
The INTEL® 8087 numeric data proc~sor 

by JOHN F. PALMER 
Intel Corporation 
Santa Clara, California 

INTRODUCTION 

The INTEL® 8087 is a high performance general purpose 
numeric data processor. It is used with the INTEL® 8086, 
or the INTEL® 8088, microprocessors to extend their in­
struction sets with over 100 instructions (not counting ad­
dressing mode). The 8087 has all of the 8086 addressing 
modes and through a coprocessing interface is able to exe­
cute numeric instructions concurrently with the 8086 (or 
8088). The high performance overlapped execution is trans­
parent to the user who sees the 8087 simply as an extension 
of the 8086 (8088). Furthermore, the 8087 is the only chip 
that must be added to an 8086-based system to provide nu­
merics capability with a performance enhancement over 
software of more than 100. In addition to high performance, 
great care was taken to ensure that the 8087 could be used 
in any application involving numbers-including commer­
cial calculations. This required an unprecedented level of 
accuracy and reliability to be built into the processor. The 
intent was to greatly simplify the production of high per­
formance but reliable numeric software. 

Mathematical software is easy for the uninitiated to write 
but notoriously hard for the expert. This paradox exists be­
cause the beginner is satisfied if his code usually works in 
his own machine while the expert attempts, against over­
whelming obstacles, to produce programs that always work 
on a large number of computers. The problem is that while 
standard formulas of mathematics are fairly easy to translate 
into FORTRAN they often are subject to instabilities due 
to roundoff error. Consider, for example, the quadratic 
equation 

AX2_2Bx+C=0 

whose solutions are 

Xl =(B+ VB 2-AC)/A 

X2 = (B- VB2_AC)/A 

Programs using these formulas, when run on a conven­
tional computer, will produce results that are very sensitive. 
to roundoff damage. 

Since roundoff analysis is subtle, difficult and exceedingly 
tedious, our intent in the 8087 design was not only to make 
reliable and robust software easier for the expert to build 

887 

but (0 make it more likely that the unanalyzed code of the 
average programmer would run successfully. For example, 
the above formulas for the quadratic roots will be far less 
sensitive'to roundoff error if evaluated on the 8087 instead 
of a typical computer. 

Another important aspect of the 8087 is that it is an im­
plementation of a very carefully designed standard, pro­
posed to the IEEE and destined to be emulated by many 
other manufacturers. The establishment of this standard will 
go far to provide an environment for experts to produce ever 
more reliable software. Until now most experts, in an at­
tempt to produce portable code, have written for a mythical 
computer whose capabilities are an intersection of the ca­
pabilities of all major computers and whose arithmetic is a 
collection of all the ugliness of any of them. Thus these pro­
grams, while useful for everyone, are ideal for no one. As­
suming a standard environment, professional programmers 
will be able to concentrate on optimizing the code since port­
ability will be automatic. 

The proposed IEEE Floating-Point Standard (1, 2, 3, 4) 
specifies two data formats 

REAL (32 bits, 8 bit exponent) 
LONG REAL (64 bits, 11 bit exponent) 

and a support format we call 

TEMPORARY REAL (80 bits, 15 bit exponent) 

to indicate its intended use as a format to hold intermediate 
results. Along with the formats, the standard specifies three 
rounding rules, required operations (+, -, *, /, REM, 
SQRT, COMPARE) and exception conditions. The 8087 im­
plements the full standard and many extensions. Some of 
the major benefits provided by the 8087 will be explained 
shortly but first an architectural overview will be given to 
serve as a framework for the more detailed later discussion. 

ARCHITECTURAL OVERVIEW 

The major architectural feature of the 8087 is its operand­
result stack of8 registers, each capable of storing an operand 

From the collection of the Computer History Museum (www.computerhistory.org)



888 National Computer Conference, 1980 

in TEMPORARY REAL (80 bit) format as shown below: 

/0 11 ijs 16 
\ 
\ \ 

\ 
79 

sign exponent significand. 

All operands used within the 8087 are first converted to 
this format which provides 64 bits of precision and a range 
of about 10 ± 4900. In addition to the stack there is a set of 
registers called the ENVIRONMENT which contains the 
exception flags and pointers and processor control flags. 

At the simplest level the programmer may treat the 8087 
registers as a pure stack. All operands are explicitly loaded 
into the stack and operations are performed on the top ele­
ments of the stack. The load (or push) instruction can trans­
fer operands to the stack using anyone of seven data for­
mats: 

Shorter Integer (16 bit 2's complement) 
Integer (32 bit 2's complement) 
Long Integer (64 bit 2's complement) 
Real (32 bit) 
Long Real (64 bit) 
Temporary Real (80 bit) 
Packed Decimal (80 bit; 18 digits and sign) 

The load instruction never causes a rounding error, since 
TEMPORARY REAL is precise enough to hold all seven 
types exactly. Stack operands can be returned to memory 
in anyone of these seven forms using the store and pop 
instruction which automatically converts the top of stack to 
the designated format, stores it in memory and then pops 
the stack. 

The arithmetic operations which manipulate the stack pop 
the top two elements off the stack, perform the operation 
and push the result back onto the stack. The operations sup­
ported are: ADD, SUBTRACT, SUBTRACT REVERSE, 
MULTIPL Y, DIVIDE, and DIVIDE REVERSE. There are 
COMPARE instructions that set two bits in the environment 
(indicating "greater," "equal," "less," or "unordered") 
and then pop both elements, pop just the top, or pop neither. 
The REMAINDER instruction in th"e 8087 is an instruction 
primitive. It is intended to be used in a software loop to 
return both the "divisor" and the partial remainder of a di­
vision. There are several other instructions that operate on 
the top elements of the stack: 

NEGATE: reverses the sign of the top of stack 
ABSOLUTE VALUE: sets the sign of the top of stack to 

positive 
SQRT: computes the square root (its oper­

ation time is as fast as divide) of the 
top of stack 

SCALE: treats the next-of-top as an integer 
and adds it to the exponent of the 
top of stack -a fast form ,of multi­
plying by a power of two 

EXAMINE: 

DECOMPOSE: 

TEST: 
CONSTANTS: 

TAN: 

ARCTAN: 

EXPONENTIAL: 

LOGARITHM: 

a four bit condition code is set to 
. indicate the contents of the top of 

stack (i.e., zero, positive, invalid, 
empty, etc.) 
the top of stack is decomposed into 
its exponent and significand and 
these two results are returned to the 
stack 
the top of stack is compared to zero 
a set of instructions that load inter­
nally stored constants onto the top 
of stack (i.e., 'TT, 0, 1, etc.) 
takes the top of stack, Z as an ar­
gument, assuming that 0:s;Z:S;'TT/4, 
and returns two results, x and y such 
that ylx=Tan(Z). 
takes the top two stack elements and 
returns the result Z such that 
Z = arctan(ylx) 
takes the top of stack, x, assuming 
O:s;x:s; 112, and returns 2X 

- 1 
takes the top two stack elements and 
returns y* log2(x). 

In addition to the stack instructions listed above there are 
two instruction set optimizations. The first optimization is 
a set of arithmetic instructions that reference memory-one 

,of the operands comes from the top of stack, the other from 
memory, and the result is returned to the top of stack. The 
operations which may use this optimization are ADD, SUB­
TRACT, SUBTRACT REVERSE, MULTIPLY, DIVIDE, 
DIVIDE REVERSE, COMPARE and COMPARE & POP. 
The four types of memory operands that can be referenced 
by these instructions are SHORT INTEGER (16 bits), IN­
TEGER (32 bits), REAL (32 bits) and LONG REAL (64 
bits). There are also STORE (without POP) instructions that 
reference the same four operand types. These instructions 
significantly reduce the number of instructions needed to 
evaluate a typical expression. For example, suppose R, X 
and Z are REAL, Sand Yare LONG REAL, I is SHORT 
INTEGER and] and K are INTEGER. Then the expression 

R: = (S: = (XII + Y)I((] - K)*Z» 

is evaluated by the following code sequence: ,~ 

Instruction 
LOAD REAL 
DIVIDE SHORT INTEGER 
ADD LONG REAL 
LOAD INTEGER 
SUBTRACT INTEGER 
MUL TIPL Y REAL 
DIVIDE REVERSE 
STORE LONG REAL 
STORE & POP REAL 

Memory Reference 
X 
I 
Y 
J 
K 
Z 

S 
R 

Without the additional memory referencing instructions 
the above expression would have required 14 instructions 

From the collection of the Computer History Museum (www.computerhistory.org)



and 3 stack elements instead of 9 instructions and 2 stack 
elements. 

The second optimization involves internal stack address­
ing. There is a set of arithmetic instructions: ADD, SUB­
TRACT, SUBTRACT REVERSE, MULTIPLY, DIVIDE 
and DIVIDE REVERSE, that may take one operand from 
the top of stack (TOP) and the other operand from any stack 
element addressed relation to TOP (i.e., TOP+i, i=0, ... 7) 
and the result can be written over either operand. If the result 
is returned to the stack element (instead of the stack top) 
the instruction may either leave the top unaltered or pop the 
stack. 

Thus the new instructions are: 

(TOP) op (TOP + i)~(TOP) 
(TOP) op (TOP+i~(TOP+i) 
(TOP) op (TOP + i~(TOP + i) & POP 

In addition to the arithmetic instructions mentioned, 
LOAD, STORE, STORE & POP, and EXCHANGE instruc­
tions may also refer to stack elements relative to TOP. For 
example LOAD TOP + i would load the contents of the ith 
stack element beneath the top onto the top of stack. These 
instructions allow stack elements to be used to accumulate 
results in loops and to hold common sUbexpressions. For 
example, suppose X(l) is an array of N REAL's and we want 
to calculate 

N N N 

R:= ~ X;, S:= ~ i*X;, T:= ~ X/ 

(R) 
(S) 
(T) 

LOOP on I: 

;=1 ;=1 

INSTRUCTION 
LOAD ZERO 
LOAD ZERO 
LOAD ZERO 
LOAD REAL 
ADD TOP+3 
LOAD TOP+O (this is the 

DUPLICATE TOP 
instruction) 

;=1 

MULTIPL Y TOP + 0 (this is 
the SQUARE TOP 
instruction) 

ADD & POP TOP+2 
MULTIPLY SHORT 

INTEGER 
ADD & POP TOP+2 
STORE & POP REAL 
STORE & POP REAL 
STORE & POP REAL 

MEMORY 
REFERENCE 

X(I) 

I 

T 
S 
R 

This stack addressing capability both minimizes memory 
referencing and permits loop accumulations to benefit from 
the extended range and precision of TEMPORARY REAL 
thus significantly attenuating the effect of roundoff error and 
making intermediate overflow or underflow practically im­
possible. Thus the 8087 may be thought of as a "pure" stack 

The INTEL® 8087 Numeric Data Processor 889 

machine with optimizations for memory and internal stack 
element addressing. 

In addition to the computation instructions the 8087 has 
a set of administrative instructions for processor control and 
for status saving and restoring. In order to minimize context 
switching overhead there are single instructions, SAVE and 
RESTORE, that store and load respectively all 8087 volatile 
status. Also provided are instructions for loading and storing 
the 8087 status needed for software exception handling: ex­
ception flags and pointers to the offending instruction and 
datum. Finally, there is a 16 bit CONTROL WORD that may 
be loaded and stored. The contents of the control word dic­
tate: 

1. the rounding mode-there are four types of rounding. 
2. the internal precision-results may be held internally 

in TEMPORARY REAL format but rounded to REAL 
(24 bit), LONG REAL (53 bit) or TEMPORARY REAL 
(64 bit) precision. 

3. the mode of infinity arithmetic-there are two types 
of infinity closure, affine and projective, that will be 
explained later. 

4. the response to exceptions-for each type of exception 
there is both a flag and an exception mask. According 
to the setting of the mask the 8087 either interrupts after 
setting the exception flag or it executes an on-chip 
microcoded exception handler and continues pro­
cessing. 

The usefulness of these controls and the power of the 8087 
exception handling will be explained in the next section. 

USER BENEFITS 

Many of the 8087 features confer significant user benefits. 
The benefits that are provided by five of these features will 
be described in this section: 

1. the "extended" (TEMPORARY REAL) support for-
mat 

2. the rounding modes 
3. the on-chip exception handling 
4. the modified stack architecture 
5. the high performance. 

One of the major innovations of the H087 is the provision 
of an extended support format called TEMPORARY REAL. 
This format provides several significant advantages. Firstly, 
the 8087 should be thought of as having clean REAL (single) 
and LONG REAL (double) precision. By this we mean that 
not only is the arithmetic accurate but the commonly sup­
plied system functions are also accurate to LONG REAL 
precision. For example if x is LONG REAL then eX, In(x), 
tan(x), etc., will all be accurate to within less than a unit in 
the last place of LONG REAL precision-in fact because 
of the on-chip primitive functions the logarithmic and tri­
gonometric functions will be accurate to within a few units 
in the last place of TEMPORARY REAL precision. The 

From the collection of the Computer History Museum (www.computerhistory.org)



890 National Computer Conference, 1980 

benefits of the TEMPREAL format can also be seen by ex­
amining its use in the most demanding function in the 8087' s 
repertoire, XV. In calculating this function one loses in ex­
treme cases as many fraction bits in the answer as there are 
bits in the exponent of y; if x and yare restricted to LONG 
REAL then z = xY can lose about 11 bits in these extreme 
cases. This is a significant error in a function that is crucial 
for commercial calculations involving interest rates. By 
using TEMPORARY REAL and the 8087 logarithmic func­
tions we can compute xY , where x and yare LONG REAL, 
accurate to about a unit in the last place of LONG REAL 
precision. Besides providing accurate rate of return calcu­
lations we can also ensure that integral values of the argu­
ments yield exactly what is expected (i.e., 23 = 8 not 8.00 ... 01). 

Another benefit of the TEMPORARY REAL format is the 
ability to provide accurate libraries-mathematical, statis­
tical, commercial, etc. The user of these libraries delivers 
his data in REAL or LONG REAL precision and receives 
his results in the same format. However, the library has used 
TEMPORARY REAL variables to perform internal calcu­
lations, thus protecting against not only roundoff errors but 
intermediate overflows and underflows (most over/under­
flows occur on intermediate calculations since usually the 
input and output lie within fairly narrow ranges). Most li­
braries make performance claims "in the absence of over/ 
underflow. " By judiciously using TEMPORARY REAL var­
iables, libraries will often be able to ensure that the only 
over/underflows that occur either do not matter or are on 
output where they provide the user a necessary and useful 
warning result. 

Another advantage of this support format is that code 
written by programmers who are unfamiliar with analyzing 
their programs for roundoff errors and other problems-this 
includes almost all of us-will much more often work cor­
rectly. 

This is particularly true because of the extended stack­
it is almost impossible and certainly inconvenient to compute 
on the 8087 without using the TEMPORARY REAL format. 
Consider for example the program discussed earlier for cal­
culating the roots of a quadratic equation: 

R I: =(B+ YB 2 -A.C)/A 

R 2 : =(B- YB 2 -AC)/A 

On a typical computer with no support format these for­
mulas from high school math are subject to severe roundoff 
damage. However, because of the stack of TEMPORARY 
REAL registers, if the expressions are evaluated on the 8087, 
the support format is used automatically and invisibly for 
the sensitive parts of the calculation and the expressions are 
much more accurate. The 8087 stack thus makes "certified" 
software easier to write and makes it more likely that un­
certified software is reliable. 

A second major contribution of the 8087 to numerical com­
putation is the capability of controlling the rounding mode. 
As described earlier there is a field in the CONTROL WORD 
of the 8087 that specifies how infinitely precise results are 
to be rounded to fit the designated format. If the correct 
result is exactly representable then that result is returned 

regardless of the rounding mode. Otherwise the result can 
be specified to be anyone of: 

1. the nearest (if there are two then return the one with 
zero in the least significant bit-this avoids the usual 
bias) 

2. the next larger } (these modes are termed 
3. the next smaller "directed rounding" (5» 
4. the closer to zero (true truncation) 

Normally one would use the "nearer" rounding to com­
pute the most accurate and statistically unbiased estimate 
of the correct result. Alternatively, by using the directed 
roundings, one can not only compute rigorous error bounds 
at crucial places in a program but also implement Interval 
Arithmetic (6,7). Interval Arithmetic, where operands and 
results are intervals instead of isolated numbers, completely 
encloses all rounding errors. Thus when a computation 
yields an interval result, the user knows that the exact result 
is contained in that interval. Interval Arithmetic can also be 
used to estimate the consequences of uncertainty in data. 
By entering the data as intervals enclosing any possible 
measurement errors, the width of the resulting intervals 
gives an indication of the sensitivity of the computation to 
those errors. Another use of Interval Arithmetic is to cal­
culate, in a simulation, the effect on a system as a variable 
such as TEMPERATURE passes through a range of values. 
Professor W. Kahan of the University of California at Berke­
ley has written (8): 

"No other feature would enhance safe numerical computation 
more that the provision of INTERVAL as a data type in FOR­
TRAN as readily accessible as INTEGER or REAL." 

If Interval Arithmetic is so useful why isn't it in wide­
spread use? The main reason is that on a typical computer 
a rigorous Interval Arithmetic package can cost a factor of 
100 to 300 over the ordinary floating-point arithmetic. On 
the·8087 this penalty is expected to be a factor of about 5. 
The implementation cost of providing the directed roundings 
was no greater than that of unbiased rounding so the value 
of the capability far exceeds it cost. 

Another area where the 8087 makes significant contribu­
tions to safe but flexible software is exception detection and 
handling. Exception detection on the 8087 serves three main 
functions: 

1. to report potentially fatal programming errors 
2. to permit execution to be resumed after prearranged 

response to exceptional conditions 
3. to allow functional extensions to the system. 

Each type of exception detected by the 8087 has associ­
ated with it both a flag and a mask. (The exception masks 
are part of the CONTROL word and their value is set and 
saved by LOAD CONTROL and STORE CONTROL in­
structions.) When an exception occurs, the 8087 sets a flag 
and if the flag's mask is reset, an interrupt is generated. The 
interrupt procedure (exception handler) has access to the 
address of the instruction that caused the exception and the 

From the collection of the Computer History Museum (www.computerhistory.org)



address of the referenced datum (if any). If, on the other 
hand, the exception flag's mask is set, then the 8087 executes 
an on-chip microcoded exception handler that performs the 
second function described above: the instruction's response 
to the exception is "tailored" to that desired in the vast 
majority of cases. Execution resumes but the flag remains 
set until it is read and reset by software. 

The exceptions that the 8087 detects and its response to 
. them are explained below. 

1. INVALID OPERATION: Stack overflow, stack un­
derflow, indeterminate form (0/0, 00 - 00, etc.) or the use 
of a Non-Number (NAN) as an operand. An exponent 
value is reserved and any bit pattern with this value in 
the exponent field is termed a Non-Number and causes 
this exception. 
a. Masked: If the exception was caused by using 

NAN's as operands then the NAN (the "larger" if 
both operands were NAN) is delivered as the result, 
otherwise a special NAN called INDEFINITE is 
returned. 

b. Unmasked: Interrupt before any processing. 

This exception is used for all of the purposes described. 
Indeterminate forms are usually fatal errors and should be 
reported-either immediately or by propagating INDEFI­
NITE to the end of the program and thus discovering both 
the error and how it contaminates subsequent calculations. 
Stack over/underflow is also usually fatal but an ambitious 
exception handler could use this exception to extend the 
8087 stack to memory. Finally, the NAN's can be used for 
both run time diagnostics and functional extensions. As an 
example ofthe former, one could fill uninitialized arrays with 
NAN's each of whose significands contains the value of its 
index. Thus a reference to an uninitialized array element 
would not only indicate that it was uninitialized but which 
one it was. An example of functional extension would be to 
use the NAN as a pointer into a heap of values that could 
not be stored in the specified format. This would make it 
possible to implement a nearly infinite exponent range. 

2. OVERFLOW: The result is too large in magnitude to 
fit the specified format 
a. Masked: Infinity with the sign of the correct result 

is returned. 
b. Unmasked: An encoding of the true result is re­

turned and then interrupt is signalled. 
3. ZERO DIVISOR: The divisor is zero while the divi­

dend is a finite non-zero number 
a. Masked: Infinity is delivered with the sign as the 

XOR of the signs of the operands. 
b. Unmasked: Interrupt before processing. 

Both of these exceptions, if masked, generate infinities 
which are special bit patterns and must be dealt with in a 
safe, consistent manner by the 8087 in subsequent calcula­
tions. For this reason the 8087 recognizes infinities as valid 
operands and deals with them in one of two modes, AFFINE 

. or PROJECTIVE, determined by a field in the CONTROL 

The INTEL® 8087 Numeric Data Processor 891 

WORD. The basic difference is that the affine treats all finite 
numbers. as if - OO:5x:5 + 00 while in the projective mode 00 

has no sign and cannot be compared to finite numbers. The 
affine mode is powerful but can give misleading results while 
the projective mode is always safe but not quite as useful 
as affine. The default is projective and this is the recom­
mended mode unless a user has analyzed his program and 
is sure the affine mode is safe . 

4. UNDERFLOW: The result is non-zero but too small 
in magnitude to fit in the specified format 
a. Masked: The significand of the result is denormal­

ized (shifted right) until the exponent is in range. 
This allows underflowed numbers "gradually" to 
become zero retaining as much information as pos­
sible and is called "gradual underflow." 

b. Unmasked: An encoding of the correct result is de­
livered and then an interrupt is signalled. 

Underflow is usually not a fatal error and by using gradual 
underflow (masking the exception) one can proceed, con­
fident that the risk of undetected fatal underflow is com­
mensurate with the risk of fatal roundoff damage (see 4). 

5. DENORMALIZED OPERAND: At least one of the 
operands is denormalized, it has the smallest exponent 
but a non-zero significand. 
a. Masked: The operation proceeds as if the operand 

were unnormalized. 
b. Unmasked: Interrupt without processing. This ex­

ception is used to implement, via exception han­
dlers, an optional mode of arithmetic described in 
the proposed IEEE Standard for Floating-Point 
Arithmetic (2) in which no unnormalized results are 
generated. 

6. INEXACT RESULT: If the true result is not exactly 
repr~sentable in the specified format, the result is 
rounded according to the rounding mode, the flag is set 
and 
a. Masked: Execution continues 
b. Unmasked: Interrupt is signalled. 

This exception is used to implement exact arithmetic in 
floating-point for, among other uses, accounting calculations 
and preconditioning (see 4). 

Exception handlers are difficult to write, debug and main­
tain and they consume valuable memory space at run time. 
Therefore, we have provided, on the 8087, exception han­
dling that will be ideal for the vast majority of situations. We 
recommend that most users mask all exceptions except IN­
VALID OPERATION. With the built-in exception handling 
and reliable infinity arithmetic it is the only exception that 
is likely to be fatal. User exception handling software can 
thus be kept to a minimum. 

Another special feature of the 8087 to enhance perform­
ance and accuracy is the ability to select operands from and 
return results to internal stack elements. This stack element 
addressing mechanism which has already been described is 
useful for holding common sUbexpressions and for holding 

From the collection of the Computer History Museum (www.computerhistory.org)



892 National Computer Conference, 1980 

accumulations during the execution of a loop. Another ex­
ample will further illustrate its usefulness. An important cal­
culation that is often found in the inner loop of numeric pro­
grams is the evaluation of recurrence relations. A particular 
example is the following three term recurrence 

X i+ t =aiXi+bXi-t, i=2, ... ,N-l 

U sing a typical evaluation stack this computation would 
require, in addition to the add and two multiples, five mem­
ory references-four loads and one store. The evaluation on 
the 8087 stack requires only two memory references: 

Start 
of MUltiply bi Load Multiplyai 

Loop (memory) (stack) (memory) 

l±J aXi bJ bJ bX;-t biXi- t 
Xi Xi Xi Xi 

Add Exchange 
(stack) (stack) Go to Loop 

X i+ t =AiXi-biXi-t Xi 
Xi X i + t 

The "program" shown above illustrates a general prin­
ciple. Almost all important numerical computations have 
inner loops that will benefit from the ability to access inner 
stack elements. 

High performance was another of the important design 
goals of the 8087. It is difficult to compare 8087 performance 
with other machines since it is not feasible to obtain the same 
accuracy and reliability as the 8087 on even the largest main­
frames. For example in executing a primitive instruction like 
MULTIPLY the 8087 provides: 

1. A result with an extended precision and range 
2. Correct unbiased rounding with optional direct round­

ings for error bounding 
3. Reliable exception detection and safe, automatic han­

dling 
4. Forms of the instruction to minimize memory refer­

ences. 

No other computer-mainframe or minicomputer-inte­
grates these features into a single architecture. But in ad­
dition to "architectural performance" a great deal of atten­
tion was given to raw instruction performance. For simplicity 
and execution speed the 8087 was implemented with an in­
ternal data path and ALU of 67 bits. There is a shifter that 
can shift left or right from 0 to 63 places in one clock cycle. 
This shifter was indispensable in normalization, data for­
matting and the transcendental functions which were eval­
uated using a modified CORDIC algorithm. The loops for 
MULTIPL Y, DIVIDE and SQUARE ROOT were imple­
mented with a hardware sequencer. MUL TIPL Y was optim­
ized by checking for 40 least significant zeros and skipping 

them in the mUltiply loop-this would occur if either operand 
were originally SHORT REAL or if either value were an 
integer and less than 225 in magnitude. The timing for several 
instructions demonstrates the 8087's performance. 

Instruction 

COMPARE 
ADD (MAGNITUDE) 
SUBTRACT (MAGNITUDE) 
MULTIPLY 
DIVIDE 
SQUARE ROOT 

Execution Time 
(microseconds) 

6 
10 
16 

16,24* 
38 
38 

* The shorter time applies if either operand were originally SHORT REAL 
as explained earlier. 

Additional performance is gained by the overlapped ex­
ecution of the 8086 (8088) and the 8087. The amount is hard 
to estimate but is definitely material. 

CONCLUSION 

The architecture of the INTEL ® 8087 has been described 
along with a review of its user benefits. The 8087 has un­
precedented performance, reliability and capability-it can 
be used in any numerical application to provide a hundred­
fold increase in mathematical performance over the 8086 or 
8088 alone. In contributing to and being compatible with the 
proposed IEEE Floating-Point Standard the 8087 has care­
fully balanced safety with utility. 

The many features of the 8087, when combined, can make 
it appear complex. Like a car's automatic transinission the 
8087 is complex, but also like an automatic transmission the 
user need not see the complexity to reap the benefits of In­
terval Arithmetic, reliable rounding, safe automatic excep­
tion handling and an integrated support format that virtually 
eliminates intermediate over/underflows and makes inter­
mediate roundoff error negligible. The 8087 removes many 
of the pitfalls of numeric computation. 

ACKNOWLEDGMENTS 

I would like here to acknowledge some of the many people 
who contributed to the 8087. The architectural design was 
the joint work of Bruce Ravenal and myself, relying exten­
sively on the advice of Professor W. Kahan of the University 
of California at Berkeley. Robert Koehler made significant 
contributions to the system aspects of the 8087 and Janis 
Baron designed the assembly language and implemented the 
8087 Emulator-a software emulation for systems without 
an 8087. Rafi Nave and his engineering team in INTEL IS­
RAEL implemented the 8087-the largest microprocessor 
device yet in INTEL's history, and Dar-Sun Tsien carefully 
reviewed all aspects of the implementation. The management 
of INTEL must also be acknowledged for committing sig-

From the collection of the Computer History Museum (www.computerhistory.org)



nificant resources to both implementation and promotion of . 
a standard for reliable numeric data processing. 

REFERENCES 

1. Palmer, J. (1977), "The INTEL Standard for Floating-Point Arithmetic," 
Proc. COMPSAC, 107-112. 

2. Coonan, J., Kahan, W., Palmer, J., Pittman, T. and Stevenson, D. (1979), 
"A Proposed standard for Binary Floating-Point Arithmetic," SIGNUM 
Newsletter, October. 

The INTEL® 8087 Numeric Data Processor 893 

3. Coonan, J. (1980), "Specifications for a Proposed Standard for Floating­
Point Arithmetic," Computer, January. 

4. Kahan, W. and Palmer, J. (1979), "On a Proposed Floating-Point Stand­
ard," SIGNUM Newsletter, October. 

5. Yohe, J. (1973), "Roundings in Floating-Point Arithmetic," IEEE Trans. 
Computers, Vol. C-22, No.6, 577-586. 

6. Moore, R. E. (1966), Interval Analysis, Englewood Cliffs, N.J.: Prentice­
Hall. 

7. Kahan, W. (1968), "A More Complete Interval Arithmetic," Lecture 
Notes for a course at University of Michigan, June 17-21. 

8. Kahan, W. (1972), "A Survey of Error Analysis," InformationProcessing 
71, North Holland Publishing Company, 1214-1239. 

From the collection of the Computer History Museum (www.computerhistory.org)



From the collection of the Computer History Museum (www.computerhistory.org)




