

Document Number: 334525-003

Control-flow Enforcement

Technology Specification

May 2019

Revision 3.0

2 Document Number: 334525-003, Revision 3.0

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized
errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies
depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at
http://intel.com/.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016-2019, Intel Corporation. All Rights Reserved.



Document Number: 334525-003, Revision 3.0 3

Revision History
Document
Number

Revision
Number

Description Date

334525-001 1.0 Initial release of the document. June 2016

334525-002 2.0 Numerous updates across chapters include:

1. Added CR0.WP and CR4.CET interaction, CET state save

area description, and separate CPUID bits for SS and IBT.

2. Clarified that WRUSS makes the shadow stack store with

user-access intent.

3. Updated the definition of the SSS bit in EPT and corre-

sponding fault check.

4. Updated SYSCALL/SYSENTER to clear SSP instead of set-

ting it to IA32_PL0_SSP.

5. Updated SAVESSP/RSTORSSP to close a timing window

and renamed SAVESSP to SAVEPREVSSP.

6. Clarified that SETSSBSY causes a #CP exception on token

check failure, and uses IA32_PL0_SSP as an implicit oper-

and.

7. Clarified that CLRSSBSY clears SSP on completion and

sets CF to indicate invalid token.

8. Updated INCSSP to accept a register source operand.

9. Updated CET MSR description to clarify that writes are al-

ways checked for machine canonicality on parts that sup-

port 64-bit mode and that bits 1:0 are reserved.

June 2017

334525-003 3.0 1. Numerous pseudocode updates across instructions and

various updates across chapters, marked by change bars.

2. Added new sections on constraining speculation with CET

enabled

3. Update to section 3.5 “INT3 Treatment”.

4. Added new chapter 9, “Shadow Stack, Paging and EPT”.

5. Added Intel® SGX support for CET.

May 2019

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4 Document Number: 334525-003, Revision 3.0

Table of Contents

1 Introduction ... 10

1.1 Shadow Stack .. 10

1.2 Indirect Branch Tracking .. 11

2 Shadow Stacks ... 12

2.1 Shadow Stack Pointer and its Operand and Address Size Attributes ... 12

2.2 Terminology ... 12

2.3 Near CALL and RET Behavior with Shadow Stacks Enabled ... 13

2.4 Far CALL and RET .. 13

2.4.1 Supervisor Shadow Stack Token .. 14

2.5 Stack Switching on Call to Interrupt/Exception Handlers in 64-bit Mode .. 15

2.6 Shadow Stack Usage on Task Switch ... 15

2.7 Switching Shadow Stacks ... 16

2.8 Constraining Execution at Targets of RET .. 17

3 Indirect Branch Tracking ... 18

3.1 No-track Prefix for Near Indirect Call/Jmp ... 19

3.2 Terminology ... 19

3.3 Control Transfer Tracking .. 20

3.3.1 Control Transfers between CPL 3 and CPL < 3 .. 21

3.3.2 Control Transfers within CPL 3 or CPL < 3 ... 21

3.4 Indirect Branch Tracking State Machine ... 22

3.5 INT3 Treatment.. 23

3.6 Legacy Compatibility Treatment .. 23

3.6.1 Legacy Code Page Bitmap Format ... 24

3.7 Other Considerations ... 24

3.7.1 Intel® Transactional Synchronization Extensions (Intel® TSX) Interactions .. 24

3.7.2 #CP(ENDBRANCH) Priority w.r.t #NM and #UD .. 24

3.7.3 #CP(ENDBRANCH) Priority w.r.t #BP... 25

3.8 Constraining Speculation after Missing ENDBRANCH ... 25

4 Changes to Control Transfer Instructions Reference ... 26

4.1 CALL— Call Procedure ... 26

4.2 INT n/INTO/INT3 – Call to Interrupt Procedure ... 45

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 5

4.3 JMP — Jump ... 61

4.4 RET—Return from Procedure ... 71

4.5 SYSCALL—Fast System Call .. 86

4.6 SYSENTER—Fast System Call .. 89

4.7 SYSEXIT—Fast Return from Fast System Call .. 93

4.8 SYSRET—Return From Fast System Call .. 96

4.9 IRET/IRETD—Interrupt Return .. 99

5 Task Management Interactions with CET ... 110

5.1 32-bit Task-State Segment (TSS) ... 110

5.2 Task Switching ... 110

6 Shadow Stack Management Instructions ... 116

6.1 INCSSP—Increment Shadow Stack Pointer ... 117

6.2 RDSSP—Read Shadow Stack Pointer ... 119

6.3 SAVEPREVSSP —Save Previous Shadow Stack Pointer ... 121

6.4 RSTORSSP — Restore saved Shadow Stack Pointer ... 124

6.5 WRSS — Write to shadow stack ... 127

6.6 WRUSS — Write to User Shadow Stack .. 130

6.7 SETSSBSY — Mark Shadow Stack Busy ... 132

6.8 CLRSSBSY — Clear Shadow Stack Busy Flag .. 134

7 Control Transfer Terminating Instructions .. 136

7.1 ENDBR64 — Terminate an Indirect Branch in 64-bit Mode .. 136

7.2 ENDBR32 — Terminate an Indirect Branch in 32-bit and Compatibility Mode ... 137

8 Control Protection Exception, Enumeration, Enables and Extended State Management 138

8.1 Control Protection Exception ... 138

8.2 Feature Enumeration ... 138

8.3 Master Enable.. 138

8.4 CET MSRs ... 138

8.5 CET Extended State Management .. 139

9 Shadow Stack, Paging and EPT ... 141

9.1 Shadow-Stack Pages as Defined by Paging ... 141

9.2 Shadow-Stack Access Rights as Enforced by Paging (Outside an Enclave) ... 141

9.3 Shadow-Stack Accesses in an Enclave .. 142

9.4 Basic EPT Control of Shadow-Stack Accesses .. 142

9.5 Supervisor Shadow-Stack Control... 142

9.5.1 Supervisor Shadow-Stack Pages as Defined by EPT ... 143

9.5.2 Supervisor Shadow-Stack Access Rights as Enforced by EPT .. 143

10 VMX Interactions ... 145

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

6 Document Number: 334525-003, Revision 3.0

10.1 VMCS Guest State Area Extensions ... 145

10.2 VMCS Host State Area Extensions ... 145

10.3 VMCS VM-Exit Controls Extensions.. 146

10.4 VMCS VM-Entry Controls Extensions ... 146

10.5 EPTP ... 146

10.6 VM Exit .. 146

10.7 VM Entry .. 147

10.8 IA32_VMX_EPT_VPID_CAP ... 148

11 SMM Interactions .. 149

11.1 SMRAM State Save Map ... 149

11.2 SMI Handler Execution Environment .. 149

11.3 RSM ... 149

12 TXT Interactions .. 150

13 SGX Interactions ... 151

13.1 CET in Enclaves Model ... 151

13.2 Operations Not Supported on Shadow Stack Pages .. 152

13.3 Indirect Branch Tracking – Legacy Compatibility Treatment ... 152

14 Enclave Access Control and Data Structures ... 153

14.1 Overview of Enclave Execution Environment .. 153

14.2 Terminology ... 153

14.3 Access-control Requirements .. 153

14.4 Segment-based Access Control .. 154

14.5 Page-based Access Control .. 154

14.5.1 Access-control for Accesses that Originate from non-SGX Instructions ... 154

14.5.2 Memory Accesses that Split across ELRANGE .. 154

14.5.3 Implicit vs. Explicit Accesses ... 155

14.6 Intel® SGX Data Structures Overview .. 156

14.7 SGX Enclave Control Structure (SECS) .. 157

14.7.1 ATTRIBUTES .. 158

14.7.2 SECS.MISCSELECT Field .. 159

14.7.3 SECS.CET_ATTRIBUTES Field ... 159

14.8 Thread Control Structure (TCS) .. 160

14.8.1 TCS.FLAGS ... 161

14.8.2 State Save Area Offset (OSSA) .. 161

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 7

14.8.3 Current State Save Area Frame (CSSA) ... 161

14.8.4 Number of State Save Area Frames (NSSA) .. 161

14.9 State Save Area (SSA) Frame .. 161

14.9.1 GPRSGX Region ... 162

14.9.2 MISC Region ... 164

14.10 CET State Save Area Frame ... 166

14.11 Page Information (PAGEINFO) ... 166

14.12 Security Information (SECINFO) ... 166

14.12.1 SECINFO.FLAGS .. 167

14.12.2 PAGE_TYPE Field Definition .. 167

14.13 Paging Crypto MetaData (PCMD) ... 168

14.14 Enclave Signature Structure (SIGSTRUCT) ... 168

14.15 EINIT Token Structure (EINITTOKEN) .. 170

14.16 Report (REPORT) ... 171

14.16.1 REPORTDATA .. 172

14.17 Report Target Info (TARGETINFO) ... 172

14.18 Key Request (KEYREQUEST) .. 172

14.18.1 KEY REQUEST KeyNames .. 173

14.18.2 Key Request Policy Structure .. 174

14.19 Version Array (VA) ... 174

14.20 Enclave Page Cache Map (EPCM) ... 174

14.21 Read Info (RDINFO) .. 175

14.21.1 RDINFO Status Structure .. 176

14.21.2 RDINFO Flags Structure ... 176

15 Enclave Exiting Events ... 177

15.1 Compatible Switch to the Exiting Stack of AEX ... 177

15.2 State Saving by AEX ... 178

15.3 Synthetic State on Asynchronous Enclave Exit ... 179

15.3.1 Processor Synthetic State on Asynchronous Enclave Exit ... 179

15.3.2 Synthetic State for Extended Features .. 179

15.3.3 Synthetic State for MISC Features .. 180

15.4 AEX Flow ... 180

15.4.1 AEX Operational Detail .. 181

16 SGX Instruction References ... 185

16.1 Intel® SGX Instruction Syntax and Operation ... 185

16.1.1 ENCLS Register Usage Summary .. 185

16.1.2 ENCLU Register Usage Summary .. 186

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

8 Document Number: 334525-003, Revision 3.0

16.1.3 ENCLV Register Usage Summary .. 186

16.1.4 Information and Error Codes ... 187

16.1.5 Internal CREGs .. 188

16.1.6 Concurrent Operation Restrictions .. 189

16.2 Intel® SGX Instruction Reference ... 194

16.3 Intel® SGX System Leaf Function Reference ... 204

16.4 Intel® SGX User Leaf Function Reference ... 289

16.5 Intel® SGX VIRTUALIZATION Leaf Function Reference ... 345

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 9

Figures

Figure 1 Supervisor Shadow Stack with a Supervisor Shadow Stack Token ... 14

Figure 2 Interrupt Shadow Stack Table ... 15

Figure 3 RSTORSSP to switch to new shadow stack .. 16

Figure 4 SAVEPREVSSP to save a restore point ... 17

Figure 5 Priority of Control Protection Exception on Missing Endbranch ... 19

Figure 6 Exit Stack Just After Interrupt with Stack Switch .. 177

Figure 7 The SSA Stack ... 178

Figure 8 Relationships Between SECS, SIGSTRUCT and EINITTOKEN .. 240

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

10 Document Number: 334525-003, Revision 3.0

1 Introduction
Return-oriented Programming (ROP), and similarly call/jmp-oriented programming (COP/JOP), have been

the prevalent attack methodology for stealth exploit writers targeting vulnerabilities in programs. These

attack methodology have the common elements:

 A code module with execution privilege and contain small snippets of code sequence with the charac-

teristic: at least one instruction in the sequence being a control transfer instruction that depends on

data either in the return stack or in a register for the target address,

 Diverting the control flow instruction (e.g., RET, CALL, JMP) from its original target address to a new

target (via modification in the data stack or in the register).

Control-flow Enforcement Technology (CET) provides the following capabilities to defend against ROP/JOP

style control-flow subversion attacks:

 Shadow Stack – return address protection to defend against Return Oriented Programming,
 Indirect branch tracking – free branch protection to defend against Jump/Call Oriented Programming.

The rest of this document is organized as follows:

After an overview of Shadow Stack and Indirect Branch Tracking in the rest of this section. Sections 2 and
3 describe the programming environment of Shadow Stack and Indirect Branch Tracking. Sections 4 and 5
describe changes to traditional control flow instructions and task switching behaviors when these new ca-

pabilities are enabled. Both Shadow Stack and Indirect Branch Tracking introduce new instruction set ex-
tensions, and are described in Sections 6 and 7.

Control-flow Enforcement Technology introduces a new exception class (#CP) with interrupt vector 21. Sec-
tion 8 covers enumeration, configuration and new exception class. Sections 9 through 17 cover interactions
between CET and other IA system enhancement technology, including paging, VMX, SMX, SGX.

NOTE
In sections 4 and 5, text in this color is used to illustrate the extensions to the control transfer instructions
and flows for CET.

1.1 Shadow Stack

A shadow stack is a second expand down stack for the program that is used exclusively for control transfer

operations. This stack is separate from the data stack and can be enabled for operation individually in user

mode or supervisor mode. When shadow stacks are enabled, the CALL instruction pushes the return address

on both the data and shadow stack. The RET instruction pops the return address from both stacks and

compares them. If the return addresses from the two stacks do not match, the processor signals a control

protection exception (#CP). Note that the shadow stack only holds the return addresses and not parameters

passed to the call instruction.

The shadow stack is protected from tamper through the page table protections such that regular store

instructions cannot modify the contents of the shadow stack. To provide this protection the page table

protections are extended to support an additional attribute for pages to mark them as “Shadow Stack”

pages. When shadow stacks are enabled, control transfer instructions/flows like near call, far call, call to

interrupt/exception handlers, etc. store return addresses to the shadow stack and the access will fault if the

underlying page is not marked as a “Shadow Stack” page. However stores from instructions like MOV,

XSAVE, etc. will not be allowed. Likewise control transfer instructions like near ret, far ret, iret, etc. when

they attempt to read from the shadow stack the access will fault if the underlying page is not marked as a

“Shadow Stack” page. This paging protection detects and prevents conditions that cause an overflow or

underflow of the shadow stack when the shadow stack is delimited by non-shadow stack guard pages, or

any malicious attempts to redirect the processor to consume data from addresses that are not shadow stack

addresses.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 11

1.2 Indirect Branch Tracking

The ENDBRANCH (see Section 73 for details) is a new instruction that is used to mark valid jump target

addresses of indirect calls and jumps in the program. This instruction opcode is selected to be one that is a

NOP on legacy machines such that programs compiled with ENDBRANCH new instruction continue to function

on old machines without the CET enforcement. On processors that support CET the ENDBRANCH is still a

NOP and is primarily used as a marker instruction by the processor pipeline to detect control flow violations.

The CPU implements a state machine that tracks indirect jmp and call instructions. When one of these

instructions is seen, the state machine moves from IDLE to WAIT_FOR_ENDBRANCH state. In

WAIT_FOR_ENDBRANCH state the next instruction in the program stream must be an ENDBRANCH. If an

ENDBRANCH is not seen the processor causes a control protection exception (#CP), else the state machine

moves back to IDLE state.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

12 Document Number: 334525-003, Revision 3.0

2 Shadow Stacks
A shadow stack is a second expand down stack used exclusively for control transfer operations. This stack

is separate from the data stack. The shadow stack is not used to store data and hence is not explicitly

writeable by software. Writes to the shadow stack are restricted to control transfer instructions and shadow

stack management instructions. The shadow stack feature can be enabled separately in user mode (CPL ==

3) or supervisor mode (CPL < 3).

Shadow stacks operate only in protected mode with paging enabled. Shadow stacks cannot be enabled in

virtual 8086 mode.

2.1 Shadow Stack Pointer and its Operand and Address Size Attributes

When CET is enabled the processor supports a new architectural register, shadow stack pointer (SSP), when

the processor supports the shadow stack feature. The SSP cannot be directly encoded as a source, destina-

tion or memory operand in instructions. The SSP points to the current top of the shadow stack.

The width of the shadow stack is 32-bit in 32-bit/compatibility mode and is 64-bit in 64-bit mode. The

address-size attribute of the shadow stack is likewise 32-bit in 32-bit/compatibility mode and 64-bit in 64-

bit mode.

2.2 Terminology

When shadow stacks are enabled, certain control transfer instructions/flows and shadow stack management

instructions do loads/stores to the shadow stack. Such load/stores from control transfer instructions and

shadow stack management instructions are termed as shadow_stack_load and shadow_stack_store to dis-

tinguish them from a load/store performed by other instructions like MOV, XSAVES, etc.

The pseudocode for the instruction operations use the notation ShadowStackEnabled(CPL) as a test of

whether shadow stacks are enabled at the CPL. This term returns a TRUE or FALSE indication as follows:

ShadowStackEnabled(CPL):

IF CR4.CET = 1 AND CR0.PE = 1 AND EFLAGS.VM = 0

 IF CPL = 3

 THEN

 (* Obtain the shadow stack enable from IA32_U_CET MSR (MSR address 6A0H) used to enable

 feature for CPL = 3 *)

 SHADOW_STACK_ENABLED = IA32_U_CET.SH_STK_EN;

 ELSE

 (* Obtain the shadow stack enable from IA32_S_CET MSR (MSR address 6A2H) used to enable

 feature for CPL < 3 *)

 SHADOW_STACK_ENABLED = IA32_S_CET.SH_STK_EN;

 FI;

 IF SHADOW_STACK_ENABLED = 1

 THEN

 return TRUE;

 ELSE

 return FALSE;

 FI;

ELSE

 (* Shadow stacks not enabled in real mode and virtual-8086 mode or if the master CET feature

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 13

 enable in CR4 is disabled *)

 return FALSE;

ENDIF

Additionally, the following terms are used:

 ShadowStackPush4B – decrements the shadow stack pointer (SSP) by 4 bytes and copies the 4 byte

source operand to the top of the shadow stack.

 ShadowStackPush8B – decrements the shadow stack pointer (SSP) by 8 bytes and copies the 8 byte

source operand to the top of the shadow stack.

 ShadowStackPop4B – copies 4 bytes at the current top of stack (indicated by the SSP register) to the

location specified with the destination operand. It then increments the SSP register by 4 bytes to point

to the new top of stack.

 ShadowStackPop8B – copies 8 bytes at the current top of stack (indicated by the SSP register) to the

location specified with the destination operand. It then increments the SSP register by 8 bytes to point

to the new top of stack.

2.3 Near CALL and RET Behavior with Shadow Stacks Enabled

When shadow stack is enabled, near CALL, except for calls with a displacement value equal to zero, pushes

the return address on both the data stack and the shadow stack. Near RET, when shadow stack is enabled,

pops the return address from both the shadow stack and data stack. The data stack pointer (ESP/RSP) is

further incremented optionally by ‘n’ bytes if an optional ‘n’ operand was specified. However, the shadow

stack pointer (SSP) does not increment. If the return addresses popped from the two stacks are not the

same, then the processor causes a control protection exception (#CP) (NEAR-RET) exception.

2.4 Far CALL and RET

The CALL instruction can be used to call a procedure located in a different segment than the current code

segment or to a segment at a different privilege level.

On a far CALL to the same privilege level, the processor pushes the CS, LIP (linear address of the return

address) and the SSP on the shadow stack and on a far RET pops the SSP, LIP and the CS from the shadow

stack. If the CS and LIP do not match the return address as determined by popping the CS and EIP from

the data stack, the processor causes a #CP(FAR-RET/IRET) exception.

On a far CALL to a higher privilege level (inter-privilege level call), shadow stack behavior is as follows.

 When the far CALL originates at CPL3, the return addresses are not pushed onto the supervisor

shadow stack. Likewise, a far RET to CPL3 from supervisor privilege level (CPL < 3) does not do any
verification of the return addresses. On a CPL3 -> CPL<3 transition, the user space SSP is saved to an
MSR (IA32_PL3_SSP) and on a CPL<3 -> CPL3 transition is restored from this MSR.

 On an inter-privilege-level call, the call instruction performs a stack switch. The data stack for the su-
pervisor program is located from the current TSS. Likewise, the shadow stack is switched on such
transfers. The SSP for the supervisor program is obtained from one of following MSRs depending on

the target privilege level.

- IA32_PL2_SSP if transitioning to ring 2.

- IA32_PL1_SSP if transitioning to ring 1.

- IA32_PL0_SSP if transitioning to ring 0.
 A far call from ring 2 to ring 1, ring 2 to ring 0, or from ring 1 to ring 0 is considered a “same privilege

class” transfer for shadow stacks. Thus such far calls, subsequent to locating the SSP for the new priv-

ilege level, push the CS, LIP and SSP of the calling procedure onto the shadow stack of the called pro-
cedure. Likewise, the far RET will verify the CS and LIP from the shadow stack matches the return ad-
dress as determined by the CS and EIP obtained from the data stack.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

14 Document Number: 334525-003, Revision 3.0

2.4.1 Supervisor Shadow Stack Token

On an inter-privilege far CALL, CET verifies a supervisor shadow stack token that is setup by the super-

visor when creating shadow stacks intended to be used on these transfers. The supervisor shadow stack

token is a 64-bit value formulated as follows.

 Bit 63:3 – Bits 63:3 of the linear address of the supervisor shadow stack token.

 Bit 2 – Reserved. Must be zero.

 Bit 1 –Reserved. Must be zero.

 Bit 0 – Busy bit. If 0, indicates this shadow stack is not active on any logical processor. If 1, indicates

this shadow stack is currently active on one of the logical processors.

The following figure illustrates a supervisor shadow stack with a supervisor shadow stack token located at its base.

<Next push saves here>

0xFF8 | busy

Figure 1 Supervisor Shadow Stack with a Supervisor Shadow Stack Token

The address specified in the IA32_PLx_SSP MSR is required to be 8 byte aligned. The processor does the

following checks prior to switching to a supervisor shadow stack programmed into the IA32_PLx_SSP MSR.

These steps are performed atomically.

1. Load the supervisor shadow stack token from the address specified in the IA32_PLx_SSP MSR using a

shadow_stack_load.

2. Check if the busy bit in the token is 0; reserved bits must be 0.

3. Check if the address programmed in the MSR matches the address in the supervisor shadow stack token;

reserved bits must be 0.

4. If checks 2 and 3 are successful, then set the busy bit in the token using a shadow_stack_store and

switch the SSP to the value specified in the IA32_PLx_SSP MSR.

5. If checks 2 or 3 fail, then the busy bit is not set and a #GP(0) exception is raised.

On a far RET, the instruction clears the busy bit in the shadow stack token as follows. These steps are also

performed atomically.

1. Load the supervisor shadow stack token from the SSP using a shadow_stack_load.

2. Check if the busy bit in the token is 1; reserved bits must be 0and reserved bits must be 0.

IA32_PLx_SSP = 0xFF8

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 15

3. Check if the address programmed in supervisor shadow stack token matches SSP; reserved bits must be

0.

4. If checks 2 and 3 are successful, then clear the busy bit in the token using a shadow_stack_store; else

continue without modifying the contents of the shadow stack pointed to by SSP.

The operations described here are also applicable to a far transfer performed when calling an interrupt or

exception handler through an interrupt/trap gate in the IDT. Likewise, the IRET instruction behaves similar

to the Far RET instruction.

2.5 Stack Switching on Call to Interrupt/Exception Handlers in 64-bit Mode

The 64-bit mode operation provides a stack-switching mechanism called Interrupt Stack Table (IST) wherein

the 64-bit IDT descriptor can be used to specify one of seven data stack pointers in the 64-bit TSS. If the

IST index specified is 0 and there is no privilege change involved then a stack switch occurs to the same

stack.

To support this stack-switching mechanism, the shadow stack feature provides an MSR, IA32_INTER-

RUPT_SSP_TABLE, to program the linear address of a table of seven shadow stack pointers. When a non-

zero IST value is specified, the MSR points to a 64 byte table in memory that is indexed using the IST index.

IST7 SSP Offset 7

IST6 SSP Offset 6

IST5 SSP Offset 5

IST4 SSP Offset 4

IST3 SSP Offset 3

IST2 SSP Offset 2

IST1 SSP Offset 1

Not used. available Offset 0

Figure 2 Interrupt Shadow Stack Table

2.6 Shadow Stack Usage on Task Switch

A task switch (see Section 5 “Task Management Interactions with CET”) may be invoked by:

 JMP or CALL instruction to a TSS descriptor in the GDT.

 JMP or CALL instruction to a task-gate descriptor in the GDT or the current LDT.

 An interrupt or exception vector points to a task-gate descriptor in the IDT.

With shadow stack enabled, the new task must be associated with a 32-bit TSS and must not be in virtual-

8086 mode. The 32-bit SSP for the new task is located at offset 104 in the 32-bit TSS. Thus the TSS of the

new task must be at least 108 bytes. This SSP is required to be 8 byte aligned, and required to point to a

“supervisor shadow stack” token (though the task may be at CPL3).

On a task switch initiated by a CALL instruction, an interrupt, or exception, the SSP of the old task is pushed

onto the shadow stack of the new task along with the CS and LIP of the old task. This is true even for a

nested task switch initiated by a CALL instruction. Likewise, on a task switch initiated by IRET, the SSP of

the new task is restored from the shadow stack of old task. The CS and LIP on the shadow stack of the old

task are matched against the return address determined by the CS and EIP of the new task. If the match

fails, a #CP(FAR-RET/IRET) exception is reported.

IA32_INTER-

RUPT_SSP_TABLE

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

16 Document Number: 334525-003, Revision 3.0

2.7 Switching Shadow Stacks

The architecture provides a mechanism to switch shadow stacks using a pair of instructions; RSTORSSP and

SAVEPREVSSP. The RSTORSSP instruction verifies a “shadow stack restore” token located at the top of the

new shadow stack and referenced by the memory operand of this instruction. After RSTORSSP determines

the validity of the restore point on the new shadow stack, it switches the SSP to point to the token. The

“shadow stack restore” token is a 64-bit value formatted as follows.

 Bit 63:2 – Value of shadow stack pointer when this restore point was created.

 Bit 1 – Reserved. Must be zero.

 Bit 0 – Mode bit. If 0, the token is a compatibility/legacy mode “shadow stack restore” token. If 1, then

this shadow stack restore token can be used with a RSTORSSP instruction in 64-bit mode.

The “shadow stack restore” token is created by the SAVEPREVSSP instruction. The operating system may

also create a restore point on a shadow stack by creating a “shadow stack restore” token.

Once the shadow stack has been switched to a new shadow stack by the RSTORSSP instruction, software

can create a restore point on the old shadow stack by executing the SAFEPREVSSP instruction. In order to

allow the SAVEPREVSSP instruction to determine the address where to save the “shadow stack restore”

token, the RSTORSSP instruction replaces the “shadow stack restore” token with a “previous ssp” token that

holds the value of the SSP at the time the RSTORSSP instruction was invoked. The “previous ssp” token is

formatted as follows.

 Bit 63:2 – Shadow stack pointer when the RSTORSSP instruction was invoked, i.e., the SSP of the old

shadow stack.

 Bit 1 – Set to 1.

 Bit 0 – Mode bit. If 0, then this “previous ssp” token can be used with a SAVEPREVSSP instruction in

compatibility/legacy mode. If 1, then this “previous ssp” token can be used with a SAVEPREVSSP in-

struction in 64-bit mode.

The following figure illustrates the RSTORSSP instruction operation during a shadow stack switching se-

quence.

Current Shadow
Stack

0x4000

New Shadow
Stack to switch

to

SSP

0 M

0x4000

0x3FF8

0x1000

0xff8 0x1000

New Shadow
Stack

SSP 1 M

Current active shadow stack Shadow stack to switch to State following successful
RSTORSSP

Figure 3 RSTORSSP to switch to new shadow stack

In this example, the initial SSP is 0x1000 and the “shadow stack restore” token is on a new shadow stack

at address 0x3FF8. The token at address 0x3FF8 holds the SSP when this restore point was created; in this

example it is 0x4000.

In order to switch to the new shadow stack, the RSTORSSP instruction is invoked with the memory operand

pointing set to 0x3FF8. When the RSTORSSP instruction completes, the SSP is set to 0x3FF8 and the

“shadow stack restore” token at 0x3FF8 is replaced by a “previous ssp” token that holds the address 0x1000,

i.e., old SSP.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 17

The following figure illustrates the SAVEPREVSSP instruction operation during a shadow stack switching

sequence.

0x1000

New Shadow
Stack

SSP 1 M

0x4000

0x3FF8

Current active shadow stack
with a previous SSP token

Previous
Shadow Stack

 shadow stack restore token
pushed on previous shadow

stack following SAVEPREVSSP

0x1000 0 M 0x1000

New Shadow
Stack

SSP

1 M

0x4000

0x3FF8

Current active shadow stack
with a previous SSP token

popped off

Figure 4 SAVEPREVSSP to save a restore point

To allow switching back to this old shadow stack, a SAVEPREVSSP instruction is now invoked. The SAVE-

PREVSSP instruction does not take any memory operand and expects to find a “previous ssp” token at the

top of the shadow stack, i.e., at address 0x3FF8. The SAVEPREVSSP instruction then saves a “shadow stack

restore” token on the old shadow stack at address 0xFF8, and the token itself holds the address 0x1000

which is the address recorded in the “previous ssp” token. The SAVEPREVSSP instruction also pops the

“previous ssp” token off the current shadow stack and thus the SSP following SAVEPREVSSP is 0x4000.

Subsequently to switch back to the old shadow stack, a RSTORSSP instruction may be invoked with memory

operand set to 0xFF8.

If, following a switch to a new shadow stack, it is not required to create a restore point on the old shadow

stack, then the “previous ssp” token created by the RSTORSSP instruction can be popped off the shadow

stack by using the INCSSP instruction.

See the SAVEPREVSSP and RSTORSSP instruction operations for the detailed algorithm.

2.8 Constraining Execution at Targets of RET
Instructions at the target of a RET instruction will not execute, even speculatively, if the RET addresses (either

from normal stack or shadow stack) are speculative-only or do not match, unless the target of the RET is also

predicted (e.g., by a Return Stack Buffer prediction), when CET shadow stack is enabled. A RET address would

be speculative-only if it was modified by an older speculative-only store, or was an older value than the most

recent value stored to that address on the logical processor.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

18 Document Number: 334525-003, Revision 3.0

3 Indirect Branch Tracking

When the indirect branch tracking feature is active, the indirect JMP/CALL instruction behavior changes as
follows.

 JMP – If the next instruction retired after an indirect JMP is not an ENDBR32 instruction in legacy and
compatibility mode, or ENDBR64 instruction in 64-bit mode, then a #CP fault is generated. Below JMP
instructions are tracked to enforce an endbranch. Note that Jcc, RIP relative, and far direct JMP are not

included as these have an offset encoded into the instruction and are not exploitable to create unin-
tended control transfers.

- JMP r/m16, JMP r/m32, JMP r/m64

- JMP m16:16, JMP m16:32, JMP m16:64
 CALL – If the next instruction retired after an indirect CALL is not an ENDBR32 instruction in legacy and

compatibility mode, or ENDBR64 in 64-bit mode, then a #CP fault is generated. Below CALL instructions
are tracked to enforce an endbranch. Note that relative and zero displacement forms of CALL instructions
are not included as these have an offset encoded into the instruction and are not exploitable to create

unintended control transfers.

- CALL r/m16, CALL r/m32, CALL r/m64

- CALL m16:16, CALL m16:32, CALL m16:64

The ENDBR32 and ENDBR64 instructions will have the same effect as the NOP instruction on Intel 64 pro-

cessors that do not support CET. On processors supporting CET, these instructions do not change register

or flag state. This allows CET instrumented programs to execute on processors that do not support CET.

Even when CET is supported and enabled, these NOP–like instructions do not affect the execution state of

the program, do not cause any additional register pressure, and are minimally intrusive from power and

performance perspectives.

The processor implements two dual-state machines to track indirect CALL/JMP for terminations. One state

machine is maintained for user mode and one for supervisor mode. At reset the user and supervisor mode

state machines are in IDLE state.

On instructions other than indirect CALL/JMP, the state machine stays in the IDLE state.

On an indirect CALL or JMP instruction, the state machine transitions to the WAIT_FOR_ENDBRANCH

state.

In the WAIT_FOR_ENDBRANCH state, the indirect branch tracking state machine verifies the next instruction

is an ENDBR32 instruction in legacy and compatibility mode, or ENDBR64 instruction in 64-bit mode, and

either:

 Causes a #CP fault, or

 Allows the next instruction if legacy compatibility configuration allows (see section 3.6).

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 19

The priority of the #CP(ENDBRANCH) exception relative to other events is as follows.

Figure 5 Priority of Control Protection Exception on Missing Endbranch

Higher priority faults/traps/events that occur at the end of an indirect CALL/JMP are delivered ahead of any
#CP(ENDBRANCH) fault. The CET state machine at the privilege level where the higher priority

fault/trap/event occurred retains its state when the control transfers to the fault/trap/event handler. The
instruction pointer pushed on the stack for a #CP(ENDBRANCH) fault is the address of the instruction at the
target of the indirect CALL/JMP that caused the fault.

3.1 No-track Prefix for Near Indirect Call/Jmp
CET allows software to designate certain indirect CALL and JMP instructions as “non-tracked indirect control
transfer instructions”. When enabled by setting the NO_TRACK_EN control in the IA32_U_CET/IA32_S_CET

MSR, near indirect CALL and JMP instructions when prefixed with 3EH do not modify the CET indirect branch
tracker. Far CALL and JMP instructions are always tracked and ignore the 3EH prefix. When this control is

0, near indirect CALL and JMP instructions are always tracked irrespective of the presence of the 3EH prefix.

In 64-bit mode, the 3EH prefix on an indirect CALL or JMP is recognized as a no-track prefix if there isn’t a
64H/65H prefix on the instruction.

In legacy/compatibility mode, the 3EH prefix on an indirect CALL or JMP is recognized as a no-track prefix
when it is the last group 2 prefix on the instruction.

3.2 Terminology

The pseudocode for the instruction operations use a notation EndbranchEnabled(CPL) as a test of whether

indirect branch tracking is enabled at the CPL. This term returns a TRUE or FALSE indication as follows.

EndbranchEnabled(CPL):

IF CR4.CET = 1 AND CR0.PE = 1 AND EFLAGS.VM = 0

 IF CPL = 3

 THEN

 (* Obtain the endbranch enable from MSR used to enable feature for CPL = 3 *)

 ENDBR_ENABLED = IA32_U_CET.ENDBR_EN;

 ELSE

 (* Obtain the endbranch enable from MSR used to enable feature for CPL < 3 *)

 ENDBR_ENABLED = IA32_S_CET.ENDBR_EN;

 FI;

 IF ENDBR_ENABLED = 1

 THEN

 return TRUE;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

20 Document Number: 334525-003, Revision 3.0

 ELSE

 return FALSE;

 FI;

ELSE

 (* Indirect branch tracking is not enabled in real mode and virtual-8086 mode or if the master CET feature

 enable in CR4 is disabled *)

 return FALSE;

ENDIF

Likewise the notation EndbranchEnabledAndNotSuppressed is defined as follows:

EndbranchEnabledAndNotSuppressed(CPL):

IF CR4.CET = 1 AND CR0.PE = 1 AND EFLAGS.VM = 0

 IF CPL = 3

 THEN

 (* Obtain the endbranch enable from MSR used to enable feature for CPL = 3 *)

 ENDBR_ENABLED = IA32_U_CET.ENDBR_EN;

 SUPPRESSED = IA32_U_CET.SUPPRESS;

 ELSE

 (* Obtain the endbranch enable from MSR used to enable feature for CPL < 3 *)

 ENDBR_ENABLED = IA32_S_CET.ENDBR_EN;

 SUPPRESSED = IA32_S_CET.SUPPRESS;

 FI;

 IF ENDBR_ENABLED = 1 AND SUPPRESSED = 0

 THEN

 return TRUE;

 ELSE

 return FALSE;

 FI;

ELSE

 (* Indirect branch tracking is not enabled in real mode and virtual-8086 mode or if the master CET feature

 enable in CR4 is disabled *)

 return FALSE;

ENDIF

3.3 Control Transfer Tracking

The hardware implements two CET indirect branch tracker state machines, one for user mode (CPL == 3)

and one for supervisor mode (CPL < 3). At any time, which of the CET indirect branch trackers is in the

active state depends on the CPL of the machine. When a user space program is executing, the CPL 3 CET

indirect branch tracker is active. When supervisor mode software is executing, the CPL < 3 tracker is active.

This section describes the various control transfer conditions and the tracker state on those transfers.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 21

3.3.1 Control Transfers between CPL 3 and CPL < 3

Some events and instructions can cause control transfer to occur from CPL 3 to CPL < 3, and vice versa. As

part of the CPL change the hardware also switches the active CET indirect branch tracker. For example,

when an interrupt occurs during execution of a user mode (CPL == 3) program and it causes the CPL to

switch to supervisor mode (CPL < 3) then, as part of the CPL change, the user mode CET indirect branch

tracker becomes inactive and the supervisor mode CET indirect branch tracker becomes active. A subse-
quent iret is used by the interrupt handler to return to the interrupted user mode program. This iret causes

the processor to switch the CPL to user mode (CPL ==3) and, as part of the CPL change, the supervisor
mode CET indirect branch tracker becomes inactive and the user mode CET indirect branch tracker becomes
active.

The CPL where the event or instruction that caused the control transfer occurs is termed the source CPL,

and the CET indirect branch tracker state at that CPL is referred here as the source CET indirect branch
tracker state. The CPL reached at the end of the control transfer is termed the destination CPL, and the CET
indirect branch tracker state at that CPL is referred to as the destination CET indirect branch tracker state.

This section describes various cases of control transfers that occur between user mode (CPL 3) and super-

visor mode (CPL < 3).

In all these cases the source CET indirect branch tracker state becomes not active and retains its state

(IDLE, WAIT_FOR_ENDBRANCH), and the target CET indirect branch tracker state becomes active if there
was no fault during the transfer.
 Case 1: FAR call/jmp, SYSCALL/SYSENTER

- If indirect branch tracking is enabled, the target indirect branch tracker state becomes active and is
unsuppressed and goes to WAIT_FOR_ENDBRANCH. This enforces that the subroutine invoked by a
far call/jmp must begin with an endbranch.

 Case 2: Hardware interrupt/trap/exception/NMI/Software interrupt/Machine Checks

- If indirect branch tracking is enabled, the target indirect branch tracker state becomes active and is

unsuppressed and goes to WAIT_FOR_ENDBRANCH.
 Case 3: IRET

- If indirect branch tracking enabled, the target indirect branch tracker becomes active and keeps its

state. If the user mode was interrupted by a higher priority event, like an interrupt at the end of
the indirect call/jmp, then when an iret is used to return to the interrupted user mode program, the

user mode indirect branch tracker retains its state and a #CP fault will occur if the next instruction
decoded is not an endbr32/64 according to mode of machine.

3.3.2 Control Transfers within CPL 3 or CPL < 3
Some events and instructions can cause control transfer to occur within CPL 3 or CPL < 3. For such transfers

since the CPL class does not change, the same indirect branch tracker is used at the beginning and end of

the control transfer.
 Case 1: FAR CALL/JMP, Near indirect call/jmp

- FAR CALL/JMP: If indirect branch tracking is enabled, active indirect branch tracker is unsuppressed
and goes to WAIT_FOR_ENDBRANCH.

- Near indirect call/jmp: If indirect branch tracking is enabled and not suppressed, active indirect

branch tracker goes to WAIT_FOR_ENDBRANCH.
 Case 2: Hardware interrupt/trap/exception/NMI/Software interrupt/Machine Checks

- If indirect branch tracking is enabled, the active indirect branch tracker is unsuppressed and goes
to WAIT_FOR_ENDBRANCH.

 Case 3: IRET

- If indirect branch tracking is enabled, the active indirect branch tracker keeps its state.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

22 Document Number: 334525-003, Revision 3.0

3.4 Indirect Branch Tracking State Machine
The state machine is described by following table.

Current State Trigger Next state

TRACKER=IDLE, SUPPRESS=0,

ENDBR_EN=1

Instructions other than

indirect call/jmp or 3EH

prefixed near indirect

call/jmp and

NO_TRACK_EN=1

TRACKER=IDLE, SUPPRESS=0,

ENDBR_EN=1

Indirect call/jmp without

3EH prefix

Indirect call/jmp with

3EH prefix and

NO_TRACK_EN=0

Far call/jmp

TRACKER=WAIT_FOR_ENDBRANCH,

SUPPRESS=0, ENDBR_EN=1

TRACKER= WAIT_FOR_ENDBRANCH,

SUPPRESS=0, ENDBR_EN=1

INT3/INT1 TRACKER= WAIT_FOR_ENDBRANCH,

SUPPRESS=0, ENDBR_EN=1

Endbranch instruction TRACKER=IDLE, SUPPRESS=0,

ENDBR_EN=1

Successful ENCLU[ERE-

SUME]

TRACKER=IDLE, SUPPRESS=0,

ENDBR_EN=1

Instructions other than

endbranch, successful

ENCLU[ERESUME] or

int3 or int1

If legacy compatibility treatment is

not enabled or if not allowed by leg-

acy code page bitmap:

 No state change and deliver #CP

(ENDBRANCH)

If legacy compatibility treatment is

enabled and transfer allowed by leg-

acy code page bitmap:

 TRACKER=IDLE, SUPRESS=!SUP-

PRESS_DIS, ENDBR_EN=1

TRACKER=x, SUPPRESS=x,

ENDBR_EN=0

All instructions TRACKER=x, SUPPRESS=x,

ENDBR_EN=0

TRACKER=IDLE, SUPPRESS=1,

ENDBR_EN=1

FAR CALL/JMP,

INTn/INT3/INTO

TRACKER=WAIT_FOR_ENDBRANCH,

SUPPRESS=0, ENDBR_EN=1

Endbranch instruction

Successful ENCLU[ERE-

SUME]

TRACKER=IDLE, SUPPRESS=0,

ENDBR_EN=1

All other instructions in-

cluding indirect call/jmp

TRACKER=IDLE, SUPPRESS=1,

ENDBR_EN=1

TRACKER=1, SUPPRESS=1,

ENDBR_EN=1

(This state cannot be reached by

hardware and is disallowed as a valid

state by WRMSR/XRSTORS/VM en-

try/VM exit)

N/A N/A

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 23

3.5 INT3 Treatment
INT3 are treated special in the WAIT_FOR_ENDBRANCH state. Occurrence of INT3 do not move the tracker

to IDLE but instead the #BP trap from the INT3 instructions respectively is delivered as a higher priority

event than the #CP exception due to missing endbranch.

Inside an enclave, INT3 delivers a fault-class exception and thus does not require the CPL to be less than DPL in
the IDT gate 3. Following opt-out entry, the instruction delivers #UD. Following opt-in entry, INT3 delivers #BP.

The special treatment of INT3 in WAIT_FOR_ENDBRANCH state does not apply in enclave mode following opt-
out entry.

3.6 Legacy Compatibility Treatment
Endbranch Legacy compatibility treatment allows a CET enabled program to be used with legacy software
that was not compiled / instrumented with endbranch. A CET enabled program enters legacy compatibility
treatment when all of the below conditions are met.

1. Legacy compatibility configuration is enabled in this CPL class by setting the LEG_IW_EN bit in
IA32_U_CET/IA32_S_CET.

2. Control transfer is performed using an indirect call/jmp without no-track prefix to a non-endbranch

instruction.
3. The legacy code page bitmap is setup to indicate that the target of the control transfer is a legacy code

page.

The legacy code page bitmap is a data structure in program memory that is used by the hardware to
determine if the code page to which a legacy transfer is being performed is allowed.

When a matching endbranch instruction is not decoded at the target of an indirect call/jmp when required,
the processor performs the below actions.

CET indirect branch tracking state machine violation event handler:
If LEG_IW_EN == 1

 LA = LIP;

 IF ENCLAVE_MODE == 1

 LA = LA – SECS.BASEADDR;

 ENDIF

 IF (EFER.LMA & CS.L) == 0

 BITMAP_BYTE = load.Asize_syslinaddr. Osize8(BITMAP_BASE + LA[31:15]]

 ELSE

 IF CR4.LA57 == 1

 BITMAP_BYTE = load.Asize_syslinaddr. Osize8(BITMAP_BASE + LA[56:15]]

 ELSE

 BITMAP_BYTE = load.Asize_syslinaddr. Osize8(BITMAP_BASE + LA[47:15]]

 FI;

 IF BITMAP_BYTE & (1 << LA[14:12]) == 0 then Deliver #CP(ENDBRANCH) fault

 IF CPL = 3

 IA32_U_CET.TRACKER = IDLE

 IA32_U_CET.SUPPRESS = IA32_U_CET.SUPPRESS_DIS == 0 ? 1 : 0

 ELSE

 IA32_S_CET.TRACKER = IDLE

 IA32_S_CET.SUPPRESS = IA32_S_CET.SUPPRESS_DIS == 0 ? 1 : 0

 ENDIF

 Restart the instruction (handle all arch. consistency around MOV SS state machines, STI etc.)

 without opening up interrupt/trap window

ELSE

 Deliver #CP(ENDBRANCH) Fault

ENDIF

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

24 Document Number: 334525-003, Revision 3.0

Faults/traps in pseudocode are delivered normally (e.g. #PF, EPT violation). On fault, active tracker holds

last value (WAIT_FOR_ENDBRANCH) and address saved on stack is current IP (instruction that wasn’t the
ENDBRANCH).

The CET indirect branch tracking state machine is suppressed in legacy compatibility mode if the SUP-
PRESS_DIS control bit is 0.

Once the CET indirect branch tracking state machine has been suppressed, subsequent indirect call/jmp are

not tracked for termination instruction.

Once CET indirect branch tracking has been suppressed, subsequent execution of endbranch instructions

will do the following (see section 7 for details).

IF EndbranchEnabled(CPL) == 0

 NOP

ELSE

 SUPPRESS = 0

 TRACKER = IDLE

ENDIF

3.6.1 Legacy Code Page Bitmap Format
The legacy code page bitmap is a flat bitmap whose linear address is pointed to by the EB_LEG_BIT-
MAP_BASE. Each bit in the bitmap represents a 4K page in linear memory. If the bit is 1 it indicates that
the corresponding code page is a legacy code page; else it is a CET-enabled code page.
The processor uses the linear address of the instruction to which legacy transfer was attempted to lookup

the bitmap. Bits of the linear address used as index in the bitmap are as follows.

 In legacy and compatibility mode – Bits 31:12
 In 64-bit mode (EFER.LMA=1 and CS.L=1)

- If CR4.LA57 = 1, then Bits 56:12

- If CR4.LA57 = 0, then Bits 47:12

3.7 Other Considerations
3.7.1 Intel® Transactional Synchronization Extensions (Intel® TSX) Interactions

The XBEGIN instruction encodes the relative offset to the abort handler and hence the fallback to the

abort handler can be considered as a “direct” branch and the abort handler does not need to have an
ENDBRANCH.

CET continues to enforce indirect call/jmp tracking within a transaction. Legacy compatibility treatment

inside a transaction functions normally. If a transaction abort occurs then the processor sets the state of the
indirect branch tracker to IDLE and not-suppressed.

3.7.2 #CP(ENDBRANCH) Priority w.r.t #NM and #UD
#NM, #UD and #CP(ENDBRANCH) are in the same priority class. Both #NM and #UD are opcode based
faults. The #CP(endbranch) is prioritized higher than #NM and #UD as CET architecturally requires an
ENDBRANCH at target of indirect call/jmp.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 25

3.7.3 #CP(ENDBRANCH) Priority w.r.t #BP
Debug Exceptions priority is as follows.

 Traps delivered before any #CP(ENDBRANCH) fault: data breakpoint trap, IO breakpoint trap single step
trap, task switch trap.

 Code Breakpoint fault detected before instruction decode and delivered before #CP(endbranch).

 GD condition fault – lower priority than #CP(endbranch).
 On IRET back from #DB/#BP the source indirect branch tracker becomes active if enabled and not

suppressed.

INT3 does not cause #CP(endbranch) to support debugger usage of replacing bytes of ENDBRANCH with
INT3 to set breakpoints. INT3 at target of a CALL-JMP(indirect) cause #BP(INT3) instead of #CP(endbranch),
#CP(endbranch) fault is delayed. #BP caused by INT3 treated like other events that are higher priority than

CET fault. On IRET back from #BP the source indirect tracker becomes active if enabled and not suppressed.

3.8 Constraining Speculation after Missing ENDBRANCH
When the CET tracker is in the WAIT_FOR_ENDBRANCH state, instruction execution will be limited or blocked,

even speculatively, if the next instruction is not an ENDBRANCH.

This means that when indirect branch tracking is enabled and not suppressed, the instructions at the target of a

near indirect JMP/CALL without the no-track prefix will only speculatively execute if there is an ENDBRANCH at

the target. Early implementations of CET may limit the speculative execution to a small number of instructions

(less than 8, with no more than 5 loads) past a missing ENDBRANCH, while later implementations will com-

pletely block the speculative execution of instructions after a missing ENDBRANCH.

This mechanism also limits or blocks speculation of the next sequential instructions after an indirect JMP or

CALL, presuming the JMP/CALL puts the CET tracker into the WAIT_FOR_ENDBRANCH state and the next se-

quential instruction is not an ENDBRANCH.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

26 Document Number: 334525-003, Revision 3.0

4 Changes to Control Transfer Instructions Reference
When CET is enabled, the changes in operation of traditional control transfer instructions are described in this

section.

4.1 CALL— Call Procedure

Opcode Instruction Op/

En

64-bit

Mode

Compat/

Leg

Mode

Description

E8 cw CALL rel16 M N.S. Valid Call near, relative, displacement

relative to next instruction.

E8 cd CALL rel32 M Valid Valid Call near, relative, displacement

relative to next instruction. 32-bit

displacement sign extended to

64-bits in 64-bit mode.

FF /2 CALL r/m16 M N.E. Valid Call near, absolute indirect,

address given in r/m16.

FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect,

address given in r/m32.

FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect,

address given in r/m64.

9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address given

in operand.

9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address given

in operand.

FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect address

given in m16:16.

In 32-bit mode: if selector points

to a gate, then RIP = 32-bit zero

extended displacement taken

from gate; else RIP = zero

extended 16-bit offset from far

pointer referenced in the

instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector points

to a gate, then RIP = 64-bit

displacement taken from gate;

else RIP = zero extended 32-bit

offset from far pointer referenced

in the instruction.

REX.W

+ FF /3

CALL m16:64 M Valid N.E. In 64-bit mode: If selector points

to a gate, then RIP = 64-bit

displacement taken from gate;

else RIP = 64-bit offset from far

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 27

pointer referenced in the

instruction.

Instruction Operand Encoding

Op

/En
Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M ModRM:r/m (r) NA NA NA

Description

Saves procedure linking information on the stack and branches to the called procedure specified using the

target operand. The target operand specifies the address of the first instruction in the called procedure. The

operand can be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls.

• Near Call — A call to a procedure in the current code segment (the segment currently pointed to by the

CS register), sometimes referred to as an intra-segment call.

• Far Call — A call to a procedure located in a different segment than the current code segment, some-

times referred to as an inter-segment call.

• Inter-privilege-level far call — A far call to a procedure in a segment at a different privilege level

than that of the currently executing program or procedure.

• Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode.

See “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 1, for additional -information on near, far, and inter-privilege-level calls. See

Chapter 7, “Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3A, for information on performing task switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register (which contains the

offset of the instruction following the CALL instruction) on the stack (for use later as a return-instruction

pointer). The processor then branches to the address in the current code segment specified by the target

operand. The target operand specifies either an absolute offset in the code segment (an offset from the

base of the code segment) or a relative offset (a signed displacement relative to the current value of the

instruction pointer in the EIP register; this value points to the instruction following the CALL instruction).

The CS register is not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or a memory

location (r/m16, r/m32, or r/m64). The operand-size attribute determines the size of the target operand

(16, 32 or 64 bits). When in 64-bit mode, the operand size for near call (and all near branches) is forced to

64-bits. Absolute offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is 16,

the upper two bytes of the EIP register are cleared, resulting in a maximum instruction pointer size of 16

bits. When accessing an absolute offset indirectly using the stack pointer [ESP] as the base register, the

base value used is the value of the ESP before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at the machine code

level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the

EIP(RIP) register. In 64-bit mode the relative offset is always a 32-bit immediate value which is sign ex-

tended to 64-bits before it is added to the value in the RIP register for the target calculation. As with absolute

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

28 Document Number: 334525-003, Revision 3.0

offsets, the operand-size attribute determines the size of the target operand (16, 32, or 64 bits). In 64-bit

mode the target operand will always be 64-bits because the operand size is forced to 64-bits for near

branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- address or virtual-8086

mode, the processor pushes the current value of both the CS and EIP registers on the stack for use as a

return-instruction pointer. The processor then performs a “far branch” to the code segment and offset spec-

ified with the target operand for the called procedure. The target operand specifies an absolute far address

either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or

m16:32). With the pointer method, the segment and offset of the called procedure is encoded in the in-

struction using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With

the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit operand

size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines the size of the

offset (16 or 32 bits) in the far address. The far address is loaded directly into the CS and EIP registers. If

the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL instruction can be

used to perform the following types of far calls.

• Far call to the same privilege level.

• Far call to a different privilege level (inter-privilege level call).

• Task switch (far call to another task).

In protected mode, the processor always uses the segment selector part of the far address to access the

corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or

TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is

performed. (If the selected code segment is at a different privilege level and the code segment is non-

conforming, a general-protection exception is generated.) A far call to the same privilege level in protected

mode is very similar to one carried out in real-address or virtual-8086 mode. The target operand specifies

an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory

location (m16:16 or m16:32). The operand- size attribute determines the size of the offset (16 or 32 bits)

in the far address. The new code segment selector and its descriptor are loaded into CS register; the offset

from the instruction is loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to a code segment at

the same privilege level. Using this mechanism provides an extra level of indirection and is the preferred

method of making calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be

accessed through a call gate. The segment selector specified by the target operand identifies the call gate.

The target operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or

ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The processor obtains the segment

selector for the new code segment and the new instruction pointer (offset) from the call gate descriptor.

(The offset from the target operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called proce-

dure. The segment selector for the new stack segment is specified in the TSS for the currently running task.

The branch to the new code segment occurs after the stack switch. (Note that when using a call gate to

perform a far call to a segment at the same privilege level, no stack switch occurs.) On the new stack, the

processor pushes the segment selector and stack pointer for the calling procedure’s stack, an optional set

of parameters from the calling procedures stack, and the segment selector and instruction pointer for the

calling procedure’s code segment. (A value in the call gate descriptor determines how many parameters to

copy to the new stack.) Finally, the processor branches to the address of the procedure being called within

the new code segment.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 29

Executing a task switch with the CALL instruction is similar to executing a call through a call gate. The target

operand specifies the segment selector of the task gate for the new task activated by the switch (the offset

in the target operand is ignored). The task gate in turn points to the TSS for the new task, which contains

the segment selectors for the task’s code and stack segments. Note that the TSS also contains the EIP value

for the next instruction that was to be executed before the calling task was suspended. This instruction

pointer value is loaded into the EIP register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which eliminates the indirec-

tion of the task gate. See Chapter 7, “Task Management,” in the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3A, for information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the EFLAGS

register and the new TSS’s previous task link field is loaded with the old task’s TSS selector. Code is expected

to suspend this nested task by executing an IRET instruction which, because the NT flag is set, automatically

uses the previous task link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel® 64

and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information on nested tasks.) Switch-

ing tasks with the CALL instruction differs in this regard from JMP instruction. JMP does not set the NT flag

and therefore does not expect an IRET instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code segments, use a call

gate. If the far call is from a 32-bit code segment to a 16-bit code segment, the call should be made from

the first 64 KBytes of the 32-bit code segment. This is because the operand-size attribute of the instruction

is set to 16, so only a 16-bit return address offset can be saved. Also, the call should be made using a 16-

bit call gate so that 16-bit values can be pushed on the stack. See Chapter 21, “Mixing 16-Bit and 32-Bit

Code,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more infor-

mation.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, the CALL instruction

can be used to perform the following types of far calls.

• Far call to the same privilege level, remaining in compatibility mode.

• Far call to the same privilege level, transitioning to 64-bit mode.

• Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit mode.

Note that a CALL instruction cannot be used to cause a task switch in compatibility mode since task switches

are not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far address to access the

corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights

determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is

performed. (If the selected code segment is at a different privilege level and the code segment is non-

conforming, a general-protection exception is generated.) A far call to the same privilege level in compati-

bility mode is very similar to one carried out in protected mode. The target operand specifies an absolute

far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location

(m16:16 or m16:32). The operand-size attribute determines the size of the offset (16 or 32 bits) in the far

address. The new code segment selector and its descriptor are loaded into CS register and the offset from

the instruction is loaded into the EIP register. The difference is that 64-bit mode may be entered. This

specified by the L bit in the new code segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a

code segment at the same privilege level. However, using this mechanism requires that the target code

segment descriptor have the L bit set, causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be

accessed through a 64-bit call gate. The segment selector specified by the target operand identifies the call

gate. The target operand can specify the call gate segment selector either directly with a pointer (ptr16:16

or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The processor obtains the segment

selector for the new code segment and the new instruction pointer (offset) from the 16-byte call gate de-

scriptor. (The offset from the target operand is ignored when a call gate is used.)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

30 Document Number: 334525-003, Revision 3.0

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called proce-

dure. The segment selector for the new stack segment is set to NULL. The new stack pointer is specified in

the TSS for the currently running task. The branch to the new code segment occurs after the stack switch.

(Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit

stack switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment

accesses use a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. The full value

of RSP is used for the offset, of which the upper 32-bits are undefined.) On the new stack, the processor

pushes the segment selector and stack pointer for the calling procedure’s stack and the segment selector

and instruction pointer for the calling procedure’s code segment. (Parameter copy is not supported in IA-

32e mode.) Finally, the processor branches to the address of the procedure being called within the new code

segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL instruction can be

used to perform the following types of far calls

• Far call to the same privilege level, transitioning to compatibility mode.

• Far call to the same privilege level, remaining in 64-bit mode.

• Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode.

Note that in this mode the CALL instruction cannot be used to cause a task switch in 64-bit mode since task

switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address to access the cor-

responding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights

determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is

performed. (If the selected code segment is at a different privilege level and the code segment is non-

conforming, a general-protection exception is generated.) A far call to the same privilege level in 64-bit

mode is very similar to one carried out in compatibility mode. The target operand specifies an absolute far

address indirectly with a memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct

specification of absolute far address is not defined in 64-bit mode. The operand-size attribute determines

the size of the offset (16, 32, or 64 bits) in the far address. The new code segment selector and its descriptor

are loaded into the CS register; the offset from the instruction is loaded into the EIP register. The new code

segment may specify entry either into compatibility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment

at the same privilege level. However, using this mechanism requires that the target code segment descriptor

have the L bit set.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be

accessed through a 64-bit call gate. The segment selector specified by the target operand identifies the call

gate. The target operand can only specify the call gate segment selector indirectly with a memory location

(m16:16, m16:32 or m16:64). The processor obtains the segment selector for the new code segment and

the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target operand

is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called proce-

dure. The segment selector for the new stack segment is set to NULL. The new stack pointer is specified in

the TSS for the currently running task. The branch to the new code segment occurs after the stack switch.

Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit

stack switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment

accesses use a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. (The full

value of RSP is used for the offset.) On the new stack, the processor pushes the segment selector and stack

pointer for the calling procedure’s stack and the segment selector and instruction pointer for the calling

procedure’s code segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor

branches to the address of the procedure being called within the new code segment.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 31

Operation

IF near call

 THEN IF near relative call

 THEN

 IF OperandSize = 64

 THEN

 tempDEST  SignExtend(DEST); (* DEST is rel32 *)

 tempRIP  RIP + tempDEST;

 IF stack not large enough for a 8-byte return address

 THEN #SS(0); FI;

 Push(RIP);

 IF ShadowStackEnabled(CPL) AND DEST != 0

 ShadowStackPush8B(RIP);

 FI;

 RIP  tempRIP;

 FI;

 IF OperandSize = 32

 THEN

 tempEIP  EIP + DEST; (* DEST is rel32 *)

 IF tempEIP is not within code segment limit THEN #GP(0); FI;

 IF stack not large enough for a 4-byte return address

 THEN #SS(0); FI;

 Push(EIP);

 IF ShadowStackEnabled(CPL) AND DEST != 0

 ShadowStackPush4B(EIP);

 FI;

 EIP  tempEIP;

 FI;

 IF OperandSize = 16

 THEN

 tempEIP  (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)

 IF tempEIP is not within code segment limit THEN #GP(0); FI;

 IF stack not large enough for a 2-byte return address

 THEN #SS(0); FI;

 Push(IP);

 IF ShadowStackEnabled(CPL) AND DEST != 0

 (* IP is zero extended and pushed as a 32 bit value on shadow stack *)

 ShadowStackPush4B(IP);

 FI;

 EIP  tempEIP;

 FI;

 ELSE (* Near absolute call *)

 IF OperandSize = 64

 THEN

 tempRIP  DEST; (* DEST is r/m64 *)

 IF stack not large enough for a 8-byte return address

 THEN #SS(0); FI;

 Push(RIP);

 IF ShadowStackEnabled(CPL)

 ShadowStackPush8B(RIP);

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

32 Document Number: 334525-003, Revision 3.0

 FI;

 RIP  tempRIP;

 FI;

 IF OperandSize = 32

 THEN

 tempEIP  DEST; (* DEST is r/m32 *)

 IF tempEIP is not within code segment limit THEN #GP(0); FI;

 IF stack not large enough for a 4-byte return address

 THEN #SS(0); FI;

 Push(EIP);

 IF ShadowStackEnabled(CPL)

 ShadowStackPush4B(EIP);

 FI;

 EIP  tempEIP;

 FI;

 IF OperandSize = 16

 THEN

 tempEIP  DEST AND 0000FFFFH; (* DEST is r/m16 *)

 IF tempEIP is not within code segment limit THEN #GP(0); FI;

 IF stack not large enough for a 2-byte return address

 THEN #SS(0); FI;

 Push(IP);

 IF ShadowStackEnabled(CPL)

 (* IP is zero extended and pushed as a 32 bit value on shadow stack *)

 ShadowStackPush4B(IP);

 FI;

 EIP  tempEIP;

 FI;

 FI; rel/abs

 IF (Call near indirect, absolute indirect)

 IF EndbranchEnabledAndNotSuppressed(CPL)

 IF CPL = 3

 THEN

 IF (no 3EH prefix OR IA32_U_CET.NO_TRACK_EN == 0)

 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

 FI

 ELSE

 IF (no 3EH prefix OR IA32_S_CET.NO_TRACK_EN == 0)

 THEN

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 FI

 FI;

 FI;

 FI;

FI; near

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 33

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)

 THEN

 IF OperandSize = 32

 THEN

 IF stack not large enough for a 6-byte return address

 THEN #SS(0); FI;

 IF DEST[31:16] is not zero THEN #GP(0); FI;

 Push(CS); (* Padded with 16 high-order bits *)

 Push(EIP);

 CS  DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)

 EIP  DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)

 ELSE (* OperandSize = 16 *)

 IF stack not large enough for a 4-byte return address

 THEN #SS(0); FI;

 Push(CS);

 Push(IP);

 CS  DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)

 EIP  DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)

 FI;

FI;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)

 THEN

 IF segment selector in target operand NULL

 THEN #GP(0); FI;

 IF segment selector index not within descriptor table limits

 THEN #GP(new code segment selector); FI;

 Read type and access rights of selected segment descriptor;

 IF IA32_EFER.LMA = 0

 THEN

 IF segment type is not a conforming or nonconforming code segment, call

 gate, task gate, or TSS

 THEN #GP(segment selector); FI;

 ELSE

 IF segment type is not a conforming or nonconforming code segment or

 64-bit call gate,

 THEN #GP(segment selector); FI;

 FI;

 Depending on type and access rights:

 GO TO CONFORMING-CODE-SEGMENT;

 GO TO NONCONFORMING-CODE-SEGMENT;

 GO TO CALL-GATE;

 GO TO TASK-GATE;

 GO TO TASK-STATE-SEGMENT;

FI;

CONFORMING-CODE-SEGMENT:

 IF L bit = 1 and D bit = 1 and IA32_EFER.LMA = 1

 THEN GP(new code segment selector); FI;

 IF DPL > CPL

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

34 Document Number: 334525-003, Revision 3.0

 THEN #GP(new code segment selector); FI;

 IF segment not present

 THEN #NP(new code segment selector); FI;

 IF stack not large enough for return address

 THEN #SS(0); FI;

 tempEIP DEST(Offset);

 IF OperandSize = 16

 THEN

 tempEIP  tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

 IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code

 segment limit)

 THEN #GP(0); FI;

 IF tempEIP is non-canonical

 THEN #GP(0); FI;

 IF ShadowStackEnabled(CPL)

 IF OperandSize = 32

 THEN

 tempPushLIP = CSBASE + EIP;

 ELSE

 IF OperandSize = 16

 THEN

 tempPushLIP = CSBASE + IPEIP;

 ELSE (* OperandSize = 64 *)

 tempPushLIP = RIP;

 FI;

 FI;

 tempPushCS = CS;

 FI;

 IF OperandSize = 32

 THEN

 Push(CS); (* Padded with 16 high-order bits *)

 Push(EIP);

 CS  DEST(CodeSegmentSelector);

 (* Segment descriptor information also loaded *)

 CS(RPL)  CPL;

 EIP  tempEIP;

 ELSE

 IF OperandSize = 16

 THEN

 Push(CS);

 Push(IP);

 CS  DEST(CodeSegmentSelector);

 (* Segment descriptor information also loaded *)

 CS(RPL)  CPL;

 EIP  tempEIP;

 ELSE (* OperandSize = 64 *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 35

 Push(CS); (* Padded with 48 high-order bits *)

 Push(RIP);

 CS  DEST(CodeSegmentSelector);

 (* Segment descriptor information also loaded *)

 CS(RPL)  CPL;

 RIP  tempEIP;

 FI;

 FI;

 IF ShadowStackEnabled(CPL)

 IF (EFER.LMA and DEST(CodeSegmentSelector).L) = 0

 (* If target is legacy or compatibility mode then the SSP must be in low 4G *)

 IF (SSP & 0xFFFFFFFF00000000 != 0)

 THEN #GP(0); FI;

 FI;

 (* align to 8 byte boundary if not already aligned *)

 tempSSP = SSP;

 Shadow_stack_store 4 bytes of 0 to (SSP – 4)

 SSP = SSP & 0xFFFFFFFFFFFFFFF8H

 ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order bits of 0 *)

 ShadowStackPush8B(tempPushLIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)

 ShadowStackPush8B(tempSSP);

 FI;

 IF EndbranchEnabled(CPL)

 IF CPL = 3

 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_S_CET.SUPPRESS = 0

 FI;

 FI;

END;

NONCONFORMING-CODE-SEGMENT:

 IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

 THEN GP(new code segment selector); FI;

 IF (RPL > CPL) or (DPL != CPL)

 THEN #GP(new code segment selector); FI;

 IF segment not present

 THEN #NP(new code segment selector); FI;

 IF stack not large enough for return address

 THEN #SS(0); FI;

 tempEIP  DEST(Offset);

 IF OperandSize = 16

 THEN tempEIP  tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

 IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code

 segment limit)

 THEN #GP(0); FI;

 IF tempEIP is non-canonical

 THEN #GP(0); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

36 Document Number: 334525-003, Revision 3.0

 IF ShadowStackEnabled(CPL)

 IF OperandSize = 32

 THEN

 tempPushLIP = CSBASE + EIP;

 ELSE

 IF OperandSize = 16

 THEN

 tempPushLIP = CSBASE + EIP;

 ELSE (* OperandSize = 64 *)

 tempPushLIP = RIP;

 FI;

 FI;

 tempPushCS = CS;

 FI;

 IF OperandSize = 32

 THEN

 Push(CS); (* Padded with 16 high-order bits *)

 Push(EIP);

 CS  DEST(CodeSegmentSelector);

 (* Segment descriptor information also loaded *)

 CS(RPL)  CPL;

 EIP  tempEIP;

 ELSE

 IF OperandSize = 16

 THEN

 Push(CS);

 Push(IP);

 CS  DEST(CodeSegmentSelector);

 (* Segment descriptor information also loaded *)

 CS(RPL)  CPL;

 EIP  tempEIP;

 ELSE (* OperandSize = 64 *)

 Push(CS); (* Padded with 48 high-order bits *)

 Push(RIP);

 CS  DEST(CodeSegmentSelector);

 (* Segment descriptor information also loaded *)

 CS(RPL)  CPL;

 RIP  tempEIP;

 FI;

 FI;

 IF ShadowStackEnabled(CPL)

 IF (EFER.LMA and DEST(CodeSegmentSelector).L) = 0

 (* If target is legacy or compatibility mode then the SSP must be in low 4G *)

 IF (SSP & 0xFFFFFFFF00000000 != 0)

 THEN #GP(0); FI;

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 37

 (* align to 8 byte boundary if not already aligned *)

 tempSSP = SSP;

 Shadow_stack_store 4 bytes of 0 to (SSP – 4)

 SSP = SSP & 0xFFFFFFFFFFFFFFF8H

 ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order 0 bits *)

 ShadowStackPush8B(tempPushLIP); (* Padded 32 high-order bits of 0 for 32 bit LIP*)

 ShadowStackPush8B(tempSSP);

 FI;

 IF EndbranchEnabled(CPL)

 IF CPL = 3

 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_S_CET.SUPPRESS = 0

 FI;

 FI;

END;

CALL-GATE:

 IF call gate (DPL < CPL) or (RPL > DPL)

 THEN #GP(call-gate selector); FI;

 IF call gate not present

 THEN #NP(call-gate selector); FI;

 IF call-gate code-segment selector is NULL

 THEN #GP(0); FI;

 IF call-gate code-segment selector index is outside descriptor table limits

 THEN #GP(call-gate code-segment selector); FI;

 Read call-gate code-segment descriptor;

 IF call-gate code-segment descriptor does not indicate a code segment

 or call-gate code-segment descriptor DPL > CPL

 THEN #GP(call-gate code-segment selector); FI;

 IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is

 not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)

 THEN #GP(call-gate code-segment selector); FI;

 IF call-gate code segment not present

 THEN #NP(call-gate code-segment selector); FI;

 IF call-gate code segment is non-conforming and DPL < CPL

 THEN go to MORE-PRIVILEGE;

 ELSE go to SAME-PRIVILEGE;

 FI;

END;

MORE-PRIVILEGE:

 IF current TSS is 32-bit

 THEN

 TSSstackAddress  (new code-segment DPL * 8) + 4;

 IF (TSSstackAddress + 5) > current TSS limit

 THEN #TS(current TSS selector); FI;

 NewSS  2 bytes loaded from (TSS base + TSSstackAddress + 4);

 NewESP  4 bytes loaded from (TSS base + TSSstackAddress);

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

38 Document Number: 334525-003, Revision 3.0

 ELSE

 IF current TSS is 16-bit

 THEN

 TSSstackAddress  (new code-segment DPL * 4) + 2

 IF (TSSstackAddress + 3) > current TSS limit

 THEN #TS(current TSS selector); FI;

 NewSS  2 bytes loaded from (TSS base + TSSstackAddress + 2);

 NewESP  2 bytes loaded from (TSS base + TSSstackAddress);

 ELSE (* current TSS is 64-bit *)

 TSSstackAddress  (new code-segment DPL * 8) + 4;

 IF (TSSstackAddress + 7) > current TSS limit

 THEN #TS(current TSS selector); FI;

 NewSS  new code-segment DPL; (* NULL selector with RPL = new CPL *)

 NewRSP  8 bytes loaded from (current TSS base + TSSstackAddress);

 FI;

 FI;

 IF IA32_EFER.LMA = 0 and NewSS is NULL

 THEN #TS(NewSS); FI;

 Read new code-segment descriptor and new stack-segment descriptor;

 IF IA32_EFER.LMA = 0 and (NewSS RPL != new code-segment DPL

 or new stack-segment DPL != new code-segment DPL or new stack segment is not a

 writable data segment)

 THEN #TS(NewSS); FI

 IF IA32_EFER.LMA = 0 and new stack segment not present

 THEN #SS(NewSS); FI;

 IF CallGateSize = 32

 THEN

 IF new stack does not have room for parameters plus 16 bytes

 THEN #SS(NewSS); FI;

 IF CallGate(InstructionPointer) not within new code-segment limit

 THEN #GP(0); FI;

 SS  newSS; (* Segment descriptor information also loaded *)

 ESP  newESP;

 CS:EIP  CallGate(CS:InstructionPointer);

 (* Segment descriptor information also loaded *)

 Push(oldSS:oldESP); (* From calling procedure *)

 temp  parameter count from call gate, masked to 5 bits;

 Push(parameters from calling procedure’s stack, temp)

 Push(oldCS:oldEIP); (* Return address to calling procedure *)

 ELSE

 IF CallGateSize = 16

 THEN

 IF new stack does not have room for parameters plus 8 bytes

 THEN #SS(NewSS); FI;

 IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit

 THEN #GP(0); FI;

 SS  newSS; (* Segment descriptor information also loaded *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 39

 ESP  newESP;

 CS:IP  CallGate(CS:InstructionPointer);

 (* Segment descriptor information also loaded *)

 Push(oldSS:oldESP); (* From calling procedure *)

 temp  parameter count from call gate, masked to 5 bits;

 Push(parameters from calling procedure’s stack, temp)

 Push(oldCS:oldEIP); (* Return address to calling procedure *)

 ELSE (* CallGateSize = 64 *)

 IF pushing 32 bytes on the stack would use a non-canonical address

 THEN #SS(NewSS); FI;

 IF (CallGate(InstructionPointer) is non-canonical)

 THEN #GP(0); FI;

 SS  NewSS; (* NewSS is NULL)

 RSP  NewESP;

 CS:IP  CallGate(CS:InstructionPointer);

 (* Segment descriptor information also loaded *)

 Push(oldSS:oldESP); (* From calling procedure *)

 Push(oldCS:oldEIP); (* Return address to calling procedure *)

 FI;

 FI;

 IF ShadowStackEnabled(CPL)

 THEN

 IF CPL = 3

 THEN IA32_PL3_SSP SSP; FI;

 FI;

 CPL  CodeSegment(DPL)

 CS(RPL)  CPL

 IF ShadowStackEnabled(CPL)

 oldSSP  SSP

 SSP  IA32_PLi_SSP; (* where i is the CPL *)

 IF SSP & 0x07 != 0 (* if SSP not aligned to 8 bytes then #GP *)

 THEN #GP(0); FI;

 Fault = 0

 Atomic Start

 SSPToken = 8 bytes locked loaded with shadow stack semantics from SSP

 IF (SSPToken AND 0x01)

 THEN fault  1; FI;

 IF ((EFER.LMA and CS.L) = 0 AND SSPToken[63:32] != 0)

 THEN fault  1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != SSP)

 THEN fault  1; FI;

 IF fault = 0

 THEN SSPToken = SSPToken OR 0x01; FI;

 Store 8 bytes of SSPToken and unlock with shadow stack semantics to SSP;

 Atomic End

 If fault = 1

 THEN #GP(0); FI;

 IF oldSS.DPL != 3

 ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)

 ShadowStackPush8B(oldCSBASE+oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)

 ShadowStackPush8B(oldSSP);

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

40 Document Number: 334525-003, Revision 3.0

 FI;

 FI

 IF EndbranchEnabled (CPL)

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_S_CET.SUPPRESS = 0

 FI;

END;

SAME-PRIVILEGE:

 IF CallGateSize = 32

 THEN

 IF stack does not have room for 8 bytes

 THEN #SS(0); FI;

 IF CallGate(InstructionPointer) not within code segment limit

 THEN #GP(0); FI;

 CS:EIP  CallGate(CS:EIP) (* Segment descriptor information also loaded *)

 Push(oldCS:oldEIP); (* Return address to calling procedure *)

 ELSE

 If CallGateSize = 16

 THEN

 IF stack does not have room for 4 bytes

 THEN #SS(0); FI;

 IF CallGate(InstructionPointer) not within code segment limit

 THEN #GP(0); FI;

 CS:IP  CallGate(CS:instruction pointer);

 (* Segment descriptor information also loaded *)

 Push(oldCS:oldIP); (* Return address to calling procedure *)

 ELSE (* CallGateSize = 64)

 IF pushing 16 bytes on the stack touches non-canonical addresses

 THEN #SS(0); FI;

 IF RIP non-canonical

 THEN #GP(0); FI;

 CS:RIP  CallGate(CS:instruction pointer);

 (* Segment descriptor information also loaded *)

 Push(oldCS:oldRIP); (* Return address to calling procedure *) FI;

 FI;

 CS(RPL)  CPL

 IF ShadowStackEnabled(CPL)

 (* Align to next 8 byte boundary *)

 tempSSP = SSP;

 Shadow_stack_store 4 bytes of 0 to (SSP – 4)

 SSP = SSP & 0xFFFFFFFFFFFFFFF8H;

 (* push cs:lip:ssp on shadow stack *)

 ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)

 ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 41

 ShadowStackPush8B(tempSSP);

 FI;

 IF EndbranchEnabled (CPL)

 IF CPL = 3

 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH;

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;

 IA32_S_CET.SUPPRESS = 0

 FI;

 FI;

END;

TASK-GATE:

 IF task gate DPL < CPL or RPL

 THEN #GP(task gate selector); FI;

 IF task gate not present

 THEN #NP(task gate selector); FI;

 Read the TSS segment selector in the task-gate descriptor;

 IF TSS segment selector local/global bit is set to local

 or index not within GDT limits

 THEN #GP(TSS selector); FI;

 Access TSS descriptor in GDT;

 IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

 THEN #GP(TSS selector); FI;

 IF TSS not present

 THEN #NP(TSS selector); FI;

 SWITCH-TASKS (with nesting) to TSS;

 IF EIP not within code segment limit

 THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:

 IF TSS DPL < CPL or RPL

 or TSS descriptor indicates TSS not available

 THEN #GP(TSS selector); FI;

 IF TSS is not present

 THEN #NP(TSS selector); FI;

 SWITCH-TASKS (with nesting) to TSS;

 IF EIP not within code segment limit

 THEN #GP(0); FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions

#GP(0) If the target offset in destination operand is beyond the new code segment limit.

 If the segment selector in the destination operand is NULL.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

42 Document Number: 334525-003, Revision 3.0

 If the code segment selector in the gate is NULL.

 If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If the DS, ES, FS, or GS register is used to access memory and it contains a NULL

segment selector.

 If target mode is compatibility mode and SSP is not in low 4G.

 If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.

 If “supervisor Shadow Stack” token on new shadow stack is marked busy.

 If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor

shadow stack” token is beyond 4G.

 If SSP address in “supervisor shadow stack” token does not match SSP address in

IA32_PLi_SSP (where i is the new CPL).

#GP(selector) If a code segment or gate or TSS selector index is outside descriptor table limits.

 If the segment descriptor pointed to by the segment selector in the destination oper-

and is not for a conforming-code segment, nonconforming-code segment, call gate,

task gate, or task state segment.

 If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for

the segment’s segment selector is greater than the CPL.

 If the DPL for a conforming-code segment is greater than the CPL.

 If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL

or than the RPL of the call-gate, task-gate, or TSS’s segment selector.

 If the segment descriptor for a segment selector from a call gate does not indicate it

is a code segment.

 If the segment selector from a call gate is beyond the descriptor table limits.

 If the DPL for a code-segment obtained from a call gate is greater than the CPL.

 If the segment selector for a TSS has its local/global bit set for local.

 If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto the stack

exceeds the bounds of the stack segment, when no stack switch occurs.

 If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto the stack

exceeds the bounds of the stack segment, when a stack switch occurs.

 If the SS register is being loaded as part of a stack switch and the segment pointed to

is marked not present.

 If stack segment does not have room for the return address, parameters, or stack

segment pointer, when stack switch occurs.

#NP(selector) If a code segment, data segment, stack segment, call gate, task gate, or TSS is not

present.

#TS(selector) If the new stack segment selector and ESP are beyond the end of the TSS.

 If the new stack segment selector is NULL.

 If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the

code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not equal to the

DPL of the code segment descriptor.

 If the new stack segment is not a writable data segment.

 If segment-selector index for stack segment is outside descriptor table limits.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 43

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while

the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If the target offset is beyond the code segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If the target offset is beyond the code segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

#GP(selector) If a memory address accessed by the selector is in non-canonical space.

#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical.

 If target offset in destination operand is non-canonical.

 If the segment selector in the destination operand is NULL.

 If the code segment selector in the 64-bit gate is NULL.

 If target mode is compatibility mode and SSP is not in low 4G.

 If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.

 If “supervisor Shadow Stack” token on new shadow stack is marked busy.

 If destination mode is 32-bit mode or compatibility mode, but SSP address in “super-

visor shadow” stack token is beyond 4G.

 If SSP address in “supervisor shadow stack” token does not match SSP address in

IA32_PLi_SSP (where i is the new CPL).

#GP(selector) If code segment or 64-bit call gate is outside descriptor table limits.

 If code segment or 64-bit call gate overlaps non-canonical space.

 If the segment descriptor pointed to by the segment selector in the destination oper-

and is not for a conforming-code segment, nonconforming-code segment, or 64-bit

call gate.

 If the segment descriptor pointed to by the segment selector in the destination oper-

and is a code segment and has both the D-bit and the L- bit set.

 If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for

the segment’s segment selector is greater than the CPL.

 If the DPL for a conforming-code segment is greater than the CPL.

 If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit

call-gate.

 If the upper type field of a 64-bit call gate is not 0x0.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

44 Document Number: 334525-003, Revision 3.0

 If the segment selector from a 64-bit call gate is beyond the descriptor table limits.

 If the DPL for a code-segment obtained from a 64-bit call gate is greater than the

CPL.

 If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't

have the L-bit set and the D-bit clear.

 If the segment descriptor for a segment selector from the 64-bit call gate does not

indicate it is a code segment.

#SS(0) If pushing the return offset or CS selector onto the stack exceeds the bounds of the

stack segment when no stack switch occurs.

 If a memory operand effective address is outside the SS segment limit.

 If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or

error code onto the stack violates the canonical boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.

#TS(selector) If the load of the new RSP exceeds the limit of the TSS.

#UD (64-bit mode only) If a far call is direct to an absolute address in memory.

 If the LOCK prefix is used.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while

the current privilege level is 3.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 45

4.2 INT n/INTO/INT3 – Call to Interrupt Procedure

Opcode Instruction Op/ En 64-Bit

Mode

Compat/

Leg Mode

Description

CC INT3 NP Valid Valid Interrupt 3 – trap to

debugger.

CD ib INT imm8 I Valid Valid Interrupt vector specified by

immediate byte.

CE INTO NP Invalid Valid Interrupt 4 – if overflow flag

is 1.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I Imm8 NA NA NA

Description

The INT n instruction generates a call to the interrupt or exception handler specified with the destination

operand (see the section titled “Interrupts and Exceptions” in Chapter 6 of the Intel® 64 and IA-32 Archi-

tectures Software Developer’s Manual, Volume 1). The destination operand specifies a vector from 0 to

255, encoded as an 8-bit unsigned intermediate value. Each vector provides an index to a gate descriptor

in the IDT. The first 32 vectors are reserved by Intel for system use. Some of these vectors are used for

internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an interrupt han-

dler. The INTO instruction is a special mnemonic for calling overflow exception (#OF), exception 4. The

overflow interrupt checks the OF flag in the EFLAGS register and calls the overflow interrupt handler if the

OF flag is set to 1. (The INTO instruction cannot be used in 64-bit mode.)

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the debug ex-

ception handler. (This one byte form is valuable because it can be used to replace the first byte of any in-

struction with a breakpoint, including other one byte instructions, without over-writing other code). To fur-

ther support its function as a debug breakpoint, the interrupt generated with the CC opcode also differs

from the regular software interrupts as follows.

 Interrupt redirection does not happen when in VME mode; the interrupt is handled by a protected-mode

handler.

 The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at any IOPL

level.

Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special features. Intel and

Microsoft assemblers will not generate the CD03 opcode from any mnemonic, but this opcode can be cre-

ated by direct numeric code definition or by self-modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is similar to that of a far

call made with the CALL instruction. The primary difference is that with the INT n instruction, the EFLAGS

register is pushed onto the stack before the return address. (The return address is a far address consisting

of the current values of the CS and EIP registers.) Returns from interrupt procedures are handled with the

IRET instruction, which pops the EFLAGS information and return address from the stack.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

46 Document Number: 334525-003, Revision 3.0

The vector specifies an interrupt descriptor in the interrupt descriptor table (IDT); that is, it provides index

into the IDT. The selected interrupt descriptor in turn contains a pointer to an interrupt or exception han-

dler procedure. In protected mode, the IDT contains an array of 8-byte descriptors, each of which is an

interrupt gate, trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far pointers (2-

byte code segment selector and a 2-byte instruction pointer), each of which point directly to a procedure

in the selected segment. (Note that in real-address mode, the IDT is called the interrupt vector table, and

its pointers are called interrupt vectors.)

The following decision table indicates which action in the lower portion of the table is taken given the con-

ditions in the upper portion of the table. Each Y in the lower section of the decision table represents a pro-

cedure defined in the “Operation” section for this instruction (except #GP).

Decision Table
PE 0 1 1 1 1 1 1 1

VM - - - - - 0 1 1

IOPL - - - - - - <3 <3

DPL/CPL RELATIONSHIP - DP

L<

CP

L

- DP

L>

CP

L

DP

L=

CP

L

or

C

DP

L <

CP

L

&

NC

- -

INTERRUPT TYPE - S/

W

- - - - - -

GATE TYPE - - T

a

s

k

Tr

ap

or

In-

ter

ru

pt

Tr

ap

or

In-

ter

ru

pt

Tr

ap

or

In-

ter

ru

pt

Tr

ap

or

In-

ter

ru

pt

Tr

ap

or

In-

ter

ru

pt

REAL-ADDRESS-MODE Y

PROTECTED-MODE Y Y Y Y Y Y Y
INTER-PRIVILEGE-LEVEL-IN-
TERRUPT

 Y

INTRA-PRIVILEGE-LEVEL-IN-
TERRUPT

 Y

INTERRUPT-FROM-VIRTUAL-
8086-MODE

 Y

TASK-GATE Y
#GP Y Y Y

NOTES:

 - Don’t Care

 Y Yes, Action taken

Blank Action not taken

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the INT n in-

struction. If the IOPL is less than 3, the processor generates a #GP(selector) exception; if the IOPL is 3,

the processor executes a protected mode interrupt to privilege level 0. The interrupt gate's DPL must be

set to 3 and the target CPL of the interrupt handler procedure must be 0 to execute the protected mode

interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT. The

initial base address value of the IDTR after the processor is powered up or reset is 0.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 47

Operation

The following operational description applies not only to the INT n and INTO instructions, but also to ex-

ternal interrupts, nonmaskable interrupts (NMIs), and exceptions. Some of these events push onto the

stack an error code.

The operational description specifies numerous checks whose failure may result in delivery of a nested ex-

ception. In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested exception. In some cases, the

error code is specified with a pseudofunction error_code(num,idt,ext), where idt and ext are bit values.

The pseudofunction produces an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext;

(2) if idt is 1, the error code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT. The value of EXT de-

pends on the nature of the event whose delivery encountered a nested exception: if that event is a soft-

ware interrupt, EXT is 0; otherwise, EXT is 1.

IF PE = 0

 THEN

 GOTO REAL-ADDRESS-MODE;

 ELSE (* PE = 1 *)

 IF (VM = 1 and IOPL < 3 AND INT n)

 THEN

 #GP(0); (* Bit 0 of error code is 0 because INT n *)

 ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)

 IF (IA32_EFER.LMA = 0)

 THEN (* Protected mode, or virtual-8086 mode interrupt *)

 GOTO PROTECTED-MODE;

 ELSE (* IA-32e mode interrupt *)

 GOTO IA-32e-MODE;

 FI;

 FI;

FI;

REAL-ADDRESS-MODE:

 IF ((vector_number « 2) + 3) is not within IDT limit

 THEN #GP; FI;

 IF stack not large enough for a 6-byte return information

 THEN #SS; FI;

 Push (EFLAGS[15:0]);

 IF ← 0; (* Clear interrupt flag *)

 TF ← 0; (* Clear trap flag *)

 AC ← 0; (* Clear AC flag *)

 Push(CS);

 Push(IP);

 (* No error codes are pushed in real-address mode*)

 CS ← IDT(Descriptor (vector_number « 2), selector));

 EIP ← IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND 0000FFFFH *)

END;

PROTECTED-MODE:

 IF ((vector_number « 3) + 7) is not within IDT limits

 or selected IDT descriptor is not an interrupt-, trap-, or task-gate type

 THEN #GP(error_code(vector_number,1,EXT)); FI;

 (* idt operand to error_code set because vector is used *)

 IF software interrupt (* Generated by INT n, INT3, or INTO *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

48 Document Number: 334525-003, Revision 3.0

 THEN

 IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

 THEN #GP(error_code(vector_number,1,0)); FI;

 (* idt operand to error_code set because vector is used *)

 (* ext operand to error_code is 0 because INT n, INT3, or INTO*)

FI;

IF gate not present

 THEN #NP(error_code(vector_number,1,EXT)); FI;

 (* idt operand to error_code set because vector is used *)

IF task gate (* Specified in the selected interrupt table descriptor *)

 THEN GOTO TASK-GATE;

 ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)

FI;

END;

IA-32e-MODE:

 IF INTO and CS.L = 1 (64-bit mode)

 THEN #UD;

 FI;

 IF ((vector_number « 4) + 15) is not in IDT limits

 or selected IDT descriptor is not an interrupt-, or trap-gate type

 THEN #GP(error_code(vector_number,1,EXT));

 (* idt operand to error_code set because vector is used *)

 FI;

 IF software interrupt (* Generated by INT n, INT 3, or INTO *)

 THEN

 IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)

 THEN #GP(error_code(vector_number,1,0));

 (* idt operand to error_code set because vector is used *)

 (* ext operand to error_code is 0 because INT n, INT3, or INTO*)

 FI;

 FI;

 IF gate not present

 THEN #NP(error_code(vector_number,1,EXT));

 (* idt operand to error_code set because vector is used *)

 FI;

 GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)

END;

TASK-GATE: (* PE = 1, task gate *)

 Read TSS selector in task gate (IDT descriptor);

 IF local/global bit is set to local or index not within GDT limits

 THEN #GP(error_code(TSS selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 Access TSS descriptor in GDT;

 IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)

 THEN #GP(TSS selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 IF TSS not present

 THEN #NP(TSS selector,0,EXT)); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 49

 (* idt operand to error_code is 0 because selector is used *)

 SWITCH-TASKS (with nesting) to TSS;

 IF interrupt caused by fault with error code

 THEN

 IF stack limit does not allow push of error code

 THEN #SS(EXT); FI;

 Push(error code);

 FI;

 IF EIP not within code segment limit

 THEN #GP(EXT); FI;

END;

TRAP-OR-INTERRUPT-GATE:

 Read new code-segment selector for trap or interrupt gate (IDT descriptor);

 IF new code-segment selector is NULL

 THEN #GP(EXT); FI; (* Error code contains NULL selector *)

 IF new code-segment selector is not within its descriptor table limits

 THEN #GP(error_code(new code-segment selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 Read descriptor referenced by new code-segment selector;

 IF descriptor does not indicate a code segment or new code-segment DPL > CPL

 THEN #GP(error_code(new code-segment selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 IF new code-segment descriptor is not present,

 THEN #NP(error_code(new code-segment selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 IF new code segment is non-conforming with DPL < CPL

 THEN

 IF VM = 0

 THEN

 GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;

 (* PE = 1, VM = 0, interrupt or trap gate, nonconforming code segment,

 DPL < CPL *)

 ELSE (* VM = 1 *)

 IF new code-segment DPL != 0

 THEN #GP(error_code(new code-segment selector,0,EXT));

 (* idt operand to error_code is 0 because selector is used *)

 GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;

 (* PE = 1, interrupt or trap gate, DPL < CPL, VM = 1 *)

 FI;

 ELSE (* PE = 1, interrupt or trap gate, DPL ≥ CPL *)

 IF VM = 1

 THEN #GP(error_code(new code-segment selector,0,EXT));

 (* idt operand to error_code is 0 because selector is used *)

 IF new code segment is conforming or new code-segment DPL = CPL

 THEN

 GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;

 ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)

 #GP(error_code(new code-segment selector,0,EXT));

 (* idt operand to error_code is 0 because selector is used *)

 FI;

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

50 Document Number: 334525-003, Revision 3.0

END;

INTER-PRIVILEGE-LEVEL-INTERRUPT:

 (* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)

 IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

 THEN

 (* Identify stack-segment selector for new privilege level in current TSS *)

 IF current TSS is 32-bit

 THEN

 TSSstackAddress ← (new code-segment DPL « 3) + 4;

 IF (TSSstackAddress + 5) > current TSS limit

 THEN #TS(error_code(current TSS selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 4);

 NewESP ← 4 bytes loaded from (TSS base + TSSstackAddress);

 ELSE (* current TSS is 16-bit *)

 TSSstackAddress ← (new code-segment DPL « 2) + 2

 IF (TSSstackAddress + 3) > current TSS limit

 THEN #TS(error_code(current TSS selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 NewSS ← 2 bytes loaded from (TSS base + TSSstackAddress + 2);

 NewESP ← 2 bytes loaded from (TSS base + TSSstackAddress);

 FI;

 IF NewSS is NULL

 THEN #TS(EXT); FI;

 IF NewSS index is not within its descriptor-table limits

 or NewSS RPL != new code-segment DPL

 THEN #TS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 Read new stack-segment descriptor for NewSS in GDT or LDT;

 IF new stack-segment DPL != new code-segment DPL

 or new stack-segment Type does not indicate writable data segment

 THEN #TS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 IF NewSS is not present

 THEN #SS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 NewSSP  IA32_PLi_SSP (* where i = new code-segment DPL *)

 ELSE (* IA-32e mode *)

 IF IDT-gate IST = 0

 THEN TSSstackAddress  (new code-segment DPL « 3) + 4;

 ELSE TSSstackAddress  (IDT gate IST « 3) + 28;

 FI;

 IF (TSSstackAddress + 7) > current TSS limit

 THEN #TS(error_code(current TSS selector,0,EXT); FI;

 (* idt operand to error_code is 0 because selector is used *)

 NewRSP  8 bytes loaded from (current TSS base + TSSstackAddress);

 NewSS  new code-segment DPL; (* NULL selector with RPL = new CPL *)

 IF IDT-gate IST = 0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 51

 THEN

 NewSSP  IA32_PLi_SSP (* where i = new code-segment DPL *)

 ELSE

 NewSSPAddress = IA32_INTERRUPT_SSP_TABLE_ADDR + (IDT-gate IST « 3)

 (* Check if shadow stacks are enabled at CPL 0 *)

 IF ShadowStackEnabled(CPL 0)

 THEN NewSSP  8 bytes loaded from NewSSPAddress; FI;

 FI;

 FI;

 IF IDT gate is 32-bit

 THEN

 IF new stack does not have room for 24 bytes (error code pushed)

 or 20 bytes (no error code pushed)

 THEN #SS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 FI

 ELSE

 IF IDT gate is 16-bit

 THEN

 IF new stack does not have room for 12 bytes (error code pushed)

 or 10 bytes (no error code pushed);

 THEN #SS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 ELSE (* 64-bit IDT gate*)

 IF StackAddress is non-canonical

 THEN #SS(EXT); FI; (* Error code contains NULL selector *)

 FI;

 FI;

 IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

 THEN

 IF instruction pointer from IDT gate is not within new code-segment limits

 THEN #GP(EXT); FI; (* Error code contains NULL selector *)

 ESP ← NewESP;

 SS ← NewSS; (* Segment descriptor information also loaded *)

 ELSE (* IA-32e mode *)

 IF instruction pointer from IDT gate contains a non-canonical address

 THEN #GP(EXT); FI; (* Error code contains NULL selector *)

 RSP ← NewRSP & FFFFFFFFFFFFFFF0H;

 SS ← NewSS;

 FI;

 IF IDT gate is 32-bit

 THEN

 CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)

 ELSE

 IF IDT gate 16-bit

 THEN

 CS:IP ← Gate(CS:IP);

 (* Segment descriptor information also loaded *)

 ELSE (* 64-bit IDT gate *)

 CS:RIP ← Gate(CS:RIP);

 (* Segment descriptor information also loaded *)

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

52 Document Number: 334525-003, Revision 3.0

 FI;

 IF IDT gate is 32-bit

 THEN

 Push(far pointer to old stack);

 (* Old SS and ESP, 3 words padded to 4 *)

 Push(EFLAGS);

 Push(far pointer to return instruction);

 (* Old CS and EIP, 3 words padded to 4 *)

 Push(ErrorCode); (* If needed, 4 bytes *)

 ELSE

 IF IDT gate 16-bit

 THEN

 Push(far pointer to old stack);

 (* Old SS and SP, 2 words *)

 Push(EFLAGS(15-0]);

 Push(far pointer to return instruction);

 (* Old CS and IP, 2 words *)

 Push(ErrorCode); (* If needed, 2 bytes *)

 ELSE (* 64-bit IDT gate *)

 Push(far pointer to old stack);

 (* Old SS and SP, each an 8-byte push *)

 Push(RFLAGS); (* 8-byte push *)

 Push(far pointer to return instruction);

 (* Old CS and RIP, each an 8-byte push *)

 Push(ErrorCode); (* If needed, 8-bytes *)

 FI;

 FI;

 IF ShadowStackEnabled(CPL)

 THEN

 IF CPL = 3

 THEN IA32_PL3_SSP SSP; FI;

 FI;

 CPL ← new code-segment DPL;

 CS(RPL) ← CPL;

 IF ShadowStackEnabled(CPL)

 oldSSP  SSP

 SSP  NewSSP

 IF SSP & 0x07 != 0

 THEN #GP(0); FI;

 Fault = 0

 Atomic Start

 SSPToken = 8 bytes locked loaded with shadow stack semantics from SSP

 IF (SSPToken AND 0x01)

 THEN fault  1; FI;

 IF ((EFER.LMA and CS.L) = 0 AND SSPToken[63:32] != 0)

 THEN fault  1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != SSP)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 53

 THEN fault  1; FI;

 IF fault = 0

 THEN SSPToken = SSPToken OR 0x01; FI;

 Store 8 bytes of SSPToken and unlock with shadow stack semantics to SSP;

 Atomic End

 If fault = 1

 THEN #GP(0); FI;

 IF oldSS.DPL != 3

 ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)

 ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)

 ShadowStackPush8B(oldSSP);

 FI;

 FI

 IF EndbranchEnabled (CPL)

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;

 IA32_S_CET.SUPPRESS = 0

 FI;

 IF IDT gate is interrupt gate

 THEN IF ← 0 (* Interrupt flag set to 0, interrupts disabled *); FI;

 TF ← 0;

 VM ← 0;

 RF ← 0;

 NT ← 0;

END;

INTERRUPT-FROM-VIRTUAL-8086-MODE:

 (* Identify stack-segment selector for privilege level 0 in current TSS *)

 IF current TSS is 32-bit

 THEN

 IF TSS limit < 9

 THEN #TS(error_code(current TSS selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 NewSS ← 2 bytes loaded from (current TSS base + 8);

 NewESP ← 4 bytes loaded from (current TSS base + 4);

 ELSE (* current TSS is 16-bit *)

 IF TSS limit < 5

 THEN #TS(error_code(current TSS selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 NewSS ← 2 bytes loaded from (current TSS base + 4);

 NewESP ← 2 bytes loaded from (current TSS base + 2);

 FI;

 IF NewSS is NULL

 THEN #TS(EXT); FI; (* Error code contains NULL selector *)

 IF NewSS index is not within its descriptor table limits

 or NewSS RPL != 0

 THEN #TS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 Read new stack-segment descriptor for NewSS in GDT or LDT;

 IF new stack-segment DPL != 0 or stack segment does not indicate writable data segment

 THEN #TS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

54 Document Number: 334525-003, Revision 3.0

 IF new stack segment not present

 THEN #SS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 NewSSP  IA32_PLi_SSP (* where i = new code-segment DPL *)

 IF IDT gate is 32-bit

 THEN

 IF new stack does not have room for 40 bytes (error code pushed)

 or 36 bytes (no error code pushed)

 THEN #SS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 ELSE (* IDT gate is 16-bit)

 IF new stack does not have room for 20 bytes (error code pushed)

 or 18 bytes (no error code pushed)

 THEN #SS(error_code(NewSS,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 FI;

 IF instruction pointer from IDT gate is not within new code-segment limits

 THEN #GP(EXT); FI; (* Error code contains NULL selector *)

 tempEFLAGS ← EFLAGS;

VM ← 0;

TF ← 0;

RF ← 0;

NT ← 0;

 IF service through interrupt gate

 THEN IF = 0; FI;

 TempSS ← SS;

TempESP ← ESP;

SS ← NewSS;

ESP ← NewESP;

(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates;

Segment selector pushes in 32-bit mode are padded to two words *)

Push(GS);

Push(FS);

Push(DS);

Push(ES);

Push(TempSS);

Push(TempESP);

 Push(TempEFlags);

Push(CS);

Push(EIP);

GS ← 0; (* Segment registers made NULL, invalid for use in protected mode *)

FS ← 0;

DS ← 0;

ES ← 0;

CS:IP ← Gate(CS); (* Segment descriptor information also loaded *)

IF OperandSize = 32

 THEN

 EIP ← Gate(instruction pointer);

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 55

 ELSE (* OperandSize is 16 *)

 EIP ← Gate(instruction pointer) AND 0000FFFFH;

FI;

 IF ShadowStackEnabled(CPL)

 oldSSP  SSP

 SSP  NewSSP

 IF SSP & 0x07 != 0

 THEN #GP(0); FI;

 Fault = 0

 Atomic Start

 SSPToken = 8 bytes locked loaded with shadow stack semantics from SSP

 IF (SSPToken AND 0x01)

 THEN fault  1; FI;

 IF ((EFER.LMA and CS.L) = 0 AND SSPToken[63:32] != 0)

 THEN fault  1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != SSP)

 THEN fault  1; FI;

 IF fault = 0

 THEN SSPToken = SSPToken OR 0x01; FI;

 Store 8 bytes of SSPToken and unlock with shadow stack semantics to SSP;

 Atomic End

 If fault = 1

 THEN #GP(0); FI;

 IF oldSS.DPL != 3

 ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)

 ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)

 ShadowStackPush8B(oldSSP);

 FI;

 FI

 IF EndbranchEnabled (CPL)

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;

 IA32_S_CET.SUPPRESS = 0

 FI;

(* Start execution of new routine in Protected Mode *)

END;

INTRA-PRIVILEGE-LEVEL-INTERRUPT:

NewSSP = SSP;

CHECK_SS_TOKEN = 0

(* PE = 1, DPL = CPL or conforming segment *)

IF IA32_EFER.LMA = 1 (* IA-32e mode *)

 IF IDT-descriptor IST != 0

 THEN

 TSSstackAddress ← (IDT-descriptor IST « 3) + 28;

 IF (TSSstackAddress + 7) > TSS limit

 THEN #TS(error_code(current TSS selector,0,EXT)); FI;

 (* idt operand to error_code is 0 because selector is used *)

 NewRSP ← 8 bytes loaded from (current TSS base + TSSstackAddress);

 If ShadowStackEnabled(CPL)

 THEN

 NewSSPAddress = IA32_INTERRUPT_SSP_TABLE_ADDR + (IDT gate IST « 3)

 NewSSP  8 bytes loaded from NewSSPAddress

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

56 Document Number: 334525-003, Revision 3.0

 CHECK_SS_TOKEN = 1

 FI;

 FI;

IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)

 THEN

 IF current stack does not have room for 16 bytes (error code pushed)

 or 12 bytes (no error code pushed)

 THEN #SS(EXT); FI; (* Error code contains NULL selector *)

 ELSE IF 16-bit gate (* implies IA32_EFER.LMA = 0 *)

 IF current stack does not have room for 8 bytes (error code pushed)

 or 6 bytes (no error code pushed)

 THEN #SS(EXT); FI; (* Error code contains NULL selector *)

 ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

 IF NewRSP contains a non-canonical address

 THEN #SS(EXT); (* Error code contains NULL selector *)

 FI;

FI;

IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)

 THEN

 IF instruction pointer from IDT gate is not within new code-segment limit

 THEN #GP(EXT); FI; (* Error code contains NULL selector *)

 ELSE

 IF instruction pointer from IDT gate contains a non-canonical address

 THEN #GP(EXT); FI; (* Error code contains NULL selector *)

 RSP ← NewRSP & FFFFFFFFFFFFFFF0H;

FI;

IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)

 THEN

 Push (EFLAGS);

 Push (far pointer to return instruction); (* 3 words padded to 4 *)

 CS:EIP ← Gate(CS:EIP); (* Segment descriptor information also loaded *)

 Push (ErrorCode); (* If any *)

 ELSE

 IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *)

 THEN

 Push (FLAGS);

 Push (far pointer to return location); (* 2 words *)

 CS:IP ← Gate(CS:IP);

 (* Segment descriptor information also loaded *)

 Push (ErrorCode); (* If any *)

 ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)

 Push(far pointer to old stack);

 (* Old SS and SP, each an 8-byte push *)

 Push(RFLAGS); (* 8-byte push *)

 Push(far pointer to return instruction);

 (* Old CS and RIP, each an 8-byte push *)

 Push(ErrorCode); (* If needed, 8 bytes *)

 CS:RIP ← GATE(CS:RIP);

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 57

 (* Segment descriptor information also loaded *)

 FI;

FI;

CS(RPL) ← CPL;

IF ShadowStackEnabled(CPL)

 IF CHECK_SS_TOKEN == 1

 THEN

 IF NewSSP & 0x07 != 0

 THEN #GP(0); FI;

 Fault = 0

 Atomic Start

 SSPToken = 8 bytes loaded with shadow stack semantics from NewSSP

 IF (SSPToken AND 0x01)

 THEN fault 1; FI;

 IF ((EFER.LMA and CS.L) = 0 AND SSPToken[63:32] != 0)

 THEN fault  1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != NewSSP)

 THEN fault  1; FI;

 IF fault = 0

 THEN SSPToken = SSPToken OR 0x01; FI;

 Store 8 bytes of SSPToken with shadow stack semantics to NewSSP;

 Atomic End

 If fault = 1

 THEN #GP(0); FI;

 FI;

 (* Align to next 8 byte boundary *)

 tempSSP = SSP;

 Shadow_stack_store 4 bytes of 0 to (SSPnewSSP – 4)

 SSP = newSSP & 0xFFFFFFFFFFFFFFF8H;

 (* push cs:lip:ssp on shadow stack *)

 ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)

 ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of 0 for 32 bit LIP*)

 ShadowStackPush8B(tempSSP);

FI;

IF EndbranchEnabled (CPL)

 IF CPL = 3

 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_S_CET.SUPPRESS = 0

 FI;

FI;

IF IDT gate is interrupt gate

 THEN IF ← 0; FI; (* Interrupt flag set to 0; interrupts disabled *)

TF ← 0;

NT ← 0;

VM ← 0;

RF ← 0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

58 Document Number: 334525-003, Revision 3.0

END;

Flags Affected
The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be cleared, de-
pending on the mode of operation of the processor when the INT instruction is executed (see the “Opera-

tion” section). If the interrupt uses a task gate, any flags may be set or cleared, controlled by the EFLAGS
image in the new task’s TSS.

Protected Mode Exceptions

#GP(error_code) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond

the code segment limits.

 If the segment selector in the interrupt-, trap-, or task gate is NULL.

 If an interrupt-, trap-, or task gate, code segment, or TSS segment selector index is

outside its descriptor table limits.

 If the vector selects a descriptor outside the IDT limits.

 If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

 If an interrupt is generated by the INT n, INT 3, or INTO instruction and the DPL of an

interrupt-, trap-, or task-descriptor is less than the CPL.

 If the segment selector in an interrupt- or trap-gate does not point to a segment de-

scriptor for a code segment.

 If the segment selector for a TSS has its local/global bit set for local.

 If a TSS segment descriptor specifies that the TSS is busy or not available.

 If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.

 If “supervisor Shadow Stack” token on new shadow stack is marked busy.

 If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor

shadow stack” token is beyond 4G.

 If SSP address in “supervisor shadow stack” token does not match SSP address in

IA32_PLi_SSP (where i is the new CPL).

#SS(error_code) If pushing the return address, flags, or error code onto the stack exceeds the bounds

of the stack segment and no stack switch occurs.

 If the SS register is being loaded and the segment pointed to is marked not present.

 If pushing the return address, flags, error code, or stack segment pointer exceeds the

bounds of the new stack segment when a stack switch occurs.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code

segment being accessed by the interrupt or trap gate.

 If DPL of the stack segment descriptor pointed to by the stack segment selector in the

TSS is not equal to the DPL of the code segment descriptor for the interrupt or trap

gate.

 If the stack segment selector in the TSS is NULL.

 If the stack segment for the TSS is not a writable data segment.

 If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 59

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.

 If pushing the return address, flags, or error code onto the stack exceeds the bounds

of the stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the DPL of the

interrupt-, trap-, or task-gate descriptor is not equal to 3.

 If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond

the code segment limits.

 If the segment selector in the interrupt-, trap-, or task gate is NULL.

 If an interrupt-, trap-, or task gate, code segment, or TSS segment selector index is

outside its descriptor table limits.

 If the vector selects a descriptor outside the IDT limits.

 If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

 If an interrupt is generated by the INT n instruction and the DPL of an interrupt-,

trap-, or task-descriptor is less than the CPL.

 If the segment selector in an interrupt- or trap-gate does not point to a segment de-

scriptor for a code segment.

 If the segment selector for a TSS has its local/global bit set for local.

#SS(error_code) If the SS register is being loaded and the segment pointed to is marked not present.

 If pushing the return address, flags, error code, stack segment pointer, or data seg-

ments exceeds the bounds of the stack segment.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code

segment being accessed by the interrupt or trap gate.

 If DPL of the stack segment descriptor for the TSS’s stack segment is not equal to the

DPL of the code segment descriptor for the interrupt or trap gate.

 If the stack segment selector in the TSS is NULL.

 If the stack segment for the TSS is not a writable data segment.

 If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.

#BP If the INT 3 instruction is executed.

#OF If the INTO instruction is executed and the OF flag is set.

#UD If the LOCK prefix is used.

#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

60 Document Number: 334525-003, Revision 3.0

64-Bit Mode Exceptions

#GP(error_code) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap gate is non-canoni-

cal.

 If the segment selector in the 64-bit interrupt or trap gate is NULL.

 If the vector selects a descriptor outside the IDT limits.

 If the vector points to a gate which is in non-canonical space.

 If the vector points to a descriptor which is not a 64-bit interrupt gate or 64-bit trap

gate.

 If the descriptor pointed to by the gate selector is outside the descriptor table limit.

 If the descriptor pointed to by the gate selector is in non-canonical space.

 If the descriptor pointed to by the gate selector is not a code segment.

 If the descriptor pointed to by the gate selector doesn’t have the L-bit set, or has both

the L-bit and D-bit set.

 If the descriptor pointed to by the gate selector has DPL > CPL.

 If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.

 If “supervisor shadow stack” token on new shadow stack is marked busy.

 If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor

shadow stack” token is beyond 4G.

 If SSP address in “supervisor shadow stack” token does not match SSP address in

IA32_PLi_SSP (where i is the new CPL).

#SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-canonical space

with no stack switch.

 If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error code is in

non-canonical space on a stack switch (either CPL change or no-CPL with IST).

#NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not present.

#TS(error_code) If an attempt to load RSP from the TSS causes an access to non-canonical space.

 If the RSP from the TSS is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 61

4.3 JMP — Jump

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

EB cb JMP rel8 D Valid Valid Jump short, RIP = RIP + 8-bit

displacement sign extended

to 64-bits.

E9 cw JMP rel16 D N.S. Valid Jump near, relative,

displacement relative to next

instruction. Not supported in

64-bit mode.

E9 cd JMP rel32 D Valid Valid Jump near, relative, RIP = RIP

+ 32-bit displacement sign

extended to 64-bits.

FF /4 JMP r/m16 M N.S. Valid Jump near, absolute indirect,

address = zero-extended

r/m16. Not supported in 64-

bit mode.

FF /4 JMP r/m32 M N.S. Valid Jump near, absolute indirect,

address given in r/m32. Not

supported in 64-bit mode.

FF /4 JMP r/m64 M Valid N.E. Jump near, absolute indirect,

RIP = 64-Bit offset from

register or memory.

EA cd JMP ptr16:16 D Inv. Valid Jump far, absolute, address

given in operand.

EA cp JMP ptr16:32 D Inv. Valid Jump far, absolute, address

given in operand.

FF /5 JMP m16:16 D Valid Valid Jump far, absolute indirect,

address given in m16:16.

FF /5 JMP m16:32 D Valid Valid Jump far, absolute indirect,

address given in m16:32.

REX.W + FF

/5

JMP m16:64 D Valid N.E. Jump far, absolute indirect,

address given in m16:64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4

D Offset NA NA NA

M
ModRM:r/m

(r)
NA NA NA

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

62 Document Number: 334525-003, Revision 3.0

Description

Transfers program control to a different point in the instruction stream without recording return information.

The destination (target) operand specifies the address of the instruction being jumped to. This operand can

be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four different types of jumps:

• Near jump—A jump to an instruction within the current code segment (the segment currently pointed to

by the CS register), sometimes referred to as an intrasegment jump.

• Short jump—A near jump where the jump range is limited to –128 to +127 from the current EIP value.

• Far jump—A jump to an instruction located in a different segment than the current code segment but at

the same privilege level, sometimes referred to as an intersegment jump.

• Task switch—A jump to an instruction located in a different task.

A task switch can only be executed in protected mode (see Chapter 7, in the Intel® 64 and IA-32 Architec-

tures Software Developer’s Manual, Volume 3A, for information on performing task switches with the JMP

instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the address (within the current

code segment) that is specified with the target operand. The target operand specifies either an absolute

offset (that is an offset from the base of the code segment) or a relative offset (a signed displacement

relative to the current value of the instruction pointer in the EIP register). A near jump to a relative offset

of 8-bits (rel8) is referred to as a short jump. The CS register is not changed on near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory location (r/m16 or

r/m32). The operand-size attribute determines the size of the target operand (16 or 32 bits). Absolute

offsets are loaded directly into the EIP register. If the operand-size attribute is 16, the upper two bytes of

the EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits.

A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code, but at the machine

code level, it is encoded as a signed 8-, 16-, or 32-bit immediate value. This value is added to the value in

the EIP register. (Here, the EIP register contains the address of the instruction following the JMP instruction).

When using relative offsets, the opcode (for short vs. near jumps) and the operand-size attribute (for near

relative jumps) determines the size of the target operand (8, 16, or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-address or virtual-8086

mode, the processor jumps to the code segment and offset specified with the target operand. Here the

target operand specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or

indirectly with a memory location (m16:16 or m16:32). With the pointer method, the segment and address

of the called procedure is encoded in the instruction, using a 4-byte (16-bit operand size) or 6-byte (32-bit

operand size) far address immediate. With the indirect method, the target operand specifies a memory

location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The far

address is loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the upper two

bytes of the EIP register are cleared.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the JMP instruction can be

used to perform the following three types of far jumps.

• A far jump to a conforming or non-conforming code segment.

• A far jump through a call gate.

• A task switch.

(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 63

In protected mode, the processor always uses the segment selector part of the far address to access the

corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or

TSS) and access rights determine the type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the same privilege level is

performed. (If the selected code segment is at a different privilege level and the code segment is non-

conforming, a general-protection exception is generated.) A far jump to the same privilege level in protected

mode is very similar to one carried out in real-address or virtual-8086 mode. The target operand specifies

an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory

location (m16:16 or m16:32). The operand-size attribute determines the size of the offset (16 or 32 bits)

in the far address. The new code segment selector and its descriptor are loaded into CS register, and the

offset from the instruction is loaded into the EIP register. Note that a call gate (described in the next para-

graph) can also be used to perform far call to a code segment at the same privilege level. Using this mech-

anism provides an extra level of indirection and is the preferred method of making jumps between 16-bit

and 32-bit code segments.

When executing a far jump through a call gate, the segment selector specified by the target operand iden-

tifies the call gate. (The offset part of the target operand is ignored.) The processor then jumps to the code

segment specified in the call gate descriptor and begins executing the instruction at the offset specified in

the call gate. No stack switch occurs. Here again, the target operand can specify the far address of the call

gate either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or

m16:32).

Executing a task switch with the JMP instruction is somewhat similar to executing a jump through a call

gate. Here the target operand specifies the segment selector of the task gate for the task being switched to

(and the offset part of the target operand is ignored). The task gate in turn points to the TSS for the task,

which contains the segment selectors for the task’s code and stack segments. The TSS also contains the

EIP value for the next instruction that was to be executed before the task was suspended. This instruction

pointer value is loaded into the EIP register so that the task begins executing again at this next instruction.

The JMP instruction can also specify the segment selector of the TSS directly, which eliminates the indirection

of the task gate. See Chapter 7 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume

3A, for detailed information on the mechanics of a task switch.

Note that when you execute at task switch with a JMP instruction, the nested task flag (NT) is not set in the

EFLAGS register and the new TSS’s previous task link field is not loaded with the old task’s TSS selector. A

return to the previous task can thus not be carried out by executing the IRET instruction. Switching tasks

with the JMP instruction differs in this regard from the CALL instruction which does set the NT flag and save

the previous task link information, allowing a return to the calling task with an IRET instruction.

In 64-Bit Mode — The instruction’s operation size is fixed at 64 bits. If a selector points to a gate, then

RIP equals the 64-bit displacement taken from gate; else RIP equals the zero-extended offset from the far

pointer referenced in the instruction.

See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF near jump

 IF 64-bit Mode

 THEN

 IF near relative jump

 THEN

 tempRIP  RIP + DEST; (* RIP is instruction following JMP instruction*)

 ELSE (* Near absolute jump *)

 tempRIP  DEST;

 FI;

 ELSE

 IF near relative jump

 THEN

 tempEIP  EIP + DEST; (* EIP is instruction following JMP instruction*)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

64 Document Number: 334525-003, Revision 3.0

 ELSE (* Near absolute jump *)

 tempEIP  DEST;

 FI;

 FI;

 IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode)

 and tempEIP outside code segment limit

 THEN #GP(0); FI

 IF 64-bit mode and tempRIP is not canonical

 THEN #GP(0);

 FI;

 IF OperandSize = 32

 THEN

 EIP  tempEIP;

 ELSE

 IF OperandSize = 16

 THEN (* OperandSize = 16 *)

 EIP  tempEIP AND 0000FFFFH;

 ELSE (* OperandSize = 64)

 RIP  tempRIP;

 FI;

 FI;

 IF (JMP near indirect, absolute indirect)

 IF EndbranchEnabledAndNotSuppressed(CPL)

 IF CPL = 3

 THEN

 IF (no 3EH prefix OR IA32_U_CET.NO_TRACK_EN == 0)

 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

 FI

 ELSE

 IF (no 3EH prefix OR IA32_S_CET.NO_TRACK_EN == 0)

 THEN

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 FI

 FI;

 FI;

 FI;

FI;

IF far jump and (PE = 0 or (PE = 1 AND VM = 1)) (* Real-address or virtual-8086 mode *)

 THEN

 tempEIP  DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)

 IF tempEIP is beyond code segment limit

 THEN #GP(0); FI;

 CS  DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)

 IF OperandSize = 32

 THEN

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 65

 EIP  tempEIP; (* DEST is ptr16:32 or [m16:32] *)

 ELSE (* OperandSize = 16 *)

 EIP  tempEIP AND 0000FFFFH; (* Clear upper 16 bits *)

 FI;

FI;

IF far jump and (PE = 1 and VM = 0)

(* IA-32e mode or protected mode, not virtual-8086 mode *)

 THEN

 IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal

 or segment selector in target operand NULL

 THEN #GP(0); FI;

 IF segment selector index not within descriptor table limits

 THEN #GP(new selector); FI;

 Read type and access rights of segment descriptor;

 IF (EFER.LMA = 0)

 THEN

 IF segment type is not a conforming or nonconforming code

 segment, call gate, task gate, or TSS

 THEN #GP(segment selector); FI;

 ELSE

 IF segment type is not a conforming or nonconforming code segment

 call gate

 THEN #GP(segment selector); FI;

 FI;

 Depending on type and access rights:

 GO TO CONFORMING-CODE-SEGMENT;

 GO TO NONCONFORMING-CODE-SEGMENT;

 GO TO CALL-GATE;

 GO TO TASK-GATE;

 GO TO TASK-STATE-SEGMENT;

 ELSE

 #GP(segment selector);

FI;

CONFORMING-CODE-SEGMENT:

 IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

 THEN GP(new code segment selector); FI;

 IF DPL > CPL

 THEN #GP(segment selector); FI;

 IF segment not present

 THEN #NP(segment selector); FI;

 tempEIP  DEST(Offset);

 IF OperandSize = 16

 THEN tempEIP  tempEIP AND 0000FFFFH;

 FI;

 IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and

 tempEIP outside code segment limit

 THEN #GP(0); FI

 IF tempEIP is non-canonical

 THEN #GP(0); FI;

 IF ShadowStackEnabled(CPL)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

66 Document Number: 334525-003, Revision 3.0

 IF (EFER.LMA and DEST(segment selector).L) = 0

 (* If target is legacy or compatibility mode then the SSP must be in low 4G *)

 IF (SSP & 0xFFFFFFFF00000000 != 0)

 THEN #GP(0); FI;

 FI;

 FI;

 CS  DEST[segment selector]; (* Segment descriptor information also loaded *)

 CS(RPL)  CPL

 EIP  tempEIP;

 IF EndbranchEnabled(CPL)

 IF CPL = 3

 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_S_CET.SUPPRESS = 0

 FI;

 FI;

END;

NONCONFORMING-CODE-SEGMENT:

 IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1

 THEN GP(new code segment selector); FI;

 IF (RPL > CPL) OR (DPL != CPL)

 THEN #GP(code segment selector); FI;

 IF segment not present

 THEN #NP(segment selector); FI;

 tempEIP  DEST(Offset);

 IF OperandSize = 16

 THEN tempEIP  tempEIP AND 0000FFFFH; FI;

 IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode)

 and tempEIP outside code segment limit

 THEN #GP(0); FI

 IF tempEIP is non-canonical THEN #GP(0); FI;

 IF ShadowStackEnabled(CPL)

 IF (EFER.LMA and DEST(segment selector).L) = 0

 (* If target is legacy or compatibility mode then the SSP must be in low 4G *)

 IF (SSP & 0xFFFFFFFF00000000 != 0)

 THEN #GP(0); FI;

 FI;

 FI;

 CS  DEST[segment selector]; (* Segment descriptor information also loaded *)

 CS(RPL)  CPL;

 EIP  tempEIP;

 IF EndbranchEnabled(CPL)

 IF CPL = 3

 THEN

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 67

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_S_CET.SUPPRESS = 0

 FI;

 FI;

END;

CALL-GATE:

 IF call gate DPL < CPL

 or call gate DPL < call gate segment-selector RPL

 THEN #GP(call gate selector); FI;

 IF call gate not present

 THEN #NP(call gate selector); FI;

 IF call gate code-segment selector is NULL

 THEN #GP(0); FI;

 IF call gate code-segment selector index outside descriptor table limits

 THEN #GP(code segment selector); FI;

 Read code segment descriptor;

 IF code-segment segment descriptor does not indicate a code segment

 or code-segment segment descriptor is conforming and DPL > CPL

 or code-segment segment descriptor is non-conforming and DPL != CPL

 THEN #GP(code segment selector); FI;

 IF IA32_EFER.LMA = 1 and (code-segment descriptor is not a 64-bit code segment

 or code-segment segment descriptor has both L-Bit and D-bit set)

 THEN #GP(code segment selector); FI;

 IF code segment is not present

 THEN #NP(code-segment selector); FI;

 IF instruction pointer is not within code-segment limit

 THEN #GP(0); FI;

 tempEIP  DEST(Offset);

 IF GateSize = 16

 THEN tempEIP  tempEIP AND 0000FFFFH; FI;

 IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) AND tempEIP

 outside code segment limit

 THEN #GP(0); FI

 CS  DEST[SegmentSelector); (* Segment descriptor information also loaded *)

 CS(RPL)  CPL;

 EIP  tempEIP;

 IF EndbranchEnabled(CPL)

 IF CPL = 3

 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH;

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;

 IA32_S_CET.SUPPRESS = 0

 FI;

 FI;

END;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

68 Document Number: 334525-003, Revision 3.0

TASK-GATE:

 IF task gate DPL < CPL

 or task gate DPL < task gate segment-selector RPL

 THEN #GP(task gate selector); FI;

 IF task gate not present

 THEN #NP(gate selector); FI;

 Read the TSS segment selector in the task-gate descriptor;

 IF TSS segment selector local/global bit is set to local

 or index not within GDT limits

 or TSS descriptor specifies that the TSS is busy

 THEN #GP(TSS selector); FI;

 IF TSS not present

 THEN #NP(TSS selector); FI;

 SWITCH-TASKS to TSS;

 IF EIP not within code segment limit

 THEN #GP(0); FI;

END;

TASK-STATE-SEGMENT:

 IF TSS DPL < CPL

 or TSS DPL < TSS segment-selector RPL

 or TSS descriptor indicates TSS not available

 THEN #GP(TSS selector); FI;

 IF TSS is not present

 THEN #NP(TSS selector); FI;

 SWITCH-TASKS to TSS;

 IF EIP not within code segment limit

 THEN #GP(0); FI;

END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions

#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment limits.

 If the segment selector in the destination operand, call gate, task gate, or TSS is

NULL.

 If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If the DS, ES, FS, or GS register is used to access memory and it contains a NULL

segment selector.

 If target mode is compatibility mode and SSP is not in low 4G.

#GP(selector) If the segment selector index is outside descriptor table limits.

 If the segment descriptor pointed to by the segment selector in the -destination oper-

and is not for a conforming-code segment, nonconforming-code segment, call gate,

task gate, or task state segment.

 If the DPL for a nonconforming-code segment is not equal to the CPL

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 69

 (When not using a call gate.) If the RPL for the segment’s segment selector is greater

than the CPL.

 If the DPL for a conforming-code segment is greater than the CPL.

 If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL

or than the RPL of the call-gate, task-gate, or TSS’s segment selector.

 If the segment descriptor for selector in a call gate does not indicate it is a code seg-

ment.

 If the segment descriptor for the segment selector in a task gate does not indicate an

available TSS.

 If the segment selector for a TSS has its local/global bit set for local.

 If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NP (selector) If the code segment being accessed is not present.

 If call gate, task gate, or TSS not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while

the current privilege level is 3. (Only occurs when fetching target from memory.)

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

#SS If a memory operand effective address is outside the SS segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the target operand is beyond the code segment limits.

 If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made. (Only

occurs when fetching target from memory.)

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical.

 If target offset in destination operand is non-canonical.

 If target offset in destination operand is beyond the new code segment limit.

 If the segment selector in the destination operand is NULL.

 If the code segment selector in the 64-bit gate is NULL.

 If transitioning to compatibility mode and the SSP is beyond 4G.

#GP(selector) If the code segment or 64-bit call gate is outside descriptor table limits.

 If the code segment or 64-bit call gate overlaps non-canonical space.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

70 Document Number: 334525-003, Revision 3.0

 If the segment descriptor from a 64-bit call gate is in non-canonical space.

 If the segment descriptor pointed to by the segment selector in the -destination oper-

and is not for a conforming-code segment, nonconforming-code segment, 64-bit call

gate.

 If the segment descriptor pointed to by the segment selector in the -destination oper-

and is a code segment, and has both the D-bit and the L-bit set.

 If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for

the segment’s segment selector is greater than the CPL.

 If the DPL for a conforming-code segment is greater than the CPL.

 If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-

gate.

 If the upper type field of a 64-bit call gate is not 0x0.

 If the segment selector from a 64-bit call gate is beyond the descriptor table limits.

 If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't

have the L-bit set and the D-bit clear.

 If the segment descriptor for a segment selector from the 64-bit call gate does not

indicate it is a code segment.

 If the code segment is non-confirming and CPL != DPL.

 If the code segment is confirming and CPL < DPL.

#NP(selector) If a code segment or 64-bit call gate is not present.

#UD (64-bit mode only) If a far jump is direct to an absolute address in memory.

 If the LOCK prefix is used.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while

the current privilege level is 3.

 If CPUID.01H:ECX.MONITOR[bit 3] = 0.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 71

4.4 RET—Return from Procedure

Opcode* Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

C3 RET NP Valid Valid Near return to calling

procedure.

CB RET NP Valid Valid Far return to calling procedure.

C2 iw RET imm16 I Valid Valid Near return to calling

procedure and pop imm16

bytes from stack.

CA iw RET imm16 I Valid Valid Far return to calling procedure

and pop imm16 bytes from

stack.

Instruction Operand Encoding

Description

Transfers program control to a return address located on the top of the stack. The address is usually placed

on the stack by a CALL instruction, and the return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is

popped; the default is none. This operand can be used to release parameters from the stack that were

passed to the called procedure and are no longer needed. It must be used when the CALL instruction used

to switch to a new procedure uses a call gate with a non-zero word count to access the new procedure.

Here, the source operand for the RET instruction must specify the same number of bytes as is specified in

the word count field of the call gate.

The RET instruction can be used to execute three different types of returns.

• Near return — A return to a calling procedure within the current code segment (the segment currently

pointed to by the CS register), sometimes referred to as an intrasegment return.

• Far return — A return to a calling procedure located in a different segment than the current code segment,

sometimes referred to as an intersegment return.

• Inter-privilege-level far return — A far return to a different privilege level than that of the currently

executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section titled “Calling

Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 1, for detailed information on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the top of the

stack into the EIP register and begins program execution at the new instruction pointer. The CS register is

unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the stack into

the EIP register, then pops the segment selector from the top of the stack into the CS register. The processor

then begins program execution in the new code segment at the new instruction pointer.

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

I imm16 NA NA NA

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

72 Document Number: 334525-003, Revision 3.0

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except that the

processor examines the privilege levels and access rights of the code and stack segments being returned to

determine if the control transfer is allowed to be made. The DS, ES, FS, and GS segment registers are

cleared by the RET instruction during an inter-privilege-level return if they refer to segments that are not

allowed to be accessed at the new privilege level. Since a stack switch also occurs on an inter-privilege level

return, the ESP and SS registers are loaded from the stack.

If parameters are passed to the called procedure during an inter-privilege level call, the optional source

operand must be used with the RET instruction to release the parameters on the return. Here, the parame-

ters are released both from the called procedure’s stack and the calling procedure’s stack (that is, the stack

being returned to).

In 64-bit mode, the default operation size of this instruction is the stack-address size, i.e. 64 bits. This

applies to near returns, not far returns; the default operation size of far returns is 32 bits.

Operation

(* Near return *)

IF instruction = near return

 THEN;

 IF OperandSize = 32

 THEN

 IF top 4 bytes of stack not within stack limits

 THEN #SS(0); FI;

 EIP  Pop();

 IF ShadowStackEnabled(CPL)

 tempSsEIP = PopShadowStack4B();

 IF EIP != TempSsEIP

 THEN #CP(NEAR_RET); FI;

 FI;

 ELSE

 IF OperandSize = 64

 THEN

 IF top 8 bytes of stack not within stack limits

 THEN #SS(0); FI;

 RIP  Pop();

 IF ShadowStackEnabled(CPL)

 tempSsEIP = PopShadowStack8B();

 IF RIP != tempSsEIP

 THEN #CP(NEAR_RET); FI;

 FI;

 ELSE (* OperandSize = 16 *)

 IF top 2 bytes of stack not within stack limits

 THEN #SS(0); FI;

 tempEIP  Pop();

 tempEIP  tempEIP AND 0000FFFFH;

 IF tempEIP not within code segment limits

 THEN #GP(0); FI;

 EIP  tempEIP;

 IF ShadowStackEnabled(CPL)

 tempSsEip = PopShadowStack4B();

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 73

 IF EIP != tempSsEIP

 THEN #CP(NEAR_RET); FI;

 FI;

 FI;

 FI;

 IF instruction has immediate operand

 THEN (* Release parameters from stack *)

 IF StackAddressSize = 32

 THEN

 ESP  ESP + SRC;

 ELSE

 IF StackAddressSize = 64

 THEN

 RSP  RSP + SRC;

 ELSE (* StackAddressSize = 16 *)

 SP  SP + SRC;

 FI;

 FI;

 FI;

FI;

(* Real-address mode or virtual-8086 mode *)

IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

 THEN

 IF OperandSize = 32

 THEN

 IF top 8 bytes of stack not within stack limits

 THEN #SS(0); FI;

 EIP  Pop();

 CS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)

 ELSE (* OperandSize = 16 *)

 IF top 4 bytes of stack not within stack limits

 THEN #SS(0); FI;

 tempEIP  Pop();

 tempEIP  tempEIP AND 0000FFFFH;

 IF tempEIP not within code segment limits

 THEN #GP(0); FI;

 EIP  tempEIP;

 CS  Pop(); (* 16-bit pop *)

 FI;

 IF instruction has immediate operand

 THEN (* Release parameters from stack *)

 SP  SP + (SRC AND FFFFH);

 FI;

FI;

(* Protected mode, not virtual-8086 mode *)

IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far return

 THEN

 IF OperandSize = 32

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

74 Document Number: 334525-003, Revision 3.0

 THEN

 IF second doubleword on stack is not within stack limits

 THEN #SS(0); FI;

 ELSE (* OperandSize = 16 *)

 IF second word on stack is not within stack limits

 THEN #SS(0); FI;

 FI;

 IF return code segment selector is NULL

 THEN #GP(0); FI;

 IF return code segment selector addresses descriptor beyond descriptor table limit

 THEN #GP(selector); FI;

 Obtain descriptor to which return code segment selector points from descriptor table;

 IF return code segment descriptor is not a code segment

 THEN #GP(selector); FI;

 IF return code segment selector RPL < CPL

 THEN #GP(selector); FI;

 IF return code segment descriptor is conforming

 and return code segment DPL > return code segment selector RPL

 THEN #GP(selector); FI;

 IF return code segment descriptor is non-conforming and return code

 segment DPL ¹ return code segment selector RPL

 THEN #GP(selector); FI;

 IF return code segment descriptor is not present

 THEN #NP(selector); FI:

 IF return code segment selector RPL > CPL

 THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

 ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

 FI;

FI;

RETURN-SAME-PRIVILEGE-LEVEL:

 IF the return instruction pointer is not within the return code segment limit

 THEN #GP(0); FI;

 IF OperandSize = 32

 THEN

 EIP  Pop();

 CS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)

 ELSE (* OperandSize = 16 *)

 EIP  Pop();

 EIP  EIP AND 0000FFFFH;

 CS  Pop(); (* 16-bit pop *) FI;

 IF instruction has immediate operand

 THEN (* Release parameters from stack *)

 IF StackAddressSize = 32

 THEN

 ESP  ESP + SRC;

 ELSE (* StackAddressSize = 16 *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 75

 SP  SP + SRC;

 FI;

 FI;

 IF ShadowStackEnabled(CPL)

 (* SSP must be 8 byte aligned *)

 IF SSP AND 0x7 != 0

 THEN #CP(FAR-RET/IRET); FI;

 tempSsCS = shadow_stack_load 8 bytes from SSP+16;

 tempSsLIP = shadow_stack_load 8 bytes from SSP+8;

 prevSSP = shadow_stack_load 8 bytes from SSP;

 SSP = SSP + 24;

 (* do a 64 bit-compare to check if any bits beyond bit 15 are set *)

 tempCS = CS; (* zero pad to 64 bit *)

 IF tempCS != tempSsCS

 THEN #CP(FAR-RET/IRET); FI;

 (* do a 64 bit-compare; pad CSBASE+RIP with 0 for 32 bit LIP*)

 IF CSBASE + RIP != tempSsLIP

 THEN #CP(FAR-RET/IRET); FI;

 (* prevSSP must be 4 byte aligned *)

 IF prevSSP AND 0x3 != 0

 THEN #CP(FAR-RET/IRET); FI;

 (* If returning to compatibility mode then SSP must be in low 4G *)

 IF ((EFER.LMA and CS.L) = 0 AND prevSSP[63:32] != 0)

 THEN #GP(0); FI;

 SSP  prevSSP

 FI;

END;

RETURN-OUTER-PRIVILEGE-LEVEL:

 IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)

 or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

 THEN #SS(0); FI;

 Read return segment selector;

 IF stack segment selector is NULL

 THEN #GP(0); FI;

 IF return stack segment selector index is not within its descriptor table limits

 THEN #GP(selector); FI;

 Read segment descriptor pointed to by return segment selector;

 IF stack segment selector RPL != RPL of the return code segment selector

 or stack segment is not a writable data segment

 or stack segment descriptor DPL != RPL of the return code segment selector

 THEN #GP(selector); FI;

 IF stack segment not present

 THEN #SS(StackSegmentSelector); FI;

 IF the return instruction pointer is not within the return code segment limit

 THEN #GP(0); FI;

 IF OperandSize = 32

 THEN

 EIP  Pop();

 CS  Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)

 CS(RPL)  CPL;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

76 Document Number: 334525-003, Revision 3.0

 IF instruction has immediate operand

 THEN (* Release parameters from called procedure’s stack *)

 IF StackAddressSize = 32

 THEN

 ESP  ESP + SRC;

 ELSE (* StackAddressSize = 16 *)

 SP  SP + SRC;

 FI;

 FI;

 tempESP  Pop();

 tempSS  Pop(); (* 32-bit pop, high-order 16 bits discarded; seg. descriptor loaded *)

 ELSE (* OperandSize = 16 *)

 EIP  Pop();

 EIP  EIP AND 0000FFFFH;

 CS  Pop(); (* 16-bit pop; segment descriptor loaded *)

 CS(RPL)  CPL;

 IF instruction has immediate operand

 THEN (* Release parameters from called procedure’s stack *)

 IF StackAddressSize = 32

 THEN

 ESP  ESP + SRC;

 ELSE (* StackAddressSize = 16 *)

 SP  SP + SRC;

 FI;

 FI;

 tempESP  Pop();

 tempSS  Pop(); (* 16-bit pop; segment descriptor loaded *)

 FI;

 IF ShadowStackEnabled(CPL)

 (* check if 8 byte aligned *)

 IF SSP AND 0x7 != 0

 THEN #CP(FAR-RET/IRET); FI;

 IF ReturnCodeSegmentSelector(RPL) !=3

 THEN

 tempSsCS = shadow_stack_load 8 bytes from SSP+16;

 tempSsLIP = shadow_stack_load 8 bytes from SSP+8;

 tempSSP = shadow_stack_load 8 bytes from SSP;

 SSP = SSP + 24;

 (* Do 64 bit compare to detect bits beyond 15 being set *)

 tempCS = CS; (* zero extended to 64 bit *)

 IF tempCS != tempSsCS

 THEN #CP(FAR-RET/IRET); FI;

 (* Do 64 bit compare; pad CSBASE+RIP with 0 for 32 bit LA *)

 IF CSBASE + RIP != tempSsLIP

 THEN #CP(FAR-RET/IRET); FI;

 (* check if 4 byte aligned *)

 IF tempSSP AND 0x3 != 0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 77

 THEN #CP(FAR-RET/IRET); FI;

 FI;

 FI;

 tempOldCPL = CPL;

 CPL  ReturnCodeSegmentSelector(RPL);

 (* update SS:ESP after CPL broadcast complete *)

 ESP  tempESP;

 SS  tempSS;

 tempOldSSP = SSP;

 IF ShadowStackEnabled(CPL)

 IF CPL = 3

 THEN tempSSP  IA32_PL3_SSP; FI;

 IF ((EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0)

 THEN #GP(0); FI;

 SSP  tempSSP

 FI;

 (* Now past all faulting points; safe to free the token. The token free is done using the old SSP

 * and using a supervisor override as old CPL was a supervisor privilege level *)

 IF ShadowStackEnabled(tempOldCPL)

 Atomic Start

 SSPToken  Load 8 bytes with shadow stack semantics and supervisor override from tempOldSSP

 invalidToken  0

 IF ((SSPToken AND 0x01) = 0) (* If busy bit not set then invalid token*)

 THEN invalidToken  1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != tempOldSSP) (* If current SSP does not match token *)

 THEN invalidToken  1; FI;

 (* Valid token found; clear its busy bit *)

 IF invalidToken = 0

 THEN SSPToken  SSPToken XOR 0x01;

 Store 8 bytes of SSPToken with shadow stack semantics and supervisor override to tempOldSSP;

 Atomic End

 FI;

 FOR each of segment register (ES, FS, GS, and DS)

 DO

 IF segment register points to data or non-conforming code segment

 and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

 THEN SegmentSelector  0; (* Segment selector invalid *)

 FI;

 OD;

 IF instruction has immediate operand

 THEN (* Release parameters from calling procedure’s stack *)

 IF StackAddressSize = 32

 THEN

 ESP  ESP + SRC;

 ELSE (* StackAddressSize = 16 *)

 SP  SP + SRC;

 FI;

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

78 Document Number: 334525-003, Revision 3.0

END;

(* IA-32e Mode *)

 IF (PE =1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far return

 THEN

 IF OperandSize =32

 THEN

 IF second doubleword on stack is not within stack limits

 THEN #SS(0); FI;

 IF first or second doubleword on stack is not in canonical space

 THEN #SS(0); FI;

 ELSE

 IF OperandSize = 16

 THEN

 IF second word on stack is not within stack limits

 THEN #SS(0); FI;

 IF first or second word on stack is not in canonical space

 THEN #SS(0); FI;

 ELSE (* OperandSize = 64 *)

 IF first or second quadword on stack is not in canonical space

 THEN #SS(0); FI;

 FI

 FI;

 IF return code segment selector is NULL

 THEN GP(0); FI;

 IF return code segment selector addresses descriptor beyond descriptor table limit

 THEN GP(selector); FI;

 IF return code segment selector addresses descriptor in non-canonical space

 THEN GP(selector); FI;

 Obtain descriptor to which return code segment selector points from descriptor table;

 IF return code segment descriptor is not a code segment

 THEN #GP(selector); FI;

 IF return code segment descriptor has L-bit = 1 and D-bit = 1

 THEN #GP(selector); FI;

 IF return code segment selector RPL < CPL

 THEN #GP(selector); FI;

 IF return code segment descriptor is conforming

 and return code segment DPL > return code segment selector RPL

 THEN #GP(selector); FI;

 IF return code segment descriptor is non-conforming

 and return code segment DPL ¹ return code segment selector RPL

 THEN #GP(selector); FI;

 IF return code segment descriptor is not present

 THEN #NP(selector); FI:

 IF return code segment selector RPL > CPL

 THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 79

 ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

 FI;

 FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:

IF the return instruction pointer is not within the return code segment limit

 THEN #GP(0); FI;

IF the return instruction pointer is not within canonical address space

 THEN #GP(0); FI;

IF OperandSize = 32

 THEN

 EIP  Pop();

 CS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)

 ELSE

 IF OperandSize = 16

 THEN

 EIP  Pop();

 EIP  EIP AND 0000FFFFH;

 CS  Pop(); (* 16-bit pop *)

 ELSE (* OperandSize = 64 *)

 RIP  Pop();

 CS  Pop(); (* 64-bit pop, high-order 48 bits discarded *)

 FI;

FI;

IF instruction has immediate operand

 THEN (* Release parameters from stack *)

 IF StackAddressSize = 32

 THEN

 ESP  ESP + SRC;

 ELSE

 IF StackAddressSize = 16

 THEN

 SP  SP + SRC;

 ELSE (* StackAddressSize = 64 *)

 RSP  RSP + SRC;

 FI;

 FI;

FI;

IF ShadowStackEnabled(CPL)

 IF SSP AND 0x7 != 0 (* check if aligned to 8 bytes *)

 THEN #CP(FAR-RET/IRET); FI;

 tempSsCS = shadow_stack_load 8 bytes from SSP+16;

 tempSsLIP = shadow_stack_load 8 bytes from SSP+8;

 tempSSP = shadow_stack_load 8 bytes from SSP;

 SSP = SSP + 24;

 tempCS = CS; (* zero padded to 64 bit *)

 IF tempCS != tempSsCS (* 64 bit compare; CS zero padded to 64 bits *)

 THEN #CP(FAR-RET/IRET); FI;

 IF CSBASE + RIP != tempSsLIP (* 64 bit compare;

 THEN #CP(FAR-RET/IRET); FI;

 IF tempSSP AND 0x3 != 0 (* check if aligned to 4 bytes *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

80 Document Number: 334525-003, Revision 3.0

 THEN #CP(FAR-RET/IRET); FI;

 IF ((EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0)

 THEN #GP(0); FI;

 SSP  tempSSP

FI;

END;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:

IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)

or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

 THEN #SS(0); FI;

IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize =32)

or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize =16)

or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

 THEN #SS(0); FI;

Read return stack segment selector;

IF stack segment selector is NULL

 THEN

 IF new CS descriptor L-bit = 0

 THEN #GP(selector);

 IF stack segment selector RPL = 3

 THEN #GP(selector);

FI;

IF return stack segment descriptor is not within descriptor table limits

 THEN #GP(selector); FI;

IF return stack segment descriptor is in non-canonical address space

 THEN #GP(selector); FI;

Read segment descriptor pointed to by return segment selector;

IF stack segment selector RPL != RPL of the return code segment selector

or stack segment is not a writable data segment

or stack segment descriptor DPL != RPL of the return code segment selector

 THEN #GP(selector); FI;

IF stack segment not present

 THEN #SS(StackSegmentSelector); FI;

IF the return instruction pointer is not within the return code segment limit

 THEN #GP(0); FI:

IF the return instruction pointer is not within canonical address space

 THEN #GP(0); FI;

IF OperandSize = 32

 THEN

 EIP  Pop();

 CS  Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)

 CS(RPL)  CPL;

 IF instruction has immediate operand

 THEN (* Release parameters from called procedure’s stack *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 81

 IF StackAddressSize = 32

 THEN

 ESP  ESP + SRC;

 ELSE

 IF StackAddressSize = 16

 THEN

 SP  SP + SRC;

 ELSE (* StackAddressSize = 64 *)

 RSP  RSP + SRC;

 FI;

 FI;

 FI;

 tempESP  Pop();

 tempSS  Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)

 ELSE

 IF OperandSize = 16

 THEN

 EIP  Pop();

 EIP  EIP AND 0000FFFFH;

 CS  Pop(); (* 16-bit pop; segment descriptor loaded *)

 CS(RPL)  CPL;

 IF instruction has immediate operand

 THEN (* Release parameters from called procedure’s stack *)

 IF StackAddressSize = 32

 THEN

 ESP  ESP + SRC;

 ELSE

 IF StackAddressSize = 16

 THEN

 SP  SP + SRC;

 ELSE (* StackAddressSize = 64 *)

 RSP  RSP + SRC;

 FI;

 FI;

 FI;

 tempESP  Pop();

 tempSS  Pop(); (* 16-bit pop; segment descriptor loaded *)

 ELSE (* OperandSize = 64 *)

 RIP  Pop();

 CS  Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. descriptor loaded *)

 CS(RPL)  CPL;

 IF instruction has immediate operand

 THEN (* Release parameters from called procedure’s stack *)

 RSP  RSP + SRC;

 FI;

 tempESP  Pop();

 tempSS Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)

 FI;

FI;

IF ShadowStackEnabled(CPL)

 (* check if 8 byte aligned *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

82 Document Number: 334525-003, Revision 3.0

 IF SSP AND 0x7 != 0

 THEN #CP(FAR-RET/IRET); FI;

 IF ReturnCodeSegmentSelector(RPL) !=3

 THEN

 tempSsCS = shadow_stack_load 8 bytes from SSP+16;

 tempSsLIP = shadow_stack_load 8 bytes from SSP+8;

 tempSSP = shadow_stack_load 8 bytes from SSP;

 SSP = SSP + 24;

 (* Do 64 bit compare to detect bits beyond 15 being set *)

 tempCS = CS; (* zero padded to 64 bit *)

 IF tempCS != tempSsCS

 THEN #CP(FAR-RET/IRET); FI;

 (* Do 64 bit compare; pad CSBASE+RIP with 0 for 32 bit LIP *)

 IF CSBASE + RIP != tempSsLIP

 THEN #CP(FAR-RET/IRET); FI;

 (* check if 4 byte aligned *)

 IF tempSSP AND 0x3 != 0

 THEN #CP(FAR-RET/IRET); FI;

 FI;

FI;

tempOldCPL = CPL;

CPL  ReturnCodeSegmentSelector(RPL);

(* update SS:ESP after CPL broadcast complete *)

ESP  tempESP;

SS  tempSS;

tempOldSSP = SSP;

IF ShadowStackEnabled(CPL)

 IF CPL = 3

 THEN tempSSP  IA32_PL3_SSP; FI;

 IF ((EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0)

 THEN #GP(0); FI;

 SSP  tempSSP

FI;

(* Now past all faulting points; safe to free the token. The token free is done using the old SSP

 * and using a supervisor override as old CPL was a supervisor privilege level *)

IF ShadowStackEnabled(tempOldCPL)

 Atomic Start

 SSPToken  Load 8 bytes with shadow stack semantics and supervisor override from tempOldSSP

 invalidToken  0

 IF ((SSPToken AND 0x01) = 0) (* If busy bit not set then invalid token*)

 THEN invalidToken  1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != tempOldSSP) (* If current SSP does not match token *)

 THEN invalidToken  1; FI;

 (* Valid token found; clear its busy bit *)

 IF invalidToken = 0

 THEN SSPToken  SSPToken XOR 0x01;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 83

 Store 8 bytes of SSPToken with shadow stack semantics and supervisor override to tempOldSSP;

 Atomic End

FI;

FOR each of segment register (ES, FS, GS, and DS)

 DO

 IF segment register points to data or non-conforming code segment

 and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

 THEN SegmentSelector  0; (* SegmentSelector invalid *)

 FI;

 OD;

IF instruction has immediate operand

 THEN (* Release parameters from calling procedure’s stack *)

 IF StackAddressSize = 32

 THEN

 ESP  ESP + SRC;

 ELSE

 IF StackAddressSize = 16

 THEN

 SP  SP + SRC;

 ELSE (* StackAddressSize = 64 *)

 RSP  RSP + SRC;

 FI;

 FI;

FI;

END;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector NULL.

 If the return instruction pointer is not within the return code segment limit.

 If returning to 32-bit or compatibility mode and the previous SSP from shadow stack

 (when returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4G.

#GP(selector) If the RPL of the return code segment selector is less than the CPL.

 If the return code or stack segment selector index is not within its descriptor table

limits.

 If the return code segment descriptor does not indicate a code segment.

 If the return code segment is non-conforming and the segment selector’s DPL is not

equal to the RPL of the code segment’s segment selector.

 If the return code segment is conforming and the segment selector’s DPL greater than

the RPL of the code segment’s segment selector.

 If the stack segment is not a writable data segment.

 If the stack segment selector RPL is not equal to the RPL of the return code segment

selector.

 If the stack segment descriptor DPL is not equal to the RPL of the return code seg-

ment selector.

#SS(0) If the top bytes of stack are not within stack limits.

 If the return stack segment is not present.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

84 Document Number: 334525-003, Revision 3.0

#NP(selector) If the return code segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment checking is

enabled.

#CP(FAR-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from

IA32_PL3_SSP (returning to CPL 3) is not 4 byte aligned.

 If return instruction pointer from stack and shadow stack do not match.

Real-Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit.

#SS(0) If the top bytes of stack are not within stack limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is enabled.

Compatibility Mode Exceptions

Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0) If the return instruction pointer is non-canonical.

 If the return instruction pointer is not within the return code segment limit.

 If the stack segment selector is NULL going back to compatibility mode.

 If the stack segment selector is NULL going back to CPL3 64-bit mode.

 If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-

bit mode.

 If the return code segment selector is NULL.

 If returning to 32-bit or compatibility mode and the previous SSP from shadow stack

 (when returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4G.

#GP(selector) If the proposed segment descriptor for a code segment does not indicate it is a code

segment.

 If the proposed new code segment descriptor has both the D-bit and L-bit set.

 If the DPL for a nonconforming-code segment is not equal to the RPL of the code seg-

ment selector.

 If CPL is greater than the RPL of the code segment selector.

 If the DPL of a conforming-code segment is greater than the return code segment se-

lector RPL.

 If a segment selector index is outside its descriptor table limits.

 If a segment descriptor memory address is non-canonical.

 If the stack segment is not a writable data segment.

 If the stack segment descriptor DPL is not equal to the RPL of the return code seg-

ment selector.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 85

 If the stack segment selector RPL is not equal to the RPL of the return code segment

selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

 If an attempt to pop a value off the stack causes a non-canonical address to be refer-

enced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while

the current privilege level is 3.

#CP(FAR-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from

IA32_PL3_SSP (returning to CPL 3) is not 4 byte aligned.

 If return instruction pointer from stack and shadow stack do not match.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

86 Document Number: 334525-003, Revision 3.0

4.5 SYSCALL—Fast System Call

Opcode Instruction Op/

En

64-Bit

Mode

Compat/

Leg Mode

Description

0F 05 SYSCALL NP Valid Invalid Fast call to privilege level 0

system procedures.

Instruction Operand Encoding

Description

SYSCALL invokes an OS system-call handler at privilege level 0. It does so by loading RIP from the

IA32_LSTAR MSR (after saving the address of the instruction following SYSCALL into RCX). (The WRMSR

instruction ensures that the IA32_LSTAR MSR always contain a canonical address.)

SYSCALL also saves RFLAGS into R11 and then masks RFLAGS using the IA32_FMASK MSR (MSR address

C0000084H); specifically, the processor clears in RFLAGS every bit corresponding to a bit that is set in the

IA32_FMASK MSR.

SYSCALL loads the CS and SS selectors with values derived from bits 47:32 of the IA32_STAR MSR. How-

ever, the CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by

those selectors. Instead, the descriptor caches are loaded with fixed values. See the Operation section for

details. It is the responsibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by

those selector values correspond to the fixed values loaded into the descriptor caches; the SYSCALL instruc-

tion does not ensure this correspondence.

The SYSCALL instruction does not save the stack pointer (RSP). If the OS system-call handler will change

the stack pointer, it is the responsibility of software to save the previous value of the stack pointer. This

might be done prior to executing SYSCALL, with software restoring the stack pointer with the instruction

following SYSCALL (which will be executed after SYSRET). Alternatively, the OS system-call handler may

save the stack pointer and restore it before executing SYSRET.

When shadow stacks are enabled at a privilege level where the SYSCALL instruction is invoked, the SSP is

saved to the IA32_PL3_SSP MSR. If shadow stacks are enabled at privilege level 0, the SSP is loaded with

0.

Operation

IF (CS.L != 1) or (IA32_EFER.LMA != 1) or (IA32_EFER.SCE != 1)

(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

 THEN #UD;

FI;

RCX  RIP; (* Will contain address of next instruction *)

RIP  IA32_LSTAR;

R11  RFLAGS;

RFLAGS  RFLAGS AND NOT(IA32_FMASK);

CS.Selector  IA32_STAR[47:32] AND FFFCH (* Operating system provides CS; RPL forced to 0 *)

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 87

(* Set rest of CS to a fixed value *)

CS.Base  0; (* Flat segment *)

CS.Limit  FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

CS.Type  11; (* Execute/read code, accessed *)

CS.S  1;

CS.DPL  0;

CS.P  1;

CS.L  1; (* Entry is to 64-bit mode *)

CS.D  0; (* Required if CS.L = 1 *)

CS.G  1; (* 4-KByte granularity *)

IF ShadowStackEnabled(CPL)

 IA32_PL3_SSP  SSP; (* With shadow stacks enabled the system call is supported from Ring 3 to Ring 0 *)

 (* OS supporting Ring 0 to Ring 0 system calls or Ring 1/2 to ring 0 system call *)

 (* Must preserve the contents of IA32_PL3_SSP to avoid losing ring 3 state *)

FI;

CPL  0;

IF ShadowStackEnabled(CPL)

 SSP  0;

FI;

IF EndbranchEnabled(CPL)

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_S_CET.SUPPRESS = 0

FI;

SS.Selector  IA32_STAR[47:32] + 8; (* SS just above CS *)

(* Set rest of SS to a fixed value *)

SS.Base  0; (* Flat segment *)

SS.Limit  FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

SS.Type  3; (* Read/write data, accessed *)

SS.S  1;

SS.DPL  0;

SS.P  1;

SS.B  1; (* 32-bit stack segment *)

SS.G  1; (* 4-KByte granularity *)

Flags Affected

All.

Protected Mode Exceptions

#UD The SYSCALL instruction is not recognized in protected mode.

Real-Address Mode Exceptions

#UD The SYSCALL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The SYSCALL instruction is not recognized in virtual-8086 mode.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

88 Document Number: 334525-003, Revision 3.0

Compatibility Mode Exceptions

#UD The SYSCALL instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#UD If IA32_EFER.SCE = 0.

 If the LOCK prefix is used.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 89

4.6 SYSENTER—Fast System Call

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

0F 34 SYSENTER NP Valid Valid Fast call to privilege level 0 system

procedures.

Instruction Operand Encoding

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion instruction to

SYSEXIT. The instruction is optimized to provide the maximum performance for system calls from user code

running at privilege level 3 to operating system or executive procedures running at privilege level 0.

When executed in IA-32e mode, the SYSENTER instruction transitions the logical processor to 64-bit mode;

otherwise, the logical processor remains in protected mode.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code segment and

code entry point, and the privilege level 0 stack segment and stack pointer by writing values to the following

MSRs:

• IA32_SYSENTER_CS (MSR address 174H) — The lower 16 bits of this MSR are the segment selector for

the privilege level 0 code segment. This value is also used to determine the segment selector of the

privilege level 0 stack segment (see the Operation section). This value cannot indicate a null selector.

• IA32_SYSENTER_EIP (MSR address 176H) — The value of this MSR is loaded into RIP (thus, this value

references the first instruction of the selected operating procedure or routine). In protected mode, only

bits 31:0 are loaded.

• IA32_SYSENTER_ESP (MSR address 175H) — The value of this MSR is loaded into RSP (thus, this value

contains the stack pointer for the privilege level 0 stack). This value cannot represent a non-canonical

address. In protected mode, only bits 31:0 are loaded.

These MSRs can be read from and written to using RDMSR/WRMSR. The WRMSR instruction ensures that

the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs always contain canonical addresses.

While SYSENTER loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the

CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those

selectors. Instead, the descriptor caches are loaded with fixed values. See the Operation section for details.

It is the responsibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those

selector values correspond to the fixed values loaded into the descriptor caches; the SYSENTER instruction

does not ensure this correspondence.

The SYSENTER instruction can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return

pair. When executing a SYSENTER instruction, the processor does not save state information for the user

code (e.g., the instruction pointer), and neither the SYSENTER nor the SYSEXIT instruction supports passing

parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions between privilege

level 3 code and privilege level 0 operating system procedures, the following conventions must be followed.

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

90 Document Number: 334525-003, Revision 3.0

• The segment descriptors for the privilege level 0 code and stack segments and for the privilege level 3

code and stack segments must be contiguous in a descriptor table. This convention allows the processor

to compute the segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared libraries or DLLs) must

save the required return IP and processor state information if a return to the calling procedure is required.

Likewise, the operating system or executive procedures called with SYSENTER instructions must have

access to and use this saved return and state information when returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II

processor. The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT

present (SEP) feature flag returned to the EDX register by the CPUID instruction. An operating system that

qualifies the SEP flag must also qualify the processor family and model to ensure that the

SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set

 THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

 THEN

 SYSENTER/SYSEXIT_Not_Supported; FI;

 ELSE

 SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns the

SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

When shadow stacks are enabled at privilege level where SYSENTER instruction is invoked, the SSP is saved

to the IA32_PL3_SSP MSR. If shadow stacks are enabled at privilege level 0, the SSP is loaded with 0.

Operation

IF CR0.PE = 0 OR IA32_SYSENTER_CS[15:2] = 0 THEN #GP(0); FI;

RFLAGS.VM  0; (* Ensures protected mode execution *)

RFLAGS.IF  0; (* Mask interrupts *)

IF in IA-32e mode

 THEN

 RSP  IA32_SYSENTER_ESP;

 RIP  IA32_SYSENTER_EIP;

ELSE

 ESP  IA32_SYSENTER_ESP[31:0];

 EIP  IA32_SYSENTER_EIP[31:0];

FI;

CS.Selector  IA32_SYSENTER_CS[15:0] AND FFFCH;

 (* Operating system provides CS; RPL forced to 0 *)

(* Set rest of CS to a fixed value *)

CS.Base  0; (* Flat segment *)

CS.Limit  FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

CS.Type  11; (* Execute/read code, accessed *)

CS.S  1;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 91

CS.DPL  0;

CS.P  1;

IF in IA-32e mode

 THEN

 CS.L  1; (* Entry is to 64-bit mode *)

 CS.D  0; (* Required if CS.L = 1 *)

 ELSE

 CS.L  0;

 CS.D  1; (* 32-bit code segment*)

FI;

CS.G  1; (* 4-KByte granularity *)

IF ShadowStackEnabled(CPL)

 IA32_PL3_SSP  SSP;

FI;

CPL  0;

IF ShadowStackEnabled(CPL)

 SSP  0;

FI;

IF EndbranchEnabled(CPL)

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_S_CET.SUPPRESS = 0

FI;

SS.Selector  CS.Selector + 8; (* SS just above CS *)

(* Set rest of SS to a fixed value *)

SS.Base  0; (* Flat segment *)

SS.Limit  FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

SS.Type  3; (* Read/write data, accessed *)

SS.S  1;

SS.DPL  0;

SS.P  1;

SS.B  1; (* 32-bit stack segment*)

SS.G  1; (* 4-KByte granularity *)

Flags Affected

VM, IF (see Operation above)

Protected Mode Exceptions

#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP The SYSENTER instruction is not recognized in real-address mode.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

92 Document Number: 334525-003, Revision 3.0

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 93

4.7 SYSEXIT—Fast Return from Fast System Call

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

0F 35 SYSEXIT NP Valid Valid Fast return to privilege level 3

user code.

REX.W + 0F 35 SYSEXIT NP Valid Valid Fast return to 64-bit mode

privilege level 3 user code.

Instruction Operand Encoding

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction to the SYSENTER

instruction. The instruction is optimized to provide the maximum performance for returns from system

procedures executing at protections levels 0 to user procedures executing at protection level 3. It must be

executed from code executing at privilege level 0.

With a 64-bit operand size, SYSEXIT remains in 64-bit mode; otherwise, it either enters compatibility mode

(if the logical processor is in IA-32e mode) or remains in protected mode (if it is not).

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and code entry point,

and the privilege level 3 stack segment and stack pointer by writing values into the following MSR and

general-purpose registers:

• IA32_SYSENTER_CS (MSR address 174H) — Contains a 32-bit value that is used to determine the seg-

ment selectors for the privilege level 3 code and stack segments (see the Operation section)

• RDX — The canonical address in this register is loaded into RIP (thus, this value references the first

instruction to be executed in the user code). If the return is not to 64-bit mode, only bits 31:0 are loaded.

• ECX — The canonical address in this register is loaded into RSP (thus, this value contains the stack pointer

for the privilege level 3 stack). If the return is not to 64-bit mode, only bits 31:0 are loaded.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR and WRMSR.

While SYSEXIT loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the

CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those

selectors. Instead, the descriptor caches are loaded with fixed values. See the Operation section for details.

It is the responsibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those

selector values correspond to the fixed values loaded into the descriptor caches; the SYSEXIT instruction

does not ensure this correspondence.

The SYSEXIT instruction can be invoked from all operating modes except real-address mode and virtual-

8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II

processor. The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT

present (SEP) feature flag returned to the EDX register by the CPUID instruction. An operating system that

qualifies the SEP flag must also qualify the processor family and model to ensure that the

SYSENTER/SYSEXIT instructions are actually present. For example:

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

94 Document Number: 334525-003, Revision 3.0

IF CPUID SEP bit is set

 THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)

 THEN

 SYSENTER/SYSEXIT_Not_Supported; FI;

 ELSE

 SYSENTER/SYSEXIT_Supported; FI;

FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns the

SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

When shadow stacks are enabled at privilege level 3 the instruction loads SSP with value from IA32_PL3_SSP

MSR.

Operation

IF IA32_SYSENTER_CS[15:2] = 0 OR CR0.PE = 0 OR CPL != 0 THEN #GP(0); FI;

IF operand size is 64-bit

 THEN (* Return to 64-bit mode *)

 RSP  RCX;

 RIP  RDX;

 ELSE (* Return to protected mode or compatibility mode *)

 RSP  ECX;

 RIP  EDX;

FI;

IF operand size is 64-bit (* Operating system provides CS; RPL forced to 3 *)

 THEN CS.Selector  IA32_SYSENTER_CS[15:0] + 32;

 ELSE CS.Selector  IA32_SYSENTER_CS[15:0] + 16;

FI;

CS.Selector  CS.Selector OR 3; (* RPL forced to 3 *)

(* Set rest of CS to a fixed value *)

CS.Base  0; (* Flat segment *)

CS.Limit  FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

CS.Type  11; (* Execute/read code, accessed *)

CS.S  1;

CS.DPL  3;

CS.P  1;

IF operand size is 64-bit

 THEN (* return to 64-bit mode *)

 CS.L  1; (* 64-bit code segment *)

 CS.D  0; (* Required if CS.L = 1 *)

 ELSE (* return to protected mode or compatibility mode *)

 CS.L  0;

 CS.D  1; (* 32-bit code segment*)

FI;

CS.G  1; (* 4-KByte granularity *)

CPL  3;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 95

IF ShadowStackEnabled(CPL)

 SSP  IA32_PL3_SSP;

FI;SS.Selector  CS.Selector + 8; (* SS just above CS *)

(* Set rest of SS to a fixed value *)

SS.Base  0; (* Flat segment *)

SS.Limit  FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

SS.Type  3; (* Read/write data, accessed *)

SS.S  1;

SS.DPL  3;

SS.P  1;

SS.B  1; (* 32-bit stack segment*)

SS.G  1; (* 4-KByte granularity *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

 If CPL != 0.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP The SYSEXIT instruction is not recognized in real-address mode.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) The SYSEXIT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If IA32_SYSENTER_CS = 0.

 If CPL != 0.

 If RCX or RDX contains a non-canonical address.

#UD If the LOCK prefix is used.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

96 Document Number: 334525-003, Revision 3.0

4.8 SYSRET—Return From Fast System Call

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg Mode

Description

0F 07 SYSRET NP Valid Invalid Return to compatibility

mode from fast system call.

REX.W + 0F 07 SYSRET NP Valid Invalid Return to 64-bit mode from

fast system call.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Description

SYSRET is a companion instruction to the SYSCALL instruction. It returns from an OS system-call handler

to user code at privilege level 3. It does so by loading RIP from RCX and loading RFLAGS from R11.1 With

a 64-bit operand size, SYSRET remains in 64-bit mode; otherwise, it enters compatibility mode and only the

low 32 bits of the registers are loaded.

SYSRET loads the CS and SS selectors with values derived from bits 63:48 of the IA32_STAR MSR. However,

the CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those

selectors. Instead, the descriptor caches are loaded with fixed values. See the Operation section for details.

It is the responsibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those

selector values correspond to the fixed values loaded into the descriptor caches; the SYSRET instruction

does not ensure this correspondence.

The SYSRET instruction does not modify the stack pointer (ESP or RSP). For that reason, it is necessary for

software to switch to the user stack. The OS may load the user stack pointer (if it was saved after SYSCALL)

before executing SYSRET; alternatively, user code may load the stack pointer (if it was saved before

SYSCALL) after receiving control from SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt

or exception delivered between restoring the stack pointer and successful execution of SYSRET is not in-

voked with the user stack. It can do so using approaches such as the following.

• External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF

before loading the user stack pointer.

• Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack

by using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 6.14.5,

“Interrupt Stack Table,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

1Regardless of the value of R11, the RF and VM flags are always 0 in RFLAGS after execution of SYSRET. In addition, all re-

served bits in RFLAGS retain the fixed values.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 97

• General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not

canonical. The OS can address this possibility using one or more of the following approaches.

— Confirming that the value of RCX is canonical before executing SYSRET.

— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.

— Using the IST mechanism for gate 13 (#GP) in the IDT.

When shadow stacks are enabled at privilege level 3 the instruction loads SSP with value from IA32_PL3_SSP

MSR.

Operation

IF (CS.L != 1) or (IA32_EFER.LMA != 1) or (IA32_EFER.SCE != 1)

(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

 THEN #UD; FI;

IF (CPL != 0) OR (RCX is not canonical) THEN #GP(0); FI;

IF (operand size is 64-bit)

 THEN (* Return to 64-Bit Mode *)

 RIP  RCX;

 ELSE (* Return to Compatibility Mode *)

 RIP  ECX;

FI;

RFLAGS  (R11 & 3C7FD7H) | 2; (* Clear RF, VM, reserved bits; set bit 2 *)

IF (operand size is 64-bit)

 THEN CS.Selector  IA32_STAR[63:48]+16;

 ELSE CS.Selector  IA32_STAR[63:48];

FI;

CS.Selector  CS.Selector OR 3; (* RPL forced to 3 *)

(* Set rest of CS to a fixed value *)

CS.Base  0; (* Flat segment *)

CS.Limit  FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

CS.Type  11; (* Execute/read code, accessed *)

CS.S  1;

CS.DPL  3;

CS.P  1;

IF (operand size is 64-bit)

 THEN (* Return to 64-Bit Mode *)

 CS.L  1; (* 64-bit code segment *)

 CS.D  0; (* Required if CS.L = 1 *)

 ELSE (* Return to Compatibility Mode *)

 CS.L  0; (* Compatibility mode *)

 CS.D  1; (* 32-bit code segment *)

FI;

CS.G  1; (* 4-KByte granularity *)

CPL  3;

IF ShadowStackEnabled(CPL)

 SSP  IA32_PL3_SSP;

FI;

SS.Selector  (IA32_STAR[63:48]+8) OR 3; (* RPL forced to 3 *)

(* Set rest of SS to a fixed value *)

SS.Base  0; (* Flat segment *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

98 Document Number: 334525-003, Revision 3.0

SS.Limit  FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)

SS.Type  3; (* Read/write data, accessed *)

SS.S  1;

SS.DPL  3;

SS.P  1;

SS.B  1; (* 32-bit stack segment*)

SS.G  1; (* 4-KByte granularity *)

Flags Affected

All.

Protected Mode Exceptions

#UD The SYSRET instruction is not recognized in protected mode.

Real-Address Mode Exceptions

#UD The SYSRET instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The SYSRET instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The SYSRET instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#UD If IA32_EFER.SCE = 0.

 If the LOCK prefix is used.

#GP(0) If CPL != 0.

 If RCX contains a non-canonical address.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 99

4.9 IRET/IRETD—Interrupt Return

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

CF IRET NP Valid Valid Interrupt return (16-bit

operand size).

CF IRETD NP Valid Valid Interrupt return (32-bit

operand size).

REX.W +

CF

IRETQ NP Valid N.E. Interrupt return (64-bit

operand size).

Instruction Operand Encoding

Description

Returns program control from an exception or interrupt handler to a program or procedure that was inter-

rupted by an exception, an external interrupt, or a software-generated interrupt. These instructions are also

used to perform a return from a nested task. (A nested task is created when a CALL instruction is used to

initiate a task switch or when an interrupt or exception causes a task switch to an interrupt or exception

handler.) See the section titled “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is

intended for use when returning from an interrupt when using the 32-bit operand size; however, most

assemblers use the IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or procedure.

During this operation, the processor pops the return instruction pointer, return code segment selector, and

EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execu-

tion of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and

VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending

on the setting of these flags, the processor performs the following types of interrupt returns.

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt

procedure, without a task switch. The code segment being returned to must be equally or less privileged

than the interrupt handler routine (as indicated by the RPL field of the code segment selector popped from

the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return

code segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively,

and then resumes execution of the interrupted program or procedure. If the return is to another privilege

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

100 Document Number: 334525-003, Revision 3.0

level, the IRET instruction also pops the stack pointer and SS from the stack, before resuming program

execution. If the return is to virtual-8086 mode, the processor also pops the data segment registers from

the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called

with a CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated

state of the task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code

that follows the IRET instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection

exception.

If nonmaskable interrupts (NMIs) are blocked (see Section 6.7.1, “Handling Multiple NMIs” in the Intel® 64

and IA-32 Architectures Software Developer’s Manual, Volume 3A), execution of the IRET instruction un-

blocks NMIs. This unblocking occurs even if the instruction causes a fault. In such a case, NMIs are unmasked

before the exception handler is invoked.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes opera-

tion to 64 bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this

instruction in VMX non-root operation.

Operation

IF PE = 0

 THEN GOTO REAL-ADDRESS-MODE;

ELSIF (IA32_EFER.LMA = 0)

 THEN

 IF (EFLAGS.VM = 1)

 THEN GOTO RETURN-FROM-VIRTUAL-8086-MODE;

 ELSE GOTO PROTECTED-MODE;

 FI;

 ELSE GOTO IA-32e-MODE;

FI;

REAL-ADDRESS-MODE;

 IF OperandSize = 32

 THEN

 EIP  Pop();

 CS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)

 tempEFLAGS  Pop();

 EFLAGS  (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

 ELSE (* OperandSize = 16 *)

 EIP  Pop(); (* 16-bit pop; clear upper 16 bits *)

 CS  Pop(); (* 16-bit pop *)

 EFLAGS[15:0]  Pop();

 FI;

 END;

RETURN-FROM-VIRTUAL-8086-MODE:

(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 101

 IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)

 THEN IF OperandSize = 32

 THEN

 EIP  Pop();

 CS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)

 EFLAGS  Pop();

 (* VM, IOPL, VIP and VIF EFLAG bits not modified by pop *)

 IF EIP not within CS limit

 THEN #GP(0); FI;

 ELSE (* OperandSize = 16 *)

 EIP  Pop(); (* 16-bit pop; clear upper 16 bits *)

 CS  Pop(); (* 16-bit pop *)

 EFLAGS[15:0]  Pop(); (* IOPL in EFLAGS not modified by pop *)

 IF EIP not within CS limit

 THEN #GP(0); FI;

 FI;

 ELSE

 #GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)

 FI;

END;

PROTECTED-MODE:

 IF NT = 1

 THEN GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)

 FI;

 IF OperandSize = 32

 THEN

 EIP  Pop();

 CS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)

 tempEFLAGS  Pop();

 ELSE (* OperandSize = 16 *)

 EIP  Pop(); (* 16-bit pop; clear upper bits *)

 CS  Pop(); (* 16-bit pop *)

 tempEFLAGS  Pop(); (* 16-bit pop; clear upper bits *)

 FI;

 IF tempEFLAGS(VM) = 1 and CPL = 0

 THEN GOTO RETURN-TO-VIRTUAL-8086-MODE;

 ELSE GOTO PROTECTED-MODE-RETURN;

 FI;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)

 SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;

 Mark the task just abandoned as NOT BUSY;

 IF EIP is not within CS limit

 THEN #GP(0); FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:

 (* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

102 Document Number: 334525-003, Revision 3.0

 (* If shadow stack or indirect branch tracking at CPL3 then #GP(0) *)

 IF CR4.CET AND (IA32_U_CET.ENDBR_EN OR IA32_U_CET.SHSTK_EN)

 THEN #GP(0); FI;

 shadowStackEnabled = ShadowStackEnabled(CPL)

 EFLAGS  tempEFLAGS;

 ESP  Pop();

 SS  Pop(); (* Pop 2 words; throw away high-order word *)

 ES  Pop(); (* Pop 2 words; throw away high-order word *)

 DS  Pop(); (* Pop 2 words; throw away high-order word *)

 FS  Pop(); (* Pop 2 words; throw away high-order word *)

 GS  Pop(); (* Pop 2 words; throw away high-order word *)

 IF shadowStackEnabled

 (* check if 8 byte aligned *)

 IF SSP AND 0x7 != 0

 THEN #CP(FAR-RET/IRET); FI;

 FI;

 CPL  3;

 (* Resume execution in Virtual-8086 mode *)

 tempOldSSP = SSP;

 (* Now past all faulting points; safe to free the token. The token free is done using the old SSP

 * and using a supervisor override as old CPL was a supervisor privilege level *)

 IF shadowStackEnabled

 Atomic Start

 SSPToken  Load 8 bytes with shadow stack semantics with supervisor override from tempOldSSP

 invalidToken  0

 IF ((SSPToken AND 0x01) = 0) (* If busy bit not set then invalid token*)

 THEN invalidToken 1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != tempOldSSP) (* If current SSP does not match token *)

 THEN invalidToken 1; FI;

 (* Valid token found; clear its busy bit *)

 IF invalidToken = 0

 THEN SSPToken  SSPToken XOR 0x01;

 Store 8 bytes of SSPToken with shadow stack semantics with supervisor override to tempOldSSP;

 Atomic End

 FI;

END;

PROTECTED-MODE-RETURN: (* PE = 1 *)

 IF CS(RPL) > CPL

 THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

 ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 103

 EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT)  tempEFLAGS;

 IF OperandSize = 32

 THEN EFLAGS(RF, AC, ID)  tempEFLAGS; FI;

 IF CPL <= IOPL

 THEN EFLAGS(IF)  tempEFLAGS; FI;

 IF CPL = 0

 THEN

 EFLAGS(IOPL)  tempEFLAGS;

 IF OperandSize = 32

 THEN EFLAGS(VM, VIF, VIP)  tempEFLAGS; FI;

 IF OperandSize = 64

 THEN EFLAGS(VIF, VIP)  tempEFLAGS; FI;

 FI;

 IF OperandSize = 32

 THEN

 tempESP  Pop();

 tempSS  Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)

 ELSE

 IF OperandSize = 16

 THEN

 tempESP  Pop();

 tempSS  Pop(); (* 16-bit pop; segment descriptor loaded *)

 ELSE (* OperandSize = 64 *)

 tempRSP  Pop();

 tempSS Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)

 FI;

 FI;

 IF ShadowStackEnabled(CPL)

 (* check if 8 byte aligned *)

 IF SSP AND 0x7 != 0

 THEN #CP(FAR-RET/IRET); FI;

 IF CS(RPL) != 3

 THEN

 tempSsCS = shadow_stack_load 8 bytes from SSP+16;

 tempSsLIP = shadow_stack_load 8 bytes from SSP+8;

 tempSSP = shadow_stack_load 8 bytes from SSP;

 SSP = SSP + 24;

 (* Do 64 bit compare to detect bits beyond 15 being set *)

 tempCS = CS; (* zero padded to 64 bit *)

 IF tempCS != tempSsCS

 THEN #CP(FAR-RET/IRET); FI;

 (* Do 64 bit compare; pad CSBASE+RIP with 0 for 32 bit LIP *)

 IF CSBASE + RIP != tempSsEIP

 THEN #CP(FAR-RET/IRET); FI;

 (* check if 4 byte aligned *)

 IF tempSSP AND 0x3 != 0

 THEN #CP(FAR-RET/IRET); FI;

 FI;

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

104 Document Number: 334525-003, Revision 3.0

 tempOldCPL = CPL;

 CPL  CS(RPL);

 (* update SS and RSP after CPL broadcast *)

 IF OperandSize = 64

 THEN

 RSP  tempRSP;

 SS  tempSS;

 ELSE

 ESP  tempESP;

 SS  tempSS;

 FI;

 IF new mode != 64-Bit Mode

 THEN

 IF EIP is not within CS limit

 THEN #GP(0); FI;

 ELSE (* new mode = 64-bit mode *)

 IF RIP is non-canonical

 THEN #GP(0); FI;

 FI;

 tempOldSSP = SSP;

 IF ShadowStackEnabled(CPL)

 IF CPL = 3

 THEN tempSSP  IA32_PL3_SSP; FI;

 IF ((EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0)

 THEN #GP(0); FI;

 SSP  tempSSP

 FI;

 (* Now past all faulting points; safe to free the token. The token free is done using the old SSP

 * and using a supervisor override as old CPL was a supervisor privilege level *)

 IF ShadowStackEnabled(tempOldCPL)

 Atomic Start

 SSPToken  Load 8 bytes with shadow stack semantics with supervisor override from tempOldSSP

 invalidToken  0

 IF ((SSPToken AND 0x01) = 0) (* If busy bit not set then invalid token*)

 THEN invalidToken 1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != tempOldSSP) (* If current SSP does not match token *)

 THEN invalidToken 1; FI;

 (* Valid token found; clear its busy bit *)

 IF invalidToken = 0

 THEN SSPToken  SSPToken XOR 0x01;

 Store 8 bytes of SSPToken with shadow stack semantics with supervisor override to tempOldSSP;

 Atomic End

 FI;

 FOR each SegReg in (ES, FS, GS, and DS)

 DO

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 105

 tempDesc  descriptor cache for SegReg (* hidden part of segment register *)

 IF tempDesc(DPL) < CPL AND tempDesc(Type) is data or non-conforming code

 THEN (* Segment register invalid *)

 SegReg  NULL;

 FI;

 OD;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)

 IF new mode != 64-Bit Mode

 THEN

 IF EIP is not within CS limit

 THEN #GP(0); FI;

 ELSE (* new mode = 64-bit mode *)

 IF RIP is non-canonical

 THEN #GP(0); FI;

 FI;

 EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT)  tempEFLAGS;

 IF OperandSize = 32 or OperandSize = 64

 THEN EFLAGS(RF, AC, ID)  tempEFLAGS; FI;

 IF CPL <= IOPL

 THEN EFLAGS(IF)  tempEFLAGS; FI;

 IF CPL = 0

 THEN (* VM = 0 in flags image *)

 EFLAGS(IOPL)  tempEFLAGS;

 IF OperandSize = 32 or OperandSize = 64

 THEN EFLAGS(VIF, VIP)  tempEFLAGS; FI;

 FI;

 IF ShadowStackEnabled(CPL)

 IF SSP AND 0x7 != 0 (* check if aligned to 8 bytes *)

 THEN #CP(FAR-RET/IRET); FI;

 tempSsCS = shadow_stack_load 8 bytes from SSP+16;

 tempSsLIP = shadow_stack_load 8 bytes from SSP+8;

 tempSSP = shadow_stack_load 8 bytes from SSP;

 SSP = SSP + 24;

 tempCS = CS; (* zero padded to 64 bit *)

 IF tempCS != tempSsCS (* 64 bit compare; CS zero padded to 64 bits *)

 THEN #CP(FAR-RET/IRET); FI;

 IF CSBASE + RIP != tempSsLIP (* 64 bit compare; CSBASE+RIP zero padded to 64 bit for 32 bit LIP *)

 THEN #CP(FAR-RET/IRET); FI;

 IF tempSSP AND 0x3 != 0 (* check if aligned to 4 bytes *)

 THEN #CP(FAR-RET/IRET); FI;

 IF ((EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] != 0)

 THEN #GP(0); FI;

 FI;

 IF ShadowStackEnabled(CPL)

 IF IA32_EFER.LMA = 1

 (* In IA-32e-mode the IRET may be switching stacks if the interrupt/exception was delivered

 * through an IDT with a non-zero IST *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

106 Document Number: 334525-003, Revision 3.0

 Atomic Start

 SSPToken  Load 8 bytes with shadow stack semantics from SSP

 invalidToken  0

 IF ((SSPToken AND 0x01) = 0) (* If busy bit not set then invalid token*)

 THEN invalidToken  1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != SSP) (* If current SSP does not match token *)

 THEN invalidToken  1; FI;

 (* In IA-32e mode for same CPL IRET there is always a stack switch. The below check verifies

 If the stack switch was to self stack and if so we don’t try to free the token on this shadow

 stack. If the tempSSP was not to same stack then there was a stack switch so do attempt

 to free the token *)

 If tempSSP == SSP

 THEN invalidToken  1; FI;

 (* Valid token found; clear its busy bit *)

 IF invalidToken = 0

 THEN SSPToken  SSPToken XOR 0x01;

 Store 8 bytes of SSPToken with shadow stack semantics to SSP;

 Atomic End

 FI;

 SSP  tempSSP

 FI;

 FOR each of segment register (ES, FS, GS, and DS)

 DO

 IF segment register points to data or non-conforming code segment

 and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

 THEN SegmentSelector  0; (* Segment selector invalid *)

 FI;

 OD;

END;

IA-32e-MODE:

 IF NT = 1

 THEN #GP(0);

 ELSE IF OperandSize = 32

 THEN

 EIP  Pop();

 CS  Pop();

 tempEFLAGS  Pop();

 ELSE IF OperandSize = 16

 THEN

 EIP  Pop(); (* 16-bit pop; clear upper bits *)

 CS  Pop(); (* 16-bit pop *)

 tempEFLAGS  Pop(); (* 16-bit pop; clear upper bits *)

 FI;

 ELSE (* OperandSize = 64 *)

 THEN

 RIP  Pop();

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 107

 CS  Pop(); (* 64-bit pop, high-order 48 bits discarded *)

 tempRFLAGS  Pop();

 FI;

 IF tempCS.RPL > CPL

 THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

 ELSE

 IF instruction began in 64-Bit Mode

 THEN

 IF OperandSize = 32

 THEN

 ESP  Pop();

 SS  Pop(); (* 32-bit pop, high-order 16 bits discarded *)

 ELSE IF OperandSize = 16

 THEN

 ESP  Pop(); (* 16-bit pop; clear upper bits *)

 SS  Pop(); (* 16-bit pop *)

 ELSE (* OperandSize = 64 *)

 RSP  Pop();

 SS  Pop(); (* 64-bit pop, high-order 48 bits discarded *)

 FI;

 FI;

 GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation

of the processor. If performing a return from a nested task to a previous task, the EFLAGS register will be

modified according to the EFLAGS image stored in the previous task’s TSS.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is NULL.

 If the return instruction pointer is not within the return code segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

 If the return code segment selector RPL is less than the CPL.

 If the DPL of a conforming-code segment is greater than the return code segment se-

lector RPL.

 If the DPL for a nonconforming-code segment is not equal to the RPL of the code seg-

ment selector.

 If the stack segment descriptor DPL is not equal to the RPL of the return code seg-

ment selector.

 If the stack segment is not a writable data segment.

 If the stack segment selector RPL is not equal to the RPL of the return code segment

selector.

 If the segment descriptor for a code segment does not indicate it is a code segment.

 If the segment selector for a TSS has its local/global bit set for local.

 If a TSS segment descriptor specifies that the TSS is not busy.

 If a TSS segment descriptor specifies that the TSS is not available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

108 Document Number: 334525-003, Revision 3.0

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.

#UD If the LOCK prefix is used.

#CP(FAR-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from

IA32_PL3_SSP (returning to CPL 3) is not 4 byte aligned.

 If returning to 32-bit or compatibility mode and the previous SSP from shadow stack

(when returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4G.

 If return instruction pointer from stack and shadow stack do not match.

Real-Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit.

 IF IOPL not equal to 3.

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.

Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.

 If the return code segment selector is NULL.

 If the stack segment selector is NULL going back to compatibility mode.

 If the stack segment selector is NULL going back to CPL3 64-bit mode.

 If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-

bit mode.

 If the return instruction pointer is not within the return code segment limit.

 If the return instruction pointer is non-canonical.

#GP(Selector) If a segment selector index is outside its descriptor table limits.

 If a segment descriptor memory address is non-canonical.

 If the segment descriptor for a code segment does not indicate it is a code segment.

 If the proposed new code segment descriptor has both the D-bit and L-bit set.

 If the DPL for a nonconforming-code segment is not equal to the RPL of the code seg-

ment selector.

 If CPL is greater than the RPL of the code segment selector.

 If the DPL of a conforming-code segment is greater than the return code segment se-

lector RPL.

 If the stack segment is not a writable data segment.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 109

 If the stack segment descriptor DPL is not equal to the RPL of the return code seg-

ment selector.

 If the stack segment selector RPL is not equal to the RPL of the return code segment

selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

 If an attempt to pop a value off the stack causes a non-canonical address to be refer-

enced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is

enabled.

#UD If the LOCK prefix is used.

#CP(FAR-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from

IA32_PL3_SSP (returning to CPL 3) is not 4 byte aligned.

 If returning to 32-bit or compatibility mode and the previous SSP from shadow stack

(when returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4G.

 If return instruction pointer from stack and shadow stack do not match.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

110 Document Number: 334525-003, Revision 3.0

5 Task Management Interactions with CET
5.1 32-bit Task-State Segment (TSS)

When shadow stack is enabled, the SSP to be established when the task is dispatched is contained in the

TSS.

If shadow stack is enabled, then the 4 bytes SSP of the task is located at offset 104 in the 32 bit TSS and

is used by the processor to establish the TSS when a task switch occurs to task associated with this TSS.

Note that the processor does not write the SSP of the task initiating the task switch to the TSS of that task,

and the SSP of the previous task is pushed on to the shadow stack of the new task.

The SSP of the task should have a token formatted like the supervisor shadow stack token at the address

pointed to by the task SSP. This token will be verified and made busy when switching to that shadow stack

using a CALL/JMP instruction, and made free when switching out of that task using an IRET.

5.2 Task Switching

The processor transfers execution to another task in one of four cases.

• The current program, task, or procedure executes a JMP or CALL instruction to a TSS descriptor in the

GDT.

• The current program, task, or procedure executes a JMP or CALL instruction to a task-gate descriptor in

the GDT or the current LDT.

• An interrupt or exception vector points to a task-gate descriptor in the IDT.

• The current task executes an IRET when the NT flag in the EFLAGS register is set.

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mechanisms for redirecting a

program. The referencing of a TSS descriptor or a task gate (when calling or jumping to a task) or the state

of the NT flag (when executing an IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task.

1. Obtains the TSS segment selector for the new task as the operand of the JMP or CALL instruction, from

a task gate, or from the previous task link field (for a task switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-access privilege rules apply

to JMP and CALL instructions. The CPL of the current (old) task and the RPL of the segment selector for

the new task must be less than or equal to the DPL of the TSS descriptor or task gate being referenced.

Exceptions, interrupts (except for interrupts generated by the INT n instruction), and the IRET instruction

are permitted to switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For

interrupts generated by the INT n instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid limit (greater than or

equal to 67H). If task switch was initiated by IRET and shadow stacks are enabled at the current CPL,

then the SSP must be aligned to 8 bytes else a #TS(current task TSS) fault is generated. If CR4.CET is

1 then the TSS must be a 32 bit TSS and the limit of the new task’s TSS must be greater than or equal

to 107 bytes, else a #TS(new task TSS) fault is generated.

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task switch are

paged into system memory.

6. Saves the state of the current (old) task in the current task’s TSS. The processor finds the base address

of the current TSS in the task register and then copies the states of the following registers into the

current TSS: all the general-purpose registers, segment selectors from the segment registers, the tem-

porarily saved image of the EFLAGS register, and the instruction pointer register (EIP).

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 111

7. Loads the task register with the segment selector and descriptor for the new task's TSS.

8. The processor performs following shadow stack actions:

Read CS of new task from new task TSS

Read EFLAGS of new task from new task TSS

IF EFLAGS.VM = 1

 THEN

 new task CPL = 3;

 ELSE

 new task CPL = CS.RPL;

FI;

pushCsLipSsp = 0

If task switch was initiated by CALL instruction, exception or interrupt

 If shadow stack enabled at current CPL

 If new task CPL < CPL and current task CPL = 3

 THEN

 IA32_PL3_SSP = SSP (* user -> supervisor *)

 ELSE

 pushCsLipSsp = 1 (* no privilege change; supv->supv; supv->user *)

 tempSSP = SSP

 tempSsLIP =CSBASE + EIP

 tempSsCS = CS

 FI;

 FI

FI

verifyCsLIP = 0

If task switch was initiated by IRET

 IF shadow stacks enabled at current CPL

 IF (CPL of new Task = CPL of current Task) OR

 (CPL of new Task < 3 AND CPL of current Task < 3) OR

 (CPL or new Task < 3 AND CPL of current task = 3)

 (* no privilege change or supervisor -> supervisor or user -> supervisor IRET *)

 tempSsCS = ShadowStackPop8B()

 tempSsLIP = ShadowStackPop8B()

 tempSSP = ShadowStackPop8B()

 verifyCsLIP = 1

 FI

 // Clear busy flag on current shadow stack

 Atomic Start

 SSPToken  Load 8 bytes with shadow stack semantics from SSP

 invalidToken  0

 IF ((SSPToken AND 0x01) = 0) (* If busy bit not set then invalid token*)

 THEN invalidToken  1; FI;

 IF SSP & 0x07 != 0 (* if SSP not aligned to 8 bytes then invalid token *)

 THEN invalidToken  1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != SSP) (* If current SSP does not match token *)

 THEN invalidToken  1; FI;

 (* Valid token found; clear its busy bit *)

 IF invalidToken = 0

 THEN SSPToken  SSPToken XOR 0x01; FI;

 Store 8 bytes of SSPToken with shadow stack semantics to SSP;

 Atomic End

 SSP = 0

 FI

FI

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

112 Document Number: 334525-003, Revision 3.0

9. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR (control register

CR3), the EFLAGS register, the EIP register, the general-purpose registers, and the segment selectors.

A fault during the load of this state may corrupt architectural state. (If paging is not enabled, a PDBR

value is read from the new task’s TSS, but it is not loaded into CR3.).

10. If the task switch was initiated with a JMP or IRET instruction, the processor clears the busy (B) flag in

the current (old) task’s TSS descriptor; if initiated with a CALL instruction, an exception, or an inter-

rupt: the busy (B) flag is left set.

11. If the task switch was initiated with an IRET instruction, the processor clears the NT flag in a tempo-

rarily saved image of the EFLAGS register; if initiated with a CALL or JMP instruction, an exception, or

an interrupt, the NT flag is left unchanged in the saved EFLAGS image.

12. If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the processor will

set the NT flag in the EFLAGS loaded from the new task. If initiated with an IRET instruction or JMP

instruction, the NT flag will reflect the state of NT in the EFLAGS loaded from the new task.

13. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or an interrupt,

the processor sets the busy (B) flag in the new task’s TSS descriptor; if initiated with an IRET instruc-

tion, the busy (B) flag is left set.

14. The descriptors associated with the segment selectors are loaded and qualified. Any errors associated

with this loading and qualification occur in the context of the new task and may corrupt architectural

state.

15. The processor performs following shadow stack actions:

IF shadow stack enabled at current CPL OR indirect branch tracking at current CPL

 THEN

 IF EFLAGS.VM = 1

 THEN #TSS(new-Task-TSS);FI;

 FI;

IF shadow stack enabled at current CPL

 IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception (* switch stack *)

 new_SSP := Load the 4 byte from offset 104 in the TSS

 // Verify new SSP to be legal

 IF new_SSP & 0x07 != 0

 THEN #TSS(New-Task-TSS); FI;

 Fault = 0

 Atomic Start

 SSPToken = 8 bytes loaded with shadow stack semantics from new_SSP

 IF (SSPToken AND 0x01)

 THEN fault  1; FI;

 IF ((EFER.LMA and CS.L) = 0 AND SSPToken[63:32] != 0)

 THEN fault  1; FI;

 IF ((SSPToken AND 0xFFFFFFFFFFFFFFFE) != new_SSP)

 THEN fault  1; FI;

 IF fault = 0

 THEN SSPToken = SSPToken OR 0x01; FI;

 Store 8 bytes of SSPToken with shadow stack semantics to new_SSP;

 Atomic End

 IF fault = 1

 THEN GP(0#TSS(New-Task-TSS); FI;

 SSP = new_SSP

 IF pushCsLipSsp = 1 (* call, int, exception from user->user or supervisor->supervisor or supv -> user *)

 Push tempSsCS, tempSsLip, tempSsSSP on shadow stack using 8B pushes

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 113

 FI

 FI

FI

IF task switch initiated by IRET

 IF verifyCsLIP = 1

 (* do 64 bit comparisons; CS zero padded to 64 bit; CSBASE+EIP zero padded to 64 bit *)

 If tempSsCS and tempSsLIP do not match CS and CSBASE+EIP

 THEN #CP(FAR-RET/IRET); FI;

 FI

 IF ShadowStackEnabled(CPL)

 THEN

 IF (verifyCsLIP == 0) tempSSP = IA32_PL3_SSP;

 IF tempSSP & 0x03 != 0 THEN #CP(FAR-RET/IRET) // verify aligned to 4 bytes

 IF tempSSP[63:32] != 0 THEN # CP(FAR-RET/IRET)

 SSP = tempSSP

 FI

FI

IF EndbranchEnabled(CPL)

 IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception

 IF CPL = 3

 THEN

 IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH

 IA32_S_CET.SUPPRESS = 0

 FI;

 FI;

FI;

16. Begins executing the new task. (To an exception handler, the first instruction of the new task appears

not to have been executed.)

NOTES

If all checks and saves have been carried out successfully, the processor commits to the task switch. If an

unrecoverable error occurs in steps 1 through 8, the processor does not complete the task switch and insures

that the processor is returned to its state prior to the execution of the instruction that initiated the task

switch.

If an unrecoverable error occurs in step 9, architectural state may be corrupted, but an attempt will be

made to handle the error in the prior execution environment. If an unrecoverable error occurs after the

commit point (in step 13), the processor completes the task switch (without performing additional access

and segment availability checks) and generates the appropriate exception prior to beginning execution of

the new task.

If exceptions occur after the commit point, the exception handler must finish the task switch itself before

allowing the processor to begin executing the new task. See Chapter 6, “Interrupt 10—Invalid TSS Exception

(#TS),” for more information about the effect of exceptions on a task when they occur after the commit

point of a task switch.

The state of the currently executing task is always saved when a successful task switch occurs. If the task

is resumed, execution starts with the instruction pointed to by the saved EIP value, and the registers are

restored to the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from the sus-

pended task. The new task begins executing at the privilege level specified in the CPL field of the CS register,

which is loaded from the TSS. Because tasks are isolated by their separate address spaces and TSSs and

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

114 Document Number: 334525-003, Revision 3.0

because privilege rules control access to a TSS, software does not need to perform explicit privilege checks

on a task switch.

The following table, Table 1 Exception Conditions Checked During a Task Switch shows the exception con-

ditions that the processor checks for when switching tasks. It also shows the exception that is generated for

each check if an error is detected and the segment that the error code references. (The order of the checks

in the table is the order used in the P6 family processors. The exact order is model specific and may be

different for other IA-32 processors.) Exception handlers designed to handle these exceptions may be sub-

ject to recursive calls if they attempt to reload the segment selector that generated the exception. The cause

of the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 1 Exception Conditions Checked During a Task Switch

Condition Checked Exception1 Error Code

Reference2

Segment selector for a TSS descriptor references

the GDT and is within the limits of the table.

#GP

#TS (for IRET)

New Task’s

TSS

TSS descriptor is present in memory. #NP New Task’s

TSS

TSS descriptor is not busy (for task switch initiated by a call,

interrupt, or exception).

#GP (for JMP,

CALL, INT)

Task’s back-

link TSS

TSS descriptor is not busy (for task switch initiated by an IRET

instruction).

#TS (for IRET) New Task’s

TSS

TSS segment limit greater than or equal to 104 (for 32-bit TSS) or 44

(for 16-bit TSS).

#TS New Task’s

TSS

TSS segment limit greater than or equal to 108 (for 32-bit TSS) if

CR4.CET = 1.

#TS New Task’s

TSS

If shadow stack enabled and SSP not aligned to 8 bytes (for task

switch initiated by an IRET instruction).

#TS Current task

TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s

LDT

Code segment DPL matches segment selector RPL. #TS New Code

Segment

SS segment selector is valid 2. #TS New Stack

Segment

Stack segment is present in memory. #SS New Stack

Segment

Stack segment DPL matches CPL. #TS New stack

segment

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 115

LDT of new task is present in memory. #TS New Task’s

LDT

CS segment selector is valid 3. #TS New Code

Segment

Code segment is present in memory. #NP New Code

Segment

Stack segment DPL matches selector RPL. #TS New Stack

Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data

Segment

DS, ES, FS, and GS segments are readable. #TS New Data

Segment

DS, ES, FS, and GS segments are present in memory. #NP New Data

Segment

DS, ES, FS, and GS segment DPL greater than or equal to CPL (unless

these are conforming segments).

#TS New Data

Segment

Shadow Stack Pointer in of task not aligned to 8 bytes (for task

switch initiated by a call, interrupt, or exception).

#TS New Task’s

TSS

If EFLAGS.VM=1 and shadow stacks are enabled. #TS New Task’s

TSS

Shadow Stack Token verification failures (for task switch initiated by

a call, interrupt, jump, or exception):

- Busy bit already set.

- L bit in token does not match (EFER.LMA & CS.L), i.e. not 0.

- Address in Shadow stack token does not match address SSP

value from TSS.

#TS New Task’s

TSS

If task switch initiated by IRET, CS and LIP stored on old task shadow

stack does not match CS and LIP of new task.

#CP FAR-RET/IRET

If task switch initiated by IRET and SSP of new task loaded from

shadow stack of old task (if new task CPL is < 3) OR the SSP from

IA32_PL3_SSP (if new task CPL = 3) fails the following checks:

- Not aligned to 4 bytes.

- Is beyond 4G.

#CP FAR-RET/IRET

NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS exception, and #SS

is stack-fault exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within the table's

segment limit, and refers to a compatible type of descriptor (for example, a segment selector in the CS register only

is valid when it points to a code-segment descriptor).

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

116 Document Number: 334525-003, Revision 3.0

6 Shadow Stack Management Instructions
Shadow stack management instructions allow the program and run-time to perform operations like recov-

ering from control protection faults, shadow stack switching, etc. The following instructions are provided.

 INCSSP – This instruction is used to increment the shadow stack pointer by the number of frames specified
by an 8 bit instruction operand, ‘n’. SSP increments by n*4 bytes in 32-bit/compatibility mode and by n*4
or n*8 bytes in 64-bit mode.

 RDSSP – instruction used to read the contents of the SSP register into a GPR.
 SAVEPREVSSP – this instruction uses a “previous ssp” token at the top of the current shadow stack to

find the address to save a “shadow stack restore” token on the previous shadow stack. The ”shadow stack

restore” token contains the SSP at the time of invoking the RSTORSSP instruction that created the “pre-
vious ssp” token along with the mode of the machine. The format of this token is as follows.
 Bit 63:2 – SSP at the time of invoking the RSTORSSP instruction.

 Bit 1 – Must be 1.
 Bit 0 – L flag; if 1, indicates this token was created in 64-bit mode.

 RSTORSSP – this instruction is used to restore a shadow stack context previously saved on the shadow
stack as a “shadow stack restore” token. This instruction loads the ”shadow stack restore” token from the

memory operand specified in the instruction, pointing to a valid “shadow stack restore” token. This in-
struction replaces the “shadow stack restore” token with a “previous ssp” token and establishes the SSP
to point to the memory operand of this instruction. Thus following completion of this instruction the “pre-

vious ssp” token is at the top of the shadow stack. The format of the “shadow stack restore” token is as
follows.
 Bit 63:2 – SSP at the time of creating this restore point.

 Bit 1 – Must be 0.
 Bit 0 – L flag; if 1, indicates this token was created in 64-bit mode.
 WRSS – This instruction does a write to the shadow stack. This instruction is associated with a control to

disable this instruction. WRSS can only write to user shadow stack when invoked at CPL 3 and supervisor

shadow stacks when invoked at CPL != 3.
 WRUSS – This instruction is similar to WRSS but is a privileged instruction. It can only write to user

shadow stacks.

 SETSSBSY – This instruction verifies the “supervisor shadow stack” token pointed to by the IA32_PL0_SSP
MSR, and if the token is a valid token sets it busy and sets the SSP to the value of the IA32_PL0_SSP
MSR.

 CLRSSBSY – This instruction takes a memory operand to a “supervisor shadow stack” token, and if the
token is a valid token clears its busy bit.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 117

6.1 INCSSP—Increment Shadow Stack Pointer

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg Mode

Description

F3 0F AE

/05

INCSSPD

r32

R Valid Valid Increment SSP by 4 * r32[7:0].

F3 REX.W

0F AE /05

INCSSPQ

r64

R Valid N.E. Increment SSP by 8 * r64[7:0].

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

R ModRM:r/m(r) NA NA NA

Description

This instruction can be used to increment the current shadow stack pointer by operand size of the instruc-

tion times the unsigned 8-bit value specified by bits 7:0 in the source operand. The instruction performs a

pop and discard of the first and last element on the shadow stack in the range specified by the unsigned

8-bit value in bits 7:0 of the source operand.

Operation

IF CPL = 3

 IF (CR4.CET & IA32_U_CET.SH_STK_EN) = 0

 THEN #UD; FI;

ELSE

 IF (CR4.CET & IA32_S_CET.SH_STK_EN) = 0

 THEN #UD; FI;

ENDIF

IF (operand size is 64-bit)

 THEN

 TMP1 = (R64[7:0] == 0) ? 1 : R64[7:0]

 TMP = ShadowStackLoad8B(SSP)

 TMP = ShadowStackLoad8B(SSP + TMP1 * 8 - 8)

 SSP  SSP + R64[7:0] * 8;

 ELSE

 TMP1 = (R32[7:0] == 0) ? 1 : R32[7:0]

 TMP = ShadowStackLoad4B(SSP)

 TMP = ShadowStackLoad4B(SSP + TMP1 * 4 - 4)

 SSP  SSP + R32[7:0] * 4;

FI;

Flags Affected

None.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

118 Document Number: 334525-003, Revision 3.0

Protected Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD The INCSSP instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD The INCSSP instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#PF(fault-code) If a page fault occurs.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#PF(fault-code) If a page fault occurs.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 119

6.2 RDSSP—Read Shadow Stack Pointer

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

F3 0F 1E /1

(mod=11)

RDSSPD R32 Valid Valid Read low 32 bits of SSP.

F3 REX.W

0F 1E /1

(mod=11)

RDSSPQ R64 Valid N.E. Read SSP.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

R32 ModRM:r/m(w) NA NA NA

R64 ModRM:r/m(w) NA NA NA

Description

Reads the current shadow stack pointer to the register destination. Note this opcode is a NOP when CET is

not enabled.

Operation
IF CPL = 3

 IF CR4.CET & IA32_U_CET.SH_STK_EN

 IF (operand size is 64 bit)

 THEN

 Dest  SSP;

 ELSE

 Dest  SSP[31:0];

 FI;

 ENDIF

ELSE

 IF CR4.CET & IA32_S_CET.SH_STK_EN

 IF (operand size is 64 bit)

 THEN

 Dest  SSP;

 ELSE

 Dest  SSP[31:0];

 FI;

 ENDIF

ENDIF

Flags Affected

None.

Protected Mode Exceptions

None

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

120 Document Number: 334525-003, Revision 3.0

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

None.

Compatibility Mode Exceptions

None.

64-Bit Mode Exceptions

None.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 121

6.3 SAVEPREVSSP —Save Previous Shadow Stack Pointer

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

F3 0F 01 EA

(mod=11, /5,

RM=010)

SAVEPREV

SSP

NP Valid Valid Save previous shadow stack

pointer context.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Description

Push the previous SSP and state of (EFER.LMA & CS.L) to the previous shadow stack after aligning to next

8 byte boundary. The previous SSP is obtained from the “previous SSP” token at top of the current

shadow stack.

Operation

IF CPL = 3

 IF (CR4.CET & IA32_U_CET.SH_STK_EN) = 0

 THEN #UD; FI;

ELSE

 IF (CR4.CET & IA32_S_CET.SH_STK_EN) = 0

 THEN #UD; FI;

ENDIF

IF SSP not aligned to 8 bytes

 THEN #GP(0); FI;

(* Pop the “previous-ssp” token from current shadow stack *)

previous_ssp_token = ShadowStackPop8B(SSP)

(* If the CF flag indicates there was a alignment hole on current shadow stack then pop that alignment hole *)

(* Note that the alignment hole must be zero and can be present only when in legacy/compatibility mode *)

IF RFLAGS.CF == 1 AND (EFER.LMA AND CS.L)

 #GP(0)

ENDIF

IF RFLAGS.CF == 1

 must_be_zero = ShadowStackPop4B(SSP)

 IF must_be_zero != 0 THEN #GP(0)

ENDIF

(* Previous SSP token must have the bit 1 set *)

IF ((previous_ssp_token & 0x02) == 0)

 THEN #GP(0); (* bit 1 was 0 *)

IF ((EFER.LMA AND CS.L) = 0 AND previous_ssp_token [63:32] != 0)

 THEN #GP(0); FI; (* If compatibility/legacy mode and SSP not in 4G *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

122 Document Number: 334525-003, Revision 3.0

(* Save Prev SSP from previous_ssp_token to the old shadow stack at next 8 byte aligned address *)

old_SSP = previous_ssp_token & ~0x03

temp  (old_SSP | (EFER.LMA & CS.L));

Shadow_stack_store 4 bytes of 0 to (old_SSP – 4)

old_SSP  old_SSP & ~0x07;

Shadow_stack_store 8 bytes of temp to (old_SSP – 8)

Flags Affected

None.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#GP(0) If SSP not 8 byte aligned.

 If alignment hole on shadow stack is not 0.

 If bit 1 of the “previous ssp” token not set to 1.

 If in 32-bit/compatibility mode and SSP recorded in “previous ssp” token is beyond

4G.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD The SAVEPREVSSP instruction is not recognized in virtual-8086 mode.

Virtual-8086 Mode Exceptions

#UD The SAVEPREVSSP instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#GP(0) If SSP not 8 byte aligned

 If alignment hole on shadow stack is not 0

 If bit 1 of the “previous ssp” token not set to 1

 If in 32-bit/compatibility mode and SSP recorded in “previous ssp” token is beyond

4G.

#PF(fault-code) If a page fault occurs.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 123

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#GP(0) If SSP not 8 byte aligned.

 If carry flag set.

 If bit 1 of the “previous ssp” token not set to 1.

#PF(fault-code) If a page fault occurs.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

124 Document Number: 334525-003, Revision 3.0

6.4 RSTORSSP — Restore saved Shadow Stack Pointer

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

F3 0F 01 /5

(mod!=11, /5,

memory only)

RSTORSSP M64 Valid Valid Restore SSP.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

M64
ModRM:r/m

(r, w)
NA NA NA

Description

Restore SSP from the “shadow stack restore” token previously created on shadow stack by SAVEPREVSSP

and create a “previous ssp” token on the restored shadow stack to allow saving the previous SSP on previ-

ous shadow stack.

Operation
IF CPL = 3

 IF (CR4.CET & IA32_U_CET.SH_STK_EN) = 0

 THEN #UD; FI;

ELSE

 IF (CR4.CET & IA32_S_CET.SH_STK_EN) = 0

 THEN #UD; FI;

ENDIF

SSP_LA = Linear_Address(mem operand)

IF SSP_LA not aligned to 8 bytes

 THEN #GP(0); FI;

previous_ssp_token = SSP | (EFER.LMA AND CS.L) | 0x02

Atomic Start

SSP_Tmp = Locked shadow_Stack_Load with store intent 8 bytes from SSP_LA

Fault = 0

IF ((SSP_Tmp & 0x03) != (EFER.LMA & CS.L))

 THEN fault = 1; FI; (* If L flag in token does not match EFER.LMA & CS.L or bit 1 is not 0 *)

IF ((EFER.LMA AND CS.L) = 0 AND SSP_Tmp[63:32] != 0)

 THEN fault = 1; FI; (* If compatibility/legacy mode and SSP not in 4G *)

TMP = SSP_Tmp & ~0x01

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 125

TMP = (TMP – 8)

TMP = TMP & ~0x07

IF TMP != SSP_LA

 THEN fault = 1; FI; (* If address in token does not match the requested top of stack *)

TMP = (fault == 0) ? previous_ssp_token : SSP_Tmp

Shadow_stack_store 8 bytes of TMP to SSP_LA and release lock

Atomic End

IF fault == 1

 THEN #CP(rstorssp); FI;

SSP = SSP_LA

// Set the CF if the SSP in the restore token was 4 byte aligned i.e. there is an alignment hole

RFLAGS.CF = (SSP_Tmp & 0x04) ? 1 : 0;

RFLAGS.ZF,PF,AF,OF,SF 0;

Flags Affected

CF is set to indicate if the shadow stack pointer in the restore token was 4 byte aligned else is cleared. ZF,

PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#GP(0) If linear address of memory operand not 8 byte aligned.

 If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If destination is located in a non-writeable segment

 If the DS, ES, FS, or GS register is used to access memory and it contains a NULL

segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#CP(rstorssp) If L bit in token does not match (EFER.LMA & CS.L).

 If address in token does not match linear address of memory operand.

 If in 32-bit or compatibility mode and the address in token is not below 4G.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD The RSTORSSP instruction is not recognized in virtual-8086 mode.

Virtual-8086 Mode Exceptions

#UD The RSTORSSP instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

126 Document Number: 334525-003, Revision 3.0

#GP(0) Same as Protected mode exceptions.

#SS(0) Same as Protected mode exceptions.

#CP(rstorssp) Same as Protected mode exceptions.

#PF(fault-code) If a page fault occurs.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 If CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 If CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

#GP(0) If linear address of memory operand not 8 byte aligned.

 If a memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#CP(rstorssp) If L bit in token does not match (EFER.LMA & CS.L).

 If address in token does not match linear address of memory operand.

#PF(fault-code) If a page fault occurs.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 127

6.5 WRSS — Write to shadow stack

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

0F 38 F6 WRSSD MR Valid Valid Write 4 bytes to shadow stack.

REX.W

0F 38 F6

WRSSQ MR Valid N.E. Write 8 bytes to shadow stack.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

Description

Write bytes in register source to the shadow stack.

Operation
IF CPL = 3

 IF (CR4.CET & IA32_U_CET.SH_STK_EN) = 0

 THEN #UD; FI;

 IF (IA32_U_CET.WR_SHSTK_EN) = 0

 THEN #UD; FI;

ELSE

 IF (CR4.CET & IA32_S_CET.SH_STK_EN) = 0

 THEN #UD; FI;

 IF (IA32_S_CET.WR_SHSTK_EN) = 0

 THEN #UD; FI;

ENDIF

DEST_LA = Linear_Address(mem operand)

IF (operand size is 64 bit)

 THEN

 (* Destination not 8B aligned *)

 IF DEST_LA[2:0]

 THEN GP(0); FI;

 Shadow_stack_store 8 bytes of SRC to DEST_LA;

 ELSE

 (* Destination not 4B aligned *)

 IF DEST_LA[1:0]

 THEN GP(0); FI;

 Shadow_stack_store 4 bytes of SRC[31:0] to DEST_LA;

FI;

Flags Affected

None.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

128 Document Number: 334525-003, Revision 3.0

Protected Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

 IF CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.

 IF CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If destination is located in a non-writeable segment.

 If the DS, ES, FS, or GS register is used to access memory and it contains a NULL

segment selector.

 If linear address of destination is not 4 byte aligned.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack when CPL3 and not a

 supervisor shadow stack when CPL < 3.

 Other terminal and non-terminal faults.

Real-Address Mode Exceptions

#UD The WRSS instruction is not recognized in virtual-8086 mode.

Virtual-8086 Mode Exceptions

#UD The WRSS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

 IF CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.

 IF CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack when CPL3 and not a

 supervisor shadow stack when CPL < 3.

 Other terminal and non-terminal faults.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF CPL = 3 and IA32_U_CET.SH_STK_EN = 0.

 IF CPL < 3 and IA32_S_CET.SH_STK_EN = 0.

 IF CPL = 3 and IA32_U_CET.WR_SHSTK_EN = 0.

 IF CPL < 3 and IA32_S_CET.WR_SHSTK_EN = 0.

#GP(0) If a memory address is in a non-canonical form.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 129

 If linear address of destination is not 4 byte aligned.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack when CPL3 and not a

 supervisor shadow stack when CPL < 3.

 Other terminal and non-terminal faults.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

130 Document Number: 334525-003, Revision 3.0

6.6 WRUSS — Write to User Shadow Stack

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

66 0F 38

F5

WRUSSD MR Valid Valid Write 4 bytes to shadow stack.

66 REX.W

0F 38 F5

WRUSSQ MR Valid N.E. Write 8 bytes to shadow stack.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (w) ModRM:reg (r) NA NA

Description

Write bytes in register source to a user shadow stack page. This instruction does the store the user

shadow stack page. The shadow stack store done by this instruction is with user-access intent and thus

paging access control checks will be treated as a user-mode shadow stack store.

Operation
IF CR4.CET = 0

 THEN #UD; FI;

IF CPL > 0

 THEN #GP(0); FI;

DEST_LA = Linear_Address(mem operand)

Setup mode to perform next shadow stack store with user-access intent

IF (operand size is 64 bit)

 THEN

 (* Destination not 8B aligned *)

 IF DEST_LA[2:0]

 THEN GP(0); FI;

 Shadow_stack_store 8 bytes of SRC to DEST_LA with user-access intent;

 ELSE

 (* Destination not 4B aligned *)

 IF DEST_LA[1:0]

 THEN GP(0); FI;

 Shadow_stack_store 4 bytes of SRC[31:0] to DEST_LA with user-access intent;

FI;

Clear mode previously setup to do user-access intent shadow stack store

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 131

Flags Affected

None.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If destination is located in a non-writeable segment.

 If the DS, ES, FS, or GS register is used to access memory and it contains a NULL

segment selector.

 If linear address of destination is not 4 byte aligned.

 If CPL is not 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack.

 Other terminal and non-terminal faults.

Real-Address Mode Exceptions

#UD The WRUSS instruction is not recognized in virtual-8086 mode.

Virtual-8086 Mode Exceptions

#UD The WRUSS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

#GP(0) If a memory address is in a non-canonical form.

 If linear address of destination is not 4 byte aligned.

 If CPL is not 0.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack.

 Other terminal and non-terminal faults.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

#GP(0) If a memory address is in a non-canonical form.

 If linear address of destination is not 4 byte aligned.

 If CPL is not 0.

#PF(fault-code) If a page fault occurs if destination is not a user shadow stack.

 Other terminal and non-terminal faults.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

132 Document Number: 334525-003, Revision 3.0

6.7 SETSSBSY — Mark Shadow Stack Busy

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

 F3 0F 01 E8

SETSSBSY NP Valid Valid Mark shadow stack pointed

by IA32_PL0_SSP as busy.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Description

Mark shadow stack pointed to by IA32_PL0_SSP as busy and load SSP with value from MSR

IA32_PL0_SSP.

Operation
IF (CR4.CET = 0)

 THEN #UD; FI;

IF (IA32_S_CET.SH_STK_EN = 0)

 THEN #UD; FI;

IF CPL > 0

 THEN GP(0); FI;

SSP_LA = IA32_PL0_SSP

If SSP_LA not aligned to 8 bytes

 THEN #GP(0); FI;

Fault = 0

Tmp = Locked shadow_Stack_Load with store intent 8 bytes from SSP_LA

If (Tmp & 0x01)

 THEN fault = 1; FI; (* Fault if busy bit already set *)

IF ((EFER.LMA AND CS.L) = 0 AND Tmp[63:32] != 0)

 THEN fault = 1; FI; (* In legacy mode/compatibility mode the address in token must be in low 4G *)

IF (Tmp & ~0x01) != SSP_LA

 THEN fault = 1; FI; (* The SSP address in token must match the address specified *)

Tmp = (fault == 1) ? Tmp : (Tmp | 0x01); (* If fault is 0 then set the busy bit in the token *)

Shadow_stack_store 8 bytes of Tmp to SSP_LA and release lock

If (fault == 1)

 THEN # CP(SETSSBSY); FI; (* If invalid token then fault *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 133

SSP = SSP_LA

Flags Affected

None.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF IA32_S_CET.SH_STK_EN = 0.

#GP(0) If IA32_PL0_SSP not aligned to 8 bytes.

 If CPL is not 0.

#CP(setssbsy) If busy bit in token set.

 If in 32-bit or compatibility mode, and the address in token is not below 4G.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD The SETSSBSY instruction is not recognized in virtual-8086 mode.

Virtual-8086 Mode Exceptions

#UD The SETSSBSY instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF IA32_S_CET.SH_STK_EN = 0.

#GP(0) Same as protected mode exceptions.

#CP(setssbsy) Same as protected mode exceptions.

#PF(fault-code) If a page fault occurs.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF IA32_S_CET.SH_STK_EN = 0.

#GP(0) If IA32_PL0_SSP not aligned to 8 bytes.

 If CPL is not 0.

#CP(setssbsy) If busy bit in token set

 If in 32-bit or compatibility mode, and the address in token is not below 4G.

#PF(fault-code) If a page fault occurs.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

134 Document Number: 334525-003, Revision 3.0

6.8 CLRSSBSY — Clear Shadow Stack Busy Flag

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg Mode

Description

 F3 0F AE /6 CLRSSBSY M64 Valid Valid Mark shadow stack pointed

by m64 as not busy.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

M64
ModRM:r/m

(r, w)
NA NA NA

Description

Mark shadow stack pointed to by memory operand as not busy. Subsequent to marking the shadow stack

as not busy the SSP is loaded with value 0.

Operation
IF (CR4.CET = 0)

 THEN #UD; FI;

IF (IA32_S_CET.SH_STK_EN = 0)

 THEN #UD; FI;

IF CPL > 0

 THEN GP(0); FI;

SSP_LA = Linear_Address(mem operand)

IF SSP_LA not aligned to 8 bytes

 THEN #GP(0); FI;

Invalid_token = 0

Tmp = Locked shadow_Stack_Load with store intent 8 bytes from SSP_LA

IF (Tmp & 0x01) != 1

 THEN invalid_token = 1; FI; (* if busy bit not set then token is invalid *)

IF (Tmp & ~0x01) != SSP_LA

 THEN invalid_token = 1; FI; (* The SSP address in token must match the SSP_LA *)

Tmp = (invalid_token == 1) ? Tmp : (Tmp & !0x01); (* If valid then clear the busy bit *)

Shadow_stack_store 8 bytes of Tmp to SSP_LA and release lock

(* Set the CF if invalid token was detected *)

RFLAGS.CF = (invalid_token == 1) ? 1 : 0;

RFLAGS.ZF,PF,AF,OF,SF 0;

SSP = 0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 135

Flags Affected

CF is set if an invalid token was detected else is cleared. ZF, PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF IA32_S_CET.SH_STK_EN = 0.

#GP(0) If memory operand linear address not aligned to 8 bytes.

 If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

limit.

 If destination is located in a non-writeable segment.

 If the DS, ES, FS, or GS register is used to access memory and it contains a NULL

segment selector.

 If CPL is not 0

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#UD The CLRSSBSY instruction is not recognized in virtual-8086 mode.

Virtual-8086 Mode Exceptions

#UD The CLRSSBSY instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF IA32_S_CET.SH_STK_EN = 0.

#GP(0) Same as protected mode exceptions.

#PF(fault-code) If a page fault occurs.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

 If CR4.CET = 0.

 IF IA32_S_CET.SH_STK_EN = 0.

#GP(0) If memory operand linear address not aligned to 8 bytes.

 If CPL is not 0.

 If the memory address is in a non-canonical form.

 If token is invalid.

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

136 Document Number: 334525-003, Revision 3.0

7 Control Transfer Terminating Instructions
7.1 ENDBR64 — Terminate an Indirect Branch in 64-bit Mode

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

F3 0F 1E FA ENDBR64 NP Valid Valid Terminate indirect branch in

64 bit mode.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Description

Terminate an indirect branch in 64 bit mode.

Operation
IF EndbranchEnabled(CPL) & EFER.LMA = 1 & CS.L = 1

 IF CPL = 3

 THEN

 IA32_U_CET.TRACKER = IDLE

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = IDLE

 IA32_S_CET.SUPPRESS = 0

 FI

FI;

Flags Affected

None.

Exceptions

None.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 137

7.2 ENDBR32 — Terminate an Indirect Branch in 32-bit and Compatibility Mode

Opcode Instruction Op/

En

64-

Bit

Mode

Compat/

Leg

Mode

Description

F3 0F 1E FB ENDBR32 NP Valid Valid Terminate indirect branch in

32 bit and compatibility

mode.

Instruction Operand Encoding

Op/

En
Operand 1 Operand 2 Operand 3 Operand 4

NP NA NA NA NA

Description

Terminate an indirect branch in 32 bit and compatibility mode.

Operation
IF EndbranchEnabled(CPL) & (EFER.LMA = 0 | (EFER.LMA=1 & CS.L = 0)

 IF CPL = 3

 THEN

 IA32_U_CET.TRACKER = IDLE

 IA32_U_CET.SUPPRESS = 0

 ELSE

 IA32_S_CET.TRACKER = IDLE

 IA32_S_CET.SUPPRESS = 0

 FI

FI;

Flags Affected

None.

Exceptions

None.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

138 Document Number: 334525-003, Revision 3.0

8 Control Protection Exception, Enumeration, Enables and Extended State
Management

8.1 Control Protection Exception

Interrupt 21 — Control Protection Exception (#CP)
Exception Class Fault.

Description
Indicates a control flow transfer attempt violated the control flow enforcement technology constraints. This
exception is a contributory class exception.

Exception Error Code
Yes (special format). The processor provides the control protection exception handler with following infor-
mation through the error code on the stack.

 NEAR-RET (value 1) – indicates the #CP was caused by a near RET instruction.
 FAR-RET/IRET (value 2) – indicates the #CP was caused by a FAR RET or IRET instruction.
 ENDBRANCH (value 3) – indicates the #CP was due to missing ENDBRANCH at target of an indirect call

or jump instruction.

 RSTORSSP (value 4) – indicates the #CP was caused by a token check failure in RSTORSSP instruction.
 SETSSBSY (value 5) – indicates #CP was caused by a token check failure in SETSSBSY instruction.

Bit 15 (ENCL) of the error code, if set to 1, indicates the #CP occurred during enclave execution.

Saved Instruction Pointer
Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change
A program-state change does not accompany the control protection fault, because the exception occurs
before the faulting instruction is executed

8.2 Feature Enumeration
CET shadow stacks feature flag - if CPUID.(EAX=7, ECX=0):ECX.CET_SS[bit 7] is 1, the processor sup-
ports CET shadow stack features, including the MSR described in section 9.5.

CET indirect branch tracking feature flag - if CPUID.(EAX=7, ECX=0):EDX.CET_IBT[bit 20] is 1, the pro-
cessor supports CET indirect branch tracking, including the MSR described in section 9.5.

8.3 Master Enable
CR4.CET bit (bit 23) is as master enable for CET.

8.4 CET MSRs

 IA32_U_CET (0x6A0) – The bits 1:0 are defined if CPUID.(EAX=7, ECX=0):ECX.CET_SS is 1. The

bits 5:2 and bits 63:10 are defined if CPUID.(EAX=7, ECX=0):EDX.CET_IBT is 1.

o Bit 0 - SH_STK_EN – when set to 1, enable shadow stacks at CPL3.

o Bit 1 - WR_SHSTK_EN – when set to 1, enables the WRSS{D,Q}W instructions.

o Bit 2 - ENDBR_EN – when set to 1, enables indirect branch tracking.

o Bit 3 - LEG_IW_EN – Enable legacy compatibility treatment for indirect branch tracking.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 139

o Bit 4 – NO_TRACK_EN – when set to 1, enables use of no-track prefix for indirect branch

tracking.

o Bit 5 – SUPPRESS_DIS – when set to 1, disables suppression of CET indirect branch tracking

on legacy compatibility.

o Bit 9:6 – RSVD – must be 0.

o Bit 10 – SUPPRESS – when set to 1, indirect branch tracking is suppressed. This bit can be

written to 1 only if TRACKER is written as IDLE.

o Bit 11 - TRACKER – Value of the indirect branch tracking state machine - Values: IDLE (0),

WAIT_FOR_ENDBRANCH(1).

o Bit 63:12 - EB_LEG_BITMAP_BASE - linear address of a bitmap in memory indicating valid

pages as target of CALL/JMP_indirect that do not land on ENDBRANCH when CET is enabled

and not suppressed. Valid when ENDBR_EN is 1. Must be machine canonical when written on

parts that support 64 bit mode. On parts that do not support 64 bit mode, the bits 63:32 are

reserved and must be 0. This value is extended by 12 bits at the low end to form the base ad-

dress (this automatically aligns the address on a 4-Kbyte boundary).

 IA32_S_CET (0x6A2) – similar format as IA32_U_CET – configures supervisor mode CET.

The following MSRs are defined if CPUID.(EAX=7, ECX=0):ECX.CET_SS is 1.

 IA32_PL3_SSP (0x6A7) – linear address of the user mode top of shadow stack pointer to be loaded

into SSP on next supervisor to user mode transition. Must be machine canonical when written and

the address must be aligned to 4 bytes, i.e. bits 1:0 are reserved. On parts that do not support 64

bit mode, the bits 63:32 are reserved and must be 0.

 IA32_PL2_SSP (0x6A6) - linear address of the user mode top of shadow stack pointer to be loaded

into SSP on next transition to CPL 2. Must be machine canonical when written on parts that support

64 bit mode and the address must be aligned to 4 bytes, i.e. bits 1:0 are reserved. On parts that

do not support 64 bit mode, the bits 63:32 are reserved and must be 0.

 IA32_PL1_SSP (0x6A5) - linear address of the user mode top of shadow stack pointer to be loaded

into SSP on next transition to CPL 1. Must be machine canonical when written on parts that support

64 bit mode and the address must be aligned to 4 bytes, i.e. bits 1:0 are reserved. On parts that

do not support 64 bit mode, the bits 63:32 are reserved and must be 0.

 IA32_PL0_SSP (0x6A4) – linear address of the user mode top of shadow stack pointer to be loaded

into SSP on next transition to CPL 0. Must be machine canonical when written on parts that support

64 bit mode and the address must be aligned to 4 bytes, i.e. bits 1:0 are reserved. On parts that

do not support 64 bit mode, the bits 63:32 are reserved and must be 0.

 IA32_INTERRUPT_SSP_TABLE_ADDR (0x6A8) – linear address of the table of pointers to shadow

stacks to be switched to when initiating a stack switch in 64 bit mode through IST mechanism. Must

be machine canonical when written on parts that support 64 bit mode. On parts that do not support

64 bit mode, this MSR is not present.

8.5 CET Extended State Management

CET defines two set of state that can be saved and restored with XSAVES/XRSTORS. The user space CET

state save/restore is controlled by the IA32_XSS.CET_U[bit 11] and the supervisor space CET state save/re-

store is controlled by IA32_XSS.CET_S[bit 12].

XSAVE feature set support for CET is enumerated by the sub-leaf functions CPUID.(EAX=0DH, ECX=1),

CPUID.(EAX = 0DH, ECX = 11), CPUID.(EAX = 0DH, ECX = 12).

 Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1) returns:
 EBX

o If CET_U bit (bit 11) set in IA32_XSS then reports additional 16 bytes to save CET user

state.
o If CET_S bit (bit 12) set in IA32_XSS then reports additional 24 bytes to save CET supervi-

sor state.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

140 Document Number: 334525-003, Revision 3.0

o ECX

 IA32_XSS[CET_U] bit (bit 11) is supported if 1.
 IA32_XSS[CET_S] bit (bit 12) is supported if 1.

 Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 11) returns:

o EAX – 16 bytes
o EBX – 0
o ECX – 1 (supervisory state)
o EDX – 0

 Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 12) returns:
o EAX – 24 bytes
o EBX – 0

o ECX – 1 (supervisory state)
o EDX – 0

The CET_U state buffer is as follows.

 Offset 0: IA32_U_CET

 Offset 8: IA32_PL3_SSP

The CET_S state buffer is as follows.

 Offset 0: IA32_PL0_SSP

 Offset 8 : IA32_PL1_SSP

 Offset 16: IA32_PL2_SSP

XRSTORS on CET state will do reserved bit and canonicality checks on the state in similar manner as done

by the WRMSR to these state elements.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 141

9 Shadow Stack, Paging and EPT
This section describes interactions between the shadow-stack feature and memory management as con-
trolled by paging and EPT.

The shadow-stack feature defines numerous operations that may access a shadow stack as part of new

instructions or of CET-defined changes to existing control-flow operations.
While these shadow-stack accesses use linear addresses, as do ordinary data accesses, the processor dis-
tinguishes them from ordinary data accesses. Specifically, the paging and EPT features enforce access rights

differently for shadow-stack accesses. In part, this is done by identifying certain pages as shadow-stack
pages.

Like ordinary data accesses, each shadow-stack access is defined (for paging and EPT) as being either a
user access or a supervisor access. In general, a shadow-stack access is a user access if CPL = 3 and a
supervisor access if CPL < 3. The WRUSS instruction is an exception: although it can be executed only if
CPL = 0, the processor treats its shadow-stack accesses as user accesses.

This section describes in the impact on paging and EPT when shadow stacks are enabled by setting CR4.CET.
The processor does not allow CR4.CET to be set if CR0.WP = 0 (similarly, it does not allow CR0.WP to be

cleared while CR4.CET = 1). As a result, this section does not account for the treatment of shadow-stack
pages when CR0.WP = 0.

When paging is disabled (CR0.PG=0), the shadow stack accesses are allowed to complete always.

Section 9.1 how the existing paging architecture is extended to identify certain pages as shadow-stack
pages. Section 9.2 explains how paging enforces access rights for shadow-stack pages.

9.1 Shadow-Stack Pages as Defined by Paging
In its translation of a linear address, paging defines the properties of the address’s page based on the

paging-structure entries used to translate the address. For example, a user-mode page is one in which the
U/S flag (bit 2) is 1 in each of the paging-structure entries used to translate an address on the page.

When CR4.CET = 1, paging identifies certain pages as shadow-stack pages. A page is a shadow-stack page
if following are all true of its translation:

 The R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation except the last
entry (the entry that maps the page).

 The R/W flag is 0 in the paging-structure entry maps the page.

 The dirty flag (bit 6) is 1 in the paging-structure entry maps the page.

Normally, whenever there is a write to a page, the processor sets the dirty flag in the paging-structure entry

that maps the page. As long as CR0.WP = 1, no processor that supports CET will ever set the dirty flag in a
paging-structure entry in which the R/W flag is 0. This ensures that software has full control over which
pages are shadow-stack pages.

Because the R/W flag is 0 in the paging-structure entry that maps a shadow-stack page, ordinary data
writes are not allowed to shadow-stack pages. A shadow-stack page may be either a user-mode page or a
supervisor-mode page, depending on the values of the U/S flags in the paging-structure entries that trans-

late the page. Ordinary data reads from shadow-stack page may be allowed subject to ordinary paging
access rights.

9.2 Shadow-Stack Access Rights as Enforced by Paging (Outside an Enclave)
As noted earlier, the shadow-stack feature defines certain memory accesses as shadow-stack accesses.

Outside an enclave, paging enforces access rights on shadow-stack accesses as follows:
 A shadow-stack access is not allowed to a page that is not a shadow-stack page as defined in

Section 9.1.
 A user-mode shadow-stack access is not allowed to a supervisor-mode page. (In general, user-

mode accesses are not allowed to supervisor-mode pages.) Recall that the shadow-stack accesses
made by the WRUSS instruction are user-mode accesses, even though that instruction requires

CPL = 0.

 A supervisor-mode shadow-stack access is not allowed to a user-mode page. (This may be enforced
more generally if CR4.SMAP = 1; it is enforced for shadow-stack accesses regardless of the value
of CR4.SMAP.)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

142 Document Number: 334525-003, Revision 3.0

 The fact that the R/W flag is 0 in the paging-structure entry maps a shadow-stack page (which must

be the case) does not prevent shadow-stack writes to that page.
 Shadow-stack accesses are not allowed to a page for which protection keys disable access.

 Shadow-stack write accesses are not allowed to a page for which protection keys disable write

access.

A shadow-stack access causes a page fault (#PF) when any of the above conditions disallow the access. (A
page fault also occurs if there is a no translation for the access’s linear address due a paging-structure entry

that is not present or that sets a reserved bit.)

Any page fault caused by a shadow-stack access sets the SS flag (bit 6) in the error code associated with

the page fault. Other bits in the error code are set normally.

The paging interactions described in this section apply only when software is not in an enclave. Section 9.3
describes the treatment of shadow-stack accesses in an enclave.

9.3 Shadow-Stack Accesses in an Enclave
When software is in an enclave, shadow-stack accesses are treated differently from how they are outside

an enclave (Section 9.2). The following items provide details:
 Shadow-stack accesses from inside an enclave to a linear address outside that enclave (outside its

ELRANGE) result in a #GP(0) exception. This exception has priority higher than linear-address trans-
lation through paging.

 Shadow-stack accesses from inside an enclave are subject to the same access rights as ordinary
data accesses (including protection keys). In particular, they are not limited to shadow-stack pages
as defined in Section 9.1; shadow-stack write accesses are not allowed to page for which the R/W

flag is 0 in the paging-structure entry maps the page

Even though they are subject to the same access rights as ordinary data accesses, a page fault caused by

a shadow-stack access from inside an enclave sets the SS flag (bit 6) in the error code associated with the
page fault. (Other bits in the error code are set normally.)

A shadow-stack access allowed by paging is subject new enclave access controls specific to shadow-stack

accesses. Violations of these access controls cause SGX-induced page faults. See Section 13.1 for more
details.

9.4 Basic EPT Control of Shadow-Stack Accesses
Extend page tables (EPT) is a feature by which a virtual-machine monitor (VMM) can specify the translation
of the guest-physical addresses, which are the output of ordinary paging as configured by supervisor soft-
ware in a virtual machine (VM). Similar to ordinary paging, EPT is defined with a hierarchy of paging struc-

tures, and it specifies, for each translated guest-physical address, a physical address and access rights.
The basic EPT mechanism does not treat shadow-stack accesses differently from ordinary data accesses.
Shadow-stack read (write) accesses are treated the same as ordinary read (write) accesses. Section 9.5

introduces a new EPT feature distinguishes shadow-stack accesses from ordinary data accesses.

A violation of access control established by EPT is called an EPT violation. EPT violations are generally de-

livered as VM exits. EPT violations save information about the access and the violation in the exit qualifica-
tion in the current VMCS.

When the shadow-stack feature is enabled, a new bit is defined in the exit qualification used by EPT viola-

tions. Specifically, bit 13 (which had been reserved) is set to 1 by any EPT violation resulting from a shadow-
stack access. Other bits in the exit qualification are set normally.

9.5 Supervisor Shadow-Stack Control
The definition of shadow-stack pages by paging (Section 9.1) ensures the integrity of those pages by pro-

tecting them from ordinary data writes. While this protects shadow-stack use by user code, supervisor
shadow-stack pages might be compromised by malicious supervisor software that reconfigures the paging

structures temporarily to allow writes to a shadow-stack page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 143

A VMM can prevent such attacks by using EPT to prevent writes to supervisor shadow-stack pages of a VM;

such protection will apply regardless the access rights established by ordinary paging. There are two chal-
lenges to protecting supervisor shadow-stack pages in this way: (1) the VMM must know which guest-
physical addresses hold the VM’s supervisor shadow-stack pages; and (2) shadow-stack writes to these

pages should be allowed while ordinary data writes should not.

The first challenge can be addresses through paravirtualization. The VMM must define a mechanism by
which supervisor software in a VM can identify to the VMM the guest-physical addresses of supervisor

shadow-stack pages. Techniques for accomplishing this are outside the scope of this document.
The second challenge is addressed by a new EPT feature called supervisor shadow-stack control, a feature
designed to prevent such attacks on supervisor software operating in a virtual machine. With this feature,

a virtual-machine monitor (VMM), operating outside the virtual machine, can identify supervisor shadow-
stack pages using extended page table (EPT).

Supervisor shadow-stack control is enabled by setting a bit in the extended-page-table pointer (EPTP) field

in the VMCS. Specifically, supervisor shadow-stack control is enabled if bit 7 of EPTP (which had been re-
served) is 1.

When supervisor shadow-stack control is enabled, the processor identifies a supervisor shadow-stack pages
using bit 60 of the EPT paging-structure entry maps the page; this bit is called the supervisor shadow-stack
(SSS) bit. (The processor ignores bit 60 of other EPT paging-structure entries. When supervisor shadow-

stack control is not enabled, the processor ignores bit 60 of all EPT paging-structure entries.)

Section 9.5.1 explains how EPT defines supervisor shadow-stack pages, while Section 9.5.2 details how EPT
controls supervisor shadow-stack accesses.

9.5.1 Supervisor Shadow-Stack Pages as Defined by EPT
In its translation of a guest-physical address, EPT defines the properties of the address’s page based on the
EPT paging-structure entries used to translate the address. For example, a page is writeable if the W bit

(bit 1) is 1 in each of the EPT paging-structure entries used to translate an address on the page.

When supervisor shadow-stack control is enabled, EPT identifies certain pages as supervisor shadow-stack
pages. A page is a supervisor shadow-stack page if following are all true of its translation:

 The R bit (bit 0) is 1 in every EPT paging-structure entry controlling the translation.

 The W bit (bit 1) is 1 in every EPT paging-structure entry controlling the translation except the last
entry (the entry that maps the page).

 The SSS bit (bit 60) is 1 in the EPT paging-structure entry maps the page.

9.5.2 Supervisor Shadow-Stack Access Rights as Enforced by EPT
As noted earlier, certain memory accesses as shadow-stack accesses. As explained earlier, each such access

is either a user access or a supervisor access. EPT applies no special treatment to user shadow-stack ac-
cesses (see Section 9.4; this is true also for supervisor shadow-stack accesses when supervisor shadow-
stack control is not enabled). When supervisor shadow-stack control is enabled, EPT paging enforces access

rights on supervisor shadow-stack accesses as follows:
 A supervisor shadow-stack access is not allowed to a page that is not a supervisor shadow-stack

page as defined in Section 9.5.1.
 The fact that the W bit is 0 in the EPT paging-structure entry maps a supervisor shadow-stack page

(which is allowed) does not prevent supervisor shadow-stack writes to that page.

A supervisor shadow-stack access causes an EPT violation if the first condition above disallows the access.

(An EPT violation also occurs if there is a no translation for the access’s guest-physical address due an EPT
paging-structure entry that is not present or that sets a reserved bit.)
(Because the W bit may be 0 in the EPT paging-structure entry that maps a supervisor shadow-stack page,

ordinary data writes may be disallowed to supervisor shadow-stack pages while still allowing supervisor

shadow-stack writes. It is not possible to disallow ordinary data reads from supervisor shadow-stack pages
while still allowing shadow-stack accesses.)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

144 Document Number: 334525-003, Revision 3.0

When supervisor shadow-stack control is enabled, a new bit is defined in the exit qualification used by EPT

violations. Specifically, an EPT violation resulting from an access to a guest-physical address sets bit 14 of
the exit qualification (which had been reserved) as follows:

 If there is a no translation for the guest-physical address (due an EPT paging-structure entry that

is not present or that sets a reserved bit), bit 14 is cleared to 0.
 Otherwise, bit 14 contains the value of the SSS bit (bit 6) in the EPT paging-structure entry mapping

the page containing the guest-physical address.

The items above apply to all EPT violations that occur when supervisor shadow-stack control is enabled (and
not only to those resulting from supervisor shadow-stack accesses).

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 145

10 VMX Interactions
This section describes the interactions of CET with VM-exits and VM-entries to/from the executive monitor

and the SMM-transfer monitor. For interactions with SMM when the dual-monitor treatment is not activated.

A VMM emulating control transfer instructions or events (e.g., indirect call, indirect jmp, task switch, etc.)

for a CET enabled guest must emulate the corresponding CET state changes.

10.1 VMCS Guest State Area Extensions
To support CET, the VMCS Guest-state area is extended to add following new state elements.

Field Encod-

ing

Size

(bits)

VMX_GUEST_IA32_S_CET 0x6828 Natu-

ral

Guest IA32_S_CET MSR. This

field is defined if CPUID.(EAX=7,

ECX=0):ECX.CET_SS is 1 or if
CPUID.(EAX=7,

ECX=0):EDX.CET_IBT is 1

VMX_GUEST_SSP 0x682A Natu-
ral

Guest Shadow Stack Pointer
(SSP). This field is defined if

CPUID.(EAX=7,

ECX=0):ECX.CET_SS is 1

VMX_GUEST_IA32_INTER-
RUPT_SSP_TABLE_ADDR

0x682C Natu-
ral

Guest IA32_INTER-
RUPT_SSP_TABLE_ADDR MSR. .

This field is defined if
CPUID.(EAX=7,

ECX=0):ECX.CET_SS is 1

10.2 VMCS Host State Area Extensions
To support CET, the VMCS Host-state area is extended to add following new state elements.

Field Encod-
ing

Size
(bits)

VMX_HOST_IA32_S_CET 0x6C18 Natu-

ral

Host IA32_S_CET MSR. This field

is defined if CPUID.(EAX=7,

ECX=0):ECX.CET_SS is 1 or if
CPUID.(EAX=7,

ECX=0):EDX.CET_IBT is 1

VMX_HOST_SSP 0x6C1A Natu-

ral

Host Shadow Stack Pointer

(SSP). This field is defined if
CPUID.(EAX=7,

ECX=0):ECX.CET_SS is 1

VMX_HOST_IA32_INTER-

RUPT_SSP_TABLE_ADDR
0x6C1C Natu-

ral

Host IA32_INTERRUPT_SSP_TA-

BLE_ADDR MSR. This field is de-
fined if CPUID.(EAX=7,

ECX=0):ECX.CET_SS is 1

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

146 Document Number: 334525-003, Revision 3.0

10.3 VMCS VM-Exit Controls Extensions
The VM-Exit controls are extended with a new exit control as follows.

Bit Posi-

tion(s)

Name Description

28 Load Host CET state. This control determines if CET state in the VMCS host

state area is loaded on VM exit.

10.4 VMCS VM-Entry Controls Extensions
The VM-Entry controls are extended with a new exit control as follows.

Bit Posi-
tion(s)

Name Description

20 Load Guest CET state. This control determines if CET state in the VMCS guest

state area is loaded on VM entry.

10.5 EPTP
The EPTP field of VMCS is extended as follows:

Bit Posi-

tion(s)

Name Description

7 Enable supervisor shadow

stack control.
Enable supervisor shadow stack control bit in EPT.

When enabled, the SSS bit in the EPT PTE provides read/write permission to supervisor (U/S=0) shadow stack ac-

cesses. User shadow stack accesses test EPT read/write permissions normally.

10.6 VM Exit
On processors that support CET, the VM exit saves the state of IA32_S_CET, SSP and IA32_INTER-

RUPT_SSP_TABLE_ADDR MSR to the VMCS guest-state area unconditionally.

If “Load host CET state” VM-exit control is 1, the CET state is restored from the VMCS host-state area as

follows.

 IA32_S_CET MSR is loaded from the IA32_S_CET field. Bits that are reserved in the MSR are maintained

with their reserved values. If host address space size is 1 then each of the 63:N of the EB_LEG_BIT-

MAP_BASE field of this MSR is set to the value of the N-1 bit (where N is the linear-address bits) else bits

63:32 are set to 0. If the TRACKER is set to WAIT_FOR_ENDBRANCH and SUPPRESS is 1 then then SUP-

PRESS is cleared to 0.

 SSP is loaded from the HOST_SSP field. If host address space size is 1 then each of the 63:N is set to the

value of the N-1 bit (where N is the linear-address bits) else bits 63:32 are set to 0.

 IA32_INTERRUPT_SSP_TABLE_ADDR MSR is loaded from the IA32_INTERRUPT_SSP_TABLE_ADDR field.

If host address space size is 1, each of the bits 63:N is set to the value of the N-1 bit (where N is the

supported number of linear-address bits).

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 147

To context switch guest CET state the VMM uses XSAVES/XRSTORS instructions to save/restore the guest

CET state. The VMM can then use the “Load guest CET state” control to reload the supervisor mode CET

state of the guest as saved in the VMCS.

VM exit may abort if the VMCS is updated following VM entry to set host state CR0.WP=0 and CR4.CET=1.

10.7 VM Entry

Following early VM entry checks are performed and failures leads to a VM entry failure with RFLAGS.ZF set

to 1 and VM instruction error field set to 7 indicating “VM entry with invalid control fields”.

 On processors that do not support CET, setting the “load host CET state” exit control or “load guest

CET state” entry control must be 0.

 On processors that do not support CET, “Enable supervisor shadow stack control” control bit in EPTP

must be 0 if EPT is enabled.

If the “Load host CET state” VM-exit control is 1, then the host state area checks are extended as follows.

Failure of these checks leads to a VM entry failure with RFLAGS.ZF set to 1 and the VM-instruction error

field set to 8 indicating “VM entry with invalid host state fields”.

 IA32_S_CET bits 9:6 must be 0. If host address space size is 0 then bits 63:32 must be 0 else EB_LEG_BIT-

MAP_BASE field of this MSR must contain a canonical address. Both tracker and suppress bits must not be

both set to 1.

 If host address space size is 0 then bits 63:32 of HOST_SSP must be 0 else HOST_SSP must contain a

canonical address.

 IA32_INTERRUPT_SSP_TABLE_ADDR fields must contain a canonical address.

If “Load Guest CET State” VM-entry control is 1, the guest state area checks are extended as follows and

failure of these checks to a failed VM entry VM exit with reason set to “Bad guest state”.

 IA32_S_CET bits 9:6 must be 0. Linear address in bits 63:12 must be canonical. Both tracker and suppress

bits must not be both set to 1.

 The GUEST_SSP fields must have Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is 0

or if the L bit (bit 13) in the access rights field for CS is 0. If the processor supports N < 64 linear-address

bits, bits 63:N must be identical if the “IA-32e mode guest” VM-entry control is 1 and the L bit in the

access-rights field for CS is 1.

 IA32_INTERRUPT_SSP_TABLE_ADDR fields must contain a canonical address.

Additionally VM entry checks the disallowed configuration of CR0.WP and CR4.CET as follows.

 If host CR0.WP=0 and host CR4.CET=1 then VM entry fails with RFLAGS.ZF set to 1 and VM-instruction

error field set to 8 indicating “VM entry with invalid host state”.

 If guest CR0.WP=0 and guest CR4.CET=1 then VM entry leads to failed VM entry VM exit with reason set

to “Bad guest state”.

The VM-entry interrupt information field consistency checks are extended to allow #CP to be delivered with

an error code. The #CP exception is delivered as a contributory exception. The bit 11 of the VM-entry

interruption-information field determines whether delivery pushes an error code on the guest stack. If the

valid bit (bit 31) of the VM-entry interruption-information field is 1, the field's deliver-error-code bit (bit 11)

shall be 1 if and only if (1) either (a) the "unrestricted guest" VMexecution control is 0; or (b) bit 0 (corre-

sponding to CR0.PE) is set in the CR0 field in the guest-state area; (2) the interruption type is hardware

exception; and (3) the vector indicates an exception that would normally deliver an error code (8 = #DF;

10 = TS; 11 = #NP; 12 = #SS; 13 = #GP; 14 = #PF; 17 = #AC; or 21=#CP) and IA32_VMX_BASIC MSR

bit 56 is enumerated as 0. On parts that enumerate IA32_VMX_BASIC MSR bit as 1, any exception vector,

including #CP, can be delivered with or without an error code if the other consistency checks are satisfied.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

148 Document Number: 334525-003, Revision 3.0

Subsequent to these checks the IA32_S_CET, SSP and IA32_INTERRUPT_SSP_TABLE_ADDR MSR are

loaded from corresponding guest-state VMCS fields.

10.8 IA32_VMX_EPT_VPID_CAP
Bit 23 of this MSR enumerates support for setting “Enable Shadow Stack Control” (bit 7) in EPTP.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 149

11 SMM Interactions
This section describes the interactions of CET with SMIs and RSM when the dual-monitor treatment is not

activated.

11.1 SMRAM State Save Map
The SMRAM state save map is extended as follows:

Offset (Added to
SMBASE + 8000H)

MSR Address
(on processors
that support in-
ternal state
save)

Register Writeable?

0xFEC8 C26H SSP Yes

11.2 SMI Handler Execution Environment

Processors that support CET shadow stacks, save the SSP registers to the SMRAM state save area. The

CR4.CET is cleared to 0 on SMI. Thus the initial execution environment of the SMI handler has CET disabled

and all of the CET state still in the machine. An SMM that uses CET is required to save and restore the CET

state in the processor.

On an SMM VM exit caused by a VMCALL that activates the dual-monitor treatment, the current VMCS is the

one established by the executive monitor and does not contain the VM-exit controls and host state required

to initialize the STM. This VM exit thus initializes the CR4 state to a fixed value or value loaded from content

of MSEG header. The CR4.CET is cleared on this SMM VM exit caused by a VMCALL that activates the dual-

monitor treatment.

11.3 RSM

The RSM on processors that support CET shadow stacks loads the SSP value from the SMRAM state save

area. On processors that support Intel 64 architecture, if the SSP value is not canonical then forces it to be

canonical by sign extending it.

RSM will go to shut down if attempting to restore CR0.WP to 0 and CR4.CET to 1.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

150 Document Number: 334525-003, Revision 3.0

12 TXT Interactions
GETSEC[ENTERACCS] and GETSEC[SENTER] clear CR4.CET, and it is not restored when these instructions

complete.

GETSEC[EXITAC] will cause #GP(0) fault if CR4.CET is set.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 151

13 SGX Interactions
This section discussions extensions to the SGX architecture to support CET.

13.1 CET in Enclaves Model
The basic model for CET support in an enclave is that the enclave has its private configuration for CET and
does not share it with the enclosing applications CET configuration. On entry into the enclave the CET state
of the enclosing application is saved into scratchpad registers inside the processor and the CET state of the

enclave is established. On an asynchronous exit the enclave CET state is saved into the enclave state save
area frame. On exit from the enclave the CET state of the enclosing application is re-established from the
scratchpad registers.

A new page type – PT_SS_FIRST – is used to denote pages in enclave that can be used as first page of a
shadow stack.

A new page type – PT_SS_REST – is used to denote pages in enclave that can be used as non-first page of
a shadow stack.

Having two page types allows OS software to ensure that dynamic thread creation within an enclave does
not cause one enclave thread to point its shadow stack pointer to the shadow stack of another thread. This
allows an operating system to ensure there is a guard page between any two shadow stacks.

A page denoted as PT_SS_FIRST and PT_SS_REST will be legal target for shadow_stack_load,
shadow_stack_store and regular load operations. Regular stores will be disallowed to such pages. A
PT_SS_FIRST/PT_SS_REST page must be writeable in the IA page tables and in EPT.

When in enclave mode, shadow_stack_load and shadow_stack_store operations must be to addresses in
the enclave ELRANGE. This prevents an enclave from operating on shadow stacks of the enclosing applica-

tion.

CET extends EAUG to enable CET EPC page allocation. In these case, the caller must provide a SECINFO
structure that specifies the page parameters. Shadow page permission must be R/W. Regular R/W pages

may continue to be allocated by providing a SECINFO pointer value of 0. Regular R/W pages may also be
allocated by providing a SECINFO structure that specifies the page parameters. The EDMM support for CET
pages will be enumerated with CET enumeration and thus any part that supports CET and EDMM will also

support the EDMM extensions for CET. The EAUG instruction creates a “shadow stack restore” token at offset
0xFF8 on a PT_SS_FIRST page. This allows a dynamically created shadow stack to be restored using the
RSTORSSP instruction. EADD and EAUG prevent creating a PT_SS_FIRST or PT_SS_REST page as the first

page or last page in ELRANGE to avoid SSP value of 0 or SSP value of (0xFFFFFFF8(32 bit
mode)/0xFFFFFFFF_FFFFFFF8(64 bit mode)) being misconfigured to be a valid shadow stack page in the
enclave.

EADD instruction requires that the PT_SS_REST page be all zero. The EADD instruction requires that a
PT_SS_FIRST page be all zero except the 8 bytes at offset 0xFF8 on that page that must have a “shadow
stack restore” token. This “shadow stack restore” token must have a linear address which is the linear

address of the PT_SS_FIRST page + 4096. As an enclave could be loaded at varying linear addresses, the
enclave builder is should not extend the measurement of the PT_SS_FIRST pages into the measurement
registers. On first entry on to the enclave using a TCS, the enclave software can use the RSTORSSP instruc-

tion to restore its SSP. Subsequent to performing a RSTORSSP the enclave software can use the INCSSP
instruction to pop the “previous ssp” token that is created by the RSTORSSP instruction at the top of the
restored shadow stack.

On an enclave entry, the SSP will be initialized to the value in a new TCS field called PREVSSP. The PREVSSP
is written with the value of SSP on enclave exit and is loaded into SSP at enclave entry. When a TCS page
is added using EADD or accepted using EACCEPT, the processor requires the PREVSSP field to be initialized

to 0.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

152 Document Number: 334525-003, Revision 3.0

13.2 Operations Not Supported on Shadow Stack Pages
Following operations are not allowed on pages of type PT_SS_FIRST and PT_SS_REST:

 EACCEPTCOPY
 EMODPR

 EMODPE

13.3 Indirect Branch Tracking – Legacy Compatibility Treatment
The legacy code page bitmap is tested using the page offset within the ELRANGE instead of the absolute linear

address of the address where ENDBRANCH was missed – see detailed algorithm in section 3.6.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 153

14 Enclave Access Control and Data Structures
14.1 Overview of Enclave Execution Environment

When an enclave is created, it has a range of linear addresses to which the processor applies enhanced access

control. This range is called the ELRANGE (see Section 14.3). When an enclave generates a memory access, the

existing IA32 segmentation and paging architecture are applied. Additionally, linear addresses inside the

ELRANGE must map to an EPC page otherwise when an enclave attempts to access that linear address a fault is

generated.

The EPC pages need not be physically contiguous. System software allocates EPC pages to various enclaves. En-

claves must abide by OS/VMM imposed segmentation and paging policies. OS/VMM-managed page tables and

extended page tables provide address translation for the enclave pages. Hardware requires that these pages are

properly mapped to EPC (any failure generates an exception).

Enclave entry must happen through specific enclave instructions:

• ENCLU[EENTER], ENCLU[ERESUME].

Enclave exit must happen through specific enclave instructions or events:

• ENCLU[EEXIT], Asynchronous Enclave Exit (AEX).

Attempts to execute, read, or write to linear addresses mapped to EPC pages when not inside an enclave will

result in the processor altering the access to preserve the confidentiality and integrity of the enclave. The exact

behavior may be different between implementations. As an example a read of an enclave page may result in the

return of all one's or return of ciphertext of the cache line. Writing to an enclave page may result in a dropped

write or a machine check at a later time. The processor will provide the protections as described in Section 14.4

and Section 14.5 on such accesses.

14.2 Terminology

A memory access to the ELRANGE and initiated by an instruction executed by an enclave is called a Direct En-

clave Access (Direct EA).

Memory accesses initiated by certain Intel® SGX instruction leaf functions such as ECREATE, EADD, EDBGRD,

EDBGWR, ELDU/ELDB, EWB, EREMOVE, EENTER, and ERESUME to EPC pages are called Indirect Enclave Ac-

cesses (Indirect EA). Table 2 lists additional details of the indirect EA of SGX1 and SGX2 extensions.

Direct EAs and Indirect EAs together are called Enclave Accesses (EAs).

Any memory access that is not an Enclave Access is called a non-enclave access.

14.3 Access-control Requirements

Enclave accesses have the following access-control attributes:

• All memory accesses must conform to segmentation and paging protection mechanisms.

• Code fetches from inside an enclave to a linear address outside that enclave result in a #GP(0) exception.

• Shadow-stack-load, shadow-stack-store or shadow-stack-store-intent from inside an enclave to a linear ad-

dress outside that enclave results in a #GP(0) exception.

• Non-enclave accesses to EPC memory result in undefined behavior. EPC memory is protected as described in

Section 14.4 and Section 14.5 on such accesses.

• EPC pages of page types PT_REG, PT_TCS and PT_TRIM must be mapped to ELRANGE at the linear address

specified when the EPC page was allocated to the enclave using ENCLS[EADD] or ENCLS[EAUG] leaf func-

tions. Enclave accesses through other linear address result in a #PF with the PFEC.SGX bit set.

• Direct EAs to any EPC pages must conform to the currently defined security attributes for that EPC page in

the EPCM. These attributes may be defined at enclave creation time (EADD) or when the enclave sets them

using SGX2 instructions. The failure of these checks results in a #PF with the PFEC.SGX bit set.

— Target page must belong to the currently executing enclave.

— Data may be written to an EPC page if the EPCM allow write access.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

154 Document Number: 334525-003, Revision 3.0

— Data may be read from an EPC page if the EPCM allow read access.

— Instruction fetches from an EPC page are allowed if the EPCM allows execute access.

— Shadow-stack-load from an EPC page and shadow-stack-store to an EPC page are allowed only if the

page type is PT_SS_FIRST or PT_SS_REST.

— Data writes that are not shadow-stack-store are not allowed if the EPCM page type is PT_SS_FIRST or

PT_SS_REST.

— Target page must not have a restricted page type2 (PT_SECS, PT_TCS, PT_VA, PT_SS_FIRST, PT_SS_REST

or PT_TRIM). The PT_SS_FIRST and PT_SS_REST pages are not restricted page types when

CPUID.(EAX=07H, ECX=00h):ECX[CET] is 1.

— The EPC page must not be BLOCKED.

— The EPC page must not be PENDING.

— The EPC page must not be MODIFIED.

14.4 Segment-based Access Control

Intel SGX architecture does not modify the segment checks performed by a logical processor. All memory ac-

cesses arising from a logical processor in protected mode (including enclave access) are subject to segmentation

checks with the applicable segment register.

To ensure that outside entities do not modify the enclave's logical-to-linear address translation in an unexpected

fashion, ENCLU[EENTER] and ENCLU[ERESUME] check that CS, DS, ES, and SS, if usable (i.e., not null), have

segment base value of zero. A non-zero segment base value for these registers results in a #GP(0).

On enclave entry either via EENTER or ERESUME, the processor saves the contents of the external FS and GS

registers, and loads these registers with values stored in the TCS at build time to enable the enclave’s use of

these registers for accessing the thread-local storage inside the enclave. On EEXIT and AEX, the contents at

time of entry are restored. On AEX, the values of FS and GS are saved in the SSA frame. On ERESUME, FS and

GS are restored from the SSA frame. The details of these operations can be found in the descriptions of EENTER,

ERESUME, EEXIT, and AEX flows.

14.5 Page-based Access Control
14.5.1 Access-control for Accesses that Originate from non-SGX Instructions

Intel SGX builds on the processor's paging mechanism to provide page-granular access-control for enclave

pages. Enclave pages are designed to be accessible only from inside the currently executing enclave if they be-

long to that enclave. In addition, enclave accesses must conform to the access control requirements described in

Section 14.3, or through certain Intel SGX instructions. Attempts to execute, read, or write to linear addresses

mapped to EPC pages when not inside an enclave will result in the processor altering the access to preserve the

confidentiality and integrity of the enclave. The exact behavior may be different between implementations.

14.5.2 Memory Accesses that Split across ELRANGE

Memory data accesses are allowed to split across ELRANGE (i.e., a part of the access is inside ELRANGE and a

part of the access is outside ELRANGE) while the processor is inside an enclave. If an access splits across

ELRANGE, the processor splits the access into two sub-accesses (one inside ELRANGE and the other outside

ELRANGE), and each access is evaluated. A code-fetch access that splits across ELRANGE results in a #GP due

to the portion that lies outside of the ELRANGE.

2EPCM may allow write, read or execute access only for pages with page type PT_REG.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 155

14.5.3 Implicit vs. Explicit Accesses

Memory accesses originating from Intel SGX instruction leaf functions are categorized as either explicit accesses

or implicit accesses. Table 2 lists the implicit and explicit memory accesses made by Intel SGX leaf functions.

14.5.3.1 Explicit Accesses

Accesses to memory locations provided as explicit operands to Intel SGX instruction leaf functions, or their

linked data structures are called explicit accesses.

Explicit accesses are always made using logical addresses. These accesses are subject to segmentation, paging,

extended paging, and APIC-virtualization checks, and trigger any faults/exit associated with these checks when

the access is made.

The interaction of explicit memory accesses with data breakpoints is leaf-function-specific.

14.5.3.2 Implicit Accesses

Accesses to data structures whose physical addresses are cached by the processor are called implicit accesses.

These addresses are not passed as operands of the instruction but are implied by use of the instruction.

These accesses do not trigger any access-control faults/exits or data breakpoints. Table 2 lists memory objects

that Intel SGX instruction leaf functions access either by explicit access or implicit access. The addresses of ex-

plicit access objects are passed via register operands with the second through fourth column of Table 2 match-

ing implicitly encoded registers RBX, RCX, RDX.

Physical addresses used in different implicit accesses are cached via different instructions and for different dura-

tions. The physical address of SECS associated with each EPC page is cached at the time the page is added to

the enclave via ENCLS[EADD] or ENCLS[EAUG], or when the page is loaded to EPC via ENCLS[ELDB] or

ENCLS[ELDU]. This binding is severed when the corresponding page is removed from the EPC via ENCLS[ERE-

MOVE] or ENCLS[EWB]. Physical addresses of TCS and SSA pages are cached at the time of most-recent enclave

entry. Exit from an enclave (ENCLU[EEXIT] or AEX) flushes this caching. Details of Asynchronous Enclave Exit is

described in Section 15.

The physical addresses that are cached for use by implicit accesses are derived from logical (or linear) addresses

after checks such as segmentation, paging, EPT, and APIC virtualization checks. These checks may trigger ex-

ceptions or VM exits. Note, however, that such exception or VM exits may not occur after a physical address is

cached and used for an implicit access.

Table 2 List of Implicit and Explicit Memory Access by Intel® SGX Enclave Instructions

Instr. Leaf Enum. Explicit 1 Explicit 2 Explicit 3 Implicit

EACCEPT SGX2 SECINFO EPCPAGE SECS

EACCEPTCOPY SGX2 SECINFO EPCPAGE (Src) EPCPAGE (Dst)

EADD SGX1 PAGEINFO and linked structures EPCPAGE

EAUG SGX2 PAGEINFO and linked structures EPCPAGE SECS

EBLOCK SGX1 EPCPAGE SECS

ECREATE SGX1 PAGEINFO and linked structures EPCPAGE

EDBGRD SGX1 EPCADDR Destination SECS

EDBGWR SGX1 EPCADDR Source SECS

EDECVIRTCHILD OVERSUB EPCPAGE SECS

EENTER SGX1 TCS and linked SSA SECS

EEXIT SGX1 SECS, TCS

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

156 Document Number: 334525-003, Revision 3.0

EEXTEND SGX1 SECS EPCPAGE

EGETKEY SGX1 KEYREQUEST KEY SECS

EINCVIRTCHILD OVERSUB EPCPAGE SECS

EINIT SGX1 SIGSTRUCT SECS EINITTOKEN

ELDB/ELDU SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE

ELDBC/ELDUC OVERSUB PAGEINFO and linked structures EPCPAGE VAPAGE

EMODPE SGX2 SECINFO EPCPAGE

EMODPR SGX2 SECINFO EPCPAGE SECS

EMODT SGX2 SECINFO EPCPAGE SECS

EPA SGX1 EPCADDR

ERDINFO OVERSUB RDINFO EPCPAGE

EREMOVE SGX1 EPCPAGE SECS

EREPORT SGX1 TARGETINFO REPORTDATA OUTPUTDATA SECS

ERESUME SGX1 TCS and linked SSA SECS

ESETCONTEXT OVERSUB SECS ContextValue

ETRACK SGX1 EPCPAGE

ETRACKC OVERSUB EPCPAGE

EWB SGX1 PAGEINFO and linked structures, PCMD EPCPAGE VAPAGE SECS

Asynchronous Enclave Exit* SECS, TCS,

SSA

*Details of Asynchronous Enclave Exit (AEX) is described in Section 15.4

14.6 Intel® SGX Data Structures Overview

Enclave operation is managed via a collection of data structures. Many of the top-level data structures contain

sub-structures. The top-level data structures relate to parameters that may be used in enclave setup/mainte-

nance, by Intel SGX instructions, or AEX event. The top-level data structures are:

• SGX Enclave Control Structure (SECS)

• Thread Control Structure (TCS)

• State Save Area (SSA)

• Page Information (PAGEINFO)

• Security Information (SECINFO)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 157

• Paging Crypto MetaData (PCMD)

• Enclave Signature Structure (SIGSTRUCT)

• EINIT Token Structure (EINITTOKEN)

• Report Structure (REPORT)

• Report Target Info (TARGETINFO)

• Key Request (KEYREQUEST)

• Version Array (VA)

• Enclave Page Cache Map (EPCM)

• Read Info (RDINFO)

Details of the top-level data structures and associated sub-structures are listed in Section 14.7 through Section

14.18.

14.7 SGX Enclave Control Structure (SECS)

The SECS data structure requires 4K-Bytes alignment.

Table 3 Layout of SGX Enclave Control Structure (SECS)

Field OFFSET (Bytes) Size (Bytes) Description

SIZE 0 8 Size of enclave in bytes; must be power of 2.

BASEADDR 8 8 Enclave Base Linear Address must be naturally aligned to size.

SSAFRAMESIZE 16 4 Size of one SSA frame in pages, including XSAVE, pad, GPR, and MISC (if

CPUID.(EAX=12H, ECX=0):.EBX != 0).

MISCSELECT 20 4 Bit vector specifying which extended features are saved to the MISC re-

gion (see Section 14.7.2) of the SSA frame when an AEX occurs.

CET_LEG_BITMA

P_OFFSET

24 8 Page aligned offset of legacy code page bitmap from enclave base. Soft-

ware is expected to program this offset such that the entire bitmap re-

sides in the ELRANGE when legacy compatibility mode for indirect branch

tracking is enabled. However this is not enforced by the hardware.

This field exists when CPUID.(EAX=7, ECX=0):EDX.CET_IBT[bit 20] is enu-

merated as 1 else it is reserved.

CET_ATTRIBUTE

S

32 1 CET feature attributes of the enclave, see Table 6. This field exists when

CPUID.(EAX=12,ECX=1):EAX[6] is enumerated as 1 else it is reserved.

RESERVED 33 15

ATTRIBUTES 48 16 Attributes of the Enclave, see Table 4.

MRENCLAVE 64 32 Measurement Register of enclave build process. See SIGSTRUCT for for-

mat.

RESERVED 96 32

MRSIGNER 128 32 Measurement Register extended with the public key that verified the en-

clave. See SIGSTRUCT for format.

RESERVED 160 32

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

158 Document Number: 334525-003, Revision 3.0

CONFIGID 192 64 Post EINIT configuration identity.

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.

CONFIGSVN 260 2 Post EINIT configuration security version number (SVN).

RESERVED 260 3834 The RESERVED field consists of the following:

• EID: An 8 byte Enclave Identifier. Its location is implementation specific.

• PAD: A 352 bytes padding pattern from the Signature (used for key

derivation strings). Its location is implementation specific.

• VIRTCHILDCNT: An 8 byte Count of virtual children that have been

paged out by a VMM. Its location is implementation specific.

• ENCLAVECONTEXT: An 8 byte Enclave context pointer. Its location is

implementation specific.

• ISVFAMILYID: A 16 byte value assigned to identify the family of

products the enclave belongs to.

• ISVEXTPRODID: A 16 byte value assigned to identify the product

identity of the enclave.

• The remaining 3226 bytes are reserved area.

The entire 3836 byte field must be cleared prior to executing ECREATE.

14.7.1 ATTRIBUTES

The ATTRIBUTES data structure is comprised of bit-granular fields that are used in the SECS, the REPORT and

the KEYREQUEST structures. CPUID.(EAX=12H, ECX=1) enumerates a bitmap of permitted 1-setting of bits in

ATTRIBUTES.

Table 4 Layout of ATTRIBUTES Structure

Field Bit Position Description

INIT 0 This bit indicates if the enclave has been initialized by EINIT. It must be cleared when loaded as

part of ECREATE. For EREPORT instruction, TARGET_INFO.ATTRIBUTES[ENIT] must always be 1

to match the state after EINIT has initialized the enclave.

DEBUG 1 If 1, the enclave permit debugger to read and write enclave data using EDBGRD and EDBGWR.

MODE64BIT 2 Enclave runs in 64-bit mode.

RESERVED 3 Must be Zero.

PROVISIONKEY 4 Provisioning Key is available from EGETKEY.

EINITTOKEN_KEY 5 EINIT token key is available from EGETKEY.

CET 6 Enable CET attributes. When CPUID.(EAX=12H, ECX=1):EAX[6] is 0 this bit is reserved and must

be 0.

KSS 7 Key Separation and Sharing Enabled.

RESERVED 63:8 Must be zero.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 159

XFRM 127:64 XSAVE Feature Request Mask.

14.7.2 SECS.MISCSELECT Field

CPUID.(EAX=12H, ECX=0):EBX[31:0] enumerates which extended information that the processor can save into

the MISC region of SSA when an AEX occurs. An enclave writer can specify via SIGSTRUCT how to set the

SECS.MISCSELECT field. The bit vector of MISCSELECT selects which extended information is to be saved in the

MISC region of the SSA frame when an AEX is generated. The bit vector definition of extended information is

listed in Table 5.

If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, SECS.MISCSELECT field must be all zeros.

The SECS.MISCSELECT field determines the size of MISC region of the SSA frame.

Table 5 Bit Vector Layout of MISCSELECT Field of Extended Information

Field Bit Position Description

EXINFO 0 Report information about page fault and general protection exception that occurred inside an

enclave.

CPINFO 1 Report information about control protection exception that occurred inside an enclave. When

CPUID.(EAX=12H, ECX=0):EBX[1] is 0, this bit is reserved.

Reserved 31:2 Reserved (0).

14.7.3 SECS.CET_ATTRIBUTES Field
This field can be used by the enclave writer to enable various CET attributes in an enclave. This field exists when

CPUID.(EAX=12,ECX=1):EAX[6] is enumerated as 1. Bits 1:0 are defined when CPUID.(EAX=7,

ECX=0):ECX.CET_SS is 1 and bits 5:2 are defined when CPUID.(EAX=7, ECX=0):EDX.CET_IBT is 1.

Table 6 Bit Vector Layout of CET_ATTRIBUTES Field of Extended Information

Field Bit Position Description

SH_STK_EN 0 When set to 1 enable shadow stacks.

WR_SHSTK_EN 1 When set to 1 enables the WRSS{D,Q}W instructions.

ENDBR_EN 2
When set to 1 enables indirect branch tracking.

LEG_IW_EN 3 Enable legacy compatibility treatment for indirect branch tracking.

NO_TRACK_EN 4 When set to 1 enables use of no-track prefix for indirect branch tracking.

SUPPRESS_DIS 5
When set to 1 disables suppression of CET indirect branch tracking on legacy compatibil-

ity.

Reserved 7:6 Reserved (0).

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

160 Document Number: 334525-003, Revision 3.0

14.8 Thread Control Structure (TCS)

Each executing thread in the enclave is associated with a Thread Control Structure. It requires 4K-Bytes align-

ment.

Table 7 Layout of Thread Control Structure (TCS)

Field OFFSET (Bytes) Size (Bytes) Description

STAGE 0 8 Enclave execution state of the thread controlled by this TCS. A value of 0 in-

dicates that this TCS is available for enclave entry. A value of 1 indicates that

a processer is currently executing an enclave in the context of this TCS.

FLAGS 8 8 The thread’s execution flags.

OSSA 16 8 Offset of the base of the State Save Area stack, relative to the enclave base.

Must be page aligned.

CSSA 24 4 Current slot index of an SSA frame, cleared by EADD and EACCEPT.

NSSA 28 4 Number of available slots for SSA frames.

OENTRY 32 8 Offset in enclave to which control is transferred on EENTER relative to the

base of the enclave.

AEP 40 8 The value of the Asynchronous Exit Pointer that was saved at EENTER time.

OFSBASGX 48 8 Offset to add to the base address of the enclave for producing the base ad-

dress of FS segment inside the enclave. Must be page aligned.

OGSBASGX 56 8 Offset to add to the base address of the enclave for producing the base ad-

dress of GS segment inside the enclave. Must be page aligned.

FSLIMIT 64 4 Size to become the new FS limit in 32-bit mode.

GSLIMIT 68 4 Size to become the new GS limit in 32-bit mode.

OCETSSA 72 8 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1 is 1, this field provides then Off-

set of CET state save area from enclave base. When CPUID.(EAX=12H,

ECX=1):EAX[6] is 1 is 0, this field is reserved and must be 0.

PREVSSP 80 8 When CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] is 1, this field records the

SSP at the time of AEX or EEXIT; used to setup SSP on entry. When

CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] is 0, this field is reserved and must

be 0

RESERVED 88 4024 Must be zero.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 161

14.8.1 TCS.FLAGS

Table 8 Layout of TCS.FLAGS Field

Field Bit Position Description

DBGOPTIN 0 If set, allows debugging features (single-stepping, breakpoints, etc.) to be enabled and active

while executing in the enclave on this TCS. Hardware clears this bit on EADD. A debugger may

later modify it if the enclave’s ATTRIBUTES.DEBUG is set.

RESERVED 63:1

14.8.2 State Save Area Offset (OSSA)

The OSSA points to a stack of State Save Area (SSA) frames (see Section 14.9) used to save the processor state

when an interrupt or exception occurs while executing in the enclave.

14.8.3 Current State Save Area Frame (CSSA)

CSSA is the index of the current SSA frame that will be used by the processor to determine where to save the

processor state on an interrupt or exception that occurs while executing in the enclave. It is an index into the

array of frames addressed by OSSA. CSSA is incremented on an AEX and decremented on an ERESUME.

14.8.4 Number of State Save Area Frames (NSSA)

NSSA specifies the number of SSA frames available for this TCS. There must be at least one available SSA frame

when EENTER-ing the enclave or the EENTER will fail.

14.9 State Save Area (SSA) Frame

When an AEX occurs while running in an enclave, the architectural state is saved in the thread’s current SSA

frame, which is pointed to by TCS.CSSA. An SSA frame must be page aligned, and contains the following re-

gions:

• The XSAVE region starts at the base of the SSA frame, this region contains extended feature register state in

an XSAVE/FXSAVE-compatible non-compacted format.

• A Pad region: software may choose to maintain a pad region separating the XSAVE region and the MISC re-

gion. Software choose the size of the pad region according to the sizes of the MISC and GPRSGX regions.

• The GPRSGX region. The GPRSGX region is the last region of an SSA frame (see Table 9). This is used to

hold the processor general purpose registers (RAX … R15), the RIP, the outside RSP and RBP, RFLAGS and

the AEX information.

• The MISC region (If CPUIDEAX=12H, ECX=0):EBX[31:0] != 0). The MISC region is adjacent to the GRPSGX

region, and may contain zero or more components of extended information that would be saved when an

AEX occurs. If the MISC region is absent, the region between the GPRSGX and XSAVE regions is the pad re-

gion that software can use. If the MISC region is present, the region between the MISC and XSAVE regions is

the pad region that software can use.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

162 Document Number: 334525-003, Revision 3.0

Table 9 Top-to-Bottom Layout of an SSA Frame

Region Offset (Byte) Size (Bytes) Description

XSAVE 0 Calculate using

CPUID leaf 0DH infor-

mation

The size of XSAVE region in SSA is derived from the enclave’s support of the

collection of processor extended states that would be managed by XSAVE. The

enablement of those processor extended state components in conjunction with

CPUID leaf 0DH information determines the XSAVE region size in SSA.

Pad End of XSAVE

region

Chosen by enclave

writer

Ensure the end of GPRSGX region is aligned to the end of a 4KB page.

MISC base of

GPRSGX –

sizeof(MISC)

Calculate from high-

est set bit of

SECS.MISCSELECT

See Section 0.

GPRSGX SSAFRAMESIZE

– 176

176 See Table 10 Layout of GPRSG for layout of the GPRSGX region.

14.9.1 GPRSGX Region

The layout of the GPRSGX region is shown in Table 10.

Table 10 Layout of GPRSGX Portion of the State Save Area

Field OFFSET (Bytes) Size (Bytes) Description

RAX 0 8

RCX 8 8

RDX 16 8

RBX 24 8

RSP 32 8

RBP 40 8

RSI 48 8

RDI 56 8

R8 64 8

R9 72 8

R10 80 8

R11 88 8

R12 96 8

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 163

R13 104 8

R14 112 8

R15 120 8

RFLAGS 128 8 Flag register.

RIP 136 8 Instruction pointer.

URSP 144 8 Non-Enclave (outside) stack pointer. Saved by EENTER, restored on AEX.

URBP 152 8 Non-Enclave (outside) RBP pointer. Saved by EENTER, restored on AEX.

EXITINFO 160 4 Contains information about exceptions that cause AEXs, which might be

needed by enclave software (see Section 14.9.1.1).

RESERVED 164 4

FSBASE 168 8 FS BASE.

GSBASE 176 8 GS BASE.

14.9.1.1 EXITINFO

EXITINFO contains the information used to report exit reasons to software inside the enclave. It is a 4 byte field

laid out as in Table 11. The VALID bit is set only for the exceptions conditions which are reported inside an en-

clave. See Table 12 for which exceptions are reported inside the enclave. If the exception condition is not one

reported inside the enclave then VECTOR and EXIT_TYPE are cleared.

Table 11 Layout of EXITINFO Field

Field Bit Position Description

VECTOR 7:0 Exception number of exceptions reported inside enclave.

EXIT_TYPE 10:8 011b: Hardware exceptions.

110b: Software exceptions.

Other values: Reserved.

RESERVED 30:11 Reserved as zero.

VALID 31 0: unsupported exceptions.

1: Supported exceptions. Includes two categories:

• Unconditionally supported exceptions: #DE, #DB, #BP, #BR, #UD, #MF, #AC, #XM.

• Conditionally supported exception:

— #PF, #GP if SECS.MISCSELECT.EXINFO = 1.

— #CP if SECS.MISCSELECT.CPINFO=1.

14.9.1.2 VECTOR Field Definition

Table 12 contains the VECTOR field. This field contains information about some exceptions which occur inside

the enclave. These vector values are the same as the values that would be used when vectoring into regular ex-

ception handlers. All values not shown are not reported inside an enclave.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

164 Document Number: 334525-003, Revision 3.0

Table 12 Exception Vectors

Name Vector # Description

#DE 0 Divider exception.

#DB 1 Debug exception.

#BP 3 Breakpoint exception.

#BR 5 Bound range exceeded exception.

#UD 6 Invalid opcode exception.

#GP 13 General protection exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

#PF 14 Page fault exception. Only reported if SECS.MISCSELECT.EXINFO = 1.

#MF 16 x87 FPU floating-point error.

#AC 17 Alignment check exceptions.

#XM 19 SIMD floating-point exceptions.

#CP 21 Control protection exception. Only reported if SECS.MISCSELECT.CPINFO=1

14.9.2 MISC Region

The layout of the MISC region is shown in Table 13. The number of components that the processor supports in

the MISC region corresponds to the bits of CPUID.(EAX=12H, ECX=0):EBX[31:0] set to 1. Each set bit in

CPUID.(EAX=12H, ECX=0):EBX[31:0] has a defined size for the corresponding component, as shown in Table

13. Enclave writers needs to do the following:

• Decide which MISC region components will be supported for the enclave.

• Allocate an SSA frame large enough to hold the components chosen above.

• Instruct each enclave builder software to set the appropriate bits in SECS.MISCSELECT.

The first component, EXINFO, starts next to the GPRSGX region. Additional components in the MISC region grow

in ascending order within the MISC region towards the XSAVE region.

The size of the MISC region is calculated as follows:

• If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISC region is not supported.

• If CPUID.(EAX=12H, ECX=0):EBX[31:0] != 0, the size of MISC region is derived from sum of the highest bit

set in SECS.MISCSELECT and the size of the MISC component corresponding to that bit. Offset and size in-

formation of currently defined MISC components are listed in Table 13. For example, if the highest bit set in

SECS.MISCSELECT is bit 0, the MISC region offset is OFFSET(GPRSGX)-16 and size is 16 bytes.

• The processor saves a MISC component i in the MISC region if and only if SECS.MISCSELECT[i] is 1.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 165

Table 13 Layout of MISC region of the State Save Area

MISC Components OFFSET (Bytes) Size (Bytes) Description

EXINFO Offset(GPRSGX) –

16

16 If CPUID.(EAX=12H, ECX=0):EBX[0] = 1, exception information on #GP or

#PF that occurred inside an enclave can be written to the EXINFO struc-

ture if specified by SECS.MISCSELECT[0] = 1.

If CPUID.(EAX=12H, ECX=0):EBX[1] = 1, exception information on #CP that

occurred inside an enclave can be written to the EXINFO structure if speci-

fied by SECS.MISCSELECT[1] = 1.

Future Extension Below EXINFO TBD Reserved. (Zero size if CPUID.(EAX=12H, ECX=0):EBX[31:1] =0).

14.9.2.1 EXINFO Structure

Table 14 contains the layout of the EXINFO structure that provides additional information.

Table 14 Layout of EXINFO Structure

Field OFFSET (Bytes) Size (Bytes) Description

MADDR 0 8 If #PF: contains the page fault linear address that caused a page fault.

If #GP: the field is cleared.

If #CP: the field is cleared.

ERRCD 8 4 Exception error code for either #GP or #PF.

RESERVED 12 4

14.9.2.2 Page Fault Error Code

Table 15 contains page fault error code that may be reported in EXINFO.ERRCD.

Table 15 Page Fault Error Code

Name Bit Position Description

P 0 Same as non-SGX page fault exception P flag.

W/R 1 Same as non-SGX page fault exception W/R flag.

U/S3 2 Always set to 1 (user mode reference).

RSVD 3 Same as non-SGX page fault exception RSVD flag.

I/D 4 Same as non-SGX page fault exception I/D flag.

PK 5 Protection Key induced fault.

RSVD 14:6 Reserved.

SGX 15 EPCM induced fault.

3Page faults incident to enclave mode that report U/S=0 are not reported in EXINFO.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

166 Document Number: 334525-003, Revision 3.0

RSVD 31:5 Reserved.

14.10 CET State Save Area Frame
The CET state save area consists of an array of CET state save frames. The number of CET state save frames is

equal to the TCS.NSSA. The current CET SSA frame is indicated by TCS.CSSA. The offset of the CET state save

area is specified by TCS.OCETSSA.

Field Offset

(bytes)

Size

(Bytes)

Description

SSP 0 8 Shadow Stack Pointer. This field is reserved when

CPUID.(EAX=7, ECX=0):ECX[CET_SS] is 0.

IB_TRACK_STATE 8 8 Indirect branch tracker state:

Bit 0: SUPPRESS – suppressed(1), tracking(0)

Bit 1: TRACKER - IDLE (0), WAIT_FOR_ENDBRANCH (1)

Bit 63:2 – Reserved

This field is reserved when CPUID.(EAX=7, ECX=0):EDX[CET_IBT]

is 0.

14.11 Page Information (PAGEINFO)

PAGEINFO is an architectural data structure that is used as a parameter to the EPC-management instructions. It

requires 32-Byte alignment.

Table 16 Layout of PAGEINFO Data Structure

Field OFFSET (Bytes) Size (Bytes) Description

LINADDR 0 8 Enclave linear address.

SRCPGE 8 8 Effective address of the page where contents are located.

SECINFO/PCMD 16 8 Effective address of the SECINFO or PCMD (for ELDU, ELDB, EWB) structure

for the page.

SECS 24 8 Effective address of EPC slot that currently contains the SECS.

14.12 Security Information (SECINFO)

The SECINFO data structure holds meta-data about an enclave page.

Table 17 Layout of SECINFO Data Structure

Field OFFSET (Bytes) Size (Bytes) Description

FLAGS 0 8 Flags describing the state of the enclave page.

RESERVED 8 56 Must be zero.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 167

14.12.1 SECINFO.FLAGS

The SECINFO.FLAGS are a set of fields describing the properties of an enclave page.

Table 18 Layout of SECINFO.FLAGS Field

Field Bit Position Description

R 0 If 1 indicates that the page can be read from inside the enclave; otherwise the page cannot be read

from inside the enclave.

W 1 If 1 indicates that the page can be written from inside the enclave; otherwise the page cannot be

written from inside the enclave.

X 2 If 1 indicates that the page can be executed from inside the enclave; otherwise the page cannot be

executed from inside the enclave.

PENDING 3 If 1 indicates that the page is in the PENDING state; otherwise the page is not in the PENDING state.

MODIFIED 4 If 1 indicates that the page is in the MODIFIED state; otherwise the page is not in the MODIFIED state.

PR 5 If 1 indicates that a permission restriction operation on the page is in progress, otherwise a permis-

sion restriction operation is not in progress.

RESERVED 7:6 Must be zero.

PAGE_TYPE 15:8 The type of page that the SECINFO is associated with.

RESERVED 63:16 Must be zero.

14.12.2 PAGE_TYPE Field Definition

The SECINFO flags and EPC flags contain bits indicating the type of page.

Table 19 Supported PAGE_TYPE

TYPE Value Description

PT_SECS 0 Page is an SECS.

PT_TCS 1 Page is a TCS.

PT_REG 2 Page is a regular page.

PT_VA 3 Page is a Version Array.

PT_TRIM 4 Page is in trimmed state.

PT_SS_FIRST 5 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, Page is first page of a shadow stack. When

CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this value is reserved.

PT_SS_REST 6 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, Page is not first page of a shadow stack. When

CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this value is reserved.

 All other Reserved.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

168 Document Number: 334525-003, Revision 3.0

14.13 Paging Crypto MetaData (PCMD)

The PCMD structure is used to keep track of crypto meta-data associated with a paged-out page. Combined with

PAGEINFO, it provides enough information for the processor to verify, decrypt, and reload a paged-out EPC

page. The size of the PCMD structure (128 bytes) is architectural.

EWB calculates the Message Authentication Code (MAC) value and writes out the PCMD. ELDB/U reads the fields

and checks the MAC.

The format of PCMD is as follows:

Table 20 Layout of PCMD Data Structure

Field OFFSET (Bytes) Size (Bytes) Description

SECINFO 0 64 Flags describing the state of the enclave page; R/W by software.

ENCLAVEID 64 8 Enclave Identifier used to establish a cryptographic binding between paged-

out page and the enclave.

RESERVED 72 40 Must be zero.

MAC 112 16 Message Authentication Code for the page, page meta-data and re-

served field.

14.14 Enclave Signature Structure (SIGSTRUCT)

SIGSTRUCT is a structure created and signed by the enclave developer that contains information about the en-

clave. SIGSTRUCT is processed by the EINIT leaf function to verify that the enclave was properly built.

SIGSTRUCT includes ENCLAVEHASH as SHA256 digest, as defined in FIPS PUB 180-4. The digests are byte

strings of length 32. Each of the 8 HASH dwords is stored in little-endian order.

SIGSTRUCT includes four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2). Each such integer is represented

as a byte strings of length 384, with the most significant byte at the position “offset + 383”, and the least signif-

icant byte at position “offset”.

The (3072-bit integer) SIGNATURE should be an RSA signature, where: a) the RSA modulus (MODULUS) is a

3072-bit integer; b) the public exponent is set to 3; c) the signing procedure uses the EMSA-PKCS1-v1.5 format

with DER encoding of the “DigestInfo” value as specified in of PKCS#1 v2.1/RFC 3447.

The 3072-bit integers Q1 and Q2 are defined by:

q1 = floor(Signature^2 / Modulus);

q2 = floor((Signature^3 - q1 * Signature * Modulus) / Modulus);

SIGSTRUCT must be page aligned

In column 5 of Table 21, ‘Y’ indicates that this field should be included in the signature generated by the devel-

oper.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 169

Table 21 Layout of Enclave Signature Structure (SIGSTRUCT)

Field OFFSET (Bytes) Size (Bytes) Description Signed

HEADER 0 16 Must be byte stream

06000000E10000000000010000000000H

Y

VENDOR 16 4 Intel Enclave: 00008086H

Non-Intel Enclave: 00000000H

Y

DATE 20 4 Build date is yyyymmdd in hex:

yyyy=4 digit year, mm=1-12, dd=1-31

Y

HEADER2 24 16 Must be byte stream

01010000600000006000000001000000H

Y

SWDEFINED 40 4 Available for software use. Y

RESERVED 44 84 Must be zero. Y

MODULUS 128 384 Module Public Key (keylength=3072 bits). N

EXPONENT 512 4 RSA Exponent = 3. N

SIGNATURE 516 384 Signature over Header and Body. N

MISCSELECT* 900 4 Bit vector specifying Extended SSA frame feature set to be

used.

Y

MISCMASK* 904 4 Bit vector mask of MISCSELECT to enforce. Y

CET_ATTRIBUTES 908 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field pro-

vides Enclave CET attributes that must be set. When

CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this field is reserved

and must be 0.

Y

CET_ATTRIBUTES

_MASK

909 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field pro-

vides Mask of CET attributes to enforce. When

CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this field is reserved

and must be 0.

Y

RESERVED 910 2 Must be zero. Y

ISVFAMILYID 912 16 ISV assigned Product Family ID. Y

ATTRIBUTES 928 16 Enclave Attributes that must be set. Y

ATTRIBUTEMASK 944 16 Mask of Attributes to enforce. Y

ENCLAVEHASH 960 32 MRENCLAVE of enclave this structure applies to. Y

RESERVED 992 16 Must be zero. Y

ISVEXTPRODID 1008 16 ISV assigned extended Product ID. Y

ISVPRODID 1024 2 ISV assigned Product ID. Y

ISVSVN 1026 2 ISV assigned SVN (security version number). Y

RESERVED 1028 12 Must be zero. N

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

170 Document Number: 334525-003, Revision 3.0

Q1 1040 384 Q1 value for RSA Signature Verification. N

Q2 1424 384 Q2 value for RSA Signature Verification. N

* If CPUID.(EAX=12H, ECX=0):EBX[31:0] = 0, MISCSELECT must be 0.

If CPUID.(EAX=12H, ECX=0):EBX[31:0] !=0, enclave writers must specify MISCSELECT such that each

cleared bit in MISCMASK must also specify the corresponding bit as 0 in MISCSELECT.

14.15 EINIT Token Structure (EINITTOKEN)

The EINIT token is used by EINIT to verify that the enclave is permitted to launch. EINIT token is generated by

an enclave in possession of the EINITTOKEN key (the Launch Enclave).

EINIT token must be 512-Byte aligned.

Table 22 Layout of EINIT Token (EINITTOKEN)

Field OFFSET (Bytes) Size (Bytes) MACed Description

Valid 0 4 Y Bit 0: 1: Valid; 0: Invalid.

All other bits reserved.

RESERVED 4 44 Y Must be zero.

ATTRIBUTES 48 16 Y ATTRIBUTES of the Enclave.

MRENCLAVE 64 32 Y MRENCLAVE of the Enclave.

RESERVED 96 32 Y Reserved.

MRSIGNER 128 32 Y MRSIGNER of the Enclave.

RESERVED 160 32 Y Reserved.

CPUSVNLE 192 16 N Launch Enclave’s CPUSVN.

ISVPRODIDLE 208 02 N Launch Enclave’s ISVPRODID.

ISVSVNLE 210 02 N Launch Enclave’s ISVSVN.

CET_MASKED_A

TTRIBUTES_LE

212 1 N When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field provides

Launch enclaves masked CET attributes. This should be set to LE’s

CET_ATTRIBUTES masked with CET_ATTTRIBUTES_MASK of the

LE’s KEYREQUEST. When CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this

field is reserved.

RESERVED 213 23 N Reserved.

MASKEDMISCSEL

ECTLE

236 4 Launch Enclave’s MASKEDMISCSELECT: set by the LE to the resolved

MISCSELECT value, used by EGETKEY (after applying KEYREQUEST’s

masking).

MASKEDATTRIBU

TESLE

240 16 N Launch Enclave’s MASKEDATTRIBUTES: This should be set to the

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 171

LE’s ATTRIBUTES masked with ATTRIBUTEMASK of the LE’s KEYRE-

QUEST.

KEYID 256 32 N Value for key wear-out protection.

MAC 288 16 N Message Authentication Code on EINITTOKEN using EINITTO-

KEN_KEY.

14.16 Report (REPORT)

The REPORT structure is the output of the EREPORT instruction, and must be 512-Byte aligned.

Table 23 Layout of REPORT

Field OFFSET (Bytes) Size (Bytes) Description

CPUSVN 0 16 The security version number of the processor.

MISCSELECT 16 4 Bit vector specifying which extended features are saved to the MISC region of

the SSA frame when an AEX occurs.

CET_ATTRIBUTE

S

20 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field reports the CET_ATTRIB-

UTES of the Enclave. When CPUID.(EAX=12H, ECX=1):EAX[6] is 0, this field is re-

served and must be 0.

RESERVED 21 11 Zero.

ISVEXTNPRODID 32 16 The value of SECS.ISVEXTPRODID.

ATTRIBUTES 48 16 ATTRIBUTES of the Enclave. See Section 14.7.1.

MRENCLAVE 64 32 The value of SECS.MRENCLAVE.

RESERVED 96 32 Zero.

MRSIGNER 128 32 The value of SECS.MRSIGNER.

RESERVED 160 32 Zero.

CONFIGID 192 64 Value provided by SW to identify enclave's post EINIT configuration.

ISVPRODID 256 2 Product ID of enclave.

ISVSVN 258 2 Security version number (SVN) of the enclave.

CONFIGSVN 260 2 Value provided by SW to indicate expected SVN of enclave's post EINIT configu-

ration.

RESERVED 262 42 Zero.

ISVFAMILYID 304 16 The value of SECS.ISVFAMILYID.

REPORTDATA 320 64 Data provided by the user and protected by the REPORT's MAC.

KEYID 384 32 Value for key wear-out protection.

MAC 416 16 Message Authentication Code on the report using report key.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

172 Document Number: 334525-003, Revision 3.0

14.16.1 REPORTDATA

REPORTDATA is a 64-Byte data structure that is provided by the enclave and included in the REPORT. It can be

used to securely pass information from the enclave to the target enclave.

14.17 Report Target Info (TARGETINFO)

This structure is an input parameter to the EREPORT leaf function. The address of TARGETINFO is specified as an

effective address in RBX. It is used to identify the target enclave which will be able to cryptographically verify

the REPORT structure returned by EREPORT. TARGETINFO must be 512-Byte aligned.

Table 24 Layout of TARGETINFO Data Structure

Field OFFSET (Bytes) Size (Bytes) Description

MEASUREMENT 0 32 The MRENCLAVE of the target enclave.

ATTRIBUTES 32 16 The ATTRIBUTES field of the target enclave.

CET_ATTRIBUTE

S

48 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, then this field provides the

CET_ATTRIBUTES field of the target enclave. When CPUID.(EAX=12H,

ECX=1):EAX[6] is 0, this field is reserved.

RESERVED 49 1 Must be zero.

CONFIGSVN 50 2 CONFIGSVN of the target enclave.

MISCSELECT 52 4 The MISCSELECT of the target enclave.

RESERVED 56 8 Must be zero.

CONFIGID 64 64 CONFIGID of target enclave.

RESERVED 128 384 Must be zero.

14.18 Key Request (KEYREQUEST)

This structure is an input parameter to the EGETKEY leaf function. It is passed in as an effective address in RBX

and must be 512-Byte aligned. It is used for selecting the appropriate key and any additional parameters re-

quired in the derivation of that key.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 173

Table 25 Layout of KEYREQUEST Data Structure

Field OFFSET (Bytes) Size (Bytes) Description

KEYNAME 0 2 Identifies the Key Required.

KEYPOLICY 2 2 Identifies which inputs are required to be used in the key derivation.

ISVSVN 4 2 The ISV security version number that will be used in the key derivation.

CET_ATTRIBUTE

S_MASK

6 1 When CPUID.(EAX=12H, ECX=1):EAX[6] is 1, this field provides a mask defin-

ing which CET_ATTRIBUTES bits will be included in key derivation. When

CPUID.(EAX=12H, ECX=1):EAX[6] is 0, then this field is reserved and must be

0.

RESERVED 7 1 Must be zero.

CPUSVN 8 16 The security version number of the processor used in the key derivation.

ATTRIBUTEMASK 24 16 A mask defining which ATTRIBUTES bits will be included in key derivation.

KEYID 40 32 Value for key wear-out protection.

MISCMASK 72 4 A mask defining which MISCSELECT bits will be included in key derivation.

CONFIGSVN 76 2 Identifies which enclave Configuration's Security Version should be used in

key derivation.

RESERVED 78 434

14.18.1 KEY REQUEST KeyNames

Table 26 Supported KEYName Values

Key Name Value Description

EINITTOKEN_KEY 0 EINIT_TOKEN key

PROVISION_KEY 1 Provisioning Key

PROVISION_SEAL_KEY 2 Provisioning Seal Key

REPORT_KEY 3 Report Key

SEAL_KEY 4 Seal Key

 All other Reserved

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

174 Document Number: 334525-003, Revision 3.0

14.18.2 Key Request Policy Structure

Table 27 Layout of KEYPOLICY Field

Field Bit Position Description

MRENCLAVE 0 If 1, derive key using the enclave's MRENCLAVE measurement register.

MRSIGNER 1 If 1, derive key using the enclave's MRSIGNER measurement register.

NOISVPRODID 2 If 1, derive key WITHOUT using the enclave' ISVPRODID value.

CONFIGID 3 If 1, derive key using the enclave's CONFIGID value.

ISVFAMILYID 4 If 1, derive key using the enclave ISVFAMILYID value.

ISVEXTPRODID 5 If 1, derive key using enclave's ISVEXTPRODID value.

RESERVED 15:6 Must be zero.

14.19 Version Array (VA)

In order to securely store the versions of evicted EPC pages, Intel SGX defines a special EPC page type called a

Version Array (VA). Each VA page contains 512 slots, each of which can contain an 8-byte version number for a

page evicted from the EPC. When an EPC page is evicted, software chooses an empty slot in a VA page; this slot

receives the unique version number of the page being evicted. When the EPC page is reloaded, there must be a

VA slot that must hold the version of the page. If the page is successfully reloaded, the version in the VA slot is

cleared.

VA pages can be evicted, just like any other EPC page. When evicting a VA page, a version slot in some other VA

page must be used to hold the version for the VA being evicted. A Version Array Page must be 4K-Bytes aligned.

Table 28 Layout of Version Array Data Structure

Field OFFSET (Bytes) Size (Bytes) Description

Slot 0 0 8 Version Slot 0

Slot 1 8 8 Version Slot 1

...

Slot 511 4088 8 Version Slot 511

14.20 Enclave Page Cache Map (EPCM)

EPCM is a secure structure used by the processor to track the contents of the EPC. The EPCM holds exactly one

entry for each page that is currently loaded into the EPC. EPCM is not accessible by software, and the layout of

EPCM fields is implementation specific.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 175

Table 29 Content of an Enclave Page Cache Map Entry

Field Description

VALID Indicates whether the EPCM entry is valid.

R Read access; indicates whether enclave accesses for reads are allowed from the EPC page referenced by

this entry.

W Write access; indicates whether enclave accesses for writes are allowed to the EPC page referenced by

this entry.

X Execute access; indicates whether enclave accesses for instruction fetches are allowed from the EPC page

referenced by this entry.

PT EPCM page type (PT_SECS, PT_TCS, PT_REG, PT_VA, PT_TRIM, PT_SS_FIRST, PT_SS_REST).

ENCLAVESECS SECS identifier of the enclave to which the EPC page belongs.

ENCLAVEADDRESS Linear enclave address of the EPC page.

BLOCKED Indicates whether the EPC page is in the blocked state.

PENDING Indicates whether the EPC page is in the pending state.

MODIFIED Indicates whether the EPC page is in the modified state.

PR Indicates whether the EPC page is in a permission restriction state.

14.21 Read Info (RDINFO)

The RDINFO structure contains status information about an EPC page. It must be aligned to 32-Bytes.

Table 30 Layout of RDINFO Structure

Field
OFFSET

(Bytes)
Size (Bytes) Description

STATUS 0 8 Page status information.

FLAGS 8 8 EPCM state of the page.

ENCLAVECONTEXT 16 8 Context pointer describing the page's parent location.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

176 Document Number: 334525-003, Revision 3.0

14.21.1 RDINFO Status Structure

Table 31 Layout of RDINFO STATUS Structure

Field Bit Position Description

CHILDPRESENT 0 Indicates that the page has one or more child pages present (always zero for non-SECS

pages). In VMX non-root operation includes the presence of virtual children.

VIRTCHLDPRESENT 1 Indicates that the page has one or more virtual child pages present (always zero for non-

SECS pages). In VMX non-root operation this value is always zero.

RESERVED 63:2

14.21.2 RDINFO Flags Structure

Table 32 Layout of RDINFO FLAGS Structure

Field Bit Position Description

R 0 Read access; indicates whether enclave accesses for reads are allowed from the EPC

page referenced by this entry.

W 1 Write access; indicates whether enclave accesses for writes are allowed to the EPC page

referenced by this entry.

X 2 Execute access; indicates whether enclave accesses for instruction fetches are allowed

from the EPC page referenced by this entry.

PENDING 3 Indicates whether the EPC page is in the pending state.

MODIFIED 4 Indicates whether the EPC page is in the modified state.

PR 5 Indicates whether the EPC page is in a permission restriction state.

RESERVED 7:6

PAGE_TYPE 15:8 Indicates the page type of the EPC page.

RESERVED 62:16

BLOCKED 63 Indicates whether the EPC page is in the blocked state.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 177

15 Enclave Exiting Events
Certain events, such as exceptions and interrupts, incident to (but asynchronous with) enclave execution may

cause control to transition outside of enclave mode. (Most of these also cause a change of privilege level.) To

protect the integrity and security of the enclave, the processor will exit the enclave (and enclave mode) before

invoking the handler for such an event. For that reason, such events are called enclave-exiting events (EEE);

EEEs include external interrupts, non-maskable interrupts, system-management interrupts, exceptions, and VM

exits.

The process of leaving an enclave in response to an EEE is called an asynchronous enclave exit (AEX). To

protect the secrecy of the enclave, an AEX saves the state of certain registers within enclave memory and then

loads those registers with fixed values called synthetic state.

15.1 Compatible Switch to the Exiting Stack of AEX

AEXs load registers with a pre-determined synthetic state. These registers may be later pushed onto the appro-

priate stack in a form as defined by the enclave-exiting event. To allow enclave execution to resume after the

invoking handler has processed the enclave exiting event, the asynchronous enclave exit loads the address of

trampoline code outside of the enclave into RIP. This trampoline code eventually returns to the enclave by

means of an ENCLU(ERESUME) leaf function. Prior to exiting the enclave the RSP and RBP registers are restored

to their values prior to enclave entry.

The stack to be used is chosen using the same rules as for non-SGX mode:

• If there is a privilege level change, the stack will be the one associated with the new ring.

• If there is no privilege level change, the current application stack is used.

• If the IA-32e IST mechanism is used, the exit stack is chosen using that method.

Figure 6 Exit Stack Just After Interrupt with Stack Switch

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

178 Document Number: 334525-003, Revision 3.0

In all cases, the choice of exit stack and the information pushed onto it is consistent with non-SGX operation.

Figure 6 shows the Application and Exiting Stacks after an exit with a stack switch. An exit without a stack

switch uses the Application Stack. The ERESUME leaf index value is placed into RAX, the TCS pointer is placed in

RBX and the AEP (see below) is placed into RCX to facilitate resuming the enclave after the exit.

Upon an AEX, the AEP (Asynchronous Exit Pointer) is loaded into the RIP. The AEP points to a trampoline code

sequence which includes the ERESUME instruction that is later used to reenter the enclave.

The following bits of RFLAGS are cleared before RFLAGS is pushed onto the exit stack: CF, PF, AF, ZF, SF, OF,

RF. The remaining bits are left unchanged.

15.2 State Saving by AEX

The State Save Area holds the processor state at the time of an AEX. To allow handling events within the en-

clave and re-entering it after an AEX, the SSA can be a stack of multiple SSA frames as illustrated in Figure 7.

Figure 7 The SSA Stack

The location of the SSA frames to be used is controlled by the following variables in the TCS and the SECS:

• Size of a frame in the State Save Area (SECS.SSAFRAMESIZE): This defines the number of 4-KByte pages in

a single frame in the State Save Area. The SSA frame size must be large enough to hold the GPR state, the

XSAVE state, and the MISC state.

• Base address of the enclave (SECS.BASEADDR): This defines the enclave's base linear address from which

the offset to the base of the SSA stack is calculated.

• Number of State Save Area Slots (TCS.NSSA): This defines the total number of slots (frames) in the State

Save Area stack.

• Current State Save Area Slot (TCS.CSSA): This defines the slot to use on the next exit.

• State Save Area Offset (TCS.OSSA): This defines the offset of the base address of a set of State Save Area

slots from the enclave’s base address.

When an AEX occurs, hardware selects the SSA frame to use by examining TCS.CSSA. Processor state is saved

into the SSA frame (see Section 15.4) and loaded with a synthetic state (as described in Section 15.3.1) to

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 179

avoid leaking secrets, RSP and RBP are restored to their values prior to enclave entry, and TCS.CSSA is incre-

mented. As will be described later, if an exception takes the last slot, it will not be possible to reenter the en-

clave to handle the exception from within the enclave. A subsequent ERESUME restores the processor state from

the current SSA frame and frees the SSA frame.

The format of the XSAVE section of SSA is identical to the format used by the XSAVE/XRSTOR instructions. On

EENTER, CSSA must be less than NSSA, ensuring that there is at least one State Save Area slot available for

exits. If there is no free SSA frame when executing EENTER, the entry will fail.

15.3 Synthetic State on Asynchronous Enclave Exit
15.3.1 Processor Synthetic State on Asynchronous Enclave Exit

Table 33 shows the synthetic state loaded on AEX. The values shown are the lower 32 bits when the processor is

in 32 bit mode and 64 bits when the processor is in 64 bit mode.

Table 33 GPR, x87 Synthetic States on Asynchronous Enclave Exit

Register Value

RAX 3 (ENCLU[3] is ERESUME).

RBX Pointer to TCS of interrupted enclave thread.

RCX AEP of interrupted enclave thread.

RDX, RSI, RDI 0.

RSP Restored from SSA.uRSP.

RBP Restored from SSA.uRBP.

R8-R15 0 in 64-bit mode; unchanged in 32-bit mode.

RIP AEP of interrupted enclave thread.

RFLAGS CF, PF, AF, ZF, SF, OF, RF bits are cleared. All other bits are left unchanged.

x87/SSE State Unless otherwise listed here, all x87 and SSE state are set to the INIT state. The INIT state is the state

that would be loaded by the XRSTOR instruction with bits 1:0 both set in the requested feature bit-

mask (RFBM), and both clear in XSTATE_BV the XSAVE header.

FCW On #MF exception: set to 037EH. On all other exits: set to 037FH.

FSW On #MF exception: set to 8081H. On all other exits: set to 0H.

MXCSR On #XM exception: set to 1F01H. On all other exits: set to 1FB0H.

CR2 If the event that caused the AEX is a #PF, and the #PF does not directly cause a VM exit, then the low

12 bits are cleared.

If the #PF leads directly to a VM exit, CR2 is not updated (usual IA behavior).

Note: The low 12 bits are not cleared if a #PF is encountered during the delivery of the EEE that

caused the AEX. This is because the #PF was not the EEE.

FS, GS Restored to values as of most recent EENTER/ERESUME.

15.3.2 Synthetic State for Extended Features

When CR4.OSXSAVE = 1, extended features (those controlled by XCR0[63:2]) are set to their respective INIT

states when this corresponding bit of SECS.XFRM is set. The INIT state is the state that would be loaded by the

XRSTOR instruction had the instruction mask and the XSTATE_BV field of the XSAVE header each contained the

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

180 Document Number: 334525-003, Revision 3.0

value XFRM. (When the AEX occurs in 32-bit mode, those features that do not exist in 32-bit mode are un-

changed.)

15.3.3 Synthetic State for MISC Features

State represented by SECS.MISCSELECT might also be overridden by synthetic state after it has been saved into

the SSA. State represented by MISCSELECT[0] is not overridden but if the exiting event is a page fault then

lower 12 bits of CR2 are cleared.

15.4 AEX Flow

On Enclave Exiting Events (interrupts, exceptions, VM exits or SMIs), the processor state is securely saved in-

side the enclave, a synthetic state is loaded and the enclave is exited. The EEE then proceeds in the usual exit-

defined fashion. The following sections describes the details of an AEX:

1. The exact processor state saved into the current SSA frame depends on whether the enclave is a 32-bit or a

64-bit enclave. In 32-bit mode (IA32_EFER.LMA = 0 || CS.L = 0), the low 32 bits of the legacy registers

(EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EIP and EFLAGS) are stored. The upper 32 bits of the legacy reg-

isters and the 64-bit registers (R8 … R15) are not stored.

 In 64-bit mode (IA32_EFER.LMA = 1 && CS.L = 1), all 64 bits of the general processor registers (RAX, RBX,

RCX, RDX, RSP, RBP, RSI, RDI, R8 … R15, RIP and RFLAGS) are stored.

 The state of those extended features specified by SECS.ATTRIBUTES.XFRM are stored into the XSAVE area of

the current SSA frame. The layout of the x87 and XMM portions (the 1st 512 bytes) depends on the current
values of IA32_EFER.LMA and CS.L:

 If IA32_EFER.LMA = 0 || CS.L = 0, the same format (32-bit) that XSAVE/FXSAVE uses with these values.

 If IA32_EFER.LMA = 1 && CS.L = 1, the same format (64-bit) that XSAVE/FXSAVE uses with these values

when REX.W = 1.

 The cause of the AEX is saved in the EXITINFO field.

 The state of those miscellaneous features specified by SECS.MISCSELECT are stored into the MISC area of

the current SSA frame.

 If CET was enabled in the enclave then the CET state of the enclave is saved in the CET state save area. If

shadow stacks were enabled in the enclave then the SSP is also saved into the TCS.PREVSSP field.

2. Synthetic state is created for a number of processor registers to present an opaque view of the enclave

state. Table 33 shows the values for GPRs, x87, SSE, FS, GS, Debug and performance monitoring on AEX.

The synthetic state for other extended features (those controlled by XCR0[62:2]) is set to their respective

INIT states when their corresponding bit of SECS.ATTRIBUTES.XFRM is set. The INIT state is that state as

defined by the behavior of the XRSTOR instruction when HEADER.XSTATE_BV[n] is 0. Synthetic state of

those miscellaneous features specified by SECS.MISCSELECT depends on the miscellaneous feature. There is

no synthetic state required for the miscellaneous state controlled by SECS.MISCSELECT[0].

3. Any code and data breakpoints that were suppressed at the time of enclave entry are unsuppressed when

exiting the enclave.

4. RFLAGS.TF is set to the value that it had at the time of the most recent enclave entry (except for the situa-

tion that the entry was opt-in for debug). In the SSA, RFLAGS.TF is set to 0.

5. RFLAGS.RF is set to 0 in the synthetic state. In the SSA, the value saved is the same as what would have

been saved on stack in the non-SGX case (architectural value of RF). Thus, AEXs due to interrupts, traps,

and code breakpoints save RF unmodified into SSA, while AEXs due to other faults save RF as 1 in the SSA.

 If the event causing AEX happened on intermediate iteration of a REP-prefixed instruction, then RF=1 is saved

on SSA, irrespective of its priority.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 181

6. Any performance monitoring activity (including PEBS) or profiling activity (LBR, Tracing using Intel PT) on

the exiting thread that was suppressed due to the enclave entry on that thread is unsuppressed. Any count-

ing that had been demoted from AnyThread counting to MyThread counting (on one logical processor) is pro-

moted back to AnyThread counting.

6. The CET state of the enclosing application is restored to the state at the time of the most recent enclave en-

try and if CET indirect branch tracking was enabled then the indirect branch tracker is unsuppressed and

moved to WAIT_FOR_ENDBRANCH state.

15.4.1 AEX Operational Detail

Temp Variables in AEX Operational Flow

Name Type Size (bits) Description

TMP_RIP Effective Address 32/64 Address of instruction at which to resume execution on ERESUME.

TMP_MODE64 binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_BRANCH_RECORD LBR Record 2x64 From/To address to be pushed onto LBR stack.

The pseudo code in this section describes the internal operations that are executed when an AEX occurs in en-

clave mode. These operations occur just before the normal interrupt or exception processing occurs.

(* Save RIP for later use *)

TMP_RIP = Linear Address of Resume RIP

(* Is the processor in 64-bit mode? *)

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Save all registers, When saving EFLAGS, the TF bit is set to 0 and

 the RF bit is set to what would have been saved on stack in the non-SGX case *)

 IF (TMP_MODE64 = 0)

 THEN

 Save EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI, EFLAGS, EIP into the current SSA frame using

CR_GPR_PA; (* see Table 38 for list of CREGs used to describe internal operation within Intel SGX *)

 SSA.RFLAGS.TF  0;

 ELSE (* TMP_MODE64 = 1 *)

 Save RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI, R8-R15, RFLAGS, RIP into the current SSA frame using

CR_GPR_PA;

 SSA.RFLAGS.TF  0;

FI;

Save FS and GS BASE into SSA using CR_GPR_PA;

(* store XSAVE state into the current SSA frame's XSAVE area using the physical addresses

 that were determined and cached at enclave entry time with CR_XSAVE_PAGE_i. *)

For each XSAVE state i defined by (SECS.ATTRIBUTES.XFRM[i] = 1, destination address cached in

CR_XSAVE_PAGE_i)

 SSA.XSAVE.i  XSAVE_STATE_i;

(* Clear bytes 8 to 23 of XSAVE_HEADER, i.e. the next 16 bytes after XHEADER_BV *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

182 Document Number: 334525-003, Revision 3.0

CR_XSAVE_PAGE_0.XHEADER_BV[191:64]  0;

(* Clear bits in XHEADER_BV[63:0] that are not enabled in ATTRIBUTES.XFRM *)

CR_XSAVE_PAGE_0.XHEADER_BV[63:0] 

 CR_XSAVE_PAGE_0.XHEADER_BV[63:0] & SECS(CR_ACTIVE_SECS).ATTRIBUTES.XFRM;

 Apply synthetic state to GPRs, RFLAGS, extended features, etc.

(* Restore the RSP and RBP from the current SSA frame's GPR area using the physical address

 that was determined and cached at enclave entry time with CR_GPR_PA. *)

RSP  CR_GPR_PA.URSP;

RBP  CR_GPR_PA.URBP;

(* Restore the FS and GS *)

FS.selector  CR_SAVE_FS.selector;

FS.base  CR_SAVE_FS.base;

FS.limit  CR_SAVE_FS.limit;

FS.access_rights  CR_SAVE_FS.access_rights;

GS.selector  CR_SAVE_GS.selector;

GS.base  CR_SAVE_GS.base;

GS.limit  CR_SAVE_GS.limit;

GS.access_rights  CR_SAVE_GS.access_rights;

(* Examine exception code and update enclave internal states*)

exception_code  Exception or interrupt vector;

(* Indicate the exit reason in SSA *)

IF (exception_code = (#DE OR #DB OR #BP OR #BR OR #UD OR #MF OR #AC OR #XM))

 THEN

 CR_GPR_PA.EXITINFO.VECTOR  exception_code;

 IF (exception code = #BP)

 THEN CR_GPR_PA.EXITINFO.EXIT_TYPE  6;

 ELSE CR_GPR_PA.EXITINFO.EXIT_TYPE  3;

 FI;

 CR_GPR_PA.EXITINFO.VALID  1;

 ELSE IF (exception_code is #PF or #GP)

 THEN

 (* Check SECS.MISCSELECT using CR_ACTIVE_SECS *)

 IF (SECS.MISCSELECT[0] is set)

 THEN

 CR_GPR_PA.EXITINFO.VECTOR  exception_code;

 CR_GPR_PA.EXITINFO.EXIT_TYPE  3;

 IF (exception_code is #PF)

 THEN

 SSA.MISC.EXINFO. MADDR  CR2;

 SSA.MISC.EXINFO.ERRCD  PFEC;

 SSA.MISC.EXINFO.RESERVED  0;

 ELSE

 SSA.MISC.EXINFO. MADDR  0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 183

 SSA.MISC.EXINFO.ERRCD  GPEC;

 SSA.MISC.EXINFO.RESERVED  0;

 FI;

 CR_GPR_PA.EXITINFO.VALID  1;

 ELSE IF (exception code is #CP)
 THEN

 IF (SECS.MISCSELECT[1] is set)
 THEN

 CR_GPR_PA.EXITINFO.VECTOR exception_code;

 CR_GPR_PA.EXITINFO.EXIT_TYPE 3;
 CR_GPR_PA.EXITINFO.VALID 1;

 SSA.MISC.EXINFO. MADDR 0;
 SSA.MISC.EXINFO.ERRCD CPEC;
 SSA.MISC.EXINFO.RESERVED 0;

 FI;
 FI;

 ELSE

 CR_GPR_PA.EXITINFO.VECTOR  0;

 CR_GPR_PA.EXITINFO.EXIT_TYPE  0

 CR_GPR_PA.REASON.VALID  0;

FI;

(* Execution will resume at the AEP *)

RIP  CR_TCS_PA.AEP;

(* Set EAX to the ERESUME leaf index *)

EAX  3;

(* Put the TCS LA into RBX for later use by ERESUME *)

RBX  CR_TCS_LA;

(* Put the AEP into RCX for later use by ERESUME *)

RCX  CR_TCS_PA.AEP;

(* Increment the SSA frame # *)

CR_TCS_PA.CSSA  CR_TCS_PA.CSSA + 1;

(* Restore XCR0 if needed *)

IF (CR4.OSXSAVE = 1)

 THEN XCR0  CR_SAVE_XCR0; FI;

Un-suppress all code breakpoints that are outside ELRANGE

IF (CPUID.(EAX=12H, ECX=1):EAX[6]= 1)

 THEN

IF (CR4.CET == 1 AND IA32_U_CET.SH_STK_EN == 1)

 THEN

 CR_CET_SAVE_AREA_PA.SSP  SSP;

 CR_TCS_PA.PREVSSP  SSP;

FI;

IF (CR4.CET == 1 AND IA32_U_CET.ENDBR_EN == 1)

 THEN

 CR_CET_SAVE_AREA_PA.TRACKER  IA32_U_CET.TRACKER;

 CR_CET_SAVE_AREA_PA.SUPPRESS  IA32_U_CET.SUPPRESS

FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

184 Document Number: 334525-003, Revision 3.0

(* restore enclosing applications CET state *)

IA32_U_CET  CR_SAVE_IA32_U_CET;

IF (CPUID.(EAX=7, ECX=0):ECX[CET_SS])

 SSP  CR_SAVE_SSP; FI;

(* If indirect branch tracking enabled for enclosing application *)

(* then move the tracker to wait_for_endbranch *)

IF (CR4.CET == 1 AND IA32_U_CET.ENDBR_EN == 1)

 THEN

 IA32_U_CET.TRACKER  WAIT_FOR_ENDBRANCH;

 IA32_U_CET.SUPPRESS  0;

FI;

 FI;

(* Update the thread context to show not in enclave mode *)

CR_ENCLAVE_MODE  0;

(* Assure consistent translations. *)

Flush linear context including TLBs and paging-structure caches

IF (CR_DBGOPTIN = 0)

 THEN

 Un-suppress all breakpoints that overlap ELRANGE

 (* Clear suppressed breakpoint matches *)

 Restore suppressed breakpoint matches

 (* Restore TF *)

 RFLAGS.TF  CR_SAVE_TF;

 Un-suppress monitor trap flag;

 Un-suppress branch recording facilities;

 Un-suppress all suppressed performance monitoring activity;

 Promote any sibling-thread counters that were demoted from AnyThread to MyThread during enclave en-

try back to AnyThread;

FI;

IF the “monitor trap flag” VM-execution control is 1

 THEN Pend MTF VM Exit at the end of exit; FI;

(* Clear low 12 bits of CR2 on #PF *)

IF (Exception code is #PF)

 THEN CR2  CR2 & ~0xFFF; FI;

(* end_of_flow *)

(* Execution continues with normal event processing. *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 185

16 SGX Instruction References
This chapter describes the supervisor and user level instructions provided by Intel® Software Guard Extensions

(Intel® SGX). In general, various functionality is encoded as leaf functions within the ENCLS (supervisor), ENCLU

(user), and the ENCLV (virtualization operation) instruction mnemonics. Different leaf functions are encoded by

specifying an input value in the EAX register of the respective instruction mnemonic.

16.1 Intel® SGX Instruction Syntax and Operation

ENCLS, ENCLU and ENCLV instruction mnemonics for all leaf functions are covered in this section.

For all instructions, the value of CS.D is ignored; addresses and operands are 64 bits in 64-bit mode and are

otherwise 32 bits. Aside from EAX specifying the leaf number as input, each instruction leaf may require all or

some subset of the RBX/RCX/RDX as input parameters. Some leaf functions may return data or status infor-

mation in one or more of the general purpose registers.

16.1.1 ENCLS Register Usage Summary

Table 34 summarizes the implicit register usage of supervisor mode enclave instructions.

Table 34 Register Usage of Privileged Enclave Instruction Leaf Functions

Instr. Leaf EAX RBX RCX RDX

ECREATE 00H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EADD 01H (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EINIT 02H (In) SIGSTRUCT (In, EA) SECS (In, EA) EINITTOKEN (In, EA)

EREMOVE 03H (In) EPCPAGE (In, EA)

EDBGRD 04H (In) Result Data (Out) EPCPAGE (In, EA)

EDBGWR 05H (In) Source Data (In) EPCPAGE (In, EA)

EEXTEND 06H (In) SECS (In, EA) EPCPAGE (In, EA)

ELDB 07H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ELDU 08H (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

EBLOCK 09H (In) EPCPAGE (In, EA)

EPA 0AH (In) PT_VA (In) EPCPAGE (In, EA)

EWB 0BH (In) PAGEINFO (In, EA) EPCPAGE (In, EA) VERSION (In, EA)

ETRACK 0CH (In) EPCPAGE (In, EA)

EAUG 0DH (In) PAGEINFO (In, EA) EPCPAGE (In, EA)

EMODPR 0EH (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODT 0FH (In) SECINFO (In, EA) EPCPAGE (In, EA)

ERDINFO 010H (In) RDINFO (In, EA*) EPCPAGE (In, EA)

ETRACKC 011H (In) EPCPAGE (In, EA)

ELDBC 012H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

186 Document Number: 334525-003, Revision 3.0

ELDUC 013H (In) PAGEINFO (In, EA*) EPCPAGE (In, EA) VERSION (In, EA)

EA: Effective Address

16.1.2 ENCLU Register Usage Summary

Table 35 summarizes the implicit register usage of user mode enclave instructions.

Table 35 Register Usage of Unprivileged Enclave Instruction Leaf Functions

Instr. Leaf EAX RBX RCX RDX

EREPORT 00H (In) TARGETINFO (In, EA) REPORTDATA (In, EA) OUTPUTDATA (In, EA)

EGETKEY 01H (In) KEYREQUEST (In, EA) KEY (In, EA)

EENTER 02H (In) TCS (In, EA) AEP (In, EA)

RBX.CSSA (Out) Return (Out, EA)

ERESUME 03H (In) TCS (In, EA) AEP (In, EA)

EEXIT 04H (In) Target (In, EA) Current AEP (Out)

EACCEPT 05H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EMODPE 06H (In) SECINFO (In, EA) EPCPAGE (In, EA)

EACCEPTCOPY 07H (In) SECINFO (In, EA) EPCPAGE (In, EA) EPCPAGE (In, EA)

EA: Effective Address

16.1.3 ENCLV Register Usage Summary

Table 36 summarizes the implicit register usage of virtualization operation enclave instructions.

Table 36 Register Usage of Virtualization Operation Enclave Instruction Leaf Func-
tions

Instr. Leaf EAX RBX RCX RDX

EDECVIRTCHILD 00H (In) EPCPAGE (In, EA) SECS (In, EA)

EINCVIRTCHILD 01H (In) EPCPAGE (In, EA) SECS (In, EA)

ESETCONTEXT 02H (In) EPCPAGE (In, EA) Context Value (In, EA)

EA: Effective Address

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 187

16.1.4 Information and Error Codes

Information and error codes are reported by various instruction leaf functions to show an abnormal termination

of the instruction or provide information which may be useful to the developer. Table 37 shows the various

codes and the instruction which generated the code. Details of the meaning of the code is provided in the indi-

vidual instruction.

Table 37 Error or Information Codes for Intel® SGX Instructions

Name Value Returned By

No Error 0

SGX_INVALID_SIG_STRUCT 1 EINIT

SGX_INVALID_ATTRIBUTE 2 EINIT, EGETKEY

SGX_BLSTATE 3 EBLOCK

SGX_INVALID_MEASUREMENT 4 EINIT

SGX_NOTBLOCKABLE 5 EBLOCK

SGX_PG_INVLD 6 EBLOCK, ERDINFO, ETRACKC

SGX_EPC_PAGE_CONFLICT 7 EBLOCK, EMODPR, EMODT, ERDINFO , EDECVIRTCHILD, EINCVIRTCHILD,

ELDBC, ELDUC, ESETCONTEXT, ETRACKC

SGX_INVALID_SIGNATURE 8 EINIT

SGX_MAC_COMPARE_FAIL 9 ELDB, ELDU, ELDBC, ELDUC

SGX_PAGE_NOT_BLOCKED 10 EWB

SGX_NOT_TRACKED 11 EWB, EACCEPT

SGX_VA_SLOT_OCCUPIED 12 EWB

SGX_CHILD_PRESENT 13 EWB, EREMOVE

SGX_ENCLAVE_ACT 14 EREMOVE

SGX_ENTRYEPOCH_LOCKED 15 EBLOCK

SGX_INVALID_EINITTOKEN 16 EINIT

SGX_PREV_TRK_INCMPL 17 ETRACK, ETRACKC

SGX_PG_IS_SECS 18 EBLOCK

SGX_PAGE_ATTRIBUTES_MISMATCH 19 EACCEPT, EACCEPTCOPY

SGX_PAGE_NOT_MODIFIABLE 20 EMODPR, EMODT

SGX_PAGE_NOT_DEBUGGABLE 21 EDBGRD, EDBGWR

SGX_INVALID_COUNTER 25 EDECVIRTCHILD

SGX_PG_NONEPC 26 ERDINFO

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

188 Document Number: 334525-003, Revision 3.0

SGX_TRACK_NOT_REQUIRED 27 ETRACKC

SGX_INVALID_CPUSVN 32 EINIT, EGETKEY

SGX_INVALID_ISVSVN 64 EGETKEY

SGX_UNMASKED_EVENT 128 EINIT

SGX_INVALID_KEYNAME 256 EGETKEY

16.1.5 Internal CREGs

The CREGs as shown in Table 38 are hardware specific registers used in this document to indicate values kept by

the processor. These values are used while executing in enclave mode or while executing an Intel SGX instruc-

tion. These registers are not software visible and are implementation specific. The values in Table 38 appear at

various places in the pseudo-code of this document. They are used to enhance understanding of the operations.

Table 38 List of Internal CREG

Name Size (Bits) Scope

CR_ENCLAVE_MODE 1 LP

CR_DBGOPTIN 1 LP

CR_TCS_LA 64 LP

CR_TCS_PA 64 LP

CR_ACTIVE_SECS 64 LP

CR_ELRANGE 128 LP

CR_SAVE_TF 1 LP

CR_SAVE_FS 64 LP

CR_GPR_PA 64 LP

CR_XSAVE_PAGE_n 64 LP

CR_SAVE_DR7 64 LP

CR_SAVE_PERF_GLOBAL_CTRL 64 LP

CR_SAVE_DEBUGCTL 64 LP

CR_SAVE_PEBS_ENABLE 64 LP

CR_CPUSVN 128 PACKAGE

CR_SGXOWNEREPOCH 128 PACKAGE

CR_SAVE_XCR0 64 LP

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 189

CR_SGX_ATTRIBUTES_MASK 128 LP

CR_PAGING_VERSION 64 PACKAGE

CR_VERSION_THRESHOLD 64 PACKAGE

CR_NEXT_EID 64 PACKAGE

CR_BASE_PK 128 PACKAGE

CR_SEAL_FUSES 128 PACKAGE

CR_CET_SAVE_AREA_PA 64 LP

CR_ENCLAVE_SS_TOKEN_PA 64 LP

CR_SAVE_IA32_U_CET 64 LP

CR_SAVE_SSP 64 LP

16.1.6 Concurrent Operation Restrictions

Under certain conditions, Intel SGX disallows certain leaf functions from operating concurrently. Listed below are

some examples of concurrency that are not allowed.

• For example, Intel SGX disallows the following leafs to concurrently operate on the same EPC page.

— ECREATE, EADD, and EREMOVE are not allowed to operate on the same EPC page concurrently with

themselves.

— EADD, EEXTEND, and EINIT leaves are not allowed to operate on the same SECS concurrently.

• Intel SGX disallows the EREMOVE leaf from removing pages from an enclave that is in use.

• Intel SGX disallows entry (EENTER and ERESUME) to an enclave while a page from that enclave is being re-

moved.

When disallowed operation is detected, a leaf function may do one of the following:

• Return an SGX_EPC_PAGE_CONFLICT error code in RAX.

• Cause a #GP(0) exception.

To prevent such exceptions, software must serialize leaf functions or prevent these leaf functions from accessing

the same EPC page.

16.1.6.1 Concurrency Tables of Intel® SGX Instructions

The tables below detail the concurrent operation restrictions of all SGX leaf functions. For each leaf function, the

table has a separate line for each of the EPC pages the leaf function accesses.

For each such EPC page, the base concurrency requirements are detailed as follows:

• Exclusive Access means that no other leaf function that requires either shared or exclusive access to the

same EPC page may be executed concurrently. For example, EADD requires an exclusive access to the target

page it accesses.

• Shared Access means that no other leaf function that requires an exclusive access to the same EPC page

may be executed concurrently. Other leaf functions that require shared access may run concurrently. For ex-

ample, EADD requires a shared access to the SECS page it accesses.

• Concurrent Access means that any other leaf function that requires any access to the same EPC page may

be executed concurrently. For example, EGETKEY has no concurrency requirements for the KEYREQUEST

page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

190 Document Number: 334525-003, Revision 3.0

In addition to the base concurrency requirements, additional concurrency requirements are listed, which apply

only to specific sets of leaf functions. For example, there are additional requirements that apply for EADD, EX-

TEND and EINIT. EADD and EEXTEND can't execute concurrently on the same SECS page.

The tables also detail the leaf function's behavior when a conflict happens, i.e., a concurrency requirement is not

met. In this case, the leaf function may return an SGX_EPC_PAGE_CONFLICT error code in RAX, or it may cause

an exception. In addition, the tables detail those conflicts where a VM Exit may be triggered, and list the Exit

Qualification code that is provided in such cases.

Table 39 Base Concurrency Restrictions

Leaf Parameter

Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.

SECS

Shared #GP

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.

SECS

Shared #GP

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE

_CONFLICT

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EDBGRD Target [DS:RCX] Shared #GP

EDBGWR Target [DS:RCX] Shared #GP

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE

_CONFLICT

SECS [DS:RCX] Concurrent

EENTERTCS SECS [DS:RBX] Shared #GP

EEXIT Concurrent

EEXTEND Target [DS:RCX] Shared #GP

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 191

SECS [DS:RBX] Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE

_CONFLICT

SECS [DS:RCX] Concurrent

EINIT SECS [DS:RCX] Shared #GP

ELDB/ELDU Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.

SECS

Shared #GP

EDLBC/ELDUC Target [DS:RCX] Exclusive SGX_EPC_PAGE

_CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE

_CONFLICT

SECS [DS:RBX]PAGEINFO.

SECS

Shared SGX_EPC_PAGE

_CONFLICT

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

EMODPR Target [DS:RCX] Shared #GP

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE

_CONFLICT

EPC_PAGE_CONFLICT_ERROR

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE

_CONFLICT

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

ERESUME TCS [DS:RBX] Shared #GP

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE

_CONFLICT

ETRACK SECS [DS:RCX] Shared #GP

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE

_CONFLICT

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

192 Document Number: 334525-003, Revision 3.0

SECS Implicit Concurrent

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Table 40 Additional Concurrency Restrictions

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY,

EMODPE, EMODPR,

EMODT

vs. EADD, EEXTEND,

EINIT
vs. ETRACK, ETRACKC

Access
On

Conflict
Access

On

Conflict
Access

On

Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.

SECS

Concurrent Exclusive #GP Concurrent

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.

SECS

Concurrent Concurrent Concurrent

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EENTERTCS SECS [DS:RBX] Concurrent Concurrent Concurrent

EEXIT Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 193

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

EGETKEY KEYREQUEST [DS:RBX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RCX] Concurrent Concurrent Concurrent

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

ELDB/ELDU Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.

SECS

Concurrent Concurrent Concurrent

EDLBC/ELDUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.

SECS

Concurrent Concurrent Concurrent

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

EMODPR Target [DS:RCX] Exclusive SGX_EPC_

PAGE_CO

NFLICT

Concurrent Concurrent

EMODT Target [DS:RCX] Exclusive SGX_EPC_

PAGE_CO

NFLICT

Concurrent Concurrent

EPA VA [DS:RCX] Concurrent Concurrent Concurrent

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

EREPORT TARGETINFO [DS:RBX] Concurrent Concurrent Concurrent

REPORTDATA [DS:RCX] Concurrent Concurrent Concurrent

OUTPUTDATA [DS:RDX] Concurrent Concurrent Concurrent

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

194 Document Number: 334525-003, Revision 3.0

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_

PAGE_CO

NFLICT4

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS Implicit Concurrent Concurrent Exclusive SGX_EPC_

PAGE_CO

NFLICT1

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

16.2 Intel® SGX Instruction Reference

4SGX_CONFLICT VM Exit Qualification =TRACKING_RESOURCE_CONFLICT.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 195

ENCLS—Execute an Enclave System Function of Specified Leaf Number

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

NP 0F 01 CF

ENCLS

NP V/V NA This instruction is used to execute privileged Intel SGX leaf func-

tions that are used for managing and debugging the enclaves.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 16.3

Description

The ENCLS instruction invokes the specified privileged Intel SGX leaf function for managing and debugging en-

claves. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The

registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In

64-bit mode, the instruction ignores upper 32 bits of the RAX register.

The ENCLS instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is

executed in system-management mode (SMM). Additionally, any attempt to execute the instruction when CPL >

0 results in #UD. The instruction produces a general-protection exception (#GP) if CR0.PG = 0 or if an attempt

is made to invoke an undefined leaf function.

In VMX non-root operation, execution of ENCLS may cause a VM exit if the “enable ENCLS exiting” VM-execution

control is 1. In this case, execution of individual leaf functions of ENCLS is governed by the ENCLS-exiting bit-

map field in the VMCS. Each bit in that field corresponds to the index of an ENCLS leaf function (as provided in

EAX).

Software in VMX root operation can thus intercept the invocation of various ENCLS leaf functions in VMX non-

root operation by setting the “enable ENCLS exiting” VM-execution control and setting the corresponding bits in

the ENCLS-exiting bitmap.

Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in

64-bit mode (IA32_EFER.LMA = 1 || CS.L = 1). CS.D value has no impact on address calculation. The DS seg-

ment is used to create linear addresses.

Segment override prefixes and address-size override prefixes are ignored, and is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE

 THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0

 THEN #UD; FI;

IF (CPL > 0)

 THEN #UD; FI;

IF in VMX non-root operation and the “enable ENCLS exiting“ VM-execution control is 1

 THEN

 IF EAX < 63 and ENCLS_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLS_exiting_bitmap[63] = 1

 THEN VM exit;

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

196 Document Number: 334525-003, Revision 3.0

FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0

 THEN #GP(0); FI;

IF (EAX is an invalid leaf number)

 THEN #GP(0); FI;

IF CR0.PG = 0

 THEN #GP(0); FI;

(* DS must not be an expanded down segment *)

IF not in 64-bit mode and DS.Type is expand-down data

 THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.

 If current privilege level is not 0.

 If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.

 If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.

 If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.

 If input value in EAX encodes an unsupported leaf.

 If data segment expand down.

 If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 197

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.

 If current privilege level is not 0.

 If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.

 If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.

 If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.

 If input value in EAX encodes an unsupported leaf.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

198 Document Number: 334525-003, Revision 3.0

ENCLU—Execute an Enclave User Function of Specified Leaf Number

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

NP 0F 01 D7

ENCLU

NP V/V NA This instruction is used to execute non-privileged Intel SGX leaf

functions.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 16.4

Description

The ENCLU instruction invokes the specified non-privileged Intel SGX leaf functions. Software specifies the leaf

function by setting the appropriate value in the register EAX as input. The registers RBX, RCX, and RDX have

leaf-specific purpose, and may act as input, as output, or may be unused. In 64-bit mode, the instruction ig-

nores upper 32 bits of the RAX register.

The ENCLU instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, or if it is

executed in system-management mode (SMM). Additionally, any attempt to execute this instruction when CPL <

3 results in #UD. The instruction produces a general-protection exception (#GP) if either CR0.PG or CR0.NE is 0,

or if an attempt is made to invoke an undefined leaf function. The ENCLU instruction produces a device not

available exception (#NM) if CR0.TS = 1.

Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 or CS.L = 0) and are 64 bits in

64-bit mode (IA32_EFER.LMA = 1 and CS.L = 1). CS.D value has no impact on address calculation. The DS seg-

ment is used to create linear addresses.

Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IN_64BIT_MODE 0;

IF TSX_ACTIVE

 THEN GOTO TSX_ABORT_PROCESSING; FI;

(* If enclosing app has CET indirect branch tracking enabled then if it is not ERESUME leaf cause a #CP fault *)

(* If the ERESUME is not successful it will leave tracker in WAIT_FOR_ENDBRANCH *)

TRACKER = (CPL == 3) ? IA32_U_CET.TRACKER : IA32_S_CET.TRACKER

IF EndbranchEnabledAndNotSuppressed(CPL) and TRACKER = WAIT_FOR_ENDBRANCH and

 (EAX != ERESUME or CR0.TS or (in SMM) or (CPUID.SGX_LEAF.0:EAX.SE1 = 0) or (CPL < 3))

 THEN

 Handle CET State machine violation – see section 3.6

 FI;

IF CR0.PE= 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.SE1 = 0

 THEN #UD; FI;

IF CR0.TS = 1

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 199

 THEN #NM; FI;

IF CPL < 3

 THEN #UD; FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0

 THEN #GP(0); FI;

IF EAX is invalid leaf number

 THEN #GP(0); FI;

IF CR0.PG = 0 or CR0.NE = 0

 THEN #GP(0); FI;

IN_64BIT_MODE  IA32_EFER.LMA AND CS.L ? 1 : 0;

(* Check not in 16-bit mode and DS is not a 16-bit segment *)

IF not in 64-bit mode and (CS.D = 0 or DS.B = 0)

 THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 1 and (EAX = 2 or EAX = 3) (* EENTER or ERESUME *)

 THEN #GP(0); FI;

IF CR_ENCLAVE_MODE = 0 and (EAX = 0 or EAX = 1 or EAX = 4 or EAX = 5 or EAX = 6 or EAX = 7)

(* EREPORT, EGETKEY, EEXIT, EACCEPT, EMODPE, or EACCEPTCOPY *)

 THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.

 If current privilege level is not 3.

 If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.

 If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.

 If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.

 If input value in EAX encodes an unsupported leaf.

 If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.

 If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE

and ENCLAVE_MODE = 0.

 If operating in 16-bit mode.

 If data segment is in 16-bit mode.

 If CR0.PG = 0 or CR0.NE= 0.

#NM If CR0.TS = 1.

Real-Address Mode Exceptions

#UD ENCLS is not recognized in real mode.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

200 Document Number: 334525-003, Revision 3.0

Virtual-8086 Mode Exceptions

#UD ENCLS is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.

 If current privilege level is not 3.

 If CPUID.(EAX=12H,ECX=0):EAX.SGX1 [bit 0] = 0.

 If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.

 If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.

 If input value in EAX encodes an unsupported leaf.

 If input value in EAX encodes EENTER/ERESUME and ENCLAVE_MODE = 1.

 If input value in EAX encodes EGETKEY/EREPORT/EEXIT/EACCEPT/EACCEPTCOPY/EMODPE

and ENCLAVE_MODE = 0.

 If CR0.NE= 0.

#NM If CR0.TS = 1.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 201

ENCLV—Execute an Enclave VMM Function of Specified Leaf Number

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

NP 0F 01 C0

ENCLV

NP V/V NA This instruction is used to execute privileged SGX leaf functions

that are reserved for VMM use. They are used for managing the

enclaves.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Implicit Register Operands

NP NA NA NA See Section 16.3

Description

The ENCLV instruction invokes the virtualization SGX leaf functions for managing enclaves in a virtualized envi-

ronment. Software specifies the leaf function by setting the appropriate value in the register EAX as input. The

registers RBX, RCX, and RDX have leaf-specific purpose, and may act as input, as output, or may be unused. In

non 64-bit mode, the instruction ignores upper 32 bits of the RAX register.

The ENCLV instruction produces an invalid-opcode exception (#UD) if CR0.PE = 0 or RFLAGS.VM = 1, if it is exe-

cuted in system-management mode (SMM), or not in VMX operation. Additionally, any attempt to execute the

instruction when CPL > 0 results in #UD. The instruction produces a general-protection exception (#GP) if

CR0.PG = 0 or if an attempt is made to invoke an undefined leaf function.

Software in VMX root mode of operation can enable execution of the ENCLV instruction in VMX non-root mode by

setting enable ENCLV execution control in the VMCS. If enable ENCLV execution control in the VMCS is clear,

execution of the ENCLV instruction in VMX non-root mode results in #UD.

When execution of ENCLV instruction in VMX non-root mode is enabled, software in VMX root operation can in-

tercept the invocation of various ENCLV leaf functions in VMX non-root operation by setting the corresponding

bits in the ENCLV-exiting bitmap.

Addresses and operands are 32 bits in 32-bit mode (IA32_EFER.LMA == 0 || CS.L == 0) and are 64 bits in 64-

bit mode (IA32_EFER.LMA == 1 && CS.L == 1). CS.D value has no impact on address calculation.

Segment override prefixes and address-size override prefixes are ignored, as is the REX prefix in 64-bit mode.

Operation

IF TSX_ACTIVE

 THEN GOTO TSX_ABORT_PROCESSING; FI;

IF CR0.PE = 0 or RFLAGS.VM = 1 or in SMM or CPUID.SGX_LEAF.0:EAX.OSS = 0

 THEN #UD; FI;

IF in VMX non-root operation and IA32_EFER.LMA = 1 and CS.L = 1

 THEN #UD; FI;

IF (CPL > 0)

 THEN #UD; FI;

IF in VMX non-root operation

 IF “enable ENCLV exiting“ VM-execution control is 1

 THEN

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

202 Document Number: 334525-003, Revision 3.0

 IF EAX < 63 and ENCLV_exiting_bitmap[EAX] = 1 or EAX> 62 and ENCLV_exiting_bitmap[63] = 1

 THEN VM exit;

 FI;

 ELSE

 #UD; FI;

FI;

IF IA32_FEATURE_CONTROL.LOCK = 0 or IA32_FEATURE_CONTROL.SGX_ENABLE = 0

 THEN #GP(0); FI;

IF (EAX is an invalid leaf number)

 THEN #GP(0); FI;

IF CR0.PG = 0

 THEN #GP(0); FI;

(* DS must not be an expanded down segment *)

IF not in 64-bit mode and DS.Type is expand-down data

 THEN #GP(0); FI;

Jump to leaf specific flow

Flags Affected

See individual leaf functions.

Protected Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.

 If current privilege level is not 0.

 If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.

 If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.

 If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.

 If input value in EAX encodes an unsupported leaf.

 If data segment expand down.

 If CR0.PG=0.

Real-Address Mode Exceptions

#UD ENCLV is not recognized in real mode.

Virtual-8086 Mode Exceptions

#UD ENCLV is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 203

64-Bit Mode Exceptions

#UD If any of the LOCK/OSIZE/REP/VEX prefix is used.

 If current privilege level is not 0.

 If CPUID.(EAX=12H,ECX=0):EAX.OSS [bit 5] = 0.

 If logical processor is in SMM.

#GP(0) If IA32_FEATURE_CONTROL.LOCK = 0.

 If IA32_FEATURE_CONTROL.SGX_ENABLE = 0.

 If input value in EAX encodes an unsupported leaf.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

204 Document Number: 334525-003, Revision 3.0

16.3 Intel® SGX System Leaf Function Reference

Leaf functions available with the ENCLS instruction mnemonic are covered in this section. In general, each in-

struction leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-

specific input parameters. An instruction operand encoding table provides details of each implicit register usage

and associated input/output semantics.

In many cases, an input parameter specifies an effective address associated with a memory object inside or out-

side the EPC, the memory addressing semantics of these memory objects are also summarized in a separate

table.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 205

EADD—Add a Page to an Uninitialized Enclave

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 01H

ENCLS[EADD]

IR V/V SGX1 This leaf function adds a page to an uninitialized enclave.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EADD (In) Address of a PAGEINFO (In) Address of the destination EPC page (In)

Description

This leaf function copies a source page from non-enclave memory into the EPC, associates the EPC page with an

SECS page residing in the EPC, and stores the linear address and security attributes in EPCM. As part of the as-

sociation, the enclave offset and the security attributes are measured and extended into the SECS.MRENCLAVE.

This instruction can only be executed when current privilege level is 0.

RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC

page. The table below provides additional information on the memory parameter of EADD leaf function.

EADD Memory Parameter Semantics

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted

by Non Enclave

Read/Write access permit-

ted by Enclave

Read access permitted

by Non Enclave

Read access permitted

by Non Enclave

Write access permitted

by Enclave

EADD Faulting Conditions

The instruction faults if any of the following:

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. If security attributes specifies a TCS and the source page specifies

unsupported TCS values or fields.

The SECS has been initialized. The specified enclave offset is outside of the enclave address space.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

206 Document Number: 334525-003, Revision 3.0

Concurrency Restrictions

Base Concurrency Restrictions of EADD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EADD Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

Additional Concurrency Restrictions of EADD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EADD Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-

INFO.SECS

Concurrent Exclusive #GP Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 207

Operation

Temp Variables in EADD Operational Flow

Name Type Size (bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security

attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to

calculate TMP_ENCLAVEOFFSET.

TMP_ENCLAVEOFFSET Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

IF (DS:RBX is not 32Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

TMP_SRCPGE  DS:RBX.SRCPGE;

TMP_SECS  DS:RBX.SECS;

TMP_SECINFO  DS:RBX.SECINFO;

TMP_LINADDR  DS:RBX.LINADDR;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECS is not 4KByte aligned or

 DS:TMP_SECINFO is not 64Byte aligned or TMP_LINADDR is not 4KByte aligned)

 THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)

 THEN #PF(DS:TMP_SECS); FI;

SCRATCH_SECINFO  DS:TMP_SECINFO;

(* Check for misconfigured SECINFO flags*)

IF (SCRATCH_SECINFO reserved fields are not zero or

 ! (SCRATCH_SECINFO.FLAGS.PT is PT_REG or SCRATCH_SECINFO.FLAGS.PT is PT_TCS or

 (SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1) or

 (SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1)))

 THEN #GP(0); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

208 Document Number: 334525-003, Revision 3.0

(* If PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)

IF ((SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST OR

 SCRATCH_SECINFO.FLAGS.PT is PT_SS_REST) AND CR4.CET == 0)

 THEN #GP(0); FI;

(* Check the EPC page for concurrency *)

IF (EPC page is not available for EADD)

 THEN

 IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

 THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  EPC_PAGE_CONFLICT_EXCEPTION;

 VMCS.Exit_qualification.error  0;

 VMCS.Guest-physical_address  << translation of DS:RCX produced by paging >>;

 VMCS.Guest-linear_address  DS:RCX;

 Deliver VMEXIT;

 ELSE

 #GP(0);

 FI;

FI;

IF (EPCM(DS:RCX).VALID ≠ 0)

 THEN #PF(DS:RCX); FI;

(* Check the SECS for concurrency *)

IF (SECS is not available for EADD)

 THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS)

 THEN #PF(DS:TMP_SECS); FI;

(* Copy 4KBytes from source page to EPC page*)

DS:RCX[32767:0]  DS:TMP_SRCPGE[32767:0];

CASE (SCRATCH_SECINFO.FLAGS.PT)

 PT_TCS:

 IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;

 IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and

 ((DS:TCS.FSLIMIT & 0FFFH ≠ 0FFFH) or (DS:TCS.GSLIMIT & 0FFFH ≠ 0FFFH))) #GP(0); FI;

 (* Ensure TCS.PREVSSP is zero *)

 IF (CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1) and (DS:RCX.PREVSSP != 0) #GP(0); FI;

 BREAK;

 PT_REG:

 IF (SCRATCH_SECINFO.FLAGS.W = 1 and SCRATCH_SECINFO.FLAGS.R = 0) #GP(0); FI;

 BREAK;

 PT_SS_FIRST:

 PT_SS_REST:

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 209

 (* SS pages cannot created on first or last page of ELRANGE *)

 IF (TMP_LINADDR = DS:TMP_SECS.BASEADDR or TMP_LINADDR = (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000))

 THEN #GP(0); FI;

 IF (DS:RCX[4087:0] != 0) #GP(0); FI;

 IF (SCRATCH_SECINFO.FLAGS.PT == PT_SS_FIRST)

 THEN

 (* Check that valid RSTORSSP token exists *)

 IF (DS:RCX[4095:4088] != ((TMP_LINADDR + 0x1000) | DS:TMP_SECS.ATTRIBUTES.MODE64BIT)) #GP(0); FI;

 (* Check the 8 bytes are zero *)

 IF (DS:RCX[4095:4088] != 0) #GP(0); FI;

 FI;

 IF (SCRATCH_SECINFO.FLAGS.W = 0 OR SCRATCH_SECINFO.FLAGS.R = 0 OR

 SCRATCH_SECINFO.FLAGS.X = 1) #GP(0); FI;

 BREAK;

ESAC;

(* Check the enclave offset is within the enclave linear address space *)

IF (TMP_LINADDR < DS:TMP_SECS.BASEADDR or TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE)

 THEN #GP(0); FI;

(* Check concurrency of measurement resource*)

IF (Measurement being updated)

 THEN #GP(0); FI;

(* Check if the enclave to which the page will be added is already in Initialized state *)

IF (DS:TMP_SECS already initialized)

 THEN #GP(0); FI;

(* For TCS pages, force EPCM.rwx bits to 0 and no debug access *)

IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

 THEN

 SCRATCH_SECINFO.FLAGS.R  0;

 SCRATCH_SECINFO.FLAGS.W  0;

 SCRATCH_SECINFO.FLAGS.X  0;

 (DS:RCX).FLAGS.DBGOPTIN  0; // force TCS.FLAGS.DBGOPTIN off

 DS:RCX.CSSA  0;

 DS:RCX.AEP  0;

 DS:RCX.STATE  0;

FI;

(* Add enclave offset and security attributes to MRENCLAVE *)

TMP_ENCLAVEOFFSET  TMP_LINADDR - DS:TMP_SECS.BASEADDR;

TMPUPDATEFIELD[63:0]  0000000044444145H; // “EADD”

TMPUPDATEFIELD[127:64]  TMP_ENCLAVEOFFSET;

TMPUPDATEFIELD[511:128]  SCRATCH_SECINFO[375:0]; // 48 bytes

DS:TMP_SECS.MRENCLAVE  SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)

INC enclave’s MRENCLAVE update counter;

(* Add enclave offset and security attributes to MRENCLAVE *)

EPCM(DS:RCX).R  SCRATCH_SECINFO.FLAGS.R;

EPCM(DS:RCX).W  SCRATCH_SECINFO.FLAGS.W;

EPCM(DS:RCX).X  SCRATCH_SECINFO.FLAGS.X;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

210 Document Number: 334525-003, Revision 3.0

EPCM(DS:RCX).PT  SCRATCH_SECINFO.FLAGS.PT;

EPCM(DS:RCX).ENCLAVEADDRESS  TMP_LINADDR;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)

Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM entry fields *)

EPCM(DS:RCX).BLOCKED  0;

EPCM(DS:RCX).PENDING  0;

EPCM(DS:RCX).MODIFIED  0;

EPCM(DS:RCX).VALID  1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If an enclave memory operand is outside of the EPC.

 If an enclave memory operand is the wrong type.

 If a memory operand is locked.

 If the enclave is initialized.

 If the enclave's MRENCLAVE is locked.

 If the TCS page reserved bits are set.

 If the TCS page PREVSSP field is not zero.

 If the PT_SS_REST or PT_SS_REST page is first or last page in enclave.

 If the PT_SS_FIRST or PT_SS_REST page not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If an enclave memory operand is outside of the EPC.

 If an enclave memory operand is the wrong type.

 If a memory operand is locked.

 If the enclave is initialized.

 If the enclave's MRENCLAVE is locked.

 If the TCS page reserved bits are set.

 If the TCS page PREVSSP field is not zero.

 If the PT_SS_REST or PT_SS_REST page is first or last page in enclave.

 If the PT_SS_FIRST or PT_SS_REST page not initialized correctly.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the EPC page is valid.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 211

EAUG—Add a Page to an Initialized Enclave

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 0DH

ENCLS[EAUG]

IR V/V SGX2 This leaf function adds a page to an initialized enclave.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EAUG (In) Address of a SECINFO (In) Address of the destination EPC page (In)

Description

This leaf function zeroes a page of EPC memory, associates the EPC page with an SECS page residing in the

EPC, and stores the linear address and security attributes in the EPCM. As part of the association, the security

attributes are configured to prevent access to the EPC page until a corresponding invocation of the EACCEPT leaf

or EACCEPTCOPY leaf confirms the addition of the new page into the enclave. This instruction can only be exe-

cuted when current privilege level is 0.

RBX contains the effective address of a PAGEINFO structure while RCX contains the effective address of an EPC

page. The table below provides additional information on the memory parameter of the EAUG leaf function.

EAUG Memory Parameter Semantics

PAGEINFO PAGEINFO.SECS PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permit-

ted by Non Enclave

Read/Write access per-

mitted by Enclave
Must be zero

Read access permitted by

Non Enclave

Write access permitted by

Enclave

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

212 Document Number: 334525-003, Revision 3.0

EAUG Faulting Conditions

The instruction faults if any of the following:

The operands are not properly aligned. Unsupported security attributes are set.

Refers to an invalid SECS. Reference is made to an SECS that is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page.

The EPC page is already valid. The specified enclave offset is outside of the enclave address space.

The SECS has been initialized.

Concurrency Restrictions

Base Concurrency Restrictions of EAUG

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EAUG Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

Additional Concurrency Restrictions of EAUG

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EAUG Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGE-

INFO.SECS

Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 213

Operation

Temp Variables in EAUG Operational Flow

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security

attributes of the page to be added.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:TMP_SECINFO.

TMP_LINADDR Unsigned Integer 64 Holds the linear address to be stored in the EPCM and used to

calculate TMP_ENCLAVEOFFSET.

IF (DS:RBX is not 32Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

TMP_SECS  DS:RBX.SECS;

TMP_SECINFO  DS:RBX.SECINFO;

IF (DS:RBX.SECINFO is not 0)

 THEN

 IF (DS:TMP_SECINFO is not 64B aligned)

 THEN #GP(0); FI;

 FI;

TMP_LINADDR  DS:RBX.LINADDR;

IF (DS:TMP_SECS is not 4KByte aligned or TMP_LINADDR is not 4KByte aligned)

 THEN #GP(0); FI;

IF ((DS:RBX.SRCPAGE is not 0) or (DS:RBX.SECINFO is not 0))

 THEN #GP(0); FI;

IF (DS:TMP_SECS does not resolve within an EPC)

 THEN #PF(DS:TMP_SECS); FI;

(* Check the EPC page for concurrency *)

IF (EPC page in use)

 THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID ≠ 0)

 THEN #PF(DS:RCX); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

214 Document Number: 334525-003, Revision 3.0

(* copy SECINFO contents into a scratch SECINFO *)

IF (DS:RBX.SECINFO is 0)

 THEN

 (* allocate and initialize a new scratch secinfo structure *)

 SCRATCH_SECINFO.PT  PT_REG;

 SCRATCH_SECINFO.R  1;

 SCRATCH_SECINFO.W 1;

 SCRATCH_SECINFO.X  0;

 << zero out remaining fields of SCRATCH_SECINFO >>

 ELSE

 (* copy SECINFO contents into scratch secinfo *)

 SCRATCH_SECINFO  DS:TMP_SECINFO;

 (* check SECINFO flags for misconfiguration *)

 (* reserved flags must be zero *)

 (* SECINFO.FLAGS.PT must either be PT_SS_FIRST, or PT_SS_REST *)

 IF ((SCRATCH_SECINFO reserved fields are not 0) OR

 (SCRATCH_SECINFO.PT is not PT_SS_FIRST, or PT_SS_REST) OR

 ((SCRATCH_SECINFO.FLAGS.R is 0) OR (SCRATCH_SECINFO.FLAGS.W is 0) OR (SCRATCH_SECINFO.FLAGS.X is 1)))

 THEN #GP(0); FI;

 FI;

(* Check if PT_SS_FIRST/PT_SS_REST page types are requested then CR4.CET must be 1 *)

IF ((SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST) AND CR4.CET == 0)

 THEN #GP(0); FI;

(* Check the SECS for concurrency *)

IF (SECS is not available for EAUG)

 THEN #GP(0); FI;

IF (EPCM(DS:TMP_SECS).VALID = 0 or EPCM(DS:TMP_SECS).PT ≠ PT_SECS)

 THEN #PF(DS:TMP_SECS); FI;

(* Check if the enclave to which the page will be added is in the Initialized state *)

IF (DS:TMP_SECS is not initialized)

 THEN #GP(0); FI;

(* Check the enclave offset is within the enclave linear address space *)

IF ((TMP_LINADDR < DS:TMP_SECS.BASEADDR) or (TMP_LINADDR ≥ DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE))

 THEN #GP(0); FI;

IF ((SCRATCH_SECINFO.PT is PT_SS_FIRST OR SCRATCH_SECINFO.PT is PT_SS_REST))

 THEN

 (* SS pages cannot created on first or last page of ELRANGE *)

 IF (TMP_LINADDR == DS:TMP_SECS.BASEADDR OR

 TMP_LINADDR == (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.SIZE - 0x1000))

 THEN

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 215

 #GP(0); FI;

 FI;

(* Clear the content of EPC page*)

DS:RCX[32767:0]  0;

(* Set EPCM security attributes *)

EPCM(DS:RCX).R  1;

EPCM(DS:RCX).W  1;

EPCM(DS:RCX).X  0;

EPCM(DS:RCX).PT  PT_REG;

EPCM(DS:RCX).R  SCRATCH_SECINFO.FLAGS.R;

EPCM(DS:RCX).W  SCRATCH_SECINFO.FLAGS.W;

EPCM(DS:RCX).X  SCRATCH_SECINFO.FLAGS.X;

EPCM(DS:RCX).PT  SCRATCH_SECINFO.FLAGS.PT;

EPCM(DS:RCX).ENCLAVEADDRESS  TMP_LINADDR;

EPCM(DS:RCX).BLOCKED  0;

EPCM(DS:RCX).PENDING  1;

EPCM(DS:RCX).MODIFIED  0;

EPCM(DS:RCX).PR  0;

(* associate the EPCPAGE with the SECS by storing the SECS identifier of DS:TMP_SECS *)

Update EPCM(DS:RCX) SECS identifier to reference DS:TMP_SECS identifier;

(* Set EPCM valid fields *)

EPCM(DS:RCX).VALID  1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

 If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

 If the enclave is not initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

216 Document Number: 334525-003, Revision 3.0

EBLOCK—Mark a page in EPC as Blocked

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 09H

ENCLS[EBLOCK]

IR V/V SGX1 This leaf function marks a page in the EPC as blocked.

Instruction Operand Encoding

Op/En EAX RCX

IR EBLOCK (In) Return error code (Out) Effective address of the EPC page (In)

Description

This leaf function causes an EPC page to be marked as BLOCKED. This instruction can only be executed when

current privilege level is 0.

The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.

Segment override is not supported.

An error code is returned in RAX.

The table below provides additional information on the memory parameter of EBLOCK leaf function.

EBLOCK Memory Parameter Semantics

EPCPAGE

Read/Write access permitted by Enclave

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 217

The error codes are:

EBLOCK Return Value in RAX

 Error Code Description

No Error EBLOCK successful.

SGX_BLKSTATE Page already blocked. This value is used to indicate to a VMM that the page was already in

BLOCKED state as a result of EBLOCK and thus will need to be restored to this state when it

is eventually reloaded (using ELDB).

SGX_ENTRYEPOCH_LOCKED SECS locked for Entry Epoch update. This value indicates that an ETRACK is currently

executing on the SECS. The EBLOCK should be reattempted.

SGX_NOTBLOCKABLE Page type is not one which can be blocked.

SGX_PG_INVLD Page is not valid and cannot be blocked.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Concurrency Restrictions

Base Concurrency Restrictions of EBLOCK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EBLOCK Target [DS:RCX] Shared SGX_EPC_PAGE_

CONFLICT

Additional Concurrency Restrictions of EBLOCK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EBLOCK Target [DS:RCX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

218 Document Number: 334525-003, Revision 3.0

Operation

Temp Variables in EBLOCK Operational Flow

Name Type Size (Bits) Description

TMP_BLKSTATE Integer 64 Page is already blocked.

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

RFLAGS.ZF,CF,PF,AF,OF,SF  0;

RAX 0;

(* Check the EPC page for concurrency*)

IF (EPC page in use)

 THEN

 RFLAGS.ZF  1;

 RAX SGX_EPC_PAGE_CONFLICT;

 GOTO DONE;

FI;

IF (EPCM(DS:RCX). VALID = 0)

 THEN

 RFLAGS.ZF  1;

 RAX SGX_PG_INVLD;

 GOTO DONE;

FI;

IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_TRIM)

 and EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

 THEN

 RFLAGS.CF  1;

 IF (EPCM(DS:RCX).PT = PT_SECS)

 THEN RAX SGX_PG_IS_SECS;

 ELSE RAX SGX_NOTBLOCKABLE;

 FI;

 GOTO DONE;

FI;

(* Check if the page is already blocked and report blocked state *)

TMP_BLKSTATE  EPCM(DS:RCX).BLOCKED;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 219

(* at this point, the page must be valid and PT_TCS or PT_REG or PT_TRIM*)

IF (TMP_BLKSTATE = 1)

 THEN

 RFLAGS.CF  1;

 RAX SGX_BLKSTATE;

 ELSE

 EPCM(DS:RCX).BLOCKED  1

FI;

DONE:

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Sets CF if page is BLOCKED or not blockable, otherwise

cleared. Clears PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

220 Document Number: 334525-003, Revision 3.0

ECREATE—Create an SECS page in the Enclave Page Cache

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 00H

ENCLS[ECREATE]

IR V/V SGX1 This leaf function begins an enclave build by creating an SECS

page in EPC.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR ECREATE (In) Address of a PAGEINFO (In) Address of the destination SECS page (In)

Description

ENCLS[ECREATE] is the first instruction executed in the enclave build process. ECREATE copies an SECS struc-

ture outside the EPC into an SECS page inside the EPC. The internal structure of SECS is not accessible to soft-

ware.

ECREATE will set up fields in the protected SECS and mark the page as valid inside the EPC. ECREATE initializes

or checks unused fields.

Software sets the following fields in the source structure: SECS:BASEADDR, SECS:SIZE in bytes, ATTRIBUTES,

CONFIGID and CONFIGSVN. SECS:BASEADDR must be naturally aligned on an SECS.SIZE boundary. SECS.SIZE

must be at least 2 pages (8192).

The source operand RBX contains an effective address of a PAGEINFO structure. PAGEINFO contains an effective

address of a source SECS and an effective address of an SECINFO. The SECS field in PAGEINFO is not used.

The RCX register is the effective address of the destination SECS. It is an address of an empty slot in the EPC.

The SECS structure must be page aligned. SECINFO flags must specify the page as an SECS page.

ECREATE Memory Parameter Semantics

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.SECINFO EPCPAGE

Read access permitted by

Non Enclave

Read access permitted by

Non Enclave

Read access permitted by Non En-

clave

Write access permitted by En-

clave

ECREATE will fault if the SECS target page is in use; already valid; outside the EPC. It will also fault if addresses

are not aligned; unused PAGEINFO fields are not zero.

If the amount of space needed to store the SSA frame is greater than the amount specified in SECS.SSAFRAME-

SIZE, a #GP(0) results. The amount of space needed for an SSA frame is computed based on DS:TMP_SECS.AT-

TRIBUTES.XFRM size.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 221

Concurrency Restrictions

Base Concurrency Restrictions of ECREATE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ECREATE SECS [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Additional Concurrency Restrictions of ECREATE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ECREATE SECS [DS:RCX] Concurrent Concurrent Concurrent

Operation

Temp Variables in ECREATE Operational Flow

Name Type Size (Bits) Description

TMP_SRCPGE Effective Address 32/64 Effective address of the SECS source page.

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

TMP_SECINFO Effective Address 32/64 Effective address of an SECINFO structure which contains security

attributes of the SECS page to be added.

TMP_XSIZE SSA Size 64 The size calculation of SSA frame.

TMP_MISC_SIZE MISC Field Size 64 Size of the selected MISC field components.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

222 Document Number: 334525-003, Revision 3.0

IF (DS:RBX is not 32Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

TMP_SRCPGE  DS:RBX.SRCPGE;

TMP_SECINFO  DS:RBX.SECINFO;

IF (DS:TMP_SRCPGE is not 4KByte aligned or DS:TMP_SECINFO is not 64Byte aligned)

 THEN #GP(0); FI;

IF (DS:RBX.LINADDR ! = 0 or DS:RBX.SECS ≠ 0)

 THEN #GP(0); FI;

(* Check for misconfigured SECINFO flags*)

IF (DS:TMP_SECINFO reserved fields are not zero or DS:TMP_SECINFO.FLAGS.PT ≠ PT_SECS)

 THEN #GP(0); FI;

TMP_SECS  RCX;

IF (EPC entry in use)

 THEN

 IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

 THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  EPC_PAGE_CONFLICT_EXCEPTION;

 VMCS.Exit_qualification.error  0;

 VMCS.Guest-physical_address 

 << translation of DS:TMP_SECS produced by paging >>;

 VMCS.Guest-linear_address  DS:TMP_SECS;

 Deliver VMEXIT;

 ELSE

 #GP(0);

 FI;

FI;

IF (EPC entry in use)

 THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID = 1)

 THEN #PF(DS:RCX); FI;

(* Copy 4KBytes from source page to EPC page*)

DS:RCX[32767:0]  DS:TMP_SRCPGE[32767:0];

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 223

(* Check lower 2 bits of XFRM are set *)

IF ((DS:TMP_SECS.ATTRIBUTES.XFRM BitwiseAND 03H) ≠ 03H)

 THEN #GP(0); FI;

IF (XFRM is illegal)

 THEN #GP(0); FI;

(* Check legality of CET_ATTRIBUTES *)

IF ((DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_ATTRIBUTES ≠ 0) ||

 (DS:TMP_SECS.ATTRIBUTES.CET = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||

 (CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 0 and DS:TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) ||

 (CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 0 and DS:TMP_SECS.CET_ATTRIBUTES[5:2] ≠ 0) ||

 (CPUID.(EAX=7, ECX=0):ECX[CET_SS] = 0 and DS:TMP_SECS.CET_ATTRIBUTES[1:0] ≠ 0) ||

 (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1 and

 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) not canonical) ||

 (DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0 and

 (DS:TMP_SECS.BASEADDR + DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) & 0xFFFFFFFF00000000) ||

 (DS:TMP_SECS.CET_ATTRIBUTES.reserved fields not 0) or

 (DS:TMP_SECS.CET_LEG_BITMAP_OFFSET) is not page aligned))

 THEN

 #GP(0);

 FI;

(* Make sure that the SECS does not have any unsupported MISCSELECT options*)

IF (!(CPUID.(EAX=12H, ECX=0):EBX[31:0] & DS:TMP_SECS.MISCSELECT[31:0]))

 THEN

 EPCM(DS:TMP_SECS).EntryLock.Release();

 #GP(0);

FI;

(* Compute size of MISC area *)

TMP_MISC_SIZE  compute_misc_region_size();

(* Compute the size required to save state of the enclave on async exit *)

TMP_XSIZE  compute_xsave_size(DS:TMP_SECS.ATTRIBUTES.XFRM) + GPR_SIZE + TMP_MISC_SIZE;

(* Ensure that the declared area is large enough to hold XSAVE and GPR stat *)

IF (DS:TMP_SECS.SSAFRAMESIZE*4096 < TMP_XSIZE)

 THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.BASEADDR is not canonical))

 THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.BASEADDR and 0FFFFFFFF00000000H))

 THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 0) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[7:0])))

 THEN #GP(0); FI;

IF ((DS:TMP_SECS.ATTRIBUTES.MODE64BIT = 1) and (DS:TMP_SECS.SIZE ≥ 2 ^ (CPUID.(EAX=12H, ECX=0):.EDX[15:8])))

 THEN #GP(0); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

224 Document Number: 334525-003, Revision 3.0

(* Enclave size must be at least 8192 bytes and must be power of 2 in bytes*)

IF (DS:TMP_SECS.SIZE < 8192 or popcnt(DS:TMP_SECS.SIZE) > 1)

 THEN #GP(0); FI;

(* Ensure base address of an enclave is aligned on size*)

IF ((DS:TMP_SECS.BASEADDR and (DS:TMP_SECS.SIZE-1)))

 THEN #GP(0); FI;

(* Ensure the SECS does not have any unsupported attributes*)

IF (DS:TMP_SECS.ATTRIBUTES and (~CR_SGX_ATTRIBUTES_MASK))

 THEN #GP(0); FI;

IF (DS:TMP_SECS reserved fields are not zero)

 THEN #GP(0); FI;

(* Verify that CONFIGID/CONFIGSVN are not set with attribute *)

IF (((DS:TMP_SECS.CONFIGID ≠ 0) or (DS:TMP_SECS.CONFIGSVN ≠0)) AND (DS:TMP_SECS.ATTRIBUTES.KSS == 0))

 THEN #GP(0); FI;

Clear DS:TMP_SECS to Uninitialized;

DS:TMP_SECS.MRENCLAVE  SHA256INITIALIZE(DS:TMP_SECS.MRENCLAVE);

DS:TMP_SECS.ISVSVN  0;

DS:TMP_SECS.ISVPRODID  0;

(* Initialize hash updates etc.*)

Initialize enclave’s MRENCLAVE update counter;

(* Add “ECREATE” string and SECS fields to MRENCLAVE *)

TMPUPDATEFIELD[63:0]  0045544145524345H; // “ECREATE”

TMPUPDATEFIELD[95:64]  DS:TMP_SECS.SSAFRAMESIZE;

TMPUPDATEFIELD[159:96]  DS:TMP_SECS.SIZE;

IF (CPUID.(EAX=7, ECX=0):EDX[CET_IBT] = 1)

 THEN

 TMPUPDATEFIELD[223:160]  DS:TMP_SECS.CET_LEG_BITMAP_OFFSET;

 ELSE

 TMPUPDATEFIELD[223:160]  0;

 FI;

TMPUPDATEFIELD[511:224]  0;

DS:TMP_SECS.MRENCLAVE  SHA256UPDATE(DS:TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)

INC enclave’s MRENCLAVE update counter;

(* Set EID *)

DS:TMP_SECS.EID  LockedXAdd(CR_NEXT_EID, 1);

(* Initialize the virtual child count to zero *)

DS:TMP_SECS.VIRTCHILDCNT  0;

(* Load ENCLAVECONTEXT with Address out of paging of SECS *)

<< store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 225

(* Set the EPCM entry, first create SECS identifier and store the identifier in EPCM *)

EPCM(DS:TMP_SECS).PT  PT_SECS;

EPCM(DS:TMP_SECS).ENCLAVEADDRESS  0;

EPCM(DS:TMP_SECS).R  0;

EPCM(DS:TMP_SECS).W  0;

EPCM(DS:TMP_SECS).X  0;

(* Set EPCM entry fields *)

EPCM(DS:RCX).BLOCKED  0;

EPCM(DS:RCX).PENDING  0;

EPCM(DS:RCX).MODIFIED  0;

EPCM(DS:RCX).PR  0;

EPCM(DS:RCX).VALID  1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If the reserved fields are not zero.

 If PAGEINFO.SECS is not zero.

 If PAGEINFO.LINADDR is not zero.

 If the SECS destination is locked.

 If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the SECS destination is outside the EPC.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical form.

 If a memory operand is not properly aligned.

 If the reserved fields are not zero.

 If PAGEINFO.SECS is not zero.

 If PAGEINFO.LINADDR is not zero.

 If the SECS destination is locked.

 If SECS.SSAFRAMESIZE is insufficient.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the SECS destination is outside the EPC.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

226 Document Number: 334525-003, Revision 3.0

EDBGRD—Read From a Debug Enclave

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 04H

ENCLS[EDBGRD]

IR V/V SGX1 This leaf function reads a dword/quadword from a debug en-

clave.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EDBGRD (In)
Data read from a debug enclave

(Out)
Address of source memory in the EPC (In)

Description

This leaf function copies a quadword/doubleword from an EPC page belonging to a debug enclave into the RBX

register. Eight bytes are read in 64-bit mode, four bytes are read in non-64-bit modes. The size of data read

cannot be overridden.

The effective address of the source location inside the EPC is provided in the register RCX.

EDBGRD Memory Parameter Semantics

EPCQW

Read access permitted by Enclave

The error codes are:

EDBGRD Return Value in RAX

 Error Code Description

No Error EDBGRD successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 227

EDBGRD Faulting Conditions

The instruction faults if any of the following:

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an

enclave that is in debug mode.

RCX points to a location inside a TCS that is beyond the architectural size of

the TCS (SGX_TCS_LIMIT).

An operand causing any segment violation. May page fault.

CPL > 0.

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX

attributes via EDBGRD does not result in a #GP.

Concurrency Restrictions

Base Concurrency Restrictions of EDBGRD

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGRD Target [DS:RCX] Shared #GP

Additional Concurrency Restrictions of EDBGRD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGRD Target [DS:RCX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

228 Document Number: 334525-003, Revision 3.0

Operation

Temp Variables in EDBGRD Operational Flow

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1))

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))

 THEN #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)

IF (Other EPCM modifying instructions executing)

 THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)

 THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (SOURCE) is pointing to a PT_REG or PT_TCS or PT_VA or PT_SS_FIRST or PT_SS_REST *)

IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS) and (EPCM(DS:RCX).PT ≠ PT_VA)

 and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

 THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_PAGE_NOT_DEBUGGABLE;

 GOTO DONE;

FI;

(* If source is a TCS, then make sure that the offset into the page is not beyond the TCS size*)

IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FFFH ≥ SGX_TCS_LIMIT))

 THEN #GP(0); FI;

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 229

IF ((EPCM(DS:RCX).PT = PT_REG) or (EPCM(DS:RCX).PT = PT_TCS))

 THEN

 TMP_SECS  GET_SECS_ADDRESS;

 IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

 THEN #GP(0); FI;

 IF ((TMP_MODE64 = 1))

 THEN RBX[63:0]  (DS:RCX)[63:0];

 ELSE EBX[31:0]  (DS:RCX)[31:0];

 FI;

 ELSE

 TMP_64BIT_VAL[63:0]  (DS:RCX)[63:0] & (~07H); // Read contents from VA slot

 IF (TMP_MODE64 = 1)

 THEN

 IF (TMP_64BIT_VAL ≠ 0H)

 THEN RBX[63:0]  0FFFFFFFFFFFFFFFFH;

 ELSE RBX[63:0]  0H;

 FI;

 ELSE

 IF (TMP_64BIT_VAL ≠ 0H)

 THEN EBX[31:0]  0FFFFFFFFH;

 ELSE EBX[31:0]  0H;

 FI;

FI;

(* clear EAX and ZF to indicate successful completion *)

RAX  0;

RFLAGS.ZF  0;

DONE:

(* clear flags *)

RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.

 If DS segment is unusable.

 If RCX points to a memory location not 4Byte-aligned.

 If the address in RCX points to a page belonging to a non-debug enclave.

 If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.

 If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the address in RCX points to a non-EPC page.

 If the address in RCX points to an invalid EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

230 Document Number: 334525-003, Revision 3.0

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.

 If RCX points to a memory location not 8Byte-aligned.

 If the address in RCX points to a page belonging to a non-debug enclave.

 If the address in RCX points to a page which is not PT_TCS, PT_REG or PT_VA.

 If the address in RCX points to a location inside TCS that is beyond SGX_TCS_LIMIT.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the address in RCX points to a non-EPC page.

 If the address in RCX points to an invalid EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 231

EDBGWR—Write to a Debug Enclave

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 05H

ENCLS[EDBGWR]

IR V/V SGX1 This leaf function writes a dword/quadword to a debug enclave.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EDBGWR (In)
Data to be written to a debug enclave

(In)
Address of Target memory in the EPC (In)

Description

This leaf function copies the content in EBX/RBX to an EPC page belonging to a debug enclave. Eight bytes are

written in 64-bit mode, four bytes are written in non-64-bit modes. The size of data cannot be overridden.

The effective address of the source location inside the EPC is provided in the register RCX.

EDBGWR Memory Parameter Semantics Conditions

EPCQW

Write access permitted by Enclave

EDBGWR Faulting Conditions

The instruction faults if any of the following:

RCX points into a page that is an SECS. RCX does not resolve to a naturally aligned linear address.

RCX points to a page that does not belong to an

enclave that is in debug mode.

RCX points to a location inside a TCS that is not the FLAGS word.

An operand causing any segment violation. May page fault.

CPL > 0.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

232 Document Number: 334525-003, Revision 3.0

The error codes are:

EDBGWR Return Value in RAX

 Error Code Description

No Error EDBGWR successful.

SGX_PAGE_NOT_DEBUGGABLE The EPC page cannot be accessed because it is in the PENDING or MODIFIED state.

This instruction ignores the EPCM RWX attributes on the enclave page. Consequently, violation of EPCM RWX

attributes via EDBGRD does not result in a #GP.

Concurrency Restrictions

Base Concurrency Restrictions of EDBGWR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDBGWR Target [DS:RCX] Shared #GP

Additional Concurrency Restrictions of EDBGWR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDBGWR Target [DS:RCX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 233

Operation

Temp Variables in EDBGWR Operational Flow

Name Type Size (Bits) Description

TMP_MODE64 Binary 1 ((IA32_EFER.LMA = 1) && (CS.L = 1)).

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF ((TMP_MODE64 = 1) and (DS:RCX is not 8Byte Aligned))

 THEN #GP(0); FI;

IF ((TMP_MODE64 = 0) and (DS:RCX is not 4Byte Aligned))

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)

IF (Other EPCM modifying instructions executing)

 THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)

 THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *)

IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS)

 and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

 THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX points to an accessible EPC page *)

IF ((EPCM(DS:RCX).PENDING is not 0) or (EPCM(DS:RCS).MODIFIED is not 0))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_PAGE_NOT_DEBUGGABLE;

 GOTO DONE;

FI;

(* If destination is a TCS, then make sure that the offset into the page can only point to the FLAGS field*)

IF ((EPCM(DS:RCX). PT = PT_TCS) and ((DS:RCX) & FF8H ≠ offset_of_FLAGS & 0FF8H))

 THEN #GP(0); FI;

(* Locate the SECS for the enclave to which the DS:RCX page belongs *)

TMP_SECS  GET_SECS_PHYS_ADDRESS(EPCM(DS:RCX).ENCLAVESECS);

(* make sure the enclave owning the PT_REG or PT_TCS page allow debug *)

IF (TMP_SECS.ATTRIBUTES.DEBUG = 0)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

234 Document Number: 334525-003, Revision 3.0

 THEN #GP(0); FI;

IF ((TMP_MODE64 = 1))

 THEN (DS:RCX)[63:0]  RBX[63:0];

 ELSE (DS:RCX)[31:0]  EBX[31:0];

FI;

(* clear EAX and ZF to indicate successful completion *)

RAX  0;

RFLAGS.ZF  0;

DONE:

(* clear flags *)

RFLAGS.CF,PF,AF,OF,SF  0

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RCS violates DS limit or access rights.

 If DS segment is unusable.

 If RCX points to a memory location not 4Byte-aligned.

 If the address in RCX points to a page belonging to a non-debug enclave.

 If the address in RCX points to a page which is not PT_TCS or PT_REG.

 If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the address in RCX points to a non-EPC page.

 If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RCX is non-canonical form.

 If RCX points to a memory location not 8Byte-aligned.

 If the address in RCX points to a page belonging to a non-debug enclave.

 If the address in RCX points to a page which is not PT_TCS or PT_REG.

 If the address in RCX points to a location inside TCS that is not the FLAGS word.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the address in RCX points to a non-EPC page.

 If the address in RCX points to an invalid EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 235

EEXTEND—Extend Uninitialized Enclave Measurement by 256 Bytes

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 06H

ENCLS[EEXTEND]

IR V/V SGX1 This leaf function measures 256 bytes of an uninitialized en-

clave page.

Instruction Operand Encoding

Op/En EAX EBX RCX

IR EEXTEND (In)
Effective address of the SECS of the

data chunk (In)
Effective address of a 256-byte chunk in the EPC (In)

Description

This leaf function updates the MRENCLAVE measurement register of an SECS with the measurement of an EX-

TEND string compromising of “EEXTEND” || ENCLAVEOFFSET || PADDING || 256 bytes of the enclave page. This

instruction can only be executed when current privilege level is 0 and the enclave is uninitialized.

RBX contains the effective address of the SECS of the region to be measured. The address must be the same as

the one used to add the page into the enclave.

RCX contains the effective address of the 256 byte region of an EPC page to be measured. The DS segment is

used to create linear addresses. Segment override is not supported.

EEXTEND Memory Parameter Semantics

EPC[RCX]

Read access by Enclave

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

236 Document Number: 334525-003, Revision 3.0

EEXTEND Faulting Conditions

The instruction faults if any of the following:

RBX points to an address not 4KBytes aligned. RBX does not resolve to an SECS.

RBX does not point to an SECS page. RBX does not point to the SECS page of the data chunk.

RCX points to an address not 256B aligned. RCX points to an unused page or a SECS.

RCX does not resolve in an EPC page. If SECS is locked.

If the SECS is already initialized. May page fault.

CPL > 0.

Concurrency Restrictions

Base Concurrency Restrictions of EEXTEND

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXTEND Target [DS:RCX] Shared #GP

SECS [DS:RBX] Concurrent

Additional Concurrency Restrictions of EEXTEND

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXTEND Target [DS:RCX] Concurrent Concurrent Concurrent

SECS [DS:RBX] Concurrent Exclusive #GP Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 237

Operation

Temp Variables in EEXTEND Operational Flow

Name Type Size (Bits) Description

TMP_SECS 64 Physical address of SECS of the enclave to which source operand belongs.

TMP_ENCLAVEOFFS

ET

Enclave Offset 64 The page displacement from the enclave base address.

TMPUPDATEFIELD SHA256 Buffer 512 Buffer used to hold data being added to TMP_SECS.MRENCLAVE.

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (DS:RBX is not 4096 Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RBX does resolve to an EPC page)

 THEN #PF(DS:RBX); FI;

IF (DS:RCX is not 256Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

(* make sure no other Intel SGX instruction is accessing EPCM *)

IF (Other instructions accessing EPCM)

 THEN #GP(0); FI;

IF (EPCM(DS:RCX). VALID = 0)

 THEN #PF(DS:RCX); FI;

(* make sure that DS:RCX (DST) is pointing to a PT_REG or PT_TCS or PT_SS_FIRST or PT_SS_REST *)

IF ((EPCM(DS:RCX).PT ≠ PT_REG) and (EPCM(DS:RCX).PT ≠ PT_TCS)

 and (EPCM(DS:RCX).PT ≠ PT_SS_FIRST) and (EPCM(DS:RCX).PT ≠ PT_SS_REST))

 THEN #PF(DS:RCX); FI;

TMP_SECS  Get_SECS_ADDRESS();

IF (DS:RBX does not resolve to TMP_SECS)

 THEN #GP(0); FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *)

IF ((Other instruction accessing MRENCLAVE) or (Other instructions checking or updating the initialized state of the SECS))

 THEN #GP(0); FI;

(* Calculate enclave offset *)

TMP_ENCLAVEOFFSET EPCM(DS:RCX).ENCLAVEADDRESS - TMP_SECS.BASEADDR;

TMP_ENCLAVEOFFSET TMP_ENCLAVEOFFSET + (DS:RCX & 0FFFH)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

238 Document Number: 334525-003, Revision 3.0

(* Add EEXTEND message and offset to MRENCLAVE *)

TMPUPDATEFIELD[63:0]  00444E4554584545H; // “EEXTEND”

TMPUPDATEFIELD[127:64]  TMP_ENCLAVEOFFSET;

TMPUPDATEFIELD[511:128]  0; // 48 bytes

TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, TMPUPDATEFIELD)

INC enclave’s MRENCLAVE update counter;

(*Add 256 bytes to MRENCLAVE, 64 byte at a time *)

TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[511:0]);

TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1023: 512]);

TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[1535: 1024]);

TMP_SECS.MRENCLAVE  SHA256UPDATE(TMP_SECS.MRENCLAVE, DS:RCX[2047: 1536]);

INC enclave’s MRENCLAVE update counter by 4;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If the address in RBX is outside the DS segment limit.

 If RBX points to an SECS page which is not the SECS of the data chunk.

 If the address in RCX is outside the DS segment limit.

 If RCX points to a memory location not 256Byte-aligned.

 If another instruction is accessing MRENCLAVE.

 If another instruction is checking or updating the SECS.

 If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the address in RBX points to a non-EPC page.

 If the address in RCX points to a page which is not PT_TCS or PT_REG.

 If the address in RCX points to a non-EPC page.

 If the address in RCX points to an invalid EPC page.

64-Bit Mode Exceptions

#GP(0) If RBX is non-canonical form.

 If RBX points to an SECS page which is not the SECS of the data chunk.

 If RCX is non-canonical form.

 If RCX points to a memory location not 256 Byte-aligned.

 If another instruction is accessing MRENCLAVE.

 If another instruction is checking or updating the SECS.

 If the enclave is already initialized.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the address in RBX points to a non-EPC page.

 If the address in RCX points to a page which is not PT_TCS or PT_REG.

 If the address in RCX points to a non-EPC page.

 If the address in RCX points to an invalid EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 239

EINIT—Initialize an Enclave for Execution

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 02H

ENCLS[EINIT]

IR V/V SGX1 This leaf function initializes the enclave and makes it ready to

execute enclave code.

Instruction Operand Encoding

Op/En EAX RBX RCX RDX

IR EINIT (In) Error code (Out) Address of SIGSTRUCT (In) Address of SECS (In) Address of EINITTOKEN (In)

Description

This leaf function is the final instruction executed in the enclave build process. After EINIT, the MRENCLAVE

measurement is complete, and the enclave is ready to start user code execution using the EENTER instruction.

EINIT takes the effective address of a SIGSTRUCT and EINITTOKEN. The SIGSTRUCT describes the enclave in-

cluding MRENCLAVE, ATTRIBUTES, ISVSVN, a 3072 bit RSA key, and a signature using the included key. SIG-

STRUCT must be populated with two values, q1 and q2. These are calculated using the formulas shown below:

q1 = floor(Signature2 / Modulus);

q2 = floor((Signature3 - q1 * Signature * Modulus) / Modulus);

The EINITTOKEN contains the MRENCLAVE, MRSIGNER, and ATTRIBUTES. These values must match the corre-

sponding values in the SECS. If the EINITTOKEN was created with a debug launch key, the enclave must be in

debug mode as well.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

240 Document Number: 334525-003, Revision 3.0

MRSIGNER

ATTRIBUTES

MRENCLAVE

Hashed

Check

If VALID=1, Check

Signature

ATTRIBUTES

PubKey

ATTRIBUTEMASK

MRENCLAVE

SIGSTRUCT

Verify

DS:RBX

EINIT

SECS

ENCLAVE

EPC

ATTRIBUTES

MRENCLAVE

MRSIGNER

If VALID=1,
Check

Copy

DS:RCX
Check

DS:RDX

EINITTOKEN

Figure 8 Relationships Between SECS, SIGSTRUCT and EINITTOKEN

EINIT Memory Parameter Semantics

SIGSTRUCT SECS EINITTOKEN

 Access by non-Enclave Read/Write access by Enclave Access by non-Enclave

EINIT performs the following steps:

Validates that SIGSTRUCT is signed using the enclosed public key.

Checks that the completed computation of SECS.MRENCLAVE equals SIGSTRUCT.HASHENCLAVE.

Checks that no reserved bits are set to 1 in SIGSTRUCT.ATTRIBUTES and no reserved bits in SIGSTRUCT.AT-

TRIBUTESMASK are set to 0.

Checks that no controlled ATTRIBUTES bits are set in SIGSTRUCT.ATTRIBUTES unless the SHA256 digest of SIG-

STRUCT.MODULUS equals IA32_SGX_LEPUBKEYHASH.

Checks that SIGSTRUCT.ATTRIBUTES equals the result of logically and-ing SIGSTRUCT.ATTRIBUTEMASK with

SECS.ATTRIBUTES.

If EINITTOKEN.VALID is 0, checks that the SHA256 digest of SIGSTRUCT.MODULUS equals IA32_SGX_LEPUB-

KEYHASH.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 241

If EINITTOKEN.VALID is 1, checks the validity of EINITTOKEN.

If EINITTOKEN.VALID is 1, checks that EINITTOKEN.MRENCLAVE equals SECS.MRENCLAVE.

If EINITTOKEN.VALID is 1 and EINITTOKEN.ATTRIBUTES.DEBUG is 1, SECS.ATTRIBUTES.DEBUG must be 1.

Commits SECS.MRENCLAVE, and sets SECS.MRSIGNER, SECS.ISVSVN, and SECS.ISVPRODID based on SIG-

STRUCT.

Update the SECS as Initialized.

Periodically, EINIT polls for certain asynchronous events. If such an event is detected, it completes with failure

code (ZF=1 and RAX = SGX_UNMASKED_EVENT), and RIP is incremented to point to the next instruction. These

events includes external interrupts, non-maskable interrupts, system-management interrupts, machine checks,

INIT signals, and the VMX-preemption timer. EINIT does not fail if the pending event is inhibited (e.g., external

interrupts could be inhibited due to blocking by MOV SS blocking or by STI).

The following bits in RFLAGS are cleared: CF, PF, AF, OF, and SF. When the instruction completes with an error,

RFLAGS.ZF is set to 1, and the corresponding error bit is set in RAX. If no error occurs, RFLAGS.ZF is cleared

and RAX is set to 0.

The error codes are:

EINIT Return Value in RAX

 Error Code Description

No Error EINIT successful.

SGX_INVALID_SIG_STRUCT If SIGSTRUCT contained an invalid value.

SGX_INVALID_ATTRIBUTE If SIGSTRUCT contains an unauthorized attributes mask.

SGX_INVALID_MEASUREMENT If SIGSTRUCT contains an incorrect measurement.

If EINITTOKEN contains an incorrect measurement.

SGX_INVALID_SIGNATURE If signature does not validate with enclosed public key.

SGX_INVALID_LICENSE If license is invalid.

SGX_INVALID_CPUSVN If license SVN is unsupported.

SGX_UNMASKED_EVENT If an unmasked event is received before the instruction completes its operation.

Concurrency Restrictions

Base Concurrency Restrictions of EINIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EINIT SECS [DS:RCX] Shared #GP

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

242 Document Number: 334525-003, Revision 3.0

Additional Concurrency Restrictions of ENIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINIT SECS [DS:RCX] Concurrent Exclusive #GP Concurrent

Operation

Temp Variables in EINIT Operational Flow

Name Type Size Description

TMP_SIG SIGSTRUCT 1808Bytes Temp space for SIGSTRUCT.

TMP_TOKEN EINITTOKEN 304Bytes Temp space for EINITTOKEN.

TMP_MRENCLAVE 32Bytes Temp space for calculating MRENCLAVE.

TMP_MRSIGNER 32Bytes Temp space for calculating MRSIGNER.

CONTROLLED_ATTRIBU

TES

ATTRIBUTES 16Bytes Constant mask of all ATTRIBUTE bits that can only be set for authorized

enclaves.

TMP_KEYDEPENDENCIE

S

Buffer 224Bytes Temp space for key derivation.

TMP_EINITTOKENKEY 16Bytes Temp space for the derived EINITTOKEN Key.

TMP_SIG_PADDING PKCS Padding

Buffer

352Bytes The value of the top 352 bytes from the computation of Signature3

modulo MRSIGNER.

(* make sure SIGSTRUCT and SECS are aligned *)

IF ((DS:RBX is not 4KByte Aligned) or (DS:RCX is not 4KByte Aligned))

 THEN #GP(0); FI;

(* make sure the EINITTOKEN is aligned *)

IF (DS:RDX is not 512Byte Aligned)

 THEN #GP(0); FI;

(* make sure the SECS is inside the EPC *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 243

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

TMP_SIG[14463:0]  DS:RBX[14463:0]; // 1808 bytes

TMP_TOKEN[2423:0]  DS:RDX[2423:0]; // 304 bytes

(* Verify SIGSTRUCT Header. *)

IF ((TMP_SIG.HEADER ≠ 06000000E10000000000010000000000h) or

 ((TMP_SIG.VENDOR ≠ 0) and (TMP_SIG.VENDOR ≠ 00008086h)) or

 (TMP_SIG HEADER2 ≠ 01010000600000006000000001000000h) or

 (TMP_SIG.EXPONENT ≠ 00000003h) or (Reserved space is not 0’s))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_SIG_STRUCT;

 GOTO EXIT;

FI;

(* Open “Event Window” Check for Interrupts. Verify signature using embedded public key, q1, and q2. Save upper 352 bytes of the

PKCS1.5 encoded message into the TMP_SIG_PADDING*)

IF (interrupt was pending) THEN

 RFLAGS.ZF  1;

 RAX  SGX_UNMASKED_EVENT;

 GOTO EXIT;

FI

IF (signature failed to verify) THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_SIGNATURE;

 GOTO EXIT;

FI;

(*Close “Event Window” *)

(* make sure no other Intel SGX instruction is modifying SECS*)

IF (Other instructions modifying SECS)

 THEN #GP(0); FI;

IF ((EPCM(DS:RCX). VALID = 0) or (EPCM(DS:RCX).PT ≠ PT_SECS))

 THEN #PF(DS:RCX); FI;

(* Verify ISVFAMILYID is not used on an enclave with KSS disabled *)

IF ((TMP_SIG.ISVFAMILYID != 0) AND (DS:RCX.ATTRIBUTES.KSS == 0))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_SIG_STRUCT;

 GOTO EXIT;

FI;

(* make sure no other instruction is accessing MRENCLAVE or ATTRIBUTES.INIT *)

IF ((Other instruction modifying MRENCLAVE) or (Other instructions modifying the SECS’s Initialized state))

 THEN #GP(0); FI;

(* Calculate finalized version of MRENCLAVE *)

(* SHA256 algorithm requires one last update that compresses the length of the hashed message into the output SHA256 digest *)

TMP_ENCLAVE SHA256FINAL((DS:RCX).MRENCLAVE, enclave’s MRENCLAVE update count *512);

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

244 Document Number: 334525-003, Revision 3.0

(* Verify MRENCLAVE from SIGSTRUCT *)

IF (TMP_SIG.ENCLAVEHASH ≠ TMP_MRENCLAVE)

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_MEASUREMENT;

 GOTO EXIT;

FI;

TMP_MRSIGNER  SHA256(TMP_SIG.MODULUS)

(* if controlled ATTRIBUTES are set, SIGSTRUCT must be signed using an authorized key *)

CONTROLLED_ATTRIBUTES  0000000000000020H;

IF (((DS:RCX.ATTRIBUTES & CONTROLLED_ATTRIBUTES) ≠ 0) and (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH))

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ATTRIBUTE;

 GOTO EXIT;

FI;

(* Verify SIGSTRUCT.ATTRIBUTE requirements are met *)

IF ((DS:RCX.ATTRIBUTES & TMP_SIG.ATTRIBUTEMASK) ≠ (TMP_SIG.ATTRIBUTE & TMP_SIG.ATTRIBUTEMASK))

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ATTRIBUTE;

 GOTO EXIT;

FI;

(*Verify SIGSTRUCT.MISCSELECT requirements are met *)

IF ((DS:RCX.MISCSELECT & TMP_SIG.MISCMASK) ≠ (TMP_SIG.MISCSELECT & TMP_SIG.MISCMASK))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ATTRIBUTE;

 GOTO EXIT

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

IF (DS:RCX.CET_ATTRIBUTES & TMP_SIG.CET_ATTRIBUTES_MASK ≠ TMP_SIG.CET_ATTRIBUTES & TMP_SIG.CET_ATTRIB-

UTES_MASK)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ATTRIBUTE;

 GOTO EXIT

 FI;

FI;

(* if EINITTOKEN.VALID[0] is 0, verify the enclave is signed by an authorized key *)

IF (TMP_TOKEN.VALID[0] = 0)

 IF (TMP_MRSIGNER ≠ IA32_SGXLEPUBKEYHASH)

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_EINITTOKEN;

 GOTO EXIT;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 245

 FI;

 GOTO COMMIT;

FI;

(* Debug Launch Enclave cannot launch Production Enclaves *)

IF ((DS:RDX.MASKEDATTRIBUTESLE.DEBUG = 1) and (DS:RCX.ATTRIBUTES.DEBUG = 0))

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_EINITTOKEN;

 GOTO EXIT;

FI;

(* Check reserve space in EINIT token includes reserved regions and upper bits in valid field *)

IF (TMP_TOKEN reserved space is not clear)

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_EINITTOKEN;

 GOTO EXIT;

FI;

(* EINIT token must be ≤ CR_CPUSVN *)

IF (TMP_TOKEN.CPUSVN > CR_CPUSVN)

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_CPUSVN;

 GOTO EXIT;

FI;

(* Derive Launch key used to calculate EINITTOKEN.MAC *)

HARDCODED_PKCS1_5_PADDING[15:0]  0100H;

HARDCODED_PKCS1_5_PADDING[2655:16]  SignExtend330Byte(-1); // 330 bytes of 0FFH

HARDCODED_PKCS1_5_PADDING[2815:2656]  2004000501020403650148866009060D30313000H;

TMP_KEYDEPENDENCIES.KEYNAME  EINITTOKEN_KEY;

TMP_KEYDEPENDENCIES.ISVFAMILYID  0;

TMP_KEYDEPENDENCIES.ISVEXTPRODID  0;

TMP_KEYDEPENDENCIES.ISVPRODID  TMP_TOKEN.ISVPRODIDLE;

TMP_KEYDEPENDENCIES.ISVSVN  TMP_TOKEN.ISVSVN;

TMP_KEYDEPENDENCIES.SGXOWNEREPOCH  CR_SGXOWNEREPOCH;

TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_TOKEN.MASKEDATTRIBUTESLE;

TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  0;

TMP_KEYDEPENDENCIES.MRENCLAVE  0;

TMP_KEYDEPENDENCIES.MRSIGNER  IA32_SGXLEPUBKEYHASH;

TMP_KEYDEPENDENCIES.KEYID  TMP_TOKEN.KEYID;

TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;

TMP_KEYDEPENDENCIES.CPUSVN  TMP_TOKEN.CPUSVN;

TMP_KEYDEPENDENCIES.MISCSELECT  TMP_TOKEN.MASKEDMISCSELECTLE;

TMP_KEYDEPENDENCIES.MISCMASK  0;

TMP_KEYDEPENDENCIES.PADDING  HARDCODED_PKCS1_5_PADDING;

TMP_KEYDEPENDENCIES.KEYPOLICY  0;

TMP_KEYDEPENDENCIES.CONFIGID  0;

TMP_KEYDEPENDENCIES.CONFIGSVN  0;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1))

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES  TMP_TOKEN.CET_MASKED_ATTRIBUTES_ LE;

TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK  0;

FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

246 Document Number: 334525-003, Revision 3.0

(* Calculate the derived key*)

TMP_EINITTOKENKEY  derivekey(TMP_KEYDEPENDENCIES);

(* Verify EINITTOKEN was generated using this CPU's Launch key and that it has not been modified since issuing by the Launch En-

clave. Only 192 bytes of EINITTOKEN are CMACed *)

IF (TMP_TOKEN.MAC ≠ CMAC(TMP_EINITTOKENKEY, TMP_TOKEN[1535:0]))

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_EINITTOKEN;

 GOTO EXIT;

FI;

(* Verify EINITTOKEN (RDX) is for this enclave *)

IF ((TMP_TOKEN.MRENCLAVE ≠ TMP_MRENCLAVE) or (TMP_TOKEN.MRSIGNER ≠ TMP_MRSIGNER))

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_MEASUREMENT;

 GOTO EXIT;

FI;

(* Verify ATTRIBUTES in EINITTOKEN are the same as the enclave’s *)

IF (TMP_TOKEN.ATTRIBUTES ≠ DS:RCX.ATTRIBUTES)

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_EINIT_ATTRIBUTE;

 GOTO EXIT;

FI;

COMMIT:

(* Commit changes to the SECS; Set ISVPRODID, ISVSVN, MRSIGNER, INIT ATTRIBUTE fields in SECS (RCX) *)

DS:RCX.MRENCLAVE  TMP_MRENCLAVE;

(* MRSIGNER stores a SHA256 in little endian implemented natively on x86 *)

DS:RCX.MRSIGNER  TMP_MRSIGNER;

DS:RCX.ISVEXTPRODID  TMP_SIG.ISVEXTPRODID;

DS:RCX.ISVPRODID  TMP_SIG.ISVPRODID;

DS:RCX.ISVSVN  TMP_SIG.ISVSVN;

DS:RCX.ISVFAMILYID  TMP_SIG.ISVFAMILYID;

DS:RCX.PADDING  TMP_SIG_PADDING;

(* Mark the SECS as initialized *)

Update DS:RCX to initialized;

(* Set RAX and ZF for success*)

 RFLAGS.ZF  0;

 RAX  0;

EXIT:

RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set and RAX contains the error code. CF, PF, AF, OF, SF are cleared.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 247

Protected Mode Exceptions

#GP(0) If a memory operand is not properly aligned.

 If another instruction is modifying the SECS.

 If the enclave is already initialized.

 If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.

 If RCX does not resolve in an EPC page.

 If the memory address is not a valid, uninitialized SECS.

64-Bit Mode Exceptions

#GP(0) If a memory operand is not properly aligned.

 If another instruction is modifying the SECS.

 If the enclave is already initialized.

 If the SECS.MRENCLAVE is in use.

#PF(error code) If a page fault occurs in accessing memory operands.

 If RCX does not resolve in an EPC page.

 If the memory address is not a valid, uninitialized SECS.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

248 Document Number: 334525-003, Revision 3.0

ELDB/ELDU/ELDBC/ELBUC—Load an EPC Page and Mark its State

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 07H

ENCLS[ELDB]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page

as blocked.

EAX = 08H

ENCLS[ELDU]

IR V/V SGX1 This leaf function loads, verifies an EPC page and marks the page

as unblocked.

EAX = 12H

ENCLS[ELDBC]

IR V/V EAX[5] This leaf function behaves lie ELDB but with improved conflict

handling for oversubscription.

EAX = 13H

ENCLS[ELDBC]

IR V/V EAX[5] This leaf function behaves like ELDU but with improved conflict

handling for oversubscription.

Instruction Operand Encoding

Op/En EAX RBX RCX RDX

IR
ELDB/ELDU

(In)

Return error

code (Out)

Address of the PAGEINFO

(In)

Address of the EPC page

(In)

Address of the version-ar-

ray slot (In)

Description

This leaf function copies a page from regular main memory to the EPC. As part of the copying process, the page

is cryptographically authenticated and decrypted. This instruction can only be executed when current privilege

level is 0.

The ELDB leaf function sets the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.

The ELDU leaf function clears the BLOCK bit in the EPCM entry for the destination page in the EPC after copying.

RBX contains the effective address of a PAGEINFO structure; RCX contains the effective address of the destina-

tion EPC page; RDX holds the effective address of the version array slot that holds the version of the page.

The ELDBC/ELDUC leafs are very similar to ELDB and ELDU. They provide an error code on the concurrency con-

flict for any of the pages which need to acquire a lock. These include the destination, SECS, and VA slot.

The table below provides additional information on the memory parameter of ELDB/ELDU leaf functions.

ELDB/ELDU/ELDBC/ELBUC Memory Parameter Semantics

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD PAGEINFO.SECS EPCPAGE Version-Array Slot

Non-enclave

read access

Non-enclave read

access

Non-enclave read

access

Enclave read/write

access

Read/Write access

permitted by Enclave

Read/Write access per-

mitted by Enclave

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 249

The error codes are:

ELDB/ELDU/ELDBC/ELBUC Return Value in RAX

 Error Code Description

No Error ELDB/ELDU successful.

SGX_MAC_COMPARE_FAIL If the MAC check fails.

Concurrency Restrictions

Base Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ELDB/ELDU/ Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

SECS [DS:RBX]PAGEINFO.SECS Shared #GP

ELDBC/ELBUC Target [DS:RCX] Exclusive SGX_EPC_PAGE_

CONFLICT

EPC_PAGE_CONFLICT_ERROR

VA [DS:RDX] Shared SGX_EPC_PAGE_

CONFLICT

SECS [DS:RBX]PAGEINFO.SECS Shared SGX_EPC_PAGE_

CONFLICT

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

250 Document Number: 334525-003, Revision 3.0

Additional Concurrency Restrictions of ELDB/ELDU/ELDBC/ELBUC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND,

EINIT
vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ELDB/ELDU/ Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

ELDBC/ELBUC Target [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Concurrent

SECS [DS:RBX]PAGEINFO.SECS Concurrent Concurrent Concurrent

Operation

Temp Variables in ELDB/ELDU/ELDBC/ELBUC Operational Flow

Name Type Size (Bits) Description

TMP_SRCPGE Memory page 4KBytes

TMP_SECS Memory page 4KBytes

TMP_PCMD PCMD 128 Bytes

TMP_HEADER MACHEADER 128 Bytes

TMP_VER UINT64 64

TMP_MAC UINT128 128

TMP_PK UINT128 128 Page encryption/MAC key.

SCRATCH_PCMD PCMD 128 Bytes

(* Check PAGEINFO and EPCPAGE alignment *)

IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))

 THEN #GP(0); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 251

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

(* Check VASLOT alignment *)

IF (DS:RDX is not 8Byte aligned)

 THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)

 THEN #PF(DS:RDX); FI;

TMP_SRCPGE  DS:RBX.SRCPGE;

TMP_SECS  DS:RBX.SECS;

TMP_PCMD  DS:RBX.PCMD;

(* Check alignment of PAGEINFO (RBX) linked parameters. Note: PCMD pointer is overlaid on top of PAGEINFO.SECINFO field *)

IF ((DS:TMP_PCMD is not 128Byte aligned) or (DS:TMP_SRCPGE is not 4KByte aligned))

 THEN #GP(0); FI;

(* Check concurrency of EPC by other Intel SGX instructions *)

IF (other instructions accessing EPC)

 THEN

 IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)

 THEN

 IF (<<VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

 THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  EPC_PAGE_CONFLICT_EXCEPTION;

 VMCS.Exit_qualification.error  0;

 VMCS.Guest-physical_address 

 << translation of DS:RCX produced by paging >>;

 VMCS.Guest-linear_address  DS:RCX;

 Deliver VMEXIT;

 ELSE

 #GP(0);

 FI;

 ELSE (* ELDBC/ELDUC *)

 IF (<<VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

 THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  EPC_PAGE_CONFLICT_ERROR;

 VMCS.Exit_qualification.error  SGX_EPC_PAGE_CONFLICT;

 VMCS.Guest-physical_address 

 << translation of DS:RCX produced by paging >>;

 VMCS.Guest-linear_address  DS:RCX;

 Deliver VMEXIT;

 ELSE

 RFLAGS.ZF  1;

 RFLAGS.CF  0;

 RAX  SGX_EPC_PAGE_CONFLICT;

 GOTO ERROR_EXIT;

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

252 Document Number: 334525-003, Revision 3.0

 FI;

FI;

(* Check concurrency of EPC and VASLOT by other Intel SGX instructions *)

IF (Other instructions modifying VA slot)

 THEN

 IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)

 #GP(0);

 FI;

 ELSE (* ELDBC/ELDUC *)

 RFLAGS.ZF  1;

 RFLAGS.CF  0;

 RAX  SGX_EPC_PAGE_CONFLICT;

 GOTO ERROR_EXIT;

FI;

(* Verify EPCM attributes of EPC page, VA, and SECS *)

IF (EPCM(DS:RCX).VALID = 1)

 THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~0FFFH).PT ≠ PT_VA))

 THEN #PF(DS:RDX); FI;

(* Copy PCMD into scratch buffer *)

SCRATCH_PCMD[1023: 0] DS:TMP_PCMD[1023:0];

(* Zero out TMP_HEADER*)

TMP_HEADER[sizeof(TMP_HEADER)-1: 0] 0;

TMP_HEADER.SECINFO  SCRATCH_PCMD.SECINFO;

TMP_HEADER.RSVD  SCRATCH_PCMD.RSVD;

TMP_HEADER.LINADDR  DS:RBX.LINADDR;

(* Verify various attributes of SECS parameter *)

IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1)) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1)))

 THEN

 IF (DS:TMP_SECS is not 4KByte aligned)

 THEN #GP(0) FI;

 IF (DS:TMP_SECS does not resolve within an EPC)

 THEN #PF(DS:TMP_SECS) FI;

 IF (Other instructions modifying SECS)

 THEN

 IF ((EAX==07h) OR (EAX==08h)) (* ELDB/ELDU *)

 #GP(0);

 FI;

 ELSE (* ELDBC/ELDUC *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 253

 RFLAGS.ZF  1;

 RFLAGS.CF  0;

 RAX  SGX_EPC_PAGE_CONFLICT;

 GOTO ERROR_EXIT;

 FI;

FI;

IF ((TMP_HEADER.SECINFO.FLAGS.PT = PT_REG) or (TMP_HEADER.SECINFO.FLAGS.PT = PT_TCS) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_TRIM) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_FIRST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1)) or

 (TMP_HEADER.SECINFO.FLAGS.PT = PT_SS_REST and CPUID.(EAX=12H, ECX=1):EAX[6] = 1)))

 THEN

 TMP_HEADER.EID  DS:TMP_SECS.EID;

 ELSE

 (* These pages do not have any parent, and hence no EID binding *)

 TMP_HEADER.EID  0;

FI;

(* Copy 4KBytes SRCPGE to secure location *)

DS:RCX[32767: 0] DS:TMP_SRCPGE[32767: 0];

TMP_VER  DS:RDX[63:0];

(* Decrypt and MAC page. AES_GCM_DEC has 2 outputs, {plain text, MAC} *)

(* Parameters for AES_GCM_DEC {Key, Counter, ..} *)

{DS:RCX, TMP_MAC}  AES_GCM_DEC(CR_BASE_PK, TMP_VER << 32, TMP_HEADER, 128, DS:RCX, 4096);

IF ((TMP_MAC ≠ DS:TMP_PCMD.MAC))

 THEN

 RFLAGS.ZF  1;

 RAX SGX_MAC_COMPARE_FAIL;

 GOTO ERROR_EXIT;

FI;

(* Check version before committing *)

IF (DS:RDX ≠ 0)

 THEN #GP(0);

 ELSE

 DS:RDX TMP_VER;

FI;

(* Commit EPCM changes *)

EPCM(DS:RCX).PT  TMP_HEADER.SECINFO.FLAGS.PT;

EPCM(DS:RCX).RWX  TMP_HEADER.SECINFO.FLAGS.RWX;

EPCM(DS:RCX).PENDING  TMP_HEADER.SECINFO.FLAGS.PENDING;

EPCM(DS:RCX).MODIFIED  TMP_HEADER.SECINFO.FLAGS.MODIFIED;

EPCM(DS:RCX).PR  TMP_HEADER.SECINFO.FLAGS.PR;

EPCM(DS:RCX).ENCLAVEADDRESS  TMP_HEADER.LINADDR;

IF (((EAX = 07H) or (EAX = 12H)) and (TMP_HEADER.SECINFO.FLAGS.PT is NOT PT_SECS or PT_VA))

 THEN

 EPCM(DS:RCX).BLOCKED  1;

 ELSE

 EPCM(DS:RCX).BLOCKED  0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

254 Document Number: 334525-003, Revision 3.0

FI;

IF (TMP_HEADER.SECINFO.FLAGS.PT is PT_SECS)

 << store translation of DS:RCX produced by paging in SECS(DS:RCX).ENCLAVECONTEXT >>

FI;

EPCM(DS:RCX). VALID  1;

RAX 0;

RFLAGS.ZF  0;

ERROR_EXIT:

RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If the instruction’s EPC resource is in use by others.

 If the instruction fails to verify MAC.

 If the version-array slot is in use.

 If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand expected to be in EPC does not resolve to an EPC page.

 If one of the EPC memory operands has incorrect page type.

 If the destination EPC page is already valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If the instruction’s EPC resource is in use by others.

 If the instruction fails to verify MAC.

 If the version-array slot is in use.

 If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand expected to be in EPC does not resolve to an EPC page.

 If one of the EPC memory operands has incorrect page type.

 If the destination EPC page is already valid.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 255

EMODPR—Restrict the Permissions of an EPC Page

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 0EH

ENCLS[EMODPR]

IR V/V SGX2 This leaf function restricts the access rights associated with a

EPC page in an initialized enclave.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EMODPR (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

Description

This leaf function restricts the access rights associated with an EPC page in an initialized enclave. THE RWX bits

of the SECINFO parameter are treated as a permissions mask; supplying a value that does not restrict the page

permissions will have no effect. This instruction can only be executed when current privilege level is 0.

RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC

page. The table below provides additional information on the memory parameter of the EMODPR leaf function.

EMODPR Memory Parameter Semantics

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

EMODPR Faulting Conditions

The instruction faults if any of the following:

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

256 Document Number: 334525-003, Revision 3.0

The error codes are:

EMODPR Return Value in RAX

 Error Code Description

No Error EMODPR successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODT, or EWB.

Concurrency Restrictions

Base Concurrency Restrictions of EMODPR

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPR Target [DS:RCX] Shared #GP

Additional Concurrency Restrictions of EMODPR

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPR Target [DS:RCX] Exclusive SGX_EPC_PAG

E_CONFLICT

Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 257

Operation

Temp Variables in EMODPR Operational Flow

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

IF (DS:RBX is not 64Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO  DS:RBX;

(* Check for misconfigured SECINFO flags*)

IF ((SCRATCH_SECINFO reserved fields are not zero) or

 (SCRATCH_SECINFO.FLAGS.R is 0 and SCRATCH_SECINFO.FLAGS.W is not 0))

 THEN #GP(0); FI;

(* Check concurrency with SGX1 or SGX2 instructions on the EPC page *)

IF (SGX1 or other SGX2 instructions accessing EPC page)

 THEN #GP(0); FI;

IF (EPCM(DS:RCX).VALID is 0)

 THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)

IF (EPC page in use by another SGX2 instruction)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_EPC_PAGE_CONFLICT;

 GOTO DONE;

FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_PAGE_NOT_MODIFIABLE;

 GOTO DONE;

FI;

IF (EPCM(DS:RCX).PT is not PT_REG)

 THEN #PF(DS:RCX); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

258 Document Number: 334525-003, Revision 3.0

TMP_SECS  GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)

 THEN #GP(0); FI;

(* Set the PR bit to indicate that permission restriction is in progress *)

EPCM(DS:RCX).PR  1;

(* Update EPCM permissions *)

EPCM(DS:RCX).R  EPCM(DS:RCX).R & SCRATCH_SECINFO.FLAGS.R;

EPCM(DS:RCX).W  EPCM(DS:RCX).W & SCRATCH_SECINFO.FLAGS.W;

EPCM(DS:RCX).X  EPCM(DS:RCX).X & SCRATCH_SECINFO.FLAGS.X;

RFLAGS.ZF  0;

RAX  0;

DONE:

RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared.

Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 259

EMODT—Change the Type of an EPC Page

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 0FH

ENCLS[EMODT]

IR V/V SGX2 This leaf function changes the type of an existing EPC page.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EMODT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

Description

This leaf function modifies the type of an EPC page. The security attributes are configured to prevent access to

the EPC page at its new type until a corresponding invocation of the EACCEPT leaf confirms the modification.

This instruction can only be executed when current privilege level is 0.

RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC

page. The table below provides additional information on the memory parameter of the EMODT leaf function.

EMODT Memory Parameter Semantics

SECINFO EPCPAGE

Read access permitted by Non Enclave Read/Write access permitted by Enclave

EMODT Faulting Conditions

The instruction faults if any of the following:

The operands are not properly aligned. If unsupported security attributes are set.

The Enclave is not initialized. SECS is locked by another thread.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running enclave.

The EPC page is not valid.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

260 Document Number: 334525-003, Revision 3.0

The error codes are:

EMODT Return Value in RAX

 Error Code Description

No Error EMODT successful.

SGX_PAGE_NOT_MODIFIABLE The EPC page cannot be modified because it is in the PENDING or MODIFIED state.

SGX_EPC_PAGE_CONFLICT Page is being written by EADD, EAUG, ECREATE, ELDU/B, EMODPR, or EWB.

Concurrency Restrictions

Base Concurrency Restrictions of EMODT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAGE_

CONFLICT

EPC_PAGE_CONFLICT_ERROR

Additional Concurrency Restrictions of EMODT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,

EMODPE, EMODPR, EMODT
vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODT Target [DS:RCX] Exclusive SGX_EPC_PAG

E_CONFLICT

Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 261

Operation

Temp Variables in EMODT Operational Flow

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operand belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

IF (DS:RBX is not 64Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

SCRATCH_SECINFO  DS:RBX;

(* Check for misconfigured SECINFO flags*)

IF ((SCRATCH_SECINFO reserved fields are not zero) or

 !(SCRATCH_SECINFO.FLAGS.PT is PT_TCS or SCRATCH_SECINFO.FLAGS.PT is PT_TRIM))

 THEN #GP(0); FI;

(* Check concurrency with SGX1 instructions on the EPC page *)

IF (other SGX1 instructions accessing EPC page)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_EPC_PAGE_CONFLICT;

 GOTO DONE;

FI;

IF (EPCM(DS:RCX).VALID is 0)

 THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)

IF (EPC page in use by another SGX2 instruction)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_EPC_PAGE_CONFLICT;

 GOTO DONE;

FI;

IF (!(EPCM(DS:RCX).PT is PT_REG or

 ((EPCM(DS:RCX).PT is PT_TCS or PT_SS_FIRST or PT_SS_REST) and SCRATCH_SECINFO.FLAGS.PT is PT_TRIM)))

 THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PENDING is not 0 or (EPCM(DS:RCX).MODIFIED is not 0))

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

262 Document Number: 334525-003, Revision 3.0

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_PAGE_NOT_MODIFIABLE;

 GOTO DONE;

FI;

TMP_SECS  GET_SECS_ADDRESS

IF (TMP_SECS.ATTRIBUTES.INIT = 0)

 THEN #GP(0); FI;

(* Update EPCM fields *)

EPCM(DS:RCX).PR  0;

EPCM(DS:RCX).MODIFIED  1;

EPCM(DS:RCX).R  0;

EPCM(DS:RCX).W  0;

EPCM(DS:RCX).X  0;

EPCM(DS:RCX).PT  SCRATCH_SECINFO.FLAGS.PT;

RFLAGS.ZF  0;

RAX  0;

DONE:

RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if page is not modifiable or if other SGX2 instructions are executing concurrently, otherwise cleared.

Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 263

EPA—Add Version Array

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 0AH

ENCLS[EPA]

IR V/V SGX1 This leaf function adds a Version Array to the EPC.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EPA (In) PT_VA (In, Constant) Effective address of the EPC page (In)

Description

This leaf function creates an empty version array in the EPC page whose logical address is given by DS:RCX, and
sets up EPCM attributes for that page. At the time of execution of this instruction, the register RBX must be set to
PT_VA.

The table below provides additional information on the memory parameter of EPA leaf function.

EPA Memory Parameter Semantics

EPCPAGE

Write access permitted by Enclave

Concurrency Restrictions

Base Concurrency Restrictions of EPA

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EPA VA [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

264 Document Number: 334525-003, Revision 3.0

Additional Concurrency Restrictions of EPA

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EPA VA [DS:RCX] Concurrent L Concurrent Concurrent

Operation

IF (RBX ≠ PT_VA or DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)

IF (Other Intel SGX instructions accessing the page)

 THEN

 IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

 THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  EPC_PAGE_CONFLICT_EXCEPTION;

 VMCS.Exit_qualification.error  0;

 VMCS.Guest-physical_address << translation of DS:RCX produced by paging >>;

 VMCS.Guest-linear_address  DS:RCX;

 Deliver VMEXIT;

 ELSE

 #GP(0);

 FI;

FI;

(* Check EPC page must be empty *)

IF (EPCM(DS:RCX). VALID ≠ 0)

 THEN #PF(DS:RCX); FI;

(* Clears EPC page *)

DS:RCX[32767:0]  0;

EPCM(DS:RCX).PT  PT_VA;

EPCM(DS:RCX).ENCLAVEADDRESS  0;

EPCM(DS:RCX).BLOCKED  0;

EPCM(DS:RCX).PENDING  0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 265

EPCM(DS:RCX).MODIFIED  0;

EPCM(DS:RCX).PR  0;

EPCM(DS:RCX).RWX  0;

EPCM(DS:RCX).VALID  1;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If another Intel SGX instruction is accessing the EPC page.

 If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

 If the EPC page is valid.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If another Intel SGX instruction is accessing the EPC page.

 If RBX is not set to PT_VA.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

 If the EPC page is valid.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

266 Document Number: 334525-003, Revision 3.0

ERDINFO—Read Type and Status Information About an EPC Page

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 10H

ENCLS[ERDINFO]

IR V/V EAX[6] This leaf function returns type and status information about an

EPC page.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR ERDINFO (In) Address of a RDINFO structure (In)
Address of the destination EPC page

(In)

Description

This instruction reads type and status information about an EPC page and returns it in a RDINFO structure. The

STATUS field of the structure describes the status of the page and determines the validity of the remaining

fields. The FLAGS field returns the EPCM permissions of the page; the page type; and the BLOCKED, PENDING,

MODIFIED, and PR status of the page. For enclave pages, the ENCLAVECONTEXT field of the structure returns

the value of SECS.ENCLAVECONTEXT. For non-enclave pages (e.g., VA) ENCLAVECONTEXT returns 0.

For invalid or non-EPC pages, the instruction returns an information code indicating the page's status, in addition

to populating the STATUS field.

ERDINFO returns an error code if the destination EPC page is being modified by a concurrent SGX instruction.

RBX contains the effective address of a RDINFO structure while RCX contains the effective address of an EPC

page. The table below provides additional information on the memory parameter of ERDINFO leaf function.

ERDINFO Memory Parameter Semantics

RDINFO EPCPAGE

Read/Write access permitted by Non Enclave Read access permitted by Enclave

ERDINFO Faulting Conditions

The instruction faults if any of the following:

A memory operand effective address is outside the DS

segment limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 267

The error codes are:

ERDINFO Return Value in RAX

 Error Code Value Description

No Error 0 ERDINFO successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD Target page is not a valid EPC page.

SGX_PG_NONEPC Page is not an EPC page.

Concurrency Restrictions

Base Concurrency Restrictions of ERDINFO

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERDINFO Target [DS:RCX] Shared SGX_EPC_PAGE_

CONFLICT

Additional Concurrency Restrictions of ERDINFO

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERDINFO Target [DS:RCX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

268 Document Number: 334525-003, Revision 3.0

Operation

Temp Variables in ERDINFO Operational Flow

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_RDINFO Linear Address 64 Address of the RDINFO structure.

(* check alignment of RDINFO structure (RBX) *)

IF (DS:RBX is not 32Byte Aligned) THEN

 #GP(0); FI;

(* check alignment of the EPCPAGE (RCX) *)

IF (DS:RCX is not 4KByte Aligned) THEN

 #GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)

IF (DS:RCX does not resolve within EPC) THEN

 RFLAGS.CF  1;

 RFLAGS.ZF  0;

 RAX  SGX_PG_NONEPC;

 goto DONE;

FI;

(* Check the EPC page for concurrency *)

IF (EPC page is being modified) THEN

 RFLAGS.ZF = 1;

 RFLAGS.CF = 0;

 RAX = SGX_EPC_PAGE_CONFLICT;

 goto DONE;

FI;

(* check page validity *)

IF (EPCM(DS:RCX).VALID = 0) THEN

 RFLAGS.CF = 1;

 RFLAGS.ZF = 0;

 RAX = SGX_PG_INVLD;

 goto DONE;

FI;

(* clear the fields of the RDINFO structure *)

TMP_RDINFO  DS:RBX;

TMP_RDINFO.STATUS  0;

TMP_RDINFO.FLAGS  0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 269

TMP_RDINFO.ENCLAVECONTEXT  0;

(* store page info in RDINFO structure *)

TMP_RDINFO.FLAGS.RWX  EPCM(DS:RCX).RWX;

TMP_RDINFO.FLAGS.PENDING  EPCM(DS:RCX).PENDING;

TMP_RDINFO.FLAGS.MODIFIED  EPCM(DS:RCX).MODIFIED;

TMP_RDINFO.FLAGS.PR  EPCM(DS:RCX).PR;

TMP_RDINFO.FLAGS.PAGE_TYPE  EPCM(DS:RCX).PAGE_TYPE;

TMP_RDINFO.FLAGS.BLOCKED  EPCM(DS:RCX).BLOCKED;

(* read SECS.ENCLAVECONTEXT for enclave child pages *)

IF ((EPCM(DS:RCX).PAGE_TYPE = PT_REG) or

 (EPCM(DS:RCX).PAGE_TYPE = PT_TCS) or

 (EPCM(DS:RCX).PAGE_TYPE = PT_TRIM) or

 (EPCM(DS:RCX).PAGE_TYPE = PT_SS_FIRST) or

 (EPCM(DS:RCX).PAGE_TYPE = PT_SS_REST)

) THEN

 TMP_SECS  Address of SECS for (DS:RCX);

 TMP_RDINFO.ENCLAVECONTEXT  SECS(TMP_SECS).ENCLAVECONTEXT;

FI;

(* populate enclave information for SECS pages *)

IF (EPCM(DS:RCX).PAGE_TYPE = PT_SECS) THEN

 IF ((VMX non-root mode) and

 (ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)

) THEN

 TMP_RDINFO.STATUS.CHILDPRESENT 

 ((SECS(DS:RCX).CHLDCNT ≠ 0) or

 SECS(DS:RCX).VIRTCHILDCNT ≠ 0);

 ELSE

 TMP_RDINFO.STATUS.CHILDPRESENT  (SECS(DS:RCX).CHLDCNT ≠ 0);

 TMP_RDINFO.STATUS.VIRTCHILDPRESENT 

 (SECS(DS:RCX).VIRTCHILDCNT ≠ 0);

 TMP_RDINFO.ENCLAVECONTEXT  SECS(DS_RCX).ENCLAVECONTEXT;

 FI;

FI;

RAX  0;

RFLAGS.ZF  0;

RFLAGS.CF  0;

DONE:

(* clear flags *)

RFLAGS.PF  0;

RFLAGS.AF  0;

RFLAGS.OF  0;

RFLAGS.SF ? 0;

Flags Affected

ZF is set if ERDINFO fails due to concurrent operation with another SGX instruction; otherwise cleared.

CF is set if page is not a valid EPC page or not an EPC page; otherwise cleared.

PF, AF, OF and SF are cleared.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

270 Document Number: 334525-003, Revision 3.0

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If DS segment is unusable.

 If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

 If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 271

EREMOVE—Remove a page from the EPC

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 03H

ENCLS[EREMOVE]

IR V/V SGX1 This leaf function removes a page from the EPC.

Instruction Operand Encoding

Op/En EAX RCX

IR EREMOVE (In) Effective address of the EPC page (In)

Description

This leaf function causes an EPC page to be un-associated with its SECS and be marked as unused. This instruc-

tion leaf can only be executed when the current privilege level is 0.

The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.

Segment override is not supported.

The instruction fails if the operand is not properly aligned or does not refer to an EPC page or the page is in use

by another thread, or other threads are running in the enclave to which the page belongs. In addition the in-

struction fails if the operand refers to an SECS with associations.

EREMOVE Memory Parameter Semantics

EPCPAGE

Write access permitted by Enclave

EREMOVE Faulting Conditions

The instruction faults if any of the following:

The memory operand is not properly aligned. The memory operand does not resolve in an EPC page.

Refers to an invalid SECS. Refers to an EPC page that is locked by another thread.

Another Intel SGX instruction is accessing the EPC page. RCX does not contain an effective address of an EPC page.

the EPC page refers to an SECS with associations.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

272 Document Number: 334525-003, Revision 3.0

The error codes are:

EREMOVE Return Value in RAX

 Error Code Description

No Error EREMOVE successful.

SGX_CHILD_PRESENT If the SECS still have enclave pages loaded into EPC.

SGX_ENCLAVE_ACT If there are still logical processors executing inside the enclave.

Concurrency Restrictions

Base Concurrency Restrictions of EREMOVE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREMOVE Target [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

Additional Concurrency Restrictions of EREMOVE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREMOVE Target [DS:RCX] Concurrent Concurrent Concurrent

Operation

Temp Variables in EREMOVE Operational Flow

Name Type Size (Bits) Description

TMP_SECS Effective Address 32/64 Effective address of the SECS destination page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 273

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve to an EPC page)

 THEN #PF(DS:RCX); FI;

TMP_SECS  Get_SECS_ADDRESS();

(* Check the EPC page for concurrency *)

IF (EPC page being referenced by another Intel SGX instruction)

 THEN

 IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

 THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  EPC_PAGE_CONFLICT_EXCEPTION;

 VMCS.Exit_qualification.error  0;

 VMCS.Guest-physical_address  << translation of DS:RCX produced by paging >>;

 VMCS.Guest-linear_address  DS:RCX;

 Deliver VMEXIT;

 ELSE

 #GP(0);

 FI;

FI;

(* if DS:RCX is already unused, nothing to do*)

IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PT = PT_TRIM AND EPCM(DS:RCX).MODIFIED = 0))

 THEN GOTO DONE;

FI;

IF ((EPCM(DS:RCX).PT = PT_VA) OR

 ((EPCM(DS:RCX).PT = PT_TRIM) AND (EPCM(DS:RCX).MODIFIED = 0)))

 THEN

 EPCM(DS:RCX).VALID  0;

 GOTO DONE;

FI;

IF (EPCM(DS:RCX).PT = PT_SECS)

 THEN

 IF (DS:RCX has an EPC page associated with it)

 THEN

 RFLAGS.ZF  1;

 RAX SGX_CHILD_PRESENT;

 GOTO ERROR_EXIT;

 FI;

 (* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)

 IF (<<in VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND

 (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_CHILD_PRESENT

 GOTO ERROR_EXIT

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

274 Document Number: 334525-003, Revision 3.0

 EPCM(DS:RCX).VALID  0;

 GOTO DONE;

FI;

IF (Other threads active using SECS)

 THEN

 RFLAGS.ZF  1;

 RAX SGX_ENCLAVE_ACT;

 GOTO ERROR_EXIT;

FI;

IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM) or

 (EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

 THEN

 EPCM(DS:RCX).VALID  0;

 GOTO DONE;

FI;

DONE:

RAX 0;

RFLAGS.ZF  0;

ERROR_EXIT:

RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if unsuccessful, otherwise cleared and RAX returns error code. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If the memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If another Intel SGX instruction is accessing the page.

#PF(error code) If a page fault occurs in accessing memory operands.

 If the memory operand is not an EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 275

ETRACK—Activates EBLOCK Checks

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 0CH

ENCLS[ETRACK]

IR V/V SGX1 This leaf function activates EBLOCK checks.

Instruction Operand Encoding

Op/En EAX RCX

IR ETRACK (In) Return error code (Out) Pointer to the SECS of the EPC page (In)

Description

This leaf function provides the mechanism for hardware to track that software has completed the required TLB

address clears successfully. The instruction can only be executed when the current privilege level is 0.

The content of RCX is an effective address of an EPC page.

The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACK Memory Parameter Semantics

EPCPAGE

Read/Write access permitted by Enclave

The error codes are:

ETRACK Return Value in RAX

 Error Code Description

No Error ETRACK successful.

SGX_PREV_TRK_INCMPL All processors did not complete the previous shoot-down sequence.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

276 Document Number: 334525-003, Revision 3.0

Concurrency Restrictions

Base Concurrency Restrictions of ETRACK

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACK SECS [DS:RCX] Shared #GP

Additional Concurrency Restrictions of ETRACK

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACK SECS [DS:RCX] Concurrent Concurrent Exclusive SGX_EPC_PAG

E_CONFLICT

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 277

Operation

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

(* Check concurrency with other Intel SGX instructions *)

IF (Other Intel SGX instructions using tracking facility on this SECS)

 THEN

 IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

 THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  TRACKING_RESOURCE_CONFLICT;

 VMCS.Exit_qualification.error  0;

 VMCS.Guest-physical_address  SECS(TMP_SECS).ENCLAVECONTEXT;

 VMCS.Guest-linear_address  0;

 Deliver VMEXIT;

 ELSE

 #GP(0);

 FI;

FI;

IF (EPCM(DS:RCX). VALID = 0)

 THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).PT ≠ PT_SECS)

 THEN #PF(DS:RCX); FI;

(* All processors must have completed the previous tracking cycle*)

IF ((DS:RCX).TRACKING ≠ 0))

 THEN

 IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

 THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  TRACKING_REFERENCE_CONFLICT;

 VMCS.Exit_qualification.error  0;

 VMCS.Guest-physical_address  SECS(TMP_SECS).ENCLAVECONTEXT;

 VMCS.Guest-linear_address  0;

 Deliver VMEXIT;

 FI;

 RFLAGS.ZF  1;

 RAX SGX_PREV_TRK_INCMPL;

 GOTO DONE;

 ELSE

 RAX 0;

 RFLAGS.ZF  0;

FI;

DONE:

RFLAGS.CF,PF,AF,OF,SF  0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

278 Document Number: 334525-003, Revision 3.0

Flags Affected

Sets ZF if SECS is in use or invalid, otherwise cleared. Clears CF, PF, AF, OF, SF.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If another thread is concurrently using the tracking facility on this SECS.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If the specified EPC resource is in use.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 279

ETRACKC—Activates EBLOCK Checks

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 11H

ENCLS[ETRACKC]

IR V/V EAX[6] This leaf function activates EBLOCK checks.

Instruction Operand Encoding

Op/En EAX RCX

IR
ETRACK

(In)
Return error code (Out)

Address of the destination EPC page

(In, EA)
Address of the SECS page (In, EA)

Description

The ETRACKC instruction is thread safe variant of ETRACK leaf and can be executed concurrently with other CPU

threads operating on the same SECS.

This leaf function provides the mechanism for hardware to track that software has completed the required TLB

address clears successfully. The instruction can only be executed when the current privilege level is 0.

The content of RCX is an effective address of an EPC page.

The table below provides additional information on the memory parameter of ETRACK leaf function.

ETRACKC Memory Parameter Semantics

EPCPAGE

Read/Write access permitted by Enclave

The error codes are:

ETRACKC Return Value in RAX

 Error Code Value Description

No Error 0 ETRACKC successful.

SGX_EPC_PAGE_CONFLICT 7 Failure due to concurrent operation of another SGX instruction.

SGX_PG_INVLD 6 Target page is not a VALID EPC page.

SGX_PREV_TRK_INCMPL 17 All processors did not complete the previous tracking sequence.

SGX_TRACK_NOT_REQUIRED 27 Target page type does not require tracking.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

280 Document Number: 334525-003, Revision 3.0

Concurrency Restrictions

Base Concurrency Restrictions of ETRACKC

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ETRACKC Target [DS:RCX] Shared SGX_EPC_PAGE_

CONFLICT

SECS implicit Concurrent

Additional Concurrency Restrictions of ETRACKC

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ETRACKC Target [DS:RCX] Concurrent Concurrent Concurrent

SECS implicit Concurrent Concurrent Exclusive SGX_EPC_PAG

E_CONFLICT

Operation

Temp Variables in ETRACKC Operational Flow

Name Type Size (Bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

(* check alignment of EPCPAGE (RCX) *)

IF (DS:RCX is not 4KByte Aligned) THEN

#GP(0); FI;

(* check that EPCPAGE (DS:RCX) is the address of an EPC page *)

IF (DS:RCX does not resolve within an EPC) THEN

#PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPC page for concurrency *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 281

IF (EPC page is being modified) THEN

 RFLAGS.ZF  1;

 RFLAGS.CF  0;

 RAX  SGX_EPC_PAGE_CONFLICT;

 goto DONE_POST_LOCK_RELEASE;

FI;

(* check to make sure the page is valid *)

IF (EPCM(DS:RCX).VALID = 0) THEN

 RFLAGS.ZF  1;

 RFLAGS.CF  0;

 RAX  SGX_PG_INVLD;

 GOTO DONE;

FI;

(* find out the target SECS page *)

IF (EPCM(DS:RCX).PT is PT_REG or PT_TCS or PT_TRIM or PT_SS_FIRST or PT_SS_REST) THEN

 TMP_SECS  Obtain SECS through EPCM(DS:RCX).ENCLAVESECS;

ELSE IF (EPCM(DS:RCX).PT is PT_SECS) THEN

 TMP_SECS  Obtain SECS through (DS:RCX);

ELSE

 RFLAGS.ZF  0;

 RFLAGS.CF  1;

 RAX  SGX_TRACK_NOT_REQUIRED;

 GOTO DONE;

FI;

(* Check concurrency with other Intel SGX instructions *)

IF (Other Intel SGX instructions using tracking facility on this SECS) THEN

 IF ((VMX non-root mode) and

 (ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  TRACKING_RESOURCE_CONFLICT;

 VMCS.Exit_qualification.error  0;

 VMCS.Guest-physical_address 

 SECS(TMP_SECS).ENCLAVECONTEXT;

 VMCS.Guest-linear_address  0;

 Deliver VMEXIT;

 FI;

 RFLAGS.ZF  1;

 RFLAGS.CF  0;

 RAX  SGX_EPC_PAGE_CONFLICT;

 GOTO DONE;

FI;

(* All processors must have completed the previous tracking cycle*)

IF ((TMP_SECS).TRACKING ≠ 0))

THEN

 IF ((VMX non-root mode) and

 (ENABLE_EPC_VIRTUALIZATION_EXTENSIONS Execution Control = 1)) THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  TRACKING_REFERENCE_CONFLICT;

 VMCS.Exit_qualification.error  0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

282 Document Number: 334525-003, Revision 3.0

 VMCS.Guest-physical_address 

 SECS(TMP_SECS).ENCLAVECONTEXT;

 VMCS.Guest-linear_address  0;

 Deliver VMEXIT;

 FI;

 RFLAGS.ZF  1;

 RFLAGS.CF  0;

 RAX  SGX_PREV_TRK_INCMPL;

 GOTO DONE;

FI;

RFLAGS.ZF  0;

RFLAGS.CF  0;

RAX  0;

DONE:

(* clear flags *)

RFLAGS.PF,AF,OF,SF  0;

Flags Affected

ZF is set if ETRACKC fails due to concurrent operations with another SGX instructions or target page is an invalid

EPC page or tracking is not completed on SECS page; otherwise cleared.

CF is set if target page is not of a type that requires tracking; otherwise cleared.

PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#GP(0) If the memory operand violates access-control policies of DS segment.

 If DS segment is unusable.

 If the memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.

 If a page fault occurs in access memory operand.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.

 If a memory operand is not properly aligned.

#PF(error code) If the memory operand expected to be in EPC does not resolve to an EPC page.

 If a page fault occurs in access memory operand.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 283

EWB—Invalidate an EPC Page and Write out to Main Memory

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

 EAX = 0BH

ENCLS[EWB]

IR V/V SGX1 This leaf function invalidates an EPC page and writes it out to

main memory.

Instruction Operand Encoding

Op/En EAX RBX RCX RDX

IR EWB (In) Error code (Out)
Address of an PAGEINFO

(In)
Address of the EPC page (In) Address of a VA slot (In)

Description

This leaf function copies a page from the EPC to regular main memory. As part of the copying process, the page is
cryptographically protected. This instruction can only be executed when current privilege level is 0.

The table below provides additional information on the memory parameter of EPA leaf function.

EWB Memory Parameter Semantics

PAGEINFO PAGEINFO.SRCPGE PAGEINFO.PCMD EPCPAGE VASLOT

Non-EPC R/W access Non-EPC R/W access Non-EPC R/W access EPC R/W access EPC R/W access

The error codes are:

EWB Return Value in RAX

 Error Code Description

No Error EWB successful.

SGX_PAGE_NOT_BLOCKED If page is not marked as blocked.

SGX_NOT_TRACKED If EWB is racing with ETRACK instruction.

SGX_VA_SLOT_OCCUPIED Version array slot contained valid entry.

SGX_CHILD_PRESENT Child page present while attempting to page out enclave.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

284 Document Number: 334525-003, Revision 3.0

Concurrency Restrictions

Base Concurrency Restrictions of EWB

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EWB Source [DS:RCX] Exclusive #GP EPC_PAGE_CONFLICT_EXCEPTION

VA [DS:RDX] Shared #GP

Additional Concurrency Restrictions of EWB

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EWB Source [DS:RCX] Concurrent Concurrent Concurrent

VA [DS:RDX] Concurrent Concurrent Exclusive

Operation

Temp Variables in EWB Operational Flow

Name Type Size (Bytes) Description

TMP_SRCPGE Memory page 4096

TMP_PCMD PCMD 128

TMP_SECS SECS 4096

TMP_BPEPOCH UINT64 8

TMP_BPREFCOUNT UINT64 8

TMP_HEADER MAC Header 128

TMP_PCMD_ENCLAVEID UINT64 8

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 285

TMP_VER UINT64 8

TMP_PK UINT128 16

IF ((DS:RBX is not 32Byte Aligned) or (DS:RCX is not 4KByte Aligned))

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

IF (DS:RDX is not 8Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)

 THEN #PF(DS:RDX); FI;

(* EPCPAGE and VASLOT should not resolve to the same EPC page*)

IF (DS:RCX and DS:RDX resolve to the same EPC page)

 THEN #GP(0); FI;

TMP_SRCPGE  DS:RBX.SRCPGE;

(* Note PAGEINFO.PCMD is overlaid on top of PAGEINFO.SECINFO *)

TMP_PCMD  DS:RBX.PCMD;

If (DS:RBX.LINADDR ≠ 0) OR (DS:RBX.SECS ≠ 0)

 THEN #GP(0); FI;

IF ((DS:TMP_PCMD is not 128Byte Aligned) or (DS:TMP_SRCPGE is not 4KByte Aligned))

 THEN #GP(0); FI;

(* Check for concurrent Intel SGX instruction access to the page *)

IF (Other Intel SGX instruction is accessing page)

 THEN

 IF (<<VMX non-root operation>> AND <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>>)

 THEN

 VMCS.Exit_reason  SGX_CONFLICT;

 VMCS.Exit_qualification.code  EPC_PAGE_CONFLICT_EXCEPTION;

 VMCS.Exit_qualification.error  0;

 VMCS.Guest-physical_address  << translation of DS:RCX produced by paging >>;

 VMCS.Guest-linear_address  DS:RCX;

 Deliver VMEXIT;

 ELSE

 #GP(0);

 FI;

FI;

(*Check if the VA Page is being removed or changed*)

IF (VA Page is being modified)

 THEN #GP(0); FI;

(* Verify that EPCPAGE and VASLOT page are valid EPC pages and DS:RDX is VA *)

IF (EPCM(DS:RCX).VALID = 0)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

286 Document Number: 334525-003, Revision 3.0

 THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RDX & ~0FFFH).VALID = 0) or (EPCM(DS:RDX & ~FFFH).PT is not PT_VA))

 THEN #PF(DS:RDX); FI;

(* Perform page-type-specific exception checks *)

IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM)

 or (EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

 THEN

 TMP_SECS = Obtain SECS through EPCM(DS:RCX)

 (* Check that EBLOCK has occurred correctly *)

 IF (EBLOCK is not correct)

 THEN #GP(0); FI;

FI;

RFLAGS.ZF,CF,PF,AF,OF,SF  0;

RAX  0;

(* Perform page-type-specific checks *)

IF ((EPCM(DS:RCX).PT is PT_REG) or (EPCM(DS:RCX).PT is PT_TCS) or (EPCM(DS:RCX).PT is PT_TRIM)

 or (EPCM(DS:RCX).PT is PT_SS_FIRST) or (EPCM(DS:RCX).PT is PT_SS_REST))

 THEN

 (* check to see if the page is evictable *)

 IF (EPCM(DS:RCX).BLOCKED = 0)

 THEN

 RAX  SGX_PAGE NOT_BLOCKED;

 RFLAGS.ZF  1;

 GOTO ERROR_EXIT;

 FI;

 (* Check if tracking done correctly *)

 IF (Tracking not correct)

 THEN

 RAX  SGX_NOT_TRACKED;

 RFLAGS.ZF  1;

 GOTO ERROR_EXIT;

 FI;

 (* Obtain EID to establish cryptographic binding between the paged-out page and the enclave *)

 TMP_HEADER.EID  TMP_SECS.EID;

 (* Obtain EID as an enclave handle for software *)

 TMP_PCMD_ENCLAVEID  TMP_SECS.EID;

 ELSE IF (EPCM(DS:RCX).PT is PT_SECS)

 (*check that there are no child pages inside the enclave *)

 IF (DS:RCX has an EPC page associated with it)

 THEN

 RAX  SGX_CHILD_PRESENT;

 RFLAGS.ZF  1;

 GOTO ERROR_EXIT;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 287

 FI:

 (* treat SECS as having a child page when VIRTCHILDCNT is non-zero *)

 IF (<<in VMX non-root operation>> AND

 <<ENABLE_EPC_VIRTUALIZATION_EXTENSIONS>> AND

 (SECS(DS:RCX).VIRTCHILDCNT ≠ 0))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_CHILD_PRESENT;

 GOTO ERROR_EXIT;

 FI;

 TMP_HEADER.EID  0;

 (* Obtain EID as an enclave handle for software *)

 TMP_PCMD_ENCLAVEID  (DS:RCX).EID;

 ELSE IF (EPCM(DS:RCX).PT is PT_VA)

 TMP_HEADER.EID  0; // Zero is not a special value

 (* No enclave handle for VA pages*)

 TMP_PCMD_ENCLAVEID  0;

FI;

(* Zero out TMP_HEADER*)

TMP_HEADER[sizeof(TMP_HEADER)-1 : 0]  0;

TMP_HEADER.LINADDR  EPCM(DS:RCX).ENCLAVEADDRESS;

TMP_HEADER.SECINFO.FLAGS.PT  EPCM(DS:RCX).PT;

TMP_HEADER.SECINFO.FLAGS.RWX  EPCM(DS:RCX).RWX;

TMP_HEADER.SECINFO.FLAGS.PENDING  EPCM(DS:RCX).PENDING;

TMP_HEADER.SECINFO.FLAGS.MODIFIED  EPCM(DS:RCX).MODIFIED;

TMP_HEADER.SECINFO.FLAGS.PR  EPCM(DS:RCX).PR;

(* Encrypt the page, DS:RCX could be encrypted in place. AES-GCM produces 2 values, {ciphertext, MAC}. *)

(* AES-GCM input parameters: key, GCM Counter, MAC_HDR, MAC_HDR_SIZE, SRC, SRC_SIZE)*)

{DS:TMP_SRCPGE, DS:TMP_PCMD.MAC}  AES_GCM_ENC(CR_BASE_PK), (TMP_VER << 32),

 TMP_HEADER, 128, DS:RCX, 4096);

(* Write the output *)

Zero out DS:TMP_PCMD.SECINFO

DS:TMP_PCMD.SECINFO.FLAGS.PT  EPCM(DS:RCX).PT;

DS:TMP_PCMD.SECINFO.FLAGS.RWX  EPCM(DS:RCX).RWX;

DS:TMP_PCMD.SECINFO.FLAGS.PENDING  EPCM(DS:RCX).PENDING;

DS:TMP_PCMD.SECINFO.FLAGS.MODIFIED  EPCM(DS:RCX).MODIFIED;

DS:TMP_PCMD.SECINFO.FLAGS.PR  EPCM(DS:RCX).PR;

DS:TMP_PCMD.RESERVED  0;

DS:TMP_PCMD.ENCLAVEID  TMP_PCMD_ENCLAVEID;

DS:RBX.LINADDR  EPCM(DS:RCX).ENCLAVEADDRESS;

(*Check if version array slot was empty *)

IF ([DS.RDX])

 THEN

 RAX  SGX_VA_SLOT_OCCUPIED

 RFLAGS.CF  1;

FI;

(* Write version to Version Array slot *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

288 Document Number: 334525-003, Revision 3.0

[DS.RDX]  TMP_VER;

(* Free up EPCM Entry *)

EPCM.(DS:RCX).VALID  0;

ERROR_EXIT:

Flags Affected

ZF is set if page is not blocked, not tracked, or a child is present. Otherwise cleared.

CF is set if VA slot is previously occupied, Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If the EPC page and VASLOT resolve to the same EPC page.

 If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS

pages.

 If the tracking resource is in use.

 If the EPC page or the version array page is invalid.

 If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

 If one of the EPC memory operands has incorrect page type.

64-Bit Mode Exceptions

#GP(0) If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If the EPC page and VASLOT resolve to the same EPC page.

 If another Intel SGX instruction is concurrently accessing either the target EPC, VA, or SECS

pages.

 If the tracking resource is in use.

 If the EPC page or the version array page in invalid.

 If the parameters fail consistency checks.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

 If one of the EPC memory operands has incorrect page type.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 289

16.4 Intel® SGX User Leaf Function Reference

Leaf functions available with the ENCLU instruction mnemonic are covered in this section. In general, each in-

struction leaf requires EAX to specify the leaf function index and/or additional registers specifying leaf-specific

input parameters. An instruction operand encoding table provides details of the implicitly-encoded register usage

and associated input/output semantics.

In many cases, an input parameter specifies an effective address associated with a memory object inside or out-

side the EPC, the memory addressing semantics of these memory objects are also summarized in a separate

table.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

290 Document Number: 334525-003, Revision 3.0

EACCEPT—Accept Changes to an EPC Page

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 05H

ENCLU[EACCEPT]

IR V/V SGX2 This leaf function accepts changes made by system software to

an EPC page in the running enclave.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EACCEPT (In) Return Error Code (Out) Address of a SECINFO (In) Address of the destination EPC page (In)

Description

This leaf function accepts changes to a page in the running enclave by verifying that the security attributes

specified in the SECINFO match the security attributes of the page in the EPCM. This instruction leaf can only be

executed when inside the enclave.

RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC

page. The table below provides additional information on the memory parameter of the EACCEPT leaf function.

EACCEPT Memory Parameter Semantics

SECINFO EPCPAGE (Destination)

Read access permitted by Non Enclave Read access permitted by Enclave

EACCEPT Faulting Conditions

The instruction faults if any of the following:

The operands are not properly aligned. RBX does not contain an effective address in an EPC page in the running

enclave.

The EPC page is locked by another thread. RCX does not contain an effective address of an EPC page in the running

enclave.

The EPC page is not valid. Page type is PT_REG and MODIFIED bit is 0.

SECINFO contains an invalid request. Page type is PT_TCS or PT_TRIM and PENDING bit is 0 and MODIFIED bit is 1.

If security attributes of the SECINFO page make

the page inaccessible.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 291

The error codes are:

EACCEPT Return Value in RAX

 Error Code Description

No Error EACCEPT successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.

SGX_NOT_TRACKED The OS did not complete an ETRACK on the target page.

Concurrency Restrictions

Base Concurrency Restrictions of EACCEPT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPT Target [DS:RCX] Shared #GP

SECINFO [DS:RBX] Concurrent

Additional Concurrency Restrictions of EACCEPT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPT Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

292 Document Number: 334525-003, Revision 3.0

Operation

Temp Variables in EACCEPT Operational Flow

Name Type Size (bits) Description

TMP_SECS Effective Address 32/64 Physical address of SECS to which EPC operands belongs.

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

IF (DS:RBX is not 64Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RBX is not within CR_ELRANGE)

 THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)

 THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or

 (EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or

 (EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or (EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or

 (EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ (DS:RBX & FFFH)))

 THEN #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)

SCRATCH_SECINFO  DS:RBX;

(* Check for misconfigured SECINFO flags*)

IF (SCRATCH_SECINFO reserved fields are not zero)

 THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX is not within CR_ELRANGE)

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

(* Check that the combination of requested PT, PENDING and MODIFIED is legal *)

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 0)

 THEN

 IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) and

 ((SCRATCH_SECINFO.FLAGS.PR is 1) or

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 293

 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) and

 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) or

 ((SCRATCH_SECINFO.FLAGS.PT is PT_TCS or PT_TRIM) and

 (SCRATCH_SECINFO.FLAGS.PR is 0) and

 (SCRATCH_SECINFO.FLAGS.PENDING is 0) and

 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1))))

 THEN #GP(0); FI

 ELSE

IF (NOT (((SCRATCH_SECINFO.FLAGS.PT is PT_REG) AND

 ((SCRATCH_SECINFO.FLAGS.PR is 1) OR

 (SCRATCH_SECINFO.FLAGS.PENDING is 1)) AND

 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0)) OR

((SCRATCH_SECINFO.FLAGS.PT is PT_TCS OR PT_TRIM) AND

 (SCRATCH_SECINFO.FLAGS.PENDING is 0) AND

 (SCRATCH_SECINFO.FLAGS.MODIFIED is 1) AND

 (SCRATCH_SECINFO.FLAGS.PR is 0)) OR

((SCRATCH_SECINFO.FLAGS.PT is PT_SS_FIRST or PT_SS_REST) AND

 (SCRATCH_SECINFO.FLAGS.PENDING is 1) AND

 (SCRATCH_SECINFO.FLAGS.MODIFIED is 0) AND

 (SCRATCH_SECINFO.FLAGS.PR is 0))))

THEN #GP(0); FI;

 FI;

(* Check security attributes of the destination EPC page *)

If ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).BLOCKED is not 0) or

 ((EPCM(DS:RCX).PT is not PT_REG) and (EPCM(DS:RCX).PT is not PT_TCS) and (EPCM(DS:RCX).PT is not PT_TRIM)

 and (EPCM(DS:RCX).PT is not PT_SS_FIRST) and (EPCM(DS:RCX).PT is not PT_SS_REST)) or

 (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

 THEN #PF((DS:RCX); FI;

(* Check the destination EPC page for concurrency *)

IF (EPC page in use)

 THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)

IF ((EPCM(DS:RCX).VALID is 0) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

 THEN #PF(DS:RCX); FI;

(* Verify that accept request matches current EPC page settings *)

IF ((EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX) or (EPCM(DS:RCX).PENDING ≠ SCRATCH_SECINFO.FLAGS.PENDING) or

 (EPCM(DS:RCX).MODIFIED ≠ SCRATCH_SECINFO.FLAGS.MODIFIED) or (EPCM(DS:RCX).R ≠ SCRATCH_SECINFO.FLAGS.R) or

 (EPCM(DS:RCX).W ≠ SCRATCH_SECINFO.FLAGS.W) or (EPCM(DS:RCX).X ≠ SCRATCH_SECINFO.FLAGS.X) or

 (EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_PAGE_ATTRIBUTES_MISMATCH;

 GOTO DONE;

FI;

(* Check that all required threads have left enclave *)

IF (Tracking not correct)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_NOT_TRACKED;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

294 Document Number: 334525-003, Revision 3.0

 GOTO DONE;

FI;

(* Get pointer to the SECS to which the EPC page belongs *)

TMP_SECS = << Obtain physical address of SECS through EPCM(DS:RCX)>>

(* For TCS pages, perform additional checks *)

IF (SCRATCH_SECINFO.FLAGS.PT = PT_TCS)

 THEN

 IF (DS:RCX.RESERVED ≠ 0) #GP(0); FI;

FI;

(* Check that TCS.FLAGS.DBGOPTIN, TCS stack, and TCS status are correctly initialized *)

(* check that TCS.PREVSSP is 0 *)

IF (((DS:RCX).FLAGS.DBGOPTIN is not 0) or ((DS:RCX).CSSA ≥ (DS:RCX).NSSA) or ((DS:RCX).AEP is not 0) or ((DS:RCX).STATE is not 0) or

((CPUID.(EAX=12H, ECX=1):EAX[6] = 1) AND ((DS:RCX).PREVSSP != 0)))

 THEN #GP(0); FI;

(* Check consistency of FS & GS Limit *)

IF ((TMP_SECS.ATTRIBUTES.MODE64BIT is 0) and ((DS:RCX.FSLIMIT & FFFH ≠ FFFH) or (DS:RCX.GSLIMIT & FFFH ≠ FFFH)))

 THEN #GP(0); FI;

(* Clear PENDING/MODIFIED flags to mark accept operation complete *)

EPCM(DS:RCX).PENDING  0;

EPCM(DS:RCX).MODIFIED  0;

EPCM(DS:RCX).PR  0;

(* Clear EAX and ZF to indicate successful completion *)

RFLAGS.ZF  0;

RAX  0;

DONE:

RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if page cannot be accepted, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If executed outside an enclave.

 If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

 If EPC page has incorrect page type or security attributes.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 295

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.

 If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

 If EPC page has incorrect page type or security attributes.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

296 Document Number: 334525-003, Revision 3.0

EACCEPTCOPY—Initialize a Pending Page

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 07H

ENCLU[EACCEPTCOPY]

IR V/V SGX2 This leaf function initializes a dynamically allocated EPC page

from another page in the EPC.

Instruction Operand Encoding

Op/En EAX RBX RCX RDX

IR EACCEPTCOPY (In)
Return Error Code

(Out)
Address of a SECINFO (In)

Address of the destina-

tion EPC page (In)

Address of the

source EPC page (In)

Description

This leaf function copies the contents of an existing EPC page into an uninitialized EPC page (created by EAUG).

After initialization, the instruction may also modify the access rights associated with the destination EPC page.

This instruction leaf can only be executed when inside the enclave.

RBX contains the effective address of a SECINFO structure while RCX and RDX each contain the effective ad-

dress of an EPC page. The table below provides additional information on the memory parameter of the

EACCEPTCOPY leaf function.

EACCEPTCOPY Memory Parameter Semantics

SECINFO EPCPAGE (Destination) EPCPAGE (Source)

Read access permitted by Non Enclave Read/Write access permitted by Enclave Read access permitted by Enclave

EACCEPTCOPY Faulting Conditions

The instruction faults if any of the following:

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. If security attributes of the source EPC page make the page inaccessible.

The EPC page is not valid. RBX does not contain an effective address in an EPC page in the running enclave.

SECINFO contains an invalid request. RCX/RDX does not contain an effective address of an EPC page in the running

enclave.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 297

The error codes are:

EACCEPTCOPY Return Value in RAX

 Error Code Description

No Error EACCEPTCOPY successful.

SGX_PAGE_ATTRIBUTES_MISMATCH The attributes of the target EPC page do not match the expected values.

Concurrency Restrictions

Base Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EACCEPTCOPY Target [DS:RCX] Concurrent

Source [DS:RDX] Concurrent

SECINFO [DS:RBX] Concurrent

Additional Concurrency Restrictions of EACCEPTCOPY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EACCEPTCOPY Target [DS:RCX] Exclusive #GP Concurrent Concurrent

Source [DS:RDX] Concurrent Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Operation

Temp Variables in EACCEPTCOPY Operational Flow

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

298 Document Number: 334525-003, Revision 3.0

IF (DS:RBX is not 64Byte Aligned)

 THEN #GP(0); FI;

IF ((DS:RCX is not 4KByte Aligned) or (DS:RDX is not 4KByte Aligned))

 THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE) or (DS:RDX is not within CR_ELRANGE))

 THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)

 THEN #PF(DS:RBX); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

IF (DS:RDX does not resolve within an EPC)

 THEN #PF(DS:RDX); FI;

IF ((EPCM(DS:RBX &~FFFH).VALID = 0) or (EPCM(DS:RBX &~FFFH).R = 0) or (EPCM(DS:RBX &~FFFH).PENDING ≠ 0) or

 (EPCM(DS:RBX &~FFFH).MODIFIED ≠ 0) or (EPCM(DS:RBX &~FFFH).BLOCKED ≠ 0) or (EPCM(DS:RBX &~FFFH).PT ≠ PT_REG) or

 (EPCM(DS:RBX &~FFFH).ENCLAVESECS ≠ CR_ACTIVE_SECS) or

 (EPCM(DS:RBX &~FFFH).ENCLAVEADDRESS ≠ DS:RBX))

 THEN #PF(DS:RBX); FI;

(* Copy 64 bytes of contents *)

SCRATCH_SECINFO  DS:RBX;

(* Check for misconfigured SECINFO flags*)

IF ((SCRATCH_SECINFO reserved fields are not zero) or (SCRATCH_SECINFO.FLAGS.R=0) AND(SCRATCH_SECINFO.FLAGS.W≠0) or

 (SCRATCH_SECINFO.FLAGS.PT is not PT_REG))

 THEN #GP(0); FI;

(* Check security attributes of the source EPC page *)

IF ((EPCM(DS:RDX).VALID = 0) or (EPCM(DS:RCX).R = 0) or (EPCM(DS:RDX).PENDING ≠ 0) or (EPCM(DS:RDX).MODIFIED ≠ 0) or

 (EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or

 (EPCM(DS:RDX).ENCLAVEADDRESS ≠ DS:RDX))

 THEN #PF(DS:RDX); FI;

(* Check security attributes of the destination EPC page *)

IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

 (EPCM(DS:RDX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_PAGE_ATTRIBUTES_MISMATCH;

 GOTO DONE;

FI;

(* Check the destination EPC page for concurrency *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 299

IF (destination EPC page in use)

 THEN #GP(0); FI;

(* Re-Check security attributes of the destination EPC page *)

IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 1) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

 (EPCM(DS:RCX).R ≠ 1) or (EPCM(DS:RCX).W ≠ 1) or (EPCM(DS:RCX).X ≠ 0) or

 (EPCM(DS:RCX).PT ≠ SCRATCH_SECINFO.FLAGS.PT) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or

 (EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_PAGE_ATTRIBUTES_MISMATCH;

 GOTO DONE;

FI;

(* Copy 4KBbytes form the source to destination EPC page*)

DS:RCX[32767:0]  DS:RDX[32767:0];

(* Update EPCM permissions *)

EPCM(DS:RCX).R  SCRATCH_SECINFO.FLAGS.R;

EPCM(DS:RCX).W  SCRATCH_SECINFO.FLAGS.W;

EPCM(DS:RCX).X  SCRATCH_SECINFO.FLAGS.X;

EPCM(DS:RCX).PENDING  0;

RFLAGS.ZF  0;

RAX  0;

DONE:

RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

Sets ZF if page is not modifiable, otherwise cleared. Clears CF, PF, AF, OF, SF

Protected Mode Exceptions

#GP(0) If executed outside an enclave.

 If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

 If EPC page has incorrect page type or security attributes.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.

 If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

 If a memory operand is not an EPC page.

 If EPC page has incorrect page type or security attributes.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

300 Document Number: 334525-003, Revision 3.0

EENTER—Enters an Enclave

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 02H

ENCLU[EENTER]

IR V/V SGX1 This leaf function is used to enter an enclave.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EENTER (In)
Content of RBX.CSSA

(Out)
Address of a TCS (In) Address of AEP (In)

Address of IP following

EENTER (Out)

Description

The ENCLU[EENTER] instruction transfers execution to an enclave. At the end of the instruction, the logical pro-

cessor is executing in enclave mode at the RIP computed as EnclaveBase + TCS.OENTRY. If the target address

is not within the CS segment (32-bit) or is not canonical (64-bit), a #GP(0) results.

EENTER Memory Parameter Semantics

TCS

 Enclave access

EENTER is a serializing instruction. The instruction faults if any of the following occurs:

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or

locked.

Current 32/64 mode does not match the enclave mode in

SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the current DS

segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 301

The following operations are performed by EENTER:

• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or in-

terrupt.

• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and

TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF

depends on whether the enclave entry is opt-in or opt-out:

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a

POPF instruction while inside the enclave clears TF.

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after

EENTER.

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry,

all code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed:

— All performance monitoring activity on the current thread is suppressed except for incrementing and fir-

ing of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STA-

TUS[60] on that thread is set

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the

processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Base Concurrency Restrictions of EENTER

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EENTER TCS [DS:RBX] Shared #GP

Additional Concurrency Restrictions of EENTER

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EENTER TCS [DS:RBX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

302 Document Number: 334525-003, Revision 3.0

Operation

Temp Variables in EENTER Operational Flow

Name Type Size (Bits) Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)

IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1)))

 THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)

IF (TMP_MODE64 = 0)

 THEN

 IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;

 IF(ES usable and ES.base ≠ 0) #GP(0); FI;

 IF(SS usable and SS.base ≠ 0) #GP(0); FI;

 IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)

 THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)

IF (TMP_MODE64 = 1 and (CS:RCX is not canonical))

 THEN #GP(0); FI;

(* Check concurrency of TCS operation*)

IF (Other Intel SGX instructions is operating on TCS)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 303

 THEN #GP(0); FI;

(* TCS verification *)

IF (EPCM(DS:RBX).VALID = 0)

 THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)

 THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))

 THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))

 THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)

 THEN #GP(0); FI;

(* Check proposed FS and GS *)

IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

 THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)

TMP_SECS  Address of SECS for TCS;

(* Check proposed FS/GS segments fall within DS *)

IF (TMP_MODE64 = 0)

 THEN

 TMP_FSBASE  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;

 TMP_FSLIMIT  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;

 TMP_GSBASE  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;

 TMP_GSLIMIT  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;

 (* if FS wrap-around, make sure DS has no holes*)

 IF (TMP_FSLIMIT < TMP_FSBASE)

 THEN

 IF (DS.limit < 4GB) THEN #GP(0); FI;

 ELSE

 IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

 FI;

 (* if GS wrap-around, make sure DS has no holes*)

 IF (TMP_GSLIMIT < TMP_GSBASE)

 THEN

 IF (DS.limit < 4GB) THEN #GP(0); FI;

 ELSE

 IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

 FI;

 ELSE

 TMP_FSBASE  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;

 TMP_GSBASE  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;

 IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

 THEN #GP(0); FI;

FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

304 Document Number: 334525-003, Revision 3.0

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)

IF (((DS:RBX).FLAGS & FFFFFFFFFFFFFFFEH) ≠ 0)

 THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)

IF (the enclave is not already initialized)

 THEN #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)

IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

 THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)

 THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)

IF (CR4.OSXSAVE = 0)

 THEN

 IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

 ELSE

 IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one more frame *)

IF ((DS:RBX).CSSA ≥ (DS:RBX).NSSA)

 THEN #GP(0); FI;

(* Compute linear address of SSA frame *)

TMP_SSA  (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;

TMP_XSIZE  compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE

 (* Check page is read/write accessible *)

 Check that DS:TMP_SSA_PAGE is read/write accessible;

 If a fault occurs, release locks, abort and deliver that fault;

 IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

 (EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or

 (EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 CR_XSAVE_PAGE_n  Physical_Address(DS:TMP_SSA_PAGE);

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 305

ENDFOR

(* Compute address of GPR area*)

TMP_GPR  TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);

If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)

 THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)

 THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)

 THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))

 THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or

 (EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or

 (EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))

 THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)

 THEN

 IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;

FI;

CR_GPR_PA  Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)

TMP_TARGET  (DS:RBX).OENTRY + TMP_SECS.BASEADDR;

IF (TMP_MODE64 = 1)

 THEN

 IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

 ELSE

 IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)

IF (DS:RBX.STATE = ACTIVE)

 THEN #GP(0); FI;

IF CPUID.(EAX=12H, ECX=1):EAX[6] = 1

 THEN

IF (CR4.CET = 0)

 THEN

 (* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)

 IF (TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) #GP(0); FI;

 FI;

(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail EENTER *)

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1)

 THEN

 IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;

 FI;

TMP_IA32_U_CET  0;

TMP_SSP  0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

306 Document Number: 334525-003, Revision 3.0

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN)

 THEN

 (* Setup CET state from SECS, note tracker goes to IDLE *)

 TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES;

 IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1)

 THEN

 TMP_IA32_U_CET  TMP_IA32_U_CET + TMP_SECS.BASEADDR;

 TMP_IA32_U_CET  TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;

 FI;

 (* Compute linear address of what will become new CET state save area and cache its PA *)

 TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA) * 16

 TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF;

 Check the TMP_CET_SAVE_PAGE page is read/write accessible

 If fault occurs release locks, abort and deliver fault

 (* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)

 IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

 THEN

 #PF(DS:TMP_CET_SAVE_PAGE);

 FI;

 CR_CET_SAVE_AREA_PA  Physical address(DS:TMP_CET_SAVE_AREA)

 IF TMP_IA32_U_CET.SH_STK_EN = 1

 THEN

 TMP_SSP = TCS.PREVSSP;

 FI;

 FI;

 FI;

CR_ENCLAVE_MODE  1;

CR_ACTIVE_SECS  TMP_SECS;

CR_ELRANGE  (TMPSECS.BASEADDR, TMP_SECS.SIZE);

(* Save state for possible AEXs *)

CR_TCS_PA  Physical_Address (DS:RBX);

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 307

CR_TCS_LA  RBX;

CR_TCS_LA.AEP  RCX;

(* Save the hidden portions of FS and GS *)

CR_SAVE_FS_selector  FS.selector;

CR_SAVE_FS_base  FS.base;

CR_SAVE_FS_limit  FS.limit;

CR_SAVE_FS_access_rights  FS.access_rights;

CR_SAVE_GS_selector  GS.selector;

CR_SAVE_GS_base  GS.base;

CR_SAVE_GS_limit  GS.limit;

CR_SAVE_GS_access_rights  GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)

IF (CR4.OSXSAVE = 1)

 CR_SAVE_XCR0  XCR0;

 XCR0  TMP_SECS.ATTRIBUTES.XFRM;

FI;

RCX  RIP;

RIP  TMP_TARGET;

RAX  (DS:RBX).CSSA;

(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)

DS:TMP_SSA.U_RSP  RSP;

DS:TMP_SSA.U_RBP  RBP;

(* Do the FS/GS swap *)

FS.base  TMP_FSBASE;

FS.limit  DS:RBX.FSLIMIT;

FS.type  0001b;

FS.W  DS.W;

FS.S  1;

FS.DPL  DS.DPL;

FS.G  1;

FS.B  1;

FS.P  1;

FS.AVL  DS.AVL;

FS.L  DS.L;

FS.unusable  0;

FS.selector  0BH;

GS.base  TMP_GSBASE;

GS.limit  DS:RBX.GSLIMIT;

GS.type  0001b;

GS.W  DS.W;

GS.S  1;

GS.DPL  DS.DPL;

GS.G  1;

GS.B  1;

GS.P  1;

GS.AVL  DS.AVL;

GS.L  DS.L;

GS.unusable  0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

308 Document Number: 334525-003, Revision 3.0

GS.selector  0BH;

CR_DBGOPTIN  TCS.FLAGS.DBGOPTIN;

Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)

 THEN

 Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;

 CR_SAVE_TF  RFLAGS.TF;

 RFLAGS.TF  0;

 Suppress_monitor_trap_flag for the source of the execution of the enclave;

 Suppress any pending debug exceptions;

 Suppress any pending MTF VM exit;

 ELSE

 IF RFLAGS.TF = 1

 THEN pend a single-step #DB at the end of EENTER; FI;

 IF the “monitor trap flag” VM-execution control is set

 THEN pend an MTF VM exit at the end of EENTER; FI;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN

(* Save enclosing application CET state into save registers *)

CR_SAVE_IA32_U_CET  IA32_U_CET

(* Setup enclave CET state *)

IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

 THEN

 CR_SAVE_SSP  SSP

 SSP  TMP_SSP;

 FI;

IA32_U_CET  TMP_IA32_U_CET;

 FI;

Flush_linear_context;

Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.

 If the enclave is not initialized.

 If part or all of the FS or GS segment specified by TCS is outside the DS segment or not

properly aligned.

 If the thread is not in the INACTIVE state.

 If CS, DS, ES or SS bases are not all zero.

 If executed in enclave mode.

 If any reserved field in the TCS FLAG is set.

 If the target address is not within the CS segment.

 If CR4.OSFXSR = 0.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 309

 If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.

 If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory.

 If DS:RBX does not point to a valid TCS.

 If one or more pages of the current SSA frame are not readable/writable, or do not resolve

to a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.

 If the enclave is not initialized.

 If the thread is not in the INACTIVE state.

 If CS, DS, ES or SS bases are not all zero.

 If executed in enclave mode.

 If part or all of the FS or GS segment specified by TCS is outside the DS segment or not

properly aligned.

 If the target address is not canonical.

 If CR4.OSFXSR = 0.

 If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.

 If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.

 If DS:RBX does not point to a valid TCS.

 If one or more pages of the current SSA frame are not readable/writable, or do not resolve

to a valid PT_REG EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

310 Document Number: 334525-003, Revision 3.0

EEXIT—Exits an Enclave

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 04H

ENCLU[EEXIT]

IR V/V SGX1 This leaf function is used to exit an enclave.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EEXIT (In) Target address outside the enclave (In) Address of the current AEP (In)

Description

The ENCLU[EEXIT] instruction exits the currently executing enclave and branches to the location specified in

RBX. RCX receives the current AEP. If RBX is not within the CS (32-bit mode) or is not canonical (64-bit mode) a

#GP(0) results.

EEXIT Memory Parameter Semantics

Target Address

 Non-Enclave read and execute access

If RBX specifies an address that is inside the enclave, the instruction will complete normally. The fetch of the

next instruction will occur in non-enclave mode, but will attempt to fetch from inside the enclave. This fetch re-

turns a fixed data pattern.

If secrets are contained in any registers, it is responsibility of enclave software to clear those registers.

If XCR0 was modified on enclave entry, it is restored to the value it had at the time of the most recent EENTER

or ERESUME.

If the enclave is opt-out, RFLAGS.TF is loaded from the value previously saved on EENTER.

Code and data breakpoints are unsuppressed.

Performance monitoring counters are unsuppressed.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 311

Concurrency Restrictions

Base Concurrency Restrictions of EEXIT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EEXIT Concurrent

Additional Concurrency Restrictions of EEXIT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EEXIT Concurrent Concurrent Concurrent

Operation

Temp Variables in EEXIT Operational Flow

Name Type Size (Bits) Description

TMP_RIP Effective Address 32/64 Saved copy of CRIP for use when creating LBR.

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

IF (TMP_MODE64 = 1)

 THEN

 IF (RBX is not canonical) THEN #GP(0); FI;

 ELSE

 IF (RBX > CS limit) THEN #GP(0); FI;

FI;

TMP_RIP  CRIP;

RIP  RBX;

(* Return current AEP in RCX *)

RCX  CR_TCS_PA.AEP;

(* Do the FS/GS swap *)

FS.selector  CR_SAVE_FS.selector;

FS.base  CR_SAVE_FS.base;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

312 Document Number: 334525-003, Revision 3.0

FS.limit  CR_SAVE_FS.limit;

FS.access_rights  CR_SAVE_FS.access_rights;

GS.selector  CR_SAVE_GS.selector;

GS.base  CR_SAVE_GS.base;

GS.limit  CR_SAVE_GS.limit;

GS.access_rights  CR_SAVE_GS.access_rights;

(* Restore XCR0 if needed *)

IF (CR4.OSXSAVE = 1)

 XCR0  CR_SAVE__XCR0;

FI;

Unsuppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)

 THEN

 UnSuppress_all_code_breakpoints_that_overlap_with_ELRANGE;

 Restore suppressed breakpoint matches;

 RFLAGS.TF  CR_SAVE_TF;

 UnSuppress_montior_trap_flag;

 UnSuppress_LBR_Generation;

 UnSuppress_performance monitoring_activity;

 Restore performance monitoring counter AnyThread demotion to MyThread in enclave back to AnyThread

FI;

IF RFLAGS.TF = 1

 THEN Pend Single-Step #DB at the end of EEXIT;

FI;

IF the “monitor trap flag” VM-execution control is set

 THEN pend a MTF VM exit at the end of EEXIT;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN

 (* Record PREVSSP *)

IF (IA32_U_CET.SH_STK_EN == 1)

 THEN CR_TCS_PA.PREVSSP = SSP; FI;

(* Restore enclosing apps CET state from the save registers *)

IA32_U_CET  CR_SAVE_IA32_U_CET;

IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

 THEN SSP  CR_SAVE_SSP; FI;

(* Update enclosing apps TRACKER if enclosing app has indirect branch tracking enabled *)

IF (CR4.CET = 1 AND IA32_U_CET.ENDBR_EN = 1)

 THEN

 IA32_U_CET.TRACKER  WAIT_FOR_ENDBRANCH;

 IA32_U_CET.SUPPRESS  0

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 313

 FI;

CR_ENCLAVE_MODE  0;

CR_TCS_PA.STATE  INACTIVE;

(* Assure consistent translations *)

Flush_linear_context;

Flags Affected

RFLAGS.TF is restored from the value previously saved in EENTER or ERESUME.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.

 If RBX is outside the CS segment.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.

 If RBX is not canonical.

#PF(error code) If a page fault occurs in accessing memory operands.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

314 Document Number: 334525-003, Revision 3.0

EGETKEY—Retrieves a Cryptographic Key

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 01H

ENCLU[EGETKEY]

IR V/V SGX1 This leaf function retrieves a cryptographic key.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EGETKEY (In) Address to a KEYREQUEST (In) Address of the OUTPUTDATA (In)

Description

The ENCLU[EGETKEY] instruction returns a 128-bit secret key from the processor specific key hierarchy. The

register RBX contains the effective address of a KEYREQUEST structure, which the instruction interprets to de-

termine the key being requested. The Requesting Keys section below provides a description of the keys that can

be requested. The RCX register contains the effective address where the key will be returned. Both the ad-

dresses in RBX & RCX should be locations inside the enclave.

EGETKEY derives keys using a processor unique value to create a specific key based on a number of possible

inputs. This instruction leaf can only be executed inside an enclave.

EEGETKEY Memory Parameter Semantics

KEYREQUEST OUTPUTDATA

 Enclave read access Enclave write access

After validating the operands, the instruction determines which key is to be produced and performs the following

actions:

• The instruction assembles the derivation data for the key based on Table 41.

• Computes derived key using the derivation data and package specific value.

• Outputs the calculated key to the address in RCX.

The instruction fails with #GP(0) if the operands are not properly aligned. Successful completion of the instruc-

tion will clear RFLAGS.{ZF, CF, AF, OF, SF, PF}. The instruction returns an error code if the user tries to request

a key based on an invalid CPUSVN or ISVSVN (when the user request is accepted, see the table below), requests

a key for which it has not been granted the attribute to request, or requests a key that is not supported by the

hardware. These checks may be performed in any order. Thus, an indication by error number of one cause (for

example, invalid attribute) does not imply that there are not also other errors. Different processors may thus

give different error numbers for the same Enclave. The correctness of software should not rely on the order re-

sulting from the checks documented in this section. In such cases the ZF flag is set and the corresponding error

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 315

bit (SGX_INVALID_SVN, SGX_INVALID_ATTRIBUTE, SGX_INVALID_KEYNAME) is set in RAX and the data at the

address specified by RCX is unmodified.

Requesting Keys

The KEYREQUEST structure identifies the key to be provided. The Keyrequest.KeyName field identifies which

type of key is requested.

Deriving Keys

Key derivation is based on a combination of the enclave specific values (see Table 41) and a processor key. De-

pending on the key being requested a field may either be included by definition or the value may be included

from the KeyRequest. A “yes” in Table 41 indicates the value for the field is included from its default location,

identified in the source row, and a “request” indicates the values for the field is included from its corresponding

KeyRequest field.

Table 41 Key Derivation

Key

Name Attributes

Owner

Epoch

CPU

SVN

ISV

SVN

ISV

PRODI

D

ISVEXT

PRODI

D

ISVFA

MILYID

MRENCLAV

E MRSIGNER

CONFIG

ID

CONFIG

SVN RAND

Source

Key

Dependen

t Constant

Y

SECS.ATTRIBUTES

and

SECS.MISCSELECT
and

SECS.CET_ATTRIB

UTES;

CR_SGX

OWNER

EPOCH

Y

CPUSVN

Register

;

R

Req.ISV

SVN;

SECS.

ISVID

SECS.IS

VEXTP

RODID

SECS.IS

VFAMIL

YID

SECS.

MRENCLAVE

SECS.

MRSIGNER

SECS.C

ONFIGI

D

SECS.CO

NFIGSVN

Req.

KEYID

RAttribMask &

SECS.ATTRIBUTES

and

SECS.MISCSELECT

and

SECS.CET_ATTRIB

UTES;

R

Req.CPU

SVN;

EINITTOKE

N

Yes Request Yes Request Request Yes No No No Yes No No Request

Report Yes Yes Yes Yes No No No No Yes No Yes Yes Request

Seal Yes Request Yes Request Request Reques

t

Reques

t

Reques

t

Request Request Reques

t

Request Request

Provisionin

g

Yes Request No Request Request Yes No No No Yes No No Yes

Provisionin

g Seal

Yes Request No Request Request Reques

t

Reques

t

Reques

t

No Yes Reques

t

Request Yes

Keys that permit the specification of a CPU or ISV's code's, or enclave configuration's SVNs have additional re-

quirements. The caller may not request a key for an SVN beyond the current CPU, ISV or enclave configuration's

SVN, respectively.

Several keys are access controlled. Access to the Provisioning Key and Provisioning Seal key requires the en-

clave's ATTRIBUTES.PROVISIONKEY be set. The EINITTOKEN Key requires ATTRIBUTES.EINITTOKEN_KEY be set

and SECS.MRSIGNER equal IA32_SGXLEPUBKEYHASH.

Some keys are derived based on a hardcode PKCS padding constant (352 byte string):

HARDCODED_PKCS1_5_PADDING[15:0]  0100H;

HARDCODED_PKCS1_5_PADDING[2655:16]  SignExtend330Byte(-1); // 330 bytes of 0FFH

HARDCODED_PKCS1_5_PADDING[2815:2656]  2004000501020403650148866009060D30313000H;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

316 Document Number: 334525-003, Revision 3.0

The error codes are:

EGETKEY Return Value in RAX

 Error Code Value Description

No Error 0 EGETKEY successful.

SGX_INVALID_ATTRIBUTE The KEYREQUEST contains a KEYNAME for which the enclave is not authorized.

SGX_INVALID_CPUSVN If KEYREQUEST.CPUSVN is an unsupported platforms CPUSVN value.

SGX_INVALID_ISVSVN If KEYREQUEST software SVN (ISVSVN or CONFIGSVN) is greater than the

enclave's corresponding SVN.

SGX_INVALID_KEYNAME If KEYREQUEST.KEYNAME is an unsupported value.

Concurrency Restrictions

Base Concurrency Restrictions of EGETKEY

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EGETKEY KEYREQUEST [DS:RBX] Concurrent

OUTPUTDATA [DS:RCX] Concurrent

Additional Concurrency Restrictions of EGETKEY

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EGETKEY KEYREQUEST

[DS:RBX]

Concurrent Concurrent Concurrent

OUTPUTDATA

[DS:RCX]

Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 317

Operation

Temp Variables in EGETKEY Operational Flow

Name Type Size (Bits) Description

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_ATTRIBUTES 128 Temp Space for the calculation of the sealable Attributes.

TMP_ISVEXTPRODID 16 bytes Temp Space for ISVEXTPRODID.

TMP_ISVPRODID 2 bytes Temp Space for ISVPRODID.

TMP_ISVFAMILYID 16 bytes Temp Space for ISVFAMILYID.

TMP_CONFIGID 64 bytes Temp Space for CONFIGID.

TMP_CONFIGSVN 2 bytes Temp Space for CONFIGSVN.

TMP_OUTPUTKEY 128 Temp Space for the calculation of the key.

(* Make sure KEYREQUEST is properly aligned and inside the current enclave *)

IF ((DS:RBX is not 512Byte aligned) or (DS:RBX is within CR_ELRANGE))

 THEN #GP(0); FI;

(* Make sure DS:RBX is an EPC address and the EPC page is valid *)

IF ((DS:RBX does not resolve to an EPC address) or (EPCM(DS:RBX).VALID = 0))

 THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)

 THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)

IF ((EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

 (EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))

 THEN #PF(DS:RBX);

FI;

(* Make sure OUTPUTDATA is properly aligned and inside the current enclave *)

IF ((DS:RCX is not 16Byte aligned) or (DS:RCX is not within CR_ELRANGE))

 THEN #GP(0); FI;

(* Make sure DS:RCX is an EPC address and the EPC page is valid *)

IF ((DS:RCX does not resolve to an EPC address) or (EPCM(DS:RCX).VALID = 0))

 THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1)

 THEN #PF(DS:RCX); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

318 Document Number: 334525-003, Revision 3.0

(* Check page parameters for correctness *)

IF ((EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

 (EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).W = 0))

 THEN #PF(DS:RCX);

FI;

(* Verify RESERVED spaces in KEYREQUEST are valid *)

IF ((DS:RBX).RESERVED ≠ 0) or (DS:RBX.KEYPOLICY.RESERVED ≠ 0))

 THEN #GP(0); FI;

TMP_CURRENTSECS  CR_ACTIVE_SECS;

(* Verify that CONFIGSVN & New Policy bits are not used if KSS is not enabled *)

IF ((TMP_CURRENTSECS.ATTRIBUTES.KSS == 0) AND ((DS:RBX.KEYPOLICY & 0x003C ≠ 0) OR (DS:RBX.CONFIGSVN > 0)))

 THEN #GP(0); FI;

(* Determine which enclave attributes that must be included in the key. Attributes that must always be include INIT & DEBUG *)

REQUIRED_SEALING_MASK[127:0]  00000000 00000000 00000000 00000003H;

TMP_ATTRIBUTES  (DS:RBX.ATTRIBUTEMASK | REQUIRED_SEALING_MASK) & TMP_CURRENTSECS.ATTRIBUTES;

(* Compute MISCSELECT fields to be included *)

TMP_MISCSELECT  DS:RBX.MISCMASK & TMP_CURRENTSECS.MISCSELECT

(* Compute CET_ATTRIBUTES fields to be included *)

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN TMP_CET_ATTRIBUTES  DS:RBX.CET_ATTRIBUTES_ MASK & TMP_CURRENTSECS.CET_ATTRIBUTES; FI;

TMP_KEYDEPENDENCIES  0;

CASE (DS:RBX.KEYNAME)

 SEAL_KEY:

 IF (DS:RBX.CPUSVN is beyond current CPU configuration)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_CPUSVN;

 GOTO EXIT;

 FI;

 IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ISVSVN;

 GOTO EXIT;

 FI;

 IF (DS:RBX.CONFIGSVN > TMP_CURRENTSECS.CONFIGSVN)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ISVSVN;

 GOTO EXIT;

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 319

 (*Include enclave identity?*)

 TMP_MRENCLAVE  0;

 IF (DS:RBX.KEYPOLICY.MRENCLAVE = 1)

 THEN TMP_MRENCLAVE  TMP_CURRENTSECS.MRENCLAVE;

 FI;

 (*Include enclave author?*)

 TMP_MRSIGNER  0;

 IF (DS:RBX.KEYPOLICY.MRSIGNER = 1)

 THEN TMP_MRSIGNER  TMP_CURRENTSECS.MRSIGNER;

 FI;

(* Include enclave product family ID? *)

 TMP_ISVFAMILYID  0;

 IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)

 THEN TMP_ISVFAMILYID  TMP_CURRENTSECS.ISVFAMILYID;

 FI;

 (* Include enclave product ID? *)

 TMP_ISVPRODID  0;

 IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)

 TMP_ISVPRODID TMP_CURRENTSECS.ISVPRODID;

 FI;

 (* Include enclave Config ID? *)

 TMP_CONFIGID  0;

 TMP_CONFIGSVN  0;

 IF (DS:RBX.KEYPOLICY.CONFIGID = 1)

 TMP_CONFIGID  TMP_CURRENTSECS.CONFIGID;

 TMP_CONFIGSVN  DS:RBX.CONFIGSVN;

 FI;

 (* Include enclave extended product ID? *)

 TMP_ISVEXTPRODID  0;

 IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)

 TMP_ISVEXTPRODID  TMP_CURRENTSECS.ISVEXTPRODID;

 FI;

 //Determine values key is based on

 TMP_KEYDEPENDENCIES.KEYNAME  SEAL_KEY;

 TMP_KEYDEPENDENCIES.ISVFAMILYID  TMP_ISVFAMILYID;

 TMP_KEYDEPENDENCIES.ISVEXTPRODID  TMP_ISVEXTPRODID;

 TMP_KEYDEPENDENCIES.ISVPRODID  TMP_ISVPRODID;

 TMP_KEYDEPENDENCIES.ISVSVN  DS:RBX.ISVSVN;

 TMP_KEYDEPENDENCIES.SGXOWNEREPOCH  CR_SGXOWNEREPOCH;

 TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  DS:RBX.ATTRIBUTEMASK;

 TMP_KEYDEPENDENCIES.MRENCLAVE  TMP_MRENCLAVE;

 TMP_KEYDEPENDENCIES.MRSIGNER  TMP_MRSIGNER;

 TMP_KEYDEPENDENCIES.KEYID  DS:RBX.KEYID;

 TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;

 TMP_KEYDEPENDENCIES.CPUSVN  DS:RBX.CPUSVN;

 TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;

 TMP_KEYDEPENDENCIES.MISCSELECT  TMP_MISCSELECT;

 TMP_KEYDEPENDENCIES.MISCMASK  ~DS:RBX.MISCMASK;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

320 Document Number: 334525-003, Revision 3.0

 TMP_KEYDEPENDENCIES.KEYPOLICY  DS:RBX.KEYPOLICY;

 TMP_KEYDEPENDENCIES.CONFIGID  TMP_CONFIGID;

 TMP_KEYDEPENDENCIES.CONFIGSVN  TMP_CONFIGSVN;

 IF CPUID.(EAX=12H, ECX=1):EAX[6] = 1

 THEN

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES  TMP_CET_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK  DS:RBX.CET_ATTRIBUTES _MASK;

 FI;

 BREAK;

 REPORT_KEY:

 //Determine values key is based on

 TMP_KEYDEPENDENCIES.KEYNAME  REPORT_KEY;

 TMP_KEYDEPENDENCIES.ISVFAMILYID  0;

 TMP_KEYDEPENDENCIES.ISVEXTPRODID  0;

 TMP_KEYDEPENDENCIES.ISVPRODID  0;

 TMP_KEYDEPENDENCIES.ISVSVN  0;

 TMP_KEYDEPENDENCIES.SGXOWNEREPOCH  CR_SGXOWNEREPOCH;

 TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_CURRENTSECS.ATTRIBUTES;

 TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  0;

 TMP_KEYDEPENDENCIES.MRENCLAVE  TMP_CURRENTSECS.MRENCLAVE;

 TMP_KEYDEPENDENCIES.MRSIGNER  0;

 TMP_KEYDEPENDENCIES.KEYID  DS:RBX.KEYID;

 TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;

 TMP_KEYDEPENDENCIES.CPUSVN  CR_CPUSVN;

 TMP_KEYDEPENDENCIES.PADDING  HARDCODED_PKCS1_5_PADDING;

 TMP_KEYDEPENDENCIES.MISCSELECT  TMP_CURRENTSECS.MISCSELECT;

 TMP_KEYDEPENDENCIES.MISCMASK  0;

 TMP_KEYDEPENDENCIES.KEYPOLICY  0;

 TMP_KEYDEPENDENCIES.CONFIGID  TMP_CURRENTSECS.CONFIGID;

 TMP_KEYDEPENDENCIES.CONFIGSVN  TMP_CURRENTSECS.CONFIGSVN;

 IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES  TMP_CURRENTSECS.CET_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES_MASK  0;

 FI;

 BREAK;

 EINITTOKEN_KEY:

 (* Check ENCLAVE has LAUNCH capability *)

 IF (TMP_CURRENTSECS.ATTRIBUTES.LAUNCHKEY = 0)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ATTRIBUTE;

 GOTO EXIT;

 FI;

 IF (DS:RBX.CPUSVN is beyond current CPU configuration)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_CPUSVN;

 GOTO EXIT;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 321

 FI;

 IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ISVSVN;

 GOTO EXIT;

 FI;

 (* Determine values key is based on *)

 TMP_KEYDEPENDENCIES.KEYNAME  EINITTOKEN_KEY;

 TMP_KEYDEPENDENCIES.ISVFAMILYID  0;

 TMP_KEYDEPENDENCIES.ISVEXTPRODID  0;

 TMP_KEYDEPENDENCIES.ISVPRODID  TMP_CURRENTSECS.ISVPRODID

 TMP_KEYDEPENDENCIES.ISVSVN  DS:RBX.ISVSVN;

 TMP_KEYDEPENDENCIES.SGXOWNEREPOCH  CR_SGXOWNEREPOCH;

 TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  0;

 TMP_KEYDEPENDENCIES.MRENCLAVE  0;

 TMP_KEYDEPENDENCIES.MRSIGNER  TMP_CURRENTSECS.MRSIGNER;

 TMP_KEYDEPENDENCIES.KEYID  DS:RBX.KEYID;

 TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;

 TMP_KEYDEPENDENCIES.CPUSVN  DS:RBX.CPUSVN;

 TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;

 TMP_KEYDEPENDENCIES.MISCSELECT  TMP_MISCSELECT;

 TMP_KEYDEPENDENCIES.MISCMASK  0;

 TMP_KEYDEPENDENCIES.KEYPOLICY  0;

 TMP_KEYDEPENDENCIES.CONFIGID  0;

 TMP_KEYDEPENDENCIES.CONFIGSVN  0;

 IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES  TMP_CET_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK  0;

 FI;

 BREAK;

 PROVISION_KEY:

 (* Check ENCLAVE has PROVISIONING capability *)

 IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ATTRIBUTE;

 GOTO EXIT;

 FI;

 IF (DS:RBX.CPUSVN is beyond current CPU configuration)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_CPUSVN;

 GOTO EXIT;

 FI;

 IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ISVSVN;

 GOTO EXIT;

 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

322 Document Number: 334525-003, Revision 3.0

 (* Determine values key is based on *)

 TMP_KEYDEPENDENCIES.KEYNAME  PROVISION_KEY;

 TMP_KEYDEPENDENCIES.ISVFAMILYID  0;

 TMP_KEYDEPENDENCIES.ISVEXTPRODID  0;

 TMP_KEYDEPENDENCIES.ISVPRODID  TMP_CURRENTSECS.ISVPRODID;

 TMP_KEYDEPENDENCIES.ISVSVN  DS:RBX.ISVSVN;

 TMP_KEYDEPENDENCIES.SGXOWNEREPOCH  0;

 TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  DS:RBX.ATTRIBUTEMASK;

 TMP_KEYDEPENDENCIES.MRENCLAVE  0;

 TMP_KEYDEPENDENCIES.MRSIGNER  TMP_CURRENTSECS.MRSIGNER;

 TMP_KEYDEPENDENCIES.KEYID  0;

 TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  0;

 TMP_KEYDEPENDENCIES.CPUSVN  DS:RBX.CPUSVN;

 TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;

 TMP_KEYDEPENDENCIES.MISCSELECT  TMP_MISCSELECT;

 TMP_KEYDEPENDENCIES.MISCMASK  ~DS:RBX.MISCMASK;

 TMP_KEYDEPENDENCIES.KEYPOLICY  0;

 TMP_KEYDEPENDENCIES.CONFIGID  0;

 IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES  TMP_CET_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK  0;

 FI;

 BREAK;

 PROVISION_SEAL_KEY:

 (* Check ENCLAVE has PROVISIONING capability *)

 IF (TMP_CURRENTSECS.ATTRIBUTES.PROVISIONKEY = 0)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ATTRIBUTE;

 GOTO EXIT;

 FI;

 IF (DS:RBX.CPUSVN is beyond current CPU configuration)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_CPUSVN;

 GOTO EXIT;

 FI;

 IF (DS:RBX.ISVSVN > TMP_CURRENTSECS.ISVSVN)

 THEN

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_ISVSVN;

 GOTO EXIT;

 FI;

(* Include enclave product family ID? *)

 TMP_ISVFAMILYID  0;

 IF (DS:RBX.KEYPOLICY.ISVFAMILYID = 1)

 THEN TMP_ISVFAMILYID  TMP_CURRENTSECS.ISVFAMILYID;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 323

 FI;

 (* Include enclave product ID? *)

 TMP_ISVPRODID  0;

 IF (DS:RBX.KEYPOLICY.NOISVPRODID = 0)

 TMP_ISVPRODID TMP_CURRENTSECS.ISVPRODID;

 FI;

 (* Include enclave Config ID? *)

 TMP_CONFIGID  0;

 TMP_CONFIGSVN  0;

 IF (DS:RBX.KEYPOLICY.CONFIGID = 1)

 TMP_CONFIGID  TMP_CURRENTSECS.CONFIGID;

 TMP_CONFIGSVN  DS:RBX.CONFIGSVN;

 FI;

 (* Include enclave extended product ID? *)

 TMP_ISVEXTPRODID  0;

 IF (DS:RBX.KEYPOLICY.ISVEXTPRODID = 1)

 TMP_ISVEXTPRODID  TMP_CURRENTSECS.ISVEXTPRODID;

 FI;

 (* Determine values key is based on *)

 TMP_KEYDEPENDENCIES.KEYNAME  PROVISION_SEAL_KEY;

 TMP_KEYDEPENDENCIES.ISVFAMILYID  TMP_ISVFAMILYID;

 TMP_KEYDEPENDENCIES.ISVEXTPRODID  TMP_ISVEXTPRODID;

 TMP_KEYDEPENDENCIES.ISVPRODID  TMP_ISVPRODID;

 TMP_KEYDEPENDENCIES.ISVSVN  DS:RBX.ISVSVN;

 TMP_KEYDEPENDENCIES.SGXOWNEREPOCH  0;

 TMP_KEYDEPENDENCIES.ATTRIBUTES  TMP_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  DS:RBX.ATTRIBUTEMASK;

 TMP_KEYDEPENDENCIES.MRENCLAVE  0;

 TMP_KEYDEPENDENCIES.MRSIGNER  TMP_CURRENTSECS.MRSIGNER;

 TMP_KEYDEPENDENCIES.KEYID  0;

 TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;

 TMP_KEYDEPENDENCIES.CPUSVN  DS:RBX.CPUSVN;

 TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;

 TMP_KEYDEPENDENCIES.MISCSELECT  TMP_MISCSELECT;

 TMP_KEYDEPENDENCIES.MISCMASK  ~DS:RBX.MISCMASK;

 TMP_KEYDEPENDENCIES.KEYPOLICY  DS:RBX.KEYPOLICY;

 TMP_KEYDEPENDENCIES.CONFIGID  TMP_CONFIGID;

 TMP_KEYDEPENDENCIES.CONFIGSVN  TMP_CONFIGSVN;

 IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES  TMP_CET_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK  0;

 FI;

 BREAK;

 DEFAULT:

 (* The value of KEYNAME is invalid *)

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_KEYNAME;

 GOTO EXIT:

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

324 Document Number: 334525-003, Revision 3.0

ESAC;

(* Calculate the final derived key and output to the address in RCX *)

TMP_OUTPUTKEY  derivekey(TMP_KEYDEPENDENCIES);

DS:RCX[15:0]  TMP_OUTPUTKEY;

RAX  0;

RFLAGS.ZF  0;

EXIT:

RFLAGS.CF  0;

RFLAGS.PF  0;

RFLAGS.AF  0;

RFLAGS.OF  0;

RFLAGS.SF  0;

Flags Affected

ZF is cleared if successful, otherwise ZF is set. CF, PF, AF, OF, SF are cleared.

Protected Mode Exceptions

#GP(0) If executed outside an enclave.

 If a memory operand effective address is outside the current enclave.

 If an effective address is not properly aligned.

 If an effective address is outside the DS segment limit.

 If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.

 If a memory operand effective address is outside the current enclave.

 If an effective address is not properly aligned.

 If an effective address is not canonical.

 If KEYREQUEST format is invalid.

#PF(error code) If a page fault occurs in accessing memory operands.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 325

EMODPE—Extend an EPC Page Permissions

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 06H

ENCLU[EMODPE]

IR V/V SGX2 This leaf function extends the access rights of an existing EPC

page.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EMODPE (In) Address of a SECINFO (In) Address of the destination EPC page (In)

Description

This leaf function extends the access rights associated with an existing EPC page in the running enclave. THE

RWX bits of the SECINFO parameter are treated as a permissions mask; supplying a value that does not extend

the page permissions will have no effect. This instruction leaf can only be executed when inside the enclave.

RBX contains the effective address of a SECINFO structure while RCX contains the effective address of an EPC

page. The table below provides additional information on the memory parameter of the EMODPE leaf function.

EMODPE Memory Parameter Semantics

SECINFO EPCPAGE

Read access permitted by Non Enclave Read access permitted by Enclave

EMODPE Faulting Conditions

The instruction faults if any of the following:

The operands are not properly aligned. If security attributes of the SECINFO page make the page inaccessible.

The EPC page is locked by another thread. RBX does not contain an effective address in an EPC page in the running enclave.

The EPC page is not valid. RCX does not contain an effective address of an EPC page in the running enclave.

SECINFO contains an invalid request.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

326 Document Number: 334525-003, Revision 3.0

Concurrency Restrictions

Base Concurrency Restrictions of EMODPE

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EMODPE Target [DS:RCX] Concurrent

SECINFO [DS:RBX] Concurrent

Additional Concurrency Restrictions of EMODPE

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EMODPE Target [DS:RCX] Exclusive #GP Concurrent Concurrent

SECINFO [DS:RBX] Concurrent Concurrent Concurrent

Operation

Temp Variables in EMODPE Operational Flow

Name Type Size (bits) Description

SCRATCH_SECINFO SECINFO 512 Scratch storage for holding the contents of DS:RBX.

IF (DS:RBX is not 64Byte Aligned)

 THEN #GP(0); FI;

IF (DS:RCX is not 4KByte Aligned)

 THEN #GP(0); FI;

IF ((DS:RBX is not within CR_ELRANGE) or (DS:RCX is not within CR_ELRANGE))

 THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)

 THEN #PF(DS:RBX); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 327

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

IF ((EPCM(DS:RBX).VALID = 0) or (EPCM(DS:RBX).R = 0) or (EPCM(DS:RBX).PENDING ≠ 0) or (EPCM(DS:RBX).MODIFIED ≠ 0) or

 (EPCM(DS:RBX).BLOCKED ≠ 0) or (EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or

 (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0xFFF)))

 THEN #PF(DS:RBX); FI;

SCRATCH_SECINFO  DS:RBX;

(* Check for misconfigured SECINFO flags*)

IF (SCRATCH_SECINFO reserved fields are not zero)

 THEN #GP(0); FI;

(* Check security attributes of the EPC page *)

IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

 (EPCM(DS:RCX).BLOCKED ≠ 0) or (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS))

 THEN #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)

IF (EPC page in use by another SGX2 instruction)

 THEN #GP(0); FI;

(* Re-Check security attributes of the EPC page *)

IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).PENDING ≠ 0) or (EPCM(DS:RCX).MODIFIED ≠ 0) or

 (EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or

 (EPCM(DS:RCX).ENCLAVEADDRESS ≠ DS:RCX))

 THEN #PF(DS:RCX); FI;

(* Check for misconfigured SECINFO flags*)

IF ((EPCM(DS:RCX).R = 0) and (SCRATCH_SECINFO.FLAGS.R = 0) and (SCRATCH_SECINFO.FLAGS.W ≠ 0))

 THEN #GP(0); FI;

(* Update EPCM permissions *)

EPCM(DS:RCX).R  EPCM(DS:RCX).R | SCRATCH_SECINFO.FLAGS.R;

EPCM(DS:RCX).W  EPCM(DS:RCX).W | SCRATCH_SECINFO.FLAGS.W;

EPCM(DS:RCX).X  EPCM(DS:RCX).X | SCRATCH_SECINFO.FLAGS.X;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.

 If a memory operand effective address is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

328 Document Number: 334525-003, Revision 3.0

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.

 If a memory operand is non-canonical form.

 If a memory operand is not properly aligned.

 If a memory operand is locked.

#PF(error code) If a page fault occurs in accessing memory operands.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 329

EREPORT—Create a Cryptographic Report of the Enclave

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 00H

ENCLU[EREPORT]

IR V/V SGX1 This leaf function creates a cryptographic report of the enclave.

Instruction Operand Encoding

Op/En EAX RBX RCX RDX

IR EREPORT (In)
Address of TARGETINFO

(In)

Address of RE-

PORTDATA (In)

Address where the REPORT is

written to in an OUTPUTDATA

(In)

Description

This leaf function creates a cryptographic REPORT that describes the contents of the enclave. This instruction

leaf can only be executed when inside the enclave. The cryptographic report can be used by other enclaves to

determine that the enclave is running on the same platform.

RBX contains the effective address of the MRENCLAVE value of the enclave that will authenticate the REPORT

output, using the REPORT key delivered by EGETKEY command for that enclave. RCX contains the effective ad-

dress of a 64-byte REPORTDATA structure, which allows the caller of the instruction to associate data with the

enclave from which the instruction is called. RDX contains the address where the REPORT will be output by the

instruction.

EREPORT Memory Parameter Semantics

TARGETINFO REPORTDATA OUTPUTDATA

Read access by Enclave Read access by Enclave Read/Write access by Enclave

This instruction leaf perform the following:

1. Validate the 3 operands (RBX, RCX, RDX) are inside the enclave.

2. Compute a report key for the target enclave, as indicated by the value located in RBX(TARGETINFO).

3. Assemble the enclave SECS data to complete the REPORT structure (including the data provided using the

RCX (REPORTDATA) operand).

4. Computes a cryptographic hash over REPORT structure.

5. Add the computed hash to the REPORT structure.

6. Output the completed REPORT structure to the address in RDX (OUTPUTDATA).

The instruction fails if the operands are not properly aligned.

CR_REPORT_KEYID, used to provide key wearout protection, is populated with a statistically unique value on

boot of the platform by a trusted entity within the SGX TCB.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

330 Document Number: 334525-003, Revision 3.0

EREPORT Faulting Conditions

The instruction faults if any of the following:

An effective address not properly aligned. An memory address does not resolve in an EPC page.

If accessing an invalid EPC page. If the EPC page is blocked.

May page fault.

Concurrency Restrictions

Base Concurrency Restrictions of EREPORT

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EREPORT TARGETINFO [DS:RBX] Concurrent

REPORTDATA [DS:RCX] Concurrent

OUTPUTDATA [DS:RDX] Concurrent

Additional Concurrency Restrictions of EREPORT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EREPORT TARGETINFO

[DS:RBX]

Concurrent Concurrent Concurrent

REPORTDATA

[DS:RCX]

Concurrent Concurrent Concurrent

OUTPUTDATA

[DS:RDX]

Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 331

Operation

Temp Variables in EREPORT Operational Flow

Name Type Size (bits) Description

TMP_ATTRIBUTES 32 Physical address of SECS of the enclave to which source operand belongs.

TMP_CURRENTSECS Address of the SECS for the currently executing enclave.

TMP_KEYDEPENDENCIES Temp space for key derivation.

TMP_REPORTKEY 128 REPORTKEY generated by the instruction.

TMP_REPORT 3712

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Address verification for TARGETINFO (RBX) *)

IF ((DS:RBX is not 512Byte Aligned) or (DS:RBX is not within CR_ELRANGE))

 THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)

 THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).VALID = 0)

 THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)

 THEN #PF(DS:RBX); FI;

(* Check page parameters for correctness *)

IF ((EPCM(DS:RBX).PT ≠ PT_REG) or (EPCM(DS:RBX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RBX).PENDING = 1) or

 (EPCM(DS:RBX).MODIFIED = 1) or (EPCM(DS:RBX).ENCLAVEADDRESS ≠ (DS:RBX & ~0FFFH)) or (EPCM(DS:RBX).R = 0))

 THEN #PF(DS:RBX);

FI;

(* Address verification for REPORTDATA (RCX) *)

IF ((DS:RCX is not 128Byte Aligned) or (DS:RCX is not within CR_ELRANGE))

 THEN #GP(0); FI;

IF (DS:RCX does not resolve within an EPC)

 THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).VALID = 0)

 THEN #PF(DS:RCX); FI;

IF (EPCM(DS:RCX).BLOCKED = 1)

 THEN #PF(DS:RCX); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

332 Document Number: 334525-003, Revision 3.0

(* Check page parameters for correctness *)

IF ((EPCM(DS:RCX).PT ≠ PT_REG) or (EPCM(DS:RCX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

 (EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RCX).ENCLAVEADDRESS ≠ (DS:RCX & ~0FFFH)) or (EPCM(DS:RCX).R = 0))

 THEN #PF(DS:RCX);

FI;

(* Address verification for OUTPUTDATA (RDX) *)

IF ((DS:RDX is not 512Byte Aligned) or (DS:RDX is not within CR_ELRANGE))

 THEN #GP(0); FI;

IF (DS:RDX does not resolve within an EPC)

 THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).VALID = 0)

 THEN #PF(DS:RDX); FI;

IF (EPCM(DS:RDX).BLOCKED = 1)

 THEN #PF(DS:RDX); FI;

(* Check page parameters for correctness *)

IF ((EPCM(DS:RDX).PT ≠ PT_REG) or (EPCM(DS:RDX).ENCLAVESECS ≠ CR_ACTIVE_SECS) or (EPCM(DS:RCX).PENDING = 1) or

 (EPCM(DS:RCX).MODIFIED = 1) or (EPCM(DS:RDX).ENCLAVEADDRESS ≠ (DS:RDX & ~0FFFH)) or (EPCM(DS:RDX).W = 0))

 THEN #PF(DS:RDX);

FI;

(* REPORT MAC needs to be computed over data which cannot be modified *)

TMP_REPORT.CPUSVN  CR_CPUSVN;

TMP_REPORT.ISVFAMILYID  TMP_CURRENTSECS.ISVFAMILYID;

TMP_REPORT.ISVEXTPRODID  TMP_CURRENTSECS.ISVEXTPRODID;

TMP_REPORT.ISVPRODID  TMP_CURRENTSECS.ISVPRODID;

TMP_REPORT.ISVSVN  TMP_CURRENTSECS.ISVSVN;

TMP_REPORT.ATTRIBUTES  TMP_CURRENTSECS.ATTRIBUTES;

TMP_REPORT.REPORTDATA  DS:RCX[511:0];

TMP_REPORT.MRENCLAVE  TMP_CURRENTSECS.MRENCLAVE;

TMP_REPORT.MRSIGNER  TMP_CURRENTSECS.MRSIGNER;

TMP_REPORT.MRRESERVED  0;

TMP_REPORT.KEYID[255:0]  CR_REPORT_KEYID;

TMP_REPORT.MISCSELECT  TMP_CURRENTSECS.MISCSELECT;

TMP_REPORT.CONFIGID  TMP_CURRENTSECS.CONFIGID;

TMP_REPORT.CONFIGSVN  TMP_CURRENTSECS.CONFIGSVN;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN TMP_REPORT.CET_ATTRIBUTES  TMP_CURRENTSECS.CET_ATTRIBUTES; FI;

(* Derive the report key *)

TMP_KEYDEPENDENCIES.KEYNAME  REPORT_KEY;

TMP_KEYDEPENDENCIES.ISVFAMILYID  0;

TMP_KEYDEPENDENCIES.ISVEXTPRODID  0;

TMP_KEYDEPENDENCIES.ISVPRODID  0;

TMP_KEYDEPENDENCIES.ISVSVN  0;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 333

TMP_KEYDEPENDENCIES.SGXOWNEREPOCH  CR_SGXOWNEREPOCH;

TMP_KEYDEPENDENCIES.ATTRIBUTES  DS:RBX.ATTRIBUTES;

TMP_KEYDEPENDENCIES.ATTRIBUTESMASK  0;

TMP_KEYDEPENDENCIES.MRENCLAVE  DS:RBX.MEASUREMENT;

TMP_KEYDEPENDENCIES.MRSIGNER  0;

TMP_KEYDEPENDENCIES.KEYID  TMP_REPORT.KEYID;

TMP_KEYDEPENDENCIES.SEAL_KEY_FUSES  CR_SEAL_FUSES;

TMP_KEYDEPENDENCIES.CPUSVN  CR_CPUSVN;

TMP_KEYDEPENDENCIES.PADDING  TMP_CURRENTSECS.PADDING;

TMP_KEYDEPENDENCIES.MISCSELECT  DS:RBX.MISCSELECT;

TMP_KEYDEPENDENCIES.MISCMASK  0;

TMP_KEYDEPENDENCIES.KEYPOLICY  0;

TMP_KEYDEPENDENCIES.CONFIGID  DS:RBX.CONFIGID;

TMP_KEYDEPENDENCIES.CONFIGSVN  DS:RBX.CONFIGSVN;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES  DS:RBX.CET_ATTRIBUTES;

 TMP_KEYDEPENDENCIES.CET_ATTRIBUTES _MASK  0;

 FI;

(* Calculate the derived key*)

TMP_REPORTKEY  derive_key(TMP_KEYDEPENDENCIES);

(* call cryptographic CMAC function, CMAC data are not including MAC&KEYID *)

TMP_REPORT.MAC  cmac(TMP_REPORTKEY, TMP_REPORT[3071:0]);

DS:RDX[3455: 0]  TMP_REPORT;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.

 If the address in RCS is outside the DS segment limit.

 If a memory operand is not properly aligned.

 If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.

 If RCX is non-canonical form.

 If a memory operand is not properly aligned.

 If a memory operand is not in the current enclave.

#PF(error code) If a page fault occurs in accessing memory operands.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

334 Document Number: 334525-003, Revision 3.0

ERESUME—Re-Enters an Enclave

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 03H

ENCLU[ERESUME]

IR V/V SGX1 This leaf function is used to re-enter an enclave after an inter-

rupt.

Instruction Operand Encoding

Op/En RAX RBX RCX

IR ERESUME (In) Address of a TCS (In) Address of AEP (In)

Description

ERESUME Memory Parameter Semantics

The ENCLU[ERESUME] instruction resumes execution of an enclave that was interrupted due to an exception or

interrupt, using the machine state previously stored in the SSA.

TCS

 Enclave read/write access

The instruction faults if any of the following:

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or

locked.

Current 32/64 mode does not match the enclave mode in

SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave. Either of TCS-specified FS and GS segment is not a subset of the current DS

segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0. The bit vector stored at offset 512 of the XSAVE area must be a subset of

SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 335

The following operations are performed by ERESUME:

• RSP and RBP are saved in the current SSA frame on EENTER and are automatically restored on EEXIT or an

asynchronous exit due to any Interrupt event.

• The AEP contained in RCX is stored into the TCS for use by AEXs.FS and GS (including hidden portions) are

saved and new values are constructed using TCS.OFSBASE/GSBASE (32 and 64-bit mode) and

TCS.OFSLIMIT/GSLIMIT (32-bit mode only). The resulting segments must be a subset of the DS segment.

• If CR4.OSXSAVE == 1, XCR0 is saved and replaced by SECS.ATTRIBUTES.XFRM. The effect of RFLAGS.TF

depends on whether the enclave entry is opt-in or opt-out:

— On opt-out entry, TF is saved and cleared (it is restored on EEXIT or AEX). Any attempt to set TF via a

POPF instruction while inside the enclave clears TF.

— On opt-in entry, a single-step debug exception is pended on the instruction boundary immediately after

EENTER.

• All code breakpoints that do not overlap with ELRANGE are also suppressed. If the entry is an opt-out entry,

all code and data breakpoints that overlap with the ELRANGE are suppressed.

• On opt-out entry, a number of performance monitoring counters and behaviors are modified or suppressed:

— All performance monitoring activity on the current thread is suppressed except for incrementing and fir-

ing of FIXED_CTR1 and FIXED_CTR2.

— PEBS is suppressed.

— AnyThread counting on other threads is demoted to MyThread mode and IA32_PERF_GLOBAL_STA-

TUS[60] on that thread is set.

— If the opt-out entry on a hardware thread results in suppression of any performance monitoring, then the

processor sets IA32_PERF_GLOBAL_STATUS[60] and IA32_PERF_GLOBAL_STATUS[63].

Concurrency Restrictions

Base Concurrency Restrictions of ERESUME

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

ERESUME TCS [DS:RBX] Shared #GP

Additional Concurrency Restrictions of ERESUME

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ERESUME TCS [DS:RBX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

336 Document Number: 334525-003, Revision 3.0

Operation

Temp Variables in ERESUME Operational Flow

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to

resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_RECORD LBR Record From/to addresses to be pushed onto the LBR stack.

TMP_MODE64  ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)

IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1))))

 THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)

IF (TMP_MODE64 = 0)

 THEN

 IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;

 IF(ES usable and ES.base ≠ 0) #GP(0); FI;

 IF(SS usable and SS.base ≠ 0) #GP(0); FI;

 IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)

 THEN #GP(0); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 337

IF (DS:RBX does not resolve within an EPC)

 THEN #PF(DS:RBX); FI;

(* Check AEP is canonical*)

IF (TMP_MODE64 = 1 and (CS:RCX is not canonical))

 THEN #GP(0); FI;

(* Check concurrency of TCS operation*)

IF (Other Intel SGX instructions is operating on TCS)

 THEN #GP(0); FI;

(* TCS verification *)

IF (EPCM(DS:RBX).VALID = 0)

 THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)

 THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))

 THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))

 THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)

 THEN #GP(0); FI;

(* Check proposed FS and GS *)

IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

 THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)

TMP_SECS  Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)

IF (((DS:RBX).FLAGS & FFFFFFFFFFFFFFFEH) ≠ 0)

 THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)

IF (the enclave is not already initialized)

 THEN #GP(0); FI;

(* make sure the logical processor’s operating mode matches the enclave *)

IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

 THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)

 THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)

IF (CR4.OSXSAVE = 0)

 THEN

 IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

338 Document Number: 334525-003, Revision 3.0

 ELSE

 IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUTES.XFRM) THEN #GP(0); FI;

FI;

(* Make sure the SSA contains at least one active frame *)

IF ((DS:RBX).CSSA = 0)

 THEN #GP(0); FI;

(* Compute linear address of SSA frame *)

TMP_SSA  (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ((DS:RBX).CSSA - 1);

TMP_XSIZE  compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE

 (* Check page is read/write accessible *)

 Check that DS:TMP_SSA_PAGE is read/write accessible;

 If a fault occurs, release locks, abort and deliver that fault;

 IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

 (EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or

 (EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))

 THEN #PF(DS:TMP_SSA_PAGE); FI;

 CR_XSAVE_PAGE_n  Physical_Address(DS:TMP_SSA_PAGE);

ENDFOR

(* Compute address of GPR area*)

TMP_GPR  TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);

Check that DS:TMP_SSA_PAGE is read/write accessible;

If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)

 THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)

 THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)

 THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))

 THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or

 (EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or

 (EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))

 THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 339

 THEN

 IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;

FI;

CR_GPR_PA  Physical_Address (DS: TMP_GPR);

TMP_TARGET  (DS:TMP_GPR).RIP;

IF (TMP_MODE64 = 1)

 THEN

 IF (TMP_TARGET is not canonical) THEN #GP(0); FI;

 ELSE

 IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)

IF (TMP_MODE64 = 0)

 THEN

 TMP_FSBASE  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;

 TMP_FSLIMIT  (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;

 TMP_GSBASE  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;

 TMP_GSLIMIT  (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;

 (* if FS wrap-around, make sure DS has no holes*)

 IF (TMP_FSLIMIT < TMP_FSBASE)

 THEN

 IF (DS.limit < 4GB) THEN #GP(0); FI;

 ELSE

 IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

 FI;

 (* if GS wrap-around, make sure DS has no holes*)

 IF (TMP_GSLIMIT < TMP_GSBASE)

 THEN

 IF (DS.limit < 4GB) THEN #GP(0); FI;

 ELSE

 IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

 FI;

 ELSE

 TMP_FSBASE  DS:TMP_GPR.FSBASE;

 TMP_GSBASE  DS:TMP_GPR.GSBASE;

 IF ((TMP_FSBASE is not canonical) or (TMP_GSBASE is not canonical))

 THEN #GP(0); FI;

FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)

IF (DS:RBX.STATE = ACTIVE))

 THEN #GP(0); FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN

IF (CR4.CET = 0)
 THEN
 (* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)
 IF (TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) #GP(0); FI;
 FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

340 Document Number: 334525-003, Revision 3.0

(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail ERESUME *)
IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1)
 THEN
 IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;
 FI;

TMP_IA32_U_CET  0;
TMP_SSP  0;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN)
 THEN

 (* Setup CET state from SECS, note tracker goes to IDLE *)
 TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES;
 IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1)
 THEN
 TMP_IA32_U_CET  TMP_IA32_U_CET + TMP_SECS.BASEADDR;

 TMP_IA32_U_CET  TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;
 FI;

 (* Compute linear address of what will become new CET state save area and cache its PA *)
 TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA - 1) * 16
 TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF;

 Check the TMP_CET_SAVE_PAGE page is read/write accessible
 If fault occurs release locks, abort and deliver fault

 (* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)

 IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))
 THEN
 #PF(DS:TMP_CET_SAVE_PAGE);
 FI;

 CR_CET_SAVE_AREA_PA  Physical address(DS:TMP_CET_SAVE_AREA)

 TMP_SSP = CR_CET_SAVE_AREA_PA.SSP
 TMP_IA32_U_CET.TRACKER = CR_CET_SAVE_AREA_PA.TRACKER;
 TMP_IA32_U_CET.SUPPRESS = CR_CET_SAVE_AREA_PA.SUPPRESS;

 If ((TMP_MODE64 = 1 AND TMP_SSP is not machine canonical) OR

 (TMP_MODE64 = 0 AND (TMP_SSP & 0xFFFFFFFF00000000) ≠ 0) OR

 (TMP_SSP is not 4 byte aligned) OR

 (TMP_IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH AND TMP_IA32_U_CET.SUPPRESS = 1) OR

 (CR_CET_SAVE_AREA_PA.Reserved ≠ 0)) #GP(0); FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 341

 FI;

 FI;

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)

(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)

XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP)

 THEN

 DS:RBX.STATE  INACTIVE;

 #GP(0);

FI;

CR_ENCLAVE_MODE  1;

CR_ACTIVE_SECS  TMP_SECS;

CR_ELRANGE  (TMP_SECS.BASEADDR, TMP_SECS.SIZE);

(* Save sate for possible AEXs *)

CR_TCS_PA  Physical_Address (DS:RBX);

CR_TCS_LA  RBX;

CR_TCS_LA.AEP  RCX;

(* Save the hidden portions of FS and GS *)

CR_SAVE_FS_selector  FS.selector;

CR_SAVE_FS_base  FS.base;

CR_SAVE_FS_limit  FS.limit;

CR_SAVE_FS_access_rights  FS.access_rights;

CR_SAVE_GS_selector  GS.selector;

CR_SAVE_GS_base  GS.base;

CR_SAVE_GS_limit  GS.limit;

CR_SAVE_GS_access_rights  GS.access_rights;

RIP  TMP_TARGET;

Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)

RFLAGS.CF  DS:TMP_GPR.RFLAGS.CF;

RFLAGS.PF  DS:TMP_GPR.RFLAGS.PF;

RFLAGS.AF  DS:TMP_GPR.RFLAGS.AF;

RFLAGS.ZF  DS:TMP_GPR.RFLAGS.ZF;

RFLAGS.SF  DS:TMP_GPR.RFLAGS.SF;

RFLAGS.DF  DS:TMP_GPR.RFLAGS.DF;

RFLAGS.OF  DS:TMP_GPR.RFLAGS.OF;

RFLAGS.NT  DS:TMP_GPR.RFLAGS.NT;

RFLAGS.AC  DS:TMP_GPR.RFLAGS.AC;

RFLAGS.ID  DS:TMP_GPR.RFLAGS.ID;

RFLAGS.RF  DS:TMP_GPR.RFLAGS.RF;

RFLAGS.VM  0;

IF (RFLAGS.IOPL = 3)

 THEN RFLAGS.IF  DS:TMP_GPR.RFLAGS.IF; FI;

IF (TCS.FLAGS.OPTIN = 0)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

342 Document Number: 334525-003, Revision 3.0

 THEN RFLAGS.TF  0; FI;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)

IF (CR4.OSXSAVE = 1)

 CR_SAVE_XCR0  XCR0;

 XCR0  TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Pop the SSA stack*)

(DS:RBX).CSSA  (DS:RBX).CSSA -1;

(* Do the FS/GS swap *)

FS.base  TMP_FSBASE;

FS.limit  DS:RBX.FSLIMIT;

FS.type  0001b;

FS.W  DS.W;

FS.S  1;

FS.DPL  DS.DPL;

FS.G  1;

FS.B  1;

FS.P  1;

FS.AVL  DS.AVL;

FS.L  DS.L;

FS.unusable  0;

FS.selector  0BH;

GS.base  TMP_GSBASE;

GS.limit  DS:RBX.GSLIMIT;

GS.type  0001b;

GS.W  DS.W;

GS.S  1;

GS.DPL  DS.DPL;

GS.G  1;

GS.B  1;

GS.P  1;

GS.AVL  DS.AVL;

GS.L  DS.L;

GS.unusable  0;

GS.selector  0BH;

CR_DBGOPTIN  TCS.FLAGS.DBGOPTIN;

Suppress all code breakpoints that are outside ELRANGE;

IF (CR_DBGOPTIN = 0)

 THEN

 Suppress all code breakpoints that overlap with ELRANGE;

 CR_SAVE_TF  RFLAGS.TF;

 RFLAGS.TF  0;

 Suppress any MTF VM exits during execution of the enclave;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 343

 Clear all pending debug exceptions;

 Clear any pending MTF VM exit;

 ELSE

 Clear all pending debug exceptions;

 Clear pending MTF VM exits;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)

 THEN

(* Save enclosing application CET state into save registers *)
CR_SAVE_IA32_U_CET  IA32_U_CET
(* Setup enclave CET state *)
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

 THEN

 CR_SAVE_SSP  SSP
 SSP  TMP_SSP;

 FI;
IA32_U_CET  TMP_IA32_U_CET;

 FI;

(* Assure consistent translations *)

Flush_linear_context;

Clear_Monitor_FSM;

Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.

 If the enclave is not initialized.

 If the thread is not in the INACTIVE state.

 If CS, DS, ES or SS bases are not all zero.

 If executed in enclave mode.

 If part or all of the FS or GS segment specified by TCS is outside the DS segment.

 If any reserved field in the TCS FLAG is set.

 If the target address is not within the CS segment.

 If CR4.OSFXSR = 0.

 If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.

 If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory.

 If DS:RBX does not point to a valid TCS.

 If one or more pages of the current SSA frame are not readable/writable, or do not resolve

to a valid PT_REG EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

344 Document Number: 334525-003, Revision 3.0

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.

 If the enclave is not initialized.

 If the thread is not in the INACTIVE state.

 If CS, DS, ES or SS bases are not all zero.

 If executed in enclave mode.

 If part or all of the FS or GS segment specified by TCS is outside the DS segment.

 If any reserved field in the TCS FLAG is set.

 If the target address is not canonical.

 If CR4.OSFXSR = 0.

 If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.

 If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

#PF(error code) If a page fault occurs in accessing memory operands.

 If DS:RBX does not point to a valid TCS.

 If one or more pages of the current SSA frame are not readable/writable, or do not resolve

to a valid PT_REG EPC page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 345

16.5 Intel® SGX VIRTUALIZATION Leaf Function Reference

Leaf functions available with the ENCLV instruction mnemonic are covered in this section. In general, each in-

struction leaf requires EAX to specify the leaf function index and/or additional implicit registers specifying leaf-

specific input parameters. An instruction operand encoding table provides details of each implicit register usage

and associated input/output semantics.

In many cases, an input parameter specifies an effective address associated with a memory object inside or out-

side the EPC, the memory addressing semantics of these memory objects are also summarized in a separate

table.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

346 Document Number: 334525-003, Revision 3.0

EDECVIRTCHILD—Decrement VIRTCHILDCNT in SECS

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 00H

ENCLV[EDECVIRTCHILD]

IR V/V EAX[5] This leaf function decrements the SECS VIRTCHILDCNT field.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EDECVIRTCHILD (In) Address of an enclave page (In) Address of an SECS page (In)

Description

This instruction decrements the SECS VIRTCHILDCNT field. This instruction can only be executed when current

privilege level is 0.

The content of RCX is an effective address of an EPC page. The DS segment is used to create linear address.

Segment override is not supported.

EDECVIRTCHILD Memory Parameter Semantics

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

EDECVIRTCHILD Faulting Conditions

The instruction faults if any of the following:

A memory operand effective address is outside the DS segment

limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS

referenced in RCX.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 347

Concurrency Restrictions

Base Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter

Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

EDECVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_

CONFLICT

SECS [DS:RCX] Concurrent

Additional Concurrency Restrictions of EDECVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDECVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

348 Document Number: 334525-003, Revision 3.0

Operation

Temp Variables in EDECVIRTCHILD Operational Flow

Name Type Size (bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_VIRTCHILDCNT Integer 64 Number of virtual child pages.

EDECVIRTCHILD Return Value in RAX

Error Value Description

No Error 0 EDECVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

SGX_INVALID_COUNTER Attempt to decrement counter that is already zero.

(* check alignment of DS:RBX *)

IF (DS:RBX is not 4K aligned) THEN

 #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)

IF (DS:RBX does not resolve within an EPC) THEN

 #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)

IF (DS:RCX does not resolve within an EPC) THEN

 #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)

IF (EPCPAGE is being modified) THEN

 RFLAGS.ZF = 1;

 RAX = SGX_EPC_PAGE_CONFLICT;

 goto DONE;

FI;

(* check that the EPC page is valid *)

IF (EPCM(DS:RBX).VALID = 0) THEN

 #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 349

IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or

 (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or

 (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM) or

 (EPCM(DS:RBX).PAGE_TYPE = PT_SS_FIRST) or

 (EPCM(DS:RBX).PAGE_TYPE = PT_SS_REST))

 THEN

 (* get the SECS of DS:RBX *)

 TMP_SECS  Address of SECS for (DS:RBX);

ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN

 (* get the physical address of DS:RBX *)

 TMP_SECS  Physical_Address(DS:RBX);

ELSE

 (* EDECVIRTCHILD called on page of incorrect type *)

 #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN

 #GP(0); FI;

(* Atomically decrement virtchild counter and check for underflow *)

Locked_Decrement(SECS(TMP_SECS).VIRTCHILDCNT);

IF (There was an underflow) THEN

 Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);

 RFLAGS.ZF  1;

 RAX  SGX_INVALID_COUNTER;

 goto DONE;

FI;

RFLAGS.ZF  0;

RAX  0;

DONE:

(* clear flags *)

RFLAGS.CF  0;

RFLAGS.PF  0;

RFLAGS.AF  0;

RFLAGS.OF  0;

RFLAGS.SF  0;

Flags Affected

ZF is set if EDECVIRTCHILD fails due to concurrent operation with another SGX instruction, or if there is a

VIRTCHILDCNT underflow. Otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If DS segment is unusable.

 If a memory operand is not properly aligned.

 RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.

 If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

 If RCX does not refer to an SECS page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

350 Document Number: 334525-003, Revision 3.0

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.

 If a memory operand is not properly aligned.

 RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.

 If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

 If RCX does not refer to an SECS page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 351

EINCVIRTCHILD—Increment VIRTCHILDCNT in SECS

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 01H

ENCLV[EINCVIRTCHILD]

IR V/V EAX[5] This leaf function increments the SECS VIRTCHILDCNT field.

Instruction Operand Encoding

Op/En EAX RBX RCX

IR EINCVIRTCHILD (In) Address of an enclave page (In) Address of an SECS page (In)

Description

This instruction increments the SECS VIRTCHILDCNT field. This instruction can only be executed when the cur-

rent privilege level is 0.

The content of RCX is an effective address of an EPC page. The DS segment is used to create a linear address.

Segment override is not supported.

EINCVIRTCHILD Memory Parameter Semantics

EPCPAGE SECS

Read/Write access permitted by Non Enclave Read access permitted by Enclave

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

352 Document Number: 334525-003, Revision 3.0

EINCVIRTCHILD Faulting Conditions

The instruction faults if any of the following:

A memory operand effective address is outside the DS segment

limit (32b mode).

A page fault occurs in accessing memory operands.

DS segment is unusable (32b mode). RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

A memory address is in a non-canonical form (64b mode). RCX does not refer to an SECS page.

A memory operand is not properly aligned. RBX does not refer to an enclave page associated with SECS

referenced in RCX.

Concurrency Restrictions

Base Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter

Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

EINCVIRTCHILD Target [DS:RBX] Shared SGX_EPC_PAGE_

CONFLICT

SECS [DS:RCX] Concurrent

Additional Concurrency Restrictions of EINCVIRTCHILD

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EINCVIRTCHILD Target [DS:RBX] Concurrent Concurrent Concurrent

SECS [DS:RCX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 353

Operation

Temp Variables in EINCVIRTCHILD Operational Flow

Name Type Size (bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

EINCVIRTCHILD Return Value in RAX

Error Value Description

No Error 0 EINCVIRTCHILD Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

(* check alignment of DS:RBX *)

IF (DS:RBX is not 4K aligned) THEN

 #GP(0); FI;

(* check DS:RBX is an linear address of an EPC page *)

IF (DS:RBX does not resolve within an EPC) THEN

 #PF(DS:RBX, PFEC.SGX); FI;

(* check DS:RCX is an linear address of an EPC page *)

IF (DS:RCX does not resolve within an EPC) THEN

 #PF(DS:RCX, PFEC.SGX); FI;

(* Check the EPCPAGE for concurrency *)

IF (EPCPAGE is being modified) THEN

 RFLAGS.ZF = 1;

 RAX = SGX_EPC_PAGE_CONFLICT;

 goto DONE;

FI;

(* check that the EPC page is valid *)

IF (EPCM(DS:RBX).VALID = 0) THEN

 #PF(DS:RBX, PFEC.SGX); FI;

(* check that the EPC page has the correct type and that the back pointer matches the pointer passed as the pointer to parent *)

IF ((EPCM(DS:RBX).PAGE_TYPE = PT_REG) or

 (EPCM(DS:RBX).PAGE_TYPE = PT_TCS) or

 (EPCM(DS:RBX).PAGE_TYPE = PT_TRIM) or

 (EPCM(DS:RBX).PAGE_TYPE = PT_SS_FIRST) or

 (EPCM(DS:RBX).PAGE_TYPE = PT_SS_REST))

 THEN

 (* get the SECS of DS:RBX *)

 TMP_SECS  Address of SECS for (DS:RBX);

ELSE IF (EPCM(DS:RBX).PAGE_TYPE = PT_SECS) THEN

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

354 Document Number: 334525-003, Revision 3.0

 (* get the physical address of DS:RBX *)

 TMP_SECS  Physical_Address(DS:RBX);

ELSE

 (* EINCVIRTCHILD called on page of incorrect type *)

 #PF(DS:RBX, PFEC.SGX); FI;

IF (TMP_SECS ≠ Physical_Address(DS:RCX)) THEN

 #GP(0); FI;

(* Atomically increment virtchild counter *)

Locked_Increment(SECS(TMP_SECS).VIRTCHILDCNT);

RFLAGS.ZF  0;

RAX  0;

DONE:

(* clear flags *)

RFLAGS.CF  0;

RFLAGS.PF  0;

RFLAGS.AF  0;

RFLAGS.OF  0;

RFLAGS.SF  0;

Flags Affected

ZF is set if EINCVIRTCHILD fails due to concurrent operation with another SGX instruction; otherwise cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If DS segment is unusable.

 If a memory operand is not properly aligned.

 RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.

 If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

 If RCX does not refer to an SECS page.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.

 If a memory operand is not properly aligned.

 RBX does not refer to an enclave page associated with SECS referenced in RCX.

#PF(error code) If a page fault occurs in accessing memory operands.

 If RBX does not refer to an enclave page (REG, TCS, TRIM, SECS).

 If RCX does not refer to an SECS page.

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 355

ESETCONTEXT— Set the ENCLAVECONTEXT Field in SECS

Opcode/

Instruction

Op/En 64/32

bit Mode

Support

CPUID

Feature

Flag

Description

EAX = 02H

ENCLV[ESETCONTEXT]

IR V/V EAX[5] This leaf function sets the ENCLAVECONTEXT field in SECS.

Instruction Operand Encoding

Op/En EAX RCX RDX

IR ESETCONTEXT (In)
Address of the destination EPC page

(In, EA)
Context Value (In, EA)

Description

The ESETCONTEXT leaf overwrites the ENCLAVECONTEXT field in the SECS. ECREATE and ELD of an SECS set

the ENCLAVECONTEXT field in the SECS to the address of the SECS (for access later in ERDINFO). The

ESETCONTEXT instruction allows a VMM to overwrite the default context value if necessary, for example, if the

VMM is emulating ECREATE or ELD on behalf of the guest.

The content of RCX is an effective address of the SECS page to be updated, RDX contains the address pointing

to the value to be stored in the SECS. The DS segment is used to create linear address. Segment override is not

supported.

The instruction fails if:

• The operand is not properly aligned.

• RCX does not refer to an SECS page.

ESETCONTEXT Memory Parameter Semantics

EPCPAGE CONTEXT

Read access permitted by Enclave Read/Write access permitted by Non Enclave

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

356 Document Number: 334525-003, Revision 3.0

ESETCONTEXT Faulting Conditions

The instruction faults if any of the following:

A memory operand effective address is outside the DS segment

limit (32b mode).

A memory operand is not properly aligned.

DS segment is unusable (32b mode). A page fault occurs in accessing memory operands.

A memory address is in a non-canonical form (64b mode).

Concurrency Restrictions

Base Concurrency Restrictions of ESETCONTEXT

Leaf Parameter

Base Concurrency Restrictions

Access On Conflict
SGX_CONFLICT VM Exit

Qualification

ESETCONTEXT SECS [DS:RCX] Shared SGX_EPC_PAGE_

CONFLICT

Additional Concurrency Restrictions of ESETCONTEXT

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT,

EACCEPTCOPY, EMODPE,

EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

ESETCONTEXT SECS [DS:RCX] Concurrent Concurrent Concurrent

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Document Number: 334525-003, Revision 3.0 357

Operation

Temp Variables in ESETCONTEXT Operational Flow

Name Type Size (bits) Description

TMP_SECS Physical Address 64 Physical address of the SECS of the page being modified.

TMP_CONTEXT CONTEXT 64 Data Value of CONTEXT.

ESETCONTEXT Return Value in RAX

Error Value Description

No Error 0 ESETCONTEXT Successful.

SGX_EPC_PAGE_CONFLICT Failure due to concurrent operation of another SGX instruction.

(* check alignment of the EPCPAGE (RCX) *)

IF (DS:RCX is not 4KByte Aligned) THEN

 #GP(0); FI;

 (* check that EPCPAGE (DS:RCX) is the address of an EPC page *)

IF (DS:RCX does not resolve within an EPC)THEN

 #PF(DS:RCX, PFEC.SGX); FI;

(* check alignment of the CONTEXT field (RDX) *)

IF (DS:RDX is not 8Byte Aligned) THEN

 #GP(0); FI;

 (* Load CONTEXT into local variable *)

TMP_CONTEXT  DS:RDX

(* Check the EPC page for concurrency *)

IF (EPC page is being modified) THEN

 RFLAGS.ZF  1;

 RFLAGS.CF  0;

 RAX  SGX_EPC_PAGE_CONFLICT;

 goto DONE;

FI;

(* check page validity *)

IF (EPCM(DS:RCX).VALID = 0) THEN

 #PF(DS:RCX, PFEC.SGX);

FI;

(* check EPC page is an SECS page *)

IF (EPCM(DS:RCX).PT is not PT_SECS) THEN

 #PF(DS:RCX, PFEC.SGX);

FI;

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

358 Document Number: 334525-003, Revision 3.0

(* load the context value into SECS(DS:RCX).ENCLAVECONTEXT *)

SECS(DS:RCX).ENCLAVECONTEXT  TMP_CONTEXT;

RAX  0;

RFLAGS.ZF  0;

DONE:

(* clear flags *)

RFLAGS.CF,PF,AF,OF,SF  0;

Flags Affected

ZF is set if ESETCONTEXT fails due to concurrent operation with another SGX instruction; otherwise cleared.

CF, PF, AF, OF and SF are cleared.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the DS segment limit.

 If DS segment is unusable.

 If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

64-Bit Mode Exceptions

#GP(0) If a memory address is in a non-canonical form.

 If a memory operand is not properly aligned.

#PF(error code) If a page fault occurs in accessing memory operands.

	1 Introduction
	1.1 Shadow Stack
	1.2 Indirect Branch Tracking

	2 Shadow Stacks
	2.1 Shadow Stack Pointer and its Operand and Address Size Attributes
	2.2 Terminology
	2.3 Near CALL and RET Behavior with Shadow Stacks Enabled
	2.4 Far CALL and RET
	2.4.1 Supervisor Shadow Stack Token

	2.5 Stack Switching on Call to Interrupt/Exception Handlers in 64-bit Mode
	2.6 Shadow Stack Usage on Task Switch
	2.7 Switching Shadow Stacks
	2.8 Constraining Execution at Targets of RET

	3 Indirect Branch Tracking
	3.1 No-track Prefix for Near Indirect Call/Jmp
	3.2 Terminology
	3.3 Control Transfer Tracking
	3.3.1 Control Transfers between CPL 3 and CPL < 3
	3.3.2 Control Transfers within CPL 3 or CPL < 3

	3.4 Indirect Branch Tracking State Machine
	3.5 INT3 Treatment
	3.6 Legacy Compatibility Treatment
	3.6.1 Legacy Code Page Bitmap Format

	3.7 Other Considerations
	3.7.1 Intel® Transactional Synchronization Extensions (Intel® TSX) Interactions
	3.7.2 #CP(ENDBRANCH) Priority w.r.t #NM and #UD
	3.7.3 #CP(ENDBRANCH) Priority w.r.t #BP

	3.8 Constraining Speculation after Missing ENDBRANCH

	4 Changes to Control Transfer Instructions Reference
	4.1 CALL— Call Procedure
	4.2 INT n/INTO/INT3 – Call to Interrupt Procedure
	4.3 JMP — Jump
	4.4 RET—Return from Procedure
	4.5 SYSCALL—Fast System Call
	4.6 SYSENTER—Fast System Call
	4.7 SYSEXIT—Fast Return from Fast System Call
	4.8 SYSRET—Return From Fast System Call
	4.9 IRET/IRETD—Interrupt Return

	5 Task Management Interactions with CET
	5.1 32-bit Task-State Segment (TSS)
	5.2 Task Switching

	6 Shadow Stack Management Instructions
	6.1 INCSSP—Increment Shadow Stack Pointer
	6.2 RDSSP—Read Shadow Stack Pointer
	6.3 SAVEPREVSSP —Save Previous Shadow Stack Pointer
	6.4 RSTORSSP — Restore saved Shadow Stack Pointer
	6.5 WRSS — Write to shadow stack
	6.6 WRUSS — Write to User Shadow Stack
	6.7 SETSSBSY — Mark Shadow Stack Busy
	6.8 CLRSSBSY — Clear Shadow Stack Busy Flag

	7 Control Transfer Terminating Instructions
	7.1 ENDBR64 — Terminate an Indirect Branch in 64-bit Mode
	7.2 ENDBR32 — Terminate an Indirect Branch in 32-bit and Compatibility Mode

	8 Control Protection Exception, Enumeration, Enables and Extended State Management
	8.1 Control Protection Exception
	8.2 Feature Enumeration
	8.3 Master Enable
	8.4 CET MSRs
	8.5 CET Extended State Management

	9 Shadow Stack, Paging and EPT
	9.1 Shadow-Stack Pages as Defined by Paging
	9.2 Shadow-Stack Access Rights as Enforced by Paging (Outside an Enclave)
	9.3 Shadow-Stack Accesses in an Enclave
	9.4 Basic EPT Control of Shadow-Stack Accesses
	9.5 Supervisor Shadow-Stack Control
	9.5.1 Supervisor Shadow-Stack Pages as Defined by EPT
	9.5.2 Supervisor Shadow-Stack Access Rights as Enforced by EPT

	10 VMX Interactions
	10.1 VMCS Guest State Area Extensions
	10.2 VMCS Host State Area Extensions
	10.3 VMCS VM-Exit Controls Extensions
	10.4 VMCS VM-Entry Controls Extensions
	10.5 EPTP
	10.6 VM Exit
	10.7 VM Entry
	10.8 IA32_VMX_EPT_VPID_CAP

	11 SMM Interactions
	11.1 SMRAM State Save Map
	11.2 SMI Handler Execution Environment
	11.3 RSM

	12 TXT Interactions
	13 SGX Interactions
	13.1 CET in Enclaves Model
	13.2 Operations Not Supported on Shadow Stack Pages
	13.3 Indirect Branch Tracking – Legacy Compatibility Treatment

	14 Enclave Access Control and Data Structures
	14.1 Overview of Enclave Execution Environment
	14.2 Terminology
	14.3 Access-control Requirements
	14.4 Segment-based Access Control
	14.5 Page-based Access Control
	14.5.1 Access-control for Accesses that Originate from non-SGX Instructions
	14.5.2 Memory Accesses that Split across ELRANGE
	14.5.3 Implicit vs. Explicit Accesses
	14.5.3.1 Explicit Accesses
	14.5.3.2 Implicit Accesses

	14.6 Intel® SGX Data Structures Overview
	14.7 SGX Enclave Control Structure (SECS)
	14.7.1 ATTRIBUTES
	14.7.2 SECS.MISCSELECT Field
	14.7.3 SECS.CET_ATTRIBUTES Field

	14.8 Thread Control Structure (TCS)
	14.8.1 TCS.FLAGS
	14.8.2 State Save Area Offset (OSSA)
	14.8.3 Current State Save Area Frame (CSSA)
	14.8.4 Number of State Save Area Frames (NSSA)

	14.9 State Save Area (SSA) Frame
	14.9.1 GPRSGX Region
	14.9.1.1 EXITINFO
	14.9.1.2 VECTOR Field Definition

	14.9.2 MISC Region
	14.9.2.1 EXINFO Structure
	14.9.2.2 Page Fault Error Code

	14.10 CET State Save Area Frame
	14.11 Page Information (PAGEINFO)
	14.12 Security Information (SECINFO)
	14.12.1 SECINFO.FLAGS
	14.12.2 PAGE_TYPE Field Definition

	14.13 Paging Crypto MetaData (PCMD)
	14.14 Enclave Signature Structure (SIGSTRUCT)
	14.15 EINIT Token Structure (EINITTOKEN)
	14.16 Report (REPORT)
	14.16.1 REPORTDATA

	14.17 Report Target Info (TARGETINFO)
	14.18 Key Request (KEYREQUEST)
	14.18.1 KEY REQUEST KeyNames
	14.18.2 Key Request Policy Structure

	14.19 Version Array (VA)
	14.20 Enclave Page Cache Map (EPCM)
	14.21 Read Info (RDINFO)
	14.21.1 RDINFO Status Structure
	14.21.2 RDINFO Flags Structure

	15 Enclave Exiting Events
	15.1 Compatible Switch to the Exiting Stack of AEX
	15.2 State Saving by AEX
	15.3 Synthetic State on Asynchronous Enclave Exit
	15.3.1 Processor Synthetic State on Asynchronous Enclave Exit
	15.3.2 Synthetic State for Extended Features
	15.3.3 Synthetic State for MISC Features

	15.4 AEX Flow
	15.4.1 AEX Operational Detail

	16 SGX Instruction References
	16.1 Intel® SGX Instruction Syntax and Operation
	16.1.1 ENCLS Register Usage Summary
	16.1.2 ENCLU Register Usage Summary
	16.1.3 ENCLV Register Usage Summary
	16.1.4 Information and Error Codes
	16.1.5 Internal CREGs
	16.1.6 Concurrent Operation Restrictions
	16.1.6.1 Concurrency Tables of Intel® SGX Instructions

	16.2 Intel® SGX Instruction Reference
	16.3 Intel® SGX System Leaf Function Reference
	16.4 Intel® SGX User Leaf Function Reference
	16.5 Intel® SGX VIRTUALIZATION Leaf Function Reference

