

INTEL® IN-MEMORY ANALYTICS
ACCELERATOR
ARCHITECTURE SPECIFICATION

Document ID: 350295
Revision: 2.0

December 2022

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 2

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that a) you may publish an unmodified copy and b) code included in this
document is licensed subject to the Zero-Clause BSD open source license (0BSD),
https://opensource.org/licenses/0BSD. You may create software implementations based on this document and in
compliance with the foregoing that are intended to execute on the Intel product(s) referenced in this document.
No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 3

REVISION HISTORY

Date Revision Description

April 2022 Initial Release The initial release of the document.

December 2022 First Revision First revision and refinement of content.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 4

TABLE OF CONTENTS
1 Introduction ... 10

1.1 Audience .. 10
1.2 References .. 11

2 Overview .. 12

2.1 Data Analytics Features .. 12

3 Intel Analytics Accelerator Architecture ... 14

3.1 Operations Overview .. 14
3.2 Analytics Engine Configuration and State ... 14

3.2.1 AECS Format .. 16

3.3 Decompression .. 16

3.3.1 Verification .. 17
3.3.2 Index Generation ... 17

3.4 Compression ... 17

3.4.1 Statistics Mode Output .. 18
3.4.2 Compression Output Overflow ... 18
3.4.3 Compression Indexing .. 18
3.4.4 Compression with a Dictionary ... 19
3.4.5 Compression Header Generation .. 19
3.4.6 Compression Early Abort .. 21
3.4.7 Last Descriptor Bit ... 22

3.5 Encryption/Decryption .. 22

3.5.1 AES-CFB .. 23
3.5.2 GCM ... 24
3.5.3 XTS ... 25
3.5.4 Decryption with Indexing .. 25

3.6 Checksum Calculations ... 25
3.7 Drop Initial Bits vs. Drop Initial Bytes .. 26
3.8 Filter Functions .. 26

3.8.1 Parser ... 27
3.8.2 Output Modification ... 27
3.8.3 Aggregation ... 28

3.9 Chaining of Functions .. 29
3.10 Operation Types ... 29

3.10.1 Decompress .. 29
3.10.2 Compress ... 29

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 5

3.10.3 CRC64 .. 30
3.10.4 Scan ... 31
3.10.5 Extract .. 31
3.10.6 Select .. 31
3.10.7 Expand ... 32

4 Error Handling .. 34

4.1 Descriptor Checks .. 34
4.2 Descriptor Reserved Field Checking ... 34
4.3 AECS Checks ... 38
4.4 Error Codes .. 39

4.4.1 Operation Status Codes .. 39
4.4.2 Error Code ... 40

5 Software Architecture .. 43

5.1 Intel® Query Processing Library ... 43

6 Structure Formats .. 44

6.1 Descriptor ... 44

6.1.1 Trusted Fields .. 44
6.1.2 Operation ... 45
6.1.3 Operation Flags .. 45
6.1.4 Completion Record Address ... 48
6.1.5 Source 1 Address .. 49
6.1.6 Destination Address... 49
6.1.7 Source 1 Transfer Size ... 49
6.1.8 Completion Interrupt Handle ... 50
6.1.9 Source 2 Address .. 50
6.1.10 Maximum Destination Size .. 50
6.1.11 Source 2 Transfer Size ... 50

6.2 Completion Record ... 51

6.2.1 Status .. 51
6.2.2 Error Code ... 52
6.2.3 Fault Info ... 52
6.2.4 Bytes Completed ... 52
6.2.5 Fault Address ... 53
6.2.6 Invalid Flags .. 53
6.2.7 Output Size ... 53
6.2.8 Output Bits .. 53
6.2.9 XOR Checksum ... 53
6.2.10 CRC .. 54

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 6

6.2.11 Aggregates ... 54
6.2.12 Crypto Hash .. 54

6.3 Descriptor Types ... 54

6.3.1 Intel DSA Operations ... 54
6.3.2 Decompress Descriptor (0x42) .. 55
6.3.3 Analytics Descriptor (0x50, 0x52, 0x53, 0x56) .. 57
6.3.4 Decrypt/Encrypt Descriptor (0x40, 0x41) ... 60
6.3.5 Compress Descriptor (0x43) ... 61
6.3.6 CRC64 Descriptor (0x44) .. 64

6.4 Analytics Engine Configuration and State ... 65

6.4.1 AECS Format for Encrypt, Decrypt, Decompress, and Filter .. 66
6.4.2 AECS Format for Compress .. 73

7 Summary of Differences from Intel® DSA .. 74

7.1 General Differences ... 74
7.2 Configuration and Control Register Differences .. 75

7.2.1 General Capabilities Register (GENCAP) ... 75
7.2.2 Intel IAA Capabilities Register (IAACAP) ... 76

7.3 PCI Express Configuration Register Differences... 78

7.3.1 Device ID (DID) ... 78
7.3.2 Outstanding Page Request Capacity (PRSREQCAP) ... 78

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 7

LIST OF FIGURES
Figure 2-1: Intel Analytics Accelerator ... 12
Figure 3-1: GCM Calculations .. 24
Figure 6-1: Generic Intel IAA Decscriptor Format .. 44
Figure 6-2: Intel IAA Completion Record Format .. 51
Figure 6-3: AECS Format for Decompress and Filter .. 67
Figure 6-4: AECS Format for Compress .. 73

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 8

LIST OF TABLES
Table 1-1: References .. 11
Table 3-1: AECS Sizes for Various Operations .. 15
Table 3-2: Nominal AECS Write Sizes .. 15
Table 3-3: Dictionary Styles and Sizes ... 19
Table 3-4: Checksum Location ... 25
Table 3-5: Examples of CRC64 Parameters .. 31
Table 4-1: Operations Flags Applicability .. 35
Table 4-2: Analytics Flags Applicability ... 36
Table 4-3: Operation-Specific Allowed Fields ... 37
Table 4-4: Data Size Checks ... 38
Table 4-5: Non-Compress AECS Checks .. 39
Table 4-6: Compress AECS Checks ... 39
Table 4-7: Operation status codes ... 40
Table 4-8: Error Codes .. 42
Table 6-1: Descriptor Trusted Fields .. 44
Table 6-2: Operation types ... 45
Table 6-3: Descriptor Flags ... 48
Table 6-4: Source 2 Sizes for Different Values of Load Dictionary ... 51
Table 6-5: Completion record Status field .. 52
Table 6-6: Completion Record Fault Info ... 52
Table 6-7: Completion record Aggregates fields ... 54
Table 6-8: Decompression Flags ... 56
Table 6-9: Decompression Flags ... 58
Table 6-10: Filter Flags .. 59
Table 6-11: Cipher Flags .. 60
Table 6-12: Compression Flags ... 63
Table 6-13: Compression 2 Flags ... 63
Table 6-14: CRC Flags .. 65
Table 6-15: AECS fields for Decompress and Filter ... 68
Table 6-16: Decompress/Analytics Internal State .. 69
Table 6-17: ALU Field Definitions ... 70
Table 6-18: AECS Fields for Compress .. 73

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 9

GLOSSARY
Acronym Term Description

AECS Analytics Engine
Configuration and State

A data structure used to pass configuration data that did not fit
into the descriptor to the accelerator, and to pass state
information between descriptor executions when a job consists of
multiple descriptors.

DSA Intel® Data Streaming
Accelerator

Intel Accelerator designed to accelerate streaming operations
such as memory copy and others.

QPL Intel® Query Processing
Library

Intel library to interface between applications and the hardware.

§

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 10

1 INTRODUCTION

The Intel® In-Memory Analytics Accelerator (Intel® IAA) is a hardware accelerator that provides very high
throughput compression and decompression combined with primitive analytic functions.

The Intel® Data Streaming Accelerator (Intel® DSA) is a data mover and transformation accelerator. Intel IAA
and Intel DSA share the same hardware/software and programming interface. This document describes the
Intel IAA-specific functionality and the minor differences in interface from the base Intel DSA specification.
One should refer to the Intel Data Streaming Accelerator Architecture specification for details on the
common elements.

1.1 Audience
The intended audience for this specification includes hardware engineers and SoC architects to build the
hardware implementation, device driver software developers to program the device, virtualization software
providers to efficiently enable sharing and virtualization of the device, and application or library developers
utilizing accelerator operations.

It is assumed that the reader is already familiar with the Intel Data Streaming Accelerator (Intel DSA)
architecture.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 11

1.2 References
Description

Intel® Data Streaming Accelerator Architecture Specification
https://www.intel.com/content/www/us/en/develop/articles/intel-data-streaming-accelerator-
architecture-specification.html

Intel® 64 and IA-32 Architectures Software Developer's Manuals
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

Intel® Architecture Instruction Set Extensions Programming Reference
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-
extensions-programming-reference.html

Intel® Query Processing Library
https://github.com/intel/qpl

PCI Express* Base Specification 4.0
http://www.pcisig.com/specifications/pciexpress

Intel® Virtualization Technology for Directed I/O Specification
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-
directed-io-architecture-specification.html
Intel® Scalable I/O Virtualization Technical Specification
https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-
technical-specification.html
Intel® I/O Acceleration Technology
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
ITU-T recommendation V.42
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.42-200203-I!!PDF-E&type=items
RFC 1951, Deflate Compressed Data Format Specification
http://www.ietf.org/rfc/rfc1951.txt
RFC 3720, Internet Small Computer Systems Interface
http://www.ietf.org/rfc/rfc3720.txt

Table 1-1: References

§

https://www.intel.com/content/www/us/en/develop/articles/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/develop/articles/intel-data-streaming-accelerator-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://github.com/intel/qpl
http://www.pcisig.com/specifications/pciexpress
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-technical-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-technical-specification.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.42-200203-I!!PDF-E&type=items
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc3720.txt

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 12

2 OVERVIEW

The Intel® In-Memory Analytics Accelerator (Intel® IAA) is a hardware accelerator that provides very high
throughput compression and decompression combined with analytics primitive functions. The analytic
functions are commonly used for filtering data during analytic query processing. It primarily targets
applications such as big-data and in-memory analytics databases, as well as application-transparent usages
such as memory page compression. Other operations, such as data integrity functions (e.g., CRC64), are also
supported. The device supports formats such as Huffman encoding and Deflate. For the Deflate format, it
supports indexing the compressed stream for efficient random access.

2.1 Data Analytics Features
The accelerator logically contains three main functional blocks: Compression, Encryption, and Analytics.
The Analytics pipe contains three sub-blocks: Decrypt, Decompress, and Filter. These functions are tied
together so each analytics operation can perform any combination of decrypt/decompress/filter (e.g.,
decrypt-filter), as illustrated in Figure 2-1. Alternatively, one can compress or encrypt the input.
Compression and Encryption cannot be linked with any other operations.

The accelerator allows storing columnar databases in compressed form, decreasing memory footprint. In
addition to increased effective memory capacity, this also reduces memory bandwidth by performing the
filter function used for database queries “on the fly,” thereby avoiding the use of memory bandwidth for
uncompressed raw data transfer.

Decrypt DEFLATE
Decompress

SQL Filter
Functions

DEFLATE
Compress

Encrypt

Source 1 Output

Source 2

Figure 2-1: Intel® Analytics Accelerator

The device supports decompression compatible with the Deflate compression standard described in RFC
1951. The uncompressed data may be written directly to memory or passed to the input of the filter
function. Decompression is supported for Deflate streams where the size of the history buffer is no more
than 4096 bytes.

It also supports Deflate compression, along with the calculation of arbitrary CRCs.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 13

Intel IAA encryption/decryption supports the following algorithms: GCM-AES128 (GCM with 128-bit keys),
GCM-AES256, CFB-AES128, CFB-AES256, XTS-AES128, and XTS-AES256.

The SQL filter function block takes one or two input streams, a primary input, and in some cases, a
secondary input. The primary input may be read from memory or received from the decompression or
decryption block. If used, the secondary input is always read from memory. The data streams logically
contain an array of unsigned values; however, they may be formatted in any of several ways, e.g., as a packed
array. If the bit-width of the values is 1, the stream will be referenced as a “bit-vector”; otherwise, it will be
referenced as an “array.”

The output of the filter function may be either an array or a bit vector, depending on the function.

In addition to generating output data, the device computes a 32-bit CRC and an XOR checksum of the data
stream. See Section 3.6 for details. It also computes several “aggregates” of the output data. The CRC, XOR
checksum, and aggregates are written to the completion record.

§

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 14

3 INTEL® ANALYTICS ACCELERATOR ARCHITECTURE

3.1 Operations Overview
The accelerator supports data operations listed below, further detailed in the following sections.

Type Operation Description
Decompress Decompress Decompresses input data.
Compress Compress Compresses input data.
Decrypt Decrypt Decrypts input data.
Encrypt Encrypt Encrypts input data.

Filter

Scan Computes a bit-mask of which entries satisfy a condition.
Extract Returns entries as specified by a range of entry indices.
Select Returns entries as specified by a bit-mask.
Expand Inserts zeros as specified by a bit-mask.

CRC CRC64 Computes an arbitrary CRC up to 64-bits in size.
Memory Translation Fetch Prefetches address translations.

The analytics pipeline consists of three stages:
1. Decrypt
2. Decompress
3. Filter, CRC64

In general, any non-empty subset of these operations can be performed in this order. All other operations
must be done individually.

The paradigm for configuring the decrypt/decompress/filter pipeline is that the opcode specifies the last
operation to be performed, and earlier operations are enabled via flag bits. For example, if any filter
operation is to be performed, the opcode specifies the filter operation and flag bits indicate whether decrypt
and/or decompress is to be done. If decompression but no filter operation is to be performed, the
decompress opcode is used. Only if decrypt is to be performed with no decompress and no filter operation
is the decrypt opcode used.

3.2 Analytics Engine Configuration and State
The analytics engine configuration and state (AECS) structure contains configuration information used to
control the behavior of the various functions. Details of this structure are in section 6.4. In addition to
configuration information, the AECS may contain internal state of the analytics engine. The state information
can be used to initialize the engine to a known state and to propagate state information from one operation
to another. For each operation, the AECS may be read or written or both, depending on flags in the
descriptor, as described in section 6.1.3.

When Source 2 Address and Source 2 Size are being used to read and/or write the AECS, then the actual
memory being referenced will be twice the specified size. The read will occur from one half of the area, and
the write will occur to the other half. In this way, the input data will not get overwritten by the output data,
so that in the event of an error, the request can be retried by software. The AECS R/W Toggle Selector bit

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 15

in the Operations Flags field of the descriptor indicates which half supplies the read data, and which half
receives the write data.

In particular, if the AECS address (i.e., Source 2 Address) is “A,” and the AECS size (i.e., Source 2 Transfer
Size) is “S,” then in one case the AECS is read from (A) and written to (A+S), and in the other case it is read
from (A+S) and written to (A). Note that the total amount of memory accessed would be in general (2S).

Note that in some cases the AECS may be read but not written or written but not read. In either of these
cases, the address used for the read or the write is the same as if there was both a read and a write
happening. For example, if the AECS was being read but not written, and the AECS R/W Toggle Selector was
1, then the AECS would be read from (A+S) and nothing would be written to (A).

Depending on the operation, some portions of the nominal AECS may not be relevant and do not need to
be read/written. Normally, the AECS is read from the beginning so that the Source 2 Size determines how
much of the data at the end of the AECS is omitted.

Additionally, if decompression is enabled and Source 2 is being read as AECS (not written), the Load Partial
flag bit in the Decompression Flags can be set (see Section 6.3.2.1). This causes the AECS data that is read
to be interpreted as if they were preceded by 448 bytes of 0x00. In other words, the fields in the AECS that
fall within the first 448 bytes take their default value of 0, and the fields starting at an offset of 448 are
initialized with the data read from Source 2. This can be used for certain decompress operations where the
earlier portion of the AECS contains no useful data, and where one is trying to minimize the amount of data
read from Source 2 so as to minimize the decompress latency. An example would be when decompressing
small pages with “canned” Deflate headers. The headers would be pre-parsed, so that the actual
compression operation would only want to load the Huffman Tables.

In general, the Source 2 data (for AECS) would contain the AECS data starting at either 0 or 448 and
continuing to next multiple of 32 after the last bit of required data. This means that the size of Source 2 will
depend on the operation. Some typical sizes (assuming the data starts at an offset of 0) are given in Table
3-1.

Operation AECS Size
Filter 32
Encrypt/Decrypt 192
Decompress for Indexing 1088
Decompress 5376
Compress (With Huffman Table) 1568

Table 3-1: AECS Sizes for Various Operations

The amount of AECS data written back to the Source 2 buffer (if writing is enabled) is generally the smaller
of the nominal size and the specified size. In other words, it will never write more than the nominal size and
it will never write more than the specified size. The nominal sizes are given in Table 3-2.

Condition Nominal Size
Decompress 5376
Compress with Write AECS Huffman Tables Flag set 1568
Compress without Write AECS Huffman Tables Flag set 64

Table 3-2: Nominal AECS Write Sizes

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 16

3.2.1 AECS Format
There are two different formats for the decompress/analytics AECS. This reflects a change in the
microarchitecture of the decompression engine after the first generation. There are some format fields in
the AECS that indicate which format the data is in. If an AECS in the wrong format is read by the accelerator,
the processing terminates with an error.

The appropriate AECS Format is indicated by IAACAP bit 0 (see section 7.2.2).

This only applies to the AECS for decompress/analytics/crypto. It does not apply to the AECS for
compression.

At byte offset 0x1DD there is a 3-bit AECS Format Number. The low order bit in the “Output Bits Valid” field
is the AECS Format Valid bit. If the Format Valid bit is 0, then the Format Number is reserved.

In Format-1, both of these values must be 0, and in Format-2, both of these values must be 1. See section
6.4.1.

If an accelerator expecting a Format-1 AECS reads a Format-2 AECS, it will see an invalid value for the
Output Bits Valid field and return an AECS error.

If an accelerator expecting a Format-2 AECS reads a Format-1 AECS, it will see the incorrect Format Number
and return an AECS Format error.

The intent is to provide a mechanism whereby the software library (or application, if not using the library)
could check for these errors and, if necessary, convert the AECS to the proper format and resubmit the
descriptor. Alternatively, the software could check these bits before submitting the descriptor.

3.3 Decompression
Intel IAA supports decompression compatible with the Deflate compression standard described in RFC
1951. The decompression block reads a compressed stream and an optional AECS and generates the corre-
sponding uncompressed data. The uncompressed data may be written directly to memory or passed to the
input of the filter function.

Decompression can be performed on a single buffer, where the entire stream is contained in a single buffer,
or on multiple buffers, where the stream spans more than one buffer. In the latter case, a separate descriptor
is submitted for each buffer. This is called a job. That is, a job is a series of descriptors that operate on one
logical stream. The descriptors in a job are tied together by the use of a common AECS. The AECS written
by each descriptor in the job is read by the next descriptor. The AECS structure contains data used to
connect the individual descriptors used to process one logical job. It is typically read on all but the initial
descriptor of a job, and it is written on all but the final descriptor.

For operations that write the output of decompression to memory, the output buffer size specified in the
descriptor should be large enough to hold the output of the operation. If the output does not fit into the
specified output buffer, the decompression operation terminates and reports the amount of the input that
was consumed. An additional descriptor must be submitted to process the remaining input data into a new
output buffer.

Decompression is supported for Deflate streams where the size of the history buffer is no more than 4 KB.
(The default size for Deflate is 32 KB.) Using an input stream with a larger history size results in an error.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 17

3.3.1 Verification
The decompression operation can be used by software to verify that the output generated by compression
is correct, i.e., that it can be decompressed back to the original input. This could be done as a normal
decompression job, with the output going into a buffer that is then compared against the original input.

A more efficient approach is to suppress the output of the decompressor. In this case, the hardware would
write no output data, but it would still calculate the CRC of the decompressed data. This can then be
compared against the CRC computed from the input to the compressor.

This avoids the need to have a temporary buffer in which to write the decompressed data, the overhead of
the compare operation, and the bandwidth required to write and read that data.

3.3.2 Index Generation
The generation of indices for the compressed data (cf. Section 3.4.3) is done by the decompressor while it
is operating for verification. In this case, the normal decompressed output has to be suppressed. Then when
indexing is enabled, the index data is written to the output buffer. Note that the compression must have
been done with indexing enabled.

The flush flag cannot be used when indexing is being used, except for a last descriptor (i.e., when write_AECS
is “never”).

Each index entry is 8-bytes (64-bits) long. The upper 32-bits is the CRC value of the data up to the end of
that miniblock. The lower 32-bits is the bit-offset in the compressed data stream.

3.4 Compression
Intel IAA supports compression compatible with the Deflate compression standard described in RFC 1951.
The compression unit can operate in three modes: Huffman-mode, Statistics-mode, or Huffman-Generation
mode.

In Huffman-mode, it will read a stream of input bytes, generate a stream of literals and matches, encode
them using Huffman tables read from the AECS, and write those Huffman codes into the output buffer.

In Statistics-mode, rather than writing the Huffman Tokens to the output buffer, it will instead compute a
histogram of how many times each Huffman code appears. At the end of processing, the histogram table is
written to the output buffer.

Huffman Generation Mode is described in Section 3.4.5.

To generate a dynamic Deflate block, the software should do one pass in Statistics-mode, use the statistics
to generate a set of Huffman Tables optimized for those statistics, and then do a second pass (with the
same input data) in Huffman-mode. Alternatively, if Huffman Generation is supported, software can use this
hardware capability.

The hardware will optionally add an EOB (End of Block) token to the output or add an EOB and a zero-
length Stored Block to the output. The block header, however, should be added to the output accumulator
in the AECS by software before submitting the descriptor.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 18

3.4.1 Statistics Mode Output
The format of the histogram table output in Statistics Mode is as a table of 318 32-bit words:

Byte Offset Description
0 LitLen[0] count
… …
1140 LitLen[285] count
1144 Reserved
1148 Reserved
1152 Distance[0] count
… …
1268 Distance[29] count

These give the number of times each of 286 Literal/Length Tokens appeared, and the number of times the
30 Distance Tokens appeared. Note that while each count occupies a 32-bit field, the actual counts are 19-
bits wide. If 219 or more of a given token appears, the count saturates at (219-1).

3.4.2 Compression Output Overflow
For compression, “output overflow” is a non-recoverable error, and the AECS is not written.

The output buffer should be sized slightly larger than the input buffer, such that the input buffer could be
encoded as a Deflate stored-block, written to the output buffer, and fit. In that case, if the compression
operation actually results in data expansion such that the compressed data would not fit into the output
buffer, the software (library or application) should ignore any partial results that the compressor generated
and add the current input to the output stream as a stored block. This would result in a better compression
ratio than keeping the “compressed” data.

3.4.3 Compression Indexing
The IAA compression logic supports “Indexing.” When this is enabled, it also defines a “miniblock size.” The
meaning of this is that no match will cross a miniblock boundary, and no match will reference data in a
different miniblock. This will allow a decompressor to start decompression at a miniblock boundary at the
cost of a slightly reduced compression ratio.

Note that the compressed data stream generated is a valid Deflate stream. It can be decompressed in the
same manner as any other Deflate stream. In addition, any arbitrary miniblock can also be decompressed
without decompressing the rest of the stream.

In order for indexing to work properly, the application must know the block structure of the output. This
means that either the compressed output must fit within the provided output buffer (i.e., no “output
overflow”) or the input buffer must be smaller than 64kB so that it will fit into a single stored block.

If Compression Indexing is enabled, the input buffer must be a multiple of the miniblock size, except for the
last descriptor of a sequence. This is accomplished in some generations with a “Last Descriptor” bit in the
Compress AECS (see Section 3.4.7).

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 19

3.4.4 Compression with a Dictionary
 Intel IAA supports Deflate compression with a dictionary. The same dictionary must be used for both
compression and decompression. Dictionary compression is most useful when compressing small buffers.

The dictionary itself is just a block of text conceptually prepended to the input stream. The combined
dictionary and input stream is compressed, and the compressed tokens associated with the dictionary are
dropped. Another way to look at this is that, with dictionary compression, a given bit of data to be
compressed can be matched against a location before the start of the buffer.

To compress with a dictionary, the Load Dictionary compression flag must be set, and the dictionary data is
placed at the end of normal compression AECS (see section 6.4.2). I.e., the dictionary data starts in the AECS
at byte offset 1568. The dictionary data can be constructed in three different formats with three different
sizes. The trade-off is that a larger size for the dictionary data will generally result in a better compression
ratio, but it will also cause a longer latency for the compress operation. Some applications may find that the
improvement in compression ratio is not worth the increase in compress latency and so opt for a smaller
amount of dictionary data.

The dictionary data consists of two variable-length regions. The first is the portion of the dictionary text that
is actually being used. The second is a representation of the corresponding hash tables as they would have
been created by the hardware. The hash table region can be built with either 2 or 4 pointers per entry. The
selection of how big the actual dictionary and hash table entries is called the dictionary “style” and is
specified with descriptor flag bits.

The dictionary styles and the corresponding sizes are given in Table 3-3.

Dictionary Style Size of Dictionary Size of Hash Table Total Size
2K Dictionary, 2 Ptrs/Entry 2kB 4kB 6kB
4K Dictionary, 2 Ptrs/Entry 4kB 4kB 8kB
4K Dictionary, 4 Ptrs/Entry 4kB 8kB 12kB

Table 3-3: Dictionary Styles and Sizes

If the raw dictionary is larger than the size of the dictionary as specified by the style, the final bytes of the
raw dictionary should be used. If the raw dictionary is smaller, it should be prepended with zero bytes.

3.4.5 Compression Header Generation
Intel IAA has the ability to generate Huffman Tables based on the generated statistics or based on statistics
directly input, and to optionally generate a Deflate header corresponding to those tables.

Header Generation can operate in either of two modes: 1-Pass or 2-Pass.

In the 2-Pass mode, dynamic compression with Header Generation is similar to compression without Header
Generation. The same input is submitted twice. In the first pass, no compressed output is generated. Instead,
the statistics/tables of the output are produced. The second pass actually does the compression.

The difference is that without header generation, the first pass returns the statistics to the software, which
must compute the Huffman tables itself. With 2-Pass Header Generation, the first pass returns the Huffman
Tables (and optionally the Deflate header), so that the software does not need to perform the Huffman
calculations. This both reduces the latency of doing both passes and reduces the CPU load.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 20

The second pass is the same in both cases—it doesn’t matter whether the tables and header were created
by software or the hardware.

In 1-Pass mode, the compression is done with only one descriptor. In this mode, the hardware will internally
do one pass through the data, compute the Huffman Tables, then automatically do a second pass through
the data, generating the final compressed output. This is obviously better for the application, but the
limitation is that this can only be used if the amount of data to be compressed is no larger than 4kB.

There are three variations of each mode:
• Don’t generate a Deflate Header
• Generate a Deflate Header that is not marked as bFinal
• Generate a Deflate Header that is marked as bFinal

In some cases, such as if the input is being compressed in Huffman-only mode with no EOB, it may not be
possible to produce a valid Deflate header. Processing such tables should be done without Deflate header
generation. If a Deflate header is requested and cannot be created, the descriptor terminates with an error.

Normally, there are no Huffman Codes assigned to tokens with statistics counts of 0. In some cases, the
application may want to ensure that all of the tokens are present in the generated tables. This could be
used, for example, for “semi-dynamic” compression, where the first portion of a large file is compressed
dynamically, and then the same Huffman tables are used for the rest of the file. In this case, all tokens must
be represented by Huffman codes, because they might appear later in the file even if they did not in the
earlier section.

If the Make Complete Tables bit in the Compress 2 Flags is set, then some of the statistics counters that
have 0 values are changed to 1. This means that none of these counters will have a 0 count, and so all
tokens will have codes created for them. The counters so changed are the Literal/Length counters up to the
last counter that has a non-zero count, or up to counter 272, whichever is greater; and the distance counters
up to the last counter that has a non-zero count, or up to counter 23, whichever is greater.

3.4.5.1 2-Pass Header Generation
In 2-Pass Header Generation mode, nothing is written to the destination, and both the destination address
and size should be set to 0. Source 2 should be written as AECS. The results are found in the written AECS.

The generated codes are found in the Huffman Tables section of the AECS, as described in Section 6.4.2.
The Deflate header is found in the Output Accumulator section. If the Deflate header is not requested, the
Output Accumulator section is left unchanged.

Note that because of this, the AECS that is written by the first pass is in the correct format to be read in for
the second pass.

In this mode, the Write AECS Huffman Tables flag should be set in the descriptor Compress 2 Flags so that
the table portion of the AECS will be written (cf. Section 3.2).

3.4.5.2 1-Pass Header Generation
In 1-Pass mode, there is no restriction on whether Source 2 is read or written. Normally, the Write AECS
Huffman Tables flag is not used, as the application would typically not care what the generated Huffman
tables were.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 21

If the application does care what tables were used, it can set the Write AECS Huffman Tables flag and have
the tables written as part of the AECS. Note, however, that the output accumulator will contain the end of
the output bit stream, not the Deflate header.

3.4.5.3 Header Generation with Statistics Input
Normally, the statistics used to construct the Huffman Tables are the counts of the tokens generated by the
compressor. If the Header Gen Stats Input bit is set in the Compress Flags, then the normal compress
operation is suppressed, and Source 1 and Destination are not used.

Instead, Source 2 must be read and written as AECS. On input, the Huffman Table section (see Section 6.4.2)
contains the statistics count values. In each DWORD, bits 18:0 contain the counts, and bits 31:19 should be
0. On output, the AECS contains the generated Huffman Tables and optionally a Deflate header, as is
produced with 2-Pass header generation.

In this mode, the Enable Header Generation field must specify one of the 2-Pass modes.

3.4.6 Compression Early Abort
In certain cases, an application may be compressing data which might or might not be compressible to a
given level. In such a case, the application might want to abort the compression early if the compression job
looks likely to not achieve the desired level of compression.

The advantage of doing this is that if the compression does not achieve the desired level of compression,
the application can be notified sooner, and thus the compression latency can be reduced. The disadvantage
of doing this is that since the level of compression is only being estimated, and the estimate will in general
be based on only a portion of the input file, then it is possible that a file which actually does achieve the
desired level of compression might be considered “incompressible” and aborted, when (in hindsight) it
shouldn’t have been.

The estimate of the compressed size of the output is the number of literals plus twice the number of
references. In other words, it approximates the size of the output by assuming that each literal will take one
byte, that each reference will take two bytes, and disregarding the block header.

This feature is controlled by two fields in the Compression 2 Flags (Section 6.3.5.2).

The Early Abort Size field determines when the compressor will perform the check. It can check as soon as
512, 1024, 2048, or 4096 input bytes have been processed. It only checks once, when the specified
threshold is passed.

When the check occurs, the size estimate is compared against the input size (as measured at the input of
the Deflate compressor) multiplied by the Early Abort Threshold. If the estimate is greater than or equal to
the threshold, the compression job is aborted with an error.

Note that the estimated size can never be greater than the input size and can only be equal if no matches
were found.

If the input size is equal to the Early Abort Size, then the check is done at the end of the input. This probably
only makes sense to do if one is doing Header Generation. In this case, an abort would avoid the header
generation and the 2nd half of the processing if any. Otherwise, rather than setting the Early Abort Size to

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 22

the input size, the application is probably better off setting the Max Destination Size to the desired limit and
getting an output overflow if that size is exceeded.

3.4.7 Last Descriptor Bit
In general, a compression job can be continued across multiple descriptors, but there is a case where this
cannot be done.

When Compression with Indexing is being done (cf. section 3.4.3), all of the descriptors require their Source
1 size to be a multiple of the miniblock size, except for the last one. This means that if in this mode a
Source 1 size is not a multiple, then this descriptor cannot be continued with a following descriptor.

Starting with Generation 2, this is enforced with a new Compression AECS bit (cf. section 6.4.2): Last
Descriptor Bit. If a compression operation reads an AECS that has this bit set, then the operation is
terminated with an error. Conversely, when a compression descriptor cannot be continued with a following
descriptor, this bit is set when writing the AECS.

When the Last Descriptor Bit feature is not present, then continuing a compression job when it is not allowed
will not result in an error, but it will also not generate correct results. In this case, this restriction must be
enforced by software.

The presence of the Last Descriptor Bit is indicated by IAACAP bit 0 (see section 7.2.2).

3.5 Encryption/Decryption
Intel IAA can perform data encryption. It can also perform data decryption, in which case the decrypted
output can be written to the destination buffer, sent to the filter unit, or sent to the decompress unit.

A large encryption/decryption job can be divided into a series of separate descriptors, with the internal state
passed between them via the AECS.

Three encryption algorithms are supported: GCM (Galois Counter Mode), AES-CFB (AES Cipher Feedback
Mode), and AES-XTS. In each case, supported key sizes are 128 and 256 bits.

Due to space limitations in the descriptor structure, most of the flags and parameters associated with
encryption/decryption are contained in the AECS. This is described in Section 6.4.1. Decryption can only be
used with the following opcodes: Decrypt, Decompress, CRC64, Scan, or Extract.

AES-XTS cannot be used with indexing.

Decryption can be piped into other operations, so for example, one descriptor can do a decrypt-decompress
operation. But encryption cannot be piped, so to do the inverse of the above would take two descriptors:
one to do the compression and one to do the encryption.

Cryptographic processing is done one cryptographic block at a time (i.e., 16-bytes at a time). This means
that when one crypto job is spread over multiple descriptors, partial blocks are stored in the “Crypto Input
Accumulator” within the AECS, and then this data gets processed with the start of the data from the next
descriptor. The last descriptor in the job should set the “Flush Crypto Accumulator” flag in the crypto flags
in the AECS, so that the final partial block will be processed.

Note that this means the amount of output generated for an Encrypt or Decrypt operation might vary from
the input size by up to 31 bytes. For example, on the first descriptor of a multi-descriptor decrypt job, the

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 23

input could be 31 bytes long, and the output size would be 0. Conversely, on the last descriptor, the input
could be 1 byte long, and the output size be 32 bytes.

3.5.1 AES-CFB
For encryption in CFB mode, the Initialization Vector (IV) is encrypted and then XORed with the plaintext to
generate the ciphertext. Additionally, the ciphertext becomes the “IV” for the following block. The final
ciphertext is returned as the final “IV.”

This same process is done for decryption. The difference is that the ciphertext (which becomes the “IV” of
the next block) is an input rather than an output.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 24

3.5.2 GCM
GCM provides both encryption and authentication. The encryption is just AES in Counter Mode. The
authentication is provided by computing a cryptographic hash.

In this mode, the hardware only does the processing associated with the bulk data; the rest of the
calculations must be done by software. The GCM calculations for encryption are show in Figure 3-1.

IV

Counter 0 Counter 1 Counter 2Incr Incr

AECS AECS AECS

Plaintext 1

Ciphertext 1

Plaintext 2

Ciphertext 2

GMUL GMUL

GMUL

GMUL

Auth Data 1 Lengths

Auth Tag

IAX Operation

Figure 3-1: GCM Calculations

The dashed section indicates the operations done by the accelerator hardware. In particular, for each block
of input data, it will encrypt the IV/counter, XOR that with the input text, XOR the ciphertext with the hash
to get a new hash and increment the IV/counter. The initial counter increment, the encryption of Counter 0,

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 25

and the final addition/hashing of the lengths and encrypted Counter 0 must be done by software. Similarly,
the initial hashing of the Additional Authentication Data must be done in software.

3.5.3 XTS
AES-XTS is a block-oriented cipher mode. This means that normally it could only handle buffers that were
a multiple of the cipher block size. To allow it to handle arbitrary sized buffers, XTS uses “ciphertext stealing”
(CTS) at the end of the stream when the stream size is not a multiple of the cipher block size.

The practical implication of this is that XTS cannot be used on buffers that are smaller than 16 bytes. An
attempt to do so will result in an error.

Ciphertext Stealing is invoked at the end of the input stream if the Flush Crypto Accumulator flag is set, and
the total number of bytes in this job (i.e., the number of input bytes in this descriptor and in previous linked
descriptors) is not a multiple of 16 (i.e., not a multiple of the cipher block size).

3.5.4 Decryption with Indexing
When using index mode to access encrypted data randomly (cf. Section 3.3.2), extra steps must be taken.

In particular, the actual data sent to the accelerator must start at an AES block boundary (16-byte boundary).
Then the “Drop Initial Bits” feature (cf. Section 3.7) should be used to skip over the start of generated
plaintext, so that the subsequent processing will start at the appropriate location.

Finally, the IV or initial counter value must be calculated appropriately. For CFB, this will generally be the
previous block’s ciphertext, except for the first block where it is the IV. For GCM (where only the AES Counter
Mode portion is useful), the IV stored in the AECS must be the original IV added to the appropriate number
of increments, based on the index of the block starting the decryption.

3.6 Checksum Calculations
 As a check, the accelerator generates a pair of checksums of the “raw” data. In particular, there are
“compress-like” operations (i.e., Encrypt, Compress) that take original “raw” user data and create a processed
version of it. For these functions, the checksums are computed on the original input data. Then there are
“decompress-like” operations (i.e., Decrypt, Decompress) that take the processed data and try to recreate
the original raw data. For these functions, the checksums are computed on the output data. Finally, there
are the filter operations, which take “raw” data and process it further. For these functions, the checksums
are computed on the input to the filter processor (i.e., after any decryption or decompression). The basic
idea is that the checksums between complementary operations should match. The details of where the
checksums are computed is given in Table 3-4.

Operation Type Checksum Location
Encrypt, Compress Compress-like Input
Decrypt, Decompress Decomrpess-like Output
CRC64, Scan, Extract, Select, Expand Filter Input to Filter

Table 3-4: Checksum Location

The accelerator can generate either of two 32-bit CRCs: using the polynomial defined in ITU-T recom-
mendation V.42, or in RFC 3720. It also computes the XOR checksum of the data. For this, the data are

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 26

treated as 16-bit words. If there are an odd number of bytes, the final byte is zero-extended to 16 bits. Then
these 16-bit words are all XORed together.

The initial values of the CRC and XOR checksum are read from the AECS, for operations where the AECS is
read; otherwise, initial values of 0 are used. The final values of the checksums are written to the completion
record. They are also written to the AECS, for any operation where the AECS is written. The latter allows the
values to be linked across the descriptors in a job, while the former allows the software to get the values
even when the AECS is not written.

3.7 Drop Initial Bits vs. Drop Initial Bytes
There are two similar fields: Drop Initial Bits2 and Drop Initial Bytes. These are found in the AECS (cf. Section
6.4.1). The Drop Initial Bytes field applies only to the input to the filter unit. The Drop Initial Bits field usually
applies to the input to the decompress unit. However, if the opcode specifies a filter operation and the
decompressor is not enabled, then the Drop Initial Bits field applies to the input of the filter unit.

If both of these fields (“Drop Initial Bits” and “Drop Initial Bytes”) are being applied to the input to the filter
unit, then at least one must be zero. If both are non-zero, the accelerator will return an error.

The primary use for Drop Initial Bits is to enable indexing on encrypted data (cf. Section 3.5.4). Thus, it would
typically be used for the input of the decompressor or filter unit, whichever is immediately downstream
from the decryption unit.

Note that if Drop Initial Bits applies to the input of the filter unit, and the filter parser is PRLE, then Drop
Initial Bits must be 0.

For a filter operation without decompression, the source 1 size must be greater than the amount of data
being dropped, except for EXPAND, where the source 1 size must be greater or equal to the amount of data
being dropped.

If decompression is enabled without decryption, then the sum of the Drop Initial Bits + Ignore End Bits
cannot be greater than the Source 1 Size. If decompression is enabled with decryption, and Flush Crypto
Input Accumulator is set, then the sum cannot be greater than the Source 1 Size plus the size of the Crypto
Input Accumulator.

3.8 Filter Functions
The filter functions take one or two inputs, a primary input, and an optional secondary input. The primary
input may be read from memory or received from the output of decompression or decryption. The primary
input is parsed as described in 3.8.1. The output of the parser is an array of unsigned integers.

If the secondary input is used, depending on the operation type, it may be a bit vector or an array of packed
unsigned integers. It can be packed in either little-endian format (starting at bit 0 of each byte) or big-endian
format (starting at bit 7). When the secondary input is used, the operation cannot also use the AECS. Thus,
any filter operation that uses the secondary input uses default values for any configuration information that
would have been read from the AECS. This means that such operations cannot be used with decryption.

2 Drop Initial Bits is not available on all IAA implementations. The availability of this feature is indicated by
IAACAP bit 1 (see section 7.2.2).

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 27

The output of the filter function may be either an array or a bit vector depending on the function.

For filter operations, the output buffer size specified in the descriptor must be large enough to hold the
entire output of the operation. If the output does not fit into the specified output buffer, the operation fails
with an unknown amount of the input processed. In this case, the software must resubmit the descriptor
with a larger output buffer.

3.8.1 Parser
One of the following parsers may be selected to process the primary input to the filter function. The parser
reads a byte stream and outputs a series of unsigned integers.

3.8.1.1 Packed Array
This is the standard parser. The input is a packed array of unsigned integers with a specified bit width. (The
bit width need not be a multiple of the size of a byte.) The data can be packed in little-endian format (starting
at bit 0 of each byte) or big-endian format (starting at bit 7).

3.8.1.2 Parquet RLE
The input is in the Parquet RLE format. The first byte of the data stream gives the bit width. This is followed
by the encoded data. The bit-width cannot exceed 32-bits.

The format is:
parquet-rle: <bit-width> <encoded-data>
bit-width := bit-width of data stored as one byte
encoded-data := <run>*
run := <bit-packed-run> | <rle-run>
bit-packed-run := <bit-packed-header> <bit-packed-values>
bit-packed-header := varint-encode(<bit-pack-count> << 1 | 1)
// we always bit-pack a multiple of 8 values at a time, so we only store the number of values / 8
bit-pack-count := (number of values in this run) / 8
bit-packed-values := data stored as a packed array of bit-width values
rle-run := <rle-header> <repeated-value>
rle-header := varint-encode((number of times repeated) << 1)
repeated-value := value that is repeated, using a fixed-width of round-up-to-next-byte(bit-width)

3.8.2 Output Modification
Output Modification is an SQL filter feature that allows optionally generating an alternative representation
of the result of the query being performed. In general, a SQL filter function results in two forms of output:
1) a bit vector (where the output bit-width is 1) or 2) an array of elements (where the output bit-width is
greater than 1). For example, functions that perform a scan query, i.e., “is an element within a given range?,”
generate a bit vector, where each bit represents membership in that range. Functions that extract elements
from an input array result in an output that could be either a bit-vector or an array depending on the bit-
width of the input.

An optional flag bit forces the output to be considered an array, even if the bit-width is 1. This can be used
to unpack a bit vector into an array of bytes, words, or DWORDs. Use of the Force Array Output Mod flag

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 28

does not change whether one can apply the Invert Output flag. That is, if a nominal bit-vector output is
forced to use array output modification, it can still be inverted.

3.8.2.1 Modification When Output is Normally a Bit Vector
If the output of a function is normally a bit vector, the output can be modified in the following ways.

First, the bit vector can be optionally inverted (i.e., each bit is flipped).

Secondly, the output can be modified to consist of an array, where the array elements are the indices of the
“1” bits of the bit vector. This can be used when the output bit vector is expected to be sparse in nature.
The index of the first element (bit 0 of the bit vector) can be set to an arbitrary value instead of the default
start index of 0. If the index of any output element is too large for the specified output width, the operation
stops and reports an error.

3.8.2.2 Modification When Output is Normally an Array
If the output of a function is normally an array of elements, then the bit width of the output elements is
normally the same as the input bit width; i.e., the output is packed. When the output modification feature is
enabled, output bit width can be adjusted to 8, 16, or 32 (with the high order bits padded with zeroes). This
unpacks the output array into a desired word size. Using this feature makes the output array larger, but it
makes it easier for software to process the data. The specified output bit width must be no smaller than the
input bit width.

If the output bit width is 1, the output is treated as a bit vector, and the output modifications described in
section 3.8.2.1 apply, unless the Force Array Output flag is set.

3.8.3 Aggregation
In addition to generating the output data, the accelerator also computes several “aggregates” of the data.
The type of aggregation depends on the type of output. In particular, it depends on the nominal, pre-
modified output width: whether it is 1-bit wide or wider.

If the “pre-modification” output is a bit vector or an array output whose bit width is 1, then the following
data are accumulated:

• Population count (the number of 1 bits)
• First (the index of the first 1 bit)
• Last (the index of the last 1 bit)

This data can be used to determine the sparsity of the output. If the output is sparse, software can use it to
determine where to start and end processing, so that it doesn’t need to process the 0 bits at the start or
end of the vector.

If the “pre-modification” output is an array whose bit-width is greater than 1, then the following data are
accumulated:

• Sum (the sum mod 232 of the output values)
• Minimum value
• Maximum value

Note that the population count is actually a special case of “sum.”

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 29

Note that if the Force Array Output flag is set, then the array aggregates are computed. So, in most cases,
the min and max value would be 0 and 1, rather than the indices of first and last 1-bit.

3.9 Chaining of Functions
If IAACAP bit 2 is 0, the output of decryption/decompression can be chained into the input of the filter unit
for all operations other than CRC64.

If IAACAP bit 2 is 1, the output of decryption/decompression can be chained into the input of the filter unit
for all operations.

3.10 Operation Types
The operations No-op, Drain, and Translation Fetch are the same as in Intel® DSA.

3.10.1 Decompress
The Decompress operation decompresses the input and writes the decompressed data to memory. The
Source 1 Address and Source 1 Transfer Size specify the location of the compressed input data. The Desti-
nation Address and Maximum Destination Size specify the location of the decompressed output data. The
Source 2 Address and Source 2 Transfer Size optionally specify the AECS. The Read Source 2 and Write
Source 2 fields indicate the usage of the AECS (read, written, neither, or both). Decompression Flags controls
aspects of the decompression operation. The “Enable Decompression” flag must be set.

Optionally the input to the decompressor can be taken from the output of the decryption unit.

If the Status of the operation is Output buffer overflow, the decompression job can be resumed by submit-
ting a follow-on descriptor with a new buffer to contain the remaining decompressed output. The Write
Source 2 flag should be 2 for the final (or only) descriptor in a decompression job, to ensure that the state
of the decompressor can be saved in the AECS in case of output buffer overflow. The Write Source 2 flag
should be 1 for descriptors before the final descriptor in a multiple-descriptor job. The Read Source 2 flag
should be 1 for all but the first descriptor in a multiple-descriptor job.

The output may be suppressed (for verification purposes) or replaced with index output (see Section 3.3.2).
If the Enable Indexing flag is set, then the Suppress Output flag must also be set.

3.10.2 Compress
The Compress operation compresses the input and writes the compressed data to memory. The Source 1
Address and Source 1 Transfer Size specify the location of the input data. The Destination Address and
Maximum Destination Size specify the location of the compressed output data. The Source 2 Address and
Source 2 Transfer Size optionally specify the AECS. The Read Source 2 and Write Source 2 fields indicate
the usage of the AECS (read, written, neither, or both). The Compression Flags and Compression Flags 2
control aspects of the compression operation.

If the compressed output does not fit into the output buffer, the operation fails with an error.

In one usage, the output buffer is sized large enough to store the input as a “stored block.” If the compressed
output is too large to fit into this buffer, then the partial results of the compression should be thrown away
by software and replaced by a stored block.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 30

Usage of the Source 2 / AECS is:
Condition Source 2 Read Source 2 Write
Statistics Mode w/o dictionary Not allowed Not allowed
Statistics Mode with dictionary Required Not allowed
1-Pass Header Gen Mode, w/o dictionary Optional Optional
1-Pass Header Gen Mode, with dictionary Required Optional
2-Pass Header Gen Mode Optional Required
Otherwise Required Optional

3.10.3 CRC64
The CRC64 operation computes an arbitrary CRC up to 64-bits in width.

The CRC Bit Order flag indicates whether bit-0 in each data byte is the least-significant or the most-sig-
nificant bit. Having bit-0 be least-significant corresponds to the “normal form” of the data, whereas having
bit-0 be most-significant corresponds to the “bit-reversed form” of the data. This field also impacts the byte
order of the CRC output. If bit-0 is least-significant, then the least significant bit of the CRC is bit-0 of byte-
0. If bit-0 is most significant, then the least significant bit of the CRC is bit-7 of byte-7, or bit 63 of the CRC.

The CRC is essentially the residue (remainder) after polynomial division. The “initial value” of the CRC is
essentially a constant that is XORed with the initial data bytes. This constant has the same size in bits as the
polynomial. In some CRCs, this initial value is zero. In others, it is all 1’s. This is determined by the “invert
CRC” flag bit. If this flag bit is 0, then the initial value is 0. If the flag bit is set, then the initial value is the
“bitwise inverse of 0” or all 1’s. As described below, this feature can be used to compute the CRC for
polynomials smaller than 64-bits. Because of this, when the “invert CRC” flag is set, the initial value will only
have 1-bits from the least-significant 1-bit in the polynomial to the most significant bit. E.g., if the polynomial
represents a 32-bit CRC, the initial value will only have 32 1-bits.

Additionally, if the invert CRC flag is set, the final residue is XORed with the initial value before being
returned.

The CRC Polynomial field defines the CRC polynomial in normal (not bit-reversed) form, regardless of the
state of the CRC Bit Order flag. In the polynomial definition, bit-63 is always most significant.

Although this operation is designed to generate 64-bit CRCs, it can also be used to generate smaller
arbitrary CRCs. In that case, the polynomial is placed in the most-significant portion of the CRC Polynomial
field (i.e., starting at bit 63), and the results are found in the most-significant portion of the CRC64 field in
the completion record, whose location does depend on the value of the CRC Bit Order flag.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 31

Here are some well-known CRCs and the programming required to generate them:

CRC Polynomial Bit Order Invert CRC Output
CRC32 (gzip) 04C11DB700000000 1 1 00000000XXXXXXXX
CRC32 (wimax) 04C11DB700000000 0 1 XXXXXXXX00000000
CRC32 (iSCSI) 1EDC6F4100000000 1 1 00000000XXXXXXXX
T10DIF 8BB7000000000000 0 0 XXXX000000000000
CRC-16-CCITT 1021000000000000 1 1 000000000000XXXX

Table 3-5: Examples of CRC64 Parameters

3.10.4 Scan
The Scan operation determines whether each element in the input data stream is in the inclusive range
defined by the configuration variables Low Filter Param and High Filter Param (i.e., if (Low Filter Param ≤
element value ≤ High Filter Param)). The output is a bit vector where each 1 indicates that the corresponding
input element is in the range.

The output may be modified by inverting each bit and/or by converting to an array of indices.

By selecting suitable values for the parameters and the Invert Output Bits flag, any of the following filter
functions may be realized: =, ≠, <, ≤, ≥, >, within a range, and outside a range.

3.10.5 Extract
The Extract operation returns the elements in the input data stream whose indices fall within the range
defined by the configuration variables Low Filter Param and High Filter Param. The indices of the input
values are assigned sequentially starting with 0. The output is an array of the input values whose indices fall
within the range.

By default, the output bit width is the same as the input bit width. The output may be modified as described
in Section 3.8.2.

If Low Filter Param is 0 and High Filter Param is at least the number of elements in the input, then all
elements are extracted. With output modification, this can be used to unpack a packed array to a desired
word size (byte, word, or DWORD).

3.10.6 Select
The Select operation returns the elements in the primary input whose indices correspond to 1-bits in the
secondary input. The indices of the input values are assigned sequentially starting with 0. The output is an
array of the input values selected by the bit vector.

The secondary input is a bit vector with at least as many bits as the number of elements in the input.

By default, the output bit width is the same as the input bit width. The output may be modified as described
in Section 3.8.2.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 32

3.10.7 Expand
The Expand operation generates an array in which the elements in the primary input are placed according
to 1 bits in the secondary input. The secondary input is a bit vector. The number of elements in the output
is the same as the length of the secondary input. For each bit in the secondary input that is 1, the corre-
sponding value in the output is the next sequential value taken from the primary input. For each bit in the
secondary input that is 0, the corresponding value in the output is 0.

For this operation, the descriptor field named Number of Input Elements contains the number of bits in the
secondary input, rather than the primary input. The number of elements in the primary input is the same as
the number of 1 bits in the secondary input.

By default, the output bit width is the same as the input bit width. The output may be modified as described
in Section 3.8.2.
§

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 33

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 34

4 Error Handling

4.1 Descriptor Checks
For the set of features and operations common to both Intel® IAA and Intel® DSA, the device performs the
checks on each descriptor as described in the Intel® DSA Architecture specification. Some additional
checks/clarification on checks are that an error will be generated when any of the following are violated:

• No unsupported flags in any of the flag fields are set. This includes flags that are reserved for use
with certain operations or that are disabled in the configuration. Flags fields include Operation
Flags, Decompression Flags, Compression Flags, and Filter Flags. See Table 4-1 through Table 4-3
for details.

• Required flags in the Flags field are set. For example, the Request Completion Record flag must be
1 in a descriptor for any operation other than No-op, Drain, and Translation Fetch.

• The Source 1 Transfer Size, Source 2 Transfer Size, and Maximum Destination Size (if applicable for
the descriptor type) are not greater than the value specified by the WQ Maximum Transfer Size field
in the WQ Config register and are non-zero if required by the operation.

• The destination buffer does not overlap the source 1 buffer.
• If Read Source 2 or Write Source 2 is non-zero, the Source 2 buffer does not overlap the source 1

buffer or the destination buffer.

These checks may be performed in any order. Thus, an indication of one type of error in the completion
record does not imply that there are not also other errors. The same invalid descriptor may report different
error codes at different times or with different versions of the device.

4.2 Descriptor Reserved Field Checking
Reserved fields in descriptors fall into three categories: fields that are always reserved; fields that are
reserved under some conditions (e.g., based on a capability, configuration field, how the descriptor was
submitted, or values of other fields in the descriptor itself); and fields that are reserved based on the
operation type. For additional details on descriptor formats and a more detailed view of flag restrictions,
see chapter 6.

Table 4-1 shows what Operation Flags are allowed for each Intel IAA-specific operation. Table 4-2 shows
the decompress and filter flags that are allowed for the analytic and crypto operations. Note that the filter
flags are not present in descriptors for encrypt and decrypt, so those cells are X-ed out. The compression
flags and the CRC flags are only defined for a single opcode, so these are not listed here. Table 4-3
summarizes the descriptor fields that are allowed for each Intel IAA-specific operation type. For common
operations, refer to the Intel DSA specification.

Operation Flag bits 23, 7:6, and 0 are reserved for all operation types. For the cases of Compression Flags,
Encryption Flags, and CRC64 Flags, all of the non-reserved fields are allowed for all operations for which
those flags are defined, so they are not listed in tabular form here.

Table 4-4 gives additional constraints on the input size.

Additional operation-specific reserved fields and flags are described with the respective descriptor details
in Section 6.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 35

 De
cr

yp
t

En
cr

yp
t

De
co

m
pr

es
s

Co
m

pr
es

s
CR

C6
4

Sc
an

Ex

tr
ac

t
Se

le
ct

Ex

pa
nd

O
p

Fl
ag

s
Block on Fault • • • • • • • • •

Comp Rec Addr Valid • • • • • • • • •

Req Comp Record • • • • • • • • •

Req Comp Interrupt • • • • • • • • •

Completion Record TC Selector • • • • • • • • •

Source 1 TC Selector • • • • • • • • •

Dest TC Selector • • • • • • • •

Cache Control • • • • • • • • •
Strict Ordering • • • • • • • •
Dest Readback • • • • • • • •
Read Source 2 • • • • • • • • •

Write Source 2 • • • •
Source 2 TC Selector • • • • • • • • •
CRC Select • • • • • • • • •

AECS R/W Toggle Selector • • • • • • •

Table 4-1: Operations Flags Applicability

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 36

 De
cr

yp
t

En
cr

yp
t

Sc
an

Ex
tr

ac
t

Se
le

ct

Ex
pa

nd

De
co

m
pr

es
s

0: Enable Decompress • • • •
1: Flush Output • • • • • •
2: Stop on EOB • • • •
3: Check for EOB • • • •
4: Select bFinal EOB • • • •
5: Decompress Bit Order • • • •
8-6: Ignore End Bits • • • •
9: Suppress Output • • • • • •
13: Load Partial • •
14: Ignore End Bits Extension • • • •

Fi
lte

r

1-0: Source 1 Parser • • • •
6-2: Source 1 Width • • • •
11-7: Source 2 Width
12: Source 2 Bit Order • •
14-13: Output Width • • • •
15: Output Bit Order • • • •
16: Invert Output • • • •
27: Force Array Output Mod • • • •

Table 4-2: Analytics Flags Applicability

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 37

 De
cr

yp
t

En
cr

yp
t

De
co

m
pr

es
s

Co
m

pr
es

s
CR

C6
4

Sc
an

Ex

tr
ac

t
Se

le
ct

Ex

pa
nd

By
te

s
4-6 Operations Flags • • • • • • • • •
7 Operation • • • • • • • • •

8-15 Comp Rec Address • • • • • • • • •

16-23
Readback Address 1
Source 1 Address • • • • • • • • •

24-31
Readback Address 2
Destination Address • • • • • • • •

32-35 Source 1 Size • • • • • • • • •
36-37 Comp Interrupt Handle • • • • • • • • •

38-39

Decompress Flags • • • • •
Encryption Flags • •
Compression Flags •
CRC Flags •

40-47 Source 2 Address • • • • • • • • •
48-51 Destination Size • • • • • • • •
52-55 Source 2 Size • • • • • • • • •

56-59
Filter Flags • • • •
Compression 2 Flags •
CRC64 Polynomial •

60-63
Num Elements • • • •
CRC64 Polynomial •

Table 4-3: Operation-Specific Allowed Fields

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 38

Field / Data Item Restriction

Source 1 Size

For a filter operation without decompression, the Source 1 Size
must be greater than the amount of data being dropped. The
exception is for EXPAND, where the Source 1 Size must be greater
or equal to the amount of data being dropped.

Table 4-4: Data Size Checks

4.3 AECS Checks
Table 4-5 and Table 4-6 gives constraints on AECS parameters. See Section 6 for additional restrictions
and details.

 Field / Data Item Restriction
Format 1 Output Bits Valid Bit 0 of Output Bits Valid must be 0. See section 3.2.1.

Format 2
Output Bits Valid Bit 0 of Output Bits Valid must be 1. See section 3.2.1.
AECS Format AECS format must be 1. See section 3.2.1.

 Output Bits Valid Output Bits Valid (ignoring bit 0) must be a multiple of 8.

 Drop Initial Bits / Drop Initial
Bytes

For a filter operation without decompression, at least one
of Drop Initial Bits and Drop Initial Bytes must be 0.

 Drop Initial Bits / Drop Initial
Bytes

If the opcode is Encrypt or Decrypt, both Drop Initial Bits
and Drop Initial Bytes must be 0.

 Input Accumulator Size None of the Input Accumulator QW Sizes can be greater
than 64.

 Input Accumulator Size
If any of the Input Accumulator QW Sizes is 0, all higher
order sizes must be 0; i.e., the non-zero sizes must be in a
contiguous group starting at index 0.

 Input Accumulator Size
For the Input Accumulator: If (size[31] ≠ 0) then sum
(size[0] + … +size[31]) must be ≥ 193). If (size[30] ≠ 0)
then sum (size[0] + … +size[30]) must be ≥ 129).

 Source 2 Size

If the History Buffer Write Pointer is non-zero, that
portion of the history buffer must be completely read; the
number of bytes specified by Source 2 Size cannot end in
the middle of the specified portion of the History Buffer.

 History Buffer Write Pointer /
Output Bits Valid

If Indexing is enabled, then (History Buffer Write
Pointer{2:0}) must be the same as (Output Bits Valid{5:3})

 Drop Initial Bits If Decompress is not enabled and the parser is PRLE,
Drop Initial Bits must be 0.

 Drop Initial Bits If the opcode is CRC64 and decompress is not enabled,
Drop Initial Bits must be 0.

 Drop Initial Bits / Ignore End
Bits

If Decompression is enabled and Decryption is not, the
sum of Drop Initial Bits and Ignore End Bits cannot be
greater than the Source 1 Size.

 Drop Initial Bits / Ignore End
Bits

If Decompression and Decryption are both enabled and
Flush Crytpo Input Accumulator is set, the sum of Drop
Initial Bits and Ignore End Bits cannot be greater than the
Source 1 Size plus the Crypto Input Accumulator Size.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 39

 Ignore End Bits If Decrypt is enabled and Flush Crypto Input Accumulator
is not set, Drop End Bits must be 0.

 Stored Block Bytes Remaining
If the Decompress State is 2 or 6 (Looking at a Stored
Block), the Stored Block Bytes Remaining must be non-
zero.

 Cipher Flags If the opcode is Encrypt or Decrypt, Enable Crypto must
be set.

 Cipher Flags Enable Crypto can only be used for opcodes: Encrypt,
Decrypt, Decompress, CRC64, Scan, and Extract..

 Cipher Flags
Any operation other than Encrypt, Decrypt, and
Decompress that has Enable Crypto set must also set
Flush Crypto Accumulator.

 Cipher Accumulator Size
Any operation other than Encrypt, Decrypt, and
Decompress that has Enable Crypto set must set Cipher
Accumulator Size to 0.

 Cipher Accumulator Size The Cipher Accumulator Size must be no greater than 40.
 Cipher Algorithm The Cipher Algorithm must be 0, 1, or 2.

 History Buffer Write Pointer If the low 15 bits of the History Buffer Write Pointer ≥
4096, then bit 15 must be set.

Table 4-5: Non-Compress AECS Checks

Field / Data Item Restriction
Output Accumulator Size The Output Accumulator Size must be ≤ 64 × 32.

Output Accumulator Size If Enable Header Generation is not 0, then the Output
Accumulator Size must be < 64 × 32.

Table 4-6: Compress AECS Checks

4.4 Error Codes

4.4.1 Operation Status Codes
The operation status code for a descriptor is written to the Status field of the completion record for the
descriptor if the Completion Record Address Valid flag in the descriptor is 1. If the operation status is 0x1a,
0x1b, or 0x1d, or if the Completion Record Address Valid Flag is 0 and the operation status is not equal to
0x01, then the operation status code is instead written to the SWERROR register or to the Event Log if
enabled.

The operation status codes are the same as for Intel DSA, with the exception of those listed in Table 4-7.

Status Code Description
0x02 Unused.

0x05–0x09 Unused.
0x0a Analytics error. A more specific code is in the Error Code field.
0x0b Output buffer overflow. AECS is written if the Write Source 2 flag is non-zero.

0x11 Invalid Operation Flags. A field in Operation Flags contains an unsupported or reserved
value.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 40

0x12 Non-zero reserved field (other than a flag).

0x13 Invalid value for Source 1 Transfer Size, Source 2 Transfer Size, or Maximum Destination
Size.

0x14-0x15 Unused.
0x17-0x18 Unused.

0x1b Completion Record Address is not 64-byte aligned.

0x1c

Misaligned Address, size, or stride field:
- The AECS address was not a multiple of 32 bytes.
- The AECS size was not a multiple of 32 bytes.
- In a Translation Fetch operation: Region Stride is less than 4096 or is not a power

of 2

0x23 Timeout waiting for response to a Page Request. The error is also recorded in
SWERROR.

0x24 Watchdog timer expired without the device making progress.

0x30
Invalid flag in bytes 38:39 of the descriptor. Depending on the opcode, this could be
Decompression, Compression, Encryption, or CRC Flags. A field in the flags contains an
unsupported or reserved value.

0x31
Invalid flag in bytes 56:59 of the descriptor. Depending on the opcode, this could be
Filter or Compression 2 Flags. A field in the flags contains an unsupported or reserved
value.

0x32 Invalid Input Size. The input size when the Decompress Bit Order flag is set was not a
multiple of 2.

0x33 Invalid Number of Elements: Number of Elements is 0 for a filter operation.

0x35 Invalid Invert Output: The Invert Output flag was used when the output was not a bit-
vector.

Table 4-7: Operation status codes

4.4.2 Error Code
When the Operation Status Code has the value 0x0a, the Error Code (byte 1 of the Completion Record)
contains an error code that provides more detail on the type of error. The error codes are listed in Table
4-8:

Error Code Detected Error Description

0x01 Header too large to
save/restore

Reached the end of the input stream before decoding
header and header is too large to fit in input buffer.

0x02 Undefined CL code Bad Code Length code, CL CAM is not hit, or code
length of 0.

0x03 First code in LL tree is 16
0x04 First code in D tree is 16
0x05 No valid LL code All of the LL codes are specified with 0 length.

0x06 Wrong number of LL codes
After parsing LL code lengths, total codes != expected
value. Last CL code gave a repeat count that pushed the
total above the expected value.

0x07 Wrong number of DIST codes
After parsing DIST code lengths, total codes !=
expected value. Last CL code gave a repeat count that
pushed the total above the expected value.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 41

Error Code Detected Error Description

0x08 Bad CL code lengths First code of length N is greater than 2N-1 or last code
is greater than 27.

0x09 Bad LL code lengths First code of length N is greater than 2N-1 or last code
is greater than 215.

0x0A Bad DIST code lengths First code of length N is greater than 2N-1 or last code
is greater than 215.

0x0B Bad LL Codes Bad Literal/Length Code: Neither ALUs nor EB CAM
have hit, or 0 code length.

0x0C Bad D Code Bad Distance Code: D CAM not hit, or 0 code length.
0x0D Invalid Block Type Block Type 0x3 detected.
0x0E Invalid Stored Length Length of stored block doesn’t match inverse length.
0x0F Bad End of File End of file flag was set but last token was not EOB.
0x10 Bad Length Decode Decoded Length is 0 or greater than 258.

0x11 Bad Distance Decode Decoded Distance is 0 or greater than History Buffer
Size.

0x12 Distance before Start of File Distance of reference is before start of file.

0x13 Timeout Engine has input data and room in the output buffer
but is not making forward progress.

0x14 PRLE Format Error PRLE record contains an error or is truncated.

0x15 Filter Function Word Overflow
Filter Function processing resulted in an output
element that was too wide to fit into the specified
output bit-width.

0x16 AECS Error AECS contains an invalid value.
0x17 Source 1 Too Small Source 1 contained fewer than expected elements.
0x18 Source 2 Too Small Source 2 contained fewer than expected elements.

0x19 Unrecoverable Output Overflow Output buffer was too small for generated output and
the operation was not Decompress.

0x1A Distance Spans Miniblocks During index generation as part of decompress, a
match referenced data in a different miniblock.

0x1B Length Spans Miniblocks During index generation as part of decompress, a
match had a length extending into the next miniblock.

0x1C Invalid Block Size
During index generation as part of decompress, a block
header occurred that was not on a multiple of the
miniblock size.

0x1D Verify Failure Internal verification hardware detected a possible error
in the output.

0x1E Invalid Huffman Code A compression job tried to use a Huffman code with
zero size.

0x1F PRLE bit-width Invalid
The bit-width specified in the first byte of a PRLE
stream was greater than 32, was equal to 0, or was
missing.

0x20 Too Few Elements Processed The input stream ended before specified Number of
Input Element was seen.

0x23 Too Many LL Codes The number of LL codes specified in the Deflate header
exceeded 286.

0x24 Too Many D Codes The number of D codes specified in the Deflate header
exceeds 30.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 42

Error Code Detected Error Description

0x25

Administrative Timeout This operation was terminated because it exceeded a
temporary timeout limit imposed by an administrative
command. Resubmitting the descriptor is
recommended.

0x26 Invalid Crypto Flag
Crypto was enabled for an opcode that doesn’t support
cryptography, or some cryptographic flag/parameter
was used inappropriately or had an invalid value.

0x27 Invalid Crypto Size A crypto operation was attempted with the XTS
algorithm, with a total input size less than 16 bytes.

0x28 Data Size Too Large A compress descriptor with 1-pass Header Generation
enabled attempted to compress more than 4kB.

0x29 Compression Early Abort The Compression Early Abort feature was triggered.
See Section 3.4.6.

0x2A Can’t Make Deflate Header A Deflate header couldn’t be generated because there
were not at least 257 Literal/Length tokens defined.

0x2B Invalid Compression Linking

A compression descriptor with indexing enabled was
attempted after the previous linked descriptor
compressed an amount of data that was not a
multiple of the miniblock size.

0x2C Deflate Header Too Large The generated Deflate header could not fit into the
output accumulator.

0x2D AECS Format Error The AECS format fields contained incorrect values. See
section 3.2.1

0x2E Inconsistent State
An inconsistency in the internal state of the
decompress engine was noticed. This typically is
indicative of a corrupted AECS image being loaded.

Table 4-8: Error Codes

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 43

5 Software Architecture

5.1 Intel® Query Processing Library
The Intel® Query Processing Library (QPL) provides user-mode access to the device in a manner that is more
user-friendly and less dependent on the hardware interface. The library provides functions for each
operation type and provides both blocking and non-blocking modes of operation.

The library interfaces with the kernel-mode driver to request access to the hardware on behalf of the
application. It normally services application requests using ENQCMD to a limited portal. If the ENQCMD fails
due to congestion, the library may use a kernel-mode driver service to proxy the request to ensure forward
progress. Additionally, the library can service application requests using MOVDIR64B to a dedicated work
queue portal.

The library has two main purposes. One is to map from a user-friendly API to the device-centric data
structures (e.g., Descriptors, Completion Records, etc.). The other is to provide necessary functionality that
is not provided by the hardware. This includes such things as computing Huffman Tables and Deflate
headers, and creating stored blocks when compressed data actually expands. It also orchestrates the flow
to the hardware when multiple hardware invocations are needed for a single task. For example, dynamic
compression with verify requires that the hardware be invoked three times: once to generate the statistics,
once to do the compression, and once to perform the verification.

It also provides optimized software-only implementations, for cases where the accelerator hardware is not
present.

§

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 44

6 Structure Formats

6.1 Descriptor
An Intel® IAA descriptor is a 64-byte structure that is submitted to a WQ portal to initiate an operation. The
format of a generic Intel IAA descriptor is shown in Figure 6-1.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved Flags2

Flags1

Flags3

Figure 6-1: Generic Intel® IAA Decscriptor Format

The details of the descriptors for various operations vary. In particular, some of the fields may be reserved,
and the details of the “Flags” fields will be operation specific. This section describes the common fields, and
then the following sections will describe the variations specific to different opcodes.

6.1.1 Trusted Fields
Offset: 0; Size: 4 bytes (32 bits)
When a descriptor is submitted to an SWQ, these fields carry the Privilege and PASID of the software entity
that submitted the descriptor. When a descriptor is submitted to a DWQ, these fields in the descriptor are
ignored; the device uses the WQ Priv and WQ PASID fields of the WQCFG register.

On Intel CPUs, when software submits a descriptor to an SWQ using ENQCMD, these fields in the source
descriptor are reserved. The value of IA32_PASID MSR is placed in the PASID field and the Priv field is set
to 0 before the descriptor is sent to the device. When software uses ENQCMDS, these fields in the source
descriptor must be initialized appropriately by software. If the Privileged Mode Enable field of the PCI
Express PASID capability is 0, the Priv field must be 0.

Bits Description

31

Priv (User/Supervisor)
0: The descriptor is a user-mode descriptor submitted directly by a user-mode client or

submitted by the kernel on behalf of a user-mode client.
1: The descriptor is a kernel-mode descriptor submitted by kernel-mode software.

30:20 Reserved

19:0 PASID
This field contains the Process Address Space ID of the requesting process.

Table 6-1: Descriptor Trusted Fields

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 45

6.1.2 Operation
Offset: 7; Size: 1 byte (8 bits)
This field specifies the operation to be executed.

0x00 No-op
0x01 Unused
0x02 Drain

0x03 – 0x09 Reserved
0x0A Translation Fetch

0x0B-0x3F Reserved
0x40 Decrypt
0x41 Encrypt
0x42 Decompress
0x43 Compress
0x44 CRC64

0x45-0x4F Reserved
0x50 Scan
0x51 Reserved
0x52 Extract
0x53 Select
0x54 Reserved
0x55 Reserved
0x56 Expand

Table 6-2: Operation types

6.1.3 Operation Flags
Offset: 4; Size: 3 bytes (24 bits)

See the Intel® DSA architecture documentation for meanings and restrictions for these flags for No-op,
Drain, and Translation Fetch.

Operation Flags
Bits Description
23 Reserved: Must be 0.

22

AECS R/W Toggle Selector
Let A be the Source 2 Address and S be the Source 2 Transfer Size. Then if Source 2 is being read
as AECS or being written:
0: Reads are done from (A), and writes are done to (A+S).
1: Reads are done from (A+S) and writes are done to (A).
If Read Source 2 ≠ 1 and Write Source 2 = 0, then this field is reserved.

21

CRC Select
0: Use the CRC polynomial 0x104c11db7, following ITU-T Recommendation V.42.
1: Use the CRC polynomial 0x11edc6f41, following RFC 3720.
This field is reserved for the CRC64 opcode when IAACAP bit 0 is 0.

20 Reserved: Must be 0.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 46

Operation Flags
Bits Description

19:18

Write Source 2
0: Source 2 is not written.
1: AECS written at completion of operation.
2: AECS written only if output overflow occurs.
3: Reserved.
A value of 2 is only allowed for Decompress.
This field is reserved if Read Source 2 has a value of 2.
This field is reserved for operation types other than Decompress, Compress, Encrypt, and Decrypt.
This field is reserved if the operation is Compress and in the Compression Flags: Stats Mode is 1.
A value of 1 is required if the Compression Flag Enable Header Gen has a value of 5, 6, or 7.

17:16

Read Source 2
0: Source 2 is not read.
1: Source 2 is read as AECS.
2: Source 2 is read as secondary input to filter function.
3: Reserved.
The value 2 is required for Select and Expand. The value 2 is reserved for all other operation types.
A value of 1 is required when encryption/decryption is enabled. (See Section 6.4.1)
This field is reserved for No-op, Drain, and Translation Fetch. If IAACAP Bit-0 is 0, then this field is
reserved for CRC64.
If the operation is Compress:

This field is reserved if in the Compression Flags: Stats Mode is 1 and Load Dictionary is 0
This field must be 1 if in the Compression Flags any of the following conditions are true:

• Load Dictionary is not 0
• Stats Mode and Enable Header Generation are both 0
• Header Gen Stats Input is set in the Compression Flags

15 Reserved: Must be 0.

14

Destination Readback
0: No readback is performed.
1: After all writes to the destination have been issued by the device, a read of the final

destination address is performed before the operation is completed. The readback is
performed only if the descriptor is completed successfully.

This field is reserved if the Destination Readback Support field in GENCAP is 0.
This field is reserved for No-op, Drain, Translation Fetch, and CRC64.

13

Strict Ordering
0: Default behavior: writes to the destination can become globally observable out of order. The

completion record write has strict ordering, so it always completes after all writes to the
destination are globally observable.

1: Forces strict ordering of all memory writes, so they become globally observable in the exact
order issued by the device.

This field is reserved for operation types that do not write to memory: No-op, Drain, Translation
Fetch, and CRC64.
Note that this flag has nothing to do with the order in which descriptors are executed. It only
affects ordering of the writes generated by this descriptor.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 47

Operation Flags
Bits Description

12

Completion Record TC Selector
This field selects the Traffic Class value used for writing the completion record. It selects one of
the two TC values in the Group Configuration Register corresponding to the WQ that the
descriptor was submitted to. See the Intel DSA architecture specification for information on the
use of Traffic Classes.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
This field is reserved when Completion Record Address Valid is 0.

11

Source 2 TC Selector
This field selects the TC value used for reads and writes to Source 2 Address. It selects one of the
two TC values in the Group Configuration Register corresponding to the WQ that the descriptor
was submitted to.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
This field is reserved when Read Source 2 and Write Source 2 are both 0 and for operation types
that do not use Source 2: No-op, Drain and Translation Fetch.

10

Destination TC Selector
This field selects the TC value used for writes to Destination Address. It selects one of the two TC
values in the Group Configuration Register corresponding to the WQ that the descriptor was
submitted to.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
For most operation types, this field selects the TC value used for writes to Destination Address.
For Drain, this field selects the TC value used for readback from Readback Address 2 and is
referred to as the Address 2 TC selector. This is reserved when Readback Address 2 Valid is 0.
This field is reserved for operation types that do not use Destination Address: No-op, Drain,
Translation Fetch, and CRC64.

9

Source 1 TC Selector
This field selects the TC value used for reads from Source 1 Address. It selects one of the two TC
values in the Group Configuration Register corresponding to the WQ that the descriptor was
submitted to.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
For most operation types, this field selects the TC value used for reads from Source Address.
For Drain, this field selects the TC value used for readback from Readback Address 1 and is
referred to as the Address 1 TC selector. This is reserved when Readback Address 1 Valid is 0.
This field is reserved for operation types that do not use Source 1: No-op and Drain.

8

Cache Control
For operations that write to memory:
0: Hint to direct data writes to memory.
1: Hint to direct data writes to CPU cache.
This hint does not affect writing to the completion record, which is always directed to cache.
If the Cache Control Support field in GENCAP is 0, this field is reserved.
This field is reserved for No-op, Drain, Translation Fetch, and CRC64.

7:5 Reserved. Must be 0.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 48

Operation Flags
Bits Description

4

Request Completion Interrupt
0: No interrupt is generated when the operation completes.
1: An interrupt is generated when the operation completes.
If both a completion record and a completion interrupt are generated, the interrupt is always
generated after the completion record is written.
See the Intel DSA architecture specification for information regarding the interrupt to be
generated.
This field is reserved if User-mode Interrupts Enable is 0 and Priv is 0 (indicating a user-mode
descriptor). If WQ PASID Enable control is 0, this field is not-reserved, independent of the setting
of the User-mode Interrupts Enable control (See the Intel DSA architecture specification for
further details).
For Drain, either Request Completion Record or Request Completion Interrupt must be set.

3

Request Completion Record
0: A completion record is written only if the operation status is not equal to 0x01.
1: A completion record is always written at the completion of the operation.
This flag must be 1 for any operation other than No-op, Drain, and Translation Fetch.
This flag must be 0 if Completion Record Address Valid is 0.
For Drain, either Request Completion Record or Request Completion Interrupt must be set.

2

Completion Record Address Valid
0: The completion record address is not valid.
1: The completion record address is valid.
This flag must be 1 for any operation other than No-op, Drain, and Translation Fetch.

1

Block On Fault
0: Page faults cause partial completion of the descriptor.
1: The device waits for page faults to be resolved and then continues the operation.
This flag does not affect the handling of page faults on Completion Record Address, Descriptor
List Address, or Drain Readback Address, all of which always block on fault. See the Intel DSA
architecture specification for further details.
This field is reserved if the Block on Fault Enable field in WQCFG is 0.
This field is reserved for certain operation types: No-op and Drain.

0 Reserved. Must be 0.

Table 6-3: Descriptor Flags

6.1.4 Completion Record Address
Offset 8; Size 8 bytes (64 bits)
This field specifies the address of the completion record. The completion record is 64 bytes and must be
aligned on a 64-byte boundary. If the Completion Record Address Valid flag is 0, this field is reserved.

If the Request Completion Record flag is 1, a completion record is written to this address at the completion
of the operation. If Request Completion Record flag is 0, a completion record is written only if there is an
error.

The Completion Record Address Valid and Request Completion Record flags must both be 1 and the
Completion Record Address must be valid for any operation other than No-op, Drain, and Translation Fetch.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 49

6.1.5 Source 1 Address
Offset: 16; Size: 8 bytes (64 bits)
This field specifies the address of the primary source data. This field is reserved for No-op. The value of this
field is ignored if Source 1 Transfer Size is zero. If the Source Address and Transfer Size are not both aligned
to a multiple of 64 bytes, an implementation may read more source data than required by the descriptor.
For example, source data may be read in aligned 32-byte chunks. The excess data is discarded.

6.1.6 Destination Address
Offset: 24; Size: 8 bytes (64 bits)
This field specifies the address of the destination buffer.

The destination buffer must not overlap the Source 1 buffer. It must not overlap the Source 2 buffer if either
the Read Source 2 or Write Source 2 flag is non-zero. For the purpose of this check, the destination buffer
size is Maximum Destination Size.

This field is reserved for No-op, Translation Fetch, and CRC64.

This field is ignored if Maximum Destination Size is zero.

6.1.7 Source 1 Transfer Size
Offset: 32; Size: 4 bytes (32 bits)
This field indicates the number of bytes to be read from the Source1 address to perform the operation. This
field is reserved for No-op and Drain.

The maximum allowed transfer size is dependent on the WQ the descriptor was submitted to. It is specified
by the WQ Maximum Transfer Size field for the WQ in the WQ Configuration Table (which is, in turn, limited
by the Maximum Supported Transfer Size field in the General Capabilities Register).

For the operation Compress, if Enable Indexing is not 0, the size must be a multiple of specified miniblock
size, unless it is the last descriptor in the sequence. See section 3.4.7 for further information.

If the operation is other than No-op or Drain, then at least one of Source 1 Transfer Size, Source 2 Transfer
Size, and Maximum Destination Size (or in some generations Source 1 Transfer Size, and Maximum
Destination Size) must be non-zero. Which set of values is considered in indicated by IAACAP bit 0 (see
section 7.2.2).

Most of the functions require some Source 1 data. In this context, no Source 1 data means that either the
Source 1 Transfer Size is zero, or that it is equal to the dropped bits or dropped bytes as appropriate. The
only functions (that process data) that accept no Source 1 data are: Decrypt, Encrypt, Decompress,
Compress, and Expand. The other data processing operations (e.g., CRC64, etc.) require a non-zero amount
of Source 1 data.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 50

6.1.8 Completion Interrupt Handle
Offset: 36; Size: 2 bytes (16 bits)
This field specifies the interrupt table entry to be used to generate a completion interrupt. See the Intel DSA
architecture specification for details.

This field is reserved if the Request Completion Interrupt flag is 0.

6.1.9 Source 2 Address
Offset: 40; Size: 8 bytes (64 bits)
This field specifies the address of either the AECS or the secondary input to the filter function, depending
on the values of the Read Source 2 and Write Source 2 flags. If this field specifies the address of the AECS,
it may be read or written or both (despite the field name). If this field specifies the address of the AECS, then
its value (the address) must be 32-byte aligned.

If the Write Source 2 flag is non-zero, the Source 2 buffer must not overlap the source 1 buffer.

This field is reserved if the operation type is No-op, Drain, or Translation Fetch or if Read Source 2 and Write
Source 2 are both 0.

This value is ignored if Source 2 Transfer Size is zero.

6.1.10 Maximum Destination Size
Offset: 48; Size: 4 bytes (32 bits)
This field indicates the maximum size of the output buffer. The maximum allowed size is specified by the
WQ Maximum Transfer Size field for the WQ in the WQ Configuration Table.

This field is reserved if the operation type is No-op, Drain, or CRC64.

If the operation is other than No-op or Drain, then one of Source 1 Transfer Size, Source 2 Transfer Size,
and Maximum Destination Size must be non-zero.

For Translation Fetch, this field contains the Region Stride.

6.1.11 Source 2 Transfer Size
Offset: 52; Size: 4 bytes (32 bits)
This field indicates the size of the Source 2 buffer. The maximum allowed size is specified by the WQ
Maximum Transfer Size field for the WQ in the WQ Configuration Table.

If Source 2 is an AECS, then the transfer size must be a non-zero multiple of 32-bytes, and it must be no
greater than 64kB. If Source2 is Filter Input Data, then the transfer size must be non-zero.

This field is reserved if the operation type is No-op or Drain, or if Read Source 2 and Write Source 2 are both
0.

If the operation is Select or Expand, then the Source 2 Transfer Size must be non-zero.

If the operation is Compress, and Source 2 is being read, then the Source 2 transfer size must be 1,568
bytes plus the size of the dictionary data, if any. The dictionary data size is determined by bits 11:10 of the

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 51

Compression Flags (Load Dictionary). In this case, the size of the Source 2 transfer size must be equal to the
value from the following table:

Load Dictionary Src2 Transfer size
0 1,568
1 7,712
2 9,760
3 13,856

Table 6-4 : Source 2 Sizes for Different Values of Load Dictionary

If the operation is Encrypt or Decrypt, then the Source 2 transfer size must be 192. For other operations
which have decrypt enabled, the size must be at least 192.

If the AECS is written, then the amount of data written may be less than the specified size. See Section 3.2
for more details.

6.2 Completion Record
The completion record is a 64-byte structure in memory that the device writes when an operation is
complete or encounters an error. A completion record address is in each descriptor. Software should not
depend on the value of unused fields (including fields that are unused for specific operation types). The
completion record address must be 64-byte aligned.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

Bytes Completed Status

Fault Address

Error codeUnused

Invalid Flags

Output Size

Min / First 32

40

48

56

Sum / Population count Max / Last

Output Bits

CRC

UnusedXOR Checksum

Unused

Crypto Hash Low

Crypto Hash High

Fault Info

Figure 6-2: Intel® IAA Completion Record Format

For some operations, some of these fields are unused and are written as 0. For example, the Min/First,
Max/Last, and Sum/Population Count fields are only relevant for filter operations. Likewise, the Crypto Hash
fields are only relevant for operations doing encryption or decryption.

A slight variant is generated for the CRC64 operation. The completion record for that will be described in
Section 6.3.6.

6.2.1 Status
Offset: 0; Size: 1 byte (8 bits)
This field reports the completion status of the descriptor. Hardware never writes 0 to this field. Software
should initialize this field to 0 so it can detect when the completion record has been written. See section
4.4.1 for a list of the operation status codes and their meanings.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 52

Bits Description

7
R/W (Not used unless Operation Status indicates a translation fault – code 0x04 or 0x1a)
0: The faulting access was a read.
1: The faulting access was a write.

6 Unused.

5:0 Operation Status
See section 4.4.1 for the meaning of the value in this field.

Table 6-5: Completion record Status field

6.2.2 Error Code
Offset: 1; Size: 1 byte (8 bits)
When the Status field is equal to 0x0A, this field indicates the type of error. If Status has any other value,
this field is unused. Software should not depend on the value of this field for operation types where it is
unused. See section 4.4.2 for a listing of the error codes.

6.2.3 Fault Info
 Offset: 2; Size: 1 byte (8 bits)
If the operation was partially completed due to a page fault and Completion Record Fault Info Support in
GENCAP is 1, this field contains additional information about the fault encountered.

Bits Description
7:4 Unused

3:1

Operand Identifier:
0: Unknown
1: Source 1
2: Source 2 (fault detected when reading Source 2)
3: Destination
4: Source 2 (fault detected when writing Source 2)
5: Completion Record Address
6-7: Reserved

0
Fault Address Masked
0: The fault address field contains the address that caused the fault.
1: The fault address is masked or not available

Table 6-6: Completion Record Fault Info

6.2.4 Bytes Completed
Offset: 4; Size: 4 bytes (32 bits)
This field can be used in some cases to continue a partially executed operation. In particular:

• If the operation terminated due to a page fault, this field contains the number of bytes successfully
written to the output.

• If a Decompress operation terminates with an Output Buffer Overflow status, this field contains the
number of bytes that were consumed from Source 1.

• Otherwise (e.g., if the operation fully completed or terminated due to some other error), this field
contains 0.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 53

The only partially processed operations that can be successfully continued from where it left off are:
• A Decompress operation that resulted in an Output Buffer Overflow.
• A Translation Fetch operation that resulted in a page fault.

6.2.5 Fault Address
Offset: 8; Size: 8 bytes (64 bits)
If the operation terminated due to a page fault and Completion Record Fault Info Support in GENCAP is 1,
the Fault Info field specifies if the Fault Address is available. If Completion Record Fault Info Support in
GENCAP is 0, this field always contains the address that caused the fault.

6.2.6 Invalid Flags
Offset: 16; Size: 4 bytes (32 bits)
If the Operation Status is Invalid Operation Flags, Invalid Decompression Flags, Invalid Compression Flags,
Invalid CRC Flags, or Invalid Filter Flags, this field contains a bitmask of the flags field that was found to be
invalid, to aid in debugging. If a bit in this field is 1, it indicates that the flag at the corresponding bit position
in the flags field of the descriptor was invalid. The implementation is not obligated to indicate every invalid
flag that may be present in the descriptor, but it must indicate at least one anytime it reports an invalid flags
error code.

If the operation status is anything other than Invalid Operation Flags, Invalid Decompression Flags, Invalid
Compression Flags, Invalid CRC Flags, or Invalid Filter Flags, this field is unused.

6.2.7 Output Size
Offset: 24; Size: 4 bytes (32 bits)
This field contains the number of bytes written to the destination buffer. This field is not used for the
following operation types: No-op, Drain, or Translation Fetch.

6.2.8 Output Bits
Offset: 28; Size: 1 byte (8 bits)
This field contains the number of bits written to the last byte of the destination. If this field is 0, all bits were
written. This value should be used to determine the number of output elements generated when the output
width is less than 8. This field is not used for the following operation types: No-op, Drain, or Translation
Fetch.

In the case of compress, if the Compress Bit Order flag is set (so that the output consists of 16-bit words),
then Output Bits gives the number of bits written in the last word (0 if all were written).

6.2.9 XOR Checksum
Offset: 30; Size: 2 bytes (16 bits)
This field contains the XOR checksum computed on the uncompressed data (either the output of the
decompressor, or the primary input when the Enable Decompression flag is 0). For the purpose of
computing this checksum, the data is treated as 16-bit words. If there are an odd number of bytes, the final

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 54

byte is zero-extended to 16 bits. See section 3.6 for further details. This field is not used for the following
operation types: No-op, Drain, or Translation Fetch.

6.2.10 CRC
Offset: 32; Size: 4 bytes (32 bits)
This field contains the CRC computed on the uncompressed data (either the output of the decompressor,
or the primary input when the Enable Decompression flag is 0). See section 3.6 for further details. This field
is not used for the following operation types: No-op, Drain, or Translation Fetch.

6.2.11 Aggregates
Offset: 36; Size: 12 bytes (3 × 32 bits)
These fields contain information about the output, as follows:

Field
Byte

Offset
Value when output is an array Value when output is a bit vector

Min / First 32 Minimum value in output. Index of first 1-bit in output.
Max / Last 36 Maximum value in output. Index of last 1-bit in output.
Sum / Population count 40 Sum of all output values. Number of 1-bits in output.

Table 6-7: Completion record Aggregates fields

These fields are only used for the following operation types: Scan, Extract, Select, and Expand.

6.2.12 Crypto Hash
Offset: 48; Size: 16 bytes (128 bits)
These fields contain the generated hash value when the operation involves encryption or decryption, and
the algorithm is GCM. Otherwise, they are written as 0.

6.3 Descriptor Types

6.3.1 Intel® DSA Operations
The following operations are imported from Intel DSA:

• No-op (0x00)
• Drain (0x02)
• Translation Fetch (0x0A)

These behave the same as in Intel DSA.

For further information about these operations, see the Intel DSA architecture documentation.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 55

6.3.2 Decompress Descriptor (0x42)
This descriptor applies to the Decompress operation.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved

Decompression Flags

Decompress Descriptor

The Decompression Flags are described in Table 6-8.

The flags enabling and controlling Decryption are located in the AECS (see Table 6-15).

6.3.2.1 Decompression Flags
Offset: 38; Size: 2 bytes (16 bits)

Decompression Flags
Bits Description
15 Reserved. Must be 0.

14

Ignore End Bits Extension
This provides a fourth high-order bit for Ignore End Bits. This bit is reserved unless Decompress
Bit Order is set. If Decompress Bit Order is set, then the number of ignored bits in the last 16-bit
word is given by {Ignore End Bits Extension, Ignore End Bits}.

13

Load Partial
0: Load AECS starting at offset 0
1: Load AECS starting at offset 448
This field is reserved except when decompress is enabled and Read Source 2 has the value 1 (Read
as AECS). See Section 3.2.
This field is reserved if Write Source 2 is not 0.

12:10

Enable Indexing
0: Indexing is not enabled
1: Enable indexing with a miniblock size of 512 bytes
2: Enable indexing with a miniblock size of 1kB
3: Enable indexing with a miniblock size of 2kB
4: Enable indexing with a miniblock size of 4kB
5: Enable indexing with a miniblock size of 8kB
6: Enable indexing with a miniblock size of 16kB
7: Enable indexing with a miniblock size of 32kB
If this field is not 0, then Suppress Output must be set.
This field is reserved for operations other than Decompress.

9
Suppress Output
0: Decompressed / filter data is written to the output stream
1: Decompressed / filter data is not written to the output stream.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 56

Decompression Flags
Bits Description

8:6

Ignore End Bits
Specifies the number of bits to ignore at the end of the compressed input stream. A value of 0
means that the entire last byte is processed, while a value of 7 means only one bit of the last
input byte is processed.
If decryption is enabled, then this flag must be 0 unless Flush Crypto Input Accumulator is set.
If Decompress Bit Order is set, then {Ignore End Bits Extension, Ignore End Bits} gives the
number of bits to ignore in the last 16-bit word.

5

Decompress Bit Order
Specifies the bit order of the decompression input.
0: Bit 0 of each 16-bit word is the least significant bit. (Little endian. This is the normal format for
a deflate stream.)
1: Bit 0 of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big
endian.)
If this flag is set, then the Source 1 Size must be an even number of bytes.

4
Select BFinal EOB
0: Any EOB block is treated as an appropriate EOB.
1: Only EOB blocks with BFinal in the header are treated as an appropriate EOB.

3

Check for EOB
0: Do not check whether the last token is an appropriate EOB.
1: If the last token processed is not an appropriate EOB, Status is set to Analytics error and Error
Code is set to Bad End of File.

2
Stop on EOB
0: Do not stop processing when an appropriate EOB is detected.
1: Stop processing when an appropriate EOB is detected.

1

Flush Output
0: A partial output word is saved in the AECS. This value should be used for a Decompress
descriptor that is part of a multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. If it would overflow the output buffer, it
is saved in the AECS, so that the job can be completed by a subsequent descriptor. This value
should be used for a Decompress descriptor that is the last (or only) descriptor in a job. For filter
operations, output flushing is automatic, and this flag is ignored.
This flag must be 0 if Enable Indexing is non-zero and Write Source 2 is non-zero.

0

Enable Decompression
0: Pass Source 1 data or decrypted data directly to the filter function.
1: Decompress Source 1 data or decrypted data..
If this field is 0, all other decompression flags except for Flush Output and Suppress Output are
reserved.
If Operation is Decompress, this field must be 1.

Table 6-8: Decompression Flags

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 57

6.3.3 Analytics Descriptor (0x50, 0x52, 0x53, 0x56)
This descriptor applies to Scan, Extract, Select, and Expand, although some of the fields are not used for
some of the operations.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved Filter Flags

Decompression Flags

Number of Input Elements

Analytics Descriptor

The Decompression Flags are described in Table 6-9, and the Filter Flags in Table 6-10.

The flags enabling and controlling Decryption are located in the AECS (see Table 6-15).

6.3.3.1 Decompression Flags
Offset: 38; Size: 2 bytes (16 bits)

Decompression Flags
Bits Description
15 Reserved. Must be 0.

14

Ignore End Bits Extension
This provides a fourth high-order bit for Ignore End Bits. This bit is reserved unless Decompress
Bit Order is set. If Decompress Bit Order is set, then the number of ignored bits in the last 16-bit
word is given by {Ignore End Bits Extension, Ignore End Bits}.

13

Load Partial
0: Load AECS starting at offset 0
1: Load AECS starting at offset 448
This field is reserved except when decompress is enabled and Read Source 2 has the value 1 (Read
as AECS). See Section 3.2.
This field is reserved if Write Source 2 is not 0.

12:10 Reserved. Must be 0.

9
Suppress Output
0: Decompressed / filter data is written to the output stream
1: Decompressed / filter data is not written to the output stream.

8:6

 Ignore End Bits
Specifies the number of bits to ignore at the end of the compressed input stream. A value of 0
means that the entire last byte is processed, while a value of 7 means only one bit of the last
input byte is processed.
If decryption is enabled, then this flag must be 0 unless Flush Crypto Input Accumulator is set.
If Decompress Bit Order is set, then {Ignore End Bits Extension, Ignore End Bits} gives the
number of bits to ignore in the last 16-bit word.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 58

Decompression Flags
Bits Description

5

Decompress Bit Order
Specifies the bit order of the decompression input.
0: Bit 0 of each 16-bit word is the least significant bit. (Little endian. This is the normal format for
a deflate stream.)
1: Bit 0 of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big
endian.)
If this flag is set, then the Source 1 Size must be an even number of bytes.

4
Select BFinal EOB
0: Any EOB block is treated as an appropriate EOB.
1: Only EOB blocks with BFinal in the header are treated as an appropriate EOB.

3

Check for EOB
0: Do not check whether the last token is an appropriate EOB.
1: If the last token processed is not an appropriate EOB, Status is set to Analytics error and Error
Code is set to Bad End of File.

2
Stop on EOB
0: Do not stop processing when an appropriate EOB is detected.
1: Stop processing when an appropriate EOB is detected.

1

Flush Output
0: A partial output word is saved in the AECS. This value should be used for a Decompress
descriptor that is part of a multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. If it would overflow the output buffer, it
is saved in the AECS, so that the job can be completed by a subsequent descriptor. This value
should be used for a Decompress descriptor that is the last (or only) descriptor in a job. For filter
operations, output flushing is automatic, and this flag is ignored.
This flag must be 0 if Enable Indexing is non-zero and Write Source 2 is non-zero.

0

Enable Decompression
0: Pass Source 1 directly to the filter function.
1: Decompress Source 1 and pass the decompressed output to the filter function.
If this field is 0, all other decompression flags except for Flush Output and Suppress Output are
reserved.
If Operation is Decompress, this field must be 1.

Table 6-9: Decompression Flags

6.3.3.2 Filter Flags
Offset: 56; Size: 4 bytes (32 bits)

Filter Flags
Bits Description

31:28 Reserved: Must be 0.

27

Force Array Output Modification
0: Treat nominal 1-bit output as a bit-vector for output modification
1: Treat nominal 1-bit output as an array for output modification
This flag is ignored if the nominal output bit-width is not 1. For more details, see Section 3.8.2.
This field is reserved unless Output Width has a non-zero value. This field does not affect
whether Invert Output is allowed.

26:17 Reserved: Must be 0.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 59

Filter Flags
Bits Description

16

Invert Output
0: The bits of the output are not inverted.
1: For operations whose output is a bit vector, each bit of the output is inverted.
This field is reserved for operation types whose output is an array with width greater than 1.

15
Output Bit Order
0: Bit 0 of each output byte is the LSB. (Little endian.)
1: Bit 7 of each output byte is the LSB. (Big endian.)

14:13

Output Width
0: The output of the filter is unmodified; depending on the operation, the output is either a bit
vector or an array whose elements have the same width as the input.
1: The output elements are 8 bits.
2: Output elements are 16 bits.
3: Output elements are 32 bits.
If this field is non-zero and the default filter output is an array, each element of the array is
zero-extended to the specified width. The specified width must be greater than or equal to the
width of the primary input.
If this field is non-zero and the default filter output is a bit vector, the output is modified to an
array of indices of the 1 bits in the bit vector. Each index has the specified width, which must
be sufficient to represent the maximum index value.

12

Source 2 Bit Order
0: Bit 0 of each Source 2 byte is the LSB. (Little endian.)
1: Bit 7 of each Source 2 byte is the LSB. (Big endian.)
This field is used only when Read Source 2 is 2; otherwise, it is reserved.

11:7

Source 2 Width
This field indicates the size in bits of the data elements in the secondary input stream. The
element width is the value in this field plus 1
This field is reserved for all current operation types, where the secondary input stream is a bit
vector.

6:2

Source 1 Width
This field indicates the size in bits of the data elements in the primary input stream. The
element width is the value in this field plus 1.
If Source 1 Parser is Parquet RLE, this field is reserved, because the field width is specified in
the header of the input stream.

1:0

Source 1 Parser
0: The input consists of a packed array of values in little-endian format with the bit width given

by Source 1 Width.
1: The input consists of a packed array of values in big-endian format with the bit width given

by Source 1 Width.
2: The input is in the Parquet RLE format, as described in 3.8.1.2.
3: Reserved.
If this field is 2, then Drop Initial Bits must be 0. (See Section 3.8.1)

Table 6-10: Filter Flags

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 60

6.3.3.3 Number of Input Elements
Offset: 60; Size: 4 bytes (32 bits)
This field is used to determine the end of the input stream for Filter Operations. Since the input elements
are packed and may be smaller than 1 byte, the number of elements cannot always be determined from
the number of bytes of input. This field indicates the number of elements in the primary input stream (after
decompression, if applicable), except for the Expand operation, where it specifies the number of bits in the
secondary input stream.

For the operations where this field is not reserved, it must have a non-zero value.

This field is reserved for all operations except for: Scan, Extract, Select, and Expand.

6.3.4 Decrypt/Encrypt Descriptor (0x40, 0x41)
This descriptor is used for the Encrypt and Decrypt operation.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved Reserved

Decrypt/Encrypt Descriptor

Cipher Flags

The flags enabling and controlling Encryption/Decryption are located in the AECS (see Table 6-15). The
Cipher Flags are described in Table 6-11.

6.3.4.1 Cipher Flags
Offset: 38; Size: 2 bytes (16 bits)

Encryption Flags
Bits Description

15:10 Reserved. Must be 0.

9
Suppress Output
0: Encrypted data is written to the output stream
1: Encrypted data is not written to the output stream.

8:2 Reserved. Must be 0.

1

Flush Output
0: A partial output word is saved in the AECS. This value should be used for an Encrypt descriptor
that is part of a multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. If it would overflow the output buffer, the
operation returns an error. This value should be used for an Encrypt descriptor that is the last (or
only) descriptor in a job.

0 Reserved. Must be 0.

Table 6-11: Cipher Flags

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 61

6.3.5 Compress Descriptor (0x43)
This descriptor is used for the COMPRESS operation.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved Compression 2 Flags

Compression Flags

Reserved

Compress Descriptor

The Compression Flags are described in Table 6-12. The Compression 2 Flags are described in Table 6-13.

6.3.5.1 Compression Flags
Offset: 38; Size: 2 bytes (16 bits)

Compression Flags
Bits Description

15

Header Gen Stats Input
0: Input is data to be compressed
1: Input contains statistics to be processed through Header Generation. See Section 3.4.5.3.
This field is reserved unless the Enable Header Generation field has a value of 5, 6, or 7.
If this field is set, then Write Source 2 must have a value of 1 and Read Source 2 must have a value
of 1, and the following fields are reserved: Load Dictionary, Enable Zero-Compress-8, Enable
Indexing, Compress Bit Order, Generate All Literals, End Processing, and Early Abort Threshold.

14:12

Enable Header Generation
0: Header Generation is disabled.
1: 1-Pass Header Generation: Do not generate a Deflate Header
2: 1-Pass Header Generation: Generate a Deflate Header
3: 1-Pass Header Generation: Generate a bFinal Deflate Header
4: Reserved
5: 2-Pass Header Generation: Do not generate a Deflate Header
6: 2-Pass Header Generation: Generate a Deflate Header
7: 2-Pass Header Generation: Generate a bFinal Deflate Header
1-Pass header generation cannot be used if:

• The amount of data being compressed is more than 4kB, or
• Load Dictionary is non-zero

If 2-Pass header generation is selected, then the Write AECS Huffman Tables flag in
Compression 2 Flags must be set.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 62

Compression Flags
Bits Description

11:10

Load Dictionary
0: Do not load a dictionary.
1: Load a 2kB dictionary with 2 pointers/hash table entry.
2: Load a 4kB dictionary with 2 pointers/hash table entry.
3: Load a 4kB dictionary with 4 pointers/hash table entry.
This field is reserved if Enable Header Generation has the values 1, 2, or 3, if Header Gen Stats
Input is set, or if Enable Indexing is non-zero.

9 Reserved: Must be 0.

8:6

Enable Indexing
0: No Indexing.
1: Index every 512 bytes
2: Index every 1KB
3: Index every 2KB
4: Index every 4KB
5: Index every 8KB
6: Index every 16KB
7: Index every 32KB
When indexing is enabled, the input buffer size must be a multiple of the indexing size, unless it
is the last descriptor in a job.
This field is reserved if bit 9 (Enable Zero-Compress-8) is set, if Header Gen Stats Input is set, or if
Load Dictionary is non-zero.

5

Compress Bit Order
Specifies the bit order of the compression output.
0: Bit 0 of each 16-bit word is the least significant bit. (Little endian. This is the normal format for
a deflate stream.)
1: Bit 0 of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big
endian.)
If this bit is set, then the output will consist of an even number of bytes.
This field is reserved if Header Gen Stats Input is set.

4

Generate All Literals
0: Generate literals and matches.
1: Generate only literals. This results in only doing Huffman Compression.
This field is reserved if Header Gen Stats Input is set.

3:2

End Processing
0: Append nothing after final output token.
1: Append EOB after final token.
2: Append EOB and non-bFinal Stored Block after final token.
3: Append EOB and bFinal Stored Block after final token.
This field is reserved if Header Gen Stats Input is set.

1

Flush Output
0: A partial output word is saved in the AECS. This value should be used for a Compress
descriptor that is part of a multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. This value should be used for a
Compress descriptor that is the last (or only) descriptor in a job.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 63

Compression Flags
Bits Description

0

Stats Mode
0: Generate Huffman output.
1: Generate Statistics output.
This flag is reserved if Enable Header Generation is non-zero.

Table 6-12: Compression Flags

6.3.5.2 Compression 2 Flags
Offset: 56; Size: 4 bytes (32 bits)

Filter Flags
Bits Description
31:7 Reserved: Must be 0.

6:5

Early Abort Size
Check for Early Abort after the specified number of data bytes have been compressed:
0: 512
1: 1024
2: 2048
3: 4096
This field is reserved unless Early Abort Threshold has a non-zero value.

4:2

Early Abort Threshold
0: Disable early aborts
1: Set the Early Abort threshold at 1/8.
2: Set the Early Abort threshold at 2/8.
3: Set the Early Abort threshold at 3/8.
4: Set the Early Abort threshold at 4/8.
5: Set the Early Abort threshold at 5/8.
6: Set the Early Abort threshold at 6/8.
7: Set the Early Abort threshold at 7/8.
This field is reserved if Header Gen Stats Input is set.

1

Write AECS Huffman Tables
0: The size of the AECS written is the smaller of the specified size or 64 bytes.
1: The size of the AECS written is the smaller of the specified size or 1568 bytes.
This flag is reserved unless Enable Header Generation is non-zero.
This flag is required if Enable Header Generation has the values 5, 6, or 7.

0

Make Complete Tables
0: Do not modify input statistics.
1: Modify input statistics as described in Section 3.4.5.
This field is reserved unless Enable Header Gen has a non-zero value.

Table 6-13: Compression 2 Flags

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 64

6.3.6 CRC64 Descriptor (0x44)
The CRC64 operation computes a programmable arbitrary CRC of up to 64 bits in size.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Reserved

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Reserved

Reserved CRC Polynomial

CRC Flags

Reserved

Source 2 Address

Source 2 Transfer Size

CRC-64 Descriptor

The CRC Flags are described in Table 6-14.

Unused

Unused

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

Bytes Completed Status

Fault Address

Error codeUnused

Invalid Flags

32

40

48

56

CRC-64

CRC-64 Completion Record

Fault Info

CRC

XOR Checksum

The CRC64 field contains the CRC result, in the most-significant part of the field, as defined by the CRC Bit
Order flag. See Section 3.10.3 for details.

6.3.6.1 CRC Flags
Note that the flag bits 8:2,0 are identical to the Decompression Flags (Section 6.3.2.1).

Offset: 38; Size: 2 bytes (16 bits)
CRC Flags

Bits Description

15

CRC Bit Order
Specifies the bit order of the CRC input.
0: Bit 0 of each byte is the least significant bit.
1: Bit 0 of each byte is the most significant bit.

14
Invert CRC
If this value is 0, then the initial value of the CRC is 0, and the residue is returned. If this value is 1,
then the initial value of the CRC is all 1’s, and the inverse of the residue is returned.

13:10 Reserved. Must be 0.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 65

CRC Flags
Bits Description

9:6

Ignore End Bits
Specifies the number of bits to ignore at the end of the compressed input stream. A value of 0
means that the entire last byte is processed, while a value of 7 means only one bit of the last
input byte is processed.
A value larger than 7 is only allowed if Decompress Bit Order is set. In this case, the value gives
the number of bits to drop in the last 16-bit word.

5

Decompress Bit Order
Specifies the bit order of the decompression input.
0: Bit 0 of each 16-bit word is the least significant bit. (Little endian. This is the normal format for
a deflate stream.)
1: Bit 0 of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big
endian.)

4
Select BFinal EOB
0: Any EOB block is treated as an appropriate EOB.
1: Only EOB blocks with BFinal in the header are treated as an appropriate EOB.

3

Check for EOB
0: Do not check whether the last token is an appropriate EOB.
1: If the last token processed is not an appropriate EOB, then Status is set to Analytics error and
Error Code is set to Bad End of File.

2
Stop on EOB
0: Do not stop processing when an appropriate EOB is detected.
1: Stop processing when an appropriate EOB is detected.

1 Reserved. Must be 0.

0

Enable Decompression
0: Pass Source 1 directly to the filter function.
1: Decompress Source 1 and pass the decompressed output to the filter function.
If this field is 0, CRC Flag bits [9:2] are reserved.

Table 6-14: CRC Flags

6.3.6.2 CRC Polynomial
Offset: 56; Size: 8 bytes (64 bits)
This field defines the polynomial for the CRC, as described in Section 3.10.3. The polynomial is described
in its normal (not bit-reversed) form, without the leading 1-bit, in the high order end of this field, so that bit-
63 is the most significant bit.

For example, a 64-bit CRC would use all of the bits. A 32-bit CRC would place the polynomial in bits 63:32
of the field, and bits 31:0 would be 0.

6.4 Analytics Engine Configuration and State
The AECS structure contains parameters and internal state of the analytics engine. See section 3.2 for more
information. The AECS has one of two different formats: one for decompression, Encrypt, Decrypt, and filter
opcodes, and one for the compression opcode.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 66

6.4.1 AECS Format for Encrypt, Decrypt, Decompress, and Filter
When the amount of AECS data read is less than the full amount, the unread fields receive default values. See section
6.4.1.2 for details.

The format of the AECS for decompress and filter is shown in Figure 6-3.

Byte 3 Byte 2 Byte 1 Byte 0 Byte Offset Category
CRC 0x0

Filter

Reserved XOR Checksum 0x4
Low Filter Parameter 0x8
High Filter Parameter 0xC
Output Modifier Index 0x10

Reserved Drop Initial Bytes 0x14

Crypto Accum Sizes Crypto Flags Crypto
Algorithm 0x18

Crypto

Reserved 0x1C

Crypto Input Accumulator
0x20
0x34

Crypto Output Accumulator
0x38
0x44

AES Key Low
0x48
0x54

AES Key High
0x58
0x64

Reserved
0x68
0x74

Counter/IV
0x78
0x84

GCM H
0x88
0x94

Hash
0x98
0xA4

Output Accumulator Data
0xA8

Decompress

0xAC

Reserved Output Bits
Valid 0xB0

Bit Offset for Indexing 0xB4

Input Accumulator Data
0xB8

0x1B4
Size QW 3 Size QW 2 Size QW 1 Size QW 0 0x1B8

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 67

Size QW 31 Size QW 30 Size QW 29 Size QW 28 0x1D4
Decompression State 0x1D8

Reserved AECS Format Drop Initial Bits 0x1DC

Decompression Internal State
0x1E0

0x14E4

Figure 6-3: AECS Format for Decompress and Filter

Field Description

CRC
On input, this field contains the CRC seed. On output, it is the CRC value.
Note that these values are inverted as is specified by the relevant CRC
standards.

XOR Checksum Initial (on input) or final (on output) XOR Checksum value.
Low Filter Parameter Low Parameter value of filter functions.
High Filter Parameter High Parameter value of filter functions.

Output Modifier Index
Base index associated with first output bit. When the output is a bit-vector
that is being modified, this value offsets the indices written to the output
and the values aggregated.

Drop Initial Bytes
The number of initial bytes in the Filter Input that should be dropped
before starting the filter operation. See Section 3.7.
If the operation is Encrypt or Decrypt, then Drop Initial Bytes must be 0.

Drop Initial Bits

The number of initial bits in the decompress or filter input that should be
dropped before starting the decompress/filter operation. See Section 3.7.
If the operation is CRC64, and decompression is not enabled, then Drop
Initial Bits must be 0.
If the operation is Encrypt or Decrypt, then Drop Initial Bits must be 0.

AECS Format

AECS Format:
0: Format-1
1: Format-2
This field is the low-order 3 bits within the specified byte.

Crypto Algorithm

Cryptographic Algorithm
0: GCM
1: AES-CFB
2: XTS
Other: Reserved

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 68

Crypto Flags

Bits:
0: Enable Crypto: 1=Enable Crypto
1: Key_size_256: 0=key size 128 bits, 1=key size 256 bits
2: Reserved
3: Flush Crypto Input Accum: 1=Flush Crypto Input Accumulator
7:4: Reserved
These bits are all reserved except for the following operations: Decrypt,
Encrypt, Decompress, CRC64, Scan, Extract,.
Enable Crypto is required for operations: Encrypt and Decrypt.
If Enable Crypto is set, then the Operation Flag “Read Source 2” must have a
value 1.
For operations other than Decrypt, Encrypt, and Decompress, Flush Crypto
Input Accum must be set.

Crypto Accum Size

Bits 5:0: Number of valid bytes in the Crypto Input Accumulator
Bits: 15:6: Reserved
This value must be less than or equal to 40.
For operations other than Decrypt, Encrypt, and Decompress, this field must
be 0.

Crypto Input Accum Input data for the crypto unit that has not yet been processed
AES Key Low AES 128-bit key, or low 128 bits of AES 256-bit key
AES Key High High 128 bits of AES 256-bit key
Counter/IV Value of the AES counter/IV. Initial value is read, final value is written.
GCM H GCM “H” parameter. This is the encrypted value of all zeros.

Hash For GCM, this is the value of the hash. The initial value is read, and the final
value is written.

Output Accumulator
Data Output data that has not yet been written to the output stream.

Output Accumulator Bits
Valid

Number of valid data bits in output accumulator. Bit 0 is treated as the AECS
Format Valid bit; see Section 3.2.1. For the purposes of the number of valid
bits, it is treated as if it were 0. Since the Output Accumulator contains
whole bytes, the only valid values are: 0, 8, 16, 24, 32, 40, 48, and 56.

Bit Offset for Indexing Total number of consumed bits on input.
Input Accumulator Data Input Deflate data that has not yet been processed.

Size QWn The number of bytes valid in the corresponding Quadword in the Input
Accumulator. Valid values are 0-64.

Decompress Internal
State

Contains internal state of the Analytics hardware required to link together
multiple segments that belong to one logical file.

Table 6-15: AECS fields for Decompress and Filter

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 69

6.4.1.1 Decompress Internal State
The Decompress/Analytics Internal State is shown in Table 6-16.

Format-1 Field Format-2 Field Byte Offset
EOB CAM Entry 0x1D8
Drop Initial Bits 0x1DC

ALU First Table Index Reserved 0x1E0-0x1F0
ALU Num Codes 0x1F4-0x204
ALU First Code 0x208-0x218

ALU First Len Code 0x21C-0x22C
LL CAM Entries 0x230-0x280

Reserved 0x284
LL CAM Total Lengths 0x288-0x294
Distance CAM Entries 0x298-0x30C

Distance CAM Total Lengths 0x310-0x320
Min Length-Code Length 0x324

LL Mapping Table Reserved 0x328-0x33C
LL Mapping Table LL Mapping CAM Part 1 0x340-0x41C
LL Mapping Table Reserved 0x420-0x430

Decompress State 0x434
Stored Block Bytes Remaining 0x438

Reserved 0x43C
Reserved LL Mapping CAM Part 2 0x440-0x4CC

Reserved 0x4D0-0x4E0
History Buffer Write Pointer 0x4E4

History Buffer 0x4E8-0x14E4

Table 6-16: Decompress/Analytics Internal State

The format of the LL and Distance CAM entries is the following: Bits 14:0 give the code value, in non-bit-
reversed form, in the high-order bits of the field. Bit 15 is a valid bit, which should be set only for valid
entries. Bits 30:16 give a bit-mask, where the 1-bits correspond to the valid bits in the code. If the size of
the code is N, then the high-order N bits of the bit-mask should be 1, and the remaining bits should be 0.

The 5 DWORDs for each ALU field define 15 values, one for each of 15 ALUs, where each ALU is looking for
codes of a particular width. E.g., ALU-1 is looking for codes that are 1-bit wide, and ALU-5 is looking for
codes that are 5-bits wide. The way that these 15 fields are spread throughout the 5 DWORDS is shown in
Table 6-17:. The value in each field is stored towards the least-significant end.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 70

ALU DWORD Bits
1 0 1:0
2 0 4:2
3 0 8:5
4 0 13:9
5 0 19:14
6 0 26:20

7 1 7:0
8 1 16:8
9 1 26:17

10 2 10:0
11 2 22:11

12 3 12:0
13 3 26:13

14 4 14:0
15 4 30:15

Table 6-17: ALU Field Definitions

The basic idea behind each ALU is that (in the non-bit-reversed space) all of the codes of a given length are
sequential values. So, these can be represented as a first code and a number of codes.

In Format 1, there is a mapping table that maps to actual literal values. All of the literal values in that
mapping table that correspond to codes of a given length are found in sequential locations. So, the ALU
must know where in the mapping table corresponds to the first code. For example, ALU-4 might contain 3
codes starting with 0x8, and with a first table index of 10. This means that the valid length-4 codes are 0x8,
0x9, and 0xA. And these correspond to the literals in the mapping table entries 10, 11, and 12.

In Format 2, there is a mapping CAM. The index of the CAM entry is implicitly the value of the literal or
length. For example, CAM entry 0 defines the code for literal 00. For each CAM entry, the low order 4 bits
contains the code length. The higher order bits contain an index indicating how many codes of that length
occurred previously. In the above example, the three CAM entries would contain values 0x04, 0x14, 0x24.
The location of these codes in the CAM depends on what three literal values were being represented.

Both the mapping table and CAM are only used for LL codes in the range of 0…264 (i.e., each one contains
265 entries). These correspond to the LL codes that do not contain extra bits. The LL codes that are followed
by extra bits (i.e., LL[265]…LL[285]) are handled via the LL CAM.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 71

The actual fields are:

Field Description
EOB CAM Entry Huffman code for EOB token.
ALU First Table Index Index into mapping table for first code for this ALU.
ALU Num Codes Number of codes for this ALU.
ALU First Code First code value for this ALU.
ALU First Len Code First LL code value that is a length.
LL CAM Entries These 21 CAM entries contain the codes for LL tokens 265-285.
Reserved

LL CAM Total Lengths

These contain the total lengths (code length plus number of extra bits)
for LL tokens 265-285. There are six lengths per DWORD, in bits: 4:0,
9:5, 14:10, 20:16, 25:21, and 30:26. The last DWORD only contains
three lengths.

Distance CAM Entries This CAM contains the Huffman codes for the 30 Distance tokens.

Distance CAM Total Lengths
This contains the total lengths for the distance tokens in the same
format as for the LL CAM Total Lengths.

Min Length-Code Length

Bits 3:0 contain the total length (code length plus number of extra
bits) of the shortest Length Code. If there are no length codes, the
value is 15.
Bits 7:4 contain the total length of the shortest Lit Code.

LL Mapping Table (Format 1) Each byte entry contains the value as indexed by the ALUs. For literals,
the value is the literal value. For lengths, the value is the length – 3.

LL Mapping CAM (Format 2) Each entry contains key value as describe above.

Decompress State

Bits 3:0 indicate the state of the decompress parser. The possible
values are:
0000: Looking at an LL token in a non-final block.
0100: Look at an LL token in a final block.
0010: Looking at a stored block byte in a non-final block.
0110: Looking at a stored block byte in a final block.
0XX1: Looking at the start of a block header.
1XXX: Processing terminated due to EOB.
Bits 31:16 give the number of bits since the last token processed to
the end of the input accumulator

Stored Block Bytes Remaining

Bits 14:0 indicate the number of remaining bytes in a stored block
that has been partially processed. A value of 0 means that the
parsing is not in the middle of a stored block.
If the Decompress State is 0010 or 0110, then this field must be
non-zero.

History Buffer Write Pointer
Bits 14:0 contain the write pointer into the history buffer. Bit 15 is set
when the write pointer becomes greater or equal to the size of the
history buffer.

History Buffer History Buffer.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 72

6.4.1.2 Default Values
Other than for the following fields, the default values are 0.

Field Value (Format 1) Value (Format 2)
Output Bits Valid 0 1
AECS Format 0 1
Decompress State Expecting Start of Deflate Header
Internal State ALUs and CAMs configured for Deflate Fixed Codes

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 73

6.4.2 AECS Format for Compress
The format of the AECS for compress is shown in Figure 6-4.

Byte 3 Byte 2 Byte 1 Byte 0 Byte Offset Category
CRC 0x0

Checksums
Reserved XOR Checksum 0x4

Reserved 0x8

Reserved 0x18

Reserved Last Num Acc Bits Valid 0x1C
Output

Accumulator Output Accumulator Data
0x20

0x11C
Huffman Literal Code 0 0x120

Huffman
Tables

Huffman Literal Code 285 0x594
Reserved 0x598
Reserved 0x59C

Huffman Distance Code 0 0x5A0
Huffman Distance Code 29 0x614

Reserved 0x618

Reserved 0x61C

Start Dictionary Data 0x620
Dictionary

… Varies

Figure 6-4: AECS Format for Compress

Field Description
CRC On input, this field contains the CRC seed. On output, it is the CRC value.
XOR Checksum Initial (on input) or final (on output) XOR Checksum value.

Last Descriptor Bit This indicates the last descriptor for compression indexing. See
section 3.4.7 for details.

Output Accumulator Data
On input, this field can contain up to 2,048 bits. On output, it will contain
fewer than 64. This can be used by software to insert a Deflate block
header.

Num Acc Bits Valid Number of bits that are valid in Output Accumulator Data. This value must
be no greater than 2048.

Huffman Codes
Bits 14:0: Non-bit-reversed Huffman code stored in low-order bits of field.
Bits 18:15 : Length of code word in bits.
Bits 31:19 : Reserved.

Start Dictionary Data Start of variable sized region containing dictionary data. See Section 3.4.4
for details.

Table 6-18: AECS Fields for Compress

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 74

7 Summary of Differences from Intel® DSA

7.1 General Differences
The following lists some of the key aspects of Intel® IAA that are different from Intel® DSA:

• Partial descriptor completion: In general, Intel IAA completes the entire operation or returns an
error. In the case of an error, the entire operation must be re-executed. The two exceptions to this
are the Decompress and Translation Fetch operations. In the case of decompression where the
output buffer is not large enough, the operation would result in a recoverable “output overflow.” In
this case, the operation is partially completed, the accelerator finishes in a clean state, and the job
can be continued (in a new descriptor) where it left off. In the case of Translation Fetch, if a page
fault occurs and Block on Fault is not set, then the operation is partially completed and can be
continued where it left off.

• Batch processing: Intel IAA does not support batch processing or the Fence operation flag.

• Stateless device: There is no state information stored within the accelerator between operations.
Any state information that must be passed between operations is written to the AECS by the first
operation and then read from the AECS by the second operation.

• Read Buffer Allocation: Intel IAA does not support Read Buffer allocation control.

• Completion Records: The Intel IAA Completion Record is 64 bytes in length and must be aligned
on a 64-byte boundary.

• Overlapping Buffers: None of the Source 1, Source 2, and Destination buffers (which are present
for a given operation) may overlap.

• Performance Monitoring Events:
o Intel IAA does not support the Operations events or Batch-related events.
o In Intel IAA, the EV_CL_WRITE event measures total data written, in units of 512 bytes

rather than units of 32 bytes.

• Operations: The operations supported by Intel IAA are different from those supported by Intel DSA.
See section 6.1.2 for a list of the operations supported. The OPCAP register allows runtime
detection of supported operations.

• CRC Operation: The CRC64 operation in Intel IAA is different from the CRC operation in Intel DSA.
In particular, CRC64 supports an arbitrary polynomial up to degree 64. In general, implementations
for fixed CRCs may be faster than implementations for arbitrary polynomials.

• Completion Record: Byte 1 has a different meaning. In Intel DSA, it is an operation-specific result,
for Intel IAA, it is either not used or is an error code.

• Inter-Domain Support: Intel IAA does not support Inter-Domain features.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 75

7.2 Configuration and Control Register Differences
Note that bits that are the same between Intel IAA and Intel DSA are not listed here. That is, any bit not
listed here is the same as for Intel DSA.

7.2.1 General Capabilities Register (GENCAP)
GENCAP
Base: BAR0 Offset: 0x10 Size: 8 bytes (64 bits)

Bit Attr Size Description
63:42 RO 22 bits Unused.

41 RO 1 bit
Indexing Support
0: Indexing (for compress / decompress) is not supported.
1: Indexing is supported.

40 RO 1 bit
Decompress Support
0: Decompression is not supported
1: Decompression is supported.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 76

7.2.2 Intel IAA Capabilities Register (IAACAP)
IAACAP
Base: BAR0 Offset: 0x180 Size: 8 bytes (64 bits)

Bit Attr Size Description
63:12 RO 52 bits Unused.

11 RO 1 bit

Crypto XTS Support
0: Encryption and Decryption are not supported with the XTS algorithm
1: Encryption and Decryption are supported with the XTS algorithm.
Typically, the OPCAP bit for ENCRYPT and DECRYPT would be cleared if
no crypto algorithm was supported.

10 RO 1 bit

Crypto CFB Support
0: Encryption and Decryption are not supported with the CFB algorithm
1: Encryption and Decryption are supported with the CFB algorithm.
Typically, the OPCAP bit for ENCRYPT and DECRYPT would be cleared if
no crypto algorithm was supported.

9 RO 1 bit

Crypto GCM Support
0: Encryption and Decryption are not supported with the GCM algorithm
1: Encryption and Decryption are supported with the GCM algorithm.
Typically, the OPCAP bit for ENCRYPT and DECRYPT would be cleared if
no crypto algorithm was supported.

8 RO 1 bit
Header Generation Support
0: Compression Header Generation is not supported.
1: Compression Header Generation (see Section 3.4.5) is supported.

7 RO 1 bit
 Dictionary Compression Support
0: Compression with a dictionary is not supported.
1: Compression with a dictionary (see Section 3.4.4) is supported.

6 RO 1 bit Unused.

5 RO 1 bit
Compression Early Abort Support
0: Compression Early Abort is not supported.
1: Compression Early Abort (see Section 3.4.6) is supported.

4 RO 1 bit

Load Partial AECS Support
0: If the Decompress Flag bit 13 (Load Partial) is set, then the descriptor
will return an error.
1: Decompress Flag bit 13 (Load Partial) can be used.

3 RO 1 bit

Force Array Output Modification Support
0: If the Filter Flag bit 27 (Force Array Output Modification) is set, then the
descriptor will return an error.
1: Filter Flag bit 27 (Force Array Output Modification) can be used.

2 RO 1 bit

Chaining to CRC64
0: Operation CRC64 cannot be preceded by any other operation.
1: This operation can be preceded by some combination of Decrypt and
Decompress. See Section 3.1.

1 RO 1 bit

 Drop Initial Bits Support
0: If the Drop Initial Bits field in the AECS is non-zero, the descriptor will
return an error.
1: A non-zero value of the Drop Initial Bits field is allowed.
See Section 6.4.1.

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 77

IAACAP
Base: BAR0 Offset: 0x180 Size: 8 bytes (64 bits)

Bit Attr Size Description
0 RO 1 bit Generation 2 Minimum Capabilities

0: Minimum Generation 2 features are not present, in particular:
• The decompress internal state in the AECS is Format 1. In

particular, the Literal/Length Mapping is represented by a table.
• Completion Record checksum fields are written as 0 for CRC64.
• CRC Select is reserved for the CRC64 opcode.
• If the operation is other than No-op or Drain, at least one of

Source 1 Transfer Size and Maximum Destination Size must be
non-zero.

• Ignore End Bits Extension is not supported.
• Last Descriptor bit in the compression AECS is not present.

1: Minimum Generation 2 features are present, in particular:
• The decompress internal state in the AECS is Format 2. In

particular, the Literal/Length Mapping is represented by a CAM.
(See section 6.4.1.1)

• Completion Record checksum fields are written correctly for
CRC64.

• CRC Select can be used with the CRC64 opcode.
• If the operation is other than No-op or Drain, at least one of

Source 1 Transfer Size, Source 2 Transfer Size, and Maximum
Destination Size must be non-zero.

• Ignore End Bits Extension is supported.
• Last Descriptor bit in the compression AECS is present. (See

Section 3.4.7)

Intel® Analytics Accelerator Architecture Specification Intel Confidential

Revision: 2.0 Document ID 60941 Page 78

7.3 PCI Express Configuration Register Differences

7.3.1 Device ID (DID)
DEVICE ID (DID):
Identifies the particular device.
Base: Rootbus CFG Offset: 0x2 Size: 2 bytes (16 bits)
Default Value: 0x0CFE

Bits Attr Size Default Val Description
15:0 ROS 16 0x0CFE Device ID (DID)

Allocated by the vendor.

7.3.2 Outstanding Page Request Capacity (PRSREQCAP)
OUTSTANDING PAGE REQUEST CAPACITY (PRSREQCAP):
Maximum Number of Outstanding Page Requests
Base: Rootbus CFG Offset: 0x248 Size: 4 bytes (32 bits)
Default Value: 0x00000100

Bits Attr Size Default Val Description
31:0 RO 32 0x100 Capacity (CAP)

How many Page Requests can the function issue.
§

	1 Introduction
	1.1 Audience
	1.2 References

	2 Overview
	2.1 Data Analytics Features

	3 Intel® Analytics Accelerator Architecture
	3.1 Operations Overview
	3.2 Analytics Engine Configuration and State
	3.2.1 AECS Format

	3.3 Decompression
	3.3.1 Verification
	3.3.2 Index Generation

	3.4 Compression
	3.4.1 Statistics Mode Output
	3.4.2 Compression Output Overflow
	3.4.3 Compression Indexing
	3.4.4 Compression with a Dictionary
	3.4.5 Compression Header Generation
	3.4.5.1 2-Pass Header Generation
	3.4.5.2 1-Pass Header Generation
	3.4.5.3 Header Generation with Statistics Input

	3.4.6 Compression Early Abort
	3.4.7 Last Descriptor Bit

	3.5 Encryption/Decryption
	3.5.1 AES-CFB
	3.5.2 GCM
	3.5.3 XTS
	3.5.4 Decryption with Indexing

	3.6 Checksum Calculations
	3.7 Drop Initial Bits vs. Drop Initial Bytes
	3.8 Filter Functions
	3.8.1 Parser
	3.8.1.1 Packed Array
	3.8.1.2 Parquet RLE

	3.8.2 Output Modification
	3.8.2.1 Modification When Output is Normally a Bit Vector
	3.8.2.2 Modification When Output is Normally an Array

	3.8.3 Aggregation

	3.9 Chaining of Functions
	3.10 Operation Types
	3.10.1 Decompress
	3.10.2 Compress
	3.10.3 CRC64
	3.10.4 Scan
	3.10.5 Extract
	3.10.6 Select
	3.10.7 Expand

	4 Error Handling
	4.1 Descriptor Checks
	4.2 Descriptor Reserved Field Checking
	4.3 AECS Checks
	4.4 Error Codes
	4.4.1 Operation Status Codes
	4.4.2 Error Code

	5 Software Architecture
	5.1 Intel® Query Processing Library

	6 Structure Formats
	6.1 Descriptor
	6.1.1 Trusted Fields
	6.1.2 Operation
	6.1.3 Operation Flags
	6.1.4 Completion Record Address
	6.1.5 Source 1 Address
	6.1.6 Destination Address
	6.1.7 Source 1 Transfer Size
	6.1.8 Completion Interrupt Handle
	6.1.9 Source 2 Address
	6.1.10 Maximum Destination Size
	6.1.11 Source 2 Transfer Size

	6.2 Completion Record
	6.2.1 Status
	6.2.2 Error Code
	6.2.3 Fault Info
	6.2.4 Bytes Completed
	6.2.5 Fault Address
	6.2.6 Invalid Flags
	6.2.7 Output Size
	6.2.8 Output Bits
	6.2.9 XOR Checksum
	6.2.10 CRC
	6.2.11 Aggregates
	6.2.12 Crypto Hash

	6.3 Descriptor Types
	6.3.1 Intel® DSA Operations
	6.3.2 Decompress Descriptor (0x42)
	6.3.2.1 Decompression Flags

	6.3.3 Analytics Descriptor (0x50, 0x52, 0x53, 0x56)
	6.3.3.1 Decompression Flags
	6.3.3.2 Filter Flags
	6.3.3.3 Number of Input Elements

	6.3.4 Decrypt/Encrypt Descriptor (0x40, 0x41)
	6.3.4.1 Cipher Flags

	6.3.5 Compress Descriptor (0x43)
	6.3.5.1 Compression Flags
	6.3.5.2 Compression 2 Flags

	6.3.6 CRC-64CRC64 Descriptor (0x44)
	6.3.6.1 CRC Flags
	6.3.6.2 CRC Polynomial

	6.4 Analytics Engine Configuration and State
	6.4.1 AECS Format for Encrypt, Decrypt, Decompress, and Filter
	6.4.1.1 Decompress Internal State
	6.4.1.2 Default Values

	6.4.2 AECS Format for Compress

	7 Summary of Differences from Intel® DSA
	7.1 General Differences
	7.2 Configuration and Control Register Differences
	7.2.1 General Capabilities Register (GENCAP)
	7.2.2 Intel IAA Capabilities Register (IAACAP)

	7.3 PCI Express Configuration Register Differences
	7.3.1 Device ID (DID)
	7.3.2 Outstanding Page Request Capacity (PRSREQCAP)

