x00000 SMMU_SSDR0 Corresponds to SSD_Index values 0 - 31.

0x00004 SMMU_SSDR1 Corresponds to SSD_Index values 32 - 63.

0x00008 - 0x00FFC SMMU_SSDR2 -
SMMU_SSDR1023

Corresponds to SSD_Index values 64 - 32767.

0x01000 - 0x01FFC SMMU_SSDR1024 -
SMMU_SSDR2047

Corresponds to SSD_Index values 32768-
65355. Applies to SMMUv2 only.

0x01000 - (PAGESIZE−0x4) Reserved 4KB PAGESIZE.

0x02000 - (PAGESIZE−0x4) Reserved 64KB PAGESIZE, SMMUv2 only.
13-238 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

13 The Security State Determination Address Space
13.1 SMMU SSD address space
} else {
// Transaction is Secure

}

See Security State Determination (SSD) on page 2-43 for more information.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 13-239
ID091613 Non-Confidential - Beta

13 The Security State Determination Address Space
13.1 SMMU SSD address space
13-240 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 14
Stage 1 Translation Context Bank Format

This chapter specifies the format of a stage 1 translation context bank. It contains the following sections:
• Stage 1 translation context bank address space on page 14-242.
• Reset values on page 14-246.
• Memory attribute indirection on page 14-247.
• Multi-format registers and reserved fields on page 14-249.
• Stage 1 translation context bank register descriptions on page 14-250.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-241
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.1 Stage 1 translation context bank address space
14.1 Stage 1 translation context bank address space
The stage 1 translation context bank provides registers for initial translation in implementations that support stage
1 translation.

The SMMU architecture supports 32-bit atomic access to all stage 1 translation context bank format registers, and
where applicable, 64-bit atomic access. Whether 8-bit or 16-bit atomic transactions are supported is
IMPLEMENTATION DEFINED.

Table 14-1 shows the address of the stage 1 translation context bank format registers relative to the offset from the
translation context bank base address, SMMU_CBn_BASE. Unless otherwise stated, registers are present in any
version of the SMMU architecture.

Table 14-1 Stage 1 translation context bank format

Offset Name Type Description

0x00000 SMMU_CBn_SCTLR RW SMMU_CBn_SCTLR, System Control Register on page 14-271

0x00004 SMMU_CBn_ACTLR RW SMMU_CBn_ACTLR, Auxiliary Control Register on
page 14-250

0x00008 SMMU_CBn_RESUME WO Resume or terminate a stalled transaction,
SMMU_CBn_RESUME, Transaction Resume register on
page 14-270

0x0000C Reserved - -

0x00010 SMMU_CBn_TCR2a RW SMMU_CBn_TCR2, Translation Control Register 2 on
page 14-290

0x00014-0x0001C Reserved - -

0x00020 SMMU_CBn_TTBR0[31:0] RWb SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291

0x00024 SMMU_CBn_TTBR0[63:32] RWb 64-bit SMMU_CBn_TTBRm, Translation Table Base Registers
on page 14-291

0x00028 SMMU_CBn_TTBR1[31:0] RWb SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291

0x0002C SMMU_CBn_TTBR1[63:32] RWb 64-bit, SMMU_CBn_TTBRm, Translation Table Base Registers
on page 14-291

0x00030 SMMU_CBn_TCRc RW SMMU_CBn_TCR, Translation Control Register on
page 14-283

0x00034 SMMU_CBn_CONTEXTIDR RW SMMU_CBn_CONTEXTIDR, Context Identification Register
on page 14-253

0x00038 SMMU_CBn_PRRR or
SMMU_CBn_MAIR0

RW SMMU_CBn_PRRR, Primary Region Remap Register on
page 14-268
SMMU_CBn_MAIRm, Memory Attribute Indirection Registers
on page 14-259

0x0003C SMMU_CBn_NMRR or
SMMU_CBn_MAIR1

RW SMMU_CBn_NMRR, Normal Memory Remap Register on
page 14-260
SMMU_CBn_MAIRm, Memory Attribute Indirection Registers
on page 14-259
14-242 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.1 Stage 1 translation context bank address space
0x00040-0x00044 Reserved Reserved for IMPLEMENTATION DEFINED memory attributes
associated with memory encodings. Such attributes are only
additional qualifiers to the memory locations, and cannot change
the architected behaviors of the memory attributes defined in the
SMMU_CBn_MAIR0 and SMMU_CBn_MAIR1 registers. See
SMMU_CBn_MAIRm, Memory Attribute Indirection Registers
on page 14-259 for more information.

0x00048-0x0004C Reserved - -

0x00050 SMMU_CBn_PAR[31:0] RW SMMU_CBn_PAR, Physical Address Register on page 14-260

0x00054 SMMU_CBn_PAR[63:32]

0x00058 SMMU_CBn_FSR RW SMMU_CBn_FSR, Fault Status Register on page 14-254

0x0005C SMMU_CBn_FSRRESTORE WO SMMU_CBn_FSRRESTORE, Fault Status Restore Register on
page 14-257

0x00060 SMMU_CBn_FAR[31:0] RW SMMU_CBn_FAR, Fault Address Register on page 14-254

0x00064 SMMU_CBn_FAR[63:32]

0x00068 SMMU_CBn_FSYNR0 RW See SMMU_CBn_FSYNRm, Fault Syndrome Registers on
page 14-257

0x0006C SMMU_CBn_FSYNR1

0x00070 SMMU_CBn_IPAFAR[31:0] ROd SMMU_CBn_IPAFAR, IPA Fault Address Register on
page 14-259

0x00074 SMMU_CBn_IPAFAR[63:32]

0x00078-0x005FC Reserved - -

0x00600 SMMU_CBn_TLBIVA[31:0] WO SMMU_CBn_TLBIVA, TLB Invalidate by VA on page 14-277

0x00604 SMMU_CBn_TLBIVA[63:32]

0x00608 SMMU_CBn_TLBIVAA[31:0] WO SMMU_CBn_TLBIVAA, TLB Invalidate by VA All ASID on
page 14-279

0x0060C SMMU_CBn_TLBIVAA[63:32]

0x00610 SMMU_CBn_TLBIASID WO SMMU_CBn_TLBIASID, TLB Invalidate by ASID on
page 14-277

0x00614 Reserved - -

0x00618 SMMU_CBn_TLBIALL WO SMMU_CBn_TLBIALL, TLB Invalidate All on page 14-276

0x0061C Reserved - -

0x00620 SMMU_CBn_TLBIVAL[31:0] WO SMMU_CBn_TLBIVAL, TLB Invalidate by VA, Last level on
page 14-281

0x00624 SMMU_CBn_TLBIVAL[63:32]

0x00628 SMMU_CBn_TLBIVAAL[31:0] WO SMMU_CBn_TLBIVAAL, TLB Invalidate by VA, All ASID, Last
level on page 14-280

0x0062C SMMU_CBn_TLBIVAAL[63:32]

0x00630-0x007EC Reserved - -

0x007F0 SMMU_CBn_TLBSYNC WO SMMU_CBn_TLBSYNC, TLB Synchronize Invalidate on
page 14-283

Table 14-1 Stage 1 translation context bank format (continued)

Offset Name Type Description
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-243
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.1 Stage 1 translation context bank address space
0x007F4 SMMU_CBn_TLBSTATUS RO SMMU_CBn_TLBSTATUS, TLB Status on page 14-282

0x007F8-0x007FC Reserved - -

0x00800 SMMU_CBn_ATS1PR[31:0] WO SMMU_CBn_ATS1PR, Address Translation Stage 1 Privileged
Read on page 14-250

0x00804 SMMU_CBn_ATS1PR[63:32]

0x00808 SMMU_CBn_ATS1PW[31:0] WO SMMU_CBn_ATS1PW, Address Translation Stage 1 Privileged
Write on page 14-250

0x0080C SMMU_CBn_ATS1PW[63:32]

0x00810 SMMU_CBn_ATS1UR[31:0] WO SMMU_CBn_ATS1UR, Address Translation Stage 1
Unprivileged Read on page 14-251

0x00814 SMMU_CBn_ATS1UR[63:32]

0x00818 SMMU_CBn_ATS1UW[31:0] WO SMMU_CBn_ATS1UW, Address Translation Stage 1
Unprivileged Write on page 14-252

0x0081C SMMU_CBn_ATS1UW[63:32]

0x00820-0x008EC Reserved - -

0x008F0 SMMU_CBn_ATSR RO SMMU_CBn_ATSR, Address Translation Status Register on
page 14-252

0x008F4-0x00CFC Reserved - -

0x00D00-0x00DFC IMPLEMENTATION DEFINED RW Reserved for IMPLEMENTATION DEFINED purposes

0x00E00-0x00E38 SMMU_CBn_PMEVCNTRm RW SMMU_CBn_PMEVCNTRm, Performance Monitors Event
Counter registers on page 14-266

0x00E3C-0x00E7C Reserved - -

0x00E80-0x00EB8 SMMU_CBn_PMEVTYPERm RW SMMU_CBn_PMEVTYPERm, Performance Monitors Event
Type Registers on page 14-267

0x00EBC-0x00EFC Reserved - -

0x00F00 SMMU_CBn_PMCFGR RO SMMU_CBn_PMCFGR, Performance Monitors Configuration
Register on page 14-266

0x00F04 SMMU_CBn_PMCR RW SMMU_CBn_PMCR, Performance Monitors Control Register
on page 14-266

0x00F08 Reserved - Reserved for PMUSERENR

0x00F0C-0x00F1C Reserved - -

0x00F20 SMMU_CBn_PMCEID0 RO SMMU_CBn_PMCEIDm, Performance Monitors Common
Event Identification registers on page 14-265

0x00F24 SMMU_CBn_PMCEID1 RO SMMU_CBn_PMCEIDm, Performance Monitors Common
Event Identification registers on page 14-265

0x00F28-0x00F3C Reserved - -

0x00F40 SMMU_CBn_PMCNTENSET RW SMMU_CBn_PMCNTENSET, Performance Monitors Count
Enable Set register on page 14-266

0x00F44 SMMU_CBn_PMCNTENCLR RW SMMU_CBn_PMCNTENCLR, Performance Monitors Count
Enable Clear register on page 14-266

Table 14-1 Stage 1 translation context bank format (continued)

Offset Name Type Description
14-244 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.1 Stage 1 translation context bank address space
0x00F48 SMMU_CBn_PMINTENSET RW SMMU_CBn_PMINTENSET, Performance Monitors Interrupt
Enable Set register on page 14-267

0x00F4C SMMU_CBn_PMINTENCLR RW SMMU_CBn_PMINTENCLR, Performance Monitors Interrupt
Enable Clear register on page 14-267

0x00F50 SMMU_CBn_PMOVSCLR RW SMMU_CBn_PMOVSCLR, Performance Monitors Overflow
Status Clear Register on page 14-267

0x00F54 Reserved - Reserved for PMSWINC

0x00F58 SMMU_CBn_PMOVSSET - SMMU_CBn_PMOVSSET, Performance Monitors Overflow
Status Set Register on page 14-268

0x00F5C-0x00FB4 Reserved - -

0x00FB8 SMMU_CBn_PMAUTHSTATUS RO SMMU_CBn_PMAUTHSTATUS, Performance Monitors
Authentication Status register on page 14-265

0x00FBC-0x00FC8 Reserved - -

0x00FCC Reserved - Reserved for PMDEVTYPE

0x00FD0 -
(PAGESIZE−0x4)

Reserved - -

a. This register is not provided in SMMUv1.
b. Mainly RW. See register description for detail.
c. In SMMUv1, this register is SMMU_CBn_TTBCR.
d. The effect of a write to this register is UNKNOWN.

Table 14-1 Stage 1 translation context bank format (continued)

Offset Name Type Description
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-245
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.2 Reset values
14.2 Reset values
In each SMMU stage 1 translation context bank, the value of each register field is UNKNOWN after a system reset,
with the exceptions shown in Table 14-2.

Table 14-2 Predictable post-reset values

Field Reset value Notes

SMMU_CBn_ATSR 0 -

SMMU_CBn_FSR.SS 0 No requirement to perform a retry or termination operation.

SMMU_CBn_SCTLR.CFIE 0 Prevent interrupt assertion as a result of UNPREDICTABLE error status.

SMMU_CBn_SCTLR.CFRE 0 Prevent abort as a result of UNPREDICTABLE error status.

SMMU_CBn_TLBSTATUSa 0 -

a. In both stage 1 and stage 2 context banks.
14-246 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.3 Memory attribute indirection
14.3 Memory attribute indirection
The SMMU_CBn_MAIRm memory indirection attribute system provides a revised version of the Type EXtension
(TEX) Remap system to redirect the selection of memory attributes from the translation table entries. This system
takes the 3-bit MemAttr field in the translation table entry, and uses it to access an 8-bit field in one of the 32-bit
Memory Attribute Indirection Registers, SMMU_CBn_MAIR0 and SMMU_CBn_MAIR1. See the ARM®
Architecture Reference Manual, ARMv7-A and ARMv7-R edition and the ARM® Architecture Reference Manual,
ARMv8, for ARMv8-A architecture profile for more information about the TEX Remap system.

SMMU_CBn_MAIR0 is selected when AttrIndex[2] is set to the value 0.

SMMU_CBn_MAIR1 is selected when AttrIndex[2] is set to 1.

The field selected in SMMU_CBn_MAIR0 and SMMU_CBn_MAIR1 is determined by AttrIndex[1:0], as
Bits[8×AttrIndx[1:0] + 7:8×AttrIndx[1:0]].

The encoding of each MAIR[7:4] field is shown in Table 14-3, where:
• R denotes the Outer Read-Allocate policy.
• W denotes the Outer Write-Allocate policy.

The allocation policy is encoded so that a value of 0 means do not allocate, and a value of 1 means allocate.

The transient variants provide a hint that the data being accessed has a transient access property. The memory system
might adjust its handling of the data accordingly.

All other values are UNPREDICTABLE.

Table 14-4 shows the encoding of each MAIR[3:0] field, where:
• R denotes the Inner Read-Allocate policy.
• W denotes the Inner Write-Allocate policy.

The allocation policy is encoded so that a value of 0 means do not allocate, and a value of 1 means allocate.

Table 14-3 MAIR encodings

Bits[7:4] Meaning

0b0000 Strongly-ordered or Device memory.

0b00RW Outer Write-Through transient Normal memory. RW=0b00 is not supported.

0b0100 Outer Non-cacheable Normal memory.

0b01RW Outer Write-Back transient Normal memory. RW=0b00 is not supported.

0b10RW Outer Write-Through non-transient Normal memory.

0b11RW Outer Write-Back non-transient Normal memory.

Table 14-4 MAIR encodings

Bits[3:0] Meaning when bits[7:4] == 0b0000 Meaning when bits[7:4] != 0b0000

ARMv8 ARMv7

0b0000 Device-nGnRnE Strongly-ordered UNPREDICTABLE.

0b00RW UNPREDICTABLE UNPREDICTABLE Inner Write-Through transient Normal memory. RW=0b00 is not supported.

0b0100 Device-nGnRE Device Inner Non-cacheable Normal memory.

0b01RW UNPREDICTABLE UNPREDICTABLE Inner Write-Back transient Normal memory. RW=0b00 is not supported.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-247
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.3 Memory attribute indirection
All other values are UNPREDICTABLE.

0b1000 Device-nGRE UNPREDICTABLE Inner Write-Through non-transient Normal memory. This encoding does not
apply to ARMv7 implementations.

0b10RW UNPREDICTABLE UNPREDICTABLE Inner Write-Through non-transient Normal memory.

0b1100 Device-GRE UNPREDICTABLE Inner Write-Back non-transient Normal memory. This encoding does not
apply to ARMv7 implementations.

0b11RW UNPREDICTABLE UNPREDICTABLE Inner Write-Back non-transient Normal memory. RW=0b00 is not supported.

Table 14-4 MAIR encodings (continued)

Bits[3:0] Meaning when bits[7:4] == 0b0000 Meaning when bits[7:4] != 0b0000

ARMv8 ARMv7
14-248 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.4 Multi-format registers and reserved fields
14.4 Multi-format registers and reserved fields
Some registers have a number of possible formats, where the format depends on the format that the register has been
configured to, and the format of the data recorded in the register. See Multi-format registers and reserved fields on
page 9-160 for more information, with the exception that in a stage 1 translation context bank, the register format
is affected by SMMU_CBn_TCR.EAE instead of by a TYPE field.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-249
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
14.5 Stage 1 translation context bank register descriptions
This section describes all of the stage 1 translation context bank registers that might be present in an SMMU
implementation. Unless otherwise stated, registers are present in any version of the SMMU architecture. Registers
are shown in register name order.

14.5.1 SMMU_CBn_ACTLR, Auxiliary Control Register

The SMMU_CBn_ACTLR characteristics are:

Purpose Provides IMPLEMENTATION SPECIFIC configuration and control options.

Usage constraints No usage constraints apply.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit RW register with an UNKNOWN reset value. See also Table 14-1 on page 14-242.

The SMMU_CBn_ACTLR bit assignments are IMPLEMENTATION DEFINED.

14.5.2 SMMU_CBn_ATS1PR, Address Translation Stage 1 Privileged Read

The SMMU_CBn_ATS1PR characteristics are:

Purpose Translates an argument-supplied input address and writes the result to SMMU_CBn_PAR.

Usage constraints When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

In SMMUv2, all address translation registers are OPTIONAL. See Address translation
registers in SMMUv2 on page 4-106 for more information.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

Reads are SBZ.

See also Table 14-1 on page 14-242.

The SMMU_CBn_ATS1PR bit assignments are:

Addr, bits[63:12]

The input address.

In SMMUv1, Addr is bits[31:12].

Bits[11:0] Reserved.

14.5.3 SMMU_CBn_ATS1PW, Address Translation Stage 1 Privileged Write

The SMMU_CBn_ATS1PW characteristics are:

Purpose Translates the argument-supplied input address and writes the result to SMMU_CBn_PAR.

Addra Reserved

63 12 11 0

a. In SMMUv1, Addr is [31:12]
14-250 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
Usage constraints When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

In SMMUv2, all address translation registers are OPTIONAL. See Address translation
registers in SMMUv2 on page 4-106 for more information.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

Reads are SBZ.

See also Table 14-1 on page 14-242.

The SMMU_CBn_ATS1PW bit assignments are:

Addr, bits[63:12]

The input address.

In SMMUv1, Addr is bits[31:12].

Bits[11:0] Reserved.

14.5.4 SMMU_CBn_ATS1UR, Address Translation Stage 1 Unprivileged Read

The SMMU_CBn_ATS1UR characteristics are:

Purpose Translates the argument-supplied input address and writes the result to SMMU_CBn_PAR.

Usage constraints When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

In SMMUv2, all address translation registers are OPTIONAL. See Address translation
registers in SMMUv2 on page 4-106 for more information.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

Reads are SBZ.

See also Table 14-1 on page 14-242.

Addra Reserved

63 12 11 0

a. In SMMUv1, Addr is [31:12]
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-251
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
The SMMU_CBn_ATS1UR bit assignments are:

Addr, bits[63:12]

The input address.

In SMMUv1, Addr is bits[31:12].

Bits[11:0] Reserved.

14.5.5 SMMU_CBn_ATS1UW, Address Translation Stage 1 Unprivileged Write

The SMMU_CBn_ATS1UW characteristics are:

Purpose Translates the argument-supplied input address and writes the result to SMMU_CBn_PAR.

Usage constraints When accessing this register using an atomic 32-bit access, only the lower word of the input
address is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to
the upper word of this register are ignored.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

In SMMUv2, all address translation registers are OPTIONAL. See Address translation
registers in SMMUv2 on page 4-106 for more information.

Attributes In SMMUv2, a 64-bit WO register.

In SMMUv1, a 32-bit WO register.

Reads are SBZ.

See also Table 14-1 on page 14-242.

The SMMU_CBn_ATS1UW bit assignments are:

Addr, bits[63:12]

The input address.

In SMMUv1, Addr is bits[31:12].

Bits[11:0] Reserved.

14.5.6 SMMU_CBn_ATSR, Address Translation Status Register

The SMMU_CBn_ATSR characteristics are:

Purpose Provides status information about active address translation operations for a translation
context bank.

Usage constraints No usage constraints apply.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Addra Reserved

63 12 11 0

a. In SMMUv1, Addr is [31:12]

Addra Reserved

63 12 11 0

a. In SMMUv1, Addr is [31:12]
14-252 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
Attributes A 32-bit RO register that resets to 0. Writes are ignored. See also Table 14-1 on
page 14-242.

The SMMU_CBn_ATSR bit assignments are:

Bits[31:1] Reserved.

ACTIVE, bit[0]

Address Translation Active. The possible values of this bit are:
0 Operation not active.
1 Operation active. SMMU_CBn_PAR contents are yet to be updated.

14.5.7 SMMU_CBn_CONTEXTIDR, Context Identification Register

The SMMU_CBn_CONTEXTIDR characteristics are:

Purpose Identifies the current process identifier and the current address space identifier.

Usage constraints No usage constraints apply.

Configurations When the AArch32 Short-descriptor translation scheme is selected, that is, when the
effective value of SMMU_CBn_TCR.EAE is 0, the ASID is used by many memory
management functions. The PROCID field has no hardware usage within the SMMU.

When the AArch32 Long-descriptor or the AArch64 translation scheme is selected, that is,
when the effective value of SMMU_CBn_TCR.EAE is 1, the ASID field is not present in
this register and the PROCID field becomes 32-bit. The MMU refers to the
SMMU_CBn_TTBRm.ASID fields instead.

Note
 The PROCID field is for OS and debugging purposes only. The SMMU does not use the

PROCID field.

It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit RW register with an UNKNOWN reset value. See also Table 14-1 on page 14-242.

Register format when the effective value of SMMU_CBn_TCR.EAE is 0

The SMMU_CBn_CONTEXTIDR bit assignments in this format are:

PROCID, bits[31:8]

Process Identifier.

ASID, bits[7:0]

Address Space Identifier.

31 1 0

Reserved

ACTIVE

ASIDPROCID

31 8 7 0
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-253
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
Register format when the effective value of SMMU_CBn_TCR.EAE is 1

The SMMU_CBn_CONTEXTIDR bit assignments in this format are:

PROCID, bits[31:0]

Process Identifier.

14.5.8 SMMU_CBn_FAR, Fault Address Register

The SMMU_CBn_FAR characteristics are:

Purpose Holds the input address of the memory access that caused a synchronous abort exception.

Usage constraints No usage constraints apply.

Configurations For a stage 1 translation context bank, the value of N is 32, equating to 4GB.

For a stage 2 translation context bank, the value of N depends on the size of the input address
implemented by the SMMU.

Unimplemented bits behave as RAZ/WI.

SMMU_IDR2.IAS specifies the implemented input address space. See Sign-extension of
input addresses on page 1-29 for more information.

It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 64-bit RW register with an UNKNOWN reset value. See also Table 14-1 on page 14-242.

The SMMU_CBn_FAR bit assignments are:

Bits[63:N] Reserved.

FADDR, bits[N-1:0]

Fault address, the input address of the faulting access.

14.5.9 SMMU_CBn_FSR, Fault Status Register

The SMMU_CBn_FSR characteristics are:

Purpose Provides memory system fault status information.

Usage constraints No usage constraints apply.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit RW register. A value of 1 written to any non-reserved bit clears that bit. A value of
0 written to any of these bits leaves the bit unchanged.

With the exception of the SMMU_CBn_FSR.SS bit, the fields in this register have
UNKNOWN reset values.

See also Table 14-1 on page 14-242.

PROCID

31 0

FADDRReserved, RAZ

N63 0N-1
14-254 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
The SMMU_CBn_FSR bit assignments are:

MULTI, bit[31]

Multiple faults, indicates that an additional context fault occurred while the value in
SMMU_CBn_FSR was nonzero.

SS, bit[30] Stalled Status. The possible values of this read-only bit are:
0 The context is not stalled.
1 The context is stalled because of an exception in the context bank.

When the context is stalled, this bit is set to 1. A write to SMMU_CBn_RESUME is the only way
to reset this bit, and depending on the value written, the write either resumes or terminates the stalled
transaction.

Note
 • This bit is not affected by any SMMU_CBn_FSRRESTORE operation.

• An SMMUv2 implementation might retry a stalled transaction and set this bit to 0 on a write
to SMMU_CBARn or SMMU_CBA2Rn, or if a new value is written to
SMMU_SCR1.NSNUMCB0.

This bit resets to 0.

Bits[29:11] Reserved.

Format, bits[10:9]

Translation scheme. This field indicates the translation scheme, and therefore the translation table
format for which the recorded fault occurred. The possible values for this field are:

0b00 AArch32 Short-descriptor translation scheme, that is, SMMU_CBA2Rn.VA64 is 0 and
the effective value of SMMU_CBn_TCR.EAE is 0. This value is not valid for stage 2
translation contexts.

0b01 AArch32 Long-descriptor translation scheme, that is, SMMU_CBA2Rn.VA64 is 0 and
the effective value of SMMU_CBn_TCR.EAE is 1.

0b10 AArch64 translation scheme, that is, SMMU_CBA2Rn.VA64 is 1.

0b11 Reserved. Treated as AArch64 translation scheme.

In SMMUv1, this field is reserved.

Note
 This field is read-only and is generated from SMMU_CBA2Rn.VA64 and the effective value of

SMMU_CBn_TCR.EAE. Software must not reconfigure a translation context bank when there are
unhandled faults outstanding.

31 30 29 7 6 5 4 3 2 1 0

Reserved

MULTI
SS

TLBLKF
TLBMCF

EF
PF

AFF
TF

Reserved

891011

Formata

UUTa

ASFa

a. Reserved in SMMUv1
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-255
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
UUT, bit 8 Unsupported Upstream Transaction. The possible values of this bit are:

0 No unsupported upstream transaction fault

1 Unsupported upstream transaction fault recorded.

Note
 It is IMPLEMENTATION DEFINED whether the SMMU records a particular unsupported upstream

transaction fault.

In SMMUv1, this bit is reserved.

ASF, bit[7] Address size fault. The possible values for this field are:
0 No fault.
1 Fault is a result of an incorrect address size.

In SMMUv1, this bit is reserved.

TLBLKF, bit[6]

TLB lock fault. The possible values of this bit are:
0 There is no TLB lock fault.
1 A TLB lock fault has occurred.

Note
 In implementations that do not support TLB locking, this bit might be RAZ/WI.

TLBMCF, bit[5]

TLB match conflict fault. The possible values of this bit are:
0 There is no TLB Match conflict fault.
1 A fault caused by multiple matches was detected in the TLB.

Note
 In implementations that do not support TLB match conflict detection, this bit might be RAZ/WI.

EF, bit[4] External fault. The possible values of this bit are:
0 There is no External fault.
1 An External fault has occurred.

Note
 In implementations that do not support external fault detection, this bit might be RAZ/WI.

PF, bit[3] Permission fault. The possible values of this bit are:
0 There is no Permission fault.
1 A fault caused by insufficient permission to complete a memory access has occurred.

AFF, bit[2] Access flag fault. The possible values of this bit are:
0 There is no Access flag fault.
1 A fault caused by the access flag being set for the address being accessed has occurred.

TF, bit[1] Translation fault. The possible values of this bit are:
0 There is no Translation fault.
1 A Translation fault has occurred. The mapping for the address being accessed is invalid.

Bit[0] Reserved.
14-256 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
14.5.10 SMMU_CBn_FSRRESTORE, Fault Status Restore Register

The SMMU_CBn_FSRRESTORE characteristics are:

Purpose Restores the state of SMMU_CBn_FSR, after a reset, for example.

Usage constraints The bit corresponding to the SMMU_CBn_FSR.SS bit, and the bits corresponding to the
Format field are ignored. The only way to reset the SS bit is by writing to
SMMU_CBn_RESUME.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit WO register. See also Table 14-1 on page 14-242.

The SMMU_CBn_FSRRESTORE bit assignments are identical to SMMU_CBn_FSR. With the exception of the
Format field and the SS bit, the value of this register overwrites the value of SMMU_CBn_FSR.

14.5.11 SMMU_CBn_FSYNRm, Fault Syndrome Registers

The SMMU_CBn_FSYNR1 and SMMU_CBn_FSYNR0 characteristics are:

Purpose Holds fault syndrome information about the memory access that caused a synchronous abort
exception.

Usage constraints No usage constraints apply.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes 32-bit RW registers with UNKNOWN reset values. See also Table 14-1 on page 14-242.

SMMU_CBn_FSYNR0

The SMMU_CBn_FSYNR0 bit assignments are:

Bits[31:24] Reserved.

S1CBNDX[23:16]

Stage 1 Context Bank Index associated with the transaction that caused the fault.

For stage 1 followed by stage 2 translation, this field contains the stage 1 translation context bank
index for processing the transaction.

For stage 2 only translation, this field is UNKNOWN.

This field is only present in a stage 2 format translation context bank. In a stage 1 format translation
context bank, it is UNK/SBPZ.

AFR
PTWF

Reserved
NSATTR
Reserved

IND
PNU
WNR

Reserved

31 24 23 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

S1CBNDX Reserved PLVL

Reserved
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-257
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
This field is only valid if SMMU_IDR0.NTS==1. In an implementation that does not include stage
1 followed by stage 2 translation, this field is UNK/WI.

Note
 An SMMU implementation is not required to provide storage for all 8 bits of this field, and might

provide only enough bits to represent the highest implemented context bank number.

Bits[15:12] Reserved.

AFR, bit[11] Asynchronous Fault Recorded. The possible values of this bit are:
0 A fault was recorded synchronously.
1 A fault was recorded asynchronously.

PTWF, bit[10] Page Table Walk Fault. Indicates whether an external fault was recorded during a translation table
access. The possible values of this bit are:
0 An external fault did not occur while processing a translation table walk.
1 An external fault occurred while processing a translation table walk.

In SMMUv2, this bit is set to 0 unless an external fault is recorded during a translation table walk.

In SMMUv1, it is UNPREDICTABLE whether this bit is set to 1 for any other fault type.

Bit[9] Reserved.

NSATTR, bit[8]

Non-secure attribute. The possible values of this bit are:

0 The input transaction, after applying SMMU_S2CRn.NSCFG, has a Secure attribute.

1 The input transaction, after applying SMMU_S2CRn.NSCFG, has a Non-secure
attribute.

In a Non-secure context bank, this bit is reserved. In a Secure context bank, this bit records the
attributes of the transaction after applying the SMMU_S2CRn.NSCFG bit transformation. See
Recording memory attributes on page 3-79 for more information.

Bit[7] Reserved.

IND, bit[6] Instruction Not Data. The possible values of this bit are:
0 Data.
1 Instruction.

This bit records the attributes of the transaction after applying the SMMU_S2CRn.INSTCFG bit
transformation. See Recording memory attributes on page 3-79 for more information.

PNU, bit[5] Privileged Not Unprivileged. The possible values of this bit are:
0 Unprivileged.
1 Privileged.

This bit records the attributes of the transaction after applying the SMMU_S2CRn.PRIVCFG bit
transformation. See Recording memory attributes on page 3-79 for more information.

WNR, bit[4] Write Not Read. The possible values of this bit are:
0 Read.
1 Write.

Bits[3,2] Reserved.

PLVL, bits[1:0]

Translation Table Level, the level in the translation table walk that the fault is associated with. The
encoding of this field is:
0b00 Level 0. SMMUv2 only.
0b01 Level 1.
14-258 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
0b10 Level 2.
0b11 Level 3.

Faults and translation table level association

The translation table level a fault is associated with is:

• For a fault associated with a translation table walk, the level of table walk being performed.

• For a translation fault, the level of translation table that gave the fault. If a disabled translation table walk
causes the fault or if the size of the address presented is out of the range specified for matching with any base
address register, the fault is reported as:
— Level 0, for the AArch64 translation scheme.
— Level 1, for an AArch32 translation scheme.

• For an access fault, the level of translation table that gave the fault.

• For a permission fault, including a fault caused by a hierarchical permission, the final level of translation
table used for that translation.

SMMU_CBn_FSYNR1

The 32-bit SMMU_CBn_FSYNR1 register bit assignments are IMPLEMENTATION DEFINED.

14.5.12 SMMU_CBn_IPAFAR, IPA Fault Address Register

The SMMU_CBn_IPAFAR characteristics are:

Purpose The stage 1 IPA Fault Address Register.

Usage constraints This register can be used only by stage 2 contexts. A read of this register during a stage 1
translation returns an UNKNOWN value.

Configurations This register is not provided in SMMUv1.

Attributes A 64-bit register.

The SMMU_CBn_IPAFAR bit assignments are the same as those for the stage 2 SMMU_CBn_IPAFAR.

14.5.13 SMMU_CBn_MAIRm, Memory Attribute Indirection Registers

The SMMU_CBn_MAIR1 and SMMU_CBn_MAIR0 characteristics are:

Purpose Provide a revised version of the TEX-Remap system to redirect the selection of memory
attributes from the translation table entries.

Usage constraints No usage constraints apply.

Configurations These registers are used when either the AArch32 Long-descriptor or the AArch64
translation scheme is selected. The SMMU_CBn_PRRR and SMMU_CBn_NMRR
registers are used when the AArch32 Short-descriptor translation scheme is selected. See
Memory attribute indirection on page 14-247.

It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes 32-bit RW registers with UNKNOWN reset values. See also Table 14-1 on page 14-242.

The SMMU_CBn_MAIR0 bit assignments are:

31 24 23 16 15 8 7 0

Attr3 Attr2 Attr1 Attr0
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-259
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
The SMMU_CBn_MAIR1 bit assignments are:

Attrn fields For each attribute field, the meaning is as described in Memory attribute indirection on
page 14-247.

14.5.14 SMMU_CBn_NMRR, Normal Memory Remap Register

The SMMU_CBn_NMRR characteristics are:

Purpose Provides additional mapping controls for memory regions that are mapped as Normal
memory by their entry in SMMU_CBn_PRRR.

Usage constraints No usage constraints apply.

Configurations This register is used when the AArch32 Short-descriptor translation scheme is selected.
SMMU_CBn_MAIR1 is used when the AArch32 Long-descriptor or the AArch64
translation scheme is selected. See Memory attribute indirection on page 14-247.

It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit RW register with an UNKNOWN reset value. See also Table 14-1 on page 14-242.

The SMMU_CBn_NMRR bit assignments are:

OR7 - OR0, bits[31:16]

Outer cacheable property mapping for the memory attributes in m, if the region is mapped as Normal
memory by the TRm entry in SMMU_CBn_PRRR. m is the value of the TEX[0], C and B bits in
the translation table.

The encoding of this field is:
0b00 Non-cacheable.
0b01 Write-Back, Write-Allocate.
0b10 Write-Through, no Write-Allocate.
0b11 Write-Back, no Write-Allocate.

IR7 - IR0, bits[15:0]

Inner cacheable property mapping for the memory attributes in m, if the region is mapped as Normal
memory by the TRm entry in SMMU_CBn_PRRR. m is the value of the TEX[0], C and B bits in
the translation table. The possible values of this field are the same as for those of the
SMMU_CBn_NMRR.ORm fields. The meaning of the field with m = 6 is IMPLEMENTATION
DEFINED, and might differ from the meaning given in this specification. This is because the meaning
of the attribute combination TEX[0] = 1, C = 1, B = 0 is IMPLEMENTATION DEFINED.

14.5.15 SMMU_CBn_PAR, Physical Address Register

The SMMU_CBn_PAR characteristics are:

Purpose Receives the physical address during any virtual to physical address translation.

Usage constraints No usage constraints apply.

31 24 23 16 15 8 7 0

Attr7 Attr6 Attr5 Attr4

IR0OR7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OR6 OR5 OR4 OR3 OR2 OR1 OR0 IR7 IR6 IR5 IR4 IR3 IR2 IR1
14-260 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
Configurations This register is OPTIONAL and is provided only when the SMMU supports address
translation operations, that is, when the SMMU_IDR0.ATOSNS bit is set to 0.

The SMMU_CBn_PAR format depends on the translation scheme selected, and whether the
transaction completes successfully. See:
• AArch32 Short-descriptor translation scheme.
• AArch32 Long-descriptor and AArch64 translation schemes on page 14-262.
• Fault format on page 14-263.

See also Multi-format registers and reserved fields on page 14-249.

It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 64-bit RW register with an UNKNOWN reset value. See also Table 14-1 on page 14-242.

AArch32 Short-descriptor translation scheme

When using the AArch32 Short-descriptor translation scheme, if the translation completes successfully, the bit
assignments are:

Bits[63:32] Reserved.

PA[31:12], bits[31:12]

Bits[31:12] of the physical address.

Bit[11], 0 Reserved with the value 0.

NOS, bit[10] Not Outer Shareable attribute, indicates whether the physical memory is Outer Shareable. The
possible values of this bit are:
0 Memory is Outer Shareable.
1 Memory is not Outer Shareable.

Whether an implementation distinguishes between Inner Shareable and Outer Shareable memory is
IMPLEMENTATION DEFINED. If an implementation does not make this distinction, this field is
UNK/SBZP.

NS, bit[9] Non-Secure, the NS attribute for a translation table entry read from a Secure translation context
bank.

This bit is UNKNOWN for a translation table entry read from a Non-secure translation context bank.

IMP, bit[8] This bit is IMPLEMENTATION DEFINED.

SH, bit[7] Shareable attribute, indicates whether the physical memory is shareable.

The possible values of this bit are:
0 Memory is not shareable
1 Memory is shareable.

PA[31:12] 0 0Reserved

263 032 31 112 4 37 69 811 10

NOS
NS

IMP
SH

Inner[2:0]
Outer[1:0]

SS
F

ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-261
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
Inner[2:0], bits[6:4]

Inner memory attributes from the translation table entry.

The encoding of this field is:
0b111 Write-Back, no Write-Allocate.
0b110 Write-Through.
0b101 Write-Back, Write-Allocate.
0b011 Device.
0b001 Strongly-ordered.
0b000 Non-cacheable.

All other encodings for Inner[2:0] are reserved.

Outer[1:0], bits[3:2]

Outer memory attributes from the translation table entry.

The encoding of this field is:
0b00 Write-Back, no Write-Allocate.
0b01 Write-Through, no Write-Allocate.
0b10 Write-Back, Write-Allocate.
0b11 Non-cacheable.

SS, bit[1] Super Section, indicates if the result is a supersection.

The possible values of this bit are:

0 The page is not a supersection. PAR[31:12] contains PA[31:12], regardless of the page
size.

1 The page is part of a supersection, where:
• PAR[31:24] contains PA[31:24].
• PAR[23:16] contains PA[39:32].
• PAR[15:12] contains 0b0000.
PA[23;12] is the same as VA[23:12] for supersections.

F(0), bit[0] Fault. This bit is 0 if the translation completes successfully.

AArch32 Long-descriptor and AArch64 translation schemes

When using either the AArch32 Long-descriptor or the AArch64 translation scheme, if the translation completes
successfully, the bit assignments are:

MATTR, bits[63:56]

Memory Attributes. See Memory attribute indirection on page 14-247 for more information.

Bits[55:48] Reserved.

Reserveda PA[47:12]a (1) Reserved (0)MATTR

63 048 47 112 7 69 811 10

NS
IMP

SH[1:0]
F

56 55

a. In SMMUv1, bits[47:40] are reserved, and bits[39:12] are PA[39:12]

b. In SMMUv1, bit[11] is reserved.
14-262 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
PA[47:12], bits[47:12]

Bits[47:12] of the physical address.

When using the AArch64 translation scheme, an illegal physical address might generate an address
size fault.

Note
 The number of implemented bits is determined by the maximum of SMMU_IDR2.IAS and

SMMU_IDR2.OAS.

Unimplemented bits are RAZ/WI.

Bit[11] In SMMUv2, RAO.

In SMMUv1, this bit is reserved.

IMP, bit[10] IMPLEMENTATION DEFINED.

NS, bit[9] Non-Secure, the NS attribute for a translation table entry read from a Secure translation context
bank.

This bit is UNKNOWN for a translation table entry read from a Non-secure translation context bank.

For implementations that do not support two security states, this bit is RAZ/WI.

SH[1:0], bits[8:7]

Shareability.

Bits[6:1] Reserved.

F(0) Fault. This bit is 0 if the translation completes successfully.

Fault format

If the translation fails to complete successfully, the bit assignments are, irrespective of translation format:

Bits[63:36] Reserved.

STAGE, bit[35]

Stage of translation that encountered the fault. The possible values of this bit are:
0 Stage 1.
1 Stage 2.

Bit[34] Reserved.

Reserved Reserved (1)

63 036 35 126 4 37 5

TLBMCF
TLBLKF

EF
PF

AFF
TF

F

34 33 32 31 30

Reserved
STAGE

PLVL
ATOT

Reserved
ICFa

29 28 8910

ASFa
Formata

a. Reserved in SMMUv1
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-263
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
PLVL, bits[33:32]

Page level, the level of translation table walk that encountered the fault. The encoding of this field is:
0b00 Level 0. SMMUv2 only.
0b01 Level 1.
0b10 Level 2.
0b11 Level 3.

ATOT, bit[31] Address Translation Operation Terminated. The possible values of this bit are:
0 This fault does not apply.
1 The address translation operation was terminated. The requested operation could not be

completed.

Bit[30] Reserved

ICF, bit[29] Invalid context fault. The possible values of this bit are:
0 This fault does not apply.
1 The transaction mapped to Fault during the address translation operation

In SMMUv1, this bit is reserved.

Bits[28:10] Reserved.

Format, bits[9:8]

Translation scheme. This field indicates the translation scheme, and therefore the translation table
format for which the recorded fault occurred. The encoding of this field is:

0b00 AArch32 Short-descriptor translation scheme, that is, SMMU_CBA2Rn.VA64 is 0 and
the effective value of SMMU_CBn_TCR.EAE is 0. This value is not valid for stage 2
translation contexts.

0b01 AArch32 Long-descriptor translation scheme, that is, SMMU_CBA2Rn.VA64 is 0 and
the effective value of SMMU_CBn_TCR.EAE is 1.

0b10 AArch64 translation scheme, that is, SMMU_CBA2Rn.VA64 is 1.

0b11 Reserved. Treated as AArch64 translation scheme.

In SMMUv1, this field is reserved.

Note
 This field is read-only and is generated from SMMU_CBA2Rn.VA64 and the effective value of

SMMU_CBn_TCR.EAE. Software must not reconfigure a translation context bank when there are
unhandled faults outstanding.

ASF, bit[7] Address size fault. The possible values for this field are:

0 No fault.

1 Fault is a result of an incorrect address size.

In SMMUv1, this bit is reserved.

TLBLKF, bit[6]

TLB lock fault. The possible values of this bit are:
0 This fault does not apply.
1 TLB lock fault applies.

Note
 In implementations that do not support TLB locking, this bit might be RAZ/WI.
14-264 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
TLBMCF, bit[5]

TLB match conflict fault. The possible values of this bit are:
0 This fault does not apply.
1 Fault caused by multiple matches detected in the TLB.

Note
 In implementations that do not support TLB match conflict detection, this bit might be RAZ/WI.

EF, bit[4] External fault. The possible values of this bit are:
0 This fault does not apply.
1 Fault caused by an external fault on a translation table walk.

Note
 In implementations that do not support external fault detection, this bit might be RAZ/WI.

PF, bit[3] Permission fault. The possible values of this bit are:
0 This fault does not apply.
1 Fault caused by insufficient permission to complete the memory access.

AFF, bit[2] Access flag fault. The possible values of this bit are:
0 This fault does not apply.
1 Access flag fault occurred.

TF, bit[1] Translation fault. The possible values of this bit are:
0 This does not apply.
1 Translation fault condition applies. Invalid mapping for address being accessed.

F(1), bit[0] Fault. This bit is set to 1 if the translation aborts.

14.5.16 SMMU_CBn_PMAUTHSTATUS, Performance Monitors Authentication Status register

The Performance Monitors Authentication Status Register, SMMU_CBn_PMAUTHSTATUS, provides the
equivalent of the PMAUTHSTATUS register, in the register map of a translation context bank.

If a Counter group is revealed in the translation context bank, SMMU_CBn_PMAUTHSTATUS has the same
format as PMAUTHSTATUS.

If no Counter group is revealed in the translation context bank, SMMU_CBn_PMAUTHSTATUS is UNK/SBZP.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.17 SMMU_CBn_PMCEIDm, Performance Monitors Common Event Identification registers

The 32-bit RO Performance Monitors Common Event Identification registers, SMMU_CBn_PMCEID0 and
SMMU_CBn_PMCEID1, provide the equivalent of the SMMU performance monitoring register map PMCEID0
and PMCEID1 registers, in the register map of a translation context bank.

If a Counter group is revealed in a translation context bank, SMMU_CBn_PMCEID0 and SMMU_CBn_PMCEID1
have the same format as PMCEID0 and PMCEID1.

If no Counter group is revealed in the translation context bank, SMMU_CBn_PMCEID0 and
SMMU_CBn_PMCEID1 are UNK.

For more information, see Chapter 6 SMMU Performance Monitors Extension.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-265
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
14.5.18 SMMU_CBn_PMCFGR, Performance Monitors Configuration Register

The 32-bit RO Performance Monitors Configuration Register, SMMU_CBn_PMCFGR, provides a performance
monitoring configuration register in the register map of a translation context bank.

If a Counter group is revealed in the translation context bank, SMMU_CBn_PMCFGR has a similar format to
PMCFGR, with the following differences:
• NCG is UNK.
• N indicates the number of event counters in the Counter group.

If no Counter group is revealed in the translation context bank, SMMU_CBn_PMCFGR is RAZ/WI. Software can
examine SMMU_CBn_PMCFGR.SIZE to determine whether any counters are revealed:
• If (SMMU_CBn_PMCFGR.SIZE==0b000000) no counter group is revealed.
• If (SMMU_CBn_PMCFGR.SIZE==0b011111) a counter group is revealed.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.19 SMMU_CBn_PMCNTENCLR, Performance Monitors Count Enable Clear register

The Performance Monitors Count Enable Clear register, SMMU_CBn_PMCNTENCLR, provides the equivalent of
the PMCNTENCLRx register, in the register map of a translation context bank.

If a Counter group is revealed in a translation context bank:
• SMMU_CBn_PMCNTENCLR has the same format as PMCNTENCLRx.
• Bit j of SMMU_CBn_PMCNTENCLR controls event counter j in the corresponding Counter group.

If no Counter group is revealed in the translation context bank, SMMU_CBn_PMCNTENCLR is UNK/SBZP.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.20 SMMU_CBn_PMCNTENSET, Performance Monitors Count Enable Set register

The Performance Monitors Count Enable Set register, SMMU_CBn_PMCNTENSET, provides the equivalent of
the PMCNTENSETx register, in the register map of a translation context bank.

If a Counter group is revealed in a translation context bank:
• SMMU_CBn_PMCNTENSET has the same format as PMCNTENSETx.
• Bit j of SMMU_CBn_PMCNTENSET controls event counter j in the corresponding Counter group.

If a no Counter group is revealed in the translation context bank, SMMU_CBn_PMCNTENSET is UNK/SBZP.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.21 SMMU_CBn_PMCR, Performance Monitors Control Register

The Performance Monitors Control Register, SMMU_CBn_PMCR, provides the equivalent of the PMCR register,
in the register map of a translation context bank.

If a Counter group is revealed in the translation context bank, SMMU_CBn_PMCR has the same format as PMCR.

If no Counter group is revealed in the translation context bank, SMMU_CBn_PMCR is UNK/SBZP.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.22 SMMU_CBn_PMEVCNTRm, Performance Monitors Event Counter registers

The Performance Monitors Event Counter Registers, SMMU_CBn_PMEVCNTRm, provide event counter
resources in the register map of a translation context bank.

If a Counter group is revealed in a translation context bank:

• The event counter registers of the group are arranged in sequence starting from the first
SMMU_CBn_PMEVCNTRm address offset.
14-266 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
• The SMMU_CBn_PMEVCNTRm register format is as specified for PMEVCNTRn.

• An SMMU_CBn_PMEVCNTRm register that corresponds to an offset greater than the number of event
counter registers in the Counter group is UNK/SBZP.

If no Counter group is revealed in the translation context bank, all of the SMMU_CBn_PMEVCNTRm registers are
UNK/SBZP.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.23 SMMU_CBn_PMEVTYPERm, Performance Monitors Event Type Registers

The Performance Monitors Event Type Registers, SMMU_CBn_PMEVTYPERm, provide event type resources in
the register map of a translation context bank.

If a Counter group is revealed in the translation context bank:

• The event type registers of that group are arranged in sequence, starting from the first
SMMU_CBn_PMEVTYPERm address offset.

• The SMMU_CBn_PMEVTYPERm register format is as specified for PMEVTYPERn.

• An SMMU_CBn_PMEVTYPERm register that corresponds to an offset greater than the number of event
type registers in the Counter Group is UNK/SBZP.

If no Counter group is revealed in the translation context bank, all of the SMMU_CBn_PMEVTYPERm registers
are WI.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.24 SMMU_CBn_PMINTENCLR, Performance Monitors Interrupt Enable Clear register

The Performance Monitors Interrupt Enable Clear Register, SMMU_CBn_PMINTENCLR, provides the equivalent
of the PMINTENCLRx register, in the register map of a translation context bank.

If a Counter group is revealed in the translation context bank:
• SMMU_CBn_PMINTENCLR has the same format as PMINTENCLRx.
• Bit j of SMMU_CBn_PMINTENCLR corresponds to event counter j in the corresponding Counter group.

If no Counter group is revealed in the translation context bank, SMMU_CBn_PMINTENCLR is UNK/SBZP.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.25 SMMU_CBn_PMINTENSET, Performance Monitors Interrupt Enable Set register

The Performance Monitors Interrupt Enable Set register, SMMU_CBn_PMINTENSET, provides the equivalent of
the PMINTENSETx register, in the register map of a translation context bank.

If a Counter group is revealed in the translation context bank:
• SMMU_CBn_PMINTENSET has the same format as PMINTENSETx.
• Bit j of SMMU_CBn_PMINTENSET corresponds to event counter j in the corresponding Counter group.

If no Counter group is revealed in the translation context bank, SMMU_CBn_PMINTENSET is UNK/SBZP.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.26 SMMU_CBn_PMOVSCLR, Performance Monitors Overflow Status Clear Register

The Performance Monitors Overflow Status Clear Register, SMMU_CBn_PMOVSCLR, provides the equivalent of
the PMOVSCLRx register, in the register map of a translation context bank.

If a Counter group is revealed in the translation context bank:
• SMMU_CBn_PMOVSCLR has the same format as PMOVSCLRx.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-267
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
• Bit j of SMMU_CBn_PMOVSCLR corresponds to event counter j in the corresponding Counter group.

If no Counter group is revealed in the translation context bank, SMMU_CBn_PMOVSCLR is UNK/SBZP.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.27 SMMU_CBn_PMOVSSET, Performance Monitors Overflow Status Set Register

The Performance Monitors Overflow Status Set Register, SMMU_CBn_PMOVSSET, provides the equivalent of
PMOVSSETx, in the register map of a translation context bank.

If a Counter group is revealed in the translation context bank:
• SMMU_CBn_PMOVSSET has the same format as PMOVSSETx.
• Bit j of SMMU_CBn_PMOVSSET corresponds to event counter j in the corresponding Counter group.

If no Counter group is revealed in the translation context bank, SMMU_CBn_PMOVSSET is UNK/SBZP.

For more information, see Chapter 6 SMMU Performance Monitors Extension.

14.5.28 SMMU_CBn_PRRR, Primary Region Remap Register

The SMMU_CBn_PRRR characteristics are:

Purpose Controls top-level mapping of the TEX[0], C, and B memory region attributes.

Usage constraints No usage constraints apply.

Configurations This register is used when the AArch32 Short-descriptor translation scheme is selected.
SMMU_CBn_PRRR is used when the AArch32 Long-descriptor or the AArch64
translation scheme is selected. See Memory attribute indirection on page 14-247.

It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit RW register with an UNKNOWN reset value. See also Table 14-1 on page 14-242.

The SMMU_CBn_PRRR bit assignments are:

NOSm, bits[31:24]

Outer Shareable property mapping for memory attributes in n, if the region is mapped as Normal
memory that is Shareable where n is the value of the TEX[0] C and B bits in the translation table.

The possible value of each NOS bit is:
0 If the region is mapped as shareable Normal memory, the region is Outer Shareable.
1 The region is not Outer Shareable.

The meaning of the field where m = 6 is IMPLEMENTATION DEFINED and might differ from the
meaning given in this specification. This is because the meaning of the attribute combination
TEX[0] = 1, C = 1, B = 0 is IMPLEMENTATION DEFINED. If the implementation does not distinguish
between Inner Shareable and Outer Shareable, these bits are reserved and are RAZ/WI.

TR0

31 30 29 28 27 26 25 24 23 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved TR7 TR6 TR5 TR4 TR3 TR2 TR1

NOS7
NOS6
NOS5
NOS4
NOS3
NOS2
NOS1
NOS0

NS0
NS1 DS1

DS0
14-268 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
Bits[23:20] Reserved.

NS1, bit[19] Mapping of the S = 1 attribute for Normal memory. This bit gives the mapped Shareable attribute
for a region of memory that is mapped as Normal memory and has the S bit set to the value 1.

The possible values of this bit are:
0 The region is not shareable.
1 The region is shareable.

NS0, bit[18] Mapping of S = 0 attribute for Normal memory. This bit gives the mapped Shareable attribute for a
region of memory that is mapped as Normal memory and has the S bit set to the value 0.

The possible values of this bit are:
0 The region is not shareable.
1 The region is shareable.

DS1, bit[17] Mapping of S = 1 attribute for Device memory. This bit gives the mapped Shareable attribute for a
region of memory that is mapped as Device memory and has the S bit set to the value 0.

The possible values of this bit are:
0 The region is not shareable.
1 The region is shareable.

DS0, bit[16] Mapping of S = 0 attribute for Device memory. This bit gives the mapped Shareable attribute for a
region of memory that is mapped as Device memory and has the S bit set to the value 0.

The possible values of this bit are:
0 The region is not shareable.
1 The region is shareable.

TRk, bits[15:0] Primary TEX mapping for memory attributes m, where m is the value of the TEX[0] C and B bits
in the translation table entry. This field defines the mapped memory type for a region with attributes
n.

The encoding of this field is:
0b00 Strongly-ordered.
0b01 Device.
0b10 Normal memory.
0b11 Reserved. Effect is UNPREDICTABLE.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning
given here. This is because the meaning of the attribute combination TEX[0] = 1, C = 1, B = 0 is
IMPLEMENTATION DEFINED.

Table 14-5 shows the mapping between the memory region attributes and the value n used in the
SMMU_CBn_PRRR.NOSn and SMMU_CBn_PRRR.TRn field descriptions.

Table 14-5 TEX[0] mappings

TEX[0] C B n value

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-269
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
14.5.29 SMMU_CBn_RESUME, Transaction Resume register

The SMMU_CBn_RESUME characteristics are:

Purpose Resumes or terminates the operation of a stalled transaction.

The correct software sequence for resuming a transaction after a reported fault is as follows:

1. Software corrects the conditions that caused the fault as reported in
SMMU_CBn_FSR.

2. Software writes to SMMU_CBn_FSR to clear the appropriate fault bits.

3. Software writes to SMMU_CBn_RESUME.

Failure to follow this sequence might result in a new fault and SMMU_CBn_FSR.MULTI
becoming set to 1.

This is the primary mechanism for clearing the SMMU_CBn_FSR.SS bit. An SMMUv2
implementation might also retry transactions and clear the SS bit on writes to
SMMU_CBARn or SMMU_CBA2Rn. Additionally, an SMMUv2 implementation might
retry a transaction in all context banks affected by a change to
SMMU_SCR1.NSNUMCBO.

If a stalled transaction is retried by writing 0 to this register, the retry always occurs before
the first use of SMMU_CBn_TCR. For stage 1 followed by stage 2 translations stalled in
stage 2, the translation restarts in stage 1.

This means that a retried transaction is guaranteed to be affected by changes to the
SMMU_CBn_TCR. However it is not guaranteed to be affected by changes to registers such
as SMMU_S2CRn, or SMMU_CBARn.

A resumed transaction retains its original SSD security state, and cannot be affected by
changes to SMMU_SSDRn.

Note
 Optionally, an implementation can retry a transaction from an earlier stage of the translation

process. This means that in SMMUv1, transactions can be subject to SSD again. However,
in SMMUv2, the security state of a transaction must be preserved throughout the lifetime of
the transaction, and the earliest point from which a transaction can be retried is immediately
after SSD.

If the value of SMMU_CBn_SCTLR.CFCFG changes the current configuration to the
Terminate fault model while a translation context bank is stalled, the SMMU_CBn_FSR.SS
bit is unaffected and software must write to SMMU_CBn_RESUME to terminate or resume
the stalled transaction.

If a transaction resumes, the latest point in the translation process that it resumes from is the
first use of SMMU_CBn_TCR. For stage 1 followed by stage 2 translations stalling in stage
2, the translation restarts in stage 1. An implementation can choose to restart at an earlier
point. For example, an implementation might choose to restart after the SSD step.

See Handling a context fault on page 3-87 for more information about writing to this
register.

1 0 1 5

1 1 0 6

1 1 1 7

Table 14-5 TEX[0] mappings (continued)

TEX[0] C B n value
14-270 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
Usage constraints See Context fault model pseudocode on page 3-89 for information about behavior when the
SMMU_CBn_SCTLR.CFCFG bit is set to 0, indicating the Terminate model, while there is
a stalled transaction.

If the implementation does not support the stall model, or if the translation context bank is
not stalled, writes to this register are ignored.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit WO register. See also Table 14-1 on page 14-242.

The SMMU_CBn_RESUME bit assignments are:

Bits[31:1] Reserved.

TnR, bit[0] Terminate not Retry.

The possible values of this bit are:
0 Retry the stalled transaction.
1 Terminate the stalled transaction.

14.5.30 SMMU_CBn_SCTLR, System Control Register

The SMMU_CBn_SCTLR characteristics are:

Purpose Provides top-level control of the translation system for the related translation context bank.

Usage constraints An SMMU implementation might configure certain attributes as RAZ/WI if the
downstream bus system does not support this bus marking. See Memory type and
shareability attribute determination on page 2-45 for more information.

Configurations See the field descriptions for field-specific configuration details.

It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit RW register. With the exception of SMMU_CBn_SCTLR[6:5], the fields in this
register have UNKNOWN reset values. See also Table 14-1 on page 14-242.

Reserved

31 1 0

TnR
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-271
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
The SMMU_CBn_SCTLR bit assignments are:

Bits [31] Reserved.

UCI, bit[30] User Cache Maintenance Operation Enable.

The possible values of this bit are:
0 Cache maintenance operations from EL0 are disabled.
1 Cache maintenance operations from EL0 are enabled.

In SMMUv2, this bit applies only when the context bank is using the AArch64 translation scheme.
This bit is ignored when the SMMU_CBA2Rn.VA64 bit is set to 0.

Note
 This bit applies also when the SMMU_CBn_SCTLR.M bit is set to 0. This differs from the

processor architecture, and is less permissive.

In SMMUv1, this bit is reserved.

See TLB maintenance registers on page 5-118 for more information.

NSCFG, bits[29:28]

Non-Secure Configuration, controls the Non-secure attribute for any transaction where the
translation context bank translation is disabled. That is, where SMMU_CBn_SCTLR.M==0.

SMMU_CBn_SCTLR.NSCFG exists only in translation context banks reserved by Secure
software. In Non-secure translation context banks, this field is UNK/SBZP.

The encoding of this field is:
0b00 Default Non-secure attribute.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Secure.
0b11 Non-secure.

WACFG, bits[27:26]

Write-Allocate Configuration, controls the allocation hint for a write transaction where the
translation context bank translation is disabled. That is, where SMMU_CBn_SCTLR.M==0.

The encoding of this field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.

M

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MemAttr E

Reserved

NSCFG
WACFG

RACFG
SHCFG

Reserved
MTCFG

Reserved
ASIDPNE
Reserved

UWXN
WXN

HUPCF

CFCFG
CFIE

CFRE

AFFD
AFE
TRE

14

TRANSIENTCFG

a. In SMMUv1, reserved. In SMMUv2, applies only when SMMU_CBA2Rn.VA64==1, otherwise ignored.

UCIa
14-272 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
0b10 Write-Allocate.
0b11 No Write-Allocate.

RACFG, bits[25:24]

Read-Allocate Configuration, controls the allocation hint for a read transaction where the
translation context bank translation is disabled. That is, where SMMU_CBn_SCTLR.M==0.

The encoding of this field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Read-Allocate.
0b11 No Read-Allocate.

SHCFG, bits[23:22]

Shared Configuration, controls the shareable attribute of a transaction where the translation context
bank is disabled. That is, where SMMU_CBn_SCTLR.M==0.

The encoding of this field is:
0b00 Default shareable attribute.
0b01 Outer Shareable.
0b10 Inner Shareable.
0b11 Non-shareable.

Bit[21] Reserved.

MTCFG, bit[20]

Memory Type Configuration, controls the memory type attribute of a transaction where the
translation context bank translation is disabled. That is, where SMMU_CBn_SCTLR.M==0.

The possible values of this bit are:
0 Default memory attributes.
1 Use the MemAttr field for memory attributes.

MemAttr, bits[19:16]

Memory Attributes. These attributes are permitted to be overlaid if SMMU_CBn_SCTLR.M==0
and SMMU_CBn_SCTLR.MTCFG==1.

Memory attribute, MemAttr on page 9-159 describes the MemAttr field encoding.

TRANSIENTCFG, bits[15:14]

Transient Allocate Configuration, controls the transient allocation hint.

The encoding of this field is:
0x00 Default transient allocation attributes.
0x01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0x10 Non-transient.
0x11 Transient.

This field applies where SMMU_CBn_SCTLR.M== 0.

It is IMPLEMENTATION DEFINED whether this field is present. If not implemented, for examples, in
bus systems that do not support transient marking, these bits behave as RAZ/WI.

Bit[13] Reserved.

ASIDPNE, bit[12]

Address Space Identifier Private Namespace Enable.

The possible values of this bit are:

0 The SMMU ASID values for this translation context bank are coordinated with the
wider system.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-273
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
1 The SMMU ASID values for this translation context bank are a private namespace that
is not coordinated with the wider system.

This bit is a hint that enables the SMMU to maintain a private ASID space for each VMID. These
private ASID spaces are not subject to broadcast TLB invalidation operations. A TLB entry that is
allocated when ASIDPNE==1 might contain a hint that the entry is excluded from broadcast TLB
invalidation operations that target that ASID value.

If ASIDPNE==1, a broadcast TLB Invalidate operation specifying an ASID value is not required to
apply to any cached translations in the SMMU, where ASIDPNE==1 at the time of allocation. A
Broadcast TLB Invalidate operation is still permitted to affect cached translation in the SMMU and
is permitted to apply to all unlocked entries.

The scope of the ASID namespace for a translation context bank is limited by the VMID associated
with that translation context bank in the stream to context mapping process.

Bit[11] Reserved.

UWXN, bit[10]

Unprivileged Writable Execute Never.

The possible values of this bit are:

0 This behavior is not enabled.

1 Raise a stage 1 permission fault if an instruction fetch occurs from a memory location
that permits writes for unprivileged accesses.

Note
 This field only applies to translated transactions. That is, when SMMU_CBn_SCTLR.M==1.

WXN, bit[9] Writable Execute Never.

The possible values of this bit are:

0 This behavior is not enabled.

1 Raise a stage 1 permission fault if an instruction fetch occurs from a memory location
that permits writes.

Note
 This field only applies to translated transactions. That is, when SMMU_CBn_SCTLR.M==1.

HUPCF, bit[8] Hit under previous context fault.

The possible values of this bit are:

0 Stall or terminate subsequent transactions in the presence of an outstanding context
fault.

1 Process all subsequent transactions independently of any outstanding context fault.

Note
 In SMMUv2, if this bit is set to 0, it is not guaranteed that faults from different devices are recorded

in absolute temporal order. When a device faults, although the setting of this bit is observed for that
device, the ordering of suspending transactions from different non-faulting devices is not
guaranteed.

See Behavior when stage 2 transactions terminate on a fault on page 3-80 for more information
about this bit.

CFCFG, bit[7] Context fault configuration.

The possible values of this bit are:
0 Terminate.
1 Stall.
14-274 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
CFIE, bit[6] Context fault interrupt enable.

The possible values of this bit are:
0 Do not raise an interrupt when a context fault occurs.
1 Raise an interrupt when a context fault occurs.

This bit resets to 0.

CFRE, bit[5] Context fault report enable.

The possible values of this bit are:
0 Do not return an abort when a context fault occurs.
1 Return an abort when a context fault occurs.

This bit resets to 0.

For exclusive access transactions, when this bit is set to 0, ARM recommends that the SMMU
reports the transaction as failed. See Reporting exclusive access transactions on page 3-103 for
more information.

E, bit[4] Endianness, indicates the endian format of translation table entries.

The possible values of this bit are:
0 Little endian format.
1 Big endian format.

AFFD, bit[3] Access flag fault disable, determines whether Access flag faults are enabled. This bit only applies
when AFE==1, or when the effective value of AFE is 1, that is, if the effective
SMMU_CBn_TCR.EAE==1.

The possible values of this bit are:
0 Access flag faults are enabled.
1 Access flag faults are disabled.

If AFFD==0, AP[0]==0 in the translation table entry causes an Access flag fault, which is reported
by SMMU_CBn_FSR.

If AFFD==1, hardware behaves as if AP[0]==1, regardless of the translation table entry value.

If the SMMU shares translation tables with the processor, any descriptor configured with AP[0] as
an access flag, that is, when the effective value of AFE is 1, is not held in a processor TLB entry.
However, such descriptors might be held in SMMU TLBs. Therefore, any software that modifies
descriptors must be aware that an obsolete descriptor might be cached in the SMMU TLB.

For more information about the Access permission (AP) bit, see the ARM® Architecture Reference
Manual, ARMv7-A and ARMv7-R edition.

It is iMPLEMENTATION DEFINED whether this bit is cacheable in the TLB

Note
 ARM recommends that software issues TLB maintenance operations if this bit is modified.

AFE, bit[2] Access flag enable, enables the AP[0] bit in the translation table descriptors to be used as an access
flag.

The possible values of this bit are:

0 In the translation table descriptors, AP[0] is an access permissions bit. The full range of
access permissions is supported. No access flag is implemented.

1 In the translation table descriptors, AP[0] is an access flag. Only the simplified model
for access permissions is supported.

If the AArch32 Long-descriptor or the AArch64 translation scheme is selected, that is, if
SMMU_CBn_TCR.EAE is set to 1, this bit has no effect and the SMMU behaves as if the bit is set.
ARM recommends that software treats this bit as UNK/SBOP when SMMU_CBn_TCR.EAE==1.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-275
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
TRE, bit[1] TEX Remap Enable, enables remapping of the TEX[2:1] bits for use as two translation table bits
that can be managed by the operating system. Enabling this remapping also changes the scheme that
describes the memory region attributes in the VMSA.

The possible values of this bit are:

0 TEX Remap is disabled. Bits TEX[2:0] are used with the C and B bits to describe the
memory region attributes.

1 TEX Remap is enabled. Bits TEX[2:1] are reassigned for use as flags managed by the
operating system. The TEX[0], C and B bits describe the memory region attributes, with
the MMU remap registers.

If the AArch32 Long-descriptor or AArch64 translation scheme is selected, that is, if
SMMU_CBn_TCR.EAE is set to 1, this bit has no effect and the SMMU behaves as if the bit is set.
ARM recommends that software treats this bit as UNK/SBOP when SMMU_CBn_TCR.EAE has
the value 1.

M, bit[0] MMU Enable, a global enable bit for the involved translation context bank.

The possible values of this bit are:
0 MMU behavior for this translation context bank is disabled.
1 MMU behavior for this translation context bank is enabled.

14.5.31 SMMU_CBn_TLBIALL, TLB Invalidate All

The SMMU_CBn_TLBIALL characteristics are:

Purpose Invalidates all of the unlocked TLB entries that are tagged as:

• Hypervisor, for HYPC banks.

• Non-secure, using the VMID of the context bank, for Non-secure, non-HYPC
context banks.

• Secure, using any ASID, for Secure context banks.

Optionally, in addition, an SMMU implementation can over-invalidate, removing any
arbitrary set of unlocked TLB entries, including those allocated from other context banks.

Usage constraints This operation requires no arguments, and only has to apply to TLB entries associated with
the VMID used for the stage 1 translation context bank.

If SMMU_CBARn.HYPC has the value 1, this operation only has to apply to TLB entries
associated with hypervisor contexts. The VMID is therefore irrelevant to the operation. See
Hypervisor contexts on page 2-71 for more information.

If the SMMU_CBA2Rn.MONC bit is set to 1, this operation only has to apply to TLB
entries associated with Monitor contexts.

In an implementation that supports two security states, this operation only has to apply to
TLB entries associated with the security domain that the stage 1 translation context bank is
a member of. The VMID of Secure context banks is ignored, even in implementations that
support a VMID for Secure banks. See The Context Bank Attribute Register,
SMMU_CBARn on page 2-67 for more information.

See TLB maintenance registers on page 5-118 for more details about the usage model.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit WO register. Reads are SBZ. See also Table 14-1 on page 14-242.

The SMMU_CBn_TLBIALL register bit assignments are reserved.
14-276 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
14.5.32 SMMU_CBn_TLBIASID, TLB Invalidate by ASID

The SMMU_CBn_TLBIASID characteristics are:

Purpose Invalidates all of the unlocked TLB entries that match the ASID provided as an argument.

Optionally, in addition, an SMMU implementation can over-invalidate, removing any
arbitrary set of unlocked TLB entries, including those allocated from other context banks.

Usage constraints This operation only has to apply to unlocked non-global TLB entries that match the VMID
used for the stage 1 translation context bank. If SMMU_CBARn.HYPC is 1, this operation
is UNPREDICTABLE.

In addition, in an implementation that supports two security states, this operation only has
to apply to unlocked TLB entries associated with the security domain that the stage 1
translation context bank is a member of.

See TLB maintenance registers on page 5-118 for more details about the usage model.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit WO register. Reads are SBZ. See also Table 14-1 on page 14-242.

The SMMU_CBn_TLBIASID bit assignments are:

Bits[31:N] Reserved.

In SMMUv2, N = 16.

In SMMUv1, N = 8.

ASID, bits[N–1:0]

Address Space Identifier, the input to the invalidation operation.

In SMMUv2:
• For an AArch32 translation scheme, bits[15:8] are treated as 0.
• For the AArch64 translation scheme, if SMMU_CBn_TCR2.AS==0, ASID bits[15:8] must

be written as 0.

In SMMUv1, ASID is [7:0].

14.5.33 SMMU_CBn_TLBIVA, TLB Invalidate by VA

The SMMU_CBn_TLBIVA characteristics are:

Purpose Invalidates all of the unlocked TLB entries that match both the VA provided and the TLB
tagging scheme of the context bank, including any global entries if appropriate.

Optionally, in addition, an SMMU implementation can over-invalidate, removing any
arbitrary set of unlocked TLB entries, including those allocated from other context banks.

Usage constraints This operation only has to apply to unlocked TLB entries associated with the ASID and
VMID used for a stage 1 translation context bank. The ASID is not checked for global
entries in the TLB. The VMID of Secure context banks is ignored for TLB matching
purposes, even in implementations that support a VMID for Secure banks. See The Context
Bank Attribute Register, SMMU_CBARn on page 2-67 for more information.

If SMMU_CBARn.HYPC has the value 1, this operation only has to apply to unlocked TLB
entries associated with hypervisor contexts. The VMID and ASID are therefore irrelevant
to the operation. See Hypervisor contexts on page 2-71 for more information.

Reserved

31 0

ASID

N N-1
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-277
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
In an implementation that supports two security states, this operation is only required to
apply to unlocked TLB entries associated with the security domain that the stage 1
translation context bank is a member of.

When accessing this register using an atomic 32-bit access, only the lower word of the VA
is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to the upper
word of this register are ignored.

See TLB maintenance registers on page 5-118 for more details about the usage model.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes In AArch64, a 64-bit WO register.

In AArch32, a 32-bit WO register.

Reads are SBZ. See also Table 14-1 on page 14-242.

SMMU_CBn_TLBIVA bit assignments, AArch64 translation scheme

The SMMU_CBn_TLBIVA bit assignments for AArch64 are:

ASID, bits[63:48]

Address Space Identifier, the input to the invalidation operation.

When SMMU_CBn_TCR2.AS==0, the upper 8 bits of this field must be written as 0.

This field is reserved in HYPC and MONC banks and must be written as zero.

Bits[47:44] Reserved.

Address[55:12], bits[43:0]

Bits[55:12] of the address to be invalidated:
• If the translation granularity is 64KB, then bits corresponding to Address[15:12] are ignored.
• The address is extended to bit[63] by copying bit[55].
• For an AArch32 translation scheme, bits[55:32] are treated as zero.

SMMU_CBn_TLBIVA bit assignments, AArch32 translation scheme

The SMMU_CBn_TLBIVA bit assignments for an AArch32 translation scheme are:

VA, bits[31:12]

Virtual Address, the input address to the invalidation operation.

Bits[11:8] Reserved.

ASID, bits[7:0]

Address Space Identifier, the input to the invalidate operation.

This field is reserved in HYPC and MONC banks and must be written as zero.

Address[55:12]ASIDa Reserved

4863 044 4347

a. For operations that do not require an ASID, this field is reserved.

ASID

31 12 11 0

VA Reserved

8 7
14-278 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
14.5.34 SMMU_CBn_TLBIVAA, TLB Invalidate by VA All ASID

The SMMU_CBn_TLBIVAA characteristics are:

Purpose Invalidates all of the unlocked TLB entries that match the VA provided as an argument, and
the VMID of the context bank, regardless of the ASID. This operation includes global
entries if appropriate.

Optionally, in addition, an SMMU implementation can over-invalidate, removing any
arbitrary set of unlocked TLB entries, including those allocated from other context banks.

Usage constraints This operation only has to apply to unlocked TLB entries associated with the VMID used
for a stage 1 translation context bank. If SMMU_CBARn.HYPC has the value 1, this
operation is UNPREDICTABLE.

In an implementation that supports two security states, this register must operate on all
unlocked TLB entries associated with the security domain that the stage 1 translation
context bank is a member of. The VMID of Secure context banks is ignored for TLB
matching purposes, even in implementations that support a VMID for Secure banks. See
The Context Bank Attribute Register, SMMU_CBARn on page 2-67 for more information.

When accessing this register using an atomic 32-bit access, only the lower word of the VA
is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to the upper
word of this register are ignored.

See TLB maintenance registers on page 5-118 for more details about the usage model.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes In AArch64, a 64-bit WO register.

In AArch32, a 32-bit WO register.

Reads are SBZ. See also Table 14-1 on page 14-242.

SMMU_CBn_TLBIVAA bit assignments, AArch64 translation scheme

The SMMU_CBn_TLBIVAA bit assignments for an AArch64 translation scheme are:

ASID, bits[63:48]

Address Space Identifier, the input to the invalidation operation.

When SMMU_CBn_TCR2.AS==0, the upper 8 bits of this field must be written as 0.

This field is reserved in HYPC and MONC banks and must be written as zero.

Bits[47:44] Reserved.

Address[55:12], bits[43:0]

Bits[55:12] of the address to be invalidated:

• If the translation granularity is 64KB, then bits corresponding to Address[15:12] are ignored.

• The address is extended to bit[63] by copying bit[55].

• For any AArch32 translation scheme, bits[55:32] are treated as zero.

Address[55:12]ASIDa Reserved

4863 044 4347

a. For operations that do not require an ASID, this field is reserved.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-279
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
SMMU_CBn_TLBIVAA bit assignments, AArch32 translation scheme

The SMMU_CBn_TLBIVAA bit assignments for an AArch32 translation scheme are:

VA, bits[31:12]

Virtual Address, the input address to the invalidation operation.

Bits[11:0] Reserved.

14.5.35 SMMU_CBn_TLBIVAAL, TLB Invalidate by VA, All ASID, Last level

The SMMU_CBn_TLBIVAAL characteristics are:

Purpose Invalidates all of the unlocked TLB entries that match the VA provided as an argument, and
the VMID of the context bank, regardless of the ASID. This operation includes global
entries if appropriate.

Optionally, in addition, an SMMU implementation can over-invalidate, removing any
arbitrary set of unlocked TLB entries, including those allocated from other context banks.

Usage constraints This register is similar to SMMU_CBn_TLBIVAA, but it is only required to invalidate
cached copies of the last level of translation table walk of the first stage of translation. The
operation only has to apply to unlocked TLB entries associated with the VMID used for a
stage 1 translation context bank. The ASID is not checked for global entries in the TLB.

If SMMU_CBARn.HYPC has the value 1, this operation is UNPREDICTABLE.

In an implementation that supports two security states, this register must operate on all
unlocked TLB entries associated with the security domain that the stage 1 translation
context bank is a member of. The VMID of Secure context banks is ignored for TLB
matching purposes, even in implementations that support a VMID for Secure banks. See
The Context Bank Attribute Register, SMMU_CBARn on page 2-67 for more information.

When accessing this register using an atomic 32-bit access, only the lower word of the VA
is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to the upper
word of this register are ignored.

See TLB maintenance registers on page 5-118 for more details about the usage model.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS.

Attributes In AArch64, a 64-bit WO register.

In AArch32, a 32-bit WO register.

Reads are SBZ. See also Table 14-1 on page 14-242.

SMMU_CBn_TLBIVAAL bit assignments, AArch64 translation scheme

The SMMU_CBn_TLBIVAAL bit assignments for an AArch64 translation scheme are:

ASID, bits[63:48]

Address Space Identifier, the input to the invalidation operation.

31 12 11 0

VA Reserved

Address[55:12]ASIDa Reserved

4863 044 4347

a. For operations that do not require an ASID, this field is reserved.
14-280 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
When SMMU_CBn_TCR2.AS==0, the upper 8 bits of this field must be written as 0.

This field is reserved in HYPC and MONC banks and must be written as zero.

Bits[47:44] Reserved.

Address[55:12], bits[43:0]

Bits[55:12] of the address to be invalidated:

• If the translation granularity is 64KB, then bits corresponding to Address[15:12] are ignored.

• The address is extended to bit[63] by copying bit[55].

• For any AArch32 translation scheme, bits[55:32] are treated as zero.

SMMU_CBn_TLBIVAAL bit assignments, AArch32 translation scheme

The SMMU_CBn_TLBIVAAL bit assignments for an AArch32 translation scheme are:

VA, bits[31:12]

Virtual Address, the input address to the invalidation operation.

Bits[11:0] Reserved.

14.5.36 SMMU_CBn_TLBIVAL, TLB Invalidate by VA, Last level

The SMMU_CBn_TLBIVAL characteristics are:

Purpose Invalidates all of the unlocked TLB entries that match the VA and ASID provided as
arguments, and the VMID of the context bank.

Optionally, in addition, an SMMU implementation can over-invalidate, removing any
arbitrary set of unlocked TLB entries, including those allocated from other context banks.

Usage constraints This register is similar to SMMU_CBn_TLBIVA, but it is only required to invalidate cached
copies of the last level of translation table walk of the first stage of translation. The operation
only has to apply to TLB entries associated with the VMID used for a stage 1 translation
context bank. The ASID is not checked for global entries in the TLB.

If SMMU_CBARn.HYPC has the value 1, this operation only has to apply to TLB entries
associated with hypervisor contexts. VMID and ASID are therefore irrelevant to the
operation. See Hypervisor contexts on page 2-71 for more information.

In an implementation that supports two security states, this register must operate on all
unlocked TLB entries associated with the security domain that the stage 1 translation
context bank is a member of. The VMID of Secure context banks is ignored, even in
implementations that support a VMID for Secure banks. See The Context Bank Attribute
Register, SMMU_CBARn on page 2-67 for more information.

When accessing this register using an atomic 32-bit access, only the lower word of the VA
is accessed and the register is zero-extended to 64 bits. Atomic 32-bit accesses to the upper
word of this register are ignored.

See TLB maintenance registers on page 5-118 for more details about the usage model.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 64-bit WO register. Reads are SBZ. See also Table 14-1 on page 14-242.

31 12 11 0

VA Reserved
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-281
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
SMMU_CBn_TLBIVAL bit assignments, AArch64 translation scheme

The SMMU_CBn_TLBIVAL bit assignments for an AArch64 translation scheme are:

ASID, bits[63:48]

Address Space Identifier, the input to the invalidation operation.

When SMMU_CBn_TCR2.AS==0, the upper 8 bits of this field must be written as 0.

This field is reserved in HYPC and MONC banks and must be written as zero.

Bits[47:44] Reserved.

Address[55:12], bits[43:0]

Bits[55:12] of the address to be invalidated:

• If the translation granularity is 64KB, then bits corresponding to Address[15:12] are ignored.

• The address is extended to bit[63] by copying bit[55].

• For any AArch32 translation scheme, bits[55:32] are treated as zero.

SMMU_CBn_TLBIVAL bit assignments, AArch32 translation scheme

The SMMU_CBn_TLBIVAL bit assignments for an AArch32 translation scheme are:

VA, bits[31:12]

Virtual Address, the input address to the invalidation operation.

Bits[11:8] Reserved.

ASID, bits[7:0]

Address Space Identifier, the input to the invalidate operation.

14.5.37 SMMU_CBn_TLBSTATUS, TLB Status

The SMMU_CBn_TLBSTATUS characteristics are:

Purpose Indicates the status of any TLB maintenance operations issued before the most recent
SMMU_CBn_TLBSYNC operation.

See TLB maintenance registers on page 5-118 for more details about the usage model.

Usage constraints No usage constraints apply.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes A 32-bit RO register that resets to 0. Writes are ignored. See also Table 14-1 on
page 14-242.

Address[55:12]ASIDa Reserved

4863 044 4347

a. For operations that do not require an ASID, this field is reserved.

ASID

31 12 11 0

VA Reserved

8 7
14-282 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
The SMMU_CBn_STATUS bit assignments are:

Bits[31:1] Reserved.

SACTIVE, bit[0]

SMMU_CBn_TLBSYNC operation active.

The possible values of this bit are:
0 All TLB invalidate operations issued before the most recent SMMU_CBn_TLBSYNC

operation have completed.
1 Some TLB invalidate operations issued before the most recent

SMMU_CBn_TLBSYNC operation have not completed.

14.5.38 SMMU_CBn_TLBSYNC, TLB Synchronize Invalidate

The SMMU_CBn_TLBSYNC characteristics are:

Purpose Initiates a synchronization operation that ensures the completion of any TLB invalidate
operations previously accepted in the corresponding translation context bank.

Usage constraints This operation operates in the scope of the translation context bank it resides in. After being
accepted, the operation does not complete until all translation context bank TLB invalidate
operations accepted by the SMMU before the synchronize operation was accepted are
complete.

See TLB maintenance registers on page 5-118 for more details about the usage model.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS.

Attributes A 32-bit WO register. Reads are SBZ. See also Table 14-1 on page 14-242.

The SMMU_CBn_TLBSYNC bit assignments are reserved.

14.5.39 SMMU_CBn_TCR, Translation Control Register

The SMMU_CBn_TCR characteristics are:

Purpose Determines translation properties, including which of the Translation Table Base Registers,
SMMU_CBn_TTBRm, defines the base address for the translation table walk required
when an input address is not found in the TLB.

Usage constraints No usage constraints apply.

Configurations The format of this register depends on the value of SMMU_CBA2Rn.VA64 and
SMMU_CBn_TCR.EAE. See Multi-format registers and reserved fields on page 14-249.

Note
 This document refers to the effective value of a register bit. The effective value of the

SMMU_CBn_TCR.EAE bit is 1 when any of the following apply:
• The SMMU_CBn_TCR.EAE bit is set to 1.
• The transaction is subject to stage 2 translation.
• The translation uses the AArch64 translation scheme.
• The translation uses a HYPC bank.

In all other cases the effective value of SMMU_CBn_TCR.EAE is 0.

31 1 0

Reserved

SACTIVE
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-283
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

In SMMUv1, this register is SMMU_CBn_TTBCR.

Attributes A 32-bit RW register with an UNKNOWN reset value. See also Table 14-1 on page 14-242.

Register format when SMMU_CBn_CBA2R.VA64 is 0 and SMMU_CBn_TCR.EAE is 0

The SMMU_CBn_TCR bit assignments in this format are:

EAE, bit[31] Extended Address Enable.

The possible values of this bit are:
0 Use the translation system defined in the AArch32 Short-descriptor.
1 Use the translation system defined in the AArch32 Long-descriptor.

NSCFG1, bit[30]

Non-secure attribute for the memory associated with a translation table walk using
SMMU_CBn_TTBR1. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 for more information.

This field only applies to a Secure translation context bank. Otherwise, it is ignored.

Bits[29:15] Reserved.

NSCFG0, bit[14]

Non-secure attribute for the memory associated with a translation table walk using
SMMU_CBn_TTBR0. This field only applies to a Secure translation context bank. Otherwise, it is
ignored. See SMMU_CBn_TTBRm, Translation Table Base Registers on page 14-291.

Bits[13:6] Reserved.

PD1, bit[5] Translation table walk disable for translations using TTBR1. This bit controls whether a translation
table walk is performed on a TLB miss, for an address that is translated using TTBR1. The encoding
of this bit is:
0 Perform translation table walks using TTBR1.
1 A TLB miss on an address that is translated using TTBR1 generates a translation fault.

No translation table walk is performed..

PD0, bit[4] Translation table walk disable for translations using TTBR0. This bit controls whether a translation
table walk is performed on a TLB miss for an address that is translated using TTBR0. The meanings
of the possible values of this bit are equivalent to those for the PD1 bit..

SBZ, bit[3] Should-be-Zero.

T0SZ, bits[2:0] The size offset of the SMMU_CBn_TTBR0 addressed region, encoded as a 3-bit unsigned number
giving the size of the region as 232-T0SZ. See SMMU_CBn_TTBRm, Translation Table Base
Registers on page 14-291.

EAE
NSCFG1

T0SZ

31 30 29 15 14 13 6 5 4 3 2 0

Reserved Reserved

NSCFG0 PD1
PD0

SBZ
14-284 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
Register format when SMMU_CBn_CBA2R.VA64 is 0 and SMMU_CBn_TCR.EAE is 1

The SMMU_CBn_TCR bit assignments in this format are:

EAE Extended Address Enable.

The possible values of this bit are:
0 Use the translation system defined in the Short-descriptor
1 Use the translation system defined in the Long-descriptor.

Note
 This bit is ignored and treated as 1 for stage 2 translation contexts and for Hypervisor contexts that

use the AArch32 Long-descriptor translation scheme.

NSCFG1, bit[30]

Non-secure attribute for the memory associated with a translation table walk using
SMMU_CBn_TTBR1. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 for more information.

This field only applies to a Secure translation context bank. Otherwise, it is ignored.

SH1, bits [29:28]

Shareable attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR1. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and SH1, SH0 encoding on page 14-287 for more information.

ORGN1, bits [27:26]

Outer Cacheability Attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR1. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and ORGN1, ORGN0, IRGN1, IRGN0 encoding on page 14-287 for more information.

IRGN1, bits [25:24]

Inner Cacheability Attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR1. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and ORGN1, ORGN0, IRGN1, IRGN0 encoding on page 14-287 for more information.

EPD1, bit[23] Translation Walk Disable for the SMMU_CBn_TTBR1 region where SMMU_CBn_TCR.EAE==1.
See SMMU_CBn_TTBRm, Translation Table Base Registers on page 14-291 for more information.
Controls whether a translation table walk is performed on a TLB miss when SMMU_CBn_TTBR1
is used.

This bit is UNK/SBZ if either:
• SMMU_CBn_TCR.EAE==0.
• SMMU_CBARn.HYPC==1.

The possible values of this bit are:

0 If a TLB miss occurs when SMMU_CBn_TTBR1 is used, a translation table walk is
performed.

1 If a TLB miss occurs when SMMU_CBn_TTBR1 is used, no translation table walk is
performed and an L1 Section translation fault is returned.

This function is the same as PD1. The bit position is moved depending on the setting of
SMMU_CBn_TCR.EAE.

31 30 29 28 27 26 25 24 23 22 21 19 18 16 15 14 13 12 11 10 9 8 7 6 3 2 0

SH0

EAE
NSCFG1

SH1
ORGN1

IRGN1
EPD1

A1
Reserved

T1SZ
Reserved

NSCFG0
ORGN0

IRGN0
EPD0

Reserved
T0SZ
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-285
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
A1, bit[22] Select the ASID from the SMMU_CBn_TTBR1 or SMMU_CBn_TTBR0 ASID field. See
SMMU_CBn_TTBRm, Translation Table Base Registers on page 14-291 for more information.

The possible values of this bit are:
0 Select the ASID from the SMMU_CBn_TTBR0 ASID field.
1 Select the ASID from the SMMU_CBn_TTBR1 ASID field.

Bits[21:19] Reserved.

T1SZ, bits[18:16]

The size offset of the SMMU_CBn_TTBR1 addressed region, encoded as a 3-bit unsigned number,
giving the size of the region as 232-T1SZ. See SMMU_CBn_TTBRm, Translation Table Base
Registers on page 14-291.

Bit[15] Reserved.

NSCFG0, bit[14]

Non-secure attribute for the memory associated with a translation table walk using
SMMU_CBn_TTBR0. This field only applies to a Secure translation context bank. Otherwise, it is
ignored. See SMMU_CBn_TTBRm, Translation Table Base Registers on page 14-291.

SH0, bits[13:12]

Shareable attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and SH1, SH0 encoding on page 14-287 for more information.

ORGN0, bits[11:10]

Outer Cacheability Attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and ORGN1, ORGN0, IRGN1, IRGN0 encoding on page 14-287 for more information.

IRGN0, bits[9:8]

Inner Cacheability Attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and ORGN1, ORGN0, IRGN1, IRGN0 encoding on page 14-287 for more information.

EPD0, bit[7] Translation Walk Disable for the SMMU_CBn_TTBR0 region, where EAE==1. See
SMMU_CBn_TTBRm, Translation Table Base Registers on page 14-291 for more information.
Controls whether a translation table walk is performed on a TLB miss when SMMU_CBn_TTBR0
is used.

This bit is UNK/SBZ if either:
• SMMU_CBn_TCR.EAE==0.
• SMMU_CBARn.HYPC==1.

The possible values of this bit are:

0 If a TLB miss occurs when SMMU_CBn_TTBR0 is used, a translation table walk is
performed.

1 If a TLB miss occurs when SMMU_CBn_TTBR0 is used, no translation table walk is
performed and an L1 Section translation fault is returned.

This function is the same as PD0.

Bits[6:3] Reserved.

T0SZ, bits[2:0]

The size offset of the SMMU_CBn_TTBR0 addressed region, encoded as a 3-bit unsigned number,
giving the size of the region as 232-T0SZ. See SMMU_CBn_TTBRm, Translation Table Base
Registers on page 14-291.
14-286 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
SH1, SH0 encoding

Table 14-6 shows the encoding of the SH1 and SH0 fields.

ORGN1, ORGN0, IRGN1, IRGN0 encoding

Table 14-7 shows the encoding of the ORGN1, ORGN0, IRGN1 and IRGN0 fields.

Register format when SMMU_CBn_CBA2R.VA64 is 1

When the SMMU_CBA2Rn.VA64 bit is set to 1, the SMMU uses the AArch64 translation scheme. The
SMMU_CBn_TCR bit assignments for the AArch64 translation scheme are:

TG1, bits[31:30]

The page granule size for TTBR1, for non-HYPC, non-MONC stage 1 translations. The possible
values of this field are:
0b00 Reserved.
0b01 16KB granule size.
0b10 4KB granule size.
0b11 64KB granule size.

If software sets this field to a reserved value, or a size that has not been implemented, hardware
treats the field as if it is programmed to an IMPLEMENTATION DEFINED choice of the sizes that are
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

Table 14-6 SMMU_CBn_TCR.SH1 & SH0 encoding

SH[1] SH[0] Normal memory

0 0 Non-shareable

0 1 UNPREDICTABLE

1 0 Outer Shareable

1 1 Inner Shareable

Table 14-7 SMMU_CBn_TCR.ORGN1, ORGN0, IRGN1, IRGN0 encoding

RGN[1] RGN[0] Description

0 0 Non-cacheable Normal memory

0 1 Write-Back, Write-Allocate cacheable

1 0 Write-Through cacheable

1 1 Write-Back, no Write-Allocate cacheable

T1SZA1 T0SZ

31 30 29 15 14 13 6 5 0

TG1 SH1 TG0 SH0

28 27 26

ORGN1

25 24

IRGN1

23

EPD1

22 1621 12 11 10 9 8

ORGN0

7

IRGN0
EPD0
Reserved
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-287
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
SH1, bits [29:28]

Shareable attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR1. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and SH1, SH0 encoding on page 14-287 for more information.

ORGN1, bits [27:26]

Outer Cacheability Attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR1. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and ORGN1, ORGN0, IRGN1, IRGN0 encoding on page 14-287 for more information.

IRGN1, bits [25:24]

Inner Cacheability Attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR1. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and ORGN1, ORGN0, IRGN1, IRGN0 encoding on page 14-287 for more information.

EPD1, bit[23] Translation Walk Disable for the SMMU_CBn_TTBR1 region. Controls whether a translation table
walk is performed on a TLB miss when SMMU_CBn_TTBR1 is used.

This bit is UNK/SBZ if either:
• SMMU_CBn_TCR.EAE==0.
• SMMU_CBARn.HYPC==1.

The possible values of this bit are:

0 If a TLB miss occurs when SMMU_CBn_TTBR1 is used, a translation table walk is
performed.

1 If a TLB miss occurs when SMMU_CBn_TTBR1 is used, no translation table walk is
performed and an L1 Section translation fault is returned.

This function is the same as PD1. The bit position is moved depending on the setting of
SMMU_CBn_TCR.EAE.

A1, bit[22] Select the ASID from the SMMU_CBn_TTBR1 or SMMU_CBn_TTBR0 ASID field. See
SMMU_CBn_TTBRm, Translation Table Base Registers on page 14-291 for more information.

The possible values of this bit are:
0 Select the ASID from the SMMU_CBn_TTBR0 ASID field.
1 Select the ASID from the SMMU_CBn_TTBR1 ASID field.

T1SZ, bits[21:16]

The size offset of the SMMU_CBn_TTBR1 addressed region, encoded as a 6-bit unsigned number,
giving the size of the region as 264–T1SZ.

TG0, bits[15:14]

The page granule size for TTBR0. The possible values of this field are:
0b00 4KB granule size.
0b01 64KB granule size.
0b10 16KB granule size.
0b11 Reserved.

If software sets this field to a reserved value, or a size that has not been implemented, hardware
treats the field as if it is programmed to an IMPLEMENTATION DEFINED choice of the sizes that are
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

SH0, bits[13:12]

Shareable attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and SH1, SH0 encoding on page 14-287 for more information.
14-288 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
ORGN0, bits[11:10]

Outer Cacheability Attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and ORGN1, ORGN0, IRGN1, IRGN0 encoding on page 14-287 for more information.

IRGN0, bits[9:8]

Inner Cacheability Attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 and ORGN1, ORGN0, IRGN1, IRGN0 encoding on page 14-287 for more information.

EPD0, bit[7] Translation Walk Disable for the SMMU_CBn_TTBR0 region, where EAE==1. See
SMMU_CBn_TTBRm, Translation Table Base Registers on page 14-291 for more information.
Controls whether a translation table walk is performed on a TLB miss when SMMU_CBn_TTBR0
is used.

This bit is UNK/SBZ if either:
• SMMU_CBn_TCR.EAE==0.
• SMMU_CBARn.HYPC==1.

The possible values of this bit are:

0 If a TLB miss occurs when SMMU_CBn_TTBR0 is used, a translation table walk is
performed.

1 If a TLB miss occurs when SMMU_CBn_TTBR0 is used, no translation table walk is
performed and an L1 Section translation fault is returned.

This function is the same as PD0. The bit position is moved depending on the setting of
SMMU_CBn_TCR.EAE.

Bit[6] Reserved.

T0SZ, bits[5:0]

The size offset of the SMMU_CBn_TTBR0 addressed region, encoded as a 6-bit unsigned number,
giving the size of the region as 264-T0SZ. See SMMU_CBn_TTBRm, Translation Table Base
Registers on page 14-291.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-289
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
14.5.40 SMMU_CBn_TCR2, Translation Control Register 2

The SMMU_CBn_TCR2 characteristics are:

Purpose Extends SMMU_CBn_TCR by adding control information about the translation granule
size and the size of the intermediate physical address.

Usage constraints No usage constraints apply.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

This register is not provided in SMMUv1.

Attributes A 32-bit RW register with an UNKNOWN reset value. See also Table 14-1 on page 14-242.

The SMMU_CBn_TCR2 bit assignments are:

Bit[31] Reserved.

NSCFG1, bit[30]

Non-secure attribute for the memory associated with a translation table walk using
SMMU_CBn_TTBR1. See SMMU_CBn_TTBRm, Translation Table Base Registers on
page 14-291 for more information.

This field only applies to a Secure translation context bank. Otherwise, it is ignored.

Bits[29:18] Reserved.

SEP, bits[17:15]

Sign Extension Position. The bit position from which to sign-extend the stage 1 input address when
required.

The encoding of this field is:

0b000 Bit[31]

0b001 Bit[35]

0b010 Bit[39]

0b011 Bit[41]

0b100 Bit[43]

0b101 Bit[47]

0b110 Reserved. This bit must be treated as 0b111.

0b111 Explicit sign bit provided by the device as bit[48].

If the value of this bit changes for a context bank, software must invalidate any affected TLB entries.

Note
 • This field is ignored for the AArch32 Long-descriptor and AArch32 Short-descriptor

translation schemes. If SEP specifies a bit above that implemented on the upstream input
address bus, addresses are zero-extended. Sign-extension does not apply to address
translation operations.

• This field is ignored for HYPC and MONC banks.

SEP

Reserved
NSCFG1

PASize

31 30 29 15 14 13 6 5 4 3 2 0

Reserved Reserved

NSCFG0

Reserved
AS

TBI0

1718 7

TBI1
14-290 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
NSCFG0, bit[14]

Non-secure attribute for the memory associated with a translation table walk using
SMMU_CBn_TTBR0. This field only applies to a Secure translation context bank. Otherwise, it is
ignored. See SMMU_CBn_TTBRm, Translation Table Base Registers.

Bits[13:7] Reserved.

TBI1, bit[6] Top Byte Ignored. Indicates whether the top byte of the input address can be used for address match
for the TTBR1 region. Possible values for this bit are:
0 Top byte is used in the address calculation.
1 Top byte is ignored in the address calculation.

Note
 This bit affects only address translation operations that might supply a full 64-bit tagged address.

TBI0, bit[5] Top Byte Ignored. Indicates whether the top byte of the input address can be used for address match
for the TTBR0 region. Possible values for this bit are:
0 Top byte is used in the address calculation.
1 Top byte is ignored in the address calculation.

Note
 This bit affects only address translation operations that might supply a full 64-bit tagged address.

AS, bit[4] ASID Size. Possible values for this field are:
0 8-bit.
1 16-bit.

Note
 8-bit ASIDs extend to 16-bits for all TLB matching purposes. When this bit is set to 0, the upper 8

bits of SMMU_CBn_TTBR0 and SMMU_CBn_TTBR1 are:
• Ignored by hardware, except when reading back the register.
• Treated as 0 when used for allocation and for TLB matching.

Bit[3] Reserved.

PASize, bits[2:0]

Physical Address Size. If the SMMU supports a larger address space than a device provides, this
field enables software to reduce the amount of SMMU address space.

The encoding of this field is:
0b000 32-bits, 4GB
0b001 36-bits, 64GB
0b010 40-bits, 1TB
0b011 42-bits, 4TB
0b100 44-bits, 16TB
0b101 48-bits, 256TB

All other values are reserved, and treated as 48-bits.

14.5.41 SMMU_CBn_TTBRm, Translation Table Base Registers

The SMMU_CBn_TTBR1 and SMMU_CBn_TTBR0 characteristics are:

Purpose Holds the translation table base addresses:
• SMMU_CBn_TTBR1 holds the base address of translation table 1.
• SMMU_CBn_TTBR0 holds the base address of translation table 0.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-291
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
Usage constraints Depending on the translation scheme selected, either an address size fault or a translation
fault is generated if an IPA exceeds the number of bits that the SMMU_IDR2.OAS field
defines.

Configurations The format of this register depends on the translation scheme selected:
• AArch32 Short-descriptor translation scheme.
• AArch32 Long-descriptor translation schemes on page 14-293.

See also Multi-format registers and reserved fields on page 14-249.

It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes 64-bit RW registers with UNKNOWN reset values. See also Table 14-1 on page 14-242.

AArch32 Short-descriptor translation scheme

When using the AArch32 Short-descriptor translation scheme, the SMMU_CBn_TTBRm bit assignments are:

Bits[63:48] Reserved.

Translation table base address [47:14-N]

Translation table base 1 address or translation table base 0 address, bits [47:14-N], where N
determines the required alignment of the translation table, which must be aligned to 214-N bytes:
• For SMMU_CBn_TTBR1, N==0.
• For SMMU_CBn_TTBR0, N is determined by SMMU_CBn_TCR.T0SZ.

Bits[13-N:7] Reserved.

IRGN[0], bit[6]

Inner Region bits. See also SMMU_CBn_TTBRm.IRGN[1].

These bits indicate the Inner cacheability attributes for the memory associated with the translation
table walks.

The encoding of bits[0,6] is:
0b00 Inner Non-cacheable Normal memory.
0b01 Inner Write-Back Write-Allocate cacheable Normal memory.
0b10 Inner Write-Through cacheable Normal memory.
0b11 Inner Write-Back no Write-Allocate cacheable Normal memory.

NOS, bit[5] Not Outer Shareable bit.

This bit indicates the Outer Shareable attribute for the memory associated with a translation table
walk that has the Shareable attribute, indicated by SMMU_CBn_TTBR1.S or
SMMU_CBn_TTBR0.S having the value 1.

The possible values of this bit are:
0 Outer Shareable.
1 Inner Shareable.

RGN, bits[4:3] Region bits, indicate the Outer cacheable attributes for the memory associated with the translation
table walk.

Reserved RGN S

IRGN[0]
NOS
IMP

IRGN[1]

Reserved

63 013 247 46748 14-N 13-N

Translation table base address [47:14-N]

5

14-292 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
The encoding of this field is:
0b00 Non-cacheable Normal memory.
0b01 Outer Write-Back Write-Allocate cacheable.
0b10 Outer Write-Through cacheable.
0b11 Outer Write-Back no Write-Allocate cacheable.

IMP, bit[2] IMPLEMENTATION DEFINED bit.

The effect of this bit is IMPLEMENTATION DEFINED. If the translation table implementation does not
include any IMPLEMENTATION DEFINED features, this bit is SBZ.

S, bit[1] Shareable bit, indicates the Shareable attribute for the memory associated with a translation table
walk.

The possible values of this bit are:
0 Non-shareable.
1 Shareable.

IRGN[1], bit[0]

Inner region bits. See also SMMU_CBn_TTBRm.IRGN[0].

These bits indicate the Inner cacheability attributes for the memory associated with a translation
table walk.

AArch32 Long-descriptor translation schemes

When using the AArch32 Long-descriptor translation scheme, the SMMU_CBn_TTBRm assignments are:

Bits[63:56] Reserved.

ASID[7:0], bits[55:48]

The Address Space Identifier associated with this base address.

SMMU_CBn_TCR.A1 determines the selection between SMMU_CBn_TTBR0.ASID and
SMMU_CBn_TTBR1.ASID.

Base Address [47:x]

Translation table base 1 or 0 address, bits [47:x].

The value x is determined by the T0SZ or T1SZ field in SMMU_CBn_TCR, according to the
following formula, where n is 0 or 1 depending on whether T0SZ or T1SZ is specified:
if SMMU_CBn_TCR.TnSZ > 1 then

x = 14 - SMMU_CBn_TCR.TnSZ
else

x = 5 - SMMU_CBn_TCR.TnSZ

The number of implemented bits is determined by the maximum address sizes, as defined by the
SMMU_IDR2.IAS and SMMU_IDR2.OAS fields. Unimplemented bits are RAZ/WI.

Bits[x-1:0] Reserved.

AArch64 translation scheme

When using the AArch64 Long-descriptor translation scheme, the SMMU_CBn_TTBRm bit assignments are:

Base address [47:x]ASID[7:0] ReservedReserved

63 056 55 48 47 x x–1

Base address [47:x]ASID[15:0] Reserved

63 048 47 x x–1
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 14-293
ID091613 Non-Confidential - Beta

14 Stage 1 Translation Context Bank Format
14.5 Stage 1 translation context bank register descriptions
ASID[15:0], bits[63:48]

The Address Space Identifier associated with this base address.

SMMU_CBn_TCR.A1 determines the selection between SMMU_CBn_TTBR0.ASID and
SMMU_CBn_TTBR1.ASID.

ASID[15:8] is valid only when the SMMU_CBn_TCR2.AS bit is set to 1, otherwise ASID[15:8] is
reserved, treated as 0, and must be written as 0.

Base Address [47:x]

Translation table base 1 or 0 address, bits [47:x].

The value x is determined by several fields, including the T0SZ or T1SZ field in SMMU_CBn_TCR
and SMMU_CBn_TCR.SL0.

The number of implemented bits is determined by the maximum address sizes, as defined by the
SMMU_IDR2.IAS and SMMU_IDR2.OAS fields. Unimplemented bits are RAZ/WI.

Bits[x-1:0] Reserved.
14-294 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Chapter 15
Stage 2 Translation Context Bank Format

This chapter gives the layout of the stage 2 translation context bank. It contains the following sections:
• Stage 1 and stage 2 context bank format differences on page 15-296.
• Stage 2 translation context bank address space on page 15-297.
• Stage 2 translation context bank register descriptions on page 15-300.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 15-295
ID091613 Non-Confidential - Beta

15 Stage 2 Translation Context Bank Format
15.1 Stage 1 and stage 2 context bank format differences
15.1 Stage 1 and stage 2 context bank format differences
The format of a stage 2 translation context bank is similar to a stage 1 translation context bank. The following
differences apply to the stage 2 format:

• The following registers do not exist and are UNK/SBZP in the stage 2 translation context bank:
— SMMU_CBn_NMRR.
— SMMU_CBn_PRRR.
— SMMU_CBn_TTBR1.
— SMMU_CBn_CONTEXTIDR.

• The following registers do not exist in the stage 2 translation context bank:
— SMMU_CBn_ATSR.
— SMMU_CBn_MAIR1, SMMU_CBn_MAIR0.
— SMMU_CBn_PAR.
— SMMU_CBn_ATS1PR.
— SMMU_CBn_ATS1PW.
— SMMU_CBn_ATS1UR.
— SMMU_CBn_ATS1UW.
— SMMU_CBn_TLBIALL.
— SMMU_CBn_TLBIASID.
— SMMU_CBn_TLBIVA.
— SMMU_CBn_TLBIVAA.
— SMMU_CBn_TLBIVAAL.
— SMMU_CBn_TLBIVAL.

• The following registers exist only in the stage 2 translation context bank:
— SMMU_CBn_IPAFAR.
— SMMU_CBn_TLBIIPAS2.
— SMMU_CBn_TLBIIPAS2L.

• A stage 2 translation context bank only supports the LPAE mode of operation. This means that
SMMU_CBn_TCR.EAE has a fixed value of 1.

• The fields in SMMU_CBn_TCR that relate to SMMU_CBn_TTBR1 are UNK/SBZP. See
SMMU_CBn_TTBRm, Translation Table Base Registers on page 14-291 for more information.
15-296 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

15 Stage 2 Translation Context Bank Format
15.2 Stage 2 translation context bank address space
15.2 Stage 2 translation context bank address space
The stage 2 translation context bank provides registers for initial translation in implementations that support stage
2 translation.

Unless otherwise indicated, the SMMU architecture supports 32-bit atomic access to all stage 2 translation context
bank address space registers, and where applicable, 64-bit atomic access. Whether 8-bit, 16-bit, or 128-bit atomic
transactions are supported is IMPLEMENTATION DEFINED.

Table 15-1 shows the address of the stage 2 translation context bank format registers relative to the offset from the
translation context bank base address, SMMU_CBn_BASE. Unless otherwise stated, registers are present in any
version of the SMMU architecture.

See also Stage 1 and stage 2 context bank format differences on page 15-296.

Table 15-1 Stage 2 translation context bank address space

Offset Name Type Description Notes

0x00000 SMMU_CBn_SCTLR RW SMMU_CBn_SCTLR, System Control Register
on page 15-303.

-

0x00004 SMMU_CBn_ACTLR RW SMMU_CBn_ACTLR, Auxiliary Control
Register on page 14-250.

-

0x00008 SMMU_CBn_RESUME WO SMMU_CBn_RESUME, Transaction Resume
register on page 14-270.

-

0x0000C-0x0001C Reserved - - -

0x00020 SMMU_CBn_TTBR0[31:0] RWa SMMU_CBn_TTBR0, Translation Table Base
Register on page 15-311..

64-bit

0x00024 SMMU_CBn_TTBR0[63:32]

0x00028-0x0002C Reserved - - -

0x00030 SMMU_CBn_TCR RW SMMU_CBn_TCR, Translation Control
Register on page 15-309.

-

0x00034-0x0003C Reserved - - -

0x00040-0x00044 Reserved - Reserved for IMPLEMENTATION DEFINED
memory attributes associated with memory
encodings. Such attributes are only additional
qualifiers to the memory locations, and cannot
change the architected behaviors of the memory
attributes defined in SMMU_CBn_MAIR0 and
SMMU_CBn_MAIR1. See
SMMU_CBn_MAIRm, Memory Attribute
Indirection Registers on page 14-259 for more
information.

0x0004C-0x00054 Reserved - - -

0x00058 SMMU_CBn_FSR RW SMMU_CBn_FSR, Fault Status Register on
page 14-254.

-

0x0005C SMMU_CBn_FSRRESTORE WO SMMU_CBn_FSRRESTORE, Fault Status
Restore Register on page 14-257.

 -

0x00060 SMMU_CBn_FAR[31:0] RW SMMU_CBn_FAR, Fault Address Register on
page 14-254.

-

0x00064 SMMU_CBn_FAR[63:32]
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 15-297
ID091613 Non-Confidential - Beta

15 Stage 2 Translation Context Bank Format
15.2 Stage 2 translation context bank address space
0x00068 SMMU_CBn_FSYNR0 RW SMMU_CBn_FSYNRm, Fault Syndrome
Registers on page 14-257.

-

0x0006C SMMU_CBn_FSYNR1

0x00070 SMMU_CBn_IPAFAR[31:0] ROb SMMU_CBn_IPAFAR, IPA Fault Address
Register on page 15-302

SMMUv2 only
64-bit

0x00074 SMMU_CBn_IPAFAR[63:32]

0x00078-0x0062C Reserved - - -

0x00630 SMMU_CBn_TLBIIPAS2[31:0] WO SMMU_CBn_TLBIIPAS2, Invalidate TLB by
IPA, Last level on page 15-306

OPTIONAL

0x00634 SMMU_CBn_TLBIIPAS2[63:32]

0x00638 SMMU_CBn_TLBIIPAS2L[31:0] WO SMMU_CBn_TLBIIPAS2L, Invalidate TLB by
IPA, Last level on page 15-307

OPTIONAL

0x0063C SMMU_CBn_TLBIIPAS2L[63:32]

0x00640-0x00CFC Reserved - - -

0x007F0 SMMU_CBn_TLBSYNC WO SMMU_CBn_TLBSYNC, TLB Synchronize
Invalidate on page 15-308

OPTIONAL

0x007F4 SMMU_CBn_TLBSTATUS RO SMMU_CBn_TLBSTATUS, TLB Status on
page 15-308

OPTIONAL

0x007F8-0x00CFC Reserved - - -

0x00D00-0x00DFC IMPLEMENTATION DEFINED RW Reserved for IMPLEMENTATION DEFINED
purposes.

-

0x00E00-0x00E38 SMMU_CBn_PMEVCNTRm RW SMMU_CBn_PMEVCNTRm, Performance
Monitors Event Counter registers on
page 14-266.

-

0x00E3C-0x00E7C Reserved - - -

0x00E80-0x00EB8 SMMU_CBn_PMEVTYPERm RW SMMU_CBn_PMEVTYPERm, Performance
Monitors Event Type Registers on page 14-267.

-

0x00EBC-0x00EFC Reserved - - -

0x00F00 SMMU_CBn_PMCFGR RO SMMU_CBn_PMCFGR, Performance
Monitors Configuration Register on
page 14-266.

-

0x00F04 SMMU_CBn_PMCR RW SMMU_CBn_PMCR, Performance Monitors
Control Register on page 14-266.

-

0x00F08 Reserved - - Reserved for
PMUSERENR

0x00F0C-0x00F1C Reserved - - -

0x00F20 SMMU_CBn_PMCEID0 RO SMMU_CBn_PMCEIDm, Performance
Monitors Common Event Identification
registers on page 14-265.

-

0x00F24 SMMU_CBn_PMCEID1 RO SMMU_CBn_PMCEIDm, Performance
Monitors Common Event Identification
registers on page 14-265.

-

Table 15-1 Stage 2 translation context bank address space (continued)

Offset Name Type Description Notes
15-298 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

15 Stage 2 Translation Context Bank Format
15.2 Stage 2 translation context bank address space
0x00F28-0x00F3C Reserved - - -

0x00F40 SMMU_CBn_PMCNTENSET RW SMMU_CBn_PMCNTENSET, Performance
Monitors Count Enable Set register on
page 14-266.

-

0x00F44 SMMU_CBn_PMCNTENCLR RW SMMU_CBn_PMCNTENCLR, Performance
Monitors Count Enable Clear register on
page 14-266.

-

0x00F48 SMMU_CBn_PMINTENSET RW SMMU_CBn_PMINTENSET, Performance
Monitors Interrupt Enable Set register on
page 14-267.

-

0x00F4C SMMU_CBn_PMINTENCLR RW SMMU_CBn_PMINTENCLR, Performance
Monitors Interrupt Enable Clear register on
page 14-267.

-

0x00F50 SMMU_CBn_PMOVSCLR RW SMMU_CBn_PMOVSCLR, Performance
Monitors Overflow Status Clear Register on
page 14-267.

-

0x00F54 Reserved - - Reserved for
PMSWINC

0x00F58 SMMU_CBn_PMOVSSET RW SMMU_CBn_PMOVSSET, Performance
Monitors Overflow Status Set Register on
page 14-268.

-

0x00F5C-0x00FB4 Reserved - - -

0x00FB8 SMMU_CBn_PMAUTHSTATUS RO SMMU_CBn_PMAUTHSTATUS, Performance
Monitors Authentication Status register on
page 14-265.

-

0x00FBC-0x00FC8 Reserved - - -

0x00FCC Reserved - Reserved for
PMDEVTYPE

0x00FD0-
(PAGESIZE −
0x4)

Reserved - - -

a. Mainly RW. See field description for detail.
b. Mainly RO. See register description for detail.

Table 15-1 Stage 2 translation context bank address space (continued)

Offset Name Type Description Notes
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 15-299
ID091613 Non-Confidential - Beta

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
15.3 Stage 2 translation context bank register descriptions
This section describes some of the stage 2 translation context bank registers that might be present in an SMMU
implementation. The registers described in this section differ slightly to those in the stage 1 translation context bank
address space. Unless otherwise stated, registers are present in any version of the SMMU architecture. See
Table 15-1 on page 15-297 for the full stage 2 translation context bank address space map.

15.3.1 SMMU_CBn_FSYNRm, Fault Syndrome Registers

The SMMU_CBn_FSYNR1 and SMMU_CBn_FSYNR0 characteristics are:

Purpose Holds fault syndrome information about the memory access that caused a synchronous abort
exception.

Usage constraints No usage constraints apply.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 1 translation. See
SMMU_IDR0.S1TS for more information.

Attributes 32-bit RW registers with UNKNOWN reset values.

SMMU_CBn_FSYNR0

The SMMU_CBn_FSYNR0 bit assignments are:

Bits[31:24] Reserved.

S1CBNDX[23:16]

Stage 1 Context Bank Index associated with the transaction that caused the fault.

For stage 1 followed by stage 2 translations, this field contains the stage 1 translation context bank
index for processing the transaction.

For stage 2 only translation, this field is UNKNOWN.

This field is only present in a stage 2 format translation context bank. In a stage 1 format translation
context bank, it is UNK/SBPZ.

This field is only valid if SMMU_IDR0.NTS==1. In an implementation that does not include stage
1 followed by stage 2 translation, this field is UNK/WI.

Note
 An SMMU implementation is not required to provide storage for all 8 bits of this field, and might

provide only enough bits to represent the highest implemented context bank number.

Bits[15:12] Reserved.

AFR
PTWF
ATOF

NSATTR
NSSTATE

IND
PNU

WNR
S1PTWF

Reserved

31 24 23 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

S1CBNDX Reserved PLVL

NESTED
15-300 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
AFR, bit[11] Asynchronous fault recorded. The possible values of this bit are:
0 A fault was recorded synchronously.
1 A fault was recorded asynchronously.

PTWF, bit[10] Page Table Walk Fault. Indicates whether an external fault was recorded during a translation table
access. The possible values of this bit are:
0 An external fault did not occur while processing a translation table walk.
1 An external fault occurred while processing a translation table walk.

In SMMUv2, this bit is set to 0 unless an external fault is recorded during a translation table walk.

In SMMUv1, it is UNPREDICTABLE whether this bit is set to 1 for any other fault type.

ATOF, bit[9] Address translation operation fault. The possible values of this bit are:
0 An ATOF fault did not occur.
1 A fault occurred during the processing of an address translation operation.

NSATTR, bit[8]

Non-secure Attribute. The possible values of this bit are:
0 The input transaction has a Secure attribute.
1 The input transaction has a Non-secure attribute.

NSSTATE, bit[7]

Non-secure State. The possible values of this bit are:
0 The transaction is associated with a Secure client.
1 The transaction is associated with a Non-secure client.

IND, bit[6] Instruction Not Data. The possible values of this bit are:
0 Data.
1 Instruction.

PNU, bit[5] Privileged Not Unprivileged. The possible values of this bit are:
0 Unprivileged.
1 Privileged.

WNR, bit[4] Write Not Read. The possible values of this bit are:
0 Read.
1 Write.

S1PTWF, bit[3]

A walk fault on a stage 1 translation table access. The possible values of this bit are:
0 A fault did not occur during stage 2 translation of a stage 1 translation table walk.
1 A fault occurred during stage 2 translation of a stage 1 translation table walk.

This field is only valid if the implementation supports stage 1 followed by stage 2 translation. That
is, if SMMU_IDR0.NTS==1. In an implementation that does not include stage 1 followed by stage
2 translation, this field is UNK/SBZP.

NESTED, bit[2]

Indicates whether the fault is related to a stage 1 followed by stage 2 translation. The possible values
of this bit are:
0 The fault is related to a stage 2 translation.
1 The fault is related to a stage 1 followed by stage 2 translation.

When this bit is set to 0:
• SMMU_CBn_FAR records the IPA that faulted during stage 2.
• SMMU_CBn_IPAFAR also records the IPA that faulted at stage 2.
• SMMU_CBn_FSYNR0.S1CBNDX is UNKNOWN.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 15-301
ID091613 Non-Confidential - Beta

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
When this bit is set to 1:

• SMMU_CBn_FAR records the VA of the requested translation.

• SMMU_CBn_FSYNR0.S1CBNDX indicates the stage 1 context bank that caused the
translation.

• SMMU_CBn_IPAFAR records the IPA that faulted at stage 2.

Note
 If SMMU_IDR0.NTS==0, this bit is RAZ/WI.

PLVL, bits[1:0]

Translation Table Level, the level in the translation table walk that the fault is associated with. The
encoding of this field is:
0b00 Level 0. SMMUv2 only.
0b01 Level 1.
0b10 Level 2.
0b11 Level 3.

Faults and translation table level association

The translation table level a fault is associated with is:

• For a fault associated with a translation table walk, the level of table walk being performed.

• For a translation fault, the level of translation table that gave the fault. If a disabled translation table walk
causes the fault or if the size of the address presented is out of the range specified for matching with any base
address register, the fault is reported for level 1.

• For an access fault, the level of translation table that gave the fault.

• For a permission fault, including a fault caused by a hierarchical permission, the final level of translation
table used for that translation.

SMMU_CBn_FSYNR1

The 32-bit SMMU_CBn_FSYNR1 register bit assignments are IMPLEMENTATION DEFINED.

15.3.2 SMMU_CBn_IPAFAR, IPA Fault Address Register

The SMMU_CBn_IPAFAR characteristics are:

Purpose Records the IPA for a stage 1 followed by stage 2 translation that faults in stage 2. For
transactions where the initial translation function is a stage 2 translation context bank,
SMMU_CBn_FAR contains the input address, that is, the IPA.

Usage constraints An implementation must implement enough bits to record the maximum IPA size, as
defined by the SMMU_IDR2.IAS field.

In any implementation that supports only stage 2 translation, or that does not support stage
1 followed by stage 2 translation, this register is a read-only alias of SMMU_CBn_FAR and
writes are ignored.

This register does not support 32-bit atomic accesses, and can only be accessed using a
64-bit atomic transaction. See Sign-extension of input addresses on page 1-29 for more
information.

This register is valid only for the following types of stage 2 faults:
• Translation faults.
• Access faults.
• External faults.
15-302 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
• Address size faults.

Additionally, this register is valid for permission faults that occur during stage 1. This
applies when all of the following conditions are met:
• Stage 1 SMMU_CBn_FSR.PF==1.
• Stage 2 SMMU_CBn_FSYNR0.NESTED==1.
• Stage 2 SMMU_CBn_FSYNR0.S1PTWF==1.

In all other cases, the value of this register is UNKNOWN.

Configurations The value of N depends on the supported translation scheme, as defined by the
SMMU_IDR0.PTFS field, and on the translation granule size, as defined by the
SMMU_IDR2.PTFSv8 bits, and can be:
• 12, when SMMU_IDR0.PTFS==0b0x or SMMU_IDR2.PTFSv8_4KB is set to 1.
• 14, when SMMU_IDR0.PTFS==0b1x or SMMU_IDR2.PTFSv8_16KB is set to 1.
• 16, when SMMU_IDR0.PTFS==0b1x or SMMU_IDR2.PTFSv8_64KB is set to 1.

This register is not provided in SMMUv1.

Attributes A 64-bit register.

The SMMU_CBn_IPAFAR bit assignments are:

Bits[63:N] Reserved.

FADDR, bits[N-1:0]

Fault address, the IPA of the faulting access.

15.3.3 SMMU_CBn_SCTLR, System Control Register

The SMMU_CBn_SCTLR characteristics are:

Purpose Provides top-level control of the translation system for stage 2 translation context bank n.

Usage constraints An SMMU implementation might configure certain attributes as RAZ/WI if the
downstream bus system does not support this bus marking. See Memory type and
shareability attribute determination on page 2-45 for more information.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 2 translation. See:
• SMMU_IDR0.S2TS.
• SMMU_IDR0.NTS.
• Translation context bank on page 2-59.

Attributes A 32-bit RW register.

FADDRReserved, RAZ

N63 0N-1
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 15-303
ID091613 Non-Confidential - Beta

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
The SMMU_CBn_SCTLR bit assignments are:

Bits [31:28] Reserved.

WACFG, bits[27:26]

Write Allocate Configuration, controls the allocation hint for a write transaction where the
translation context bank translation is disabled. That is, where SMMU_CBn_SCTLR.M==0.

The encoding of this field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Write-Allocate.
0b11 No Write-Allocate.

RACFG, bits[25:24]

Read Allocate Configuration, controls the allocation hint for read transactions where the translation
context bank translation is disabled. That is, where SMMU_CBn_SCTLR.M==0.

The encoding of this field is:
0b00 Default allocation attributes.
0b01 Reserved. See Reserved memory type and shareability attributes on page 2-48.
0b10 Read-Allocate.
0b11 No Read-Allocate.

SHCFG, bits[23:22]

Shared Configuration, controls the shareable attributes of a transaction where the translation context
bank is disabled. That is, where SMMU_CBn_SCTLR.M==0.

The encoding of this field is:
0b00 Reserved, in SMMUv1.

Non-shareable, in SMMUv2.
0b01 Outer Shareable.
0b10 Inner Shareable.
0b11 Non-shareable.

This field differs from the equivalent field in the stage 1 format SMMU_CBn_SCTLR register. The
stage 2 SMMU_CBn_SCTLR.SHCFG field is combined with the shared attributes of the previous
translation step. See Table 10-2 on page 10-212 for more information.

FB, bit[21] Force Broadcast, forces the Broadcast of TLB maintenance, BPIALL and ICIALLU operations.

Bit[20] Reserved.

MemAttr, bits[19:16]

Memory Attributes.

The memory attributes are permitted to be overlaid if SMMU_CBn_SCTLR.M==0.

Reserved M

31 28 27 26 25 24 23 22 21 20 19 16 15 13 12 9 8 7 6 5 4 3 2 1 0

MemAttr BSU Reserved E

WACFG
RACFG

SHCFG FB
Reserved PTW

14

HUPCF
CFCFG

CFIE
CFRE

AFFD
AFE
TRE
15-304 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
Memory attribute, MemAttr on page 9-159 describes the MemAttr field encoding.

This field differs from the equivalent field in the stage 1 SMMU_CBn_SCTLR format. The stage 2
MemAttr field is combined with the memory attributes presented from the previous translation step.
See Table 10-2 on page 10-212.

BSU, bits[15:14]

Barrier Shareability Upgrade, upgrades the required shareability domain of barriers issued by client
devices mapped to this Stream mapping register group, by setting the minimum shareability domain
that is applied to any barrier.

The encoding of this field is:
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

The upgrade of the barrier shareability domain might not be supported in all system topologies. In
an implementation that does not have this upgrade behavior, this field is RAZ/SBZP.

PTW, bit[13] Protected Translation Walk, only valid for an implementation that has stage 1 followed by stage 2
translation. In an implementation that does not have stage 1 followed by stage 2 translation, it is
RAZ/SBZP.

The possible values of this bit are:

0 This behavior is not enabled.

1 Raise a stage 2 permission fault if a stage 1 translation walk is to an area of memory that
has the Device or Strongly-ordered memory attribute in the stage 2 translation tables.

Bit[12] Reserved.

The stage 2 translation context bank format does not provide the ASIDPNE field that exists at this
location in the stage 1 translation context bank format. For a stage 2 format translation context bank,
this field is UNK/SBZP.

Bits[11:9] Reserved.

The stage 2 translation context bank format does not provide the WXN and UWXN fields. For a
stage 2 format translation context bank, these fields are UNK/SBZP.

HUPCF, bit[8] Hit Under Previous Context Fault.

The possible values of this bit are:

0 Stall or terminate any subsequent transaction in the presence of an outstanding context
fault.

1 Process any subsequent transaction independently of any outstanding context fault.

The distributed nature of some SMMU implementations means there can be significant delays
between detection of a context fault for one upstream client device and transactions from other
upstream client devices being stopped.

When this bit is set to 0, it is not guaranteed that faults from different devices are recorded in
absolute temporal order. When a device faults, although the setting of this bit is obeyed for that
device, no temporal guarantees are made regarding suspension of transactions from different
non-faulting devices.

CFCFG, bit[7] Context Fault Configuration.

The possible values of this bit are:
0 Terminate the transaction.
1 Stall the transaction.

CFIE, bit[6] Context Fault Interrupt Enable.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 15-305
ID091613 Non-Confidential - Beta

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
The possible values of this bit are:
0 Do not raise an interrupt when a context fault occurs.
1 Raise an interrupt when a context fault occurs.

This field resets to 0.

CFRE, bit[5] Context Fault Report Enable.

The possible values of this bit are:
0 Do not return an abort when a Context fault occurs.
1 Return an abort when a Context fault occurs.

E, bit[4] Endianness, indicates the endianness of translation table entries.

The possible values of this bit are:
0 Little endian format.
1 Big endian format.

AFFD, bit[3] Access Flag Fault Disable, determines whether Access flag faults are enabled. Only applicable
when AFE==1.

The possible values of this bit are:
0 Access flag faults are enabled.
1 Access flag faults are not enabled.

If enabled, Access flag faults are reported by SMMU_CBn_FSR.

If AFFD==0, AP[0]==0 in the translation table entry causes an Access flag fault, which
SMMU_CBn_FSR reports.

If AFFD==1, hardware behaves as if AP[0]==1 regardless of the translation table entry value.

If the SMMU shares translation tables with the processor, any descriptor that is configured with
AP[0] as an access flag, that is, when the effective value of AFE is 1, is not held in a processor TLB
entry. However, such descriptors might be held in SMMU TLBs. Therefore, any maintenance
software that modifies descriptors must be aware that an obsolete descriptor might be cached in the
SMMU TLB.

For more information about the Access permission (AP) bit, see the ARM® Architecture Reference
Manual, ARMv7-A and ARMv7-R edition.

AFE, bit[2] Access Flag Enable. This bit is UNK/SBOP.

Stage 2 translation supports only the AArch32 Long-descriptor or the AArch64 translation scheme,
meaning that the descriptors support only the simplified model for access permissions. ARM
recommends that software treats this bit as UNK/SBOP.

TRE, bit[1] TEX Remap Enable. This bit is UNK/SBOP.

Stage 2 translation supports only the AArch32 Long-descriptor or the AArch64 translation scheme,
meaning that the descriptors support only the simplified model for access permissions. ARM
recommends that software treats this bit as UNK/SBOP.

M, bit[0] MMU Enable, a global enable bit for the involved translation context bank.

The possible values of this bit are:
0 MMU behavior for this translation context bank is disabled.
1 MMU behavior for this translation context bank is enabled.

15.3.4 SMMU_CBn_TLBIIPAS2, Invalidate TLB by IPA, Last level

The SMMU_CBn_TLBIIPAS2 characteristics are:

Purpose Invalidates all unlocked TLB entries that match the IPA provided. See TLB maintenance
registers on page 5-118 for more information.
15-306 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
Usage constraints This register must apply to all unlocked entries associated with the specified IPA.
Optionally, it can apply to other individual unlocked entries, regardless of their tagging.

This register is not required to apply to TLB entries that combine stage 1 and stage 2
translation information, but must apply to TLB entries containing only stage 2 translation
information. In implementations that store the IPA in a combined stage 1 and stage 2 TLB
entry, this operation is required only to match those entries that have the same VMID, as
specified by the stage 2 context bank.

Configurations This register is OPTIONAL in SMMUv2.

This register is not provided in SMMUv1.

SMMU_IDR2.IAS specifies the implemented input address space.

Attributes A 64-bit WO register.

The SMMU_TLBIIPAS2 bit assignments are:

Bits[63:36] Reserved.

Address[47:12], bits[35:0]

Bits[47:12] of the address to be invalidated.
• If the translation granularity is 64KB, then bits corresponding to Address[15:12] are ignored.
• For the AArch32 Long-descriptor translation scheme, bits[47:40] are treated as zero.

To change a stage 2 translation table entry, software must:
1. Invalidate all stage 1 contexts that are mapped to the stage 2 context, using SMMU_TLBIVMIDS1 operation.
2. Perform a stage 2 TLBIIPAS2 or TLBIIPAS2L operation.

15.3.5 SMMU_CBn_TLBIIPAS2L, Invalidate TLB by IPA, Last level

The SMMU_CBn_TLBIIPAS2L characteristics are:

Purpose Invalidates any unlocked TLB entries that match the IPA provided and that correspond to
the final level of translation table lookup. See TLB maintenance registers on page 5-118 for
more information.

Usage constraints This register must apply to all unlocked entries associated with the specified IPA.
Optionally, it can apply to other individual unlocked entries, regardless of their tagging.

This register is not required to apply to TLB entries that combine stage 1 and stage 2
translation information, but must apply to TLB entries containing only stage 2 translation
information. In implementations that store the IPA in a combined stage 1 and stage 2 TLB
entry, this operation is required only to match those entries that have the same VMID, as
specified by the stage 2 context bank.

Configurations This register is OPTIONAL in SMMUv2.

This register is not provided in SMMUv1.

SMMU_IDR2.IAS specifies the implemented input address space.

Attributes A 64-bit WO register.

Address[47:12]Reserved

63 36 35 0
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 15-307
ID091613 Non-Confidential - Beta

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
The SMMU_TLBIIPAS2L bit assignments are:

Bits[63:36] Reserved.

Address[47:12], bits[35:0]

Bits[47:12] of the address to be invalidated.

• If the translation granularity is 64KB, then bits corresponding to Address[15:12] are ignored.

• For the AArch32 Long-descriptor translation scheme, bits[47:40] are treated as zero.

To change a stage 2 translation table entry, software must:
1. Invalidate all stage 1 contexts that are mapped to the stage 2 context, using SMMU_TLBIVMIDS1 operation.
2. Perform a stage 2 TLBIIPAS2 or TLBIIPAS2L operation.

15.3.6 SMMU_CBn_TLBSTATUS, TLB Status

The SMMU_CBn_TLBSTATUS characteristics are:

Purpose Indicates the status of any TLB maintenance operations issued before the most recent
SMMU_CBn_TLBSYNC operation.

Usage constraints No usage constraints apply.

Configurations This register is not provided in SMMUv1.

Attributes A 32-bit RO register that resets to 0. Writes are ignored. See also Table 15-1 on
page 15-297.

The SMMU_CBn_STATUS bit assignments are:

Bits[31:1] Reserved.

SACTIVE, bit[0]

SMMU_CBn_TLBSYNC operation active.

The possible values of this bit are:
0 All TLB invalidate operations issued before the most recent SMMU_CBn_TLBSYNC

operation have completed.
1 Some TLB invalidate operations issued before the most recent

SMMU_CBn_TLBSYNC operation have not completed.

15.3.7 SMMU_CBn_TLBSYNC, TLB Synchronize Invalidate

The SMMU_CBn_TLBSYNC characteristics are:

Purpose Initiates a synchronization operation that ensures the completion of any TLB invalidate
operations previously accepted in the corresponding translation context bank.

Usage constraints This operation operates in the scope of the translation context bank it resides in. After being
accepted, the operation does not complete until all translation context bank TLB invalidate
operations accepted by the SMMU before the synchronize operation was accepted are
complete.

Address[47:12]Reserved

63 36 35 0

31 1 0

Reserved

SACTIVE
15-308 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
See TLB maintenance registers on page 5-118 for more details about the usage model.

Configurations This register is OPTIONAL in SMMUv2. If not implemented, this register is WI.

This register must be provided if an implementation supports invalidation by IPA.

This register is not provided in SMMUv1.

Attributes A 32-bit WO register. Reads are SBZ. See also Table 15-1 on page 15-297.

The SMMU_CBn_TLBSYNC bit assignments are reserved.

15.3.8 SMMU_CBn_TCR, Translation Control Register

The SMMU_CBn_TCR characteristics are:

Purpose Provides additional configuration for the stage 2 translation process.

Usage constraints No usage constraints apply.

Configurations The format of this register depends on the value of the SMMU_CBA2Rn.VA64 bit. For
more information, see:
• Register format when the SMMU_CBA2Rn.VA64 bit is set to 0.
• Register format when the SMMU_CBA2Rn.VA64 bit is set to 1 on page 15-310.

It is IMPLEMENTATION DEFINED whether the system implements stage 2 translation. See:
• SMMU_IDR0.S2TS.
• SMMU_IDR0.NTS.
• Translation context bank on page 2-59.

In SMMUv1, this register is SMMU_CBn_TTBCR.

Attributes A 32-bit RW register.

Register format when the SMMU_CBA2Rn.VA64 bit is set to 0

The SMMU_CBn_TCR bit assignments in this format are:

EAE(1), bit[31]

Extended Address Enable.

For a stage 2 translation context entry, this field always reads as the value 1. Writes are ignored.

A value of 1 means use the translation system defined in the LPAE.

Bits[30:14] Reserved.

SH0, bits[13:12]

Shareability attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0.

ORGN0, bits[11:10]

Outer cacheability attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0.

T0SZ(1)

31 30 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SH0 SL0

IRGN0
EAE ORGN0 Reserved
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 15-309
ID091613 Non-Confidential - Beta

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
IRGN0, bits[9:8]

Inner cacheability attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0.

SL0, bits[7:6] Lookup Start Level for the SMMU_CBn_TTBR0 addressed region. The encoding of this field is:
0 Level 2.
1 Level 1.
2 UNPREDICTABLE.
3 UNPREDICTABLE.

Bit[5:4] Reserved. Writes to bit[4] are ignored.

T0SZ, bits[3:0]

The Size offset of the SMMU_CBn_TTBR0 addressed region, encoded as a 4-bit signed number
giving the size of the region as 232-T0SZ.

Register format when the SMMU_CBA2Rn.VA64 bit is set to 1

The SMMU_CBn_TCR bit assignments in this format are:

Bits[31:19] Reserved.

PASize, bits[18:16]

Physical address size. If the SMMU supports a larger address space than a device provides, this field
enables software to reduce the amount of SMMU address space.

The encoding of this field is:

0b000 32-bits, 4GB

0b001 36-bits, 64GB

0b010 40-bits, 1TB

0b011 42-bits, 4TB

0b100 44-bits, 16TB

0b101 48-bits, 256TB

All other values are reserved, and treated as 48-bits.

TG0, Bits[15:14]

Translation granule size for SMMU_CBn_TTBR0, for stage 2 translations. The possible values of
this field are:
0b00 4KB granule size.
0b01 64KB granule size.
0b10 16KB granule size.
0b11 Reserved.

If software sets this field to a reserved value, or a size that has not been implemented, hardware
treats the field as if it is programmed to an IMPLEMENTATION DEFINED choice of the sizes that are
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value
that corresponds to the size chosen.

PASize T0SZ

31 30 19 18 12 11 10 9 8 7 6 5 0

Reserved SH0 SL0

IRGN0
ORGN0

16 15

TG0

14 13
15-310 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
SH0, bits[13:12]

Shareability attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0.

ORGN0, bits[11:10]

Outer cacheability attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0.

IRGN0, bits[9:8]

Inner cacheability attributes for the memory associated with the translation table walks using
SMMU_CBn_TTBR0.

SL0, bits[7:6] Lookup Start Level for the SMMU_CBn_TTBR0 addressed region. The encoding of this field
depends on the translation granule size:

• 4KB translation granule:
0 Level 2.
1 Level 1.
2 Level 0.
3 Reserved.

• 64KB translation granule:
0 Level 3.
1 Level 2.
2 Reserved.
3 Reserved.

T0SZ, bits[5:0]

The Size offset of the SMMU_CBn_TTBR0 addressed region, encoded as a 6-bit signed number
giving the size of the region as 2(64-T0SZ).

15.3.9 SMMU_CBn_TTBR0, Translation Table Base Register

The SMMU_CBn_TTBR0 characteristics are:

Purpose Holds the base address of translation table 0.

Usage constraints For a stage 2 translation context bank, only the AArch32 Long-descriptor and the AArch64
translation schemes are supported.

Depending on the translation scheme selected, either an address size fault or a translation
fault is generated if a PA exceeds the number of bits that the SMMU_IDR2.OAS field
defines.

Configurations It is IMPLEMENTATION DEFINED whether the system implements stage 2 translation. See:
• SMMU_IDR0.S2TS.
• SMMU_IDR0.NTS.
• Translation context bank on page 2-59.

Attributes A 64-bit RW register.

The SMMU_CBn_TTBR0 bit assignments are:

Bits[63:48] Reserved.

Translation table base address [47:x] ReservedReserved

4863 047 x-1x
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. 15-311
ID091613 Non-Confidential - Beta

15 Stage 2 Translation Context Bank Format
15.3 Stage 2 translation context bank register descriptions
Translation table base address [47:x], bits[47:x]

Translation table base address, bits[47:x].

The value x is determined by SMMU_CBn_TCR.T0SZ using the following formula:
T0Size = SInt(SMMU_CBn_TCR.T0SZ);
if SMMU_CBn_TCR.SL0 == 0 then

x = 14 - T0Size;
else

x = 5 - T0Size;

The number of implemented bits is determined by the maximum address size, as defined by the
SMMU_IDR2.IAS and SMMU_IDR2.OAS fields.

For the AArch32 Long-descriptor translation scheme, bits[47:40] are treated as zero.

Bits[x-1:0] Reserved.
15-312 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Appendix A
Register Names

This appendix provides information about differences in register names between SMMU architecture versions. It
also provides naming information for any SMMU registers where a similar register exists in the ARM architecture.
It contains the following section:
• Summary of corresponding SMMU and ARM registers on page A-314..
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. A-313
ID091613 Non-Confidential - Beta

Appendix A Register Names
A.1 Summary of corresponding SMMU and ARM registers
A.1 Summary of corresponding SMMU and ARM registers
Table A-1 shows the SMMU registers where registers on an ARM processor perform a similar role.

Table A-1 Corresponding SMMU and ARM processor registers

ARM architecture register

SMMU register Short description AArch64 AArch32

SMMU_CBn_CONTEXTIDR Context ID CONTEXTIDR_EL1 CONTEXTIDR

SMMU_CBn_FAR Fault Address Register FAR_EL1
FAR_EL2
FAR_EL3
HPFAR_EL2

DFAR, IFAR
HDFAR, HIFAR
FAR_EL3
HPFAR

SMMU_CBn_MAIRm Memory Attribute Indirection
Registers

MAIR_EL1
MAIR_EL2
MAIR_EL3

HMAIRn

SMMU_CBn_TCRa

SMMU_CBn_TCR2

a. In SMMUv1, SMMU_CBn_TTBCR.

Translation Control Register TCR_EL1
TCR_EL2
TCR_EL3

TTBCR(NS)
HTCR
TTBCR(S)

SMMU_CBn_TTBR0
SMMU_CBn_TTBR1

Translation Table Base Register TTBR0_EL1
TTBR0_EL2
TTBR1_EL1

TTBR0
TTBR1

SMMU_CBn_TCRb

SMMU_CBn_TCR2

b. In SMMUv1, SMMU_CBn_TTBCR.

EL1&0 stage 2 Translation
Control Register

VTCR_EL2 VTCR

SMMU_CBn_TTBR0 EL1&0 stage 2 Translation
Table Base Register

VTTBR_EL2 VTTBR
A-314 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

Glossary

Abort An exception caused by an illegal memory access.

See also Data abort, External abort, and Prefetch abort.

Data abort An indication from a memory system to the processor of an attempt to access an illegal data memory location.

See also Abort, External abort, and Prefetch abort.

Banked registers
A register that has multiple instances. A property of the state of the device determines which instance is in use. For
example the processor mode or security state might determine which instance is in use.

Byte An 8-bit data item.

Deprecated Something that is present in the ARM architecture for backwards compatibility. Whenever possible software must
avoid using deprecated features. Features that are deprecated but are not optional are present in current
implementations of the ARM architecture, but might not be present, or might be deprecated and OPTIONAL, in future
versions of the ARM architecture.

See also OPTIONAL.

Exception A mechanism to handle a fault, error event, or external notification. For example, exceptions handle external
interrupts and undefined instructions.

External abort An abort generated by the external memory system.

See also Abort and Data abort.

Halfword-aligned
A data item having a memory address that is divisible by 2.

IMP An abbreviation used in diagrams to indicate that one or more bits have IMPLEMENTATION DEFINED behavior.

IMPLEMENTATION DEFINED
Behavior that is not defined by the architecture, but is defined and documented by individual implementations.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. Glossary-315
ID091613 Non-Confidential - Beta

 Glossary

IMPLEMENTATION SPECIFIC
Behavior that is not architecturally defined, and might not be documented by an individual implementations. Used
when there are a number of implementation options available and the option chosen does not affect software
compatibility.

When IMPLEMENTATION SPECIFIC appears in body text, it is always in SMALL CAPITALS.

Intermediate Physical Address (IPA)
In an implementation of virtualization, the address to which a Guest OS maps a virtual address.

See also Physical address (PA) and Virtual address (VA).

IPA See Intermediate Physical Address (IPA).

Little-endian memory
Means that:

• a byte or halfword at a word-aligned address is the least significant byte or halfword in the word at that
address

• a byte at a halfword-aligned address is the least significant byte in the halfword at that address.

Memory coherency
A memory system is coherent if the value read by a data read or instruction fetch is always the value that was most
recently written to the location. Memory coherency is difficult when the memory system includes multiple possible
physical locations, such as main memory and at least one of a write buffer or one or more caches.

Memory Management Unit (MMU)
Provides detailed control of the memory system. Most of the control uses translation tables that are held in memory.

MMU See Memory Management Unit (MMU).

Offset addressing
Addressing where the memory address is formed by adding an offset to, or subtracting an offset from, a base register
value.

OPTIONAL When applied to a feature of the architecture, OPTIONAL indicates a feature that is not required in an implementation
of the ARM architecture:

• If a feature is OPTIONAL and deprecated, this indicates that the feature is being phased out of the architecture.
ARM expects such a features to be included in a new implementation only if there is a known
backwards-compatibility reason for the inclusion of the feature.

A feature that is OPTIONAL and deprecated might not be present in future versions of the architecture.

• A feature that is OPTIONAL but not deprecated is, typically, a feature added to a version of the ARM
architecture after the initial release of that version of the architecture. ARM recommends that such features
are included in all new implementations of the architecture.

In body text, these meanings of the term OPTIONAL are shown in SMALL CAPITALS.

Note: Do not confuse these ARM-specific uses of OPTIONAL with other uses of optional, where it has its usual
meaning. These include:

• Optional arguments in the syntax of many instructions.

• Behavior determined by an implementation choice, for example the optional byte order reversal in an
ARMv7-R implementation, where the SCTLR.IE bit indicates the implemented option.

See also Deprecated..

PA See Physical address (PA).

Physical address (PA)
The address that identifies a location in physical memory.

See also Intermediate Physical Address (IPA), Virtual address (VA).
Glossary-316 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

 Glossary

Prefetch abort An indication from the internal or external memory system to the processor that an instruction has been fetched from
an illegal memory location. An exception is taken only if the processor attempts to execute the instruction. No
exception is taken if the processor does not execute an instruction prefetched from a faulting memory location.

See also Abort and Data abort.

RAO See Read-As-One (RAO).

RAZ See Read-As-Zero (RAZ).

RAZ/SBZP Read-As-Zero, Should-Be-Zero-or-Preserved on writes.

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field.

Software can rely on the field reading as all 0s, but must use an SBZP policy to write to the field.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ) and Should-Be-Zero-or-Preserved (SBZP).

RAZ/WI Read-As-Zero, Writes Ignored.

Hardware must implement the field as Read-as-Zero, and must ignore writes to the field.

Software can rely on the field reading as all 0s, and on writes being ignored.

This description can apply to a single bit that reads as 0, or to a field that reads as all 0s.

See also Read-As-Zero (RAZ).

Read-allocate cache
Is a cache in which a cache miss on reading data causes a cache line to be allocated into the cache.

Read-As-One (RAO)
Hardware must implement the field as reading as all 1s.

Software can rely on the field reading as all 1s.

This description can apply to a single bit that reads as 1, or to a field that reads as all 1s.

Read-As-Zero (RAZ)
Hardware must implement the field as reading as all 0s.

Software can rely on the field reading as all 0s.

This description can apply to a single bit that reads as 1, or to a field that reads as all 0s.

Reserved Unless otherwise stated in the architecture or product documentation, reserved:
• Instruction and 32-bit system control register encodings are UNPREDICTABLE.
• 64-bit system control register encodings are UNDEFINED.
• Register bit fields are UNK/SBZP.

SBO See Should-Be-One (SBO).

SBOP See Should-Be-One-or-Preserved (SBOP).

SBZ See Should-Be-Zero (SBZ).

SBZP See Should-Be-Zero-or-Preserved (SBZP).

Security hole A mechanism that bypasses system protection.

Security State Determination (SSD)
Provides a means of identifying whether an upstream device or stream is Secure or Non-secure.

Should-Be-One (SBO)
Hardware must ignore writes to the field.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. Glossary-317
ID091613 Non-Confidential - Beta

 Glossary

Software should write the field as all 1s. If software writes a value that is not all 1s, it must expect an
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 1, or to a field that should be written as all 1s.

Should-Be-One-or-Preserved (SBOP)
Hardware must ignore writes to the field.

If software has read the field since the processor implementing the field was last reset and initialized, it must
preserve the value of the field by writing the value that it previously read from the field. Otherwise, it must write
the field as all 1s.

If software writes a value to the field that is not a value previously read for the field and is not all 1s, it must expect
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.

See also Should-Be-Zero-or-Preserved (SBZP) and Should-Be-One (SBO).

Should-Be-Zero (SBZ)
Hardware must ignore writes to the field.

Software should write the field as all 0s. If software writes a value that is not all 0s, it must expect an
UNPREDICTABLE result.

This description can apply to a single bit that should be written as 0, or to a field that should be written as all 0s.

Should-Be-Zero-or-Preserved (SBZP)
Hardware must ignore writes to the field.

If software has read the field since the processor implementing the field was last reset and initialized, it must
preserve the value of the field by writing the value that it previously read from the field. Otherwise, it must write
the field as all 0s.

If software writes a value to the field that is not a value previously read for the field and is not all 0s, it must expect
an UNPREDICTABLE result.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0s.

See also Should-Be-One-or-Preserved (SBOP) and Should-Be-Zero (SBZ).

SSD See Security State Determination (SSD).

SSD security state
Indicates whether a particular device or stream is in the Secure or the Non-secure domain at the time it initiates a
memory access. For a given transaction, the upstream device is either SSD Secure or SSD Non-secure.

TLB See Translation Lookaside Buffer (TLB).

Transaction security state
Whether a transaction originates from a Secure or a Non-secure device. A transaction from a Secure device can
make both Secure and Non-secure MMU accesses. A transaction from a Non-secure device can only make
Non-secure accesses.

Translation Lookaside Buffer (TLB)
A memory structure containing the results of translation table walks. TLBs help to reduce the average cost of
memory accesses.

Translation
table

A table, held in memory, that contains descriptors that define the properties of regions of memory.

Translation table walk
A full translation table lookup. It is performed automatically by hardware.
Glossary-318 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

 Glossary

UNDEFINED Indicates an instruction that is not architecturally defined. It generates an Undefined Instruction exception. See the
ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition or the ARM® Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile for more information.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not be a security hole or documented or promoted
as having a defined value or effect.

An UNKNOWN value must not be documented or promoted as having a defined value or effect.

When UNKNOWN appears in body text, it is always in SMALL CAPITALS.

UNK/SBOP Hardware must implement the field as Read-As-One, and must ignore writes to the field.

Software must not rely on the field reading as all 1s, and except for writing back to the register it must treat the value
as if it is unknown. Software must use an SBOP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 1, or to a field that should
be written as its preserved value or as all 1s.

See also Read-As-One (RAO), Should-Be-One-or-Preserved (SBOP), and UNKNOWN.

UNK/SBZP Hardware must implement the field as Read-As-Zero, and must ignore writes to the field.

Software must not rely on the field reading as all 0s, and except for writing back to the register it must treat the value
as if it is UNKNOWN. Software must use an SBZP policy to write to the field.

This description can apply to a single bit that should be written as its preserved value or as 0, or to a field that should
be written as its preserved value or as all 0s.

See also Read-As-Zero (RAZ), Should-Be-Zero-or-Preserved (SBZP), and UNKNOWN.

UNK An abbreviation indicating that software must treat a field as containing an UNKNOWN value.

In any implementation, the bit must read as 0, or all 0s for a bit field. Software must not rely on the field reading as
zero.

See also UNKNOWN.

UNPREDICTABLE
Means the behavior cannot be relied on. UNPREDICTABLE behavior must not represent a security hole.
UNPREDICTABLE behavior must not hang the processor, or any parts of the system.

VA See Virtual address (VA).

Virtual address
(VA)

An address generated by an ARM processor. For a PMSA implementation, the virtual address is identical to the
physical address.

See also Intermediate Physical Address (IPA), Physical address (PA).

Word A 32-bit data item. Words are normally word-aligned in ARM systems.

Word-aligned A data item having a memory address that is divisible by four.

Write-Allocate cache
A cache in which a cache miss on storing data causes a cache line to be allocated into the cache.

Write-Back cache
A cache in which when a cache hit occurs on a store access, the data is only written to the cache. Data in the cache
can therefore be more up-to-date than data in main memory. Any such data is written back to main memory when
the cache line is cleaned or re-allocated. Another common term for a Write-Back cache is a copy-back cache.

Write-Through cache
A cache in which when a cache hit occurs on a store access, the data is written both to the cache and to main memory.
This is normally done using a write buffer, to avoid slowing down the processor.
ARM IHI 0062C Copyright © 2012-2013 ARM Limited. All rights reserved. Glossary-319
ID091613 Non-Confidential - Beta

 Glossary

Glossary-320 Copyright © 2012-2013 ARM Limited. All rights reserved. ARM IHI 0062C
Non-Confidential - Beta ID091613

	ARM System Memory Management Unit Architecture Specification SMMU architecture version 2.0
	Contents
	Preface
	About this specification
	Intended audience

	Using this specification
	Conventions
	Typographic conventions
	Register names
	Numbers
	Pseudocode descriptions

	Additional reading
	ARM publications

	Feedback
	Feedback on this manual

	1: Introduction
	1.1 About the ARM System MMU architecture
	1.1.1 Debug support
	1.1.2 TLB visibility
	1.1.3 SMMU architecture version
	1.1.4 Changes in version 2.0 of the SMMU architecture

	1.2 ARM Processor Exception levels and Execution states
	1.3 ARM translation regimes
	1.4 SMMU translation schemes
	1.4.1 Differences between the ARM architecture and SMMU translation schemes

	1.5 SMMU address support
	1.5.1 SMMU address size parameters
	1.5.2 SMMU treatment of addresses
	1.5.3 SMMU translation bypass conditions
	1.5.4 Sign-extension of input addresses
	1.5.5 Address space identifiers
	1.5.6 Virtual machine identifiers

	2: SMMU Operation
	2.1 Overview of SMMU operation
	2.1.1 SMMU translation processing

	2.2 TLB operation
	2.2.1 Prefetch behavior for TLB entries

	2.3 Security State Determination (SSD)
	2.3.1 Banked registers

	2.4 Memory type and shareability attribute determination
	2.4.1 Reserved memory type and shareability attributes
	2.4.2 Pseudocode for memory attribute operations

	2.5 Context determination
	2.5.1 Transaction streams
	2.5.2 The Stream mapping table
	2.5.3 Stream-to-Context Register, SMMU_S2CRn
	2.5.4 Bypassing the Stream mapping table
	2.5.5 No match handling
	2.5.6 StreamID matching
	2.5.7 StreamID indexing
	2.5.8 The Stream mapping table in an implementation that supports two security states
	2.5.9 Reset state

	2.6 Translation context
	2.6.1 The translation context bank table
	2.6.2 The Context Bank Attribute Register, SMMU_CBARn
	2.6.3 The translation tables

	2.7 Translation and protection checks
	2.7.1 Translation table format
	2.7.2 Domains
	2.7.3 Implemented address size
	2.7.4 Global translation table entries and security states

	2.8 Hypervisor contexts
	2.8.1 Architectural effects of HYPC
	2.8.2 Effect of HYPC on TLBs
	2.8.3 HYPC and security states
	2.8.4 HYPC and sign-extension
	2.8.5 Effect of permission checking and bus marking

	2.9 Monitor contexts
	2.9.1 Architectural effects of MONC
	2.9.2 Effects of MONC on TLBs
	2.9.3 MONC and sign-extension
	2.9.4 Effect of permission checking and bus marking

	3: The Fault Model
	3.1 Overview of fault types
	3.2 Fault-handling terminology
	3.3 Handling multiple memory faults
	3.4 Recording memory attributes
	3.5 Recording stage 1 followed by stage 2 translation faults
	3.5.1 Stage 2 faults for different translation contexts
	3.5.2 Behavior of stage 2 faults within stage 1 followed by stage 2 translations

	3.6 Fault interrupts
	3.6.1 Global interrupts
	3.6.2 Context interrupts
	3.6.3 Interrupt assertion

	3.7 Context faults
	3.7.1 Secure Instruction Fetch (SIF) permission faults
	3.7.2 Recording a context fault
	3.7.3 Handling a context fault
	3.7.4 Reporting a context fault
	3.7.5 Enabling Global stall mode

	3.8 Global faults
	3.8.1 Recording a global fault
	3.8.2 Handling a Global fault
	3.8.3 Reporting a Global fault
	3.8.4 Invalid context checking pseudocode

	3.9 Configuration access
	3.10 External faults
	3.11 Reporting exclusive access transactions
	3.12 Fault behavior in virtualized context banks

	4: Address Translation Operations
	4.1 About address translation operations
	4.1.1 Address translation registers in SMMUv2

	4.2 Address translation registers in a stage 1 translation context
	4.2.1 Usage model
	4.2.2 Fault handling
	4.2.3 Stage 1 followed by stage 2 translation effect
	4.2.4 Fault handling within stage 1 followed by stage 2 translations initiated in a context bank

	4.3 Address translation registers in the global address space
	4.3.1 Usage model
	4.3.2 Fault handling
	4.3.3 Effect of stage 1 followed by stage 2 translations

	5: Coherency Issues and Cache Maintenance Operations
	5.1 Updating the state of a context bank
	5.1.1 SMMUv1 support for updating context bank state
	5.1.2 SMMUv2 support for updating context bank state

	5.2 Translation table walk coherency
	5.3 Broadcast TLB maintenance operations
	5.3.1 Private VMID namespace
	5.3.2 Private ASID namespace

	5.4 TLB maintenance registers
	5.4.1 TLB maintenance operation processing
	5.4.2 Thread safety

	5.5 Cache maintenance operations

	6: SMMU Performance Monitors Extension
	6.1 About the SMMU Performance Monitors Extension
	6.2 The register map
	6.3 Event classes
	6.4 StreamID groups
	6.5 Counter groups
	6.6 Event filtering
	6.7 Translation context bank assignment
	6.7.1 Translation context register map
	6.7.2 SMMU_CBn_PMCR banking
	6.7.3 Counter group absent

	6.8 Event counter overflow interrupt

	7: SMMU Support for Two Security States
	7.1 Sharing resources between Secure and Non-secure domains
	7.2 Providing SMMU support for only a single security state
	7.3 Providing SMMU support for two security states
	7.3.1 Translation restrictions
	7.3.2 Resource allocation
	7.3.3 Permitted transaction resource usage

	8: SMMU Address Space
	8.1 About the SMMU address space
	8.1.1 PAGESIZE and NUMPAGENDXB
	8.1.2 Address space calculation

	8.2 The global address space
	8.2.1 Global address space base addresses

	8.3 The translation context bank address space

	9: SMMU Global Register Space 0
	9.1 SMMU Global Register Space 0 register summary
	9.2 Reset values
	9.3 Secure alias for Non-secure registers
	9.4 Memory attribute, MemAttr
	9.5 Multi-format registers and reserved fields
	9.6 SMMU Global Register Space 0 register descriptions
	9.6.1 SMMU_IDR0-7, Identification registers
	9.6.2 SMMU_sACR, Auxiliary Configuration Register
	9.6.3 SMMU_sCR0, Configuration Register 0
	9.6.4 SMMU_sCR2, Configuration Register 2
	9.6.5 SMMU_sGATS1PR, GAT Stage 1 Privileged Read
	9.6.6 SMMU_sGATS1PW, GAT Stage 1 Privileged Write
	9.6.7 SMMU_sGATS1UR, GAT Stage 1 Unprivileged Read
	9.6.8 SMMU_sGATS1UW, GAT Stage 1 Unprivileged Write
	9.6.9 SMMU_sGATS12PR, GAT Stages 1 and 2 Privileged Read
	9.6.10 SMMU_sGATS12PW, GAT Stages 1 and 2 Privileged Write
	9.6.11 SMMU_sGATS12UR, GAT Stages 1 and 2 Unprivileged Read
	9.6.12 SMMU_sGATS12UW, GAT Stages 1 and 2 Unprivileged Write
	9.6.13 SMMU_sGATSR, Global Address Translation Status Register
	9.6.14 SMMU_sGFAR, Global Fault Address Register
	9.6.15 SMMU_sGFSR, Global Fault Status Register
	9.6.16 SMMU_sGFSRRESTORE, Global Fault Status Restore Register
	9.6.17 SMMU_sGFSYNR0, Global Fault Syndrome Register 0
	9.6.18 SMMU_sGFSYNR1, Global Fault Syndrome Register 1
	9.6.19 SMMU_sGFSYNR2, Global Fault Syndrome Register 2
	9.6.20 SMMU_sGPAR, Global Physical Address Register
	9.6.21 SMMU_sTLBGSTATUS, Global TLB Status register
	9.6.22 SMMU_sTLBGSYNC, Global Synchronize TLB Invalidate
	9.6.23 SMMU_S2CRn, Stream-to-Context Register
	9.6.24 SMMU_SCR1, Secure Configuration Register 1
	9.6.25 SMMU_SMRn, Stream Match Register
	9.6.26 SMMU_STLBIALL, TLB Invalidate All
	9.6.27 SMMU_STLBIALLM, TLB Invalidate All MONC
	9.6.28 SMMU_TLBIALLH, TLB Invalidate All Hyp
	9.6.29 SMMU_TLBIALLNSNH, TLB Invalidate All Non-Secure Non-Hyp
	9.6.30 SMMU_STLBIVALM, TLB Invalidate All MONC by VA, last level only
	9.6.31 SMMU_STLBIVAM, TLB Invalidate All MONC by VA
	9.6.32 SMMU_TLBIVAH, Invalidate Hyp TLB by VA
	9.6.33 SMMU_TLBIVAH64, Invalidate Hyp TLB by VA, AArch64
	9.6.34 SMMU_TLBIVALH64, Invalidate Last Hyp TLB by VA, AArch64
	9.6.35 SMMU_TLBIVMID, TLB Invalidate by VMID
	9.6.36 SMMU_TLBIVMIDS1, TLB Invalidate Stage 1 by VMID

	10: SMMU Global Register Space 1
	10.1 SMMU Global Register Space 1 register summary
	10.2 SMMU Global Register Space 1 register descriptions
	10.2.1 SMMU_CBARn, Context Bank Attribute Registers
	10.2.2 SMMU_CBA2Rn, Context Bank Attribute Registers
	10.2.3 SMMU_CBFRSYNRAn, Context Bank Fault Restricted Syndrome Register A

	11: SMMU implementation defined Address Space
	11.1 About the SMMU implementation defined address space

	12: SMMU Performance Monitors Extension Register Map
	12.1 SMMU Performance Monitors Extension register summary
	12.2 SMMU Performance Monitors Extension register descriptions
	12.2.1 PMAUTHSTATUS, Performance Monitors Authentication Status register
	12.2.2 PMCEID0, Performance Monitors Common Event Identifier 0 register
	12.2.3 PMCEID1, Performance Monitors Common Event Identifier 1 register
	12.2.4 PMCFGR, Performance Monitors Configuration Register
	12.2.5 PMCGCRn, Performance Monitors Counter Group Configuration Registers
	12.2.6 PMCGSMRn, Performance Monitors Counter Group Stream Match Registers
	12.2.7 PMCNTENCLRx, Performance Monitors Counter Enable Clear registers
	12.2.8 PMCNTENSETx, Performance Monitors Count Enable Set registers
	12.2.9 PMCR, Performance Monitors Control Register
	12.2.10 PMDEVTYPE, Performance Monitors Device Type Register
	12.2.11 PMEVCNTRn, Performance Monitors Event Count Registers
	12.2.12 PMEVTYPERn, Performance Monitors Event Type Registers
	12.2.13 PMINTENCLRx, Performance Monitors Interrupt Enable Clear registers
	12.2.14 PMINTENSETx, Performance Monitors Interrupt Enable Set registers
	12.2.15 PMOVSCLRx, Performance Monitors Overflow Status Clear registers
	12.2.16 PMOVSSETx, Performance Monitors Overflow Status Set registers
	12.2.17 PMPIDy, PMCIDz, Performance Monitors Peripheral ID and Component ID registers

	13: The Security State Determination Address Space
	13.1 SMMU SSD address space

	14: Stage 1 Translation Context Bank Format
	14.1 Stage 1 translation context bank address space
	14.2 Reset values
	14.3 Memory attribute indirection
	14.4 Multi-format registers and reserved fields
	14.5 Stage 1 translation context bank register descriptions
	14.5.1 SMMU_CBn_ACTLR, Auxiliary Control Register
	14.5.2 SMMU_CBn_ATS1PR, Address Translation Stage 1 Privileged Read
	14.5.3 SMMU_CBn_ATS1PW, Address Translation Stage 1 Privileged Write
	14.5.4 SMMU_CBn_ATS1UR, Address Translation Stage 1 Unprivileged Read
	14.5.5 SMMU_CBn_ATS1UW, Address Translation Stage 1 Unprivileged Write
	14.5.6 SMMU_CBn_ATSR, Address Translation Status Register
	14.5.7 SMMU_CBn_CONTEXTIDR, Context Identification Register
	14.5.8 SMMU_CBn_FAR, Fault Address Register
	14.5.9 SMMU_CBn_FSR, Fault Status Register
	14.5.10 SMMU_CBn_FSRRESTORE, Fault Status Restore Register
	14.5.11 SMMU_CBn_FSYNRm, Fault Syndrome Registers
	14.5.12 SMMU_CBn_IPAFAR, IPA Fault Address Register
	14.5.13 SMMU_CBn_MAIRm, Memory Attribute Indirection Registers
	14.5.14 SMMU_CBn_NMRR, Normal Memory Remap Register
	14.5.15 SMMU_CBn_PAR, Physical Address Register
	14.5.16 SMMU_CBn_PMAUTHSTATUS, Performance Monitors Authentication Status register
	14.5.17 SMMU_CBn_PMCEIDm, Performance Monitors Common Event Identification registers
	14.5.18 SMMU_CBn_PMCFGR, Performance Monitors Configuration Register
	14.5.19 SMMU_CBn_PMCNTENCLR, Performance Monitors Count Enable Clear register
	14.5.20 SMMU_CBn_PMCNTENSET, Performance Monitors Count Enable Set register
	14.5.21 SMMU_CBn_PMCR, Performance Monitors Control Register
	14.5.22 SMMU_CBn_PMEVCNTRm, Performance Monitors Event Counter registers
	14.5.23 SMMU_CBn_PMEVTYPERm, Performance Monitors Event Type Registers
	14.5.24 SMMU_CBn_PMINTENCLR, Performance Monitors Interrupt Enable Clear register
	14.5.25 SMMU_CBn_PMINTENSET, Performance Monitors Interrupt Enable Set register
	14.5.26 SMMU_CBn_PMOVSCLR, Performance Monitors Overflow Status Clear Register
	14.5.27 SMMU_CBn_PMOVSSET, Performance Monitors Overflow Status Set Register
	14.5.28 SMMU_CBn_PRRR, Primary Region Remap Register
	14.5.29 SMMU_CBn_RESUME, Transaction Resume register
	14.5.30 SMMU_CBn_SCTLR, System Control Register
	14.5.31 SMMU_CBn_TLBIALL, TLB Invalidate All
	14.5.32 SMMU_CBn_TLBIASID, TLB Invalidate by ASID
	14.5.33 SMMU_CBn_TLBIVA, TLB Invalidate by VA
	14.5.34 SMMU_CBn_TLBIVAA, TLB Invalidate by VA All ASID
	14.5.35 SMMU_CBn_TLBIVAAL, TLB Invalidate by VA, All ASID, Last level
	14.5.36 SMMU_CBn_TLBIVAL, TLB Invalidate by VA, Last level
	14.5.37 SMMU_CBn_TLBSTATUS, TLB Status
	14.5.38 SMMU_CBn_TLBSYNC, TLB Synchronize Invalidate
	14.5.39 SMMU_CBn_TCR, Translation Control Register
	14.5.40 SMMU_CBn_TCR2, Translation Control Register 2
	14.5.41 SMMU_CBn_TTBRm, Translation Table Base Registers

	15: Stage 2 Translation Context Bank Format
	15.1 Stage 1 and stage 2 context bank format differences
	15.2 Stage 2 translation context bank address space
	15.3 Stage 2 translation context bank register descriptions
	15.3.1 SMMU_CBn_FSYNRm, Fault Syndrome Registers
	15.3.2 SMMU_CBn_IPAFAR, IPA Fault Address Register
	15.3.3 SMMU_CBn_SCTLR, System Control Register
	15.3.4 SMMU_CBn_TLBIIPAS2, Invalidate TLB by IPA, Last level
	15.3.5 SMMU_CBn_TLBIIPAS2L, Invalidate TLB by IPA, Last level
	15.3.6 SMMU_CBn_TLBSTATUS, TLB Status
	15.3.7 SMMU_CBn_TLBSYNC, TLB Synchronize Invalidate
	15.3.8 SMMU_CBn_TCR, Translation Control Register
	15.3.9 SMMU_CBn_TTBR0, Translation Table Base Register

	A: Register Names
	A.1 Summary of corresponding SMMU and ARM registers

	Glossary

