
inteT

80386
A Collection of Article Reprints

80386

A Collection of Article Reprints

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, GENIUS, i, t,
ICE, iCEL, iCS, iDBP, iDIS, PICE, iLBX, im, iMDDX, iMMX, Insite, Intel, intel,
inteIBOS, Intelevision, inteligent Identifier, inteligent Programming, Intellec,
Intellink, iOSP, iPDS, iPSC, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME, MULTIBUS,
MULTICHANNEL, MULTIMODULE, ONCE, OpenNET, OTP, PC-BUBBLE,
Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Quick-Pulse Programming,
Ripplemode, RMX/80, RUPI, Seamless, SLD, UPI, and VLSiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI and a numerical suffix,
4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

‘ MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

©INTEL CORPORATION 1986 3/86

TABLE OF CONTENTS

32-bit
microprocessor

plays Unix
and MS-DOS

programs
at the same time

32-Bit Microprocessor Can Run UNIX and
MS-DOS Programs Concurrently
Timothy J. Keating; Jan Willem L. Prak, PhD;
and Ken Shoemaker
Electronic Design, October 17, 1985 1

32-Bit /i P Is A Fine Match For Today’s
Languages and Operating Systems
Rakesh K. Agarwal; Greg Blanck; and
Dana Krelle
Electronic Design, October 31, 1985 9

The Intel 80386—Architecture and
Implementation
Khaled A. El-Ayat; Rakesh K. Agarwal
IEEE Micro, December 1985 17

Building With The 80386
Glen Shires
Computer Systems, January 1986 37

111

iny

SOLUTIONS
ttttW,--------------- XfSttQtg&XH

80386 Cache Design
Glen Shires
Solutions, November/December 1985 ----- 43

TECH NOTES Tech Notes On The 80386
Stephen E. Yoken; Paul Johnson;
Peter D. Schleider; and James I. Magid
Tech Notes, December 1985 51

IV

INTRODUCTION
This co llectio n o f articles h ighlights the fea
tures, benefits, and market im plications of Intel’s
new 32-bit m icroprocessor, the 80386 . W ith its
high level o f perform ance and uniquely flexible
architecture, the 803 8 6 is an excellen t m atch to
the needs o f a w ide range o f application areas—
from factory m achine control to engineering
w o r k sta tio n s and m u ltiu ser d ep a rtm en ta l
computers.

T he first three articles provide an overview of
the 386, w ith concentration on application and
system software programming m odels. The flex
ibility o f the 386 , as w ell as the perform ance
characteristics o f its architecture are h igh
lighted. Two additional articles discuss hardware
design aspects o f the 386, includ ing the special
features o f the 386 that allow im plem entation of
fast, e ffic ien t m ain m em ory and cache designs.
Finally, the last article provides an overview of
the im plications that the 386 is expected to have
on m icroprocessor and application markets.

I hope you find this set o f articles useful in
understanding the 386 and the substantial capa
bilities it offers.

Sincerely,

G ene H ill
386 Product Line D irector

I n te l

A HAYDEN PUBLICATION

N A d lR B — WORLDWIDE

COMPUTER-AIDED ENGINEERING Product Report:
• Simulation software • Probabilistic fault grading Hybrid ADCs push up speed,
• Design system for programmable logic add sample-and-hold amps
• Fast general-purpose accelerator

microprocessor
plays Unix

and MS-DOS
programs

at the same time

iny

DESIGN ENTRY
32-bit microprocessor

can run Unix and MS-DOS
programs concurrently
On-chip paged and segmented MM Us and 3- to

4-MIPS performance are just two of the noteworthy
features that distinguish the latest 32-bit /iP.

This is the first, article in a three-part, series on the
80386, the newest 32-bit, m icroprocessor. It concen
trates on the chip's hardware. The other articles will
focus on the chip’s features from the point, o f view of
software, both operating systems and applications pro
grams, and on the system design considerations.

W ith the appearance of the first 32-bit parts,
microprocessor-based systems began to
encroach on the performance of minicom

puters in applications like engineering workstations,
high-resolution graphics, robotics, and office auto
mation. Only large systems, however, could furnish
most of the features needed by such advanced appli
cations—primarily throughput and memory sup
port.

System size need no longer be equated with per
formance. One 32-bit microprocessor now delivers an
unprecedented 3 million to 4 million instructions ev
ery second. The 80386 also is the first to put paged
and segmented memory management units on chip.
Thanks in large part to the internal MMUs; to its bi
nary compatibility with its 16-bit predecessors, the
8086 and 80286; and to hardw are for fast context
switching, it has a virtual machine capability, en
abling it to switch between programs written for dif
ferent operating systems, such as Unix and MS-DOS.
Hence it opens the wide world of MS-DOS programs

Timothy J. Keating; Jan Willem L. Prak, PhD;
and Ken Shoemaker
Intel Corp., 3065 Bowers Ave., Santa Clara, CA
95051;(408)987-7471.

to Unix systems.
Other features that add to the processor’s punch

are a pipelined architecture, a set of eight 32-bit
general-purpose registers, a complete set of instruc
tions for manipulating an extremely wide range of
data types, and 11 addressing modes. (Included in the
hardware is a barrel shifter tha t can shift up to 64
bits in a single clock cycle.)

But the processor’s accomplishments do not end
there. A fast local bus and separate data and address
buses, coupled with a two-clock access cycle, result in
the highest bus bandwidth of any m icroprocessor-
32 Mbytes/s with a 16-MHz clock. The dual-clock bus
timing accommodates high-speed local memories

Reprinted with permission from Electronic Design, Vol. 33, No. 24;
copyright Hayden Publishing, Co., Inc., 1985.

2
Electronic Design • October 17, 1985

DESIGN ENTRY

Cover: 32-bit microprocessor

and caches (static RAM); to work comfortably with
slower memories (dynamic RAM), addresses can be
pipelined.

Finally, the chip carries hardware for system de
bugging and self-testing to an extent not seen before
in microprocessors. Specifically, four debugging
registers furnish the ability to set data breakpoints,
in addition to the more familiar instruction break
points.

Chip holds 275,000 devices

Making possible all that capability on a single chip
are over 275,000 transistors. Fabricated using Intel’s
1.5-/um CHMOS III process, the 386 operates a t a
clock frequency of 12 or 16 MHz and consumes no
more than 2 W. To allow nonmultiplexed buses and a
large number of control lines, the device is housed in
a 132-lead ceramic pin-grid array.

For memory m anagement, the segmented and
paged architecture, each backed up by a 32-entry

1. Suitable operating systems for the 32-bit 80386
microprocessor can run 16-bit applications as tasks
by using a virtual machine mode. Both 32- and
16-bit programs—say, those written for Unix and
MS-DOS—can run concurrently.

cache, allows designers to select the scheme they
require. For simple applications, segment sizes can
reach 4 Gbytes (the entire physical address space of
the chip), thus supplying a linear address space for
those programs that require it. The logical address
space itse lf is awesome for a m ic ro p ro cesso r-
64 terabytes (2'ui bytes).

In more sophisticated applications, segmentation
ensures protection and modularity for any size code
or da ta struc tu re , while paging affords physical
memory management in virtual memory systems.
The designer can use segmentation alone, paging
alone, or join the two to make the most of their
power: The choice of memory management fits the
requirements of the wide spectrum of 32-bit systems.

As indicated, designers that have developed pro
grams that run on the processors’ forerunners—the
8086,80186, and 80286 families—will not be left out in
the cold. The 80386 serves as a virtual environment
tha t allows 8086 programs to run as guests under
new, appropriately written 32-bit operating systems
(Fig. 1). Programs created for the 8086 would be en
capsulated within an 80386 task, and since 80386
tasks can be protected and paged in virtual memory,
those two features would then be available to 8086
programs.

Furtherm ore, because the segmented memory
management and protection mechanism of the 80286
and 80386 are identical, no changes are necessary to
the operating system routines in charge of managing
the memory. If paging is called for, routines to man
age the pages can be added with the help of the seg
mentation software. Both 16- and 32-bit code can co
exist in the same system, and each can even call the
other, allowing new 32-bit code to make use of cur
rent 16-bit programs.

W hat’s more, multiple 8086 programs can concur
rently run on the same 32-bit processor, with each
program appearing to have its own processor and
address space. Paging handles mapping the proc
essor address spaces to the disk for swapping, and
the protection mechanisms come through with all
the hardware hooks needed to implement a virtual
machine monitor. (A virtual machine monitor, in
this case, is a program that maps resources from the
virtual m achine—the 8086—to the host operating
system.) The hooks include I/O and address space
protection traps and interrupt traps that allow the
monitor to emulate the virtual environment. Oper
ating system s, peripheral devices, and even b it
mapped graphics programs can thus be emulated.

Electronic Design • October 17, 1985

Since memory management is done on chip, the
processor avoids the serious performance degrada
tions caused by wait states, which are inherent in
system s th a t use off-chip memory m anagement.
Also, since the management functions are always
available, memory management software standards
are possible—a key point th a t allows freedom in
p o rtin g o p e ra tin g sy stem s betw een d iffe re n t
386-based systems.

Performed by an octet

Within the chip the instruction processing is bro
ken up into eight steps, with each performed by a
separate optimized processing unit (Fig. 2). That
scheme allows every step of any instruction to be
completed quickly. It also permits several instruc
tions to be in progress simultaneously, each in a dif
ferent stage of execution.

The bus interface unit performs external bus ac
cesses; while the bus is idle, the prefetch unit fills an
operation-code queue. The instruction decoder deci
phers the op codes to fill an instruction queue. In the
data unit are the ALU, registers, and the 64-bit bar

rel shifter, all of which are manipulated by the mi
crocode in the control unit. The la tte r unit, which
also contains interrupt, processor, and coprocessor
control circuitry , executes commands th a t come
from the instruction queue.

The segmentation unit converts logical addresses
into linear addresses using the chip’s segment de
scriptor cache. The paging unit incorporates a 32-en-
try descriptor cache to convert linear addresses into
physical addresses. Finally, the memory m anage
ment test unit performs checks for protection viola
tions and for the presence of pages in external memo
ry, as well as other memory management functions.

Fast—and flexible

Although the processor can run at 1(5 MHz, it does
not require premium-speed memories. To take ad
vantage of slower chips for main memory, the chip
adds a novel control input, called Next Address. The
input allows external hardware to switch from the
bus’s fast two-clock access to a slower pipelined mode
in order to increase the address access time without
decreasing the data bus bandwidth. Address pipe-

2. Divided into eight subprocessing units, the 80386 microprocessor takes full advantage of pipelining to per
mit many of the subunits to operate in parallel. The architecture helps produce a speed of 3 to 4 MIPS.

Electronic Design • October 17, 1985

4

DESIGN ENTRY

Cover: 32-bit microprocessor

lining works by overlapping the address of the next
bus cycle with the data already on the bus during the
last clock of the previous bus cycle. Thus the pipe
lined cycle has a three-clock-cycle latency from ad
dress to data but consumes only two clocks on each of
the address and d a ta buses to m ain ta in the 32-
Mbyte/s bandwidth.

To remain compatible with 16-bit hardware, the
processor can change the bus size during any bus cy
cle. That allows systems to mix 16- and 32-bit periph
erals, buses, and memory boards, thereby enabling
users to take advantage of the broad range of readily
available peripherals.

An input signal called Bus Size 16 (BS]6) can be ac
tivated by, say, an external memory system. The chip
will automatically convert transfers that are larger
than 16 bits or are misaligned into two transfers. The
entire function is invisible to the programmer, who
can continue to write code independent of the bus
width. As a result, the external hardware required to
support both main 32-bit memory and 16-bit I/O,
EPROM, or system bus is easy to design.

Full sets

W ithin the data unit are eight interchangeable
32-bit general-purpose registers. Any of these reg
isters can be used as accumulators for arithmetic or
logical operations, as address registers, or as data
registers. Additionally, they can handle 8- or 16-bit
operations. For the latter, the low word (16 bits) of
each register is directly accessible. For 8-bit oper
ations four of the 16-bit registers can be split into

pairs of separate 8-bit registers.
Full 32-bit instruction pointer and flags registers

record and control the processor state. The instruc
tion pointer contains the full 32-bit offset of the next
sequential instruction to be executed. The flags reg
ister contains three kinds of flags (Fig. 3). The status
flags reflect the outcome of computations such as
parity, sign, and overflow. The control flags modify
the operation of some instructions—for example, di
rection flag is set to control self-incrementing/de
crem enting indexes for block move instructions.
System flags control system-wide resources and
functions like I/O privilege, external interrupt mask
ing, and virtual machine control.

Many options

The processor’s instruction set is a superset of the
8086’s that provides for full 32-bit data and address
m anipulation; among its enhancements are a full
complement of bit manipulation commands. Most in
structions operate with any general-purpose register
and allow for 8-, 16-, or 32-bit operands. A wide spec
trum of data types can be handled—integers, bytes,
strings and bit strings up to 4 Gbits long.

On the average, the typical instruction length has
been kept to just 3.1 bytes, and the average instruc
tion time has been reduced to 4.4 clock cycles. Short
instructions and low instruction clock counts form
the base for the 386’s 3- to 4-MIPS performance.
Many factors combined to give these impressive re
sults, some of the most notable being the fast 64-bit
barrel shifter and multiplication and division hard-

3. The 13 flags in the 32-bit flags register can be divided into three classes: status,
control, and system. The first class indicates the result of computations, the sec
ond modifies how some instructions are executed, and the third governs system-
wide resources.

Electronic Design • October 17, 1985

intel

ware that yields 32-bit results in 0.5 to 2.4 gs (when
the chip runs at 10 MHz). The barrel shifter operates
in parallel with the ALU to speed bit manipulations,
multiplication and division, and shifting and rota
tion.

Virtual memory management makes it possible
for program s larger than physical memory to be
transparently mapped from secondary storage to
physical memory. Consequently, very large pro
gram s can be written without regard to the main
memory size of different target systems. Address
translation, swapping, and protection data are kept
in memory-based lookup tables. Operating systems
and memory management hardware use this infor
mation to transla te from logical into linear into
physical addresses and make program protection
checks.

Within the processor, the first step in the transla
tion is through the segmentation unit. Segmentation
manages each user’s logical m em ory—different
sized segments (up to 4 Gbytes) can be set up for code
modules and different types of data (file buffers, pro
gram variables, work areas, and so forth). The pro
grammer can also break up logical memory accord
ing to the organization of program routines, thus
permitting different routines to be modularly com
piled at separate times. By nature, both code and
data vary in size; segmentation ensures the right vir
tual memory fit, assigning only as much memory as
needed for the individual routines and data. It is a
way of directly relating memory organization and
usage to program code and data structures.

value held in a segment register (Fig. 4b). In doing
the transform ation , the segm entation hardw are
checks the access against the limit and access rights
for the segment used to ensure the integrity of the
memory reference. If the chip’s paging mechanism is
disabled, the calculated linear address becomes the
physical address used by the processor.

Further, programmers need only manipulate off
sets as effective addresses. Instructions need not ex
plicitly specify which segment register is used, be
cause the correct segment register is automatically
chosen for each instruction. Code references use the
code segment (CS) register, data references use the
data segment (DS) register, and stack references use
the stack segment (SS) register. Three extra, uncom
mitted segment registers add flexibility—for exam
ple, when m anipulating multiple data structures.
The extra registers (ES, FS and GS), reflect the way
programs are written, that is, as independent mod
ules that require areas for code and data, a stack, and
access to external data areas.

Since there is the potential for segments as large
as 4 Gbytes, an efficient mechanism to manage phys
ical memory becomes necessary. A lthough such
management is not an issue for static systems, trans
ferring large segments of hundreds of kilobytes be
tween disk and physical memory can be slow and
cumbersome in dynamic systems. Consequently, the
processor uses its paged memory manager to handle
the physical memory.

When operating under segm entation, the chip
breaks up large segm ents into sm all fixed-size

Logical addresses for segmentation

Under segmentation, the addresses that the pro
grammer sees are called logical addresses. The log
ical address (48 bits) consists of a 16-bit segment
selector and a 32-bit segment offset. The segment
selector indexes into a table of segment descriptors.
Segment descriptors contain the base address, the
lim it, and the access rights (such as read-only or
read/write) and “ privilege” information that specify
the type of accesses tha t are permitted to the seg
ment. To keep the speed high, current segment se
lectors and descriptors are automatically loaded at
program initialization into six high-speed segment
registers (Fig. 4a).

The 48-bit addresses are transformed by the seg
mentation hardware into a 32-bit address called a
linear address. That transformation is performed by
adding the segment offset to the 32-bit segment base

Pointer

CS

DS

ES
FS

GS
SS

(a) (b)

4. To handle segmentation, 48-bit words are divided
into a 16-bit segment register and a 72-bit descrip
tor cache (a). To perform segment computations,
the segment register points to the desired segment
descriptor, which is automatically loaded into the
cache, and the descriptor is added to the offset
value to form a 32-bit linear address (b).

Electronic Design • October 17, 1985

6

DESIGN ENTRY

Cover: 32-bit microprocessor

blocks. Instead of loading the entire segment, the
operating system loads the individual pages as need
ed. That sim plifies the m anagem ent of physical
memory. It also allows for small amounts of physical
memory to be allocated for each task; rather than
having many megabytes per task present in physical
memory, the operating system only needs to keep a
current working set of pages. The approach takes ad
vantage of the locality of reference displayed by most
program s and supports efficient m anagement of
physical memory, both main memory and swapping
storage.

The page-based protection mechanism allows easy
implementation of a demand-paged virtual memory
system. To support page-based virtual memory, each
4-kbyte page can be designated as present or not
present, dirty, accessed, user/supervisor, or read/
write. If a page is not present, it must be restored to
physical memory before it can be accessed. When
ever a page that is not present is accessed, the pro
cessor signals the operating system by raising a page
fault indicator. The operating system page fault han
dler would typically pull the page in from disk, and
then the faulting instruction is restarted. Every in
struction may be restarted after a page fault.

The programmer controls paging through two lev
els of memory-based tables and two internal reg
isters (Fig. 5). At the lower level, the page tables map
the pages; at the higher level a page directory maps

the page tables. An entry in a page directory or a
page table requires four bytes, and each page direc
tory and each page table is 4 kbytes long. Thus each
contains 1024 entries. Hence only a single page direc
tory, mapping 1024 tables, need be used to map the
entire 4-Gbyte linear address space.

To ensure high performance, the memory-based
page tables are not actually referenced for each phys
ical address translation; instead the chip includes a
4-kbit associative cache for paging information. The
cache, which is called a translation look-aside buffer,
or TLB, contains the most recently used linear ad
dresses and their translated physical addresses.

The cache is implemented with on-chip hardware
consisting of control logic and a 32-entry page de
scriptor cache (Fig. 6). Since the address translation
caches are part of the memory management unit, ad
dress translation can be done in parallel with other
CPU activities.

The cache is organized as a four-way set-associ
ative type. With such a cache and the 4k-page size,
the processor can internally hold the mapping infor
mation for 128 kbytes of memory. Simulations show
that this setup provides a hit ratio of greater than
98%, thus minimizing the performance impact of en
abling the paging. The address generation time is the
same when paging is enabled or disabled; however,
there is a small performance penalty paid (2% to 4%)
when page table entries must be fetched from exter-

5. The two-level paging scheme starts with the page directory and then moves
down to the page table, which maps the pages. Once the page is located, its ad
dress is added to an offset value to access the desired address in main memory.

Electronic Design • October 17, 1985

7

DESIGN ENTRY

Cover: 32-bit microprocessor

nal tables on cache misses.
To allow multiple programs to execute concurrent

ly, the operating system m ust be able to support
multitasking. Because task switching occurs so fre
quently, special high-speed hardware to perform the
operation was included on the chip, perm itting a
complete task switch with a single instruction or in
response to an interrupt. A 16-MITz processor can
save the state of one task (all registers), load the
state of another task (all registers, including seg
ment and paging registers if required), and resume
execution in less than 17 gs.

Avoiding accidents

One of the most common problems in multitasking
systems occurs when a task accidentally violates the
address space of another, thereby using or modifying
the other task’s code or data. To counter that prob
lem, the processor perm its any task to have a sep
arate address space, which is enforced by hardware.
The protection mechanism also offers up to four priv
ilege levels to protect sensitive code and data within a
task. Additionally, read, write, read/write, and exe
cution privilege can be granted on a segment or page
basis. T h a t allows a com bination of opera ting
system, system services, shared libraries, and appli

6. To speed the page lookup process, a 32-entry
page descriptor cache, or translation look-aside
buffer, is included in the MMU. The cache permits
page addresses to be looked up quickly when the
desired page is not in the physical memory.

cation programs to reside in a common virtual ad
dress space, yet still to be protected.

For software design, one of the most time-consum
ing phases is integration and debugging. External
program debugging tools are used to test and mon
itor the operation of each module as it interacts with
other modules, but hardware support for these soft
ware tools has been very limited, with only simple in
struction breakpoint in te rrup ts and single-step
capabilities.

The processor contains a set of four debugging
(breakpoint) registers into which linear addresses
can be placed by a software debugger. If the pro
cessor attem pts an access to the address in one of
these registers, it will trap to the debugger. The pro
cessor can be set to trap when a memory read, a
memory write, either a memory read or a write, or an
instruction execution is attempted to the address in
one of these registers. These registers thus simplify
the design of sophisticated debuggers and allow the
designer to implement features that were not possi
ble without hardware support, such as breakpoints
on data reads and writes and breakpoints in ROM.

To sim plify the design of such d iagnostics as
power-up system confidence tests, the processor can
be directed to tes t itself upon reset. When so re
quested, it enters a mode in which it tests over 75% of
its 275,000 transistors. After the check is performed,
a resu lt signatu re is placed in two of the chip’s
general-purpose registers and the processor begins
executing code at the normal reset location. User-
supplied restart code can then check the signature
from the internal self-test to ensure th a t the proc
essor is operating properly before attempting to per
form any meaningful work.D

Timothy Keating, a product manager, has been with
Intel for four years and has held various positions in
the company's U.S. and European operations. He re
ceived a bachelor’s degree in computer and electrical
engineering from the University of Santa Barbara.
A senior project manager, Jan Prak also has worked
at Intel for four years. He earned doctoral and mas
ter's degrees at North Carolina State University.
Ken Shoemaker, a graduate of Purdue University’s
Electrical Engineering program, is a design engineer.

Electronic Design • October 17, 1985

DESIGN ENTRY ELEC TR O N IC DESIGN EXCLUSIVE

32-bit juP is a fine match
for today’s languages

and operating systems

By supporting the data types, constructs, and other features
of modern languages, a microcomputer can outperform minis

while remaining compatible with its predecessors.

This is the second article in a series on the 80386 mi
croprocessor. The first part, which appeared in the
Oct. 17 issue (p. 115), focused on the chip's architec
ture. The final installment will cover system design
considerations.

For many microprocessor-based systems, soft
ware has become the dominant development
consideration. All too often, it also is the pre

m ier cause of delays. System s like m ultitask ing
engineering workstations, multiple-cell process con
trollers, and multiuser transaction processors usual
ly incorporate sophisticated software. To be success
ful, then, a high-end microprocessor m ust satisfy
stringent software demands.

First and foremost, a 32-bit processor must accom
modate efficient compilers. That way both operating
systems and application programs will reflect the de
vice’s inherent abilities. Second, the chip must also
deliver the high throughput required by advanced
software. Third, the chip must support the large log
ical address spaces required for program s run by
both engineering and business workstations. Fourth,
ensuring that confidential data remains secure is a
key concern in military and financial applications.
Finally, compatibility with previous microprocessors
is highly desirable, so that existing software remains
usable.

The 32-bit 80386 makes the grade on all of these is-

Rakesh Agarwal. Greg Blanck, and Dana Krelle
Intel Corp., 3065 Bowers Ave., Santa Clara, CA
95051; (408) 987-5778.

sues. Its extensive register set, as well as some of the
types of data it handles, is geared to writing efficient
compilers and guarantees fast context-switching in
real-time systems. Further, its rich set of data types
and operators make sure that it is fluent in nearly all
of today’s sophisticated languages. The chip’s seg
m entation and paging units fill the bill when the
large logical address spaces are the order of the day,
and its levels of protected memories keep the most
sensitive data safe. Lastly, to ensure th a t already
written code remains current, the processor’s pro
tected mode enables it to execute unaltered 8086 and
80286 code automatically.

Unrestricted registers

Naturally, the chip’s power is rooted in its main ar
chitectural features. Its set of 32-bit general-purpose
registers, for one, may be used, without restriction,
either to carry out calculations or to form memory
addresses. The eight registers (EAX, EBX, ECX,
EDX, ESP, EBP, ESI, and EDI) supply ample room
to implement the most common addressing modes, or
to accommodate a generous set of register variables
without wasting silicon. Furthermore, the set incor
porates the 286’s 16-bit registers, some of which con
sist of 8-bit segments.

Three control registers and the flags register over
see m achine behaviour and report the s ta tu s of
various operations. For their part, the six segment
registers (CS, DS, ES, FS, GS and SS) can structure
the 64-terabyte (246-byte) address space into sep
a ra te logical spaces, or segm ents (Fig. 1). Each

Reprinted with permission from Electronic Design, Vol. 33, No. 25;
copyright Hayden Publishing Co., Inc., 1985. Q

Electronic Design • October 31, 1985

DESIGN ENTRY

32-bit microprocessor

program can then have six logical address spaces
mapped at one time, including four data spaces. Fur
thermore, six debugging registers permit up to four
code or data breakpoints to be defined, making for
previously unrealizable debugging ease.

One common use of registers is to store operands.
For instance, to perform the simple computation
Distance = Speed X Time, the following instruction
sequence might be used:

MOV EDI, ESI ; Save Speed in EDI
IMUL EDI, EBX ; Multiply Speed with Time

Mere, Speed is originally stored in ESI and Time in
EBX; the result is stored in EDI. When it comes time to
write the compiler, such a scheme is especially ef
fective for languages like C th a t define reg ister
variables. The orthogonal qualities of the processor’s
addressing modes provide the user with several reg
ister variables.

If the variables do not reside in registers, operands
must be fetched from memory. In its simplest form,

Bit

ister size (bits): 32 8 16 8

31 16115 8 |7 0

EAX i AH _L. AX AL

EBX i BH 1 BX BL

ECX i CH | CX CL

EDX I DH I DX DL

ESI i SI

EDI i Dl

EBP i BP

ESP i SP

80286 register set

CS
DS
SS

ES

FS
GS

V Gen
/ regij

General
registers

Segment
registers

EIP (instruction pointer)

Flags register

1. In the 80386 register set, the general registers can
be used to store 8-, 16-, and 32-bit data (high
lighted). Together with part of the segment registers
they can substitute for the 80286 register set to exe
cute 16-bit programs (overlay). The instruction
pointer covers the full address space, and the large
set of flags supports complex systems.

the effective address (or byte index) of an operand
within a given logical address space can be directly
specified in an instruction. A particular memory ad
dress, however, is often not known until the program
is actually executing—say, in accessing a dynamic
array and executing relocatable code. In those cases,
the microprocessor forms an effective address by
sum m ing the con ten ts of one, or two, genera l-
purpose registers and an optional constant value, or
displacement.

An effective address, EA, is generated by:

Base + Index X Scale + Displacement

where the base value can be stored in any general
register, and the index in any general register other
than ESP, whose contents always point to the cur
rent stack and can be easily used for stack-relative
addressing. The scale is a constant value—1,2,4, or 8
(depending on word length) —by which the index
may be multiplied. The displacement field is also a
constant; its value may range anywhere from — 2:il to
+ 2;" —1. Because the base, index, and displacement
are optional, as is the scale when an index is present,
the processor supplies 11 distinct 32-bit addressing
modes. That set contains all of the most commonly
used modes employed by compilers for advanced
high-level languages (Table 1). In addition, direct
and register operands are also furnished.

Base displacement

Assume that parameters are passed to a subrou
tine by pushing them onto a stack. The last param
eter could be obtained from register EAX in two
clock cycles by using the base-displacement mode:

MOV DWORD PTR [ESP+ 4] , EAX

Sim ilarly , suppose th a t the po in te r nextRecord
is stored in register EAX. In four clock cycles, it can
be linked into a data structure—without additional
overhead—using the instruction:

MOV EAX, DWORD PTR [EAX + LinkOffset]

Finally, imagine that V points to a dynamically al
located integer vector and th a t the term V[i + 2]
should be initialized to 5. If V is loaded into the ESI
register and is a register variable stored in EDI, the
following statement performs the desired operation
in three clock cycles, working with the based scaled-
index displacement mode:

MOV DWORD PTR [ESl + EDIM + 8] , 5

EHecIlroniic Design) • October 31, 1985

The use of scaled indexing to generate a byte index
into a 4-byte integer array eliminates the need for
another instruction to generate the byte index.

The processor’s high performance is manifested in

the low clock counts required for each of the instruc
tions. A lid is kept on clock counts because, when exe
cuting in-line code, the effective address formation
for a given instruction starts during the last clock cy-

7 o
Signed 111111

byte
Sign bit _f

I____ I
Magnitude

Unsigned
byte min

I_____ I
Magnitude

+ N + 1 0
7 0 7 0 7 0

Binary
coded

decimal

digit N digit 1 digit 0

n 111 i t • • • 1111111

BCD BCD BCD

+ N
7 0

+ 1
7 0 7

ASCII uijiir
mini min

BCD
character N

ASCII ASCII
cha racte r! character 0

+ 1 0
15 14 8 7 0

Signed I 111111111 111111
word

Sign Bit _t

Magnitude

+ N +1 0
7 0 7 0 7 0

Packed
BCD

significant digit significant digit

TTTJTTT llljlll llljl

Most Least

+ 3 + 2 +1 0
31 16 15 0

+ N + 1 0
7/15 0 7/15 0 7/15 0

Signed double ttjttt l l l | l l ! 111]TTT n 11 n i Byte TTTJTTT Tl11111 TTTJTTT
word string

Sign bit _f Byte/word N Byte/word 1 Byte/word 0
I

Magnitude

+ 7 + 6 + 5 + 4 + 3 + 2 +1 0
63 48 47 32 31 16 15 0 4 Gbits 210

Signed quad
word

Bit
string

®9®

Sign bit _t
I_____________

Magnitude

+1 0
15 0

Unsigned
word

|ll|l!l |lll |lll

Magnitude

Unsigned double
word

+ 3
31

+ 2 + 1 0
0

TTTJTTT TTTJTTT TTTJTTT m i n i

Magnitude

Short
32-bit

pointer

Long
48-bit

pointer

+ 3
31

+ 2 + 1 O

O

TTTJTTT 1111111 l l l | l l ! 1111111

Offset

+ 5
48

+ 4 + 3 + 2

TTTJTTT TTTJTTT TTTJTTT TTTJTTT

I___________!_
Selector Offset

+ 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 +1 0 Byte index
79 0

Floating J "
point

Sign bit _t

Exponent Magnitude

2. Binary coded decimals, bit and byte strings, and floating-point integers are among the numerous data
types that the processor accommodates. Such dexterity lets the device meet the needs of virtually all high-
level languages. (Unless otherwise noted the left-most digit is the most significant one.)

Electronic Design • October 31, 1985

DESIGN ENTRY

32-bit microprocessor

cle of the previous instruction. Since it takes only one
clock cycle to form an effective address (except when
an index is specified), the address formation time is
almost always hidden.

Since memory management is on chip, time taken
to create the effective address includes the logical-to-
physical address translation. Thus the processor ex
hibits virtually no address generation and transla
tion delays. Only when an index is used, a second
clock cycle is needed to create an effective address.

To extend its usefulness and to protect existing
software, the microprocessor is compatible with the
addressing modes of all of the 16-bit members of the
8086 family. Moreover, the processor supports all of
the fundamental data types found in most high-level
languages (Fig. 2). Its basic operations, when ap
plicable, can work w ith any of these data types
(Table 2).

To start, an integer is a two’s complement signed
num ber in the range of — 2'!1 to + 2 'u —1 (about
±2.15 billion). If only smaller numbers are needed,
16- and 8-bit signed integers are also supplied. An ex
ample of an integer operation can be seen in the in
struction sequence:

IMUL EBX, V [EDX*4]

and 8-bit variants of ordinals are available.
Another data type is the pointer, which identifies a

memory address. All pointers have two components:
a 16-bit selector that names the logical address space
and a 32-bit effective address, or offset, that specifies
the byte index within the logical address space. Since
addresses can be generated with an implied selector,
the full 48-bit selector-offset pair can often be abbre
viated as the 32-bit offset, which can address a linear
4-Gbyte address space. A compact version features a
16-bit selector and a 16-bit offset, which also works
with 8086 fam ily softw are (A more detailed dis
cussion of the addressing mechanism can be found in
part 1, Oct. 17, p. 115).

Accessing single bits

In system software, individual bits must often be
accessed. Single bits or contiguous sequences up to
31 bits long can be retrieved from —or stored in—a
string tha t extends to 4 Gbits. An example imple
ments a semaphore by performing an atomic (locked)
test-and-set on the second bit of the sema byte and
waiting until the bit is clear:

waitLp: LOCK BTS sema, 2
JC waitLp

Here, the contents of the EBX register are multiplied
with the Nth element of the integer array V, where N
is stored in EBX and the result in EDX.

Ordinal num bers are unsigned integers in the
range 0 though 2:!2 — 1. As with integers, 32-bit 16-bit,

Table 1. 80386 addressing modes

Components of address Mode

Disp
Base
Base + Disp

Displacement only
Base only

Base displacement

Index
Index X Scale
Index + Disp
Index X Scale + Disp

Index only
Scaled index

Index displacement
Scaled index displacement

Base + Index
Base + Index X Scale
Base + Index + Disp
Base + Index X Scale + Disp

Register
Immediate

Based index
Based scaled index

Based index displacement
Based scaled

index displacement
Register operand

Immediate operand

Alternatively, consider a C program fragment that
defines the bit fields for the variable accessRights:

struct) Present: 1;
DPL : 2;
Seg : 1;

ECRA : 4;
) accessRights;
regVar accessRights.DPL;

Assuming regVar is a register variable stored in ESI,
this code translates directly into the processor in
struction sequence:

MOV CL, 2; setup field length
MOV EAX, 5; setup field offset (1+4)
XBTS ESI, accessRights, EAX, CL

To facilitate floating-point operations, the chip
can be teamed with either the 80287 or 80387 math
coprocessor. Both augment the types of data that the
processor m anipulates to encompass 64-bit long
integers, 18-digit BCD integers, 32-bit single-real
values, 64-bit double-real form ats, and 80-bit ex
tended-real digits. The coprocessors also furnish a
comprehensive set of numeric instructions suited to
these data types.

Electronic Design • October 31, 1985

To accommodate BCD numbers, prim itives are
supplied that help set up both packed and unpacked
decimal arithm etic. In addition, arithm etic oper
ations on 80-bit packed decimal numbers are fielded
by the math coprocessors.

The processor also is targeted for 64-bit operations
such as multiplying integers and ordinals. Divisions
th a t yield 64-bit products and dividends are also
within its grasp, and multiple precision addition and
substraction are implemented easily with the help of
add-with-carry and subtract-with-carry operations.

More than math

Beyond arithmetic, the processor also carries out
64-bit shifts with 32-bit results. Those calculations
are useful for creating high-performance loops to
process unaligned, memory-based operands. A rou
tine to move a bit string from one location to another
—one double word at a time—might be desired in a
bit-m apped graphics system (see the program ,
p. 167). First, however, the counter variable must be
set and the source pointer, SP, incremented. Assume
here that register ESI holds a double-word-aligned
source address. Register CL stores the bit offset BO
that points to the start of the bit string, and EDI con
tains the destination address.

The rou tine assum es th a t the d es tin a tio n is
double-word aligned. If it is not (i.e., if an arbitrary
bit field is selected), it is only necessary to move suffi
cient bits from the source to the destination to align
the latter. Then the program can be used.

So far the processor has been looked at only from
the application program’s point of view. Equally im
portant is the view from the side of the operating
system that manages the application environment.
By including many of the features required by an ad
vanced operating system on chip, the processor es
tablishes the framework to design fast, simple, and
standard operating systems.

Such operating-system support is totally invisible
to the application program. Functions featured on
chip include a versatile memory management unit
tha t encompasses segmentation and paging. Also,
fast task switching in hardware facilitates efficient
m u ltitask ing , while the ab ility to dynam ically
execute and address 16- and 32-bit code further en
hances the chip’s versatility.

An operating system, in addition to allocating
memory, must isolate and protect each application
from all others. Both segmenting and paging can be
used to enforce this isolation. For example, the access
control field of the segment descriptor handles many
different types of information. A read-only segment,
say, could be defined to hold sensitive system config
uration data. Alternatively, an execute-only code
segment might be created to ensure that a program
will not be corrupted. Other segment types, such as
the task state , are on hand to improve execution
speed. And an operating system is free to dynamic
ally create segments as required by the executing
application. In fact, the chip can assign up to 16,384
segments to a task. Combined with the 32-bit offsets,

Table 2. Basic operations on expression types

Operation

Type of expression

Integer Ordinal String
Bit

string
Floating

point BCD

Move
To and from memory,
convert precision

Yes Yes Yes Yes Yes1 Yes2

Arithmetic
Add, subtract,
multiply, divide,
negate

Yes Yes No No Yes1 Yes2

Logical
And, Or,
exclusive OR,
shift

Yes Yes No No No No

Compare Yes Yes Yes Yes Yes1 Yes2
Transcendental

functions No No No No Yes1 No

^Available directly with 80287 or 80387 math processors.
ASCII and decimal adjustment instructions are supplied to implement efficient loops. BCD is supported
directly by the 80287 and 80387 math coprocessors.

Electronic Design • October 31, 1985

DESIGN ENTRY

32-bit microprocessor

that makes for the aforementioned logical address
space of 64 terabytes that is available for each task.
Besides relocation and protection, descriptors also
deliver semantic controls for each segment, used to
specify the word length of its contents.

Because the processor’s segmentation mechanism
is capable of incorporating various degrees of protec
tion in a system, the integrity of a program address is
always guaranteed. Specifically, an application-gen
erated offset is added to the segment’s base value to
create the linear address. If the offset is greater than
that allowed by the segment descriptor’s limit field, a
protection violation occurs. A semantic control bit,
called the Granularity bit (G bit), interprets the limit
field within the descriptor: A value of 0 indicates an
absolute limit (byte-granular limit); 1 signifies that
the restriction specifies a page (page-granular limit).

Levels of privilege

The limit fields are supplemented by program lev
el protection, which is based on privilege levels. The
access right byte of each segment descriptor contains
a descriptor privilege level (DPL) that identifies the
access permitted for a particular segment. Privilege
levels range from 0 to 3, with the first being the most
privileged (Fig. 3). At any point, the processor’s cur
rent privilege level (GPL) is determined by the privi
lege level of the executing code segment.

As a rule, a program has the right to access seg
ments that are no more privileged than itself and to
call other programs tha t are a t least as privileged.
Interlevel transfers are fielded by a special descrip
tor, the call gate, which furnishes a controlled entry
point to more privileged routines.

Intertask protection is furthered by defining an in
dividual local descriptor table (LDT) for every task.
Using a separate LDT logically isolates each applica

A double-word shift
MOV EBX, Length Set loop counter to

string length
LODS EAX, [ESI] Grab first DWORD,

increment SP
MOV EDX, EAX EDX first DWORD

loop: LODS EAX, ESI Grab next DWORD,
increment SP

SHRD EAX, EDX, CL Align DWORD shifted by
CL bits

XCHG EDX, EAX Swap EAX with EDX
STOS [EDI], EAX Store aligned data,

increment EDI
DEC EBX Decrement loop count
JA loop Repeat loop if count = 0

R indicates contents of R

tions address space.
Several other semantic control bits reveal the pro

cessor’s power. One, the D efault Size bit (D bit)
determ ines w hether code segm ents will assum e
32-bit (D is set to 1) or 16-bit (D is set to 0) operands
and operations. The Expand Down bit (E bit) defines
whether a given data segment needs an expand-down
or expand-up stack, and interprets the limit field ac
cordingly. Importantly, all of these semantic controls
perm it dynamic switching between 16- and 32-bit
code, segment by segment. That power makes it easy
to vary between unchanged 8086 or 80286 software
and new 32-bit code.

Double-level page map

The processor incorporates a two-level page trans
lation mechanism that allows any 4-kbyte linear ad
dress page to be mapped into any arbitrary 4-kbyte
section of physical memory. The double-level page
map for the current task is located in memory by a
pointer in control reg ister 3 (CR3), which is also
called the page directory base register. All page ta
bles are located on page boundaries, to ensure that
they are efficiently manipulated. For each page in
the logical memory space, a page descrip to r is
defined (Fig. 4). It contains the physical address cor
responding to each logical page, as well as other page

3. Of four protection levels, the top three (0-2) are
assigned to the supervisor. The lowest is allotted to
user code. Such a system is more suitable for multi
tasking than one with a single supervisory level.

Electronic Design • October 31, 1985

14

status information.
To speed translating from linear to physical ad

dresses, the chip carries a page descriptor cache, also
known as a translation look-aside buffer (TLB). Its
32 entries can obviate full address translation more
than 98% of the time. Hence, address translation de
grades performance in only 2% of all cases.

The User bit and the Write bit assign varying de
grees of protection to each page (Table 3). In addition,
two status bits are present for the system designer to
track page usage. The Accessed bit is true if a page or
page directory has been accessed by the MMU; the
Dirty b it is true if the page or directory has been
written to.

The processor’s paging mechanisms thus form a
powerful base for implementing the key operating
system services necessary to paged virtual memory
management. Specifically, these are algorithms to
allocate and replace memory page fram es and to
store a virtual page in secondary memory.

Four address space formats

The memory management units furnish a flexible
means to fit address space architecture to different
applications. Four major address architectures can
be d irectly im plem ented. For example, the seg
mented and paged model (Fig. 5a), which unleashes
the chip’s full power, is the one used for the Unix
System V operating system. There, each task has a
code segment, data segment, and stack segment; the
processor’s segmentation unit furnishes the per-task
segments, and the paging unit allows the working set
kept in main memory to be effectively managed.

The segmented mode (Fig. 5b) is very useful when
segments are not large and when compatibility with

31 12 11109 8 7 6 5 4 3 2 1 0

Page table address pointer AVL 0 0 D A 0 0 U W P

(a)
31 12 11 10 9 8 7 6 5 4 3 2 1 0

Page frame address AVL 0 0 D A 0 0 U W P

(b)

A V L A v a i la b le f o r s y s te m u s e U U s e r (1) o r s u p e r v is o r (O)

D D i r t y W W r i t a b le (1) o r r e a d - o n ly (O)

A A c c e s s e d P P r e s e n t

4. For every page, the directory descriptor (a) and
the table descriptor (b) each contain 12 flag bits. In
addition to governing memory management and
protection, flag bits can be employed by the system
designer for proprietary functions.

previous processors in the 8086 family is a must.
When system security and reliability are important,
the protection scheme established by segmentation
mechanism is particularly helpful.

Some designers prefer a completely flat logical ar
chitecture in which paging is used to manage phys
ical memory. The processor makes possible this
memory arrangement in the paged linear model (Fig.
5c). Since the processor’s paging mechanism is on
chip, the device performs better than systems that
use this model with off-chip MMUs.

Finally, the completely linear model is the design
of choice in many real-time applications (Fig. 5d). It
suits very compact, user-designed operating systems
because niether segmentation nor paging need be
employed. In this model, the program address is also
the physical address.

Multitasking a must

For system s th a t require m ultitasking or even
multiple environments, the processor’s task state
segment, or TSS, is useful. This is a repository for all
task s ta te in fo rm ation th a t allows task s to be
switched quickly with a hardware assist by storing
and reloading information from old and new TSSs in
a single instruction. The chip rem ains compatible
with the 80286’s task-switching mechanism. Since
the TSS includes the state of the page directory base
register, the user can assign a different page map for
each task with a single instruction.

The chip packs the most power when the semantic
control, flexible address space architecture, and mul
titasking assistance mechanisms are all combined.
Application programs written for each of the follow
ing environments, for instance, could exist concur
rently—in fact, there could be multiple instances of
each environment executing concurrently. And be
cause all semantic control bits of the processor are
switched when a task is switched, a new environment
can be entered with one instruction.

One environm ent could be the segm ented and
paged model, executing 32-bit code under Unix
System V. Another m ight be the segmented and
paged model, executing 16-bit 80286 object code. A
th ird environm ent could apply the paged linear
model to execute 32-bit code transported from linear
Unix environments like Berkeley 4.2. A fourth envi
ronment might directly execute unchanged 8086 and
8088 object code using the segmented and paged
model—say, programs written for the IBM PC.

To emulate the operation of the 8086 and 8088 pro-

Electronic Design • October 31, 1985

DESIGN ENTRY

32-bit microprocessor

cessors within its protected virtual address mode en
vironment, the processor is controlled by the Virtual
Mode bit (VM bit) in the flags register. In a virtual
8086 code segment, the segment register semantics
are the same as in the 8086 itself. Thus unchanged
8086 code can be executed in the processor’s protected
mode—even code th a t follows the frowned-upon
practice of employing segment registers for tempo
rary storage.

Just like an 8086

In the virtual 8086 mode, the processor looks just
like an 8086 to the application program; the value in
the segment selector register is shifted left by four
bits to compute the actual segment base. As in the
8086, and in real modes of the 80286 and 80386, each
segment is 64 kbytes long. And even though the pro
cessor can generate larger offsets, th a t memory is
not accessible.

In terrupts cause an automatic switch out of the
virtual 8086 mode, so that the operating system’s in
terrupt handler can process the interrupt or hand it
back to the 8086 program, if appropriate.

Each virtual 8086 code section generates linear ad
dresses up to 1 Mbyte long. To supply separate ad

dress spaces for each of these, the operating system
must create a separate page directory for each task.
The paging mechanism also can be used to simulate
the address wraparound at 1 Mbyte employed by the
8086. N evertheless, the p rocesso r’s p ro tec tion
scheme remains intact in the virtual 8086 mode be
cause such program s always execute at the least
privileged level.□

Senior engineer Rakash Agarwal is a five-year veter
an of Intel. His bachelor’s degree is from the Univer
sity of British Columbia and Iris master’s was
awarded by the University of Toronto.
Greg Blanch' is a design engineer who has worked at
Intel for a year. He holds a BSEE in electrical engi
neering from Case Western Reserve University.
Dana Krelle was formerly assigned to the 80286 m i
croprocessor and is a product marketing engineer for
the 80386. He holds a BSEE from the University of
Michigan and an MBA from the University o f Califor
nia at Berkeley.

Logical
address

Linear
address

(a)

Physical
address

Logical
address

physical
address

Code

(b) (c)

Stack

Logical
physical
address

(d)

5. The processor directly implements four address architectures. The segmented and paged model (a) un
leashes the device’s full power. The segmented model (b) is appropriate when the fields are fairly short. A
linear model is possible in which paging oversees physical memory (c), and a completely flat model is the
choice for real-time applications (d).

Electronic Design • October 31, 1985

intgl
Feature

The Intel
and

80386— Architecture
Implementation

Khaled A. El-Ayat and Rakesh K. Agarwal

Intel Corporation

T he Intel 80386 represents the state of the art
in high-performance, 32-bit microproces-
sors. It features absolute object code com

patibility with previous members of the iAPX 86
family of microprocessors, including the 80286,
80186, 80188, 8086, and 8088. This protects major
investments in application and operating systems
software developed for the iAPX 86 family, while
offering a significant enhancement in performance.
The 80386’s architecture and performance should al
low it to be used in a wide range of demanding ap
plications—e.g., in engineering workstations, office
systems, robotic and control systems, and expert
systems.

The 80386 implements a full 32-bit architecture
with a 32-bit-widc internal data path including
registers, ALU, and internal buses; it provides 32-bit
instructions, addressing capability, and data types,
and a 32-bit external bus interface. It extends the
iAPX 86 family architecture with additional instruc
tions, addressing modes, and data types. It incor
porates a complete memory management/unit. The
80386 extends the 80286 segmentation model to sup
port four-gigabyte segments and to provide a stan
dard two-level paging mechanism for physical
memory management. System designers can use
segmentation or paging or both, without perfor
mance penalties, to meet their memory management
requirements.

The 80386 architecture is complemented by a bus
interface that uses only two clocks per bus cycle; this
allows efficient interfacing to high-speed as well as
low-speed memory systems. At 16 MHz, the bus can
sustain a 32-mcgabytc-per-sccond transfer rate. Other
bus features include dynamic bus sizing to support
mixed 16/32-bit port interfacing and a dynamically
selectable pipelined mode to facilitate high-speed
memory interleaving and allow longer access times.

The 80386 is implemented in Intel’s CHMOS-III
1.5-micrometer process. Typical instruction mixes in
dicate an average processing rate of 4.4 clocks per in
struction and an overall execution rate of three to
four MIPS. To facilitate system debugging, the chip
incorporates hardware debug features and self
testing.

80386 base architecture

Different microprocessor applications require dif
ferent types of architectural support. Some appli
cations—such as those running under Berkeley
UNIX—may prefer a linear address space. Others
that manage a multitude of dynamic data structures
may require hardware-enforced rules to protect the
visibility of the dynamically created objects. The
80386 architecture supports these diverse require -

0272-17 32/85/1200-0004$01.00 '< > 1985 IEEE

© 1985 IEEE MICRO. Reprinted with permission from IEEE MICRO,
Volume 5 N um ber 6, pages 4-22, December 1985.

1 8

IEEE MICRO

iny

ments by providing the user with several memory
management and addressing models. Further, its
repertoire of addressing modes, data types, instruc
tions, and special constructs make it well suited to
modern high-level languages.

The base architecture of the 80386 encompasses
the register model, data types, addressing modes,
and instruction set. It forms the basis for high-level-
language compiler code generation and for assembly-
language-level application programming. Other
features of the machine useful for implementing
operating systems are discussed in the section on OS
architecture.

Registers. The 80386 possesses several on-chip
register sets to support various machine features.
Figure 1 shows the eight general-purpose registers
available for calculations and memory addressing,
the flags register, and the instruction pointer. Other
registers include control registers, six segment
registers used to structure the four-gigabyte address
space and to facilitate system debug, and six debug
registers used to control the setting of up to four
code or data breakpoints.

The 32-bit general registers are named EAX, EBX,
ECX, EDX, ESP, EBP, ESI, and EDI. To allow
16-bit operations and to provide compatibility with
the 16-bit members of the iAPX 86 family, eight
16-bit registers are superimposed onto the low-order
parts of the 32-bit registers. Similarly, there are eight
8-bit registers that are aliases for the lower and upper
halves of each of the 16-bit registers. Operations on
8-bit or 16-bit registers affect only the corresponding
superimposed registers. For example, the carry out
of bit 7 during an 8-bit add is not propagated into
bit 9 of the destination; instead, the carry flag (CF)
of the flags register is set appropriately. This is true
for all condition code settings in the flags.

Operand addressing. 80386 operands may reside
on the chip (in registers), in main memory, or in the
I/O address space. Furthermore, an operand may be
implied in the instruction or specified explicitly as a
part of the instruction.

Storing operands in registers generally provides the
fastest method of processing data. The contents of
any 80386 general register can be operated on by any
arithmetic or logical operator. Alternatively, 8-, 16-,
or 32-bit constants (immediates) can be embedded
directly in an instruction. Sixteen- and 32-bit opera
tions may specify 8-bit sign-extended or zero-
extended immediates. Table 1 includes sample in
structions employing registers and immediates as

AH AX AL 1
BH BX BL

------------- 1---------------
CH CX CL

------------- 1---------------
DH DX DL

_________i__
SP

BP

SI

DI

FLAGS register

Instruction pointer EIP

EAX

EBX

ECX

EDX

ESP

EBP

ESI

EDI

Figure 1. The 80386 general register set, FLAGS,
and instruction pointer.

operands. In general, register-to-register operations
execute in two clocks on the 80386. At a clock rate
of 16 MHz, this translates to 125 nanoseconds per
operation.

Most operands are stored in main memory. The
80386 has a full complement of address generation
mechanisms for specifying the effective address of
such operands. These mechanisms were developed in
response to the storage paradigms present in high-
level languages.

In its simplest form, the effective address of a
memory operand can be encoded directly in an in
struction. Usually, however, a particular memory ad
dress is not known until the program is actually exe
cuting. In this case, the effective address can be
obtained by summing the contents of one or two
general-purpose registers and an optional immediate
value or displacement. This register-based effective
address scheme can be summarized as

[base register] + [index register] * (scale) +
[displacement].

Here the base register is any general-purpose register
and the index register is any general-purpose register

December 1985
I Q

Intel 80386

Table 1.
Examples of operand addressing in the 80386.

Instruction Clocks Semantics

INC EAX 2 Increment contents of EAX by 1.
IMUL EBX, -3 9 Multiply the integer in EBX by -3.

CMP CX, 0 2 Compare contents of CX with 0 and set
condition codes.

MOVSX EAX, SI 3 Sign extend the contents of the 16-bit register
SI and move into EAX.

MOV DWORD PTR [56], -12445654 2 Assign -12445654 to the 32-bit integer at
address 56.

JMP jumpTab!e[EBX*4] 10 Jump to the address stored at entry EBX of
jump table.

SUB DX, WORD PTR
[EBP + EDI *2-10]

7 Subtract from DX the 16-bit quantity at
address [EBP + EDI‘2-10],

Table 2.
80386 support of high-level-language memory

addressing.

Storage
class Type specifier Addressing mode
Static Scalar [disp]

Structure [disp]
Array of scalars [disp + index]
Array of structures [disp + index]

Automatic Scalar [base + disp]
Structure [base + disp]
Array of scalars [base + disp + index]
Array of structures [base + disp + index]

Heap Scalar [base]
Structure [base + disp]
Array of scalars [base + index]
Array of structures [base + disp + scale]

other than ESP. The scale specification is a constant
value, either 2, 4, or 8. If specified, it scales the in
dex register by the required amount, thus simplifying
indexing into arrays of multibyte elements. The
displacement field is also a constant, its value rang
ing from -2-11 to + 2 31 - 1. Figure 2 shows all of the
80386’s 32-bit memory addressing modes, and Table
2 correlates high-level-language addressing forms
with those modes. (Example of memory addressing
appear in Table 1.)

Data types. As shown in Figure 3, the 80386
directly supports the fundamental data types found
in most high-level languages. The basic operations
provided by the 80386 for each of these data types
are shown in Table 3. Most of these operations exe
cute in two clocks when register or immediate
operands are used. Furthermore, because of pipelin
ing and the two-clock memory bus, stores to memory
also execute in two clocks.

IEEE MICRO
20

intgl

sg r n
Sign bitJi i

Magnitude

+ N + 1 0
o:„— 7 0 7 07 o
S a m • ■ • --------

decimal BCD
TTTJTTT m prrj

(BCD) digit N
BCD BCD
digit 1 digit 0

Unsigned pTiyn^j

Magnitude

ASCII

+ N + 1 0
7 0 7 07 0

• • •

ASCII ASCII ASCII
characterN character^ character,.

+ 1 0
1 5 1 4 .8 7 0Signed] |Tl 1111111111ri

word
Sign bit-1 |LMSB J

Magnitude

Unsigned
word

15
+ 1

TT JTT TTT TT fn n

L
Magnitude

+ N + 1 0
Packed

BCD
7 0 7 07 0
T T T J T T r

• • • r T T T H I m .

Most Least
significant digit significant digit

+ N +1 0
7/15 0 7/15 0 7/15
Jte 111111111 _ p i 'n 'i II It 11 ITTByte fTTTTTTTj

string'------- *

Magnitude

Unsigned double
word

Magnitude

Signed quad
word

+ 7+ 6+ 5+ 5 + 3+2+1 0
63 4847 3231 1615 0 . 48--------------------------------- Long [Ti"l 1111111111

48-hit I ' I 1

Offset

+ 5 +4 +3 +2 +1

Sign hit ~J /"MSB jPointer^
Magnitude Selector

___ +5 +4 + 3 +2 +1 0
6 4 - a n d 3 2 - b i t n 1 1 1 1 1 1

bit field T 111| 11 it in | r r r r r rp n r r

, Bitfield
1 to 32 bits

■myrrr

Offset

‘Supported by
80387

Figure 3. 80386 data types.

December 1985

intel
Intel 80386

The basic unit of storage is a byte', a 16-bit quanti
ty is a word, and a 32-bit quantity is a double word,
or d-word. Words are defined as having a length of
16 bits so that notational compatibility with the other
members of the iAPX 86 processor family will be re
tained. In the 80386, most data types are represented
in the form of bytes, words, or d-words, or combina
tions thereof.

Words comprise two consecutive bytes in memory,
with the low-order byte at the lower-numbered ad
dress. D-words comprise four consecutive bytes in
memory, with the low-order byte at the lowest ad
dress and the high-order byte at the highest address.
The address of a word or d-word is the address of
the low-order byte. Hence, the 80386 utilizes the
little-endian storage scheme.

Ordinal. An ordinal is an unsigned number. If it is
in the range 0 through 4,294,967,295, it corresponds
to a d-word value. If it has a magnitude of less than

80386 system debug capabilities

A large portion of system development time is usually
devoted to system debugging and verification. The
magnitude of the problem is strongly influenced by
system complexity at both the software and the hard
ware levels. In highly complex systems, external hard
ware and software debug aids alone cannot provide the
level of support needed; internal CPU assistance is re
quired.

To facilitate system development and real-time system
debugging, the 80386 provides the following capabilities:

• detection of instruction breakpoints,
• detection of data reference breakpoints,
• specification of four separate breakpoint addresses,
• instruction single-stepping, and
• a one-byte trap instruction.

The 80386 has six system debug registers (see figure).
The first four, DR0 to DR3, store the required break
point addresses. Registers DR6 and DR7 contain debug
status and control information, respectively. Registers
DR4 and DR5 are reserved by Intel. Breakpoint ad
dresses must be linear addresses of instructions or data
items. The control register, DR7, specifies the conditions
under which a breakpoint is recognized and includes
enable/disable masking fields, the breakpoint type, and
the breakpoint length fields.

zero, it corresponds to a word or byte value. An ex
ample of an ordinal operation is the instruction se
quence

MUL EBX,vec[EDX *4] ; EBX : = EBX * vec[EDX]
INTO ; Generate an exception if

;overflow

Here, the content of EBX is multiplied by the
EDXth element of the d-word-sized ordinal array
vec, and the product is stored in EBX. An overflow
exception is generated if the product exceeds
4,294,967,295.

Integer. An integer is a signed number in the range
-2,147,483,648 through +2,147,483,647. As with

ordinals, d-word, word, and byte integers are sup
ported. Integers arc represented in two’s-complement

The enable/disable masking fields determine whether
a detected breakpoint condition will be recognized by the
CPU and whether an exception will be generated or
simply stored in the debug status register for future ex
amination. The breakpoint type field indicates the type of
memory reference—e.g., an instruction execution, a
data write reference, or a data read/write reference—
that is intended to cause the system break. The break
point length field is used primarily for data references
and selects byte, word, or double-word ranges for data
item breakpoints. This field is needed because of a prob
lem that arises in data referencing. Simply specifying the
starting address of a data item is too restrictive and is in
sufficient for matching a breakpoint condition. The prob
lem exists because there are three different data item
lengths (8, 16, and 32); under erroneous conditions the
generated address and data type length may not exactly
match the specified breakpoint condition. The length
field adds flexibility by selecting a range in which break
points can occur. Instruction breakpoints always specify a
one-byte length field, since system breakpoints should
uniquely specify the byte-granular starting address of in
tended instructions.

Let us illustrate the use of the debug capability with an
example. To cause a break at a particular instruction, the
user loads the starting address of that instruction into one
of the breakpoint address registers, DR0 to DR3. The

IEEE MICRO

22

Table 3.
Data types supported by the 80386 instruction set.

(Floating point is available w hen numeric coprocessor is added.)

Operation Ordinal Integer

Data type

BCD
Floating

point String
Bit

string
Move

to/from memory,
convert precision

X X X X X X

Arithmetics
add, subtract,
multiply, divide,
negate

X X X X

Logicals
AND, OR, XOR,
shift

X X

Compare X X X X X X

Transcendental X

corresponding enable bit for the selected register must be
set, and the type and length field must be set to instruc
tion break (length = one byte). When the CPU is cer
tain it is about to execute that instruction, it completes
the execution of the current instruction, and a debug ex
ception is generated. Note that if a successful branch or
transfer of control precedes the intended breakpoint in
struction, the break does not occur. An instruction break
occurs before the instruction causing it is executed,

whereas a data reference break occurs after the instruc
tion causing it is executed.

The single-stepping-by-instruction feature forces an ex
ception after each instruction execution. It can be used
for system monitoring on an instruction-by-instruction
basis. The one-byte trap instruction causes a software
trap when executed and is useful for debugging
exception-handling code.

80386 system debug registers.

31

Breakpoint 0 linear address
Breakpoint 1 linear address
Breakpoint 2 linear address
Breakpoint 3 linear address

Break pt. Break pt. Break pt.
length length length
type type type

Break Point
Status

Break pt.
length
type

Break pt. enable/
disable

DRO
DR1
DR2
DR3

DR6

DR7

December 1985

intel
Intel 80386

notation. This allows a common set of instructions
for addition and subtraction. For example,

SUB ESP, 5

subtracts five from ESP whether ESP stores an in
teger or an ordinal. The settings of the overflow,
sign, zero, and carry flags allow a program to deter
mine whether a signed or an unsigned overflow has
occurred. However, special instructions are provided
for determining overflow in multiply and divide
operations involving integers, since an integer mul
tiply has its own rules for overflow and an integer
divide produces its own unique bit patterns.

Pointers. A pointer is a memory address. There
are two types of pointers in the 80386: near pointers
and far pointers. A near pointer is another term for
an effective address. A far pointer has two com
ponents: a word-sized selector and a d-word-sized ef
fective address. The selector names the logical ad
dress space in which the effective address resides.
This ability to define logical address spaces gives a
user greater flexibility in structuring memory. (This is
discussed in greater detail below.) To retain com
patibility with 16-bit members of the iAPX 86 pro
cessor family, the 80386 also supports pointers hav
ing word-sized selectors and word-sized effective
addresses.

Bit fields. The 80386 can do fetches from, or per
form stores into, contiguous bit sequences of up to
31 bits each, where such bit fields themselves reside
in a bit string of up to four gigabits. Single-bit values
can also be tested and modified. Furthermore, bit
fields can be scanned for the first set bit in either a
forward or a reverse direction. This feature can be
used to implement the set type of Pascal. For exam
ple, if col is an object of the type set o f color, then
the Pascal fragment

while c in col do

can be translated into

BSF EAX, col ; Find first set element. Store in EAX
JZ loopExit ; Exit if none left

Floating-point operations. By adding the 80287
floating-point coprocessor, or the higher-per
formance 80387, the user can extend the 80386 in
struction set to support 32-bit, 64-bit, and 80-bit
IEEE-standard floating-point arithmetic directly.
These coprocessors provide the accuracy and perfor

mance demanded by numerically intensive applica
tions such as robotics and graphics.

Mulliprecision operations. The 80386 provides
limited support for 64-bit operands. Integer and or
dinal multiply and divide operations may have 64-bit
products and dividends; the multiplier, multiplicand,
divisor, quotient, and remainder are limited to
d-word quantities. Multiprecision add and subtract
operations can be easily synthesized with the add-
with-carry (ADC) and subtract-with-borrow (SBB)
operations.

Besides multiprecision arithmetic operations, the
80386 provides double-width shift instructions that
accept a 64-bit input and generate a 32-bit output.
These instructions can be viewed as generalizations
of the normal logical shifts, except that the value
shifted in is not zeroes but is specified by the con
tents of another 32-bit operand. Double-width shifts
are especially useful for buffering intermediate data
when performing operations on unaligned bit strings.
A barrel shifter within the 80386 makes the execution
times of these instructions independent of the size of
the shift—any register-based, double-shift operation
can be done in three clock periods.

Logical addresses. Thus far we have discussed
memory addresses only in the context of effective ad
dresses. We shall now investigate the logical address
spaces provided by the 80386 to allow convenient
memory partitioning. Each logical address space is
named by means of a word-sized selector. All mem
ory addresses have two components: the selector that
names the logical address space (or segment) and an
effective address (or offset) that indexes into the
named logical address space. The full selectonoffset
form of address is the far pointer mentioned pre
viously. The selector is not usually directly specified
in an instruction’s operand field; it is instead stored
in a segment register.

There are six segment registers named CS, DS, ES,
FS, GS, and SS, as shown in Figure 4. Segment
registers are not usually encoded in instructions; the
segment register to be used is instead implied in the
operand type. For example, code is fetched from the
logical address space named by the selector in CS, at
the offset specified by the instruction pointer EIP.
Similarly, the stack is located in the logical address
space named by the selector in SS, with the top-of-
stack at offset ESP.

For memory operands not residing in the stack,
the implied segment is usually DS. If a memory
operand’s default segment register is not desired, it

IEEE MICRO
24

The 80386 physical implementation

The 80386 measures 390 mils on a side and is imple
mented in CMOS with Intel’s CHMOS-III process, which
provides 1.5-micrometer geometries and two layers of
metallization. This allows 16-MHz operation with low
power consumption. The chip contains over 275,000
transistors and is housed in a 132-pin pin grid array to
simplify external interfacing and improve reliability.

To meet the high performance objectives of the
80386 architecture, the chip’s designers organized the
CPU into eight pipelined logical units and provided for a

high degree of execution overlap among them. The
units, which are shown in the die photo are the
bus interface unit, the instruction (code) prefetch unit,
the instruction decode unit, the segmentation unit, the
paging unit, the protection test unit, the control unit, and
the data unit. The last three comprise the execution sec
tion of the CPU, which consists of a microengine, a reg
ister file, an ALU, a barrel shifter, and miscellaneous
control logic. On-chip memory management is imple
mented by the protection test, segmentation, and paging
units.

m m fm r m .

WW 'if

Microcode

December 1985

intel
In t e l 80386

c s Code

DS
)

ES

FS

GS)

SS Stack

Figure 4. Segment registers.

can be overridden by placing one of six unique prefix
bytes just before the instruction at which the override
is to take effect. This allows rapid switching between
different address spaces without requiring that a seg
ment register be loaded with the correct selector
value every time. It should be noted that segment
descriptors are cached on the chip from their respec
tive descriptor tables to allow rapid address trans
lation and protection checking. Along with allowing
the creation of address spaces, selectors form the
basis for the 80386 memory management and protec
tion scheme.

OS architecture—the memory
management and protection model

Many computational environments require mem
ory to be protected from unauthorized access. Fur
thermore, the allocation and deallocation of memory
according to a process’s needs must be managed.
The 80386 provides a comprehensive set of mech
anisms for supporting these requirements. The over
all memory address generation structure is shown in
Figure 5.

The logical address’s selector and offset com
ponents specified by the instruction are mapped into
a linear address via segment tables. Figure 6 shows
how the selector specifies a segment descriptor. A
segment descriptor is an eight-byte record. The main
information it contains is the linear address and size

of the base of the segment, and the type of reference
that is allowed to be made into the segment. (Seg
ment access rights are discussed below.) The linear
address is constructed from a logical address by add
ing the offset to the linear base address. If this ad
dress exceeds the bounds of the segment (as specified
by its size), a segmentation exception is signaled. An
instruction encountering such an exception is fully
restartable. Note that there are two segment tables of
8192 entries each (see Figure 6 again). This permits a
total of 16,383 logical address spaces,* or roughly 14
bits of addressability. Since the offset furnishes 32
bits of addressability, the total logical address space
of the 80386 provides 246 bits of addressability.

The linear address is passed through a two-level
page map table to generate a physical address. The
physical address is the address delivered to the micro
processor’s external bus for a memory access.

If a particular environment requires only one
logical address space, the selector mechanism can be
easily bypassed. This is done by defining one large
logical address space spanning the entire linear
address space and loading the corresponding selector
into all segment registers. The difference between a
logical address and a linear address then disappears,
since the effective address component of the logical
address matches the linear address. Similarly, if a
linear address to a physical address mechanism is not
required, paging can be disabled by resetting a bit in
a control register. When paging is disabled, the linear
address bypasses the page table look-up and appears
directly as the physical address.

Since both translation steps are optional, the 80386
can allow the user to choose from one of four
distinct views of memory:

• Unsegmented unpaged memory. Here both
translation steps are bypassed, thereby making the
effective address the same as the physical address.
This is useful, for example, in a low-complexity,
high-performance controller application, which re
quires a simple view of memory.

• Unsegmented paged memory. Here memory is
viewed as a paged linear address space. Protection
and management of memory is done via paging. This
view is favored by some operating systems—e.g.,
Berkeley UNIX.

• Segmented unpaged memory. Here memory is
viewed as a collection of logical address spaces. The
advantage of this view over a paged approach is that

‘Entry zero of the global descriptor table is special-cased to in
dicate a mill selector. Hence, only a total of 16,383 descriptors is
supported.

IEEE MICRO

(AAR pointer)
logical address

Program

Linear address

CZJ
Segment

table
base

Segment
base

Descriptor
table

T -K >

*

*
Page
table

Segmentation

Page
Pa9e table

directory directory
base

Paging

Physical
address

Page

Main memory

Figure 5. Memory address translation mechanism.

it affords protection down to the level of a single
byte. Furthermore, unlike paging, it guarantees that
when a linear address is generated the translation in
formation is on-chip. Flence, segmented unpaged
memory results in predictable access times.

• Segmented paged memory. This is the most com
prehensive view of memory supported by the 80386.
It uses segmentation to define logical memory parti
tions and paging to manage the allocation of
memory within the partitions. Operating systems
such as UNIX System V favor this view.

Segmentation mechanism. Memory protection is
enforced in the 80386 through a concept called a
privilege level. At any instant the processor is in one
of four privilege levels. The current privilege level, or
CPL, is stored as a number in the range 0 through 3,
with level 0 being the most privileged level and level
3 the least. Furthermore, every logical address space
(segment) has a privilege-level attribute associated
with it called the descriptor privilege level, or DPL.
The DPL is encoded in a field in the descriptor for a
segment. Data access to a logical address space by a
process operating at a given CPL is disallowed if the
CPL is less privileged than the DPL of the logical
address space. The CPL itself can change whenever
CS is loaded with a new segment. Thus, the CPL is
usually the DPL of the current code segment.

Figure 6. How a selector names a descriptor.

15 Selector
Index

3 2 1 0
T
I RPL

TI = 0
t

Descriptor 0
Descriptor 1

k v i A
& a a A

Descr2i:i - 1
Global
descriptors
table

—
TI = 1

_______f
Descriptor 0
Descriptor 1

R 7 W

A A V

Descr213- 1
Local
descriptors
table

D e c e m b e r 1 9 8 5

i n

Intel

Intel 80386

In addition to the DPL, a logical address space
possesses an access attribute. This attribute is also
stored in the descriptor for a segment. For address
spaces containing data, it specifies whether
read/write or read-only accesses are permitted. For
address spaces containing code, it specifies whether
read/execute or execute-only accesses are permitted.
An access to a logical address space is allowed only if
the access request passes a privilege level check and
an access type check. The access attribute, privilege
level, base address, and segment limit are contained
in a segment descriptor. Each descriptor is an entry
in either the global descriptor table (GDT) or the
local descriptor table (LDT). The GDT specifies
logical address spaces shared by all tasks, whereas
the LDT specifies logical address spaces specific to a
single task.

To support memory management, all descriptors
have a present bit and an accessed bit. An access to a
logical address space whose present bit is clear causes
a fault, which is signaled via an interrupt. The fault
handler can bring the logical address space’s contents
into the linear address space, set the linear address
space’s base and limit in the descriptor, and set the
present bit. The faulting instruction can then be
restarted. This implements a demand-swapping
scheme for logical address spaces. The accessed bit is
provided to help with the replacement policy im
plementation. This bit is set whenever a selector
defining a logical address space is loaded into a seg
ment register, thereby indicating which logical ad
dress spaces have been used recently.

Paging mechanism. To complement logical-to-
linear address translation, the linear address is trans
lated via paging into a physical address, as shown in
Figure 5. The paging scheme involves a standard,
two-level, table look-up process. The linear address
to be translated is divided into three fields: a direc

tory table index, a page table index, and a byte in
dex. The directory table index is a 10-bit field that
selects one of 1024 page tables. This page table is in
turn indexed by the 10-bit page table index, which
selects one out of 1024 pages. This page is a
4096-byte block which is indexed by the 12-bit byte
index. The byte thus addressed specifies the low-
order byte of the operand addressed. The entries in
the directory and page tables are d-word quantities
that store the physical base addresses of page tables
(for directory tables) or of pages (for page tables).
These entries also provide the traditional dirty, ac
cessed, and present bits to allow for the implementa
tion of replacement policies in demand-paged sys
tems. The layout of each entry is shown in Figure 7.

The paging mechanism also provides protection at
the page level. This is done via the user/supervisor
and read/write bits in the directory and page table
entries. A process is considered to be executing in
user mode if CPL is set to 3; it is considered to be
executing in supervisor mode if CPL is 2, I, or 0.
Therefore a user process is allowed to read a page
only if both the directory entry and page table entry
for it have the user/supervisor bit set. Similarly, a
user write is allowed only if both entries have both
the user/supervisor bit and the read/write bit set. A
supervisor process is allowed to read or write all
pages without restraint. Any violation of the page
protection rules causes a paging exception. An in
struction encountering such an exception is fully
restartable. This permits the construction of demand-
paged systems and, it should be noted, allows the use
of the copy-on-write trick in implementing UNIX’s
fork primitive.

Task switching support. In addition to the memory
management and protection facilities described
above, the 80386 assists the operating system by pro
viding hardware to implement task switching. This

31 12 6 5 2 1 0

Page table address or page frame 0-0 D A 0 0 U/S R/W P

Figure 7. Directory table and page table entries.

IEEE MICRO

iny

h

liardwarc allows fast and efficient task switching in
multitasking applications.

In task switching, the state of a task is stored in a
data structure called a task state segment, or TSS.
The fields of the TSS store images of the general
registers, flags, instruction pointer, and segment
registers, and an image of a pointer to the page di
rectory table base and the local descriptor table. The
TSS is itself described by a specially tagged descrip
tor residing in the global descriptor table. For a task
switch to be performed, a call or jump is made via a
selector that names such a descriptor. The processor
recognizes the TSS and does a task switch by saving
the current machine state in the currently active TSS
and loading the state in the target TSS.

Compatibility with the 80286. Full compatibility
with the 80286—to protect investments in operating
systems and applications software—was clearly one
of the key objectives of the 80386 architecture. Such
compatibility was achieved by making the 80386 in
struction set object code compatible with the 80286
instruction set; all architectural extensions to the
80286 instruction set, data types, and addressing
modes adhere to strict compatibility rules. Further
more, as the discussion earlier in this article showed,
the basic 80286 memory management model was
maintained and extended by the 80386.

Compatibility with the 8086. The 80386 is com
patible with the 8086 in the same way that the 80286
is compatible with the 8086. The 80386 is similar to
the 80286 in that it too powers up in 8086-compatible
mode (also called real mode). Real mode is useful for
initialization and for configuration of the processor
data structures needed to run in native 80386 pro
tected mode. The recommended method for running
8086 code is called virtual 86 mode.

To allow 8086 code to run harmoniously with its
native code, the 80386 employs the notion of a vir
tual 8086, or VM86, task. Except for I/O and inter
rupt-related instructions, a VM86 task executes code
using 8086 semantics. Memory addresses generated
are treated as linear addresses and are subject to
translation via paging. Mapping each VM86 task’s
linear address space to a different physical address
virtualizes 8086 memory. However, operations that
use global resources, such as I/O and interrupt
operations, also need to be virtualized. This is done
by trapping the instructions for such operations and
allowing the virtual machine monitor (executing as a
native 80386 program) to emulate them. VM86 mode
is a key feature of the 80386—it allows the large

body of 8086 software to run concurrently with
native code in high-performance environments, and
thereby allows 86, 286, and 386 tasks to run
simultaneously.

80386 implementation

To meet the 80386’s performance objectives, the
chip’s designers gave careful consideration to the
internal implementation of the architecture—i.e., the
microarchitecture. Performance enhancements in
advanced microprocessor CPU designs can be
obtained through

• advances in technology and circuit design,
• higher clock rates,
• wider data paths,
• advances in system and bus architecture, and
• advances in microarchitccture.

The first four of these were discussed earlier along
with their effects on performance. The following
sections describe the 80386 microarchitecture,
focusing on performance-enhancing features such as
pipelining and parallelism.

The 80386 is organized as eight logical units, with
each unit assigned a task or step in the fetching and
execution of each instruction. This arrangement
allows as much parallel execution of the instruction
stream as possible. The units are pipelined and, for
the most part, operate autonomously. The units and
their interconnections are shown in Figure 8 in the
functional block diagram of the 80386.

The eight units are the bus interface unit, the
prefetch unit, the instruction decode unit, the control
unit, the data unit, the protection test unit, the
segmentation unit, and the paging unit. The control,
data, and protection test units comprise the execution
section of the CPU.

The bus interface unit interfaces the CPU to the
external system bus and controls all address, data,
and control signals to and from the CPU. The
prefetch unit is responsible for fetching instructions
from memory. It uses an advance-instruction-fetch
pointer to prefetch code from memory and store it in
a temporary code queue. This queue also acts as a
buffer between the prefetch unit and the instruction
decode unit. Since addresses generated by the
prefetch unit are linear, they must be translated to
physical addresses by the paging unit before the
prefetch bus cycle request can be sent to the bus
interface unit.

December 1985

29

Intel 80386

Barrel
shifter

Data

Segment
descriptor

cache

Protection
test

Execution
unit

Control

\

L

Prefetch

Code queue

1

Q
U Instructione decodeu
e

Bus
interface

Control

Data

Figure 8. Block diagram of 80386.

The instruction decode unit prepares and decodes
instructions for immediate execution by the execution
unit. It does this by fetching bytes of code from the
prefetcher’s code queue, transforming them into a
fully decoded instruction, and then storing that in
struction in a three-level decoded instruction queue.
The execution unit then operates on the decoded in
struction, performing the steps needed to execute it.

Instructions requiring memory references send
their requests to the segmentation unit for logical ad
dress computation and translation and segment pro
tection violation checking. The segmentation unit
produces a translated linear address which the paging
unit then translates into a physical address. The pag
ing unit also checks for paging violations before it
sends a bus request and the address to the bus inter
face unit and external bus.

Pipelining and parallelism. Advanced microproces
sors are normally pipelined by overlapping the fetch
ing, decoding, and execution of instructions. In the
80386 microarchitecture, however, the operations of
all eight of the logical units are overlapped. This
allows the parallel and autonomous operation of the
units. They can simultaneously operate on different
instructions, thereby significantly boosting the
overall instruction processing rate of the CPU. For
example, while the bus interface unit is completing a
data write cycle for one instruction, the instruction
unit can be decoding another, and the execution unit
processing a third.

The sections below describe each of the logical
units of the 80386 and discuss how each was de
signed to maximize the benefits of pipelining.

IEEE MICRO

30

intgl

Bus interface unit. The bus interface unit provides
a high-speed interface between the CPU and the sys
tem. Its function is to efficiently meet the CPU’s re
quirements for external bus transfers during code
fetches, data fetches, paging unit requests, and
segmentation unit requests. To accomplish this, it
has been designed to accept and prioritize multiple
internal bus requests so that it can make maximum
use of the available bus bandwidth in servicing those
requests. This activity is overlapped with any current
bus transaction. As mentioned earlier, the 80386 bus
uses only two clocks per cycle; if the pipelined mode
is used, the 80386 bus is capable of starting the next
address of a new bus cycle before the completion of
a current bus transaction.

Prefetch unit. This unit is responsible for prefetch
ing instructions from memory. It stores the aligned
code in its code queue for efficient decoding by the
instruction unit. It maintains a linear address pointer
and a segment prefetch limit that are initially ob
tained from the segmentation unit to be used as a
prefetch instruction pointer and for checking seg
ment limit violations, respectively. The prefetcher at
tempts to keep its code queue filled with valid bytes
of code by sending prefetch bus cycle requests to the
bus interface unit through the paging unit. Prefetch
bus cycle requests are made whenever the prefetch
code queue is partially empty or after the occurrence
of a control transfer. The prefetcher’s bus cycle re
quests are assigned a lower priority than execution-
related, operand fetch/store bus cycle requests and
page-miss processing and segmentation-specific bus
cycle requests. At zero wait states, there is no in
terference between prefetch and data bus cycles. Idle
cycles are used to prefetch code from memory and
keep the code queue filled.

Instruction decode unit. This unit decodes and
prepares instructions for processing by the execution
unit. Whenever the instruction unit’s own queue or
pipe is partially empty, it fetches bytes of code from
the prefetcher code queue, decodes and prepares
them, and stores the result in its own three-word-
deep queue. The decoded instruction queue words
are very wide; they contain all the instruction fields
the execution unit needs to immediately execute the
instruction without further decoding. The combined
prefetch unit/instruction unit pipe operates on a two-
clock cycle. The instruction unit, however, can
decode at only one clock per opcode byte.

Execution unit. The next logical unit in the pipe is
the execution unit. As mentioned previously, it is

composed of the control, data processing, and pro
tection test units. Its responsibility is to execute the
instruction given to it. It does so by using its own
resources as well as by communicating control and
sequencing information to other logical units needed
to complete the execution of the instruction. The ful
ly decoded instruction is popped out of the instruc
tion queue, and the execution unit uses its various
fields, such as microcode starting addresses, operand
references, data types, and ALU operators, to exe
cute it.

The control section consists of a microcode-driven
engine that has special-purpose hardware for decod
ing, assisting, and speeding up microcycle execution.
The data processing section—or data path—contains
all data registers, an ALU, a barrel shifter, multiply/
divide hardware, and special control logic; it per
forms the data operations selected by the control sec
tion. Fhe protection test section performs all static
segmentation-related violation checks under micro
code control.

The microengine has a two-clock execution laten
cy, but by overlapping microinstruction fetching and
execution and by using the delayed microjump tech
nique, it provides an execution rate of only one clock
per microcycle (62.5 ns at 16 MHz). To enhance the
effective instruction processing rate of the execution
unit further, parallel or overlapped execution of in
structions is employed. Since memory reference in
structions, including stack push and pop instructions
(heavily utilized in procedure calls), constitute a large
portion of the instruction mix in a typical program, a
special technique is used to reduce the number of
clocks needed to execute such instructions. The
method used partially overlaps the execution of every
memory reference instruction, including stack push
and pop instructions, with the execution of the
preceding instruction. This parallel execution of two
instructions enhances the instruction processing rate
of the CPU—with a typical mix of instructions, it
yields a nine-percent improvement in performance.

The implementation of the execution unit required
the addition of a 32-bit internal bus and special con
trol logic to ensure the correct completion of the cur
rent instruction, prevent the use of stale register
values, and provide the control needed to handle the
simultaneous execution of two instructions.

Segmentation unit. This unit performs effective
address compulation upon request of the execution
unit. It does this logical-to-linear address translation
at the same time it does bus cycle segmentation viola
tion checks. (Static violation checks—e.g., of seg-

December 1985

31

Intel 80386

ment descriptors—are performed by the protection
test unit and are not part of the bus cycle activity.)
The translated linear address is then sent to the pag
ing unit along with bus cycle transaction informa
tion. The paging unit then becomes responsible for
requesting bus service from the bus interface unit.

Paging unit. Linear addresses generated by the seg
mentation or code prefetch units are passed on to the
paging unit, where they are translated into physical
addresses. As explained in the section on architecture
above, paging translation is implemented through a
two-level page relocation mechanism. To improve
performance, the paging unit uses a 32-entry trans
lation look-aside buffer (TLB) to perform the trans
lation. Page table and page frame entries are cached
into the TLB. This results in a translation time of
one half of a clock period—much faster than if

memory-based page tables were referenced instead of
the TLB. The combined logical-to-physical address
translation pipe, which includes effective address for
mation, segmentation, and paging relocation, re
quires only two clocks of processing. No additional
clocks are needed for paging since TLB look-up and
translation are performed in the same clock (second
phase) as the linear address calculation.

Integrated segmentation and paging. The 80386
implements a segmentation-plus-demand-paging
memory management function for virtual memory
translation and protection violation checking. To
enhance system performance, memory management
functions are integrated into the chip. All virtual-to-
physical address translation, segmentation, and pag
ing violation checking are performed by the on-chip
memory management unit (MMU), which is imple-

80386 bus operation

The 80386 external interface (Figure B) connects the
chip to memory and peripherals over a high-perfor
mance bus. This interface provides separate address and

data pins to support efficient high-speed bus transfers
and bus cycle pipelining. It uses its other pins to maintain
simple and efficient interfaces—pins are dedicated to cy-

Interrupt |
NMI
INTO

Bus
arbitration

Hold.,..
2 HLDA

Busy
Coprocessor 1 Error

interface j PEREQ

Clk 2
Reset

Vcc
GND

Figure B. iAPX 80386
external interface.

80386

Address bus a A
m 2 A 31

Byte enable _ —

Data bus
BE0-BE.5

Lock
M/IO
D/C
W /R
ADS
BS16
NA
Ready

D 0-D 31

Bus cycle
definition

Bus cycle
control

IEEE MICRO

32

inter

merited by the segmentation, protection test, and
paging units. All memory management protection
and translation descriptors are cached into the on-
chip MMU. Segment descriptors arc cached into seg
ment descriptor caches in the segmentation unit,
while page descriptors are cached into the TLB. Vir
tually all protection and translation activities utilize
the on-chip descriptors.

There are several advantages to integrating
memory management and the CPU on the same
chip:

• The implementation can take advantage of pipe
lining and parallel execution by overlapping the steps
from effective address formation to linear address
and physical address generation. Under such an ar
rangement the next memory address will already be
known while the current transaction is still on the

bus. The logical-to-physical address translation in
many cases will overlap other bus cycles and will be
completed by the time the current bus cycle is fin
ished. Pipelining to an off-chip MMU would clearly
be more difficult.

° No additional clocks need to be added to the bus
cycle to implement the MMU translation, since the
memory management functions are internal and not
part of the external bus cycle.

® System complexity and cost are reduced, and
board design is simplified, since no off-chip memory
management components are needed.

Special-purpose hardware. To enhance perfor
mance, the 80386 implements several important pro-

cle definition, cycle control, interrupts, bus arbitration,
and coprocessor support.

Some typical 80386 bus cycles are shown in Figure
C. With zero wait states, each bus cycle consists of only
two clocks; at 16-MHz operation, the 32-bit bus can sus
tain a 32-megabyte-per-second transfer rate. When the
bus operates in pipelined mode, the address of the next
bus cycle is sent on pins A31-A2 before the current cycle
is completed. This mode, which is dynamically selectable
from the interface, can be used to implement a fast in
terleaved memory subsystem with inexpensive dynamic

Write Read

Clk 2

T,

RAMs. In such a system, the current bus transaction uses
one bank of memory while the new address is used to
access another. The pipelined mode can also be used to

Clk

A2-A3i

v _ / ~ y _ y _

overlap the current bus cycle with address decode delays _x. X X
of the next cycle, making available longer system access
times. Slower memory or I/O systems use the RHADY

DLq'DL^
M /IO , D/C

rpin,to extend the current bus cycle as needed. Dynamic
bus sizing allows software-transparent interfaces to

W /R y \
16-and 32-bit ports.

ADS j _ j

Ready vy
Figure C. 80386 bus operation.

D0-D31 -<̂ Out -CE3

December 1985

33

Intel 80386

cessing functions with special-purpose hardware.
These special blocks include the TLB for paging
translation, a 64-bit barrel shifter, multiply/divide
hardware, multiple ALUs and adders, and miscella
neous random-logic control function implementa
tions that take the place of PLA or microcode ap
proaches that are too slow.

Translation look-aside buffer. As explained above,
the time required to perform the two-step table look
up paging translation function is significantly re
duced by the use of a TLB. With 32 entries in its
cache, the TLB enjoys a relatively high hit ratio of
98 percent. A TLB miss occurs when an entry is not
in the cache and references to memory-based page

Design for testability

To guarantee high quality in a complex VLSI
microprocessor, the chip development team must

• use good, conservative design techniques,
• employ rigorous design verification at all levels,
• carefully choose the criteria against which manu

facturing, testing, and quality assurance will be
measured, and

• ensure the testability of the device.

Intel’s goal is to manufacture the highest-quality silicon as
inexpensively as possible. Adequate device testing helps
achieve that goal. However, the testing of complex VLSI
circuits is difficult. Here we explore the features that have
been designed into the 80386 to make testing easier and
ensure its adequacy.

A VLSI microprocessor is difficult to test for two
reasons:

• It contains a large number of transistors but has
a small number of external pins. The external pin count
is too small to allow for a convenient and thorough inter
face to all the internal blocks of the microprocessor.

• It exhibits a fairly large number of states. It is vir
tually impossible to force the microprocessor to sequence
through all possible states under all possible conditions.

These limitations make it very difficult to control and
observe a VLSI microprocessor that is being tested.

To alleviate these problems, the 80386’s designers in
corporated test circuits into the device to ensure its
testability. They designed these circuits to support proven
test techniques. The test capability thus added facilitates
component testing in the lab and in production environ
ments and simplifies board and system testing in end
user applications. Test capabilities built into the 80386
include

• self-test of all large PLAs,
• self-test of the control ROM and microengine, and
• signature analysis.

Special microcode and instructions are also provided to
facilitate testing, and there is special test circuitry for the
translation look-aside buffer (TLB).

PLA testing. In the 80386, self-test of large PLAs is
needed because of the large number of possible input
combinations. A maximal polynomial counter is used as
a pseudorandom vector generator to drive the inputs to
the PLA and to ensure sequencing through all possible
combinations of the inputs. This is illustrated in the ac
companying figure. As the inputs change in a pseudo
random fashion, the outputs from the PLA are fed into a
linear feedback shift register with appropriate polynomial
coefficients to accumulate a unique signature of the
block. This signature is then read and analyzed by special
software to determine correctness. This technique is
referred to as signature analysis.

Signature analysis has been used for many years—
primarily at the board and system level—to facilitate
testing and fault diagnosing. It has the advantage of be
ing able to reduce a large amount of data, uniquely en
code it, and store it in a register (the linear feedback
shift, or signature, register). It should be noted that the
polynomials used to configure this register must be
carefully chosen to provide maximum test coverage and
error detection.

Control ROM testing. Self-test of the microcode
ROM consists of sequencing through all addresses and
word locations and, as in PLA testing, accumulating the
result in a signature register. The accumulated microcode
signature is then read by software. The microcode ad
dress counter logic is used to do the sequencing in the

IEEE MICRO

34

iny

tables arc needed to complete the address translation.
Even with a high hit ratio, the memory-referencing
table look-up function is clearly time-consuming and
should be designed to minimize the degradation of
system performance. The 80386 paging unit incor
porates special-purpose hardware to implement the
table look-up functions instead of using the more

economical but slower microcode approach. TLB
miss processing by this special hardware consumes
only nine clocks, whereas a microcode-driven look
up would consume three times as many clocks.

Barrel shifter. A 64-bit barrel shifter is provided to
implement shift, rotate, and bit manipulation in-

ROM test sequence, to share hardware, and to provide
address sequencing logic for the microengine self-test.

TLB test circuitry. Testing the TLB RAM and
CAM (content-addressable memory) for all entries and
with all data sensitivity patterns would be very cumber
some and time-consuming without special assistance.

To simplify such testing and improve its coverage, the
80386’s designers added special-purpose hardware—
two registers, plus special instructions to control
them—to allow for the direct writing of any data pattern
into the RAM or CAM blocks of the TLB. This hard
ware can also force the comparison of any data pattern
against existing entries in the TLB to test the TLB’s
matching capability.

Clock

PLA
outputs

PLA testability.

December 1985

35

80386

structions efficiently as well as to assist in multiply
and other miscellaneous operations. It can shift any
data type by any shift count in a single clock, and it
is significantly faster than an ALU/microcode imple
mentation.

Multiply/divide hardware. A one-bit-per-clock
multiply/divide mechanism permits a 32-bit multiply
or divide in 40 clocks, maximum. To speed multiply
execution, additional special hardware is included to
detect early completion of a multiply and correctly
terminate the operation. Early completion of a mul
tiply is detected when all significant multiplier bits
have been exhausted and the final product can be ob
tained by an appropriate shift operation. Since many
multiply operations do not require the full 32-bit
multiply, the average number of clocks needed for a
multiply is 20.

T he 80386 represents the state of the art
in 32-bit microprocessor architecture and per-

■ ■ h formance. It maintains object code com
patibility with existing members of the 86 family of
microprocessors, thus protecting end users’ invest
ments in software. Its implementation exploits
pipelining and parallel execution to provide high per
formance. These characteristics make it an excellent
candidate for application in engineering worksta
tions, office systems, and robotic and control sys
tems. m.

Khaled A. El-Ayat is a p r o je c t m a n a g e r in th e In te l H ig h -
P e r f o r m a n c e M ic r o p r o c e s s o r O p e r a t io n . W ith I n te l e ig h t
y e a r s , h e h a s c o n t r ib u te d to th e d e f in i t io n , d e s ig n , a n d d e
v e lo p m e n t o f th e c o m p a n y ’s m ic r o p r o c e s s o r s . H e d e s ig n e d
th e c o n t r o l s t r u c tu r e s o f th e 8 0 3 8 6 . H is te c h n ic a l in te r e s ts
in c lu d e m ic r o p ro c e s s o r a r c h i te c tu r e s a n d a ll a s p e c ts o f
V L S I d e s ig n .

A m e m b e r o f th e I E E E , E l- A y a t h o ld s a B S c f r o m C a ir o
U n iv e r s i ty , a n M S c in e le c tr ic a l e n g in e e r in g a n d c o m p u te r
sc ie n c e f ro m th e U n iv e r s i ty o f T o r o n t o , a n d a P h D in e le c
tr ic a l e n g in e e r in g a n d c o m p u te r sc ie n c e f r o m th e U n iv e r s i ty
o f C a l i f o r n ia , S a n ta B a r b a r a . H e is a p a r t - t im e le c tu r e r in
m ic r o p ro c e s s o r s a t th e U n iv e r s i ty o f S a n ta C la r a .

Kakesh K. Agarwal is a s e n io r d e s ig n e n g in e e r in th e In te l
H ig h - P e r f o r m a n c e M ic r o p r o c e s s o r O p e r a t io n . H e c o n
t r ib u t e d to th e a r c h i te c tu r a l s p e c i f i c a t io n , m ic r o c o d in g , a n d
lo g ic d e s ig n o f th e 8 0 3 8 6 . H is p r im a r y t e c h n ic a l in te r e s t is
in th e d e f in i t io n o f th e i n te r f a c e n e e d e d b e tw e e n h a r d w a r e
a n d s o f tw a r e t o m a k e th e m o s t o p t im a l u se o f c o m p u t e r
s y s te m re s o u r c e s . H e is a ls o in te r e s te d in th e d e s ig n o f
C A D to o ls t h a t c a n b e u s e d to a s s is t th e a r c h i t e c tu r e - to -
lo g ic t r a n s f o r m a t io n .

A g a rw a l re c e iv e d th e B S c in c o m p u te r s c ie n c e f r o m th e
U n iv e r s i ty o f B r it ish C o lu m b ia a n d th e M S c in c o m p u te r
s c ie n c e f ro m th e U n iv e r s i ty o f T o r o n t o .

Q u e s t io n s a b o u t th is a r t ic le c a n b e d i r e c te d t o E l - A y a t a t
In te l C o r p o r a t io n , M a il S to p S C 4 -5 9 , 262 5 W a ls h A v e n u e ,
S a n ta C la r a , C A 9 5 0 5 1 .

Acknowledgments

The authors wish to acknowledge the superb ef
forts of the entire 80386 team, including the project
managers, the chip architects group, the design engi
neers, and the mask designers.

IEEE MICRO

36

intel

IRM X 2 8 6 /3 8 6

- f l -

c
(V V]

1SBC 3 8 6 /2 0
K J Vi
ISBC 3 8 6 /1 0 0

board board
n i—i r 8 0 3 8 6

chip

Multibus 1 architecture 3 / Multibus II architecture

1 — \ '

System V /3 8 6

y y

Fig 1

M S /D O S
P C /D O S

OpenNET
networking

Building with the 386
Glen Shires takes a look at Intel’s new processor, the 386,

and at what it will provide to systems builders

When Intel introduced its high perfor
mance 80386 microprocessor at the
end of last year, the company stressed
that it had been designed to be a most
powerful building block for computer
systems.

It can easily be connected to high
performance memory and I/O sub
systems, so system designers need to
design their hardware to take full
advantage of the computational
power of the 386.

To do this, Intel has optimised the
external bus for access to the external
memory and I/O. Only two clock
cycles are required for the 386 to
perform a 32 bit bus access, allowing
a sustained bus throughput of up to
32Mbytes/sec at 16MHz. Used with
cache memory, this high-speed bus
can obtain maximum bus bandwidth
with cost-effective components.

The 386 also accommodates slower
memory and peripheral subsystems. A
READY # input to the 386 is used to
indicate to the 386 when the bus access
has been completed, while the external
subsystem can hold READY # inac
tive to make the 386 stretch the bus
cycle with any number of wait-state

clock cycles until the subsystem has
completed the access.

The 386 has a 32 bit data bus and a
32 bit physical address bus. The 386
instruction set can access data a byte,
word, or double-word (dword) at a
time (8, 16, or 32 bit access). If a word
or dword access is not aligned and
crosses two dwords on the 32 bit
external bus, the 386 will automatic
ally generate two bus cycles to
perform the access.

Nearly every type of 32 bit memory
system, for any processor, requires
only the upper address bits and uses
individual enables for the four lower
bytes rather than the two least
significant address bits, A1 and AO.
The 386 directly generates the upper
address bits (A31:2) and the in
dividual byte enables instead of the
two least significant address bits.

Although not often necessary, if the
two least significant address bits must
be generated they can easily be
decoded from the byte-enables with
four gates. Generally, the only time
the least significant address bits are
required is when a standard system
bus is used.

The 386 bus has been designed so
that a variety of memory types and
peripherals can be connected. To
simplify bus interface logic, only one
signal is used to indicate the beginning
of a bus cycle (Address Status—
ADS), and individual signals are used
to indicate write/read (W/R), mem
ory I/O (M/IO) data/code (D/C).

Not only are the 386 bus signals
carefully chosen to make interfacing
to memory and I/O as simple as
possible, but the entire bus is designed
to allow very high performance with
cost-effective memory. Like some
other microprocessors, the 386 uses
separate address and data buses (each
use a separate set of pins rather than
being multiplexed onto the same
pins), which allows the bus to run
faster. However, the 386 also extern
ally pipelines the address and data
bus. Not only can the address for the
next bus cycle be pipelined, but the
next address can be output by the 386
before the current bus cycle has
completed. This allows all address
output and buffer delays to overlap
completely the current bus cycle

© Com puter Systems, January 1986.
Reprinted with permission.

37

C o m p u te r System s J an u a ry 1986

memory and I/O systems without any
effect on performance. In this way
high bus performance can be obtained
from slower and less expensive mem
ory and I/O components.

For maximum flexibility external
hardware has complete control of
when and if the next 386 bus cycle
address is pipelined. If the address is
non-pipelined it stays valid through
the end of a bus cycle. When the
external hardware activates the 386
Next-Address pin, the address bus is
pipelined and the address for the next
bus cycle becomes available before the
current bus cycle ends.

A pipelined address provides more
time for memory to respond to an
access with data without slowing the
overall bus cycle time. Therefore,
slower and more cost-effective memo
ries can be used without sacrificing
bus bandwidth.

A DRAM requires a precharge time
between back-to-back accesses in
which it must remain idle to guarantee
that it does not lose data. In order to
get the maximum throughput from
DRAMS, two or more interleaved
banks can be used so that accesses can
be made immediately back-to-back,
so long as each access is to a different
bank. While one bank is pre-charging,
another bank is performing the
current access.

With more elaborate DRAM con
trol logic further advantage of the
interleaved banks can be gained when
using the pipelined address capability
of the 386. While one bank of the
DRAMs is completing a bus access
cycle, the pipelined address can be set
up on the address inputs of a second
bank of DRAM so the next read access
could actually begin before the cur
rent access is completed.

For a 16MHz 386 with 150ns
DRAMs, so long as the 386 is able to
pipeline the address by two cycles, a
read access can begin one cycle before
the read bus cycle starts and then
require only two bus cycle clocks (zero
wait-states). With continuous accesses
to different banks, the first access will
take one wait-state, allowing the
second access to be pipelined by two
cycles for zero wait-states, and then
the next access is pipelined by one
clock, again requiring one wait-state.
This means sequential accesses can
maintain an average of 0.5 wait-states
with inexpensive 150ns DRAMs in a
16MHz 386 system.

Because the 386 allows its external
address to be pipelined, cost-effective
DRAMs can be used while still
maintaining high memory throughput
—up to 32Mbytes/sec with 100ns
and up to 25.6Mbytes/sec with 150ns
DRAMs. Although DRAM memory
can be used for very high perfor
mance, even higher bus bandwidth
can be obtained using static RAMs
(SRAMs). At 16MHz 55ns SRAMs
are fast enough to complete an access
within two clocks without interleaving
and without address pipelining. This
means that all bus accesses can be

completed with zero wait-states. The
386 optimally accommodates these
very fast memories by not forcing the
address to be pipelined.

In the case when the address of the
next bus cycle is not known until after
the current cycle has finished (such as
indirect jumps or data-dependent
accesses) or following an idle bus
cycle, access would be actually delay
ed by a clock. Instead, the 386 can
generate bus cycles either with or
without address pipelining. Unlike
other microprocessors, the 386 is
flexible enough to use a simple

C o m p u te r System s Jan u a ry 1986

38

Intel

memory interface that provides all the
benefits of both pipelined and non-
pipelined address buses. Allowing the
use of pipelining is most optimal for
slower memories such as DRAMs; not
forcing pipelining to be used is most
optimal for fast memories, such as
SRAMs.

The 386 does not pipeline the
address when it is not available soon
enough, and , if the memory subsys
tem can complete the access in two
clocks, it simply activates READY #,
so no penalty is paid for the lack of a
pipelined address.

Although SRAMs provide the high
est bus performance, DRAMs can
provide much more memory space for
much less cost and board space.

A cache system can be used to take
advantage of the best features of both
and can be built to allow the most
often accessed code and data to be
stored in the fast SRAMs and less
often used code and data to be stored
in the slower DRAMs. This lowers
overall memory cost while still provid
ing near zero wait-state perfor
mance.With 32kbytes of cache, it will
have an approximate hit rate of 86%,
which means that 86% of the time the
data or code in the cache and bus
accesses require zero wait-states; with
64k of cache the hit rate increases to
near 92%.

While current silicon technology
prevents useful general-purpose
caches being placed on the processor
chip, relatively small on-chip MMU
caches can be very effective. The 386
caches both segment and page descrip
tors. By placing a 32-entry TLB
(translation lookaside buffer) page
descriptor cache on the 386, over a
98% hit rate has been achieved.

The simplicity of the 386 bus also
minimises the logic required to con
nect to common peripherals and
ROM /EPROM s. Discrete logic,
PALs, or gate arrays can be used for
efficient, customised interfacing to

the specific set of peripherals re
quired.

Because the 386 has instructions to
perform byte, word, and dword
accesses, 8, 16 and 32 bit peripherals
can be connected directly to the local
bus.

The 386 also has a ‘bus size 16 bit’
input, which makes it easy to use the
386 on either a 32 bit or a 16 bit bus.
This input controls the width of the
386 external bus for the current bus
cycle. When inactive the 386 uses its
full 32 bit data bus to perform byte,
word or dword accesses. When the 16
bit signal is activated, only the lower
sixteen data pins are used and
unaligned, or 32 bit accesses are
broken up into multiple 16 bit word
accesses.

The 16 bit bus capability is useful
with 8 and 16 bit peripherals because
the local bus has fewer interconnec
tions and is less costly. Also,
peripherals can be placed at 16 bit
word boundaries to duplicate the I/O
address used in other 16 bit systems,
perhaps for software compatibility
with 8086 and 80286 systems.

In addition, if access time to ROM/
EPROMs is not critical—for when
they are only used for system initial
isation—then a 16 bit bus can be
used so that only 2bytes of ROM/
EPROM width are required rather
than 4bytes.

The 386 permits up to 256 different
types of interrupts. Some of these are
traps generated internally by the 386
such as divide-by-zero or protection
violations. The majority, however,
are free for use as external hardware
interrupts and may be used to indicate
to the 386 when a certain I/O device
requires servicing.

A 8259A programmable interrupt
controller can be connected directly to
the 386 to allow eight vectored
interrupts to be used, which along
with the 386 Non-maskable Interrupt
pin provide for nine hardware inter
rupts. Multiple 8259A chips can also
be cascaded if more hardware inter
rupts are required. To move data
between the RAM and peripherals, it
is possible to interrupt the processor,
have it save its state, perform the
transfer, and then restore the process
or state. However, it is more efficient
to move large amounts of sequential
data with a DMA controller, so as not
to disturb the processor’s execution.
The 386 provides hold (HOLD) and

C o m p u te r System s Jan u a ry 1986

39

hold acknowledge (HLDA) pins
which permit a DMA controller or
another processor to tri-state the 386
bus signals and take over the bus to
perform such transfers. A very com
mon use of DMA is to perform
transfers between memory and mass
storage, such as in the swapping of
virtual memory.

The 386 permits segments of va
rious sizes, from one byte up to 32
(4Gbytes) which is sufficient for
nearly any code of data structure.
With a possibility of such large
segments, it is easy for the program
mer to place his data and code into
segments, but it would often be very
difficult, if not impossible, for the
operating system implementing vir
tual memory to find space in physical
RAM to swap in the entire segment.
Therefore the 386 also implements
paging underneath segmentation. If
used, a segment can be split up into
several regularly sized pages, possibly
with each page corresponding to the
size of a block of mass storage. This
not only allows portions of segments
to reside in RAM, but also permits
segments to be split up into several
parts to fit any free, but not necessari
ly contiguous, RAM, and eliminates
memory fragmentation problems.

While segmentation allows the
software programmer to place his
code and data into natural and
efficient structures, and provides the
operating system with valuable in
formation of which portions of
memory are good candidates for
swapping, paging underneath seg
mentation allows efficient hardware
implementation of virtual memory.

In implementing a demand-paged
system, a standard DMA controller
can be used to move one or more
sequential blocks (pages) of data
between the RAM and mass storage.
After each series of sequential blocks
is moved, the DMA controller norm
ally interrupts the processor and waits
for further commands from the
processor.

If several blocks are being moved
into several non-sequential pages, the
DMA must stop after each page and
interrupt the processor. The processor
must then send new commands to the
DMA controller for the next page.
This will decrease the processor
performance because the processor
must stop and handle an interrupt
after each page and the overall data

transfer from mass storage transfer
may be slower. Mass storage is usually
implemented as a spinning disk in
which sequential blocks pass under
the read/write head. If there is not
enough time between the end of one
page and the beginning of the next for
the DMA to interrupt the processor
and the processor to reprogram the
DMA, then the next page will be
missed and the DMA will have to wait
for the disk to go around again before
transferring the next page.

The Intel 82258 Advanced DMA
controller chip can be used to solve
both these problems: fewer interrupts
to the processor and quicker multi
page transfers. The processor can
generate a list of source or destination
blocks for the DMA, for example, to
swap a series of noncontiguous
pages. Then the 82258 can use its data
chaining feature to swap all the pages
automatically, without interrupting
the processor and without reprogram
ming the 82258 between each non
contiguous page. Therefore the 82258
provides good performance in a
demand-paged environment.

The 386 has fast general purpose
computation. In addition, for ap

plications requiring high-precision,
floating point, or trigonometric or
logarithmic calculations, numeric co
processors can be used to increase
further the system performance. A
numerics-intensive system might have
the numerics coprocessor performing
the calculations while the processor
performs memory organisation and 1/
O housekeeping chores.

The 386 has an optimised co
processor interface, allowing the
80287 and 80387 numeric coprocess
ors to be directly connected to the 386.

Intel’s 80287 provides high-
performance numeric support for
cost-sensitive 80386 designs, and its 16
bit bus connects directly to either
processor and allows numerics in
structions to be placed in the
processor instruction stream, inter
mixed with the standard processor
instructions.

The forthcoming 80387 has a 32 bit
external bus and can also be connected
directly to the 386. The 80387 is a fully
software compatible superset of the
80287, executes at a faster internal
speed, and uses a faster external bus to
achieve 8 times the performance of the
80287. The 386 automatically recog-

C o m p u te r System s Jan u a ry 1986

dO

in y

Host user se ts b reakpo ints, starting location e tc ., v ia monitor package
Fig 6 The basis fo r a 386/Multibus /Xenix system

nises whether the coprocessor is an
80287 or 80387 and performs the
appropriate 16 bit or 32 bit transfers.

Numerics-intensive applications
can run 10 to 100 times faster when a
numeric coprocessor is used.

The flexibility of the 386 bus makes
it easy to connect it to ‘industry-
standard’ system buses such as Multi
bus I and Multibus II. The 386 bus
signals can be easily translated into
80286-style signals to use the Multibus
I bus controller (82288) and arbiter
(82289).

The 386 bus size 16 bit input is
useful in connecting to a 16 bit bus
such as the Multibus I bus.

For higher performance on a system
bus, the 386 can also be used with the
high-speed, advanced 32 bit Multibus
II, which uses message passing proto
cols to achieve a bandwidth up to
40Mbytes/sec.

Design example
An engineering workstation typically
requires high computational power
and a very large memory space to
perform such tasks as design simula
tion and verification. In addition, the
ability to run multiple programs at the
same time allows the designer to
maximise this effectiveness, because
he can work on one part of the design
while simulating another part in the
background. In many cases, the
ability of the workstation quickly to
create and manipulate detailed
graphical pictures of the design is also
essential to allow the designer to enter
and view his work efficiently. Finally,
because most designers work in teams

rather than individually, it is impor
tant that their workstations can easily
communicate with each other.

A complete 386 system design meets
all these needs. Its fast processing
speed and large physical and virtual
address space allow large simulations
to be performed efficiently. For high
performance with large amounts of
cost-effective DRAM, a cache is used
to allow near zero wait-state opera
tion. The 386 segmentation and
paging capabilities, together with
82258 advanced DMA and the intell
igent fixed disk controller (82062),
combine to form a powerful and
efficient implementation of virtual
memory. The 386 on-chip memory
management not only provides effi
cient translations for virtual memory,
but also offers protection and multi
tasking capabilities.

While the computational speed and
flexibility of the 386 allows it to
perform all the calculation, graphics
and communication functions for
some workstations, even greater per
formance can be obtained when
specialised coprocessors are used. The
80278 or 80387 Numeric Processor
can be used to provide fast floating
point arithmetic, allowing complex
and accurate simulations to complete
quickly. Intel’s upcoming 82786
Graphics/Display coprocessor can
quickly generate and manipulate com
plex text and graphics images as well
as create an efficient windowing
environment. The 386 simply supplies
high-level graphics commands and the
82876 performs the tedious task of
pixel updates and display functions.

The 82586 LAN coprocessor can
handle high-speed communication
between workstations: sending and
receiving multiple data frames,
generate protocols, and perform error
checking without microprocessor in
tervention.

To round out the system the 386
also connects to slave peripherals,
including two serial ports for the
keyboard and a mouse or modem, and
a floppy disk controller. This 386
subsystem could be constructed on a
board with a Multibus interface to
allow it to be installed in an ‘industry
standard’ system.

This would then provide access to
the processors and peripheral devices
on other Multibus boards within the
same system.

Real-time example
A complex industrial robot requires
precision, real-time calculations for
fine positioning and axis control. A
large physical address space is often
required to allow complex sequences
and vast amounts of data to be
immediately available.

A 386 system design meets the needs
of an industrial robot. The 32 bit 386
integers and 80 bit 80287/80387
floating-point numbers can easily
provide the speed and accuracy of
computation required for the fine
positioning resolution of industrial
robots. [p

Glen Shires is a member o f Intel’s US
386 development team. Intel UK is
based in Swindon, Wilts. Tel: (0793)
696000.

C o m p u te r System s J an u a ry 1986

41

PSHS8!
■ 'i', <*J

A Well-Bred Classic
THE 80386

Solutions
A P u b l i c a t i o n o f I n t e l C o r p o r a t i o n November/December 1985

80386 Cache Design
by Glen Shires

Intel's 80386 microprocessor can perform at a sustained rate
of 3-4 Million 32-bit Instructions Per Second (MIPS). In order

to take advantage of the full potential of the 386, a high perfor
mance memory system is required so that the 386 can quickly
access code and data. Not only must the memory system be
fast, but many of the larger applications that the 386 is capable
of executing require large amounts of memory for the program
and data. The system designer has the challenge of providing a
vast amount of high-speed memory at a reasonable cost.

Traditional microprocessor systems have used DRAMs (Dy
namic Random-Access Memories), which can provide cost-ef
fective memory and operate at the speeds required by earlier
generations of microprocessors.

In comparison, the 386 is capable of very fast memory ac
cesses. At 16MHz, the 386 has a 50% faster bus than any other
microprocessor and can perform each bus cycle in only 125
nanoseconds for a maximum bandwidth of 32 Megabytes/sec-
ond. The 386 obtains this speed not only from its high clock rate,
but because it requires only two clocks for a bus cycle (compet
itive processors require three or more).

The 386 can make the most of the speed of DRAMs because of
its ability to pipeline the next bus cycle address while the current
bus cycle is in progress, and its ability to use interleaved DRAM
arrays. For the memory requirements of traditional applications,
fast DRAMs can be used for a high performance, cost-effective
memory system. But the power of the 386 permits much larger
applications to be run which require very large amounts of mem
ory. Such a vast amount of memory can be implemented cost-
effectively with slow, inexpensive memories. For the highest
performance, more expensive, fast memories are required.

A cache memory system provides the answer to this dilemma.
It combines the speed of high speed Static RAMs (SRAMs) with
the cost-effectiveness of slower, less expensive DRAMs.

Cache Configuration Cache Performance

Size Associativity Line Size Hit Rate
Performance Ratio

over non-cached DRAM

1K direct 4 bytes 41% 0.91
8K direct 4 bytes 73% 1.25

16K direct 4 bytes 81% 1.35
32K direct 4 bytes 86% 1.38
32K 2-way 4 bytes 87% 1.39
32K direct 8 bytes 91% 1.41
64K direct 4 bytes 88% 1.39
64K 2-way 4 bytes 89% 1.40
64K 4-way 4 bytes 89% 1.40
64 K direct 8 bytes 92% 1.42
64 K 2-way 8 bytes 93% 1.42

128K direct 4 bytes 89% 1.39
128K 2-way 4 bytes 89% 1.40
128K direct 8 bytes 93% 1.42

no cache - 2 CLK SRAM access (100%) 1.47
no cache - 4 CLK pipelined DRAM — 1.00

Table 1: Performance of Various Cache Configurations

WHAT IS A CACHE?
A cache memory is simply a fast and relatively small memory
(typically SRAM) that is located between the processor and
larger main memory (typically DRAM). The intent of a cache
system is to make all of the large main memory appear to re
spond as fast as the high-speed SRAMs respond. To do this,
the memory system keeps all of the RAM code and data in
DRAM and also keeps a copy of only the most often accessed
code and data in the fast SRAMs. This provides a large amount
of RAM memory (implemented in inexpensive DRAM) and still
allows most code and data accesses to be quickly completed
by using the faster, smaller SRAMs.

What Information is Stored in a Cache?
The fast SRAM cache memory is much smaller than the main
system DRAM and therefore can only contain a copy of a small
fraction of the information in the DRAM. In order to make the
cache useful, it must contain information that the processor will
likely require in the near future.

Because most computer programs have a habit of re-accessing
the same memory locations soon after the first reference to
these locations, it is possible to assume that memory that re
cently has been accessed will probably be required by the pro
cessor in the near future. A cache memory can be designed to
store the most recently used information and have a good prob
ability that the processor will soon require much of the same
information again.

For the first reference to a location, the processor will generally
have to wait for the access from the lower-speed main memory.
While the processor is performing this access, the cache will
automatically place the data in its memory. When the processor
needs to access this same location again, it can go directly to
the high-speed cache memory.

When the cache becomes full and it needs to store the contents
of a new memory location, it must replace the contents of an old
location with the contents of the new location. In this way the
cache maintains the more recently used memory locations.

Hit-Rate Indicates Effectiveness
A cache is only effective if a large percentage of the processor
accesses require information that is already in the cache rather
than the slower main memory. The percentage of the processor
accesses that are already located in the cache is called the
cache hit-rate. If, on average, 90% of the processor accesses
are found in the cache and only 10% require DRAM accesses,
then the cache is said to have a hit-rate of 90%.

Because the DRAM read-cycle is not generally begun until after
it is determined that the required memory location is not in the
cache, cache miss read-cycles actually take longer than a DRAM
read-cycle would if no cache was used. While cache hit ac
cesses are much faster than straight DRAM, cache miss cycles
are slightly slower. If the hit rate is too low, then using the cache
can actually decrease overall performance. An effective cache
requires a hit rate of well over 50-60%, which corresponds to a
minimum size of approximately 2K-bytes.

The 386 cache designer has the freedom to choose the cache
size and configuration to determine the hit rate, thus controlling
the overall cache effectiveness.

R eprinted w ith perm ission from S olu tions M agazine, 1986. NOVEMBER/DECEMBER 1985 SOLUTIONS

44

intgl

CACHE DESIGN
Several factors which influence the effectiveness of the cache
have to be considered during design:

Cache Size
The larger the cache, the more information it can store. A larger
cache has a greater likelihood of containing the information that
the processor needs, and therefore has a higher hit-rate.

Cache SRAMs contain two types of information. The data SRAMs
contain the contents of the memory locations stored in the cache.
The tag SRAMs are used to store information to “remember"
the full DRAM address of each of these entries. The term “cache
size" refers only to the size of the data SRAMs and neglects the
size of the tag SRAMs.

A typical cache size could be 64K, because that is the largest
size possible when using the minimum number of currently
available SRAM chips (eight 16Kx4 SRAM chips for 64K of 32-
bit data).

The performance for various configurations of caches based on
Intel simulations is shown in Table 1. As reference points, the
bottom of the table compares these cache configurations with
two non-cached configurations: a full zero-wait-state SRAM
memory and a non-cached two-wait-state address-pipelined/
three-wait-state unpipelined DRAM memory. Listed for each
configuration is the hit rate and the performance ratio compared
to the non-cached DRAM. All of these cache configurations
combine code, data, and stack information for the best cost/
performance ratio.

Cache Associativity
When the cache becomes full and needs to store the contents
of a new location, it must overwrite an old location. The cache
entry in which the new information is to be replaced is deter
mined, in part, by the cache associativity. The cache associativ
ity determines how many different places in the cache any
particular DRAM location can be mapped into.

At one extreme is the fully associative cache, which is the most

flexible and most complex organization. It allows the contents
of the new location to be placed into any entry of the cache.
When new information needs to be stored in the cache, an
algorithm is used to determine which cache entry is least likely
to be required again in the near future (possibly the least-re-
cently-used), and that entry is overwritten by the contents of the
new location. Then, whenever the processor makes a memory
access, every entry of the cache must be checked to determine
if the information is stored in the cache.

At the other extreme is the direct-mapped cache, which is the
simplest organization. Each location in DRAM is directly mapped
into only one cache entry. When the cache needs to store the
contents of a new location, there is only one cache entry that
can possibly be used. Also, when the processor makes a mem
ory access, only one entry of the cache must be checked to
determine if the information is stored in the cache.

Figure 1 illustrates a 64K direct-mapped cache with a tag field
large enough to cache up to 16M-bytes of DRAM. The following
discussion will be based on a cache and DRAM of this size. For
a different size DRAM and cache SRAM, the number of bits for
each field differs, but the concepts apply directly.

The 386 32-bit physical address is divided into three fields:
Select, Tag, and Index. The 8 most-significant bits (Select) are
used by the chip-select logic to determine if the memory access
is to the cache/DRAM subsystem. The 24 least-significant bits
(Tag and Index) determine the 16M-byte DRAM address. The
24 least-significant bits are also broken up into two fields for the
cache SRAM. The 16 least-significant bits (Index) are used as
an index to address the SRAMs. The middle 8-bit (Tag) field is
used as tag information.

The cache SRAM is partitioned into two parts: data and tag. The
64K bytes (16K entries x 32-bits) of data SRAM contain the
contents of the memory locations stored in the cache and are
addressed by the Index field. The two least-significant bits of
the Index field are used as byte-enable select information, and
only the upper 14-bits of the Index field actually address each
of the data SRAMs.

NOVEMBER/DECEMBER 1985 SOLUTIONS

45

The tag SRAM is also addressed by the upper 14-bits of the
Index field. The tag SRAMs are used to store the Tag field,
which corresponds to the upper DRAM address bits. Since the
Tag field is only 8-bits wide, the tag SRAMs are 16K by 8-bits.

Whenever the processor makes an access to this direct-mapped
cache, the Index field is used to address the tag SRAMs and
the tag SRAM contents are compared with the processor Tag
field. If they match, then the cache contains the data of the
accessed location in the data SRAMs. If a match is found on
read accesses, a "cache hit" is said to occur, and the read-data
is simply read out of the cache data SRAMs. If a match is not
found on read accesses, a “cache miss” is said to occur, and a
DRAM access must be performed to obtain the data. Normally,
on a read cache miss, the DRAM data are not only returned to
the processor, but also placed into the cache.

Because the cache is usually used for every memory access,
the tag matching and cache or DRAM accesses must be per
formed in hardware for the cache to be effective. Figure 2 shows
a block diagram of the hardware required for this direct-mapped
cache.

Although the direct-mapped cache has the advantage of using
very simple hardware, its disadvantage is that each DRAM lo
cation corresponds to only one cache entry. It is very possible
to have a program that constantly accesses two DRAM loca
tions that happen to correspond to the same cache entry. Every
time one location is accessed, it is placed into the cache replac
ing the data from the other location. When the other location
again needs to be accessed, it too must read from the slower
DRAM and replace the data of the first location in the cache.
This constant thrashing makes the cache ineffective for these
particular memory locations.

Figure 3: 64K Two-Way Associative Cache

NOVEMBER/DECEMBER 1985 SOLUTIONS

4 6

Figure 4: 64K Two-Way Associative Cache

This problem is eliminated with a two-way associative cache, as
illustrated in Figure 3. Each DRAM location can potentially be
located in either of two cache entries. This has the advantage
in that no two locations can constantly thrash between a single
cache entry (but there is still the chance that three or more
locations will thrash). Therefore, the hit-rate for a two-way as
sociative cache is somewhat higher than a direct-mapped cache
when both caches have the same amount of data SRAM. Figure
4 shows a block diagram of a two-way cache. The implementa
tion requires approximately twice as many chips. Because each
cache Index has two entries, two tag SRAMs (both bigger than
the direct-mapped implementation) and two comparators to match
the tags are required.

Similarly, a four-way associative cache can be constructed for
an even higher hit-rate, but it requires additional tag SRAMs
and control hardware. Finally, a fully associative cache requires
very complex hardware because it allows each DRAM location
to map to any cache entry and therefore requires a comparator
on each tag location (a structure often called “Content-Address
able Memory").

In previous generations of computers, it often made sense to
use a two-way or four-way associative cache because fast
SRAMs were small and very expensive relative to comparators
and random control logic. For a reasonable size cache, many
SRAM chips were required, and the additional logic to allow
two-way or four-way was minimal relative to the SRAM cost and
board space.

Today, however, fast SRAMs have become much larger, less
expensive, and require less board space. Because the number
and cost of SRAMs for a reasonably-sized cache has dropped
much more than the cost and board space for the comparators
and control logic, it now makes sense to minimize the compar
ators and control logic and increase cache effectiveness by
simply making the cache larger. Therefore, large, direct-mapped
caches are generally preferable over smaller, associative caches
when implementing the cache out of chips commonly available
today.

As fast 16Kx4 SRAM prices decrease, a 32-bit direct-mapped
64K cache for 16M-bytes of DRAM can be implemented with

only 10 SRAMs (eight data and two tag). It would make little
sense to double the bost and board space to implement a two-
way associative 64K cache, which requires 21 SRAMs (sixteen
data and five tag 8Kx4 SRAMs) for a relatively small improve
ment in performance. If more performance is required, it is gen
erally more cost-effective to increase the size of the cache rather
than the level of associativity. Therefore, the typical cache im
plementation is direct-mapped.

Write Policies
Read accesses with a cache are relatively straightforward. When
the data are found in the cache, they are used. When the data
are not found in the cache, a DRAM cycle is performed.

The simplest write policy is called "Write-through". For every
processor write-access, a DRAM write-cycle is performed to
update the active bytes in DRAM so that the DRAM data are
kept up-to-date. In addition, if the write location is found in the
cache, the active bytes are also updated in the cache.

The processor write-accesses that update all 32-bits could al
ways update the cache, whether or not the location was already
contained in the cache. However, because all four cache bytes
are always assumed to be valid, it is impossible to update the
cache with a new location if the processor does a write-access
with only some but not all bytes active. Therefore, most write-
through schemes will only update the cache if the cache already
contained the location of the write-access.

A simple variation on write-through is “Buffered-write”. Like write-
through, the DRAM is updated after every processor write-ac
cess. Unlike write-through, the DRAM write-access is buffered
so that the processor and cache can immediately begin the next
bus cycle. Usually, only one level of write-accesses can be
buffered; if two consecutive writes are performed, the second
write must wait until the first finishes. If, however, a write-access
is followed by read-accesses and the data is found in the cache,
then the processor read-accesses can occur while the DRAM is
busy writing.

Buffered-write requires slightly more control logic and fully latched
DRAM address and data buses. Because the majority of pro
cessor accesses are not writes, and because it can take the

NOVEMBER/DECEMBER 1985 SOLUTIONS

cache a few clocks to update itself on a write-access, the per
formance gained by buffered-write is usually not worth the cost
unless the DRAM response is relatively slow (such as a dual
port DRAM which is in heavy use by other processors or DMA).
The 386 internally buffers write-accesses so that the 386 can
continue internal processing while a write bus cycle is in prog
ress. By externally buffering writes, the 386 can also perform
reads to the cache while a DRAM write cycle is in progress.

A “Deferred-write" policy will only perform a DRAM access if
the write location is not found in the cache. If it is, only the cache
entry will be updated. The data will be written into DRAM only
when the cache entry needs to be replaced. (For speed, buffer
ing can be provided so that when the processor requires data
not in the cache, the DRAM read-access can be performed first,
and then the DRAM write-access.) Deferred-write requires much
more logic, allows the DRAM to contain stale data (the cache is
more up-to-date than the DRAM), and generally does not in
crease overall system performance unless a heavily accessed
dual-port DRAM is used.

Most microprocessor caches will probably use write-through or
buffered-write caches for cost/performance reasons. A typical
microprocessor cache uses the write-through policy. With the
addition of extra DRAM address latches, and by substituting
registered transceivers for the DRAM data transceivers, buff
ered-write can be implemented with a small change in the con
trol logic.

Bytes Per Line
The most straightforward cache for a 32-bit processor is 32-bits
wide (4 bytes per line). However, there is no reason why the
cache and DRAM cannot be made wider, possibly 64-bits for 8
bytes per line. Because most programs generally access loca
tions near those accessed recently, filling each cache entry with
64-bits rather than 32 increases probability that future accesses
will be found in the cache. With 64-bit wide cache and DRAM,
each 32-bit access can be made at full speed, with no penalty
for accessing both 32-bit words simultaneously.

Unfortunately, more bytes per line require more cache SRAMs,
more DRAM chips, and wider buses. In many cases, the incre
mental increase in performance cannot justify the extra cost. A
typical 386 cache implementation uses 4 bytes per line.

Physical vs. Virtual Address Caches
Most larger systems that require a cache will also use virtual
memory. This brings up the question of whether caches should
use the virtual or the physical addresses; that is, whether the
cache should come before or after the Memory Management
Unit (MMU).

Figure 5a shows a virtual address cache. Because the cache is
located before the MMU, the processor can make very fast
accesses to the cache. Cache hits do not require the MMU
conversion delay, so the cache bus cycles can be performed
several clocks faster than if the conversion was required. Unfor
tunately, because the same virtual addresses are often used by
different tasks, the entire cache must be flushed every time the
processor switches tasks (all entries become invalid). There
fore, any time a new task is invoked, the cache is effectively
empty and all the first accesses are cache misses, requiring
DRAM cycles. Also, if interrupts are handled as a separate task
with their own virtual addresses, the cache must be emptied

when each interrupt handler is invoked, and again when the
interrupt is exited.

Although a virtual address cache can make cache hit bus cycles
run faster, a virtual address cache quickly becomes inefficient
when a significant amount of task changes are required. In this
case a physical address cache is more effective, where the
cache is placed after the MMU as shown in Figure 5b. Unfortu
nately, when the MMU is implemented as a separate chip, such
as required by non-Intel processors, every memory access to a
physical address cache (hit or miss) is delayed by the MMU
conversion time.

While designers using other microprocessors are faced with this
difficult dilemma, the 386 solves both these problems (see Fig
ure 5c). By integrating the MMU on-chip, the entire MMU con
version time can be completely pipelined with the previous bus
cycle, eliminating the usual conversion delay and allowing the
cache to use physical addresses efficiently so it does not have
to be flushed for task switches or interrupt handlers. Therefore,
the 386 provides the speed of virtual address caches without
the constant cache flushes that make virtual address caches
inefficient. Every 386 cache design uses physical addresses.

TYPICAL CACHE IMPLEMENTATION
Figure 6 shows an actual implementation of a 386 cache. This
is a 64K, direct-mapped, write-through, physical address cache.
It consists of only 10 SRAM chips, and a few TTL and PAL
(Programmable Array Logic) chips. Some of the PAL control
logic and the TTL latches can be shared with the DRAM and
I/O subsystems.

On a read-cycle, the 386 Index address bits are latched and
then sent to the Tag and Data SRAMs. The comparator checks
the Tag SRAMj data against the 386 Tag Address.' If they match,
the 386 READY line is activated and the data in the Data SRAMs

Figure 5a: Virtual Address Cache requires constant flushing

Figure 5b: Physical Address Cache slowed by MMU conversion delay

Figure 5c: 80386 Physical Address Cache eliminates constant flushing
and conversion delay

NOVEMBER/DECEMBER 1985 SOLUTIONS

iny

are sent to the 386, providing a zero wait-state cache hit read
cycle.

A state machine, implemented in PALs, follows each 386 bus
access and generates the required control signals. These PALs
sample the 386 status signals and the comparator to generate
the appropriate read/write and cache hit/miss cycles.

The critical paths that determine the required access times for
the SRAMs are shown in Table 2.

Performance
The performance for this cache is shown in Table 3. Also shown
is the overall performance when the cache is used with a DRAM
subsystem that always requires four clocks per access.

Any read access found in the cache runs at zero-wait-states,
independent of the DRAM subsystem speed. Because the cache
can run with and without address pipelining, these performance
times are independent of address pipelining unless the DRAM-
writes take advantage of the pipelining.

Tag SRAMs: tag access, compare and activate READY in 2 CLKs

2 x CLK 386 address 74F373 74F521 74AS32 386 READY Tag SRAM
period valid latch compare "OR" set-up access time

2 x 62.5 40 8 11 6 - 20 40nS (<i 16MHz
2 x 83.3 44 8 11 6 22 75nS (<i 12MHz

Data SRAMs data access and pass to 386 in 2 CLKs

2 x CLK 386 address 74F373 74F245 386 Data Data SRAM
period valid latch transceiver set-up access time

2 x 62.5 40 8 - 7 - 10 60nS (<i 16MHz
2 x 83.3 44 8 - 7 - 11 96nS Cat 12MHz

Table 2: Critical Paths Determine SRAM Access Speeds

Access type CLKS per access

Using 4 CLK DRAMs

CLKS wait-states

read-hit 2 2 0
read-miss 2 + DRAMread 6 4
write DRAMwrite 4 2

Table 3: Performance of Cache Implementation

CONCLUSION
Because the 386 has a very fast two-clock bus, it can optimally
interface with a cache. A cache implementation can be used to
provide a large memory with very high performance at a fraction
of the cost of zero-wait-state RAM. By permitting the 386 to
access code and data at these speeds, the maximum potential
of the 386 can be obtained. □

NOVEMBEFt/DECEMBER 1985 SOLUTIONS

49

i n t e l

L.F. ROTHSCHILD, U N TER B E R G ,TO W B IN ~ T K

I H 5 5 W A TER STREET. N E W YO RK. N Y 10041 X A L _ J _ r \
TEL (2121 412-1000 CABLE: PRO BATICA _ N V __ / _v_y

December 1985

Tech Notes, a monthly publication, is intended to present an overview
of our strategy, discuss sector and company fundamentals and review
technology stock performance. In addition, we will feature topical
selections from our technology research effort.

Technology Strategy Review - Stephen E. Yoken
Outlook— More Positive Environment Unfolding
The Semiconductor Industry

Current Business
Current Investor Outlook

Attractive Companies
32-Bit Microprocessors

The 32-Bit Microprocessor Market -The Race Just
Got Tougher - Paul Johnson

Intel's Announcement
Why All the Attention?
The 32-Bit Microprocessor Market
The Success of the Intel 386

Impact of the Intel 80386 on the CAD/CAM/CAE
Industry - Peter D. Schleider

Overview
Effect on Specific Companies

Convergent Technologies and the
Intel 80386 - James I. Magid

Background
Convergent Among the First and Best with the 80386

Stephen E. Yoken, Director of the Technology Research Group
(212) 412-1822

T-01,02,03,08,42,44,73

This memorandum is prepared for your personal use and lor informotion purposes only and it does not constitute a solicitation, or an offer, to buy or sell any security; Offerings of securities subject to
registration requirements ol the Federal Securities Act of 1933 are mode only by the Prospectus, copies of which will be supplied upon request. We may from time to time have a long or short position
in and buy and sell some of the securities referred to herein. The information and statistics in this memorandum are based upon sources we believe to be reliable, but have not been independently
verified by us. The information, comments, and opinions, il any, are not intended to be, and should not be, relied upon as complete. COPYRIGHT 1986 L.F. ROTHSCHILD, UNTERBERG, TOWBIN

TECH NOTES • DECEMBER 1985

51

[p i 55 WATER STREET, NEW YORK, NY 1QQ41
TEL: (212) 412-1000 CABLE: PR0BAT1CA

L.F. ROTHSCHILD, UNTERBERG, TOWBIN

Technology Strategy Review

Outlook—More Positive Environment Unfolding

In our November Technology Strategy Review we hypoth
esized a more positive environment for technology com
panies in 1986. Our only real reservation was in the area
of demand recovery—i.e., whether the moderate rate of
growth forecast for GNP would offer enough stimulus to
generate higher levels of consumption and start revenue
growth accelerating. Recently, the Federal Reserve Board
has gone to great lengths to convince everyone of its
accommodative intentions toward 1986. With the likeli
hood, therefore, of stable interest rates, and no signs of
inflation, we feel that a serious decline in the consumer
sector is unlikely. Meanwhile, a combination of other
favorable forces is at work (as discussed in November),
such as a dollar-related currency swing, continued tech
nology company restructuring, inventory replenishment
and a new computer industry product cycle.

It seems to us that most high technology companies
will be able to record better earnings results next year
even in an environment of moderate GNP growth
because most moves toward downsizing and other
expense reduction programs will have been in place for
sometime. In addition, computer companies are begin
ning to report improved order rates. If we superimpose the
various new product cycles on this scenario, then the
stage is set for some leveraged operating earnings gains.
It is important to note that a very sensitive early
indicator—lead times—is now giving significant postive
signals, as discussed later in this report. The major short
term risk to our bullish scenario is the potential plateau-
ing in the recent order growth momentum sometime in the
first half of 1986. While this may prove to be temporary
until the various end-markets pick up some steam, it could
be the basis for some profit taking in technology stocks.
We are not at that point yet, but we do feel a correction
could occur early in January 1986, as the pressure for
year-end portfolio performance eases.

Taking all these factors into account, we continue to
recommend accumulation of selected high quality tech
nology stocks, and advise being particularly aggressive
on any pullback. We are also strongly persuaded that
valuations will continue to rise and that upside surprises
in reported earnings are very possible in 1986. We feel
that more attractive values have existed and still do exist
in the computer and related sectors, given their currently
more visible fundamentals versus the semiconductor
issues. This difference will probably continue until inves

tors see more evidence of recovery. As we point out later,
the larger semiconductor issues have merely moved back
to the tops of their recent trading ranges; it is the smaller
companies that the market has thus far favored with the
greater gains. As the evidence mounts that this recovery
in the semiconductor industry could be of longer-term
duration, we expect investors to shift toward the larger
companies in this industry. We would accumulate semi
conductor issues for the long term, being particularly
aggressive on any market-related corrections. Paul John
son, our semiconductor analyst, comments on his favor
ite stocks in 'The Year Ahead: Outlook by Industry” issue
of the Notes for Portfolio Managers (December 19, 1985).

The Semiconductor Industry

Current Business

Clearly, this is the most difficult cycle we have ever seen
from the point of view of analysis and forecasting. It has
also become the most controversial on Wall Street, rais
ing debate to feverish levels and the ire of company
managements even higher.

First of all, different companies in the industry are pre
pared for different types of recovery. While some have
permanently removed plant and people from the operat
ing cost mix, believing that a downsized operating struc
ture is more appropriate to the industry of the late 1980s,
others have kept people and plant in place, creating sub
stantial underabsorbed overhead, on the theory that the
rebound will be just like every other cycle and being well
positioned early will be crucial. Needless to say, there is
merit to both positions simply because there are enough
differences from past cycles to justify the former strategy
and enough similarities to argue for the latter.

The most furious debate is over capacity and inven
tories. Let’s try to sum up the situation:
• Consumption has been running above orders for some

time, eating up inventory;
• This is a seasonally good time of the year for the indus

try, as is the first calendar quarter;
• Most companies have removed substantial capacity

from the market, and much that remains is obsolete and
very costly to keep;

• People have been removed from the rolls, and we feel
that this is the key to the capacity issue;

• Six to nine months will be required to reopen plant,
restart production lines, hire and retrain; and

• Examples of improvements in pricing exist and,
although they are modest at the moment, we are per
suaded that more will occur.

52

© TECH NOTES 1986. Reprinted with permission of L.F. Rothschild,
Unterberg, Towbin, 1986.

in y

Now let’s talk of lead times, which we mentioned
earlier. On a recent trip to Silicon Valley, we were quoted
a current history of lead times by one company: 90 days
ago, lead times of two weeks; 30 days ago, lead times of
five to six weeks; and now, lead times of 10-12 weeks. As
observers of this industry, we feel what now prevails is
much closer to normal. This is what happens when the
cycle is in the process of restarting itself. Other compa
nies agreed with this information. Current orders appear
to be across the board—emanating from both distributors
and OEMs—thus differentiating the present situation from
the 1982 false start experience. It should be noted that
orders are not, for the most part, explosive; but design
activity levels have been very active for quite a while.
Orders are still concentrated in the 30-day turns or 90-day
turn and fill business. Clearly, more visibility on order rate
growth must occur before the end-user commits for the
longer term.

Current Investor Outlook

The stocks, as one might have expected, shot up from the
lows of late September and early October back to prices
seen earlier this year—that is, the prices for the main
stream companies. The smaller niche companies—where
product focus and dynamics have carried the business
for the past two years and where one can identify genu
ine proprietary technology, leadership and a competitive
edge—have all outperformed in recent weeks. We are not
recommending avoidance of the larger companies, just
great selectivity. Whether the established companies are
able to reorient product mix is the issue we would focus
on. While this may be intellectualizing—since the stocks
have always moved as a group—we suspect that inves
tors will, over time, pick out the special companies as they
usually do.

At last, slowly but surely, we are seeing the computer
industry reorder, just as its own business has begun to
improve. It is our feeling that the various new product fam
ilies will provide the principal thrust to the improvement
expected. As momentum accelerates, we expect to see
various new products emerge from the data communica
tions sector—in particular, products related to networking
functions. In addition, substantial new workstations are
likely as the 32-bit microprocessor is designed into prod
uct in 1987.

Finally, the military is going to continue to provide sub
stantial end-market demand, particularly for custom and
semi-custom product as electronics continue to penetrate,
and where foreign competition has no entry. Our analy
sis has confirmed our intuitive beliefs about how and
when to buy these stocks. If this is a false start, then a
trade will have developed shortterm. In any case, we are
convinced that the potential for a new industry upturn is
very great. We cannot ignore all the signs of historical sig
nificance. At present, therefore, our worst case is for an
order lull through the spring and summer and a firming
up in late 1986. We feel that 1987 could be a very good

year because of the 32-bit microprocessor and all the
associated products that it will spawn.

Attractive Companies

Convergent Technologies—For the last two months,
Jim Magid has been beating the drum on Convergent
Technologies in the Spotlight Group. Of course, the com
pany has accommodated us with a decent third quarter,
a very thorough outline of management’s long-term game
plan at its November analyst meeting, a 40% equity
interest in a vertical market value-added software com
pany, a squeaky clean balance sheet and now, the coup
de grace, a merger with 3Com—one of the best local area
networking companies around. As Jim has pointed out,
this combination of two creative and rapidly growing tech
nology companies in the computer industry has come at
an opportune moment given the current dynamics of net
working and the opportunity for Convergent to develop
a full value-added systems offering. Another obvious plus
is the combination of two very good management groups.
With new product coming for AT&T, a renewed and
enlarged relationship with Burroughs and more OEM
arrangements yet to be unveiled, the long-term outlook for
Convergent has improved dramatically. Our 1986 earn
ings estimate is $0.75-$1.00 per share; 1987 prospects are
tentatively being pegged at $1.50-$2.00. We like this stock.

Emulex Corp.—Emulex is beginning to look like a solid
stock with new management members and a strong new
product introduction program planned. As Fred Cohen
has indicated, with the outlook brightening for Digital
Equipment Corp., it is easy to get enthusiastic about
Emulex—a supplier of DEC-compatible peripherals. Fis
cal 1986 (June) earnings are expected to advance to
$0.75 per share from $0.59, on sequentially better
quarters. For fiscal 1987, Fred’s preliminary projection is
$1.25-$1.50.

The table on page 7 lists those stocks recommended
in our November Technology Strategy Review that we
continue to find attractive, plus Convergent Technologies
and Emulex. Convergent has been in our Spotlight Group
for some time.

32-Bit Microprocessors

Last month in Tech Notes we highlighted two technology
subjects, local area networks and the 32-bit microproces
sor, including reports written by our analysts on the local
area network and its related personal computer impact.
This month we are offering various articles written espe
cially for Tech Notes on the 32-bit microprocessor.

Some clients have commented that the Intel 32-bit
product, the 80386, is a non-event in the sense that it is
right on the “trend line" of overall performance and func
tionality and offers no real advantage over the competi
tion. We disagree with this characterization and are
dedicating this month’s Tech Notes to a discussion of the
various issues.

TECH NOTES • DECEMBER 1985

53

intel
L.F. ROTHSCHILD, UNTERBERG, TOWBIN

IB 55 WATER STREET, NEW YORK, NY 10041
TEL: (212) 412-1000 CABLE: PROBATICA

Needless to say, we are convinced of the importance
of this generation of microprocessors and of Intel’s par
ticipation. The emergence of the 32-bit micro has
destroyed the distinction between computer companies.
All levels of the industry are now directly competitive and
can offer products of comparable functionality. This new
set of dynamics pumps up the intensity of competition to
a magnitude never before experienced.

For the computer manufacturers the question is not
whether to develop a 32-bit based product line, but which
32-bit micro to choose. The discussions that follow should
be helpful in analyzing the issues.

Stephen E. Yoken,
Director of the Technology Research Group
(212) 412-1822
December 16, 1985

Attractive Companies

Price 52-Week Earnings Per Share P/E Ratios Ind.
Company (12/16/85) Range 1984 1985E 1986P 1985E 1986P Div. Yield
AMR Inc. (AMP) 37 38- 27 $1.87 $1.00 $1.50 37.OX 24.7X $0.72 1.9%
AshtonTate (TATE) 1,3 19 19- 6 0.78 0.80 A 1.65 23.8 11.5 None None
Convergent Tech. (CVGT) 1,2,3 12 12- 5 Def. 0.25 0.75 48.0 16.0 None None
Data General (DGN) 48 76- 31 2.60 0.91 A 2.00 52.7 24.0 None None
Digital Equipment (DEC) 133 127- 85 5.73 6.40A 8.00 20.8 16.6 None None
Emulex (EMLX) 1,3 12 15- 5 0.88 0.59 0.75 20.3 16.0 None None
IBM (IBM) 152 154-117 10.77 10.80 13.00 14.0 11.7 4.40 2.9
Intel (INTC) 1,3 31 32- 20 1.50 0.00 0.50 NM 62.0 None None
Perkin-Elmer (PKN) 31 31- 20 1.30 1.77A 1.85 17.5 16.8 0.60 1.9
Siliconix (SILI) 1,3 23 24- 11 1.29 1.50 2.0 15.3 11.5 None None
1 Within the past three years L.F. Rothschild, Unterberg, Towbin has acted as manager or co-manager for offerings of securities of this company.
2 A principal of L.F. Rothschild, Unterberg, Towbin is a director of this company.
3 L.F. Rothschild, Unterberg, Towbin maintains a trading market in the shares of this company.

32-Bit Microprocessor Market—
The Race Just Got Tougher

Intel’s Announcement

In mid-October, Intel formally introduced the iAPX
386—commonly known as the 80386 or simply the
386—at a gala affair in San Francisco. The 386 represents
Intel’s entry into the 32-bit microprocessor market, which
at last count totaled 50 different offerings. Since its
introduction, the 386 has received much attention from
the electronics industry and the press. In fact, just about
every major trade publication has featured the product in
one format or another. Although many 32-bit alternatives
have already been announced, we believe the 386 is the
most significant one to date and will be the most success
ful. We think this product will have a major impact not only
on the success of all other microprocessors, but on the
future of the entire computer industry as well.

Why All The Attention

The market for 32-bit microprocessors have received a
great amount of attention, and for good reason. Although
still in its infancy, it is expected to grow in excess of 60%
annually to total $200 million by 1990, up from $15-$20
million this year. If the market for peripheral circuits, soft

ware and development systems is added in, the total
should approach $1-$2 billion by 1990.

Besides the large market potential, the 32-bit
microprocessor area is important for another reason. The
industry has witnessed the development of the 4-bit Intel
4004, the first microprocessor, the 8-bit microprocessors,
and the 16-bit processors. The 32-bit processors repre
sent the next and, to some degree, the final step in this
evolution. Future processors will certainly increase in com
plexity and integration but, other than a few specialty
products, there will not be a big demand for either 48- or
64-bit devices. Even general purposes mainframe and
supermini computers use only 32 bits. 32 bits will become
the standard for microprocessors—this technology
represents the last round to enter the general purpose
microprocessor market.

Not all applications currently need the power of a
32-bit microprocessor. Nevertheless, if a manufacturer
offers a migration path from 8 to 16 to 32 bits, the high-
end processor demonstrates the manufacturer’s con
tinued commitment to customers and enhances the value
of its low-end offerings. Having a premier product
enhances a manufacturer’s full line of integrated circuits
(ICs) as well as its microprocessors. Leading edge ICs are
designed into the most advanced systems, giving the

TECH NOTES • DECEMBER 1985

54

semiconductor manufacturer a view into the systems
manufacturer’s future product plans. Moreover, being at
the forefront in microprocessors is equated with overall
technological leadership because micros are the most
complex integrated circuits made. This type of achieve
ment strengthens the ties between the semiconductor
supplier and its customers.

In addition to all the other benefits mentioned, in ten
years the market for 32-bit microprocessors—including
supporting software, peripheral circuits and development
systems—is guaranteed to be very large, and estimated
to approach $10 billion by the mid 1990s.

The 32-Bit Microprocessor Market

The market for 32-bit processors encompasses three
broad areas—upward migration of current applications,
the replacement of minicomputers in many applications
and “new applications" that will grow out of the enormous
price/performance increase the new processors offer. The
market segments for these products are office automation
and personal computers, scientific and engineering work
stations, telecommunications and factory automation.
New applications include expert systems, robotics, video
graphics, transaction processing, signal processing, and
speech recognition.

Although very high performance will be critical for
most 32-bit applications, it is not the only important fea
ture. For instance, in office automation applications, com
patibility with existing software will be the critical factor for
success. At the low end it is estimated that $5-$6 billion
worth of software has been written for the IBM PC and its
clones. The installed base of users will dictate the success
in this market; therefore, microprocessor suppliers can
not ignore the importance of this large software library.

In the scientific and engineering world, different issues
are important. This market will always pay a premium for
increased performance; therefore, microprocessor
speeds will be critical, but here, too, software compatibil
ity is very important. The UNIX operating system has
become the standard along with Ethernet networking;
thus, to be successful, manufacturers will have to offer
very high performance microprocessors that support
these features.

Many people believe that, given the wide variety of
applications for these processors, the market will be frag
mented and that many different processors will be suc
cessful. Although this may prove to be true, with earlier
generations the bulk of the market went to just a few
manufacturers. In the 8-bit world, of the ten major
manufacturers that introduced products, five control 85%
of the market today. At 16 bits, four of the six processors
now introduced control 85% of that market. We believe
a similar consolidation will emerge at 32 bits with three or
four key manufacturers controlling at least 80% of the
market.

The market for 32-bit microprocessors has been slow
to develop, and several explanations have been offered.

Although many observers believe that the market will con
tinue its slow expansion pace because there are so many
alternatives, we disagree. Designing a 32-bit system is a
very difficult task. In many ways, a system at this level of
sophistication is as hard to design as a full 32-bit minicom
puter. We believe the main reason the market has been
slow to develop is because of the lack of tools available
to support the design. Microprocessor suppliers must
provide users with development systems and emulators,
systems and support software, and peripheral and sup
port circuits. With these tools, the new 32-bit systems will
take a long time to develop; without the tools, the systems
may never get completed.

It is important to remember that the relationship
between a microprocessor supplier and a customer is
very symbiotic: the success of one partner promotes the
prosperity of the other. The level of sophistication of the
supplier’s support, development tools and the complete
ness of the supplier’s product offerings'are all critical to
the success of the partnership.

The Success of the Intel 386

It was not until Intel introduced the 386 that all of the major
suppliers presented their offerings. Intel has been sup
porting microprocessor designs for over ten years—
longer than any other supplier—and with the 386 the
company has demonstrated its continued commitment to
being the leader in microprocessors. With each previous
microprocessor generation, Intel has shown that it knows
which support tools are necessary to be successful. We
believe this experience will be reflected in its 32-bit
products. At the 386 announcement, Intel introduced sys
tem software, high level language compliers, emulators,
operating system support, development systems and
board level products.

Most forecasts of 32-bit microprocessor usage
estimate that office automation and personal com
puters will account for at least 80% of the unit vol
ume by 1990. In this market, 32-bit microprocessors will
be used to extend the power of microcomputers, replace
low-end minicomputers and expand the functionality of
both. At the low end the new computer systems will need
to be able to tap the estimated $5 billion worth of software
now written for the IBM PC, which operates on the Intel
8088, 8086 and the 286 microprocessors. Since the 386
is fully compatible with previous generations of Intel micro
processors, it is the only device that will allow easy access
to the library of software. In the replacement of minicom
puters, 32-bit microcomputers will need to offer very high
performance and support very large amounts of memory.
The 386 boasts a performance of 3-4 million instructions
per second (MIPS) and is able to address 4 billion bytes
of physical memory and 64 trillion bytes of virtual
memory—a memory capacity as powerful as many of the
very high performance superminicomputers. We have
very little doubt that the 386 will become the standard
32-bit microprocessor used in office automation applica-

TECH NOTES • DECEMBER 1985

i j f l 55 WATER STREET, NEW YORK, NY 10041
I P TEL: (212) 412-1000 CABLE: PRQBATICA

L.F. ROTHSCHILD, UNTERBERG, TOWBIN

tions, and given the estimated size of this market, success
there will insure success in the whole 32-bit market.

Our forecasts for the engineering and scientific
market indicate that these products will account for
5%-10% of the unit volume in 1990. Despite the fact
that it will be dwarfed by the office automation market, the
engineering market usually receives most of the attention
primarily because engineers are usually the first to try out
new products, and since the 32-bit market is still very
young, engineering applications will be the first to adopt
the new technology. The 386 will be particularly attractive
to the end users in this market because of its unique ability
to support two operating systems simultaneously, e.g. an
engineer will be able to run a CAE application under
UNIX while using a word processing or spreadsheet pro
gram, such as Lotus 1-2-3, under MS-DOS.

Intel has not historically been very visible in the
engineering world. In the past, the company has not won
any major engineering workstation designs, although its
previous microprocessors have been extremely success
ful. We believe the 386 will be a winner in this market. The
processor was built in high-performance CMOS and
boasts excellent performance at 3-4 MIPS. The 386 also
addresses a tremendous amount of memory—more than
any other processor—which is important because
engineering applications require vast amounts of mem
ory support. The memory capacity of the 386 will support
the future needs of this market for many years to come.
Although many observers will try, it is very difficult to com
pare the performance of the 386 with other microproces
sors. Nevertheless, when the smoke clears, we believe the
evaluations will show that the 386 offers excellent perfor
mance and is as powerful as any other microprocessor
available.

Although performance is considered the only truly
important requirement in the engineering world, other fac
tors are becoming increasingly more important. The IBM
PC/AT has become the low-end entry-level computer of
choice throughout the engineering world because of its
power and aggressive pricing. This has allowed
engineers access to the $5 billion worth of software writ
ten for the IBM PC. Following on this trend, the Intel 386
was designed to support both UNIX and MS-DOS appli
cations at the same time. Therefore, computer systems
built around this microprocessor will be the only ones to
offer the performance of a superminicomputer while
accessing the IBM PC’s extensive software base.

Given the performance characteristics and the very
advanced technical features of the 386, combined with
Intel’s vast experience in microprocessor development
support and the pervasiveness of previous Intel
microprocessors, we believe that Intel will be very suc
cessful in the 32-bit market and that the 386 and follow-

on processors will become the 32-bit standards.

Paul Johnson (212) 412-1568

Impact of the Intel 80386 on the CAD/CAM/CAE
Industry

Overview

The CAD/CAM/CAE industry is quickly moving from a
minicomputer-based system environment to one based
on 32-bit microprocessors. Many of the companies offer
turnkey systems based on Digital Equipment’s VAX 32-bit
minicomputers, and other .computer manufacturers are
now in the process of choosing microprocessor-based
systems either to be developed in-house or brought from
third party vendors. Many believe that the 32-bit
microprocessor race has already been won by those firms
with products announced in the last two years. The prob
lem is that shipments of many of those products have not
yet begun in quantity. On the horizon there is a chip set
that is beginning to catch hold of the engineering and
scientific marketplace for computers—the Intel 32-bit
microprocessor, the 80386.

Since previous articles in this issue have described the
intricacies of the chip, it is not necessary to give another
detailed description of its capabilities—in this piece we
outline some of the possible impacts the product will have
on the CAD/CAM/ CAE market. Suffice it to say that we
anticipate a low-cost, readily available computer priced at
$8,000-$12,000—$2,000-$4000 more than an IBM PC/AT
fully loaded with acceptable graphics. The offering would
most likely come from IBM, which, in our opinion, owns
the low end of the engineering computer market. The IBM
PC, which for the sake of simplicity we will call the PC 386,
will be mass-produced and will quickly approximate the
shipment volumes of the PC/AT.

One of the obvious impacts of the Intel 80386 is to
bring many of the companies currently offering software
on the Intel 16-bit 80286, 8086 and 8088 microprocessors
to a more powerful microcomputer processor. The soft
ware that currently runs on the Intel family of microproces
sors (including Flight Simulator) will also run on the
80386—at roughly twice the speed. The real boost in
power is achieved by recompiling the software to take
advantage of the larger bus on the chip—this will increase
its speed more like four times. Today a company can
obtain from Intel a complier for the C and PL/M high level
languages; a Fortran complier will be available in 1986
and an Ada complier in 1987.

Software written in the C and PL/M languages (most
of the software written for a UNIX operating system and
for flexibility is written in C) can today begin being format
ted for the 80386 on hardware ranging from the Digital
VAX to the IBM PC. Intel has also provided software

TECH NOTES • DECEMBER 1985

development tools to make it easier to write new software
for the processor—Intel is the largest supplier of software
development tools to the industry. The operating systems
supported by the 80386 are MS-DOS, UNIX and iRMX
(Intel’s real-time operating system). Both UNIX and MS-
DOS are the de facto operating systems for the CAE mar
ketplace with UNIX soon to become the standard for all
offerings from the CAE vendors. The 80386 runs UNIX
and MS-DOS concurrently so a user could execute a
processing-intensive program and simultaneously begin
working on another project. Today a lot of time is wasted
as users wait for programs to be executed, particularly in
the low-end segment of the market.

Effect on Specific Companies

A low-cost, extremely powerful computer that runs today’s
software is exactly what the customer wants. We believe
the PC 386 is the computer that engineering managers
would like to see on every engineer’s desk. The PC 386
could possibly be ready for volume shipment in the fourth
quarter of 1986, but is more likely to become available in
the first quarter of 1987. With this in mind, a PC 386 and
microVAX (II and III) arrangement would be just what the
the customer is looking for—a low-cost front end and a
low-cost distributed node. Some companies have an
advantage, particularly those that already have ported
their software to the IBM PC. This advantage, however,
does not come to those companies that have tailored their
software to co-processor boards to enhance speed today
instead of waiting for the power of the PC 386 tomorrow
(more like a year from tomorrow). Tektronix/CAE Systems
and Valid Logic are two of the largest CAE vendors to
have done so. Daisy Systems has added National Semi
conductor’s 16-bit microprocessor, the 32016, to its high-
end offerings, but the software can also run on the other
processors such as the 80386. So Daisy can now have
a high end that encompasses parallel processing
architecture with two 80386 microprocessors—one way
to maintain high margins. Mentor Graphics is preparing
an IBM PC/AT offering for the first quarter of 1986,
although it will not run the full gamut of software that Men
tor’s Apollo-based offerings do. The company is also
transferring its software out of the Pascal language and
into C to increase the flexibility to different hardware sys
tems and, more than likely, to prepare for the PC 386.

An interesting added aspect of the PC 386 is that it
brings the current low-cost offerings that run just on per
sonal computers into the fold of full fledged CAE offerings.
Companies such as Futurenet, Viewlogic, Case, P-CAD,
etc., all are now running on the same hardware as the full
line CAE vendors and could put pricing pressure on the
CAE vendors that have only partial products offerings.
And the low-cost CAE vendors could cause pricing prob
lems for the companies with more overhead, such as the
full line CAE vendors.

In the CAD/CAM sector of the market there could be
a major dislocation of the existing minicomputer-based

CAD offerings if the companies have difficulty porting their
software out of the minicomputer environment down to the
microprocessor level. The low-cost CAD software offerings
of today will be available on hardware that is not far from
the processing speeds of the minicomputers. Intergraph,
Computervision, IBM, GE/Calma, Schlumberger/Appli-
con, et.al., are all based on minicomputer-based offerings
and could well have problems offering integrated software
at the low end that does not pirate the high end. IBM,
Applicon and Computervision could have major prob
lems porting the ir mainstream software to the
microprocessor level. These companies could actually
lose market share to the low-cost CAD offerings such as
Autodesk’s AutoCAD or T&W Systems' Versacad. Com
putervision currently has a software package running on
the IBM PC, but it does not interface with the existing soft
ware in the company’s mainstream product, the CDS
4000. Computervision is also making the mistake (in our
opinion) of porting its software to the 68020 environment
and will probably have trouble bringing that same soft
ware up on a PC 386. Intergraph could, in our opinion,
replace the National Semiconductor 32032 in the Inter-
pro 32 with an 80386 and not be set back too much by
software changes, since Intergraph has chosen the AT&T
System V version of UNIX which is also the operating sys
tem on the 80386. We do not expect Intergraph to
announce this change for another six months. The
incremental revenues will be nil in 1986 but could be $50
million, or 3,000 units, in 1987.

The bottom line is that Autodesk, PDA Engineering,
Daisy Systems, and Mentor Graphics will all benefit
from the Intel 80386 by expanding their existing mar
kets for the low-cost systems. The pricing pressure
mentioned earlier will probably be insignificant since cus
tomers at this point in the industry’s development are
becoming concerned with the security of future systems;
hence, the data created will be compatible with future
offerings from a vendor. Intergraph is currently working on
porting its software down to the microprocessor level—
the company’s first product will be annonced in the sec
ond quarter of 1986 and shipments will begin in the third.
Intergraph will adopt a rather cautious approach to port
ing its software since the company takes great care not
to upset its customers. Computervision is also porting its
software down to the microprocessor level, but we envi
sion that the customer will be less impressed by the Sun
Microsystems licensed workstations once the PC 386 is
announced. On a final note, the forward-looking compa
nies will be quick to adopt the PC 386 to some degree
in their product offerings over the next 18 months.

Peter D. Schleider (212) 412-1572

TECH NOTES • DECEMBER 1985

57

L.F. ROTHSCHILD, UNTERBERG, TOWBIN

IB 55 WATER STREET, NEW YORK, N Y 10041
TEL: (212) 412-1000 CABLE: PROBATICA

Convergent Technologies and the Intel 80386

Background

The Personal Computer

The personal computer, as it entered business and indus
try, was defined by the 1977 Apple II, consisting of a key
board, monitor, floppy disc drive, and software for
spreadsheet analysis, word processing, and data base
management. The use of a modem tied machines to the
outside world of data bases and electronic mail, but the
computer functioned more as a dumb terminal in these
configurations. Used by an individual, with files and data
entered by hpnd, machines started showing up on office
desks, laboratory benches, and the factory floor. The per
sonal and individual nature of the interaction with the com
puter and its low price, compared to other business and
industrial eguipment, saw personal computers percolate
into the business world before the computer hierarchy
knew what was happening.

The IBM Did Not Change The Basic Personal
Computer

The introduction of the IBM PC did nothing to change the
basic configuration of the personal computer; it still con
sists of the same elements. The most powerful PC’s, such
as the IBM/AT, are essentially similiar to the early Apple,
and most of the software packages being used are only
but zippier versions of the early favorites. The power has
grown, so that memory of 64K bytes on the first IBM PCs
compares with 640K bytes common today, the limit avail
able for use under the MS-DOS operating system. The
limit of 640K bytes is beginning to prove inadequate for
sophisticated users today— i.e., a tenfold increase in mem
ory in less than a decade is not enough. Even so, the
essential structure of PCs and their use today is more
similiar to the 1977 Apple II than is commonly recognized.

From Personal to Organizational Computer

The success of the IBM PC changed the attitude of busi
ness toward the personal computer. Viewing them as a
threat to traditional computer and information hierarchies
at first, the MIS departments took over the purchase of
personal computers and software, control of the data, and
access to the machine in large corporations and IBM suc
ceeded in Apple’s footsteps. The personal computer
became the organizational computer in business and
industry.

Organizational Computers Were Islands

Although organizational PCs were supported by com
puter departments, they still function as isolated, indepen
dent workstations for the most part. These islands are just
now being connected by bridges, and the new genera

tion of microprocessors is essential for PCs to be used as
more than dumb terminals in such applications. Networks
enable these organizational computers to share costly
peripherals, communicate with limited corporate data
bases, and function as terminals on corporations' larger
data processing networks. Personal computers, con
nected horizontally to each other and vertically to main
frames for data and communications, are just now being
recognized as replacements for the tens of millions of
dumb terminals in the installed base.

The 80386 Bridges the Islands

As these workstations gain access to corporate data from
mainframes and are used for analysis and communica
tions, the next generation of computer usage is unfolding.
The 1960s were characterized by batch processing main
frame computers. The 1970s were the era of the minicom
puter and distributed computing on mainframes. The next
era should witness the integration of these two into broad
interconnections of networked intelligent workstations,
bringing mainframe power to the desktop, and connect
ing horizontally and vertically into hierarchies. The seg
mented memory of the Intel 80386 and its ability to run
UNIX multiprocessing and multitasking at the same time
as MS-DOS applications open the door for this structural
change from isolated personal or organizational com
puters to an interconnected network providing more struc
tured information, current and fresh, than any single user
could provide for himself.

Cost/Performance Advances of Thirty Times in a
Decade

The evolution of software and functionality of computers
has continued without pause. The rate of cost/perfor-
mance improvement in the desktop computer industry
has been between 25% and 40% annually for the past
decade of the personal computer, and that rate should
continue. That means the performance for the same cost
increases ten to thirty times over a decade.

Memory, Logic, and Peripherals All Join in Progress

The desktop computer of 1987 should have ten to thirty
times the capability of the original Apple II at the same
cost, or perhaps as much as one hundred times the per
formance at a higher cost, when implemented in an
engineering workstation. This is the result of progress in
semiconductors and peripherals. Recording densities of
floppy and hard discs, soon to be followed by the
introduction of high capacity optical storage media, have
paralled this trend. By 1987, for example, technology
employed in today’s digital compact audio disc, or CD,
can result in a device capable of 500 megabytes of stor
age for $500, about the same cost as the Apple M’s 140K

TECH NOTES • DECEMBER 1985

iny
bytes in floppy disc drives went for a decade earlier, or
a 125-fold increase, overlooking the important fact that you
can't record on the digital disc yet. With the high resolu
tion monitor screens the next generation computers will
have, the digital CD may rival printing for the distribution
of some forms of information. The examples of semi
conductor memory improvements are well known, but
similar gains in logic have not been fully recognized.

Microprocessors Determine the Computer
Capabilities

The real performance gains come from the changes in
the capability of microprocessors and coprocessor chips
that form the brains of these machines, the operating sys
tems that turn the machines into responsive, intelligent,
interactive creations, and the networks that can link these
machines together.

Operating Systems Converge in the 80386

The evolution of the Intel 8086 arch itecture as
implemented in MS-DOS on the IBM computers has cap
tured the attention of most observers, but Intel’s proprie
tary iRMX real time operating system, for laboratory,
factory, and industrial applications, has paralleled the suc
cess of MS-DOS in a different arena. The 80386 runs
these operating systems, as well as UNIX, all at the same
time and with the ability to share data among operating
systems and applications. Its compatibility with the past
while opening new vistas for performance is the “revolu
tionary” aspect of the 80386. The “more than evolution
ary” capability of the Intel 80386 is probably being
underestimated because the full potential of its predeces
sor, the 80286, has still not been fully unleashed in desk
top computers, so the question as to why we need more
than we have today is uppermost in critics' minds. The
answer of course is that with 40% annual cost perfor
mance gains, the entire character of the personal com
puter, as it is used in business, is changing in a radical
way.

The 80386 Is Revolutionary and Evolutionary at the
Same Time

The Intel 80386 is revolutionary in that it addresses an
almost infinite amount of memory in comparison with
today’s processors, opening true multiprocessing, mul
titasking, high resolution display, with the ability to inter
face with much more information than any one person
could enter in a lifetime. Software advances that utilize the
total capability of this device are probably more than five
years away, but because the 80386 is compatible with
existing 8086 software, it will be implemented to enhance
existing software and applications, and its true revolution
ary nature will show up gradually in networking and in
putting more complex software into simpler seeming
applications.

Multitasking Adds Speed to Today’s Application

An example of how the 80386 is compatible with but bet
ter than today’s processors can be seen in the use of mul
titasking. Multitasking is being able to do more than one
thing at a time. Obvious examples are communications
and a spreadsheet simultaneously, receiving data and
sending it. Current windowing software is inadequate,
present color displays are of too low a resolution to hold
enough information on the screen at one time, present
operating systems do not allow true multitasking to work,
and the 640K memory limit on MS-DOS means that not
enough memory is available to be able to do anything
very large. The 80386 can solve all of those problems. But
the first feature will be speed. Running several times faster
than the 80286, the 80386 will run all applications a little
faster, but multiprocessing will allow it to run some appli
cations at an almost infinitely faster rate to the user. Con
sider a spreadsheet that must wait for recalculation, which
takes a long time with a big spreadsheet. With the 80386
and multitasking, the sheet can be run in the background
as two or more simultaneous tasks. So, data entry in the
foreground goes on without waiting for calculations, com
munications, or printing from a background of the identi
cal spread sheet. The same application works with
complex word processing documents, which would make
a big difference for a law firm, for example.

The Intel 80386 and Its Capabilities

Memory—The 80386 addresses 4 gigabytes of memory,
or 4 billion bytes of memory, compared with 1 megabyte
possible on the 8088 and 6,700 times the 640K bytes of
memory available under MS-DOS. With virtual memory,
the 80386 addresses 64 tetrabytes, or 70 billion bytes of
memory. The magnitude of this is impossible to visualize
easily. It is 100 million times the memory available under
MS-DOS. If purchased in 256K DRAMS at $2.00 each it
would take 2 billion devices worth $4 billion. It can easily
be seen that this amount of memory access, equal to
more than 256,000 bytes for everyone in the United
States, exceeds the capability of existing software and
data bases. But what is not so apparent is that in struc
tures with mainframe computers at the top and 386-based
PCs as terminals, the information locked inside today’s
mainframes, properly configured, can become available
to many more users.

Software—The 80386 is capable of running many oper
ating systems simultaneously. It can run 386 software,
being a mainframe in power itself, 286 applications, and
conventional PC-DOS software at the same time. With the
Virtual Monitor 8086, the 386 runs multiple 8086 applica
tions as if each had its own 8086. This frees future soft
ware from the confines of PC-DOS while maintaining
compatibility with existing machines. For example, it is
possible for Convergent Technologies to implement its

TECH NOTES • DECEMBER 1985

59

L.F. ROTHSCHILD, UNTERBERG, TOWBIN

IB 55 WATER STREET, NEW YORK, NY 10041
TEL: (212) 412-1000 CABLE: PROBATICA

MegaFrame and other Frame computers in the 80386,
and retain AT&T UNIX system V compatibility with the
UNIX operations presently run on series 68000
microprocessors, while adding Convergent’s 8086-based
CTOS as well as PC and MS-DOS applications.

Convergent Among The First And Best With The
80386

Convergent Technologies should be among the first and
best to implement the 80386 in workstations and in
minicomputers. Convergent's existing workstation line, the
NGen, is just benefitting from the'introduction of the
80286 module, which Burroughs has introduced as the
B 28. A review of the power of the 286 module shows that
Convergent has much more performance on its NGen
systems than is commonly available on IBM PC/ATs using
the same 80286 microprocessor.

The modularity of the NGen system allows for
upgrades without obsoleting existing equipment or soft
ware. Fully compatible with the 80186 CPUs, the 80286
adds power and features. On Convergent’s 286 module,
memory management allows accessing up to 4 mega
bytes of real memory, at any given time, out of an address
space that is much larger under virtual memory. Virtual
memory management allows up to 16 megabytes of vir
tual memory. Convergent will achieve this by using the
disc as cache memory. CTOS software allows true con
currency up to one megabyte, and new software will allow
concurrency up to 4 megyabytes soon, well in advance
of other operating systems for the 80286.

Concurrency means running several tasks at the same
time, a special advantage of CTOS. Convergent is
implementing the 80286 to access much larger segments
of memory than can be used on operating systems such
as MS-DOS, which so far are limited to only 640K bytes
of direct access memory, and Convergent will be able to
access 4 megabytes on the 286 NGen module that Bur
roughs is buying. This means that Convergent’s 80286
module, shipping now, can access as many applications
(called contexts) as desired at the same time. Networked
together, these workstations can share costly printers and
high capacity disc files, and be integrated into mainframes
contro lled com m unications systems using the
MegaFrame minicomputer. In an organizational context,
the system is more powerful than isolated, non-networked,
PC’s.

A principal application of the 80286 is to support mul
tiple programs serving multiple applications through a
server, the master workstation. In addition to supporting
a traditional workstation such as a word processor or
spreadsheet user, the station can control communications
or a network, printer and other applications at the same
time. This is because the 80286 has such a large mem
ory address space. Looking to the 80386 in the same

application, multiple mainframe applications can be
shared over the network, making the combination of
80386 workstations and mainframes much more power
ful than the same number of machines would be in iso
lation. Thus, with a more powerful master, the sharing of
high-priced high quality peripherals is spread over a
larger base. Today’s Convergent machines are high-
priced relative to PC or AT competitors running PC tasks
in stand alone applications, but when the values of the
integrated systems are viewed, the costs are comparable.
However, the introduction of 80286 and 80386 NGen
modules and Frames should lower the workstation
cost of Convergent equipment, per user, giving the
company a performance and cost advantage in the
organizational market. Including 3Com networking
makes this a very powerful system, and we expect
to see it adopted soon by a major new OEM cus
tomer, itself an impressive computer company.

With the 80386, Convergent’s task of making the
machine PC-compatible is much easier, so we expect to
see Convergent implement the 80386 throughout its
product line, from NGen modules through Mega Frame.
We expect future NGen 80386 processors to be compat
ible with previous Ngens running CTOS, and PC compat
ible as well. That means that today's users of Convergent’s
NGen machines can take advantage of the PC-DOS soft
ware within a year, if they desire. If Intel’s timetable is met,
we would expect to see Convergent introduce a 386 mod
ule by the fall of 1986. Because Convergent has been a
leader in UNIX applications, the company understands
and has software which uses multitasking and mul
tiprocessing applications for the business world. We
expect these to be key features as new major OEMs
choose Convergent systems in 1986, but in all probabil
ity, Convergent’s ability to appeal to another major com
puter company may well be the integration of PC and
other applications on the 386, in the context of full com
patibility of strong present product line.

James I. Magid (212) 412-1574

TECH NOTES • DECEMBER 1985

60

DO M ESTIC SALES OFFICES

ALABAMA
Inlol Corp.
5015 Bradford Drive
Suite 2
Huntsville 35805
Tol: (205) 830 -1010

ARIZONA
Intol Corp.
11225 N. 281h Drivo
Suito 214D
Phoonix 85029
Tol: (602) 869-4980
Inlol Corp.
1161 N. El Dorado Placo
Suilo 301
Tucson 85715
Tol: (602) 299-6815

CALIFORNIA
Inlol Corp.
21515 Vanowon Slrool
Suito 116
Canoga Park 91303
Tol: (818) 704-8500

Inlol Corp.
2250 E. Imporial Highway
Suite 218
El Sonundo 90245
Tol: (213) 640-6040

Intol Corp.
1510 Ardon Way, Suilo 101
Sacramonto 95815
Tol: (916) 920-8096

Inlol Corp.
4350 Exocutivo Drivo
Suilo 105
San Diogo 92121
(619) 452-5880

Inlol Corp.*
2000 East 4th Slrool
Suilo 100
Sanla Ann 92705
Tol: (714) 835-9642
TWX: 910-595-1114

San Thomas 4
2700 San Thomas Expressway
Santa Clara, CA 95051
Tol: (408) 986-8086
910-338 0255

COLORADO
Inlol Corp.
3300 Milcholl l ane, Suilo 210
Bouldor 80301
Tol: (303) 442-8088
Inlol Corp.
4445 Northpark Drivo
Suilo 100
Colorado Springs 80907
Tol: (303) 594-6622

Inlol Corp.*
650 S. Cherry Slrool
Suilo 915
Donvor 80222
Tol: (303) 321-8086
TWX 910-931-2289

CONNECTICUT
Inlol Corp.
26 Mill Plain Rond
Danbury 06810
Tol: (203) 748-3130
TWX: 710-456-1199

EMC Corp.
222 Summor Slrool
Stamford 06901
Tol: (203) 327-2934

FLORIDA
Intol Corp.
242 N. woslmonlo Drivo
Suilo 105
Altamonte Springs 32714
Tol: (305) 869-5588

Inlol Corp.
6363 N W 6th Way, Suilo 100
FI. Lnudordalo 33309
Tol: (305) 771-0600
TWX: 510-956-9407

FLORIDA (Cont'd)
Inlol Corp.
11300 4 Ih Slrool Norlh
Suilo 170
SI. Polersburg 33702
Tol: (813) 577-2413

GEORGIA
Inlol Corp.
3280 Polnlo Parkway
Suilo 200
Norcross 30092
Tol: (404) 449-0541

ILLINOIS
Intel Corp. *
300 N. Mar ling alo Rond, Suilo 400
Schaumburg 60172
Tol: (312) 310-8031

INDIANA
Inlol Corp.
8777 Purdue Road
Suilo 125
Indianapolis 46268
Tol: (317) 875-0623

IOWA
Inlol Corp.
SI. Androws Building
1930 SI Andrews Drive III
Codar Rapids 52402
Tol: (319) 393-5510

KANSAS
Inlol Corp.
8400 W IIOIIi Slrool
Suilo 170
Ovorlnnd Park 66210
Tol: (913) 345-2727

MARYLAND
Inlol Corp.*
7321 Parkway Drivo Soulh
Suilo C
Hanover 21076
Tol: (301) 796-7500
TWX 710-862-1944
Inlol Corp.
7833 Walkor Drivo
Groonbolt 20770
Tol: (301) 441-1020

MASSACHUSETTS

Wostlord Corp. Conlor
3 Carlisle Road
Wostlord 01886
Tol: (617) 692-3222
TWX 710-343-6333

MICHIGAN
Inlol Corp.
7071 Orchard lake Road
Suilo 100
Wosl Bloomliold 48033
Tol: (313) 851-8096

MINNESOTA
Inlol Corp.
3500 W BOtli Slrool
Suilo 360
Bloomington 55431
Tol: (612) 035-6722
TWX 910-576-2867

MISSOURI

Inlol Corp.
4203 Earth Cily Exprossway
Suilo 131
Earlh Cily 63045
Tol: (314) 291-1990

NEW JERSEY

Intol Corp.*
Parkway 109 Oflico Conlor
328 Nowrnan Springs Road
Red Bank 07701
Tol: (201) 747-2233

NEW JERSEY (Cont'd)

75 Livingslon Avonuo
First Floor
Rosoland 07068
Tol: (201) 740-0111

NEW MEXICO
Inlol Corp.
8500 Monual Boulovard N.E.
Suilo B 295
Albuqucrquo 87112
Tol: (505) 292-8086

NEW YORK
Inlol Corp *
300 Vandorbill Motor Parkway
Hauppaugo 11788
Tol: (516) 231-3300
TWX: 510-227-6236
Inlol Corp.
Suilo 2B Hollowbrook Park
15 Myors Corners Road
Wappmgor Falls 12590
Tel (914) 297 6161
TWX: 510-248-0060

Inlol Corp.*
211 While Spruce Boulovard
Rochoslor 14623
Tol: (716) 424-1050
TWX 510-253-7391

NORTH CAROLINA
Inlol Corp.
5/00 Exocutivo Conlor Drivo
Suilo 213
Charlotte 28212
Tol: (704) 568-8966

Inlol Corp.
2/00 Wyclifl Road
Suilo 102
Raloigh 27607
Tol: (919) 781-8022

OHIO
Inlol Corp.*
3401 Park Conlor Drivo
Suilo 220
Dayton 45414
Tol: (513) 890-5350
TWX: 810-450-2528

Inlol Corp.*
Chagrin-Brainard Bldg , No 300
28001 Chagrin Boulovard
Clovoland 44122
Tol: (216) 464-2736
TWX: 810-427-9298

OKLAHOMA
Inlol Corp.
6801 N. Broadway
Suilo 115
Oklahoma Cily 73116
Tol: (405) 848-8086

OREGON
Inlol Corp.
10700 S.W Boavorlon
I lillsdalo I tlghway
Suilo 22
Boavorlon 97005
Tol: (503) 641-0006
TWX: 910-467-8741

PENNSYLVANIA
Inlol Corp.
1513 Codar Clill Drivo
Camphill 17011
Tol: (717) 737-5035

Inlol Corp.*
455 Pennsylvania Avonuo
Fori Washington 19034
Tol: (215) 641-1000
TWX: 510-661-2077

Inlol Corp.*
400 Penn Conlor Boulovard
Suilo 610
Pittsburgh 15235
Tol: (412) 823-4970

PUERTO RICO
Inlol Microprocessor Corp.
Soulh Industrial Park
Las Piodras 00671
Tol: (809) 733-3030

TEXAS
Inlol Corp.
313 E. Anderson Lano
Suilo 314
Austin 78752
Tol: (512) 454-3628

Inlol Corp.*
12300 Ford Road
Suito 380
Dallas 75234
Tol: (214) 241-8087
TWX: 910-860-5617

Intol Corp.*
7322 S.W. Frooway
Suilo 1490
Houston 77074
Tol: (713) 988-8086
TWX: 910-881-2490
Industrial Digital Sysloms Corp.
5925 Sovoroign
Suilo 101
Houston 77036
Tol: (713)988-9421

UTAH
Inlol Corp.
5201 Groon Slrool
Suilo 290
Murray 84123
Tol: (801) 263-8051

VIRGINIA
Intol Corp.
1603 Sanla Rosa Road
Suilo 109
Richmond 23288
Tol: (804) 282-5668

WASHINGTON
Intol Corp.
110 11011) Avonuo N.E.
Suilo 510
Uollovuo 98004
Tol: (206) 453-8086
TWX: 910-443-3002
Inlol Corp.
408 N. Multan Road
Suilo 102
Spokano 99206
Tol: (509) 928-8086

WISCONSIN
Inlol Corp.
450 N. Sunnyslopo Road
Suite 130
Chancollory Park I
Brookfiold 53005
Tol: (414) 784-808/

C A N A D A
BRITISH COLUMBIA
Inlol Somiconduclor ol Canada, Lid
301-2245 W Broadway
Vancouvor V6K 2E4
Tol: (604) 738-6522

ONTARIO
Inlol Somiconduclor ol Canada, Lid.
2650 Quoonsviow Drivo
Suite 250
Ottawa K2B 8H6
Tol: (613) 829-9714
TELEX: 053-4115

Inlol Somiconduclor ol Canada, Lid
190 Allwoll Drivo
Suito 500
Roxdalo M9W 6H0
Tol: (416) 675-2105
TELEX: 069835/4

QUEBEC
Inlol Somiconduclor ol Cunnda, Lid.
620 SI Joan Blvd
Poinlo Clniro H9R 3K3
Tol: (514) 694-9130
TWX 514-694-9134

•Field Application Location

DO M ESTIC DISTRIBUTORS

ALABAMA CALIFORNIA (Cont'd) ILLINOIS MISSOURI OHIO (Cont'd) UTAH

Arrow Electronics. Inc
1015 Henderson Road
Huntsville 35805
Tel: (205) 837-6955
tHamilton/Avnet Eleclronics
4812 Commercial Drive N W
Hunlsville 35805
Tel: (205) 837-7210
TWX 810-726-2162

Pionoer/Technologies Group Inc
4825 University Square
Hunlsville 35805
Tel: (205) 837-9300
TWX 810-726-2197

ARIZONA
IHamillon/Avnel Eleclronics
505 S. Madison Drive
Tempe 85281
Tel: (602) 231-5100
TWX 910-950-0077

Kierulll Electronics
4134 E Wood Slreel
Phoenix 85040
Tel: (602) 437-0750
TWX 910-951-1550
Wyle Disinbulion Group
17855 N Black Canyon Highway
Phoenix 85023
Tel: (602) 866-2888

CALIFORNIA
Arrow Eleclronics. Inc
19748 Dearborn Slreel
Chalsworlh 91311
Tel: (818) 701-7500
TWX 910-493-2086

Arrow Eleclronics, Inc
1502 Crocker Avenue
Hayward 94544
Tel: (408) 487 4600

Arrow Eleclronics
9511 Ridgehaven Court
San Diego 92123
Tel: (619) 565-4800
TLX: 888064

fArrow Electronics. Inc
521 Weddell Drive
Sunnyvale 94086
Tel: (408) 745-6600
TWX 910-339-9371

Arrow Electronics. Inc.
2961 Dow Avenue
Tustm 92680
Tel (714) 838-5422
TWX 910-595-2860

tAvnct Electronics
350 McCormick Avenue
Costa Mesa 92626
Tel: (714) 754-6051
TWX: 910-595-1928

Hamillon/Avnot Electronics
1175 Bordeaux Drive
Sunnyvale 94086
Tel: (408) 743-3300
TWX: 910-339-9332

fHamilton/Avnet Electronics
4545 Viewridge Avenue
San Diego 92123
Tel (619) 571-7500
TWX 910-595-2638
fHamilton/Avnet Electronics
20501 Plummer Slreel
Chalsworlh 91311
Tel: (818) 700-6271
TWX: 910-494-2207

t Hamilton/Avnet Electronics
4103 Norlhgate Boulevard
Sacramento 95834
Tel: (916) 920-3150

Hamilton/Avnet Electronics
3002 G Street
Ontario 91311
Tel: (714) 989-9411

Hamillon/Avnel Eleclronics
19515 So. Vermont Avenue
Torrance 90502
Tel: (213) 615-3909
TWX 910-349-6263

Hamilton Electro Sales
9650 De Soto Avenue
Chalsworlh 91311
Tel (818) 700-6500

fHamillon Electro Sales
10950 W Washington Boulevard
Culver City 90230
Tel: (213) 558-2458
TWX 910-340-6364

Hamilton Electro Sales
1361 B Wesl 190th Street
Gardena 90248
Tel: (213) 558-2131

fHamillon Electro Sales
3170 Pullman Street
Costa Mesa 92626
Tel: (714) 641-4150
TWX 910-595-2638

Kierulll Eleclronics
10824 Hope Slreel
Cypress 90430
Tel (714) 220-6300

Kierulll Eleclronics, Inc
1180 Murphy Avenue
San Jose 95131
Tel: (408) 971-2600
TWX 910-379-6430

Kierulll Eleclronics, Inc.
14101 Franklin Avenue
Tuslm 92680
Tel: (714) 731-5711
TWX 910-595-2599

fKierulll Eleclronics, Inc
5650 Jillson Slreel
Commerce 90040
Tel (213) 725-0325
TWX 910-580-3666

Wyle Distribution Group
26560 Agoura Slreel
Calabasas 91302
Tel (818) 880-9000
TWX 818-372-0232

fWyle Disinbulion Group
124 Maryland Slreel
El Segundo 90245
Tel (213) 322-8100
TWX 910-348-7140 or 7111

fWyle Disinbulion Group
17872 Cowan Avenue
Irvine 92714
Tel (714) 843-9953
TWX 910-595-1572

fWyle Distribution Group
11151 Sun Center Drive
Rancho Cordova 95670
Tel: (916) 638-5282
fWyle Distribution Group
9525 Chesapeake Drive
San Diego 92123
Tel (619) 565-9171
TWX: 910-335-1590

fWyle Distribution Group
3000 Bowers Avenue
Santa Clara 95051
Tel (408) 727-2500
TWX 910-338-0296
Wyle Military
18910 Teller Avenue
Irvine 92750
Tel (714) 851-9958
TWX 310-371-9127

Wyle Systems
7382 Lampson Avenue
Garden Grove 92641
Tel (714) 851-9953
TWX: 910-595-2642

COLORADO
Arrow Electronics. Inc
1390 S Potomac Slreel
Suite 136
Aurora 80012
Tel (303) 696-1111

fHamilton/Avnet Electronics
8765 E Orchard Road
Suite 708
Englewood 80111
Tel (303) 740-1017
TWX: 910-935-0787

fWyle Disinbulion Group
451 E 124th Avenue
Thornton 80241
Tel (303) 457-9953
TWX 910-936-0770

CONNECTICUT
fArrow Electronics. Inc.
12 Beaumonl Road
Wallinglord 06492
Tel (203) 265-7741
TWX 710-476-0162

fHamilton/Avnet Eleclronics
Commerce industrial Park
Commerce Drive
Danbury 06810
Tel (203) 797-2800
TWX: 710-456-9974

fPioneer Northeast Eloclromcs
112 Mam Slreel
Norwalk 06851
Tel (203) 853-1515
TWX 710-468-3373

FLORIDA

fArrow Eleclronics, Inc.
350 Fairway Drive
Deerlield Beach 33441
Tel (305) 429-8200
TWX: 510-955-9456

fArrow Electronics. Inc.1001 N.W 62nd Street
Suite 108
Ft Lauderdale 33309
Tel (305) 776-7790
TWX 510-955-9456

fArrow Electronics, Inc.
50 Woodlake Drive W., Bldg B
Palm Bay 32905
Tel: (305) 725-1480
TWX: 510-959-6337

fHamilton/Avnet Electronics
6801 N.W. 15lh Way
Ft Lauderdale 33309
Tel (305) 971-2900
TWX: 510-956-3097

fHamilton/Avnet Electronics
3197 Tech Drive North
St Petersburg 33702
Tel (813) 576-3930
TWX 810-863-0374

Hamillon/Avnet Electronics
694 7 University Boulevard
Wmterpark 32792
Tel (305) 628-3888
TWX 810-853-0322
fPioneer Electronics
221 N Lake Boulevard
Suite 412
Alta Monte Springs 32701
Tel (305) 834-9090
TWX 810-853-0284

fPioneer Electronics
674 S Military Trail
Deerlield Beach 33442
Tel (305) 428-887 7
TWX 510-955-9653

GEORGIA
fArrow Electronics, Inc
3155 Norlhwoods Parkway. Suite A
Norcross 30071
Tel: (404) 449-8252
TWX 810-766-0439

Hamilton/Avnet Electronics
5825 D Peachtree Corners
Norcross 30092
Tel: (404) 447-7500
TWX: 810-766-0432

Pioneer Eleclronics
5835B Peachtree Corners E
Norcross 30092
Tel: (404) 448-1711
TWX 810-766-4515

fArrow Electronics. Inc
2000 E Alonquin Street
Schaumberg 60195
Tel (312) 397-3440
TWX: 910-291-3544

fHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensonvillo 60106
Tel (312) 860-7780
TWX: 910-227-0060

MTI Systems Sales
1100 West Thorndale
llasca 60143
Tel (312) 773-2300

fPioneer Eleclronics
1551 Carmen Drive
Elk Grove Village 60007
Tel (312) 437-9680
TWX: 910-222-1834

INDIANA
fArrow Eleclronics. Inc
2495 Directors Row. Suite H
Indianapolis 46241
Tel (317) 243-9353
TWX 810-341-3119

Llamilton/Avnet Electronics
485 Gradle Drive
Carmel 46032
Tot (31/) 844 9333
TWX: 810-260-3966

fPioneer Eleclronics
6408 Caslleplace Drive
Indianapolis 46250
Tel: (317) 849-7300
TWX 810-260-1794

KANSAS
fHamilton/Avnet Electronics
9219 Quivera Road
Overland Park 66215
Tel (913) 888-8900
TWX 910-743-0005

KENTUCKY

Hamilton/Avnet Electronics
1051 D Newton Park
Lexington 40511

MARYLAND
Arrow Electronics. Inc
8300 Gulford Road # H
Rivers Center
Columbia 21046
Tel: (301) 995-0003
TWX: 710-236-9005

fHamillon/Avnel Electronics
6822 Oak Hall Lane
Columbia 21045
Tel (301) 995-3500
TWX 710-862-1861

fMesa Technology Corporation
16021 Industrial Drive
Gailhersburg 20877
Tel: (301) 948-4350
TWX 710-828 9702

fPioneer Electronics
9100 Gaither Road
Gailhersburg 20877
Tel: (301) 948-0710
TWX 710-828-0545

MASSACHUSETTS
fArrow Electronics, Inc
t Arrow Drive
Woburn 01801
Tel: (617) 933-8130
TWX 710-393-6770

fHamilton/Avnet Electronics
10D Centennial Drive
Peabody 01960
Tel: (617) 532-3701
TWX 710-393-0382

MTI Systems Sales
13 Fortune Drive
Billerica 01821

Pioneer Northeasl Electronics
44 Hartwell Avenue
Lexington 02173
Tel: (617) 863-1200
TWX 710-326-6617

MICHIGAN
Arrow Eleclronics, Inc
755 Phoenix Drive
Ann Arbor 48104
Tel: (313) 971-8220
TWX 810-223-6020

fHamilton/Avnet Electronics
32487 Schoolcralt Road
Livonia 48150
Tel: (313) 522-4700
TWX 810-242-8775
Hamilton/Avnet Electronics
2215 29th Street S.E.
Space A5
Grand Rapids 49508
Tel: (616) 243-8805
TWX 810-273-6921

(Pioneer Electronics
13485 Slamlord
Livonia 48150
Tel: (313) 525-1800
TWX 810-242-3271

MINNESOTA
fArrow Electronics. Inc
5230 W 73rd Slreel
Edina 55435
Tel: (612) 830 1800
TWX 910-576-3125

Ltamillon/Avnet Electronics
10300 Bren Road East
Minnetonka 55343
Tel (612) 932-0600
TWX: (910) 576-2720

(Pioneer Electronics
10203 Bren Road East
Minnetonka 55343
Tel: (612) 935-5444
TWX 910-576-2738

fArrow Electronics. Inc
2380 Schuetz
Si Louis 63141
Tel (314) 567-6888
1WX 910-764-0882

fHamilton/Avnet Electronics
13743 Shoreline Court
Earth City 63045
Tel: (314) 344-1200
TWX 910-762-0684

NEW HAMPSHIRE
(Arrow Electronics. Inc.
3 Perimeter Road
Manchester 03103
Tel: (603) 668-6968
TWX 710-220-1684

Hamilton/Avnet Electronics
444 E Industrial Drive
Manchester 03104
Tel (603) 624-9400

NEW JERSEY

(Arrow Electronics. Inc
6000 Lincoln East
Marlton 08053
Tel (609) 596-8000
TWX 710-897-0829

fElamilton/Avnet Electronics
4588 Emery Industrial Parkway
Warrensville Heights 44128
Tel (216) 831-3500
1WX 810-427-9452

fPioneer Electronics
4433 Interpoint Boulevard
Dayton 45424
Tel (513) 236-9900
TWX 810-459-1622

(Pioneer Eleclronics
4800 E 131sl Street
Cleveland 44105
Tel (216) 587-3600
TWX 810-422-2211

OKLAHOMA
Arrow Eleclronics, Inc.
4719 S Memorial Drive
Tulsa 74145
Tel: (918) 665-7700

OREGON
fAlmac Electronics Corporalion
1885 N.W. 169lh Place
Beaverton 97006
Tel (503) 629-8090
TWX 910-467-8746

fHamilion/Avnet Electronics
1585 Wesl 2100 South
Salt Lake City 84119
Tel (801) 972-2800
TWX: 910-925-4018

Wyle Distribution Group
1959 South 4130 West, Unit B
Salt Lake City 84104
Tel (801) 974-9953

WASHINGTON
fAlmac Electronics Corporation
14360 S E Easlgale Way8ellevue 98007
Tel (206) 643-9992
TWX: 910-444-2067

Arrow Eleclronics. Inc.
14320 N.E 21st Street
Bellevue 9800/
Tel: (206) 643-4800
TWX 910-444-2017

Hamillon/Avnel Electronics
14212 N.E. 21st Street
Bellevue 98005
Tel: (206) 453-5874
TWX: 910-443-2469

WISCONSIN

fArrow Eleclronics. Inc 2 Industrial Road
Fairfield 07006
Tel (201) 575-5300
TWX 710-998-2206

fHamilton/Avnet Electronics 1 Keystone Avenue
Bldg 36
Cherry Hill 08003
Tel (609) 424-0110
TWX 710-940-0262
fHamilton/Avnet Electronics
10 Industrial
Fairfield 07006
Tel: (201) 575-3390
TWX 710-734-4388

(Pioneer Northeasl Electronics
45 Route 46
Pinebrook 07058
Tel: (201) 575-3510
TWX 710-734-4382

fMTl Systems Sales
383 Route 46 W
Fairfield 07006
Tel: (201) 227-5552

NEW MEXICO
Alliance Electronics Inc.
11030 Cochiti S.E
Albuquerque 87123
Tel (505) 292-3360
TWX 910-989-1151

Hamillon/Avnel Electronics
2524 Baylor Drive S.E.
Albuquerque 87106
Tel (505) 765-1500
TWX 910-989-0614

NEW YORK
fArrow Eleclronics. Inc.
25 Hub Drive
Melville 11747
Tel (516) 694-6800
TWX 510-224-6126

fHamilton/Avnet Eleclronics
933 Motor Parkway
Hauppauge 11788
Tel (516) 231-9800
TWX 510-224-6166

fMTl Systems Sales
38 Harbor Park Drive
PO Box 271
Pori Washington 11050
Tel: (516) 621-6200
TWX 510-223-0846

fPioneer Northeast Electronics
1806 Vestal Parkway Easl
Vestal 13850
Tel: (607) 748-8211
TWX 510-252-0893

(Pioneer Northeast Electronics
60 Crossway Park Wesl
Woodbury. Long Island 11797
Tel: (516) 921-8700
TWX: 510-221-2184

Pioneer Northeast Electronics
840 Fairport Park
Fairport 14450
Tel: (716) 381-7070
TWX 510-253-7001

NORTH CAROLINA
Arrow Electronics, Inc
5240 Greendairy Road
Raleigh 27604
Tel: (919) 876-3132
TWX: 510-928-1856

(Hamilton/Avnet Electronics
3510 Spring Forest Drive
Raleigh 27604
Tel: (919) 878-0819
TWX: 510-928-1836

Pioneer Electronics
9801 A-Soulhern Pine Boulevard
Charlotte 28210
Tot (704) 524-8188
TWX: 810-621-0366

OHIO
Arrow Electronics, Inc
7620 McEwen Road
Centerville 45459
Tel: (513) 435-5563
TWX 810-459-1611

fArrow Electronics. Inc
6238 Cochran Road
Solon 44139
Tel (216) 248-3990
TWX 810-427-9409

fHamilton/Avnet Electronics
954 Senate Drive
Dayton 45459
Tel (513) 433-0610
TWX 810-450-2531

Hamillon/Avnot Electronics
6024 S W Jean Road
Bldg C, Suite 10
Lake Oswego 97034
Tel: (503) 635-7848
TWX 910-455-8179

Wyle Distribution Group
5250 N.E Elam Young Parkway
Suite 600
Hillsboro 97124
Tel: (503) 640-6000
TWX 910-460-2203

PENNSYLVANIA
Arrow Electronics, Inc.
650 Seco Road
Monroeville 15146
Tel: (412) 856-7000

Pioneer Eleclronics
259 Kappa Drive
Pittsburgh 15238
Tel: (412) 782-2300
TWX: 710-795-3122

fPioneer Electronics
261 Gibraltar Road
Horsham 19044
Tel: (215) 674-4000
TWX 510-665-6778

TEXAS
fArrow Electronics. Inc.
3220 Commander Drive
Carrollton 75006
Tel: (214) 380-6464
TWX: 910-860-5377

fArrow Eleclronics, Inc
10899 Kinghursl
Suite 100
Houston 77099
Tel: (713) 530-4700
TWX: 910-880-4439

Arrow Eleclronics. Inc.
10125 Metropolitan
Austin 78758
Tel: (512) 835-4180
TWX 910-874-1348

fHamilton/Avnet Electronics
1807 W Braker Lane

Tel: (512) 837-8911
TWX 910-874-1319

fHamillon/Avnel Electronics
2111 W Walnut Hill Lane
Irving 75062
Tel: (214) 659-4100
TWX 910-860-5929

fHamilton/Avnet Electronics
4850 Wright Road #190
Houston 77477
Tel: (713) 780-1771
TWX 910-881-5523

(Pioneer Electronics
9901 Burnet Road
Austin 78758
Tel (512) 835-4000
TWX: 910-874-1323

Tel (716) 427-0300
TWX 510-253-4766

Arrow Electronics. Inc
7705 Maltage Drive
Liverpool 13088
Tel (315) 652-1000
TWX: 710-545-0230

Arrow Electronics. Inc
20 Oser Avenue
Hauppauge 11788
Tel: (516) 231-1000
TWX 510-227-6623

Hamilton/Avnet Electronics
333 Metro Park
Rochester 14623
Tel: (716) 475-9130
TWX: 510-253-5470

Hamilton/Avnet Electronics
103 Twin Oaks Drive
Syracuse 13206
Tel (315) 437-2641
TWX 710-541-1560

Pioneer Electronics
13710 Omega Road
Dallas 75234
Tel: (214) 386-7300
TWX 910-850-5563

Pioneer Electronics
5853 Point Wesl Drive
Houston 77036
Tel: (713) 988-5555
TWX 910-881-1606

fArrow Electronics, Inc.
430 W. Rausson Avenue
Oakcreek 53154
Tel (414) 764-6600
TWX 910-262-1193

Hamilton/Avnet Electronics
2975 Moorland Road
New Berlin 53151
Tel: (414) 784-4510
TWX 910-262-1182

C A N A D A

ALBERTA
Hamilton/Avnet Electronics
2816 21st Street N.E
Calgary T2E 6Z2
Tel (403) 230-3586
TWX 03-827-642

Hamilton/Avnet Electronics
6845 Rex wood Road Unit 6
Mississauga, Ontario L4V1R2
Tel: (416) 677-0484

Zentronics
Bay No. 1
3300 14th Avenue N.E
Calgary T2A 6J4
Tel: (403) 272-1021

BRITISH COLUMBIA
Hamilton/Avnet Electronics
105-2550 Boundry Road
Burmalay V5M 3Z3
Tel: (604) 272-4242

Zentronics
108-11400 Bridgeport Road
Richmond V6X 1T2
Tol: (604) 273-5576
TWX 04-5077-89

MANITOBA
Zentronics
590 Berry Street
Winnipeg R3H OS1
Tel: (204) 775-8661

ONTARIO
Arrow Electronics Inc.
24 Martin Ross Avenue
Downsview M3J 2K9
Tel: (416) 661-0220
TELEX: 06-218213

Arrow Electronics Inc.
148 Colonnade Road
Nepean K2E 7J5
Tel: (613) 226-6903

fHamilton/Avnet Electronics
6845 Rexwood Road
Units G & H
Mississauga L4V 1R2
Tel: (416) 677-7432
TWX 610-492-8867

fHamilton/Avnet Electronics
210 Colonnade Road South
Nepean K2E 7L5
Tel: (613) 226-1700
TWX 05-349-71

(Zentronics 8 Tilbury Court
Brampton L6T 3T4
Tel (416) 4519600
TWX: 06-976-78

Zenlromcs
564/10 Weber Street North
Watorloo N2L 5C6
Tel: (519) 884-5700

Zentronics
155 Colonnade Road
Uml 17
Nepean K2E 7K1
Tel: (613) 225-8840
TWX 06-976-78

QUEBEC
Arrow Eleclronics Inc.
4050 Jean Talon Quest
Montreal H4P 1W1
Tel (514) 735-5511
TELEX: 05-25596

Arrow Electronics Inc
909 Charesl Blvd
Quebec 61N 269
Tel (418) 687-4231
TLX: 05-13388
Hamilton/Avnet Eleclronics
2795 Rue Halpern
SI Laurenl H4S 1P8
Tel: (514) 335-1000
TWX 610-421-3731

Zentronics
505 Locke Slreel
SI. Laurenl H4T 1X7
Tel (514) 735-5361
TWX 05-827-535

fArrow Eleclronics. Inc
3375 Brighton-Henrielta Townline Road
Rochester 14623

(Microcomputer System Technical Demonstrator Centers

UNITED STATES
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

JAPAN
Intel Japan K.K.
5-6 Tokodai Toyosato-machi
Tsukuba-gun, Ibaraki-ken 300-26
Japan

FRANCE
Intel Paris
1 Rue Edison, BP 303
78054 Saint-Quentin en Yvelines
France

UNITED KINGDOM
Intel Corporation (U.K.) Ltd.
Piper’s Way
Swindon
Wiltshire, England SN3 1RJ

WEST GERMANY
Intel Semiconductor GmbH
Seidlstrasse 27
D-8000 Munchen 2
West Germany

O rder N um ber: 231737-001

Prin ted in U .S.A ./H E-307.C /0486/20K /B L LD
Microprocessors

© Intel Corporation 1986

