
intel advance information

80386
HIGH PERFORMANCE MICROPROCESSOR

WITH INTEGRATED MEMORY MANAGEMENT
■ Flexible 32-Bit Microprocessor

— 8, 16, 32-Bit Data Types
— 8 General Purpose 32-Bit Registers

■ Very Large Address Space
— 4 Gigabyte Physical
— 64 Terabyte Virtual
— 4 Gigabyte Maximum Segment Size

■ Integrated Memory Management Unit
— Virtual Memory Support
— Optional On-Chip Paging
— 4 Levels of Protection
— Fully Compatible with 80286

■ Object Code Compatible with All 8086
Family Microprocessors

■ Virtual 8086 Mode Allows Running of
8086 Software in a Protected and
Paged System

■ Hardware Debugging Support
■ Optimized for System Performance

— Pipelined Instruction Execution
— On-Chip Address Translation Caches
— 12.5 and 16 MHz Clock
— 32 Megabytes/Sec Bus Bandwidth

■ High Speed Numerics Support via
80287 and 80387 Coprocessors

■ Complete System Development
Support
— Software: C, PL/M, Assembler

System Generation Tools
— Debuggers: PSCOPE, ICE™-386
High Speed CHMOS III Technology
132 Pin Grid Array Package
(See Packaging Specification, Order #231369)

The 80386 is an advanced 32-bit microprocessor designed for applications needing very high performance
and optimized for multitasking operating systems. The 32-bit registers and data paths support 32-bit addresses
and data types. The processor addresses up to four gigabytes of physical memory and 64 terabytes (2**46) of
virtual memory. The integrated memory management and protection architecture includes address translation
registers, advanced multitasking hardware and a protection mechanism to support operating systems. In
addition, the 80386 allows the simultaneous running of multiple operating systems.
Instruction pipelining, on-chip address translation, a a high bus bandwidth ensure short average instruction
execution times and high system throughput. The 80386 processor is capable of execution at sustained rates
of between 3 and 4 million instructions per second.
The 80386 offers new testability and debugging features. Testability features include a self-test and direct
access to the page translation cache. Four new breakpoint registers allow conditional or unconditional break­
point traps on code execution or data accesses, for powerful debugging of even ROM-based systems.
Object-code compatibility with all iAPX 86 family members (8086, 8088, 80186, 80188, 80286) means the
80386 offers immediate access to the world’s largest microprocesor software base.

SEGMENTATION UNIT PAGING UNIT BUS CONTROL

Figure 1-1. 80386 Pipelined 32-Bit Microarchitecture

UnixTM is a Trademark of AT&T Bell Labs.
MS-DOS is a Trademark of Microsoft Corporation.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. October 1985
© Intel Corporation, 1985 Order Number: 231630-001

1. TABLE OF CONTENTS..2 -5

2. BASE ARCHITECTURE.. 6
2.1 Introduction... 6
2.2 Register Overview.. 6
2.3 Register Descriptions .. 7

2.3.1 General Purpose Registers... 7
2.3.2 Instruction P o in te r.. 7
2.3.3 Flags Register.. 7
2.3.4 Segment Registers.. 9
2.3.5 Segment Descriptor Registers..10
2.3.6 Control Registers.. 10
2.3.7 System Address Registers... 11
2.3.8 Debug and Test Registers ... 12
2.3.9 Register Accessibility...12
2.3.10 Compatibility..12

2.4 Instruction S e t... 13
2.4.1 Instruction Set Overview... 13
2.4.2 80386 Instructions...14

2.5 Addressing M odes..16
2.5.1 Addressing Modes Overview... 16
2.5.2 Register and Immediate Modes... 16
2.5.3 Memory Addressing M odes... 16
2.5.4 Differences between 16- and 32- Bit Addresses... 17

2.6 Data Types ... 18
2.7 Memory Organization.. 20

2.7.1 Introduction... 20
2.7.2 Address Spaces..20
2.7.3 Segment Register U sage ...21

2.8 I/O S pace ...21
2.9 Interrupts...22

2.9.1 Interrupts and Exceptions...22
2.9.2 Interrupt Processing.. 22
2.9.3 Maskable Interrupt.. 22
2.9.4 Non-Maskable Interrupt...23
2.9.5 Software Interrupts.. 24
2.9.6 Interrupt Priorities..24
2.9.7 Instruction R estart.. 24
2.9.8 Double Fau lts ... 24

2.10 Reset and Initialization .. 24
2.11 Testability .. 25

2.11.1 Self-Test ... 25
2.11.2 TLB Testing.. 25

2.12 Debugging Support ..25

3. REAL MODE ARCHITECTURE.. 27
3.1 Real Mode Introduction.. 27
3.2 Memory Addressing..27
3.3 Reserved Locations..28
3.4 Interrupts.. 28
3.5 Shutdown and Halt... 28

4. PROTECTED MODE ARCHITECTURE 29
4.1 Introduction 29
4.2 Addressing Mechanism 29
4.3 Segmentation 30

4.3.1 Segmentation Introduction 30
4.3.2 Terminology 30
4.3.3 Descriptor Tables 31

4.3.3.1 Descriptor Tables Introduction 31
4.3.3.2 Global Descriptor Table 32
4.3.3.3 Local Descriptor Table 32
4.3.3.4 Interrupt Descriptor Table 32

4.3.4 Descriptors 32
4.3.4.1 Descriptor Attribute Bits 32
4.3.4.2 386 Code, Data Descriptors (S = 0). .. 33
4.3.4.3 System Descriptor Formats 34
4.3.4.4 LDT Descriptors (S = 0, TYPE = 2) 35
4.3.4.5 TSS Descriptors (S = 0, TYPE = 1, 3, 9, B) 35
4.3.4.6 Gate Descriptors (S = 0 TYPE = 4-7, C, F) 35
4.3.4.7 Differences Between 386 and 286 Descriptors 36
4.3.4.8 Selector Fields .. 36
4.3.4.9 Segment Descriptor Cache. .. 36
4.3.4.10 Segment Descriptor Register Settings .. 38

4.4 Protection. .. 41
4.4.1 Protection Concepts 41
4.4.2 Rules of Privilege .. 41
4.4.3 Privilege Levels 41

4.4.3.1 Task Privilege 41
4.4.3.2 Selector Privilege (RPL) 41
4.4.3.3 I/O Privilege 41
4.4.3.4 Privilege Validation 42
4.4.3.5 Descriptor Access 42

4.4.4 Privilege Level Transfers 42
4.4.5 Call Gates 44
4.4.6 Task Switching 44
4.4.7 Initialization and Transition to Protected Mode 46
4.4.8 Tools for Building Protected Systems 47

4.5 Paging 47
4.5.1 Paging Concepts 47
4.5.2 Paging Organization 48

4.5.2.1 Page Mechanism 48
4.5.2.2 Page Descriptor Base Register 48
4.5.2.3 Page Directory 48
4.5.2.4 Page Tables 49
4.5.2.5 Page Directory/Table Entries 49

4.5.3 Page Level Protection (R/W, U/S Bits) 49
4.5.4 Translation Lookaside Buffer. .. 50
4.5.5 Paging Operation ; 50
4.5.6 Operating System Responsibilities 51

4.6 Virtual 8086 Environment 51
4.6.1 Executing 8086 Programs 51
4.6.2 Virtual 8086 Mode Addressing Mechanism 51
4.6.3 Paging In Virtual Mode 51
4.6.4 Protection 52
4.6.5 Interrupt Handling 53
4.6.6 Entering and Leaving Virtual 8086 Mode 53

3

5. FUNCTIONAL DATA 55
5.1 Introduction 55
5.2 Signal Description 55

5.2.1 Introduction 55
5.2.2 Clock (CLK2) .. 55
5.2.3 Data Bus (DOthrough D31) 56
5.2.4 Address Bus (BEO# through BE3#, A2 through A31) 56
5.2.5 Bus Cycle Definition Signals (W/R#, D/C#, MilO, LOCK#) 57
5.2.6 Bus Control Signals .. 58

5.2.6.1 Introduction 58
5.2.6.2 Address Status (ADS#) 58
5.2.6.3 Transfer Acknowledge (READY#) 58
5.2.6.4 Next Address Request (NA #) 58
5.2.6.5 Bus Size 16 (BS16#) 58

5.2.7 Bus Arbitration Signals :........ 59
5.2.7.1 Introduction 59
5.2.7.2 Bus Hold Request (HOLD) 59
5.2.7.3 Bus Hold Acknowledge (HLDA) 59

5.2.8 Coprocessor Interface Signals 59
5.2.8.1 Introduction 59
5.2.8.2 Coprocessor Request (PEREQ) 59
5.2.8.3 Coprocessor Busy (BUSY #) 59
5.2.8.4 Coprocessor Error (ERROR#) 60

5.2.9 Interrupt Signals 60
5.2.9.1 Introduction 60
5.2.9.2 Maskable Interrupt Request (INTR) 60
5.2.9.3 Non-Maskable Interrupt Request (NMI) 60
5.2.9.4 Reset (RESET) 60

5.2.10 SIGNAL SUMMARY 61
5.3. Bus Transfer Mechanism 61

5.3.1 Introduction 61
5.3.2 Memory and 1/0 Spaces 62
5.3.3 Memory and 1/0 Organization 63
5.3.4 Dynamic Data Bus Sizing 63
5.3.5 Interfacing with 32- and 16-bit Memories 64
5.3.6 Operand Alignment 65

5.4 Bus Functional Description. .. 65
5.4.1 Introduction 65
5.4.2 Address Pipelining 68
5.4.3 Read and Write Cycles 70

5.4.3.1 Introduction 70
5.4.3.2 Non-pipelined Address 71
5.4.3.3 Non-pipelined Address with Dynamic Data Bus Sizing. 73
5.4.3.4 Pipelined Address 75
5.4.3.5 Initiating and Maintaining Pipelined Address 77
5.4.3.6 Pipelined Address with Dynamic Data Bus Sizing , 79

5.4.4 Interrupt Acknowledge (INTA) Cycles 81
5.4.5 Halt Indication Cycle 82
5.4.6 Shutdown Indication Cycle 83

5.5 Other Functional Descriptions 84
5.5.1 Entering and Exiting Hold Acknowledge 84
5.5.2 Reset during Hold Acknowledge 84
5.5.3 Bus Activity During and Following Reset 84

5.6 Self-test Signature 86
5.7 Component and Revision Identifiers. .. 86

4

6. MECHANICAL DATA 88
6.1 Introduction. .. 88
6.2 Pin Assignment. .. 88
6.3 Package Dimensions and Mounting 91
6.4 Package Thermal Specification .. 92

7. ELECTRICAL DATA. 94
7.1 Introduction. .. 94
7.2 Power and Grounding. .. 94

7.2.1 Power Connections. .. 94
7.2.2 Power Decoupling Recommendations. .. 94
7.2.3 Resistor Recommendations. .. 94
7.2.4 Other Connection Recommendations. .. 94

7.3 Maximum Ratings. .. 95
7.4 D.C. Specifications. .. 95
7.5 A.C. Specifications. .. 96

7.5.1 AC. Spec Definitions. .. 96
7.5.2 AC. Specification Tables. .. 97
7.5.3 A.C. Test Loads 99
7.5.4 AC. Timing Waveforms. .. 99

7.6 ICE-386 Considerations 102

8. INSTRUCTION SET 103
8.1 Instruction Encoding and Clock Count Summary 103
8.2 Instruction Encoding Details 118

8.2.1 Overview .. 118
8.2.2 32-8it Extensions of the Instruction Set 119
8.2.3 Encoding of Instruction Fields 119

8.2.3.1 Encoding of the Operand Length (w) Field. .. 119
8.2.3.2 Encoding of the General Register (reg) Field 119
8.2.3.3 Encoding of the Segment Register (sreg) Field 120
8.2.3.4 Encoding of Address Mode 120
8.2.3.5 Encoding of Operation Direction (d) Field 124
8.2.3.6 Encoding of Sign-extend (s) Field 124
8.2.3.7 Encoding of Conditional Test (tttn) Field 124
8.2.3.8 Encoding of Control or Debug or Test Register (eee) Field 124

5

80386

2. BASE ARCHITECTURE

2.1 INTRODUCTION
The 80386 consists of a central processing unit, a
memory management unit and a bus interface.

The central processing unit consists of the execu-
tion unit and instruction unit. The execution unit con-
tains, the eight 32-bit general purpose registers
which are used for both address calculation and
data operations, a 64-bit barrel shifter used to speed
shift, rotate, multiply, and divide operations. The
multiply and divide logic uses a 1-bit per cycle. The
multiply algorithm stops the iteration when the most
significant bits of the multiplier are all zero. This al-
lows typical 32-bit multiples to be executed in under
one microsecond. The instruction u; ,it decodes the
instruction opcodes and stores them in the decoded
instruction queue for immediate use by the execu-
tion unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi-
cient sharing. The paging mechanism operates be-
neath and is transparent to the segmentation proc-
ess, to allow management of the physical address
space. Each segment is divided into one or more 4K
byte pages. To implement virtual memory system,
the 80386 supports full restartability for all page and
segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes in size. A
given region of the linear address space, a segment,
can have attributes associated with it. These attri-
butes include its location, size, type (i.e. stack, code
or data), and protection characteristics. Each task
on an 80386 can have a maximum of 16,381 seg-
ments of up to four gigabytes each, thus providing
64 terabytes (trillion bytes) of virtual memory to each
task.

The segmentation unit provides four-levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The 80386 has two modes of operation: Real Ad-
dress Mode (Real Mode), and Protected Virtual Ad-
dress Mode (Protected Mode). In Real Mode the
80386 operates as a very fast 8086, but with 32-bit
extensions if desired. Real mode is required primari-

6

Iy to setup the processor for Protected Mode opera-
tion. Protected Mode provides access to the sophis-
ticated memory management, paging and privilege
capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086 se-
mantics, thus allowing 8086 software (an application
program, or an entire operating system) to execute.
The Virtual 8086 tasks can be isolated and protect-
ed from one another and the host 80386 operating
system, by the use of paging, and emulation of I/O
instructions.

Finally, to facilitate high performance system hard-
ware designs, the 80386 bus interface offers ad-
dress pipelining, dynamic data bus sizing, and direct
Byte Enable signals for each byte of the data bus.
These hardware features are described fully begin-
ning in Section 5.

2.2 REGISTER OVERVIEW
The 80386 has 32 register resources in the following
categories:
• General Purpose Registers
• Segment Registers
• Instruction Pointer and Flags

• Control Registers
• System Address Registers

• Debug Registers
• Test Registers.

The registers are a superset of the 8086, 80186 and
80286 registers, so all 16-bit 8086, 80186 and
80286 registers are contained within the 32-bit
80386.

Figure 2-1 shows all of 80386 base architecture reg-
isters, which include the general address and data
registers, the instruction pointer, and the flags regis-
ter. The contents of these registers are task-specific,
so these registers are automatically loaded with a
new context upon a task switch operation.

The base architecture also includes six directly ac-
cessible segments, each up to 4 Gbytes in size. The
segments are indicated by the selector values
placed in 80386 segment registers of Figure 2-1.
Various selector values can be loaded as a program
executes, if desired.

inter 80386

CODE

STACKIDATA

GENERAL DATA AND ADDRESS REGISTERS
31 16 15 0

AX EAX

BX EBX

CX ECX

DX EDX

SI ESI

DI EDI

BP EBP

SP ESP

SEGMENT SELECTOR REGISTERS
15 0

CS1---------1
SS1---------1
DS1------1
ES

I--------l
FS

I--------l
GS

The least significant 16 bits of the registers can be
accessed separately. This is done by using the 16-
bit names of the registers AX, BX, CX, DX, SI, DI,
BP, and SP.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of general purpose registers AX, BX, CX and DX.
The lowest bytes are named AL, BL, CL and DL,
respectively. The higher bytes are named AH, BH,
CH and DH, respectively. The individual byte acces-
sibility offers additional flexibility for data operations,
but is not used for effective address calculation.

31 16 15 8 7 0

AH AX AL EAX

BH BX BL EBX

CH CX CL ECX

DH DX DL EDX

SI ESI

DI EDI

BP EBP

SP ESP
INSTRUCTION POINTER
AND FLAGS REGISTER
31 16 15 0

I I--FLA-IP-G-S-I :;LAGS

Figure 2·1. 80386 Base Architecture Registers

31 16 15

\
IP

)

o
EIP

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

The other types of registers Control, System Ad-
dress, Debug and Test registers are primarily used
to simplify the design and debugging of operating
systems.

2.3 REGISTER DESCRIPTIONS

2.3.1 General Purpose Registers
General Purpose Registers: The eight general pur-
pose registers of 32 bits hold data or address quanti-
ties. The general registers, Figure 2-2, support data
operands of 1, 8, 16, 32 and 64 bits, and bit fields of
1 to 32 bits. They support address operands of 16
and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

7

Figure 2·2. General Registers and Instruction
Pointer

2.3.2 Instruction Pointer
The instruction pointer, Figure 2-2, is a 32-bit regis-
ter named EIP. EIP holds the offset of the next in-
struction to be executed. The offset is always rela-
tive to the base of the code segment (CS). The low-
er 16 bits (bits 0-15) of EIP contain the 16-bit in-
struction pointer named IP, which is used by 16-bit
addressing.

2.3.3 Flags Register
The Flags Register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS, shown in Figure 2-3, control certain opera-
tions and indicate status of the 80386. The lower 16
bits (bit 0-15) of EFLAGS contain the 16-bit flag
register named FLAGS, which is most useful when
executing 8086 and 80286 code.

80386

FLAGS

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1
10987 6 5 432 1 0 9 8 7 6 5 432 0 9 8 7 6 5 432 1 0

EFLAGS RESERVED FOR INTEL

VIRTUAL tolODE
RESUtolE FLAG
NESTED TASK FLAG
I/O PRIVILEGE LEVEL
OVERFLOW
DIRECTION FLAG
INTERRUPT ENA8LE

CARRY FLAG
PARITY FLAG
AUXILIARY CARRY
ZERO FLAG
SIGN FLAG
TRAP FLAG

231630-50 >

Figure 2-3. Flags Register

VM (Virtual 8086 Mode, bit 17)
The VM bit provides Virtual 8086 Mode within
Protected Mode. if set while the 80386 is in
Protected Mode, the 80386 will switch to Vir-
tual 8086 operation, handling segment loads
as the 8086 does, but generating exception
13 faults privileged opcodes. The VM bit can
be set only in Protected Mode, by the IRET
instruction (if current privilege level = 0) and
by task switches at any privilege level. The
VM bit is unaffected by POPF. PUSHF always
pushes a 0 in this bit, even if executing in
virtual 8086 Mode. The EFLAGS image
pushed during interrupt processing or saved
during task switches will contain a 1 in this bit
if the interrupted code was executing as a Vir-
tual 8086 Task.

RF (Resume Flag, bit 16)
The RF flag is used in conjunction with the
debug register breakpoints or single steps. It
is checked at instruction boundaries before
breakpoint processing. When RF is set, it
causes any debug fault to be ignored on the
next instruction. RF is then automatically re-
set at the successful completion of every in-
struction (no faults are signalled) except the
IRET instruction, the POPF instruction, and
JMP, CALL, and INT instructions causing a
task switch. These instruction set RF to the
value specified by the memory image. For ex-
ample, at the end of the breakpoint service

8

routine, the IRET instruction can pop an
EFLAG image having the RF bit set and re-
sume the program's execution at the break-
point address without generating another
breakpoint fault on the same location.

NT (Nested Task, bit 14)
This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates
that the current nested task's Task State
Segment (TSS) has a valid back link to the
previous task's TSS. This bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGS is tested by the IRET instruc-
tion to determine whether to do an inter-task
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level.

10PL (input/Output Privilege Level, bits 12-13)
This two-bit field applies to Protected Mode.
10PL indicates the maximum CPL (current
privilege level) value permitted to execute I/O
instructions without generating an exception
13 fault. It also indicates the maximum CPL
value allowing alteration of the IF (INTR En-
able Flag) bit when new values are popped
into the EFLAG register. POPF and IRET in-
struction can alter the 10PL field when exe-
cuted at CPL = o. Task switches can always
alter the 10PL field, when the new flag image
is loaded from the incoming task's TSS.

inter 80386

OF (Overflow Flag, bit 11)
OF is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow Into the
sign bit (high-order bit) of the result but did
not result in a carry/borrow out of the high-
order bit, or vice-versa. For 8/16/32 bit oper-
ations, OF is set according to overflow at bit
7/15/31, respectively.

OF (Direction Flag, bit 10)
OF defines whether ESI and/or EDI registers
postdecrement or postincrement during the
string instructions. Postincrement occurs if
OF is reset. Postdecrement occurs if OF is
set.

IF (INTR Enable Flag, bit 9)
The IF flag, when set, allows recognition of
external interrupts signalled on the INTR pin.
When IF is reset, external interrupts signalled
on the INTR are not recognized. IOPL indi-
cates the maximum CPL value allowing alter-
ation of the IF bit when new values are
popped into EFLAGS or FLAGS.

TF (Trap Enable Flag, bit 8)
TF controls the generation of exception 1
trap when single-stepping through code.
When TF is set, the 80386 generates an ex-
ception 1 trap after the next instruction is exe-
cuted. When TF is reset, exception 1 traps
occur only as a function of the breakpoint ad-
dresses loaded into debut registers DRO-
DR3.

SF (Sign Flag, bit 7)
SF is set if the high-order bit of the result is
set, it is reset otherwise. For 8-, 16-, 32-bit
operations, SF reflects the state of bit 7, 15,
31 respectively.

ZF (Zero Flag, bit 6)
ZF is set if all bits of the result are O. Other-
wise it is reset.

AF (Auxiliary Carry Flag, bit 4)
The Auxiliary Flag is used to simplify the addi-
tion and subtraction of packed BCD quanti-
ties. AF is set if the operation resulted in a
carry out of bit 3 (addition) or a borrow into bit
3 (subtraction). Otherwise AF is reset. AF is
affected by carry out of, or borrow into bit 3
only, regardless of overall operand length: 8,
16 or 32 bits.

PF (Parity Flags, bit 2)
PF is set if the low-order eight bits of the op-
eration contains an even number of "1's"
(even parity). PF is reset if the low-order eight
bits have odd parity. PF is a function of only
the low-order eight bits, regardless of oper-
and size. .

CF (Carry Flag, bit 0)
CF is set if the operation resulted in a carry
out of (addition), or a borrow into (subtraction)
the high-order bit. Otherwise CF is reset. For
8-, 16- or 32-bit operations, CF is set accord-
ing to carry/borrow at bit 7, 15 or 31, respec-
tively.

Note in these descriptions, "set" means "set to 1,"
and "reset" means "reset to 0."

2.3.4 Segment Registers

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. Segment registers are shown in Figure 2-
4. In Protected Mode, each segment may range in
size from one byte up to the entire linear and physi-

Selector

Selector

Selector

Selector

Selector

Selector

DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)

Other \
Segment

Attributes from Descriptor

-

- -
- - -

- - -

- - -

- - -

o Physical Base Address Segment Limit

CS-
SS-
DS-
ES-
FS-
GS-

\ r

SEGMENT
REGISTERS

15

r

Figure 2-4. 80386 Segment Registers, and Associated Descriptor Registers

9

80386

cal space of the machine, 4 Gbytes (232 bytes). In
Real Address Mode, the maximum segment size is
fixed at 64 Kbytes (216 bytes).

The six segments addressable at any given moment
are defined by the selector registers CS, SS, OS, ES,
FS and GS. The selector in CS indicates the current
code segment; the selector in SS indicates the cur-
rent stack segment; the selectors in OS, ES, FS and
GS indicate the current data segments.

2.3.5 Segment Descriptor Registers
The segment descriptor registers are not-program-
mer visible, yet it is very useful to understand their
content. Inside the 80386, a descriptor register (pro-
grammer invisible) is associated with each program-
mer-visible segment register, as shown by Figure 2-
4. Each descriptor register holds a 32-bit segment
base address, a 32-bit segment limit, and the other
necessary segment attributes.

When a selector value is loaded into a segment reg-
ister, the associated descriptor register is automati-
cally updated with the correct information. In Real
Address Mode, only the base address is updated
directly (by shifting the selector value four bits to the
left), since the segment maximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indexed
by the selector.

Whenever a memory reference occurs, the segment
descriptor register associated with the segment be-
ing used is automatically involved with the memory
reference. The 32-bit segment base address be-
comes a component of the linear address calcula-
tion, the 32-bit limit is used for the limit-check opera-
tion, and the attributes are checked against the type
of memory reference being requested.

2.3.6 Control Registers
The 80386 has three control registers of 32 bits,
CRO, CR2 and CR3, to hold machine state of a glob-
al nature (not specific to an individual task). These
registers, along with System Address Registers de-
scribed in the next section, hold machine state that
affects all tasks in the system. To access the Con-
trol Registers, load and store instructions are de-
fined.

CRO: Machine Control Register (Includes 80286
Machine Status Word)

CRO, shown in Figure 2-5, contains 6 defined bits for
control and status purposes. The low-order 16 bits
of CRO are also known as the Machine Status Word,
MSW, for compatibility with 80286 Protected Mode.
LMSW and SMSW instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. For
compatibility with 80286 operating systems the
80386's LMSW instructions work in an identical
fashion to the LMSW instruction ont he 80286. (Le. It
only operates on the low-order 16-bits of CRO and it
ignores the new bits in CRO.) New 80386 operating
systems should use the MOV CRO, Reg instruction.

The defined CRO bits are described ahead.
PG (Paging Enable, bit 31)

the PG bit is set to enable the on-chip paging
unit. It is reset to disable the on-chip paging
unit.

ET (Processor Extension Type, bit 4)
ET indicates the processor extension type (ei-
ther 80287 or 80387) as detected by the level
of the ERROR# input following 80386 reset.
The ET bit may also be set or reset by loading
CRO under program control if desired. If ET is
set, the 80387-compatible 32-bit protocol is
used. If ET is reset, B0287-compatible 16-bit
protocol is used.
Note that for strict 80286 compatibility, ET is
not affected by the LMSW instruction. When
the MSW or CRO is stored, bit 4 accurately re-
flects the current state of the ET bit.

\.)

MSW

NOTE: 0 indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-5. Control Register 0
10

inter 80386

TS (Task Switched, bit 3)
TS is automatically set whenever a task switch
operation is performed. If TS is set, a coproces-
sor opcode will cause a Coprocessor Not Avail-
able trap (exception 7), if the MP bit is also set.
The trap handler typically saves the
80287/80387 context belonging to a previous
task, loads the 80287/80387 state belonging
to the current task, and clears the TS bit before
returning to the faulting coprocessor opcode.

EM (Emulate Coprocessor, bit 2)
The EMulate coprocessor bit is set to cause all
coprocessor opcodes to generate a Coproces-
sor Not Available fault (exception 7). It is reset
to allow coprocessor opcodes to be executed
on an actual 80287 or 80387 coprocessor (this
the default case after reset). Note that the
WAIT opcode is not affected by the EM bit set-
ting.

MP (Monitor Coprocessor, bit 1)
The MP bit is used in conjunction with the TS
bit to determine if the WAIT opcode will gener-
ate a Coprocessor Not Available fault (excep-
tion 7) when TS = 1. When both MP = 1 and
TS = 1, the WAIT opcode generates a trap.
Otherwise, the WAIT opcode does not gener-
ate a trap. Note that TS is automatically set
whenever a task switch operation is performed.

PE (Protection Enable, bit 0)
The PE bit is set to enable the Protected Mode.
If PE is reset, the processor operates again in
Real Mode. PE may be set by loading MSW or
CRO. PE can be reset only by a load into CRO.
Note that for strict 80286 compatibility, PE can-
not be reset by the LMSW instruction.

CR1: reserved

CR1 is reserved for use in future Intel processors.

CR2: Page Fault Linear Address

CR2, shown in Figure 2-6, holds the 32-bit linear ad-
dress that caused the last page fault detected. The
error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 2-6, contains the physical
base address of the page directory table. The 80386
page directory table is always page-aligned
(4 Kbyte-aligned). Therefore the lowest twelve bits
of CR3 are ignored when written and they store as
undefined.

A task switch through a TSS which changes the
value in CR3, or an explicit load into CR3 with any
value, will invalidate all cached page table entries in
the paging unit cache.

2.3.7 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286/80386
protection model. These tables or segments are:

GOT (Global Descriptor Table),
lOT (Interrupt Descriptor Table),
LOT (Local Descriptor Table),
TSS (Task State Segment).

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers illustrated in Figure 2-7.
These registers are named GDTR, IDTR, LDTR and
TR, respecitvely. Section 4 Protected Mode Archi-
tecture describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address
and 16-bit limit of the GOT and lOT, respectively.

The GOT and lOT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is
enabled) and 16-bit limit values.

31 24 23 16 15 8 7

PAGE FAULT LINEAR ADDRESS REGISTER

PAGE DIRECTORY BASE REGISTER 0 0 0

NOTE: 0 indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-6. Control Registers 2 and 3

11

o
CR2

CR3

inter 80386

SYSTEM ADDRESS REGISTERS
47 32-BITLINEARBASEADDRESS 1615 LIMIT 0

1==========1====1 ~~~:
TR

LDTR

SYSTEM SEGMENT
REGISTERS

SELECTOR

SELECTOR

DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)

r 32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT ATIRIBUTES'

==_-====_-====_I======IH
These registers hold the 16-bit selector for the LDT
segment and the TSS segment, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values
stored in the system segment registers. Note that a
segment descriptor register (programmer-invisible)
is associated with each system segment register.

LDTR and TR

Figure 2-7. System Address and System Segment Registers

Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Buffer por-
tion of the 80386. TR6 is the command test register,
and TR7 is the data register which contains the data
of the Translation Lookaside buffer test. Their use is
discussed in section 2.11 Testability.

Figure 2-8 shows the Debug and Test registers.

2.3.8 Debug and Test Registers 2.3.9 Register Accessibility

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug-
ging. Debug Register CRO-3 specify the four linear
breakpoints. The Debug Control Register DR6 is
used to set the breakpoints and the Debug Status
Register DR?, displays the current state of the
breakpoints. The use of the debug registers is de-
scribed in section 2.12 Debugging support.

DEBUG REGISTERS
31 0

LINEAR BREAKPOINT ADDRESS 0

LINEAR BREAKPOINT ADDRESS 1
LINEAR BREAKPOINT ADDRESS 2

LINEAR BREAKPOINT ADDRESS 3

Intel reserved. Do not define.

Intel reserved. Do not define.

BREAKPOINT STATUS

BREAKPOINT CONTROL

TEST REGISTERS (FOR PAGE CACHE)
31 0

I TEST CONTROL
TEST STATUS

DRO

DR1

DR2

DR3

DR4

DR5

DR6

DR?

TR6

TR?

There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-
ble 2-1 summarizes these differences. See Section
4 Protected Mode Architecture for further details.

2.3.10 Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain 80386 register bits are undefined. When un-
defined bits are called out, treat them as fully
undefined. This Is essential for your software
compatibility with future processorsl Follow the
guidelines below:
1) Do not depend on the states of any unde-

fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-
fined bits when storing them to memory or
another register.

3) Do not depend on the ability to retain Infor-
mation written Into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.

Figure 2·8. Debug and Test Registers

12

inter 80386

Table 2-1. Register Usage

Use in Use in Use!n

Register
Real Mode Protected Mode Virtual Mode

Load Store Load Store Load Store

General Registers Yes Yes Yes Yes Yes Yes

Segment Registers Yes Yes Yes Yes Yes Yes

Flag Registers Yes Yes Yes Yes IOPL IOPL'

Control Registers Yes Yes PL = 0 PL = 0 No Yes

GDTR Yes Yes PL = 0 Yes No Yes

IDTR Yes Yes PL = 0 Yes No Yes

LDTR No No PL = 0 Yes No No

TR No No PL = 0 Yes No No

Debug Control Yes Yes PL = 0 PL = 0 No No

Test Registers Yes PL = 0 PL = 0 PL = 0 No No

NOTES:
Pl = 0: The registers can be accessed only when the current privilege level is zero.
'IOPl: The PUSHF and POPFinstructions are made I/O Privilege level sensitive in Virtual 6066 Mode.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified 80386 handling of these bits. De-
pending on undefined values risks making your
software incompatible with future processors
that define usages for the 80386-undefined bits.
AVOID ANY SOFTWARE DEPENDENCE UPON
THE STATE OF UNDEFINED 80386 REGISTER
BITS.

2.4 INSTRUCTION SET

2.4.1 Instruction Set Overview
The instruction set is divided into nine categories of
operations:

Data Transfer
Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High Level Language Support
Operating System Support
Processor Control

These 80386 instructions are listed in Table 2-2.

13

All 80386 instructions operate on either 0, 1, 2, or 3
operands; where an operand resides in a register, in
the instruction itself, or in memory. Most zero oper-
and instructions (e.g. CLI, STI) take only one byte.
One operand instructions generally are two bytes
long. The average instruction is 3.2 bytes long.
Since the 80386 has a 16-byte prefetched instruc-
tion queue, an average of 5 instructions will be pre-
fetched. The use of two operands permits the follow-
ing types of common instructions:

Register to Register
Memory to Register
Immediate to Register
Memory to Memory
Register to Memory
Immediate to Memory.

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
80386 (32-bit code), operands are 8 or 32 bits; when
executing existing 80286 or 8086 code ("16-bit code),
operands are 8 or 16 bits. Prefixes can be added to
all instructions which override the default length of
the operands, (i.e. use 32-bit operands for 16-bit
code, or 16-bit operands for 32-bit code).

inter 80386

2.4.2 80386 Instructions
Table 2-2a. Data Transfer
GENERAL PURPOSE

MOV Move operand
PUSH Push operand onto stack
POP Pop operand off stack
PUSHA Push all registers on stack
POPA Pop all registers off stack
XCHG Exchange Operand, Register
XLAT Translate

CONVERSION
MOVZX Move byte or Word, Dword, with zero

extension
MOVSX Move byte or Word, Dword, sign

extended

CBW Convert byte to Word, or Word to Dword
COW Convert Word to DWORD
CDWE Convert Word to DWORD extended
COO Convert DWORD to aWORD

INPUT IOUTPUT
IN Input operand from I/O space
OUT Output operand to I/O space

ADDRESS OBJECT
LEA Load effective address

LOS Load pointer into 0 segment register

LES Load pointer into E segment register
LFS Load pointer into F segment register
LGS Load pointer into G segment register
LSS Load pointer into S (Stack) segment

register
FLAG MANIPULATION

LAHF Load A register from Flags
SAHF Store A register in Flags
PUSHF Push flags onto stack
POPF Pop flags off stack
PUSHFD Push EFlags onto stack
POPFD Pop EFlags off stack
CLC Clear Carry Flag
CLD Clear Direction Flag
CMC Complement Carry Flag
STC Set Carry Flag
STD Set Direction Flag

14

Table 2-2b. Arithmetic Instructions
ADDITION

ADD Add operand
ADC Add with carry
INC Increment operand by 1
AAA ASCII adjust for addition
DAA Decimal adjust for addition

SUBTRACTION
SUB Subtract operand
SBB Subtract with borrow
DEC Decrement operand by 1
NEG Negate operand
CMP Compare operands
AAS ASCII Adjust for subtraction

MULTIPLICATION
MUL Multiply Double/Single Precision
IMUL Integer multiply
AAM ASCII adjust after multiply

DIVISION
DIV Divide unsigned
IDIV Integer Divide
AAD ASCII adjust after division

Table 2-2c. String Instructions
MOVS Move byte or Word, Dword string
INS Input string from I/O space
OUTS Output string to I/O space
CMPS Compare byte or Word, Dword string
SCAS Scan Byte or Word, Dword string
LODS Load byte or Word, Dword string
STOS Store byte or Word. Dword string
REP Repeat
REPE/
REPZ Repeat while equal/zero
RENE/
REPNZ Repeat while not equal/not zero

Table 2·2d. Logical Instructions
LOGICALS

NOT "NOT" operand
AND "AND" operand
OR "Inclusive OR" operand
XOR "Exclusive OR" operand
TEST "Test" operand

80386

Table 2-2h. Protection Model

Table 2-21. Program Control Instructions
(Continued)

Table 2-21 Processor Control Instructions

Table 2-2g High Level Language Instructions

HLT Halt
WAIT Wait until BUSY I; negated

ESC Escape
LOCK Lock Bus

BOUND Check Array Bounds
ENTER Setup Parameter Block for Entering

Procedure
LEAVE I Leave Procedure

UNCONDITIONAL TRANSFERS
CALL Call procedure/task
RET Return from procedure/task
JMP Jump

ITERATION CONTROLS
LOOP Loop
LOOPE/
LOOPZ Loop if equal/zero
LOOPNE/
LOOPNZ Loop if not equal/ not zero
JCXZ JUMP if register CX =0

INTERRUPTS
INT Interrupt
INTO Interrupt if overflow
IRET Return from Interrupt
CLI Clear interrupt Enable
SLI Set Interrupt Enable

SGDT Store Global Descriptor Table
SlOT Store Interrupt Descriptor Table
STR Store Task Register
SLOT Store Local Descriptor Table
LGDT Load Global Descriptor Table
L1DT Load Interrupt Descriptor Table
LTR Load Task Register
LLDT Load Local Descriptor Table
ARPL Adjust Requested Privilege Level
LAR Load Access Rights
LSL Load Segment Limit
VERR/
VERW Verify Segment for Reading or Writing
LMSW Load Machine Status Word (lower

16 bits of CRO)
SMSW Store Machine Status Word

Table 2-2e Bit Manipulation Instructions

Table 2-21 Program Control Instructions

Table 2-2d Logical Instructions (Continued)

SINGLE BIT INSTRUCTIONS
BT Bit Test
BTS Bit Test and Set
BTR Bit Test and Reset
BTC Bit Test and Complement
BSF Bit Scan Forward
BSR Bit Scan Reverse

BIT STRING INSTRUCTIONS
IBTS I Insert Bit String
XBTS I Exact Bit String

SHIFTS
SHL/SHR Shift logical left or right
SAL/SAR Shift arithmetic left or right
SHLD/
SHRD Double shift left or right

ROTATES
ROL/ROR I Rotate left/right
RCL/RCR I Rotate through carry left/right

CONDITIONAL TRANSFERS
SETCC Set byte equal to condition code
JAlJNBE Jump if above/not below nor equal
JAE/JNB Jump if above or equal/not below
JB/JNAE Jump if below/not above nor equal
JBE/JNA Jump if below or equal/not above
JC Jump if carry
JE/JZ Jump if equal/zero
JG/JNLE Jump if greater/not less nor equal
JGE/JNL Jump if greater or equal/not less
JL/JNGE Jump if less/not greater nor equal
JLE/JNG Jump if less or equal/not greater
JNC Jump if not carry
JNE/JNZ Jump if not equal/not zero
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity odd
JNS Jump if not sign
JO Jump if overflow
JP/JPE Jump if parity/parity even

JS Jump if Sign

15

inter 80386

2.5 ADDRESSING MODES

2.5.1 Addressing Modes Overview
The 80386 provides a total of 11 addressing modes
for instructions to specify operands. The addressing
modes are optimized to allow the efficient execution
of high level languages such as C and FORTRAN,
and they cover the vast majority of data references
needed by high-level languages.

2.5.2 Register and Immediate Modes
Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-
ands:

Register Operand Mode: The operand is located
in one of the 8-, 32- or 16-bit general registers.

Immediate Operand Mode: The operand is in-
cluded in the instruction as part of the opcode.

2.5.3 Memory Addressing Modes
The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by summing any
combination of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction. [16-bit displacements can
be used by preceding the instruction with an address
prefix.)

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters.

SCALE: The index register's value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index
mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-

16

binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base,
Index, and Displacement components which re-
quires one additional clock.

As shown in Figure 2-9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA = Base Reg + (Index Reg' Scaling) + Displacement

Direct Mode: The operand's offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.
EXAMPLE: INC Word PTR [500)

Register Indirect Mode: A BASE or INDEX register
contains the address of the operand.
EXAMPLE: MOV [ECX). EDX

Based Mode: A BASE register's contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: MOV ECX. [EAX + 24)

Index Mode: An INDEX register's contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: ADD EAX. TABLE[ESI)

Scaled Index Mode: An INDEX register's contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operands offset.
EXAMPLE: IMUL EBX. TABLE[ESI*4).7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOV EAX. [ESI) [EBX)

Based Scaled Index Mode: The contents of an IN-
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis-
ter to obtain the operands offset.
EXAMPLE: MOV ECX, [EDX*S) [EAX)

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register's con-
tents and a DISPLACEMENT are all summed to-
gether to form the operand offset.
EXAMPLE: ADD EDX. [ESI) [EBP + OOFFFFFO)

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand's offset.
EXAMPLE: MOV EAX, LOCALTABLE[EDI*4)
[EBP+SO)

!

inter 80386

SEGMENT REGISTER

SS
GS

fS
ES
OS

-CS

BASE REGISTER

SEGMENT
LIMIT

SELECTED
SEGMENT

/
""

LINEAR
ADDRESS ~ TARGET ADDRESS

------~ ~
SEGMENT BASE ADDRESS

o

EffECTIVE
ADDRESS

SS
GS
fS

ESos
ACCESS RIGHTS CS

LIMIT

BASE ADDRESS

DESCRIPTOR REGISTERS

231630-51

Figure 2-9. Addressing Mode Calculations

2.5.4 Differences Between 16 and 32
Bit Addresses

In order to provide software compatibility with the
80286 and the 8086, the 80386 can execute 16-bit
instructions in Real and Protected Modes. The proc-
essor determines the size of the instructions it is ex-
ecuting by examining the 0 bit in a segment Descrip-
tor. If the 0 bit is 0 then all operand lengths and
effective addresses are assumed to be 16 bits long.
If the 0 bit is 1 then the default length for operands
and addresses is 32 bits. In Real Mode the default
size for operands and addresses is 16-bits.

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis-
ters. The assembler code for this might be MOV
EAX, 32bitMEMORYOP, ASM 386 automatically de-
termines that an Operand Size Prefix is needed and
generates it.

Example: The 0 bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV OX, TABLE[ESI*2). The assembler uses an
Address Length Prefix since, with 0 =0, the default
addressing mode is 16-bits.

Regardless of the default precision of the operands
or addresses, the 80386 is able to execute either 16
or 32-bit instructions. This is specified via the use of
override prefixes. Two prefixes, the Operand Size
Prefix and the Address Length Prefix, override the
value of the 0 bit on an individual instruction basis.
These prefixes are automatically added by Intel as-
semblers.

Example: The 0 bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
Ox.

17

inter 80386

Table 2-3. BASE and INDEX Registers for 16- and 32-Blt Addresses

16-Bit Addressing 32-Blt Addressing

BASE REGISTER BX,BP Any 32-bit GP Register
INDEX REGISTER SI,DI Any 32-bit GP Register

Except ESP
SCALE FACTOR none 1.2,4,8
DISPLACEMENT 0,8,16 bits 0.8,32 bits

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64K bytes to be accessed in
Real Mode. An effective address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional 80386 addressing modes.

When executing 32-bit code. the 80386 uses either
8-. or 32-bit displacements, and any register can be
used as base or index registers. When executing 16-
bit code, the displacements are either 8, or 16 bits,
and the base and index register conform to the 286
model. Table 2-3 illustrates the differences.

2.6 DATA TYPES
The 80386 supports all of the data types commonly
used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits.
which spans a maximum of four bytes.

Bit String: A set of contiguous bits, on the 80386
bit strings can be up to 4 gigabits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan-
tity. All operations assume a 2's complement rep-
resentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.

Unsigned Long Integer (Double Word): An un-
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

Unsigned Quad Word: An unsigned 64-bit quantity.

Offset: A 16- or 32-bit offset only quantity which indi-
rectly references another memory location.

Pointer: A full pointer which consists of a 16-bit seg-
ment selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCII Alphanu-
meric or control character.

String: A contiguous sequence of bytes, words or
dwords. A string may contain between 1 byte and
4 Gbytes.

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in each nibble.

When the 80386 is coupled with a numerics Coproces-
sor such as the 80287 or the 80387 then the following
common Floating Point types are supported.

Floating Point: A signed 32-. 64-, or 80-bit real num-
ber representation. Floating point numbers are sup-
ported by the 80287 and 80387 numerics coproces-
sor.

Figure 2-10 illustrates the data types supported by the
80386 and the 80387/80287.

18

80386

7 07 0

~
BCD BCD

DIGIT 1 DIGIT 0

7 0
SIGNEDrT"T""1

BYTELL.-:.....J
SIGN BIT.JL--...J

ljAGNITUDE

+N
7 0

BINARY I"""'TT"l •••
CODEDL.:.......J

DEClljAL BCD
(BCD) DIGIT N

+1 o

+N +1 o
7 0

UNSIGNED I"""'TT"l
BYTEL.:.......J

L--.J
ljAGNITUDE

7 0 7 07 0

ASCII~ ••• ~

ASCII ASCII ASCII
CHARACTERN CHARACTER1 CHARACTERO

7 0 7 07 0

PACKED I"""'TT"l ••• ~
BCD L.:.......J L..l-.L.-.L-J

L...J L...J
ljOST LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT

+N +1 0

7/15 0 7/t:I:TI:J5 07 15 0BYTE I"""'TT"l
STRINGL.:.......J •• •

+1 0
1514 87 0

SIGNED~
WORDu....:......L..

SIGN BIT.J,LljSB ,

ljAGNITUDE

+1 0
15 0

UNSIGNED~
WORDu....:......L..

, I
ljAGNITUDE

+N +1 o

+3 +2 +1 0
31 1615 0

SIGNED DOUBLE rfTTTTTTTTTTTTT
WORD"~

SIGN BIT.J,LljSB ,

ljAGNITUDE

+2 GIGABITS -2 GIGA~I;~

STRI~I~lIII1========~\.-",,-_-_-_-_-_-_-_-_-.....mn
BITO

31 0
UNSIGNED DOUBLE =

WORD , ,
ljAGNITUDE

SHORT31 0

32-BIT=
POINTER , ,

OFFSET

+3 +2 +1 o +3 +2 +1 o

o+1

OFFSET

+2+3+4

SELECTOR

+5
48

LONG
48-BIT

POINTER
L'•. ---'

+7 +6 +5 +5 +3 +2 +1 0
63 4847 3231 1615 0

SIGNEDQUAD~
WORDLL.l......L..L.

SIGN BIT.J,LljSB ,

ljAGNITUDE

ljAGNITUDE

+8 +7 +6 +5 +4 +3 +2 +1

,
EXPONENT

+9
79

FLOATING
POINT"

SIGN BIT.J,

64 AND 32-BIT
BIT FIELD

BIT FIELD -----'
1 TO 32 BITS

'SUPPORTED BY
iAPX 286/20
NUMERIC DATA
PROCESSOR
CONFIGURATION

231630-52

Figure 2·10. 80386 Supported Data Types

19

inter 80386

2.7 MEMORY ORGANIZATION

2.7.1 Introduction
Memory on the 80386 is divided up into 8-bit quanti-
ties (bytes), 16-bit quantities (words), and 32-bit
quantities (dwords). Words are stored in two consec-
utive bytes in memory with the low-order byte at the
lowest address, the high order byte at the high ad-
dress. Dwords are stored in four consecutive bytes
in memory with the low-order byte at the lowest ad·
dress, the high-order byte at the highest address.
The address of a word or dword is the byte address
of the low-order byte.

In addition to these basic data types the 386 sup-
ports two larger units of memory: pages and seg-
ments. Memory can be divided up into one or more
variable length segments, which can be swapped to
disk or shared between programs. Memory can also
be organized into one or more 4K byte pages. Final-
ly, both segmentation and paging can be combined
gaining the advantages of both systems. The 80386
supports both pages and segment in order to pro-
vide maximum flexibility to the system designer.
Segme.ntat!on and paging are complementary. Seg-
mentation IS useful for organizing memory in logical
modules, and as such is a tool for the application
programmer, while pages are useful for the system
programmer for managing the physical memory of a
system.

2.7.2 Address Spaces
The 80386 has three distinct address spaces:
logical, linear, and physical. A logical address

EFFECTIVE ADDRESS CALCULA TIDN

(also known as a virtual address) consists of a se-
lector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all
of the addressing components (BASE, INDEX, DIS-
PLACEMENT) discussed in section 2.5.3 Memory
Addressing Modes into an effective address. Since
each task on 80386 has a maximum of 16K (214
-1) selectors, and offsets can be 4 gigabytes, (232
bits) this gives a total of 246 bits or 64 terabytes of
logical address space per task. The programmer
sees this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (Le. the Local
Descriptor Table or Global Descriptor Table). The
selector's linear base address is added to the offset
to form the final linear address.

Figure 2-11 shows the relationship between the vari-
ous address spaces.

32 0

PHYSICAL
IoIEIoIORY

EFFECTIVE

ADDRESS
2 D LOGICAL OR

14 VIRTUAL ADDRESS

DESCRIPTOR
INDEX

SEGIoIENT
REGISTER

SEGIoIENTATION
UNIT

32

LINEAR
ADDRESS

PAGING UNIT
(OPTIONAL USE)

BE3 - BEO
A31-A2

32

PHYSICAL
ADDRESS

231630-53

Figure 2-11. Address Translation

20

80386

2.7.3 Segment Register Usage
The main data structure used to organize memory is
the segment. On the 386, segments are variable
sized blocks of linear addresses which have certain
attributes associated with them. There are three
main types of segments: code, data, and stack seg-
ments, the segments are of variable size and can be
as small as 1 byte or as large as 4 gigabytes (232
bits).

In order to provide compact instruction encoding,
and increase processor pertormance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2-4
(Segment Register Selection Rules). In general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and the
SP register as the offset; and Instruction fetches use
the CS register. The contents of the Instruction
Pointer provides the offset. Special segment over-
ride prefixes allow the explicit use of a given seg-
ment register, and override the implicit rules listed in
Table 2-4. The override prefixes also allow the use
of the FS and GS segment registers.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis-
cussed in section 4.1.

2.8 1/0 SPACE
The 80386 has two distinct physical address
spaces: Memory and I/O. Generally, peripherals are
placed in I/O space although the 80386 also sup-
ports memory-mapped peripherals. The I/O space
consists of 64K bytes, it can be divided into 64K 8-
bit ports, 32K 16-bit ports, or 16K 32-bit ports, or any
combination of ports which add up to less than 64K
bytes. The 64K I/O address space refers to physical
memory rather than linear address since I/O instruc-
tions do not go through the segmentation or paging
hardware. The M/IO# pin acts as an additional ad-
dress line thus allowing the system designer to easi-
ly determine which address space the processor is
accessing.

Table 2-4. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch CS None

Destination of PUSH,
PUSHA instructions SS None

Source of POP, paPA
instructions SS None

Other data references,
with effective address
using base register of:

[EAX] DS CS,SS,ES,FS,GS
[ESX] DS CS,SS,ES,FS,GS
[ECX] DS CS,SS,ES,FS,GS
[EDX] DS CS,SS,ES,FS,GS
[ESX] DS CS,SS,ES,FS.GS
[ESI] DS CS,SS,ES,FS.GS

[ED I] , DS CS,SS,ES,FS,GS
[ESP] SS CS,DS,ES.FS,GS
[ESP] SS CS,DS,ES,FS,GS

• Data references for the memory destination of the STOS and MOVS instructions (and REP STOS and REP MOVS)
use 01 as the base register and ES as the segment, with no override possible.

21

inter 80386

The I/O ports are accessed via the IN and OUT I/O
instructions, with the port address supplied in the
DL, OX, or EDX registers. All 8- and 16·bit port ad-
dresses are zero extended on the upper address
lines. The I/O instructions cause the M/IO# pin to
be driven low.

I/O port addresses 00F8H through OOFFH are re-
served for use by Intel. The numerics coprocessors
also reside in this I/O space at locations 800000F8H
- 800000FCH (see section 5).

2.9 INTERRUPTS

2.9.1 Interrupts and Exceptions
Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately
after the interrupted instruction. Sections 2.9.3 and
2.9.4 discuss the differences between Maskable and
Non·Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper-
ating system would fetch the page or segment from
disk, and then the 80386 would restart the instruc-
tion. Traps are exceptions that are reported immedi-
ately after the execution of the instruction which
caused the problem. User defined interrupts are ex-
amples of traps. Aborts are exceptions which do
not permit the precise location of the instruction
causing the exception to be determined. Aborts are
used to report severe errors, such as a hardware
error, or illegal values in system tables.

22

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2-5 summarizes the possi-
ble interrupts for the 80386 and shows where the
return address points to.

The 80386 has the ability to handle up to 256 differ-
ent interrupts/ exceptions. In order to service the in-
terrupts, a table with up to 256 interrupt vectors
must be defined. The interrupt vectors are simply
pointers to the appropriate interrupt service routine.
In Real Mode (see section 3.1), the vectors are 4
byte quantities, a Code Segment plus a 16·bit offset;
in Protected Mode, the interrupt vectors are 8 byte
quantities, which are put in an Interrupt Descriptor
Table (see section 4.1). Of the 256 possible inter-
rupts, 32 are reserved for use by Intel, the remaining
224 are free to be used by the system designer.

2.9.2 Interrupt Processing
When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the 80386 which identifies the appropriate
entry in the interrupt table. The table contains the
starting address of the interrupt service routine.
Then, the user supplied interrupt service routine is
executed. Finally, when an IRET instruction is exe-
cuted the old processor state is restored and pro-
gram execution resumes at the appropriate instruc-
tion.

The 8-bit interrupt vector is supplied to the 80386 in
several different ways: exceptions supply the inter-
rupt vector internally; software INT instructions con-
tain or imply the vector; maskable hardware inter-
rupts supply the 8-bit vector via the interrupt ac-
knowledge bus sequence. Non·Maskable hardware
interrupts are assigned to interrupt vector 2.

2.9.3 Maskable Interrupt
Maskable interrupts are the most common way used
by the 80386 to respond to asynchronous external
hardware events. A hardware interrupt occurs when
the INTR is pulled high and the Interrupt Flag bit (IF)
is enabled. The processor only responds to inter-
rupts between instructions, (REPeat String instruc-

inter 80386

Table 2·5. Interrupt Vector Assignments

Instruction Which
Return Address

Function
Interrupt

Can Cause
Points to

Type
Number

Exception
Faulting

Instruction

Divide Error 0 DIV,IDIV YES FAULT

Debug Exception 1 any instruction YES TRAP'

NMI Interrupt 2 INT20rNMI NO NMI

One Byte Interrupt 3 INT NO TRAP

Interrupt on Overflow 4 INTO NO TRAP

Array Bounds Check 5 BOUND YES FAULT

Invalid OP-Code 6 Any Illegal Instruction YES FAULT

Device Not Available 7 ESC, WAIT YES FAULT

Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Coprocessor Segment 9 Coprocessor Tries to Access Data NO TRAP"
Overrun Past the End of a Segment

InvalidTSS 10 JMP, CALL, IRET, INT YES FAULT

Segment Not Present 11 Segment Register Instructions YES FAULT

Stack Fault 12 Stack References YES FAULT

General Protection Fault 13 Any Memory Reference YES FAULT

Page Fault 14 Any Memory Access or Code Fetch YES FAULT

Coprocessor Error 16 ESC,WAIT YES FAULT

Intel Reserved 17-32

Two Byte Interrupt 0-255 INTn NO TRAP
• Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction .
•• Exception 9 no longer occurs on the 80386 due to the improved interlace between the 80386 and its coprocessors.

tions, have an "interrupt window", between memory
moves, which allows interrupts during long string
moves). When an interrupt occurs the processor
reads an 8-bit vector supplied by the hardware which
identifies the source of the interrupt, (one of 224
user defined interrupts). The exact nature of the in-
terrupt sequence is discussed in section 5.

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an IRET instruction is executed the
original state of the IF is restored.

23

2.9.4 Non-Maskable Interrupt
Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NMI
input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the
80386 will service neither further NMI request, nor
INT requests, until an interrupt return (IRET) instruc-
tion is executed or the processor is reset. If NMI
occurs while currently servicing an NMI, its presence
will be saved for servicing after executing the first
IRET instruction. The IF bit is cleared at the begin-
ning of an NMI interrupt to inhibit further INTR inter-
rupts.

80386

2.9.5 Software Interrupts
A third type of interrupti exception for the 80386 is
the software interrupt. An INT n instruction causes
the processor to execute the interrupt service rou-
tine pointed to by the nth vector in the interrupt ta-
ble.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt, is the single step
interrupt. It is discussed in section 2.12.

2.9.6 Interrupt Priorities
Since interrupts are recognized only at instruction
boundaries it is possible for more than one interrupt
to be active at the same time. If there are simulta-
neous interrupts they will be processed according to
the priority shown in Table 2-6. Example: A given
instruction causes both a debug trap and a segment
not-present exception. The 80386 will first respond
to the segment not-present exception (11) by at-
tempting to invoke the exception 11 handler. The
exception 11 handler will be interrupted causing the
address of the exception 11 handler to be pushed
on the stack. The debug exception handler (1) will
then be called. After the debug handler is finished,
control will pass back to the exception 11 handler.
This allows the system designer to debug his excep-
tion handlers.

Table 2-6. Interrupt Processing Priorities

Processing
Interrupt/ExceptionPriority

1 (highest) Exception faults
2 TRAP instructions
3 Debug Traps for this instruction
4 Debug Faults for next instruction
5 NMI interrupt
6 INTR interrupt

2.9.7 Instruction Restart
The 80386 fully supports restarting all instructions
after faults. The operating system does not need to
participate in the restart process, since the proces-
sor will report a page or segment fault with the ma-
chine in a state that permits restarting of the faulting
instruction after the fault handler has corrected the

24

faulting condition. (e.g. a page fault was generated,
the page fault handler brings in the correct page).

Instruction restart is guaranteed except for two con-
ditions: If the instruction causes a task switch to a
TSS that is located in a not-present page. If one of
the operands is located below any of the current
stack pointers (i.e. at a memory address less than
the top of stack) or if a floating point operand wraps
around in memory.

2.9.8 Double Faults
A double fault results when the processor is at-
tempting to handle an exception, and receives an-
other exception during the handling routine. A dou-
ble fault causes an exception 8. Most exceptions on
the 80386 do not count toward the double fault con-
dition (types 1, 2, 3, 4, 5, 6, 7, 9, 14, and 16). Only
zero-divide errors (interrupt 0) and the segment ex-
ceptions (10, 11, 12, 13) count toward a double fault.
Therefore receiving segment not-present exception
(11) while responding to a debug exception would
not result in a double fault. While a segment fault
which occurred during a zero·divide handler would
cause a double fault.

Page faults do not count toward double faults. For
instance, if an instruction caused both a segment
not-present exception (11) and a page not-present
fault (interrupt 14) both interrupts would be proc-
essed correctly. The segment not-present handler
would be invoked causing the correct segment to be
loaded from the disk. The instruction would be re-
started, and would then cause a page fault. The
page fault handler would then bring in the correct
page, and execution would proceed. This supports
the concept of paging being "underneath" segmen-
tation.

A final cause of double faults is recursive faults (e.g.
the page fault handler is not present). These cause
an exception 8.

2.10 RESET AND INITIALIZATION
When the processor is initialized or Reset the regis-
ters have the values shown in Table 2-7. The 80386
will then start executing instructions near the top of
physical memory, at location FFFFFFFOH. When the
first InterSegment Jump or Call is executed, address
lines A20-31 will drop low, and the 80386 will only
execute instructions in the lower one megabyte of
physical memory. This allows the system designer to
use a ROM at the top of physical memory to initialize
the system and take care of Resets.

inter 80386

Driving the RESET input pin HIGH for at least 78
CLK2 periods Resets the 80386. RESET forces the
80386 to terminate all execution and local bus activi-
ty. No instruction execution or bus activity will occur
as long as Reset is active. Between 350 and 450
CLK2 periods after Reset becomes inactive the
80386 will start executing instructions at the top of
physical memory.

Table 2-7. Register Values after Reset

Flag Word UUUUOO02H Note 1
Machine Status Word (CRO) UUUUUUUOH Note 2
Instruction Pointer OOOOFFFOH
Code Segment FOOOH Note 3
Data Segment OOOOH
Stack Segment OOOOH
Extra Segment (ES) OOOOH
Extra Segment (FS) OOOOH
Extra Segment (GS) OOOOH
All other registers undefined

NOTES:
1. EFLAG Register. The upper 14 bits of the EFLAGS reg-
ister are undefined, VM (Bit 17) and RF (BIT) 16 are 0 as
are all other defined flag bits.
2. CRO: (Machine Status Word). All of the defined fields in
the CRO are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and
PE Bit 0) except for ET Bit 4 (processor ex1ension type).
The ET Bit is set during Reset according to the type of Co-
processor in the system. If the coprocessor is an 80387
then ET will be 1, if the coprocessor is an 80287 or no
coprocessor is present then ET will be O. All other bits are
undefined.
3. The Code Segment Register (CS) will have its Base Ad·
dress set to FFFOOOOOHand Limit set to OFFFFH. All un·
defined bits are Intel Reserved and should not be used.

2.11 TESTABILITY

2.11.1 Self-Test
The 80386 has the capability to perform a self·test.
The self·test checks the function of all of the Control
ROM and most of the non-random logic of the part.
Approximately one-half of the 80386 can be tested
during self-test.

Self-Test is initiated on the 80386 when the RESET
pin transitions from HIGH to LOW, and the BUSY /I
pin is low. The self-test takes about 2' '19 CLK2s, or
approximately 30 milliseconds with a 16 MHz 80386.
At the completion of self-test the processor per-
forms reset and begins normal operation. The part
has successfully passed self-test if the contents of
the EAX and the EDX register are zero (0). If the
results of EAX and EDX are not zero then the self-
test has detected a flaw in the part.

2.11.2 TLB Testing
The 80386 also provides a mechanism for testing
the Translation Lookaside Buffer (TLB) (see section
4.5.4 Translation Lookaslde Buffer). This feature
is primarily useful for people who wish to write test
programs for the 80386. The TLB testing method is
unique to the 80386 and may not be continued in
future microprocessors. Testing the TLB requires
the use of a tester or an assembly language pro-
gram to drive a test pattern. Paging must be disabled
in order to test the functionality of the TLB.

Two test registers provide a means of writing a pat-
tern into the TLB and reading the result. TR6 is the
test command register, and TR7 is the test data reg-
ister. Figure 2-12 shows the two test registers.

The test registers allow two operations to be per-
formed on the TLB: Write New TLB Entry, Perform
TLB Lookup. A write to the test command register
via the MOV TR6, REG instructions causes a TLB
operation to be performed. If bit 0 of TR6 is a 0, a
Write New TLB Entry operation occurs if bit 0 is 1
then a TLB Lookup is performed.

2.12 DEBUGGING SUPPORT
The 80386 provides several features which simplify
the debugging process. Most of these features are
designed primarily for software debugging. (Note: In-
tel will provide a complete set of Hardware/Software
debugging tools such as ICE-386 (In Circuit Emula-
tor) and PTM-386 (Pass Through Monitor) to com-
plement the built in debugging features.)

31 12 11 0

LINEAR ADDRESS
V 0 0 U U W W 0 010 C C

/I /I /I

PHYSICAL ADDRESS 0 0 0 0 0 0 0
P

REP 0 0
L

TR6

TR7

NOTE: 0indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-12. Test Registers

25

inter 80386

The three major types of on-chip debugging aids are
the software breakpoints, single stepping and the
debug registers. A one byte interrupt INT 3 is avail-
able for use by software debuggers to implement
breakpoints. The debugger should insert the INT 3
instructions in code sequences. When the INT 3 in-
struction is encountered execution will proceed at
the interrupt handler 3.

The single step interrupt is enabled by setting the
single step bit (TF) in the flag word. The TF bit is set
by altering the stack image and executing a POPF or
IRET instruction. After the TF bit is set, a !!ingle step
interrupt will occur after the next instruction is exe-
cuted. The interrupted instruction will push the cur-
rent Flag register on the stack (with the TF bit set)
and then will clear the TF bit, (enabling the single
step interrupt handling routine to execute normally).
This allows an interrupt handler to be created which
can single step through a sequence of instructions.
The single step interrupt uses interrupt vector 1,
which is supplied internally to the processor.

After completion of the single step interrupt handling
routine, the IRET will pop the flag register and then
transfer control to the next instruction to be single
stepped.

Debug Registers are a unique feature of the 80386.
The six program accessible debug registers provide
the ability to specify up to four distinct breakpoints.
Unlike traditional breakpoints which only support in-
struction breakpointing, the 80386 debug registers
allow breakpoints to be set for data accesses. Thus,
if a variable is accidently being overwritten, a break-
point can be setup to stop execution whenever that
variable's contents are being changed.

Figure 2-13 shows the Debug Registers in more de-
tail. DRO-3 contains the linear address of the break-
point.

NOTE:
The linear address may not correspond to the
physical address if paging is enable.

DR6 contains the status of the breakpoint registers.
The bits within the register have the following mean-
ings:

BT is set if a task switch occurs into a task where
the TSS has the DEBUG TRAP bit set.

BS: Enables the debug handlers to distinguish sin-
gle-step traps from the other debug conditions.

BD: Is set by the hardware if the next instruction
accesses a debug register.

BO-B3: These bits are set if a qualified breakpoint
has occurred. BO is set if the Breakpoint 0 has
happened etc.

DR? is the Debug Control Register it is used to
enable and qualify the various breakpoints: The
bits assignment are assigned as follows:

LENi : This is a two bit field which specifies the
length of the breakpoint i . All breakpoints must be
aligned; 2 byte breakpoints must be aligned on
Word boundaries, and 4 byte breakpoints must be
aligned on Dword boundaries.

00 = byte length
01 = byte length
10 = UNDEFINED
11 = 4 byte length

31 16 15 o
BREAKPOINT 0 LINEAR ADDRESS

BREAKPOINT 1 LINEAR ADDRESS

BREAKPOINT 2 LINEAR ADDRESS

BREAKPOINT 3 LINEAR ADDRESS

Intel reserved. Do not define.

Intel reserved. Do not define.

0 B B B 00 o 0 o 0 00 o B B B B
T S 0 3 210

LEN 1~lwl LEN 1~lwl LEN IRIWI LEN JRIW 0 o G 00 OG L G LG LG L G L
333222111000 0 E E 3 3 2 2 1 1 0 0

ORO
DR1

DR2

DR3

DR4

DR5

DR6

DR?

31 16 15

NOTE: [Uindicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-13. Debug Registers

26

o

inter 80386

RWEi: This two-bit field specifies the type of mem-
ory access which must occur in order to activate a
breakpoint:

RWE Break On

00 Instruction Execution only
01 Data Writes Only
10 UNDEFINED
11 Data Reads or Writes only

(not Instruction fetches)

GE/LE Global and Local Exact breakpoints:
These bits should always be set to 1 when using
breakpoints.

Gi/Li Global and Local breakpoint enables. If ei-
ther Gi = 1 or Li = 1, then breakpoint i is en-
abled. If these bits are set then any qualified
breakpoint (Le. a breakpoint which matches the
condition specified by the LWE bits) will cause the
processor to execute the debug handler. The Li
bits allows local breakpoints to be set for an indi-
vidual task but will not affect another task. The Gi
bits allow global breakpoints to be set which affect
all tasks.

In order to set a breakpoint the processor must be
executing at privilege level 0, or in Real Mode. Then,
the breakpoint must be set by loading the breakpoint
register (via a MOV DRi, REG/MEM instruction),
with the address of the breakpoint. Then, the appro-
priate LEN and RWE must be set up. Finally, the
breakpoint enable bits must be set Gi and/or Li.

NOTE:
The Bi bits in DR6 will always show any qualified
breakpoints, but unless Gi or Li are set the proces-
sor will not execute the debug routine at interrupt 1.

3. REAL MODE ARCHITECTURE

3.1 REAL MODE INTRODUCTION
When the processor is reset or powered up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the 80386. The addressing
mechanism, memory size, interrupt handling, are all
identical to the Real Mode on the 80286.

All of the 80386 instructions are available in Real
Mode. The default operand size in Real Mode is 16-
bits, just like the 8086. In order to use the 32-bit
registers and addressing modes, override prefixes
must be used. In addition, the segment size on the
80386 in Real Mode is 64K bytes so 32-bit address-
es must have a value less the OOOOFFFFH.The pri-
mary purpose of Real Mode is to set up the proces-
sor for Protected Mode Operation.

3.2 MEMORY ADDRESSING
In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2-A19,
BEO-B3 are active. (Exception, the high address
lines A20-A31 are high until an intersegment jump
or call is executed (see section 2.10)).

MAX LIMIT
FIXED AT
REAL MODE

....~

MEMORY OPERAND

SEGMENT BASE

l
64K

1

SELECTED
SEGMENT

231630-54

Figure 3·1. Real Address Mode Addressing

27

inter 80386

Since, paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg-
ister which is shifted left by four bits to an effective
address. This addition results in a 20-bit physical ad-
dress or a 1 megabyte address space. Since seg-
ment registers are shifted left by 4 bits this implies
that Real Mode segments always start on 16 byte
boundaries.

All segments in Real Mode are exactly 64K bytes
long, and may be read, written, or executed. The
80386 will generate an exception 13 if a data oper-
and or instruction fetch occurs past the end of a
segment. (Le. if an operand has an offset greater the
FFFFH, example a word with a low byte at FFFFH
and the high byte at OOOOH)

3.4 INTERRUPTS
Many of the exceptions shown in Table 2-5 and dis-
cussed in section 2.9 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 12,
14, will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode Table
3-1 identifies these exceptions.

3.5 SHUTDOWN AND HALT
The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF= 1), or RESET will force the 80386 out of halt. If
interrupted, the saved CS:IP will point to the next
instruction after the HLT.

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.
(e.g. pushing a value on the stack when SP =
0001 resulting a stack segment greater than
FFFFH)

An interrupt or an exception occur (Exceptions 8
or 13) and the interrupt vector is larger than the
Interrupt Descriptor Table (Le. There is not an in-
terrupt handler for the interrupt).

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
OOOFH) and the stack has enough room to contain
the vector and flag information (Le. SP is greater
than 0005H). Otherwise shutdown can only be exit-
ed via the RESET input.

Table 3-1

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations OOOOOH
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

3.3 RESERVED LOCATIONS

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64K bytes an-
other segment can be overlayed on top of the un-
used portion of the previous segment. This allows
the programmer to minimize the amount of physical
memory needed for a program.

Function Interrupt Related Return
Number Instructions Address Location

Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction

Segment overrun exception 13 Word memory reference Before
With offset = FFFFH or Inst. Instruction
an attempt to execute
past the end of a segment

28

inter 80386

4. PROTECTED MODE
ARCHITECTURE

4.1 INTRODUCTION
The complete capabilities of the 80386 are unlocked
when the processor operates in Protected Virtual
Address Mode (Protected Mode). Protected Mode
vastly increases the linear address space to four gig-
abytes (232 bytes) and allows the running of virtual
memory programs of almost unlimited size (64 tera-
bytes or 246 bytes). In addition Protected Mode al-
lows the 80386 to run all of the existing 8086 and
80286 software, while providing a sophisticated
memory management and a hardware-assisted pro-
tection mechanism. Protected Mode allows the use
of additional instructions especially optimized for
supporting multitasking operating systems. The base
architecture of the 80386 remains the same, the reg-
isters, instructions, and addressing modes described
in the previous sections are retained. The main dif-
ference between Protected Mode, and Real Mode
from a programmer's view is the increased address
space, and a different addressing mechanism.

4.2 ADDRESSING MECHANISM
Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating
system defined table (see Figure 4-1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the 80386, as such paging operates
beneath segmentation. The paging mechanism
translates the protected linear address which comes
from the segmentation unit into a physical address.
Figure. 4-2 shows the complete 80386 addressing
mechanism with paging enabled.

48/32 BIT POINTER
SEGt.4ENT LIt.4IT

231630-55

SELECTED
SEGt.4ENT

SEGt.4ENT BASE
ADDRESS

o
0----+ t.4Et.40RY OPERAND

SEGt.4ENT
DESCRIPTOR

ACCESS RIGHTS

LIt.4IT

BASE ADDRESS

Figure 4-1. Protected Mode Addressing

29

inter

<48 BIT POINTER

80386

PHYSICAL ADDRESS

SEGt.4ENT
DESCRIPTOR

LINEAR
ADDRESS

803B6
PAGING

t.4ECHANISt.4 PHYSICAL
ADDRESS

PAGE FRAt.4E

ADDRESS

t.4Et.40RY OPERAND

t <4K BYTES

<4K BYTES

<4K BYTES

t
PHYSICAL PAGE:
<4K BYTES

t <4K BYTES

t <4K BYTES

t <4KBYTES

231630-56

Figure 4-2. Paging and Segmentation

4.3 SEGMENTATION

4.3.1 Segmentation Introduction
Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about the
segments, is stored in an 8 byte data structure
called a descriptor. All of the descriptors in a system
are contained in tables recognized by hardware.

4.3.2 Terminology
The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level-one of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically greater than less privileged
levels.

30

RPL: Requestor Privilege Le-.:eJ~The privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege Level-This is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current Privilege Level-The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level-The effective privi-
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also refered to as processes.

inter 80386

4.3.3 Descriptor Tables

4.3.3.1 DESCRIPTOR TABLES INTRODUCTION

The descriptor tables define all of the segments
which are used in an 80386 system. There are three
types of tables on the 80366 which hold descriptors:
the Global Descriptor Table, Local Descriptor Table,
and the Interrupt Descriptor Table. All of the tables
are variable length memory arrays, they can range in
size between 8 bytes and 64K bytes. Each table can
hold up to 6192 6 byte descriptors. The upper 13
bits of a selector are used as an index into the de-

scriptor table. The tables have registers associated
with them which hold the 32-bit linear base address,
and the 16·bit limit or each table.

Each of the tables has a register associated with it
the GDTR, LDTR, and the IDTR; see Figure 4-3. The
LGDT, LLDT, and L1DT instructions, load the base
and limit of the Global, Local, and Interrupt Descrip-
tor Tables, into the appropriate register. The SGDT,
SLOT and SlOT store the base and limit values.
Thes~ tables are manipulated by the operating sys-
tem. Therefore, the load descriptor table instructions
are privileged instructions.

GDTR

231630-57

Figure 4-3. Descriptor Table Registers

31

80386

4.3.3.2 GLOBAL DESCRIPTOR TABLE 4.3.3.4 INTERRUPT DESCRIPTOR TABLE

The Global Descriptor Table (GOD contains de-
scriptors which are possibly available to all of the
tasks in a system. The GOT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (Le. interrupt and trap
descriptors). Every 386 system contains a GOT.
Generally the GOT contains code and data seg-
ments used by the operating systems and task state
segments, and descriptors for the LOTs in a system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

The third table needed for 80386 systems is the In-
terrupt Descriptor Table. (See Figure 4-4.) The lOT
contains the descriptors which point to the location
of up to 256 interrupt service routines. The lOT may
contain only task gates, interrupt gates, and trap
gates. The lOT should be at least 256 bytes in size in
order to hold the descriptors for the 32 Intel Re-
served Interrupts. Every interrupt used by a system
must have an entry in the lOT. The lOT entries are
referenced via INT instructions, external interrupt
vectors, and exceptions. (See 2.9 Interrupts).

Figure 4-4. Interrupt Descriptor
Table Register Use

4.3.3.3 LOCAL DESCRIPTOR TABLE

LOTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LOT. The
LOT may contain only code, data, stack, task gate,
and call gate descriptors. LOTs provide a mecha-
nism for isolating a given task's code and data seg-
ments from the rest of the operating system, while
the GOT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LOT or the GOT. This pro-
vides both isolation and protection for a task's seg-
ments, while still allowing global data to be shared
among tasks.

cpu

GATE FOR
INTERRUPT #n-1

GATE FOR
INTERRUPT #1

GATE FOR
INTERRUPT ,f0

INTERRUPT
DESCRIPTOR
TABLE
(lOT)

231630-58

Unlike the 6 byte GOT or lOT registers which contain
a base address and limit, the visible portion of the
LOT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GOT.

4.3.4 Descriptors

4.3.4.1 DESCRIPTOR ATTRIBUTE BITS

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re-
gion of linear address space (i.e. a segment). These

+4

o BYTE
ADDRESS

oSEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0

BASE 31 ... 24 G 0 0 0
LIMIT

P OPL S TYPE A
BASE

19 ... 16
I I I

23 ... 16

31

BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1= Present 0 = Not Present
DPL Descriptor Privilege Level 0-3
S Segment Descriptor 0 ~ System Descriptor 1 ~ Code or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1= Segment length is page granular 0 = Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only) 1 ~ 32-bit segment 0 ~ 16·bit segment
o Bit must be zero (0) for compatibility with future processors

Figure 4-5. Segment Descriptors

32

inter 80386

attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4-5 shows the gen-
eral format of a descriptor. All segments on the
80386 have three attribute fields in common: the P
bit, the DPL bit, and the S bit. The Present P bit is 1
if the segment is loaded in physical memory, if P=O
then any attempt to access this segment causes a
not present exception (exception 11). The Descrip-
tor Privilege Level DPL is a two-bit field which speci-
fies the protection level 0-3 associated with a seg-
ment.

31

The 80386 has two main categories of segments
system segments and non-system segments (for
code and data). The segment S bit in the segment
descriptor determines if a given segment is a system
segment or a code or data segment. If the S bit is 1
then the segment is either a code or data segment, if
it is 0 then the segment is a system segment.

4.3.4.2386 CODE, DATA DESCRIPTORS (S=O)

Figure 4-6 shows the general format of a code and
data descriptor and Table 4·1 illustrates how the bits
in Access Right Byte are interpreted.

o
SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0

LIMIT
ACCESS BASE

BASE 31 ... 24 G D 0 0 RIGHTS
19 ... 16 BYTE

23 ... 16

o

+4

OIB 1 = Oefault Instructions Attributes are 32-Bits
0= Default Instruction Attributes are 16-Bits

G

o

Granularity Bit 1 - Segment length is page granular
0- Segment length is byte granular

Bit must be zero (0) for compatibility with Mure processors

Figure 4-6. Segment Descriptors

Table 4-1. Access Rights Byte Definition for Code and Data Descriptions

Type
Field
Definition

Bit
Name Function

Position

7 Present (P) P = 1 Segment is mapped into physical memory.
P=O No mapping to physical memory exits, base and limit are

not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.

Level (DPL)
4 Segment Descrip- S=1 Code or Data (includes stacks) segment descriptor

tor (S) S=O System Segment Descriptor or Gate Descriptor

3 Executable (E) E ~ 0 Data••• me'''"",';.'''' type;" r
2 Expansion Direc- ED = 0 Expand up segment, offsets must be ~ limit. Data

tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment
1 Writeable (W) W = 0 Data segment may not be written into. (S = 1,

W = 1 Data segment may be written into. E = 0)

3 Executable (E) E = 1 Code segment descriptor type is: r2 Conforming (C) C=1 Code segment may only be executed Code
when CPL ~ DPL and CPL Segment
remains unchanged. (S = 1,

1 Readable (R) R=O Code segment may not be read. E = 1)
R = 1 Code segment may be read.

0 Accessed (A) A=O Segment has not been accessed.
A = 1 Segment selector has been loaded into segment register

or used by selector test instructions.

33

80386

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. 80386 segments can be one mega-
byte long with byte granularity (G = 0) or four giga-
bytes with page granularity (G = 1), (i.e. 220 pages
each page is 4K bytes in length). The granularity is
totally unrelated to paging. A 80386 system can con-
sist of segments with byte granularity, and page
granularity, whether or not paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E = 1, S = 1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R = 0, and execute/read if R = 1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias-
es are writeable data segments which occupy the
same range of linear address space as the code
segment.

The 0 bit indicates the default length for operands
and effective addresses. If D= 1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
D = 0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 286 code
segments will execute on the 80386 assuming the D
bit is set O.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C = 1,
can be executed and shared by programs at differ-
ent privilege levels. (See section 4.4 Protection.)

Segments identified as data segments (E = 0, S = 1)
are used for two types of 80386 segments: stack
and data segments. The expansion direction (ED) bit
specifies if a segment expands downward (stack) or
upward (data). If a segment is a stack segment all
offsets must be greater than the segment limit. On a
data segment all offsets must be less than or equal
to the limit. In other words, stack segments start at
the base linear address plus the maximum segment
limit and grow down to the base linear address plus
the limit. On the other hand, data segments start at
the base linear address and expand to the base lin-
ear address plus limit.

The write W bit controls the ability to write into a
segment. Data segments are read-only if W = O. The
stack segment must have W = 1.

The B bit controls the size of the stack pointer regis-
ter. If B = 1 PUSHes, POPs, and CALLs all use the
32-bit ESP register for stack references and assume
an upper limit of FFFFFFFFH. If B = 0 stack instruc-
tions all use the 16-bit SP register and assume an
upper limit of FFFFH.

4.3.4.3 SYSTEM DESCRIPTOR FORMATS

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4-7
shows the general format of system segment de-
scriptors, and the various types of system segments.
80386 system descriptors contain a 32-bit base lin-
ear address and a 20-bit segment limit. 80286 sys-
tem descriptors have a 24-bit base address and a
16-bit segment limit. 80286 system descriptors are
identified by the upper 16 bits being all zero.

31

SEGMENT BASE 15 ... 0

16

SEGMENT LIMIT 15 ... 0

o
o

BASE 31 ... 24

Type
o
1
2
3
4
5
6
7

Define.
Invalid
Available 286 TSS
LOT
Busy 286 TSS
286 Call Gate
286 Task Gate
286 Interrupt Gate
286 Trap Gate

LIMIT
19 ... 16

P

Type
8
9
A
B
C
o
E
F

TYPE
Oeflnee
Invalid
Available 386 T55
Undefined (Intel Reserved)
Busy 386 TSS
386 Call Gate
Undefined (Intel Reserved)
386 Interrupt Gate
386 Trap Gate

BASE
23 ... 16

+4

Figure 4-7. System Segments Descriptors

34

80386

4.3.4.4 LOT DESCRIPTORS (S=O, TYPE=2)

LDT descriptors (S =0 TYPE =2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De-
scriptor Table (GDT).

4.3.4.5 TSS DESCRIPTORS (S = 0,
TYPE = 1, 3, 9, B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). A TSS in turn is a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e. on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
286 or a 386 TSS. The Task Register (TR) contains
the selector which points to the current Task State
Segment.

4.3.4.6 GATE DESCRIPTORS (5=0,
TYPE=4-7, C, F)

Gates are used to control access to entry points
within the target code segment. The various types of

gate descriptors are call gates, task gates,
Interrupt gates, and trap gates. Gates provide a
level of indirection between the source and destina-
tion of the control transfer. This indirection allows
the processor to automatically perform protection
checks. It also allows system designers to control
entry points to the operating system. Call gates are
used to change privilege levels (see section 4.4
Protection), task gatas are used to perform a task
switch, and interrupt and trap gates are used to
specify interrupt service routines.

Figure 4-8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller's stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit) while the trap gate does not.

31 24 16 8 5 o
SELECTOR OFFSET 15 ... 0

WORD
OFFSET 31 ... 16 P DPL 0 TYPE 0 0 0 COUNT

, 4 ... 0

o

+4

Name
Type

P

Value
4
5
6
7
C
E
F
Q

1

Gate Descriptor Fields
Description

266 call gate
Task gate
286 interrupt gate
286 trap gate
386 call gate
386 interrupt gate
386 trap gate
Descriptor contents are not valid
Descriptor contents are valid

DPL-Ieast privileged level at which a task may access the gate. WORD COUNT Q-31-the number of parameters to copy from caller's stack
to the called procedure's stack. The parameters are 32-bit quantities for 386 gates. and l6-bit quantities for 286 gates.

DESTINATION 16-bit Selector to the target code segment
SELECTOR selector or

Selector to the target task state segment for task gate

DESTINATION
OFFSET

offset
16-bit 286
32-bit 386

Entry point within the target code segment

Figure 4-8. Gate Descriptor Formats

35

80386

Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see section
4.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, Le. a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. P= 1 indicates that the gate contents are
valid. P =0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task (see section 4.4
Protection). The S field bit 4 of the access rights
byte must be 0 to indicate a system control descrip-
tor. The type field specifies the descriptor type as
indicated in Figure 4·8.

4.3.4.7 DIFFERENCES BETWEEN 386 AND 286
DESCRIPTORS

In order to provide operating system compatibility
between the 80286 and 80386, the 386 supports all
of the 80286 segment descriptors. Figure 4-9 shows
the general format of an 80286 system segment de-
scriptor. The only differences between 286 and 386
descriptor formats are that the values of the type
fields, and the limit and base address fields have
been expanded for the 386. The 80286 system seg-
ment descriptors contained a 24-bit base address
and 16-bit limit, while the 386 system segment de-
scriptors have a 32-bit base address, a 20-bit limit
field, and a granularity bit.

By supporting 80286 system segments the 80386 is
able to execute 286 application programs on a
80386 operating system. This is possible because
the processor automatically understands which de-

scriptors are 286-style descriptors and which de-
scriptors are 386-style descriptors. In particular, if
the upper word of a descriptor is zero then that de-
scriptor is a 286-style descriptor.

The only other differences between 286-style de-
scriptors and 386 descriptors is the interpretation of
the word count field of call gates and the B bit. The
word count field specifies the number of 16-bit quan·
tities to copy for 286 call gates and 32-bit quantities
for 386 call gates. The B bit controls the size of
PUSHes when using a call gate; if B =0 PUSHes are
16 bits, if B = 1 PUSHes are 32 bits.

4.3.4.8 SELECTOR FIELDS

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (TI), Descriptor
Entry Index (Index), and Requestor (the selector's)
Privilege Level (RPL) as shown in Figure 4-10. The
TI bits select one of two memory· based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de·
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector's
privilege attributes.

4.3.4.9 SEGMENT DESCRIPTOR CACHE

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register's con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor's val-
ue.

31

SEGMENT BASE 15 ... 0

Intel Reserved
Set to 0

09scriptor Privilege Level 0-3
System Oescriptor 0 - System 1 ~ User
Type of Segment

BASE
LIMIT
P

Base Address of the segment
The length of the segment
Present Bit 1 ~ Present 0~ Not Present

SEGMENT LIMIT 15 ... 0

P TYPE

o
o

BASE +4
23 ... 16

Figure 4-9. 286 Code and Data Segment Descriptors

36

inter 80386

SELECTOR

231630-59

NULLo
GLOBAL

DESCRIPTOR
TABLE

6

5

4

3

2

SEGt.4ENT
REGISTER 0

INDEX TABLE
INDICATOR

TI=l

N

DESCRIPTOR
NUt.4BER

6

5

4
3 DESCRIPTOR

2

0

LOCAL
DESCRIPTOR

TABLE

Figure 4-10. Example Descriptor Selection

37

inter 80386

4.3.4.10 SEGMENT DESCRIPTOR REGISTER
SETTINGS

The contents of the segment descriptor cache vary
depending on the mode the 80386 is operating in.
When operating in Real Address Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4-11.

For compatiblity with the 8086 architecture, the base
is set to sixteen times the current selector value, the
limit is fixed at OOOOFFFFH, and the attributes are
fixed so as to indicate the segment is present and
fully usable. In Real Address Mode, the internal
"privilege level" is always fixed to the highest level,
level 0, so I/O and other privileged opcodes may be
executed.

SEGt.4ENT DESCRIPTOR CACHE REGISTER CONTENTS

OTHER ATTRIBUTES
(FIXED)

32 - BIT L1t.4IT
(FIXED)

32 - BIT BASE
(UPDATED DURING SELECTOR

LOAD INTO SEGt.4ENT REGISTER)

CONFORt.4ING PRIVILEGE --------------------....,
STACK SIZE -------------------....,
EXECUTABLE -------------------.,
WRITEABLE -----------------....,
READABLE ----------------....,

EXPANSION DIRECTION ----------------1GRANULARITY 1
ACCESSED 1
~:~V~~~~E _L~E~ ~A~~ ~I~I! t1_ _ _ __
CS 16X CURRENT CS SELECTOR' OOOOFFFFH Y 0 Y B U Y Y Y - N
SS 16X CURRENT SS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N W -
OS 16X CURRENT OS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
ES 16X CURRENT ES SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
FS 16X CURRENT FS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
GS 16X CURRENT GS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -

231630-60

o = expand down
B = byte granularity
P - page granularity
W - push/pop 16-bit words
F - push/pop 32-bit dwords
- - does not apply to that segment cache register

'Except the 32-bit CS base is initialized to FFFFFOOOH after reset unUi first intersegment control transfer (e.g. intersegment CALL, or
intersegment JMP, or INT). (See Figure 4-13 Example.)

Key: Y = yes
N = no
o = privilege level 0
1 = privilege level 1
2 - privilege level 2
3 = privilege level 3
U = expand up

Figure 4·11. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)

38

inter 80386

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4-12.
In Protected Mode, each of these fields are defined

according to the contents of the segment descriptor
indexed by the selector value loaded into the seg-
ment register.

SEGMENT DESCRIPTORCACHE REGISTERCONTENTS

OTHERATTRIBUTES
(UPDATEDDURING

SELECTORLOAD INTO
SEGMENTREGISTER)

32 - BIT LIMIT
(UPDATED DURING

SELECTORLOAD INTO
SEGMENTREGISTER)

32 - BIT BASE
(UPDATED DURING

SELECTORLOAD INTO
SEGMENTREGISTER)

CONFORMINGPRIVILEGE----------------------,
STACK SI2E------------------------,
EXECUTABLE-----------------------,
WRITEABLE-----------------------,
READABLE----------------------,
EXPANSIONDIRECTION----------------l
GRANULARITY 1
ACCESSED 1
~:~V~~~~E_L~E~-~-~-S::-_-_-_-_-_-_-_-_-_-_-.-:-I~-I~-_-.-.-.-_-_-:J.-J__ . _ _ _ _ _
CS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d N Y - d
SS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d r w N d -
OS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d d N
ES BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d d N
FS BASE PER SEG DESCR LIMIT PER SEG DESCR P d d d d d d N
GS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d d N

231630-61

Key: Y ~ fixed yes
N - fixed no
d - per segment descriptor
p = per segment descriptor, descriptor must indicate "present" to avoid exception 11

(exception 12 in case of SS)
r ~ per segment descriptor. but descriptor must indicate "readable" to avoid exception 13

(special case for SS)
w ~ per segment descriptor, but descriptor must indicate "writable" to avoid exception 13

(special case for SS)
- = does not apply to that segment cache register

Figure 4-12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

39

inter 80386

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de-
fined as shown in Figure 4-13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

OOOOFFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in-
structions and level-O-only instructions.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32 - BIT BASE 32 - BIT LIMIT OTHER ATTRIBUTES

(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)

CONrORMING PRIVILEGE ----------------------,
STACK SIZE ---------------------,
EXECUTABLE --------------------,
WRITEABLE ------------------,
READABLE ------------------,

EXPANSION DIRECTION ----------------1
GRANULARITY 1
ACCESSED 1
~:~V~~~~E _L:~E~ B~-~-E_-_-_-_-_-_-_-_-_-_-~I-~-I:-_-_-_-t-J __ _ __

CS 16X CURRENT CS SELECTOR oooorrrrH y 3 y B U y y y - N

SS 16X CURRENT SS SELECTOR oooorrrrH y 3 y B U y y N W -
OS 16X CURRENT OS SELECTOR oooorrrrH y 3 y B U Y Y N - -
ES 16X CURRENT ES SELECTOR oooorrrrH y 3 Y B U Y Y N - -
rs 16X CURRENT rs SELECTOR oooorrrrH y 3 Y B U y y N - -
GS 16X CURRENT GS SELECTOR oooorrrrH y 3 y B U y y N - -

231630-62

Key: Y ~ yes
N = no
o = privilege level 0
1 = privilege level 1
2 = privilege level 2
3 ~ privilege level 3
U = expand up

D = expand down
B = byte granularity
P ~ page granularity
W = push/pop 16-bit words
F ~ push/pop 32-bit dwords
- = does not apply to that segment cache register

Figure 4-13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

40

inter 80386

4.4 PROTECTION

4.4.1 Protection Concepts

C.U
ENFORCED
SOfTWARE
WTERFACES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

231630-63

• A code segment/procedure with privilege level p
can only be called by a task executing at the same
or a lesser privilege level than p.

4.4.3 Privilege Levels

4.4.3.1 TASK PRIVILEGE

At any point in time, a task on the 80386 always
executes at one of the four privilege levels. The Cur-
rent Privilege Level (CPL) specifies the task's privi-
lege level. A task's CPL may only be changed by
control transfers through gate descriptors to a code
segment with a different privilege level. (See section
4.4.4 Privilege Level Transfers) Thus, an applica-
tion program running at PL = 3 may call an operat-
ing system routine at PL = 1 (via a gate) which
would cause the task's CPL to be set to 1 until the
operating system routine was finished.

4.4.3.2 SELECTOR PRIVILEGE (RPL)

Figure 4-14. Four-Level Hlerachlcal Protection

The 80386 has four levels of protection which are
optimized to support the needs of a multi-tasking op-
erating system to isolate and protect user programs
from each other and the operating system. The privi-
lege levels control the use of privileged instructions,
I/O instructions, and access to segments and seg-
ment descriptors. Unlike traditional microprocessor-
based systems where this protection is achieved
only through the use of complex external hardware
and software the 80386 provides the protection as
part of its integrated Memory Management Unit. The
80386 offers an additional type of protection on a
page basis, when paging is enabled (See section
4.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus-
trated in Figure 4-14. It is an extension of the user /
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the 80386 paging mechanism.
The privilege levels (PL) are numbered 0 through 3.
Level 0 is the most privileged or trusted level.

4.4.2 Rules of Privilege

The 80386 controls access to both data and proce-
dures between levels of a task, according to the fol-
lowing rules.
• Data stored in a segment with privilege level p can

be accessed only by code executing at a privilege
level at least as privileged as p.

41

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector's RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task's effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu-
merically larger) level of a task's CPL and a selec-
tor's RPL. Thus, if selector's RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level
3 regardless of the task's CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator's CPL.

4.4.3.3 I/O PRIVILEGE

The I/O privilege level (I0PL) lets the operating sys-
tem code executing at CPL = 0 define the least
privileged level at which I/O instructions can be
used. An exception 13 (General Protection Violation)
is generated if an I/O instruction is attempted when
the CPL of the task is less privileged then the 10PL.
The 10PL is stored in bits 13 and 14 of the EFLAGS
register. The following instructions cause an excep-
tion 13 if CPL is greater than 10PL: IN, INS, OUT,
OUTS, STI, CLI, LOCK prefix.

inter 80386

4.4.3.4 PRIVILEGE VALIDATION

The 80386 provides several instructions to speed
pointer testing and help maintain system integrity by
verifying that the selector value refers to an appro-
priate segment. Table 4-2 summarizes the selector
validation procedures available for the 80386.

Table 4-2. Pointer Test Instructions

Instruction Operands Function

ARPL Selector. Adjust Requested Privi-
Register lege Level: adjusts the

RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERR Selectro VERify for Read: sets the
zero flag if the segment
referred to by the selector
can be read.

VERW Selector VERify for Write: sets the
zero flag if the segment
referred to by the selector
can be written.

LSL Register. Load Segment Limit: reads
Selector the segment limit into the

register if privilege rules
and descriptor type allow.
Set zero flag is successful.

LAR Register. Load Access Rights: reads
Selector the descriptor access

rights byte into the register
if privilege rules allow. Set
zero flag if successful.

This pointer verification prevents the common prob-
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat-
ing system routine a "bad" pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller. then this
problem can be avoided.

42

4.4.3.5 DESCRIPTOR ACCESS

There are basically two types of segment accesses:
those involving code segments such as control
transfers. and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed. the in-
struction used. the type of descriptor used and CPL.
RPL. and DPL as described above.

Any time an instruction loads data segment registers
(OS. ES. FS. GS) the 80386 makes protection vali-
dation checks. The processor first checks to see if
the segment is not a null segment. an invalid seg-
ment generates an exception 11. Then it checks to
see if the selector refers to the correct type of seg-
ment. Selectors loaded in the OS, ES, FS, GS regis-
ters must refer only to data segment or readable
code segments. The data access rules are specified
in section 4.2.2 Rules of Privilege. The only excep-
tion to those rules is readable conforming code seg-
ments which can be accessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for write able data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 Privilege Level Transfers

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4-3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches. and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate. or IRET from a normal subroutine call).

inter 80386

Table 4-3. Descriptor Types Used for Control Transfer

Control Transfer Types Operation Types
Descriptor Descriptor
Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IREP Code Segment GOT/LOT

Intersegment to the same or higher privilege level CALL Call Gate GOT/LOT
Interrupt within task may change CPL Interrupt Instruction, Trap or lOT

Exception, External Interrupt
Interrupt Gate

Intersegment to a lower privilege level RET,IREP Code Segment GOT/LOT
(changes task CPL)

CALL, JMP Task State GOT
Segment

Task Switch
CALL, JMP Task Gate GOT/LOT

IREP' Task Gate lOT
Interrupt Instruction,
Exception, External
Interrupt

'NT (Nested Task bit of flag word) ~ 0
"NT (Nested Task bit of flag word) ~ 1

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:
- Privilege level transitions can only occur via

gates.
- JMPs must be made to a non-conforming code

segment with the same privilege.
- CALLs can be made to a non-conforming code

segment with the same privilege or via a gate to a
more privileged level.

- Interrupts handled within the task obey the same
privilege rules as CALLs.

- Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment's OPL.

- Both the requested privilege level (RPL) in the
selector pointing to the gate and the task's CPL
must be of equal or greater privilege than the
gate's OPL.

- The code segment selected in the gate must be
the same or more privileged than the task's CPL.

- Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

43

- Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's OPL is less privi-
leged or the same privilege as the old task's CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see section 4.4.6 Task Switching).
Ouring a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis-
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate's word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

inter 80386

4.4.5 Call Gates
Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, or perform I/O).

Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor's OPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level 386 call gate is activated,
the following actions occur.

1. Load CS:EIP from gate check for validity
2. SS is pushed zero-extended to 32 bits
3. ESP is pushed
4. Copy Word Count 32-bit parameters from the

old stack to the new stack
5. Push Return address on stack

The procedure is identical for 286 Call gates, except
that 16-bit parameters are copied and 16-bit regis-
ters are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disables further interrupts (I.e. the
IF bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 Task Switching
A very important attribute of any multi-tasking/multi-
user operating systems is its ability to rapidly switch
between tasks or processes. The 80386 directly
supports this operation by providing a task switch

44

instruction in hardware. The 80386 task switch oper-
ation saves the entire state of the machine (all of the
registers, address space, and a link to the previous
task), loads a new execution state, performs protec-
tion checks, and commences execution in the new
task, in about 17 microseconds. Like transfer of con-
trol via gates, the task switch operation is invoked by
executing an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS), or a
task gate descriptor in the GOT or LOT. An INT n
instruction, exception, trap, or external interrupt may
also invoke the task switch operation if there is a
task gate descriptor in the associated lOT descriptor
slot.

The TSS descriptor points to a segment (see Figure
4-15) containing the entire 80386 execution state
while a task gate descriptor contains a TSS selector.
The 80386 supports both 286 and 386 style TSSs.
Figure 4-16 shows a 286 TSS. The limit of a 386
TSS must be greater than 0064H (002BH for a 286
TSS), and can be as large as 4 Gigabytes. In the
additional TSS space, the operating system is free
to store additional information such as the reason
the task is inactive, time the task has spent running,
and open files belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
80386 called the Task State Segment Register (TR).
This register contains a selector referring to the task
state segment descriptor that defines the current
TSS. A hidden base and limit register associated
with TR are loaded whenever TR is loaded with a
new selector. Returning from a task is accomplished
by the IRET instruction. When IRET is executed,
control is returned to the task which was interrupted.
The current executing task's state is saved in the
TSS and the old task state is restored from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow-
ing fashion:

inter

31

80386

15 o
0000000000000000 LINK 0

ESPO 4

0000000000000000 ", SSO 8

ESPl C

0000000000000000 SSl 10

ESP2 14

0000000000000000 SS2 18

CR3 lC

EIP 20

EFLAGS 24

EAX 28

ECX 2C

EDX 30

EBX 34

ESP 38

EBP 3C

ESI 40

.. -------------. EDI 44, ,, ACCESS I lIt.4IT
,

48I RIGHTS , 0000000000000000 ES
I ,. , 0000000000000000 CS 4C,

BASE H-, , SO, I 0000000000000000 SS
, 31 PROGRAt.4 0' 0000000000000000 OS 54, ,, INVISIBLE ,

58.. _-----------_ .• 0000000000000000 FS
TASK REGISTER SC0000000000000000 GS

TSSR SELECTOR I- 0000000000000000 LOT 60

15 0 AVAILABLE I T
64

AVAILABLE TO USER 68

TSS

31 386 TSS DESCRIPTOR 0

SEGt.4ENT BASE 1S... O SEGt.4ENT lIt.4IT 1S..O

BASE31..241 G 11 101 0 11L~t.4~~ P I OiL 101 I TyE I I BASE
23 .. 16

Type - 9 Available 386 TSS,
Type - 13 Busy 386 TSS

Figure 4-15. 386 TSS and TSS Registers

45

STACKS
FOR
CPL 0,1,2

CURRENT
TASK
STATE

lIt.4IT

231630-64

inter 80386

231630-65

Figure 4-16. 286 TSS

The coprocessor's state is not automatically saved
when a task switch occurs, because the incoming

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see section 4.6 Virtual Mode).

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

4.4.7 Initialization and Transition to
Protected Mode

The GOT and lOT registers must refer to a valid GOT
and lOT. The lOT should be at least 256 bytes long,
and GOT must contain descriptors for the initial
code, and data segments. Figure 4-17 shows the
tables and Figure 4-18 the descriptors needed for a
simple Protected Mode 80386 system. It has a sin-
gle code and single data/stack segment each four
gigabytes long and a single privilege level PL = O.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the 80386 in Protected Mode.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op-
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GOT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

The T bit in the 386 TSS indicates that the processor
should generate a debug exception when switching
to a task. If T = 1 then upon entry to a new task a
debug exception 1 will be generated.

task may not use the coprocessor. The Task
Switched (TS) Bit (bit 3 in the CRO) helps deal with
the coprocessor's state in a multi-tasking environ-
ment. Whenever the 80386 switches task, it sets the
TS bit. The 80386 detects the first use of a proces-
sor extension instruction after a task switch and
causes the processor extension not available excep-
tion 7. The exception handler for exception 7 may
then decide whether to save the state of the co-
processor. A processor extension not present ex-
ception (7) will occur when attempting to execute an
ESC or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (I.e.
TS = 1 and MP = 1).

Since the 80386 begins executing in Real Mode im-
mediately after RESET it is necessary to initialize the
system tables and registers with the appropriate val-
ues.

BYTE OFFSET

42

40

38

36

34

32

30

28 CURRENT
TASK

26 STATE
24

22

20

18

16

14

12

10

8 INITIAL
STACKS

6 FOR CPL 0, 1,2
4

2

0

15 0

TASK LOT SELECTOR

OS SELECTOR

SS SELECTOR

CS SELECTOR

ES SELECTOR

01

SI

BP

SP

BX

OX

CX

AX

FLAG WORD

IP (ENTRY POINT)

SS FOR CPL 2

SP FOR CPL 2

SS FOR CPL 1

SP FOR CPL 1

SS FOR CPL 0

SP FOR CPL 0

BACK LINK SELECTOR TO TSS. .

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The 386 task state segment is marked busy by
changing the descriptor type field from TYPE 9H to
TYPE BH. A 286 TSS is marked busy by changing
the descriptor type field from TYPE 1 to TYPE 3.
Use of a selector that references a busy task state
segment causes an exception 13.

46

inter 80386

o ffffffff
RESET ROUTINES

fffffffO
INITIALIZATION

ROUTINES

CS

GOTR

31

INTERRUPT
DESCRIPTORS (32)

00000118]
00000110

00000108 GOT

00000100

t
lOT
t

00000000
231630-66

DATA
DESCRIPTOR

2

CODE
DESCRIPTOR

o

Figure 4·17. Simple Protected System

SEGMENTBASE15 ... 0 SEGMENT LIMIT 15 ... 0
0118 (H) FFFF (H)

BASE 31 ... 24 G D 0
LIMIT

BASE 23 ... 16
00 (H) 1 1

0 19.16 1 o 0 1 o 0 1 0
00 (H)F(H)

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0
0118 (H) FFFF(H)

BASE 31 ... 24 G D
LIMIT

BASE 23 ... 16
00 (H) 1 1

o 0 19.16 1 o 0 1 1 0 1 0 00 (H)
F(H)

NULL DESCRIPTOR

31 24 16 8 o
Figure 4-18. Descriptors for Simple System

4.4.8 Tools for Building Protected
Systems

In order to simplify the design of a protected multi-
tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
80386 system. This tool is the builder BLD-386™.
BLD-386 lets the operating system writer specify all
of the segment descriptors discussed in the previous
sections (LDTs, IDTs, GDTs, Gates, and TSS) in a
high-level language.

47

4.5 PAGING

4.5.1 Paging Concepts

Paging is another type of memory management use-
ful for virtual memory multitasking operating sys-
tems. Unlike segmentation which modularizes pro-
grams and data into variable length segments, pa-

inter 80386

ging divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
structure of a program. While segment selectors can
be considered the logical "name" of a program
module or data structure, a page most likely corre-
sponds to only a portion of a module or data struc-
ture.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
anyone moment.

4.5.2 Paging Organization

4.5.2.1 PAGE MECHANISM

The 80386 uses two levels of tables to translate the
linear address (from the segmentation unit) into a
physical address. There are three components to
the paging mechanism of the 80386: the page direc-
tory, the page tables, and the page itself (page
frame). All memory-resident elements of the 80386
paging mechanism are the same size, namely, 4K
bytes. A uniform size for all of the elements simpli-
fies memory allocation and reallocation schemes,
since there is no problem with "memory fragmenta-
tion. Figure 4-19 shows how the paging mechanism
works.

4.5.2.2 PAGE DESCRIPTOR BASE REGISTER

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. (See 4.5.4 Translation
Lookaslde Buffer).

4.5.2.3 PAGE DIRECTORY

The Page Directory is 4K bytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4-20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

31

LINEAR
ADDRESS

10

386

31 0

CRO

CR1

CR2

CR3 ROOT

CONTROL REGISTERS
DIRECTORY

12

USER
MEMORY

ADDRESS

231630-67

Figure 4-19. Paging Mechanism

31 12 11 10 9 8 7 6 5 4 3 2 o
OS U R

PAGE TABLE ADDRESS 31 ..12 RESERVED 0 0 D A 0 0 - - P
S W

Figure 4-20. Page Directory Entry (Points to Page Table)

48

80386

31 12 11 10 9 8 7 6 5 4 3 2 o
os U R

PAGE FRAME ADDRESS 31 ..12 RESERVED 0 0 0 A 0 0 - - P
S W

The 80386 provides a set of protection attributes for
paging systems. The paging mechanism distin-
guishes between two levels of protection: User
which corresponds to level 3 of the segmentation
based protection, and supervisor which encompass-
es all of the other protection levels (0, 1, 2). Pro-
grams executing at Level 0, 1 or 2 bypass the page
protection, although segmentation based protection
is still enforced by the hardware.

Figure 4-21. Page Directory Entry (Points to Page Table)

4.5.3 Page Level Protection
(R/W, U/S Bits)

4.5.2.4 PAGE TABLES

Each Page Table is 4K bytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4-21). Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 PAGE DIRECTORY/TABLE ENTRIES

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address translation
if P = 0 the entry can not be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the 80386 for both
types of entries before a read or write access occurs
to an address covered by the entry. The D (Dirty) bit
6 is set to 1 before a write to an address covered by
that page table entry occurs. The 0 bit is undefined
for Page Directory Entries. When the P, A and 0 bits
are updated by the 80386, the processor generates
a Read-Modify-Write cycle which locks the bus and
prevents conflicts with other processors or perpheri-
als. Software which modifies these bits should use
the LOCK prefix to ensure the integrity of the page
tables in multi-master systems.

The 3 bits marked OS Reserved in Figure 4-20 and
Figure 4-21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Use.

The U/S and R/W bits are used to provide User/Su-
pervisor and Read/Write protection for individual
pages or for all pages covered by a Page Table Di-
rectory Entry. The U/S and R/W bits in the second
level Page Table Entry apply only to the page de-
scribed by that entry.

While the U/S and R/W bits in the first level Page
Directory Table apply to all pages described by the
page table pointed to by that directory entry. The
U/S and R/W bits for a given page are obtained by
taking the most restrictive of the U/S and R/W from
the Page Directory Table Entries and the Page Table
Entries and using these bits to address the page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry was 10 and the U/S R/W bits for the
Page Table Entry were 01, the access rights for the
page would be 01, the numerically smaller of the
two. Table 4-4 shows the affect of the U/S and R/W
bits on accessing memory.

Table 4-4. Protection Provided by R/W and U/S

U/S R/W
Permitted Permitted Access

Level 3 Levels 0,1, or 2

0 0 None Read/Write
0 1 None Read/Write
1 0 Read-Only Read/Write
1 1 Read/Write Read/Write

However a given segment can be easily made read-
only for level 0, 1, or 2 via the use of segmented
protection mechanisms. (Section 4.4 Protection).

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

49

inter 80386

4.5.4 Translation Lookaside Buffer

The 80386 paging hardware is designed to support
demand paged virtual memory systems. However,
performance would degrade substantially if the proc-
essor was required to access two levels of tables for
every memory reference. To solve this problem, the
80386 keeps a cache of the most recently accessed
pages, this cache is called the Translation Looka-
side Buffer (TLB). The TLB is a four-way set associa-
tive 32-entry page table cache. It automatically
keeps the most commonly used Page Table Entries
in the processor. The 32-entry TLB coupled with a
4K page size, results in coverage of 128K bytes of
memory addresses. For many common multi-tasking
systems, the TLB will have a hit rate of about 98%.
This means that the processor will only have to ac-
cess the two-level page structure on 2% of all mem-
ory references. Figure 4-22 illustrates how the TLB
complements the 80386's paging mechanism.

4.5.5 Paging Operation

Entry. If P =1 on the Page Directory Entry indicat-
ing that the page table is in memory, then the 80386
will read the appropriate Page Table Entry and set
the Access bit. If P = 1 on the Page Table Entry
indicating that the page is in memory, the 80386 will
update the Access and Dirty bits as needed and
fetch the operand. The upper 20 bits of the linear
address, read from the page table, will be stored in
the TLB for future accesses. However if P = 0 for
either the Page Directory Entry or the Page Table
Entry, then the processor will generate a page fault
an Exception 14.

The processor will also generate an exception 14,
page fault, if the memory reference violated the
page protection attributes (i.e. U/S or R/W) (e.g. try-
ing to write to a read-only page). CR2 will hold the
linear address which caused the page fault. Since
Exception 14 is classified as a fault CS: EIP will point
to the instruction causing the page-fault. The 16-bit
error code pushed as part of the page fault handler
will contain status bits which indicate the cause of
the page fault.

UW
U U U U U U U U U U U U U U P

S R

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault Fig-
ure 4-23A shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er-
ror code bits is different. Figure 4-23B indicates
what type of access caused the page fault.

3 2 1 015

PHYSICAL
WEWORY

231630-68

HIT

PAGE
TABLE

• 98% HIT RA.TE

PAGE
DIRECTORY

Figure 4-22. Translation Lookaside Buffer Figure 4-23A. Page Fault Error Code Format

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e. a TLB hitl, then the 32-bit phys-
ical address is calculated and will be placed on the
address bus.

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0)

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
(W/R = 1)

However, if the page table entry is not in the TLB,
the 80386 will read the appropriate Page Directory

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1)

U: UNDEFINED

50

inter 80386

u/s W/R Access Type

0 0 Supervisor" Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

'Descriptor table access will fault with U/S = 0, even ,f the program
is executing at level 3.

Figure 4-238. Type of Access
Causing Page Fault

4.5.6 Operating System
Responsibilities

The 80386 takes care of the page address transla-
tion process, relieving the burden from an operating
system in a demand-paged system. The operating
system is responsible for setting up the initial page
tables, and handling any page faults. The operating
system also is required to invalidate (i.e. flush) the
TLB when any changes are made to any of the page
table entries. The operating system must reload
CR3 to cause the TLB to be flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
systems set the P present bit of page table entry to
zero the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 VIRTUAL 8086 ENVIRONMENT

4.6.1 Executing 8086 Programs

The 80386 allows the execution of 8086 application
programs in both Real Mode and in the Virtual 8086
Mode (Virtual Mode). Of the two methods, Virtual
8086 Mode offers the system designer the most
flexibility. The Virtual 8086 Mode allows the execu-
tion of 8086 applications, while still allowing the sys-
tem designer to take full advantage of the 80386
protection mechanism. In particular, the 80386 al-
lows the simultaneous execution of 8086 operating
systems and its applications, and an 80386 operat-

51

ing system and both 80286 and 80386 applications.
Thus, in a multi-user 60386 computer, one person
could be running an MS-DOS spreadsheet, another
person using MS-DOS, and a third person could be
running multiple Unix utilities and applications. Each
person in this scenario would believe that he had the
computer completely to himself. Figure 4-24 illus-
trates this concept.

4.6.2 Virtual 8086 Mode Addressing
Mechanism

One of the major differences between 80386 Real
and Protected modes is how the segment selectors
are interpreted. When the processor is executing in
Virtual 8086 Mode the segment registers are used in
an identical fashion to Real Mode. The contents of
the segment register is shifted left 4 bits and added
to the offset to form the segment base linear ad-
dress.

The 80386 allows the operating system to specify
which programs use the 8086 style address mecha-
nism, and which programs use Protected Mode ad-
dressing, on a per task basis. Through the use of
paging, the one megabyte address space of the VIr-
tual Mode task can be mapped to anywhere in the 4
gigabyte linear address space of the 80386. Like
Real Mode, Virtual Mode addresses that exceed one
megabyte will cause an exception 13. However,
these restrictions should not prove to be important,
because most tasks running in Virtual 8086 Mode
will simply be existing 8086 application programs.

4.6.3 Paging In Virtual Mode
The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 giga-
byte physical address space of the 80386. In addi-
tion, since CR3 (the Page Directory Base Register)
is loaded by a task switch, each Virtual Mode task
can use a different mapping scheme to map pages
to different physical locations. Finally, the paging
hardware allows the sharing of the 8086 operating
system code between multiple 8086 applications.

80386

PHYSICAL
lolElolORY

VIRTUAL lolODE
8086 TASK

PAGE DIRECTORY
ROOT

VIRTUAL 8086

TASK 1 PAGE
TABLE

PAGE DIRECTORY
TASK 1

TASK 1
lolElolORY

t'77J TASK 2
((U.I lolElolORY

02000000(H)

OOOOOOOO(H)

•
8086 OS

lolElolORY

~ 80386 OS
~ lolElolORY

231630-69

Figure 4-24. Virtual 8086 Environment Memory Management

Figure 4-24 shows how the 80386 paging hardware
enables multiple 8086 programs to run under a virtu-
al memory demand paged system.

4.6.4 Protection
All Virtual Mode programs execute at privilege level
3. As such Virtual Mode programs are subject to all
of the protection checks defined in Protected Mode.
This is different than Real Mode which implicitly is
executing at privilege level O. Thus, an attempt to
execute a privileged instruction in Virtual Mode will
cause general protection fault (exception 13). Sever-
al instructions are made 10PL-sensitive, thus the op-
erating system can decide to trap I/O instructions
and emulate them by setting the 10PL = 0, or to let
I/O instructions work normally by setting 10PL = 3.
Since Real Mode programs are always assumed to
be executing at privilege level 0 no privileged or
10PL sensitive instruction faults can be generated.
However, some instructions are used only in Pro-

52

tected Mode, these instructions generate undefined
opcodes in both Real and Virtual Modes.

The following instructions cause an exception 6 in
both Real and Virtual 8086 Mode:

ARPL, LAR, LSL, VERR, VERW, STR, LTR, SLDT,
and LLDT.

The following are privileged instructions. They can
be used in Real Mode, but they cause a General
Protection Exception (interrupt 13) in Virtual Mode or
whenever the CPL > O.

L1DT, LGDT, LMSW, CTS, HLT, MOV DRn, REG;
MOV REG, DRn; MOV CRn, REG; MOV REG, CRn;
MOV TRn, REG; and MOV REG, TRn.

The following instructions will generate a General
Protection Exception (exception 13) when CPL >
10PL:

INS, IN, OUTS, OUT, STI, CLI, and LOCK.

80386

The INT n, PUSHF, POPF, and IRET instructions are
made IOPL sensitive only when the processor is ex-
ecuting in Virtual 8086 Mode. (Note that INT3 and
INTO instructions are not made IOPL sensitive.)

4.6.5 Interrupt Handling
In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host 80386 operating sys-
tem. The 80386 operating system determines if the
interrupt comes from a Protected Mode application
or from a Virtual Mode program by examining the
VM bit in the EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The 80386 operating system in turn handles the ex-
ception or interrupt and then returns control to the
8086 program. The 80386 operating system may
choose to let the 8086 operating system handle the
interrupt or it may emulate the function of the inter-
rupt handler. For example, many 8086 operating
system calls are accessed by PUSHing parameters
on the stack, and then executing an INT n instruc-
tion. If the IOPL is set to 0 then alllNT n instructions
will be intercepted by the 80386 operating system.
The 80386 operating system could emulate the
8086 operating system's call. Figure 4-25 shows
how the 80386 operating system could intercept an
8086 operating system's call to "Open a File".

53

An 80386 operating system can provide a Virtual
8086 Environment which is totally transparent to the
application software via intercepting and then emu-
lating 8086 operating system's calls, and intercept-
ing IN and OUT instructions.

4.6.6 Entering and Leaving Virtual
8086 Mode

There are two methods for entering or leaving Virtual
8086 Mode. A Virtual Mode task is entered by per-
forming a CALL or JUMP to a TSS which has the VM
bit set in the EFLAGS image. Upon exiting an inter-
rupt handler at privilege level 0 a set VM bit also
causes a return to Virtual Mode. The first method is
used to start the execution of a Virtual Mode task,
while the second method is used to return from serv-
icing a Virtual Mode interrupt.

Transition in and out of Virtual Mode results in a lev-
el change and a stack switch. In addition, all of the
segment register images are on the stack, and then
loaded with null selectors. This will permit the inter-
rupt handlers to save and restore the segment regis-
ters as 80286 selectors, instead of 8086 style seg-
ment registers. Interrupt routines which expect val-
ues in the segment registers, will have to obtain
these values by looking on the stack.

Leaving Virtual Mode is accomplished by simply
JMPing to a TSS (while at privilege level 0) which
does not have the VM bit set. This causes a task
switch.

inter 80386

8086 Application makas "Open File Call" -+ causes
General Protection Fault (Arrow # 1)
Virtual 8088 Monitor intercepts call. Calls 386 OS (Arrow # 2)
388 OS opens file returns control to 8086 OS (Arrow # 3)
8088 OS returns control to application. (Arrow #4)
Transparent to Application

Figure 4-25. Virtual 8086 Environment Interrupt and Call Handling

54

231630-70

80386

5. FUNCTIONAL DATA

5.1 INTRODUCTION
The 80386 features a straightforward functional in-
terface to the external hardware. The 80386 has
separate, parallel buses for data and address. The
data bus is 32-bits in width, and bidirectional. The
address bus outputs 32-bit address values in the
most directly usable form for the high-speed local
bus: 4 individual byte enable signals, and the 30 up-
per-order bits as a binary value. The data and ad-
dress buses are interpreted and controlled with their
associated control signals.

A dynamic data bus sizing feature allows the proc-
essor to handle a mix of 32- and 16-bit external bus-
es on a cycle-by-cycle basis (see 5.3.4 Data Bus
Sizing). If 16-bit bus size is selected, the 80386 au-
tomatically makes any adjustment needed, even
performing another 16-bit bus cycle to complete the
transfer if that is necessary. 8-bit peripheral devices
may be connected to 32-bit or 16-bit buses with no
loss of performance. A new address plpellnlng op-
tion is provided and applies to 32-bit and 16-bit bus-
es for substantially improved memory utilization, es-
pecially for the most heavily used memory resourc-
es.

The address plpellnlng option, when selected, typ-
ically allows a given memory interface to operate
with one less wait state than would otherwise be
required (see 5.4.2 Address Plpellnlng). The pipe-
lined bus is also well suited to interleaved memory
designs. For 16 MHz interleaved memory designs
with 100 ns access time DRAMs, zero wait states
can be achieved when pipelined addressing is se-
lected. When address pipelining is requested by the
external hardware, the 80386 will output the address
and bus cycle definition of the next bus cycle (if it is
internally available) even while waiting for the cur-
rent cycle to be acknowledged.

Non-pipelined address timing, however, is ideal for
external cache designs, since the cache memory will
typically be fast enough to allow non-pipelined cy-
cles. For maximum design flexibility, the address
pipelining option is selectable on a cycle-by-cycle
basis.

The processor's bus cycle is the basic mechanism
for information transfer, either from system to proc-
essor, or from processor to system. 80386 bus cy-
cles perform data transfer in a minimum of only two
clock periods. On a 32-bit data bus, the maximum
80386 transfer bandwidth at 16 MHz is therefore 32
Mbytes/sec. Any bus cycle will be extended for
more than two clock periods, however, if external
hardware withholds acknowledgement of the cycle.

55

At the appropriate time, acknowledgement is sig-
nalled by asserting the 80386 READY # input.

The 80386 can relinquish control of its local buses
to allow mastership by other devices, such as direct
memory access channels. When relinquished, HLDA
is the only output pin driven by the 80386, providing
near-complete isolation of the processor from its
system. The near-complete isolation characteristic is
ideal when driving the system from test equipment,
and in fault-tolerant applications.

Functional data covered in this chapter describes
the processor's hardware interface. First, the set of
signals available at the processor pins is described
(see 5.2 Signal Description). Following that are the
signal waveforms occurring during bus cycles (see
5.3 Bus Transfer Mechanism, 5.4 Bus Functional
Description and 5.5 Other Functional Descrip-
tions).

5.2 SIGNAL DESCRIPTION

5.2.1 Introduction

Ahead is a brief description of the 80386 input and
output signals arranged by functional groups. Note
the # symbol at the end of a signal name indicates
the active, or asserted, state occurs when the signal
is at a low voltage. When no # is present after the
signal name, the signal is asserted when at the high
voltage level.
Example signal: M/IO# - High voltage indicates

Memory selected
- Low voltage indicates

I/O selected

The signal descriptions sometimes refer to AC tim-
ing parameters, such as "t25 Reset Setup Time" and
"t26 Reset Hold Time." The values of these parame-
ters can be found in Tables 7-4 and 7-5.

5.2.2 Clock (CLK2)

CLK2 provides the fundamental timing for the
80386. It is divided by two internally to generate the
internal processor clock used for instruction execu-
tion. The internal clock is comprised of two phases,
"phase one" and "phase two." Each CLK2 period is
a phase of the internal clock. Figure 5-2 illustrates
the relationship. If desired, the phase of the internal
processor clock can be synchronized to a known
phase by ensuring the RESET signal falling edge
meets its applicable setup and hold times, t25 and
t26·

inter 80386

32-BIT
ADDRESS

A2-A31

} POWER CONNECTIONS

} COPROCESSOR SIGNALLING

]

BYTE
ENABLES

1'"' '"'' """'"

CLK2 "ADDRESS BUS)
BE3# y

"
BE2#

(DATA BUS BE1#

" y BEO#

ADS# W/R#

BS~:: ~
80386 D/C#

PROCESSOR t.4/10#

READY# : LOCK#

HOLD PEREQ
HLDA ~

• ~~:~:#
INTR ~

vCCNt.41

RESET ~ GND

BUSjCONTROL

2X CLOCK {

BUS{
ARBITRATION

INTERRUPTS {

32-BIT{OO_D31
DATA

231630-1

Figure 5·1. Functional Signal Groups

PROCESSOR CLOCK
PERIOD

CLK2 PERIOD CLK2 PERIOD.1 .2
PROCESSOR CLOCK

PERIOD
CLK2 PERIOD CLK2 PERIOD.1 .2

CLK2 [

INTERNAL 80386
PROCESSOR CLOCK [

(SAt.4E FREQUENCY AS
82384 CLK SIGNAL)

62 n. t.4IN}
(16 t.4Hz t.4AX) 80386-16

83n. t.4IN}
(12.5 t.4Hz t.4AX) 80386-12

231630-2

Figure 5-2. CLK2 Signal and Internal Processor Clock

5.2.3 Data Bus (DO through 031)

These three-state bidirectional signals provide the
general purpose data path between the 80386 and
other devices. Data bus inputs and outputs indicate
"1" when HIGH. The data bus can transfer data on
32- and 16-bit buses using a data bus sizing feature
controlled by the BS16* input. See section 5.2.6
Bus Contol. Data bus reads require that read data
setup and hold times t21 and t22 be met for correct
operation. During any write operation (and during
halt cycles and shutdown cycles), the 80386 always
drives all 32 signals of the data bus even if the cur-
rent bus size is 16-bits.

5.2.4 Address Bus (BEO# through
BE3 # , A2 through A31)

These three-state outputs provide physical memory
addresses or I/O port addresses. The address bus
is capable of addressing 4 gigabytes of physical
memory space (OOOOOOOOHthrough FFFFFFFFH),
and 64 kilobytes of I/O address space (OOOOOOOOH
through OOOOFFFFH) for programmed I/O. I/O
transfers automatically generated for 80386-to-co-
processor communication use I/O addresses
800000F8H through 800000FFH, so A31 HIGH in
conjunction with M/IO* LOW allows simple genera-
tion of the coprocessor select signal.

56

inter 80386

5.2.5 Bus Cycle Definition Signals
(W/R#, D/C#, MIIO#, LOCK#)

These three-state outputs define the type of bus cy-
cle being performed. W/R# distinguishes between
write and read cycles. D/C# distinguishes between
data and control cycles. M/IO# distinguishes be-
tween memory and I/O cycles. LOCK # distin·
guishes between locked and unlocked bus cycles.

The primary bus cycle definition signals are W /R #,
D/C# and M/IO#, since these are the signals driv-
en valid as the ADS # (Address Status output) is
driven asserted. The LOCK # is driven valid at the
same time as the bus cycle begins, which due to
address pipelining, could be later than ADS# is driv-
en asserted. See 5.4.3.4 Plpellned Address.

Exact bus cycle definitions, as a function of W/R#,
D/C#, and MI/IO#, are given in Table 5-2. Note
one combination of W/R#, D/C# and M/IO# is
never given when ADS# is asserted (however, that
combination, which is listed as "does not occur," will
occur during Idle bus states when ADS # is not as-
serted). If M/IO#, D/C#, and W/R# are qualified
by ADS# asserted, then a decoding scheme may
use the non-occurring combination to its best advan-
tage.

Table 5-1. Write Data Duplication as a Function of BEO# - BE3 #

BEO# applies to DO-D7
BE1 # applies to D8-D15
BE2# applies to D16-D23
BE3# applies to D24-D31

When a memory write cycle or I/O write cycle is in
progress, and the operand being transferred occu-
pies only the upper 16 bits of the data bus (D16-
D31), duplicate data is simultaneously presented on
the corresponding lower 16-bits of the data bus
(DO-D15). This duplication is performed for optimum
write performance on 16-bit buses. The pattern of
write data duplication is a function of the Byte En-
ables asserted during the write cycle. Table 5-1 lists
the write data present on DO-D31, as a function of
the asserted Byte Enable outputs BEO# -BE3#.

The number of Byte Enables asserted indicates the
physical size of the operand being transferred (1, 2,
3, or 4 bytes). Refer to section 5.3.6 Operand Align-
ment.

The Byte Enable outputs, BEO#-BE3#, directly in-
dicate which bytes of the 32-bit data bus are in-
volved with the current transfer. This is most conve-
nient for external hardware.

80386 Byte Enables 80386 Write Data Automatic

BE3# BE2# BE1# BEO# 024-031 016-023 08-015 00-07 Duplication?

High High High Low undef undef undef A No
High High Low High undef undef B undef No
High Low High High undef C undef C Yes
Low High High High D undef D undef Yes

High High Low Low undef undef B A No
High Low Low High undef C B undef No
Low Low High High D C D C Yes

High Low Low Low undef C B A No
Low Low Low High D C B undef No

Low Low Low Low D C B A No

Key:
D = logical write data d24-d31
C = logical write data d16-d23
B = logical write data d8-d15
A = logical write data dO-d7

57

inter 80386

Table 5·2. Bus Cycle Definition

M/IO# D/C# W/R# Bus Cycle Type Locked?

Low Low Low INTERRUPT ACKNOWLEDGE Yes

Low Low High does not occur -
Low High Low I/O DATA READ No

Low High High I/O DATA WRITE No

High Low Low MEMORY CODE READ No

High Low High HALT: SHUTDOWN: No
Address = 2 Address = 0

(BEO# High (BEO# Low
BE1 # High BE1 # High
BE2# Low BE2# High
BE3# High BE3# High
A2-A31 Low) A2-A31 Low)

High High Low MEMORY DATA READ Some Cycles

High High High MEMORY DATA WRITE Some Cycles

5.2.6 Bus Control Signals

5.2.6.1 INTRODUCTION

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining, data bus
width and bus cycle termination.

5.2.6.2 ADDRESS STATUS (ADS#)

This three-state output indicates that a valid bus cy-
cle definition, and address 0N/R#, D/C#, M/IO#,
BEO#-BE3#, and A2-A31) is being driven at the
80386 pins. It is asserted during T1 and T2P bus
states (see 5.4.3.2 Non-plpellned Address and
5.4.3.4 Plpellned Address for additional information
on bus states).

5.2.6.3 TRANSFER ACKNOWLEDGE (READY#)

This input indicates the current bus cycle is com-
plete, and the active bytes indicated by BEO#-
BE3# and BS16# are accepted or provided. When
READY # is sampled asserted during a read cycle or
interrupt acknowledge cycle, the 80386 latches the
input data and terminates the cycle. When READY #
is sampled asserted during a write cycle, the proces-
sor terminates the bus cycle.

READY # is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY # must eventually be asserted to
acknowledge every bus cycle, including Halt Indica-
tion and Shutdown Indication bus cycles. When be-

58

ing sampled, READY must always meet setup and
hold times t19 and t20 for correct operation. See all
sections of 5.4 Bus Functional Description.

5.2.6.4 NEXT ADDRESS REQUEST (NA#)

This is used to request address pipelining. This input
indicates the system is prepared to accept new val-
ues of BEO#-BE3#, A2-A31, W/R#, D/C# and
M/lO# from the 80386 even if the end of the current
cycle is not being acknowledged on READY #. If this
input is asserted when sampled, the next address is
driven onto the bus, provided the next bus request is
already pending internally. See 5.4.2 Address Pipe-
lining and 5.4.3 Read and Write Cycles.

5.2.6.5 BUS SIZE 16 (BS16#)

The BS 16 # feature allows the 80386 to directly con-
nect to 32-bit and 16-bit data buses. Asserting this
input constrains the current bus cycle to use only the
lower-order half (DO-D15) of the data bus, corre-
sponding to BEO# and BE1 #. Asserting BS16# has
no additional effect if only BEO# and/or BE1 # are
asserted in the current cycle. However, during bus
cycles asserting BE2# or BE3#, asserting BS16#
will automatically cause the 80386 to make adjust-
ments for correct transfer of the upper bytes(s) using
only physical data signals DO-D15.

If the operand spans both halves of the data bus
and BS16# is asserted, the 80386 will automatically
perform another 16-bit bus cycle. BS16# must al-
ways meet setup and hold times t17 and t18 for cor-
rect operation.

inter 80386

80386 I/O cycles automatically generated for co-
processor communication do not require BS16# be
asserted. The coprocessor type, 80287 or 80387, is
sensed on the ERROR # input shortly after the fail-
ing edge of RESET. The 80386 transfers only 16-bit
quantities between itself and the 80287, but must
transfer 32-bit quantities between itself and the
80387. Therefore BS16# is a don't care during
80287 cycles and must not be asserted during
80387 communication cycles.

5.2.7 Bus Arbitration Signals

5.2.7.1 INTRODUCTION

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
5.5.1 Entering and Exiting Hold Acknowledge for
additional information.

5.2.7.2 BUS HOLD REQUEST (HOLD)

This input indicates some device other than the
80386 requires bus mastership.

HOLD must remain asserted as long as any other
device is a local bus master. HOLD is not recognized
while RESET is asserted. If RESET is asserted while
HOLD is asserted, RESET has priority and places
the bus into an idle state, rather than the hold ac-
knowledge (high impedance) state.

HOLD is level-sensitive and is a synchronous input.
HOLD signals must always meet setup and hold
times t23 and t24 for correct operation.

5.2.7.3 BUS HOLD ACKNOWLEDGE (HLDA)

Assertion of this output indicates the 80386 has re-
linquished control of its local bus in response to
HOLD asserted, and is in the bus Hold Acknowledge
state.

The Hold Acknowledge state offers near-complete
signal isolation. In the Hold Acknowledge state,
HLDA is the only signal being driven by the 80386.
The other output signals or bidirectional signals
(00-031, BEO#-BE3#, A2-A31, W/R#, D/C#,
M/IO#, LOCK# and ADS#) are in a high-imped-
ance state so the requesting bus master may control
them. Pullup resistors may be desired on several sig-
nals to avoid spurious activity when no bus master is
driving them. See 7.2.3 Resistor Recommenda-
tions. Also, one rising edge occuring on the NMI
input during Hold Acknowledge is remembered, for
processing after the HOLD input is negated.

59

In addition to the normal usage of Hold Acknowl-
edge with DMA controllers or master peripherals,
the near-complete isolation has particular attractive-
ness during system test when test equipment drives
the system, and in hardware-fault-tolerant applica-
tions.

5.2.8 Coprocessor Interface Signals

5.2.8.1 INTRODUCTION

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control
communication between the 80386 and its 80287 or
80387 processor extension.

5.2.8.2 COPROCESSOR REQUEST (PEREQ)

When asserted, this input signal indicates a coproc-
essor request for a data operand to be transferred
to/from memory by the 80386. In response, the
80386 transfers information between the coproces-
sor and memory. Because the 80386 has internally
stored the coprocessor opcode being executed, it
performs the requested data transfer with the cor-
rect direction and memory address.

PEREQ is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal.

5.2.8.3 COPROCESSOR BUSY (BUSY #)

When asserted, this input indicates the coprocessor
is still executing an instruction, and is not yet able to
accept another. When the 80386 encounters any
coprocessor instruction which operates on the nu-
meric stack (e.g. load, pop, or arithmetic operation),
or the WAIT instruction, this input is first automatical-
ly sampled until it is seen to be negated. This sam-
pling of the BUSY # input prevents overrunning the
execution of a previous coprocessor instruction.

The FNINIT and FNCLEX coprocessor instructions
are allowed to execute even if BUSY # is asserted,
since these instructions are used for coprocessor
initialization and exception-clearing.

BUSY # is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal.

BUSY # serves an additional function. If BUSY # is
sampled LOW at the falling edge of RESET, the
80386 performs an internal self-test (see 5.5.3 Bus
Activity During and Following Reset). If BUSY # is
sampled HIGH, no self-test is performed.

inter 80386

5.2.8.4 COPROCESSOR ERROR (ERROR #)

This input signal indicates that the previous coproc-
essor instruction generated a coprocessor error of a
type not masked by the coprocessor's control regis-
ter. This input is automatically sampled by the 80386
when a coprocessor instruction is encountered, and
if asserted, the 80386 generates exception 7 to ac-
cess the error-handling software.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces-
sor or save coprocessor state, do execute without
the 80386 generating exception 7 even if ERROR #
is asserted. These instructions are FNINIT,
FNCLEX, FSTSW, FSTSWAX, FSTCW, FSTENV,
FSAVE, FESTENV and FESAVE.

ERROR # is level-sensitive and is allowed to be
asynchronous to the CLK2 signal.

ERROR # serves an additional function. If ERROR #
is LOW no later than 20 CLK2 periods after the fail-
ing edge of RESET and remains LOW at least until
the 80386 begins its first bus cycle, an 80387 is as-
sumed to be present (ET bit in CRO automatically
gets set to 1). Otherwise, an 80287 (or no coproces-
sor) is assumed to be present (ET bit in CRO auto-
matically is reset to 0). See 5.5.3 Bus Activity Dur-
Ing and After Reset. Only the ET bit is set by this
ERROR # pin test. Software must set the EM and
MP bits in CRO as needed. Therefore, distinguishing
80287 presence from no coprocessor requires a
software test and appropriately resetting or setting
the EM bit of CRO (set EM = 1 when no coproces-
sor is present). If ERROR # is sampled LOW after
reset (indicating 80387) but software later sets
EM = 1, the 80386 will behave as if no coprocessor
is present.

5.2.9 Interrupt Signals

5.2.9.1 INTRODUCTION

The following descriptions cover inputs that can in-
terrupt or suspend execution of the processor's cur-
rent instruction stream.

5.2.9.2 MASKABLE INTERRUPT REQUEST (INTR)

When asserted, this input indicates a request for in-
terrupt service, which can be masked by the 80386
Flag Register IF bit. When the 80386 responds to
the INTR input, it performs two interrupt acknowl-
edge bus cycles, and at the end of the second,
latches an 8-bit interrupt vector on 00-07 to identify
the source of the interrupt.

INTR is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal. To assure recognition

60

of an INTR request, INTR should remain asserted
until the first interrupt acknowledge bus cycle be-
gins.

5.2.9.3 NON-MASKABLE INTERRUPT REQUEST
(NMI)

This input indicates a request for interrupt service,
which cannot be masked by software. The non-
maskable interrupt request is always processed ac-
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are perfomed when
processing NMI.

NMI is rising edge-sensitive and is allowed to be
asynchronous to the CLK2 signal. To assure recog-
nition of NMI, it must be negated for at least eight
CLK2 periods, and then be asserted for at least
eight CLK2 periods.

Once NMI processing has begun, no additional
NMl's are processed until after the next IRET in-
struction, which is typically the end of the NMI serv-
ice routine. If NMI is re-asserted prior to that time,
however, one rising edge on NMI will be remem-
bered for processing after executing the next IRET
instruction.

5.2.9.4 RESET (RESEn

This input signal suspends any operation in progress
and places the 80386 in a known reset state. The
80386 is reset by asserting RESET for 15 or more
CLK2 periods (78 or more CLK2 periods before re-
questing self test). When RESET is asserted, all oth·
er input pins are ignored, and all other bus pins are
driven to an idle bus state as shown in Table 5-3. If
RESET and HOLD are both asserted at a point in
time, RESET takes priority even if the 80386 was in
a Hold Acknowledge state prior to RESET asserted.

RESET is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal. If desired, the phase of
the internal processor clock, and the entire 80386
state can be completely synchronized to external
circuitry by ensuring the RESET signal falling edge
meets its applicable setup and hold times, t25 and
t26·

Table 5-3. Pin State (Bus Idle) During Reset
Pin Name Signal Level During Reset

AOS# High
00-031 High Impedance
BEO#-BE3# Low
A2-A31 High
W/R# High
O/C# High
M/IO# Low
LOCK# High
HLOA Low

80386

5.2.10 Signal Summary

Table 5-4 summarizes the characteristics of all 80386 signals.

Table 5-4. 80386 Signal Summary

Input Output
Signal Name Signal Function

Active Input! Synch or High Impedance
State Output Asynch

toCLK2
During HLDA?

CLK2 Clock - I - -
00-031 Data Bus High 1/0 S Yes

BEO#-BE3# Byte Enables Low 0 - Yes

A2-A31 Address Bus High 0 - Yes

WIR# Write-Read Indication High 0 - Yes

DIC# Data-Control Indication High 0 - Yes

MIIO# Memory-I/O Indication High 0 - Yes

LOCK# Bus Lock Indication Low 0 - Yes

ADS# Address Status Low 0 - Yes

NA# Next Address Request Low I S -
BS16# Bus Size 16 Low I S -
READY # Transfer Acknowledge Low I S -
HOLD Bus Hold Request High I S -

HLDA Bus Hold Acknowledge High 0 - No

PEREQ Coprocessor Request High I A -

BUSY# Coprocessor Busy Low I A -
ERROR # Coprocessor Error Low I A -
INTR Maskable Interrupt Request High I A -
NMI Non-Maskable Intrpt Request High I A -
RESET Reset High I A (Note) -

NOTE:
If the phase of the internal processor clock must be synchronized to external circuitry, RESET falling edge must meet setup
and hold times t25 and t26.

5.3 BUS TRANSFER MECHANISM

5.3.1 Introduction

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
double-word lengths may be transferred without re-
strictions on physical address alignment. Any byte
boundary may be used, although two or even three
physical bus cycles are performed as required for
unaligned operand transfers. See 5.3.4 Dynamic
Data Bus Sizing and 5.3.6 Operand Alignment.

61

The 80386 address signals are designed to simplify
external system hardware. Higher-order address bits
are provided by A2-A31. Lower-order address in the
form of BEO# -BE3# directly provides linear selects
for the four bytes of the 32-bit data bus. Physical
operand size information is thereby implicitly provid-
ed each bus cycle in the most usable form.

Byte Enable outputs BEO#-BE3# are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table 5-5.
During a bus cycle, any possible pattern of contigu-
ous, asserted Byte Enable outputs can occur, but
never patterns having a negated Byte Enable sepa-
rating two or three asserted Enables.

80386

Address bits AO and A 1 of the physical operand's
base address can be created when necessary (for
instance, for Multibus I or Multibus II interface), as a
function of the lowest-order asserted Byte Enable.
This is shown by Table 5-6. Logic to generate AO
and A 1 is given by Figure 5-3.

Table 5-5. Byte Enables and Associated
Data and Operand Bytes

Byte Enable Signa' Anoclated Data Bus Signals

BEO# 00-07 (byte o-least significant)

BE1# 08-015 (byte 1)

BE2# 016-023 (byte 2)

BE3# 024-031 (byte 3-most significant)

BEO#

Table 5-6. Generating AO-A31 from
BEO#-BE3# and A2-A31

80386 Address Signals

A31 A2 BE3# BE2# BE1# BEO#

Physical Base
Address

A31 A2 Al AO

A31 A2 0 0 X X X Low

A31 A2 0 1 X X Low High

A31 A2 1 0 X Low High High

A31 A2 1 1 Low High High High

BE2#

L H

L x k L L
L

L x ff L
H

L L x L
H

x x 1:1 x L

L H L

BEO#
~BE3#~

BE1#

K - Map lor A 1 Signal

BEO#

231630-3

BE2#

L H

L x L H_ L
L

L x L H
H

L L -x:- Ii
H

x x H x- L

L H L

BEO#

BE2#

BE3#

BE1#

K - Map lor AO Signal

Figure 5-3. Logic to Generate AO, A1 from BEO#-BE3#

231630-4

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See 5.4 Bus Functional
Description.

Since a bus cycle requires a minimum of two bus
states (equal to two processor clock periods), data
can be transferred between external devices and
the 80386 at a maximum rate of one 4-byte Dword
every two processor clock periods, for a maximum
bus bandwidth of 32 megabytes/ second (80386-16
operating at 16 MHz processor clock rate).

62

5.3.2 Memory and 110 Spaces

Bus cycles may access physical memory space or
I/O space. Peripheral devices in the system may ei-
ther be memory-mapped, or I/O-mapped, or both.
As shown in Figure 5-4, physical memory addresses
range from OOOOOOOOHto FFFFFFFFH (4 gigabytes)
and I/O addresses from OOOOOOOOHto OOOOFFFFH
(64 kilobytes) for programmed I/O. Note the I/O ad-
dresses used by the automatic I/O cycles for co-
processor communication are 800000F8H to
800000FFH, beyond the address range of pro-
grammed I/O, to allow easy generation of a coproc-
essor chip select signal using the A31 and M/IO#
signals.

inter 80386

ffffffffH ,.....--.,

~

~.PHYSICAL yW
MEMORY :ggggg~~~"'1 --::+-.. COPROCESSOR

.~m (~~') ~ (_MOO"')

vir%:
~:~

OOOOffffH B} ACCESSIBLE
64 kBYTE PROGRAIolIolED

OOOOOOOOH •••••• --~ OOOOOOOOH I/O SPACE

Physical Memory Space 1/0 Space
231630~5

NOTE:
Since A31 is HIGH during automatic communication with coprocessor, A31 HIGH and M/IO# LOW can be used to
easily generate a coprocessor select signal.

Figure 5·4. Physical Memory and I/O Spaces

5.3.3 Memory and 1/0 Organization

The 80386 datapath to memory and I/O spaces can
be 32 bits wide or 16 bits wide. When 32-bits wide,
memory and I/O spaces are organized naturally as
arrays of physical 32-bit Owords. Each memory or
I/O Oword has four individually addressable bytes at
consecutive byte addresses. The lowest-addressed
byte is associated with data signals 00-07; the
highest-addressed byte with 024-031.

The 80386 includes a bus control input, B516#, that
also allows direct connection to 16-bit memory or
I/O spaces organized as a sequence of 16-bit
words. Cycles to 32-bit and 16-bit memory or I/O
devices may occur in any sequence, since the
B516# control is sampled during each bus cycle.
5ee 5.3.4 Dynamic Data Bus Sizing. The Byte En-
able signals, BEO# - BE3 #, allow byte granularity
when addressing any memory or I/O structure,
whether 32 or 16 bits wide.

5.3.4 Dynamic Data Bus Sizing

Dynamic data bus sizing is a feature allowing direct
processor connection to 32-bit or 16-bit data buses
for memory or I/O. A single processor may connect
to both size buses. Transfers to or from 32- or 16-bit
ports are supported by dynamically determining the
bus width during each bus cycle. During each bus
cycle an address decoding circuit or the slave de-

63

vice itself may assert B516# for 16-bit ports, or ne-
gate B516# for 32-bit ports.

With B5 16 # asserted, the processor automatically
converts operand transfers larger than 16 bits, or
misaligned 16-bit transfers, into two or three trans-
fers as required. All operand transfers physically oc-
cur on 00-015 when B516# is asserted. There-
fore, 16-bit memories or I/O devices only connect
on data signals 00-015. No extra transceivers are
required.

Asserting B516# only affects the processor when
BE2# and/or BE3# are asserted during the current
cycle. If only 00-015 are involved with the transfer,
asserting B516# has no affect since the transfer
can proceed normally over a 16-bit bus whether
B516# is asserted or not. In other words, asserting
B516 # has no effect when only the lower half of the
bus is involved with the current cycle.

There are two types of situations where the proces-
sor is affected by asserting B5 16 #, depending on
which Byte Enables are asserted during the current
bus cycle:

Upper Half Only:
Only BE2# and/or BE3# asserted.

Upper and Lower Half:
At least BE1 #, BE2 # asserted (and perhaps
also BEO# and/or BE3#).

inter 80386

Effect of asserting B816# during "upper half only"
read cycles:

Asserting B816# during "upper half only" reads
causes the 80386 to read data on the lower 16
bits of the data bus and ignore data on the upper
16 bits of the data bus. Oata that would have been
read from 016-031 (as indicated by BE2# and
BE3#) will instead be read from 00-015 respec-
tively.

Effect of asserting B816# during "upper half only"
write cycles:

Asserting B816# during "upper half only" writes
does not affect the 80386. When only BE2#
and/or BE3# are asserted during a write cycle
the 80386 always duplicates data signals
016-031 onto 00-015 (see Table 5-1). There-
fore, no further 80386 action is required to per-
form these writes on 32-bit or 16-bit buses.

Effect of asserting B816# during "upper and lower
half" read cycles:

Asserting B816# during "upper and lower half"
reads causes the processor to perform two 16-bit
read cycles for complete physical operand trans-
fer. Bytes 0 and 1 (as indicated by BEO# and
BE1 #) are read on the first cycle using 00-015.
Bytes 2 and 3 (as indicated by BE2# and BE3#)
are read during the second cycle, again using
00-015.016-031 are ignored during both 16-bit
cycles. BEO# and BE1 # are always negated dur-
ing the second 16-bit cycle. B8 16 # does not have
to be asserted during the second 16-bit cycle. 8ee
Figure 5-14, cycles 2 and 2a.

Effect of asserting B816# during "upper and lower
half" write cycles:

Asserting B816# during "upper and lower half"
writes causes the 80386 to perform two 16-bit
write cycles for complete physical operand trans-
fer. All bytes are available the first write cycle al-
lowing external hardware to receive Bytes 0 and 1
(as indicated by BEO# and BE1 #) using 00-015.
On the second cycle the 80386 duplicates Bytes 2
and 3 on 00-015 and Bytes 2 and 3 (as indicated
by BE2# and BE3#) are written using 00-015.
BEO# and BE1 # are always negated during the
second 16-bit cycle. B816# does not have to be
asserted during the second 16-bit cycle. 8ee
Figure 5-14, cycles 1 and 1a.

5.3.5 Interfacing with 32- and 16-Bit
Memories

In 32-bit-wide physical memories such as Figure 5-5,
each physical Oword begins at a byte address that is
a multiple of 4. A2-A31 are directly used as a Oword
select and BEO#-BE3# as byte selects. B816# is
negated for all bus cycles involving the 32-bit array.

When 16-bit-wide physical arrays are included in the
system, as in Figure 5-6, each 16-bit physical word
begins at a address that is a multiple of 2. Note the
address is decoded, to assert B816# only during
bus cycles involving the 16-bit array. (If desiring to use

32 DATA BUS (00-031)

80386 32-BIT
AOORESSBUS (BEO#-BE3#,A2-A31) MEMORY

JBS16#

"HIGH"
231630-6

Figure 5-5. 80386 with 32-Blt Memory

32 DATA BUS (00-031)

ADDRESSBUS

(BEO#-BE3#. A2-A31)

32-BIT
t.4Et.40RY

231630-7

Figure 5-6. 80386 with 32-Blt and 16·Blt Memory

64

80386

pipelined address with 16-bit memories then BEO#-
BE3# and W/R# are also decoded to determine
when BS16# should be asserted. See 5.4.3.7 MaxI-
mum Pipe lined Address Usage with 16-Blt Bus
Size.)

A2-A31 are directly usable for addressing 32-bit
and 16-bit devices. To address 16-bit devices, A1
and two byte enable signals are also needed.

To generate an A1 signal and two Byte Enable sig-
nals for 16-bit access, BEO#-BE3# should be de-
coded as in Table 5-7. Note certain combinations of
BEO#-BE3# are never generated by the 80386,
leading to "don't care" conditions in the decoder.
Any BEO#-BE3# decoder, such as Figure 5-7, may
use the non-occurring BEO# -BE3# combinations
to its best advantage.

5.3.6 Operand Alignment
With the flexibility of memory addressing on the
80386, it is possible to transfer a logical operand
that spans more than one physical Oword or word of
memory or I/O. Examples are 32-bit Oword oper-
ands beginning at addresses not evenly divisible by

4, or a 16-bit word operand split between two physi-
cal Owords of the memory array.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 5-8 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz-
ing. When multiple bus cycles are required to trans-
fer a multi-byte logical operand, the highest-order
bytes are transferred first (but if BS 16 # asserted
requires two 16-bit cycles be performed, that part of
the transfer is low-order first).

5.4 BUS FUNCTIONAL DESCRIPTION

5.4.1 Introduction
The 80386 has separate, parallel buses for data and
address. The data bus is 32-bits in width, and bidi-
rectional. The address bus provides a 32-bit value
using 30 signals for the 30 upper-order address bits
and 4 Byte Enable signals to directly indicate the
active bytes. These buses are interpreted and con-
trolled via several associated definition or control
signals.

Table 5-7. Generating A1, BHE# and BlE# for Addressing 16-Blt Devices

80386 Signals 16-Blt Bus Signals
Comments

BE3# BEU BEH BEO# A1 BHE# BlE# (AO)

H' H' H' H' x x x x-no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H' L' H' L' x x x x-not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L' H' H' L' x x x x-not contiguous bytes
L' H' L' H' x x x x-not contiguous bytes
L' H' L' L' x x x x-not contiguous bytes
L L H H H L L
L' L' H' L' x x x x-not continguous bytes
L L L H L L H
L L L L L L L

BLE# asserted when 00-07 of 16-bit bus is active.
BHE # asserted when 08-015 of 16-bit bus is active.
A 1 low for all even words; A 1 high for all odd words.

Key:
x = don't care
H = high voltage level
L = low voltage level
• = a non-occurring pattern of Byte Enables; either none are asserted,

or the pattern has Byte Enables asserted for non-contiguous bytes

65

80386

8EO#

8E2#

L H

L • H L L
L

L • H L
H

L L X L
H • • H • L

L H L

8E1#

8EO#
~8E3#~

231630-8
K-map for A 1 signal (same as Figure 5-3)

8EO#

8E2#

L H

L • L L L
L

L • H L

H
H

L • L
H • • L • L

L H L

8E1#
~8E3#~

8E1#
K-map for 16-bit 8HE # signal

8EO#

231630-9

8E2#

L H

L • L H L
L

L • L H
H

L L • H
H • • H x L

L H L

8E3#

8EO#
8E2#

8El#
K-map for 16-bit 8LE # signal (same as AO signal in Figure 5-3)

Figure 5·7. logic to Generate A1, BHE# and BlE# for 16-Blt Buses

Table 5-8. Transfer Bus Cycles for Bytes. Words and Dwords

231630-10

Byte-length of logical Operand

1 2 4

Physical Byte Address xx 00 01 10 11 00 01 10 11
in Memory (low-order bits)

Transfer Cycles over b w w w hb, d hb hw, h3,
32-Bit Data Bus Ib 13 Iw Ib

Transfer Cycles over b w lb. w hb, Iw, hb, hw, mw.
16-Bit Data Bus hb Ib hw Ib, Iw hb,

mw Ib

Key: b = byte transfer 3 = 3-byte transfer
w = word transfer d = Dword transfer
I = low-order portion h = high-order portion
m = mid-order portion
x = don't care

= B816# asserted causes second bus cycle

66

inter 80386

The definition of each bus cycle is given by three
definition signals: M/IO#, W/R# and D/C#. At the
same time, a valid address is present on the byte
enable signals BEO#-BE3# and other address sig-
nals A2-A31. A status signal, ADS#, indicates
when the 80386 issues a new bus cycle definition
and address.

Collectively, the address bus, data bus and all asso-
ciated control signals are referred to simply as "the
bus".

When active, the bus performs one of the bus cycles
below:
1) read from memory space
2) locked read from memory space
3) write to memory space
4) locked write to memory space
5) read from I/O space (or coprocessor)
6) write to I/O space (or coprocessor)
7) interrupt acknowledge
8) indicate halt, or indicate shutdown

Table 5-1 shows the encoding of the bus cycle defi-
nition signals for each bus cycle. See section 5.2.5
Bus Cycle Definition.

The data bus has a dynamic sizing feature support-
ing 32- and 16-bit bus size. Data bus size is indicated
to the 80386 using its Bus Size 16 (BS16#) input. All
bus functions can be performed with either data bus
size.

When the 80386 bus is not performing one of the
activities listed above, it is either Idle or in the Hold
Acknowledge state, which may be detected by ex-
ternal circuitry. The idle state can be identified by the
80386 giving no further assertions on its address
strobe output (ADS #) since the beginning of its
most recent bus cycle, and the most recent bus cy-
cle has been terminated. The hold acknowledge
state is identified by the 80386 asserting its hold ac-
knowledge (HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer occurs
during a bus cycle, composed of two or more bus
states.

CLK2 [
(INPUT)

BEOH-BE3H, A2-A31, [
foI/IOH, D/CH, W/RH

(OUTPUTS)

ADSH [
(OUTPUT)

CYCLE 1 CYCLE 2 CYCLE 3
NON-PIPELINED NON-PIPELINED NON-PIPELINED

(READ) (READ) (READ)

T1 T2 T1 T2 T1 T2

.11.2 .11.2 .11.2 .11.2 .11.2 .,1.2 .1

NAH [
(INPUT)

READYH [
(INPUT)

LOCKH [
(OUTPUT)

00-031 [
(INPUT DURING READ)

Fastest non·pipelined bus cycles consist of T1 and T2

Figure 5-8. Fastest Read Cycles with Non-Plpellned Address Timing

67

231630-11

inter 80386

The fastest 80386 bus cycle requires only two bus
states. For example, three consecutive bus read cy-
cles, each consisting of two bus states, are shown
by Figure 5-8. The bus states in each cycle are
named T1 and T2. Any memory or liD address may
be accessed by such a two-state bus cycle, if the
external hardware is fast enough. The high-band-
width, two-clock bus cycle realizes the full potential
of fast main memory, or cache memory.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the 80386
READY # input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest bus cycle,
requiring only T1 and T2. If READY # is not immedi-
ately asserted however, T2 states are repeated in-
definitely until the READY # input is sampled assert-
ed.

5.4.2 Address Pipelining

The address pipelining option provides a choice of
bus cycle timings. Pipelined or non-pipelined ad-
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA #) input.

When address pipelining is not selected, the current
address and bus cycle definition remain stable
throughout the bus cycle.

When address pipelining is selected, the address
(BEO#-BE3#, A2-A31) and definition (W/R#,
D/G# and MIIO#) of the next cycle are available
before the end of the current cycle. To signal their
availability, the 80386 address status output (ADS#)
is also asserted. Figure 5-9 illustrates the fastest
read cycles with pipelined address timing.

Note from Figure 5-9 the fastest bus cycles using
pipelined address require only two bus states,
named T1P and T2P. Therefore cycles with pipe-
lined address timing allow the same data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased compared to that of a non-pipe-
lined cycle.

By increasing the address-to-data access time, pipe-
lined address timing reduces wait state require-
ments. For example, if one wait state is required with
non-pipelined address timing, no wait states would
be required with pipelined address.

CYCLE 1
PIPELINED

(READ)

T1 P T2P

.11.2 .11.2

CYCLE 2
PIPELINED

(READ)

T1 P T2P

.11.2 .11.2

CYCLE 3
PIPELINED

(READ)

T1P T2P

.11.2 .11.2

CLK2 [
(INPUT)

BEOH-BE3H. A2-A31, [
t.4/IOH, D/CH. W/RH

(OUTPUTS)

ADSH [
(OUTPUT)

NAH [
(INPUT)

READYH [
(INPUT)

LOCKH [
(OUTPUT)

00-031 [
(INPUT DURING READ)

Fastest pipelined bus cycles consist of T1 P and T2P

Figure 5-9. Fastest Read Cycles with Plpelined Address Timing

68

231630-12

inter 80386

Pipelined address timing is useful in typical systems
having address latches. In those systems, once an
address has been latched, pipelined availability of
the next address allows decoding circuitry to gener-
ate chip selects (and other necessary select signals)
in advance, so selected devices are accessed im-
mediately when the next cycle begins. In other
words, the decode time for the next cycle can be
overlapped with the end of the current cycle.

If a system contains a memory structure of two or
more interleaved memory banks, pipelined address
timing potentially allows even more overlap of activi-
ty. This is true when the interleaved memory control-
ler is designed to allow the next memory operation

TWO-BANK INTERLEAVED MEMORY
a) Address signal A2 selects bank
b) 32·bit datapath to each bank

to begin in one memory bank while the current bus
cycle is still activating another memory bank. Figure
5·10 shows the general structure of the 80386 with
2-bank and 4-bank interleaved memory. Note each
memory bank of the interleaved memory has full
data bus width (32-bit data width typically, unless 16-
bit bus size is selected).

Further details of pipelined address timing are given
in 5.4.3.4 Plpellned Address, 5.4.3.5 Initiating and
Maintaining Plpellned Address, 5.4.3.6 Plpe!lned
Address with Dynamic Bus Slzllng, and 5.4.3.7
Maximum Plpellned Address Usage with 16·Blt
Bus Size.

FOUR·BANK INTERLEAVED MEMORY
a) Address signals A3 and A2 select bank
b) 32-bit datapath to each bank

231630-13

231630-14

Figure 5·10. 2·Bank and 4·Bank Interleaved Memory Structure

69

inter 80386

5.4.3 Read and Write Cycles

5.4.3.1 INTRODUCTION

Data transfers occur as a result of bus cycles, classi-
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces-
sor. During write cycles data is transferred in the oth-
er direction, from the processor to an external de-
vice.

Two choices of address timing are dynamically se-
lectable: non-pipelined, or pipelined. After a bus idle
state, the processor always uses non-pipelined ~d-
dress timing. However, the NA# (Next Address) .In-
put may be asserted to select pipelined address tim-
ing for the next bus cycle. When pipelining is select-
ed and the 80386 has a bus request pending inter-
nally, the address and definition of the next cycle !s
made available even before the current bus cycle IS
acknowledged by READY#. Generally, the NA# in-
put is sampled each bus cycle to select the desired
address timing for the next bus cycle.

Two choices of physical data bus width are dynami-
cally selectable: 32 bits, or 16 bits. Generally, the
BS16# (Bus Size 16) input is sampled near the end
of the bus cycle to confirm the physical data bus size
applicable to the current cycle. Negation of BS16#
indicates a 32-bit size, and assertion indicates a 16-
bit bus size.

If 16-bit bus size is indicated, the 80386 automatical-
ly responds as required to complete the transfer on
a 16·bit data bus. Depending on the size and align-
ment of the operand, another 16-bit bus cycle may
be required. Table 5-7 provides all details. When
necessary, the 80386 performs an additional 16-bit
bus cycle, using DO-D15 in place of 016-D31.

Terminating a read cycle or write cycle, like any bus
cycle, requires acknowledging the cycle by asserting
the READY# input. Until acknowledged, the proces-
sor inserts wait states into the bus cycle, to allow
adjustment for the speed of any external device. Ex-
ternal hardware, which has decoded the address
and bus cycle type asserts the READY # input at the
appropriate time.

IDLE I CYCLE 1
NON-PIPELINED

(WRITE)

CLK2 [

(82384 CLK) [

8ED #-BE3# [
A2-A31,

1.4/IO#,D/C#

W/R# [

ADS# [

BSI6# [

READY# [

LOCK # [

00- 031 [

n T1 T2

CYCLE 2 I
NON-PIPELINED

(READ)

T1 T2

CYCLE 3 I
NON-PIPELINED

(WRITE)

T1 T2

IDLE I
TI

CYCLE 4 I
NON-PIPELINED

(READ)

T1 T2

IDLE I
n

231630-15

Figure 5-11. Bus Cycles with Non-Plpellned Address (zero walt states)

70

80386

At the end of the second bus state within the bus
cycle, READY /I is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY /I, the bus cycle terminates as shown in Fig-
ure 5-11. If READY /I is negated as in Figure 5-12,
the cycle continues another bus state (a wait state)
and READY /I is sampled again at the end of that
state. This continues indefinitely until the cycle is ac-
knowledged by READY /I asserted.

When the current cycle is acknowledged, the 80386
terminates it. When a read cycle is acknowledged,
the 80386 latches the information present at its data
pins. When a write cycle is acknowledged, the
80386 write data remains valid throughout phase
one of the next bus state, to provide write data hold
time.

5.4.3.2 NON-PIPELINED ADDRESS

Any bus cycle may be performed with non-pipe lined
address timing. For example, Figure 5-11 shows a
mixture of read and write cycles with non-pipelined

address timing. Figure 5-11 shows the fastest possi-
ble cycles with non-pipelined address have two bus
states per bus cycle. The states are named T1 and
T2. In phase one of the T1, the address signals and
bus cycle definition signals are driven valid, and to
signal their availability, address strobe (ADS#) is
simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the 80386 floats its
data signals to allow driving by the external device
being addressed. If the cycle is a write, data signals
are driven by the 80386 beginning in phase two of
T1 until phase one of the bus state following cycle
acknowledgment.

Figure 5-12 illustrates non-pipelined bus cycles with
one wait added to cycles 2 and 3. READY /I is sam-
pled negated at the end of the first T2 in cycles 2
and 3. Therefore cycles 2 and 3 have T2 repeated.
At the end of the second T2, READY /I is sampled
asserted.

IDLE I CYCLE 1 CYCLE 2 IDLE

I
CYCLE 3 IDLE

I
NON-PIPELINED NON-PJPELINED NON-PIPELINED

(READ) (WRITE) (READ)

n 11 T2 11 T2 T2 n 11 T2 T2 n

CLK2 [

(82384 CLK) [

BEO#-BEl #
••••2- ••••31. [

to4/IO#,D/C#

W/R# [

••••05# [

N••••# [

BS16# [

READY # [

LOCK # [V••••L1D 2

00-031[. OUT

231630-16

Figure 5-12. Bus Cycles with Non-Plpellned Address (various number of walt states)

71

inter

REQUEST PENDING.
HOLD NEGATED

80386

HOLD ASSERTED

ALWAYS

READY N ASSERTED·
HOLO NEGATED.

REQUEST PENDING

READYN NEGATED·
NAN NEGATED

Bus Slel.s: 231630-17
T1-first clock of a non-pipelined bus cycle (80386 drives new address and asserts ADS #)
T2-subsequent clocks of a bus cycle when NA # has not been sampled asserted in the current bus cycle
TI-- idle state
TI>-hold acknowledge state (80386 asserts HLDA)
The fastest bus cycle consists of two states: Tl and T2.
Four basic bus states describe bus operation when not using pipelined address. These states do include 8516# usage for 32-bit and 16-bit
bus size. If asserting 8516# requires a second 16-bit bus cycle to be performed, it is performed before HOLD asserted is acknowledged.

Figure 5-13. 80386 Bus States (not using plpellned address)

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and you desire
to maintain non-pipelined address timing, it is neces-
sary to negate NA # during each T2 state except the
last one, as shown in Figure 5-12 cycles 2 and 3. If
NA# is sampled asserted during a T2 other than the
last one, the next state would be T21 (for pipelined
address) or T2P (for pipelined address) instead of
another T2 (for non-pipelined address).

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
5-13. The bus transitions between four possible
states: T1, T2, Ti, and Th. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth-
erwise, the bus may be idle, in the Ti state, or in hold
acknowledge, the Th state.

When address pipelining is not used, the bus state
diagram is as shown in Figure 5-13. When the bus is

72

idle it is in state Ti. Bus cycles always begin with n.
T1 always leads to T2. If a bus cycle is not acknowl-
edged during T2 and NA# is negated, T2 is repeat-
ed. When a cycle is acknowledged during T2, the
following state will be T1 of the next bus cycle if a
bus request is pending internally, or Ti if there is no
bus request pending, or Th if the HOLD input is be-
ing asserted.

The bus state diagram in Figure 5-13 also applies to
the use of B816#. If the 80386 makes internal ad-
justments for 16-bit bus size, the adjustments do not
affect the external bus states. If an additional 16-bit
bus cycle is required to complete a transfer on a 16-
bit bus, it also follows the state transitions shown in
Figure 5-13.

Use of pipelined address allows the 80386 to enter
three additional bus states not shown in Figure 5-13.
Figure 5-20 in 5.4.3.4 Plpellned Address is the
complete bus state diagram, including pipelined ad-
dress cycles.

inter 80386

5.4.3.3 NON-PIPELINED ADDRESS WITH
DYNAMIC DATA BUS SIZING

The physical data bus width for any non-pipelined
bus cycle can be either 32-bits or 16-bits. At the
beginning of the bus cycle, the processor behaves
as if the data bus is 32-bits wide. When the bus cy-
cle is acknowledged, by asserting READY # at the
end of a T2 state. the most recent sampling of
8816# determines the data bus size for the cycle
being acknowledged. If 8816# was most recently
negated, the physical data bus size is defined as

32 bits. If 8816# was most recently asserted. the
size is defined as 16 bits.

When 8816# is asserted and two 16-bit bus cycles
are required to complete the transfer, 8816# does
have to be asserted during the second cycle; 16-bit
bus size is not assumed. Like any bus cycle, the
second 16-bit cycle must be acknowledged by as-
serting READY # .

When a second 16-bit bus cycle is required to com-
plete the transfer over a 16-bit bus, the addresses

IDLE

n

A TRANSFER REOUIRING TWO
CYCLES ON 16-BIT DATA BUS

CYCLE 1 tCYCLE 1ANON-PIPELINED NON-PIPELINED
(WRITE WRITE)

PART ONE PART TWO

T1 T2 Tl T2

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

CYCLE 2 fCYCLE 2ANON-PIPELINED NON-PIPELINED
(READ READ)

PART ONE PART TWO

T1 T2 T1 T2

IDLE

n

CLK2 [

(82384 CLK) [
BEO#,BEI # [
BE2# ,BE3 # [A2- A31,

t.4/IO#,D/C#

W/R# [
ADS# [

NA# [

BS16# [

READY # [
LOCK # [

00- 015 [. -------
016- 031 [. -------

Key: On ~ physical data pin n
dn = logical data bit n

d16-d31

OUT

IGNORED IGNORED

--0-- ---0---
I I

231630-18

Figure 5-14. Asserting BS16# (zero walt states, non-plpellned address)

73

inter 80386

CYCLE 2
NON-PIPELINED

(WRITE)

IDLE

TI

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

CYCLE l~YCLE 1ANON-PIPELINED NON-PIPELINED
(READ READ)

PART ONE PART TWO

T1 T2 T2 T1 T2 T2 T1 T2 T2

CLK2 [

(82384 CLK) [
BEO #, BEl # [
BE2 #, BE3 # [A2- A31,

M/IO#,D/C#

W/R# [
ADS# [

NA# [

BS16 # [

READY # [
LOCK # [

00- 015 [.

016- 031 [.

Key: On ~ physical data pin n
dn = logical data bit n

N TE: NA# MUST BE NEGATED
HERE TO ALLOW RECOGNITION
OF ASSERTED BS 16# IN FINAL T2

dO-d15

-------- --- --~--
IGNORED

-------- --- --~--
I

d16-d31

--0
IGNORED

--0
I

VALID 2

dO-d15

OUT

d16-d31

OUT

231630-19

Figure 5-15. Asserting 8516# (one wait state, non-plpellned address)

generated for the two 16-bit bus cycles are closely
related to each other. The addresses are the same
except BEO# and BE1 # are always negated for the
second cycle. This is because data on DO-D15 was
already transferred during the first 16-bit cycle.

Figures 5-14 and 5-15 show cases where assertion
of B8 16 # requires a second 16-bit cycle for com-
plete operand transfer. Figure 5-14 illustrates cycles

74

without wait states. Figure 5-15 illustrates cycles
with one wait state. In Figure 5-15 cycle 1, the bus
cycle during which B816# is asserted, note that
NA# must be negated in the T2 state(s) prior to the
last T2 state. This is to allow the recognition of
B816# asserted in the final T2 state. The relation of
NA# and B816# is given fully in 5.4.3.4 Plpelined
Address, but Figure 5-15 illustrates this only pre-
caution you need to know when using B816# with
non-pipelined address.

80386

5.4.3.4 PIPELINED ADDRESS

Address pipelining is the option of requesting the
address and the bus cycle definition of the next, in-
ternally pending bus cycle before the current bus
cycle is acknowledged with READY # asserted.
ADS # is asserted by the 80386 when the next ad-
dress is issued. The address pipelining option is con-
trolled on a cycle-by-cycle basis with the NA# input
signal.

Once a bus cycle is in progress and the current ad-
dress has been valid for at least one entire bus
state, the NA# input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur-
ing non-pipelined bus cycles, therefore, NA# is
sampled at the end of phase one in every T2. An
example is Cycle 2 in Figure 5-16, during which NA #
is sampled at the end of phase one of every T2 (it
was asserted once during the first T2 and has no
further effect during that bus cycle).

If NA# is sampled asserted, the 80386 is free to
drive the address and bus cycle definition of the next
bus cycle, and assert ADS #, as soon as it has a bus
request internally pending. It may drive the next ad-
dress as early as the next bus state, whether the
current bus cycle is acknowledged at that time or
not.

Regarding the details of address pipelining, the
80386 has the following characteristics:
1) For NA # to be sampled asserted, BS 16 # must

be negated at that sampling window (see Figure
5-16 Cycles 3 and 4, and Figure 5-17 Cycles 2
through 4). If NA# and BS16# are both sampled
asserted during the last T2 period of a bus cycle,
BS16# asserted has priority. Therefore, if both
are asserted, the current bus size is taken to be
16 bits and the next address is not pipelined. Con-
ceptually, Figure 5-18 shows the internal 80386
logic providing these characteristics.

IDLE CYCLE 1
NON-PIPELINED

(WRITE)

CYCLE 2
NON-PIPELINED

(READ)

CYCLE 3
PIPELINED

(WRITE)

CYCLE 4
PIPELINED

(READ)

IDLE

Ti Tl T2 Tl T2 T2P Tl P T2P TlP T21 Ti

CLK2 [

(82384 CLK) [

BEO# - BE3 # [
A2-A31.

W/IO#.D/C#

W/R# [

AD5# [

B516 # [

READY# [

LOCK# [

00-031 [• _ •• - --

VALID 2---+-~
231630-20

Following any idle bus state (Ti). addresses are non-pipelined. Within non-pipelined bus cycles, NA # 's only sampled during wait states.
Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at least one wait state
(Cycle 2 above).

Figure 5-16. Transltlonlng to Plpellned Address During Burst of Bus Cycles

75

80386

IDLE CYCLE 1
NON-PIPELINED

(WRITE)

CYCLE 2
PIPELINED

(READ)

CYCLE 3
PIPELINED

(WRITE)

CYCLE 4
PIPELINED

(READ)

IDLE

CLK2 [

(82384 CLK) [

BEO #- BE3#. [
"'2-"'31.

lA/IO#.O/C#

W/R# [

"'05# [

B516 # [

READY# [

LOCq [

00- 031 [

n n T2 T2P n P T2P T1P T2P np T21 T21 n

231630-21
Following any idle bus state (Ti) the address is always non-pipelined and NA# is only sampled during wait states. To start address pipelining
after an idle state requires a non-pipelined cycle with at least one wa~ state (cycle 1 above).
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states.

Figure 5-17. Fastest Transition to Plpellned Address Following Idle Bus State

2) The next address may appear as early as the bus
state after NA# was sampled asserted (see Fig-
ures 5-16 or 5-17). In that case. state T2P is en-
tered immediately. However, when there is not an
internal bus request already pending, the next ad-
dress will not be available immediately after NA#
is asserted and T21 is entered instead of T2P (see
Figure 5-19 Cycle 3). Provided the current bus cy-
cle isn't yet acknowledged by READY # asserted,
T2P will be entered as soon as the 80386 does
drive the next address. External hardware should
therefore observe the ADS # output as confirma-
tion the next address is actually being driven on
the bus.

3) Once NA# is sampled asserted, the 80386 com-
mits itself to the highest priority bus request that
is pending internally. It can no longer perform an-
other 16-bit transfer to the same address should

76

8S16# be asserted externally, so thereafter must
assume the current bus size is 32 bits_ Therefore
if NA # is sampled asserted within a bus cycle,
8S16# is ignored thereafter in that bus cycle (see
Figures 5-16, 5-17, 5-19). Consequently, do not
assert NA # during bus cycles which must have
8S16# driven asserted. See 5.4.3.6 Dynamic
Bus Sizing with Plpellned Address.

4) Any address which is validated by a pulse on the
80386 ADS# output will remain stable on the ad-
dress pins for at least two processor clock peri-
ods. The 80386 cannot produce a new address
more frequently than every two processor clock
periods (see Figures 5-16, 5-17, 5-19).

5) Only the address and bus cycle definition of the
very next bus cycle is available. The pipelining ca-
pability cannot look further than one bus cycle
ahead (see Figure 5-19 Cycle 1).

inter 80386

5.4.3.5 INITIATING AND MAINTAINING
PIPELINED ADDRESS

Figure 5·18. 80386 Internal
Logic on NA# and 8516#

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA# and detecting that the 80386 enters T2P dur-
ing the current bus cycle. The current bus cycle must
end in state T2P for pipelining to be maintained in
the next cycle. T2P is identified by the assertion of
ADS#. Figures 5-16 and 5-17 however, each show
pipelining ending after Cycle 4 because Cycle 4
ends in T21. This indicates the 80386 didn't have an
internal bus request prior to the acknowledgement
of Cycle 4. If a cycle ends with a T2 or T21, the next
cycle will not be pipelined.

Example transition bus cycles are Figure 5-17 Cycle
1 and Figure 5-16 Cycle 2. Figure 5-17 shows tran-
sition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad-
dress pipelining. Figure 5-16 Cycle 2 shows a tran-
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (you assert
NA# at that time), and T2P (provided the 80386 has
an internal bus request already pending, which it al-
most always has). T2P states are repeated if wait
states are added to the cycle.

Note three states (T1, T2 and T2P) are only required
in a bus cycle performing a transition from non-
pipelined address into pipelined address timing, for
example Figure 5-17 Cycle 1. Figure 5-17 Cycles 2,
3 and 4 show that address pipelining can be main-
tained with two-state bus cycles consisting only of
T1P and T2P.

Once a bus cycle is in progress and the current ad-
dress has been valid for one entire bus state, the
NA # input is sampled at the end of every phase one
until the bus cycle is acknowledged. During Figure 5-
17 Cycle 1 therefore, sampling begins in T2. Once
NA # is sampled asserted during the current cycle,
the 80386 is free to drive a new address and bus
cycle definition on the bus as early as the next bus
state. In Figure 5-16 Cycle 1 for example, the next
address is driven during state T2P. Thus Cycle 1
makes the transition to pipelined address timing,
since it begins with T1 but ends with T2P. Because
the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and it
begins with T1 P. Cycle 2 begins as soon as
READY # asserted terminates Cycle 1.

The transition to pipelined address is shown func-
tionally by Figure 5-17 Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe-
lined. The NA# input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3 and
4.

231630-22

851611
(INTERNAL)

NAil
(INTERNAL)

851611
(PIN C14)

NAil
(PIN 013)

T1-T2-T2P are the states of the bus cycle that es-
tablishes address pipelining for the next bus cycle,
which begins with T1 P. The same is true after a bus
hold state, shown below:

~ ,T1-T:-T2P,/ ,T1P~T2P'J

idle non-pipelined pipelined
states cycle cycle

,Th, Th, Th'J\T1 - T2 - T2P,/ ,T1P - T2P,/
T T T

hold non-pipelined pipelined
acknowledge cycle cycle

states

Using the state diagram Figure 5-20, observe the
transitions from an idle state, Ti, to the beginning of
a pipelined bus cycle, T1 P. From an idle state Ti, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA# is asserted and
the first bus cycle ends in a T2P state (the address
for the next bus cycle is driven during T2P). The fast-
est path from an idle state to a bus cycle with pipe-
lined address is shown in bold below:

The fastest bus cycle with pipelined address con-
sists of just two bus states, T1 P and T2P (recall for
non-pipelined address it is T1 and T2). T1 P is the
first bus state of a pipelined cycle.

The complete bus state transition diagram, including
operation with pipelined address is given by 5-20.
Note it is a superset of the diagram for non-pipelined
address only, and the three additional bus states for
pipelined address are drawn in bold.

77

inter 80386

T1P

CYCLE 1
PIPELINED

(WRITE)

T2P T2P T1P

CYCLE 2
PIPELINED

(READ)

T2 T2P T1P

CYCLE 3
PIPELINED

(WRITE)

T21 T2P T1P

CYCLE 4
PIPELINED

(READ)

CLK2 [

(82384 CLK) [

8EO1- 8E11. [
A2- A31,

to4/IOI.D/CI

W/RI [

ADSI [

ASSERTING NAI to40RE
THAN ONCE DURING
ANY CYCLE HAS NO
ADDITIONAL EFFECTS

NAI COULD HAVE
BEEN ASSERTED

IN T1P IF DESIRED.
ASSERTION NOW IS

THE LATEST TIt04E
POSSIBLE TO ALLOW
80386 TO ENTER T2P

STATE TO to4AINTAIN
PIPELINING IN CYCLE 3

I
ADSI IS ASSERTED AS
SOON AS 80386 HAS ANOTHER
BUS CYCLE TO PERFORt04.
WHICH IS NOT ALWAYS
1t04t04EDIATELYAFTER NAI
IS ASSERTED

'----'AS LONG AS 80386 ENTERS THE
T2P STATE DURING CYCLE 3.

ADDRESS PIPELINING IS
to4AINTAINEDIN CYCLE 4

BS16 I [

READYI [

LOCKI [

00- 031 [

231630-23

Figure 5·19. Details of Address Plpellnlng During Cycles with Walt States

78

inter

HOLD ASSERTtO

80386

READY' ASSERTED-
HOLD NEGATED-

NO REQUESTBua Statea:
T1-first clock of a non-pipelined bus cycle (80386 drives new address and
asserts ADS#).
T2-subsequent clocks of a bus cycle when NA # has not been sampled
asserted in the current bus cycle.
T21-subsequent clocks of a bus cycle when NA # has been sampled as-
serted in the current bus cycle but there is not yet an internal bus request
pending (80386 will not drive new address or assert ADS#).
T2P-subsequent clocks of a bus cycle when NA # has been sampled
asserted in the current bus cycle and there is an internal bus request pend-
ing (80386 drives new address and asserts ADS#).
T1 P-first clock of a pipelined bus cycle.
Ti-idle state.
Th-hold acknowledge state (80386 asserts HLDA).
Asserting NA # for pipelined address gives access to three more bus
states: T21, T2P and T1 P.
Using pipelined address, the fastest bus cycle consists of T1 P and T2P.

READY, NEGATED

231630-24

Figure 5-20. 80386 Complete Bus States (Including pipe lined address)

Realistically, address pipelining is almost always
maintained as long as NA# is sampled asserted.
This is so because in the absence of any other re-
quest, a code prefetch request is always internally
pending untii the instruction decoder and code pre-
fetch queue are completely full. Therefore address
pipelining is maintained for long bursts of bus cycles,
if the bus is available and NA # is sampled asserted
in each of the bus cycles.

5.4.3.6 PIPELINED ADDRESS WITH DYNAMIC
DATA BUS SIZING

The B816# feature allows easy interface to 16-bit
data buses. When asserted, the 80386 bus interface

79

hardware performs appropriate action to make the
transfer using a 16-bit data bus connected on
00-015.

There is a degree of interaction, however, between
the use of Address Pipelining and the use of Bus
Size 16. The interaction results from the multiple bus
cycles required when transferring 32-bit operands
over a 16-bit bus. If the operand requires both 16-bit
halves of the 32-bit bus, the appropriate 80386 ac-
tion is a second bus cycle to complete the operand's
transfer. It is this necessity that conflicts with NA #
usage.

When NA # is sampled asserted, the 80386 commits
itself to perform the next internally pending bus re-

inter 80386

quest, and is allowed to drive the next internally
pending address onto the bus. Asserting NA # there-
fore makes it impossible for the next bus cycle to
again access the current address on A2-A31, such
as may be required when 8516# is asserted by the
external hardware.

To avoid conflict, the 80386 is designed with follow-
ing two provisions:
1) To avoid conflict, the 80386 is designed to ignore

8516 # in the current bus cycle if NA # has already

been sampled asserted in the current cycle. If
NA # is sampled asserted, the current data bus
size is assumed to be 32 bits.

2) To also avoid conflict, if NA# and 8516# are
both asserted during the same sampling window,
8516# asserted has priority and the 80386 acts
as if NA# was negated at that time. Internal
80386 circuitry, shown conceptually in Figure 5-
18, assures that 8516# is sampled asserted and
NA# is sampled negated if both inputs are exter-
nally asserted at the same sampling window.

PREVIOUS
CYCLE

T2P TlP

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT BUS

CYCLE '~YCLE 1A
PIPELINED NON-PIPELINED

(WRITE WRITE)
PART ONE PART TWO

T2 T2 Tl T2 T2

CYCLE 2
NON-PIPELINED

(READ)

Tl T2 T2P

CLK2 [

(82384 CLK) [

BEOI, BEl I [

BE21, BE31, [
A2, A31,

M/IOi',D/CI

W/Ri' [

ADSI [

BS161 [

READYI [

LOCKI [

dO-d15

DO-DI5[• ---0-
d16-d31

DI6-D3{ • ---<:p-
dO-d15

--~
_~~31

Key: On - physical data pin n 231630-25
dn - logical data bit n

Cycles 1 and 2 are pipelined. Cycle 1a cannot be pipelined, but ~s address can be inferred from that of Cycle 1, to externally simulate address
pipelining during Cycle 1a.

Figure 5-21. Using NA# and 8516#

80

inter 80386

Certain types of operands require no adjustment for
correct transfer on a 16·bit bus. Those are read or
write operands using only the lower half of the data
bus, and write operands using only the upper half of
the bus since the 80386 simultaneously duplicates
the write data on the lower half of the data bus. For
these patterns of Byte Enables and the R/W /I sig-
nals, B516/1 need not be asserted at the 80386,
allowing NA /I to be asserted during the bus cycle if
desired.

5.4.4 Interrupt Acknowledge (INTA)
Cycles

In response to an interrupt request on the INTR in-
put when interrupts are enabled, the 80386 performs

two interrupt acknowledge cycles. These bus cycles
are similar to read cycles in that bus definition sig-
nals define the type of bus activity taking place, and
each cycle continues until acknowledged by
READY /I sampled asserted.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A31-A3 low, A2 high, BE3/1-BEU high, and
BEO/l low). The address driven during the second
interrupt acknowledge cycle is 0 (A31-A2 low,
BE3/1-BE1/1 high, BEO/l low).

CLK2 [

(82384 CLK) [

BEl I. BE21. BE31 [

BEOI. A3-A31. [
101/101. O/CI. W/RI

LOCKI [

AOSI [

REAOYI[

PREVIOUS I
CYCLE

T2 T1

INTERRUPT
ACKNOWLEDGE

CYCLE 1

T2 T2 n

IOLE
(4 BUS STATES)

n n n T1

INTERRUPT
ACKNOWLEDGE

CYCLE 2

T2 T21

IOLE

n

00-07[•

08-031 [•

IGNOREO--G}--
--(f)--

VECTOR

--0---
--{f)...

231630-26
Interrupt Vector (0-255) is read on 00-07 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is fOllowed by idle bus states. asserting NA # has no practical effect. Choose the approach
which is simplest for your system hardware design.

Figure 5-22. Interrupt Acknowledge Cycles

81

inter 80386

I
CYCLE I INON-PIPELINED
(WRITE)

T1 T2

CYCLE 2 INON-PIPELINED
(HALT)

T1 T2

IDLE

n n n n

CLK2 [

(82384 CLK) [

BEO#. BEl #. BE3#. [
t.4/IO#. W/R#

BE2#, A2-A31, [
D/C#

ADS#[

NA#[

BS16# [IGNORED

80386 REt.4AINS HALTED
UNTIL INTR, Nt.41OR
RESET IS ASSERTED.

I I
80386 RESPONDS TO
HOLD INPUT WHILE IN
THE HALT STATE.

READY# [

LOCK#[

DO-D31 [

NOTE: HALT CYCLE t.4UST BE
ACKNOWLEDGED BY READY#
ASSERTED. WAIT STATES t.4AY
BE ADDED TO THE CYCLE If
DESIRED.

- (fLOATING) - - --
I I

231630-27

Figure 5-23. Halt Indication Cycle

The LOCK# output is asserted from the beginning
of the first interrupt acknowledge cycle until the end
of the second interrupt acknowledge cycle. Four idle
bus states. Ti, are inserted by the 80386 between
the two interrupt acknowledge cycles. allowing at
least 160 ns of locked idle time for future 80386
speed selections up to 24 MHz (CLK2 up to 48
MHz), for compatibility with spec TRHRL of the
8259A Interrupt Controller.

Ouring both interrupt acknowledge cycles. 00-031
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second inter-
rupt acknowledge cycle, the 80386 will read an ex-
ternal interrupt vector from 00-07 of the data bus.
The vector indicates the specific interrupt number
(from 0-255) requiring service.

82

5.4.5 Halt Indication Cycle
The 80386 halts as a result of executing a HALT
instruction. Signaling its entrance into the halt state,
a halt indication cycle is performed. The halt indica-
tion cycle is identified by the state of the bus defini-
tion signals shown in 5.2.5 Bus Cycle Definition
and a byte address of 2. BEO# and BE2# are the
only signals distinguishing halt indication from shut-
down indication. which drives an address of O. Our-
ing the halt cycle undefined data is driven on
00-031. The halt indication cycle must be acknowl-
edged by REAOY # asserted.

A halted 80386 resumes execution when INTR (if
interrupts are enabled) or NMI or RESET is assert-
ed.

inter 80386

5.4.6 Shutdown Indication Cycle
The 80386 shuts down as a result of a protection
fault while attempting to process a double fault. Sig-
naling its entrance into the shutdown state, a shut-
down indication cycle is performed. The shutdown
indication cycle is identified by the state of the bus
definition signals shown in 5.2.5 Bus Cycle DefInI-
tion and a byte address of O. BEO# and BE2# are

the only signals distinguishing shutdown indication
from halt indication, which drives an address of 2.
During the shutdown cycle undefined data is driven
on 00-031. The shutdown indication cycle must be
acknowledged by READY # asserted.

A shutdown 80386 resumes execution when NMI or
RESET is asserted.

CYCLE'
PIPELINED

(READ)

T1 P T2P

CYCLE 2
PIPELINED

(SHUTDOWN)

T1 P T21

I IDLE

TI TI TI TI

CLK2 [

(82384 CLK) [

BE". BE2~ BE3~[
M/IO'. W/R,

BEO,. A2-A3'. [
D/C'

ADS' [

BSI6, [

READY' [

80386 REMAINS SHUTDOWN
UNTIL NMI OR RESET
IS ASSERTED.

I I
80386 RESPONDS TO
HOLD INPUT WHILE IN
THE SHUTDOWN STATE.

NOTE: SHUTDOWN CYCLE MUST BE
ACKNOWLEDGED BY READY'
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.

LOCK' [

00-031 [- -(FLOATING)- - - --

I I
231630-28

Figure 5-24. Shutdown Indication Cycle

83

inter 80386

5.5 OTHER FUNCTIONAL
DESCRIPTIONS

HOLD is acknowledged, although the bus state dia-
grams in Figures 5-13 and 5-20 do not indicate that
detail.

Figure 5-25. Requesting Hold from Idle Bus

5.5.1 Entering and Exiting Hold
Acknowledge

5.5.3 Bus Activity During and
Following Reset

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert-
ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the
80386, and at least 78 CLK2 periods if 80386 self-
test is going to be requested at the falling edge. RE-
SET asserted pulses less than 15 CLK2 periods may
not be recognized. RESET pulses less than 78 CLK2
periods followed by a self-test may cause the self-
test to report a failure when no true failure exists.
The additional RESET pulse width is required to
clear additional state prior to a valid self-test.

Th is exited in response to the HOLD input being
negated. The following state will be Ti as in Figure
5-25 if no bus request is pending. The following bus
state will be T1 if a bus request is internally pending,
as in Figures 5-26 and 5-27.

If HOLD remains asserted when RESET is negated,
the 80386 enters the hold acknowledge state before
performing its first bus cycle, provided HOLD is still
asserted when the 80386 would otherwise perform
its first bus cycle. If HOLD remains asserted when
RESET is negated, the BUSY# input is still sampled
as usual to determine whether a self test is being
requested, and ERROR # is still sampled as usual to
determine whether an 80387 vs. an 80287 (or none)
is present.

5.5.2 Reset During Hold Acknowledge

RESET being asserted takes priority over HOLD be-
ing asserted. Therefore, Th is exited in reponse to
the RESET input being asserted. If RESET is assert·
ed while HOLD remains asserted, the 80386 drives
its pins to defined states during reset, as in Table
5·3 Pin State During Reset, and performs internal
reset activity as usual.

Th is also exited in response to RESET being assert·
ed.

If a rising edge occurs on the edge-triggered NMI
input while in Th, the event is remembered as a non·
maskable interrupt 2 and is serviced when Th is exit-
ed, unless of course, the 80386 is reset before Th is
exited.

231630-29

---- (FlOATING)-··-

I
----- (FlOATING)'---

• - - - (FlOATING)- - --

I
FLOATING)----- ----~----00- D3{ -

(82384 ClKl[

lOCKI[

BEDI-BE31 [
A2-A31. ~/IOI

D/CI, W/RI

ADSI [

NAI [

NOTE:
For maximum design flexibility the 80386 has no inter-
nal pullup resistors on its outputs. Your design may re-
quire an external pullup on ADS 4' and other 80386 out-
puts to keep them negated during float periods.

IDLErACK~g~~EDGE~ IDLE

TI Th Th Th TI

Th may be entered from a bus idle state as in Figure
5-25 or after the acknowledgement of the current
physical bus cycle if the LOCK# signal is not assert-
ed, as in Figures 5-26 and 5-27. If asserting BS16#
requires a second 16-bit bus cycle to complete a
physical operand transfer, it is performed before

The bus hold acknowledge state, Th, is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the 80386 floats all
output or bidirectional signals, except for HLDA.
HLDA is asserted as long as the 80386 remains in
the bus hold acknowledge state. In the bus hold ac·
knowledge state, all inputs except HOLD and RE-
SET are ignored (also up to one rising edge on NMI
is remembered for processing when HOLD is no
longer asserted).

84

inter 80386

CYCLE I
NON-PIPELINED

(READ)

HOLD CYCLE 2
ACKNOWLEDGE NON-PIPELINED

(WRITE)

T1 T2 T2 Th Tn T1 T2

CLK2 [

(82384 CLK) [

HOLD [

HLDA [

BEO#-BE3#. A2-A31. [
1ol/10#. D/C#. W/R#

ADS# [

32-BIT BUS SIZE

NOTE: If ASSERTING BS 16#
REQUIRES A SECOND BUS
CYCLE TO BE PERfORIolED.
THE SECOND CYCLE IS
PERfORIolED BEfORE
HOLD ACKNOWLEDGE

READY# [

(NE ATED, OR LAST LOCKED CY LE)

[
• (fLOATING)

LOCK# VALID I ," - - - -1- - - - - VALID 2

[
(fLOATING) (fLOATING)

00-031 • -----r---- -- --r---- -- OUT

231630-30

NOTE:
HOLD is a synchronous input and can be asserted at any CLK2 edge. provided setup and hold (t23 and t24) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 5-26. Requesting Hold from Active Bus (NA 4' negated)

Provided the RESET falling edge meets setup and
hold times t25 and t26. the internal processor clock
phase is defined at that time. as illustrated by Figure
5-28 and Figure 7-7.

An 80386 self-test may be requested at the time RE-
SET is negated by having the BUSY 4' input at a
LOW level, as shown in Figure 5-28. The self-test
requires (220) + approximately 60 CLK2 periods to
complete. The self-test duration is not affected by
the test results. Even if the self-test indicates a prob-
lem, the 80386 attempts to proceed with the reset
sequence afterwards.

85

After the RESET falling edge (and after the self-test
if it was requested) the 80386 performs and internal
initialization sequence for approximately 350 to 450
CLK2 periods. Also during the initialization, between
the 20th CLK2 period and the first bus cycle, the
ERROR 4' input is sampled to determine the pres-
ence of an 80387 coprocessor versus the presence
of an 80287 (or no coprocessor). To distinguish be-
tween an 80287 being present and no coprocessor
being present requires a software test.

inter 80386

HOLD CYCLE 2
ACKNOWLEDGE NON-PIPELINED

(READ)

T1P

CLK2 [

(82384 CLK) [

HOLD [

HLDA [

8EO#-8E3#.A2-A31, [VALID 1
t.4/10#. D/C#, WIR#

8516#[

CYCLE 1
PIPELINED

(WRITE)

T21 T21 Tn Tn T1

VALID 2

T2

231630-31

NOTE:
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require·
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 5-27. Requesting Hold from Idle Bus (NA#< asserted)

5.6 SELF-TEST SIGNATURE
Upon completion of self-test (if self-test was reo
quested by driving BUSY #< low at the falling edge of
the RESET signal) the AX and OX registers will each
indicate OOOOHif the 80386 passed with no faults
detected. This applies to all 80386 revision levels.
Non-zero values in either AX or OX after self-test
indicate that particular 80386 unit is faulty.

5.7 COMPONENT AND REVISION
IDENTIFIERS

To assist 80386 users. the 80386 after reset holds a
component identifier and revision identifier in its BH
and BL registers respectively. BH contains 03H as

86

identification of the 80386 component. BL contains
an unsigned binary number related to the compo-
nent revision level. The 80386 revision identifier in
BL begins chronologically with value zero and is
subject to change (typically it will be incremented)
with component steppings intended to have certain
improvements or distinctions from previous step-
pings.

These features are intended to assist 80386 users
to a practical extent. However, the revision identifier
value is not guaranteed to change with every step-
ping revision, or to follow a completely uniform nu-
merical sequence. depending on the type or inten-
tion of revision, or materials required to be changed.
Intel has sole discretion over these characteristics of
the component.

inter 80386

CLK2 [

RESET [
(FROM 82384)

CLK (INTERNAL) [

(82384 CLK) [

BUSY# [

ERROR# [

BEO#-8E3#. [
MfIO#.HLDA

A2-A31. WfR#. [
DfC#. LOCK#

ADS# [

BS16# [

READY# [

RESET
:1:15 CLK2 DURATION IF
NOT GOING TO REOUEST
SELF-TEST.

INTERNAL
INITIALIZATION

CYCLE 1

NON-PIPELINED
(READ)

T1 T2

00-031#[XXXXXXX}--- -(FLOATlNG)----------- --- -- - ---- ---

231630-32

Figure 5-28. Bus Activity from Rest Until First Code Fetch

Table 5·10. Component and Revision Identifier History

80386
Component Revision 80386

Component RevisionStepping Stepping
Name

Identifier Identifier
Name

Identifier Identifier

87

inter 80386

6. MECHANICAL DATA

6.1 INTRODUCTION
In this section, the physical packaging and its con-
nections are described in detail.

6.2 PIN ASSIGNMENT
The 80386 pinout as viewed from the Substrate side
of the component is shown by Figure 6-1. Its pinout

as viewed from the Pin side of the component is
Figure 6-2.

Vcc and GND connections must be made to multi-
ple Vcc and GND pins. Each Vcc and GND must be
connected to the appropriate voltage level. External-
ly strap all Vcc pins together close to the package,
and similarly strap all GND pins. Preferrably, the cir-
cuit board should include Vcc and GND planes for
power distribution.

NOTE:
Pins identified as "N.C." should remain completely
unconnected. "

p N L K H G f o c B A

2

3

~ ~ ~ ~ ~ ~ ~ ~ - - - - - -- - - - - - - - - - - - - -A30 A27 A26 A23 A21 A20 A17 A16 A15 A14 All A8 VSS VCC- - - - - - - - - - - - - -- - - - - - - - - - - - - -VCC A31 A29 A24 A22 VSS A18 VCC VSS A13 Al0 A7 A5 VSS- - - - - - - - - - - - - -- - - - - - - - - - - - - -030 VSS VCC A28 A25 VSS A19 VCC VSS A12 A9 A6 A4 A3

2

3

4

5

6

7

8

9

10

11

,..., ,..., ,...,
'" '" '"029 VCC VSS
,..., ,..., ,...,
'" '" '"026 027 031
,..., ,..., ,...,
'" '" '"VSS 025 028
,..., ,..., ,...,
'" '" '"024 VCC VCC
,..., ,..., ,...,
'" '" '"VCC 023 VSS
,..., ,..., ,...,
'" '" '"022 021 020
,..., ,..., ,...
'" '" '"019 Ot7 VSS
,..., ,..., ,...,
'" '" '"018 016 015

,..., ,..., ,...,
'" '" '"A2 NC NC
,..., ,..., ,...,
'" '" '"VCC VSS VCC
,..., ,..., ,...,
'" '" '"NC NC VSS
,..., ,..., ,...,
'" '" '"NC INTR VCC
,..., ,..., ,...,
'" '" '"PEREO NIoII ERROR#
,..., ,..., ,...,
'" '" '"RESETBUSY# VSS
,..., ,..., ,...,
'" '" '"LOCK# wIR# VCC
,..., ,..., ,...,
'" '" '"VSS VSS o/c#

4

5

6

7

8

9

10

11

12

13

14

- - - - - - - - - - - - - -- - - - - - - - - - - - - -014 012 010 VCC 07 VSS DO VCC CLK2 BEO# VCC VCC NC 101/10#- - - - - - - - - - - - - -- - - - - - - - - - - - - -013 011 VCC 08 05 VSS 01 REAOY# NC NC NA# BEl # BE2# BE3#- - - - - - - - - - - - - -- - - - - - - - - - - - - -VSS D9 HLOA 06 04 03 02 VCC vss AOS# HOLD BS16# VSS VCC

12

13

14

p N K H G f o c B A
231630-33

Figure 6-1. 80386 PGA Pinout-View from Top Side

88

inter 80386

A 8 C 0 E G H K M H P

0 0 0 0 0 0 0 0 0 0 0 0 0 0
VCC VSS 1.8 All 1.14 1.15 1.16 1.17 1.20 1.21 1.23 1.26 1.27 1.30

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
VSS 1.5 1.7 1.10 1.13 VSS VCC 1.18 VSS 1.22 1.24 1.29 1.31 VCC

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
1.3 1.4 1.6 1.9 1.12 VSS VCC 1.19 VSS 1.25 1.28 VCC VSS 030

4 0 0 0 0 0 0 4
HC HC 1.2 VSS VCC 029

5 0 0 0 0 0 0 5
VCC VSS VCC 031 027 026

6 0 0 0 0 0 0 6
VSS HC HC 028 025 VSS

7 0 0 0 0 0 0 7
VCC IHTR HC VCC VCC 024

8 0 0 0 0 0 0 8
ERROR' Hlli PEREa VSS 023 VCC

9 0 0 0 0 0 0 9
VSS BUSY' RESET 020 021 022

10 0 0 0 0 0 0 10
VCC WIR, lOCK' VSS 017 019

11 0 0 0 0 0 0 11
o/c, VSS VSS 015 016 018

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12
ll/lOI HC vcc vcc BEOI ClK2 vcc DO VSS 07 VCC 010 012 014

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13
8E31 8E21 BEll HI.' HC HC READY' 01 VSS 05 DB VCC 011 013

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14
VCC vss BS161 HOLD ADS' VSS VCC 02 03 04 06 HlOA DB VSS

A 8 C 0 F G H K L II H P
231630-34

Figure 6-2. 80386 PGA Pinout-View from Pin Side

89

80386

Table 6·1. 80386 PGA Pinout-Functional Grouping

Pin I Signal Pin I Signal Pin I Signal Pin I Signal

N2 A31 M5 031 A1 Vcc A2 Vss
P1 A30 P3 030 A5 Vcc A6 Vss
M2 A29 P4 029 A7 Vcc A9 Vss
L3 A2B M6 02B A10 Vcc B1 Vss
N1 A27 N5 027 A14 Vcc B5 Vss
M1 A26 P5 026 C5 Vcc B11 Vss
K3 A25 N6 025 C12 Vcc B14 Vss
L2 A24 P7 024 012 Vcc C11 Vss
L1 A23 NB 023 G2 Vcc F2 Vss
K2 A22 P9 022 G3 Vcc F3 Vss
K1 A21 N9 021 G12 Vcc F14 Vss
J1 A20 M9 020 G14 Vcc J2 Vss
H3 A19 P10 019 L12 Vcc J3 Vss
H2 A1B P11 01B M3 Vcc J12 Vss
H1 A17 N10 017 M7 Vcc J13 Vss
G1 A16 N11 016 M13 Vcc M4 Vss
F1 A15 M11 015 N4 Vcc M8 Vss
E1 A14 P12 014 N7 Vcc M10 Vss
E2 A13 P13 013 P2 Vcc N3 Vss
E3 A12 N12 012 PB Vcc P6 Vss
01 A11 N13 011 P14 Vss
02 A10 M12 010
03 A9 N14 09 F12 CLK2 A4 N.C.
C1 A8 L13 OB 04 N.C.
C2 A7 K12 07 E14 AOS# B6 N.C.
C3 A6 L14 06 B12 N.C.
B2 A5 K13 05 B10 W/R# C6 N.C.
B3 A4 K14 04 A11 O/C# C7 N.C.
A3 A3 J14 03 A12 M/lO# E13 N.C.
C4 A2 H14 02 C10 LOCK# F13 N.C.
A13 BE3# H13 01
B13 BE2# H12 00 013 NA# CB PEREQ
C13 BEU C14 BS16# B9 BUSY#
E12 BEO# G13 REAOY# A8 ERROR#

014 HOLO
C9 RESET M14 HLDA B7 INTR BB NMI

90

inter 80386

.057(1.269) -It
MAX TYP

.018 (0.047) 1
DIA TYP _

.165(4.189~1 ~

.110(2=U

.001 (0.025) R
MIN TYP

SWEDGE PIN
STANDOFF
(4) PLACES

.725 (18.401)

.650 (1 6.497)

.550 (13.959)

.450 (11.421)

.350 (8.883)

.250 (6.345)

.150 (3.807)

.050 (1.269)
o

• (!) (!) (!) (!) (!) (!)'I (!) (!) (!) (!) (!) (!) (!)
(!)(!)(!)(!)(!)(!) (!)(!)(!)(!)(!)(!)(!)(!)
(!) (!) t8 (!) (!) (!) (!),(!) (!) (!) (!) t8 (!) (!)
(!)(!)(!) (!)(!)(!)
(!)(!)(!) (!)(!)(!)
(!) (!) (!) I (!) (!) (!)

(!) (!) (!) -- +-- (!) (!) (!)
(!)(!)(!) (!)(!)(!)
(!) (!) (!) I (!) (!) (!)
(!)(!)(!) (!)(!)(!)
(!)(!)(!) (!)(!)(!)
(!) (!) t8 (!) (!) (!) (!)'(!) (!) (!) (!) (!) (!)
(!) (!) (!) (!) (!) (!) (!)I(!) (!) (!) (!) (!) (!) (!)
(!) (!) (!) (!) (!) (!) (!),(!) (!) (!) (!) (!) (!) (!)

C ~I~O ~>O:) G H J K L ~O~5~008)':-.,11.070(1.777) DIA
TYP BRAZE PAD

1.450 (36.802)

2

3

4

5

6

7

8

9

CIN #1 POSITION

1

10

11

12

13

14

231630-35

Figure 6-3. 132-Pin Ceramic PGA Package Dimensions

6.3 Package Dimensions and
Mounting

The initial 80386 package is a 132-pin ceramic pin
grid array (PGA). Pins of this package are arranged
0.100 inch (2.54mm) center-to-center, in a 14 X 14
matrix, three rows around.

A wide variety of available sockets allow low inser-
tion force or zero insertion force mountings, and a
choice of terminals such as soldertail, surface
mount, or wire wrap. Several applicable sockets are
listed in Table 6-2.

91

inter 80386

6.4 PACKAGE THERMAL
SPECIFICATION

The 80386 is specified for operation when case tern·
perature is within the range of 0·C-8S·C. The case
temperature may be measured in any environment,

to determine whether the 80386 is within specified
operating range.

The PGA case temperature should be measured at
the center of the top surface opposite the pins, as in
Figure 6·4.

Figure 6-4. Measuring 80386 PGA Case Temperature

Table 6·2. Several Socket Options for 132-Pln PGA

231630-36

Low insertion force (L1F) soldertail
55274-1

• Amp tests indicate 50% reduction in insertion
force compared to machined sockets

Other socket options
• Zero insertion force (ZIF) soldertail

55583-1
• Zero insertion force (ZIF) 8urn·in version

55573-2

Amp Incorpol'llted
(Harrisburg. PA 17105 U.S.A.
Phone 717-564-0100)

231630-45
eam handle locks in low profile position when substrate is installed (handle UP for
open and DOWN for closed positions)

courtesy Amp Incorporated

92

80386

Table 6-2. Several Socket Options for 132·Pln PGA (Continued)

Peel-A-WayTM Mylar and Kapton
Socket Terminal Carriers

Low insertion force surface mount
CS132-37TG

Low insertion force soldertail
CS132.onG

• Low insertion force wire-wrap
CS132.o2TG (two level)
CS132-03TG (three-level)

• Low insertion force press-fit
CS132-05TG

Advanced Interconnections
(5 Division Street
Warwick. AI 02818 U.S.A.
Phone 401 -885.0485)

Peel·A-Way Carrier NO.1 32:
Kapton Carrier is KS 132
Mylar Carrier is MS132

Molded Plastic Body KS132
is shown below:

FOOT ""NT ilia. 1U

IJ
-l~.1.Tl'P

14.14.1110 ••

231630-46

IOLDlftTAll-01 LOW",~'" ••••• m .•r H r,-i :iii ---+
:iii• :iii.----'-- ~OI •. -'-~~~•... ~A.

~ ~=1:.1_
••• "t:W"' .•••• -G2J-4Q IQU)£fIl TAlL·R IUMACf 1ItOUNTlNO·17

Ii
NIL"-WAY I~..•

~

...
..,...•

~

__ tLEVl.L
~~. ----I.-- 'LEYn £--11-'..J •..•.

231630-47
courtesy Advanced Interconnections

(Peel-A-Way Terminal Carriers
U.S. Patent No. 4442938)

Low insertion force socket soldertail
(for production use)
2XX-6576-00-3308 (new style)
2XX-6003-QO-3302 (older style)

Zero insertion force soldertail
(for test and burn-in use)
2XX-6568.oO-3302

Textcol Products
Electronic Products Division/3M

(1410 West Pioneer Drive
Irving. Texas 75601 U.S.A.
Phone 214-259-2676)

•• -------- •• 0iT--·----~~ CU

" I I ~

!i !i~
II "w 0.~------.l!.~-------..

I

~
'-I

231630-48
courtesy Textcol Products/3M

93

inter 80386

7. ELECTRICAL DATA

7.1 INTRODUCTION

piing capacitors as much as possible. Capacitors
specifically for PGA packages are also commercially
available, for the lowest possible inductance.

The following sections describe recommended elec-
trical connections for the 80386, and its electrical
specifications.

7.2 POWER AND GROUNDING

7.2.3 Resistor Recommendations

The ERROR # and BUSY # inputs have resistor pull-
ups (of approximately 20 Kfi built-in to the 80386 to
keep these signals negated when neither 80287 or
80387 are present in the system (or temporarily re-
moved from its socket).

7.2.1 Power Connections

The 80386 is implemented in CHMOS III technology
and has modest power requirements. However, its
high clock frequency and 72 output buffers (address,
data, control, and HLDA) can cause power surges
as multiple output buffers drive new signal levels
simultaneously. For clean on-chip power distribution
at high frequency, 20 Yee and 21 Yss pins separate-
ly feed functional units of the 80386.

Power and ground connections must be made to all
external Yee and GND pins of the 80386. On the
circuit board, all Yee pins must be strapped closely
together, preferrably on a Yee plane. All Yss pins
must be likewise strapped on the circuit board, pre-
ferrably on a GND plane.

In typical designs, the external pullup resistors
shown in Table 7-1 are recommended. However, a
particular design may have reason to adjust the re-
sistor values recommended here, or alter the use of
pullup resistors in other ways.

7.2.4 Other Connection
Recommendations

For reliable operation, always connect unused in-
puts to an appropriate signal level. N.C. pins should
always remain unconnected.

Particularly when not using interrupts or bus hold,
(as when first prototyping, perhaps) prevent any
chance of spurious activity by connecting these as-
sociated inputs to GND:

Pin Signal
B7 INTR
B8 NMI
D14 HOLD

Pull ups in the range of 20 Kfi are recommended.

If not using address pipelining, pullup D13 NA# to
Yee·

If not using 16-bit bus size, pullup C14 BS16# to
Vee·

7.2.2 Power Decoupllng
Recommendations

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per-
formance. Inductance can be reduced by shortening
circuit board traces between the 80386 and decou-

Table 7-1. Recommended Resistor Pullups to Vcc

Liberal decoupling capacitance should be placed
near the 80386. The 80386 driving its 32-bit parallel
address and data buses at high frequencies can
cause transient power surges, particularly when driv-
ing large capacitive loads.

Pin and Signal PullupValue Purpose

E14 ADS# 20 Kfi ±10% Lightly Pull ADS# Negated
During 80386 Hold Acknowledge
States

C10 LOCK# 20 Kfi ±10% Lightly Pull LOCK # Negated
During 80386 Hold Acknowledge
States

94

inter 80386

7.3 MAXIMUM RATINGS

Table 7-2. Maximum Ratings

80386-12
Parameter 80386-16

Maximum Rating

Storage Temperature -6S'C to + lS0'C
Case Temperature Under Bias -6S'Cto +110'C
Supply Voltage with Respect to Vss -O.SVto +6.SV
Voltage on Other Pins -O.SV to Vcc + O.SV

Table 7-2 is a stress rating only, and functional oper-
ation at the maximums is not guaranteed. Functional
operating conditions are given in 7.3 D.C. Specifica-
tions and 7.4 A.C. Specifications.

Extended exposure to the Maximum Ratings may af·
fect device reliability. Furthermore, although the
80386 contains protective circuitry to resist damage
from static electric discharge, always take precau-
tions to avoid high static voltages or electric fields.

7.4 D.C. SPECIFICATIONS
Functional Operating Range: Vcc = SV ±S%; TCASE = O'C to 8S'C

Table 7-3. 80386-16 and 80386-12 D.C. Characteristics

Notes

v
V

±1S "..A OV 5: VIN 5: VCC

±1S "..A O.4SV 5: VOUT 5: VCC

400 mA
400 mA

10 pF Fe = 1 MHz (Note 1)

12 pF Fe = 1 MHz (Note 1)

20 pF Fe = 1 MHz (Note 1)

80386-12
80386-16

Max

80386-12
80386-16

Mln
Parameter

VOH Output High Voltage
IOH = 1 mA:
IOH = 0.9mA:

III Input leakage Curr

ILO Output leakag

ICC Supply Cur t
ClK2 =
ClK =

CIN Input Capacita

COUT Output or 1/

CCLK ClK2 Capacitance

VIL Input low Voltage

VIH Input High Voltage

VILC ClK2 Input low Voltage

VIHC ClK2 Input High Voltage

VOL Output low Voltage
IOL = 4 mA:
IOL = SmA:

Symbol

NOTE:
1. Not tested.

9S

inter 80386

7.5 A.C. SPECIFICATIONS

7.5.1 A.C. Spec Definitions

The A.C. specifications, given in Tables 7-4 and 7-5,
consist of output delays, input setup requirements
and input hold requirements. All A.C. specifications
are relative to the ClK2 rising edge crossing the
2.0V level.

A.C. spec measurement is defined by Figure 7-1. In-
puts must be driven to the voltage levels indicated
by Figure 7-1 when A.C. specifications are mea-
sured. 80386 output delays are specified with mini-
mum and maximum limits, measured as shown. The

minimum 80386 delay times are hold times provided
to external circuitry. 80386 input setup and hold
times are specified as minimums, defining the small-
est acceptable sampling window. Within the sam-
pling window, a synchronous input signal must be
stable for correct 80386 operation.

Outputs NA#, W/R#, O/C#, M/IO#, lOCK#,
BEO#-BE3#, A2-A31 and HlOA only change at
the beginning of phase one. 00-031 (write cycles)
only change at the beginning of phase two. The
READY #, HOLD, BUSY #, ERROR #, PEREQ and
00-031 (read cycles) inputs are sampled at the be-
ginning of phase one. The NA#, BS16#, INTR and
NMI inputs are sampled at the beginning of phase
two.

T.

CLK2

OUTPUTS [
(AO-A31,8EON-8E3N, VAllO 2V

AOSN, lA/ION, O/CN, OUTPUT n O.BV
W/RN, L6cKN, HLOA)

OUTPUTS [
(00-031)

lAAX

2V VALID
O.BV OUTPUT n+ 1

VALID 2V
OUTPUT n O.BV

lAAX

2V VALID
O.BV OUTPUT n+ 1

INPUTS [
(NAN,8S16N

INTR, NlAl)

DRIVE ...•
TO 2.~V

ORIVE
TO .~5V

INPUTS
(REAoYN, HOLD, [
~RRORN, 8USYN,
PEACK, 00-031)

LEGEND:

1-maximum output delay spec
B _ minimum output delay spec
c - minimum input setup spec
D - minimum input hold spec

DRIVE ...•
TO 2.~V

DRIVE
TO 0.~5V

231630-37

Figure 7-1. Drive Levels and Measurement Points for A.C. Specifications

96

80386

7.5.2 A.C. Specification Tables
Functional Operating Range: Vee = 5V ± 5%; TeASE = O·C to 85·C

Table 7-4. 80386-16 A.C. Characteristics

Symbol Parameter 80386·16 80386·16 Unit Ref. NotesMln Max Figure

Operating Frequency 4 16 MHz - Half of CLK2
Frequency

t1 CLK2 Period 31 125 ns 7-3

t2a CLK2 High Time 9 ns 7-3 at2V

t2b CLK2 High Time 5 ns 7-3 at (Vee - 0.8Y)

t3a CLK2 Low Time 9 ns 7-3 at2V

t3b CLK2 Low Time 7 ns 7-3 atO.8V

4 CLK2 Fall Time 8 ns 7..6. (Vee - 0.8Y) to 0.8V

t5 CLK2 Rise Time 8 ns ~ O. (Vee - 0.8V)

te A2-A31 Valid Delay 1 40 ns~~ ~5 ~120pF

t7 A2 A31 Float Delay 1 40 .aL" 7-'" "~~Iote 1)

te BEO#-BE3#, LOCK# 1
40£ .•••..t:i' CL = 75 pF

Valid Delay

t9 BEO#-BE3#, LOCK# 1
~~ -~

~7-6 (Note 1)
Float Delay -~

t10 W/R#, M/lO#, D/C#,
1~~_ Q>=~'3V CL = 75 pF

ADS#, Valid Delay

t11 W/R#, M/lO#, D/C#, 1'~

~~
!f#.'" 7-6 (Note 1)

ADS # Float Delay i~
~st12 DO-D31 Writo ~

~

7-5 CL = 120 pF
Valid Delay ~

t13 00-031 Write 0 ~~ ns 7-6 (Note 1)
Float Delay •••.

t14 HLDA Vali~" ~~ 4Il..~' 35 ns 7-6 CL = 75 pF

t15 NA # St" .:a.. e . ~ ns 7-4

t16 NM t-¥'I'ime.h. 2~ ns 7-4

t17 ~6#£ 12 ns 7-4

t18 BS16# e 20 ns 7-4

t19 READY # up Time 20 ns 7-4

t20 READY # Hold Time 3 ns 7-4

t21 00-031 Read 10 ns 7·4
Setup Time

t22 00-031 Read 2 ns 7-4
Hold Time

t23 HOLD Setup Time 25 ns 7-4

t24 HOLD Hold Time 4 ns 7-4

t25 RESET Setup Time 10 ns 7-4 (Note 2)

97

inter 80386

Table 7-4. 80386-16 A.C. Characteristics (Continued)

Notes

Half ofCLK2
Frequency

at2V

7-3 at (VCC - 0.8V)

ns 7-3 at2V

ns 7-3 atO.8V

ns 7-3 (VCC - 0.8V) to 0.8V

8 ns 7-3 0.8V to (VCC - 0.8V)

44 ns 7-5 CL = 120 pF

44 ns 7-6 (Note 1)

44 ns 7-5 CL = 75 pF

44 ns 7-6 (Note 1)

39 ns 7-5 CL = 75 pF

39 ns 7-6 (Note 1)

55 ns 7-5 CL = 120 pF

55 ns 7-6 (Note 1)

39 ns 7-6 CL = 75 pF

98

4

Parameter

CLK2 Fa

CLK2

A~A3

A2-A31 F

BEO#-B
Valid Delay

BEO#-BE3#, LOCK#
Float Delay

W/R#, M/IO#, D/C#,
ADS# Valid Delay

W/R#, M/IO#, D/C#,
ADS # Float Delay

DO-D31 Write Data
Valid Delay

DO-D31 Write Data
Float Delay

HLDA Valid Delay

Operating Frequency

t9

Symbol

t1 CLK2 Period

t2a

t2b

t3a

t3b

t4

ts

1. Float condition occurs when maximum output current becomes less than ILO i~Ode. FI ~~ is not tested but
should be no longer than the valid delay. ::.t" ~1lIY
2. These inputs are allowed to be asynchronous to CLK2. The setup and h0L.~ication en for testing purposes,
to assure recognition within a specific CLK2 period. y" (:j.

Table 7-5. 80386-12 A.C. erlst

80386·12 8
Min

Symbol Parameter
80386-16 80386-16

Unit
Ref.

Notes
Min Max Figure

t26 RESET Hold Time 5 ns 7-4 (Note 2)

t27 NMI, INTR Setup Time 25 ns 7-4 (Note 2)

t28 NMI, INTR Hold Time 4 ns 7-4 (Note 2)

t29 PEREQ,ERROR#,BUSY# 25 ns 7-4 (Note 2)
Setup Time

t30 PEREQ,ERROR#, BUSY# 4 ns , 7-4 (Note 2)
Hold Time ""NOTES: ~

inter 80386 &'[Q)W&'OO©~ OOOIP©OOlMJ&.'U'O©OO

Table 7-5. 80386-12 A.C. Characteristics (Continued)

Symbol Parameter
80386-12 80386-12

Unit Notes
Min Max

t15 NA # Setup Time 11

t16 NA # Hold Time 22

t17 8S16# Setup Time 13

t18 8S16# Hold Time 22

t19 REAOY # Setup Time

t20 REAOY# Hold Time

t21 00-031 Read 7-4
Setup Time

t22 00-031 Read 7-4
Hold Time

t23 HOLO Setup Time ns 7-4

t24 HOLO Hold Time ns 7-4

t25 RESET Setup T ns 7-4 (Note 2)

t26 RESET Hold ns 7-4 (Note 2)

t27 NMI,IN ns 7-4 (Note 2)

t28 NMI ns 7-4 (Note 2)

t29 28 ns 7-4 (Note 2)

t30 5 ns 7-4 (Note 2)

NOTES:
1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not tested, but
should be no longer than the valid delay.
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.

Figure 7-2. A.C. Test Load

CL = 120 pF on A2-A31, 00-031
CIL = 75 pF on BEO"-BE3", W/R", MilO", D/C", ADS",
LOCK", HLDA
Cl includes all parasitic capacitances.

7.5.3 A.C. Test Loads

80386
OUTPUT~

~CL

231630-38

99

7.5.4 A.C. Timin Waveforms

Figure 7-3. CLK2 Timing

inter 80386

Tx Tx.2 .1 .2
CLK2 [

REAOY# [

HOLD [

00-031 [(INPUT)

RESET [
BUSY#. [ERROR#
PEREQ

NA# [

BSI6# [

INTR. [Nt.41

Figure 7-4. Input Setup and Hold Timing

Tx

Tx

231630-40

CLK2 [

BEO#-BE3#. [LOCK#

W/R#. t.4/10#. [O/C#.AOS#

A2-A31 [

00-031 [(OUTPUT)

HLOA [

Figure 7·5. Output Valid Delay Timing

100

231630-41

80386

Th Ti OR T1

CLK2 [

BEO#-BE3#. [LOCK#

WjR#.MjIO#. [DjC#.ADS#

A2-A31 [

00-D31 [

HLDA [

@ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE

MAX

Figure 7-6. Output Float Delay and HLDA Valid Delay Timing

231630-42

-RESET-' INITIALIZATION SEQUENCE ---~

CLK2 [

RESET [

231630-43
The second internal processor phase following RESET high-la-low transition (provided 125 and 126 are mel) is </>2.

Figure 7·7. RESET Setup and Hold Timing, and Internal Phase

101

inter 80386

7.6 DESIGNING FOR ICE-386 USE

The 80386 in-circuit emulator product is ICE-386.
Because of the high operating frequency of 80386
systems and ICE-386, there is no cable separating
the ICE-386 probe module from the target system.
The ICE-386 probe module has several electrical
and mechanical characteristics that should be taken
into consideration when designing the hardware.

Capacitive loading: ICE-386 adds up to 25 pF to
each line.

Drive requirement: ICE-386 adds one standard
TTL load on the CLK2 line, up to one advanced low-
power Schottky TTL load per control signal line, and
one advanced low-power Schottky TTL load per ad-
dress, byte enable, and data line. These loads are
within the probe module and are driven by the
probe's 80386, which has standard drive and load-
ing capability listed in Tables 7-3 and 7-4.

Power requirement: For noise immunity the ICE-
386 probe is powered by the user system. The high-
speed probe circuitry draws up to 1.1A plus the max-
imum 80386 lee from the user 80386 socket.

80386 location and orientation: The ICE-386
probe requires lateral clearance illustrated in Figure
7-8, viewed from above the user 80386 socket. The

View from above user 80386 socket

• C'"

USER
00386
socm

0..•

1CE-386 PROBE

ICE-386 probe module alone requires vertical clear-
ance 1.25 inches (3.2 cm) above the height of sur-
rounding circuitry. The Optional Interface Board
(OIB), used for extra electrical buffering initially, has
the same lateral clearance as Figure 7-8, and adds
0.5 inches (1.3 cm) to the vertical clearance.

READY,* drive: The ICE-386 system may be able
to clear a user system READY,* hang if the user's
READY,* driver is implemented with an open-collec-
tor or tri-state device.

Optional Interface Board (OIB) and ClK2 speed
reduction: When the ICE-386 processor probe is
first attached to an unverified user system, the OIB
helps ICE-386 function in user systems with bus
faults (shorted signals, etc.). After electrical verifica-
tion it may be removed. Only when the OIB is in-
stalled, the user system must have a reduced CLK2
frequency of 16 MHz maximum.

Cache coherence: ICE-386 loads user memory by
performing 80386 write cycles. Note that if the user
system is not designed to update or invalidate its
cache (if it has a cache) upon processor writes to
memory, the cache could contain stale instruction
code and/or data. For best use of ICE-386, the user
should consider designing the cache (if any) to up-
date itself automatically when processor writes oc-
cur, or find another method of maintaining cache
data coherence with main user memory.

ClWlANC'

A: 0.85 INCHES
(2.2 em)

B: 2.15 "CHES
(5.5 em)

C: 0.5 IOtES
(1.3cm)

D: .4.5 tlCHES
(l1.4cm)

/

I
1

/
CABLE TO let I
CONTltOl UNIT V- WINIWUW CABLE BEND RADIUS: 5 INCHES (12.7 em)

~
231630-44

Figure 7-8. ICE-386 lateral Clearance Requirements (Preliminary)

102

inter 80386

8. INSTRUCTION SET
This section describes the 80386 instruction set. A
table lists all instructions along with instruction en-
coding diagrams and clock counts. Further details of
the instruction encoding are then provided in the fol-
lowing sections, which completely describe the en-
coding structure and the definition of all fields occur-
ring within 80386 instructions.

8.1 80386 INSTRUCTION ENCODING
AND CLOCK COUNT SUMMARY

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 8-1
below, by the processor clock period (e.g. 62.5 ns
for an 80386-16 operating at 16 MHz (32 MHz CLK2
signal)). The actual clock count of an 80386 pro-
gram will average 5% more than the calculated
clock count due to instruction sequences which exe-
cute faster than they can be fetched from memory.

103

For more detailed information on the encodings of
instructions refer to section 8.2 Instruction Encod-
ings. Section 8.2 explains the general structure of
instruction encodings, and defines exactly the en-
codings of all fields contained within the instruction
encoding.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution.

2. Bus cycles do not require wait states.
3. There are no local bus HOLD requests delaying

processor access to the bus.
4. No exceptions are detected during instruction ex-

ecution.

Instruction Clock Count Notation
1. If two clock counts are given, the smaller refers to

a register operand and the larger refers to a mem-
ory operand.

2. n = number of times repeated.
3. m = number of bytes of code in next instruction

executed.

80386

SS CI kCT bl 8 1 80386Ia e - nstruct on et oc ount ummary
CLOCK COUNT NOTES

Reel Real
INSTRUCTION FORMAT Address Protected Add •••• Protected

Modear Virtual Mode or Vlrtua'
Virtual Add •••• Virtual Add ••••
8088 Mode 8086 Mode
Mode Mode

GENERAL DATA TRANSFER
MOV ~ Moye:

Register to Register/Memory 1000100w 1mod reg rim 1 2/2 2/2 b h

Register/Memory to Register 1000101w 1mod reg rim 1 2/4 2/4 b h

Immediate to Register/Memory 1100011 w I modOOO rim 1 2/2 2/2 b h

Immediate to Register 1011 w reg I immediate data 2 2

Memory to Accumulator (short form) 1010000w I full displacement 4 4 b h

Accumulator to Memory (short form) 1010001w I full displacement 2 2 b h

Register Memory to Segment Register 10001110 I modOsreg r/ml 2/5 18/19 b h, i,j

Segment Register to Register/Memory 10001100 I modOsreg r/ml 2/2 2/2 b h

MOVSX ~ Moye With Sign Extenalon

Register From Register/Memory 1 00001111 1 1011111 w I mod reg r/ml 3/6 3/6 b h

MOVZX ~ Moye With Zero Extension

Register From Register/Memory 1 00001111 1011011 w I mod reg r/ml 3/6 3/6 b h

PUSH ~ Push:

Memory I 11111111 mod 1 1 0 rim I 5 5 b h

Register 01010 reg 2 2 b h

Segment Register (ES, CS, SS or OS) 000sreg110 2 2 b h

Segment Register (FS or GS) 00001111 105re9000 I 2 2 b h

Immediate 01101050 immediate data 2 2 b h

PUSHA - Push All 01100000 18 18 b h

POP - Pop

Memory 10001111 I modOOO rim 1 5 5 b h

Register 01011 reg I 4 4 b h

Segment Register (ES, CS, SS or OS) OOOsreglll I 7 21 b h, i,i

Segment Register (FS or GS) 00001111 I 1 OsregOO t I 7 21 b h, i,j

POPA ~ Pop All 01100001 I 24 24 b h

XCHG ~ Exchange

Register/Memory With Register 1 1000011w I mod reg r/ml 3/5 3/5 b, f f, h

Register With Accumulator (short form) 110010 reg I 3 3

IN - Inpullrom:

Fixed Port 1 1110010w 1 port number I 5 5 m

Variable Port 1 1110110w I 6 6 m

OUT ~ Output 10:

Fixed Port 1 111001' w 1 port number I 3 3 m

Variable Port I 1110111 w I 4 4 m

LEA ~ Load EA to Reglsler I 10001101 I mod reg r/ml 2 2

104

inter 80386

d)(e 1"tSs tCI kCtlT bl 8 1 80386 Ia e . ns rue on e oe oun ummary on Jnue
CLOCK COUNT NOTES

Reel Real
INSTRUCTION FORMAT Addre •• Protected Addr ••• Protected

Mod. or Virtual Mod. or Virtual
Virtual Addr ••• Virtual Addre ••
8086 Mode 8086 Mode
Mode Mode

SEGMENT CONTROL

LOS - Load Pointer to OS 11000101 mod reg r/ml 7 22 b h, i,j

LES - Load Pointer to ES 11000100 mod reg rim I 7 22 b h, i,j

LFS - Load Pointer to FS 00001111 10110100 I mod reg rim 1 7 25 b h, i,j

LGS - Load Pointer to GS 00001111 10110101 1mod reg r/ml 7 25 b h, i,j

LSS - Load Pointer to 55 00001111 10110010 1mod reg r/ml 7 22 b h, i,j

FLAG CONTROL

CLC - Cleor Carry Flag 11111000 2 2

CLD - Clear Direction Flag 11111100 2 2

CLI - Clear Interrupt Enable Flag 11111010 3 3 m

CLTS - Clear Taok Switched Flog 00001111 00000110 I 5 5 c I

CMC - Complement Carry Flag 11110101 2 2

LAHF - Load AH Into Flag 10011111 I 2 2

POPF - Pop Flago 10011101 I 5 5 b h, n

PUSHF - Puoh Flago 10011100 I 4 4 b h

SAHF - Store AH Into Flago 10011110 I 3 3

STC - 50t Carry Flag 11111001 I 2 2

STD - 50t Direction Flag 11111001 I 2 2

STI - 50tlnterrupt Enable Flag 11111011 1 3 3 m

ARITHMETIC
ADD - Add

Register to Register OOOOOOdw mod reg rim I 2 2

Register to Memory OOOOOOOw mod reg rim I 7 7 b h

Memory to Register 0000001w mod reg rim 1 6 6 b h

Immediate to Register/Memory 100000sw modOOO r/ml immediate data 2/7 2/7 b h

Immediate to Accumulator (short form) 0000010w immediate data 2 2

ADC = Add With Carry

Register to Register 000100dw mod reg r/ml 2 2

Register to Memory 0001000w mod reg r/ml 7 7 b h

Memory to Register 0001001w mod reg r/ml 6 6 b h

Immediate to Register/Memory 100000sw mod 0 10 r/ml immediate data 2/7 2/7 b h

Immediate to Accumulator (short form) 0001010w immediate data 2 2

IHe = Increment

Register/Memory 1 l111111w 1modOOO r/ml 2/6 2/6 b h

Register 101000 reg 1 2 2

SUB - Subtract

Register from Register 1 001010dw I mod reg rim I 2 2

105

inter 80386

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addre •• Protected Addre •• Protected

Mod. or Virtual Mod. or Virtual
Virtual Addr ••• Virtual Addre ••
8086 Mode 8086 Mode
Mode Mode

ARITHMETIC (Continued)

Register from Memory I 0010100w lmodreg r/ml 7 7 b h

Memory from Register I 0010101w lmodreg r/ml 6 6 b h

Immediate from Register/Memory \1 OOOOOsw Imod 1 0 1 rlml immediate data 217 217 b h

Immediate from Accumulator (short form) 10010110wl immediate data 2 2

SBB = SUbtract with Borrow

Register from Register 100011 Odw Imod reg r/ml 2 2

Register from Memory 100011 OOw I mod reg r/ml 7 7 b h

Memory from Register [0001101 w Imod reg r/ml 6 6 b h

Immediate from Register/Memory [1 OOOOOsw Imod011 r/ml immediate data 217 217 b h

Immediate from Accumulator (short form) [00011,owl immediate data 2 2

DEe = Decrement

Register/Memory [1111111 w Iregoo 1 rlml 2/6 2/6 b h

Register 101001 regl 2 2

CMP = Compare

Register with Register [00111 Odw I mod reg r/ml 2 2

Memory with Register 00111 OOw Imod reg r/ml 5 5 b h

Register with Memory 0011101w I mod reg r/ml 6 6 b h

Immediate with Register/Memory 1 OOOOOsw Imod111 r/ml immediate data 2/5 2/5 b h

Immediate with Accumulator (short form) 001111 Ow I immediate data 2 2

NEG - Change Sign 1 111011w ImodOll rlml 2/6 2/6 b f

AAA - ASCII Adjust lor Add 00110111 I 4 4

AAS - ASCII Adjust lor Subtract I 00111111 I 4 4

DAA - Decima' AdJust lor Add I 00100111 I 4 4

OAS - Oeclmal Adjusllor Subtract I 00101111 I 4 4

MUL - Multiply (unsigned)

Accumulator with Register/Memory I 1111011w Imodl00 r/ml
Multiplier-Byte 9-14/12-17 9-14/12-17 b, d d, h

-Word 9-22/12-25 9-22/12-25 b, d d, h
·Ooubleword 9-38/12-41 9-38/12-41 b, d d, h

IMUL - Integer Multiply (signed)

Accumulator with Register/Memory I 111101 1w Imod101 r/ml
Multiplier-Byte 9-14/12-17 9-14/12-17 b,d d, h

-Word 9-22/12-25 9-22/12-25 b,d d, h
-Doubleword 9-38/12-41 9-38/12-41 b, d d, h

Register with Register/Memory I 00001111 I 10101111 [mod reg r/ml
Multiplier-Byte 9-14/12-17 9-14/12-17 b, d d, h

-Word 9-22/12-25 9-22/12-25 b, d d, h
·Doubleword 9-38/12-41 9-38/12-41 b,d d, h

Register/Memory with Immediate to Register I 01101 Os 1 Imod reg r/ml immediate data

Multiplier-Byte 9-14/12-17 9-14/12-17 b, d d, h
-Word 9-22/12-25 9-22/12-25 b, d d, h
-Ooubleword 9-38/12-41 9-38/12-41 b, d d, h

106

inter 80386

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addr ••• Protected Addre •• Protected

Mod. or Virtual Mode or Vlrtuel
Virtual Address Vlrtuel Addr •••
8086 Mode 8086 Mode
Mode Mode

ARITHMETIC (Continued)
DIV ~ Divide (Unalgned)

ccumulator by Register/Memory I 1111011 w Imod 110 r/ml

Divisor-Byte 14/17 14/17 b,e e,h
-Word 22/25 22/25 b,e e,h
-Doubleword 38/41 38/41 b,e e,h

IDIV - Intoger Divide (Signed)

ccumulator By Register/Memory I 1111011w lmodlll r/ml

DiviSOf-Byte 19/22 19/22 b,e e,h
-Word 27/30 27/30 b,e e,h
-Doublaword 43/46 43/46 b,e e,h

AAD ~ ASCII AdJuatlor Divide I 11010101 I 00001010 I 19 19

AAM ~ ASCII Adjuatlor Multiply I 11010100 I 00001010 I 17 17

CBW ~ Convert Byte to Word I 100110001 3 3

WD = Convert Word to Double Word I 10011001 I 2 2

LOGIC

Shift Rotate Instructions
Not Through Carry (ROl, ROR, SAl, SAR, SHl, and SHR)

Register/Memory by 1 I 1101000wimodTTT r/ml 317 3/7 b h

RegisterIMemory by CL 11101001W ImodTTT rim I 317 3/7 b h

Register/Memory by Immediate Count I 11 OOOOOw ImodTTT r/ml 317 317 b h

Through Carry (RCL and RCR)

Aagister/Memory by 1 I 1101 OOOw ImodTTT r/ml 9/10 9/10 b h

Register/Memory by CL I 1101001w ImodTTT r/mj 9/10 9/10 b h

Register/Memory by Immediate Count I 11 OOOOOw ImodTTT rim I 9/10 9/10 b h

TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR

SHLD ~ Shill Lell Double

Register/Memory by Immediate I 00001111 I 10100100 Imod reg r/mjimmed 8·bit data 317 317

Register/Memory by CL I 00001111 I 10100101 Imod reg r/ml 3/7 317

SHRD ~ Shill Right Double

Register/Memory by Immediate I 00001111 I 10101100 Imod reg r/mlimmed 8-bit data 3/7 317

Register/Memo<y by CL I 00001111 I 10101101 lmodreg r/ml 317 317

AND ~ And

Register to Register I 001000dw Imod reg r/ml 2 2

107

inter 80386

d)(CSS CI kCT bl 8 1 80386 Ia e . nstruct on et oc ount ummar ontlnue
CLOCK COUNT NOTES

Rell Rell
INSTRUCTION FORMAT Addre •• Protected Addre •• Protected

Mode or Virtual Mod. or Virtual
Vlrtuel Address Virtual Addr •••
8086 Mode 8086 Mode
Mode Mode

ARITHMETIC (Continued)

Register to Memory 1001 OOOOw I mod reg r/ml 7 7 b h

Memory to Register 10010001 w lmodreg r/ml 6 6 b h

Immediate to Register/Memory 11 OOOOOsw I mod 1 00 r/ml immediate data 2/7 2/7 b h

Immediate to Accumulator (Short Form) I 0010010w I immediate data 2 2

TEST - And Function to Flag •• No Re.ull

Register/Memory and Register I 100001 Ow Imodreg r/ml 2/5 2/5 b h

Immediate Data and Register/Memory I 1111011w ImodOOO r/ml immediate data 2/5 2/5 b h

Immediate Data and Accumulator
I 10101 OOw I immediate data(Short Form) 2 2

OR - Or

Register to Register 000010dw Imod reg r/ml 2 2

Register to Memory 00001 OOw Imod reg r/ml 7 7 b h

Memory to Register 0000101 w I mod reg r/ml 6 6 b h

Immediate to Register/Memory 100000sw ImodOOl rlml immediate data 2/7 2/7 b h

Immediate to Accumulator (Short Form) 0000 110 w I immediate data 2 2

XOR - ExcluaJva Or

Register to Register 0011 OOdw I mod reg r/ml 2 2

Register to Memory 0011 OOOw I mod reg r/mj 7 7 b h

Memory to Register 0011001w I mod reg r/ml 6 6 b h

Immediate to Register/Memory 1 OOOOOsw I mod 11 0 rIm I immediate data 2/7 2/7 b h

Immediate to Accumuleta< (Short Fa<m) 001101 Ow I immediate data 2 2

NOT - Invert Regllter/Memory 1111011w ImodOl0 r/ml 2/6 2/6 b h

STRING MANIPULATION

CMPS - Campa •• Byte Word I 1010011 w 10 10 b h

INS - Input BytelWord from OX Port I 0110110w 8 8 b h,m

LOOS = Load Byte/Word to AU AX/EAX I 1010110w 5 5 b h

MOVS - Moye Byte Word I 1010010w 7 7 b h

OUTS - Output Byte/Word to OX Port I 0110111 w 7 7 b h,m

SCAS - Scan Byte Word I 1010111 w I 7 7 b h

STOS = Store Byte/Word from

AUAX/EX I 1010101 wi 4 4 b h

XLAT - Tranalate String I 11010111 I 5 5 h

Repeated by Count in ex
REPE CMPS - Compare String

(Find Non-Match) I 11110011 I 1010011 wi 5+9" 5+9" b h

108

80386

d)(CtSs tCI kCT bl 8 1 80386 Ia e - nstruct on e oc oun ummar ontlnue

CLOCK COUNT NOTES

R.al R.al
INSTRUCTION FORMAT Addre •• Protected Addre •• Protected

Mod. or Virtual Mod. or Virtual
Vlrtuel Addr ••• Vlrtua' Addre ••
8086 Mode 8086 Mode
Mode Mode

STRING MANIPULATION (Continued)

REPNECMPS - Compere String

(Find Match) 11110010 1010011 wi 5+9n 5+9n b h

REP INS ~ Inpul Siring 11110010 011011 Ow I 6+6n 6+6n b h,m

REP LODS - Load String 11110010 101011 Ow I 5+6n 5+6" b h

REP MOVS - Move SIring 11110010 1010010w I 7+4" 7+4" b h

REPOUTS - Output Siring 11110010 0110111 w I 5+5n 5+5n b h,m

REPE SCAS - seen Siring

(Find Non-AL/AX/EAX)I 11110011 I 1010111 w I 5+8n 5+8n b h

REPNESCAS - seen Siring

(Find ALl AX/EAX) I 11110010 I 1010111 wi 5+8n 5+8n b h

REP STOS - Siore SIring I 11110010 I 1010101 w I 5+5n 5+5n b h

BIT MANIPULATION

BSF = seen BII Forwerd I 00001111 I 10111100 Imod reg '/ml 10+3" 10+3" b h

BSR = Scan Bit Reyer •• I 00001111 I 10111100 Imod,eg '/ml 10+3n 10+3n b h

BT - TeatBl1

Register/Memory, Immediate 100001111110111010lmodl00 r/mlimmed a·bit datal 3/6 3/6 b h

Register/Memory, Register I 00001111 I 10100011 Imod,eg '/ml 3/12 3/12 b h

BTC - Te.1 Blland Complemenl

Register/Memory, Immediate 100001111110111010lmodlll r/ml immed 8-bit datal 6/8 6/8 b h

Register/Memory, Register I 00001111 I 10111011 Imod reg '/ml 6/13 6/13 b h

BTR - Te.t Bit and Re.el

Register/Memory, Immediate I 00001111 I 10111010 Imodll0 r/ml immed 8-bit datal 6/8 6/8 b h

Register/Memory, Register I 00001111 I 10110011 lmod,eg '/ml 6/13 6/13 b h

BTS - Te.t Bit .nd Set

Register/Memory, Immediate 100001111110111010lmodOl0 r/ml immed 8-bit datal 6/8 6/8 b h

Register/Memory, Register I 00001111 I 10101011 Imod,eg '/ml 6/13 6/13 b h

BIT STRING MANIPULATION

IBTS - In.ert BII SIring I 00001111 I 10100111 I 12/19 12/19 b h

XBTS - Extr.ct Bit SIring I 00001111 I 10100110 I 6/13 6/13 b h

CONTROL TRANSFER

CALL - can

Direct Within Segment I 11101000 I full displacement 7+m 7+m b ,
Register IMemory

Indirect Within Segment I 11111111 ImodOl0 '/ml 7+m/ 7+m/ b h, ,
10+m 10+m

Direct Intersegment I 10011010 I offset, selector 17+m 35 b i,k,r

109

inter 80386

d)(CSS CI kCT bla e 8·1. 80386 nstruct on et oc ount ummar ontlnue

CLOCK COUNT NOTES

Rool Roal
INSTRUCTION FORMAT Addro •• Protected Add •••• Protected

Modo or Vlrtuel Modo or Vlrtuel
Virtual Addro •• Virtual Add ••••
8088 Modo 8088 Modo
Modo Mod.

CONTROL TRANSFER (Continued)
Protected Mode Only (Direellntersegment)

Via Call Gate to Same Privilege Level 58 h,i,k,r
Via Call Gate to Different Privilege Level,

(No Parameters) 108 h,i,k,r
Via call Gate to Dtfferent Privilege Level,

(x Parameters) 111+4x h,i,k,r
From 286 Task to 286 TSS 235 h,i,k,r
From 286 Task to 386 TSS 265 h,i,k,r
From 286 Task to Virtual 8086 Mode 145 h,i,k,r
From 386 Task to 286 TSS 245 h,i,k,r
From 386 Task to 386 TSS 275 h,i,k,r
From 386 Task to Virtual 8086 Mode 155 h,i,k,r

Indirect Intersegment I 11111111 Imod011 r/ml 22+m 40 b h,i,k,r

Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Leval 63 h,i,k,r
Via Call Gate to Different Privilege Level.

(No Parameters) 113 h,i,k,r
Via Call Gate to Different Privilege Level,

(x Parameters) 116+4x h,i,k,r
From 286 Task to 286 TSS 240 h,i,k,r
From 286 Task to 386 TSS 270 h,i,k,r
From 286 Task to Virtual 8086 Mode 150 h,i,k,r
From 386 Task to 286 TSS 250 h,i,k,r
From 386 Task to 386 TSS 280 h,l,k,r
From 386 Task to Virtual 8086 Mode 160 h,i,k,r

JMP - Unconditional Jump

Short I 11101001 IS.bit displacement I 7+m 7+m r

Direct within Segment I 11101001 I full displacement 7+m 7+m r

Register/Memory Indirect within Segment I 11111111 Imod100 r/ml 7+ml 7+ml b h,r10+m 10+m

Direct Intersegment I 11101010 I offsat, saleel'" 12+m 23 i,k,r

Proteeled Mode Only (Direellntersegment)
Via Call Gate to Same Privilege Level 39+m h,i,k,r
From 286 Task to 286 TSS 223 h,i,k,r
From 286 Task to 386 TSS 253 h,i,k.r
From 286 Task to Virtual 8086 Mode 133 h,i,k,r
From 386 Task to 286 TSS 233 h,i,k,r
From 386 Task to 386 TSS 263 h,i,k,r
From 386 Task to Virtual 8086 Mode 143 h,i,k,r

Indirect Intersegment I 11111111 I mod 1 01 r/ml 17+m 28 b h,i,k,r

Protected Mode Only (Indireellntersegment)
Via Call Gate to Same Privilege Level 49 h,i,k,r
From 286 Task to 286 TSS 228 h,i,k,r
From 286 Task to 386 TSS 258 h,i,k,r
From 286 Task to Virtual 8086 Mode 143 h,i,k,r
From 386 Task to 286 TSS 238 h,i,k,r
From 386 Task to 386 TSS 268 h,J,k,r
From 386 Task to Virtual 8086 Mode 148 h,i,k,r

110

inter 80386

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addre •• Protected Addre •• Protected

Mode or Vlrtuel Mode or Vlrtuel
Virtual Addr ••• Virtual Addr •••
8086 Mode 8088 Mode
Mode Mode

CONTROL TRANSFER (Continued)
RET - Return from CALL:

Within segment I 11000011 I 10 + m 10 + m b g, h, r

Within segment Adding Immediate to SP I 11000010 I 1B-bil displ I 10 + m 10 + m b g, h, r

Intersegment I 11001011 I 1B + m 35 b g, h, j, k, r

Intersegment Adding Immediate to SP I 11001010 I 1B-bitdispl I 1B + m 35 b g, h, j, k, r

Protected Mode Only (RE1):
to Different Privilege level

Intersegment 77 h, j, k, r
lntersegment Adding Immediate to SP 77 h, j, k, r

CONDITIONAL JUMPS
NOTE: Times Are Jump "Taken or Not Taken"
JO = Jump on Overflow

8·Bit Displacement I 01110000 I B-bit displ I 7 + mor3 7+mor3 r

Full Displacement I 00001111 I 10000000 I full displacement 7 + mor3 7 + mor3 r

JNO = Jump on Not Overflow

8-Bit Displacement I 01110001 I B-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000001 I full displacement 7+mor3 7 + m()(3 r

JB/JNAE - Jump on Below/Not Above or Equal

8-8it Displacement I 01110010 I B-bit displ I 7 + mor3 7+mor3 r

Full Displacement 100001111 I 10000010 !fulldisplacoment 7+mor3 7 + mor3 r

JNB/JAE - Jump on Not Below/Above or Equal

8·Bit Displacement I 01110011 I B-bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000011 I full displacement 7+mor3 7 + mor3 r

JE/JZ - Jump on Equal/Zero

a-Bit Displacement I 01110100 I B-b~displ I 7 + mor3 7+mor3 r

Full Displacement I 00001111 I 10000100 Ifull displacement 7 + mor3 7+mor3 r

JNE/JNZ = Jump on Hot Equal/Hot Zero

8·Bit Displacement I 01110101 I B-bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000101 I full displacement 7+mor3 7 + mor3 r

JBE/JNA = Jump on Below or Equal/Hot Abov.

8-Bit Displacement I 01110110 I B-bitdispl I 7 + mor3 7 + mor3 r

Full Displacement I 00001111 I 10000110 I full displacement 7 + mor3 7 + mor3 r

JHBE/JA = Jump on Hot Below or Equal/Abov.

8-Bit Displacement I 01110111 I B-bil displ I 7 + mor3 7+mor3 r

Full Displacement I 00001111 I 10000111 I full displacement 7 + mor3 7+mor3 r

JS = Jump on Sign

8-Bit Displacement I 01111000 I B-bit displ I 7 + mor3 7+mor3 r

Full Displacement I 00001111 I 10001000 I full displacement 7+mor3 7+mor3 r

111

inter 80386

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

R.al R.al
INSTRUCTION FORMAT Addr ••• Protected Address Protected

Mod. or Virtual Mod. or Virtual
Virtual Addr ••• Virtual Addr •••
8086 Mode 8086 Mode
Mode Mode

CONDITIONAL JUMPS (Continued)

JNS ~ Jump on Not Sign

8·Bit Displacement I 01111001 I 8-bit displ I 7 + mer3 7 + mer3 r

Full Displacement I 00001111 I 10001001 I full displacement 7 + mer3 7+mor3 r

JP/JPE - Jump on Parlty/Perlty Even

8·Bit Displacement I 01111010 I 8-bitdispl I 7+mor3 7 + mor3 r

Full Displacement I 00001111 I 10001010 I full displacement 7 + mer3 7 + mer3 r

JNP/JPO - Jump on Not Parity/Parity Odd

8-Bit Displacement I 01111011 I 8-bitdispl I 7+mor3 7 + mor3 r

Full Displacement I 00001111 I 10001011 I full displacement 7 + mor3 7 + mer3 r

JL/ JNGE = Jump on Leaa/Not Greater or Equal

8·Bit Displacement I 01111100 I 8-bitdispl I 7+mor3 7 + mor3 r

Full Displacement I 00001111 I 10001100 I full displacement 7+mor3 7 + mor3 r

JNLlJGE = Jump on Not Le •• /Greater or Equal

a-Bit Displacement I 01111101 I 8·bit displ I 7 + mer3 7 + mer3 r

Full Displacement I 00001111 I 10001101 I full displacement 7 + mer3 7 + mar3 r

JLE/JNG = Jump on Le•• or EquallNot Gr •• t.r

8·Bit Displacement I 01111110 I 8-bit displ I 7 + mor3 7 + mor3 r

Full Displacement I 00001111 I 10001110 I full displacement 7+mor3 7+mor3 r

JNLE/ JG = Jump on Not L••• or Equal/Gre.ter

8·Bit Displacement I 01111111 I 8-bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001111 I full displacement 7+mor3 7+mor3 r

JCXZ - Jump on CX Zero I 11100011 I 8-bitdispl I 9+mor5 9 + mor5 r

JECXZ - Jump on ECX Zero I 11100011 I 8-bit displ I 9+mor5 9+mor5 r

(Operand Size Prefix Differentiates JCXZ from JECXZ)

LOOP - Loop CX TImea I 111000tO I 8-bitdispl I 11 + m 11 + m r

LooPZ/LooPE ~ Loop with I I IZero/Equal 11100001 8-bitdispl 11 + m 11 + m r

LooPNZlLooPNE - Loop While I I INot Zero 11100000 8-bitdispl 11 + m 11 + m r

CONDITIONAL BYTE SET
NOTE: Times Are Register/Memory

SETO = set Byte on Overflow

To Register/Memory I 00001111 I 10010000 I modOOO rIm I 4/5 4/5 h

SETNO - set Byte on Not Overflow

To Register/Memory I 00001111 I 10010001 I modOOO r/ml 4/5 4/5 h

SETB/SETNAE ~ set Byte on Below/Not Above or Equal

To Register/Memory I 00001111 I 10010010 ImodOOO rIm I 4/5 4/5 h

112

inter 80386

d)(CSS CI kC803861T bl 8a e -1. nstructlon et oc ount ummary ontlnue

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addre •• Protected Addre •• Protected

Mode or Virtual Mode or Virtual
Virtual Addr ••• Virtual Addre ••
8086 Moda 8086 Mode
Moda Moda

CONDITIONAL BYTE SET (Continued)

SETNB = Sot Byta on Not Belowl Abova or Equal

To Register/Memory I 00001111 I 10010011 I modOOO rIm I 4/5 4/5 h

SETE/SETZ - Sot Byta on Equal/Zaro

To Register/Memory I 00001111 I 10010100 I modOOO rIm I 4/5 4/5 h

SETNE/SETNZ - Sat Byta on Not EquallNot Zero

To Register/Memory I 00001111 I 10010101 I modOOO rIm I 4/5 4/5 h

SETBE/SETNA - Sat Byta on Balow or EquallNot Abova

To Register/MerTlOfY I 00001111 I 10010110 I modOOO rIm I 4/5 4/5 h

SETNBE/SETA - Sot Byta on Not Balow or Equall Above

To Register/Memory I 00001111 I 10010111 I modOOO rIm I 4/5 4/5 h

SETS - Sot Byta on Sign

To Register/Memory I 00001111 I 10011000 I modOOO rIm I 4/5 4/5 h

SETNS - Sot Byta on Not Sign

To Register/Memory I 00001111 I 10011001 I modOOO rIm I 4/5 4/5 h

SETP/SETPE - Sot Byta on ParttylParlty Evan

To Register/Memory I 00001111 I 10011010 I modOOO rIm I 4/5 4/5 h

SETNP/SETPO ~ Sot Byta on Not ParltylParlty Odd

To Register/Memory I 00001111 I 10011011 I modOOO rIm I 4/5 4/5 h

SETl/SETNGE ~ Sot Byta on La •• /Not Graatar or Equal

To Register IMerTlOfY I 00001111 I 10011100 I modOOO r/ml 4/5 4/5 h

SETNl/SETGE - Sot Byte on Not Le •• /Graater or Equal

To Register/MerTlOfY I 00001111 I 01111101 I modOOO r/ml 4/5 4/5 h

SETLE/SETNG - Sot Byta on La •• or Equal/Not Greatar

To Register/Memory I 00001111 I 10011110 I modOOO rIm I 4/5 4/5 h

SETNLE/SETG = Sot Byta on Not La •• or Equal/Greater

To Register/Memory I 00001111 I 10011111 I modOOO rIm I 4/5 4/5 h

ENTER - Entar Procedura I 11001000 !16-bit displacement. 8-bit level I
L-O 10 10 b, g g, h
L - 1 12 12 b, g g, h
L> 1 15 + 15 + b,g g, h

4(n - 1) 4(n - 1)

LEAVE = Leave Procedure I 11001001 I 4 4 b,g g, h

113

inter 80386

cST ba Ie 8·1. 80386 Instruction et Clock Count Summary (ontinued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Add, ••• P,otected Add •••• Protected

Mod. or Virtual Mode or Virtual
Virtual Addr ••• Virtual Addr •••
8086 Mode 8088 Mode
Mode Mode

INTERRUPT INSTRUCTIONS

INT - Interrupt:

Type Specified I 11001101 I type I 37 b,l,g

Type 3 I 11001100 I 33 b, f, g

INTO = Interrupt 411 Overflow Flag set I 11001110 I
If OF - 1 35 b, e, g
If OF - 0 3 3 b, e, g

Bound = Interrupt 5 if Detect Value I 01100010 I mod reg rim I
Outot Range

If Out of Range 44 b,e e, g, h, i, k, r
If In Range 10 10 b,e e, g, h,j, k,'

Protected Mode Only (INT)
INT: Type Specified

Via Interrupt or Trap Gate
to Same Privilege Le••••el 59 I, g, i, k, r

Via Interrupt or Trap Gate
to Different Privilege Level 121 I, g, i, k, r

From 286 Task to 286 TSS via Task Gate 247 I, g, i, k, r
From 286 Task to 386 TSS via Task Gate 277 I, g, i, k, r
From 268 Task to virt 8086 md via Task Gate 157 I, g, i, k, r
From 386 Task to 286 TSS via Task Gate 257 I, g, i, k, r
From 386 Task to 386 T85 via Task Gate 287 I, g, i, k, r
From 368 Task 10virt 8086 md via Task Gate 167 I, g,j, k, r
From virt 8086 md to 286 T55 via Task Gate 257 I, g,j, k, r
From virt 8086 md to 386 TSS via Task Gate 287 I, g,j, k, r

INT: TYPE 3
Via Interrupt or Trap Gate

to Same Privilege Level 59 I, g, i, k, r
Via Interrupt or Trap Gate

to Different Privilege level 121 f,g,j, k,r
From 286 Task to 286 TSS via Task Gate 243 f, g,j, k, r
From 286 Task to 386 T85 via Task Gate 273 f, g,j, k, r
From 268 Task to Virt 8086 md via Task Gate 157 f, g,j, k,'
From 386 Task to 286 TSS via Task Gate 253 f, g,j, k, r
From 386 Task to 386 TSS via Task Gate 283 f, g,j, k, r
From 368 Task to Virt 8086 md via Task Gate 163 f, g,j, k, r
From Virt 8086 md to 286 TSS via Task Gate 253 I, g, i, k, r
From Virt 8086 md to 386 TSS via Task Gate 283 I, g, i, k, r

INTO:

Via Interrupt or Trap Grate
to Same Privilege Level 59 I, g, i, k, r

Via Interrupt or Trap Gate
to Different Privilege Level 121 f, g,), k,'

From 286 Task to 286 TSS via Task Gate 245 f,g,j, k, r
From 286 Task to 386 TSS via Task Gate 275 f,g,), k,r
From 268 Task to virt 8086 md via Task Gate 155 f, g,j, k, r
From 386 Task to 286 TSS via Task Gate 255 f,g,j, k, r
From 386 Task to 386 TSS via Task Gate 285 t, g,j, k, r
From 368 Task to virt 8086 md via Task Gate 165 f, g,j, k,'
From virt 8086 md to 286 TSS via Task Gate 255 t, g,), k,'
From virt 8086 md to 386 TSS via Task Gate 285 I, g,), k, r

114

inter 80386

(CskCsTable 8-1. 80386 Instruction etCloc ount ummarv ontlnued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Addr ••• Protected Addr ••• Protected

Mod. or Vlrtuel Mode or Vlrtuel
Vlrtuel Addr ••• Virtual Addr •••
8086 Mode 8086 Mode
Mode Mode

INTERRUPT INSTRUCTIONS (Continued)

BOUND:

Via Interrupt or Trap Gate
to Same Privilege Level 59 f, g,i, k, r

Via Interrupt or Trap Gate
to Different Privilege Level 121 f, g,j, k, r

From 286 Task to 286 TSS via Task Gate 254 f,g,j, k, r
From 286 Task to 386 TSS via Task Gate 284 f, g,j, k, r
From 268 Task to virt 8086 Mode via Task Gate 164 f,g, i, k,r
From 386 Task to 286 TSS via Task Gate 264 f, g, i, k, r
From 386 Task to 386 TSS via Task Gate 294 f, g, i, k, r
From 368 Task to virt 8086 Mode via Task Gate 174 f, g, i, k, r,
From virt 8086 Mode to 286 TSS via Task Gate 264 f,g,i, k,r
From virt 8086 Mode to 386 TSS via Task Gate 294 f, g,i, k, r

INTERRUPT RETURN

IRET = Interrupt Return I 11001111 I 22 g, h,j, k, r

Protaclad Mode Only (IRET)
To the Same Privilage Lavel 38 g, h, i, k, r
To Different Privilege Level 82 g, h, i, k, r
From 286 Task to 286 TSS 232 h, i, k, r
From 286 Task to 386 TSS 265 h,i, k, r
From 286 Task to Virtual 8086 Mode 132 h,i, k, r
From 366 Task to 286 TSS 271 h,i, k, r
From 386 Task to 386 TSS 142 h,j, k, r
From 386 Task to Virtual 8086 Mode 120 h,j, k, r

PROCESSOR CONTROL

HLT - HALT I 11110100 I 5 5 I

MOV = Move to and From Control/Oobug/Telt Regllte ••

CRO/CR2/CR3 from ragister I 00001111 I 00100010 I o Oeee reg I 10/4/5 10/4/5 I

Register From CAO-3 I 00001111 00100000 OOeeereg 6 6 I

DRO-3 From Register I 00001111 00100011 11 eeereg 22 22 I

DR6-1 From Register I 00001111 00100011 11 aaerag 16 16 I

Register from OR6-7 I 0000111 I 00100001 11 eee reg 14 14 I

Register from ORO-3 I 00001111 00100001 11 eee reg 22 22 I

TR6-7 from Ragister I 00001111 I 00100110 11 eeereg 12 12 I

Ragister from TR6-7 I 00001111 I 00100100 11 eee reg 12 12 I

NOP - No Operation I 10010000 I 3 3

WAIT- Walt until BUSY # pin IInegated I 10011011 I 6 6

115

inter 80386

d)(CtSs tCI kCT bl 81 803861a e . n8 ruet on e oe oun ummary ontlnue

CLOCK COUNT NOTES

Rool Roal
INSTRUCTION FORMAT Addr ••• Protected Addr ••• Protected

Mode or VlrtUIII Mod. or VlrtUIII
VlrtUIII Addro •• VlrtUIII Addr •••
8086 Modo 8086 Mode
Modo Modo

PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension Escape I 11011 TTT ImodLLL rIm I see 9 g,q

TTT and LLL bits are opcode 80287180387

information for coprocessor. data sheets for
clock counts

PREFIX BYTES

Addr ••• Size Prefix I 01100111 I 0 0

LOCK - Buo Lock Prolix I 11110000 I 0 0 m

Operand Sizo Prolix I 01100110 I 0 0

Segment Override Prefix

Segment Override Prefix

CS: I 00101110 I 0 0

DB: I 00111110 I 0 0

ES: I 00100110 I 0 0

FS: I 01100100 I 0 0

OS: I 01100101 I 0 0

SS: I 00110110 I 0 0

PROTECTION CONTROL

ARPL - AdJuat Roquoated Prlyllego LOYOI

From Register/Memory I 01100011 I mod reg r/ml N/A 20/21 a g, h

LAR - Load Acce •• Rlghlo

From Register/Memory I 00001111 I 00000010 Imod reg r/ml N/A 15/16 a h,j,p

LOOT - Load Olobal Deocrtptor

Table Register I 00001111 I 00000001 ImodOl0 r/ml 11 11 b,c h, I

L10T - Lood Interrupt Deacrlptor

Tobia Register I 00001111 I 00000001 ImodOll r/ml 11 11 b,c h, I

LLDT - Load Locol Descriptor

Table Register to
I I ImodOl0 r/mlRegister/Memory 00001111 00000000 N/A 20/24 e h,j,1

LMSW - Load Machlno Slotua Word

From Register/Memory I 00001111 I 00000001 I mod 11 0 rIm I 10/13 10/13 b,c h, I

LSL - Load Segmont Umlt

From Register/Memory I 00001111 I 00000011 I mod reg r/ml

Byte·Granular Limit N/A 20/21 a h,j, P
Page·Granular Limit N/A 25/26 e h, I, P

LTR = Load Taak Reglator

From Register/Memory I 00001111 I 00000000 ImodOOl rIm I N/A 23/27 a h,l, I

SOOT - Storo Globat Descriptor

Table Register I 00001111 I 00000001 I modOOO rIm I 9 9 b,c h

116

inter 80386

cTable 8-1. 80386 Instruction Set Clock Count Summary (ontinued)
CLOCK COUNT NOTES

Re.1 Real
INSTRUCTION FORMAT Addro •• Protocted Add •••• Protected

Modo or Virtual Modo or Virtual
Virtual Addro •• Virtual Addr •••
8088 Modo 8086 Modo
Modo Modo

SlOT = Store Interrupt Descriptor

rable Register I 00001111 I 00000001 ImodOOl rim I 9 9 b,c h

SLOT = Store Local Descriptor Table Register

To Register/Memory I 00001111 I 00000000 I modOOO rim I N/A 2/2 a h

SMSW = Store Machine

I I Imodl00 '/mlStatus Word 00001111 00000001 10/13 10/13 b,c h,l

STR = Store Task Register

To Register/Memory I 00001111 I 00000000 I modOOl '/ml N/A 2/2 a h

VERR = Verify Read Accesss

Register/Memory I 00001111 I 00000000 Imodl00 rim I N/A 10/11 • h,i, P

VERW = Verify Write Accesss I 00001111 I 00000000 I mod 1 01 '/ml N/A 15/16 • h,i,p

INSTRUCTION NOTES FOR TABLE 8-1

Notes a through c apply to 80386 Real Address Mode only:
a, This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).
b. Exception 13 (general protection) will occur in Real Mode if a 16-bit or 32-bit operand reference is made that partially or
fully extends beyond the maximum segment limit. FFFFH.
c. This instruction may be executed in Real Mode. In Real Mode. its purpose is primarily to initialize the CPU for Protected
Mode.

Notes d through 9 apply to 80386 Real Address Mode and 80386 Protected Virtual Address Mode:
d. the iAPX 386 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most
significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:
Actual Clock = if m < > 0 then max ([Iog2 Imll. 3) + 6 clocks:

if m = 0 then 9 clocks (where m is the multiplier)
e. An exception may occur. depending on the value of the operand.
f. LOCK# is automatically asserted. regardless of the presence or absence of the LOCK# prefix.
g. LOCK # is asserted during descriptor table accesses.

Notes h through r apply to 80386 Protected Virtual Address Mode only:
h. Exception 13 (general protection violation) will occur if the memory operand cannot be used due to either a segment limit
violation or access rights violation. If a stack limit is violated. an exception 12 (stack segment overrun or not present) occurs.
i. For segment load operations. the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 (general
protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not present). If
the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment overrun or not
present) occurs.
j. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK# to maintain
descriptor integrity in multiprocessor systems.
k. JMP, CALL. INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is violated.
I. An exception 13 occurs if CPL is greater than 0 (0 is the most privileged level).
m. An exception 13 occurs if CPL is greater than IOPL.
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL = O.
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.
p. Any violation of privilege rules as applied to the selector operand do not cause a protection exception; rather, the zero
flag is cleared.
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 (general protec-
tion exception) will occur before the ESC instruction is executed. An exception 12 (stack segment overrun) will occur if the
stack limit is violated by the operand's starting address.
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13
(general protection violation) will occur.

117

inter 80386

8.2 INSTRUCTION ENCODING

8.2.1 Overview
All instruction encodings are subsets of the general
instruction format shown in Figure 8-1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the "mod rIm"
byte and "scaled index" byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode bytes(s). This byte, the mod rIm
byte, specifies the address mode to be used. Certain

encodings of the mod rIm byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod rIm byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod rIm byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 8-1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the rIm field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 8·2 is a complete list of all fields ap-
pearing in the 80386 instruction set. Further ahead,
following Table 8-2, are detailed tables for each
field.

ITTTTTTTT I TTTTTTTT 1 mod TTT rIm 1 ss index base Jd32116181 none data32116181 none

!. 0 7 0)\ 7 6 5 3 2 0)\ 7 6 5 3 2 0)I.) \)
T T

register and address
mode specifier

opcode
(one or two bytes)

(T represents
opcode bit.)

\.

"mod rIm"
byte

Ifs-i-b"
byte

)

address
displacement
(4, 2, 1 bytes

or none)

immediate
data

(4,2, 1 bytes
or none)

Figure 8·1. General Instruction Format

Table 8-2. Fields within 80386 Instructions

Field Name Description Number of Bits

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1
d Specifies Direction of Data Operation 1
s Specifies if an Immediate Data Field Must be Sign-Extended 1
reg General Register Specifier 3
mod rIm Address Mode Specifier (Effective Address can be a General Register) 2 for mod;

3 for rIm
ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg Segment Register Specifier for CS, SS, OS, ES 2
sreg Segment Register Specifier for CS, SS, OS, ES, FS, GS 3
tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated 4

118

80386

8.2.2 32-Blt Extensions of the
Instruction Set

With the 80386, the 86/186/286 instruction set is
extended in two orthogonal directions: 32-bit forms
of all 16-bit instructions are added to support the 32-
bit data types, and 32-bit addressing modes are
made available for all instructions referencing mem-
ory. This orthogonal instruction set extension is ac-
complished having a Default (D) bit in the code seg-
ment descriptor, and by having 2 prefixes to the in-
struction set.

Whether the instruction default to operations of 16
bits or 32 bits depends on the setting of the 0 bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a 0 value or 0 is assumed internally by the
80386 when operating in those modes (for 16-bit de-
fault sizes compatible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op-
code bytes and affect only the instruction they pre-
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value "opposite"
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres-
ence of the Operand Size Prefix toggles the instruc-
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres-
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa-
tions.

These 32·bit extensions are available in all 80386
modes, including the Real Address Mode or the Vir-
tual 8086 Mode. In these modes the default is al-
ways 16 bits, so prefixes are needed to specify 32-
bit operands or addresses.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

8.2.3 Encoding of Instruction Fields
Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encoding of these fields are defined immedi-
ately ahead.

119

8.2.3.1 ENCODING OF OPERAND LENGTH (w)
FIELD

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
wFleld During 16-Blt During 32-Blt

Data Operations Data Operations

0 8 Bits 8 Bits
1 16 Bits 32 Bits

8.2.3.2 ENCODING OF THE GENERAL
REGISTER (reg) FIELD

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the "mod rim" byte, or as the rim
field of the "mod rim" byte.

Encoding of reg Field When w Field
Is not Present In Instruction

Register Selected Register Selected
reg Field During 16-Blt During 32·Blt

Data Operations Data Operations

000 Ax EAX
001 CX ECX
010 OX EDX
011 BX EBX
100 SP ESP
101 BP EBP
101 SI ESI
101 01 EDI

Encoding of reg Field When w Field
Is Present In Instruction

Register Specified by reg Field
During 16·Blt Data Operations:

Function of w Field
reg

(whenw = 0) (when w = 1)

000 AL AX
001 CL ex
010 DL OX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH 01

80386

Register Specified by reg Field
During 32-Blt Data Operations

Function of w Fieldreg
(whenw = 0) (when w = 1)

000 AL EAX
001 CL ECX
010 DL EDX
011 SL ESX
100 AH ESP
101 CH ESP
110 DH ESI
111 SH EDI

8.2.3.3 ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the 80386 FS and GS segment
registers to be specified.

2-Blt sreg Field

2-Blt Segment

sreg Field Register
Selected

00 ES
01 CS
10 SS
11 DS

3-Bit sreg Field

3-Blt Segment

sreg Field Register
Selected

000 ES
001 CS
010 SS
011 DS
100 FS
101 GS
110 do not use
111 do not use

120

8.2.3.4 ENCODING OF ADDRESS MODE

Except for special instructions. such as PUSH or
POP. where the addressing mode is pre-determined.
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the "mod
rim" byte, and a second byte of addressing informa-
tion, the "s-i-b" (scaled index) byte, can be speci-
fied.

The s-i-b byte (scale-index-base-byte) is specified
when using 32-bit addressing mode and the "mod
rim" byte has rim = 100 and mod = 00.01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod. ss. index. and base
fields.

The primary addressing byte, the "mod rim" byte.
also contains three bits (shown as TTT in Figure 8-1)
sometimes used as an extension of the primary op-
code. The three bits, however. may also be used as
a register field.

When calculating an effective address. either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
"mod rim" byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used. the
"mod rim" byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following four pages define all encod-
ings of all 16-bit addressing modes and 32-bit ad-
dressing modes.

80386

Encoding of 16·blt Address Mode with mod rIm Byte

mod rIm Effective Address

00000 OS:[BX+SI)
00001 OS:[BX+OI)
00010 SS:[BP+SI)
00011 SS:[BP+OI]
00100 OS:[SI)
00101 OS: (01)
00110 OS:d16
00 111 OS:[BX]

01000 OS: [BX + SI + d8]
01 001 OS: [BX + 01+ d8]
01 010 SS: [BP + SI + d8]
01 011 SS: [BP + 01+ d8]
01 100 OS:[SI+d8]
01 101 OS:[01+d8]
01 110 OS:[BX+d8]
01 111 SS:[BP+d8]

mod rIm Effective Address

10 000 OS:[BX+SI+d16]
10001 OS:[BX+01+d16]
10010 SS:[BP+SI+d16]
10011 SS:[BP+01+d16]
10100 OS: [SI + d16]
10 101 OS: [01 + d16]
10110 OS:[BX+d16]
10111 SS:[BP+d16]

11 000 register-see below
11 001 register-see below
11 010 register-see below
11 011 register-see below
11100 register-see below
11 101 register-see below
11110 register-see below
11111 register-see below

Register Specified by rIm
During 16·Blt Data Operations

mod rIm Function of w Field

(whenw=O) (when w = 1)

11 000 AL AX
11 001 CL CX
11 010 OL OX
11 011 BL BX
11 100 AH SP
11 101 CH BP
11110 OH SI
11111 BH 01

Register Specified by rIm
During 32·Blt Data Operations

mod rIm Function of w Field

(when w=O) (when w = 1)

11 000 AL EAX
11 001 CL ECX
11 010 OL EOX
11 011 BL EBX
11 100 AH ESP
11 101 CH EBP
11110 OH ESI
11111 BH EOI

121

inter 80386

Encoding of 32-blt Address Mode with mod rIm Byte (no s-i-b byte present)

mod rIm Effective Address

10000 OS: [EBX + ESI + d32)
10001 OS: [EBX + EOI + d32)
10010 SS: [EBP + ESI + d32)
10011 SS: [EBP + EOI + d32)
10100 s-i-b is present
10 101 OS: [EOI + d32)
10110 OS: [EBX + d32)
10111 SS: [EBP + d32)

11 000 register-see below
11 001 register-see below
11 010 register-see below
11 011 register-see below
11 100 register-see below
11 101 register-see below
11110 register-see below
11111 register-see below

mod rIm Effective Address

00000 OS:[EBX + ESI)
00001 OS: [EBX + EOI)
00010 SS: [EBP + ESI)
00011 SS: [EBP + EOI)
00100 s-i-b is present
00101 OS:[EOI)
00110 OS:d32
00 111 OS:[EBX)

01000 OS: [EBX + ESI + d8)
01 001 OS: [EBX + EOI + d8)
01 010 SS: [EBP + ESI + d8)
01 011 SS: [EBP + EOI + d8)
01 100 s-i-b is present
01 101 OS:[EOI+d8)
01 110 OS:[EBX+d8)
01 111 SS:[EBP+d8)

Register Specified by reg or rIm
During 16-Blt Data Operations

mod rIm
Function of w Field

(when w=O) (when w = 1)

11 000 AL AX
11 001 CL CX
11 010 OL OX
11 011 BL BX
11 100 AH SP
11 101 CH BP
11110 OH SI
11111 BH 01

Register Specified by reg or rIm
During 32-Blt Data Operations

mod rIm Function of w Field

(whenw=O) (when w = 1)

11 000 AL EAX
11 001 CL ECX
11 010 OL EOX
11 011 BL EBX
11 100 AH ESP
11 101 CH EBP
11 110 OH ESI
11111 BH EOI

122

80386

Encoding of 32-bit Address Mode (mod rIm and s-J-b byte present)

mod base Effective Address

00000 OS: [EAX + (scaled index)]
00001 OS: [ECX + (scaled index)]
00010 OS: [EOX + (scaled index)]
00011 OS: [EBX + (scaled index)]
00100 SS: [EAX + (scaled index)]
00101 OS: [d32 + (scaled index)]
00110 OS: [ESI + (scaled index)]
00 111 OS: [EOI + (scaled index)]

01000 OS: [EAX + (scaled index) +d8]
01 001 OS: [ECX + (scaled index) +d8]
01 010 OS: [EOX + (scaled index) +d8]
01 011 OS: [EBX + (scaled index) +d8]
01 100 SS: [ESP + (scaled index) + d8]
01 101 SS: [EBP + (scaled index) +d8]
01 110 OS: [ESI + (scaled index) +d8]

'01 111 OS: [ED I+ (scaled index) +d8]

10000 OS: [EAX + (scaled index) +d32]
10001 OS: [ECX + (scaled index) +d32]
10010 OS: [EOX + (scaled index) +d32]
10011 OS: [EBX + (scaled index) +d32]
10100 SS: [EAX + (scaled index) +d32]
10 101 SS: [EBP + (scaled index) +d32]
10110 OS: [ESI + (scaled index) +d32]
10111 OS: [EOI + (scaled index) +d32]

ss Scale Factor

00 x1
01 x2
10 x4
11 x8

Index Index Register

000 EAX
001 ECX
010 EOX
011 EBX
100 No Index Reg
101 EBP
110 ESI
111 EOI

123

8.2.3.5 ENCODING OF OPERATION DIRECTION
(d) FIELD

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory <- - Register
"reg" Field Indicates Source Operand;
"mod r/m" or "mod ss index base" Indicates
Destination Operand

1 Register <- - Register/Memory
"reg" Field Indicates Destination Operand;
"mod r/m" or "mod ss index base" Indicates
Source Operand

8.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16·bit or 32·bit destination.

Effect on Effect on
Immediate Data8 Immediate Data 1613~

None None

1 Sign-Extend Data8 to Fill None
16-Bit or 32-Bit Destination

8.2.3.7 ENCODING OF CONDITIONAL TEST
(tttn) FIELD

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat-
ing to use the condition (n = 0) or its negation (n = 1),
and ttt giving the condition to test.

124

Mnemonic Condition tttn

0 Overflow 0000
NO No Overflow 0001
B/NAE BelowlNot Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
PIPE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LEING Less Than or Equal/Greater Than 1110
NLE/G Not Less or Equal/Greater Than 1111

8.2.3.8 ENCODING OF CONTROL OR DEBUG
OR TEST REGISTER (eee) FIELD

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

eeeCode Reg Name

000 CRO
010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Field

eeeCode Reg Name

000 ORO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR?

Do not use any other encoding

When Interpreted as Test Register Field

eeeCode Reg Name

110 TR6
111 I TR?

Do not use any other encoding

inter
DOMESTIC SALES OFFICES

Al..UAIIA•... """,5015 Btadtotd Dnvll
Suite 2
Huntsville 35805
rei (205) 830."010

•••••IZONA

•... """,11225 N 28th Onve
SUI'" 2,40
"'-' 85029Tel (602) 869-4980

Intel Corp
1161 N. EI Oafado Place
SUlle 301
Tucson 85715
Tel (602) 299-6815

CAUFORlllA•... """,21515 Vaf1O'\l¥efl Street
Su'" 116

~'18'8r~04~~
Ir1Iel Corp
2250 E. Imper •• l HIghway
SUIte 218

~e1~&4~

Inlel Cofp
1510 Alden Way, SUlte 101
Sacramento 95815
Tel (916) 920·8096

Intel Corp
4350 Executive DnYe
SUlle 105
58" DIego 92121
(619) "52-~•... """,.
2000 East 4th Street
Suite 100
santa AnI 92705
Tel. (1'4) 835.9&42
TWX 910-59501114

In" Corp'
1350 Shorebtd Way
"" View 94043
Tel (415) 968-8086
TWX 91().3J9.9279
910-338-0255

COl._DO
Inlel Corp
3300 Milchell lane. SUIIe 210
...- 8OJOI
Tel (303) ••••2.a088

'''''' ""'"••••••5 NoohpariI Dove
Suite 100

~(3~3) S~~~2~0907

Inle1 Corp'
650 S Cherry Street
Suite 915
Denver 80222
Tel (X(3) 321-8086
1WX. 910-931·2289

CONH£CT1CUT

~:' M~~in Road

~r~l~30
EM<: Corp.
222 Summer Street
Slamlord 06901
Tel (203) 321·293-4

fLORIDA

Intel Corp
242 N Westmonte Drive
Suite 105
~)=5J271"
•.... ""'"
~~.~d.~ltl3~369 Suite 100

Tel: (305) 771·0600
TWX' 510-956-9407

FLORIDA (Cont'd)

lnlel Corp
11300 'I1h $lIeel North
SUIte 170

~~I' ~~e:lj~~}1,j02

GEORGiA

Inlel Corp
3280 PoInte Partlway
SUIIe 200
NorcrO$$ 30092
Tel (4l)4) 449..()541

IUINaIS

Inlel Corp'

~~m~~tb68~~2 Road, SUite 400

Tel (312) 31().8()31,-
'''''' ""'"8777 PlJrdue Road
SUlle 125
IndianapoliS 46268
Tel (317) 875-0623

IOWA

.... ""'"
~~30~~'::'"&r.oe N E
cedar Rapids 52402
Tel (319) 393·5510

KANSAS

Intel Corp
8400 W 110tt1 Street
SurlIll 170
Q¥er1and Parll 66210
Tel (913) 34~2727

LOUISlANA

~r::US1~) ~~~16~S1ems Corp

IlAAYLANO

Inlel Corp'
7321 Paf1o;wly Clove South
Sul'lll C
"'nover 21076

~(~1'6.~~~~
Intel Corp.
7833 Walker Dnve
Greenbelt 20770
Tel (3011 441·1020

M•••• cw.JSUTS
Inlel Corp'
Westford Corp Cenler
3 Carltsle Ro8d
WestlOfd 01886
Tel (617) 629·3222
TWX 710-343·6333

MICIi ••••

~'" ""'"7071 Ord\lrd lake Road
SUIIe 100
Wnl BIoomIield 48033
Tel (313) 851-8096

MINNESOTA

Inlel Corp
3500 W 80th SUeel
S•••• 360

~r83~~~2
TWX 910-516-2867

MISSOURI
Intel Corp
4203 EII1tI CIty Exptessway
SUite 13\
Eam Cit)' 63045
Tel (314) 291-1990

N£W J£RIEY

~~tI~~:Z1 III
Raritan Center
Edison 08831

~.(2f,lia~~

NEW MEXICO.... ""' .8500 Menua! Boulevard N E
SUIIe B 295
Albuquerque 87112
Tel (505) 292-8086

N£W YORK

IrMeI Corp'
300 Vandefblll Motor Plrtlway
HaupPauge 11788

~ (5~r6.2~37~ll:
Intel Corp
Suile 2B Holioworook Park
15 Myers Corners Road
WaPP'f"98l" Fills 12590
Tel (914) 297-6161
TWX 510-248-0060

Inlet Corp'
211 WhIte Spruce BolMvard
Rochesler 14623

~:(7~r6.2~~~7T9s,o

T·Squared

~::C~~~06Road

~:(3~f6.~~~~2

T·Squared
7353 Pinstord,VlCtor Road
VICtor 14564
Tel (716) 924·9101
TWX 510·254·8542

NORTH CAAOUNA
Inlel Corp
5700 ExecutIVe cenler [)nye
Sl.lIle 213
Char10ne 28212
Tel (704) 568-8966

Inlel Corp
2700 WycltH Road
SUlle 102
Raleigh 27607
Tel (919) 781-8022

OHIO

lnlel Corp'
6500 Poe Aveoue
OaylOfl 45414

~ (5J~6.4~2~~~0

lnlel Corp'S:~~2:~ar~O300

Tel (216) 464·2736
TWX 810-427·9298

OKLAHOMA

Inlel Corp
4157 S Harvard Avenue
SUIte 123
Tulsa 74135
Tel (918) 749-8688

OIl'''''''
Inlet Corp
10700 S W 8eavenoo
Hillsdale Highway
SUite 22
Beavenon 97005
Tel (503) 641·8086
TWX 910.467·8741

HNNSYLVANiA

Intel Corp
1513 Cedar Clt" Orr.oe
Camphlll 17011
Tel. (717) 737-5035

Inlel Corp'
455 PeMlylvlr'lia Avenue
Fort Washlng10n 19034
Tel (215) 641-1000
TWX: 510-661-2077

Intel Corp'
400 Penn center Boulevard
Suite 610

~e~tr~~;)~J3~~970

OE.O EleetrOfllCS
139 Terwood Road
80. T
Wiklw Grove 19090
Tal- (215) 657·5600

PUERTO RICO
Inlel MlCl"oproc:esSOl' Corp
South Industnat Plrk
las PIedras 00671
Tel (8Wj 733·3030

TEXAS

Inlel Corp
313 E ~son lane
SUIte 314
AuslJn 78752
Tet (512) 454-3628

Ifltet CorP'
12300 Ford Road
SUlie 380
Dallas 75234
Tet (214)241-8087
TWX 910-860-5617

Inlet Corp'
7322 S W Freeway
SUIte 1490
Houston 77074

~ (7~~6.8~~~~6

Industnal DIgital Systems Corp
5925 Sovetetgn
SUIte 101
HouSO'l 77036
Tel (7131988-9421

UTAH
IflleI Corp
5201 Green Slreet
SUlle 290
Murray 84123
Tet (801) 263·8051

VIRGINiA

lMe! Corp
1603 Safltl Rosa Road
SUIte 109
Richmond 23288
Tel (804) 282·5668

WASHINGTON

.... ""'.110 llCllh Avenue N E
SlIlle 510
••••••• !l8OO'
Tet (206) .53-3086
TWX 910-443·3002

~n~1 ~~Ullan Road
SUlle 102
Spokane 99206
Tet (509) 928-8086

WISCONSIN
Inlel Corp
450 N Sunnyslope Road
SUlle 130
Chancellory Park t
Brookfield 53005
Tet (414) 784·8087

CANADA
BRITtSH COLlJIf8lA
Intel SemlCOnd\JC1Of ol Canada. lid
301·2245 W Broa.dway
Vancouver V6K 2E4
rei (604) 738·6522

ONTARIO

lrMt SemK:onduc1cw 04 canida. lid
~ Qveenav,ew Onve
SIJIte 250
Ottawl K2B 8H6
Tel (613) 829·9714
TELEX 053-4115

Intel Semiconductor 0' Canada, lid
190 Anwell Orr.oe
SUIte 500
Aexdale M9W 6H8
Tel (416) 67~2105
TELEX 06983574

QU£RC
Inlel Semlconduclor 0' Canada. lid
620 SI. Jaan Blvd
POinte Clalfe H9R 31<3
Tel (514) 694·9130
TWX 514·694·9134

'F181d AppllCallonlocltion

inter
DOMESTIC DISTRIBUTORS

AlAlI ••••
NrCNI EleclJor'IICI, Inc
1015 HendetIOl'l Road
HuntsVIlle 35805
Tel (205) 831·6955

tHamllton/Avnet ElectronICS
4812 Comm8fClal D!we N W
HuntsVIlle 35805
Tel (205) 837-7210
TWX 810-126-2162

tPioneef EIectrOOlCS

::~~~SQuare
Tel (205) 837-9300
TWX 810-126-2191

ARIZONA
tHamlllon/Avnel Elecl1OO1CS
505 S Madison Dl'lve
Tempe 85281

~(~,2~9~\~~

KI8fUIfl ElectronICS
41304 E WOOd Street
F'hoentx 85040
Tel (602) 431.Q150
TWX 910-951-1550

WyIe Dlstrlbullon Group
17855 N Black Clinyon HIghway
Phoefu 85023
Tel (602) 866-2888

CAUFORNIA

Arrow ElectronICS. Inc
19748 DelrDOrn Street
Chltsworth 91311
Tel (818) 701·7500
TWX 91()...t93·2086

Arrow EJectrOOlCS
9511 AldgehIven Coutl

~ (~S:~ioo
TLJ< 88806'
fArrow EIectrOlllCl. 'nc:
521 Weddell Onve
Sunnyvale 94086
Tel (408) 745-6600
TWX 910·339-9371

Ivraw Eleetronicl. Inc
2961 {)ow A...enue
Tuttin 92680
Tel (714) 838·~22
TWX 910-S95-2860

fAvroel ElectrOl'llCS
350 McCormICk Avenue
Cosla Mesa 9~

~11~:6_5~;~1
Ham!llon/Avnet ElectrOOlCll
1175 80rdfliUll Drive
Sunnyvale 9-4086
Tel (408) 743·3300
TWX 910·339-9332

tHamlhonfAvOIt ElectronICS

@5liijr,~~
lWX: 910-595-2638

fH&mII'On/AYMt EJectrOl'llCS
20501 Plummer Slreet
Chatsworth 91311
Tel (8IS) 700-6271
TWX: 910-494-2207

fHamilton/~ynet ElectronIC'
4103 NorttlOltl Boulevard
Sacramento 9~34
Tel (916) 920-3150

Ham,Itoo/Avnet EIectrOl'llCl
3002 G Str•• t
Qnwlo 91311
Tel (714) 989-9<111

Hamlhon/~...net EIectronICI
19515 So Vermom AV8l"IUe
Torrll'lal 90502

~: {2J~6.3~'i.t::

fHamitton Electro Salas

b~~:r "tity W:~~~1Ion Boulevard

~:(2J~6.3~~~

fHarT1l1lon Elktro Sales
3170 PlAman Sir •••.
Cosll Mua 92626
Tel (714) &41-4150
TWX 910-595-2638

CAUFQRNtA (Cont'd)

Han'llllOn Electro sales
9650 De Sofo ~yenue
Chatsworth 91311
Tal (818} 700-6500

Klerulfl EleclronlCs
10824 Hope Streel

r:r(~~4)~:6300
KI8fU/fl EIectrOl"llCl Inc
1180 Murphy ~venue
San Jose 95131
Tel (408) 947-3471
TWX 910-379-6430

Klltfutfl EJectrQnlCS, In(;
14101 Frankl,n ~yenue
TUlIbn 92680
Tel (714)731-5711
TWX 910-595·2599

fKMtrulfl Electronics, toe
5650 Jillson S1reet
Commerce 90040
Tel (213) 72>{)325
TWX 910-580-3666

~ Ots..::::onStr~OUP

Calabasas 91302
Tel (818) 880-9000
TWX 818·372-0232

fWyle DistributIOn Group
124 Maryland Slreet

f~1~~3t32~:~
TWX 910·3"'8-7140 Of 7111

fWyIe Dlstnbuhon Group
17872 Cowan ~Ye0tJ8
Irnne 92714
Tel (714) 8043·9953
TWX. 910-595-1512

t~~~~
Rancho CordOVa 95610
Tel (916) 638-5282

Twyle DlSIrIb!Jl101'1 Group
9525 Chesapeake Drl'le
San [)ego 92123
Tal (619) 565·9171
TWX 910-335·1590

~~ =~t~ven~oup

santi Clara 95051
Tel ("'08) 127-2500
TWX 910-338-0296

WyIe MIiiIary
17810 Teller ~venue
IfVIOtI 92750
Tel (714) 851·9958
TWX 310-371-9127

j'!8~ ~:~~ Ayenue
Garden GroYa 92&41

~.(7J{6.5~1~~5i

COLORADO
TWyIe (lIslnbutJOn Group
451 E 124l1'lA~
Thomlon 80241

~(~J.9jro~~
fHamlllon/Avnel ElectronICS
8765 E Orctllrd Road
SUlle 708
Englewood 80\11
Tal {303} 740·1017
TWX 910-935·0187

COHHECT1CUT

fArrow EIectrOl'llCl. lnc
12 ae.umonl Al»d

~~2~~~41
TWX 71()...476.(1162

fHamIIton/Aynet Elec1ronlcs
Commerce lndustraal Park
Commerce Dtrve

~!~1~1i!J~
fPioneer NoMa •• t Electronics
112 Main Streel
Norwalk 06851

~ (~13J.4~3~~~

FLORIDA
fArrow ElectronlCl, lnc
350 FaU'Way Or"",
Deer1leld Beach 33441
Tel (305) 429·8200
TWX 510·955·9<l5E

'Arrow ElectronICS, loe
1001 N W 62nd Street
SUite 108
Ft Lauderdale 33309
Tel (305) 776-7790
TWX 510-955-9456

tArrow EIectrOtllCS, Inc
5OWoodlakeOrf'ltlW 8ldg B

~(~ ~~80
TWX 510-959·6337

fHamlllon/Aynel Elec1ronics

~~a~:rd;~1tl3~b§
Tel (305) 97l-29OO
TWX 510-956·3097

fHam.non/Avoet ElectrOfllCS
3197 Tectl DrMl North

~~J~~~¥2
HaInllW;lr\/Avnel ElectrOtllCl

=~~792BouJeyard

Tel (3OS) 628-3888
TWX 810-853-0322

rPiOneer ElectronICS
221 N Laka Bouleyard
SUlle "'12
AlIa Monte Spnngs 32701
Tel (305) 834-9090
TWX 81Q-853-02B4

t~EIectrOf'llCl
674 S Mdl\ary Tra~
Deerfield 8eactl3J.442
Tel (305) 42S-8877
TWX 510-955-9653

Gf.ORQ'A
,Arrow ElectronICS, 'oe
3155 Northwoods Parkway, SUlle A
Norcross 30071
Tel (404) 449-8252
TWX 810-766-0439

Ham.lton/AYfItIt EJectronlCS
5825 0 Pe.chlraa Corners
Norcross 30092

~(4g:~7~~
Pioneer ElectrOfllC1l
58358 Peachtree Corners E
Norcross 30092
NOfcrou 30092
Tel (4()4) 4048-1711
TWX 810·766-4515

ILLINOIS
f~fTOW ElectronICS, loe
2000 E AlonQUlfI Street
Schaumberg 60195

~ {3J~L~~~3~:0

fH&mlIIon/~vnet EJec\oOl'llCl
1130 ThomdaJe Avenue
Bensenville 60106

~ (3J~6_2~-=

fPionear Electronic.
1551 Carman Drive~ ~3J~L~i~;~fOO7
IMOl""'A
fArrow ElectronICS lnc
2495 D1rIlClOtS Row, SuM H~M=~::
Hamllton/Avnet EllctrOl'llCl
485 Gradle Dr •••••
Carmal 46032

~:(3Ji6_2~~3~3

fPioneer Electronics
6408 caslleplaoe Or •••••
lndIanapolls 46250

~ (3Ji~2~;~~

UN ••••

tHan'llllon/Avnrl EleclrOf'llCl
9219Qulyera~
Overland Park 66215
Tel (913) 888-8900
TWX 910·743-0005

MARYLAND

Arrow EleclrOf'llCS. loc
8300 Gulford Road " H
Rlyers cemer
ColIJf1'\bll 21046
Tel (301) 995-0003
TWX 710-236-9005

THamdlon/Avnet EIectrOfllCS
6822 Osk Hall Lane
Columbia 21045

~ (~11~~~~sr'
f~a2S: 1~~~t;:~OrlY,;"por·tl()l'l~~~n:~8~~i~
fPioneer EJectronlCl
9100 Gaither Road

~~~~~~
•••••• CHU8ETTO

fArrow ElectronICS, Inc
1 Ma<N Drive
Woburn 01801

~.(6g6.3~~~t#g
fHamlllon/Avne! Eleclronicl
50 Tower Offioe Park
Woburn 01801

~ (6~i6.:'~s:Ja~
Pioneer Nc:w1heIst ElectronICS
"'4 Hartwell ~venue~~~ ::-~200
TWX 710-325-6617

MICHKJAN

AJrow Electronics, Inc.
755 Phoenix [)me
Artn Arbor 48104
Tel (313) 971-8220
TWX 810-223-6020

fHarTWlon/Avne1 EleclronlCS
32487 SChooicraft Roed
l.rYoniI 48150
Tel (313) 522-4700
TWX 810-242-8775

Ham,non/Avnel ElectronlCl
2215 29th Streel SE.
Space A5
Grand Rapids 49508

~:(6J~6.2~~~~5

fPioneer EIeclronICI
13485 Stamford
lrvonia 48150

~ (3J~~2~~~~M_.
fArrow Electrona. Inc.
5230 W 73rd Strtltll
EdInI55435

~:{6~~~5~~11~

Hamiltoo/AYne! ElectroniCl
10300 Bran Road EaI1
~S5343
Tel: (812) 932-0600
TWX.: (910) 576-2720

fPionMr EIec1rcri::s
10203 Bfen Roed &11
Mn'\II1Ol'N 5~3

~:(8~~5~::-2~...-,
Arrow Elactronicl, Inc.
2380 Schuetz
SI. Loul. 63141

~.(3J~~7~"=

fHamillon/~vnet Elea'"onlca
13743 ShoreIiM Cour1

WI> ~"""5Till (314 3-44·1200
TWX 91 762-06&4

fMICrocompuler System Technical Demonstralor cenlers



DOMESTIC DISTRIBUTORS

NEW HAIllP'lHlRE
tArrow Electrona, Ioc
3 Plnmelef ibid
Manchellef 03103
Tel (603) 668·6968
TWX. 710·220·168-4

Haml~on/Avllet ElectronICs
444 E tndustl'lal DrIVe
Manchelter 03104
Tel (803) 624·9400

NlW .•.••• Y
tArrow ElectJona, toe
6000 l.Jr'Icdn E.lst__ 08053

~(~6,89~

tNrow ElecuOfllCl, Inc
2 Indultrial Road
Fairfield 07006

~ (2~116.~1:2~~

tHatTIlllon/Avllet EleclronlCS
1 Keystone Avenue...• ,.
~~!~~~
tHamllton/Avnet ElectronlCl
10 Indu.tflal
FI.rfiHf 01006

~:(~1'6.7~~:"~

tPioneer N()(lhealt Electronlcl
45 Aovle 46
Pioebfook 07058

~(~ll7~~~1f
tMTl Syaleml Salea
383 RouIe46W
Fall'fietd 07006
Tel (201) 221·5552

NEW IIIJUCO
Alllll/1C8 Electronics Inc
11030 Cochill S.E
AlbuquerQue 87123

~ (~,5~~~i~~160

Hamlnotl/Avne' EIectrOl'llC'
2524 Baylor DrMl S E
Ab.lquetque 87106

~(~~~~~~

MEW YOf'K

tArrow ElecVona, Inc
25 Hub Drive
MeIviIlIl1147

~.(5~~6.2~~~~

tArrow Electronics, Inc
3375 BrighlOn·Hennetta Townl,ne RolId
RocheSler 14623

~ (1~~6.2~~~

Arrow ElKtronca. lroc

U:pool~Or-
Tel (315) 652·1000
TWX 710-~~2JO

Atrow EIKtrOl"llCS, lroc
20 0Mf A.....-.ue
H •• _~ 11788
Tel (5\6 23'·'000
TWX 51 ·227·6623

Haminon/Avflll ElectronICS
333 "'-tro Park
Rochester 14623

~ (7~~6.2~~s::,,';g
IiamIItonjAvnet ElectrOOlCl
103 T.., Oaka Drrte
S)'fM:uM '3206

~ (3:~6.;'~~i='
tHamtllon/Avne! EIectrOl"llCl
933 MoIOl" ParkwayH'_~ 11788
Tel (518 231·9800
TW)( 51 ·224.f1166

t~ Nonhealt EIec1rOI'IlCI
11106 v•• ta1 Park_r E•• t
v"'-' 13850
Tel (eo7) 148-8211
TW)( 510-252-0893

NEW YORK (Confd)

TPIoneer Notthea" ElectronICS
60 CrOlsway Park West

f~~i~l:2~~~~and 11197

PIoneer Northe •• t Electronicl
&40 Falfpor'l Park
Falrpor'l 14450
Tel (116) 381.1010
TW)( 510-253·7001

~T~~rksa~e
PO Box 211

~ {~la:-~~~050

TWX 510-2?3·0846

NORTH CAltOUHA
Arrow ElectronICS, Inc
5240 Greenda,ry Road~';~~r~;~~
fHamdton/Avne! EJectrona
~'O ;~~oreSl Dr_

i'9~~6.9~~:~9
PIoneer EIectrOl'llCS
9801 A·Sovthem PIne BoulevarO
Charlotte 28210
Tel: (704) 524·8188
TWX, 810·621·0366

OttOO
Arrow EIectrOOtCl. Inc.
7620 McEwen ~
CenleMIle '5459

~(5~~L~~~~
fArrow Elec1rona Inc
6238 Cochran FIolId
Solon 44139

~ (2~f6.•~~~=
fHammon/Avnet Electronics
954 Senate Drive
Cayton 45459
Tel· (513) 433·0610
TWX 810,",,50-2531

THamilton/Avne! BectrOl'\lCS
4588 Emery lndU.trlll Pai1c.way

5:~~=4"28

TPioneer ElectrOl'\lCS
4433 In1erpolnl Boulevard
Daylon 4542'

f:.x:(5J~6,",,~~rno
TPiooeer Electronic.
4800 E 1311t Street
Cleveland 4'105
T-' (216) 587·3600
TW)( 81()..422·2211

011.......,...
Arrow EIectrOl"llCl, lnc
"'9 S MerT'lCWla1 OrNe
tulsa 14145
Tel (918) 665-1700

011'''''''
tAlmae EleclrOr'\lCs Cofporalior1
lBa5 NW 169th Place
aeaver10n 97006

~ (~,J6,",,~~~8~
Hamlllon/Avnet EIectrOfllCl
602' SW Jean Rc4d
Bldg C, Sulte 10

~~ke(~5-~~~
TWX 91Q-455-8179

WykI DlStrtbution Group
5250 N E Ellm Youog Parkway
SUIIe 600
Hillsboro 97124

~-(~'~":~2mo
••••••• YLy •••• A
TArrow Electrorw.:s lnc
650 Seco •••••
MonroeWle 15146
Tel (412) 1156-1000

IIlENHSYLVAHIA (Cont'd)

~EIecIl'OOIC5
259 Kappa DrIve
PlnsbUrgh 15238
Tel ("2) 182·2300
TWX 710·795·3122

TP!ooeer ElectronICS
261 Glbralter Road
Horsham 19044
Tel (215) 6"·'000
TWX 510-665-6178

TEXAS

TArrow EIectrOOlCl, Inc
3220 Commander Drrve
carrollton 75006
Tel (214) 380-64&4
TWX 910·860·5317

TArrow Electronlcl, Inc
10899 Klnghurll
Suite 100
HOUlton 77099

~(7J~6~~~~
Nrow ElectrOOlCl, Inc
10125 Metropolrt.an
AUIIIn 78758
Tel (512) 835-'180
TWX 910-874.1348

THamIIton/A..."., ElectronICS
2401 Rutland
Austin 78757

~.(5~~6.8~~~;~~~1

fHamilton/Avnet EleclronlCl
2111 W Walnut H,li Lane
II'VU'IQ 15062
Tel (214) 659-4100
TWX 910-860-5929

THlmlhon/Avnet EIectrOl"llCS
8750 West Pai1c
HokllOn 71063

~ (1J~6.J.~~~~'
P!ooeef ElectronICS
9901 Burnet Road
Austin 78758
Tel (512) 835·4000
TWX 910·8"·1323

Pioneer ElectronICS

ti'ai~~a Mo-d
Tel (214) 3&6-7300
TWX 91~50-5563

_EJocuoooco
5853 PoInt Wnt Otrve
Hovalon 17036
Tel (713) 988-55~5
TWX 910-681·1606

lITAH
fHamllton/Avllet EleclronlCs
1585 West 2100 South

~ {~~19~[~~9
WykI [)stnbution Group
1959 South "30 We.t, \Jr'lIt B
Salt Lake Oty 8'104
Tel (801) 97'·9953

WAIHINQTON

Nrow ElectronlCl. Inc
14320 NE 21" Street
Be~ 98007
Tel (206) &43'""800
TWX, 910-'44·2017

Hamll10nl AvOll EIKtrOfllCl
'''212 NE 21st Slreet
•••••••• 98005

~ (2:J,",,:~2~~4
WISCONSIN

fArrow ElectronlCl, Inc
430 W Rau •• on Avenue
OakerMk 531~
Tel ('14) 764·6600
TWX 910-262·1193

W1SCONStN (Com'd)

THamdlon/Avnel EIecIrOl"llCS
2975 Moorland Road
New Berlin 53151

~ (4J~6.2~~~;~~~0

CANADA
A18II1TA
Ham./kln/Avnet ElectrOl"llCl
2816 21s1 SIrMl N E

~031~~32Sll6
TWX 03-827·642

ZentrOl'llCl

~&~4lhlAvenue NE

~llga(103j2~7~'~2'

IMmlH COlUM.IA
Hamllton/Avnet EJectronca
105·2550 Boundry Ao.d
BurmaJay V5M 3Z3
Tel (60') 272,",,242

Zonuonoco::=~~'rrRoad
Tel (fI04}273·5515
TWX 0A·5Q77-89

MANlTo-A

Zentronics
590 Barry Street
Winnipeg R3H OSl
Tel (204) 775-M81

ONT"'OO
Atrow EIectrOl'llCl Inc
2' Mar1ln Aoa A..-oue
00wnsYIIW M3J 2K9
Tel ("6) 661..()220
TELEX 06-218213

Nrow ElectrOfllCl 'nc
148 CoIoonade Road
Nepean K2E 7J5
TII (613) 226-6903

fHamilton/Avtlel ElKtronica
68-45 Rexwood Road
UmtsG&H
M1SSllAugi UV lR2

~ (4~~L~t~~2
THsITlIlb'l/AvneI EIectrOl"llCl
210 Co6l:w'nde Road Sou1h
Nepean K2E 7L5
Tel (613) 226-1700
TWX 05·349-71

fZenlrOntCI
8 Tilbury Co1Jr1
Brampton L61 3T4
Tel ("6) 451·9600
TW)( 06·976-18

Z""'oooco
564/10 Weber Sir'" North
Waterloo N2l 5C6
Tal (51i) 884·5700

Zon1<OnOa
155 Colonnade Aoae:t
Unit 17
Nepean K2E 1KI
Tal (f113) 225·88'0
TWX 06·97&-78

QUEiIEC

Nrow ElectronICS lnc
'050 Jean Tlion OueSI
Montreal H4P 1Wl
Tal (51') 135-5511
TELEX 05-25596

Arrow BIctronICI Inc
9011 CNrnt BIYd
Ouebec 61N 2f1Sl
Tel (4111) f187'""231
TLX 05·13388

HamiIton/Av •.••' ElectronICS

~r9ta~;:n' H~iSr~P8

~ (5~{6.4~~~~c:f
Zentronica
505 lOCk. Sireet
St Laurent H4T lX7
Tal (51') 735·53f11
TWX 05-&21·~5



inter
DOMESTIC SERVICE OFFICES

CAUf'ORH ••••

lmel Corp
21515 Vanowen
SUlIe 116

f:t':'8fl;~:Jggg
Inlel Corp
2250 E Impenal Way
SUIIe 218

i~~~64~~O

"'" Co<p1350 Shorebird Way
M1 v_ 94043
Tel {"IS} 968-8211
TWX 910-339-9279
910-338-0255

Intel Corp
2000 E 4th Stfee'
SUIle 110
Sanla Ana 92705
Tel (714) 835·5577
TWX 910-595·2475

Intel Corp
4350 E.lleaJ1Ne DrIVe

"""" '50Slin Otego 92121
Tel (619) 452·5880

COLORADO

Intel Corp
650 South Cherry
SUIte 720
Denver 80222

~ (32,JJ.95~~2~
CONNECTlCUT

Intel Corp
26 Mill PIa", Ro8d
Danbury 06811
Tel (203) 748-3130

FLORtoA

\~ r:X 6200 Street
SUIte 104
FI lauderdale 33309
Tel (305) 771.0600
TWX 510·956·9407

FLORIDA (COnt'd)

'''''' Co<p242 N WestmorMe
SUlIe 105

~:~;) S:~~2714

GEORGIA

Intel Corp
3280 Poin1e PartlwIY
s."" 200
NorcrO$$ 30092
Tel (404) .•.• '-1111

'LUHOlS

"'" Co<p300 N MartJ09IIe Ad
SUite 300
SChaumburg 60194
Tel (312) 310-8034
DIspatch (J12) 310·1803....•..
"'" Co<p
8400 W 1l0ltl Street
Sulle 170
CNel1lInd PaJ1l. 66210
Tel (913) 64NI080

lWIYLAND

Intel Corp
51t1 Floor PToooct ServICe
7833 Walker Dnve

¥;~~\\ ~~~~20

MASSACHUSETTS

Intel Corp
27 lnduslnat Avenue
Chelmsford 01824
Tel (6m 256-1800
TWX 71().343-6333

••••• lGAH

1"1eI Corp
7071 Orchard lake Road
SUIIe 100
West BIoomIleld 48033
Tel (313) 851-8905

MISSOURI

1"1eI Corp
4203 Ear1tl Crty upressway
SUlIe 143
EaM CIty 63045
Tel (314) 291-2015

HEW JERSEY

lnlel Corp
385 Sytvan Avenue
Englewood Olfls 07632
Tel (201) 567-0820
TWX 710·991-8593

~~rtanCor~a 111
Raman Center
EdIson 06817
Tel (201) 225-3000

NORTH CAROliNA

Intel Colp
2306 W Meadowvtew Road
SUite 206
Greensboro 27407
Tel (919) 294·1541

OHIO

'''''' Co<pChagm·BratOard 8'dg
SUite 305

~=a~haj~~22Boulevard

Tel (216) 464·6915
TWX 810·427·9298

Inlel Corp
6500 Poe
Daytcn 45414
Tel (513) 890-5350

OfI£GOH

"'" Co<P
10700 SW Bea~1e

~12
Beaverton 97005

~ (~1~_4~~8~

OREGON (Confd)

~~ ':i1 Elam Young Par'{way
HlMsboro 97123
Tel (503) 681·8060

PENNSYLVANIA

Intel Corp
201 Penn canlei' Boulevard
SUite 301 W
Pinsburgh 15235
Tel (313) 354-1540

TEXAS

Inlel Corp
313 E Anderson lane
SUIte 314
Austin 78752

~ (5Jf6~i:4~l487

Inlel Corp
12300 Ford Road
SUIIe 380
Dallas 75234
Tel (214) 241-8087
TWX 910-860-5617

WASHIHQTON

1"1eI Corp
110 110m AYenUe N E
SUite 510
Bellevue 98004
Tel 1·800-525-5560
TWX 910-443·3002

WISCONSIN

Inlel Corp
450 N Sunnyslope Road
SUIte 130
&ooto:tiekt 53005
Tel (414) 764-8087



EUROPEAN SALES OFFICES

HLGIUM

Intel Cofpol'ahon SA
Pate 5eny
Aue du Moulin a Paptef 51
Boile 1
B-ll60 Brussels
Tel 102166101\1
TELEX 24814

DE:NMARK

InIel Denmatk AlS"
GlenleYej 61 . 3td Floor
OK-2.oo~
Tel (01) 19 80 33
TELEX 19567

fiNLAND

IMel Flnlarod OY
RouSl1antle 2
SF-00390 HelSltlgIOts J9
Tel (90) !>4. &44
TELEX 123 332

fRANCE

Intel Pan.
I, rue Edison, BP 303
180!>4 S'lnl-ouentll"l en Yvelll'le'
Tel (3) 064 60 00
TELEX 699016

f1IItANCE (Cont'd)

Intel COtpol'allOfl, SAAl
Immeuble BBC
• Qual des EtrOlts
69005 lyon
Tel (1) 842 .0 89
TELEX 305153

WEST GERMANY

Intel SemlCOroduclor GmbH"
$etd1.ltlS5e 27
D-8000 Munchen 2
Tel (89) 53891
TELEX ()5.23111 INTL 0
Intel SemlCOnduclot GmbH"
Marnurstruse 75
0-6200 Wiesbaoen t
Tel (6t21) 70 08 74
TELEX ().4168183 INTW 0

'nlel 5emICOrodUCIotGmbH
Brucks'rlSSfl 61
7012 Fellbaell
Stullgart
Tel (711) 58 00 82
TELEX 72!>4826 INTS D

Intel 5emlCOrodvdot GmDH'
HohenzollernSltll1e 5"
3000 H.nnover 1

~~tE~51~2~254~N~~ 0

•••••• L

Inlel 5emlCOroduclOtS lid'
At!dlm Industnal Park
Neve Stlarel
Dvot. Haoevl'
BIdg No 13 .If'I Floor
PO Bo•• 3202
Tel Allrv 61430
Te' 3·491099
Teie.371215

ITALY

Intel CorPOt,11Ot'l II•••• Spa"
MiianotlOtl. Pal.zzo E
20094 A55a9O (Milano)
Tel (02) 824 00 06
TELEX 315183 INTMll

Nt:1ltERl.AHOI
Intel Serrnconouc1Ot Nedertlnd BV'
A1e•• nderPQOtl BtJlldtog
Marten Meesweg 93
3068 Ronerd.m
Tel (10) 21 23 11
TELEX 22283

NOI'WAY

'mel Norway A/S
PO Bo. 92
HvamvllC!n ••
N-2013r:r~ 742 "20
TELEX 18018

II'AIN

Inlel lbe".
Calle lurbaran 28
Madr!d ().4
Tel (304) 1"'0 40 Q.t
TELEX "6880

•••••••
Int.' Sweden A B •
Dalvagen 24
S-l71 36 Sol",
Tel (08) 134 01 00
TELEX 12261

IwmEllLNIO
Intel Semlconauclot A G •
TalKketSltaSM 11
8152 G1a1lbnJQg poslflCh
CH-8065 lunch
Tel (01) 829 29 11
TELEX 57989 lCH CH

UNfTID IUNQDOIlI

1"... Cotpot.1IOn (U K) Ud"
Piper1 W.y
SwtnOon, Wiltsrw. SN3 1R,J
Tel (0193) 488 388
TELEX 4•••••47 INT SWN

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AtJS1lIIlA

Ba.cher Elektronlsche Geraele GmbH
AoteomuehlglSse 26
A 1120 Wlen
Tel (222) 83 56 46
TELEX 11532 BASAT A
W Moor GmbH
~~~~lel/111

Tel 222-8586.6

RLQIUIII

InIlco a.Igium 5 A.
A.... de. Croi. de Guerrl 9"
Bll20 Bru.HI.
Tel: (021) 216 01 60
TELEX· 2!>4'"..-
,ll MultiKomponant A/S
N• ...-rI.nd 29
OK·2&OOGlolktup
~ !g~)55.5 58 "5

, .
Of Finll'or'lICAB
Melkonk.lu 24 A
SF.Q0210 Helsinki 21
Tel: (Ol 892 80 22
TELEX: 124 22" Fll'on SF-G«larim
Z.I. de Courtaboluf
Avenue de II Ba.ltique
F·'1943 In Uti. ~.·B.P 88
Tel (1) i01 18 18
TELEX· F8'1700

1'r."t'~'dl Jlan-J.urn
F-94800 Ct'tol'y·l.·Roi
Tel· (1) 853 12 00
TELEX; 280 !HI1

MIJr!)Iogia
l. Tour d' A.nier ••
••, Allenue l'urlnt Cely
F-82808-A.nIarl'
T. (1) 71tO82 40
TELEX 811.0448

TlkelecAlttrOl'llC
Cte de. Btuyarl'
Rue carla Vlrnal B.P 2
F·82310 5evr ••
Tel' (1)534 75 35
TELEX· 204552

W£ST GERIIAH't'

Eleclronic 2000 Vertnebs A G

g.~U~~':2
~rlJ89~2;~100EEtg D

Jermyn GmbH
Po.lfaell 11 80
5<:I1ull1r•••• 84
D-6277 Bad camber8
Tel· (06434) 231
TELEX. 484.28 JERM D

Elec1tonlc1 Syllem.

MetroIog •• GmbH
Hanseatr •• se 15
0·&000 Munlctl 21
Tel: (89) 51 30 84
TELEX· 5213189
ProelecVon Venriaba GmOH
M•• PIa.nc:k Str•••• 1·3
[)'8012 DtIIeiCh
Tll: (8103) 33564
TELEX' "11983

IRIL.fJiIO

=~~~Paft(
~lene8:~~
TII: (1) 85 82 88
TELEX; 315&4

•••••• L
Eutronicl Lid.
11 Rozanla Slr,,'
P,O, Bo. 39300
Tel Aviv 81310
Tal: (3) 47 51 51
TELEX. 33838

ITALY

Eleclr' 35 S.P A.
Vial. EIYIZIa, 18
• 2015-4 Mij.no
T. (2) 304 11 51
TELEX 332332
Intel!
MiianolKlrI P.l EIS
1·20090 """90
M~ano
Tel· (2l 82410
TELEX 311351

_OLANlll

Konlflg & Hartman

~6&~lf220
2S4. EN'. Gt.venhage
Tel 31 (10) 210101
TELEX 31528

NORWAY

Nordlsk Elaklronic (Nor9l) A/S
Poslofllce Bo. 122

~36."'~~1ad•
Tel (2) 8<16 210
TELEX 17546

I'OImICIAl.

0""",CotnpoNn1n E Elactronce lOA
All. MIQUeI Bornbarda, 133
P-l000 lllboti
Tel: (II) S4S 313
TELEX: 14182 Briak.·P..-
Interl.ce S.•••..
A'I. Pompeu F.bra 12
08024 Ba.rcelonl.
Tel: (3)211 80 11
TELEX Sl50a
m SESA
Miguel AI'lQel 21, 8 PIeo
Mtdrid 10
Tel: (34) 14 1864 00
TELEX' 27"81

~Eag:na8t.alI 5
28020 Madrid
Tel: 455 38 Be
TELEX: 421.81_-
AB Gos1a 8a(:t(1lrOl'I'I
Bo. 12OOS1
Ala~tan22
5-10221 SlocldlOlm
TII: (OB) 541 oao
TELEX; 10135
Nordlsll; Elactronik 10.8
Bo. 1.og
~1~;taro: 1
TII: (08) 134 81 10
TELEX· 10!>47

IwmEOLUlD
Inou.trad8 AG
Har1l.tt •••• 31
CH.aJ04 WaIIiMlIen
Tel (01) 8JO SO 40
TELEX S6788 INOEl CM

UMfTI:D KtMGDDIiII
B)1aC1l lid
UM "L"-_EIt1y, AucIing•..•.....
Tel (01304) 81031
TELEX 848215
eomway MlcrOlystem. lid
~ SIl'N1
UK-Btacknel, Berbtwl

~rlJ· 2::6155333

Jermyn Indu.trlel
V"lry E.taw
5evenoakl, Kent
Tel (0132) .S0144
TELEX 1$142

MEDl.
Ea.t L'M Rotid:::":1 7FP
frlJUI%.~~307

AapId Recall, Ud.
~ Hou •• /Dranrnerk 51=.,~::HPlI 2ER
Tal (414) :ze 211
TELEX 131131..-.....•
H, R, Mlcroeleclronlcs Enltrprl •••
PO 80. S&04
san JoN, calilotnia I$ISO
Tal 401/'71-10OO
TELEX 271-558

INTERNATIONAL SALES OFFICES

AUlTllAUA

Inte\. Australia Ply Ltd·

~~lh1ox~;~1
Not1tI Sydney NSW, 2060~==:'0::.;)
200 Pacific Highway
level 6
Crows Nest, NSW. 2065
T~ 011061-2·957-2744
TEl EX 79().20097
FAX 01l-61·2·957·2744

CHINA
Intel PAC eorporlbol'l
15/F. Office 1. Cnic Bl6g
Jian Guo Men WI' Avenue
Belling. PAC

HOHQ KOIIO
ImeI Semtoonductof Lid'~:~~~3~e
TWX 60-410 ITLHK

JAPAN

Intel Japan K K
5-6 TokodlJ, Toyosato-machi

~:rk~1~~~~rl~300-26

TELEX 03656-160

Intel J~ KK'
Korneshll'l Bldg
2·'-15 Naka·machi
AlslIgl, Kanagawa 243
TeL 0462·23·3511
Inlel Japen K.I<'
DaIIChl MrtsugI SlOg
1-8889 F~

~~~j-t1.~,'8J

Inlet Japan KK'~~~:Y8
~ma3tl~24~~~360

Intel Japan K.K·
Ryokuchl-StalJOn BIdg
2 ..• ·' Tflfaucl'll

i~863~~. 560

JAPAN (COnI'd)

Intel Japan K K
Shlnmaru BIOg
'·5-' Marunouctu
Ctwyoda-ku. T()i(yo 100
Tel 03-201-3621

In1el Japan KK'
FIower·H~1 Shifl..macho EaSt 8ldg
1-23-9 Shtrvnacht

~:agoa:r.~·~~2J~yo154

Inlel Japan K K'
MII$Ul-5eII'ne1 MUAsht-Kosugl BIdg
915 StIil'vnII;uko, N.kahara·ku
KawasaJu·Shl, Kanagawa 21'
Tel OU-733-7011
Intel Japan K K
Mlshlma Tokyo·Kalto BIdg
,., Shlbahon-cho
Mlshlma·1hl
Shl2:u0k8-Ken 411
Tel 0559·12-4121

K""EA
Intel SemlCOrlduc!Ol' ASia lid
SlOgsong 8Idg 8th Floor # 906
25-4 YOiO<).Dong. Youngdeungpo.-Ku

""'" 150Tel 011-82-2-784-8186 or 8286
TELEX K29312 INTElKO

SINGAPORE

Intel SemlCOOduc'or lid
\01 Thomson Road
21-06 Goldhlft SQuare

f~~~5.~~781'
TWX RS 39921

TAIWAN

Intel SemlCOnduc'or lid

~~~?~'S~~ C~as~~
T ••••

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

'-NTlItA

VlC SA l Bal'lllome Mitre 171'
30 PiIO
1037 Boeooa Aires
Tel 011·54-1-49-2092
Telex 17575 EDARG-AR...,.
Solmex Iolema\lonal Corpor8lJOn
15 Parll. Row. Room #1730
New York, New York '0038
Tel (212) 4Q6.3052

AUITIIAUA
TOUll EIectr<ncs
(Malilng Address)

~~e-~a3125

(Shipping Address)
9 Harker S'ree'

"""""'"Vidor •• 3125
Tel 011-61-3-288-4044
TELEX M 31251

TOUlI EIectrOl'llCS
PO Box 139
Ar1amon, N S W 2064
Tel 011·61·02·438-1855
TELEX 25297

IlRAZIL

EleOraMlC:r~Ol"CIS/A
R. Bogaert. 325
04298 . SIlo Paulo
Tel 011-55-11·274·9945
TELEX 1132864

CHlU

DIN

i~~.~:~ 204
Cui/III 6055
-ogo
Tel 011-56-2·277-564
TELEX' 352-0003

i~-=ess~
3801 KeMeIl Pike
W~. [)eqware 19807

e-A

CHtHA (Cont'd)

$chrmdt .\ Co lid
18/F Grea' Eagle Centre
Wanctllli

~01~2.5-822'{)222
TWX 74766 SCHMC HK

HOHQ KOIIO
Sctvrtt<n & Co ltc!
18/F Great Eagle Cenlre
Wanchai
Tel 011-852·5-822.{)222
TWX 74766 SCHMC HK

INOlA
MlCl'onIC Devlces
65 Arun Complex
DVGRoad
Basavan Gudi
Bangalore 560 004
Tel 011·91-812-600-631
TELEX 011·5947 MDEV

'",''''''' """""104/109C Nlrmal Industnal Esta ••
Sfon {E}
Bombay 400 022
Tel. 011-91·22-48-61-70
TELEX 011·7\4<117 MDEV IN

MlCfonlC 0evK:es
A-$4 New RaJll"lder Nager
New DelhI 110 060

Ramlak ln1ernabOl'lal, Inc (Agent)
465 S Malhllda Avenue
Suile 302
Sunnyvale, CA 9<11086
Tel (<1108) 733-8767

S .\ S Corporation
PO Box 20160
San Jose 9516().()l60

J•••••
Asahi ElectrOniCS Co lid
KMM Bldg Room <1107
2·1<11.1 ANno. Kokuralola-Ku
Kitakyushu CIty 802
Tel (93) 511-6471
TElEX AECKY 7126-16

C hot! MICl'Ol'lICS Corp
OS 85 Bidg 2·6-5 SUda-OlO

~~nd(03~hm.~~1~' Tokyo 101

TELEX (03) 252·377<11

JAPAN (Cont'd)

=a ES~~~ba~~~
<11-5·4 Hatchobori
Chuo-Ku. Tokyo 104
Tel (03) 555-<11811

Tokyo Eledron lid
Shentuku Nomurl Bidg
1-26-2 NI$hl-ShlnJuku
Shtnluku-Ku, Tokyo 160
Tel (03) 343_4411
TELEX 232-2220 LABTEl J

K""EA
J-TEK CorporalJOn
2nd Floor. Goverrwnent PefIs,on Bidg
24-3 YOIdo-Oong
Youngdungpo--Ku
Seoul 'SO
Tel: 01'-82-2·782-8039
TELEX KODIGIT K25299

~:r066 EO:;Ta~ •.~~"C...ard

~~nteI7i:) ~~TzO.tCA 90670

TELEX 194715 KOAAM DIGIT lSA

Samsung

~go~.:l~yu~~ BIdg

~tK"
Tel 777-78
TELEX 27970 KOASST K

Tnslar SermcondUClOr (Agent)
51SO Oreal America Par1<.way
Santa Clara, CA 9SOSO
(<II08) 980-1630

MUtcO
OtCOPEl S.•••.
Toc/'llII 368 Frace IncI Sn
Azcapo\laloo
02760-MelllCO, 0 F
Tel: 90115255613211
TELEX 1713790 OICOME

NEW ZEAUHO
Nomrup Ins1rumeoI5 & S)'$tems lid
<1159 Kyber PIss Road
P.O Box 9464, Newmarll.et
Auckland 1
Tel" 011·6<II·9·S01-219, SOl-801, 587-
037
TELEX. NZ21570 THERMAL

NorYvup Ins.-uments .\ S)'$lemS lid
PO Boll 2<1106

~~Z~58

'AKtSTAN

Computer AppIlCallOnS lid
70 Gllri Bouleyard
oe'ence
Karactll-46
Tel 011-92-21-530-306
TELEX 24434 GAFAR PI<

HOriZon Tranng Co, Inc (AgenI)
1 Lalayene Cenler
1120 20th Slree' N W
SUlle 530
~;si~~'~7~90020036
TWX 248890 HORN

SlNGAJ'OAE
General EngtneefS CorporltlOl'l Ply
l~
203 Henderson Road
1102 Henderson IndUSlnaJ Parle. 0315
Tel 011065-271·3'63
TElEX RS23987 GENEACO

SOlITH AFRICA

EledronlC Buildll'lQ Elements Ply llO

~M61~1,x"'~~S)
Pretoria 000'
Tel: 011-27·12-<1169921
TELEX 3-22786 SA

~~~;~)Slfee1
Hazelwood Pretoria

TAIWAN
MllaC CorporatlOfl
No 585 Mlng Sheng E Road
T ••••
Tel 011·96-2-501-8231
TELEX 11942 TAlAUTO

MeCW!I Intefnabonal. lnc (AgenI:)
3385 V*> Coofl
Sanla Clara, CA 9SOSO

~ (<II~J_3~2~~~3
FAX <II08·98Q.97<112

YUGOllUVIA
H. A MICf08IectOfllCS EnterpnseS
PO Box 5604
San Jose. Calrlor"'l 95150
rei (<1108) 978-8000
TELEX 278-559

'FI8Id AppllCellOfl localkln





intel
INTEL CORPORATION, 3065 Bowers Ave., Santa Clara, CA 95051; Tel, (408) 987-8080. 

INTEL CORPORATON (U.K.) Ltd., Swindon, United Kingdom; Tel. (0793) 488 388. 

INTEL JAPAN k.k., Ibaraki-ken; Tel. 029747-8511

Printed in U.S.A./CR-034/1085/15K/CP RM 
Microprocessors


