Intel e

80386
HIGH PERFORMANCE MICROPROCESSOR
WITH INTEGRATED MEMORY MANAGEMENT

m Flexible 32-Bit Microprocessor m Hardware Debugging Support
— 8, 16, 32-Bit Data Types

m Optimized for System Performance
— 8 General Purpose 32-Bit Registers P Y

— Pipelined Instruction Execution

m Very Large Address Space — On-Chip Address Translation Caches
— 4 Gigabyte Physical — 12,5 and 16 MHz Clock
— 64 Terabyte Virtual — 32 Megabytes/Sec Bus Bandwidth

— 4 Gigabyte Maximum Segment Size m High Speed Numerics Support via

m [ntegrated Memory Management Unit 80287 and 80387 Coprocessors
— Virtual Memory Support

- . . m Complete System Development
— Optional On-Chip Paging

) Support
— 4 Levels of Protection — Software: C, PL/M, Assembler
— Fully Compatible with 80286 System Generation Tools
m Object Code Compatible with All 8086 — Debuggers: PSCOPE, ICE™-386
Family Microprocessors High Speed CHMOS Ill Technology
m Virtual 8086 Mode Allows Running of 132 Pin Grid Array Package

8086 Software in a Protected and
Paged System

The 80386 is an advanced 32-bit microprocessor designed for applications needing very high performance
and optimized for multitasking operating systems. The 32-bit registers and data paths support 32-bit addresses
and data types. The processor addresses up to four gigabytes of physical memory and 64 terabytes (2**46) of
virtual memory. The integrated memory management and protection architecture includes address translation
registers, advanced multitasking hardware and a protection mechanism to support operating systems. In
addition, the 80386 allows the simultaneous running of multiple operating systems.

Instruction pipelining, on-chip address translation, a a high bus bandwidth ensure short average instruction
execution times and high system throughput. The 80386 processor is capable of execution at sustained rates
of between 3 and 4 million instructions per second.

The 80386 offers new testability and debugging features. Testability features include a self-test and direct
access to the page translation cache. Four new breakpoint registers allow conditional or unconditional break-
point traps on code execution or data accesses, for powerful debugging of even ROM-based systems.
Object-code compatibility with all iIAPX 86 family members (8086, 8088, 80186, 80188, 80286) means the
80386 offers immediate access to the world’s largest microprocesor software base.

(See Packaging Specification, Order #231369)

SEGVENTATION UNIT PAGING UNIT BUS CONTROL

Figure 1-1. 80386 Pipelined 32-Bit Microarchitecture

UnixTM is a Trademark of AT&T Bell Labs.
MS-DOS is a Trademark of Microsoft Corporation.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. October 1985
© Intel Corporation, 1985 Order Number: 231630-001

TABLE OF CONTENTS ...t s

BASE ARCHITECTURE ...ttt esne e

21 Introduction........ccceeveeniniene

2.2 Register Overview............

2.3 Register Descriptionscccceeueeee.
231 General Purpose Registers....
232 INSEIUCHION P OTNTE T .ottt
2.3.3 [(o E R = =T o |13 (= SR
234 Segment Registers.......cccceevvveeene
235 Segment Descriptor Registers
2.3.6 Control Registers.........cceevveenne
2.3.7 System Address Registers.......
2.3.8 Debug and TeSt REQISIEIScciiiiieeiiiiee e neee e naee e naaee s
2.3.9 RegiSter ACCESSIDIITYcciiiiii it
2.3.10 Compatibility

24 INSIIUCTION S @ittt ettt eab e e b e e e sabeebeeeaneeens
24.1 INSEIUCHION SET OVEIVIBW ...ttt sine e
242 80386 Instructions

25 e [0 [=2 g T AV o Yo =R
251 Addressing ModeS OVEIVIEWcuuuieiiuieeeieieessteieeeseeeeestaeeesnneeessnseeeesnneeesseees
252 Register and Immediate Modes......... 16
253 Memory AdAreSSing M O TG ES . ..uui i e e ceee et s e snaae e enees 16
254 Differences between 16- and 32- Bit AAreSSesS......ococvvviriiiiriieniiie i 17

2.6 (D= L= R I 0= TSP PPPPPPPRTN 18

2.7 10 To] YA @ o F-Y T4 1 (o] o H SRS 20
271 Introduction................ ST TSP PP UPROUPOTRTN 20
2.7.2 P20 [0 =TSR o - Y o =1 PSR 20
2.7.3 Segment REQISIEr U S Q@ ...iiiiiie e i eeiiie e sieee sttt et e e st e e e seae e e enaeeaeeneees 21

2.8 (1O IS Y o - Vo TSRS 21

2.9 0L =] o (VT 01 £ TP PPRPUTRTPPPNE 22
291 INtErruUPtsS and EXCEPLIONS . .ciiiiiie et ceee e ee e st seee e e e s e e ntaeeesnneeeennnes 22
29.2 L a10=T 4 0] o) o o Yot 1 o SR
293 Maskable INTEITUPT...... it e e e e e e sra e e e e sraeeeaans
294 Non-Maskable Interrupt
295 Y0101 U= [N (=T U] o) SR
2.9.6 101 0=T 4 U] o) A o 0T | = OSSR

2.9.7 Instruction Restart
2.9.8 DOUDBIE FAUIES ...uuiiiiiiiecececcee et e e
2.10 Resetand INItialiZationoooooiiiiiiiiiiiee e
211 Testability
2111 SEIf-TESE e

22 5 O I 1 R I 1] 4o U
b2 2 0 1= o 0T To [To TS U o oo o S SPSRRN
. REAL MODE ARCHITECTUREiiiii ittt ettt aee s 27
31 Real Mode Introduction........ e —— 27
3.2 MEMOTY AQAIESSING ..cuviieeiiiiiie e et e ettt e e s e e et e e et e e e e stbe e e e e steeaeasseeeeaseeeeensreeeaas 27
3.3 RESEIVEA LOCATIONS.....uiiieiiiiie ettt e e e e e e sst e e e e srae e e e snteeeeaneeeeennneeeaan 28
3.4 L =] 4 (VT 0] £ PP T TSP PPPUTTTPPRIN 28

3.5 Shutdown and Halt........c...uuiiiii e 28

4. PROTECTEDMODE ARCHITECTURE 29

41 INtroducCtion 29
4.2 AddressingMechanism i 29
4.3 SOTTONTALION v & rors s 57075 s s sve s 55ms 5 57w 5 50wk & 570 3 $03v8 § 608 € $1508 3 e § a0 B 5978 8,500 & ¥ il 30
4.3.1 Sogmentation INrodUCHON . oo« e wm s cvse s s asnssmssmessnsseoesiossusss 30
432 TOrMINOIOGY: s« s s s s sime 5 5iars 968 Si1ars 25608 S8 378 5508 €808 3188 8 Wyevs SiHe 8.8 30
4.3.3 DoSCHPOr- TADIGS « « <is s cins o wims iwia s siwe sias 5 5§ 570 & 5508 sis'n & w0 s $raist » w130 Srw s & 31
4.3.31 Descriptor Tables Introductiono, 31
4.3.32 Global DeSCrptOrTable . :.uu « e cse s sw e sioims s s vioms s s 5o s o s 956 o5 32
4.3.3.3. Local Descriptor Table .. ::sw:iveivsseasssesives smnsssseossensessnss 32
4.3.3.4 InterruptDescriptorTablettt 32

4:84 DOSCHPYOTS v ¢ visivc w3 wiscn s s o 99908 5 o7 & 61808 s 516 » 8160 & BT s bileys, & Wi § s § 37046 & Y038 & 32
4.3.41 Descriptor Atibute BitS « . oo o s s smis s s wmmn s mis siwr e s wim s 51905 « 508 5 wins 56 32
4.34.2 386 Code, DataDescriptors (S =0).......couiiiiiiiiiiinnnennnnn.. 33
4343 System DescriptorFormats i 34
4344 LDTDescriptors (S =0, TYPE = 2)uuumurniiiiiiiiinnnn 35
4345 TSSDescriptors(S=0,TYPE=1,3,9,B) 35
43.46 GateDescriptors(S=0TYPE =4-7,C,F)iiiiiiii.. 35
4.3.4.7 Differences Between 386 and 286 Descriptors.. 36
4.3.48 Selector Fieldsuuuuuuii i 36
4.3.49 SegmentDescriptor Cache.uuuuiuiiiiiiiiinen 36
4.3.4.10 Segment Descriptor Register Settingst 38

4.4 Protection 41
4.41 Protection Conceptsuuuiuii i 41
442 RUIGSOFPHVIIOES .. oocvisvsemesiossnnenssenesivessioesonssnssmsessssosss 41
443 PrVIlOOO LLOVOIS ... « vics s a5 s s sims o sisrs 550 5 5 & rewss o a8 5 106 8 8760 5068 818581 8 w807 41
4431 TaskPrivilege :.::.c.iciiuviomssonssmssnesusssmstasssessomssnssas 41
4.43.2 Selector Privilege (RPL) .:.cisvsesismassmmisssnsnismsasssomsssss s 41
4.4.3.3 /O PHVIIEGO: + crv s wims sws s mm s mio s s 505 5 mim s 5606 3 i wimrs & wiw' s 51805 5 win 3 410 6 5 00 41
4434 PrivilogoValidation .. . cu i s cessmesnsssms messses siwe s ais s sisie s eis 5 ainis s o 42
4435 DOSCIHPIOr ACCESS «x o cio s s s 6105 siss o s & iors & wiei o wisis s ws s Bo's 4775, & wras & ais 42

444 PrivilegeLevel Transfers.........cooveiiiiiiiiiiiiiiiiiniiennenens 42
445 CaAllIGAOS .o : v s s s ot o e s wrope 5 515 b S 57505 & 1SS 87008 5 Siors B1Rie 5 @SS 585 8 WETE S 44
4.4.6 TaSk SWICHING. 5 s wie ¢ w5 v 5 51608 50610 5 80500 53wi6 5 wieve 27508 5 BIES <5006 § w8 3135 & oes Sieie 44
4.4.7 Initialization and Transition to ProtectedMode 46
4.48 Tools for Building Protected Systems 47
4.5 PAGING w55 sima 5 555 5 50w © 50 5 05 5 959 & 5005 & 508 § 5650 6 § 0k § 061§ 5608 5 9060 § B0 § W8 § PR § 46 8 B R 47
451 Paging CONCOPIS: « «.cxsicswwsaime s o s as s 56 § 50 s 5awis 5506 8 56w0 6 5.8 8 566 8 59 5 55805 47
452 PagingOrganization.uuuntit it e 48
4521 PageMechanismc.oiiiiiiiiiiiiiiiiiiiiiii, 48
4522 PageDescriptorBaseRegister i 48
45283 PageDireCtoryoueiiiii e 48
4524 PageTablesuuuuiii e 49
45.25 PageDirectory/TableEntries...............coooiiiiiiiiiiiiiit. 49

453 Page Level Protection (R/W,U/SBIits) ..., 49
454 Translation Lookaside Buffer 50
455 PagingOperationttt 50
456 Operating System Responsibilitieso ... 51
4.6 Virtual 8086 Environment 51
4.6.1 Executing 8086 Programsttt 51
4.6.2 Virtual 8086 Mode AddressingMechanism 51
46,3 PagingIn Virtual MOTB o soms s 500 5 s s s 5 15 o i 5 00005 8 555 & misvs s 506 5 006 s 658§ 51
46.4 PTOYECHOM 5 5os 5 ot sorn s sw s s & s 5 5im1 6 5 vy 5 5300 5 6 s 5751 & 3 s 3080 2800 3 910 3 i § 52
465 Interrupt HANGING c o 500 5w sme s mm s mms s am 5w s 0 5 aion s e s w605 % i s 67605 5 56 5 53
4.6.6 Entering and Leaving Virtual 8086 Mode 53

3

5.

FUNCTIONAL DAT A . . e 55

5.1 INEPOAUCHION i 5« 5 516+ uain 05 2 nave mimin # s aimin 2 convr o 050 o0 win s al0s - o e et e e o e oo s & 8 55
5.2 Signal Descriptioniiiiiii e 55
5.21 Introduction 55
522 CloCK (CLK2) . ..ottt et et e 55
523 DataBus (DOthroughD31).oiiinrtiiiiiiii i 56
5.2.4 Address Bus (BEO# through BE3#, A2 through A31) 56
5.2.5 Bus Cycle Definition Signals (W/R#, D/C#,M/10, LOCK#) 57
5,26 BUSCONTOISIGNAIS «viv o150 5 nrei s 5iapes 51 ¢ 0055 sim0 5 sivis #ha1s w3 0 = afo n 550 5 ad6e 0 o & 538 58
5261 INMOAUCHON c : oo s sion & 50 o wisim s 6im & Siets 100 5 o6 & 4 wie 5 s 3cim o510 & 50506 & 078 & 566 58
5.2.6.2 Address Status (ADS#)ttt 58
5.2.6.3 Transfer Acknowledge (READY #)coiiiiiiiiiiiiinnnnnnnn. 58
5.2.6.4 NextAddressRequest (NA#)oiiiiiiiiiiiiiiiinnnnnnn... 58
5265 BUSSIZO VG (BSVOH) s . vrvvsinnsvins s s i s omss s s wimes oo s o £ 5985 55 8375 58

527 BusArbitration Signals «...:..ivvieeiiviciviiniianiiviiosstsitosaanaes 59
5271 INtrodUCHON ..« civs cnie s sims s mis 5 50a's sms o 507 oioin 5855 § 500w 3 imne 5 ionsi 0 5 mim o min oo 59
5272 BusHoldRequest(HOLD)c.iuiiiiiiiiiiiiineennnnnn. 59
5.2.7.3 BusHold Acknowledge (HLDA) . ..ottt 59

5.2.8 Coprocessorinterface Signals.............c.ooiiiiiiiiiiiiiiiiinean... 59
5.2.8.1 INtroduction 59
5.2.8.2 Coprocessor Request (PEREQ).ttt 59
5.2.8.3 CoprocessorBusy (BUSY#)oiiiiiiiiiiiiieiiiiinnnennnns 59
5.2.8.4 Coprocessor Error (ERROR#)oiiiiiiiiiiiiiinnennnn 60

529 INtOITUPESIGNALS ::: . sivic cms 5 mios simim « sibs sias o win s 5558 5 995, 8 S78% 3wl & wis's &8s o wiats 51 60
5291 INMOAUCTION <o s w5 siuis s mars 5550m 5 wynrs 5500 § S00s 3vas 5 565, § 0w %3876 § wIBts 0 & wysts 46 60
5.29.2 Maskable Interrupt Request (INTR)ccoiiiiiiiiiiinaaann.. 60
5.2.9.3 Non-Maskable Interrupt Request (NMI), 60
5294 BROSOU(RESET) o5 i s o 50w s s 0 5615 8 5 5 55 s 516 5 67505 s 8l ¢ 695 5wl 5 01604 636 60
5210 SIGNALSUMMARY . ;. so : 5ims 66 s sims sisis 1 65 5 006 5678 5 56,9 5 618 57608 37508 3 970,835 61
53. BusTransforMOCRANISM .« s s s mivs wims oim s 47 v 5055 5 508 8 385 Bkl 95 5 3608 55055 570 61
5.3.1 INHOAUCHON 55 555 5505 5 58 5 5015 5995 5 55 5658 3 5558 B0615 958 & HIO0 R 908 § 5368 Sdvd 8 3005 8 61
5:3.2 MemOory and 170 SPaACES i.a s uis s s s oo 5 s ws s sis s aivie 550 & siis 5 606 s v 2 5 0o & mmmn o5 62
5.3.3 Memoryand /0 Organizationccoiiuiuiiiiiiniiienininn... 63
534 DynamicDataBusSizingcoiiiiiiiiii e 63
5.3.5 Interfacing with 32- and 16-bitMemoriest 64
5.3.6 Operand AlIgnmentttt 65
54 Bus Functional Description e 65
5.4.1 INtroducCtion e 65
542 Address Pipelininguiiuiiiiii i e 68
543 ReadandWrite CycClescoiiiiiiiiiiiiii e 70
5.4.31 INBEOTUCHON 5 5 5o v 50 5 weirs wim s 575 5 wisys & e & Sists Gouss: o silers H0a3s 5 40et & w160 8 BUES 2 70
54312 NON:PIPEINETAAATOSS .cov v s o v s 555 5 i « 5705 5000 A8 5 a5, 8155, s & aess s 71
5.4.3.3 Non-pipelined Address with Dynamic DataBus Sizing................. 73
5434 Pipelinad AQArOSS : ... uuses s ows o e s sisis o s sons « ais s 556 s sisin o5 s 18 75
5.4.3.5 Initiating and Maintaining Pipelined Address 77
5.4.3.6 Pipelined Address with Dynamic DataBus Sizing..................... 79

5.4.4 Interrupt Acknowledge (INTA)CycleSvviiiiiiiiiiiiiiinennn 81
545 Halt IndicationiCVEI0 . - . : s s s s sisis s w6 o wio & wisie o 616 s 9105 5 6is & 5555 3538 » 90,5 '8 82
546 ShutdownIndication CycCleuuuiiiiiiiiiiiiiiiiiiaa 83
5.5 Other FUNCHONAI DESCHPHONS - - 5w s s = sias 5615 5 e Sisie s 6 5 mie's = 66 o sifors & aie = oo« 516 84
5.5.1 Entering and Exiting Hold Acknowledge, 84
5.5.2 ResetduringHoldAcknowledgecooiiiiiiiiiiiiiiiiiiie 84
5.5.3 Bus Activity During and FollowingResetot 84
5.6 Solf-tost SIGNAIUIS : . cv s siv s s 5w s wsis 5o s 5ios oot s 50 3 500 s 5105 § 00 s 676 & /648 & i § 8 86
5.7 Component and Revision Identifiers 86

6. MECHANICALDATA i, PR HES- N 88

6.1 INtroduCtion e 88
6.2 Pin Assignment i 88
6.3 Package Dimensions and Mounting PR PN 91
6.4 Package Thermal Specification ...t 92
75 ELECTRICAL DATA . .5 5.5 50m: 550 5 55 5 555 5 556 5 655 5 530 § 6788 5 548 5 55 5 5 594 505 & 5 54 § w8 5 94
71 INtroAUCHON 5+ s.os 55 s e 5 5me s 590 50 6 5 54 5 568 5 5550 § 508 ¥ 5708 5 W66 5 570 5 5 W80 & BURLE 5 580 3 B ARIF 5 94
7.2 Power and Grounding .. s s s s s s se s hms s ae sasaims saes sms s asssmssms i amis 94
7.21 Power ConNECHIONSttt et e e 94
7.2.2 Power Decoupling Recommendationsooiiiiiiiiinna.. 94
7.23 ResistorRecommendationsot 94
7.2.4 Other Connection Recommendationscoiiiiiinnn.. 94
7.3 Maximum Ratingso oo e 95
7.4 D.C.Specificationso oot 95
7.5 A.C.Specificationsttt 96
7.51 A.C.Spec Definitions 96
7.56.2 A.C.Specification Tablesccouuuuiiiiiiiiiiiiiiiiiiiiiiinan 97
7583 AC. TeStLoads ...ttt 99
7.54 AC. TimING WaVEfONMS « c s s i s s s 5w e s s sms s o s oiss s 0o s 9068608 s 565308 8 5 99
7.6 ICE-386 CONSIAGTAtIONS: + cuv s wiv v s s s siwe s 56 s wim s 00sis 5 mis 5 0iai e 5016 o aisi s 5600 5 sin & 4000 4 0 102
8. INSTRUCTION SETttt ettt ettt et 103
8.1 Instruction Encoding and Clock Count Summaryccoviiiiinnnenn. 103
8.2 Instruction EncodingDetails 118
8.2.1 L0 YT = 118
8.2.2 32-Bit Extensions of the InstructionSet 119
8.2.3 Encoding of Instruction Fields i 119
8.2.3.1 Encoding of the Operand Length (w) Field. 119
8.2.3.2 Encoding of the General Register (reg) Field 119
8.2.3.3 Encoding of the Segment Register (sreg) Field....................... 120
8.23.4 Encodingof AddressModecoiiiiiiiiiiiiiiiiiiiiiia 120
8.2.3.5 Encoding of Operation Direction (d) Field 124
8.2.3.6 Encoding of Sign-extend (s)Fieldcoiiiiiiiit, 124
8.2.3.7 Encoding of Conditional Test (tttn) Field 124
8.2.3.8 Encoding of Control or Debug or Test Register (eee) Field. 124

intel

80386

ADVANGCE INFORMATION

2. BASE ARCHITECTURE

2.1 INTRODUCTION

The 80386 consists of a central processing unit, a
memory management unit and a bus interface.

The central processing unit consists of the execu-
tion unit and instruction unit. The execution unit con-
tains, the eight 32-bit general purpose registers
which are used for both address calculation and
data operations, a 64-bit barrel shifter used to speed
shift, rotate, multiply, and divide operations. The
multiply and divide logic uses a 1-bit per cycle. The
multiply algorithm stops the iteration when the most
significant bits of the multiplier are all zero. This al-
lows typical 32-bit multiples to be executed in under
one microsecond. The instruction uiiit decodes the
instruction opcodes and stores them in the decoded
instruction queue for immediate use by the execu-
tion unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi-
cient sharing. The paging mechanism operates be-
neath and is transparent to the segmentation proc-
ess, to allow management of the physical address
space. Each segment is divided into one or more 4K
byte pages. To implement virtual memory system,
the 80386 supports full restartability for all page and
segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes in size. A
given region of the linear address space, a segment,
can have attributes associated with it. These attri-
butes include its location, size, type (i.e. stack, code
or data), and protection characteristics. Each task
on an 80386 can have a maximum of 16,381 seg-
ments of up to four gigabytes each, thus providing
64 terabytes (trillion bytes) of virtual memory to each
task.

The segmentation unit provides four-levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The 80386 has two modes of operation: Real Ad-
dress Mode (Real Mode), and Protected Virtual Ad-
dress Mode (Protected Mode). In Real Mode the
80386 operates as a very fast 8086, but with 32-bit
extensions if desired. Real mode is required primari-

ly to setup the processor for Protected Mode opera-
tion. Protected Mode provides access to the sophis-
ticated memory management, paging and privilege
capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086 se-
mantics, thus allowing 8086 software (an application
program, or an entire operating system) to execute.
The Virtual 8086 tasks can be isolated and protect-
ed from one another and the host 80386 operating
system, by the use of paging, and emulation of I/0
instructions.

Finally, to facilitate high performance system hard-
ware designs, the 80386 bus interface offers ad-
dress pipelining, dynamic data bus sizing, and direct
Byte Enable signals for each byte of the data bus.
These hardware features are described fully begin-
ning in Section 5.

2.2 REGISTER OVERVIEW

The 80386 has 32 register resources in the following
categories:

® General Purpose Registers
e Segment Registers

® |nstruction Pointer and Flags
e Control Registers

e System Address Registers

® Debug Registers

® Test Registers.

The registers are a superset of the 8086, 80186 and
80286 registers, so all 16-bit 8086, 80186 and
80286 registers are contained within the 32-bit
80386.

Figure 2-1 shows all of 80386 base architecture reg-
isters, which include the general address and data
registers, the instruction pointer, and the flags regis-
ter. The contents of these registers are task-specific,
so these registers are automatically loaded with a
new context upon a task switch operation.

The base architecture also includes six directly ac-
cessible segments, each up to 4 Gbytes in size. The
segments are indicated by the selector values
placed in 80386 segment registers of Figure 2-1.
Various selector values can be loaded as a program
executes, if desired.

intel

80386

ADVANGCE INFORMATION

GENERAL DATA AND ADDRESS REGISTERS
31 16 15 0
AX EAX
BX EBX
CX ECX
DX EDX
S| ESI
DI EDI
BP EBP
SP ESP
SEGMENT SELECTOR REGISTERS
15 0
Cs CODE
SS STACK
DS
ES DATA
FS
GS
INSTRUCTION POINTER
AND FLAGS REGISTER
31 16 15 0
IP EIP
FLAGS EFLAGS

Figure 2-1. 80386 Base Architecture Registers

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

The other types of registers Control, System Ad-
dress, Debug and Test registers are primarily used
to simplify the design and debugging of operating
systems.

2.3 REGISTER DESCRIPTIONS

2.3.1 General Purpose Registers

General Purpose Registers: The eight general pur-
pose registers of 32 bits hold data or address quanti-
ties. The general registers, Figure 2-2, support data
operands of 1, 8, 16, 32 and 64 bits, and bit fields of
1 to 32 bits. They support address operands of 16
and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be
accessed separately. This is done by using the 16-
bit names of the registers AX, BX, CX, DX, SI, DI,
BP, and SP.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of general purpose registers AX, BX, CX and DX.
The lowest bytes are named AL, BL, CL and DL,
respectively. The higher bytes are named AH, BH,
CH and DH, respectively. The individual byte acces-
sibility offers additional flexibility for data operations,
but is not used for effective address calculation.

31 16 15 8 7 0
AH AlX AL EAX
BH B)X BL EBX
CH CX CL ECX
DH D[X DL EDX
sl ES|
DI EDI
BP EBP
sP ESP
31 16 15 0
| | &P
Y
P

Figure 2-2. General Registers and Instruction
Pointer

2.3.2 Instruction Pointer

The instruction pointer, Figure 2-2, is a 32-bit regis-
ter named EIP. EIP holds the offset of the next in-
struction to be executed. The offset is always rela-
tive to the base of the code segment (CS). The low-
er 16 bits (bits 0-15) of EIP contain the 16-bit in-
struction pointer named IP, which is used by 16-bit
addressing.

2.3.3 Flags Register

The Flags Register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS, shown in Figure 2-3, control certain opera-
tions and indicate status of the 80386. The lower 16
bits (bit 0-15) of EFLAGS contain the 16-bit flag
register named FLAGS, which is most useful when
executing 8086 and 80286 code.

80386

ADVANCE INFORMATION

EFLAGS

FLAGS

33222222222
10987654321

21111111111
098765432109876543210

\

T <
-

RESERVED FOR INTEL

— Z

iop [o|o
L |FlF

TS|z A
FIF|F]F

- o

c
F

VIRTUAL MODE
RESUME FLAG
NESTED TASK FLAG

1/0 PRIVILEGE LEVEL

OVERFLOW

DIRECTION FLAG

N WL r W 3 WL E W N 0 r

CARRY FLAG
PARITY FLAG
AUXILIARY CARRY
ZERO FLAG

SIGN FLAG

INTERRUPT ENABLE

TRAP FLAG

231630-50 -

VM

RF

Figure 2-3. Flags Register

(Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the 80386 is in
Protected Mode, the 80386 will switch to Vir-
tual 8086 operation, handling segment loads
as the 8086 does, but generating exception
13 faults privileged opcodes. The VM bit can
be set only in Protected Mode, by the IRET
instruction (if current privilege level = 0) and
by task switches at any privilege level. The
VM bit is unaffected by POPF. PUSHF always
pushes a 0 in this bit, even if executing in
virtual 8086 Mode. The EFLAGS image
pushed during interrupt processing or saved
during task switches will contain a 1 in this bit
if the interrupted code was executing as a Vir-
tual 8086 Task.

(Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints or single steps. It
is checked at instruction boundaries before
breakpoint processing. When RF is set, it
causes any debug fault to be ignored on the
next instruction. RF is then automatically re-
set at the successful completion of every in-
struction (no faults are signalled) except the
IRET instruction, the POPF instruction, and
JMP, CALL, and INT instructions causing a
task switch. These instruction set RF to the
value specified by the memory image. For ex-
ample, at the end of the breakpoint service

NT

I0PL

routine, the IRET instruction can pop an
EFLAG image having the RF bit set and re-
sume the program’s execution at the break-
point address without generating another
breakpoint fault on the same location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates
that the current nested task's Task State
Segment (TSS) has a valid back link to the
previous task’s TSS. This bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGS is tested by the IRET instruc-
tion to determine whether to do an inter-task
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level.

(Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the maximum CPL (current
privilege level) value permitted to execute |/0
instructions without generating an exception
13 fault. It also indicates the maximum CPL
value allowing alteration of the IF (INTR En-
able Flag) bit when new values are popped
into the EFLAG register. POPF and IRET in-
struction can alter the IOPL field when exe-
cuted at CPL = 0. Task switches can always
alter the IOPL field, when the new flag image
is loaded from the incoming task’s TSS.

intel 80386 ADVANCE INFORMATION
OF (Overflow Flag, bit 11) ZF (Zero Flag, bit 6)
OF is set if the operation resulted in a signed ZF is set if all bits of the result are 0. Other-
overflow. Signed overflow occurs when the wise it is reset.
operation resulted in carry/borrow into the it ;
sian bt (Highvorder bil) of the result bt cia - ooy Camy'Flag, bitd) ,
not result in a carry/borrow out of the high- The Auxiliary Flag is used to simplify the addi-
order bit, or vice-versa. For 8/16/32 bit oper- tion and subtraction of packed BCD quanti-
ations, OF is set according to overflow at bit ties. AF is set if the operation resulted in a
7/15/31, respectively. carry out of bit 3 (addmc_m) ora _borrow into plt
o . 3 (subtraction). Otherwise AF is reset. AF is
DF (Direction Flag, bit 10) affected by carry out of, or borrow into bit 3
DF defines whether ESI and/or EDI registers only, regardless of overall operand length: 8,
postdecrement or postincrement during the 16 or 32 bits.
string instructions. Postincrement occurs if PF (Parity Flags, bit 2)
DF is reset. Postdecrement occurs if DF is . B) .
set. PF is set if the low-order eight bits of the op-
. eration contains an even number of “1’s”
IF- (INTR Enable Flag, bit 9) (even parity). PF is reset if the low-order eight
The IF flag, when set, allows recognition of bits have odd parity. PF is a function of only
external interrupts signalled on the INTR pin. the low-order eight bits, regardless of oper-
When IF is reset, external interrupts signalled and size. '
on the INTR are not recognized. IOPL indi- CF (Carry Flag, bit 0)
cates the maximum CPL value allowing alter- . >) .
ation of the IF bit when new values are CF is set if the operation resulted in a carry
popped into EFLAGS or FLAGS. out of (addmon),.or a borrqw into (_subtractlon)
; the high-order bit. Otherwise CF is reset. For
TF (Trap Enable Flag, bit 8) 8-, 16- or 32-bit operations, CF is set accord-
TF controls the generation of exception 1 ing to carry/borrow at bit 7, 15 or 31, respec-
trap when single-stepping through code. tively.
When TF is set, the 80386 generates an ex-
ception 1 trap after the next instruction is exe- Note in these descriptions, “set” means “set to 1,”
cuted. When TF is reset, exception 1 traps and ‘“reset” means ‘‘reset to 0.”
occur only as a function of the breakpoint ad-
dresses loaded into debut registers DRO-
DR3. 2.3.4 Segment Registers
SF (Slg.n Flag., bit 7)))) Six 16-bit segment registers hold segment selector
SF is set if the high-order bit of the resultis yajues identifying the currently addressable memory
set, it is reset otherwise. For 8-, 16-, 32-bit segments. Segment registers are shown in Figure 2-
operations, SF reflects the state of bit 7, 15, 4 |n Protected Mode, each segment may range in
31 respectively. size from one byte up to the entire linear and physi-
SEGMENT
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
r N - Other N
Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —
Selector SS- — —
Selector DS- =] =
Selector ES- | ==
Selector FS- e el
Selector GS- el el

Figure 2-4. 80386 Segment Registers, and Associated Descriptor Registers

intel 80386 ADVANGCE INFORMATION

cal space of the machine, 4 Gbytes (232 bytes). In
Real Address Mode, the maximum segment size is
fixed at 64 Kbytes (216 bytes).

The six segments addressable at any given moment
are defined by the selector registers CS, SS, DS, ES,
FS and GS. The selector in CS indicates the current
code segment; the selector in SS indicates the cur-
rent stack segment; the selectors in DS, ES, FS and
GS indicate the current data segments.

2.3.5 Segment Descriptor Registers

The segment descriptor registers are not-program-
mer visible, yet it is very useful to understand their
content. Inside the 80386, a descriptor register (pro-
grammer invisible) is associated with each program-
mer-visible segment register, as shown by Figure 2-
4. Each descriptor register holds a 32-bit segment
base address, a 32-bit segment limit, and the other
necessary segment attributes.

When a selector value is loaded into a segment reg-
ister, the associated descriptor register is automati-
cally updated with the correct information. In Real
Address Mode, only the base address is updated
directly (by shifting the selector value four bits to the
left), since the segment maximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indexed
by the selector.

Whenever a memory reference occurs, the segment
descriptor register associated with the segment be-
ing used is automatically involved with the memory
reference. The 32-bit segment base address be-
comes a component of the linear address calcula-
tion, the 32-bit limit is used for the limit-check opera-
tion, and the attributes are checked against the type
of memory reference being requested.

2.3.6 Control Registers

The 80386 has three control registers of 32 bits,
CRO, CR2 and CR3, to hold machine state of a glob-
al nature (not specific to an individual task). These
registers, along with System Address Registers de-
scribed in the next section, hold machine state that
affects all tasks in the system. To access the Con-
trol Registers, load and store instructions are de-
fined.

CRO: Machine Control Register (includes 80286
Machine Status Word)

CRO, shown in Figure 2-5, contains 6 defined bits for
control and status purposes. The low-order 16 bits
of CRO are also known as the Machine Status Word,
MSW, for compatibility with 80286 Protected Mode.
LMSW and SMSW instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. For
compatibility with 80286 operating systems the
80386’s LMSW instructions work in an identical
fashion to the LMSW instruction ont he 80286. (i.e. It
only operates on the low-order 16-bits of CRO and it
ignores the new bits in CRO.) New 80386 operating
systems should use the MOV CRO, Reg instruction.

The defined CRO bits are described ahead.
PG (Paging Enable, bit 31)

the PG bit is set to enable the on-chip paging
unit. It is reset to disable the on-chip paging
unit.

ET (Processor Extension Type, bit 4)

ET indicates the processor extension type (ei-
ther 80287 or 80387) as detected by the level
of the ERROR# input following 80386 reset.
The ET bit may also be set or reset by loading
CRO under program control if desired. If ET is
set, the 80387-compatible 32-bit protocol is
used. If ET is reset, 80287-compatible 16-bit
protocol is used.

Note that for strict 80286 compatibility, ET is
not affected by the LMSW instruction. When
the MSW or CRO is stored, bit 4 accurately re-
flects the current state of the ET bit.

16]15 0

E[T|E[M|P

ol—;\ooyooo 71sImlplglcro
- S

NOTE: [_0_]indicates Intel reserved: Do not define; SEE SECTION 2.3.10

MSW

Figure 2-5. Control Register 0

10

intel

80386

ADVANGCE INFORMATION

TS (Task Switched, bit 3)

TS is automatically set whenever a task switch
operation is performed. If TS is set, a coproces-
sor opcode will cause a Coprocessor Not Avail-
able trap (exception 7), if the MP bit is also set.
The trap handler typically saves the
80287/80387 context belonging to a previous
task, loads the 80287/80387 state belonging
to the current task, and clears the TS bit before
returning to the faulting coprocessor opcode.

EM (Emulate Coprocessor, bit 2)

The EMulate coprocessor bit is set to cause all
coprocessor opcodes to generate a Coproces-
sor Not Available fault (exception 7). It is reset
to allow coprocessor opcodes to be executed
on an actual 80287 or 80387 coprocessor (this
the default case after reset). Note that the
WAIT opcode is not affected by the EM bit set-
ting.
MP (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS
bit to determine if the WAIT opcode will gener-
ate a Coprocessor Not Available fault (excep-
tion 7) when TS = 1. When both MP = 1 and
TS = 1, the WAIT opcode generates a trap.
Otherwise, the WAIT opcode does not gener-
ate a trap. Note that TS is automatically set
whenever a task switch operation is performed.

PE (Protection Enable, bit 0)

The PE bit is set to enable the Protected Mode.
If PE is reset, the processor operates again in
Real Mode. PE may be set by loading MSW or
CRO. PE can be reset only by a load into CRO.
Note that for strict 80286 compatibility, PE can-
not be reset by the LMSW instruction.

CR1: reserved

CRH1 is reserved for use in future Intel processors.
CR2: Page Fault Linear Address

CR2, shown in Figure 2-6, holds the 32-bit linear ad-
dress that caused the last page fault detected. The
error code pushed onto the page fault handler's

stack when it is invoked provides additional status
information on this page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 2-6, contains the physical
base address of the page directory table. The 80386
page directory table is always page-aligned
(4 Kbyte-aligned). Therefore the lowest twelve bits
of CR3 are ignored when written and they store as
undefined.

A task switch through a TSS which changes the
value in CR3, or an explicit load into CR3 with any
value, will invalidate all cached page table entries in
the paging unit cache.

2.3.7 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286/80386
protection model. These tables or segments are:

GDT (Global Descriptor Table),
IDT (Interrupt Descriptor Table),
LDT (Local Descriptor Table),
TSS (Task State Segment).

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers illustrated in Figure 2-7.
These registers are named GDTR, IDTR, LDTR and
TR, respecitvely. Section 4 Protected Mode Archi-
tecture describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address
and 16-bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is
enabled) and 16-bit limit values.

31 2423 16

8|7 0

PAGE FAULT LINEAR ADDRESS REGISTER CR2

PAGE DIRECTORY BASE REGISTER

lojo]o]o|ojo]o]o]o|o]o]o]cRs

NOTE: E indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-6. Control Registers 2 and 3

intel

80386

ADVANCE INFORMATION

SYSTEM ADDRESS REGISTERS
47 32-BIT LINEAR BASE ADDRESS 16 15

LIMIT

0

GDTR

LDTR

SYSTEM SEGMENT
REGISTERS

A

DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)

A

P

15 o r

32-BIT LINEAR BASE ADDRESS

32-BIT SEGMENT LIMIT ATTRIBUTES"

TR SELECTOR

LDTR SELECTOR

Figure 2-7. System Address and System Segment Registers

LDTR and TR

These registers hold the 16-bit selector for the LDT
segment and the TSS segment, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values
stored in the system segment registers. Note that a
segment descriptor register (programmer-invisible)
is associated with each system segment register.

2.3.8 Debug and Test Registers

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug-
ging. Debug Register CR0-3 specify the four linear
breakpoints. The Debug Control Register DR6 is
used to set the breakpoints and the Debug Status
Register DR7, displays the current state of the
breakpoints. The use of the debug registers is de-
scribed in section 2.12 Debugging support.

DEBUG REGISTERS

31 0

LINEAR BREAKPOINT ADDRESS 0 DRO

LINEAR BREAKPOINT ADDRESS 1 DR1

LINEAR BREAKPOINT ADDRESS 2 DR2

LINEAR BREAKPOINT ADDRESS 3 DR3
| Intgl reserved. Do not define. DR4
| Intgl reserved. Do not define. DR5

BREAKPOINT STATUS DRé

BREAKPOINT CONTROL DR7

TEST REGISTERS (FOR PAGE CACHE)

31 0

TEST CONTROL TR6

TEST STATUS TR7

Figure 2-8. Debug and Test Registers

12

Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Buffer por-
tion of the 80386. TR6 is the command test register,
and TR7 is the data register which contains the data
of the Translation Lookaside buffer test. Their use is
discussed in section 2.11 Testability.

Figure 2-8 shows the Debug and Test registers.

2.3.9 Register Accessibility

There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-
ble 2-1 summarizes these differences. See Section
4 Protected Mode Architecture for further details.

2.3.10 Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain 80386 register bits are undefined. When un-
defined bits are called out, treat them as fully
undefined. This is essential for your software
compatibility with future processors! Follow the
guidelines below:

1) Do not depend on the states of any unde-
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-
fined bits when storing them to memory or
another register.

3) Do not depend on the ability to retain infor-
mation written into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.

intel

80386

ADVANGCE INFORMATION

Table 2-1. Register Usage

Usein Usein Usein

Register Real Mode Protected Mode Virtual Mode
Load Store Load Store Load Store

General Registers Yes Yes Yes Yes Yes Yes
Segment Registers Yes Yes Yes Yes Yes Yes
Flag Registers Yes Yes Yes Yes IOPL I0OPL*
Control Registers Yes Yes PL=0 PL=0 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
Debug Control Yes Yes PL=20 PL=20 No No
Test Registers Yes PL=0 PL=0 PL=0 No No

NOTES:

PL = 0: The registers can be accessed only when the current privilege level is zero.
*IOPL: The PUSHF and POPF instructions are made 1/O Privilege Level sensitive in Virtual 8086 Mode.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified 80386 handling of these bits. De-
pending on undefined values risks making your
software incompatible with future processors
that define usages for the 80386-undefined bits.
AVOID ANY SOFTWARE DEPENDENCE UPON
THE STATE OF UNDEFINED 80386 REGISTER
BITS.

2.4 INSTRUCTION SET

2.4.1 Instruction Set Overview
The instruction set is divided into nine categories of
operations:
Data Transfer
Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High Level Language Support
Operating System Support
Processor Control
These 80386 instructions are listed in Table 2-2.

13

All 80386 instructions operate on either 0, 1, 2, or 3
operands; where an operand resides in a register, in
the instruction itself, or in memory. Most zero oper-
and instructions (e.g. CLI, STI) take only one byte.
One operand instructions generally are two bytes
long. The average instruction is 3.2 bytes long.
Since the 80386 has a 16-byte prefetched instruc-
tion queue, an average of 5 instructions will be pre-
fetched. The use of two operands permits the follow-
ing types of common instructions:

Register to Register
Memory to Register
Immediate to Register
Memory to Memory
Register to Memory
Immediate to Memory.

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
80386 (32-bit code), operands are 8 or 32 bits; when
executing existing 80286 or 8086 code (16-bit code),
operands are 8 or 16 bits. Prefixes can be added to
all instructions which override the default length of
the operands, (i.e. use 32-bit operands for 16-bit
code, or 16-bit operands for 32-bit code).

intel — ADVANCE INFORMATION

2.4.2 80386 Instructions Table 2-2b. Arithmetic Instructions
Table 2-2a. Data Transfer ADDITION
GENERAL PURPOSE ADD Add operand
MOV Move operand ADC Add with carry
PUSH Push operand onto stack INC Increment operand by 1
POP Pop operand off stack AAA ASCI| adjust for addition
PUSHA |Push all registers on stack DAA Decimal adjust for addition
POPA Pop all registers off stack SUBTRACTION
XCHG Exchange Operand, Register suB Subtract operand
XLAT Translate SBB Subtract with borrow
CONVERSION DEC Decrement operand by 1
MOVZX |Move byte or Word, Dword, with zero NEG Negate operand
extension CMP Compare operands
MOVSX |Move byte or Word, Dword, sign AAS ASCII Adjust for subtraction
Sxtondod MULTIPLICATION
CcBW Convert byte to Word, or Word to Dword MUL Multiply Double/Single Precision
CDW Convert Word to DWORD IMUL Integer multiply
CDWE Convert Word to DWORD extended AAM ASCII adjust after multiply
CDQ Convert DWORD to QWORD DIVISION
INPUT/OUTPUT DIV Divide unsigned
IN Input operand from |I/O space DIV Integer Divide
ouT Output operand to |/0 space AAD ASCII adjust after division
ADDRESS OBJECT
LEA Load effective address Table 2-2c. String Instructions
LDS Load pointer into D segment register MOVS __ |Move byte or Word, Dword string
LES Load pointer into E segment register INS Input string from I/O space
LFS Load pointer into F segment register ouTs Output string to I/0 space
LGS Load pointer into G segment register CMPS | Compare byte or Word, Dword string
LSS Load pointer into S (Stack) segment SCAS Scan Byte or Word, Dword string
register LODS Load byte or Word, Dword string
FLAG MANIPULATION STOS Store byte or Word, Dword string
LAHF Load A register from Flags REP Repeat
SAHF Store A register in Flags REPE/
PUSHF Push flags onto stack REPZ Repeat while equal/zero
POPF Pop flags off stack RENE/

REPNZ Repeat while not equal/not zero
Table 2-2d. Logical Instructions

PUSHFD |Push EFlags onto stack
POPFD |Pop EFlags off stack

CLC Clear Carry Flag soe LOGICALS

CLD Clear Direction Flag NOT “NOT" operand

CMC Complement Carry Flag AND "AND .operarld

STC Set Carry Flag OR Hlnclusn./e OR ”operand

STD Set Direction Flag XOR Exclusive OR” operand
TEST “Test” operand

14

intgl 80386 ADVANCE INFORMATION
Table 2-2d. Logical Instructions (Continued) Table 2-2f. Program Control Instructions
SHIFTS (Continued)
SHL/SHR | Shift logical left or right UNCONDITIONAL TRANSFERS
SAL/SAR |Shift arithmetic left or right CALL Call procedure/task
SHLD/ RET Return from procedure/task
SHRD Double shift left or right JMP Jump
ROTATES ITERATION CONTROLS
ROL/ROR | Rotate left/right LOOP Loop
RCL/RCR | Rotate through carry left/right LOOPE/
Table 2-2e. Bit Manipulation Instructions nggﬁ = Loop if equal/zero
BT S:ilt(-;rt:tBlT ROTHUCTIOND tOOPNZ Loop if not equal/not zero
- JCXZ JUMP if register CX=0
BTS Bit Test and Set INTERRUPTS
BTR Bit Test and Reset INT rs—
BTC Bit Test and Complement =
BSF Bit Scan Forward INTO Interrupt if overflow
BSR ait Boan Reverss IRET Return from Interrupt
CLI Clear interrupt Enable
BIT STRING INSTRUCTIONS
BTS Insert Bit String SLI Set Interrupt Enable
XBTS Exact Bit String Table 2-2g. High Level Language Instructions
Table 2-2f. Program Control Instructions :S:_J:; gz::?:ar:;?e‘:n;;k for Entering
CONDITIONAL TRANSFERS Procedure
SETCC Set byte equal to condition code LEAVE Leave Procedure
JA/JNBE |Jump if above/not below nor equal Table 2-2h. Protection Model
JAE/JNB |Jump if above or equal/not below SGDT Store Global Descriptor Table
JB/JNAE |Jump if below/not above nor equal SIDT Store Interrupt Descriptor Table
JBE/JNA |Jump if below or equal/not above STR Store Task Register
40 diame i carry SLDT Store Local Descriptor Table
JE/JZ Jump if equal/zero LGDT Load Global Descriptor Table
JG/JNLE |Jump if greater/not less nor equal LIDT Load Interrupt Descriptor Table
JGE/JNL [Jump if greater or equal/not less LTR Load Task Register
JL/INGE |Jump if less/not greater nor equal LLDT Load Local Descriptor Table
JLE/JUNG |Jump if less or equal/not greater ARPL Adjust Requested Privilege Level
SR Jurmg i not canry LAR Load Access Rights
JNE/JNZ | Jump if not equal/not zero LSL Load Segment Limit
JNO Jump if not overflow VERR/
JNP/JPO | Jump if not parity/parity odd VERW |Verify Segment for Reading or Writing
JNS Jump if not sign LMSW Load Machine Status Word (lower
JO Jump if overflow 16 bits of CRO)
JP/JPE |Jump if parity/parity even SMSW Store Machine Status Word
JS Jump if Sign Table 2-2i. Processor Control Instructions
HLT Halt
WAIT Wait until BUSY # negated
ESC Escape
LOCK l.ock Bus

15

intel

80386

ADVANCE INFORMATION

2.5 ADDRESSING MODES

2.5.1 Addressing Modes Overview

The 80386 provides a total of 11 addressing modes
for instructions to specify operands. The addressing
modes are optimized to allow the efficient execution
of high level languages such as C and FORTRAN,
and they cover the vast majority of data references
needed by high-level languages.

2.5.2 Register and Immediate Modes

Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-
ands:

Register Operand Mode: The operand is located
in one of the 8-, 32- or 16-bit general registers.

Immediate Operand Mode: The operand is in-
cluded in the instruction as part of the opcode.

2.5.3 Memory Addressing Modes

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by summing any
combination of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction. [16-bit displacements can
be used by preceding the instruction with an address
prefix.]

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters.

SCALE: The index register’s value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index
mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-

16

binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base,
Index, and Displacement components which re-
quires one additional clock.

As shown in Figure 2-9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA=Base Reg+ (Index Reg * Scaling) + Displacement

Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.

EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE or INDEX register
contains the address of the operand.
EXAMPLE: MOV [ECX], EDX

Based Mode: A BASE register’s contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: MOV ECX, [EAX +24]

Index Mode: An INDEX register’s contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register’s contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operands offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN-
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis-
ter to obtain the operands offset.

EXAMPLE: MOV ECX, [EDX*8] [EAX]

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register’s con-
tents and a DISPLACEMENT are all summed to-
gether to form the operand offset.

EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFO0]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand’s offset.

EXAMPLE: MOV EAX, LOCALTABLE[EDI*4]
[EBP+80]

80386

ADVANGCE INFORMATION

SEGMENT REGISTER

SELECTOR

EFFECTIVE
ADDRESS

DESCRIPTOR REGISTERS

LIMIT
| BASE ADDRESS

LINEAR

L': ADDRESS

{ BASE REGISTER I

INDEX REGISTER

SCALE
1,2,4,0R 8

DISPLACEMENT
(IN INSTRUCTION)

SEGMENT
LIMIT

TARGET ADDRESS

SELECTED
SEGMENT

J

SEGMENT BASE ADDRESS

231630-51

Figure 2-9. Addressing Mode Calculations

2.5.4 Differences Between 16 and 32
Bit Addresses

In order to provide software compatibility with the
80286 and the 8086, the 80386 can execute 16-bit
instructions in Real and Protected Modes. The proc-
essor determines the size of the instructions it is ex-
ecuting by examining the D bit in a segment Descrip-
tor. If the D bit is 0 then all operand lengths and
effective addresses are assumed to be 16 bits long.
If the D bit is 1 then the default length for operands
and addresses is 32 bits. In Real Mode the default
size for operands and addresses is 16-bits.

Regardiess of the default precision of the operands
or addresses, the 80386 is able to execute either 16
or 32-bit instructions. This is specified via the use of
override prefixes. Two prefixes, the Operand Size
Prefix and the Address Length Prefix, override the
value of the D bit on an individual instruction basis.
These prefixes are automatically added by Intel as-
semblers.

17

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis-
ters. The assembler code for this might be MOV
EAX, 32bitMEMORYOP, ASM 386 automatically de-
termines that an Operand Size Prefix is needed and
generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an
Address Length Prefix since, with D=0, the default
addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM186,
DX.

80386

ADVANGE INFORMATION

Table 2-3. BASE and INDEX Registers for 16- and 32-Bit Addresses

32-Bit Addressing

16-Bit Addressing
BASE REGISTER BX,BP
INDEX REGISTER SI,DI
SCALE FACTOR none
DISPLACEMENT 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64K bytes to be accessed in
Real Mode. An effective address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional 80386 addressing modes.

When executing 32-bit code, the 80386 uses either
8-, or 32-bit displacements, and any register can be
used as base or index registers. When executing 16-
bit code, the displacements are either 8, or 16 bits,
and the base and index register conform to the 286
model. Table 2-3 illustrates the differences.

2.6 DATA TYPES

The 80386 supports all of the data types commonly
used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits,
which spans a maximum of four bytes.

Bit String: A set of contiguous bits, on the 80386
bit strings can be up to 4 gigabits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.
Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan-
tity. All operations assume a 2’s complement rep-

resentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.

Unsigned Long Integer (Double Word): An un-
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.
Unsigned Quad Word: An unsigned 64-bit quantity.

Offset: A 16- or 32-bit offset only quantity which indi-
rectly references another memory location.

Pointer: A full pointer which consists of a 16-bit seg-
ment selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCII Alphanu-
meric or control character.

String: A contiguous sequence of bytes, words or
dwords. A string may contain between 1 byte and
4 Gbytes.

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in each nibble.

When the 80386 is coupled with a numerics Coproces-
sor such as the 80287 or the 80387 then the following
common Floating Point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real num-
ber representation. Floating point numbers are sup-
ported by the 80287 and 80387 numerics coproces-
sor.

Figure 2-10 illustrates the data types supported by the
80386 and the 80387/80287.

18

ADVANGE INFORMATION

80386
+N +1 0
7 0 7 0 7 07 0
SIGNED BINARY
anzm CODEDI | see | | I
SIGN BIT-|] DECIMAL gcp BCD BCD
(BCD) piGIT N DIGIT 1 DIGIT O
MAGNITUDE
+N +1 0
7 0 7 0 7 07 0
UNSIGNED AsClI
e[1] [eee T
1] ASCIl ASCIl ASCII
MAGNITUDE CHARACTERy ~ CHARACTER, CHARACTER,
+1 0 +N +1 0
1514 87 0 7 0 7 07 0
SIGNED PACKED | IH'|”'I"' A
<\LwvsB L L]
= __1
SIGN/BIE MOST LEAST
MAGNITUDE SIGNIFICANT DIGIT SIGNIFICANT DIGIT
+1 0 +N +1 o]
15 0 7/15 0 7/15 07/15 0
UNSIGNED llllllllllllll BYTE
WORD l STRINGI I oo
MAGNITUDE
+3 +2 +1 0 -2 GIGABITS
3 1Tie o +2 GIGABITS 210
SIGNED DousLE"'l'f]'"'fr"FF"'lTWFF"TFF'ﬂ'l BIT"I“ ” “X) ‘L‘) I”"
WORD* STRING
SIGN BIT-4{-MsB) BITO
MAGNITUDE
+3 +2 +1 0 +3 +2 +1 0
31 0 ort™ 0
UNSIGNED DOUBLE
AORD 32-BIT
POINTER
L 1 L]
MAGNITUDE OFFSET
+7 +6 +5 #5 +3 +2 +1 O +5 +4 +3 +2 +1 0
63 4847 3231 1615 0 48 0
SIGNED QUAD l | | | | l I J LON‘T;
wonn” 48-8 I l | | | | I
Lo POINTER
SIGN BIT LMSB 1 1 1 1
MAGNITUDE SELECTOR OFFSET
+9 48 47 +6 +5 +4 +3 +2 +1 O
79 0
FLOATING
eonell 1 1 L [[LTI 1]
SIGN BIT-y | |
EXPONENT MAGNITUDE
+5 +4 +3 +2 +1 0
64 AND 32-BIT I"'I”'l”TTﬂ'rl""ﬂTﬂTfWr"l'l'rWF""rﬂTm'l *SUPPORTED BY
BIT FIELD IAPX 286/20
| ST BELD | NUMERIC DATA
1710 32 BITS FROCESSOR
CONFIGURATION
231630-52

Figure 2-10. 80386 Supported Data Types

19

intel

80386

ADVANGE INFORMATION

2.7 MEMORY ORGANIZATION

2.7.1 Introduction

Memory on the 80386 is divided up into 8-bit quanti-
ties (bytes), 16-bit quantities (words), and 32-bit
quantities (dwords). Words are stored in two consec-
utive bytes in memory with the low-order byte at the
lowest address, the high order byte at the high ad-
dress. Dwords are stored in four consecutive bytes
in memory with the low-order byte at the lowest ad-
dress, the high-order byte at the highest address.
The address of a word or dword is the byte address
of the low-order byte.

In addition to these basic data types the 386 sup-
ports two larger units of memory: pages and seg-
ments. Memory can be divided up into one or more
variable length segments, which can be swapped to
disk or shared between programs. Memory can also
be organized into one or more 4K byte pages. Final-
ly, both segmentation and paging can be combined,
gaining the advantages of both systems. The 80386
supports both pages and segment in order to pro-
vide maximum flexibility to the system designer.
Segmentation and paging are complementary. Seg-
mentation is useful for organizing memory in logical
modules, and as such is a tool for the application
programmer, while pages are useful for the system
programmer for managing the physical memory of a
system.

2.7.2 Address Spaces

The 80386 has three distinct address spaces:
logical, linear, and physical. A logical address

(also known as a virtual address) consists of a se-
lector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all
of the addressing components (BASE, INDEX, DIS-
PLACEMENT) discussed in section 2.5.3 Memory
Addressing Modes into an effective address. Since
each task on 80386 has a maximum of 16K (214
—1) selectors, and offsets can be 4 gigabytes, (232
bits) this gives a total of 246 bits or 64 terabytes of
logical address space per task. The programmer
sees this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e. the Local
Descriptor Table or Global Descriptor Table). The
selector’s linear base address is added to the offset
to form the final linear address.

Figure 2-11 shows the relationship between the vari-
ous address spaces.

EFFECTIVE ADDRESS CALCULATION

INDEX

BASE #

DISPLACEMENT

32 0
SCALE
1,2,4,8
PHYSICAL
v MEMORY
"——’@‘_‘ BE3 - BEO
A31 - A2
32, EFFECTIVE _
" ADDRESS
15 2 0 |OGICAL OR SEGMENTATION 32, | PAGING UNIT /32 >
=], VIRTUAL ADDRESS | UNIT LINEAR ~ | (OPTIONAL USE) |” PHYSICAL
seector | p H4 i ADDRESS ADDRESS
L | 7 pEscriPTOR
INDEX
SEGMENT
REGISTER
231630-53

Figure 2-11. Address Translation

intel

80386

ADVANCE INFORMATION

2.7.3 Segment Register Usage

The main data structure used to organize memory is
the segment. On the 386, segments are variable
sized blocks of linear addresses which have certain
attributes associated with them. There are three
main types of segments: code, data, and stack seg-
ments, the segments are of variable size and can be
as small as 1 byte or as large as 4 gigabytes (232
bits).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2-4
(Segment Register Selection Rules). In general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and the
SP register as the offset; and Instruction fetches use
the CS register. The contents of the Instruction
Pointer provides the offset. Special segment over-
ride prefixes allow the explicit use of a given seg-
ment register, and override the implicit rules listed in
Table 2-4. The override prefixes also allow the use
of the FS and GS segment registers.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis-
cussed in section 4.1.

2.8 1/0 SPACE

The 80386 has two distinct physical address
spaces: Memory and |I/0. Generally, peripherals are
placed in I/0 space although the 80386 also sup-
ports memory-mapped peripherals. The 1/0 space
consists of 64K bytes, it can be divided into 64K 8-
bit ports, 32K 16-bit ports, or 16K 32-bit ports, or any
combination of ports which add up to less than 64K
bytes. The 64K 1/0 address space refers to physical
memory rather than linear address since 1/0 instruc-
tions do not go through the segmentation or paging
hardware. The M/I0O# pin acts as an additional ad-
dress line thus allowing the system designer to easi-
ly determine which address space the processor is
accessing.

Table 2-4. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible
Code Fetch (O] None
Destination of PUSH,
PUSHA instructions SS None
Source of POP, POPA
instructions SS None
Other data references,
with effective address
using base register of:
[EAX] DS CS,SS,ES,FS,GS
[EBX] DS CS,SS,ES,FS,GS
[ECX] DS CS,SS,ES,FS,GS
[EDX] DS CS,SS,ES,FS,GS
[EBX] DS CS,SS,ES,FS,GS
[ESI] DS CS,SS,ES,FS,GS
[EDI]* DS CS,SS,ES,FS,GS
[EBP] SS CS,DS,ES,FS,GS
[ESP] SS CS,DS,ES,FS,GS

* Data references for the memory destination of the STOS and MOVS instructions (and REP STOS and REP MOVS)
use DI as the base register and ES as the segment, with no override possible.

21

intel

80386

ADVANCE INFORMATION

The 1/0 ports are accessed via the IN and OUT 1/0
instructions, with the port address supplied in the
DL, DX, or EDX registers. All 8- and 16-bit port ad-
dresses are zero extended on the upper address
lines. The 1/0 instructions cause the M/IO# pin to
be driven low.

I1/0 port addresses 00F8H through O0FFH are re-
served for use by Intel. The numerics coprocessors
also reside in this |/0 space at locations 800000F8H
- B0000OFCH (see section 5).

2.9 INTERRUPTS

2.9.1 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately
after the interrupted instruction. Sections 2.9.3 and
2.9.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper-
ating system would fetch the page or segment from
disk, and then the 80386 would restart the instruc-
tion. Traps are exceptions that are reported immedi-
ately after the execution of the instruction which
caused the problem. User defined interrupts are ex-
amples of traps. Aborts are exceptions which do
not permit the precise location of the instruction
causing the exception to be determined. Aborts are
used to report severe errors, such as a hardware
error, or illegal values in system tables.

22

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2-5 summarizes the possi-
ble interrupts for the 80386 and shows where the
return address points to.

The 80386 has the ability to handle up to 256 differ-
ent interrupts/exceptions. In order to service the in-
terrupts, a table with up to 256 interrupt vectors
must be defined. The interrupt vectors are simply
pointers to the appropriate interrupt service routine.
In Real Mode (see section 3.1), the vectors are 4
byte quantities, a Code Segment plus a 16-bit offset;
in Protected Mode, the interrupt vectors are 8 byte
quantities, which are put in an Interrupt Descriptor
Table (see section 4.1). Of the 256 possible inter-
rupts, 32 are reserved for use by Intel, the remaining
224 are free to be used by the system designer.

2.9.2 Interrupt Processing

When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the 80386 which identifies the appropriate
entry in the interrupt table. The table contains the
starting address of the interrupt service routine.
Then, the user supplied interrupt service routine is
executed. Finally, when an IRET instruction is exe-
cuted the old processor state is restored and pro-
gram execution resumes at the appropriate instruc-
tion.

The 8-bit interrupt vector is supplied to the 80386 in
several different ways: exceptions supply the inter-
rupt vector internally; software INT instructions con-
tain or imply the vector; maskable hardware inter-
rupts supply the 8-bit vector via the interrupt ac-
knowledge bus sequence. Non-Maskable hardware
interrupts are assigned to interrupt vector 2.

2.9.3 Maskable Interrupt

Maskable interrupts are the most common way used
by the 80386 to respond to asynchronous external
hardware events. A hardware interrupt occurs when
the INTR is pulled high and the Interrupt Flag bit (IF)
is enabled. The processor only responds to inter-
rupts between instructions, (REPeat String instruc-

intel

80386

ADVANCE INFORMATION

Table 2-5. Interrupt Vector Assignments

Function wierupt lnst(r::ztig:u\:: i Ret::;nAt:?;“S Type
Number Exception Faulting
Instruction
Divide Error 0 DIV, IDIV YES FAULT
Debug Exception 1 any instruction YES TRAP*
NMI Interrupt 2 INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any lllegal Instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Coprocessor Segment 9 Coprocessor Tries to Access Data NO TRAP**
Overrun Past the End of a Segment
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fault 13 Any Memory Reference YES FAULT
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Coprocessor Error 16 ESC, WAIT YES FAULT
Intel Reserved 17-32
Two Byte Interrupt 0-255 INTn NO TRAP

* Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.
** Exception 9 no longer occurs on the 80386 due to the improved interface between the 80386 and its coprocessors.

tions, have an “interrupt window”’, between memory
moves, which allows interrupts during long string
moves). When an interrupt occurs the processor
reads an 8-bit vector supplied by the hardware which
identifies the source of the interrupt, (one of 224
user defined interrupts). The exact nature of the in-
terrupt sequence is discussed in section 5.

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an IRET instruction is executed the
original state of the IF is restored.

23

2.9.4 Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NMI|
input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NMI.

While executing the NMI servicing procedure, the
80386 will service neither further NMI request, nor
INT requests, until an interrupt return (IRET) instruc-
tion is executed or the processor is reset. If NMI
occurs while currently servicing an NMI, its presence
will be saved for servicing after executing the first
IRET instruction. The IF bit is cleared at the begin-
ning of an NM! interrupt to inhibit further INTR inter-
rupts.

intel

80386

ADVANCE INFORMATION

2.9.5 Software Interrupts

A third type of interrupt/exception for the 80386 is
the software interrupt. An INT n instruction causes
the processor to execute the interrupt service rou-
tine pointed to by the nth vector in the interrupt ta-
ble.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt, is the single step
interrupt. It is discussed in section 2.12.

2.9.6 Interrupt Priorities

Since interrupts are recognized only at instruction
boundaries it is possible for more than one interrupt
to be active at the same time. If there are simulta-
neous interrupts they will be processed according to
the priority shown in Table 2-6. Example: A given
instruction causes both a debug trap and a segment
not-present exception. The 80386 will first respond
to the segment not-present exception (11) by at-
tempting to invoke the exception 11 handler. The
exception 11 handler will be interrupted causing the
address of the exception 11 handler to be pushed
on the stack. The debug exception handler (1) will
then be called. After the debug handler is finished,
control will pass back to the exception 11 handler.
This allows the system designer to debug his excep-
tion handlers.

Table 2-6. Interrupt Processing Priorities

Pr::::;;ng Interrupt/Exception

1 (highest) Exception faults
2 TRAP instructions
3 Debug Traps for this instruction
4 Debug Faults for next instruction
5 NMI interrupt
6 INTR interrupt

2.9.7 Instruction Restart

The 80386 fully supports restarting all instructions
after faults. The operating system does not need to
participate in the restart process, since the proces-
sor will report a page or segment fault with the ma-
chine in a state that permits restarting of the faulting
instruction after the fault handler has corrected the

24

faulting condition. (e.g. a page fault was generated,
the page fault handler brings in the correct page).

Instruction restart is guaranteed except for two con-
ditions: If the instruction causes a task switch to a
TSS that is located in a not-present page. If one of
the operands is located below any of the current
stack pointers (i.e. at a memory address less than
the top of stack) or if a floating point operand wraps
around in memory.

2.9.8 Double Faults

A double fault results when the processor is at-
tempting to handle an exception, and receives an-
other exception during the handling routine. A dou-
ble fault causes an exception 8. Most exceptions on
the 80386 do not count toward the double fault con-
dition (types 1, 2, 3, 4, 5, 6, 7, 9, 14, and 16). Only
zero-divide errors (interrupt 0) and the segment ex-
ceptions (10, 11, 12, 13) count toward a double fault.
Therefore receiving segment not-present exception
(11) while responding to a debug exception would
not result in a double fault. While a segment fault
which occurred during a zero-divide handler would
cause a double fault.

Page faults do not count toward double faults. For
instance, if an instruction caused both a segment
not-present exception (11) and a page not-present
fault (interrupt 14) both interrupts would be proc-
essed correctly. The segment not-present handler
would be invoked causing the correct segment to be
loaded from the disk. The instruction would be re-
started, and would then cause a page fault. The
page fault handler would then bring in the correct
page, and execution would proceed. This supports
the concept of paging being “underneath” segmen-
tation.

A final cause of double faults is recursive faults (e.g.
the page fault handler is not present). These cause
an exception 8.

2.10 RESET AND INITIALIZATION

When the processor is initialized or Reset the regis-
ters have the values shown in Table 2-7. The 80386
will then start executing instructions near the top of
physical memory, at location FFFFFFFOH. When the
first InterSegment Jump or Call is executed, address
lines A20-31 will drop low, and the 80386 will only
execute instructions in the lower one megabyte of
physical memory. This allows the system designer to
use a ROM at the top of physical memory to initialize
the system and take care of Resets.

intel

80386

ADVANCE INFORMATION

Driving the RESET input pin HIGH for at least 78
CLK2 periods Resets the 80386. RESET forces the
80386 to terminate all execution and local bus activi-
ty. No instruction execution or bus activity will occur
as long as Reset is active. Between 350 and 450
CLK2 periods after Reset becomes inactive the
80386 will start executing instructions at the top of
physical memory.

Table 2-7. Register Values after Reset

Flag Word UUUUO002H Note 1
Machine Status Word (CR0) | UUUUUUUOH Note 2
Instruction Pointer 0000FFFOH
Code Segment FOOOH Note 3
Data Segment 0000H
Stack Segment 0000H
Extra Segment (ES) 0000H
Extra Segment (FS) 0000H
Extra Segment (GS) 0000H
All other registers undefined

NOTES:

1. EFLAG Register. The upper 14 bits of the EFLAGS reg-
ister are undefined, VM (Bit 17) and RF (BIT) 16 are 0 as
are all other defined flag bits.

2. CRO: (Machine Status Word). All of the defined fields in
the CRO are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and
PE Bit 0) except for ET Bit 4 (processor extension type).
The ET Bit is set during Reset according to the type of Co-
processor in the system. If the coprocessor is an 80387
then ET will be 1, if the coprocessor is an 80287 or no
coprocessor is present then ET will be 0. All other bits are
undefined.

3. The Code Segment Register (CS) will have its Base Ad-
dress set to FFFOO0O00H and Limit set to OFFFFH. All un-
defined bits are Intel Reserved and should not be used.

2.11 TESTABILITY

2.11.1 Self-Test

The 80386 has the capability to perform a self-test.
The self-test checks the function of all of the Control
ROM and most of the non-random logic of the part.
Approximately one-half of the 80386 can be tested
during self-test.

Self-Test is initiated on the 80386 when the RESET
pin transitions from HIGH to LOW, and the BUSY #
pin is low. The self-test takes about 2**19 CLK2s, or
approximately 30 milliseconds with a 16 MHz 80386.
At the completion of self-test the processor per-
forms reset and begins normal operation. The part
has successfully passed self-test if the contents of
the EAX and the EDX register are zero (0). If the
results of EAX and EDX are not zero then the self-
test has detected a flaw in the part.

2.11.2 TLB Testing

The 80386 also provides a mechanism for testing
the Translation Lookaside Buffer (TLB) (see section
4.5.4 Translation Lookaside Buffer). This feature
is primarily useful for people who wish to write test
programs for the 80386. The TLB testing method is
unique to the 80386 and may not be continued in
future microprocessors. Testing the TLB requires
the use of a tester or an assembly language pro-
gram to drive a test pattern. Paging must be disabled
in order to test the functionality of the TLB.

Two test registers provide a means of writing a pat-
tern into the TLB and reading the result. TR6 is the
test command register, and TR7 is the test data reg-
ister. Figure 2-12 shows the two test registers.

The test registers allow two operations to be per-
formed on the TLB: Write New TLB Entry, Perform
TLB Lookup. A write to the test command register
via the MOV TR6, REG instructions causes a TLB
operation to be performed. If bit 0 of TR6 is a 0, a
Write New TLB Entry operation occurs if bit 0 is 1
then a TLB Lookup is performed.

2.12 DEBUGGING SUPPORT

The 80386 provides several features which simplify
the debugging process. Most of these features are
designed primarily for software debugging. (Note: In-
tel will provide a complete set of Hardware/Software
debugging tools such as ICE-386 (In Circuit Emula-
tor) and PTM-386 (Pass Through Monitor) to com-
plement the built in debugging features.)

31 12]11
LINEAR ADDRESS il el o i TR6
#
PHYSICAL ADDRESS olofofofolofo TR7

NOTE: indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-12. Test Registers

25

intel

80386

ADVANCE INFORMATION

The three major types of on-chip debugging aids are
the software breakpoints, single stepping and the
debug registers. A one byte interrupt INT 3 is avail-
able for use by software debuggers to implement
breakpoints. The debugger should insert the INT 3
instructions in code sequences. When the INT 3 in-
struction is encountered execution will proceed at
the interrupt handler 3.

The single step interrupt is enabled by setting the
single step bit (TF) in the flag word. The TF bit is set
by altering the stack image and executing a POPF or
IRET instruction. After the TF bit is set, a single step
interrupt will occur after the next instruction is exe-
cuted. The interrupted instruction will push the cur-
rent Flag register on the stack (with the TF bit set)
and then will clear the TF bit, (enabling the single
step interrupt handling routine to execute normally).
This allows an interrupt handler to be created which
can single step through a sequence of instructions.
The single step interrupt uses interrupt vector 1,
which is supplied internally to the processor.

After completion of the single step interrupt handling
routine, the IRET will pop the flag register and then
transfer control to the next instruction to be single
stepped.

Debug Registers are a unique feature of the 80386.
The six program accessible debug registers provide
the ability to specify up to four distinct breakpoints.
Unlike traditional breakpoints which only support in-
struction breakpointing, the 80386 debug registers
allow breakpoints to be set for data accesses. Thus,
if a variable is accidently being overwritten, a break-

Figure 2-13 shows the Debug Registers in more de-
tail. DRO--3 contains the linear address of the break-
point.

NOTE:
The linear address may not correspond to the
physical address if paging is enable.

DR6 contains the status of the breakpoint registers.
The bits within the register have the following mean-
ings:

BT is set if a task switch occurs into a task where
the TSS has the DEBUG TRAP bit set.

BS: Enables the debug handlers to distinguish sin-
gle-step traps from the other debug conditions.

BD: Is set by the hardware if the next instruction
accesses a debug register.

BO-B3: These bits are set if a qualified breakpoint
has occurred. BO is set if the Breakpoint 0 has
happened etc.

DR7 is the Debug Control Register it is used to
enable and qualify the various breakpoints: The
bits assignment are assigned as follows:

LENi : This is a two bit field which specifies the
length of the breakpoint i . All breakpoints must be
aligned; 2 byte breakpoints must be aligned on
Word boundaries, and 4 byte breakpoints must be
aligned on Dword boundaries.

point can be setup to stop execution whenever that 00 = byte length
variable’s contents are being changed. 01 = byte length
10 = UNDEFINED
11 = 4 byte length
31 16 15 0
BREAKPOINT 0 LINEAR ADDRESS DRO
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 3 LINEAR ADDRESS DR3
Intgl reserved. Do not define. DR4
Intgl reserved. Do not define. DR5
o1%(5| ore
: L1815 oA
31 16 15 0
NOTE indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-13. Debug Registers

26

intel

80386

ADVANCE INFORMATION

RWEi: This two-bit field specifies the type of mem-
ory access which must occur in order to activate a
breakpoint:

RWE Break On

00 Instruction Execution only

01 Data Writes Only

10 UNDEFINED

1 Data Reads or Writes only
(not Instruction fetches)

GE/LE Global and Local Exact breakpoints:
These bits should always be set to 1 when using
breakpoints.

Gi/Li Global and Local breakpoint enables. If ei-
ther Gi = 1 or Li = 1, then breakpoint i is en-
abled. If these bits are set then any qualified
breakpoint (i.e. a breakpoint which matches the
condition specified by the LWE bits) will cause the
processor to execute the debug handler. The Li
bits allows local breakpoints to be set for an indi-
vidual task but will not affect another task. The Gi
bits allow global breakpoints to be set which affect
all tasks.

In order to set a breakpoint the processor must be
executing at privilege level 0, or in Real Mode. Then,
the breakpoint must be set by loading the breakpoint
register (via a MOV DRi, REG/MEM instruction),
with the address of the breakpoint. Then, the appro-
priate LEN and RWE must be set up. Finally, the
breakpoint enable bits must be set Gi and/or Li.

NOTE:
The Bi bits in DR6 will always show any qualified
breakpoints, but unless Gi or Li are set the proces-
sor will not execute the debug routine at interrupt 1.

3. REAL MODE ARCHITECTURE

3.1 REAL MODE INTRODUCTION

When the processor is reset or powered up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the 80386. The addressing
mechanism, memory size, interrupt handling, are all
identical to the Real Mode on the 80286.

All of the 80386 instructions are available in Real
Mode. The default operand size in Real Mode is 16-
bits, just like the 8086. In order to use the 32-bit
registers and addressing modes, override prefixes
must be used. In addition, the segment size on the
80386 in Real Mode is 64K bytes so 32-bit address-
es must have a value less the 0000FFFFH. The pri-
mary purpose of Real Mode is to set up the proces-
sor for Protected Mode Operation.

3.2 MEMORY ADDRESSING

In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2-A19,
BEO-B3 are active. (Exception, the high address
lines A20-A31 are high until an intersegment jump
or call is executed (see section 2.10)).

15 0
OFFSET
20 0
sevecto | | 000

- (3)——>| MEMORY OPERAND

MAX LIMIT
FIXED AT
REAL MODE
SELECTED
5]" SEGMENT

SEGMENT BASE

231630-54

Figure 3-1. Real Address Mode Addressing

intel

80386

ADVANGE INFORMATION

Since, paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg-
ister which is shifted left by four bits to an effective
address. This addition results in a 20-bit physical ad-
dress or a 1 megabyte address space. Since seg-
ment registers are shifted left by 4 bits this implies
that Real Mode segments always start on 16 byte
boundaries.

All segments in Real Mode are exactly 64K bytes
long, and may be read, written, or executed. The
80386 will generate an exception 13 if a data oper-
and or instruction fetch occurs past the end of a
segment. (i.e. if an operand has an offset greater the
FFFFH, example a word with a low byte at FFFFH
and the high byte at 0000H)

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64K bytes an-
other segment can be overlayed on top of the un-
used portion of the previous segment. This allows
the programmer to minimize the amount of physical
memory needed for a program.

3.3 RESERVED LOCATIONS

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

3.4 INTERRUPTS

Many of the exceptions shown in Table 2-5 and dis-
cussed in section 2.9 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 12,
14, will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode Table
3-1 identifies these exceptions.

3.5 SHUTDOWN AND HALT

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF=1), or RESET will force the 80386 out of halt. If
interrupted, the saved CS:IP will point to the next
instruction after the HLT.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

An interrupt or an exception occur (Exceptions 8
or 13) and the interrupt vector is larger than the
Interrupt Descriptor Table (i.e. There is not an in-
terrupt handler for the interrupt).

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.
(e.g. pushing a value on the stack when SP =
0001 resulting a stack segment greater than
FFFFH)

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
000FH) and the stack has enough room to contain
the vector and flag information (i.e. SP is greater
than 0005H). Otherwise shutdown can only be exit-
ed via the RESET input.

Table 3-1
Interrupt Related Return
Function Number Instructions Address Location

Interrupt table limit too small 8 INT Vector is not Before

within table limit Instruction
Segment overrun exception 13 Word memory reference Before

With offset = FFFFH or Inst. Instruction

an attempt to execute

past the end of a segment

28

inte[i ADVANCE INFORMATION

4. PROTECTED MODE
ARCHITECTURE

4.1 INTRODUCTION

The complete capabilities of the 80386 are unlocked
when the processor operates in Protected Virtual
Address Mode (Protected Mode). Protected Mode
vastly increases the linear address space to four gig-
abytes (232 bytes) and allows the running of virtual
memory programs of almost unlimited size (64 tera-
bytes or 246 bytes). In addition Protected Mode al-
lows the 80386 to run all of the existing 8086 and
80286 software, while providing a sophisticated
memory management and a hardware-assisted pro-
tection mechanism. Protected Mode allows the use
of additional instructions especially optimized for
supporting multitasking operating systems. The base
architecture of the 80386 remains the same, the reg-
isters, instructions, and addressing modes described
in the previous sections are retained. The main dif-
ference between Protected Mode, and Real Mode
from a programmer’s view is the increased address
space, and a different addressing mechanism.

4.2 ADDRESSING MECHANISM

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating
system defined table (see Figure 4-1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the 80386, as such paging operates
beneath segmentation. The paging mechanism
translates the protected linear address which comes
from the segmentation unit into a physical address.
Figure: 4-2 shows the complete 80386 addressing
mechanism with paging enabled.

48/32 BIT POINTER

SELECTOR OFFSET

SEGMENT LIMIT

47/31 31/15 0

e Y S

MEMORY OPERAND

ACCESS RIGHTS
LIMIT
BASE ADDRESS

UP TO SELECTED
4GB SEGMENT

SEGMENT

SEGMENT BASE
ADDRESS

DESCRIPTOR

231630-55

Figure 4-1. Protected Mode Addressing

29

-
intel sosss ADVANCE INFORMATION
48 BIT POINTER
PHYSICAL ADDRESS
SEGMENT s
4K BYTES
80386
PAGING 4KBYTES
ACCESS RIGHTS uecwaNisw | PHYsicaL
LiMIT - »{ MEMORY OPERAND ::ESY'?EASL PAGE:
BASE ADDRE
= — PAGE FRAME _
SEGMENT ADDRESS ADDRESS
DESCRIPTOR 4K BYTES
4KBYTES
4KBYTES
231630-56

Figure 4-2. Paging and Segmentation

4.3 SEGMENTATION

4.3.1 Segmentation Introduction

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about the
segments, is stored in an 8 byte data structure
called a descriptor. All of the descriptors in a system
are contained in tables recognized by hardware.

4.3.2 Terminology

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically greater than less privileged
levels.

30

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also refered to as processes.

ntel

80386

ADVANGCE INFORMATION

4.3.3 Descriptor Tables

4.3.3.1 DESCRIPTOR TABLES INTRODUCTION

The descriptor tables define all of the segments
which are used in an 80386 system. There are three
types of tables on the 80386 which hold descriptors:
the Global Descriptor Table, Local Descriptor Table,
and the Interrupt Descriptor Table. All of the tables
are variable length memory arrays, they can range in
size between 8 bytes and 64K bytes. Each table can
hold up to 8192 8 byte descriptors. The upper 13
bits of a selector are used as an index into the de-

scriptor table. The tables have registers associated
with them which hold the 32-bit linear base address,
and the 16-bit limit or each table.

Each of the tables has a register associated with it
the GDTR, LDTR, and the IDTR; see Figure 4-3. The
LGDT, LLDT, and LIDT instructions, load the base
and limit of the Global, Local, and Interrupt Descrip-
tor Tables, into the appropriate register. The SGDT,
SLDT, and SIDT store the base and limit values.
These tables are manipulated by the operating sys-
tem. Therefore, the load descriptor table instructions
are privileged instructions.

{4 .
15 0 4 15 o !
LDT DESCR | !
LDTR SELECTOR ! LDT LIMIT :
]]
v | LDT BASE '
t | LINEAR ADDRESS | |
15 0! '
L} 32 '
IDT LIMIT 1 PROGRAM INVISIBLE .
+ AUTOMATICALLY LOADED |
IDT BASE + FROM LDT DESCRIPTOR
IDTR LINEAR ADDRESS [e ——— Y
31 0
15 0
GDT LIMIT
GDT BASE
GDTR I | INEAR ADDRESS
31 0

231630-57

Figure 4-3. Descriptor Table Registers

31

intel

80386

ADVANGE INFORMATION

4.3.3.2 GLOBAL DESCRIPTOR TABLE

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e. interrupt and trap
descriptors). Every 386 system contains a GDT.
Generally the GDT contains code and data seg-
ments used by the operating systems and task state
segments, and descriptors for the LDTs in a system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

4.3.3.3 LOCAL DESCRIPTOR TABLE

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6 byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT.

4.3.3.4 INTERRUPT DESCRIPTOR TABLE

The third table needed for 80386 systems is the In-
terrupt Descriptor Table. (See Figure 4-4.) The IDT
contains the descriptors which point to the location
of up to 256 interrupt service routines. The IDT may
contain only task gates, interrupt gates, and trap
gates. The IDT should be at least 256 bytes in size in
order to hold the descriptors for the 32 Intel Re-
served Interrupts. Every interrupt used by a system
must have an entry in the IDT. The IDT entries are
referenced via INT instructions, external interrupt
vectors, and exceptions. (See 2.9 Interrupts).

o MEMORY a~
v

b))

GATE FOR
INTERRUPT #n

GATE FOR
INTERRUPT #n-1

INTERRUPT
DESCRIPTOR
TABLE

(IoT)

F)
:
GATE FOR
INTERRUPT #1

GATE FOR
INTERRUPT #0

CcPU

15 0

IDT LIMIT |
IDT BASE

Pl
o«

P
C

231630-58

Figure 4-4. Interrupt Descriptor
Table Register Use

4.3.4 Descriptors

4.3.4.1 DESCRIPTOR ATTRIBUTE BITS

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re-
gion of linear address space (i.e. a segment). These

31 0 BYTE
ADDRESS
SEGMENTBASE 15...0 SEGMENTLIMIT15...0 0
LIMIT BASE
BASE31...24 |G| D |0 |0 P| DPL | S TYPE A +4
19...16 | 23...16

BASE Base Address of the segment

LIMIT The length of the segment

P Present Bit 1=Present 0=Not Present

DPL Descriptor Privilege Level 0-3

S Segment Descriptor 0= System Descriptor 1=Code or Data Segment Descriptor

TYPE Type of Segment

A Accessed Bit

G Granularity Bit 1=Segment length is page granular 0= Segment length is byte granular

D Default Operation Size (recognized in code segment descriptors only) 1=232-bit segment 0= 16-bit segment

0 Bit must be zero (0) for compatibility with future processors

Figure 4-5. Segment Descriptors

32

intel

80386

ADVANCE INFORMATION

attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4-5 shows the gen-
eral format of a descriptor. All segments on the
80386 have three attribute fields in common: the P
bit, the DPL bit, and the S bit. The Present P bit is 1
if the segment is loaded in physical memory, if P=0
then any attempt to access this segment causes a
not present exception (exception 11). The Descrip-
tor Privilege Level DPL is a two-bit field which speci-
fies the protection level 0-3 associated with a seg-
ment.

The 80386 has two main categories of segments
system segments and non-system segments (for
code and data). The segment S bit in the segment
descriptor determines if a given segment is a system
segment or a code or data segment. If the S bit is 1
then the segment is either a code or data segment, if
it is 0 then the segment is a system segment.

4.3.4.2 386 CODE, DATA DESCRIPTORS (S=0)

Figure 4-6 shows the general format of a code and
data descriptor and Table 4-1 illustrates how the bits
in Access Right Byte are interpreted.

31 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT ACCESS BASE
BASE31...24 (G (D |0 | O 19.. 16 RIGHTS 23...16 +4
s o BYTE .

D/B 1=Default Instructions Attributes are 32-Bits
0=Default Instruction Attributes are 16-Bits

G Granularity Bit 1=Segment length is page granular
0=Segment length is byte granular
0 Bit must be zero (0) for compatibility with future processors

Figure 4-6. Segment Descriptors

Table 4-1. Access Rights Byte Definition for Code and Data Descriptions

PosBIittlon Name Function
7 Present (P) P =1 Segmentis mapped into physical memory.
P = 0 No mapping to physical memory exits, base and limit are
not used.
6-5 |Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
< Segment Descrip- (S = 1 Code or Data (includes stacks) segment descriptor
tor (S) S = 0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E = 0 Data segment descriptor type is:)i
2 Expansion Direc- |ED = 0 Expand up segment, offsets must be < limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment
1 Writeable (W) W = 0 Data segment may not be written into. (S =1,
Type W = 1 Data segment may be written into. JE=0)
F'el_d,) 3 Executable (E) E =1 Code segment descriptor type is: i
Definition| 5 Conforming (C) |C =1 Code segment may only be executed Code
when CPL > DPL and CPL #Segment
remains unchanged. S =1,
1 Readable (R) R = 0 Code segment may not be read. E=1)
R =1 Code segment may be read. J
0 Accessed (A) A = 0 Segment has not been accessed.
A =1 Segment selector has been loaded into segment register
or used by selector test instructions.

intel

80386

ADVANCE INFORMATION

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. 80386 segments can be one mega-
byte long with byte granularity (G=0) or four giga-
bytes with page granularity (G=1), (i.e. 220 pages
each page is 4K bytes in length). The granularity is
totally unrelated to paging. A 80386 system can con-
sist of segments with byte granularity, and page
granularity, whether or not paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E=1, S=1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R=0, and execute/read if R=1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias-
es are writeable data segments which occupy the
same range of linear address space as the code
segment.

The D bit indicates the default length for operands
and effective addresses. If D=1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
D=0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 286 code
segments will execute on the 80386 assuming the D
bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C=1,
can be executed and shared by programs at differ-
ent privilege levels. (See section 4.4 Protection.)

Segments identified as data segments (E=0, S=1)
are used for two types of 80386 segments: stack
and data segments. The expansion direction (ED) bit
specifies if a segment expands downward (stack) or
upward (data). If a segment is a stack segment all
offsets must be greater than the segment limit. On a
data segment all offsets must be less than or equal
to the limit. In other words, stack segments start at
the base linear address plus the maximum segment
limit and grow down to the base linear address plus
the iimit. On the other hand, data segments start at
the base linear address and expand to the base lin-
ear address plus limit.

The write W bit controls the ability to write into a
segment. Data segments are read-only if W=0. The
stack segment must have W=1.

The B bit controls the size of the stack pointer regis-
ter. If B=1 PUSHes, POPs, and CALLs all use the
32-bit ESP register for stack references and assume
an upper limit of FFFFFFFFH. If B=0 stack instruc-
tions all use the 16-bit SP register and assume an
upper limit of FFFFH.

4.3.4.3 SYSTEM DESCRIPTOR FORMATS

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4-7
shows the general format of system segment de-
scriptors, and the various types of system segments.
80386 system descriptors contain a 32-bit base lin-
ear address and a 20-bit segment limit. 80286 sys-
tem descriptors have a 24-bit base address and a
16-bit segment limit. 80286 system descriptors are
identified by the upper 16 bits being all zero.

31 16 0
SEGMENTBASE 15...0 SEGMENTLIMIT15...0 0
LIMIT BASE

BASE31...24 |G |0 (0| O 19...16 P Df’L 0 .TYIPE| 23...16 +4

Type Defines Type Defines

0 Invalid 8 Invalid

1 Available 286 TSS 9 Available 386 TSS

2 LDT A Undefined (Intel Reserved)

3 Busy 286 TSS B Busy 386 TSS

4 286 Call Gate C 386 Call Gate

5 286 Task Gate D Undefined (Intel Reserved)

6 286 Interrupt Gate E 386 Interrupt Gate

7 286 Trap Gate F 386 Trap Gate

Figure 4-7. System Segments Descriptors

34

intel

80386

ADVANGCE INFORMATION

4.3.4.4 LDT DESCRIPTORS (S=0, TYPE=2)

LDT descriptors (S=0 TYPE=2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De-
scriptor Table (GDT).

4.3.4.5 TSS DESCRIPTORS (S=0,
TYPE=1, 3, 9, B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). A TSS in turn is a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e. on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
286 or a 386 TSS. The Task Register (TR) contains
the selector which points to the current Task State
Segment.

4.3.4.6 GATE DESCRIPTORS (S=0,
TYPE=4-7,C, F)

Gates are used to control access to entry points
within the target code segment. The various types of

gate descriptors are call gates, task gates,
interrupt gates, and trap gates. Gates provide a
level of indirection between the source and destina-
tion of the control transfer. This indirection allows
the processor to automatically perform protection
checks. It also allows system designers to control
entry points to the operating system. Call gates are
used to change privilege levels (see section 4.4
Protection), task gates are used to perform a task
switch, and interrupt and trap gates are used to
specify interrupt service routines.

Figure 4-8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller’s stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit) while the trap gate does not.

to the called procedure's stack. The parameters are 32-bit quantities for

31 24 16 8 5 0
SELECTOR OFFSET 15...0 0
WORD
OFFSET 31...16 P| DPL (O TYPE 0| 0| O |COUNT|+4
4...0
1 1 1 1
Gate Descriptor Fields
Name Value Description
Type 4 286 call gate
5 Task gate
6 286 interrupt gate
7 286 trap gate
C 386 call gate
E 386 interrupt gate
F 386 trap gate
P 0 Descriptor contents are not valid
1 Descriptor contents are valid

DPL—least privileged level at which a task may access the gate. WORD COUNT 0-31—the number of parameters to copy from caller’s stack

DESTINATION 16-bit Selector to the target code segment
SELECTOR selector or
Selector to the target task state segment for task gate
DESTINATION offset Entry point within the target code segment
OFFSET 16-bit 286
32-bit 386

386 gates, and 16-bit quantities for 286 gates.

Figure 4-8. Gate Descriptor Formats

35

intel

80386

ADVANCE INFORMATION

Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see section
4.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e. a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. P=1 indicates that the gate contents are
valid. P=0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task (see section 4.4
Protection). The S field bit 4 of the access rights
byte must be 0 to indicate a system control descrip-
tor. The type field specifies the descriptor type as
indicated in Figure 4-8.

4.3.4.7 DIFFERENCES BETWEEN 386 AND 286
DESCRIPTORS

In order to provide operating system compatibility
between the 80286 and 80386, the 386 supports all
of the 80286 segment descriptors. Figure 4-9 shows
the general format of an 80286 system segment de-
scriptor. The only differences between 286 and 386
descriptor formats are that the values of the type
fields, and the limit and base address fields have
been expanded for the 386. The 80286 system seg-
ment descriptors contained a 24-bit base address
and 16-bit limit, while the 386 system segment de-
scriptors have a 32-bit base address, a 20-bit limit
field, and a granularity bit.

By supporting 80286 system segments the 80386 is
able to execute 286 application programs on a
80386 operating system. This is possible because
the processor automatically understands which de-

scriptors are 286-style descriptors and which de-
scriptors are 386-style descriptors. In particular, if
the upper word of a descriptor is zero then that de-
scriptor is a 286-style descriptor.

The only other differences between 286-style de-
scriptors and 386 descriptors is the interpretation of
the word count field of call gates and the B bit. The
word count field specifies the number of 16-bit quan-
tities to copy for 286 call gates and 32-bit quantities
for 386 call gates. The B bit controls the size of
PUSHes when using a call gate; if B=0 PUSHes are
16 bits, if B=1 PUSHes are 32 bits.

4.3.4.8 SELECTOR FIELDS

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (Tl), Descriptor
Entry Index (Index), and Requestor (the selector’s)
Privilege Level (RPL) as shown in Figure 4-10. The
Tl bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

4.3.4.9 SEGMENT DESCRIPTOR CACHE

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register’s con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s val-
ue.

31 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
Intel Reserved BASE

Setto 0 e LI L T e

BASE Base Address of the segment DPL Descriptor Privilege Level 0-3
LIMIT The length of the segment S System Descriptor 0=System 1=User
P Present Bit 1=Present 0=Not Present TYPE Type of Segment

Figure 4-9. 286 Code and Data Segment Descriptors

36

ntel

80386 ADVANGCE INFORMATION

SELECTOR
15 43210
SEGMENT TI| RPL
REGISTER J0Jo ====0Jof1]1]1] |
h ” | TABLE
INDEX INDICATOR
TI=1 TI=Ol
N N
N DESCRIPTOR)
A NUMBER A
6 6
5 5
4 4
3 | DESCRIPTOR 3
2 2
1 1
0 0 NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE

231630-59

Figure 4-10. Example Descriptor Selection

37

intel

80386

ADVANCIE INFORMATION

4.3.4.10 SEGMENT DESCRIPTOR REGISTER
SETTINGS

The contents of the segment descriptor cache vary
depending on the mode the 80386 is operating in.
When operating in Real Address Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4-11.

For compatiblity with the 8086 architecture, the base
is set to sixteen times the current selector value, the
limit is fixed at 0000FFFFH, and the attributes are
fixed so as to indicate the segment is present and
fully usable. In Real Address Mode, the internal
“privilege level” is always fixed to the highest level,
level 0, so I/0 and other privileged opcodes may be
executed.

intersegment JMP, or INT). (See Figure 4-13 Example.)

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32-BIT BASE 32=BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)

CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT J

BASE CLMT S ey v +
cs 16X CURRENT CS SELECTOR® 0000FFFFH |Y|oO|Y|B|U|Y|Y|Y|-
ss 16X CURRENT SS SELECTOR 000OFFFFH |Y|O|Y|B|U|Y|Y|N
DS 16X CURRENT DS SELECTOR 000OFFFFH |Y|0|Y|B|U|Y|Y|N| =] =
ES 16X CURRENT ES SELECTOR 000OFFFFH |Y|O|Y|B|U|Y|Y|N| =] =
FS 16X CURRENT FS SELECTOR 000OFFFFH |Y|O|Y|B|U|Y|Y[N| =] =
Gs 16X CURRENT GS SELECTOR 000OFFFFH |Y|O|Y|B|U|Y[Y[N[=] =

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (e.g. intersegment CALL, or

Key: Y = yes D = expand down
N =no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 - = does not apply to that segment cache register
U = expand up

231630-60

Figure 4-11. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)

38

intel

80386

ADVANCE INFORMATION

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4-12.
In Protected Mode, each of these fields are defined

according to the contents of the segment descriptor
indexed by the selector value loaded into the seg-
ment register.

SEGMENT
32 = BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

DESCRIPTOR CACHE REGISTER CONTENTS

32=BIT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

OTHER ATTRIBUTES

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

STACK SIZE

EXECUTABLE

WRITEABLE
READABLE

EXPANSION DIRECTION

GRANULARITY

ACCESSED

PRIVILEGE LEVEL
PRESENT

BASE

cs BASE PER SEG DESCR

LIMIT PER SEG DESCR

SS BASE PER SEG DESCR

LIMIT PER SEG DESCR

DS BASE PER SEG DESCR

LIMIT PER SEG DESCR

ES BASE PER SEG DESCR

FS BASE PER SEG DESCR

LIMIT PER SEG DESCR

GS BASE PER SEG DESCR

Key: fixed yes
fixed no

per segment descriptor

vaz<

(exception 12 in case of SS)
(special case for SS)

(special case for SS)

per segment descriptor; descriptor must indicate “present” to avoid exception 11
r = per segment descriptor, but descriptor must indicate “readable” to avoid exception 13
w = per segment descriptor, but descriptor must indicate “‘writable” to avoid exception 13

- = does not apply to that segment cache register

P
p
[
LIMIT PER SEG DESCR P
)
p

LIMIT PER SEG DESCR
231630-61

Figure 4-12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

39

intel

80386

ADVANCE INFORMATION

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de-
fined as shown in Figure 4-13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 = BIT BASE 32 = BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT
BASE LIMIT ¥ vy
cs 16X CURRENT CS SELECTOR OOOOFFFFH |Y|3|Y|B|U|Y|Y[|Y|=|N
5 16X CURRENT SS SELECTOR OOOOFFFFH [Y[3|Y|B|U|Y|[Y|N|W|~-
DS 16X CURRENT DS SELECTOR OOOOFFFFH |[Y[3|Y|B|U|Y[Y|N|=|~-
ES 16X CURRENT ES SELECTOR 0000FFFFH Y[{3[Y|BJU|Y|[Y[N|[=|=
FS 16X CURRENT FS SELECTOR O000FFFFH [Y[3[Y|B|U|Y|Y|N|=|~-
GS 16X CURRENT GS SELECTOR OOOOFFFFH [Y[3|YIB|U|YIYINI=|=
"""""""""""""""""""""""""""""" 231630-62
Key: Y = yes D = expand down
N = no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 - = does not apply to that segment cache register
U = expand up

Figure 4-13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

40

80386

ADVANCE INFORMATION

4.4 PROTECTION

4.4.1 Protection Concepts

0S EXTENSIONS

SYSTEM
SERVICES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

231630-63

Figure 4-14. Four-Level Hierachical Protection

The 80386 has four levels of protection which are
optimized to support the needs of a multi-tasking op-
erating system to isolate and protect user programs
from each other and the operating system. The privi-
lege levels control the use of privileged instructions,
I/0 instructions, and access to segments and seg-
ment descriptors. Unlike traditional microprocessor-
based systems where this protection is achieved
only through the use of complex external hardware
and software the 80386 provides the protection as
part of its integrated Memory Management Unit. The
80386 offers an additional type of protection on a
page basis, when paging is enabled (See section
4.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus-
trated in Figure 4-14. It is an extension of the user/
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the 80386 paging mechanism.
The privilege levels (PL) are numbered 0 through 3.
Level 0 is the most privileged or trusted level.

4.4.2 Rules of Privilege

The 80386 controls access to both data and proce-
dures between levels of a task, according to the fol-
lowing rules.

® Data stored in a segment with privilege level p can
be accessed only by code executing at a privilege
level at least as privileged as p.

41

® A code segment/procedure with privilege level p
can only be called by a task executing at the same
or a lesser privilege level than p.

4.4.3 Privilege Levels

4.4.3.1 TASK PRIVILEGE

At any point in time, a task on the 80386 always
executes at one of the four privilege levels. The Cur-
rent Privilege Level (CPL) specifies the task’s privi-
lege level. A task’s CPL may only be changed by
control transfers through gate descriptors to a code
segment with a different privilege level. (See section
4.4.4 Privilege Level Transfers) Thus, an applica-
tion program running at PL = 3 may call an operat-
ing system routine at PL = 1 (via a gate) which
would cause the task’s CPL to be set to 1 until the
operating system routine was finished.

4.4.3.2 SELECTOR PRIVILEGE (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector’'s RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu-
merically larger) level of a task’s CPL and a selec-
tor's RPL. Thus, if selector’'s RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level
3 regardless of the task’s CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator’s CPL.

4.4.3.3 1/0 PRIVILEGE

The I/0 privilege level (IOPL) lets the operating sys-
tem code executing at CPL = 0 define the least
privileged level at which I/O instructions can be
used. An exception 13 (General Protection Violation)
is generated if an 1/0 instruction is attempted when
the CPL of the task is less privileged then the IOPL.
The IOPL is stored in bits 13 and 14 of the EFLAGS
register. The following instructions cause an excep-
tion 13 if CPL is greater than IOPL: IN, INS, OUT,
OUTS, STI, CLI, LOCK prefix.

intel

80386

ADVANCE INFORMATION

4.4.3.4 PRIVILEGE VALIDATION

The 80386 provides several instructions to speed
pointer testing and help maintain system integrity by
verifying that the selector value refers to an appro-
priate segment. Table 4-2 summarizes the selector
validation procedures available for the 80386.

Table 4-2. Pointer Test Instructions

Instruction | Operands Function

ARPL Selector,

Register

Adjust Requested Privi-
lege Level: adjusts the
RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERIfy for Read: sets the
zero flag if the segment
referred to by the selector
can be read.

VERIfy for Write: sets the
zero flag if the segment
referred to by the selector
can be written.

VERR Selectro

VERW | Selector

LSL Register,

Selector

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag is successful.

LAR Register,

Selector

Load Access Rights: reads
the descriptor access
rights byte into the register
if privilege rules allow. Set
zero flag if successful.

This pointer verification prevents the common prob-
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat-
ing system routine a “bad” pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

42

4.4.3.5 DESCRIPTOR ACCESS

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the 80386 makes protection vali-
dation checks. The processor first checks to see if
the segment is not a null segment, an invalid seg-
ment generates an exception 11. Then it checks to
see if the selector refers to the correct type of seg-
ment. Selectors loaded in the DS, ES, FS, GS regis-
ters must refer only to data segment or readable
code segments. The data access rules are specified
in section 4.2.2 Rules of Privilege. The only excep-
tion to those rules is readable conforming code seg-
ments which can be accessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 Privilege Level Transfers

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4-3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

intel

80386

ADVANCE INFORMATION

Table 4-3. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege level | CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or DT

Exception, External Interrupt

Interrupt Gate
Intersegment to a lower privilege level RET, IRET* Code Segment | GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET** Task Gate IDT

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag word) = 0
**NT (Nested Task bit of flag word) = 1

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

— Privilege level transitions can only occur via
gates.

— JMPs must be made to a non-conforming code
segment with the same privilege.

— CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

— Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment’s DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL
must be of equal or greater privilege than the
gate’s DPL.

— The code segment selected in the gate must be
the same or more privileged than the task’s CPL.

— Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

— Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who’s DPL is less privi-
leged or the same privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis-
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate’s word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

43

intel

80386

ADVANGCE INFORMATION

4.4.5 Call Gates

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, or perform 1/0).

Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor’s DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level 386 call gate is activated,
the following actions occur.

1. Load CS:EIP from gate check for validity
2. SS is pushed zero-extended to 32 bits
3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 286 Call gates, except
that 16-bit parameters are copied and 16-bit regis-
ters are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disables further interrupts (i.e. the
IF bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 Task Switching

A very important attribute of any multi-tasking/multi-
user operating systems is its ability to rapidly switch
between tasks or processes. The 80386 directly
supports this operation by providing a task switch

instruction in hardware. The 80386 task switch oper-
ation saves the entire state of the machine (all of the
registers, address space, and a link to the previous
task), loads a new execution state, performs protec-
tion checks, and commences execution in the new
task, in about 17 microseconds. Like transfer of con-
trol via gates, the task switch operation is invoked by
executing an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS), or a
task gate descriptor in the GDT or LDT. An INT n
instruction, exception, trap, or external interrupt may
also invoke the task switch operation if there is a
task gate descriptor in the associated IDT descriptor
slot.

The TSS descriptor points to a segment (see Figure
4-15) containing the entire 80386 execution state
while a task gate descriptor contains a TSS selector.
The 80386 supports both 286 and 386 style TSSs.
Figure 4-16 shows a 286 TSS. The limit of a 386
TSS must be greater than 0064H (002BH for a 286
TSS), and can be as large as 4 Gigabytes. In the
additional TSS space, the operating system is free
to store additional information such as the reason
the task is inactive, time the task has spent running,
and open files belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
80386 called the Task State Segment Register (TR).
This register contains a selector referring to the task
state segment descriptor that defines the current
TSS. A hidden base and limit register associated
with TR are loaded whenever TR is loaded with a
new selector. Returning from a task is accomplished
by the IRET instruction. When IRET is executed,
control is returned to the task which was interrupted.
The current executing task’s state is saved in the
TSS and the old task state is restored from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow-
ing fashion:

ntel — ADVANCE INEORMATION

31 15 0
~| 0000000000000000 LINK 0
ESPO 4
0000000000000000 ! $S0 8
ESP1 € | stacks
10 [FOR
0000000000000000 ss1 CPL O, 1,2
ESP2 14
0000000000000000 ss2 8
CR3 1c)
EIP 20
EFLAGS 24
EAX 28
ECX 2¢
EDX 30
EBX 34
ESP 38
— * CURRENT
Esl 40} ask
R v €01 44 | STATE
i | Access .
v | RiGHTs | UMIT | 0000000000000000 ES 48
] L)
; 4 0000000000000000 cs 4c
' BASE e 0
! ! 0000000000000000 ss
131 PROGRAM 0] 0000000000000000 DS 54
' INVISIBLE ' 58
B . 0000000000000000 [
TASK REGISTER sc
0000000000000000 Gs
TSSR SELECTOR e 0000000000000000 LoT 60
15 0 AVAILABLE | Kl B
AVAILABLE TO USER 68
TSS LIMIT
31 386 TSS DESCRIPTOR 0
SEGMENT BASE 15...0 SEGMENT LIMIT 15..0
o LIMIT BASE
BASE 31..z4|c|1lo|o| T8 16 PIDTLIOI JPE, I 55 1§
231630-64
Type = 9 Available 386 TSS,
Type = 13 Busy 386 TSS

Figure 4-15. 386 TSS and TSS Registers

45

intel

80386

ADVANCE INFORMATION

15 0| BYTE OFFSET
TASK LDT SELECTOR 42
DS SELECTOR 40)
SS SELECTOR 38
€S SELECTOR 36
ES SELECTOR 34
DI 32
S| 30
BP 28 | CURRENT
TASK
SP 26 | STATE
BX 24
DX 22
[20
AX 18
FLAG WORD 16
IP (ENTRY POINT) 14
SS FOR CPL 2 12)
SP FOR CPL 2 10
SS FOR CPL 1 8 | INITIAL
SP FOR CPL 1 6 ?{,ﬁ; 0.1.2
SS FOR CPL 0 4
SP FOR CPL O 2 |
BACK LINK SELECTOR TO TSS 0
N o)
wvy w
231630-65

Figure 4-16. 286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The 386 task state segment is marked busy by
changing the descriptor type field from TYPE 9H to
TYPE BH. A 286 TSS is marked busy by changing
the descriptor type field from TYPE 1 to TYPE 3.
Use of a selector that references a busy task state
segment causes an exception 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see section 4.6 Virtual Mode).

The coprocessor’s state is not automatically saved
when a task switch occurs, because the incoming

46

task may not use the coprocessor. The Task
Switched (TS) Bit (bit 3 in the CRO) helps deal with
the coprocessor’s state in a multi-tasking environ-
ment. Whenever the 80386 switches task, it sets the
TS bit. The 80386 detects the first use of a proces-
sor extension instruction after a task switch and
causes the processor extension not available excep-
tion 7. The exception handler for exception 7 may
then decide whether to save the state of the co-
processor. A processor extension not present ex-
ception (7) will occur when attempting to execute an
ESC or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (i.e.
TS = 1 and MP = 1).

The T bit in the 386 TSS indicates that the processor
should generate a debug exception when switching
to a task. If T = 1 then upon entry to a new task a
debug exception 1 will be generated.

4.4.7 Initialization and Transition to
Protected Mode

Since the 80386 begins executing in Real Mode im-
mediately after RESET it is necessary to initialize the
system tables and registers with the appropriate val-
ues.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256 bytes long,
and GDT must contain descriptors for the initial
code, and data segments. Figure 4-17 shows the
tables and Figure 4-18 the descriptors needed for a
simple Protected Mode 80386 system. It has a sin-
gle code and single data/stack segment each four
gigabytes long and a single privilege level PL = 0.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the 80386 in Protected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op-
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

ADVANGCE INFORMATION

-
Inter 80386
31 0
15 0 RESET ROUTINES |/ IrFr
FFFFFFFO
ss 0010 | INITIALIZATION
ROUTINES
6s [0010]
Fs (0010 |
Es [0010 |
USER MEMORY
0s (0010]
cs
7 | umir
o gg:)om;o DATA DESCRIPTOR | Co000118
DDRESS CODE DESCRIPTOR | 0000110
i NULL SELECTOR 00000108 | 1
IDTR | OOFF | LIMIT 00000100
00000000 INTERRUPT II;T
BASE ADDRESS DESCRIPTORS (32) 1
00000000 EEp—-

Figure 4-17. Simple Protected System

DATA SEGMENTBASE 15...0 SEGMENT LIMIT15...0
DESCRIPTOR| 0118 (H) FFFF (H)
LIMIT
BASE31...24|G|D BASE23...16
2 0|0 19.16 110 0(1{0 O 1|0
00 (H 101 00 (H
H) Fi | N H)
CODE SEGMENTBASE 15...0 SEGMENT LIMIT15...0
DESCRIPTOR 0118 (H) FFFF (H)
LIMIT
BASE31...24|G|D BASE23...16
1 0|0 19.16 110 Of1|1 0 1|0
00 (H 11 00 (H
H) il 1 - H)
NULL DESCRIPTOR
0
31 24 16 8 0

Figure 4-18. Descriptors for Simple System

4.4.8 Tools for Building Protected
Systems

In order to simplify the design of a protected multi-
tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
80386 system. This tool is the builder BLD-386™™.
BLD-386 lets the operating system writer specify all
of the segment descriptors discussed in the previous
sections (LDTs, IDTs, GDTs, Gates, and TSS) in a
high-level language.

47

4.5 PAGING

4.5.1 Paging Concepts

Paging is another type of memory management use-
ful for virtual memory multitasking operating sys-
tems. Unlike segmentation which modularizes pro-
grams and data into variable length segments, pa-

intel

80386

ADVANCE INFORMATION

ging divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
structure of a program. While segment selectors can
be considered the logical “name” of a program
module or data structure, a page most likely corre-
sponds to only a portion of a module or data struc-
ture.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

4.5.2 Paging Organization

4.5.2.1 PAGE MECHANISM

The 80386 uses two levels of tables to translate the
linear address (from the segmentation unit) into a
physical address. There are three components to
the paging mechanism of the 80386: the page direc-
tory, the page tables, and the page itself (page
frame). All memory-resident elements of the 80386
paging mechanism are the same size, namely, 4K
bytes. A uniform size for all of the elements simpli-
fies memory allocation and reallocation schemes,
since there is no problem with memory fragmenta-
tion. Figure 4-19 shows how the paging mechanism
works.

4.5.2.2 PAGE DESCRIPTOR BASE REGISTER

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. (See 4.5.4 Translation
Lookaside Buffer).

4.5.2.3 PAGE DIRECTORY

The Page Directory is 4K bytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4-20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME

31 22 12 0
——>| orectory | Tasie | oFFser | USER
LINEAR MEMORY
ADDRESS o . l 12 l
= : ®-> ADDRESS
386 { T
31) a1 . (Oag >
e[T 4 f
N | .
CR1 > >
G/ PAGE TABLE
CR2 T
CR3 ROOT N
DIRECTORY
CONTROL REGISTERS
231630-67
Figure 4-19. Paging Mechanism
31 12 1 10 9 8 7 6 5 4 3 2 1 0
0s U|R
PAGE TABLE ADDRESS 31..12 RESERVED 0 0 D A 0 O|—|—| P
S| W

Figure 4-20. Page Directory Entry (Points to Page Table)

48

intgl 60386 ADVANGE INFORMATION
31 12 1 10 9 8 7 6 5 4 3 2 1 0
(O] U|R
PAGE FRAME ADDRESS 31..12 RESERVED 0 O(D|A]|O O|—|—|P
S | W

Figure 4-21. Page Directory Entry (Points to Page Table)

4.5.2.4 PAGE TABLES

Each Page Table is 4K bytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4-21). Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 PAGE DIRECTORY/TABLE ENTRIES

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address translation
if P = 0 the entry can not be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the 80386 for both
types of entries before a read or write access occurs
to an address covered by the entry. The D (Dirty) bit
6 is set to 1 before a write to an address covered by
that page table entry occurs. The D bit is undefined
for Page Directory Entries. When the P, A and D bits
are updated by the 80386, the processor generates
a Read-Modify-Write cycle which locks the bus and
prevents conflicts with other processors or perpheri-
als. Software which modifies these bits should use
the LOCK prefix to ensure the integrity of the page
tables in multi-master systems.

The 3 bits marked OS Reserved in Figure 4-20 and
Figure 4-21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Use.

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

49

4.5.3 Page Level Protection
(R/W, U/S Bits)

The 80386 provides a set of protection attributes for
paging systems. The paging mechanism distin-
guishes between two levels of protection: User
which corresponds to level 3 of the segmentation
based protection, and supervisor which encompass-
es all of the other protection levels (0, 1, 2). Pro-
grams executing at Level 0, 1 or 2 bypass the page
protection, although segmentation based protection
is still enforced by the hardware.

The U/S and R/W bits are used to provide User/Su-
pervisor and Read/Write protection for individual
pages or for all pages covered by a Page Table Di-
rectory Entry. The U/S and R/W bits in the second
level Page Table Entry apply only to the page de-
scribed by that entry.

While the U/S and R/W bits in the first level Page
Directory Table apply to all pages described by the
page table pointed to by that directory entry. The
U/S and R/W bits for a given page are obtained by
taking the most restrictive of the U/S and R/W from
the Page Directory Table Entries and the Page Table
Entries and using these bits to address the page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry was 10 and the U/S R/W bits for the
Page Table Entry were 01, the access rights for the
page would be 01, the numerically smaller of the
two. Table 4-4 shows the affect of the U/S and R/W
bits on accessing memory.

Table 4-4. Protection Provided by R/W and U/S

Permitted | Permitted Access
/s | R Level 3 Levels 0, 1,0r 2
0 0 None Read/Write
0 1 None Read/Write
1 0 Read-Only Read/Write
1 1 Read/Write Read/Write

However a given segment can be easily made read-
only for level 0, 1, or 2 via the use of segmented
protection mechanisms. (Section 4.4 Protection).

intel

80386

ADVANCE INFORMATION

4.5.4 Translation Lookaside Buffer

The 80386 paging hardware is designed to support
demand paged virtual memory systems. However,
performance would degrade substantially if the proc-
essor was required to access two levels of tables for
every memory reference. To solve this problem, the
80386 keeps a cache of the most recently accessed
pages, this cache is called the Translation Looka-
side Buffer (TLB). The TLB is a four-way set associa-
tive 32-entry page table cache. It automatically
keeps the most commonly used Page Table Entries
in the processor. The 32-entry TLB coupled with a
4K page size, results in coverage of 128K bytes of
memory addresses. For many common multi-tasking
systems, the TLB will have a hit rate of about 98%.
This means that the processor will only have to ac-
cess the two-level page structure on 2% of all mem-
ory references. Figure 4-22 illustrates how the TLB
complements the 80386’s paging mechanism.

4.5.5 Paging Operation

32 ENTRIES

PHYSICAL
MEMORY
TRANSLATION
LOOKASIDE
BUFFER

LINEAR

ADDRESS

HIT

MISS

31 0
PAGE

4
j—
TABLE

® 98% HIT RATE

PAGE
DIRECTORY

231630-68

Figure 4-22. Translation Lookaside Buffer

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e. a TLB hit), then the 32-bit phys-
ical address is calculated and will be placed on the
address bus.

However, if the page table entry is not in the TLB,
the 80386 will read the appropriate Page Directory

50

Entry. If P = 1 on the Page Directory Entry indicat-
ing that the page table is in memory, then the 80386
will read the appropriate Page Table Entry and set
the Access bit. If P = 1 on the Page Table Entry
indicating that the page is in memory, the 80386 will
update the Access and Dirty bits as needed and
fetch the operand. The upper 20 bits of the linear
address, read from the page table, will be stored in
the TLB for future accesses. However if P = 0 for
either the Page Directory Entry or the Page Table
Entry, then the processor will generate a page fault
an Exception 14.

The processor will also generate an exception 14,
page fault, if the memory reference violated the
page protection attributes (i.e. U/S or R/W) (e.g. try-
ing to write to a read-only page). CR2 will hold the
linear address which caused the page fault. Since
Exception 14 is classified as a fault CS: EIP will point
to the instruction causing the page-fault. The 16-bit
error code pushed as part of the page fault handler
will contain status bits which indicate the cause of
the page fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault Fig-
ure 4-23A shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er-
ror code bits is different. Figure 4-23B indicates
what type of access caused the page fault.

15 3210
U(w
UlUjUju|uU|UjUjU(U|U|UjUU|U P
S|R

Figure 4-23A. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0)

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
(W/R = 1)

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1)

U: UNDEFINED

80386

ADVANGE INFORMATION

u/s W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S = 0, even if the program
is executing at level 3.
Figure 4-23B. Type of Access
Causing Page Fault

4.5.6 Operating System
Responsibilities

The 80386 takes care of the page address transla-
tion process, relieving the burden from an operating
system in a demand-paged system. The operating
system is responsible for setting up the initial page
tables, and handling any page faults. The operating
system also is required to invalidate (i.e. flush) the
TLB when any changes are made to any of the page
table entries. The operating system must reload
CR3 to cause the TLB to be flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
systems set the P present bit of page table entry to
zero the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 VIRTUAL 8086 ENVIRONMENT

4.6.1 Executing 8086 Programs

The 80386 allows the execution of 8086 application
programs in both Real Mode and in the Virtual 8086
Mode (Virtual Mode). Of the two methods, Virtual
8086 Mode offers the system designer the most
flexibility. The Virtual 8086 Mode allows the execu-
tion of 8086 applications, while still allowing the sys-
tem designer to take full advantage of the 80386
protection mechanism. In particular, the 80386 al-
lows the simultaneous execution of 8086 operating
systems and its applications, and an 80386 operat-

51

ing system and both 80286 and 80386 applications.
Thus, in a multi-user 80386 computer, one person
could be running an MS-DOS spreadsheet, another
person using MS-DOS, and a third person could be
running multiple Unix utilities and applications. Each
person in this scenario would believe that he had the
computer completely to himself. Figure 4-24 illus-
trates this concept.

4.6.2 Virtual 8086 Mode Addressing
Mechanism

One of the major differences between 80386 Real
and Protected modes is how the segment selectors
are interpreted. When the processor is executing in
Virtual 8086 Mode the segment registers are used in
an identical fashion to Real Mode. The contents of
the segment register is shifted left 4 bits and added
to the offset to form the segment base linear ad-
dress.

The 80386 allows the operating system to specify
which programs use the 8086 style address mecha-
nism, and which programs use Protected Mode ad-
dressing, on a per task basis. Through the use of
paging, the one megabyte address space of the Vir-
tual Mode task can be mapped to anywhere in the 4
gigabyte linear address space of the 80386. Like
Real Mode, Virtual Mode addresses that exceed one
megabyte will cause an exception 13. However,
these restrictions should not prove to be important,
because most tasks running in Virtual 8086 Mode
will simply be existing 8086 application programs.

4.6.3 Paging In Virtual Mode

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 giga-
byte physical address space of the 80386. In addi-
tion, since CR3 (the Page Directory Base Register)
is loaded by a task switch, each Virtual Mode task
can use a different mapping scheme to map pages
to different physical locations. Finally, the paging
hardware allows the sharing of the 8086 operating
system code between multiple 8086 applications.

80386

ADVANCE INFORMATION

PAGE N

8086 0OS

EMPTY

TASK 2 PAGE
TABLE

PAGE DIRECTORY
TASK 2

VIRTUAL MODE

Qoos TASK

-

PAGE N

PAGE 1

8086 0S

PHYSICAL
MEMORY

02000000(H)

i
m
mn

EMPTY

PAGE DIRECTORY
ROOT

QRTUAL 8086

TASK 1 PAGE
TABLE

v

PAGE DIRECTORY
TASK 1

00000000(H)
TASK 1 8086 0OS
MEMORY MEMORY
[/ TASK 2 80386 0S
//A MEMORY \\ MEMORY
231630-69

Figure 4-24. Virtual 8086 Environment Memory Management

Figure 4-24 shows how the 80386 paging hardware
enables multiple 8086 programs to run under a virtu-
al memory demand paged system.

4.6.4 Protection

All Virtual Mode programs execute at privilege level
3. As such Virtual Mode programs are subject to all
of the protection checks defined in Protected Mode.
This is different than Real Mode which implicitly is
executing at privilege level 0. Thus, an attempt to
execute a privileged instruction in Virtual Mode will
cause general protection fault (exception 13). Sever-
al instructions are made IOPL-sensitive, thus the op-
erating system can decide to trap 1/0 instructions
and emulate them by setting the IOPL = 0, or to let
170 instructions work normally by setting IOPL = 3.
Since Real Mode programs are always assumed to
be executing at privilege level 0 no privileged or
IOPL sensitive instruction faults can be generated.
However, some instructions are used only in Pro-

52

tected Mode, these instructions generate undefined
opcodes in both Real and Virtual Modes.

The following instructions cause an exception 6 in
both Real and Virtual 8086 Mode:

ARPL, LAR, LSL, VERR, VERW, STR, LTR, SLDT,
and LLDT.

The following are privileged instructions. They can
be used in Real Mode, but they cause a General
Protection Exception (interrupt 13) in Virtual Mode or
whenever the CPL > 0.

LIDT, LGDT, LMSW, CTS, HLT, MOV DRn, REG;
MOV REG, DRn; MOV CRn, REG; MOV REG, CRn;
MOV TRn, REG; and MOV REG, TRn.

The following instructions will generate a General
Protection Exception (exception 13) when CPL >
I0PL:

INS, IN, OUTS, OUT, STI, CLI, and LOCK.

intel

80386

ADVANGE INFORMATION

The INT n, PUSHF, POPF, and IRET instructions are
made IOPL sensitive only when the processor is ex-
ecuting in Virtual 8086 Mode. (Note that INT3 and
INTO instructions are not made IOPL sensitive.)

4.6.5 Interrupt Handling

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host 80386 operating sys-
tem. The 80386 operating system determines if the
interrupt comes from a Protected Mode application
or from a Virtual Mode program by examining the
VM bit in the EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The 80386 operating system in turn handles the ex-
ception or interrupt and then returns control to the
8086 program. The 80386 operating system may
choose to let the 8086 operating system handle the
interrupt or it may emulate the function of the inter-
rupt handler. For example, many 8086 operating
system calls are accessed by PUSHing parameters
on the stack, and then executing an INT n instruc-
tion. If the IOPL is set to 0 then all INT n instructions
will be intercepted by the 80386 operating system.
The 80386 operating system could emulate the
8086 operating system’s call. Figure 4-25 shows
how the 80386 operating system could intercept an
8086 operating system’s call to “Open a File”.

53

An 80386 operating system can provide a Virtual
8086 Environment which is totally transparent to the
application software via intercepting and then emu-
lating 8086 operating system’s calls, and intercept-
ing IN and OUT instructions.

4.6.6 Entering and Leaving Virtual
8086 Mode

There are two methods for entering or leaving Virtual
8086 Mode. A Virtual Mode task is entered by per-
forming a CALL or JUMP to a TSS which has the VM
bit set in the EFLAGS image. Upon exiting an inter-
rupt handler at privilege level 0 a set VM bit also
causes a return to Virtual Mode. The first method is
used to start the execution of a Virtual Mode task,
while the second method is used to return from serv-
icing a Virtual Mode interrupt.

Transition in and out of Virtual Mode results in a lev-
el change and a stack switch. In addition, all of the
segment register images are on the stack, and then
loaded with null selectors. This will permit the inter-
rupt handlers to save and restore the segment regis-
ters as 80286 selectors, instead of 8086 style seg-
ment registers. Interrupt routines which expect val-
ues in the segment registers, will have to obtain
these values by looking on the stack.

Leaving Virtual Mode is accomplished by simply
JMPing to a TSS (while at privilege level 0) which
does not have the VM bit set. This causes a task
switch.

ntel — ADVANCE INFORMATION

8086 APPLICATION
ROGRAM

386 APPLICATION
PROGRAM

GP FAULT

VIRTUAL 8086

MODE MONITOR
8086
OPERATING #3 ¢ #2
SYSTEM e

FILE OPEN
ROUTINES

8086 APPLICATION
PROGRAM

231630-70
8086 Application makes “Open File Call” — causes

General Protection Fault (Arrow #1)

Virtual 8086 Monitor intercepts call. Calls 386 OS (Arrow #2)

386 OS opens file returns control to 8086 OS (Arrow #3)

8086 OS returns control to application. (Arrow #4)

Transparent to Application

Figure 4-25. Virtual 8086 Environment Interrupt and Call Handling

54

intel

80386

ADVANCE INFORMATION

5. FUNCTIONAL DATA

5.1 INTRODUCTION

The 80386 features a straightforward functional in-
terface to the external hardware. The 80386 has
separate, parallel buses for data and address. The
data bus is 32-bits in width, and bidirectional. The
address bus outputs 32-bit address values in the
most directly usable form for the high-speed local
bus: 4 individual byte enable signals, and the 30 up-
per-order bits as a binary value. The data and ad-
dress buses are interpreted and controlled with their
associated control signals.

A dynamic data bus sizing feature allows the proc-
essor to handle a mix of 32- and 16-bit external bus-
es on a cycle-by-cycle basis (see 5.3.4 Data Bus
Sizing). If 16-bit bus size is selected, the 80386 au-
tomatically makes any adjustment needed, even
performing another 16-bit bus cycle to complete the
transfer if that is necessary. 8-bit peripheral devices
may be connected to 32-bit or 16-bit buses with no
loss of performance. A new address pipelining op-
tion is provided and applies to 32-bit and 16-bit bus-
es for substantially improved memory utilization, es-
pecially for the most heavily used memory resourc-
es.

The address pipelining option, when selected, typ-
ically allows a given memory interface to operate
with one less wait state than would otherwise be
required (see 5.4.2 Address Pipelining). The pipe-
lined bus is also well suited to interleaved memory
designs. For 16 MHz interleaved memory designs
with 100 ns access time DRAMs, zero wait states
can be achieved when pipelined addressing is se-
lected. When address pipelining is requested by the
external hardware, the 80386 will output the address
and bus cycle definition of the next bus cycle (if it is
internally available) even while waiting for the cur-
rent cycle to be acknowledged.

Non-pipelined address timing, however, is ideal for
external cache designs, since the cache memory will
typically be fast enough to allow non-pipelined cy-
cles. For maximum design flexibility, the address
pipelining option is selectable on a cycle-by-cycle
basis.

The processor’s bus cycle is the basic mechanism
for information transfer, either from system to proc-
essor, or from processor to system. 80386 bus cy-
cles perform data transfer in a minimum of only two
clock periods. On a 32-bit data bus, the maximum
80386 transfer bandwidth at 16 MHz is therefore 32
Mbytes/sec. Any bus cycle will be extended for
more than two clock periods, however, if external
hardware withholds acknowledgement of the cycle.

55

At the appropriate time, acknowledgement is sig-
nalled by asserting the 80386 READY # input.

The 80386 can relinquish control of its local buses
to allow mastership by other devices, such as direct
memory access channels. When relinquished, HLDA
is the only output pin driven by the 80386, providing
near-complete isolation of the processor from its
system. The near-complete isolation characteristic is
ideal when driving the system from test equipment,
and in fault-tolerant applications.

Functional data covered in this chapter describes
the processor’s hardware interface. First, the set of
signals available at the processor pins is described
(see 5.2 Signal Description). Following that are the
signal waveforms occurring during bus cycles (see
5.3 Bus Transfer Mechanism, 5.4 Bus Functional
Description and 5.5 Other Functional Descrip-
tions).

5.2 SIGNAL DESCRIPTION

5.2.1 Introduction

Ahead is a brief description of the 80386 input and
output signals arranged by functional groups. Note
the # symbol at the end of a signal name indicates
the active, or asserted, state occurs when the signal
is at a low voltage. When no # is present after the
signal name, the signal is asserted when at the high
voltage level.

Example signal: M/I0 # — High voltage indicates
Memory selected

— Low voltage indicates
1/0 selected

The signal descriptions sometimes refer to AC tim-
ing parameters, such as “tp5 Reset Setup Time” and
“tog Reset Hold Time.” The values of these parame-
ters can be found in Tables 7-4 and 7-5.

5.2.2 Clock (CLK2)

CLK2 provides the fundamental timing for the
80386. It is divided by two internally to generate the
internal processor clock used for instruction execu-
tion. The internal clock is comprised of two phases,
“phase one” and “phase two.” Each CLK2 period is
a phase of the internal clock. Figure 5-2 illustrates
the relationship. If desired, the phase of the internal
processor clock can be synchronized to a known
phase by ensuring the RESET signal falling edge
meets its applicable setup and hold times, to5 and
t26.

-
intel 80386 ADVANCE INFORMATION
2X CLOCK e :/’\
e L by
ADDRESS BUS_) A2-A31
BE3# .
e
BE2# o 32=-BIT
32-BIT| n_ 2T s ADDRESS
DATA[DO D31 { _DATA BUS BE1# ENABLES
BEO#
J
ADS# W/R# 7
b
g NA# 80386 D/C#
> proCESSOR
CONTROL BS164# M/10# BUS CYCLE DEFINITION
READY#) LOCK#
e S ey
HOLD PEREQ
BUS|
HLDA BUSY.
ARBITRATION[(—— | COPROCESSOR SIGNALLING
ERROR#
INTR
e
NMI Vee
INTERRUPTS { = e —
RESET GND POWER CONNECTIONS
—_—| —————————
231630-1
Figure 5-1. Functional Signal Groups
PROCESSOR CLOCK PROCESSOR CLOCK
PERIOD PERIOD
CLK2 PERIOD | CLK2 PERIOD | CLK2 PERIOD | CLK2 PERIOD
é1 $2 é1 $2
e N\ N\ N\ 1\
INTERNAL 80386 _
PROCESSOR CLOCK \ / \ / \
(SAME FREQUENCY AS
82384 CLK SIGNAL)
62ns MIN
(16 MHz qu)] 80386=16
83 ns MIN
(12.5 MHz MAX)] 8038612
231630-2

Figure 5-2. CLK2 Signal and Internal Processor Clock

5.2.3 Data Bus (DO through D31)

These three-state bidirectional signals provide the
general purpose data path between the 80386 and
other devices. Data bus inputs and outputs indicate
“1” when HIGH. The data bus can transfer data on
32- and 16-bit buses using a data bus sizing feature
controlled by the BS16# input. See section 5.2.6
Bus Contol. Data bus reads require that read data
setup and hold times tp1 and tao be met for correct
operation. During any write operation (and during
halt cycles and shutdown cycles), the 80386 always
drives all 32 signals of the data bus even if the cur-
rent bus size is 16-bits.

5.2.4 Address Bus (BEO# through
BE3#, A2 through A31)

These three-state outputs provide physical memory
addresses or |/0 port addresses. The address bus
is capable of addressing 4 gigabytes of physical
memory space (00000000H through FFFFFFFFH),
and 64 kilobytes of I/0 address space (00000000H
through 0000FFFFH) for programmed /0. 1I/0
transfers automatically generated for 80386-to-co-
processor communication use /O addresses
800000F8H through 800000FFH, so A31 HIGH in
conjunction with M/IO# LOW allows simple genera-
tion of the coprocessor select signal.

intel

80386

ADVANCE INFORMATION

The Byte Enable outputs, BEO# -BE3 #, directly in-
dicate which bytes of the 32-bit data bus are in-
volved with the current transfer. This is most conve-
nient for external hardware.

BEO# applies to DO-D7
BE1# applies to D8-D15
BE2# applies to D16-D23
BE3# applies to D24-D31

The number of Byte Enables asserted indicates the
physical size of the operand being transferred (1, 2,
3, or 4 bytes). Refer to section 5.3.6 Operand Align-
ment.

When a memory write cycle or 1/0O write cycle is in
progress, and the operand being transferred occu-
pies only the upper 16 bits of the data bus (D16-
D31), duplicate data is simultaneously presented on
the corresponding lower 16-bits of the data bus
(D0-D15). This duplication is performed for optimum
write performance on 16-bit buses. The pattern of
write data duplication is a function of the Byte En-
ables asserted during the write cycle. Table 5-1 lists
the write data present on D0-D31, as a function of
the asserted Byte Enable outputs BEO # -BE3 #.

5.2.5 Bus Cycle Definition Signals
(W/R#,D/C#,M/10#, LOCK #)

These three-state outputs define the type of bus cy-
cle being performed. W/R# distinguishes between
write and read cycles. D/C# distinguishes between
data and control cycles. M/IO# distinguishes be-
tween memory and |I/O cycles. LOCK# distin-
guishes between locked and unlocked bus cycles.

The primary bus cycle definition signals are W/R #,
D/C# and M/10#, since these are the signals driv-
en valid as the ADS# (Address Status output) is
driven asserted. The LOCK# is driven valid at the
same time as the bus cycle begins, which due to
address pipelining, could be later than ADS # is driv-
en asserted. See 5.4.3.4 Pipelined Address.

Exact bus cycle definitions, as a function of W/R#,
D/C#, and MI/IO#, are given in Table 5-2. Note
one combination of W/R#, D/C# and M/IO# is
never given when ADS # is asserted (however, that
combination, which is listed as “does not occur,” will
occur during idle bus states when ADS # is not as-
serted). If M/IO#, D/C#, and W/R# are qualified
by ADS# asserted, then a decoding scheme may
use the non-occurring combination to its best advan-
tage.

Table 5-1. Write Data Duplication as a Function of BEO # -BE3 #

D = logical write data d24-d31
C = logical write data d16-d23
B = logical write data d8-d15
A = logical write data d0-d7

80386 Byte Enables 80386 Write Data Automatic
BE3# BE2# BE1# BEO# | D24-D31 D16-D23 D8-D15 Do-p7 | DuPlication?
High High High Low undef undef undef A No
High High Low High undef undef B undef No
High Low High High undef o] undef o] Yes
Low High High High D undef D undef Yes
High High Low Low undef undef B A No
High Low Low High undef C B undef No
Low Low High High D C D C Yes
High Low Low Low undef C B A No
Low Low Low High D C B undef No
Low Low Low Low D C B A No
Key:

57

intel

80386

ADVANCE INFORMATION

Table 5-2. Bus Cycle Definition

M/10 # D/C# W/R# Bus Cycle Type Locked?
Low Low Low INTERRUPT ACKNOWLEDGE Yes
Low Low High does not occur —

Low High Low 1/0 DATA READ No
Low High High 1/0 DATA WRITE No
High Low Low MEMORY CODE READ No
High Low High HALT: SHUTDOWN: No
Address = 2 Address = 0
(BEO# High (BEO# Low
BE1# High BE1# High
BE2# Low BE2# High
BE3# High BE3# High
A2-A31 Low) A2-A31 Low)
High High Low MEMORY DATA READ Some Cycles
High High High MEMORY DATA WRITE Some Cycles

5.2.6 Bus Control Signals

5.2.6.1 INTRODUCTION

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining, data bus
width and bus cycle termination.

5.2.6.2 ADDRESS STATUS (ADS #)

This three-state output indicates that a valid bus cy-
cle definition, and address (W/R#, D/C#, M/I0#,
BEO#-BE3#, and A2-A31) is being driven at the
80386 pins. It is asserted during T1 and T2P bus
states (see 5.4.3.2 Non-pipelined Address and
5.4.3.4 Pipelined Address for additional information
on bus states).

5.2.6.3 TRANSFER ACKNOWLEDGE (READY #)

This input indicates the current bus cycle is com-
plete, and the active bytes indicated by BEO# -
BE3# and BS16# are accepted or provided. When
READY # is sampled asserted during a read cycle or
interrupt acknowledge cycle, the 80386 latches the
input data and terminates the cycle. When READY #
is sampled asserted during a write cycle, the proces-
sor terminates the bus cycle.

READY # is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY # must eventually be asserted to
acknowledge every bus cycle, including Halt Indica-
tion and Shutdown Indication bus cycles. When be-

58

ing sampled, READY must always meet setup and
hold times t1g and tpq for correct operation. See all
sections of 5.4 Bus Functional Description.

5.2.6.4 NEXT ADDRESS REQUEST (NA#)

This is used to request address pipelining. This input
indicates the system is prepared to accept new val-
ues of BEO# -BE3#, A2-A31, W/R#, D/C# and
M/10# from the 80386 even if the end of the current
cycle is not being acknowledged on READY #. If this
input is asserted when sampled, the next address is
driven onto the bus, provided the next bus request is
already pending internally. See 5.4.2 Address Pipe-
lining and 5.4.3 Read and Write Cycles.

5.2.6.5 BUS SIZE 16 (BS16#)

The BS16 # feature allows the 80386 to directly con-
nect to 32-bit and 16-bit data buses. Asserting this
input constrains the current bus cycle to use only the
lower-order half (D0-D15) of the data bus, corre-
sponding to BEO# and BE1#. Asserting BS16# has
no additional effect if only BEO# and/or BE1# are
asserted in the current cycle. However, during bus
cycles asserting BE2# or BE3 #, asserting BS16#
will automatically cause the 80386 to make adjust-
ments for correct transfer of the upper bytes(s) using
only physical data signals DO-D15.

If the operand spans both halves of the data bus
and BS16 # is asserted, the 80386 will automatically
perform another 16-bit bus cycle. BS16# must al-
ways meet setup and hold times t17 and t1g for cor-
rect operation.

intel

80386

ADVANCE INFORMATION

80386 1/0 cycles automatically generated for co-
processor communication do not require BS16# be
asserted. The coprocessor type, 80287 or 80387, is
sensed on the ERROR # input shortly after the fall-
ing edge of RESET. The 80386 transfers only 16-bit
quantities between itself and the 80287, but must
transfer 32-bit quantities between itself and the
80387. Therefore BS16# is a don’t care during
80287 cycles and must not be asserted during
80387 communication cycles.

5.2.7 Bus Arbitration Signals

5.2.7.1 INTRODUCTION

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
5.5.1 Entering and Exiting Hold Acknowledge for
additional information.

5.2.7.2 BUS HOLD REQUEST (HOLD)

This input indicates some device other than the
80386 requires bus mastership.

HOLD must remain asserted as long as any other
device is a local bus master. HOLD is not recognized
while RESET is asserted. If RESET is asserted while
HOLD is asserted, RESET has priority and places
the bus into an idle state, rather than the hold ac-
knowledge (high impedance) state.

HOLD is level-sensitive and is a synchronous input.
HOLD signals must always meet setup and hold
times tp3 and tp4 for correct operation.

5.2.7.3 BUS HOLD ACKNOWLEDGE (HLDA)

Assertion of this output indicates the 80386 has re-
linquished control of its local bus in response to
HOLD asserted, and is in the bus Hold Acknowledge
state.

The Hold Acknowledge state offers near-complete
signal isolation. In the Hold Acknowledge state,
HLDA is the only signal being driven by the 80386.
The other output signals or bidirectional signals
(D0-D31, BEO#-BE3#, A2-A31, W/R#, D/C#,
M/IO#, LOCK# and ADS#) are in a high-imped-
ance state so the requesting bus master may control
them. Pullup resistors may be desired on several sig-
nals to avoid spurious activity when no bus master is
driving them. See 7.2.3 Resistor Recommenda-
tions. Also, one rising edge occuring on the NMI
input during Hold Acknowledge is remembered, for
processing after the HOLD input is negated.

59

In addition to the normal usage of Hold Acknowl-
edge with DMA controllers or master peripherals,
the near-complete isolation has particular attractive-
ness during system test when test equipment drives
the system, and in hardware-fault-tolerant applica-
tions.

5.2.8 Coprocessor Interface Signals

5.2.8.1 INTRODUCTION

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control
communication between the 80386 and its 80287 or
80387 processor extension.

5.2.8.2 COPROCESSOR REQUEST (PEREQ)

When asserted, this input signal indicates a coproc-
essor request for a data operand to be transferred
to/from memory by the 80386. In response, the
80386 transfers information between the coproces-
sor and memory. Because the 80386 has internally
stored the coprocessor opcode being executed, it
performs the requested data transfer with the cor-
rect direction and memory address.

PEREQ is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal.

5.2.8.3 COPROCESSOR BUSY (BUSY #)

When asserted, this input indicates the coprocessor
is still executing an instruction, and is not yet able to
accept another. When the 80386 encounters any
coprocessor instruction which operates on the nu-
meric stack (e.g. load, pop, or arithmetic operation),
or the WAIT instruction, this input is first automatical-
ly sampled until it is seen to be negated. This sam-
pling of the BUSY # input prevents overrunning the
execution of a previous coprocessor instruction.

The FNINIT and FNCLEX coprocessor instructions
are allowed to execute even if BUSY # is asserted,
since these instructions are used for coprocessor
initialization and exception-clearing.

BUSY # is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal.

BUSY # serves an additional function. If BUSY # is
sampled LOW at the falling edge of RESET, the
80386 performs an internal self-test (see 5.5.3 Bus
Activity During and Following Reset). If BUSY # is
sampled HIGH, no self-test is performed.

intel

80386

ADVANCE INFORMATION

5.2.8.4 COPROCESSOR ERROR (ERROR #)

This input signal indicates that the previous coproc-
essor instruction generated a coprocessor error of a
type not masked by the coprocessor’s control regis-
ter. This input is automatically sampled by the 80386
when a coprocessor instruction is encountered, and
if asserted, the 80386 generates exception 7 to ac-
cess the error-handling software.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces-
sor or save coprocessor state, do execute without
the 80386 generating exception 7 even if ERROR #
is asserted. These instructions are FNINIT,
FNCLEX, FSTSW, FSTSWAX, FSTCW, FSTENV,
FSAVE, FESTENV and FESAVE.

ERROR# is level-sensitive and is allowed to be
asynchronous to the CLK2 signal.

ERROR # serves an additional function. If ERROR #
is LOW no later than 20 CLK2 periods after the fall-
ing edge of RESET and remains LOW at least until
the 80386 begins its first bus cycle, an 80387 is as-
sumed to be present (ET bit in CRO automatically
gets set to 1). Otherwise, an 80287 (or no coproces-
sor) is assumed to be present (ET bit in CRO auto-
matically is reset to 0). See 5.5.3 Bus Activity Dur-
ing and After Reset. Only the ET bit is set by this
ERROR# pin test. Software must set the EM and
MP bits in CRO as needed. Therefore, distinguishing
80287 presence from no coprocessor requires a
software test and appropriately resetting or setting
the EM bit of CRO (set EM = 1 when no coproces-
sor is present). If ERROR# is sampled LOW after
reset (indicating 80387) but software later sets
EM = 1, the 80386 will behave as if no coprocessor
is present.

5.2.9 Interrupt Signals

5.2.9.1 INTRODUCTION

The following descriptions cover inputs that can in-
terrupt or suspend execution of the processor’s cur-
rent instruction stream.

5.2.9.2 MASKABLE INTERRUPT REQUEST (INTR)

When asserted, this input indicates a request for in-
terrupt service, which can be masked by the 80386
Flag Register IF bit. When the 80386 responds to
the INTR input, it performs two interrupt acknowl-
edge bus cycles, and at the end of the second,
latches an 8-bit interrupt vector on DO-D?7 to identify
the source of the interrupt.

INTR is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal. To assure recognition

60

of an INTR request, INTR should remain asserted
until the first interrupt acknowledge bus cycle be-
gins.

5.2.9.3 NON-MASKABLE INTERRUPT REQUEST
(NMI)

This input indicates a request for interrupt service,
which cannot be masked by software. The non-
maskable interrupt request is always processed ac-
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are perfomed when
processing NMI.

NMI is rising edge-sensitive and is allowed to be
asynchronous to the CLK2 signal. To assure recog-
nition of NMI, it must be negated for at least eight
CLK2 periods, and then be asserted for at least
eight CLK2 periods.

Once NMI processing has begun, no additional
NMI’s are processed until after the next IRET in-
struction, which is typically the end of the NMI serv-
ice routine. If NMI is re-asserted prior to that time,
however, one rising edge on NMI will be remem-
bered for processing after executing the next IRET
instruction.

5.2.9.4 RESET (RESET)

This input signal suspends any operation in progress
and places the 80386 in a known reset state. The
80386 is reset by asserting RESET for 15 or more
CLK2 periods (78 or more CLK2 periods before re-
questing self test). When RESET is asserted, all oth-
er input pins are ignored, and all other bus pins are
driven to an idle bus state as shown in Table 5-3. If
RESET and HOLD are both asserted at a point in
time, RESET takes priority even if the 80386 was in
a Hold Acknowledge state prior to RESET asserted.

RESET is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal. If desired, the phase of
the internal processor clock, and the entire 80386
state can be completely synchronized to external
circuitry by ensuring the RESET signal falling edge
meets its applicable setup and hold times, tos and
t26-
Table 5-3. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset
ADS # High
D0-D31 High Impedance
BEO# -BE3# Low
A2-A31 High
W/R# High
D/C# High
M/IO# Low
LOCK # High
HLDA Low

intel

80386

ADVANGCE INFORMATION

5.2.10 Signal Summary

Table 5-4 summarizes the characteristics of all 80386 signals.
Table 5-4. 80386 Signal Summary

netive: | Sopate-| Semavor Outpat
Signal Name Signal Function State Ourtput zsynch High Impedance
to CLK2 During HLDA?
CLK2 Clock - | — —
D0-D31 Data Bus High 170 S Yes
BEO# -BE3# Byte Enables Low (0] - Yes
A2-A31 Address Bus High 6] — Yes
W/R# Write-Read Indication High (0] — Yes
D/C# Data-Control Indication High (0] — Yes
M/10 # Memory-1/0 Indication High (0] — Yes
LOCK # Bus Lock Indication Low o} — Yes
ADS # Address Status Low o} — Yes
NA# Next Address Request Low | S —
BS16# Bus Size 16 Low | S —
READY # Transfer Acknowledge Low | S —
HOLD Bus Hold Request High | S —
HLDA Bus Hold Acknowledge High o} — No
PEREQ Coprocessor Request High | A —_
BUSY # Coprocessor Busy Low | A —
ERROR # Coprocessor Error Low | A —
INTR Maskable Interrupt Request High | A —
NMI Non-Maskable Intrpt Request High | A -
RESET Reset High | A (Note) —
NOTE:

If the phase of the internal processor clock must be synchronized to external circuitry, RESET falling edge must meet setup

and hold times tps and tpg.

5.3 BUS TRANSFER MECHANISM

5.3.1 Introduction

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
double-word lengths may be transferred without re-
strictions on physical address alignment. Any byte
boundary may be used, although two or even three
physical bus cycles are performed as required for
unaligned operand transfers. See 5.3.4 Dynamic
Data Bus Sizing and 5.3.6 Operand Alignment.

61

The 80386 address signals are designed to simplify
external system hardware. Higher-order address bits
are provided by A2-A31. Lower-order address in the
form of BEO # —BE3 # directly provides linear selects
for the four bytes of the 32-bit data bus. Physical
operand size information is thereby implicitly provid-
ed each bus cycle in the most usable form.

Byte Enable outputs BEO#-BE3# are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table 5-5.
During a bus cycle, any possible pattern of contigu-
ous, asserted Byte Enable outputs can occur, but
never patterns having a negated Byte Enable sepa-
rating two or three asserted Enables.

intel

80386

ADVANCE INFORMATION

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary (for

Table 5-6. Generating AO-A31 from
BEO+#-BE3# and A2-A31

instance, for Multibus | or Multibus Il interface), as a
function of the lowest-order asserted Byte Enable. 80386 Address Signals
This is shown by Table 5-6. Logic to generate A0 A31 .. A2 BE3# |BE2# |BE1# |BEO#
and A1 is given by Figure 5-3.
Physical Base
Table 5-5. Byte Enables and Associated i ddross
Data and Operand Bytes
ABLL ois vois A2(A1|A0
Byte Enable Signal Associated Data Bus Signals
i A31| A2(0|0]| X X X | Low
BEO# D0-D7 (byte O—least significant)
A31| ... A2(0|1]| X X | Low | High
BE1# D8-D15 (byte 1)
A3t ... A2|1]0 Low | High | High
BE2# D16-D23 (byte 2)
— A31| ...l A2(1| 1| Low | High | High | High
BE3# D24-D31 (byte 3—most significant)
BEO#
L H
NE L] L
g2y — LT gesy = At
Gl BET#
x| x RHA x| L
Ll H L
BE1
¥ 231630-3
K - Map for A1 Signal
BEO#
i H
L] x]|LlH)
L
Lix|L|H
BE2#
L|Lfx}H
H :
x| x kH]x
Ll H |L
i 231630-4
K - Map for AO Signal

Figure 5-3. Logic to Generate A0, A1 from BEO# -BE3 #

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See 5.4 Bus Functional
Description.

Since a bus cycle requires a minimum of two bus
states (equal to two processor clock periods), data
can be transferred between external devices and
the 80386 at a maximum rate of one 4-byte Dword
every two processor clock periods, for a maximum
bus bandwidth of 32 megabytes/second (80386-16
operating at 16 MHz processor clock rate).

62

5.3.2 Memory and I/0 Spaces

Bus cycles may access physical memory space or
1/0 space. Peripheral devices in the system may ei-
ther be memory-mapped, or 1/0O-mapped, or both.
As shown in Figure 5-4, physical memory addresses
range from 00000000H to FFFFFFFFH (4 gigabytes)
and 1/0 addresses from 00000000H to 0000FFFFH
(64 kilobytes) for programmed 1/0. Note the I/0 ad-
dresses used by the automatic 1/0 cycles for co-
processor communication are 800000F8H to
800000FFH, beyond the address range of pro-
grammed |/0, to allow easy generation of a coproc-
essor chip select signal using the A31 and M/IO#
signals.

80386

ADVANCE INFORMATION

FFFFFFFFH

PHYSICAL
MEMORY

4 GBYTE

00000000H
Physical Memory Space

NOTE:

easily generate a coprocessor select signal.

800000FFH
800000F8H
(NOTE 1)

OOOOFFFFH &

I 64 kBYTE]
00000000H J

Since A31 is HIGH during automatic communication with coprocessor, A31 HIGH and M/IO# LOW can be used to

E— COPROCESSOR

s . (80387 OR 80287
D)
VACCESSIBLEY

ACCESSIBLE
PROGRAMMED
1/0 SPACE

231630-5
1/0 Space

Figure 5-4. Physical Memory and I/0 Spaces

5.3.3 Memory and I/0 Organization

The 80386 datapath to memory and I/0 spaces can
be 32 bits wide or 16 bits wide. When 32-bits wide,
memory and |/O spaces are organized naturally as
arrays of physical 32-bit Dwords. Each memory or
1/0 Dword has four individually addressable bytes at
consecutive byte addresses. The lowest-addressed
byte is associated with data signals DO-D7; the
highest-addressed byte with D24-D31.

The 80386 includes a bus control input, BS16 #, that
also allows direct connection to 16-bit memory or
1/0O spaces organized as a sequence of 16-bit
words. Cycles to 32-bit and 16-bit memory or 1/0
devices may occur in any sequence, since the
BS16# control is sampled during each bus cycle.
See 5.3.4 Dynamic Data Bus Sizing. The Byte En-
able signals, BEO#-BE3#, allow byte granularity
when addressing any memory or 1/0O structure,
whether 32 or 16 bits wide.

5.3.4 Dynamic Data Bus Sizing

Dynamic data bus sizing is a feature allowing direct
processor connection to 32-bit or 16-bit data buses
for memory or 1/0. A single processor may connect
to both size buses. Transfers to or from 32- or 16-bit
ports are supported by dynamically determining the
bus width during each bus cycle. During each bus
cycle an address decoding circuit or the slave de-

63

vice itself may assert BS16# for 16-bit ports, or ne-
gate BS16# for 32-bit ports.

With BS16# asserted, the processor automatically
converts operand transfers larger than 16 bits, or
misaligned 16-bit transfers, into two or three trans-
fers as required. All operand transfers physically oc-
cur on DO-D15 when BS16# is asserted. There-
fore, 16-bit memories or I/O devices only connect
on data signals DO-D15. No extra transceivers are
required.

Asserting BS16# only affects the processor when
BE2# and/or BE3# are asserted during the current
cycle. If only DO-D15 are involved with the transfer,
asserting BS16# has no affect since the transfer
can proceed normally over a 16-bit bus whether
BS16# is asserted or not. In other words, asserting
BS16# has no effect when only the lower half of the
bus is involved with the current cycle.

There are two types of situations where the proces-
sor is affected by asserting BS16#, depending on
which Byte Enables are asserted during the current
bus cycle:

Upper Half Only:
Only BE2# and/or BE3# asserted.

Upper and Lower Half:
At least BE1#, BE2# asserted (and perhaps
also BEO# and/or BE3#).

intel

80386

ADVANGCE INFORMATION

Effect of asserting BS16# during “upper half only”

read cycles:
Asserting BS16# during “upper half only” reads
causes the 80386 to read data on the lower 16
bits of the data bus and ignore data on the upper
16 bits of the data bus. Data that would have been
read from D16-D31 (as indicated by BE2# and
BE3 #) will instead be read from DO-D15 respec-
tively.

Effect of asserting BS16# during “upper half only”

write cycles:
Asserting BS16# during “upper half only” writes
does not affect the 80386. When only BE2#
and/or BE3# are asserted during a write cycle
the 80386 always duplicates data signals
D16-D31 onto DO-D15 (see Table 5-1). There-
fore, no further 80386 action is required to per-
form these writes on 32-bit or 16-bit buses.

Effect of asserting BS16# during “upper and lower

half” read cycles:
Asserting BS16# during “upper and lower half”
reads causes the processor to perform two 16-bit
read cycles for complete physical operand trans-
fer. Bytes 0 and 1 (as indicated by BEO# and
BE1#) are read on the first cycle using DO-D15.
Bytes 2 and 3 (as indicated by BE2# and BE3 #)
are read during the second cycle, again using
D0-D15. D16-D31 are ignored during both 16-bit
cycles. BEO# and BE1# are always negated dur-
ing the second 16-bit cycle. BS16 # does not have
to be asserted during the second 16-bit cycle. See
Figure 5-14, cycles 2 and 2a.

Effect of asserting BS16# during “upper and lower

half”” write cycles:
Asserting BS16# during “upper and lower half”
writes causes the 80386 to perform two 16-bit
write cycles for complete physical operand trans-
fer. All bytes are available the first write cycle al-
lowing external hardware to receive Bytes 0 and 1
(as indicated by BEO# and BE1 #) using DO-D15.
On the second cycle the 80386 duplicates Bytes 2
and 3 on DO-D15 and Bytes 2 and 3 (as indicated
by BE2# and BE3#) are written using DO-D15.
BEO# and BE1# are always negated during the
second 16-bit cycle. BS16# does not have to be
asserted during the second 16-bit cycle. See
Figure 5-14, cycles 1 and 1a.

5.3.5 Interfacing with 32- and 16-Bit
Memories

In 32-bit-wide physical memories such as Figure 5-5,
each physical Dword begins at a byte address that is
a multiple of 4. A2-A31 are directly used as a Dword
select and BEO# —-BE3# as byte selects. BS16# is
negated for all bus cycles involving the 32-bit array.

When 16-bit-wide physical arrays are included in the
system, as in Figure 5-6, each 16-bit physical word
begins at a address that is a multiple of 2. Note the
address is decoded, to assert BS16# only during
bus cyclesinvolving the 16-bitarray. (If desiringto use

32, DATA BUS (D0-D31) R
M 7| 32-8BIT
80386 | ADDRESS BUS (BEO#-BE3#,A2-A31) _| MEMORY
TBSHS#
"HIGH"
231630-6
Figure 5-5. 80386 with 32-Bit Memory
? 32 DATA BUS (DO-D31)
< | s2-8i
80386 \ ADDRESS BUS MEMORY
(BEO#=BE3#,A2=A31)
ADDRESS
16, DATA BUS (00-015)
ADDRESS BUS (A2-A31) | 16-BIT
(BEO#=BE3#) (BHE#, BLE#, A1) | MEMORY
231630-7

Figure 5-6. 80386 with 32-Bit and 16-Bit Memory

64

intel — ADVANCE INFORMATION

pipelined address with 16-bit memories then BEO # -
BE3# and W/R# are also decoded to determine
when BS16# should be asserted. See 5.4.3.7 Maxi-
mum Pipelined Address Usage with 16-Bit Bus
Size.)

A2-A31 are directly usable for addressing 32-bit
and 16-bit devices. To address 16-bit devices, A1
and two byte enable signals are also needed.

To generate an A1 signal and two Byte Enable sig-
nals for 16-bit access, BEO# -BE3# should be de-
coded as in Table 5-7. Note certain combinations of
BEO#-BE3# are never generated by the 80386,
leading to “‘don’t care” conditions in the decoder.
Any BEO # -BE3 # decoder, such as Figure 5-7, may
use the non-occurring BEO# -BE3# combinations
to its best advantage.

5.3.6 Operand Alignment

With the flexibility of memory addressing on the
80386, it is possible to transfer a logical operand
that spans more than one physical Dword or word of
memory or 1/0O. Examples are 32-bit Dword oper-
ands beginning at addresses not evenly divisible by

4, or a 16-bit word operand split between two physi-
cal Dwords of the memory array.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 5-8 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz-
ing. When multiple bus cycles are required to trans-
fer a multi-byte logical operand, the highest-order
bytes are transferred first (but if BS16# asserted
requires two 16-bit cycles be performed, that part of
the transfer is low-order first).

5.4 BUS FUNCTIONAL DESCRIPTION

5.4.1 Introduction

The 80386 has separate, parallel buses for data and
address. The data bus is 32-bits in width, and bidi-
rectional. The address bus provides a 32-bit value
using 30 signals for the 30 upper-order address bits
and 4 Byte Enable signals to directly indicate the
active bytes. These buses are interpreted and con-
trolled via several associated definition or control
signals.

Table 5-7. Generating A1, BHE # and BLE # for Addressing 16-Bit Devices

80386 Signals 16-Bit Bus Signals Commente
BE3# BE2# BE1# BEO# A1 BHE # BLE # (A0)

H* H* H* H* >4 X X x—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* g H* L* X X X x—not contiguous bytes
H L L H Lk L H
H L L L L L L
L H H H H 1 H
L* H* H* L* X X X x—not contiguous bytes
L* H* L* H* X X X x—not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L L H H H L L
L* L* H* L* X % X x—not continguous bytes
L L L H L L H
L L L L L L L

BLE # asserted when DO-D7 of 16-bit bus is active.
BHE # asserted when D8-D15 of 16-bit bus is active.
A1 low for all even words; A1 high for all odd words.

Key:
x = don’tcare
H = high voltage level
L = low voltage level

* = anon-occurring pattern of Byte Enables; either none are asserted,
or the pattern has Byte Enables asserted for non-contiguous bytes

65

ntel

80386

ADVANGE INFORMATION

BEO#
L H
JOE WL L
pe2g ——A Ly pesy = A1
gl =] BE1#
x| x fHf x| L
L H L
BE1#
231630-8
K-map for A1 signal (same as Figure 5-3)
BEO#
L H
Lix|LjL]L
L BE1#
BE2# LExIHfL H BE3 BHE
e B # BE3#
xIxjiL]xlk
L H L
BE1#
231630-9

K-map for 16-bit BHE # signal

BEO#
L H BEO#
i Lix|L @ L BE2#
BE2# 2kl 1 L H BE3#
L|Lx}H
H
x| x JH x| L
Ll H |L
BE1#
231630-10
K-map for 16-bit BLE # signal (same as A0 signal in Figure 5-3)
Figure 5-7. Logic to Generate A1, BHE # and BLE # for 16-Bit Buses
Table 5-8. Transfer Bus Cycles for Bytes, Words and Dwords
Byte-Length of Logical Operand
1 2

Physical Byte Address XX 00 01 10 11 00 01 10 11
in Memory (low-order bits)
Transfer Cycles over b w w w hb, d hb hw, h3,
32-Bit Data Bus 13
Transfer Cycles over b w w

16-Bit Data Bus

Key: b

Xa—i

I

byte transfer
word transfer
low-order portion
mid-order portion
don’t care

3 =3-byte transfer
d = Dword transfer
h = high-order portion

BS16# asserted causes second bus cycle

66

intel

80386

ADVANCE INFORMATION

The definition of each bus cycle is given by three
definition signals: M/IO#, W/R# and D/C#. At the
same time, a valid address is present on the byte
enable signals BEO# -BE3# and other address sig-
nals A2-A31. A status signal, ADS#, indicates
when the 80386 issues a new bus cycle definition
and address.

Collectively, the address bus, data bus and all asso-
ciated control signals are referred to simply as “the
bus”.

When active, the bus performs one of the bus cycles
below:

1) read from memory space

2) locked read from memory space

3) write to memory space

4) locked write to memory space

5) read from 1/O space (or coprocessor)
6) write to 1/0 space (or coprocessor)
7) interrupt acknowledge

8) indicate halt, or indicate shutdown

Table 5-1 shows the encoding of the bus cycle defi-
nition signals for each bus cycle. See section 5.2.5
Bus Cycle Definition.

The data bus has a dynamic sizing feature support-
ing 32- and 16-bit bus size. Data bus size is indicated
to the 80386 using its Bus Size 16 (BS16 #) input. All
bus functions can be performed with either data bus
size.

When the 80386 bus is not performing one of the
activities listed above, it is either Idle or in the Hold
Acknowledge state, which may be detected by ex-
ternal circuitry. The idle state can be identified by the
80386 giving no further assertions on its address
strobe output (ADS#) since the beginning of its
most recent bus cycle, and the most recent bus cy-
cle has been terminated. The hold acknowledge
state is identified by the 80386 asserting its hold ac-
knowledge (HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer occurs
during a bus cycle, composed of two or more bus
states.

CYCLE 1

(READ)

CLK2 I: _J

(INPUT)

NON=PIPELINED

CYCLE 2 CYCLE 3
NON=PIPELINED | NON=-PIPELINED
(READ) (READ)

BEO#=BE3#, A2=A31,
M/I0#,D/C#, W/R#

VALID 3

VALID 2

(OUTPUTS)

TN

\ A\ N

(ouTpPUT)

NA# |:

(INPUT)

READY#
(INPUT) ——/

L/ T\

vocks [7] VALID 1
[X

VALID 2 VALID 3

(OuUTRUT) = =

I,D.--.--

DO-D31
(INPUT DURING READ)

Fastest non-pipelined bus cycles consist of T1 and T2

ceteca{ N2 yeoeseaa{ NI J=-

231630-11

Figure 5-8. Fastest Read Cycles with Non-Pipelined Address Timing

intef

80386

ADVANCE INFORMATION

The fastest 80386 bus cycle requires only two bus
states. For example, three consecutive bus read cy-
cles, each consisting of two bus states, are shown
by Figure 5-8. The bus states in each cycle are
named T1 and T2. Any memory or |/O address may
be accessed by such a two-state bus cycle, if the
external hardware is fast enough. The high-band-
width, two-clock bus cycle realizes the full potential
of fast main memory, or cache memory.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the 80386
READY # input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest bus cycle,
requiring only T1 and T2. If READY # is not immedi-
ately asserted however, T2 states are repeated in-
definitely until the READY # input is sampled assert-
ed.

5.4.2 Address Pipelining

The address pipelining option provides a choice of
bus cycle timings. Pipelined or non-pipelined ad-
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA#) input.

When address pipelining is not selected, the current
address and bus cycle definition remain stable
throughout the bus cycle.

When address pipelining is selected, the address
(BEO#-BE3#, A2-A31) and definition (W/R#,
D/C# and M/IO#) of the next cycle are available
before the end of the current cycle. To signal their
availability, the 80386 address status output (ADS #)
is also asserted. Figure 5-9 illustrates the fastest
read cycles with pipelined address timing.

Note from Figure 5-9 the fastest bus cycles using
pipelined address require only two bus states,
named T1P and T2P. Therefore cycles with pipe-
lined address timing allow the same data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased compared to that of a non-pipe-
lined cycle.

By increasing the address-to-data access time, pipe-
lined address timing reduces wait state require-
ments. For example, if one wait state is required with
non-pipelined address timing, no wait states would
be required with pipelined address.

CYCLE 1
PIPELINED
(READ)

o192
weonL U

BEO#=BE3#, A2=A31,

TP T2P
#1]e2

CYCLE 2 CYCLE 3
PIPELINED PIPELINED
(READ) (READ)
TP 2P T1P T2P

o1 02|01 (62|01 02|01 |02

M/I0#,D/C#, W/R# VALID 1

VALID 2

VALID 3 VALID 4

(oUTPUTS)

ADS#
(OUTPUT) _/

NA#
(INPUT)

READY#
(INPUT)

iy

LOCK#

(OUTPUT) YALIDY

VALID 2 VALID 3

DO-D31
(INPUT DURING READ)

I,'D------

IN1 -----°<IN2 >------<IN3 >.

Fastest pipelined bus cycles consist of T1P and T2P

231630-12

Figure 5-9. Fastest Read Cycles with Pipelined Address Timing

intel

80386

ADVANCE INFORMATION

Pipelined address timing is useful in typical systems
having address latches. In those systems, once an
address has been latched, pipelined availability of
the next address allows decoding circuitry to gener-
ate chip selects (and other necessary select signals)
in advance, so selected devices are accessed im-
mediately when the next cycle begins. In other
words, the decode time for the next cycle can be
overlapped with the end of the current cycle.

If a system contains a memory structure of two or
more interleaved memory banks, pipelined address
timing potentially allows even more overlap of activi-
ty. This is true when the interleaved memory control-
ler is designed to allow the next memory operation

to begin in one memory bank while the current bus
cycle is still activating another memory bank. Figure
5-10 shows the general structure of the 80386 with
2-bank and 4-bank interleaved memory. Note each
memory bank of the interleaved memory has full
data bus width (32-bit data width typically, unless 16-
bit bus size is selected).

Further details of pipelined address timing are given
in 5.4.3.4 Pipelined Address, 5.4.3.5 Initiating and
Maintaining Pipelined Address, 5.4.3.6 Pipelined
Address with Dynamic Bus Siziing, and 5.4.3.7
Maximum Pipelined Address Usage with 16-Bit
Bus Size.

TWO-BANK INTERLEAVED MEMORY
a) Address signal A2 selects bank
b) 32-bit datapath to each bank
32 pATA BUS
80386 ADDRESS BUS
A2 A2
32 32
INTERLEAVE
CONTROLLER — DRAM |— DRAM
BANK 0 BANK 1
231630-13
FOUR-BANK INTERLEAVED MEMORY
a) Address signals A3 and A2 select bank
b) 32-bit datapath to each bank
32 DATA BUS
80386 ADDRESS BUS) \ N\
A3 Az | N as|az| \ |as A2 \ as| [az \
32 32 32 32
INTERLEAVE | |
CONTROLLER DRAM DRAM DRAM DRAM
BANKO BANK 1 BANK 2 BANK 3
231630-14

Figure 5-10. 2-Bank and 4-Bank Interleaved Memory Structure

69

intel

80386

ADVANCE INFORMATION

5.4.3 Read and Write Cycles

5.4.3.1 INTRODUCTION

Data transfers occur as a result of bus cycles, classi-
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces-
sor. During write cycles data is transferred in the oth-
er direction, from the processor to an external de-
vice.

Two choices of address timing are dynamically se-
lectable: non-pipelined, or pipelined. After a bus idle
state, the processor always uses non-pipelined ad-
dress timing. However, the NA# (Next Address) in-
put may be asserted to select pipelined address tim-
ing for the next bus cycle. When pipelining is select-
ed and the 80386 has a bus request pending inter-
nally, the address and definition of the next cycle is
made available even before the current bus cycle is
acknowledged by READY #. Generally, the NA# in-
put is sampled each bus cycle to select the desired
address timing for the next bus cycle.

Two choices of physical data bus width are dynami-
cally selectable: 32 bits, or 16 bits. Generally, the
BS16+# (Bus Size 16) input is sampled near the end
of the bus cycle to confirm the physical data bus size
applicable to the current cycle. Negation of BS16#
indicates a 32-bit size, and assertion indicates a 16-
bit bus size.

If 16-bit bus size is indicated, the 80386 automatical-
ly responds as required to complete the transfer on
a 16-bit data bus. Depending on the size and align-
ment of the operand, another 16-bit bus cycle may
be required. Table 5-7 provides all details. When
necessary, the 80386 performs an additional 16-bit
bus cycle, using D0O-D15 in place of D16-D31.

Terminating a read cycle or write cycle, like any bus
cycle, requires acknowledging the cycle by asserting
the READY # input. Until acknowledged, the proces-
sor inserts wait states into the bus cycle, to allow
adjustment for the speed of any external device. Ex-
ternal hardware, which has decoded the address
and bus cycle type asserts the READY # input at the
appropriate time.

IDLE CYCLE 1 CYCLE 2 CYCLE 3 IDLE CYCLE 4 IDLE
NON=PIPELINED | NON=PIPELINED | NON-PIPELINED NON=PIPELINED
(WRITE) (READ) (WRITE) (READ)
T T 7 T 2 T 2 T T 2 T
cukz [LI L
(82384 cLk) [_/_
BEO #=BE3 # | . . .
az-a31, [VALID 1 VALID 2 VALID 3 VALID 4
M/I10#,0/C ¥
W/R# [
aos ¢ [__V / / 4
NA # [
32=-BIT 32=-BIT 32=-BIT 32-BIT
BUS SIZE BUS SIZE BUS SIZE BUS SIZE
BS16 4 [
ReADY # [
ENDCYCLE1 | ENDCYCLE2 | END CYCLE 3 END CYCLE 4
vock# [VALID 1 VALID 2 VALID 3 VALID 4
00-031[cqecccaes (ouT).{---< IN >- ouT)- -.-< IN >...
23163015

70

Figure 5-11. Bus Cycles with Non-Pipelined Address (zero wait states)

intel

80386

ADVANGCE INFORMATION

At the end of the second bus state within the bus
cycle, READY # is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY #, the bus cycle terminates as shown in Fig-
ure 5-11. If READY # is negated as in Figure 5-12,
the cycle continues another bus state (a wait state)
and READY # is sampled again at the end of that
state. This continues indefinitely until the cycle is ac-
knowledged by READY # asserted.

When the current cycle is acknowledged, the 80386
terminates it. When a read cycle is acknowledged,
the 80386 latches the information present at its data
pins. When a write cycle is acknowledged, the
80386 write data remains valid throughout phase
one of the next bus state, to provide write data hold
time.

5.4.3.2 NON-PIPELINED ADDRESS
Any bus cycle may be performed with non-pipelined

address timing. For example, Figure 5-11 shows a
mixture of read and write cycles with non-pipelined

address timing. Figure 5-11 shows the fastest possi-
ble cycles with non-pipelined address have two bus
states per bus cycle. The states are named T1 and
T2. In phase one of the T1, the address signals and
bus cycle definition signals are driven valid, and to
signal their availability, address strobe (ADS#) is
simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the 80386 floats its
data signals to allow driving by the external device
being addressed. If the cycle is a write, data signals
are driven by the 80386 beginning in phase two of
T1 until phase one of the bus state following cycle
acknowledgment.

Figure 5-12 illustrates non-pipelined bus cycles with
one wait added to cycles 2 and 3. READY # is sam-
pled negated at the end of the first T2 in cycles 2
and 3. Therefore cycles 2 and 3 have T2 repeated.
At the end of the second T2, READY # is sampled
asserted.

IDLE CYCLE 1 CYCLE 2 IDLE CYCLE 3 IDLE
NON=PIPELINED NON=PIPELINED NON~-PIPELINED
(READ) (WRITE) (READ)
Ti el 2 it 2 Ti T 2 12 Ti
(82384 CLK) [_/-_/-_/— _/-_/—\f
BEO #-BE1 # ,
A2-A31, [VALID 1 VALID 2 VALID 3
M/I0 #,D/C #

w/rs [
aosy [/ / /

NA # [

32-BIT 32-BIT 32-BIT
BUS SIZE BUS SIZE BUS SIZE
BS16 # [
READY # [m _“
END CYCLE 1 END CYCLE 2 END CYCLE 3
LOCK # [VALID 1 VALID 2 VALID 3
00_031[: cdecccnisacnce beed IN (......... beccscbaad IN Peee
:I: { ;:
231630-16

Figure 5-12. Bus Cycles with Non-Pipelined Address (various number of wait states)

80386

ADVANCE INFORMATION

RESET
ASSERTED

HOLD NEGATED *
NO REQUEST

REQUEST PENDING
HOLD NEGATED

Bus States:

Ti— idle state
Th—hold acknowledge state (80386 asserts HLDA)
The fastest bus cycle consists of two states: T1 and T2.

HOLD ASSERTED

T1—first clock of a non-pipelined bus cycle (80386 drives new address and asserts ADS #)
T2—subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle

Four basic bus states describe bus operation when not using pipelined address. These states do include BS16 # usage for 32-bit and 16-bit
bus size. If asserting BS16# requires a second 16-bit bus cycle to be performed, it is performed before HOLD asserted is acknowledged.

HOLD NEGATED
REQUEST PENDING

ALWAYS

|

READY# ASSERTED*
HOLD NEGATED «
REQUEST PENDING

READY,
NA#

NEGATED
EGATED

231630-17

Figure 5-13. 80386 Bus States (not using pipelined address)

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and you desire
to maintain non-pipelined address timing, it is neces-
sary to negate NA# during each T2 state except the
last one, as shown in Figure 5-12 cycles 2 and 3. If
NA# is sampled asserted during a T2 other than the
last one, the next state would be T2 (for pipelined
address) or T2P (for pipelined address) instead of
another T2 (for non-pipelined address).

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
5-13. The bus transitions between four possible
states: T1, T2, Ti, and Th. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth-
erwise, the bus may be idle, in the Ti state, or in hold
acknowledge, the Th state.

When address pipelining is not used, the bus state
diagram is as shown in Figure 5-13. When the bus is

72

idle it is in state Ti. Bus cycles always begin with T1.
T1 always leads to T2. If a bus cycle is not acknowl-
edged during T2 and NA# is negated, T2 is repeat-
ed. When a cycle is acknowledged during T2, the
following state will be T1 of the next bus cycle if a
bus request is pending internally, or Ti if there is no
bus request pending, or Th if the HOLD input is be-
ing asserted.

The bus state diagram in Figure 5-13 also applies to
the use of BS16#. If the 80386 makes internal ad-
justments for 16-bit bus size, the adjustments do not
affect the external bus states. If an additional 16-bit
bus cycle is required to complete a transfer on a 16-
bit bus, it also follows the state transitions shown in
Figure 5-13.

Use of pipelined address allows the 80386 to enter
three additional bus states not shown in Figure 5-13.
Figure 5-20 in 5.4.3.4 Pipelined Address is the
complete bus state diagram, including pipelined ad-
dress cycles.

intef

80386

ADVANGCE INFORMATION

5.4.3.3 NON-PIPELINED ADDRESS WITH
DYNAMIC DATA BUS SIZING

The physical data bus width for any non-pipelined
bus cycle can be either 32-bits or 16-bits. At the
beginning of the bus cycle, the processor behaves
as if the data bus is 32-bits wide. When the bus cy-
cle is acknowledged, by asserting READY # at the
end of a T2 state, the most recent sampling of
BS16# determines the data bus size for the cycle
being acknowledged. If BS16# was most recently
negated, the physical data bus size is defined as

32 bits. If BS16# was most recently asserted, the
size is defined as 16 bits.

When BS16 # is asserted and two 16-bit bus cycles
are required to complete the transfer, BS16# does
have to be asserted during the second cycle; 16-bit
bus size is not assumed. Like any bus cycle, the
second 16-bit cycle must be acknowledged by as-
serting READY #.

When a second 16-bit bus cycle is required to com-
plete the transfer over a 16-bit bus, the addresses

A TRANSFER REQUIRING TWO A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS CYCLES ON 16=BIT DATA BUS
IDLE CYCLE 1 CYCLE 1A CYCLE 2 CYCLE 2A IDLE
NON=PIPELINED | NON=PIPELINED | NON=PIPELINED | NON=PIPELINED
(WRITE —}—» WRITE) (READ —}—= READ)
PART ONE PART TWO PART ONE PART TWO
T T T2 T T2 T 12 T T2 Ti
CLK2 [| I |
—
(82384 CLK) [_ﬁ
ALWAYS ALWAYS
BEO #, BE1 [NEGATED N\ NEGATED W
#.BE14 YALD 1 DURING PART TWO N\l 2 /oumuc PART TWO
BE2 #,BE3 #
A= A31, [VALID 1 X VALID 2)m
M/I0 #, D/C #
wry [X
wsi [n_V NV
oN
g [R0 X e X Qe X 2RRE
BS16 # I:)(
-
16=BIT 16=BIT 16=BIT 16=BIT
BUS SIZE BUS SIZE BUS SIZE BUS SIZE
resory [NI L0\ | A | AX
LOCK # [VALID 1 VALID 2
do-d15 d16-d31 d0-d15 d16-d31
DO=D15 |: cqemmeeee{ T our | X ouT)...--@--..--@-.-.
d16-d31 IGNORED IGNORED
D16=D31 [: .--------(ouT)"’@"‘1"‘ ceoqd
Key: Dn = physical data pin n 231630-18
dn = logical data bit n

Figure 5-14. Asserting BS16 # (zero wait states, non-pipelined address)

73

ntel

80386

ADVANCE INFORMATION

A TRANSFER REQUIRING TWO
CYCLES ON 16~-BIT DATA BUS

IDLE CYCLE 1 CYCLE 1A CYCLE 2
NON=-PIPELINED NON=-PIPELINED NON=PIPELINED
(READ I~ READ) (WRITE)
PART ONE PART TWO
Ti T T2 T2 T T2 T2 T T2 T2
CLKZI:J“” IH
(82384 CLK) I: _/— _/_
BEO #,BE1 # [VALID 1 NEGATEDIDURING P VALID 2
|
BE2 #,BE3 #
AZ- A3T, [VALID 1 X VALID 2
M/I0O#, D/C#
wrs [X

ADS # [F

dn = logical data bit n

NQTE: NA# MUST BE NEGATED
HERE TO ALLOW RECOGNITION
OF ASSERTED BS16# IN FINAL T2
L—t1—
b N
ws [0 B
32-BIT
BUS SIZE
\Y
BS16 4 I: X \
¥
16=BIT 16=BIT
BUS SIZE BUS SIZE
resov 4 [YOOOOROOCKY TR\ AXX N\ LAY [N
LOCK # I: VALID 1 X VALID 2
d0-d15 d16=d31 d0=d15
DO-D15 [.._-__________.__@_-__-_.--@(ouT
IGNORED IGNORED d16=d31
D16= D31 [..--------. @--.---.--@(ouT
Key: Dn = physical data pin n 231630-19

Figure 5-15. Asserting BS16 # (one wait state, non-pipelined address)

generated for the two 16-bit bus cycles are closely
related to each other. The addresses are the same
except BEO# and BE1# are always negated for the
second cycle. This is because data on DO-D15 was
already transferred during the first 16-bit cycle.

Figures 5-14 and 5-15 show cases where assertion
of BS16# requires a second 16-bit cycle for com-
plete operand transfer. Figure 5-14 illustrates cycles

74

without wait states. Figure 5-15 illustrates cycles
with one wait state. In Figure 5-15 cycle 1, the bus
cycle during which BS16# is asserted, note that
NA# must be negated in the T2 state(s) prior to the
last T2 state. This is to allow the recognition of
BS16# asserted in the final T2 state. The relation of
NA# and BS16# is given fully in 5.4.3.4 Pipelined
Address, but Figure 5-15 illustrates this only pre-
caution you need to know when using BS16# with
non-pipelined address.

intel

80386

ADVANGCE INFORMATION

5.4.3.4 PIPELINED ADDRESS

Address pipelining is the option of requesting the
address and the bus cycle definition of the next, in-
ternally pending bus cycle before the current bus
cycle is acknowledged with READY# asserted.
ADS # is asserted by the 80386 when the next ad-
dress is issued. The address pipelining option is con-
trolled on a cycle-by-cycle basis with the NA# input
signal.

Once a bus cycle is in progress and the current ad-
dress has been valid for at least one entire bus
state, the NA# input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur-
ing non-pipelined bus cycles, therefore, NA# is
sampled at the end of phase one in every T2. An
example is Cycle 2 in Figure 5-16, during which NA #
is sampled at the end of phase one of every T2 (it
was asserted once during the first T2 and has no
further effect during that bus cycle).

If NA# is sampled asserted, the 80386 is free to
drive the address and bus cycle definition of the next
bus cycle, and assert ADS #, as soon as it has a bus
request internally pending. It may drive the next ad-
dress as early as the next bus state, whether the
current bus cycle is acknowledged at that time or
not.

Regarding the details of address pipelining, the
80386 has the following characteristics:

1) For NA# to be sampled asserted, BS16# must
be negated at that sampling window (see Figure
5-16 Cycles 3 and 4, and Figure 5-17 Cycles 2
through 4). If NA# and BS16# are both sampled
asserted during the last T2 period of a bus cycle,
BS16# asserted has priority. Therefore, if both
are asserted, the current bus size is taken to be
16 bits and the next address is not pipelined. Con-
ceptually, Figure 5-18 shows the internal 80386
logic providing these characteristics.

(Cycle 2 above).

IDLE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 IDLE
NON-PIPELINED | NON=PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)
| [
T o1 ™, T2 | T2 [TIP , T2P | TIP | T2i |, T
cu<2[||| ||| |||
—
|
(82384 CLK) [_/_ _/-_/-
BEO # - BE3 #
A2-A31, VALID 1 VALID 2 VALID 3 VALID 4
M/I0 #, D/C# h b
wrs [X
ADS # [\ N\
e =
NA # [
0 ALLOW TO ALLOW T0 ALLOW
RECOGNIZING | RECOGNIZING | RECOGNIZING
NA # NA# NA#
NT DONT
BS16 # [R X2 X 2 X
resov 4 [OO N NN
LOCK # [VALID 1 VALID 2 VALID 3 VALID 4
DO- D31 [o= - --(ouT)-----.---@ ouT >.---®--q

Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled during wait states.
Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at least one wait state

231630-20

Figure 5-16. Transitioning to Pipelined Address During Burst of Bus Cycles

75

Following any idle bus state (Ti) the address is always non-pipelined and NA # is only sampled during wait states. To start address pipelining
after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above).
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states.

ntal — ADVANGCE INFORMATION
IDLE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 IDLE
NON=-PIPELINED PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)
[| | [
T m 12 2P | TIP T2P | TIP TP | TIP | T21 121 T
CLK2 [J LI U U U U L
-
- VavVaVa
BEO # - BE3 #,
#AZ- AS#, [X VALID 1 VALID 2 VALID 3 VALID 4
M/I0#, D/C# / /
W/R 4 [
/
ADS # [\ \ \
| {v v
NA # [
T0 ALLOWW T0 m T0 ALLOWW TO ALLOW W
RECOGNIZING | RECOGNIZING RECOGNIZING | RECOGNIZING
NA # NA NA # NA #
b oy b b
sstof [7 X3 KT KR
rors [AR A\
LOCK # [Xm(VALID 1 VALID 2 VALID 3 VALID 4
DO- D31 [cqeccen -- out ----< m> ouTt)-------erz)---

231630-21

Figure 5-17. Fastest Transition to Pipelined Address Following Idle Bus State

2) The next address may appear as early as the bus
state after NA# was sampled asserted (see Fig-
ures 5-16 or 5-17). In that case, state T2P is en-
tered immediately. However, when there is not an
internal bus request already pending, the next ad-
dress will not be available immediately after NA #
is asserted and T2l is entered instead of T2P (see
Figure 5-19 Cycle 3). Provided the current bus cy-
cle isn't yet acknowledged by READY # asserted,
T2P will be entered as soon as the 80386 does
drive the next address. External hardware should
therefore observe the ADS# output as confirma-
tion the next address is actually being driven on
the bus.

3) Once NA# is sampled asserted, the 80386 com-
mits itself to the highest priority bus request that
is pending internally. It can no longer perform an-
other 16-bit transfer to the same address should

4)

5)

76

BS16# be asserted externally, so thereafter must
assume the current bus size is 32 bits. Therefore
if NA# is sampled asserted within a bus cycle,
BS16# is ignored thereafter in that bus cycle (see
Figures 5-16, 5-17, 5-19). Consequently, do not
assert NA# during bus cycles which must have
BS16# driven asserted. See 5.4.3.6 Dynamic
Bus Sizing with Pipelined Address.

Any address which is validated by a pulse on the
80386 ADS # output will remain stable on the ad-
dress pins for at least two processor clock peri-
ods. The 80386 cannot produce a new address
more frequently than every two processor clock
periods (see Figures 5-16, 5-17, 5-19).

Only the address and bus cycle definition of the
very next bus cycle is available. The pipelining ca-
pability cannot look further than one bus cycle
ahead (see Figure 5-19 Cycle 1).

intel

80386

ADVANCE INFORMATION

NA# g
(PIN D13) (INTERNAL)
BS164 BS16 #
(PIN C14) (INTERNAL)
80386 CHIP

231630-22

Figure 5-18. 80386 Internal
Logic on NA# and BS16 #

The complete bus state transition diagram, including
operation with pipelined address is given by 5-20.
Note it is a superset of the diagram for non-pipelined
address only, and the three additional bus states for
pipelined address are drawn in bold.

The fastest bus cycle with pipelined address con-
sists of just two bus states, T1P and T2P (recall for
non-pipelined address it is T1 and T2). T1P is the
first bus state of a pipelined cycle.

5.4.3.5 INITIATING AND MAINTAINING
PIPELINED ADDRESS

Using the state diagram Figure 5-20, observe the
transitions from an idle state, Ti, to the beginning of
a pipelined bus cycle, T1P. From an idle state Ti, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA# is asserted and
the first bus cycle ends in a T2P state (the address
for the next bus cycle is driven during T2P). The fast-
est path from an idle state to a bus cycle with pipe-
lined address is shown in bold below:

T, Ti,Ti, T1-T2-T2P,, TiP-T2P,
) SR A S), S
idle non-pipelined pipelined
states cycle cycle

T1-T2-T2P are the states of the bus cycle that es-
tablishes address pipelining for the next bus cycle,
which begins with T1P. The same is true after a bus
hold state, shown below:

Th,Th, Th, T1-T2-T2P, TiP-T2P,
hold non-pipelined pipelined
acknowledge cycle cycle
states

77

The transition to pipelined address is shown func-
tionally by Figure 5-17 Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe-
lined. The NA# input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3 and
4.

Once a bus cycle is in progress and the current ad-
dress has been valid for one entire bus state, the
NA# input is sampled at the end of every phase one
until the bus cycle is acknowledged. During Figure 5-
17 Cycle 1 therefore, sampling begins in T2. Once
NA# is sampled asserted during the current cycle,
the 80386 is free to drive a new address and bus
cycle definition on the bus as early as the next bus
state. In Figure 5-16 Cycle 1 for example, the next
address is driven during state T2P. Thus Cycle 1
makes the transition to pipelined address timing,
since it begins with T1 but ends with T2P. Because
the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and it
begins with T1P. Cycle 2 begins as soon as
READY # asserted terminates Cycle 1.

Example transition bus cycles are Figure 5-17 Cycle
1 and Figure 5-16 Cycle 2. Figure 5-17 shows tran-
sition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad-
dress pipelining. Figure 5-16 Cycle 2 shows a tran-
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (you assert
NA# at that time), and T2P (provided the 80386 has
an internal bus request already pending, which it al-
most always has). T2P states are repeated if wait
states are added to the cycle.

Note three states (T1, T2 and T2P) are only required
in a bus cycle performing a transition from non-
pipelined address into pipelined address timing, for
example Figure 5-17 Cycle 1. Figure 5-17 Cycles 2,
3 and 4 show that address pipelining can be main-
tained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA# and detecting that the 80386 enters T2P dur-
ing the current bus cycle. The current bus cycle must
end in state T2P for pipelining to be maintained in
the next cycle. T2P is identified by the assertion of
ADS #. Figures 5-16 and 5-17 however, each show
pipelining ending after Cycle 4 because Cycle 4
ends in T2I. This indicates the 80386 didn’t have an
internal bus request prior to the acknowledgement
of Cycle 4. If a cycle ends with a T2 or T2I, the next
cycle will not be pipelined.

ADVANCE INFORMATION

231630-23

-
lnter 80386
CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4
PIPELINED PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)
TIP T2P | T2P TIP 12 T2P | TIP T20 | T2P TIP
CcLK2 [| I | F
(82384 CLK) [_/_ \
BEO #- BE1#,
A2- A31, [VALID 1 VALID 2 VALID 3 VALID 4
M/I0 #, D/C# 5 g > |
— ADS# IS ASSERTED AS
SOON AS 80386 HAS ANOTHER
BUS CYCLE TO PERFORM,
WHICH IS NOT ALWAYS
IMMEDIATELY AFTER NA#
IS ASSERTED
w/rs [
fr——
ADS # [\ /
y'_.,—J | S
NOTE ADS# IS | AS LONG AS 80386 ENTERS THE
ASSERTED IN T2P STATE DURING CYCLE 3,
EVERY T2P STATE ADDRESS PIPELINING IS
| MAINTAINED IN CYCLE 4
Il
NA # [V\\ 1@
ASSERTING NA# MORE NA# COULD HAVE
THAN ONCE DURING ~ BEEN ASSERTED
ANY CYCLE HAS NO IN T1P IF DESIRED.
ADDITIONAL EFFECTS ~ ASSERTION NOW IS
THE LATEST TIME
POSSIBLE TO ALLOW
80386 TO ENTER T2P
STATE TO MAINTAIN
PIPELINING IN CYCLE 3
BS16 # [
wors [A\ \N
LOCK # [VALID 1 VALID 2 VALID 3 VALID 4
! B
DO- D31 [our X out)--------{m >(out »e--
| | |
Figure 5-19. Details of Address Pipelining During Cycles with Wait States

78

80386

ADVANGCE INFORMATION

HOLD ASSERTED

RESET
ASSERTED

HOLD NEGATED «
NO REQUEST

READY;
HOLD

SSERTED

ASSERTED »

NA# NEGATED

REQUEST PENDING *
HOLD NEGATED

READY# ASSERTED ¢
HOLD NEGATED ¢
REQUEST PENDING
READY# ASSERTED

HOLD NEGATED
REQUEST PENDING

Bus States:
asserts ADS #).

asserted in the current bus cycle.
pending (80386 will not drive new address or assert ADS #).

ing (80386 drives new address and asserts ADS #).
T1P—first clock of a pipelined bus cycle.

Ti—idle state.

Th—hold acknowledge state (80386 asserts HLDA).

states: T2I, T2P and T1P. 3
Using pipelined address, the fastest bus cycle consists of T1P and

READY# A
HOLD NI

T1—first clock of a non-pipelined bus cycle (80386 drives new address and
T2—subsequent clocks of a bus cycle when NA# has not been sampled

T2l—subsequent clocks of a bus cycle when NA# has been sampled as-
serted in the current bus cycle but there is not yet an internal bus request

T2P—subsequent clocks of a bus cycle when NA# has been sampled
asserted in the current bus cycle and there is an internal bus request pend-

Asserting NA# for pipelined address gives access to three more bus

T2P.

SSERTED »
EGATE!
NO REQUEST

Q
3
g
. agl e
Aeso
BapE B3 5
geas 4| |4
:Qz» \g >
523 23 3
De = Ezg& E >
@%a 3
x
383
z0y
Reapvg NeGaTeDs |2Ha
(NO REQUEST + 33%
ey

HOLD ASSERTED)

READY# NEGATED

231630-24

Figure 5-20. 80386 Complete Bus States (including pipelined address)

Realistically, address pipelining is almost always
maintained as long as NA# is sampled asserted.
This is so because in the absence of any other re-
quest, a code prefetch request is always internally
pending untii the instruction decoder and code pre-
fetch queue are completely full. Therefore address
pipelining is maintained for long bursts of bus cycles,
if the bus is available and NA# is sampled asserted
in each of the bus cycles.

5.4.3.6 PIPELINED ADDRESS WITH DYNAMIC
DATA BUS SIZING

The BS16# feature allows easy interface to 16-bit
data buses. When asserted, the 80386 bus interface

79

hardware performs appropriate action to make the
transfer using a 16-bit data bus connected on
D0-D15.

There is a degree of interaction, however, between
the use of Address Pipelining and the use of Bus
Size 16. The interaction results from the multiple bus
cycles required when transferring 32-bit operands
over a 16-bit bus. If the operand requires both 16-bit
halves of the 32-bit bus, the appropriate 80386 ac-
tion is a second bus cycle to complete the operand’s
transfer. It is this necessity that conflicts with NA #
usage.

When NA # is sampled asserted, the 80386 commits
itself to perform the next internally pending bus re-

intel

80386

ADVANCE INFORMATION

quest, and is allowed to drive the next internally
pending address onto the bus. Asserting NA # there-
fore makes it impossible for the next bus cycle to
again access the current address on A2-A31, such
as may be required when BS16 # is asserted by the
external hardware.

To avoid conflict, the 80386 is designed with follow-
ing two provisions:

1) To avoid conflict, the 80386 is designed to ignore
BS16# in the current bus cycle if NA # has already

been sampled asserted in the current cycle. If
NA# is sampled asserted, the current data bus
size is assumed to be 32 bits.

2) To also avoid conflict, if NA# and BS16# are
both asserted during the same sampling window,
BS16# asserted has priority and the 80386 acts
as if NA# was negated at that time. Internal
80386 circuitry, shown conceptually in Figure 5-
18, assures that BS16 # is sampled asserted and
NA# is sampled negated if both inputs are exter-
nally asserted at the same sampling window.

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT BUS

PREVIOUS

CYCLE 1 CYCLE 1A CYCLE 2
CYCLE PIPELINED NON=PIPELINED NON=PIPELINED
(WRITE +—— WRITE) (READ)
PART ONE PART TWO
T2P TIP T2 12 T 12 T2 T T2 T2P
e[[T 1y [[
@sse e[N/] _/" VA _/"]
_ I ALWAYS I
BEO#, BE1 #[x VALID 1 NEGATED DURING VALID 2 VALID 3
- PART TWO]
BE2#, BE3#, — =
A2, A31.[X VALID 1 VAUD 2 VALID 3
M/I0#, D/C# = =
W/R#[—/
ol N/ /
NOTE: NA# MUST BE NEGATED THESE T'S TO ALLOW
RECOGNITION OF ASSERTED BS16# IN FINAL T2.

dn = logical data bit n

pipelining during Cycle 1a.

we[/ DON'T CARE' N7 CA)
32=-BIT
BUS SIZ
BS16# [
16=BIT 16=BIT
BUS SIZE| BUS SIZE
rerone [XX\ | ARXXDT T | R R
LOCK#[VALID 1 VALID 2
d0=-d15 d0=-d15 d16=d31 d0~-d15
DO-D15[-----@-(out X out) EL TETER --@
d16=d31 d16-d31 d16=d31
015-031[.----@-(ouT)-.r----..--
Key: Dn = physical data pin n 231630-25

Cycles 1 and 2 are pipelined. Cycle 1a cannot be pipelined, but its address can be inferred from that of Cycle 1, to externally simulate address

Figure 5-21. Using NA # and BS16 #

80

intel

80386

ADVANCE INFORMATION

Certain types of operands require no adjustment for
correct transfer on a 16-bit bus. Those are read or
write operands using only the lower half of the data
bus, and write operands using only the upper half of
the bus since the 80386 simultaneously duplicates
the write data on the lower half of the data bus. For
these patterns of Byte Enables and the R/W# sig-
nals, BS16# need not be asserted at the 80386,
allowing NA# to be asserted during the bus cycle if
desired.

5.4.4 Interrupt Acknowledge (INTA)
Cycles

In response to an interrupt request on the INTR in-
put when interrupts are enabled, the 80386 performs

two interrupt acknowledge cycles. These bus cycles
are similar to read cycles in that bus definition sig-
nals define the type of bus activity taking place, and
each cycle continues until acknowledged by
READY # sampled asserted.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A31-A3 low, A2 high, BE3#-BE1# high, and
BEO# low). The address driven during the second
interrupt acknowledge cycle is 0 (A31-A2 low,
BE3# -BE1# high, BEO# low).

PREVIOUS INTERRUPT
CYCLE ACKNOWLEDGE
CYCLE 1

UL
/]

T2 m

CLK2 [

(82384 cLo) [

BE1#, BE2#, BES# [

[
/]
p

BEO#, A3=A31,
M/104, D/CH, W/R¥

AZE

LOCK# [

IDLE INTERRUPT IDLE
(4 BUS STATES) ACKNOWLEDGE
CYCLE 2

T T T T T21 T

\ <§

which is simplest for your system hardware design.

ADS# [/ 4
il Wosconcocos
sstey[IGNORED IGNORED
reaovs[\
C IGNORED VECTOR
00-07[e4ecccdecccdenaaa beed X Joodeccedecacdecacclacaclaaas hee .-
[IGNORED IGNORED
08-031[-4ecccdecccdecaa- haadx Poodeccadanaadaaaadiacaabaaa. bae .ee
231630-26

Interrupt Vector (0-255) is read on DO-D7 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect. Choose the approach

Figure 5-22. Interrupt Acknowledge Cycles

.
|| Itel 80386 ADVANGE INFORMATION
CYCLE 1 CYCLE 2 IDLE
NON=PIPELINED | NON=-PIPELINED
(WRITE) (HALT)
T1 T2 T T2 Ti Ti Ti T
e[|
(82384 CLK) [
BEO#, BE1#4, BE34, ‘ - 80386 REMAINS HALTED
M/104, W/R# VALID 1 UNTIL INTR, NMI OR
] ™ RESET IS ASSERTED.
BE2#, A2=A31, BE2# IS LOW -
b/Ch VALID 1 FOR HALT CYCLE |
- 80386 RESPONDS TO
_ HOLD INPUT WHILE IN
ADS#[\ / \ / THE HALT STATE.

NOTE: HALT CYCLE MUST BE
ACKNOWLEDGED BY READY#
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF

X UNDEFINED)= = (FLOATING) = == = ¢ = = = = 4

Bstey [IGNORED
READY# [
DESIRED.
rock [VALID 1 VALID 2
po-p31 [our X | ouT
I [I

231630-27

Figure 5-23. Halt Indication Cycle

The LOCK# output is asserted from the beginning
of the first interrupt acknowledge cycle until the end
of the second interrupt acknowledge cycle. Four idle
bus states, Ti, are inserted by the 80386 between
the two interrupt acknowledge cycles, allowing at
least 160 ns of locked idle time for future 80386
speed selections up to 24 MHz (CLK2 up to 48
MHz), for compatibility with spec TRHRL of the
8259A Interrupt Controller.

During both interrupt acknowledge cycles, DO-D31
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second inter-
rupt acknowledge cycle, the 80386 will read an ex-
ternal interrupt vector from DO-D7 of the data bus.
The vector indicates the specific interrupt number
(from 0-255) requiring service.

82

5.4.5 Halt Indication Cycle

The 80386 halts as a result of executing a HALT
instruction. Signaling its entrance into the halt state,
a halt indication cycle is performed. The halt indica-
tion cycle is identified by the state of the bus defini-
tion signals shown in 5.2.5 Bus Cycle Definition
and a byte address of 2. BEO# and BE2# are the
only signals distinguishing halt indication from shut-
down indication, which drives an address of 0. Dur-
ing the halt cycle undefined data is driven on
D0-D31. The halt indication cycle must be acknowl-
edged by READY # asserted.

A halted 80386 resumes execution when INTR (if
interrupts are enabled) or NMI or RESET is assert-
ed.

intel

80386

ADVANCE INFORMATION

5.4.6 Shutdown Indication Cycle

The 80386 shuts down as a result of a protection
fault while attempting to process a double fault. Sig-
naling its entrance into the shutdown state, a shut-
down indication cycle is performed. The shutdown
indication cycle is identified by the state of the bus
definition signals shown in 5.2.5 Bus Cycle Defini-
tion and a byte address of 0. BEO# and BE2# are

the only signals distinguishing shutdown indication
from halt indication, which drives an address of 2.
During the shutdown cycle undefined data is driven
on DO-D31. The shutdown indication cycle must be
acknowledged by READY # asserted.

A shutdown 80386 resumes execution when NMI or
RESET is asserted.

wel LMY
(82384 CLK) [—_/-

CYCLE 1 CYCLE 2 IDLE
PIPELINED PIPELINED
(READ) (SHUTDOWN)
TP 2P TP 121 Ti Ti Ti Ti

BE1#, BE2#, BE3#,

M1, W/R4 VALID 1 |
BEO# IS LOW FOR
BEO#, A2-A31, SHUTDOWN CYCLE
o/cH VALID 1

= 80386 REMAINS SHUTDOWN
UNTIL NMI OR RESET
™ IS ASSERTED.

= 80386 RESPONDS TO
HOLD INPUT WHILE IN

ADS# [/

THE SHUTDOWN STATE.

NA# [Xa_e\

9515#[X

resove [| 000N

NOTE: SHUTDOWN CYCLE MUST BE
ACKNOWLEDGED BY READY#
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.

LOCK#[VALID 1

ID 2

e=={IN1 -(_

DD-DS1[< IN >---

UNDEFINED >-

= «(FLOATING)= = = = =

231630-28

Figure 5-24. Shutdown Indication Cycle

83

intel

80386

ADVANGE INFORMATION

5.5 OTHER FUNCTIONAL
DESCRIPTIONS

5.5.1 Entering and Exiting Hold
Acknowledge

The bus hold acknowledge state, Th, is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the 80386 floats all
output or bidirectional signals, except for HLDA.
HLDA is asserted as long as the 80386 remains in
the bus hold acknowledge state. In the bus hold ac-
knowledge state, all inputs except HOLD and RE-
SET are ignored (also up to one rising edge on NMI
is remembered for processing when HOLD is no
longer asserted).

IDLE HOLD IDLE
ACKNOWLEDGE
Th

T Th Th T

wa[_MAMLAULMULLL
el NSNS NS NSNS
ool | 47 R
o[
wsg[T T----- PRI o
was [
sstss[
reaors[
Locxs[===} (rLoATNG)- ===
0= 031 <A e e e em AT |
231630-29

NOTE:

For maximum design flexibility the 80386 has no inter-
nal pullup resistors on its outputs. Your design may re-
quire an external pullup on ADS# and other 80386 out-
puts to keep them negated during float periods.

Figure 5-25. Requesting Hold from Idle Bus

Th may be entered from a bus idle state as in Figure
5-25 or after the acknowledgement of the current
physical bus cycle if the LOCK # signal is not assert-
ed, as in Figures 5-26 and 5-27. If asserting BS16 #
requires a second 16-bit bus cycle to complete a
physical operand transfer, it is performed before

84

HOLD is acknowledged, although the bus state dia-
grams in Figures 5-13 and 5-20 do not indicate that
detail.

Th is exited in response to the HOLD input being
negated. The following state will be Ti as in Figure
5-25 if no bus request is pending. The following bus
state will be T1 if a bus request is internally pending,
as in Figures 5-26 and 5-27.

This also exited in response to RESET being assert-
ed.

If a rising edge occurs on the edge-triggered NMI
input while in Th, the event is remembered as a non-
maskable interrupt 2 and is serviced when Th is exit-
ed, unless of course, the 80386 is reset before Th is
exited.

5.5.2 Reset During Hold Acknowledge

RESET being asserted takes priority over HOLD be-
ing asserted. Therefore, Th is exited in reponse to
the RESET input being asserted. If RESET is assert-
ed while HOLD remains asserted, the 80386 drives
its pins to defined states during reset, as in Table
5-3 Pin State During Reset, and performs internal
reset activity as usual.

If HOLD remains asserted when RESET is negated,
the 80386 enters the hold acknowledge state before
performing its first bus cycle, provided HOLD is still
asserted when the 80386 would otherwise perform
its first bus cycle. If HOLD remains asserted when
RESET is negated, the BUSY # input is still sampled
as usual to determine whether a self test is being
requested, and ERROR # is still sampled as usual to
determine whether an 80387 vs. an 80287 (or none)
is present.

5.5.3 Bus Activity During and
Following Reset

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert-
ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the
80386, and at least 78 CLK2 periods if 80386 self-
test is going to be requested at the falling edge. RE-
SET asserted pulses less than 15 CLK2 periods may
not be recognized. RESET pulses less than 78 CLK2
periods followed by a self-test may cause the self-
test to report a failure when no true failure exists.
The additional RESET pulse width is required to
clear additional state prior to a valid self-test.

mte[80386 ADVANGCE INFORMATION
CYCLE 1 HOLD CYCLE 2
NON~-PIPELINED ACKNOWLEDGE | NON=PIPELINED
(READ) (WRITE)

CLK2 [J

(82384 cLk) [

SEL

it
Vs

T2 Th LA T2

SEL

HOLD ASSERTED 1
NO LATER THAN READY# ASSERTED

- ,A2=-A31, oy
BEO#=BE3#,A2-A3 x VALID 1

M/I0#,D/C#, W/R#

FLOATING
() { VALD 2

) —

PERFORMED BEFORE

READY# [

, (FLOATING) \
R /

KXXXXXXXXY

NOTE: IF ASSERTING BS16#
REQUIRES A SECOND BUS
CYCLE TO BE PERFORMED,
THE SECOND CYCLE IS

HOLD ACKNOWLEDGE

VA

(NEéATED. OR LAST LOCKED CYGLE)

LOCK#[VALID 1

FLOATING
:..(.----.)-- (VALID 2

DO-D31 [- -.(F."SA.Y;'.NE).--

NOTE:

--.GP.--(?'QA.TLNE)- ---(ouT

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and tp4) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

231630-30

Figure 5-26. Requesting Hold from Active Bus (NA # negated)

Provided the RESET falling edge meets setup and
hold times to5 and tgg, the internal processor clock
phase is defined at that time, as illustrated by Figure
5-28 and Figure 7-7.

An 80386 self-test may be requested at the time RE-
SET is negated by having the BUSY # input at a
LOW level, as shown in Figure 5-28. The self-test
requires (220) + approximately 60 CLK2 periods to
complete. The self-test duration is not affected by
the test results. Even if the self-test indicates a prob-
lem, the 80386 attempts to proceed with the reset
sequence afterwards.

85

After the RESET falling edge (and after the self-test
if it was requested) the 80386 performs and internal
initialization sequence for approximately 350 to 450
CLK2 periods. Also during the initialization, between
the 20th CLK2 period and the first bus cycle, the
ERROR# input is sampled to determine the pres-
ence of an 80387 coprocessor versus the presence
of an 80287 (or no coprocessor). To distinguish be-
tween an 80287 being present and no coprocessor
being present requires a software test.

intel sosss ADVANGE INFORMATION
CYCLE 1 HOLD CYCLE 2
PIPELINED ACKNOWLEDGE NON=PIPELINED
(WRITE) (READ)

T21
CLK2 [

(82384 CLK) [

i
\va

HOLD [
HLDA [

-~

HOLD ASSERTED IN SAME BUS
STATE AS NA# ASSERTED

\

BEO#-BE3#,A2-A31,
M/I0#,D/C#, W/R# [VALID

VALID 2

ADS# I:

(FLOATING)

.
Cteccccccse <4

DON'T CAR

NOTE:

READY# |: _m
(NEGATED, OR LAST LOCKED CYCLE)
(FLOATING)
LOCK#[VALID 1 eccckeca= VALID 2
(FLOATING)
DO=D31 [our X ouT DI R CET .-@
| |

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (tp3 and tp4) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

231630-31

Figure 5-27. Requesting Hold from Idie Bus (NA # asserted)

5.6 SELF-TEST SIGNATURE

Upon completion of self-test (if self-test was re-
quested by driving BUSY # low at the falling edge of
the RESET signal) the AX and DX registers will each
indicate 0000H if the 80386 passed with no faults
detected. This applies to all 80386 revision levels.
Non-zero values in either AX or DX after self-test
indicate that particular 80386 unit is faulty.

5.7 COMPONENT AND REVISION
IDENTIFIERS

To assist 80386 users, the 80386 after reset holds a

component identifier and revision identifier in its BH
and BL registers respectively. BH contains 03H as

86

identification of the 80386 component. BL contains
an unsigned binary number related to the compo-
nent revision level. The 80386 revision identifier in
BL begins chronologically with value zero and is
subject to change (typically it will be incremented)
with component steppings intended to have certain
improvements or distinctions from previous step-
pings.

These features are intended to assist 80386 users
to a practical extent. However, the revision identifier
value is not guaranteed to change with every step-
ping revision, or to follow a completely uniform nu-
merical sequence, depending on the type or inten-
tion of revision, or materials required to be changed.
Intel has sole discretion over these characteristics of
the component.

ntel — ADVANCE INFORMATION

RESET ! INTERNAL

INITIALIZATION
>15 CLK2 DURATION IF
NOT GOING TO REQUEST

CYCLE 1

SELF=TEST. "°NE:E‘PA%'NE°
IF SELF=TEST IS PERFORMED,

278 CLK2 DURATION (ADD (2°20)+60% TO THESE B A

BEFORE REQUESTING NUMBERS

SELF=TEST.

* . . .
1 2 3|[17 18| 19||395/396 397|398

RESET
(FROM 82384) __._/ \
CLK(INTERNAL)[x Uxx:
e[X7 NSNS
NEGATED TO ALLOW

NO SELF=TEST SENSING COPROCESSOR TYPE

*APPROXIMATELY

162|¢1|02||¢1(02|01|[¢2(e1]¢2

BUSY# I: XX
LOW TO BEGIN SELF-TEST 80287 (OR NONE)

PRESENT
ERROR [XXX XX XXX XXX XXX XX XXX

UP TO 30 CLK2— 80387 PRESENT
BEO#-BE3#,

T LOW || DURING RESET AXXXX X

UP TO 30 CLK2—|

A2-A31,W/R#,
D/C#,LOCK# HIGH || DURING RESET w
UP TO 30 CLK2—~|
ADS#[HIGH | [DURING RESET

[KRR
os164 [KXXRXXRXXRA RRXX KX KX KRR
reaov# [XN KIDOOOOOOKKK

oo-0314 [M'"'r‘“rwm“”“ ------ ceedbeceden|[odannaden.

VALID 1

VALID 1

-

231630-32
Figure 5-28. Bus Activity from Rest Until First Code Fetch
Table 5-10. Component and Revision Identifier History
st8’038:1 Component Revision st89038:‘ Component Revision
PR Identifier Identifier gipld Identifier Identifier
Name Name

87

intel

80386

ADVANGCE INFORMATION

6. MECHANICAL DATA

6.1 INTRODUCTION

In this section, the physical packaging and its con-
nections are described in detail.

6.2 PIN ASSIGNMENT

The 80386 pinout as viewed from the Substrate side
of the component is shown by Figure 6-1. Its pinout

as viewed from the Pin side of the component is
Figure 6-2.

Ve and GND connections must be made to multi-
ple Vg and GND pins. Each Vg and GND must be
connected to the appropriate voltage level. External-
ly strap all Vg pins together close to the package,
and similarly strap all GND pins. Preferrably, the cir-
cuit board should include Vg and GND planes for
power distribution.

NOTE:
Pins identified as “N.C.” should remain completely
unconnected.

P N M L K J H 6 F E D C B A
~ N~ N A ~ ~ ~ ~ ~r N~ ~ A o N~
A30 A27 A26 A23 A21 A20 A17 A16 A15 A14 AN A8 VSS VvCC

2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 2
N~ N~ ~ ~ ~ ~ o N~ ~ N~ N~ N A N
VCC A31 A29 A24 A22 VSS A18 VCC VSS A13 A10 A7 A5 VSS

3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3
o N~ N~ ~ N~ N ~ ~ ~ ~ N o A
D30 VSS VCC A28 A25 VSS A19 VCC VSS A12 A9 A6 A4 A3

4 ~ ~ ~ ~ ~ ~ 4
~ ~ ~ ~ ~ N
D29 VCC VSS A2 NC NC

5 S £ 2 S C T 5
D26 D27 D31 vCC VSS vcC

6 oo I C C C 6
VSS D25 D28 NC NC VSS

7 s £ & c C C 7
D24 VCC VvCC NC INTR VCC

8 c L L cC C C 8
VCC D23 VSS PEREQ NMI ERROR#

9 s £ ¢ S £ C 9
D22 D21 D20 RESET BUSY# VSS

10 S < L s e-C 10
D19 D17 VSS LOCK# W/R# vCC

11 cC & ¢ c & ¢ 11
D18 D16 D15 VSS VSS D/C#

12 s & 2 2 & 2 & & ¢ ¢ &€ & S < 12
D14 D12 D10 VCC D7 VSS DO VCC CLK2 BEO# VCC VCC NC M/Io#

13 2 L 2 8 £ & 2. L c S C L 13
D13 D11 VvVCC D8 DS VsS D1 READY# NC NC NA# BE1# BE2# BE3#
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

14 S e 2 & c C e L < S < 14

\VSS D9 HLDA D6 D4 D3 D2 VCC VSS ADS# HOLD BS16# VSS VCC/
P N M L K J H G F E D C B A
231630-33

Figure 6-1. 80386 PGA Pinout—View from Top Side

88

80386 ADVANGCE INFORMATION

A

intel

a N\

03 08 08 08 0§ 08 OF 0§ OF OF O3 O3 O7 OY
0307 0808 08 08 02 OF% OF O O2 OF O; 08
0§ 0% 08 08 05 0§ 08 0% 0§ 0% Of 02 08 03

0% 0% 0% 08 0% 0%
0§ 0% 0% 05 08 03
0§ o8 0% 0% 08 03
0z 0% 0% 08 05 0%
0% 0§ 08 0§ 03 o8
0z 0¢ o¢ 0% o2 08
o:ozo0% og og 0%

0z 02 02 08 0% 03
-

o8 0mom

2 of o8

O

02 0302020802020
0% 0203020802050
Amomou 2 08 0% 08 O og o8

- /

R# NMI PEREQ
O O O
o

VSS BUSY# RESET
(o]

VCC W/R# LOCK#

O O O

D/C# VSS VSS

Qo 0O

M/I04

- o~ L) ~ n ©w ~ © o

10
1"
12

Ll «

231630-34

Figure 6-2. 80386 PGA Pinout—View from Pin Side
89

ntel — ADVANCE INFORMATION

Table 6-1. 80386 PGA Pinout—Functional Grouping

Pin / Signal Pin / Signal Pin / Signal Pin / Signal
N2 A31 M5 D31 A1 Vgo A2 Vss
P1 A30 P3 D30 A5 Vco A6 Vsg
M2 A29 P4 D29 A7 Vco A9 Vgg
L3 A28 Mé D28 A10 Vge B1 Vgs
N1 A27 N5 D27 A14 Voo B5 Vgs
M1 A26 P5 D26 C5 Vco B11 Vgs
K3 A25 N6 D25 C12 Vg B14 Vgg
L2 A24 P7 D24 D12 Vcc C11 Vss
L1 A23 N8 D23 G2 Vco F2 Vgs
K2 A22 P9 D22 G3 Vgo F3 Vgs
K1 A21 N9 D21 G12 Voo F14 Vgs
J1 A20 M9 D20 G14 Voo J2 Vgg
H3 A19 P10 D19 L12 Vce J3 Vss
H2 A18 P11 D18 M3 Vce J12 Vgg
H1 A17 N10 D17 M7 Ve J13 Vsgg
G1 A16 N11 D16 M13 Vce M4 Vgg
F1 A15 M11 D15 N4 Vce M8 Vgs
E1 Al4 P12 D14 N7 Ve M10 Vss
E2 A13 P13 D13 P2 Vg N3 Vss
E3 A12 N12 D12 P8 Vce P6 Vgs
D1 At N13 D11 P14 Vgs
D2 A10 M12 D10
D3 A9 N14 D9 F12 CLK2 A4 N.C.
C1 A8 L13 D8 D4 N.C.
C2 A7 K12 D7 E14 ADS# B6 N.C.
C3 A6 L14 D6 B12 N.C.
B2 A5 K13 D5 B10 W/R# Cé N.C.
B3 A4 K14 D4 A11 D/C# C7 N.C.
A3 A3 J14 D3 A12 M/I0# E13 N.C.
C4 A2 H14 D2 C10 LOCK# F13 N.C.
A13 BE3# H13 D1
B13 BE2# H12 DO D13 NA# C8 PEREQ
C13 BE1# C14 BS16# B9 BUSY#
E12 BEO# G13 READY # A8 ERROR#
D14 HOLD
C9 RESET M14 HLDA B7 INTR B8 NMI

90

ADVANGE INFORMATION

nte[80386
TEEgH4RER R R T
J:PIN #1 POSITION 4—’ | l I l l l l s s (1. 260) ‘ ‘
= = T : : : : ? —
HOPEPEOEOOEOEO®®®®®® @ 650 (16.497)
2{|{@@@@O@O®®®®® @® ® ® @ 550 (13.959)
HO@O@®@®®@®©®®®® @ ® @ 450 (11.421)
" IOXOXO; ® (® (®+H— .350 (8.883)
s||@@ @ - ® ® @1} 250 (6.345)
S HOXOXO; | ® (® ®+— 150 (3.807)
4110XOJO] e o (OJOIO! | = .058(1.259)
1 HIOXOJXO, OXOJXO;
12 g 8 g | 8 g 8 .001 (0‘02.2!% —
MIN TYP

njl@@®® (OXOJO)
31 LOJORCROXOJOJOROJOJOROXCKOKO] | IFNFINII
BllO@@®@©O®@®©®O®®®® ®® ®|| stanoorf 018(0.047) -
14 @@@@@@@:@(D@@@@@ (4) PLACES D'”Ypf ‘

A|[B|]|C D E F G|(H J K L M N P

- |+.020(0.508) 020 —| | .165 (4.189) J—
MIN TYP (0.508)
—| |=—.070(1.777) DIA .110(2.792)
TYP BRAZE PAD
1.450 (36.802)
231630-35

Figure 6-3. 132-Pin Ceramic PGA Package Dimensions

6.3 Package Dimensions and
Mounting

The initial 80386 package is a 132-pin ceramic pin
grid array (PGA). Pins of this package are arranged
0.100 inch (2.54mm) center-to-center, in a 14 x 14
matrix, three rows around.

91

A wide variety of available sockets allow low inser-
tion force or zero insertion force mountings, and a
choice of terminals such as soldertail, surface
mount, or wire wrap. Several applicable sockets are
listed in Table 6-2.

intal ouiss ADVANCE INFORMATION

6.4 PACKAGE THERMAL to determine whether the 80386 is within specified
SPECIFICATION operating range.

The 80386 is specified for operation when case tem- ~ The PGA case temperature should be measured at

perature is within the range of 0°C-85°C. The case the center of the top surface opposite the pins, as in

temperature may be measured in any environment, Figure 6-4.

MEASURE PGA CASE TEMPERATURE
AT CENTER OF TOP SURFACE

132=PIN PGA

231630-36

Figure 6-4. Measuring 80386 PGA Case Temperature

Table 6-2. Several Socket Options for 132-Pin PGA

* Low insertion force (LIF) soldertail
55274-1

* Amp tests indicate 50% reduction in insertion
force compared to machined sockets

Other socket options

* Zero insertion force (ZIF) soldertail
55583-1

* Zero insertion force (ZIF) Burn-in version
55573-2

Amp Incorporated
(Harrisburg, PA 17105 U.S.A.
Phone 717-564-0100)

231630-45
Cam handle locks in low profile position when substrate is installed (handle UP for
open and DOWN for closed positions)

courtesy Amp Incorporated

92

ntel R ADVANCE INFORMATION

Table 6-2. Several Socket Options for 132-Pin PGA (Continued)

Peel-A-Way™ Mylar and Kapton Peel-A-Way Carrier No. 132: | SOLDERTAL 01 | LOWPROFLE-0s | _ PRESSHIT-08 |
Socket Terminal Carriers Kapton Carrier is KS132
* Low insertion force surface mount Mylar Carrier is MS132
cs:az.aﬁe) Molded Plastic Body KS132
* Low insertion force soldertail is shown below:
CS132-01TG

Low insertion force wire-wrap
CS132-02TG (two level)
CS132-03TG (three-level)
Low insertion force press-fit
CS132-05TG

(5 Division Street
Warwick, Rl 02818 U.S.A.

Phone 401-885-0485)
x4 xIROWS
231630-46 231630-47
courtesy Advanced Interconnections
(Peel-A-Way Terminal Carriers
U.S. Patent No. 4442938)
* Low insertion force socket soldertail -
(for production use) =99 %
2XX-6576-00-3308 (new style) [B
2XX-6003-00-3302 (older style) H
* Zero insertion force soldertail LINZ
(for test and burn-in use) 11 0
2Xx-e568-00-3302 oy ¢
AAAAAAA (X
Textool Products [
Electronic Products Division/3M
(1410 West Pioneer Drive ¢
Irving, Texas 75601 U.S.A. |
Phone 214-259-2676) [i [1]
| S | |
by [} S I - I | S
3
|
231630-48

courtesy Textool Products/3M

93

intel

80386

ADVANGE INFORMATION

7. ELECTRICAL DATA

7.1 INTRODUCTION

The following sections describe recommended elec-
trical connections for the 80386, and its electrical
specifications.

7.2 POWER AND GROUNDING

7.2.1 Power Connections

The 80386 is implemented in CHMOS |1l technology
and has modest power requirements. However, its
high clock frequency and 72 output buffers (address,
data, control, and HLDA) can cause power surges
as multiple output buffers drive new signal levels
simultaneously. For clean on-chip power distribution
at high frequency, 20 Vgc and 21 Vgg pins separate-
ly feed functional units of the 80386.

Power and ground connections must be made to all
external Vo and GND pins of the 80386. On the
circuit board, all Vg pins must be strapped closely
together, preferrably on a Vgg plane. All Vgg pins
must be likewise strapped on the circuit board, pre-
ferrably on a GND plane.

7.2.2 Power Decoupling
Recommendations

Liberal decoupling capacitance should be placed
near the 80386. The 80386 driving its 32-bit parallel
address and data buses at high frequencies can
cause transient power surges, particularly when driv-
ing large capacitive loads.

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per-
formance. Inductance can be reduced by shortening
circuit board traces between the 80386 and decou-

pling capacitors as much as possible. Capacitors
specifically for PGA packages are also commercially
available, for the lowest possible inductance.

7.2.3 Resistor Recommendations

The ERROR # and BUSY # inputs have resistor pull-
ups (of approximately 20 KQ built-in to the 80386 to
keep these signals negated when neither 80287 or
80387 are present in the system (or temporarily re-
moved from its socket).

In typical designs, the external pullup resistors
shown in Table 7-1 are recommended. However, a
particular design may have reason to adjust the re-
sistor values recommended here, or alter the use of
pullup resistors in other ways.

7.2.4 Other Connection
Recommendations

For reliable operation, always connect unused in-
puts to an appropriate signal level. N.C. pins should
always remain unconnected.

Particularly when not using interrupts or bus hold,
(as when first prototyping, perhaps) prevent any
chance of spurious activity by connecting these as-
sociated inputs to GND:

Pin Signal
B7 INTR
B8 NMI
D14 HOLD

If not using address pipelining, pullup D13 NA# to
Vce-

If not using 16-bit bus size, pullup C14 BS16# to
Vce.

Pullups in the range of 20 K are recommended.

Table 7-1. Recommended Resistor Pullups to Vg

Pin and Signal Pullup Value Purpose
E14 ADS# 20 KQ £10% Lightly Pull ADS # Negated
During 80386 Hold Acknowledge
States
C10 LOCK# 20 KQ £10% Lightly Pull LOCK # Negated
During 80386 Hold Acknowledge
States

94

intel

80386 ADVANCE INFORMATION

7.3 MAXIMUM RATINGS

Table 7-2. Maximum Ratings

Table 7-2 is a stress rating only, and functional oper-
ation at the maximums is not guaranteed. Functional
operating conditions are given in 7.3 D.C. Specifica-

tions and 7.4 A.C. Specifications.

80386-12
Parameter 80386-16 Extended exposure to the Maximum Ratings may af-
Maximum Rating fect device reliability. Furthermore, although the
N : 80386 contains protective circuitry to resist damage
Storage Temperature —65°Cto +150°C from static electric discharge, always take precau-
Case Temperature Under Bias —65°Cto +110°C tions to avoid high static voltages or electric fields.
Supply Voltage with Respect to Vgg| —0.5V to +6.5V
Voltage on Other Pins —0.5VtoVge + 0.5V

7.4 D.C. SPECIFICATIONS

Functional Operating Range: Voc = 5V £5%; Tcasg = 0°C to 85°C

Table 7-3. 80386-16 and 80386-12 D.C. Characteristics

D/C#, M/I0#, LOCK#,

loL = 4 mA: A2-A31, DO-D31 Q e v
loL = 5 mA: BEO#-BE3#, W/R#, o Vv

ADS#,H

80386-12 | 80386-12
Symbol Parameter 80386-16 | 80386-16 | Unity Notes
Min Max
ViL Input Low Voltage —0.3 0.8
ViH Input High Voltage 2.0 Vee % \
ViLc CLK2 Input Low Voltage —-0.3
ViHe CLK2 Input High Voltage Vce — 0. + 0.
VoL Output Low Voltage

VoH Output High Voltage
loH = 1 mA:
lon = 0.9 mA:

N o e

il

I 15 pA | OV < VN < Voo
Lo +15 rA | 0.45V < Vout < Voo
ICC

400 mA

400 mA
CiN 10 pF | Fc = 1 MHz (Note 1)
Cout 12 pF | Fc = 1 MHz (Note 1)
CeoLk CLK2 Capacitance 20 pF | Fc = 1 MHz (Note 1)

NOTE:
1. Not tested.

95

intel

80386

ADVANCE INFORMATION

7.5 A.C. SPECIFICATIONS

7.5.1 A.C. Spec Definitions

The A.C. specifications, given in Tables 7-4 and 7-5,
consist of output delays, input setup requirements
and input hold requirements. All A.C. specifications
are relative to the CLK2 rising edge crossing the
2.0V level.

A.C. spec measurement is defined by Figure 7-1. In-
puts must be driven to the voltage levels indicated
by Figure 7-1 when A.C. specifications are mea-
sured. 80386 output delays are specified with mini-
mum and maximum limits, measured as shown. The

minimum 80386 delay times are hold times provided
to external circuitry. 80386 input setup and hold
times are specified as minimums, defining the small-
est acceptable sampling window. Within the sam-
pling window, a synchronous input signal must be
stable for correct 80386 operation.

Outputs NA#, W/R#, D/C#, M/IO#, LOCK#,
BEO#-BE3#, A2-A31 and HLDA only change at
the beginning of phase one. D0O-D31 (write cycles)
only change at the beginning of phase two. The
READY #, HOLD, BUSY #, ERROR#, PEREQ and
D0-D31 (read cycles) inputs are sampled at the be-
ginning of phase one. The NA#, BS16#, INTR and
NMI inputs are sampled at the beginning of phase
two.

DRIVE TO
Vee =0.5V

CLK2

S N o Y

Tx
$2

LEGEND:

(Al — maximum output delay spec

— minimum output delay spec
C) — minimum input setup spec
D) — minimum input hold spec

DRIVE
TO 0.45V O
B
MIN MAX
OUTPUTS <
(A0-A31, BEO#~BE3#, |: VALID| 2V m 2V VALID
ADS#, M/10%, D OUTPUT n 0. .8V OUTPUT n#1
w/R#, CK#_ (D 0.8V % 0.8V n
)
&)
®
MIN MAX
OUTPUTS VALID| 2V \2 2V VALID
(DO-D31) OUTPUT n |0.8V 0.8V OUTPUT n+1
© ®©
INPUTS DRIVE -
10 2.4V \
(NA#,BS 164 \\\z o]‘:";Llﬁ 2V i\\\
INTR, NMI) DRIVE __ 0.8V 0.8V
0 .45V |
© ®
DRIVE
INPUTS
READY#, HOLD, l: 10 2.4v"\ 2V 2v Y Q
RROR#, BUSY#, orive . \\\\ko0.8v | o.8v i\
PEACK, DO=D31) 10 ORVE

231630-37

Figure 7-1. Drive Levels and Measurement Points for A.C. Specifications

96

intel

80386

ADVANCE INFORMATION

7.5.2 A.C. Specification Tables
Functional Operating Range: Voc = 5V £5%; Tcase = 0°C to 85°C

Table 7-4. 80386-16 A.C. Characteristics

Symbol Parameter 80::‘8:1 =19 80:::;16 Unit Frgeufl:e Notes

Operating Frequency 4 16 MHz — Half of CLK2
Frequency

t4 CLK2 Period 31 125 ns 7-3

toa CLK2 High Time 9 ns 7-3 atav

top CLK2 High Time 5 ns 7-3 at (Voo — 0.8V)

t3a CLK2 Low Time 9 ns 7-3 atav

tap CLK2 Low Time 7 ns 7-3 ¥ at0.8v

tq CLK2 Fall Time 8 ns 74 (Vcc — 0.8V) to 0.8V

ts CLK2 Rise Time 8 ns

ts A2-A31 Valid Delay 1 40 ns

t7 A2-A31 Float Delay 1 40

tg BEO# -BE3#, LOCK# 1 40 @
Valid Delay

tg BEO#-BE3#, LOCK# 1 (Note 1)
Float Delay

t10 W/R#,M/I0O#,D/C#, 1 C_ = 75pF
ADS #, Valid Delay

t14 W/R#,M/10#,D/C#, 1 (Note 1)
ADS # Float Delay

t12 DO0-D31 Write Data Q 50 ns 7-5 CL = 120 pF
Valid Delay

t43 DO0-D31 Write D. ns 7-6 (Note 1)
Float Delay

t14 HLDA Vali 35 ns 7-6 CL = 75pF

t15 NA# Set e ns 7-4

t16 2 ns 7-4

t17 12 ns 7-4

tig 20 ns 7-4

t19 20 ns 7-4

to0 READY # Hold Time 3 ns 7-4

to4 D0-D31 Read 10 ns 7-4
Setup Time

too D0-D31 Read 2 ns 7-4
Hold Time

tog HOLD Setup Time 25 ns 7-4

to4 HOLD Hold Time 4 ns 7-4

tos RESET Setup Time 10 ns 7-4 (Note 2)

97

intal P ADVANCE INFORMATION

Table 7-4. 80386-16 A.C. Characteristics (Continued)

80386-16 80386-16 Ref.
Symbol Parameter Min Max Unit Figure Notes
tog RESET Hold Time 5 ns 7-4 (Note 2)
to7 NMI, INTR Setup Time 25 ns 7-4 (Note 2)
tog NMI, INTR Hold Time 4 ns 7-4 (Note 2)
tog PEREQ, ERROR #, BUSY # 25 ns 7-4 (Note 2)
Setup Time
t30 PEREQ, ERROR #, BUSY # 4 ns ¥ 7-4 (Note 2)
Hold Time

NOTES:
1. Float condition occurs when maximum output current becomes less than I o i de. Fl is not tested but
should be no longer than the valid delay.

2. These inputs are allowed to be asynchronous to CLK2. The setup and holi @icaﬁonven for testing purposes,

to assure recognition within a specific CLK2 period. 0

Table 7-5. 80386-12 A.C. erist
Symbol Parameter BRI T - Notes
Min
Operating Frequency 4 12.5 eiz Half of CLK2
Q Frequency
t4 CLK2 Period 40 7-3
toa CLK2 High Time S 7-3 at2v
top CLK2 High Time T4 ns 7-3 at (Vgc — 0.8V)
t3a CLK2 Low Time ns 7-3 at2v
tap CLK2 Low T“v ns 7-3 at0.8V
tq CLK2 Fal 8 ns 7-3 (Vcc — 0.8V) to 0.8V
ts CLK2 e 8 ns 7-3 0.8V to (Voo — 0.8V)
ts A2%A31Walid 1 44 ns 7-5 CL = 120 pF
ty A2-A31F y 1 44 ns 7-6 (Note 1)
tg BEO#-B , LOCK # 1 44 ns 7-5 C_ = 75pF
Valid Delay
tg BEO#-BE3#, LOCK# 1 44 ns 7-6 (Note 1)
Float Delay
t10 W/R#,M/10#,D/C#, 1 39 ns 7-5 C_ = 75pF
ADS # Valid Delay
t14 W/R#,M/I0#,D/C#, 1 39 ns 7-6 (Note 1)
ADS # Float Delay
t12 D0-D31 Write Data 1 55 ns 7-5 C_L = 120 pF
Valid Delay
t43 D0-D31 Write Data 1 55 ns 7-6 (Note 1)
Float Delay
t14 HLDA Valid Delay 4 39 ns 7-6 C_ = 75pF

98

intel

80386

ADVANGCE INFORMATION

Table 7-5. 80386-12 A.C. Characteristics (Continued)

Symbol Parameter 803;::"12 80;8:;12 Unit FiRgT:I:e Notes

t15 NA# Setup Time 11 7

t16 NA# Hold Time 22

t17 BS16+# Setup Time 13 ns & 7-4

t1g BS16# Hold Time 22 é 7-4

t19 READY # Setup Time 22 7-4

too READY # Hold Time 4 ns 7-4

t21 D0-D31 Read 7-4
Setup Time

2| HoTme A A" "

to3 HOLD Setup Time ns 7-4

tog HOLD Hold Time 5 ns 7-4

to5 RESET Setup Tj V1 ns 7-4 (Note 2)

tos RESET Hold @i ns 7-4 (Note 2)

to7 NMI, IN Ti 8 ns 7-4 (Note 2)

tog NMI old Tim 5 ns 7-4 (Note 2)

tog RERER, BUSY # 28 ns 7-4 (Note 2)
Setup Tim

tao PERE R#, BUSY # 5 ns 7-4 (Note 2)
Hold Tim

NOTES:

1. Float condition occurs when maximum output current becomes less than I o in magnitude. Float delay is not tested, but

should be no longer than the valid delay.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,

to assure recognition within a specific CLK2 period.

7.5.3 A.C. Test Loads

7.5.4 A.C.Timing Waveforms

80386
OUTPUT

231630-38
CL = 120 pF on A2-A31, D0-D31

LOCK #, HLDA
Cy includes all parasitic capacitances.

CiL = 75 pF on BEO#-BE3#, W/R#, M/IO#, D/C#, ADS#,

Figure 7-2. A.C. Test Load

99

231630-39

Figure 7-3. CLK2 Timing

80386

ADVANCE INFORMATION

$2 é1 $2 é1
CLK2 [/_\ ,[_\ 1L \ *_
READY# [NW N
@)
HOLD [m W\
~—@)——22—
(neory L K W
~—@)——29—
RESET [N N
susva,
I \\
———9—
wa [AN N\
~—()—~—(8—
BS16# [NN WO
~—@)——28—
i RN AW

231630-40

Figure 7-4. Input Setup and Hold Timing

cLK2 [_*_\ {

BEO#=-BE3#,
LOCK#

W/R#,M/104,
D/C#, ADS#

A2=-A31 l:

DO-D31
(OUTPUT)

HLDA |:

aavs

MIN IMAX
VALID n “\\\\\ N VALID n+1
19 MIN MAX
VALID n &\\\ N VALID n+ 1
® MIN MAX
vALID n MO VALID n+1

T
& MIN | MAX

VALID n ESSSSSSSSSSN VALID n#1

'—l

231630-41

Figure 7-5. Output Valid Delay Timing

100

ntel 80386 ADVANCE INFORMATION

Th Ti OR T1
é2 é1 2 é1 #2
s [M\
g MIN MAX @ MIN MAX
BEO#—BES#,[: s) (R | s
LOCK# (HIGH Z)
1 MIN MAX @ MIN MAX
W/R#,M/IO#.[: r— - 11 _ _ |- F——1T—1
D/C#, ADS# (HIGH Z)
B z MIN MAX @ MIN MAX
A2-A3|[F— — 4+ = — == 4+ — — 4 — A
- (HIGH Z)
3 MIN vax 2 MIN MAX
00-031[— —_— 4+ - = =4+ - - - =4
@ ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE
@ MIN MAX @ MIN MAX
e [T

231630-42
Figure 7-6. Output Float Delay and HLDA Valid Delay Timing
RESET INITIALIZATION SEQUENCE —————
$2 OR @1 ¢2 OR @1
25
231630-43

The second internal processor phase following RESET high-to-low transition (provided tps and tpg are met) is $2.

Figure 7-7. RESET Setup and Hold Timing, and Internal Phase

101

intel

80386

ADVANCE INFORMATION

7.6 DESIGNING FOR ICE-386 USE

The 80386 in-circuit emulator product is ICE-386.
Because of the high operating frequency of 80386
systems and ICE-386, there is no cable separating
the ICE-386 probe module from the target system.
The ICE-386 probe module has several electrical
and mechanical characteristics that should be taken
into consideration when designing the hardware.

Capacitive loading: ICE-386 adds up to 25 pF to
each line.

Drive requirement: ICE-386 adds one standard
TTL load on the CLK2 line, up to one advanced low-
power Schottky TTL load per control signal line, and
one advanced low-power Schottky TTL load per ad-
dress, byte enable, and data line. These loads are
within the probe module and are driven by the
probe’s 80386, which has standard drive and load-
ing capability listed in Tables 7-3 and 7-4.

Power requirement: For noise immunity the ICE-
386 probe is powered by the user system. The high-
speed probe circuitry draws up to 1.1A plus the max-
imum 80386 Icc from the user 80386 socket.

80386 location and orientation: The ICE-386
probe requires lateral clearance illustrated in Figure
7-8, viewed from above the user 80386 socket. The

ICE-386 probe module alone requires vertical clear-
ance 1.25 inches (3.2 cm) above the height of sur-
rounding circuitry. The Optional Interface Board
(OIB), used for extra electrical buffering initially, has
the same lateral clearance as Figure 7-8, and adds
0.5 inches (1.3 cm) to the vertical clearance.

READY # drive: The ICE-386 system may be able
to clear a user system READY # hang if the user’s
READY # driver is implemented with an open-collec-
tor or tri-state device.

Optional Interface Board (OIB) and CLK2 speed
reduction: When the ICE-386 processor probe is
first attached to an unverified user system, the OIB
helps ICE-386 function in user systems with bus
faults (shorted signals, etc.). After electrical verifica-
tion it may be removed. Only when the OIB is in-
stalled, the user system must have a reduced CLK2
frequency of 16 MHz maximum.

Cache coherence: ICE-386 loads user memory by
performing 80386 write cycles. Note that if the user
system is not designed to update or invalidate its
cache (if it has a cache) upon processor writes to
memory, the cache could contain stale instruction
code and/or data. For best use of ICE-386, the user
should consider designing the cache (if any) to up-
date itself automatically when processor writes oc-
cur, or find another method of maintaining cache
data coherence with main user memory.

View from above user 80386 socket

A €]
A CLEARANCE
,—J\~ N
A: 0.85 INCHES
(2.2¢em)
SN piial B: 2.15 INCHES
(5.5em)
USER C: 0.5 INCHES
80386 (1.3em)
SOCKET D: 4.5 INCHES
(11.4¢m)
o<
ICE~386 PROBE

CABLE TO ICE
CONTROL UNIT

MINIMUM CABLE BEND RADIUS: 5 INCHES (12.7 ecm)

231630-44

Figure 7-8. ICE-386 Lateral Clearance Requirements (Preliminary)

intel

80386

ADVANCE INFORMATION

8. INSTRUCTION SET

This section describes the 80386 instruction set. A
table lists all instructions along with instruction en-
coding diagrams and clock counts. Further details of
the instruction encoding are then provided in the fol-
lowing sections, which completely describe the en-
coding structure and the definition of all fields occur-
ring within 80386 instructions.

8.1 80386 INSTRUCTION ENCODING
AND CLOCK COUNT SUMMARY

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 8-1
below, by the processor clock period (e.g. 62.5 ns
for an 80386-16 operating at 16 MHz (32 MHz CLK2
signal)). The actual clock count of an 80386 pro-
gram will average 5% more than the calculated
clock count due to instruction sequences which exe-
cute faster than they can be fetched from memory.

103

For more detailed information on the encodings of
instructions refer to section 8.2 Instruction Encod-
ings. Section 8.2 explains the general structure of
instruction encodings, and defines exactly the en-
codings of all fields contained within the instruction
encoding.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution.

Bus cycles do not require wait states.

. There are no local bus HOLD requests delaying
processor access to the bus.

No exceptions are detected during instruction ex-
ecution.

2.
3

4.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to
aregister operand and the larger refers to a mem-
ory operand.

2. n = number of times repeated.

3. m = number of bytes of code in next instruction
executed.

intel

80386

ADVANCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | F Add Pr d
Mode or Virtual Mode or Virtual

Virtual Address Virtual Address

8086 Mode 8086 Mode

Mode Mode
GENERAL DATA TRANSFER
MOV = Move:
Register to Register/Memory [1000100w | mod reg r/m—l 2/2 2/2 b h
Register/Memory to Register l 1000101w | mod reg r/m] 2/4 2/4 b h
Immediate to Register/Memory [1100011w J mod 000 r/ml 2/2 2/2 b h
Immediate to Register 1011w reg| immediate data 2 2
Memory to Accumulator (short form) 1010000w | full displacement 4 4 b h
Accumulator to Memory (short form) 1010001w | fulldisplacement 2 2 b h
Register Memory to Segment Register I 10001110 l mod 0 sreg r/m | 2/5 18/19 b h,i,j
Segment Register to Register/Memory I 10001100 [mod 0 sreg r/m | 2/2 2/2 b h
MOVSX = Move With Sign Extension
Register From Register/Memory I 00001111 [1011111w l modreg r/m] 3/6 3/6 b h
MOVZX = Move With Zero Extension
Register From Register/Memory I 00001111 I 1011011w | modreg r/m l 3/6 3/6 b h
PUSH = Push:
Memory l111111111mod110 r/ml 5 5 b h
Register 01010 reg 2 2 b h
Segment Register (ES, CS, SS or DS) 000sreg110 2 2 b h
Segment Register (FS or GS) I 00001111 I 10sreg000 2 2 b h
Immediate 011010s0 | immediate data 2 2 b h
PUSHA = Push All 01100000 18 18 b h
POP = Pop
Memory I 10001111 [modOOO r/m 5 5 b h
Register 01011 reg 4 4 b h
Segment Register (ES, CS, SS or DS) 000sreg111 7 21 b h,i, j
Segment Register (FS or GS) | 00001111 l 10sreg001 7 21 b h,i, j
POPA = Pop All 01100001 24 24 b h
XCHG = Exchange
Register/Memory With Register | 1000011w | mod reg r/m] 3/5 3/5 b, f f.h
Register With Accumulator (short form) 10010 reg 3 3
IN = Input from:
Fixed Port | 1110010w | port number 5 5 m
Variable Port 1110110w 6 6 m
OUT = Output to:
Fixed Port l 1110011w | port number | 3 3 m
Variable Port 4 4 m
LEA = Load EA to Register I 10001101 l mod reg r/m] 2 2

104

80386

ADVANGCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Addi Add Pr
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
SEGMENT CONTROL
LDS = Load Pointer to DS I 11000101 | mod reg r/ml 7 22 b hij
LES = Load Pointer to ES l 11000100 l mod reg rm 7 22 b h,i,j
LFS = Load Pointer to FS | 00001111] 10110100 lmodreg r/m] 7 25 b h,i,
LGS = Load Pointer to GS [00001111 l 10110101]modreg r/m 7 25 b h,ij
LSS = Load Pointer to SS I 00001111 l 10110010]modreg r/ml 7 22 b h,ij
FLAG CONTROL
CLC = Clear Carry Flag 2 2
CLD = Clear Direction Flag 2 2
CLI = Clear Interrupt Enable Flag 3 3 m
CLTS = Clear Task Switched Flag I 00001111 [00000110 5 5 c |
CMC = Complement Carry Flag 2 2
LAHF = Load AH into Flag 2 2
POPF = Pop Flags 5 5 b h,n
PUSHF = Push Flags 4 4 b h
SAHF = Store AH into Flags 3 3
STC = Set Carry Flag 2 2
STD = Set Direction Flag 2 2
STI = Set Interrupt Enable Flag 3 3 m
ARITHMETIC
ADD = Add
Register to Register | 000000dw I modreg r/m l 2 2
Register to Memory l 0000000w]modreg r/ml 7 7 b h
Memory to Register L0000001w lmodrag r/?l 6 6 b h
Immediate to Register/Memory [100000sw l mod000 r/m I immediate data 2/7 2/7 b h
Immediate to Accumulator (short form) immediate data 2 2
ADC = Add With Carry
Register to Register l 000100dw Imodvsg r/ml 2 2
Register to Memory r 0001000w | mod reg r/m—l 7 7 b h
Memory to Register l 0001001w | mod reg r/m I 6 6 b h
Immediate to Register/Memory | 100000sw I mod010 r/m I immediate data 2/7 2/7 b h
Immediate to Accumulator (short form) immediate data 2 2
INC = Increment
Register/Memory | 1111111w | mod000 r/m l 2/6 2/6 b h
Register 2 2
SUB = Subtract
Register from Register I 001010dw J mod reg r/m l 2 2

105

intel

80386

ADVANCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address Protected | Address | Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

ARITHMETIC (Continued)
Register from Memory l 0010100w]modreg rlml 7 7 b h
Memory from Register I 0010101w]mod reg !/m] 6 6 b h
Immediate from Register/Memory l 100000sw Imod 101 r/mI immediate data 2/7 2/7 b h

from A (short form) 0010110w immediate data 2 2
SBB = Subtract with Borrow
Register from Register [000110dw [mod reg r/mI 2 2
Register from Memory l 0001100w Imod reg r/ml 7 7 b h
Memory from Register [0001101w [mod reg r/ml 6 6 b h
Immediate from Register/Memory I 100000sw [mod 011 r/ml immediate data 2/7 2/7 b h
Immediate from Accumulator (short form) 0001110w immediate data 2 2
DEC = Decrement
Register/Memory l 1111111w [reg 001 r/ml 2/6 2/6 b h
Register 01001 reg 2 2
ICMP = Compare
Register with Register [001110dw Imod reg rlml 2 2
Memory with Register l 0011100w Imod reg r/ml 5 5 b h
Register with Memory m 11101w Jmod reg r/mI 6 6 b h
Immediate with Register/Memory [100000sw lmod 111 r/m‘ immediate data 2/5 2/5 b h
{Immediate with Accumulator (short form) 0011110w immediate data 2 2
NEG = Change Sign [1111011w[mod011 r/m] 2/6 2/6 b f
AAA = ASCII Adjust for Add 00110111 4 4
AAS = ASCII Adjust for Subtract 00111111 4 4
DAA = Decimal Adjust for Add 00100111 4 4
DAS = Decimal Adjust for Subtract 4 4
MUL = Muitiply (unsigned)
Accumulator with Register/Memory l 1111011w Imod 100 r/m]

Multiplier-Byte 9-14/12-17 | 9-14/12-17 b, d d,h
-Word 9-22/12-25 | 9-22/12-25 b, d d, h
-Doubleword 9-38/12-41 | 9-38/12-41 b,d dh

IMUL = Integer Multiply (signed)
Accumulator with Register/Memory | 1111011w lmod1 01 r/mJ

Multiplier-Byte 9-14/12-17 | 9-14/12-17 b, d d,h
-Word 9-22/12-25 | 9-22/12-25 b, d dh
-Doubleword 9-38/12-41 | 9-38/12-41 b,d dh

Register with Register/Memory l 00001111 l 10101111]mod reg r/m

Multiplier-Byte 9-14/12-17 | 9-14/12-17 b,d dh
-Word 9-22/12-25 | 9-22/12-25 b,d d,h
-Doubleword 9-38/12-41 | 9-38/12-41 b,d dh

Register/Memory with Immediate to Regisxerl 011010s1 Imod reg r/mI immediate data

Multiplier-Byte 9-14/12-17 | 9-14/12-17 b,d d,h
-Word 9-22/12-25 | 9-22/12-25 b,d d,h
-Doubleword 9-38/12-41 | 9-38/12-41 b, d d,h

106

intgl 80386 ADVANGE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected

Mode or | Virtual | Modeor | Virtual
Virtual | Address | Virtual | Address
8086 Mode 8086 Mode

Mode Mode
ARITHMETIC (Continued)
DIV = Divide (Unsigned)
IAccumulator by Register/Memory 1111011w |mod110 r/m

Divisor—Byte 14/17 14/17 b.e e,h
—Word 22/25 22/25 be eh
—Doubleword 38/41 38/41 be eh

IDIV = Integer Divide (Signed)
|Accumulator By Register/Memory 1111011w lmodl 11 r/ﬂ'

Divisor—Byte 19/22 19/22 be eh
—Word 27/30 27/30 be eh
—Doubleword 43/46 43/46 be eh

AAD = ASCII Adjust for Divide l11010101 l 00001010| 19 19
AAM = ASCII Adjust for Multiply I 11010100[00001010] 17 17

ICBW = Convert Byte to Word 10011000 3 3
ICWD = Convert Word to Double Word| 10011001 2 2

LOGIC

Shift Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1 IL 01000w lmod TTT r/ml 3/7 3/7 b h
Register/Memory by CL | 1101001w [mod 7T r/m] 3/7 3/7 b h
Register/Memory by Immediate Count I 1100000w [mod T r/ml 3/7 3/7 b h
IThrough Carry (RCL and RCR)
Ragister/Memory by 1 [1101000w lmodTTT r/ml 9/10 9/10 b h
Register/Memory by CL { 1101001w lmodTTT r/mI 9/10 9/10 b h
Register/Memory by Immediate Count | 1100000w lmod 11T r/m] 9/10 9/10 b h
TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR
ISHLD = Shift Left Double
Register/Memory by Immediate I 00001111 l 10100100 l:uad reg r/m]immed 8-bit data 3/7 3/7
Register/Memory by CL I 00001111 l 10100101 Imod reg r/ml 3/7 3/7
ISHRD = Shift Right Double
Register/Memory by Immediate | 00001111 I 10101100 lmod reg r/m]immed 8-bit data 377 3/7
Register/Memory by CL [00001111 [10101101 |modreg r/ml 3/7 3/7
/AND = And
Register to Register [001000dw Imod reg r/ml 2 2

107

inte[e ADVANCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected

Mode or | Virtual | Modeor | Virtual
Virtual | Address | Virtual | Address
8086 Mode 8086 Mode

Mode Mode
ARITHMETIC (Continued)
Register to Memory l 0010000wlmodreg v/ml 7 7 b h
Memory to Register I 0010001w lmod reg r/m 6 6 b h
Immediate to Register/Memory I 100000sw I mod100 r/ml immediate data 2/7 2/7 b h

Immediate to Accumulator (Short Form) 0010010w | immediate data 2 2

TEST = And Function to Flags, No Result

Register/Memory and Register [1000010w]mod reg r/ml 2/5 2/5 b h
Immediate Data and Register/Memory l 1111011w]mod 000 r/ml immediate data 2/5 2/5 b h
Immediate Data and Accumulator

(Short Form) immediate data 2 2
OR = Or
Register to Register [000010dw lmod reg r/m] 2 2
Register to Memory [0000100w [mod reg r/ml 7 7 b h
Memory to Register I 0000101w Imod reg r/m] 6 6 b h
Immediate to Register/Memory l 100000sw lmod 001 r/m] i iate data 2/7 2/7 b h

toA (Short Form) 0000110w | immediate data @ 2

XOR = Exclusive Or

Register to Register I 001100dw lmod reg r/m] 2 2

Register to Memory l 0011000w lmodreg r/m] 7 7 b h

Memory to Register [0011001\'4 lmodreg r/ml 6 6 b h

Immediate to Register/Memory l 100000sw lmod1 10 r/m] immediate data 2/7 2/7 b h
to A I (Short Form) immediate data 2 2

NOT = Invert Register/Memory l 1111011 w [modow r/m] 2/6 2/6 b h

STRING MANIPULATION

ICMPS = Compare Byte Word 10 10 b h

INS = Input Byte/Word from DX Port 8 8 b h,m

LODS = Load Byte/Word to AL/AX/EAX 5 5 b h

MOVS = Move Byte Word 1010010w 7 7 b h
OUTS = Output Byte/Word to DX Port 0110111w 7 7 b h,m
SCAS = Scan Byte Word 1010111w 7 7 b h

STOS = Store Byte/Word from
AL/AX/EX 1010101w 4 4 b h

XLAT = Transiate String 11010111 5 5 h

Repeated by Count in CX
REPE CMPS = Compare String
(Find Non-Match) | 11110011] 1010011w 5+9n 5+9n b h

108

intal sosss ADVANGE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Mode or | Virtual | Modeor | Virtual
Virtual | Address | Virtual | Address
8086 Mode 8086 Mode
Mode Mode
STRING MANIPULATION (Continued)
REPNE CMPS = C String
(Find Match) [11110010'1010011!\1] 5+9n 5+9n b h
REP INS = Input String [11110010]0110110wJ 6+6n | 6+6n b h,m
REP LODS = Load String ll1110010]1010110wl 5+6n 5+6n b h
REP MOVS = Move String [11110010]1010010\#' 7+4n 7+4n b h
REP OUTS = Output String I 11110010 |0110111w 5+5n 5+5n b h,m
REPE SCAS = Scan String
(Find Non-AL/AX/EAX)| 11110011 I 1010111w| 5+8n 5+8n b h
REPNE SCAS = Scan String
(Find AL/AX/EAX) b1110010] 1010111;} 5+8n 5+8n b h
REP STOS = Store String |1111oo1o|1o1o1o1w| 5+5n | 5+5n b h
BIT MANIPULATION
BSF = Scan Bit Forward I 00001111 I 10111100 Imodveg r/m] 10+3n | 10+3n b h
BSR = Scan Bit Reverse [00001111] 10111100 Imodreg v/ml 10+3n [10+3n b h
BT = Test Bit
Register/Memory, i [00001111 l 10111010[mod100 r/mlimmedﬁ-bi(data] 3/6 3/6 b h
Register/Memory, Register [00001111 [10100011 lmod reg r/—ml 3/12 3/12 b h
BTC = Test Bitand C.
Register/Memory, Inmediate I 00001111 I 10111010 |mod1 11 r/mlimmod 8-bit data 6/8 6/8 b h
Register/Memory, Register | 00001111 | 10111011 Imod reg r/m] 6/13 6/13 b h
BTR = Test Bit and Reset
Register/Memory, Immediate (00001 1 1?[10111010 |mod110 r/m|immed &bitdalgl 6/8 6/8 b h
Register/Memory, Register | 00001111] 10110011 lmod reg v/ml 6/13 6/13 b h
BTS = Test Bit and Set
Register/Memory, Immediate [00001111 | 10111010 lmodo 10 r/m|immed 8-bit datg] 6/8 6/8 b h
Register/Memory, Register [00001111 | 10101011 [modreg r/ml 6/13 6/13 b h
BIT STRING MANIPULATION
IBTS = Insert Bit String [00001111 I10100111 l 12/19 12/19 b h
XBTS = Extract Bit String 100001111 110100110] 6/13 6/13 b h
CONTROL TRANSFER
CALL = Call
Direct Within Segment full displacement 7+m 7+m b r
Register/Memory
i ot 7+m/ 7+m/
Indirect Within Segment r1 1111111 Imod01 0 r/m 104+m 10+m b h,r
Direct Intersegment offset, selector 17+m 35 b jkar

109

intal T ADVANCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected

Modeor | Virtual | Modeor | Virtual
Virtual | Address | Virtual | Address
8086 Mode 8086 Mode

Mode Mode
ICONTROL TRANSFER (Continued)
Protected Mode Only (Direct Intersegment)
Via Call Gate to Same Privilege Level 58 hjkr
Via Call Gate to Different Privilege Level,

(No Parameters) 108 hjk.r
Via Call Gate to Different Privilege Level,

(x Parameters) 111+4x hjk.r
From 286 Task to 286 TSS 235 h,jkr
From 286 Task to 386 TSS 265 hjkr
From 286 Task to Virtual 8086 Mode 145 hjk.r
From 386 Task to 286 TSS 245 hjkr
From 386 Task to 386 TSS 275 hjk.r
From 386 Task to Virtual 8086 Mode 155 h,jk,r

Indirect Intersegment [11111111 [mod 011 r/m 22+m 40 b h,jk,r
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 63 hjk.r
Via Call Gate to Different Privilege Level,

(No Parameters) 113 h,jk,r
Via Call Gate to Different Privilege Level,

(x Parameters) 116+4x hjk.r
From 286 Task to 286 TSS 240 hjkr
From 286 Task to 386 TSS 270 h.jk.r
From 286 Task to Virtual 8086 Mode 150 hjk.r
From 386 Task to 286 TSS 250 hjk,r
From 386 Task to 386 TSS 280 h,jk,r
From 386 Task to Virtual 8086 Mode 160 hjk,r

JMP = Unconditional Jump

Short [11101001 [a-bndlnpl-comem] 7+m 7+m r
Direct within Segment full displacement 7+m 7+m r
Register/Memory Indirect within Segment ; 11111111 lmod 100 r/ml ZJ +m"/‘ z; l""/‘ b h,r

Direct Intersegment offset, selector 12+m 23 ikr

Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 39+m h,jk,r
From 286 Task to 286 TSS 223 hjkr
From 286 Task to 386 TSS 253 h,jk,r
From 286 Task to Virtual 8086 Mode 133 h,jk,r
From 386 Task to 286 TSS 233 h,jk,r
From 386 Task to 386 TSS 263 h,jkr
From 386 Task to Virtual 8086 Mode 143 hjkr
Indirect Intersegment |j1 111111 lmod 101 r/m 17+m 28 b h,jk,r
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 49 h,jkr
From 286 Task to 286 TSS 228 hijk,r
From 286 Task to 386 TSS 258 h,jk,r
From 286 Task to Virtual 8086 Mode 143 h,j.k,r
From 386 Task to 286 TSS 238 h,jk,r
From 386 Task to 386 TSS 268 hjkr
From 386 Task to Virtual 8086 Mode 148 h,jkr

110

intel sosss ADVANGE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode

Mode Mode

CONTROL TRANSFER (Continued)
RET = Return from CALL:

Within Segment 11000011 10+ m 10+m b g hr

Within Segment Adding Immediate to SP [11000010 I 16-bit disp! | 10+ m 10+m b g.hr
Intersegment 18+ m 35 b g hjkr
g Adding iate to SP [11001010 l 16-bit displ I 18+m 35 b g.hjkr
Protected Mode Only (RET):
to Different Privilege Level
Intersegment 77 h,jkr
[gment Adding diate to SP 77 hikr
CONDITIONAL JUMPS

NOTE: Times Are Jump “Taken or Not Taken"
JO = Jump on Overflow

8-Bit Displacement [01110000 l 8-bit displ I 7+mor3| 7+ mor3 r

Full Displacement I 00001111 T 10000000]I‘uII displacement 7+mor3| 7+ mor3 r
JNO = Jump on Not Overflow

8-Bit Displacement IJ1 110001 l 8-bit disp! I 7+ mor3| 7+ mor3 r

Full Displacement [00001111 T 10000001 Ifulldisplaoement 7+mor3| 7+ mor3 I
JB/JNAE = Jump on Below/Not Above or Equal

8-Bit Displacement l 01110010 8-bit disp! | 7+ mor3| 7+ mor3 r

Full Displacement [00001111 10000010 I'ulldisplacemenl 7+mor3| 7+ mor3 r

JNB/JAE = Jump on Not Below/Above or Equal

8-Bit Displacement | 01110011 l 8-bit displ I 7+mor3(7+mor3 r

Full Displacement I 00001111 l 10000011 Ifulldisplacement 7+mor3| 7+ mor3 r
JE/JZ = Jump on Equal/Zero

8-Bit Displacement [01110100 L 8-bit displ l 7+ mor3| 7+ mor3 r

Full Displacement ! 00001111 l 10000100 lfulldisplaoement 7+mor3|7+mor3 r
JNE/JNZ = Jump on Not Equal/Not Zero

8-Bit Displacement I 01110101 [8-bit displ] 7+mor3| 7+ mor3 r

Full Displacement | 00001111 | 10000101 —l full displacement 7+mor3| 7+ mor3 4
JBE/JNA = Jump on Below or Equal/Not Above

8-Bit Displacement I 01110110 l 8-bit displ l 7+mor3| 7+ mor3 r

Full Displacement l 00001111 l 10000110 l'ulldisplacsmsnt 7+mor3| 7+ mor3 r
JNBE/JA = Jump on Not Below or Equal/Above

8-Bit Displacement l 01110111 l 8-bit displ J 7+ mor3| 7+ mor3 r

Full Displacement [00001111 l 10000111 |fulldisplacemem 7+ mor3| 7+ mor3 r
JS = Jump on Sign

8-Bit Displacement | 01111000 ! 8-bit displ I 7+mor3(7+mor3 r

Full Displacement LODOOHH b0001000]mlldisplacement 7+ mor3| 7+ mor3 r

111

intel —_—— ADVANCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | P Addi F
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
CONDITIONAL JUMPS (Continued)
JNS = Jump on Not Sign
8-Bit Displacement l 01111001] 8-bit disp! I 7+mor3| 7+ mor3 r
Full Displacement | 00001111 | 10001001 qulldisplaoement 7+mor3| 7+ mor3 r
JP/JPE = Jump on Parity/Parity Even
8-Bit Displacement [01111010 l 8-bit displ | 7+mor3| 7+ mor3 r
Full Displacement 00001111 I 10001010 | full displacement 7+mor3| 7+ mor3 r
JNP/JPO = Jump on Not Parity/Parity Odd
8-Bit Displacement l 01111011 I 8-bit displ I 7+ mor3| 7+ mor3 r
Full Displacement 00001111 l 10001011 |ful|displacement 7+ mor3| 7+ mor3 r
JL/JNGE = Jump on Less/Not Greater or Equal
8-Bit Displacement l 01111100 1 8-bit displ] 7+ mor3| 7+ mor3 r
Full Displacement | 00001111 l 10001100]full i it 7+mor3| 7+ mor3 r
JNL/JGE = Jump on Not Less/Greater or Equal
8-Bit Displacement [01111101 I 8-bit displ J 7+mor3| 7+ mor3 r
Full Displacement I 00001111 I 10001101]fulldisplacement 7+mor3| 7+ mor3 r
JLE/JNG = Jump on Less or Equal/Not Greater
8-Bit Displacement I 01111110 l 8-bit displ I 7+mor3| 7+ mor3 r
Full Displacement [00001111 [10001110 I full displacement 7+mor3| 7+ mor3 r
JNLE/JG = Jump on Not Less or Equal/Greater
8-Bit Displacement l01111111 l 8-bit displ l 7+mor3| 7+ mor3 r
Full Displacement [00001111 I 10001111 I'ulldisplacement 7+mor3| 7+ mor3 r
JCXZ = Jump on CX Zero I 11100011 1 8-bit displ | 9+ mor5| 9+ mor5 r
JECXZ = Jump on ECX Zero [[11100011 [svitaispl | 9+mors| 9+ mors r
(Operand Size Prefix Differentiates JCXZ from JECXZ)
LOOP = Loop CX Times [11100010 I 8-bit disp! I 11+ m 11+m r
LOOPZ/LOOPE = Loop with
Zero/Equal I 11100001 l 8-bit displ | 11+m 11+m r
LOOPNZ/LOOPNE = Loop While
Not Zero I 11100000 I 8-bit displ I 11+m M1+m r
CONDITIONAL BYTE SET
NOTE: Times Are Register/Memory
SETO = Set Byte on Overflow
To Register/Memory rooooun [10010000]ﬂodOOO r/ml 4/5 a/5 h
SETNO = Set Byte on Not Overfiow
To Register/Memory I 00001111 I 10010001 ImodOOO r/m] 4/5 4/5 h
SETB/SETNAE = Set Byte on Below/Not Above or Equal
ToRogimer/MemoryI 00001111 l 10010010 lmodOOO r/m] 4/5 4/5 h

112

intel - ADVANGCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Addi Pr Add P
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
CONDITIONAL BYTE SET (Continued)
SETNB = Set Byte on Not Below/Above or Equal
To Register/Memory { 00001111 I 10010011 ImodOOO r/ml 4/5 4/5 h
SETE/SETZ = Set Byte on Equal/Zero
To Register/Memory I 00001111 l 10010100 lmodOOO r/m—l 4/5 4/5 h
SETNE/SETNZ = Set Byte on Not Equal/Not Zero
To Register/Memory | 00001111] 10010101 Imodooo r/ml 4/5 4/5 h
SETBE/SETNA = Set Byte on Below or Equal/Not Above
ToRegister/Memoryl 00001111] 10010110 [modooo rlm] 4/5 4/5 h
SETNBE/SETA = Set Byte on Not Below or Equal/Above
ToHegister/Marnoryl 00001111 | 10010111 | mod00O r/m] 4/5 4/5 h
SETS = Set Byte on Sign
To Register/Memory l 00001111 | 10011000 |modooo r/ml 4/5 4/5 h
SETNS = Set Byte on Not Sign
To Register/Memory [00001111 [10011001 [modOOO r/m] 4/5 4/5 h
SETP/SETPE = Set Byte on Parity/Parity Even
To Register/Memory I 00001111 [10011010 [modOOO r/m] 4/5 4/5 h
SETNP/SETPO = Set Byte on Not Parity/Parity Odd
ToRegister/Memoryl 00001111 l 10011011 [modooo r/m] 4/5 4/5 h
SETL/SETNGE = Set Byte on Less/Not Greater or Equal
To Register/Memory | 00001111 I 10011100 lmodooo r/ml 4/5 4/5 h
SETNL/SETGE = Set Byte on Not Less/Greater or Equal
ToRegisterlMemoryl 00001111 | 01111101 lmodOOO r/ml 4/5 4/5 h
SETLE/SETNG = Set Byte on Less or Equal/Not Greater
ToRegis(ef/Memoryl 00001111 [10011110 lmodOOO r/:‘ 4/5 4/5 h
SETNLE/SETG = Set Byte on Not Less or Equal/Greater
ToRegisler/Memovyl 00001111 i 10011111 lmodOOO r/m] 4/5 4/5 h
ENTER = Enter Procedure I 11001000 l 16-bit displacement, 8-bit level
L=0 10 10 b, g a.h
L=1 12 12 b.g g.h
L>1 15 + 15 + b.g g.h
4(n—1) 4(n—1)
LEAVE = Leave Procedure 11001001 4 4 b,g g.h

113

inte[— ADVANGCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Add P d Addi F

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode

Mode Mode

INTERRUPT INSTRUCTIONS
INT = Interrupt:
Type Specified l |1001101J type J 37 b.f.g

Type 3 11001100 33 b fg
INTO = Interrupt 4 if Overflow FlagSet| 11001110

IfOF = 1 35 b,e,g
IfOF =0 3 3 b,e,g
Bound = Interrupt 5 if Detect Value l 01100010 | modreg r/m
Out of Range
If Out of Range 44 b,e e,g.hjkr
If In Range 10 10 b, e e,g.hjkr
Protected Mode Only (INT)

INT: Type Specified
Via Interrupt or Trap Gate

to Same Privilege Level 59 f.g.ikr
Via Interrupt or Trap Gate
to Different Privilege Level 121 f.aikr

From 286 Task to 286 TSS via Task Gate 247 f.a.ikr

From 286 Task to 386 TSS via Task Gate 277 f.aikr

From 268 Task to virt 8086 md via Task Gate 157 f.aikr

From 386 Task to 286 TSS via Task Gate 257 f.a.ikr

From 386 Task to 386 TSS via Task Gate 287 f.gikr

From 368 Task to virt 8086 md via Task Gate 167 f.aikr

From virt 8086 md to 286 TSS via Task Gate 257 f.aikr

From virt 8086 md to 386 TSS via Task Gate 287 faikr

INT: TYPE 3

Via Interrupt or Trap Gate

to Same Privilege Level 59 foikr
Via Interrupt or Trap Gate

to Different Privilege Level 121 f.aikr
From 286 Task to 286 TSS via Task Gate 243 f.aikr
From 286 Task to 386 TSS via Task Gate 273 faikr
From 268 Task to Virt 8086 md via Task Gate 157 f.aikr
From 386 Task to 286 TSS via Task Gate 253 f.a.ikr
From 386 Task to 386 TSS via Task Gate 283 g0 kr
From 368 Task to Virt 8086 md via Task Gate 163 f.aikr
From Virt 8086 md to 286 TSS via Task Gate 253 f.aikr
From Virt 8086 md to 386 TSS via Task Gate 283 f.aikr

INTO:

Via Interrupt or Trap Grate

to Same Privilege Level 59 f.a.ikr
Via Interrupt or Trap Gate

to Different Privilege Level 121 f.aikr
From 286 Task to 286 TSS via Task Gate 245 f.aikr
From 286 Task to 386 TSS via Task Gate 275 f.a.ikr
From 268 Task to virt 8086 md via Task Gate 155 f.a.ikr
From 386 Task to 286 TSS via Task Gate 255 f.aikr
From 386 Task to 386 TSS via Task Gate 285 f.aikr
From 368 Task to virt 8086 md via Task Gate 165 f.ag.ikr
From virt 8086 md to 286 TSS via Task Gate 255 g kr
From virt 8086 md to 386 TSS via Task Gate 285 f.a.0kr

114

intel 80386 ADVANCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address

8086 Mode 8086 Mode
Mode Mode
INTERRUPT INSTRUCTIONS (Continued)
BOUND:
Via Interrupt or Trap Gate
to Same Privilege Level 59 f.a.jkr
Via Interrupt or Trap Gate
to Different Privilege Level 121 f.aikr
From 286 Task to 286 TSS via Task Gate 254 fgikr
From 286 Task to 386 TSS via Task Gate 284 f.aikr
From 268 Task to virt 8086 Mode via Task Gate 164 f.a.ikr
From 386 Task to 286 TSS via Task Gate 264 f.aikr
From 386 Task to 386 TSS via Task Gate 294 faikr
From 368 Task to virt 8086 Mode via Task Gate 174 f.g.ikr,
From virt 8086 Mode to 286 TSS via Task Gate 264 f.a.ikr
From virt 8086 Mode to 386 TSS via Task Gate 294 f.aikr
INTERRUPT RETURN
— ” —
Protected Mode Only (IRET)
To the Same Privilege Level 38 g.hijkr
To Different Privilege Level 82 g.hikr
From 286 Task to 286 TSS 232 hijkr
From 286 Task to 386 TSS 265 hjkr
From 286 Task to Virtual 8086 Mode 132 hijkr
From 386 Task to 286 TSS 271 hijkr
From 386 Task to 386 TSS 142 hij.kr
From 386 Task to Virtual 8086 Mode 120 hjkr
PROCESSOR CONTROL

WT - HALT s | s |

MOV = Move to and From Control/Debug/Test Registers

CR0/CR2/CR3 from register l 00001111 I 00100010 [00 eee reg I 10/4/5 10/4/5 |
Register From CR0-3 l 00001111 l 00100000] OOeeereLl 6 6 |
DRO-3 From Register u0001111 I 00100011 l 11 eeereg I 22 22 |
DR6-7 From Register | 00001111 l 00100011 l 11 eeereg I 16 16 |
Register from DR6-7 l 00001111 I 00100001 I 11 eeereg I 14 14 |
Register from DR0-3 l 00001111 [00100001 l 11eeereg | 22 22 |
TR6-7 from Register | 00001111 [00100110 I 11eeereg l 12 12 |
Register from TR6-7 I 00001111 I 00100100 | 11eeerng 12 12 1

NOP = No Operation 10010000 3 3
WAIT = Wait until BUSY # pin is negated | 10011011 6 6

115

80386

ADVANCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address Protected | Address | Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
PROCESSOR EXTENSION INSTRUCTIONS
Processor Extension Escape 11011TTT 1modLLL r/mJ See g 9.9
TTT and LLL bits are opcode 80267/80367
information for coprocessor. data sheets for
clock counts
PREFIX BYTES
Address Size Prefix 0 0
PE— . : .
Operand Size Prefix 01100110 0 0
Segment Override Prefix
Segment Override Prefix
cs: 00101110 0 0
DS: 00111110 0 0
ES: 00100110 0 0
FS: 01100100 0 0
GS: 01100101 0 0
8Ss: 00110110 0 0
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Level
From Register/Memory [01100011 [mod reg r/ml N/A 20/21 a gh
LAR = Load Access Rights
From Register/Memory I 00001111 I 00000010 [modreg r/ml N/A 15/16 a hj.p
LGDT = Load Global Descriptor
Table Register I 00001111] 00000001]mod010 r/ml 11 1 b,c h,1
LIDT = Load Interrupt Descriptor
Table Register [00001111 l 00000001]mod011 r/ml 1 1 b,c h,1
LLDT = Load Local Descriptor
Table Register to
Register/Memory [00001111 | 00000000 Imod010 r/nﬁ N/A 20/24 a h,j !
LMSW = Load Machine Status Word
From Register/Memory I 00001111 I 00000001 Imod110 r/ml 10/13 10/13 b,c h1
LSL = Load Segment Limit
From Register/Memory l 00001111] 00000011 l mod reg r/ml
Byte-Granular Limit N/A 20/21 a hj.p
Page-Granular Limit N/A 25/26 a hjp
LTR = Load Task
From Register/Memory l 00001111 [00000000]mod001 r/m] N/A 23/27 a h,j.!
SGDT = Store Global Descriptor
Table Register I 00001111 I 00000001]modoon r/m] 9 9 b,c h

116

intel 80386 ADVANGCE INFORMATION

Table 8-1. 80386 Instruction Set Clock Count Summary (Continued
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | P Add! P
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
SIDT = Store Interrupt Descriptor
Table Register | 00001111 l 00000001 [mod001 r/m—l 9 9 b,c h
SLDT = Store Local Descriptor Table Register
To Register/Memory [00001111 l 00000000 lmodOOO r/ml N/A 2/2 a h
SMSW = Store Machine
Status Word l 00001111 I 00000001 Imod100 r/ml 10/13 10/13 b,c h, 1
STR = Store Task Register
To Register/Memory l 00001111 I 00000000 lmod001 v/ml N/A 2/2 a h
VERR = Verify Read Accesss
Register/Memory | 00001111 I 00000000 Imod100 I/m] N/A 10/11 a hj.p
VERW = Verify Write Accesss [00001111] 00000000 Imod101 r/ml N/A 15/16 a hj.p

INSTRUCTION NOTES FOR TABLE 8-1

Notes a through c apply to 80386 Real Address Mode only:

a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

b. Exception 13 (general protection) will occur in Real Mode if a 16-bit or 32-bit operand reference is made that partially or
fully extends beyond the maximum segment limit, FFFFH.

c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected
Mode.

Notes d through g apply to 80386 Real Address Mode and 80386 Protected Virtual Address Mode:
d. the iAPX 386 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most
significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:

Actual Clock = if m < > 0 then max ([log |m|], 3) + 6 clocks:

if m = 0 then 9 clocks (where m is the multiplier)

e. An exception may occur, depending on the value of the operand.
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK # prefix.
g. LOCK# is asserted during descriptor table accesses.

Notes h through r apply to 80386 Protected Virtual Address Mode only:

h. Exception 13 (general protection violation) will occur if the memory operand cannot be used due to either a segment limit
violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment overrun or not present) occurs.
i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 (general
protection violation). The segment’s descriptor must indicate “present” or exception 11 (CS, DS, ES, FS, GS not present). If
the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment overrun or not
present) occurs.

j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain
descriptor integrity in multiprocessor systems.

k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is violated.

I. An exception 13 occurs if CPL is greater than 0 (0 is the most privileged level).

m. An exception 13 occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL = 0.

0. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as applied to the selector operand do not cause a protection exception; rather, the zero
flag is cleared.

q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 (general protec-
tion exception) will occur before the ESC instruction is executed. An exception 12 (stack segment overrun) will occur if the
stack limit is violated by the operand’s starting address.

r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13
(general protection violation) will occur.

117

intel

80386

ADVANGCE INFORMATION

8.2 INSTRUCTION ENCODING

8.2.1 Overview

All instruction encodings are subsets of the general
instruction format shown in Figure 8-1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the “mod r/m”
byte and ‘“scaled index’ byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode bytes(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain

encodings of the mod r/m byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 8-1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 8-2 is a complete list of all fields ap-
pearing in the 80386 instruction set. Further ahead,
following Table 8-2, are detailed tables for each
field.

TTTTTTTT|TTTTITTITT modTTTr/m| ss index base]dazl 16 | 8 | none data32 | 16 | 8 | none
(0v7 0/\765320/\765?2‘5\ . g 5 y
opcode “mod r/m” “s-i-b” address immediate
(one or two bytes) N byte byte Y displacement data
(T represents R (4, 2, 1 bytes (4,2, 1 bytes
opcode bit.) register and address or none) or none)
mode specifier
Figure 8-1. General Instruction Format
Table 8-2. Fields within 80386 Instructions
Field Name Description Number of Bits
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1
d Specifies Direction of Data Operation 1
s Specifies if an Immediate Data Field Must be Sign-Extended 1
reg General Register Specifier 3
mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;
3forr/m

ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg Segment Register Specifier for CS, SS, DS, ES 2
sreg Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
tttn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated 4

118

intel

80386

ADVANCE INFORMATION

8.2.2 32-Bit Extensions of the
Instruction Set

With the 80386, the 86/186/286 instruction set is
extended in two orthogonal directions: 32-bit forms
of all 16-bit instructions are added to support the 32-
bit data types, and 32-bit addressing modes are
made available for all instructions referencing mem-
ory. This orthogonal instruction set extension is ac-
complished having a Default (D) bit in the code seg-
ment descriptor, and by having 2 prefixes to the in-
struction set.

Whether the instruction default to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value or 0 is assumed internally by the
80386 when operating in those modes (for 16-bit de-
fault sizes compatible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op-
code bytes and affect only the instruction they pre-
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value “opposite”
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres-
ence of the Operand Size Prefix toggles the instruc-
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres-
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa-
tions.

These 32-bit extensions are available in all 80386
modes, including the Real Address Mode or the Vir-
tual 8086 Mode. In these modes the default is al-
ways 16 bits, so prefixes are needed to specify 32-
bit operands or addresses.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

8.2.3 Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encoding of these fields are defined immedi-
ately ahead.

119

8.2.3.1 ENCODING OF OPERAND LENGTH (w)
FIELD

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
w Field During 16-Bit During 32-Bit
Data Operations | Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

8.2.3.2 ENCODING OF THE GENERAL

REGISTER (reg) FIELD

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the “mod r/m” byte, or as the r/m
field of the “mod r/m” byte.

Encoding of reg Field When w Field
is not Present in Instruction

Register Selected | Register Selected
reg Field During 16-Bit During 32-Bit

Data Operations | Data Operations
000 Ax EAX
001 CX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
101 SI ESI
101 DI EDI

Encoding of reg Field When w Field
is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations:

reg Function of w Field
(whenw = 0) (whenw = 1)

000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Si
111 BH]}

intel

80386

ADVANCE INFORMATION

Register Specified by reg Field
During 32-Bit Data Operations

reg Function of w Field
(whenw = 0) (whenw = 1)

000 AL EAX
001 CL ECX
010 DL EDX
011 BL EBX
100 AH ESP
101 CH EBP
110 DH ESI
111 BH EDI

8.2.3.3 ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the 80386 FS and GS segment
registers to be specified.

2-Bit sreg Field

2-Bit Segment
Register
sreg Field Selected
00 ES
01 CS
10 SS
1 DS

3-Bit sreg Field

3-Bit Segment

Register

sreg Field Sslected
000 ES
001 Cs
010 SS
011 DS
100 FS
101 GS

110 do not use

11 do not use

120

8.2.3.4 ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the “mod
r/m” byte, and a second byte of addressing informa-
tion, the “s-i-b” (scaled index) byte, can be speci-
fied.

The s-i-b byte (scale-index-base-byte) is specified
when using 32-bit addressing mode and the “mod
r/m” byte has r/m = 100 and mod = 00, 01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the “mod r/m” byte,
also contains three bits (shown as TTT in Figure 8-1)
sometimes used as an extension of the primary op-
code. The three bits, however, may also be used as
a register field.

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
“mod r/m” byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
“mod r/m” byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following four pages define all encod-
ings of all 16-bit addressing modes and 32-bit ad-
dressing modes.

ntel — ADVANCE INFORMATION

Encoding of 16-bit Address Mode with mod r/m Byte

mod r/m Effective Address mod r/m Effective Address
00 000 DS:[BX+SI] 10 000 DS:[BX+ SI+d16]
00 001 DS:[BX+DI] 10 001 DS:[BX+DI+d16]
00010 SS:[BP+SI] 10010 SS:[BP+SI+d16]
00011 SS:[BP+DI] 10011 SS:[BP+DI+d16]
00 100 DS:[sl] 10 100 DS:[SI+d16]
00 101 Ds:[DI] 10101 DS:[DI+d16]
00110 DS:d16 10110 DS:[BX+d16]
00 111 DS:[BX] 10111 SS:[BP+d16]
01 000 DS:[BX+ SI+d8] 11 000 register—see below
01 001 DS:[BX+ DI +d8] 11 001 register—see below
01010 SS:[BP + Sl +d8] 11010 register—see below
01011 SS:[BP+ DI +d8] 11011 register—see below
01100 DS:[SI+d8] 11100 register—see below
01101 DS:[DI+d8] 11101 register—see below
01110 DS:[BX + d8] 11110 register—see below
01111 SS:[BP +d8] 11111 register—see below
Register Specified by r/m
During 16-Bit Data Operations
modri Function of w Field
(when w=0) (whenw =1)
11000 AL AX
11 001 CL CX
11010 DL DX
11011 BL BX
11 100 AH SP
11101 CH BP
11110 DH Sl
11111 BH DI
Register Specified by r/m

During 32-Bit Data Operations

modielin Function of w Field
(when w=0) (whenw =1)
11 000 AL EAX
11 001 CL ECX
11010 DL EDX
11011 BL EBX
11100 AH ESP
11101 CH EBP
11110 DH ESI
11111 BH EDI

121

ntel p— ADVANCE INFORMATION

Encoding of 32-bit Address Mode with mod r/m Byte (no s-i-b byte present)

mod r/m Effective Address mod r/m Effective Address
10 000 DS:[EBX + ESI+d32] 00 000 DS:[EBX+ESI]
10 001 DS:[EBX+ EDI +d32] 00 001 DS:[EBX+EDI]
10010 SS:[EBP+ ESI+d32] 00010 SS:[EBP+ESI]
10011 SS:[EBP + EDI +d32] 00011 SS:[EBP+EDI]
10100 s-i-b is present 00 100 s-i-b is present
10101 DS:[EDI+d32] 00 101 DS:[EDI]
10110 DS:[EBX +d32] 00110 DS:d32
10111 SS:[EBP +d32] 00 111 DS:[EBX]
11 000 register—see below 01000 DS:[EBX + ESI+d8]
11001 register—see below 01 001 DS:[EBX + EDI+d8]
11010 register—see below 01010 SS:[EBP+ESI +d8]
11011 register—see below 01011 SS:[EBP+EDI+d8]
11100 register—see below 01100 s-i-b is present
11101 register—see below 01101 DS:[EDI +d8]
11110 register—see below 01110 DS:[EBX +d8]
11111 register—see below 01111 SS:[EBP +d8]

Register Specified by reg or r/m
During 16-Bit Data Operations

Function of w Field
mod r/m
(whenw=0) (whenw =1)

11 000 AL AX
11 001 CL CX
11010 DL DX
11011 BL BX
11100 AH SP
11101 CH BP
11110 DH Si
11111 BH DI

Register Specified by reg or r/m
During 32-Bit Data Operations

fiiod #/im Function of w Field
(when w=0) (whenw =1)
11 000 AL EAX
11 001 CL ECX
11010 DL EDX
11011 BL EBX
11100 AH ESP
11101 CH EBP
11110 DH ESI
11111 BH EDI

122

ntel o ADVANCE INFORMATION

Encoding of 32-bit Address Mode (mod r/m and s-i-b byte present)

mod base Effective Address ss Scale Factor
00 000 DS:[EAX + (scaled index)] 00 x1
00 001 DS:[ECX + (scaled index)] 01 x2
00010 DS:[EDX + (scaled index)] 10 x4
00011 DS:[EBX + (scaled index)] 11 x8
00 100 SS:[EAX + (scaled index)]
00 101 DS:[d32 + (scaled index)]
00110 DS:[ESI + (scaled index)]
00 111 DS:[EDI + (scaled index)] Index Index Register
01 000 DS:[EAX + (scaled index) + d8] 8(0)? Eéi
01 001 DS:[ECX + (scaled index) + d8] 010 EDX
01010 DS:[EDX + (scaled index) + d8] 011 EBX
01011 DS:[EBX + (scaled index) + d8] 100 No Index Re
01100 SS:[ESP + (scaled index) + d8] 14 e 9
01101 SS:[EBP + (scaled index) + d8] 110 Es|
01110 DS:[ESI + (scaled index) + d8] 111 EDI
01111 DS:[EDI + (scaled index) + d8]
10 000 DS:[EAX + (scaled index) + d32]
10 001 DS:[ECX + (scaled index) + d32]
10010 DS:[EDX + (scaled index) + d32]
10011 DS:[EBX + (scaled index) + d32]
10 100 SS:[EAX + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32]
10110 DS:[ESI + (scaled index) + d32]
10 111 DS:[EDI + (scaled index) + d32]

123

8.2.3.5 ENCODING OF OPERATION DIRECTION
(d) FIELD

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 | Register/Memory <- - Register

“reg” Field Indicates Source Operand;

“mod r/m” or “mod ss index base” Indicates
Destination Operand

1 | Register <- - Register/Memory

“reg” Field Indicates Destination Operand;
“mod r/m” or “mod ss index base” Indicates
Source Operand

8.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

L Effect on Effect on J
Immediate Data8 |Immediate Data 163
O|None None
1|Sign-Extend Datas8 to Fill None
16-Bit or 32-Bit Destination

8.2.3.7 ENCODING OF CONDITIONAL TEST
(tttn) FIELD

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat-
ing to use the condition (n=0) or its negation (n=1),
and ttt giving the condition to test.

[Mnemonic Condition tttn
O Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal |1100
NL/GE Not Less Than/Greater or Equal |1101
LE/NG Less Than or Equal/Greater Than|1110
NLE/G Not Less or Equal/Greater Than |1111

8.2.3.8 ENCODING OF CONTROL OR DEBUG
OR TEST REGISTER (eee) FIELD

For the loading and storing of the Control, Debug

and Test registers.

When Interpreted as Control Register Field

eee Code Reg Name
000 CRO
010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Field
eee Code Reg Name
000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
11 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name
110 TR6
111 TR7

Do not use any other encoding

ALABAMA

Intel Corp.

gms gr-a'om Drive
Huntsville 35805

Tel: (205) 830-4010
ARIZONA

Intel Corp.

11225 N. 28th Drive
Sutle 214D

Phoenix 85029

Tel: (602) 869-4980
Intel Corp.

ns| N. E9 Dorado Place
Tue.on 715

Tel: (602) 2996815
CALIFORNIA

Intel Corp.

21515 Vanowen Street
Sute 116

Park 91303
818) 704-8500

90245
(213) 640-6040
Intel Corp.
1510 Arden Way, Suite 101
Sacramento 95815
Tel: (916) 920-8096

(619) 452-5880
2000 East 4th Street
Suite 100

Santa Ana 92705
Tel. (714) 835-9642
TWX: 910-595-1114
Intel Corp.*

1350 Shorebird Way
94043
910-338-0255
COLORADO

Intel Corp.

3300 Mitchell Lane, Suite 210
Boulder

Tel: (303) 442-8088

Colorado Springs 80907
Tel: (303) 234-6622
Intel Corp.*
650 S. Cherry Street
Suite 915
Denver 80222
Tel: (303) 321-8086
TWX: 910-931-2289
CONNECTICUT
Intel Corp.
26 Mill in Road
06810
(203) 748-3130
710-456-1199

EMC Corp.
222 Summer Street

Stamford 06901
Tel: (203) 327-2934
FLORIDA

intel Corp.
142 N. Westmonte Drive

Suite 105
32714

Attamonte
Tel: (305) 869-5588

intel Corp.
3 N.W. 6th Way, Suite 100

T
TWX: 51 95&9407

DOMESTIC SALES OFFICES

FLORIDA (Cont'd)

Intel Corp
uzoo 4th Street North

170
St Fnlnr!bur 33702
Tel: (813) 577-2413

GEORGIA

Intel Corp.
3280 Pomte Paricway

Norcross 30092

Tel: (404) 449-0541

ILLINOIS

Intel %

300 S’o’p le Road, Suite 400
Scmumwgg 172

Tel: (312) 310-8031

INDIANA

Intel_Corp.
8777 Purdue Foad

Indllnapolls
Tel: (317) 875 0623

lowAa

g’”hﬂm Buildr

1

1930 St Andvmn&we NE
r Rapids 52402

Tel: (319) 393-5510

KANSAS

Intel Corp.

8400 W 110th Street

Suite 170

Overland Park 66210

Tel: (913) 345-2727

LOUISIANA

Industrial ital Systems Corp.
Tel: (504) 899-1654

MARYLAND
Intel Corp.*
7321 Parkway Drive South
Suite C
Hanover 21076
m (301) 796-7500
710-862-1944
Intel Corp.
7833 Wl.llw' Drive
Greenbelt 20770
Tel: (301) 4411020
MASSACHUSETTS
Intel Corp.*
Wi Corp.
3 Road
Westford 01886
Tel: (617) 629-3222
TWX: 710-343-6333
MICHIGAN

Center

Intel Corp.
7071 Orchard Lake Road
Suite 100

18033

West Bloomfield 4
Tel: (313) 851-8096
MINNESOTA

Intel Corp.

3500 W. 80th Street

Suite 360

Bloommgbﬂ 55431

Tel: (612) 835-6722

TWX: 910-576-2867
MISSOURI

Intel Corp.

4203 Earth City Expressway
Suite 131

Earth Clb{ 63045

Tel: (314) 291-1990

NEW JERSEY

Intel
Raritan Plaza Il
Raritan Center

Edison 08837
Tel: (201) 225-3000
TWX: 710-480-6238

NEW MEXICO

intel_Corp
8500 Menual Boulevard N.E
Sute B 295
Albuquerque 87112
Tel: (505) 292-8086

NEW YORK
intel Corp.*
300 Vandertit Motor Parkway

Tcl (.‘)1"?e 231- 3300
TWX: 510-227-6236

Intel Corp.
Suite 25 Hollowbrook Park

ppinger
Tel. (914) 297-6161
TWX: 510-248-0060

te! Corp.*
2“ White Spmcn Boulevard

Rochester
Tel: (716) 424 1050
TWX: 510-253-7391

T-Squared

6443 Rldln s Road

Syracuse 1

Tel (3'5) 463-8592
710-541-0554

T-Squared
7353 Pittsford-Victor Road
Victor 14564
Tel: (716) 924-9101
TWX: 510-254-8542
NORTH CAROLINA
Intei Corp.
5700 Executive Center Drive
Suite 213
Chariotte 28212
Tel: (704) 568-8966
IntelCorp.
2700 Wycliff Road
Suite 102

27607
Tel: (919) 781-8022
OHIO

intel Corp.*

6500 Poe Avenue

Dayton 45414

Tel: (513) 890-5350

TWX: ' 810-450-2528

Intel Corp.*

hagnin-Brainard_Bidg.. No. 300
1 Chagrin Boulevard

Cleveland 44122

Tel. (216) 464-2736

TWX: 810-427-9298

OKLAHOMA

Intel Corp.
4157 S Harvaru Avenue

Tel. (918) 749-8688
OREGON

10700 %W, Beaverion
Hitstaie Highway
Suite 22
Beaverton 97005
Tel: (503) 641-
TWX: 910-467-8741

PENNSYLVANIA

intel Corp

1513 Cedar Ciff Drive

Camphill_17011

Tel: (717) 737-5035

Intel Corp.*

455 Pennsylvania Avenue

Fort Washington 19034
510-661-2077

Inhl 2
m Center Boulevard

Pm-buv? 15235
Tel: (412) 823-4970

QE.D. Electronics
15309 Terwood Road

Toi (215) 6575600

PUERTO RICO

Intel Microprocessor Corp
South Indumll Pm
Las Piedras 006

Tel: (809, 733- 3030
TEXAS

Intel Corp.

315 £ Anderson Lane
Suite 314

Austin_ 78752

Tel (512) 454-3628

Intel Corp.*
12300 Ford Road

Sui

D!Ilas

Te! (ZM) 2“8037
910-860-56

intei Corp.*

7322 SW Freeway
1490

Housloﬂ 7707A

Tel: (713]

T 510.881 2480

Industrial Digital Systems Corp.

5925 Sovereign

Suite 101

Houston 77036

Tel (713)988-3421

UTAH

Intel
5201 Graen Street

Murray Ber2a
Tel (801) 263-8051

VIRGINIA
Intel Corp.
1603 Stnll Rosa Road
Suite |
Richm
Tel: (504) 282 5668
WASHINGTON

tel Corp.
HD 110th Avenue NE
Suue 510

Tel (206) 453-
TWX: 910-443. 3002

Intel Cory

408 N. Mullan Road
Suite 102

Spokane 99206

Tei (509) 926-8086
WISCONSIN

Intel Corp.
Chancellory Park |

Brookfield * 53005
Tel: (414) 784.8087

CANADA
BRITISH COLUMBIA

Intel_Semiconductor of Canada,

2E4
Tel (604) 738-6522
ONTARIO

Intel Semiconductor of Canada,
2650 Queensview Drive

Suite 250

Onawa K28 8HE
Tel: (613) 829-9714
TELEX: 053-4115

Intel Semiconductor of Canada,
190 Atwell Drive

Suite 500

Rexdale MW 6H8
Tel (416) 675-2105
TELEX: 06983574

Intel Semiconductor of Canada,

620 St Jean Blvd,
Pointe_Claire H9R 3K3
Tel (514) 694-9130
TWX: 514.694-9134

*Field Application Location

ALABAMA

Arrow Electronics, Inc.

1015

Huntsville 35805

Tel: (205) 837-6955

1H-m|||on/Avml Electronics

mercial Drive N.W

Ile 35805

Tﬂ (205) 837-7210

TWX: 810-726-2162

tPioneer Electronics
4825 Univen Squ-m

Huntsville

Tel (20) 300

TWX: 810- 726-2!97

ARIZONA

7Hummun/Avne| Electronics
S. Madison Drive

Tumoe 85281

Tel: (602) 231-5100

TWX: 910-950-0077

Kierultf Eiectronics

4134 E Wood Street

Phoenix 8504

Tel: (602) 437-0750

TWX: 910-951-1550

Wyle Distribution Group

17855 N. Black Canyon Highway

Phoenix 85023

Tel: (602) B866-2888

CALIFORNIA

Arrow Electronics, Inc.

19748 Dearborn Street

Chatsworth 91311

Tel. (818) 701-7500

TWX: 910-493-2086

Arrow _Electronics

San 92123

m (619) 565-4800
888064

YArvaw Electronics, Inc.
Weddell Drive

Sunnyvnle 94086

Tel: (408) 745-6600

TWX: 910-339-9371

Arrow _Electronics, Inc.

2961 Dow Avenue

Tustin 92680

Tel. (714) 838-5422

TWX: 910-595-2860

Costa

Tel: (714) 754-6051

TWX: 910-595-1928
‘Avnet Electronics

1\75 Bm\!llul Drive

Sunnyvale 94086

Tel: (408) 743-3300

TWX. 910-339-9332

Mlmilmn/Avrm Elecuomcs

TWX: 910-494-2207
tHnmllwn/Avml Elecrronn:l
levard

Slcum 58

Tel: (916) 920-3150
Hamilton/Avnet Electronics
3002 G Street

Ontario 91311
Tel: (714) 989-9411

tHamilton Electro Sales

10912 W. Washi Boulevard
Culver City 2023

Tel. (2‘3& 558-2458

TWX:

tHamilton Electro Sales
7 Biman Sveet

Mesa 92626
Tel: (714) 6414150
TWX: 910-595-2638

DOMESTIC DISTRIBUTORS

CALIFORNIA (Cont'd)

Nlmmon Electro Sales
De Soto Avenue

CMl!woﬂh 91311

Tel: (818) 700-6500

Kierulff Electronics
10824 Hope Street
C:F!eu 90430

Tel: (714) 220-6300
Kieruft Elocuom;s Inc
1180 Murphy A

San Jose 951

Tel: (408) 947-3471
TWX: 910-379-6430

iff_Electronics. Inc.
14101 Franuhn Avenue

Tel (7‘4) 73'-57“
TWX: 910-595-2599

gzmum Electronics, Inc.
50 Jillson Street

Commerce 90040

Tli (213) 725-0325
910-580-3666
Aqourn Slreotm

Calabasas 91

Tel: (818) 8809000

TWX: 818-372-0232

tWyle o-smtmcm Group

!24 Maryl: 5!’.0‘

Tel ?‘3& 322~B

TWX: 910-348-7140 or 7111
tWyle Dlslnbu\u:ﬂ Group

Tel: (714) 843-9953
TWX: 910-595-1572

Distribution Group
151 Sun Center Drive
Rancho Cordova 95670
Tel. (916) 638-5282
W?ie Distribution Group
9525 Cr\cupclka Drive
San Diego 921
Tel: (619) 566- 9|7v
TWX: 910-335-1590
SW Dlslnb\moﬂ Gmnp

Aven:
Santa Clara 95051
Tel: (408) 727-2500
TWX: 910-338-0296

Wyle Military
17810 Telier Avenue
Irvine 92750
Tel. (714) 851-9958
TWX: 310-371-9127
Wyle Systems
2 Lampson Avanue
l len Grove 9264
Tel: (714) 851 9953
TWX: 910-595-2642

COLORADO

'Wyie Distribution Group
451 |2l|h A
V‘notmm

Tel: (303) 457»9953
TWX: 910-936-0770
tHamilton/Avnet Electronics
8765 E. Orchard Road
Suite 708

Englewood 80111

Tel: (303) 740-1017
TWX: 910-935-0787
CONNECTICUT

tArrow Electronics, Inc.
12 Bllumoﬂl

W
) 2657741
TWX 710-476-0162

m-mmmum Electronics
industrie Park

tPioneer Northeast Electronics
112" Main_Street
Norwalk 08851
Tel: (20.’2 853-1515
TWX: 710-468-3373

FLORIDA
tArrow Electronics, Inc

Tel: (305) 429-8200
TWX: 510-955-9456

tArrow Electronics, Inc
1001 N.W. 62nd Street
Suite 1

08
Ft. Lauderdale 33309
Tel (305) 77&7790
TWX: 510-955-9456

tArrow Electronics, Inc.
‘5,2 oodll.kz Drive W. Bidg B
Tei) 72&1430

W'X 510»959—6337
tHamilton/Avnet Electronics
6801 N.W. 15th Way

Ft. Lauderdale 33305

Tel (3053 971

TWX: 510-956-30"
‘tHamilton/Avnet Electronics
3197 T Ve

t 33702
Yol (813) 576-3930
810-863-0374

H-mmon/ ‘Avnet Electronics
6947

Tel: (305) 628-3888
TWX: 810-853-0322

tPioneer Electronics
221 N, Lake Boulevard

Suite 412
Alta Monte Springs 32701
Tel: (305) 834-9090

TWX: 810-853-0284
tPioneer Electronics
674 S Mitary Trail
Tel. (305) 4288877
510-955-9653
GEORGIA

YA"ow Electronics,
2155 Nortwoods Panwsy. Sule ‘A

Tel (404) l49-3252
TWX: 810-766-0439

Hamilton/Avnet Electronics
5825 D. Peachtree Corner

Norcross 3009
Tel (404) 447-7500
TWX: 810-766-0432

Norcre

Tel: (404) 4481711
TWX: 810-766-4515
ILLINOIS

fArow. Electonics, nc
2000

YHIMM/ ‘Avnet Electronics

Bemermﬂe

Tﬂ (312) 880-7780
910-227-0060

{Pioneer Electronics

1551 Carmen Drive

Elk Grove VIIII 60007

Tl @12) 43

Toix. o025 1834

INDIANA

tArrow_Electronics, Inc

2485 . Sute H

317) 43-9353
810-341-3119

Hamilton/Avnet Electronics

35 Glldll Dﬂv'

Tel: (317& WESN
-260-3966

tPioneer Electronics
6408 Castieplace Drive

Indianapolis 46250
Tel: (317& 849-7300
TWX: 810-260-1794

KANSAS

tHamilton/Avnet Electronics
Overl

Tel: (913) 888

TWX: 910 7‘3-0005

MARYLAND

Arrow Electronics. Inc.
ﬂ300 Gu"om Road #H

Co!
Tel: (301) 9950003
TWX: 710-236-9005

tHamilton/Avnet Electronics
6822 Olk Hl" Lane

Columt
Tel (30|&
862- vsm

tMesa Technology Corporation
16021 Industrial Drive
Gmlrmsburg 2 77

Tel: (301) 948-

TWX 7‘0-6289702

tPioneer Elocnor-es

9100 Gnmev
Tel 'aex&_u 710
MASSACHUSETTS

tArrow Electronics, Inc.

1 Arrow Drive

Woburn 01801

Tel: (617) 933-8130

TWX: 710-393-6770
tHamilton/Avnet Electronics

joburn 01801
Tet: (S|7&‘ 935-9700
TWX: 710-393-0382

Northeast
« Hunmﬂ Avm
Lexi 217
W) 863—!20‘)
MICHIGAN
Arrow_ Electronics, Inc.
755 Phoenix Drive
48104
Tel: (313) 971-8220
TWX: 810-223-6020

ivonia
Tel: (313) 522-4700
TWX: 810-242-8775

Hamitton/Avnet Electronics
2215 29th Street SEE.

S AS
Grang Rapids 49508
Tel: (816& 243-8805
TWX: 810-273-6921
tPioneer Electronics
13485 Stamford
Livonia 48150
Tel: (313) 525-1800
TWX: 810-242-3271
MINNESOTA
tArrow Electronics, Inc.
5230 W. 73rd Street
Ed 55435

(612)
W'X o 573-3125
Hamilton/Avnet Electronics
10300 Bren Road East
Tel: (61,
TWX: (910) 57&2720
tPioneer Electronics
10203 Bren Road East
Minnetonka 55343
Tel: (6Y: z&nss«a
TWX: 910-576-2738

Tel (3?2& 3441200
TWX: 910-762-0684

System Technical D

NEW HAMPSHIRE

tArrow Electronics, Inc

3 Perimeter Road
Manchester 03‘03

Tel: (603) 668-6!

TWX: 710-220- 1684

Hamilton/Avnet Electronics

444 E Industnial Drive
nchester 031

Tei: (603) 624-9400

NEW JERSEY

ZMOII Electronics, Inc

Lincoin East

Mariton 3

Tei: (609) 596-8000

TWX: 710-897-0829

tArrow Electronics, Inc.

2 Industrial Roa

Fairfiel 7

Tel (202 575-5300

TWX: 710-998-2206

tHamilton/Avnet Electronics
1 Keystone Avenue

Hill 08003
?:.Ywaa 424-0110
TWX: 710-940-0262
73%'&\/""\.1 Electronics
10 Industrial
airfield 07006
Tel: (201& 575-3390
TWX: 710-734-4388
tPioneer Northeast Electronics
45 Route 46
Pinebrook 07058
Tei: (201& 575-3510
TWX: 710-734-4382

tMTI Systems Sales
383 Route 46 W

Fairfield 07006
Tel: (201) 227-5552
NEW MEXICO

Alliance Electronics Inc.
11030 cocnmms‘.g.a
Ibuquerque

Tel: (505) 292-3360
TWX: 910-989-1151
Hamilton/Avnet Electronics
2524 Baylor Drive S|

Albuquerque 87106
Tei: (505) 765-1500
TWX: 910-989-0614

T oraercs
TWX: 510-224-6126
tArrow_ Electronics,

3375 Bﬂghbﬂ Harmelll Townline Road

Roche: 1462.
Tei: (718 427-0300
TWX: 510-253-4766

Arrow Electronics, Inc
7705 Drive

Liverpool
T.I 315) SSZ‘W
710-545-0230

Anmv Ebawn-es Inc

Y:! (51“2'23‘ -1000

510-227-6623
Hamilton/Avnet Electronics
333 Metro Park

14623

Tel (716) 475-9130
TWX: 510-253-5470
Hamilton/Avnet Electronics
1s03 Twin Oaks Drive
yracuse 13206
Tei: (315) 437-2641
TWX. 710-541-1560

tHamilton/Avnet Electronics
933 Molor Parkway

Hauppa: 11788
Tei. (5‘?23!1&“}
TWX: 510-224-6166

tPioneer Northeast Electronics
mos v-uu Parkway East
Vi (eov) 1«-32-1

DOMESTIC DISTRIBUTORS

NEW YORK (Cont'd)

tPioneer Northeast Electronics
60 Cvoamy Park West

Woodbus Island 11797
Tel (575} QZY 00

TWX: 5102212184

Pioneer Northeas! Electronics
B840 Fllrpon Park

Fairport 144!

Tel: (716) 381-7070

WX: 510-253-7001

1MT! Systems Sales

NORTH CAROLINA
Arrow Electronics, _Inc
5240 Greendairy Road
Raleigh 274
Tel (9‘9& 876-3132
TWX: 510-928-1856
tHamilton/Avnet Electronics
3510 Spﬂngo‘Fo'nl Drive
27
878-0818
TWX: 510-928-1836
El
1 A-Southern Pine Boulevard
lotte 28210

harl
Tel: (704) 5248188
TWX: 810-621-0366

OHIO
Arrow Electronics, Inc.
McEwen

59-1611
tArrow _Electronics, inc.
38 Cochran
Solon 44133
Tel: (216) 248-3990
TWX: 810-427-9409
LHlmllan/AwM Electronics
54 Senate Drive
Daylon 4545
Tel' (513) 433-0610
810-450-2531

rmmmn/nnn Electronics
W Emery Industrial lewny
Tel: (216) 83
TWX: 810-427-9452

(513) 9900
TWX: 810-459-1622

tPioneer Electronics
4800 E. 131st Street

Cleveland 441
Tel (216) 587-3600
TWX: 810-422-2211

ronics, Inc.
Tulsa 741

Tel (918) 8657700
OREGON

fAlmac Electronics Corpamhon
1385 NW 169th

tlon 97006
(503 629-8090
910-467-8743
Hamilton/Avnet Electronics
Road

Lake
Tei: (503)
TWX 9!0455 5179
Wyle Distribution Group
5250 N.E Elam Young Parkway
Suite
Hillsboro 97124
m (503 640-6000
TWX: 160-2203
PENNSYLVANIA
fArrow Electronics, Inc.
650

Monroeville 15146
Tel (412) 856-7000

PENNSYLVANIA (Cont'd)

Pioneer Electronics
259 Kappa Drive
Pmtbul?h 15238
Tel: (412) 782-2300
TWX: 710-795-3122

tPioneer Electronics
261 Gibralter Road
Horsham 19044

Tel (215) 674-4000
TWX. 510-665-6778
TEXAS

:f’Anon Electronics, inc

Tel: (214) 380-6464
TWX: 910-860-5377
tArrow Electronics, Inc.
10899 Kinghurst

Suite 100

Houston 77099
Tel: (713) 530-4700
TWX: 91 0-4439

Arrow Electronics, Inc.
10125

Austin_ 787"

Tel: (512) 835-4180
TWX: 810-874-1348

tHamilton/Avnet Electronics
2401 Rutiand
Austin_ 78757

Tel: (512) 837-8911
TWX: 910-874-1319

lemmon/Avml Electronics
1 W. Walnut Hill Lane

TM (214) 859—“00
910-860-"

YHIﬂ'\vl‘oﬂ/AM Electronics
8750 Wi

Howlon
Tel: (713) 780-1771
TWX: 910-881-5523

Pioneer Electronics

9901 Burnet Road

Austin 78758

Tel (512) 835-4000
910-874-1323

Pioneer Electronics

|3710 e

Yd (2\4 386-7300
&850—5563

Electronics
Pom Wul Drive
Tel: {7'3&3968&55‘5

UTAH

yHlmulon/Avna! Electronics
1585 West 2100 South
Salt Lake Ci

Tel. (801) 972-2800

TWX: 910-925-4018

1959 Soam 4130 \hol:ll Unit B

Salt Lake
Tel: (801) 974-9953
WASHINGTON

tAimac Electronics ration
14360 SE Emglll jay
98007

ve
(206 843-9992
10-444-2067

lectronics, Inc.

|84.320 NE zm Street
Tl' (206) 843-‘000
910-444-2017

iton/Avnet Electronics
14212 NE._21st Street

Bellevue 98005
Tel: (206) 453-5874
TWX: 910-443-2489

WISCONSIN

tArrow Electronics, Inc.
430 W. Rausson Avenue
Oakcreek 53154

Tel (414) 764-6600
TWX: 910-262-1193

WISCONSIN (Cont'd)
tHamilton/Avnet Electronics
2975 Mooriand d
New Beriin_53151

Tel (414) 784-4510

TWX: 910-262-1182
CANADA

ALBERTA

Hamilton/Avnet Electronics
2816 21st Sweet NE

C«llguz T2E 622

Tel. (403) 230-3586
WX 03-827-642
Zunumm

3360 |4lh Avenu NE
Caigary T2A

Tel: (403) 272 |0?|
BRITISH COLUMBIA
Hamilton/Avnet Electronics
105-2550 Boundry Road
Burmalay V5M 323

Tel (604) 272-4242

Zn.:'(uoo Bn Road
108-
Richmond VEX' 3.

Tel. (604) 273-5575
TWX: 04-5077-89
MANITOBA
Zentronics

580 Berry Street
Winni R3H OSt
Tel: (204) 775-8661
ONTARIO

Electronics Inc.
P Martin Ro« A

Tl (416) o810250
TELEX: 06218213

Arrow_ Electronics Inc.

148 Colonnade Road

Nepean K2E 7.5

Tel: (613) 226-6903

tHamilton/Avnet Electronics
5 Rexwood Road

Units G & H

Mississauga L4V 1R2

Tel (416) 677-7432

WX 610-492-8867

{Hamilton/Avnet Electronics

oy K2E 7LS

Nepean L

Tel: (613) 226-1700

TWX: 05-349-71

1Zentronics

8 Tilbury Court

Brampton L6T 3T4

Tel (416) 451-9600

TWX: 06-976-78

Zentronics

564/10 Weber Street North

Waterioo N2!

Tel. (519) 884-5700

QUEBEC

Quebec 61N 269
Tel (418) 687-4231
TLX: 05-13388
Hamilton/Avnet Electronics
2795 Rue Hi n

St Laurent H4S 1P8
Tel: (514) 335-1000
TWX: 610-421-3731

System Technical D

Intel Corp.
21815 Vanowen

a Park 91303
g5 a|a) 704.8500

555 E Impcnll Way
Sute 2

90245
(213) 640-6040
Intel Corp
1350 Shorebird Way
Mt View 94043
Tel (415) 968-8211

TWX: 910-339-9279
910-338-0255

Intel Corp.

2000 E.4th Street
Suite 110
Sanla_Ana 92705
Tel. (714) 835-5577
TWX. 910-595-2475

Intel Corp.
4350 Executve Drive
Suite 150

San 92121
Tel: (619) 452-5880
COLORADO

0 Soum Cherry
Suite 7

Denver 80222

Tel (303) 321-8086
TWX: 910-931-2289

CONNECTICUT
intel

26 Mill Plain Road
Dar 06811

Tel: (203) 748-3130
FLORIDA

intel Corp.

1500 NW. 62nd Street
Suite 104

Fi Lauderdale 33309
Tel: (305) 771-0600
TWX: 510-956-9407

DOMESTIC SERVICE OFFICES

FLORIDA (Cont'd)

Alamonte Springs 32714
Tel: (305) B69-5588

GEORGIA
Intel Corp
3280 Pointe Parkway
Suite 200
Norcross 30092
Tel (404) 4411171
ILLINOIS
3 S Euroone
N. Martingale
Suite 300
Schaumburg 60194
Tel: (312) 310-8034
Dispatch: (312) 310-1803
KANSAS
Intel
8400 w nom Street
170
ind Park 66210
Tel' (913) 642-8080
MARYLAND
Intel Corp.
5th Floor Product
7833 Walker Drive
Greenbelt 2077%
Tel: (301) 4411020
MASSACHUSETTS
intel Corp.
27 Industrial Avenue
1824
Tel (617) 256-1800
TWX: 710-343-6333

Service

Intel Corp

7071 Orchard Lake Road
Suite 100

West Bioomfield 48033
Tel: (313) 851-8905

intel
4203 Elnh City Expressway
Suite |

Earth
Tel (:m) 29172015
NEW JERSEY

intel Corp.

385 Sylvan Avenue
Englewood Cliffs 07632
Tel (201) 567-0820
710-991-8593

Intel
anan P!aza "
Raritan Center

Edison 08817
Tel: (201) 225-3000
NORTH CAROLINA

intel Corp
2306 W. Meadowview Road
Sutte 206

Greensboro 27407

Tel: (919) 294-1541

OHIO

Intel

Cnaqrm anaru Bidg
Suite 305

28001 Chafrm Boulevard
Cleveland 44122

Tel. (216) 464.6915
TWX: B10-427-9298

intel Corp

6500 Poe

Daylcn 45414

Tel: (513) 890-5350
OREGON

intel Corp.

10700 SW. Beaverton-Hillsdale
Highway

Sute 22

Beaverion 97005

Tel (503)

Toix 5104878701

OREGON (Cont'd)

Inlgl Cory

NE Elam Young Parkway
H||Isboro 97123
Tel (503) 681-8080

PENNSYLVANIA

Intel Corp

201 Penn Center Boulevard
Suite 301 W

Pittsburgh 15235

Tel: (313) 354.1540

TEXAS

Intel Corp.

313 E_ Anderson Lane
Suite 314

Austin_ 78752

Tel (512)454-3628
TWX: 910-874-1347
Intel Corp

12300 Fmd Road

Daﬂas 75234

Tel (214) 241-8087
910-860-5617

WASHINGTON

Intel Corp.

110 110th Avenue N.E

Suite 510

Bellevue 98004

Tel: 1-800-525-5560

TWX: 910-443-3002

'WISCONSIN

Intel Corp.

450 N. Sunnysiope Road

g:me 130

53005
Tel: (414) 784-8087

BELGIUM

Intel Co'ocwuuon SA
Parc Seny

Rue du Moulin a Papier 51
Boite 1

B-1160 Brussels

Tel. (02)661 07 11
TELEX. 24814
DENMARK

Intel Denmark A/S*
Glenteve; 6! - 3rd Floor
DK-2400

Tel (01) 19 80 33
TELEX 19567

FINLAND

intel Finland OY

TELEX. 123 332
FRANCE

Intel Paris

1, rue Edison, BP 303

78054 Saint-Quentin en Yvelines
Tel: (3) 064 60 00

TELEX: 699016

EUROPEAN SALES OFFICES

FRANCE (Cont'd)
Intel Corporation, SARL
Immeuble BBC
4 Quai des Etroits
69005 Lyon
Tel: (7) 842 40 89
TELEX: 305153
WEST GERMANY
Intel Semvcoﬂduclor GmbH*
Seud 27
lunchen 2

) 53891

YELEX 05-23177 INTL D

Intel Semiconduclor GmbH*
Mainzerstrasse 75

deﬂ
Te! (6121) 70 7
TELEX 0“58183 INTW D

Intel Semiconductor GmbH
Bruckstrasse 61
7012 Fellbach

ant
ul (711) 58
TELEX 7254326 INYS o
Intel Semiconductor GmbH*
Hohenzollernstrasse 5*
3000 Hannover 1
Tel: (511) 34 40 81
TELEX: 923625 INTH D

ISRAEL

Intel Semiconductors Ltd.*
Atidim Industrial Park

Telex 371215
ITALY
Corporation Nalia Spa*

20094 q
Tel (02) 00
TELEX 315\83 INTMIL

3068 Rotterdam
Tel (10) 21 23 77
TELEX 22283

NORWAY

Intel Norway A/S
PO. Box 92
Hvamveien
N-20|3

(2) 742 420
YELEX 18018

Intel
Cllle Zuvbl!ln 28

drid 04
Tel (34) 1410 40 04
TELEX
SWEDEN
intel Sweden AB.*
Dalvagen 24
S-171 36 Soh
Tel (08) 734 01 00
TELEX: 12261
SWITZERLAND

Intel Samnconam:‘ov AG*

el (01) 29 77

TELEX: 57989 ICH CH
UNITED KINGDOM

Intel Corporation (UK) Lid.*
Pipers Way

Swif Wiltshire SN3 1RJ
Tel (0793) M

TELE)(444447 INT SWN

*Field Application Location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA
Bacher Eloklmﬂ-whe Geraete GmbH
A 1120 wlen
Tel: (222) 8: 46
TELEX: \1532 BASAT A
w Moov Gmi
‘/V'

ien
YO' 222-85 86 46
BELQIUM
Ineico Beigium S.A
ve. des Croix de Guerre 94
B1120 Brussels
Tel: (021) 216 01 60
TELEX: 25441
DENMARK
iTT MumKo?’w A/S

Naveriand

DK-2600 Gloskrup
Tel éo?) 45 66 45
TX: 33355

FINLAND

Oy Fintronic AB
Melkonkalu 24 A
SF-00210 Heisinki 21

Tei: (0) 692 60 22
TELEX: 124 224 Ftron SF

ll d. Coorhbow'

venue de la Baltique
F-mm Les Ulis Cedex-B.P.88
Tel: (1) 907 78 7
TELEX: F691700

J«mxn SA
18, Avenue de Jean-Jaures
F-94600 Cl -Le-Roi

Tel: (1) 853 12 00

TELEX: 260 967

Metrologie

La Tour d' Asnieres
4, Avenue Laurent Cely
F-92 res

Tel: (1) 790 62 40
TELEX

Rue
F-9231
Td (|) 534 75 35

WEST GERMANY
Electronic 2000 Vennebs AG

Stagruperting 1
B so'&

g 10
TELEX 22561 EEC o}

TELEX: 484426 JERM D
ges Computer Electronics Systems

Guunzmg'
natedt uubu.g
Tel_(04199) 4

TeLe Pisozeo -

Mwologn GmbH

(u) 57 30 84
TELE)(5213189
Proelectron Vertriebs
Max Planck Strasse 1-3
D-607: reieich
Tel: (6103) 33564
TELEX: 417983
IRELAND
Micro Mar
Gmm Park
Co aﬁZ
Tel: (1) 85 62 88
TELEX: 31584
ISRAEL
Eastronics Ltd.

1 ﬁozlnh snm

P.O. Box

YQI
TE

ITALY

Electra 35 SPA.
Visle Eivezia, 18
| 20154 Milano
Te: (2) 34 97 51
TELEX: 332332

Aviv l 300
(3) 47 5‘ 1

Intesi
Mu-mnoﬂ Pal, E/5
200%

TN (2) 82470
TELEX: 311351

NETHERLANDS

Komng f'« r;anm.n

;‘g‘ Box. 43220

Tel 3‘ (70) 210101

TELEX: 315

NORWAY

Nordisk Elektronic (Norge) A/S

Postoffice Box 122

S 4

Ttl (2) 846 210

TELEX: 17546

PORTUGAL

Comee E Electronica LDA
Componentes
MW Bombarda, 133

Lisboa
(19) 545 3
TELE)(14182 Bﬂlli’

SA

Miguel Angel 21, 6 Piso
Maarg 10

Tel: (34) 14 1954 00
TELEX: 27461

Diode Espane

Avenida Brasil 5
28020 Madrid

Tel: 455 36 86
TELEX: 42148

51 21

(08) 541 0!0
TELEX 10135
Nordisk Electronik AB
Box 1408
|7| 27

Tel (08) m 97 70
TELEX:

SWITZERLAND
Industrade AG
Hertistrasse 31

CH- W

Tel (01) 830

TELEX 56788 'NOEL CH
UNITED KINGDOM

Bytech Lid

Unit 57

London Road
Early, Reading
Tel. (0734) 61031
TELEX: 848215

Comway Microsystems Lid.
Market Street

UK-
Tel. 44 (344 55333
TELEX: 847

Jermyn Industries
Vestry Estate

, Kent
Tel (0732) 450144
TELEX: 95142
MEDL.
East Lane Road
North Wembl
Middlesex HAS 7
Tel: (190) 49307
TELEX: 28817
Rapid Recall, Lid
R.a:td House/Denmark St

mm HP11 2ER
m (AOI) 271

83793

YUGOSLAVIA-
H. R._ Microslectronics Enterprises
P.O sox 5804

California 95150

muooo
YELEX 278-559

AUSTRALIA
Intel Australia Ply Ld*
(M Add

;, llllv&‘
Nsw 2060

&pommsm Address)
Building
200 Pacific Highway
evel 6
Crows Nest, NSW, 2065
Tel: 011-61-2-957-2744

X: 790-20097
FAX: 011-61-2-957-2744
CHINA
Intel PRC Corporation
15/F, Office 1, Citic Bidg.
Jian Guo Men Wai Avenue
Beiling,
HONG KONG
Intel Semiconductor Lid.*
1701-3 Connat Centre

1 Oonnaugm
Tel: 011-852-5-215-311
TWX: 60410 ITLHK

INTERNATIONAL SALES OFFICES

JAPAN

intel Japan KK

546 Tokodai, Toyosato-machi
‘sukuba-gun. Ibaraki-ken 300-26
Tel: 029747-8511
TELEX' 03656-160

inf KK*
Komeshin Bidg

2115 Naka-machi
Atsugi, Kanagawa
Tel: 0462-23-3511

N
=

3

inieh Jagan KK*
18689

uehusm Tok 183
Tel: 0423-60-7871

intel Japan KK.*
Bdg. Kumagaya
269 Hon-cho

TR %

‘eral
Toyonaka, Osaka 560
Tel: 06-863-1091

JAPAN (Cont'd)

Intel Japan KK
Shinmaru Bidg

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel: 03-201-3621

intel Japan K

Flower-Hill Shm mbchr East Bidg.
1239 Shinmacl

Setagayarky, Takyo 154

Tel: 03-426-2231

lotel Japan KK
Mitsui-Seimei Musashi- mshiKosupl Bldg
915 Shinmaruko
Kawasaki sm ngawa it
Tel: 044-733-7011

Intel Japan KK

Mistima TokyoKaio Bidg.
11" Shibahon-c

Mishima-shi

hizuoka-Ken 411

Tel: 0559-72-4121

\n(el Semiconductor Asia Lid

song Bldg 8 Floor #9068
25- Yoido-Dong, Youngdeungpo-Ku
Seoul 1

50
Tel. 011-82-2-784-8186 or 8286
TELEX: K29312 INTELKO

SINGAPORE

Intel Semmcnduc!ol Ld.
101 Thom: oad
21-06 Goldhlll Sﬂulle
Singapore 1130

Tei: 011-65-250-7811
TWX: RS 39921
TAIWAN

léuel Semlconducw Lid

Min Chi Bl
ne M’ Sheng East

*Field Application Location

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES

ARGENTINA

VLC SRL Bartalome Mire 1711
is0

1037 Buenos Aires

Tel: 011-54-1-49-2092
Telex: 17575 EDARG-AR

Agent

Soimex International Corporation
15 Pm uow Room #1730
New York 10038
Tel: (212) " 4083085

250
rwood, Victoria 3125
rﬂ?knr Suoel
Toioon on—m.:-?mo«
TELEX: AA 31261

Total Electronics

P.O. Box 139

Anamon, N.SW. 2064

Tel: 011-61-02-438-1855
TELEX 7

BRAZIL

Elebra Wmm S/A
n aog-en

Toi O“ 5&11 274- 9945
TELEX: 1132864

CHILE
DIN

(Address)

Av. VIC, MacKenna 204
Casilla 6055

Tel: 0“-5&2-277-554
TELEX: 352-0003

@ Address)

A102 Greenville Center
3801 Kenneft Pike
Wilmington. Delaware 19807
CHINA
Novel Precision Mncnmnry Co Lid.
Flat D 20 Kingsford Bidg
Phase 1 SKNIINQ!S!!OMNT

Hong K
Tel: 011-852-5-223222
39114 JINMI HK

CHINA (Cont'd)

Schmidt & Co. Lid

18/F. Great Eagle Centre
w

Tel 01103?2 5-822-0222

74766 SCHMC HK

HONG KONG
Schmidt & Co. Lid

18/F. Great Eagle Centre
Wanchal
Tel: 011-852-5.822-0222
TWX. 74766 SCHMC HK
INDIA

Micronic Devices
65 Arun Complex

D V G Road

Bssavun Gudi

Bang: 004
i ons -812-600-631
TELEX: 011-5947 MDEV

Micronic
104/109C Nmml Industrial Estate

(

Bombay 400 022
Tel. 011-91-22-48-61-70
TELEX: 011-71447 MDEV IN
Micronic Devices
R-694 New Rajinder Nager
New Deihi 110 060
Ramlak International, Inc. (Agent)
ges s Mamm Avenue

uite

302
Sunnyvale, CA 94086
Tel: (408) 733-8767

Asahi Electlomcs CO Llﬂ
KMM
2-14-1 Asano, Kokur:hu Ku

Kitakyushu City 80:
Tel: (093) 5116471
TELEX:

AECKY 712616
G, Meh Microncs. Corp.
> 8 am 265 Suda-Cho

Chyoda k. To«yo 101
T sy Sseont
TELEX: (03) 252-3774

JAPAN (Cont'd)

Ryoyo Electric Corporation
Shuwa Sakurabashi Bidg
4-5:4 Hatchobori
Chuo-Ku, Tokyo 1

Tel: (03) 555-4811

Tokyo Electron Ltd
Shinjuky Nomura Bidg
1:26-2 Nishi-Shinjuku
Shinjuku Ky, Tokyo 1

Tel. (03) 343-4.
TELEX: 232- 2220 LABTEL J

Seoul 1
Tel: 011-82-2-782-8039
TELEX: KODIGIT K25299

Digital USA
ey East Fwasumc

ard
Sante S 90670
Tel: (71 4) 739 5204
TELEX: 194715 KORAM DIGIT LSA

Sam
23 I’ Dong Bang Bidg
1502-KA Taepyung-RU
Chung-Ku
[
Tel: 777-78
TELEX 27970 KORSST K
Tristar Semiconductor (Agent)
5150 Great America Parkway
Santa Clara, CA 95050
(408) 980-16:
MEXICO
DICOPEL S A
Tochth 368 Fracc. Ind. Sn. Antonio
Azcapotzaico
02760-Mexico, DF.
Tel: 90115255613211
TELEX: 1773790 DICOME
NEW ZEALAND
Northrup Instruments & Systems Lid.
459 Kyber Pass Road
P.O. Box 9464, Newmarket
Auckland 1
Tel: 011-64-9-501-219, 501-801, 587-
TELEX: NZ21570 THERMAL

Instruments & Systems Lid
PO Box 2406

TELE“; N23380

Computer Applications Lid.
D Gizri Boulevard
fence

Karachi.
Tel. 011-92-21-530-306
TELEX: 24434 GAFAR PK

Horizon Training Co.. Inc. (Agent)
1 Lafayette Cenler
1120 20th Streel NW.
Suite 530
Washinglon, D.C. 20036
Tel. (202) 887-1900
248890 HORN

SINGAPORE

General Engineers Corporation Pry

Al

203 Henderson Road
nderson_Industrial Park 0315

110
T2 oose o 3169
TELEX: RS23987 GENERCO
SOUTH AFRICA
Building Elements, Pty. Lid
gaamrga Address)
Pretoria

Tel: 011 27 12 469921
TELEX: 3-22786 SA

Shioping Address)

Square. 18th Street
HCI Pretona
TAIWAN

MIl«!C COI oration
ing Sheng E Foad

Tel 0“-962'501322"
TELEX: 11942 TAIAUTO

Mectel international, Inc. (Agent)
385 viso Cout

5050
YB’ (408) 9854513
910- 335 2?0\

YUGOSLAVIA

H. R._Microelectronics Enterprises
P.O. Box 5604

San Jose, California 95150

Tel: (408) 978-8000

TELEX: 278-559

*Field Application Location

INtel

INTEL CORPORATION, 3065 Bowers Ave., Santa Clara, CA 95051; Tel, (408) 987-8080.
INTEL CORPORATON (U.K.) Ltd., Swindon, United Kingdom; Tel. (0793) 488 388.

INTEL JAPAN k.k., Ibaraki-ken; Tel. 029747-8511

Printed in U.S.A./CR-034/1085/15K/CP RM
Microprocessors

