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The 80386 A High Performance Workstation Microprocessor

Introduction

One of the most important issues in 32-bit system design is performance. Performance goals in
such systems require that a microprocessor be able to deliver sustained high performance for
both applications and operating systems.

Intel's new 32-bit microprocessor, the 80386, is specially optimized for use in high-performance
systems. It establishes a new milestone in 32-bit system performance with features that include:

o Extensive execution pipelining,
o Integrated, on-chip, paged memory management,
o A high-throughput (32 Megabytes/second) bus, and
o High-performance floating-point coprocessor options.

This document first describes various techniques for measuring performance, followed by a
discussion of the 80386 performance measurements and features responsible for its performance
levels.

How is performance compared?

In the fiercely competItIve 32-bit microprocessor market, claims of performance are often
ambiguous. Objective comparison of performance is made difficult by the lack of a standard; a
systematic evaluation of performance across different processors requires a common metric for
measurement.

The ideal benchmarking method would be one that establishes a common basis for measurement
- by having the same operating system and applications execute on all the systems being
evaluated. In practice, however, this is hard to achieve. Even when the operating system is the
same, implementations differ. As evidence, consider the plethora of UNIX1-like operating
systems that are available for different microprocessor architectures.

1. UNIX is a trademark of AT&T Bell Laboratories
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Since absolute uniformity is impossible, the next best thing is to analyze the key elements that
affect performance (once again, using a common metric for measurement). There are three
main areas of interest:

1) Applications performance:

This should be a measure of general CPU performance that shows how well a processor supports
high-level languages, such as C. As far as possible, the measure should be independent of
operating system functions, in order to be a true indicator of performance available to
applications.

2) Numerics performance:

This should be an operating-system-independ~nt measure of floating-point performance. High-
speed t1oating-point computations are crucial in scientific applications and high-speed graphics.

3) Operating system performance:

This should be an application-independent measure of performance of operating system
functions, such as memory management, virtual-to-physical address translation, device I/O,
interrupt response time, task switching, etc.

Which benchmarks should one choose to evaluate performance? Surely, this depends on how
closely a benchmark resembles a typical application on the system. The closer a benchmark
models the behavior of the target application, the greater is its authenticity in judging
pe~formance. The following sections will discuss the metrics used for comparison, which are
the best to date that fulfill the above requirements.

What about MIPS?

It is common to rate a microprocessor in MIPS (millions of instructIOns per second). However,
it is difficult and often misleading to compare the MIPS rating of one processor to that of
another. The difficulty arises from differences in microprocessor architectures, and from the
lack of general agreement about which data to use for computing MIPS.

For example, a RISC microprocessor will have a higher MIPS rating than a non-RISe
microprocessor, simply because the former has a simpler instruction set. However, this does not
imply that a RISC microprocessor delivers greater performance; since it typically requires more
instructions to perform a given task. Clearly, MIPS by itself is not an accurate performance
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indicator. But, by quantifying it with the amount of work done, a MIPS rating can be put in
proper perspective.

Given two processors A and B , and given the time it takes for each to do an equal amount of
work, one .can compare the MIPS rating of A to that of B. Consider the results of the
Dhrystone benchmark (described in the next section). By equating the work (the Dhrystone
benchmark), one can derive a MIPS rating for the 80386 realtive to other processors.

For example, the IBM RT PC, at 1880 Dhrystones per second, is rated as a 2.1 MIPS system
(vendor claimed). In comparison, the 80386 computes 6133 Dhrystones per second. This gives
the 80386 an effective rating of 6.85 (RT PC) MIPS.

As another example, the VAX2 11/780 using the UNIX V.2 C compiler, is measured at 1562
Dhrystones per second. It is generally acknowleged that the VAX 11/780 (with UNIX) is a
1 MIPS system. Again, a comparison with the 80386 Dhrystone performance yields a relative
rating for the 80386 of 3.93 (VAX) MIPS.

However, when we consider that the VAX 11/780 using the UNIX 4.2 BSD C compiler executes
1662 Dhrystones per second, we are faced with two MIPS ratings for same processor. It should
be obvious that MIPS alone is not sufficient ~o compare performance.

2. VAX is a trademark of Digital Equipment Corporation
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Application Performance: Dhrystone

The Dhrystone program is an independently derived synthetic benchmark originally published in
CACM in ADA, and later transcribed to C (see Appendix A). The benchmark models programs
written in high-level languages. It is balanced with respect to different kinds of high-level-
language statements, data types, and operand accesses.

Table 1 shows that the instruction profile of the Dhrystone program, which represents over 28.3
million instructions executed dynamically. The profile is very similar to that obtained from a
mix of 31 million instructions from 14 technical applications used to initially evaluate 386
performance. It is thus a valid measure for a~plication-level performance.

Table 1: Dhrystone instruction profile

Instruction
Group

MOVE (register/memory)
ALU
MOVE (register/register)
BRANCH conditional
BRANCH unconditional
other

Dhrystone
Frequency

38%
24%

9%
11%
11%
7%

Also, because the benchmark is written in C, it is representative of user-level applications that
execute on most workstations. (Most workstations present the UNIX environment, which uses C
as the programming language). The Dhrystone benchmark does not use any operating system
functions, nor does it execute any floating-point operations. It measures a microprocessor's
efficiency for common user-level applications, independent of the operating system and I/O
implementation.

Figure 1 shows the 80386 Dhrystone performance compared to several well-known systems.
The results were taken from the list of performance measurements maintained on Unix-net.
The performance of the 80386 results from its efficient support of high-level languages,
including a complete set of addressing modes, high instruction throughput, and fast data-
movement capability. The following points outline the major features in these areas:
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FIGURE 1: DHRYSTONE PERFORMANCE
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Flexible Addressing Modes

The 80386 instruction set provides addressing modes that map efficiently to high-level language
addressing techniques. Any operand in the four Gigabyte linear address space can be addressed
in the following manner.

BASE + (INDEX • SCALE) + DISPLACEMENT

Any of the three components is optional. Any of the eight general purpose registers can specify
the BASE, and, except for the stack pointer (ESP), any general purpose register can specify the
INDEX. The DISPLACEMENT component (8 or 32 bits) is encoded within the instruction. The
SCALE factor is either 1,2,4 or 8.

This flexibility of the addressing modes allows optimized code generation by compilers.

High Instruction Throughput

The 80386 uses six stages of pipe lining to enhance its instruction processing throughput. Figure
2 shows the micro-architecture of the 80386. By overlapping various stages of instruction
processing, the 80386 is able to process multiple instructions in parallel.

Figure 2: 80386 Microarchitecture
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The Prefetch Unit continuously retrieves instructions from memory and deposits them into an
internal queue, being careful not to interfere with operand fetches. The Decode Unit decodes
instructions from the prefetch queue, and places decoded instructions within its own (decode)
queue. With a steady stream of instructions passing through these two units, fetch and decode
times totally overlapped with other instruction processing activities. When a branch is taken,
the 80386 restarts pipelining from the target of the branch instruction. But, as seen from Table
1, this happens only about 15% of the time (assuming half of the conditional branches result in
a transfer).

A substantial performance advantage of the 80386 comes from its speed in calculating effective
addresses. Effective address computations, using two of the three components, are computed in
one clock. In the worst case, it requires two clocks - this being when all three components are
present. Due to the pipelined architecture, address calculations are overlapped with instruction
execution, and do not add to the instruction execution time, except when the three component
addressing mode is used, which adds one clock to the clock count of an instruction. Computing
effective addresses quickly expedites accesses to memory operands.

Two-clock Data Bus

Data movement instructions are by far the most frequent instructions executed in programs.
Typically, they account for 35% to 40% of all instructions executed. Table 1 shows the
instruction profile of the Dhrystone benchmark; it places the frequency of memory-register data
movement instructions at 38%. (Data-movement instructions are basic load/store type
instructions such as: move between register and memory, stack pushes and pops, and string
instructions. A significant portion of the Arithmetic and Logic (AL U) instructions also use
memory operands, but they are included in the ALU group).

With a two-clock synchronous bus, the 80386 has a highly optimized ability to move data
between itself and memory. As figure 3a illustrates, a memory-to-register transfer is performed
in four clocks; while a register-to-memory transfer is performed in only two clocks (figure 3b).
In the figures, instruction boundaries are indicated by solid vertical lines. Effective address
computation and virtual address translation are performed in the first two clock periods, after
which the data bus is accessed. At zero wait states the bus latency is two clocks. Note that for
the register-to-memory move instruction, the memory write is performed by the Bus Unit in
parallel with the next instruction.

Memory to memory operations - such as string moves - can also be performed at the full 32
Megabyte per second bus bandwidth, allowing high-performance block I/O transfers.
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Figure 3a: Memory to Register move
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Numerics Performance: Whetstone

80386

Numerics performance is commonly measured with the Whetstone benchmark, with numeric
speed quoted in Whetstones per second. Although the Whetstone program uses a good mix of
floating-point operations, it also includes integer arithmetic, array indexing, function calls,
conditional jumps and transcendental functions. Therefore, a Whetstone per second rating is a
composite performance indicator, representing both the host processor and the floating-point
coprocessor. As such, it is a reasonable approximation to a floating-point intensive scientific
application. The Whetstone source listing is given in Appendix B.

Figure 4 shows the Whetstone performance of the 80386 in two configurations: with the 80387
numerics coprocessor, and with the Weitek 1167 floating-point chip set. The 1167 is comprised
of three chips: the 1164 multiplier, the 1165 ALU, and the 1163 custom interface processor.
The 1163 implements a 31x32-bit register file, the instruction decoder, exception handling, and
the 80386 bus interface. At 16Mhz, the 80386/80387 pair performs at 1.8 million single
precision Whetstones per second, while the 80386/1167 combination performs at 4 million single
precisjon Whetstones per second.

The results for the 80387 and 1167 were computed from the numeric profile of the Whetstone
benchmark. The profile lists each floating-point operation used in the Whetstone program,
together with a count of how often that operation was executed. Given this information, and
the clock counts for the 80387 and 1167 floating-point operations, the total time for executing
the Whetstone benchmark was computed. Both the 80387 and 1167 will sample in the third
quarter of 1986.

Optimized coprocessor interfaces

The 80386 and 80387 use a highly optimized, closely-coupled interface to communicate. This
interface fully implements the IEEE 754 draft 10 floating-point standard, and provides 8087
and 80287 compatibility.

The 80386 uses a highly optimized, loosely-coupled interface to communicate with the 1167.
The interface is memory-mapped; so, from the 80386's point of view, all floating-point
operations are performed by simple MOV instructions.

The interface uses an elegant method to execute floating-point operations. The address
specified by the 80386 MOV instruction encodes the floating-point instruction, while the 32-bit
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FIGURE 4: WHETSTONE PERFORMANCE
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data bus provides an operand. (The floating-point instruction is encoded in 17 address bits, and
only 64K of the 4Gbyte address space is used by the memory-mapped interface). In this
manner, the 1167 obtains both the floating-point command and the operand in just two clocks.
The 80386 bus bandwidth optimally matches the performance of the 1167 to provide greater
floating-point performance than achievable with any other microprocessor.

In addition to fast operation/operand transfers, the 80386/1167 combination benefits greatly
from concurrency. While the coprocessor is executing, the 80386 continues processing its own
instruction stream. As long as the result of the previous floating-point operation is not needed,
the 80386 does not need to wait. This overlap enhances the throughput for floating-point
operations, and reduces the overall computation time for numeric applications.

The 4 MegaWhetones/sec performance level of the 80386/1167 combination allows over 60,000
vector transforms per second in systems requiring high-speed graphics.
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Operating System Performance

80386

The architectural features that effect high performance for high-level-languages also enhance
performance in operating systems. For example, UNIX performance will benefit from C
performance, because most of UNIX is written in C.

Other critical areas for operating system performance are: memory management, I/O, task-
switching, and interrupt latency. In particular, virtual memory systems, such as demand-paged
UNIX systems, require efficient implementations in all these areas. The 80386, with its on-chip
operating systems support capabilities, provides the necessary elements for high-performance
virtual memory designs.

A key component of virtual memory performance is the speed of mapping virtual addresses to
physical addresses. By performing the translation on-chip, the 80386 is able to substantially
improve address translation efficiency. On-chip memory management permits a two-fold
optimization: it enables address translation to be pipelined along with other activities in the
chip, and it allows the use of internal half -clock periods. When the translation information is
present in on-chip caches, the virtual-to-physical translation is completed in a single clock; this
includes both segment and page translations. (The paging-unit uses the latter half of the clock
period). With pipelining, address translation is overlapped with other instruction execution. In
contrast, off -chip memory management implementations cannot exploit internal pipelining.
Off -chip approaches necessarily incur chip-access delays that makes address translation slower
by. one or more clocks.

To speed page translations, the 80386 paging unit contains a 32-entry translation look-aside
buffer (TLB), or paging cache. The TLB contains the most recent page mappings. It is
automatically updated by the processor from page tables in memory, whenever a miss occurs.
The TLB spans a physical address space of 128 kilobytes, and has a hit rate of over 98%. With
an on-chip TLB, address translation on the 80386 has no performance impact 98% of the time,
while competitive (off-chip) approaches with similar hit rates have a one or two clock
performance penalty 98% of the time.

Additionall}, this one-clock address translation includes a robust set of protection checks,
should a system designer choose to use them. Such hardware-enforced capabilities as preventing
execution of data, writing into code space, user access of operating system data structures, and
corruption of other address spaces are all performed within that same one-clock period. This
allows high-performance virtual memory systems without compromising security and reliability.
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Another important factor in virtual memory performance is the data transfer rate for swapping
pages to and from memory. At 32 Megabytes per second, the 16 MHz 80386 data bus has
ample I/O bandwidth to sustain high-speed DMA transfers. Table 2 compares the 80386 bus
bandwidth with other 32-bit microprocessors (using the highest frequencies currently available).

Table 2: Bus Bandwidth (Megabytes/second)

80386 (16 MHz)
MC68020 (20 MHz)
NS32032 (10 MHz)

No Memory Management

32
26.67
10

With Memory Management

32
20 (with 1 clock MMU)

8 (with 1 clock MMU)

The 80386 provides extensive hardware support for task management in multitasking systems.
A hardware-assisted task switch can be completed within only 17 microseconds. A task switch
entails saving the entire hardware context of the old task, and loading the hardware context of
the new task. This includes comprehensive protection checks during the task switch.

Interrupts, on the 80386, can be handled by. either procedures or tasks. This gives an operating
system the flexibility to choose the context in which an interrupt is to be handled. An interrupt
procedure runs in the context of the interupted task. With an interrupt latency of 3.7
microseconds, the 80386 allows fast response to events such as page faults and external
interrupts. When a task is used to handle an interrupt, the 80386 automatically dispatches the
task (on interrupt). This establishes an isolated context for handling the interrupt, and therefore
promotes security in the operating system without impacting performance.
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Summary

80386

The 80386 provides the performance levels needed in demanding next-generation 32-bit
systems. Its 6133 Dhrystone/second integer performance, 4 MegaWhetstone/second floating-
point performance, 32 Megabytes/second bus bandwidth, and on-chip operating system
performance features provide the capabilities needed in high-end UNIX workstations.

To equal the performance of a 16 MHz 80386, the SUN 3/180 (currently based on a 16.67 MHz
68020) needs a clock speed of 26.5 MHz. At 20 MHz, the 80386 will be in the 7500+
Dhrystones/second, 5 Million+ Whetstones/second performance class. An equivalent
performance SUN system would require a cloc~ speed of 33.2 Mhz, assuming the 68020 memory
management and memory access speeds would be able to scale.

In addition, the memory management capabilities of the 80386 are extremely flexible, allowing
any of the 4 Gigabyte direct physical, 4 Gigabyte flat demand-paged, segmented, and the 64
Terabyte segmented demand-paged environments to be implemented - all on-chip. Added to
the 80386's capability to provide virtual 8086 machines as tasks in 32-bit operating systems, the
80386 has the performance, features, and flexibility to allow an OEM to create a wide range of
differential advantages in his market.
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UNIX is a trademark of AT&T Bell Laboratories.

VAX is a trademark of Digital Equipment Corporation.

RT PC is a trademark of IBM Corporation.
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: No registers
: Registers

{ihnp4, vaxI35, ..}!houxm!castor!pcrat!rick

Send complete information about the machine type,
clock speed, OS and C manufacturer/version. If
the machine is modified, tell me what was done.
On UNIX, execute uname -a and cc -V to get this info.

and thanks to all that do. Space prevents listing
the names of those who have provided some of these
results. I'll be forwarding these results to
Rheinhold Weicker.

I order the list in increasing performance of the
"with registers" benchmark. If the compiler doesn't
provide register variables, then the benchmark
is the same for both REG and NOREG.

drynr; dryr

If you get any new machine/OS results, please send to:

Defines are provided for old C compiler's
which don't have enums, and can't assign structures.
The time(2) function is library dependant; Most
return the time in seconds, but beware of some, like
Aztec C, which return other units.
The LOOPS define is initially set for 50000 loops.
If you have a machine with large integers and is
very fast, please change this number to 500000 to
get better accuracy. Please select the way to
measure the execution time using the TIME define.
For single user m~chines, time(2) is adequate. For
multi-user machines where you cannot get single-user
access, use the times(2) function. If you have
neither, use a stopwatch in the dead of night.
Use a "printf' at the point marked "start timer"
to begin your timings. DO NOT use the UNIX "time( I)"
command, as this will measure the total time to
run this program, which will (erroneously) include
the time to malloc(3) storage and to compute the
time it takes to do nothing.

Reinhold P. Weicker, CACM Vol 27, No 10, 10/84 pg. lOB
Translated from ADA by Rick Richardson
Every method to preserve ADA-likeness has been used,
at the expense of C-ness .

cc -0 dry.c -0 drynr
cc -0 -DREG=register dry.c -0 dryr

PROGRAM updated 0 I /06/86, RESULTS updated 02/17/86

C/l.I, 12/01/84

Note:

PLEASE:

Results:

Run:

Defines:

Compile:

•••••••••••••••••••••••

1* EVERBODY: Please read "APOLOGY" below. -rick 01/06/86
•
• "DHR YSTONE" Benchmark Program
•
• Version:•
• Date:•
• Author:•••..
•••••••••••••••••
••
•••

June I, 1986 Appendix A



I request that benchmarkers re-run this new, corrected
version of Dhrystone, turning off or bypassing optimizers
which perform more than peephole optimization. Please
indicate the version of Dhrystone used when reporting the
results to me.

APOLOGY (1/30/86):
Well, I goofed things up! As pointed out by Haakon Bugge,
the line of code marked "GOOF' below was missing from the
Dhrystone distribution for the last several months. It
·WAS· in a backup copy I made last winter, so no doubt it
was victimized by sleepy fingers operating vi!

The effect of the line missing is that the reported benchmarks
are 15% too fast (at least on a 80286). Now, this creates
a dilema - do I throw out ALL the data so far collected
and use only results from this (corrected) version, or
do I just keep collecting data for the old version?

Since the data collected so far ·is· valid as long as it
is compared with like data, I have decided to keep
TWO lists- one for the old benchmark, and one for the
new. This also gives me an.opportunity to correct one
other error I made in the instructions for this benchmark.
My experience with C compilers has been mostly with
UNIX 'pcc' derived compilers, where the 'optimizer' simply
fixes sloppy code generation (peephole optimization).
But today, there exist C compiler optimizers that will actually
perform optimization in the Computer Science sense of the word,
by removing, for example, assignments to a variable whose
value is never used. Dhrys"tone, unfortunately, provides
lots of opportunities for this sort of optimization.

intel

••••••
•••••••••••••••••••••••••••
•••

80x8x NOTE:

80386

80x8x benchers: please try to do all memory models
for a particular compiler.

• RESULTS BEGIN HERE••
·----------------DHRYSTONE VERSION 1.0 RESULTS BEGIN--------------------------•

• TYPE·--------------------------
• MACHINE MICROPROCESSOR OPERA TING

COMPILER
SYSTEM

DHR YSTONES/SEC.
NO REG REGS

• Commodore 64 6510-IMHz
• HP-IIO 8086-5.33Mhz
• IBM PC/XT 8088-4.77Mhz
• CCC 3205 ?
• Perq- II 290 I bitslice
• IBM PC/XT 8088-4.77Mhz
• Cosmos 68000-8Mhz
• IBM PC/XT 8088-4.77Mhz
• DEC PRO 350 11/23
• IBM PC 8088-4.77Mhz
• PDPII/23 1l/23
• Commodore Amiga
• PC/XT 8088-4.77Mhz
• IBM PC 8088-4.77Mhz

June I, 1986

C64 ROM C Power 2.8 36
MSDOS 2.11 Lattice 2.14 284
PC/IX cc 271
Xelos(SVR2) cc 279
Accent S5c cc (CMU) 30 I
COHERENT 2.3.43 MarkWilliams cc 296
UniSoft cc 305
Venix/86 2.0 cc 297
Venix/PRO SVR2 cc 299
MSDOS 2.0 b 16cc 2.0 310
Venix (V7) cc 320
? Lattice 3.02 368
Venix/86 SYS V cc 339
MSDOS 2.0 CI-C86 2.20M 390

Appendix A

36
284
294
296
301
317
322
324
325
340
358
371
377
390
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• IBM PC/XT 8088-4.77Mhz PCDOS 2.1 Wizard 2.1 367
• IBM PC/XT 8088-4.77Mhz PCDOS 3.1 Lattice 2.15 403
• Colex DM-6 68010-8Mhz Unisoft SYSV cc 378
• IBM PC 8088-4.77Mhz PCDOS 3.1 Datalight 1.10 416
• IBM PC NEC V20-4.77Mhz MSDOS 3.1 MS 3.1 387
• IBM PC/XT 8088-4.77Mhz PCDOS 2.1 Microsoft 3.0 390
• IBM PC NEC V20-4.77Mhz MSDOS 3.1 MS 3.1 (186) 393
• PDP-ll/34 UNIX V7M cc 387
• IBM PC 8088, 4.77mhz PC-DOS 2.1 Aztec C v3.2d 423
• Tandy 1000 V20, 4.77mhz MS-DOS 2.11 Aztec C v3.2d 423
• Tandy TRS-16B 68000-6Mhz Xenix 1.3.5 cc 438
• PDP-11/34 RSTS/E decus c 438
• Onyx C8002 Z8000-4Mhz IS/ILl (V7) cc 476
• CCC 3230 Xelos (SysV.2) cc 507
• Tandy TRS-16B 68000-6Mhz Xenix 1.3.5 Green Hills 609
• DEC PRO 380 11/73 Venix/PRO SVR2 cc 577
• FHL QT+ 68000-10Mhz Os9/68000 version 1.3 603
• Apollo DN550 68010-?Mhz AegisSR9/IX cc 3.12 666
• HP-110 8086-5.33Mhz MSDOS 2.11 Aztec-C 641
• AIT PC6300 8086-8Mhz MSDOS 2,11 b16cc 2.0 632
• IBM PC/AT 80286-6Mhz PCDOS 3.0 CI-C86 2.1 666
• Tandy 6000 68000-8Mhz Xenix 3.0 cc 694
• IBM PC/ AT 80286-6Mhz Xenix 3.0 cc 684
• Macintosh 68000- 7.8Mhz 2M Mac Rom Mac C 32 bit int 694
• Macintosh 68000-7.7Mhz MegaMax C 2.0 661
• IBM PC/ AT 80286-6Mhz Xenix 3.0 cc 704
• Codata 3300 68000-8Mhz UniP1us+ (v7) cc 678
• WICAT MB 68000-8Mhz System V WICAT C 4.1 585
• Cadmus 9000 68010-10Mhz UNIX cc 714
• AT&T 6300 8086-8Mhz Venix/86 SVR2 cc 668
• Cadmus 9790 68010-10Mhz 1MB SVRO,Cadmus3.7 cc 720
• NEC PC9801F 8086-8Mhz PCDOS 2.11 Lattice 2.15 768
• AIT PC6300 8086-8Mhz MSDOS 2.11 CI-C86 2.20M 769
• Burroughs XE550 68010-10Mhz Centix 2.10 cc 769
• EAGLE/TURBO 8086-8Mhz Venix/86 SVR2 cc 696
• ALTOS 586 8086-10Mhz Xenix 3.0b cc 724
• DEC 11/73 J-11 micro U1trix-11 V3.0 System V 735
• AIT 3B2/300 WE32000- ?Mhz UNIX 5.0.2 cc 735
• Apollo DN320 68010-?Mhz AegisSR9/IX cc 3.12 806
• IRIS-2400 68010-10Mhz UNIX System V cc 772
• Atari 520ST 68000-8Mhz TOS DigResearch 839
• IBM PC/AT 80286-6Mhz PCDOS 3.0 MS 3.0(large) 833
• WICAT MB 68000-8Mhz System V WICAT C 4.1 675
• VAX 11/750 - U1trix 1.1 4.2BSD cc 781
• CCC 7350A 68000-8MHz UniSoft V.2 cc 821
• VAX 11/750 - UNIX 4.2bsd cc 862
• Fast Mac 68000- 7.7Mhz MegaMax C 2.0 839
• IBM PC/XT 8086-9.54Mhz PCDOS 3.1 Microsoft 3.0 833
• DEC 11/44 U1trix-11 V3.0 System V 862
• Macintosh 68000-7.8Mhz 2M Mac Rom Mac C 16 bit int 877
• CCC 3210? Xe10s R01(SVR2) cc 849
• CCC 3220? Ed. 7 v2.3 cc 892
• IBM PC/AT 80286-6Mhz Xenix 3.0 cc -i 909
• AT&T 6300 8086, 8mhz MS- DOS 2.11 Aztec C v3.2d 862
• IBM PC/ AT 80286-6Mhz Xenix 3.0 cc 892
• VAX 11/750 w/FPA Eunice 3.2 cc 914
• IBM PC/XT 8086-9.54Mhz PCDOS 3.1 Wizard 2.1 892
• IBM PC/XT 8086-9.54Mhz PCDOS 3.1 Lattice 2.15 980

403
403 @
410
416
420
427
427
438
454
458
458
495
511
565
617
628
649 FH
666
676
684
684
694
704 MM
704
709
714 LM
725
731 -
735
743
747
-@

769
769 CT1
779
793
793
806
806
829
846
847 LM
853 S-
862
875
877
904 +
909 Cl
909
909 S
924
925
925
943
961
976
980 C1
980 C1
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• Plexus P35 68000-IOMhz UNIX System III cc 984 980
• PDP-ll/73 KDJ 11- AA 15Mhz UNIX V7M 2.1

cc . 862 981
• VAX 1l/750 w/FPA UNIX 4.3bsd cc 994 997
• IRIS-I400 68010-10Mhz UNIX System V cc 909 1000
• IBM PC/AT 80286-6Mhz Venix/86 2.1 cc 961 1000
• IBM PC/AT 80286-6Mhz PCDOS 3.0 b16cc 2.0 943 1063
• Zilog S8000/11 Z8001-5.5Mhz Zeus 3.2 cc lOll 1084
• NSC ICM-3216 NSC 32016-10Mhz UNIX SVR2 cc 1041 1084
• IBM PC/AT 80286-6Mhz PCDOS 3.0 MS 3.0(small) 1063 1086
• VAX 1l/750 w/FPA VMS VAX-II C 2.0 958 1091
• Stride 68000-10Mhz System- V/68 cc 1041 II II
* Plexus P/60 MC68000-12.5Mhz UNIX SYSIII Plexus III 1 II II
* AIT PC7300 68010-10Mhz UNIX 5.2 cc 1041 III 1
* CCC 3230 ? Xelos RO1(SVR2) cc 1040 1126
• Stride 68000-12Mhz System- V/68 cc 1063 II 36
* IBM PC/AT 80286-6Mhz Venix/286 SVR2 cc 1056 1149
• Plexus P/60 MC68000-12.5Mhz UNIX SYSIII Plexus III 1 1163 T
* IBM PC/AT 80286-6Mhz PCDOS 3.0 Dataligh t 1.10 II 90 II 90
• ATT PC6300+ 80286-6Mhz MSDOS 3.1 b16cc 2.0 1111 1219
* IBM PC/AT 80286-6Mhz PC DOS 3.'1 Wizard 2.1 1136 1219
* Sun2/120 68010-10Mhz Sun 4.2BSD cc 1136 1219
* IBM PC/AT 80286-6Mhz PCDOS 3.0 CI-C86 2.20M 1219 1219
* WICAT PB 68000-8Mhz System V WICAT C 4.1 998 1226 -
• MASSCOMP 500 68010-10MHz RTU V3.0 cc (V3.2) 1156 1238
* Alliant FX/8 IP (680 12-12Mhz) Concentrix cc -ip;exec -i 1170 1243 FX
* Cyb DataMate 6801 0-12.5Mhz Uniplus 5.0 Unisoft cc 1162 1250
* PDP 11/70 UNIX 5:2 cc 1162 1250
• IBM PC/AT 80286-6Mhz PCDOS 3.1 Lattice 2.15 1250 1250
* IBM PC/AT 80286- 7.5Mhz Venix/86 2.1 cc 1190 1315 *15
* Sun2/120 68010-10Mhz Standalone cc 1219 1315
* Intel 380 80286-8Mhz Xenix R3.0upl cc 1250 1315 *16
* Sequent Balance 8000 NS32032-IOMHz Dynix 2.0 cc 1250 1315 N12
• IBM PC/DSI-32 32032-10Mhz MSDOS 3.1 GreenHills 2.14 1282 1315 C3
* AIT 3B2/400 WE321 00- ?Mhz UNIX 5.2 cc 1315 1315
* CCC 3250XP - Xelos ROI(SVR2) cc 1215 1318
* IBM PC/RT 032 RISC(801 ?)?Mhz BSD 4.2 cc 1248 1333 RT
* DG MV4000 - AOS/VS 5.00 cc 1333 1333
* IBM PC/AT 80286-8Mhz Venix/86 2.1 cc 1275 1380 *16
• IBM PC/AT 80286-6Mhz MSDOS 3.0 Microsoft 3.0 1250 1388
* AIT PC6300+ 80286-6Mhz MSDOS 3.1 CI-C86 2.20M 1428 1428
* COMPAQ/286

80286-8Mhz Venix/286 SVR2 cc 1326 1443
* IBM PC/AT 80286- 7.5Mhz Venix/286 SVR2 cc 1333 1449 *15
* WICAT PB 68000-8Mhz System V WICAT C 4.1 1169 1464 S-
* Tandy II/6000 68000-8Mhz Xenix 3.0 cc 1384 1477
* WICAT MB 68000-12.5Mhz System V WICAT C 4.1 1246 1537 -
* IBM PC/AT 80286-9Mhz SCO Xenix V cc 1540 1556 *18
• Cyb DataMate 680 I0-12.5Mhz Uniplus 5.0 Unisoft cc 1470 1562 S
* VAX 11/780 - UNIX 5.2 cc 1515 1562
* MicroVAX-II - 1562 1612
* VAX 11/780 - UNIX 4.3bsd cc 1646 1662
* Apollo DN660 - AegisSR9/IX cc 3.12 1666 1666
* ATT 3B20 UNIX 5.2 cc 1515 1724
* NEC PC-98XA 80286-8Mhz PCDOS 3.1 Lattice 2.15 1724 1724 @
* HP9000-500 B series CPU HP-UX 4.02 cc 1724
* IBM PC/STD 80286-8Mhz MSDOS 3.0 Microsoft 3.0 1724 1785 C2
* WICAT MB 68000-12.5Mhz System V WICAT C 4.1 1450 1814 S-
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1530
1937
1675
2000
2083
2083
2123
2083
2135
1780
2272
2777
3333

3333
3105
3485
3333
3685
3381
3333
3910
3952
3846

• WICAT PB 68000-12.5Mhz System V WICAT C 4.1
• DEC-2065 KL10-Mode1 B TOPS-20 6.1FT5 Port. C Compo
• Gould PN6005 - UTX 1.1(4.2BSD) cc
• DEC2060 KL-10 TOPS-20 cc
• VAX 11/785 - UNIX 5.2 cc
• VAX 11/785 - VMS VAX-ll C 2.0
• VAX 11/785 - UNIX SVR2 cc
• VAX 11/785 - ULTRIX-321.1 cc
• VAX 11/785 - UNIX 4.3bsd cc
• WICAT PB 68000-12.5Mhz System V WICAT C 4.1
• Pyramid 90x - OSx 2.3 cc
• Pyramid 90x FPA,cache,4Mb OSx 2.5 cc no -0
• Pyramid 90x w/cache OSx 2.5 cc w/-O
• IBM-4341-II - VM/SP3 Waterloo C 1.2
• IRIS-2400T 68020-16.67Mhz UNIX System V cc
• Celerity C-1200 ? UNIX 4.2BSD cc
• SUN 3/75 68020-16.67Mhz SUN 4.2 V3 cc
• IBM-4341 Model 12 UTS 5.0 ?
• SUN-3/160 68020-16.67Mhz Sun 4.2 V3.0A cc
• Sun 3/180 68020-16.67Mhz Sun 4.2 cc
• IBM-4341 Model 12 UTS 5.0 ?
• MC 5400 68020-16.67MHz RTU V3.0 cc (V4.0)
• NCR Tower32 68020-16.67Mhz SYS 5.0 ReI 2.0 cc
• Gould PN9080 - UTX-32 1.1c cc
• MC 5600/5700 68020-16.67MHz RTU V3.0 cc (V4.0) 4504
• Gould 1460-342 ECL proc UTX/32 1.1/c cc 5342
• VAX 8600 UNIX 4.3bsd cc 7024
• VAX 8600 VMS' VAX-ll C 2.0 7142
• Alliant FX/8 CE Concentrix cc -ce;exec -c 6952
• CCI POWER 6/32 COS(SV+4.2) cc 7500
• CCI POWER 6/32 POWER 6 UNIX/V cc 8236
• CCI POWER 6/32 4.2 ReI. 1.2b cc 8963
• Sperry (CCI Power 6) 4.2BSD cc 9345
• CRA Y-X-MP/12 105Mhz COS 1.14 Cray C 10204
• IBM-3083 UTS 5.0 ReI 1 cc 16666
• CRAY-IA 80Mhz CTSS Cray C 2.0 12100
• IBM-3083 VM/CMS HPO 3.4 Waterloo C 1.2 13889
• Amdahl 470 V/8 UTS/V 5.2 cc v1.23 15560
• CRAY-X-MP/48 105Mhz CTSS Cray C 2.0 15625
• Amdahl 580 UTS 5.0 ReI 1.2 cc v1.5 23076
• Amdahl 5860 UTS/V 5.2 cc v 1.23 28970•
• NOTE

1898 -
1946
1964
2000 &
2083
2083
2083
2091
2136
2233 S-
2272
2777
3333
3333
3401
3468
3571
3685
3764
3846
3910 MN
4054
4545
4629
4746 %
5677 Gl
7088
7142
7655 FX
7800
8498
9544

10000
10204
12500
13888
13889
15560
17857
23076
28970

••••••
•••••••••

• Crystal changed from 'stock' to listed value.
+ This Macintosh was upgraded from 128K to 512K in such a way that

the new 384K of memory is not slowed down by video generator accesses.
% Single processor; MC == MASSCOMP
& A version 7 C compiler written at New Mexico Tech.
@ vanilla Lattice compiler used with MicroPro standard library
S Shorts used instead of ints
T with Chris Torek's patches (whatever they are).

For WICA T Systems: MB=MultiBus, PB=Proprietary Bus
LM Large Memory Model. (Otherwise, all 80x8x results are small model)
MM Medium Memory Model. (Otherwise, all 80x8x results are small model)
C1 Univation PC TURBO Co-processor; 9.54Mhz 8086, 640K RAM
C2 Seattle Telecom STD-286 board
C3 Definicon DSI-32 coprocessor
C? Unknown co-processor board?
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ABBREVIA TIONS
CCC Concurrent Computer Corp. (was Perkin-Elmer)
MC Masscomp

• CTI Convergent Technologies MegaFrame, 1 processor.
• MN Using Mike Newtons 'optimizer' (see net.sources).
• • G 1 This Gould machine has 2 processors and was able to run 2 dhrystone
• Benchmarks in parallel with no slowdown.
• FH FHC == Frank Hogg Labs (Hazelwood Uniquad 2 in an FHL box).
• FX The Alliant FX/8 is a system consisting of 1-8 CEs (computation
• engines) and 1-12 IPs (interactive processors). Note N8 applies.
• RT This is one of the RT's that CMU has been using for awhile. I'm
• not sure that this is identical to the machine that IBM is selling
• to the public.
• Nnn This machine has multiple processors, allowing "nn" copies of the
• benchmark to run in the same time as 1 copy.
• 7 I don't trust results marked with '7'. These were sent to me with
• either incomplete info, or with times that just don't make sense.
• ?? means I think the performance is too poor, 7! means too good.
• If anybody can confirm these figures, please respond.
•••••

The combination of these three aspects is balanced only approximately,

The program does not compute anything meaningfull, but it is
syntactically and semantically correct.

The following program contains statements of a high-level programming
language (C) in a distribution considered representative:

100 statements are dynamically executed. The program is balanced with
respect to the three aspects:

- statement type
- operand type (for simple data types)
- operand access

operand global, local, parameter, or constant.

53%
'32%
15%

assignments
control statements
procedure, function calls

• - ------ ---- - - - ------- - - - --- - ---- RESULTS END--- - - ----- ------ ------------ - - - - --••••
•
•••••
•••••.'••••
./

/. Accuracy of timings and human fatigue controlled by next two lines • /
#define LOOPS 50000 r Use this for slow or 16 bit machines • /
r#define LOOPS 500000 r Use this for faster machines • /

r Compiler dependent options • /
#undef NOENUM
#undef NOSTRUCT ASSIGN

r Define if compiler has no enum's • /r Define if compiler can't assign structures */

r define only one of the next two defines • /
#define TIMES /. Use times(2) time function */
r#define TIME rUse time(2) time function • /

r define the granularity of your times(2) function (when used) */
#define HZ 60 /* times(2) returns 1/60 second (most) */
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100 /. times(2) returns 1/100 second (WECo) ./

r for compatibility with goofed up version • /
/·#define GOOF /. Define if you want the goofed up version • /

#ifdef GOOF
char Version[] = "1.0";
#eIse
char Version[] = "1.1";
#endif

#ifdef NOSTRUCT ASSIGN
#define structassign(d, s)
#else
#define structassign(d, s)
#endif

memcpy(&(d), &(s), sizeof(d»

d = s

#ifdef NOENUM
#define Ident! 1
#define Ident2 2
#define Ident3 3
#define Ident4 4
#define Ident5 5
typedef int Enumeration;
#else
typedef enum {Identl, Ident2, Ident3, Ident4, Ident5} Enumeration;
#endif

typedef int
typedef int
typedef char
typedef .char
typedef int
typedef int

One To Thirty;
OneToFifty;
CapitalLetter;
String30[31 ];
Array 1Dim[51];
Array2Dim[51 ][51];

struct Record
{

struct Record
Enumeration
Enumeration
OneToFifty
String30

};

typedef struct Record
typedef RecordType •
typedef int

#define NULL
#define TRUE
#define FALSE

#ifndef REG
#define REG
#endif

extern Enumeration
extern boolean

June 1, 1986

·PtrComp;
Discr;
EnumComp;
IntComp;
StringComp;

RecordType;
RecordPtr;
boolean;

o
1
o

FuncIO;
Func20;
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#ifdef TIMES
#include <sysjtypes.h>
#include <sysjtimes.h>
#endif

mainO
{

ProcOO;
exit(O);

}

80386

1*
* Package 1
*j

int
boolean
char
char
ArraylDim
Array2Dim
RecordPtr
RecordPtr

IntGlob;
BoolGlob;
CharlGlob;
Char2Glob;
ArraylGlob;
Array2Glob;
PtrGlb;
PtrGlbNext;

ProcOO
{

OneToFifty
REG OneToFifty
OneToFifty
REG char
REG char
Enumeration
String30
String30
extern char

#ifdef TIME
long
long
long
long
register unsigned int

IntLocl;
IntLoc2;
IntLoc3;
CharLoc;
CharIndex;
EnumLoc;
String ILoc;
String2Loc;
*mallocO;

timeO;
starttime;
benchtime;
nulltime;
i',

starttime = time( (long *) 0);
for (i = 0; i < LOOPS; ++i);
nulltime = time{ (long *) 0) - starttime; 1* Computes o'head of loop *j

#endif
#ifdef TIMES

time t
time t
time t
struct tms
register unsigned int

starttime;
benchtime;
null time;
tms;
i',

times(&tms); starttime = tms.tms uti me;
for (i = 0; i < LOOPS; ++i); -
times(&tms);
nulltime = tms.tms_utime - starttime; 1* Computes overhead of looping *j

#endif
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PtrGlbNext = (RecordPtr) malloc(sizeof(RecordType»;
PtrGlb = (RecordPtr) malloc(sizeof(RecordType»;
PtrGlb->PtrComp = PtrGlbNext;
PtrGlb->Discr = Ident!;
PtrGlb->EnumComp = Ident3;
PtrGlb->IntComp = 40;
strcpy(PtrGlb->StringComp, "DHR YSTONE PROGRAM, SOME STRING");

#ifndef GOOF
strcpy(StringILoc, "DHRYSTONE PROGRAM, l'ST STRING");

I*GOOF*j
#endif

Array2Glob(8][7] = 10; 1* Was missing in published program *j

j*****************
-- Start Timer --
*****************j
#ifdef TIME

starttime = time( (long *) 0);
#endif
#ifdef TIMES

times(&tms); starttime = tms.tms_utime;
#endif

for (i = 0; i < LOOPS; ++i)
(

Proc50;
Proc40;
IntLocl = 2;
IntLoc2 = 3;
strcpy(String2Loc, "DHRYSTONE PROGRAM, 2'ND STRING");
EnumLoc = Ident2;
BoolGlob = ! Func2(StringILoc, String2Loc);
while (IntLocl < IntLoc2)
(

IntLoc3 = 5 * IntLocl - IntLoc2;
Proc7(IntLoc 1, IntLoc2, &IntLoc3);
++IntLocl;

}
Proc8(ArraylGlob, Array2Glob, IntLocl, IntLoc3);
Proc 1(PtrGlb);
for (CharIndex = 'A'; CharIndex <= Char2Glob; ++CharIndex)

if (EnumLoc == Funcl(CharIndex, 'C'»
Proc6(Identl, &EnumLoc);

IntLoc3 = IntLoc2 * IntLocl;
IntLoc2 = IntLoc3 j IntLoc 1;
IntLoc2 = 7 * (IntLoc3 - IntLoc2) - IntLocl;
Proc2(&IntLoc 1);

}

j*****************
-- Stop Timer --
*****************j

#ifdef TIME
benchtime = time( (long *) 0) - starttime - null time;
printf("Dhrystone(%s) time for %ld passes = %ld\n",

Version,
(long) LOOPS, benchtime);
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printf("This machine benchmarks at %Id dhrystones/second\n",
((long) LOOPS) / benchtime); .

#endif
#ifdef TIMES

times( &tms);
benchtime = tms.tms utime - starttime - nulltime;
printf("Dhrystone(%s)time for %Id passes = %Id\n",

Version,
(long) LOOPS, benchtime/HZ);

printf("This machine benchmarks at %Id dhrystones/second\n",
((long) LOOPS) * HZ / benchtime);

#endif

Proc I(Ptr ParIn)
REG RecordPtr PtrParIn;
(
#define NextRecord (*(PtrParIn->PtrComp»

structassign(NextRecord, *PtrGlb);
PtrParIn->IntComp = 5;
NextRecordJntComp = PtrParIn->IntComp;
NextRecord.PtrComp = PtrParIn->PtrComp;
Proc3(NextRecord.PtrComp );
if (NextRecord.Discr == Identl)
(

NextRecordJntComp = 6;
Proc6(PtrParln-> EnumComp, &NextRecord.EnumComp);
NextRecord.PtrComp = PtrGlb->PtrComp;
Proc7 (NextRecordJn tComp, 10, &NextRecordJrt tComp);

}
else

structassign(* Ptr Par In, NextRecord);

#undef NextRecord
}

Proc2(IntParIO)
OneToFifty *IntParIO;
(

REG OneToFifty
REG Enumeration

IntLoc = *IntParIO + 10;
for(;;)
{

IntLoc;
EnumLoc;

if (CharlGlob == 'A')
{

--IntLoc·
*IntParIO = IntLoc - IntGlob;
EnumLoc = Identl;

}
if (EnumLoc == Identl)

break;

}
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Proc3(PtrParOut)
RecordPtr *PtrParOut;
{

if (PtrGlb != NULL)
*PtrParOut = PtrGlb->PtrComp;

else
IntGlob = 100;

Proc7(l0, IntGlob, &PtrGlb->IntComp);
}

Proc40
{

REG boolean BoolLoc;

}

BoolLoc = CharlGlob == 'A';
BoolLoc 1= BoolGlob;
Char2Glob = 'B';

Proc50
{

}

CharlGlob = 'A';
BoolGlob = FALSE;

extern boolean Func30;

Proc6(EnumParln, EnumParOut)
REG Enumeration EnumParln;
REG Enumeration *EnumParOut;
{

*EnumParOut = Identl; break;
if (IntGlob > 100) *EnumParOut = Identl;
else *EnumParOut = Ident4;
break;
*EnumParOut = Ident2; break;
break;
*EnumParOut = Ident3;

case Ident3:
case Ident4:
case Ident5:
}

*EnumParOut = EnumParln;
if (! Func3(EnumParln) )

*EnumParOut = Ident4;
switch (EnumParln)
{
case Identl:
case Ident2:

Proc7(IntParIl, IntParI2, IntParOut)
OneToFifty IntParIl;
OneToFifty IntParI2;
OneToFifty *IntParOut;
{

REG OneToFifty IntLoc;

IntLoc = IntParIl + 2;
*IntParOut = IntParI2 + IntLoc;

}

Proc8(ArrayIPar, Array2Par, IntParIl, IntParI2)
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ArraylDim
Array2Dim
OneToFifty
OneToFifty
{

Array IPar;
Array2Par;
IntParIl;
IntParI2;

80386

REG OneToFifty IntLoc;
REG OneToFifty IntIndex;

IntLoc = IntParIl + 5;
ArrayIPar(IntLoc] = IntParI2;
Array IPar(IntLoc+ I] = Array IPar[IntLoc];
Array IPar(IntLoc+30] = IntLoc;
for (IntIndex = IntLoc; IntIndex <= (IntLoc+l); ++IntIndex)

Array2Par(IntLoc][IntIndex] = IntLoc;
++Array2Par(IntLoc][IntLoc~ I];
Array2j>ar(IntLoc+20](IntLoc] = Array IPar(IntLoc];
IntGlob = 5;

}

Enumeration Funcl(CharParl, CharPar2)
CapitalLetter CharPar I;
CapitalLetter CharPar2;
{

REG CapitalLetter
REG CapitalLetter

CharLocl = CharParl;
CharLoc2 = CharLocl;
if (CharLoc2 != CharPar2)

return (Ident!);
else

return (Ident2);
}

boolean Func2(StrParIl, StrParI2)
String30 StrParIl;
String30 StrParI2;
{

REG OneToThirty
REG CapitalLetter

CharLocl;
CharLoc2;

IntLoc;
CharLoc;

IntLoc = I;
while (IntLoc <= I)

if (Funcl(StrParIl(IntLoc], StrParI2(IntLoc+l]) == Identl)
{

CharLoc = 'A';
++IntLoc;

}
if (CharLoc >= 'W' && CharLoc <= 'Z')

IntLoc = 7;
if (CharLoc == 'X')

return(TR UE);
else
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}
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if (strcmp(StrParIl, StrParI2) > 0)
(

IntLoc += 7;
return (TRUE);

l
else

return (FALSE);

*d"
*s.',
I",

while (1--) *d++ = *s++;

boolean Func3(EnumParIn)
REG Enumeration EnumParIn;
{

REG Enumeration EnumLoc;

EnumLoc = EnumParIn;
if (EnumLoc == Ident3) return (TRUE);
return (FALSE);

}

#ifdef NOSTRUCT ASSIGN
memcpy(d, s, I)
register char
register char
register int
{

}
#endif
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1* Whetstone benchmark. This program has a long history and is well
described in "A Synthetic Benchmark" by H.J. Curnow and B.A. Wichman
in Computer Journal, Vol 19 #1, February 1976.

Time the compiles with and without the optimizer as follows:

time cc -0 whetstone whetstone.c -1m
time cc -0 -0 whetstone.opt whetstone.c -1m

Then time the runs of both versions as follows:

time whetstone
time whetstone.opt

*/
#define ITERA nONS 2
#define PNT5MINUS 0.499975
#define PNT5PLUS 0.50025
#define TWO 2.0

extern double sinO;
extern double cosO;
extern double atanO;
extern double logO;
extern double sqrtO;
extern double expO;

mainO
(
static int modlfreq, mod2freq, mod3freq, mod4freq, mod6freq;
static int mod7freq, mod8freq, mod9freq, modlOfreq, modllfreq;
static float ary[4];
static float reall, rea12, real3, rea14;
register int cntr;
register int intI, int2, int3;

/* Establish execution frequencies */

modlfreq = 0 * ITERATIONS;
mod2freq = 12 * ITERATIONS;
mod3freq = 14 * ITERA nONS;
mod4freq = 345 * ITERA nONS;
mod6freq = 210 * ITERA nONS;
mod7freq = 32 * ITERATIONS;
mod8freq = 899 * ITERA nONS;
mod9freq = 616 * ITERA nONS;
modl0freq = 0 * ITERATIONS;
modllfreq = 93 * ITERA nONS;

1* MODULE 1: simple identifiers */
reall = 1.0;
rea12 = -1.0;
real3 = -1.0;
rea14 = -1.0;
for(cntr = 1; cntr <= modlfreq; cntr += 1)

{
reall = (reall + rea12 + real3 - rea14) * PNT5MINUS;
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reaI2 = (reall + reaI2 - real3 - reaI4) • PNT5MINUS;
reaI3 = (reall - reaI2 + real3 + reaI4) • PNT5MINUS;
reaI4 = (reaI2 - reall + reaI3 + reaI4) • PNT5MINUS;
} ;·for*;

;. MODULE 2: array elements .;

ary[O] = 1.0;
ary[I] = -1.0;
ary[2] •• -1.0;
ary[3] = -1.0;
for(cntr = 1; cntr <= mod2freq; cntr +=1)

{
ary[O] = (ary[O] + ary[l] + ary[2] - ary[3]) • PNT5MINUS;
ary[I] = (ary[O] + ary[I] - ary[2] + ary[3]) • PNT5MINUS;
ary[2] = (ary[O] - ary[l] + ary[2] + ary[3]) • PNT5MINUS;
ary[3] = (ary[l] - ary[O] + ary[2] + ary[3]) • PNT5MINUS;} r for .;

r MODULE 3: array as parameter (see program at end) .;

for(cntr = 1; cntr <= mod3freq; cntr += 1)
mod3(ary);

r MODULE 4: conditional jumps .;

intI = 1;
for (cntr = 1; cntr <= mod4freq; cntr += 1)

{
if (intI == 1)

intI = 2;
else

inti = 3;

if (intI > 2)
intI = 0;

else
intI = 1;

if (intI < 1)
inti = 1;

else
intI = O·} r fo;·;

r MODULE 6: integer arithmetic using arrays .;

inti = 1·
int2 = 2:,
int3 = 3-
for(cntr'= 1; cntr <= mod6freq; cntr += 1)

{
inti = intI • (int2 - intI) • (int3 -int2);
int2 = int3 • int2 - (int3 - intI) • int2;
int3 = (int3 - int2) • (int2 + inti);

ary[int3 - 1] = intI + int2 + int3;
ary[int2 - 1] = inti • int2 • int3;
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}

/* MODULE 7: trigonometric functions */

80386

reall = 0.5;
reaI2 = 0.5;
for(cntr = 1; cntr <= mod7freq; cntr += 1)

(
reall = atan(TWO * sin(reall) * cos(reall) / (cos(reall + reaI2) +

cos(reall - reaI2) - 1.0» * PNT5MINUS;
reaI2 = atan(TWO * sin(reaI2) * cos(reaI2) / (cos(reall + reaI2) +

. cos(reall - reaI2) - 1.0» * PNT5MINUS;
}

1* MODULE 8: procedure calls */
real 1 = reaI2 = real3 = 1.0;
for(cntr = 1; cntr <= mod8freq; cntr += 1)

mod8(reall, reaI2, &reaI3);

/* MODULE 9; array references */

intI = 1;
int2 = 2;
int3 = 3;
ary[l] = 1.0;
ary[2] = 2.0;
ary[3] = 3.0;
for(cntr = 1; cntr <= mod9freq; cntr += 1)

(
ary[ in tI] = ary[ in t2];
ary[ in t2) = ary[ in t3);
ary[int3) = ary[intI);
}

/* MODULE 10: integer arithmetic */

inti = 2'
int2 = 3:,
for(cntr = 1; cntr <= modiOfreq; cntr +=1)

{
intI = intI + int2;
int2 = intI + int2;
intI = int2 - intI;
int2 = int2 - intI - intI;
}

1* MODULE 11: standard functions */
reall = 0.75;
for(cntr = 1; cntr <= modI Ifreq; cntr +=1)

reall = sqrt( exp( Iog(reall) / PNT5PLUS»;

1* end of main program */
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/* Module 3 routine */

mod3(a)
float a[4];

80386

(
int cntr;
for(cntr = 0; cntr <= 6; cntr += I)

{
a[l] = (a[l] + a[2] + a[3] - a[4]) * PNT5MINUS;
a[2] = (a[l] + a[2] - a[3] + a[4]) * PNT5MINUS;
a[3] = (a[I] - a[2] + a[3] + a[4]) * PNT5MINUS;
a[4] = (-a[l] + a[2] + a[3] + a[4]) / TWO;
}

}

1* Module 8 routine */
mod8(rl, r2, r3)
float r I, r2, *r3;
{

float tmp I, tmp2;

tmpl=rl;
tmp2=r2;

tmpl = PNT5MINUS * (tmpl + tmp2);
tmp2 = PNT5MINUS * (tmpl + tmp2);
*r3 = (tmpl + tmp2) / TWO;

}

June I, 1986 Appendix B



,


