
Intel
Architecture

MMX™
Technology

Developer’s Manual

March 1996
Order No. 243006-001

D

Subject to the terms and conditions set forth below, Intel hereby grants you a nonexclusive, nontransferable license, under its
patents and copyrights on the example code sequences contained in the Intel Architecture MMX™ Technology Developer’s Manual,
to use, reproduce and distribute such example code sequences, solely as part of your computer program(s) and solely in order to
allow your computer program(s) to implement the multimedia instructions contained in such sequences solely with respect to the
Intel instruction set architecture. No other license, express, implied, statutory, by estoppel or otherwise, to any other intellectual
property rights is granted herein.

THIS DOCUMENT AND ALL INFORMATION, PROPOSALS, SAMPLES AND OTHER MATERIALS PROVIDED IN CONNECTION
WITH OR IN RELATION TO THIS DOCUMENT (INCLUDING, WITHOUT LIMITATION, THE EXAMPLE CODE SEQUENCES) ARE
PROVIDED "AS IS" WITH NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, AND INTEL SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT OR FITNESS FOR ANY PARTICULAR
PURPOSE.

Any use or distribution of this document or the materials contained herein must fully comply with all then current laws of the United
States including, without limitation, rules and regulations of the United States Office of Export Administration and other applicable
U.S. governmental agencies.

THIS DOCUMENT AND THE MATERIALS PROVIDED HEREIN ARE PROVIDED WITHOUT CHARGE. THEREFORE, IN NO
EVENT WILL INTEL BE LIABLE FOR ANY DAMAGES OF ANY KIND, INCLUDING DIRECT OR INDIRECT DAMAGES, LOSS OF
DATA, LOST PROFITS, COST OF COVER OR SPECIAL, INCIDENTAL, CONSEQUENTIAL, DAMAGES ARISING FROM THE USE
OF THE MATERIALS PROVIDED HEREIN, INCLUDING WITHOUT LIMITATION THE EXAMPLE CODE SEQUENCES, HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY. THIS LIMITATION WILL APPLY EVEN IF INTEL OR ANY AUTHORIZED AGENT
OF INTEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Information in this document is provided in connection with of Inel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale
for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in
this document nor does it make a commitment to update the information contained herein. Microcomputer Products may have
minor variations to their specifications known as errata.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

Copyright © INTEL CORPORATION 1996

1
Introduction to the
Intel Architecture
MMXTM Technology
Developer’s Manual

INTEL CONFIDENTIAL
(until publication date)

1-1

CHAPTER 1
 INTRODUCTION TO THE INTEL

ARCHITECTURE MMX TM TECHNOLOGY
DEVELOPER’S MANUAL

Intel’s MMX TM technology is an extension to the Intel Architecture (IA) instruction set. The
technology uses a single instruction, multiple data (SIMD) technique to speedup multimedia
and communications software by processing multiple data elements in parallel. The MMX
instruction set adds 57 new opcodes and a new 64-bit quadword data type. The new 64-bit
data type, illustrated in Figure 1-1 below, holds packed integer values upon which MMX
instructions operate.

07863

Packed Byte: 8 bytes packed into 64-bits
3132

063

Packed Word: 4 words packed into 64-bits

063

Packed Double-word: 2 double-words packed into 64-bits

1516

3132 1516

3132

Figure 1-1. New Data Types

In addition, there are eight new 64-bit MMX registers, each of which can be directly
addressed using the register names MM0 to MM7. Figure 1-2 shows the layout of the eight
new MMX registers.

INTRODUCTION TO THE INTEL ARCHITECTURE MMX TM TECHNOLOGY

1-2

063
MM7

10

Tag
Field

MM0

Figure 1-2. MMX TM Register Set

The MMX technology is operating-system transparent and 100% compatible with all existing
Intel Architecture software; all applications will continue to run on processors with MMX
technology. Additional information and details about the MMX instructions, data types and
registers can be found in the Intel Architecture MMXTM Technology Programmers Reference
Manual (Order Number 243007).

MMX technology will give a large performance boost to many applications, such as motion
video, combined graphics with video, image processing, audio synthesis, speech synthesis
and compression, telephony, conferencing, 2D graphics, and 3D graphics. Almost any
application which performs calculations on integer data in a repetitive and sequential manner
can benefit from MMX technology. The performance improvement results from parallel
processing of 8-bit, 16-bit and 32-bit data elements. An MMX instruction can operate on 8
bytes at once and two instructions can be executed in one clock cycle, which means that as
many as 16 data elements can be processed in one clock cycle.

In addition to increased performance, MMX technology will free up additional processor
cycles for other functions. Applications which previously needed extra hardware can now
execute in software only. Lower processor usage allows better concurrency, a feature
exploited in many of today’s operating systems. Based on Intel’s analysis, performance
improvements range from 50% to 400% for certain functions. This magnitude of
improvement is similar to the performance boost seen in moving to a new processor
generation. In software kernels, much larger speedups have been observed, ranging from
three to five times the original speed and beyond.

INTRODUCTION TO THE INTEL ARCHITECTURE MMX TM TECHNOLOGY

1-3

1.1 About Th is Manual

It is assumed that the reader is familiar with the Intel Architecture software model and
assembly language programming.

This manual describes the software programming optimizations and considerations for the IA
MMX technology. Additionally, it covers coding techniques and examples that will help you
get started in coding your application.

This manual is organized into six chapters, including this chapter (Chapter 1), and one
appendix.

Chapter 1—Introduction to the Intel Architecture MMXTM Technology.

Chapter 2—Overview of Processor Architecture and Pipelines. This chapter provides an
overview of the architecture and pipelines of Pentium® and dynamic (P6-family) processors
with MMX technology.

Chapter 3—Guidelines for Developing MMXTM Code. This chapter provides a list of rules
and guidelines that will help you develop fast and efficient code. Additionally, it provides
information on general optimization, instruction scheduling and selection, and cache and
memory optimization.

Chapter 4—MMXTM Code Development Strategy. This chapter reviews the steps for
creating MMX routines in your application.

Chapter 5—Coding Techniques. This chapter contains coding examples to help you get
started in coding MMX routines.

Chapter 6—Performance Monitoring Counters. This chapter details the performance
monitoring counters and their functions.

Appendix A— MMXTM Instruction Set. This appendix summarizes the MMX instructions.

1.2 Related Documentation

Refer to the following documentation for more information on the Intel Architecture and
specific techniques referred to in this manual:

• Intel Architecture MMX TM Technology Programmers Reference Manual, Intel
Corporation, Order Number 243007.

• Pentium® Processor Family Developer’s Manual: Volume 1, 2, and 3, Intel Corporation,
Order Number 241428, 241429, and 241430.

• Pentium® Pro Processor Family Developer’s Manual: Volume 1, 2, and 3, Order
Number 242690, 242691, and 242692.

INTRODUCTION TO THE INTEL ARCHITECTURE MMX TM TECHNOLOGY

1-4

• Optimizations for Intel’s 32-bit Processors, Application Note AP-526,
Order Number 242816

2
Overview of
Processor
Architecture and
Pipelines

INTEL CONFIDENTIAL
(until publication date)

2-1

CHAPTER 2
OVERVIEW OF PROCESSOR ARCHITECTURE

AND PIPELINES

This section provides an overview of the pipelines and architectural features of the Pentium®

and dynamic execution (P6-family) processors with MMX technology. By understanding
how the code flows through the pipeline of the processor, you can better understand why a
specific optimization will improve the speed of your code. Additionally, it will help you to
schedule and optimize your application for high performance.

2.1 Pipelines of Superscalar (Pentium ® Family) and Dynamic
Execution (P6-Family) Architectures

2.1.1 SUPERSCALAR (PENTIUM ® FAMILY) PIPELINE

The Pentium processor is an advanced superscalar processor. It is built around two general-
purpose integer pipelines and a pipelined floating-point unit, allowing the processor to
execute two integer instructions simultaneously. A software-transparent dynamic branch-
prediction mechanism minimizes pipeline stalls due to branches. Pentium processors with
MMX technology add additional stages to the pipeline. The integration of the MMX pipeline
with the integer pipeline is very similar to that of the floating-point pipe.

Pentium processors can issue two instructions every clock cycle, one in each pipe. The first
logical pipe is referred to as the “U” pipe, and the second as the “V” pipe. During decoding of
any given instruction, the next two instructions are checked, and, if possible, they are issued
such that the first one executes in the U-pipe and the second in the V-pipe. If it is not possible
to issue two instructions, then the next instruction is issued to the U-pipe and no instruction is
issued to the V-pipe.

When instructions execute in the two pipes, their behavior is exactly the same as if they were
executed sequentially. When a stall occurs, successive instructions are not allowed to pass
the stalled instruction in either pipe. Figure 2-1 shows the pipelining structure for this
scheme:

OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-2

D1 WBF EFP D2

E2E1

E2E1 E3

WM/M2Mex M 3 WMul

MMX pipeline integrated in integer pipeline

Decoupled stages of MMX Pipe

Integer pipeline only

Figure 2-1 . MMXTM Pipeline Structure

Pentium processors with MMX technology add an additional stage to the integer pipeline.

The instruction bytes are prefetched from the code cache in the prefetch (PF) stage, and they
are parsed into instructions in the fetch (F) stage. Additionally, any prefixes are decoded in
the F stage.

Instruction parsing is decoupled from the instruction decoding by means of an instruction
First In, First Out (FIFO) buffer, which is situated between the F and Decode 1 (D1) stages.
The FIFO has slots for up to four instructions. This FIFO is transparent; it does not add
additional latency when it is empty.

During every clock cycle, two instructions can be pushed into the instruction FIFO
(depending on availability of the code bytes, and on other factors such as prefixes).
Instruction pairs are pulled out of the FIFO into the D1 stage. Since the average rate of
instruction execution is less than two per clock, the FIFO is normally full. As long as the
FIFO is full, it can buffer any stalls that may occur during instruction fetch and parsing. If
such a stall occurs, the FIFO prevents the stall from causing a stall in the execution stage of
the pipe. If the FIFO is empty, then an execution stall may result from the pipeline being
“starved” for instructions to execute. Stalls at the FIFO entrance may result from long
instructions or prefixes (see Sections 3.2.3 and 3.4.2).

The following chart details the MMX pipeline on superscalar processors and the conditions
in which a stall may occur in the pipeline.

OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-3

Mex Stage: execution clock for MMX instruction: ALU,
shift pack and unpack are executed and completed in this clock.
First clock of multiply instructions. No stall conditions.

PF

F

D1

D2

Mex

Wm/M2

M3

Wmul

PF Stage: Prefetches Instructions

Fetch Stage: The prefetched instructions bytes are parsed
into instructions. The prefixes are decoded and up to two
instructions are pushed into the FIFO. Two MMX TM instructions
can be pushed if each of the instructions are less than 7 in bytes
length.

D1 Stage: Integer, Floating-point and MMX instructions
are decoded in the D1 pipe stage.

D2 Stage: Source values are read, when an AGI is detected
a 1 clock delay is inserted into the V-Pipe pipeline.

E Stage: The instruction is committed for execution.

WM/M2 Stage: Single clock operations are written
Second stage of multiplier pipe. No stall conditions.

M3 Stage: Third stage of multiplier pipe. No stall conditions.

Wmul Stage: Write of multiplier result. No stall conditions.

E

 Figure 2-2. MMXTM Instruction Flow in a Pentium  Family Processor with MMX Technology

OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-4

Table 2-1 details the functional units, latency, throughput, and execution pipes for each type
of MMX instruction.

Table 2-1. MMX TM Instructions and Execution Units

Operation
Number of

Functional Units Latency Throughput
Execution

Pipes

ALU 2 1 1 U and V

Multiplexer 1 3 1 U or V

Shift/pack/unpack 1 1 1 U or V

Memory access 1 1 1 U only

Integer register access 1 1 1 U only

• The Arithmetic Logic Unit (ALU) executes arithmetic and logic operations (that is, add,
subtract, xor, and).

• The Multiplier unit performs all multiplication operations. Multiplication requires three
cycles but can be pipelined, resulting in one multiplication operation every clock cycle.
The processor has only one multiplier unit which means that multiplication instructions
cannot pair with other multiplication instructions. However, the multiplication
instructions can pair with other types of instructions. They can execute in either the U- or
V-pipes.

• The Shift unit performs all shift, pack and unpack operations. Only one shifter is
available so shift, pack and unpack instructions cannot pair with other shift unit
instructions. However, the shift unit instructions can pair with other types of
instructions. They can execute in either the U- or V-pipes.

• MMX Instructions that access memory or integer registers can only execute in the U-pipe
and cannot be paired with any instructions that are not MMX instructions.

• After updating an MMX register, two clock cycles must pass before that MMX register
can be moved to either memory or to an integer register.

Information on pairing requirements can be found in Section 3.3.

Additional information on instruction format can be found in the Intel Architecture MMXTM

Technology Programmer’s Reference Manual, (Order Number 243007).

2.1.2. DYNAMIC EXECUTION (P6-FAMILY) PIPELINE

P6-family processors use a Dynamic Execution architecture that blend out-of-order and
speculative execution with hardware register renaming and branch prediction. These
processors feature an in-order issue pipeline, which breaks Intel386TM processor
macroinstructions up into simple, micro-operations called micro-ops (or uops), and an out-of-
order, superscalar processor core, which executes the micro-ops. The out-of-order core of the

OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-5

processor contains several pipelines to which integer, jump, floating-point,
and memory execution units are attached. Several different execution units may be clustered
on the same pipeline: for example, an integer address logic unit and the floating-point
execution units (adder, multiplier, and divider) share a pipeline. The data cache is pseudo-
dual ported via interleaving, with one port dedicated to loads and the other to stores. Most
simple operations (integer ALU, floating-point add, even floating-point multiply) can be
pipelined with a throughput of one or two operations per clock cycle. Floating-point divide is
not pipelined. Long latency operations can proceed in parallel with short latency operations.

The P6-family pipeline is comprised of three parts: the In-Order Issue Front-end, the Out-of-
Order Core and the In-Order Retirement unit. Details about the In-Order Issue Front-end
follow below.

BTB0

BTB1

IFU0

IFU1

IFU2

ID0

ID1

ROB
Rd

RAT

IFU: Instruction Cache Unit

IFU1: In this stage 16 byte instruction packets are fetched.
 The packets are aligned on 16-byte boundaries.

IFU2: Instruction Predecode: double buffered: 16 byte
 packets aligned on any boundary.

ID0: Instruction Decode

ID1: Decode 1stage: decoder limits
 = at most 3 macro-instructions per cycle
 = at most 6 uops (411) per cycle
 = at most 3 uops per cycle exit the queue
 = instructions <= 7 bytes in length

Register Allocation: RAT
Decode IP relative branches
 = at most one per cycle
 = Branch information sent to BTB0 pipe stage
Rename = partial and flag stalls
Allocate resources = The pipeline stalls if the ROB
is full.

Re-order buffer Read
 = at most 2 completed physical register reads per cycle

Figure 2-3. Out-Of-Order Core and Retirement Pipeline

OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-6

Since the dynamic execution processors execute instructions out of order, the most important
consideration in performance tuning is making sure enough micro-ops are ready for
execution. Correct branch prediction and fast decoding are essential to getting the most
performance out of the In-Order Front-End. Branch prediction and the branch target buffer
are detailed in Section 2.3. Decoding is discussed below.

During every clock cycle, up to three Intel Architecture macro instructions can be decoded in
the ID1 pipestage. However, if the instructions are complex or are over seven bytes then the
decoder is limited to decoding fewer instructions.

The decoders can decode:

1. Up to three macro-instructions per clock cycle.

2. Up to six micro-ops per clock cycle.

3. Macro-instructions up to seven bytes in length.

P6-family processors have three decoders in the D1 pipestage. The first decoder is capable
of decoding one IA macro-instruction of four or fewer micro-ops in each clock cycle. The
other two decoders can each decode an IA instruction of one micro-op in each clock cycle.
Instructions composed of more than four micro-ops will take multiple cycles to decode.
When programming in assembly language, scheduling the instructions in a 4-1-1 micro-op
sequence increases the number of instructions that can be decoded each clock cycle. In
general:

• Simple instructions of the register-register form are only one micro-op.

• Load instructions are only one micro-op.

• Store instructions have two micro-ops.

• Simple read-modify instructions are two micro-ops.

• Simple instructions of the register-memory form have two to three micro-ops.

• Simple read-modify write instructions are four micro-ops.

• Complex instructions generally have more than four micro-ops, therefore they will take
multiple cycles to decode.

For the purpose of counting micro-ops, MMX instructions are simple instructions. See
Optimizations for Intel’s 32-bit Processors, Application Note AP-526 (Order Number
242816), Appendix D for a table that specifies the number of micro-ops for each instruction
in the Intel Architecture instruction set.

Once the micro-ops are decoded, they will be issued from the In-Order Front-End into the
Reservation Station (RS), which is the beginning pipestage of the Out-of-Order core. In the
RS, the micro-ops wait until their data operands are available. Once a micro-op has all data
sources available, it will be dispatched from the RS to an execution unit. If a micro-op
enters the RS in a data-ready state (that is, all data is available), then the micro-op will be

OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-7

immediately dispatched to an appropriate execution unit, if one is available.
In this case, the micro-op will spend very few clock cycles in the RS. All of the execution
units are clustered on ports coming out of the RS. Once the micro-op has been executed it
returns to the ROB, and waits for retirement. In this pipestage, all data values are written
back to memory and all micro-ops are retired in-order, three at a time. The figure below
provides details about the Out-of-Order core and the In-Order retirement pipestages.

Reservation station (RS): A uop can remain in the RS for
many cycles or simply move past to an execution unit.
On the average, a micro-op will remain in the RS for 3
cycles or pipestages

Execution pipelines
Coming out of the RS are multiple pipelines grouped
into five clusters.

RS

Port 2

Port 3

Port 4

Port 1

Port 0

Rob
rd

Additional information regarding each
pipeline is in the following table.

ROB
wb

RRF

Re-order buffer writeback (ROB wb)

Retirement (RRF): At most 3 micro-ops are retired per cycle.
Taken branches must retire in the first slot.

Figure 2-4. Out-Of-Order Core and Retirement Pipeline

OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-8

Table 2-2. Dynamic Execution (P6-Family) Processor Execution Unit Pipelines

Port Execution Units Latency/Thruput

0 Integer ALU Unit
LEA instructions
Shift instructions

Integer Multiplication instruction

Floating-Point Unit
FADD instruction
FMUL
FDIV Unit

MMX ALU Unit

MMX Multiplier Unit

Latency 1, Thruput 1/cycle
Latency 1, Thruput 1/cycle
Latency 1, Thruput 1/cycle

Latency 4, Thruput 1/cycle

Latency 3, Thruput 1/cycle
Latency 5, Thruput 1/2cycle1,2

Latency long and data dep.,
Thruput non-pipelined

Latency 1, Thruput1/cycle

Latency 3, Thruput 1/cycle

1 Integer ALU Unit

MMX ALU Unit

MMX Shift Unit

Latency 1, Thruput 1/cycle

Latency 1, Thruput 1/cycle

Latency 1, Thruput 1/cycle

2 Load Unit Latency 3 on a cache hit,
Thruput 1/cycle4

3 Store Address Unit Latency 3 (not applicable)
Thruput 1/cycle3

4 Store Data Unit Latency 1 (not applicable)
Thruput 1/cycle

Notes:

1. The FMUL unit cannot accept a second FMUL within the cycle after it has accepted the first. This is NOT
the same as only being able to do FMULs on even clock cycles.

2. FMUL is pipelined one every two clock cycles. One way of thinking about this is to imagine that a P6-
family processor has only a 32x32->32 multiply pipelined.

3. Store latency is not all that important from a dataflow perspective. The latency that matters is with
respect to determining when they can retire and be completed. They also have a different latency with
respect to load forwarding. For example, if the store address and store data of a particular address, for
example 100, dispatch in clock cycle 10, a load (of the same size and shape) to the same address 100
can dispatch in the same clock cycle 10 and not be stalled.

4. A load and store to the same address can dispatch in the same clock cycle.

OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-9

2.2 Caches

The on-chip cache subsystem of processors with MMX technology consists of two 16 K four-
way set associative caches with a cache line length of 32 bytes. The caches employ a write-
back mechanism and a pseudo-LRU replacement algorithm. The data cache consists of eight
banks interleaved on four-byte boundaries.

On Pentium processors with MMX technology, the data cache can be accessed
simultaneously from both pipes, as long as the references are to different cache banks. On
the dynamic execution (P6-family) processors, the data cache can be accessed simultaneously
by a load instruction and a store instruction, as long as the references are to different cache
banks. The delay for a cache miss on the Pentium processor with MMX technology is eight
internal clock cycles. On dynamic execution processors with MMX technology the
minimum delay is ten internal clock cycles.

2.3 Branch Target Buffer

Branch prediction for Pentium and dynamic execution processors with MMX technology is
functionally identical except for one minor exception which will be discussed in Section
2.3.1.

The Branch Target Buffer (BTB) stores the history of the previously seen branches and their
targets. When a branch is prefetched, the BTB feeds the target address directly into the
Instruction Fetch Unit (IFU). Once the branch is executed, the BTB is updated with the target
address. Using the branch target buffer, branches that have been seen previously are
dynamically predicted. The branch target buffer prediction algorithm includes pattern
matching and up to four prediction history bits per target address. For example, a loop which
is four iterations long should have close to 100% correct prediction. Adhering to the
following guideline will improve branch prediction performance:

• Program conditional branches (except for loops) so that the most executed branch
immediately follows the branch instruction (that is, fall through).

Additionally, processors with MMX technology have a Return Stack Buffer (RSB), which
can correctly predict return addresses for procedures that are called from different locations
in succession. This increases further the benefit of unrolling loops which contain function
calls, and removes the need to in-line certain procedures.

OVERVIEW OF PROCESSOR ARCHITECTURE AND PIPELINES

2-10

2.3.1 CONSECUTIVE BRANCHES

On the Pentium processor with MMX technology, branches may be mispredicted when the
last byte of two branch instructions occur in the same aligned four byte section of memory,
as shown in the figure below.

Byte 2 Byte 3 Byte 0 Byte 1 Byte 2 Byte 3

Branch A

Last byte of
Branch A

Last byte of
Branch B

Branch B

Byte 1Byte 0

Figure 2-5. Consecutive Branch Example

This may occur when there are two consecutive branches with no intervening instructions
and the second instruction is only two bytes long (such as a jump relative +/- 128).

To avoid a misprediction in these cases, make the second branch longer by using a 16-bit
relative displacement on the branch instruction instead of an 8-bit relative displacement.

2.4 Write Buffers

Processors with MMX technology have four write buffers (versus two in Pentium processors
without MMX technology). Additionally, the write buffers can be used by either the U-pipe
or the V-pipe (versus one corresponding to each pipe in Pentium processors without MMX
technology). Performance of critical loops can be improved by scheduling the writes to
memory; when you expect to see write misses, you should schedule the write instructions in
groups no larger than four, then schedule other instructions before scheduling further write
instructions.

3
Guidelines for
Developing MMXTM

Code

INTEL CONFIDENTIAL
(until publication date)

3-1

CHAPTER 3
GUIDELINES FOR DEVELOPING MMX TM CODE

The following guidelines will help you develop fast and efficient MMX code that scales well
across all processors with MMX technology.

3.1 List of Rules and Suggestions

The following section provides a list of rules and suggestions.

3.1.1 RULES

• Use a current generation compiler that will produce an optimized application. This will
help you generate good code from the start.

• Avoid partial register stalls. See Section 3.2.4.

• Pay attention to the branch prediction algorithm (See Section 3.2.5). This is the most
important optimization for dynamic execution (P6-family) processors. By improving
branch predictability, your code will spend fewer cycles fetching instructions.

• Schedule your code to maximize pairing. See Section 3.3.

• Make sure all data are aligned. See Section 4.6.

• Arrange code to minimize instruction cache misses and optimize prefetch. See Section
3.5.

• Do not intermix MMX instructions and floating-point instructions. See Section 4.3.1.

• Avoid prefixed opcodes other than 0F. See Section 3.2.3.

• Avoid small loads after large stores to the same area of memory. Avoid large loads after
small stores to the same area of memory. Load and store data to the same area of
memory using the same data sizes and address alignments. See Section 3.6.1.

• Use the OP, REG, MEM format whenever possible. This format helps to free registers
and reduce cycles without generating unnecessary loads. See Section 3.4.1.

• Always put an EMMS at the end of all sections of MMX instructions. See Section 4.4.

• Optimize cache data bandwidth to MMX registers. See Section 3.6.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-2

3.1.2 SUGGESTIONS

• Arrange code so that forward conditional branches are usually not taken, and backward
conditional branches are usually taken.

• Align frequently executed branch targets on 16-byte boundaries.

• Unroll loops to schedule instructions.

• Use software pipelining to schedule latencies and functional units.

• Always pair CALL and RET (return) instructions.

• Avoid self-modifying code.

• Avoid placing data in the code segment.

• Calculate store addresses as soon as possible.

• Avoid instructions that contain three or more micro-ops or instructions that are more than
7 bytes long. If possible, use instructions that require one micro-op.

• Avoid using two 8-bit loads to produce a 16-bit load.

• Cleanse partial registers before calling callee-save procedures.

• Resolve blocking conditions, such as store addresses, as far as possible away from loads
they may block.

• In general, an N-byte quantity which is directly supported by the processor (8-bit bytes,
16-bit words, 32-bit doublewords, and 32-bit, 64-bit, and 80-bit floating-point numbers)
should be aligned on the next highest power-of-two boundary. Avoid misaligned data.

− Align 8-bit data on any boundary.

− Align 16-bit data to be contained within an aligned 4-byte word.

− Align 32-bit data on any boundary which is a multiple of four.

− Align 64-bit data on any boundary which is a multiple of eight.

− Align 80-bit data on a 128-bit boundary (that is, any boundary which is a multiple of
16 bytes).

GUIDELINES FOR DEVELOPING MMX TM CODE

3-3

3.2 General Optimization Topics

This section covers general optimization techniques that are important for the Intel
Architecture.

3.2.1 ADDRESSING MODES

On the Pentium processor, when a register is used as the base component, an additional clock
cycle is used if that register is the destination of the immediately preceding instruction
(assuming all instructions are already in the prefetch queue). For example:

add esi, eax ; esi is destination register
mov eax, [esi] ; esi is base, 1 clock penalty

Since the Pentium processor has two integer pipelines, a register used as the base or index
component of an effective address calculation (in either pipe) causes an additional clock
cycle if that register is the destination of either instruction from the immediately preceding
clock cycle. This effect is known as Address Generation Interlock or AGI. To avoid the
AGI, the instructions should be separated by at least one cycle by placing other instructions
between them. The new MMX registers cannot be used as base or index registers, so the AGI
does not apply for MMX register destinations.

Dynamic execution (P6-family) processors incur no penalty for the AGI condition.

Figure 3-1. Pipeline Example of AGI Stall

GUIDELINES FOR DEVELOPING MMX TM CODE

3-4

Note that some instructions have implicit reads/writes to registers. Instructions that generate
addresses implicitly through ESP (PUSH, POP, RET, CALL) also suffer from the AGI
penalty. Examples follow:

sub esp, 24
 ; 1 clock cycle stall
push ebx
mov esp, ebp
 ;1 clock cycle stall
pop ebp

PUSH and POP also implicitly write to esp. This, however, does not cause an AGI when the
next instruction addresses through ESP. Pentium processors "rename" ESP from PUSH and
POP instructions to avoid the AGI penalty. An example follows:

push edi ; no stall
mov ebx, [esp]

On Pentium processors with MMX technology, instructions which include both an immediate
and displacement fields are pairable in the U-pipe. When it is necessary to use constants, it
is usually more efficient to use immediate data instead of loading the constant into a register
first. If the same immediate data is used more than once, however, it is faster to load the
constant in a register and then use the register multiple times. Following is an example:

mov result, 555 ; 555 is immediate, result is
; displacement

mov word ptr [esp+4], 1 ; 1 is immediate,4 is displacement

Since MMX instructions have two-byte opcodes (0x0F opcode map), any MMX instruction
which uses base or index addressing with a 4-byte displacement to access memory will have
a length of eight bytes. Instructions over seven bytes can limit decoding and should be
avoided where possible (see Section 3.4.2). It is often possible to reduce the size of such
instructions by adding the immediate value to the value in the base or index register, thus
removing the immediate field.

The Intel486TM processor has a one clock penalty when using a full register immediately after
a partial register was written. The Pentium processor is neutral in this respect. This is called
a partial stall condition. The following example relates to the Pentium processor.

mov al, 0 ; 1
mov [ebp], eax ; 2 - No delay on the Pentium processor

The following example relates to the Intel486 processor.
mov al, 0 ; 1
 ; 2 1 clock penalty
mov [ebp], eax ; 3

GUIDELINES FOR DEVELOPING MMX TM CODE

3-5

Dynamic execution (P6-family) processors exhibit the same type of stall as
the Intel486 processors, except that the cost is much higher. The read is stalled until the
partial write retires, which can be considerably longer than one clock cycle.

For best performance, avoid using a large register (for example, EAX) after writing a partial
register (for example, AL, AH, AX) which is contained in the large register. This guideline
will prevent partial stall conditions on dynamic execution processors and applies to all of the
small and large register pairs:

AL AH AX EAX
BL BH BX EBX
CL CH CX ECX
DL DH DX EDX

SP ESP
EP EBP
SI ESI
DI EDI

Additional information on partial register stalls is in Section 3.2.4.

3.2.2 ALIGNMENT

This section provides information on aligning code and data for Pentium and dynamic
execution (P6-family) processors.

3.2.2.1 Code

Pentium and dynamic execution (P6-family) processors have a cache line size of 32 bytes.
Since the prefetch buffers fetch on 16-byte boundaries, code alignment has a direct impact on
prefetch buffer efficiency.

For optimal performance across the Intel Architecture family, it is recommended that:

• Loop entry labels should be aligned to the next 0 MOD 16 when it is less than eight bytes
away from that boundary.

• Labels that follow a conditional branch should not be aligned.

• Labels that follow an unconditional branch or function call should be aligned to the next
0 MOD 16 when it is less than eight bytes away from that boundary.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-6

3.2.2.2 Data

A misaligned access in the data cache or on the bus costs at least three extra clock cycles on
the Pentium processor. A misaligned access in the data cache, which crosses a cache line
boundary, costs nine to twelve clock cycles on dynamic execution (P6-family) processors.
Intel recommends that data be aligned on the following boundaries for the best execution
performance on all processors:

3.2.2.1 2-Byte Data

A 2-byte object should be fully contained within an aligned 4-byte word (that is, its binary
address should be xxxx00, xxxx01, xxxx10, but not xxxx11).

3.2.2.2.2 4-Byte Data

The alignment of a 4-byte object should be on a 4-byte boundary.

3.2.2.2.3 8-Byte Data

An 8-byte datum (64 bit, for example, double precision real data types, all MMX packed
register values) should be aligned on an 8-byte boundary.

3.2.3 PREFIXED OPCODES

On Pentium processors, a prefix on an instruction can delay the parsing and inhibit pairing
of instructions.

The following list highlights the effects of instruction prefixes on the FIFO:

• There is no penalty on 0F-prefix instructions.

• An instruction with a 66h or 67h prefix takes one clock for prefix detection, another
clock for length calculation, and another clock to enter the FIFO (three clock cycles
total). It must be the first instruction to enter the FIFO, and a second instruction can be
pushed with it.

• Instructions with other prefixes (not 0Fh, 66h, or 67h) take one additional clock cycle to
detect each prefix. These instructions are pushed into the FIFO only as the first
instruction. An instruction with two prefixes will take three clock cycles to be pushed
into the FIFO (two clock cycles for the prefixes and one clock cycle for the instruction).
A second instruction can be pushed with the first into the FIFO in the same clock cycle.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-7

The impact on performance exists only when the FIFO does not hold at least
two entries. As long as the decoder (D1 stage) has two instructions to decode there is no
penalty. The FIFO will quickly become empty if the instructions are pulled from the FIFO at
the rate of two per clock cycle. So, if the instructions just before the prefixed instruction
suffer from a performance loss (for example, no pairing, stalls due to cache misses,
misalignments, etc.), then the performance penalty of the prefixed instruction may be
masked.

On dynamic execution (P6-family) processors, instructions longer than seven bytes in length
limit the number of instructions decoded in each cycle (see Section 2.1.2). Prefixes add one
to two bytes to the length of an instruction, possibly limiting the decoder.

It is recommended that, whenever possible, prefixed instructions not be used or that they be
scheduled behind instructions which themselves stall the pipe for some other reason.

See Section 3.3 for more information on pairing of prefixed instructions.

3.2.4 PARTIAL REGISTER STALLS ON DYNAMIC EXECUTION (P6-FAMILY)
PROCESSORS

On dynamic execution (P6-family) processors, when a 32-bit register (for example, EAX) is
read immediately after 16 or 18-bit register (for example, AL, AH, AX) is written, the read is
stalled until the write retires (a minimum of seven clock cycles). Consider the example
below. The first instruction moves the value 8 into the AX register. The following
instruction accesses the large register EAX. This code sequence results in a partial register
stall.

MOV AX, 8

ADD ECX, EAX Partial Stall occurs on access of the EAX register

This applies to all of the 8- and 16-bit/32-bit register pairs:

AL AH AX EAX

BL BH BX EBX

CL CH CX ECX

DL DH DX EDX

Small Register Large Register

Pentium processors do not exhibit this penalty.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-8

Because P6-family processors can execute code out of order, the instructions need not be
immediately adjacent for the stall to occur. The following example also contains a partial
stall:

MOV AL, 8

MOV EDX, 0x40

MOV EDI, new_value

ADD EDX, EAX Partial Stall Occurs on access of the EAX register

In addition, any micro-ops that follow the stalled micro-op will also wait until the clock
cycle after the stalled micro-op continues through the pipe. In general, to avoid stalls, do not
read a large (32-bit) register (EAX) after writing a small (16- or 18-bit) register (AL) which
is contained in the large register.

Special cases of reading and writing small and large register pairs have been implemented in
dynamic execution processors in order to simplify the blending of code across processor
generations. The special cases include the XOR and SUB instructions as shown in the
following examples:

 xor eax, eax
 movb al, mem8
 use eax <------- no partial stall

 xor eax, eax
 movw ax, mem16
 use eax <------- no partial stall

 sub ax, ax
 movb al, mem8
 use ax <------- no partial stall

 sub eax, eax
 movb al, mem8
 use ax <------- no partial stall

 xor ah, ah
 movb al, mem8
 use ax <------- no partial stall

In general, when implementing this sequence, always zero the large register then write to the
lower half of the register. The special cases have been implemented for XOR and SUB when
using EAX, EBX, ECX, EDX, EBP, ESP, EDI, and ESI.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-9

3.2.5 BRANCH PREDICTION INFORMATION

Branch optimizations are the most important optimizations for dynamic execution (P6-
family) processors. These optimizations also benefit the Pentium processor.

3.2.5.1 Dynamic Branch Prediction

Three elements of dynamic branch prediction are important:

1. If the instruction address is not in the BTB, execution is predicted to continue without
branching (fall through).

2. Predicted taken branches have a one clock delay.

3. The BTB stores a 4-bit history of branch predictions.

The first element suggests that branches should be followed by code that will be executed.
Never follow a branch with data.

To avoid the delay of one clock for taken branches, simply insert additional work between
branches that are expected to be taken. This delay restricts the minimum size of loops to two
clock cycles. If you have a very small loop that takes less than two clock cycles, unroll it.

The branch predictor correctly predicts regular patterns of branches. For example, it correctly
predicts a branch within a loop that is taken on every odd iteration, and not taken on every
even iteration.

3.2.5.2 Static Prediction on Dynamic Execution (P6-F amily) Processors

On dynamic execution processors, branches that do not have a history in the BTB are
predicted using a static prediction algorithm. The static prediction algorithm follows:

• Predict unconditional branches taken.

• Predict backward conditional branches taken. This rule is suitable for loops.

• Predict forward conditional branches to fall through.

The performance penalty for static prediction is six clocks. The penalty for NO prediction or
an incorrect prediction is greater than twelve clocks. The following chart illustrates the static
branch prediction algorithm:

GUIDELINES FOR DEVELOPING MMX TM CODE

3-10

forward conditional branches not taken (fall through)

If <condition> {
...

} Unconditional Branches taken
JMP

for <condition> {
...

}

Backward Conditional Branches are taken

loop {

} <condition>

Figure 3-2. Dynamic Execution (P6-Family) Static Branch Prediction Algorithm

The following examples illustrate the basic rules for the static prediction algorithm.

A.Begin: MOV EAX, mem32
AND EAX, EBX
IMUL EAX, EDX
SHLD EAX, 7
JC Begin

In this example, the backwards (JC Begin) branch is not in the BTB the first time through,
therefore, the BTB will not issue a prediction. The static predictor, however, will predict the
branch to be taken, so a misprediction will not occur.

B. MOV EAX, mem32
AND EAX, EBX
IMUL EAX, EDX
SHLD EAX, 7
JC Begin
MOV EAX, 0

Begin: Call Convert

GUIDELINES FOR DEVELOPING MMX TM CODE

3-11

The first branch instruction (JC Begin) in this code segment is a
conditional forward branch. It is not in the BTB the first time through, but the static
predictor will predict the branch to fall through.

The Call Convert instruction will not be predicted in the BTB the first time it is seen by
the BTB, but the call will be predicted as taken by the static prediction algorithm. This is
correct for an unconditional branch.

In these examples, the conditional branch has only two alternatives: taken and not taken.
Indirect branches, such as switch statements, computed GOTOs or calls through pointers, can
jump to an arbitrary number of locations. If the branch has a skewed target destination (that
is, 90% of the time it branches to the same address), then the BTB will predict accurately
most of the time. If, however, the target destination is not predictable, performance can
degrade quickly. Performance can be improved by changing the indirect branches to
conditional branches that can be predicted.

3.3 Scheduling

Scheduling or pairing should be done in a way that optimizes performance across all
processor generations. The following is a list of pairing and scheduling rules that can
improve the speed of your code on Pentium and P6-family processors. In some cases, there
are tradeoffs involved in reaching optimal performance on a specific processor; these
tradeoffs vary based on the specific characteristics of the application. On superscalar
Pentium processors, the order of instructions is very important to achieving maximum
performance.

Reordering instructions increases the possibility of issuing two instructions simultaneously.
Instructions that have data dependencies should be separated by at least one other instruction.

This section describes the rules you need to follow to pair MMX instructions with integer
instructions. For each of the conditions listed in the following table, the subsection lists the
rules that apply.

Several types of rules must be observed to allow pairing:

• General pairing rules: Rules which depend on the machine status and do not depend on
the specific opcodes. They are also valid for integer and FP. For example, single-step
should be disabled to allow instruction pairing.

• Integer pairing rules: Rules for pairing integer instructions.

• MMX instruction pairing rules for a pair of MMX instructions: rules that allow two
MMX instructions simultaneously because only one multiplier unit exists.

• MMX and integer instruction pairing rules: Rules that allow pairing of one integer and
one MMX instruction.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-12

Note

Floating-point instructions are not pairable with MMX instructions.

3.3.1 GENERAL PAIRING RULES

For general pairing rules on Pentium processors, consult Optimizations for Intel’s 32-bit
Processors, Application Note AP-526, (Order Number 242816). The Pentium processor with
MMX technology has relaxed some of the general pairing rules:

• Pentium processors do not pair two instructions if either of them is longer than seven
bytes. Pentium processors with MMX technology do not pair two instructions if the first
instruction is longer than eleven bytes or the second instruction is longer than seven
bytes. Prefixes are not counted.

• Prefixed instructions are pairable in the U-pipe. Instructions with 0Fh, 66H or 67H
prefixes are also pairable in the V-pipe.

3.3.2 INTEGER PAIRING RULES

Pairing cannot be performed when the following two conditions occur:

1. The next two instructions are not pairable instructions (see the table below for an overview
of instructions that are pairable; consult Optimizations for Intel’s 32-bit Processors,
Application Note AP-526, Appendix A contains a complete list of pairing characteristics
of the individual instructions). In general, most simple ALU instructions are pairable.

2. The next two instructions have some type of register contention (implicit or explicit).
There are some special exceptions to this rule; in a few cases, register contention can
occur with pairing. These cases are explained in Section 3.3.1.2.

Table 3-1. Integer Instruction Pairing

Integer Instruction Pairable in U-Pipe Integer Instruction Pairable in V-Pipe

mov r, r alu r, i push r mov r, r alu r, i push r
mov r, m alu m, i push i mov r, m alu m, i push I
mov m, r alu eax, i pop r mov m, r alu eax, i pop r
mov r, i alu m, r nop mov r, i alu m, r jmp near
mov m, i alu r, m shift/rot by 1 mov m, i alu r, m jcc near

mov eax, m inc/dec r shift by imm mov eax, m inc/dec r 0F jcc
mov m, eax inc/dec m test reg, r/m mov m, eax inc/dec m call near

alu r, r lea r, m test acc, imm alu r, r lea r, m nop
test reg, r/m test acc, imm

GUIDELINES FOR DEVELOPING MMX TM CODE

3-13

3.3.2.1 Instruction Set Pairing

3.3.2.1.1 Instructions that Cannot be Paired (NP)

• shift/rotate with the shift count in cl.

• Long-Arithmetic instructions, for example: MUL, DIV.

• Extended instructions, for example: RET, ENTER, PUSHA, MOVS, STOS, LOOPNZ.

• Some Floating-Point Instructions, for example: FSCALE, FLDCW, FST.

• Inter-segment instructions, for example: PUSH sreg, CALL far.

Also see Section 3.3.2.2, No Pairing Allowed because of Register Dependencies.

3.3.2.1.2 Pairable Instructions Issued to U or V-pipes (UV)

• Most 8/32 bit ALU operations, for example: ADD, INC, XOR.

• All 8/32 bit compare instructions, for example: CMP, TEST.

• All 8/32 bit stack operations using registers, for example: PUSH reg, POP reg.

3.3.2.1.3 Pairable Instructions Issued to U-pipe (PU)

The instructions listed below must be issued to the U-pipe and can pair with a suitable
instruction in the V-Pipe. These instructions never execute in the V-pipe.

• Carry and borrow instructions, for example: ADC, SBB.

• Prefixed instructions, except 0Fh, 66H or 67H prefixed instructions (see Section 3.2.3).

• Shift with immediate.

• Some Floating-Point Operations, for example: FADD, FMUL, FLD.

3.3.2.1.4 Pairable Instructions Issued to V-pipe (PV)

These instructions can execute in either the U-pipe or the V-pipe but they are only paired
when they are in the V-pipe. Since these instructions change the instruction pointer (eip),
they cannot pair in the U-pipe since the next instruction may not be adjacent. Even when a
branch in the U-pipe is predicted “not taken”, the current instruction will not pair with the
following instruction.

• Simple control transfer instructions, for example: call near, jmp near, jcc. This
includes both the jcc short and the jcc near (which has a 0f prefix) versions of the
conditional jump instructions.

• fxch

GUIDELINES FOR DEVELOPING MMX TM CODE

3-14

3.3.2.2 No Pairing Allowed Because of Register Dependencies

Instruction pairing is also affected by instruction operands. The following combinations
cannot be paired because of register contention. Exceptions to these rules are given in the
next section.
1.The first instruction writes to a register that the second one reads from (flow-dependence).

An example follows:
 mov eax, 8
 mov [ebp], eax

2. Both instructions write to the same register (output-dependence), as shown below.
 mov eax, 8
 mov eax, [ebp]

This limitation does not apply to a pair of instructions which write to the EFLAGS register
(for example, two ALU operations that change the condition codes). The condition code after
the paired instructions execute will have the condition from the V-pipe instruction.

Note that two instructions in which the first reads a register and the second writes to a
condition knowing it (anti-dependence) may be paired. See following example:

 mov eax, ebx
 mov ebx, [ebp]

For purposes of determining register contention, a reference to a byte or word register is
treated as a reference to the entire 32-bit register. Therefore,

 mov al, 1
 mov ah, 0

do not pair due to output dependencies on the contents of the EAX register.

3.3.2.3 Special Pairs

There are some special instructions that can be paired in spite of our “general” rule above.
These special pairs overcome register dependencies and most involve implicit reads/writes to
the esp register or implicit writes to the condition codes.

Stack Pointer :
• push reg/imm; push reg/imm

• push reg/imm; call

• pop reg ; pop reg

Condition Codes:
• cmp ; jcc

• add ; jne

Note that special pairs that consist of PUSH/POP instructions may have only immediate or
register operands, not memory operands.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-15

3.3.2.4 Restrictions On Pair Execution

There are some pairs that may be issued simultaneously but will not execute in parallel. The
following two rules must be followed to pair an MMX instruction in the U-pipe and an
integer instruction in the V-pipe.

1. If both instructions access the same data-cache memory bank, then the second request
(V-pipe) must wait for the first request to complete. A bank conflict occurs when bits 2
through 4 are the same in the two physical addresses. A bank conflict incurs a one clock
penalty on the V-pipe instruction .

2. Inter-pipe concurrency in execution preserves memory-access ordering. A multi-cycle
instruction in the U-pipe will execute alone until its last memory access.

add eax, mem1
add ebx, mem2 ; 1
(add) (add) ; 2 2-cycle

The instructions above add the contents of the register and the value at the memory location,
then put the result in the register. An add with a memory operand takes two clocks to
execute. The first clock loads the value from cache and the second clock performs the
addition. Since there is only one memory access in the U-pipe instruction, the add in the V-
pipe can start in the same cycle.

add meml, eax ; 1
(add) ; 2
(add)add mem2, ebx ; 3
(add) ; 4
(add) ; 5

The above instructions add the contents of the register to the memory location and store the
result at the memory location. An add with a memory result takes three clocks to execute.
The first clock loads the value, the second performs the addition and the third stores the
result. When paired, the last cycle of the U-pipe instruction overlaps with the first cycle of
the V-pipe instruction execution.

No other instructions may begin execution until the instructions already executing have
completed.

To best expose opportunities for scheduling and pairing, it is better to issue a sequence of
simple instructions rather than a complex instruction that takes the same number of cycles.
The simple instruction sequence can take advantage of more issue slots. The load/store style
code generation requires more registers and increases code size. To compensate for the extra
registers needed, extra effort should be put into register allocation and instruction scheduling
so that extra registers are used only when parallelism increases.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-16

3.3.3 MMXTM INSTRUCTION PAIRING GUIDELINES

This section specifies guidelines for pairing MMX instructions with each other and with
integer instructions.

3.3.3.1 Pairing Two MMX TM Instructions:

• Two MMX instructions which both use the MMX shifter unit (pack, unpack, and shift
instructions) cannot pair since there is only one MMX shifter unit. Shift operations may
be issued in either the U-pipe or the V-pipe but not in both in the same clock cycle.

• Two MMX instructions which both use the MMX multiplier unit (pmull, pmulh, pmadd
type instructions) cannot pair since there is only one MMX multiplier unit. Multiply
operations may be issued in either the U-pipe or the V-pipe but not in both in the same
clock cycle.

• MMX instructions which access either memory or the integer register file can be issued
in the U-pipe only. Do not schedule these instructions to the V-pipe as they will wait and
be issued in the next pair of instructions (and to the U-pipe).

• The MMX destination register of the U-pipe instruction should not match the source or
destination register of the V-pipe instruction (dependency check).

• The EMMS instruction is not pairable.

• If either the CR0.TS or the CR0 are set, MMX instructions cannot go into the V-pipe.

3.3.3.2 Pairing an Integer Instruction in the U-Pipe with an MMX TM Instruction in
the V-Pipe

• The MMX instruction is not the first MMX instruction following a floating-point
instruction.

• The V-pipe MMX instruction does not access either memory or the integer register file.

• The U-pipe integer instruction is a pairable U-pipe integer instruction (see table 3-1
above).

3.3.3.3 Pairing an MMX TM Instruction in the U-Pipe with an Integer Instruction in
the V-Pipe

• The V-pipe instruction is a pairable integer V-pipe instruction (see Table 3-1 above).

• The U-pipe MMX instruction does not access either memory or the integer register file.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-17

3.3.3.4 Scheduling Rules

All MMX instructions may be pipelined including the multiply instructions. All instructions
take a single clock to execute except MMX multiply instructions which take three clocks.

Since multiply instructions take three clocks to execute, the result of a multiply instruction
can be used only by other instructions issued three clocks later. For this reason, avoid
scheduling a dependent instruction in the two instruction pairs following the multiply.

As mentioned in Section 2.1.1, the store of a register after writing the register must wait for
two clocks after the update of the register. Scheduling the store two clock cycles after the
update avoids a pipeline stall.

3.4 Instruction Selection

The following section describes instruction selection optimizations.

3.4.1 USING INSTRUCTIONS THAT ACCESS MEMORY

An MMX instruction may have two register operands ("OP reg, reg") or one register and one
memory operand ("OP reg, mem"), where OP represents the instruction operand and, reg
represents the register and mem represents memory. "OP reg, mem" instructions are useful,
in some cases, to reduce register pressure, increase the number of operations per cycle, and
reduce code size.

The following discussion assumes that the memory operand is present in the data cache. If it
is not, then the resulting penalty is usually large enough to obviate the scheduling effects
discussed in this section.

In Pentium processors, "OP reg, mem" MMX instructions do not have longer latency than
"OP reg, reg" instructions (assuming a cache hit). They do have more limited pairing
opportunities, however (see Section 3.3.1). In dynamic execution (P6-family) processors,
“OP reg, mem” MMX instructions translate into two micro-ops (as opposed to one uop for
the "OP reg, reg" instructions). Thus, they tend to limit decoding bandwidth (see Section
2.1.2) and occupy more resources than "OP reg, reg" instructions.

Recommended usage of "OP reg, mem" instructions depends on whether the MMX code is
memory-bound (that is, execution speed is limited by memory accesses). As a rule of thumb,
an MMX code section is considered to be memory-bound if the following inequality holds:

GUIDELINES FOR DEVELOPING MMX TM CODE

3-18

Instructions

2
< Non MMX Instructions+Memory Accesses

2

For memory-bound MMX code, Intel recommends to merge loads whenever the same
memory address is used more than once. This reduces the number of memory accesses.

Example:
OP MM0, [address A]
OP MM1, [address A]

becomes:
MOVQ MM2, [address A]
OP MM0, MM2
OP MM1, MM2

For MMX code that is not memory-bound, load merging is recommended only if the same
memory address is used more than twice. Where load merging is not possible, usage of “OP
reg, mem” instructions is recommended to minimize instruction count and code size.

Example:
MOVQ MM0, [address A]
OP MM1, MM0

becomes:
OP MM1, [address A]

In many cases, a "MOVQ reg, reg" and "OP reg, mem" can be replaced by a "MOVQ reg,
mem" and "OP reg, reg". This should be done where possible, since it saves one uop on
dynamic execution processors.

Example: (here OP is a symmetric operation)
MOVQ MM1, MM0 (1 micro-op)
OP MM1, [address A] (2 micro-ops)

becomes:
MOVQ MM1, [address A] (1 micro-op)
OP MM1, MM0 (1 micro-op)

GUIDELINES FOR DEVELOPING MMX TM CODE

3-19

3.4.2 INSTRUCTION LENGTH

On Pentium processors, instructions greater than seven bytes in length cannot be executed in
the V-pipe. In addition, two instructions cannot be pushed into the instruction FIFO (see
Section 2.1.1) unless both are seven bytes or less in length. If only one instruction is pushed
into the FIFO, pairing will not occur unless the FIFO already contains at least one
instruction. In code where pairing is very high (this often happens in MMX code) or after a
mispredicted branch, the FIFO may be empty, leading to a loss of pairing whenever the
instruction length is over seven bytes.

In addition, dynamic execution (P6-family) processors can only decode one instruction at a
time when an instruction is longer than seven bytes.

So, for best performance on all Intel processors, use simple instructions that are less than
eight bytes in length (see Section 3.4.1 for one way to reduce instruction size).

3.5 Cache Optimization

Cache behavior can dramatically affect the performance of your application. By having a
good understanding of how the cache works, you can structure your code to take best
advantage of cache capabilities. For more information on the structure of the cache, see
Section 2.2.

3.5.1 LINE FILL ORDER

When a data access to a cacheable address misses the data cache, the entire cache line is
brought into the cache from external memory. This is called a line fill. On Pentium and
dynamic execution (P6-family) processors, these data arrive in a burst composed of four
8-byte sections in the following burst order:

1st Address 2nd Address 3rd Address 4th Address

0h 8h 10h 18h

8h 0h 18h 10h

10h 18h 0h 8h

18h 10h 8h 0h

Data are available for use in the order that they arrive from memory. If an array of data is
being read serially, it is preferable to access it in sequential order so that each data item will
be used as it arrives from memory.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-20

3.5.2 DATA ALIGNMENT WITHIN A CACHE LINE

Arrays with a size which is a multiple of 32 bytes should start at the beginning of a cache
line. By aligning on a 32-byte boundary, you take advantage of the line fill ordering and
match the cache line size. Arrays with sizes which are not multiples of 32 bytes should begin
at 32- or 16-byte boundaries (the beginning or middle of a cache line). In order to align on a
16-or 32- byte boundary, you may need to pad the data. If this is necessary, try to locate data
(variables or constants) in the padded space.

3.5.3 WRITE ALLOCATION EFFECTS

Dynamic execution (P6-family) processors have a "write allocate by read-for-ownership"
cache, whereas the Pentium processor has a "no-write-allocate; write through on write miss"
cache.

On dynamic execution (P6-family) processors, when a write occurs and the write misses the
cache, the entire 32-byte cache line is fetched. On the Pentium processor, when the same
write miss occurs, the write is simply sent out to memory.

Write allocate is generally advantageous, since sequential stores are merged into burst writes,
and the data remains in the cache for use by later loads. This is why dynamic execution (P6-
family) processors adopted this write strategy, and why some Pentium processor system
designs implement it for the L2 cache, even though the Pentium processor uses write-through
on a write miss.

Write allocate can be a disadvantage in code where:

• Just one piece of a cache line is written.

• The entire cache line is not read.

• Strides are larger than the 32-byte cache line.

• Writes to a large number of addresses (>8000).

When a large number of writes occur within an application, as in the example program
below, and both the stride is longer than the 32-byte cache line and the array is large, every
store on a dynamic execution (P6-family) processor will cause an entire cache line to be
fetched. In addition, this fetch will probably replace one (sometimes two) dirty cache line.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-21

The result is that every store causes an additional cache line fetch and slows
down the execution of the program. When many writes occur in a program, the performance
decrease can be significant. The Sieve of Erastothenes program is a simplistic example that
demonstrates these cache effects. In this example, a large array is stepped through in
increasing strides while writing a single value of the array with zero.

Note:

This is a very simplistic example used only to demonstrate cache effects;
many other optimizations are possible in this code.

Sieve of Erastothenes example:

boolean array[2..max]
for(i=2;i<max;i++) {
 array := 1;
 }

for(i=2;i<max;i++) {
 if(array[i]) {
 for(j=2;j<max;j+=i) {
 array[j] := 0; /*here we assign memory to 0 causing

the cache line
 fetch within the j loop */
 }
 }
}

Two optimizations are available for this specific example. One is to pack the array into bits,
thereby reducing the size of the array, which in turn reduces the number of cache line
fetches. The second is to check the value prior to writing, thereby reducing the number of
writes to memory (dirty cache lines).

3.5.3.1 Optimization 1: Boolean

In the program above, ‘Boolean’ is a char array. It may well be better, in some programs, to
make the "boolean" array into an array of bits, packed so that read-modify-writes are done
(since the cache protocol makes every read into a read-modify-write). But, in this example,
the vast majority of strides are greater than 256 bits (one cache line of bits), so the
performance increase is not significant.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-22

3.5.3.2 Optimization 2: Check Before Writing

Another optimization is to check if the value is already zero before writing.

boolean array[2..max]
for(i=2;i<max;i++) {
 array := 1;
 }

 for(i=2;i<max;i++) {
 if(array[i]) {
 for(j=2;j<max;j+=i) {
 if(array[j] != 0) { /* check to see if value is

already 0 */
 array[j] := 0;
 }
 }
 }
 }

The external bus activity is reduced by half because most of the time in the Sieve program
the data is already zero. By checking first, you need only one burst bus cycle for the read and
you save the burst bus cycle for every line you do not write. The actual write back of the
modified line is no longer needed, therefore saving the extra cycles.

Note:

This operation benefits P6-family processors but may not enhance the
performance of Pentium processors. As such, it should not be considered
generic. Write allocate is generally a performance advantage in most
systems, since sequential stores are merged into burst writes, and the data
remain in the cache for use by later loads. This is why P6-family processors
use this strategy, and why some Pentium processor-based systems
implement it for the L2 cache.

3.6 Memory Optimization

3.6.1 PARTIAL MEMORY ACCESSES

The MMX registers allow you to move large quantities of data without stalling the processor.
Instead of loading single array values that are 8-, 16-, or 32-bits long, consider loading the
values in a single quadword, then incrementing the structure or array pointer accordingly.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-23

Any data that will be manipulated by MMX instructions should be loaded
using either;

• The MMX instruction that loads a 64-bit operand (for example, MOVQ MM0, m64), or

• the register-memory form of any MMX instruction that operates on a quadword memory
operand (for example, PMADDW MM0, m64).

All SIMD data should be stored using the MMX instruction that stores a 64-bit operand (for
example, MOVQ m64, MM0).

The goal of these recommendations is twofold: First, the loading and storing of SIMD data is
more efficient using the larger quadword data block sizes. Second, this helps to avoid the
mixing of 8-, 16-, or 32-bit load and store operations with 64-bit MMX load and store
operations to the same SIMD data. This, in turn, prevents situations in which a) small loads
follow large stores to the same area of memory, or b) large loads follow small stores to the
same area of memory. Dynamic execution processors will stall in these situations. (See list
of rules in Section 3.1.1.).

Consider the following examples. In the first case, there is a large load after a series of small
stores to the same area of memory (beginning at memory address "mem"). The large load
will stall in this case:

 MOV mem, eax ; store dword to address "mem"
 MOV mem + 4, ebx ; store dword to address "mem + 4"
 :
 :
 MOVQ mm0, mem ; load qword at address "mem", stalls

The MOVQ must wait for the stores to write memory before it can access all the data it
requires. This stall can also occur with other data types (for example, when bytes or words
are stored and then words or doublewords are read from the same area of memory). When
you change the code sequence as follows, the processor can access the data without delay:

 MOVD mm1, ebx ; build data into a qword first before
 ; storing it to memory
 MOVD mm2, eax
 PSLLQ mm1, 32
 POR mm1, mm2
 MOVQ mem, mm1 ; store SIMD variable to "mem" as a

; qword
 :
 :
 MOVQ mm0, mem ; load qword SIMD variable "mem", no

; stall

GUIDELINES FOR DEVELOPING MMX TM CODE

3-24

In the second case, there is a series of small loads after a large store to the same area of
memory (beginning at memory address "mem"). The small loads will stall in this case:

 MOVQ mem, mm0 ; store qword to address
; "mem"

 :
 :
 MOV bx, mem + 2 ; load word at address

; "mem + 2", stalls
 MOV cx, mem + 4 ; load word at address

; "mem + 4", stalls

The word loads must wait for the quadword store to write to memory before they can access
the data they require. This stall can also occur with other data types (for example, when
doublewords or words are stored and then words or bytes are read from the same area of
memory). When you change the code sequence as follows, the processor can access the data
without delay:

 MOVQ mem, mm0 ; store qword to address "mem"
 :
 :
 MOVQ mm1, mem ; load qword at address "mem"
 MOVD eax, mm1 ; transfer "mem + 2" to ax from

; MMX register not memory
 PSRLQ mm1, 32
 SHR eax, 16
 MOVD ebx, mm1 ; transfer "mem + 4" to bx from

; MMX register, not memory
 AND ebx, 0ffffh

These transformations, in general, increase the number the instructions required to perform
the desired operation. For dynamic execution (P6-family) processors, the performance
penalty due to the increased number of instructions is more than offset by the benefit. For
Pentium processors, however, the increased number of instructions can negatively impact
performance, since they do not benefit from the code transformations above. For this reason,
careful and efficient coding of these transformations is necessary to minimize any potential
negative impact to Pentium processor performance.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-25

3.6.2 INCREASING BANDWIDTH OF MEMORY FILLS
AND VIDEO FILLS

It is beneficial to understand how memory is accessed and filled. A memory-to-memory fill
(for example a memory-to-video fill) is defined as a 32-byte (cache line) load from memory
which is immediately stored back to memory (such as a video frame buffer). The following
are guidelines for obtaining higher bandwidth and shorter latencies for sequential memory
fills (video fills). These recommendations are relevant for all Intel Architecture processors
with MMX technology and refer to cases in which the loads and stores do not hit in the
second level cache.

3.6.2.1 Memory Fills

3.6.2.1.1 Increasing Memory Bandwidth Using the MOVQ Instruction

Loading any value will cause an entire cache line to be loaded into the on-chip cache. But,
using MOVQ to store the data back to memory instead of using 32-bit stores (for example,
MOVD) will reduce by half the number of stores per memory fill cycle. As a result, the
bandwidth of the memory fill cycle increases significantly. On some Pentium processor-
based systems, 30% higher bandwidth was measured when 64-bit stores were used instead of
32-bit stores. Additionally, on dynamic execution processors, this avoids a partial memory
access when both the loads and stores are done with the MOVQ instruction.

3.6.2.1.2 Increasing Memory Bandwidth by Loading and Storing To and From
the Same DRAM Page

DRAM is divided into pages (which are not the same as Operating System (OS) pages. The
size of a DRAM page is a function of the DRAM’s size and organization. Page sizes of
several Kbytes are common. Like OS pages, DRAM pages are constructed of sequential
addresses. Sequential memory accesses to the same DRAM page have shorter latencies than
sequential accesses to different DRAM pages. In many systems the latency for a page miss
(that is, an access to a different page instead of the page previously accessed) can be twice as
large as the latency of a memory page hit (access to the same page as the previous access).
Therefore, if the loads and stores of the memory fill cycle are to the same DRAM page, we
can see a significant increase in the bandwidth of the memory fill cycles.

3.6.2.1.3 Increasing the Memory Fill Bandwidth by Using Aligned Stores

Unaligned stores will double the number of stores to memory. Intel strongly recommends
that quadword stores be 8-byte aligned. Four aligned quadword stores are required to write a
cache line to memory. If the quadword store is not 8-byte aligned, then two 32 bit writes
result from each MOVQ store instruction. On some systems, a 20% lower bandwidth was
measured when 64 bit misaligned stores were used instead of aligned stores.

GUIDELINES FOR DEVELOPING MMX TM CODE

3-26

3.6.2.2 Video Fills

3.6.2.2.1 Use 64 Bit Stores to Increase the Bandwidth to Video

Although the PCI bus between the processor and the Frame buffer is 32 bits wide, using
MOVQ to store to video is faster on most Pentium processor-based systems than using twice
as many 32-bit stores to video. This occurs because the bandwidth to PCI write buffers
(which are located between the CPU and PCI bus) is higher when quadword stores are used.

3.6.2.2.2 Increase the Bandwidth to Video Using Aligned Stores

When a non-aligned store is encountered, there is a dramatic decrease in the bandwidth to
video. Misalignment causes twice as many stores, and, in addition, the latency of stores on
the PCI bus (to the Frame buffer) is much longer. On the PCI bus, it is not possible to burst
sequential misaligned stores. On Pentium processor-based systems, a decrease of 80% in the
video fill bandwidth is typical when misaligned stores are used instead of aligned stores.

4
MMXTM Code
Development
Strategy

INTEL CONFIDENTIAL
(until publication date)

4-1

CHAPTER 4
 MMXTM CODE DEVELOPMENT STRATEGY

In general, developing fast applications for Intel Architecture (IA) processors is not difficult.
An understanding of the architecture and good development practices make the difference
between a fast application and one that runs significantly slower than its full potential. Intel
Architecture processors with MMX technology add a new dimension to code development.
Performance increase can be significant, though the conversion techniques are straight
forward. In order to develop MMX code, examine the current implementation and determine
the best way to take advantage of MMX instructions. If you are starting a new
implementation, design the application with MMX technology in mind from the start.

4.1 Making a Plan

Whether adapting an existing application or creating a new one, using MMX instructions to
optimal advantage requires consideration of several issues. Generally, you should look for
code segments that are computationally intensive, that are adaptable to integer
implementations, and that support efficient use of the cache architecture. Several tools are
provided in the Intel Performance Tool Set to aid in this evaluation and tuning.

Several questions should be answered before beginning your implementation:

• Which part of the code will benefit from MMX technology?

• Is the current algorithm the best for MMX technology?

• Is this code Integer or Floating-Point?

• How should I arrange my data?

• Is my data 8-, 16- or 32-bit?

• Does the application need to run on processors both with and without MMX technology?
Can I use CPUID to create a scaleable implementation?

MMXTM CODE DEVELOPMENT STRATEGY

4-2

4.2 Which Part of the Code Will Benefit from MMX TM Technology?

Step one: Determine which code to convert.

Most applications have sections of code that are highly compute-intensive. Examples
include speech compression algorithms and filters, video display routines, and rendering
routines. These routines are generally small, repetitive loops, operating on 8- or 16-bit
integers, and take a sizable portion of the application processing time. It is these routines
that will yield the greatest performance increase when converted to MMXTM technology
optimized libraries code. Encapsulating these loops into MMX technology-optimized
libraries will allow greater flexibility in supporting platforms with and without MMX
technology.

A performance optimization tool such as Intel’s VTune visual tuning tool may be used to
isolate the compute-intensive sections of code. Once identified, an evaluation should be
done to determine whether the current algorithm or a modified one will give the best
performance. In some cases, it is possible to improve performance by changing the types of
operations in the algorithm. Matching the algorithms to MMX instruction capabilities is key
to extracting the best performance.

4.3 Is the Code Floating-Point or Integer?

Step two: Determine whether the algorithm contains floating-point or integer data.

If the current algorithm is implemented with integer data, then simply identify the portions of
the algorithm that use the most microprocessor clock cycles. Once identified, re-implement
these sections of code using MMX instructions.

If the algorithm contains floating-point data, then determine why floating-point was used.
Several reasons exist for using floating-point operations: performance, range and precision.
If performance was the reason for implementing the algorithm in floating-point, then the
algorithm is a candidate for conversion to MMX integer code to increase performance.

If range or precision was an issue when implementing the algorithm in floating point then
further investigation needs to be made. Can the data values be converted to integer with the
required range and precision? If not, this code is best left as floating-point code.

4.3.1 MIXING FLOATING-POINT AND MMX TM CODES

When generating MMX code, it is important to keep in mind that the eight MMX registers
are aliased upon the floating-point registers. Switching from MMX instructions to floating-
point instructions can take up to fifty clock cycles, so it is best to minimize switching
between these instruction types. Do not intermix MMX code and floating-point code at the
instruction level. If an application does perform frequent switches between floating-point

MMXTM CODE DEVELOPMENT STRATEGY

4-3

and MMX instructions, then consider extending the period that the
application stays in the MMX instruction stream or floating-point instruction stream to
minimize the penalty of the switch.

When writing an application that uses both floating-point and MMX instructions, use the
following guidelines for isolating instruction execution:

• Partition the MMX instruction stream and the floating-point instruction stream into
separate instruction streams that contain instructions of one type.

• Do not rely on register contents across transitions.

• Leave an MMX code section with the floating-point tag word empty using the EMMS
instruction.

• Leave the floating-point code section with an empty stack.

For example:

FP_code:

..

.. /* leave the floating-point stack empty
*/

MMX_code:

...

EMMS /* empty the MMX registers */

FP_code1:

...

... /* leave the floating-point stack empty
*/

Additional information on the floating-point programming model can be found in the
Pentium Processor Family Developer’s Manual: Volume 3, Architecture and Programming,
(Order Number 241430).

4.4 EMMS Guidelines

Step three: Always call the EMMS instruction at the end of your MMX code.

Since the MMX registers are aliased on the floating-point registers, it is very important to
clear the MMX registers before issuing a floating-point instruction. Use the EMMS
instruction to clear the MMX registers and set the value of the floating-point tag word (TW)
to empty (that is, all ones). This instruction should be inserted at the end of all MMX code

MMXTM CODE DEVELOPMENT STRATEGY

4-4

segments to avoid an overflow exception in the floating-point stack when a floating-point
instruction is executed.

4.5 CPUID Usage for Detection of MMX TM Technology

Step four: Determine if MMX technology is available.

MMX technology can be included in your application in two ways: Using the first method,
have the application check for MMX technology during installation. If MMX technology is
available, the appropriate libraries can be installed. The second method is to check during
program execution and install the proper libraries at runtime. This is effective for programs
that may be executed over a network.

To determine whether you are executing on a processor with MMX technology, your
application should check the Intel Architecture feature flags. The CPUID instruction returns
the feature flags in the EDX register. Based on the results, the program can decide which
version of code is appropriate for the system.

Existence of MMX technology support is denoted by bit 23 of the feature flags. When this
bit is set to 1 the processor has MMX technology support. The following code segment loads
the feature flags in EDX and tests the result for MMX technology. Additional information
on CPUID usage may be found in Intel Processor Identification with CPUID Instruction,
Application Note AP-485, (Order Number 241618).

… ; identify existence of CPUID instruction
… ;
… ; identify Intel Processor
… ;
mov EAX, 1 ; request for feature flags
CPUID ; 0Fh, 0A2h CPUID Instruction
test EDX, 00800000h ; is MMX technology Bit(bit 23)in feature

; flags equal to 1
jnz Found

4.6 Alignment of Data

Step five: Make sure your data is aligned.

Many compilers allow you to specify the alignment of your variables using controls. In
general this guarantees that your variables will be on the appropriate boundaries. However,
if you discover that some of the variables are not appropriately aligned as specified, then
align the variable using the following C algorithm. This aligns a 64-bit variable on a 64-bit
boundary. Once aligned, every access to this variable will save three clock cycles.

MMXTM CODE DEVELOPMENT STRATEGY

4-5

if (NULL == (new_ptr = malloc(new_value +1)* sizeof
(var_struct))

mem_tmp = new_ptr;
mem_tmp /= 8;
new_tmp_ptr = (var_struct*) ((Mem_tmp+1) * 8);

Another way to improve data alignment is to copy the data into locations that are aligned on
64-bit boundaries. When the data is accessed frequently this can provide a significant
performance improvement.

4.6.1 STACK ALIGNMENT

As a matter of convention, compilers allocate anything that is not static on the stack and it
may be convenient to make use of the 64-bit data quantities that are stored on the stack.
When this is necessary, it is important to make sure the stack is aligned. The following code
in the function prologue and epilogue will make sure the stack is aligned.

Prologue:
push ebp ; save old frame ptr
mov ebp, esp ; make new frame ptr
sub ebp, 4 ; make room of stack ptr
and ebp, 0FFFFFFFC ; align to 64 bits
mov [ebp],esp ; save old stack ptr
mov esp, ebp ; copy aligned ptr
sub esp, FRAMESIZE ; allocate space
… callee saves, etc

epilogue:
… callee restores, etc
mov esp, [ebp]
pop ebp
ret

In cases where misalignment is unavoidable for some frequently accessed data, it may be
useful to copy the data to an aligned temporary storage location.

MMXTM CODE DEVELOPMENT STRATEGY

4-6

4.7 Data Arrangement

MMX technology uses an SIMD technique to exploit the inherent parallelism of many
multimedia algorithms. To get the most performance out of MMX code, data should be
formatted in memory according to the guidelines below.

Consider a simple example of adding a 16-bit bias to all the 16-bit elements of a vector. In
regular scalar code, you would load the bias into a register at the beginning of the loop,
access the vector elements in another register, and do the addition one element at a time.

Converting this routine to MMX code, you would expect a four times speedup since MMX
instructions can process four elements of the vector at a time using the MOVQ instruction,
and perform four additions at a time using the PADDW instruction. However, to achieve the
expected speedup, you would need four contiguous copies of the bias in the MMX register
when doing the addition.

In the original scalar code, only one copy of the bias was in memory. To use MMX
instructions, you could use various manipulations to get four copies of the bias in an MMX
register. Or, you could format your memory in advance to hold four contiguous copies of the
bias. Then, you need only load these copies using one MOVQ instruction before the loop,
and the four times speedup is achieved. For another interesting example of this type of data
arrangement see Section 5.6.

The new 64-bit packed data types defined by MMX technology creates more potential for
misaligned data accesses. The data access patterns of many algorithms are inherently
misaligned when using MMX instructions and other packed data types. A simple example of
this is an FIR filter. An FIR filter is effectively a vector dot product in the length of the
number of coefficient taps. If the filter operation of data element i is the vector dot product
that begins at data element j (data [j] *coeff [0] + data [j+1]*coeff
[1]+...+data [j+num_of_taps-1]*coeff [num_of_taps-1]), then the filter
operation of data element i+1 begins at data element j+1.

Section 4.6 covers aligning 64-bit data in memory. Assuming you have a 64-bit aligned
data vector and a 64-bit aligned coefficients vector, the filter operation on the first data
element will be fully aligned. For the filter operation on the second data element, however,
each access to the data vector will be misaligned! Duplication and padding of data structures
may be used to avoid the problem of data accesses in algorithms which are inherently
misaligned. Using MMXTM Instructions to Compute a 16-Bit Real FIR Filter, Application
Note #559, (Order Number 243044) shows an example of how to avoid the misalignment
problem in the FIR filter.

Note that the duplication and padding technique overcomes the misalignment problem, thus
avoiding the expensive penalty for misaligned data access, at the price of increasing the data
size. When developing your code, you should consider this tradeoff and use the option which
gives the best performance.

MMXTM CODE DEVELOPMENT STRATEGY

4-7

4.8 Tuning the Final Application

The best way to tune your application once it is functioning correctly is to use a profiler that
measures the application while it is running on a system. Intel’s VTune visual tuning tool is
such a tool and can help you to determine where to make changes in your application to
improve performance. Additionally, Intel’s processors provide performance counters on-
chip. Section 6.1 documents these counters and provides an explanation of how to use them.

5
MMXTM Coding
Techniques

INTEL CONFIDENTIAL
(until publication date)

5-1

CHAPTER 5
MMXTM CODING TECHNIQUES

Coding Techniques
This section contains several simple examples that will help you to get started in coding your
application. The goal is to provide simple, low-level operations that are frequently used.
Each example uses the minimum number of instructions necessary to achieve best
performance on Pentium and P6-family processors.

Each example includes:

• A short description.

• Sample code.

• Any necessary notes.

These examples do not address scheduling as we assume you will incorporate the examples
in longer code sequences.

5.1 Unsigned Unpack

The MMX technology provides several instructions that are used to pack and unpack data in
the MMX registers. The unpack instructions can be used to zero-extend an unsigned number.
The following example assumes the source is a packed-word (16-bit) data type.

Input: MM0 : Source value;
 MM7 : 0

A local variable can be used instead of the register MM7, if desired.

Output: MM0 : two zero-extended 32-bit doublewords from 2 LOW end words MM1 : two
zero-extended 32-bit doubleword from 2 HIGH end words

MOVQ MM1, MM0 ; copy source
PUNPCKLWD MM0, MM7 ; unpack the 2 low end words

; into two 32-bit double word
PUNPCKHWD MM1, MM7 ; unpack the 2 high end words into two

; 32-bit double word

MMXTM CODING TECHNIQUES

5-2

5.2 Signed Unpack

Signed numbers should be sign-extended when unpacking the values. This is done
differently than the zero-extend shown above. The following example assumes the source is a
packed-word (16-bit) data type.

Input: MM0 : source value

Output: MM0 : two sign-extended 32-bit doublewords from the two LOW end words
MM1 : two sign-extended 32-bit doublewords from the two HIGH end words

PUNPCKHWD MM1, MM0 ; unpack the 2 high end words of the
; source into the second and fourth
; words of the destination

PUNPCKLWD MM0, MM0 ; unpack the 2 low end words of the
; source into the second and fourth
; words of the destination

PSRAD MM0, 16 ; Sign-extend the 2 low end words of
; the source into two 32-bit signed
; doublewords

PSRAD MM1, 16 ; Sign-extend the 2 high end words of
; the source into two 32-bit signed
; doublewords

5.3 Interleaved Pack with Saturation

The PACK instructions pack two values into the destination register in a predetermined
order. Specifically, the PACKSSDW instruction packs two signed doublewords from the
source operand and two signed doublewords from the destination operand into four signed
words in the destination register as shown in the figure below.

mm/m64 mm

mm

ABCD

A1B1C1D1

Figure 5-1. PACKSSDW mm, mm/mm64 Instruction Example

MMXTM CODING TECHNIQUES

5-3

The following example interleaves the two values in the destination register,
as shown in the figure below.

mm/m64 mm

mm

ABCD

A 1B1 C 1
D 1

Figure 5-2. Interleaved Pack with Saturation Example

This example uses signed doublewords as source operands and the result is interleaved signed
words. The pack instructions can be performed with or without saturation as needed.

Input: MM0 : Signed source1 value
MM1 : Signed source2 value

Output: MM0 : The first and third words contain the signed-saturated doublewords from MM0
MM0. The second and fourth words contain the signed-saturated doublewords from

MM1

PACKSSDW MM0, MM0 ; pack and sign saturate
PACKSSDW MM1, MM1 ; pack and sign saturate
PUNPKLWD MM0, MM1 ; interleave the low end 16-bit values of the

; operands

The pack instructions always assume the source operands are signed numbers. The result in
the destination register is always defined by the pack instruction that performs the operation.
For example, the PACKSSDW instruction, packs each of the two signed 32-bit values of the
two sources into four saturated 16-bit signed values in the destination register. The
PACKUSWB instruction, on the other hand, packs each of the four signed 16-bit values of the
two sources into four saturated 8-bit unsigned values in the destination. A complete
specification of the MMX instruction set can be found in the Intel Architecture MMX TM

Technology Programmers Reference Manual, (Order Number 243007).

5.4 Interleaved Pack Without Saturation

This example is similar to the last except that the resulting words are not saturated. In
addition, in order to protect against overflow, only the low order 16-bits of each doubleword
are used in this operation.

MMXTM CODING TECHNIQUES

5-4

Input: MM0 : signed source value
MM1 : signed source value

Output: MM0 : The first and third words contain the low 16-bits of the doublewords in MM0
 : The second and fourth words contain the low 16-bits of the doublewords in MM1

PSLLD MM1, 16 ; shift the 16 LSB from each of the
double ; words values to the 16 MSB position
PAND MM0, {0,ffff,0,ffff}

; mask to zero the 16 MSB of each
; doubleword value

POR MM0, MM1 ; merge the two operands

5.5 Non-Interleaved Unpack

The unpack instructions perform an interleave merge of the data elements of the destination
and source operands into the destination register. The following example merges the two
operands into the destination registers without interleaving. For example, take two adjacent
elements of a packed-word data type in source1; place this value in the low 32-bits of the
results. Then take two adjacent elements of a packed-word data type in source2; place this
value in the high 32-bits of the results. One of the destination registers will have the
combination shown in Figure 5-3.

m m / m 6 4 m m

1 3 1 01 2 1 12 3 2 02 2 2 1

2 1 1 02 0 1 1

m m

Figure 5-3. Result of Non-Interleaved Unpack in MMO

MMXTM CODING TECHNIQUES

5-5

The other destination register will contain the opposite combination as in
Figure 5-4.

m m /m 6 4 m m

1 3 1 01 2 1 12 3 2 02 2 2 1

2 3 1 22 2 1 3

m m

Figure 5-4. Result of Non-Interleaved Unpack in MM1

The following example unpacks two packed-word sources in a non-interleaved way. The
trick is to use the instruction which unpacks doublewords to a quadword, instead of using the
instruction which unpacks words to doublewords.

 Input: MM0 : packed-word source value
MM1 : packed-word source value

 Output: MM0 : contains the two low end words of the original sources, non-interleaved
MM2 : contains the two high end words of the original sources, non-interleaved.

MOVQ MM2, MM0 ; copy source1
PUNPCKLDQ MM0, MM1 ; replace the two high end words of MM0

; with the two low end words of MM1
; leave the two low end words of MM0
; in place

PUNPCKHDQ MM2, MM1 ; move the two high end words of MM2 to the
; two low end words of MM2; place the two
; high end words of MM1 in the two high end
; words of MM2

5.6 Complex Multiply by a Constant

Complex multiplication is an operation which requires four multiplications and two
additions. This is exactly how the PMADDWD instruction operates. In order to use this
instruction you need only to format the data into four 16-bit values. The real and imaginary
components should be 16-bits each.

MMXTM CODING TECHNIQUES

5-6

Let the input data be Dr and Di

where Dr = real component of the data

Di = imaginary component of the data

Format the constant complex coefficients in memory as four 16-bit values [Cr -Ci Ci Cr].
Remember to load the values into the MMX register using a MOVQ instruction.

Input: MM0 : a complex number Dr, Di
MM1 : constant complex coefficient in the form[Cr -Ci Ci Cr]

Output: MM0 : two 32-bit dwords containing [Pr Pi]

The real component of the complex product is Pr = Dr*Cr - Di*Ci, and the imaginary
component of the complex product is Pi = Dr*Ci + Di*Cr

PUNPCKLDQ MM0,MM0 ; This makes [Dr Di Dr Di]
PMADDWD MM0, MM1 ; and you're done, the result is

; [(Dr*Cr-Di*Ci)(Dr*Ci+Di*Cr)]

Note that the output is a packed word. If needed, a pack instruction can be used to convert
the result to 16-bit (thereby matching the format of the input).

5.7 Absolute Difference of Unsigned Numbers

This example computes the absolute difference of two unsigned numbers. It assumes an
unsigned packed-byte data type. Here, we make use of the subtract instruction with unsigned
saturation. This instruction receives UNSIGNED operands and subtracts them with
UNSIGNED saturation. This support exists only for packed bytes and packed words, NOT
for packed dwords.

 Input: MM0: source operand

MM1: source operand

 Output: MM0: The absolute difference of the unsigned operands

MOVQ MM2, MM0 ; make a copy of MM0
PSUBUSB MM0, MM1 ; compute difference one way
PSUBUSB MM1, MM2 ; compute difference the other way
POR MM0, MM1 ; OR them together

This example will not work if the operands are signed. See the next example for signed
absolute differences.

MMXTM CODING TECHNIQUES

5-7

5.8 Absolute Difference of Signed Numbers

This example computes the absolute difference of two signed numbers. There is no MMX
subtract instruction which receives SIGNED operands and subtracts them with UNSIGNED
saturation. The technique used here is to first sort the corresponding elements of the input
operands into packed-words of the maxima values, and packed-words of the minima values.
Then the minima values are subtracted from the maxima values to generate the required
absolute difference. The key is a fast sorting technique which uses the fact that B= XOR(A,
XOR(A,B)) and A = XOR(A,0). Thus in a packed data type, having some elements being
XOR(A,B) and some being 0, you could XOR such an operand with A and receive in some
places values of A and in some values of B. The following examples assume a packed-word
data type, each element being a signed value.

 Input: MM0: signed source operand

MM1: signed source operand

 Output: MM0: The absolute difference of the signed operands

MOVQ MM2, MM0 ; make a copy of source1 (A)
PCMPGTW MM0, MM1 ; create mask of source1>source2 (A>B)
MOVQ MM4, MM2 ; make another copy of A
PXOR MM2, MM1 ; Create the intermediate value of the swap

; operation - XOR(A,B)
PAND MM2, MM0 ; create a mask of 0s and XOR(A,B)

; elements. Where A>B there will be a value
; XOR(A,B) and where A<=B there will be 0.

MOVQ MM3, MM2 ; make a copy of the swap mask
PXOR MM4, MM2 ; This is the minima - XOR(A, swap mask)
PXOR MM1, MM3 ; This is the maxima - XOR(B, swap mask)
PSUBW MM1, MM4 ; absolute difference = maxima-minima

5.9 Absolute Value

To compute |x|, where x is signed. This example assumes signed words to be the operands.

Input: MM0 : signed source operand

Output: MM1 : ABS(MM0)

 MOVQ MM1, MM0 ; make a copy of x
 PSRAW MM0,15 ; replicate sign bit (use 31 if doing

; DWORDS)
 PXOR MM0, MM1 ; take 1's complement of just the

; negative fields
 PSUBS MM1, MM0 ; add 1 to just the negative fields

MMXTM CODING TECHNIQUES

5-8

Note that the absolute value of the most negative number (that is, 8000 hex for 16-bit) does
not fit, but this code does something reasonable for this case; it gives 7fff which is off by
one.

5.10 Clipping Signed Numbers to an Arbitrary Signed Range
[HIGH, LOW]

This example shows how to clip a signed value to the signed range [HIGH, LOW].
Specifically, if the value is less than LOW or greater than HIGH then clip to LOW or HIGH,
respectively. This technique uses the packed-add and packed-subtract instructions with
unsigned saturation, which means that this technique can only be used on packed-bytes and
packed-words data types.

The following example uses the constants packed_max and packed_min.

The following examples shows the operation on word values. For simplicity we use the
following constants (corresponding constants are used in case the operation is done on byte
values):

• PACKED_MAX equals 0x7FFF7FFF7FFF7FFF

• PACKED_MIN equals 0x8000800080008000

• PACKED_LOW contains the value LOW in all 4 words of the packed-words datatype

• PACKED_HIGH contains the value HIGH in all 4 words of the packed-words datatype

• PACKED_USMAX is all 1’s

• HIGH_US adds the HIGH value to all data elements (4 words) of PACKED_MIN

• LOW_US adds the LOW value to all data elements (4 words) of PACKED_MIN

The examples illustrate the operation on word values.

Input: MM0 : Signed source operands

Output: MM0 : Signed operands clipped to the unsigned range [HIGH, LOW]

PADD MM0, PACKED_MIN ; add with no
; saturation 0x8000
; to convert to
; unsigned

PADDUSW MM0, (PACKED_USMAX - HIGH_US) ; in effect this clips
; to HIGH

PSUBUSW MM0, (PACKED_USMAX - HIGH_US + LOW_US) ;
; in effect

MMXTM CODING TECHNIQUES

5-9

; this
clips to LOW
 PADDW MM0, PACKED_LOW ; undo the previous two

; offsets

The code above converts values to unsigned numbers first and then clips them to an unsigned
range. The last instruction converts the data back to signed data and places the data within
the signed range. Conversion to unsigned data is required for correct results when the
quantity (HIGH - LOW) < 0x8000.

IF (HIGH - LOW) >= 0x8000, the algorithm can be simplified to the following:

Input: MM0 : Signed source operands

Output: MM0 : Signed operands clipped to the unsigned range [HIGH, LOW]

PADDSSW MM0, (PACKED_MAX - PACKED_HIGH) ; in effect this
; clips to HIGH

PSUBSSW MM0, (PACKED_USMAX - PACKED_HIGH + PACKED_LOW)
;clips to LOW

PADDWMM0, LOW ; undo the
; previous two
; offsets

This algorithm saves a cycle when it is known that (HIGH - LOW) >= 0x8000. To see why
the three instruction algorithm does not work when (HIGH - LOW) < 0x8000, realize that
0xffff minus any number less than 0x8000 will yield a number greater in magnitude than
0x8000 which is a negative number. When

PSUBSSW MM0, (0xFFFF - HIGH + LOW)

(the second instruction in the three-step algorithm) is executed, a negative number will be
subtracted causing the values in MM0 to be increased instead of decreased, as should be the
case, and causing an incorrect answer to be generated.

5.11 Clipping Unsigned Numbers to an Arbitrary Unsigned Range
[HIGH, LOW]

This example clips an unsigned value to the unsigned range [HIGH, LOW]. If the value is
less than LOW or greater than HIGH, then clip to LOW or HIGH, respectively. This
technique uses the packed-add and packed-subtract instructions with unsigned saturation,
thus this technique can only be used on packed-bytes and packed-words data types.

The example illustrates the operation on word values.

Input: MM0 : Unsigned source operands

MMXTM CODING TECHNIQUES

5-10

Output: MM0 : Unsigned operands clipped to the unsigned range [HIGH, LOW]

PADDUSW MM0, 0xFFFF - HIGH ; in effect this clips to HIGH
PSUBUSW MM0, (0xFFFF - HIGH + LOW)

; in effect this clips to LOW
PADDWMM0, LOW ; undo the previous two offsets

5.12 Generating Consta nts

The MMX instruction set does not have an instruction that will load immediate constants to
MMX registers. The following code segments will generate frequently used constants in an
MMX register. Of course, you can also put constants as local variables in memory, but when
doing so be sure to duplicate the values in memory and load the values with a MOVQ
instruction.

Generate a zero register in MM0:
PXOR MM0, MM0

Generate all 1's in register MM1, which is -1 in each of the packed data type fields:
PCMPEQ MM1, MM1

Generate the constant 1 in every packed-byte [or packed-word] (or packed-dword) field:
PXOR MM0, MM0
PCMPEQ MM1, MM1
PSUBB MM0, MM1 [PSUBW MM0, MM1] (PSUBD MM0, MM1)

Generate the signed constant 2n -1 in every packed-word (or packed-dword) field:
PCMPEQ MM1, MM1
PSRLW MM1, 16-n (PSRLD MM1, 32-n)

Generate the signed constant -2n in every packed-word (or packed-dword) field:
PCMPEQ MM1, MM1
PSLLW MM1, n (PSLLD MM1, n)

Because the MMX instruction set does not support shift instructions for bytes, 2n-1 and -2n are
relevant only for packed-words and packed-dwords..

6
MMXTM Performance
Monitoring
Extensions

INTEL CONFIDENTIAL
(until publication date)

6-1

CHAPTER 6
MMXTM PERFORMANCE MONITORING

EXTENSIONS

The most effective way to improve the performance of your code is to find the performance
bottlenecks. Intel Architecture processors include a counter on the processor that will allow
you to gather information about the performance of your application. This counter keeps
track of events that occur while your code is executing. You can read the counter during
execution and determine if your code has stalls. This may be accomplished by using Intel’s
VTune profiling tool or by using instructions within your code.

The section describes the performance monitoring features for MMX code on Pentium and
P6-family processors with MMX technology.

The RDPMC instruction is described in Section 6.3.

6.1 Superscalar (Pentium  Family) Performance Monitoring Events

All Pentium processors feature performance counters and several new events have been
added to support MMX technology. All new events are assigned to one of the two event
counters (CTR0, CTR1), with the exception of “twin events” (such as “ D1 starvation” and
“FIFO is empty”) which are assigned to different counters to allow their concurrent
measurement. The events must be assigned to their specified counter. Table 6-1 lists the
performance monitoring events. New events are listed in bold.

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-2

Table 6-1. Performance Monitoring Events

Serial Encoding Counter 0 Counter 1 Performance Monitoring Event
Occurrence or

Duration

0 000000 Yes Yes Data Read OCCURRENCE

1 000001 Yes Yes Data Write OCCURRENCE

2 000010 Yes Yes Data TLB Miss OCCURRENCE

3 000011 Yes Yes Data Read Miss OCCURRENCE

4 000100 Yes Yes Data Write Miss OCCURRENCE

5 000101 Yes Yes Write (hit) to M or E state lines OCCURRENCE

6 000110 Yes Yes Data Cache Lines Written Back OCCURRENCE

7 000111 Yes Yes External Data Cache Snoops OCCURRENCE

8 001000 Yes Yes External Data Cache Snoop Hits OCCURRENCE

9 001001 Yes Yes Memory Accesses in Both Pipes OCCURRENCE

10 001010 Yes Yes Bank Conflicts OCCURRENCE

11 001011 Yes Yes Misaligned Data Memory or I/O
References

OCCURRENCE

12 001100 Yes Yes Code Read OCCURRENCE

13 001101 Yes Yes Code TLB Miss OCCURRENCE

14 001110 Yes Yes Code Cache Miss OCCURRENCE

15 001111 Yes Yes Any Segment Register Loaded OCCURRENCE

16 010000 Yes Yes Reserved

17 010001 Yes Yes Reserved

18 010010 Yes Yes Branches OCCURRENCE

19 010011 Yes Yes BTB Predictions OCCURRENCE

20 010100 Yes Yes Taken Branch or BTB hit. OCCURRENCE

21 010101 Yes Yes Pipeline Flushes OCCURRENCE

22 010110 Yes Yes Instructions Executed OCCURRENCE

23 010111 Yes Yes Instructions Executed in the v-pipe
e.g. parallelism/pairing

OCCURRENCE

24 011000 Yes Yes Clocks while a bus cycle is in
progress (bus utilization)

DURATION

25 011001 Yes Yes Number of clocks stalled due to full
write buffers

DURATION

26 011010 Yes Yes Pipeline stalled waiting for data
memory read

DURATION

27 011011 Yes Yes Stall on write to an E or M state line DURATION

29 011101 Yes Yes I/O Read or Write Cycle OCCURRENCE

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-3

Table 6-1. Performance Monitoring Events (Cont’d)

Serial Encoding Counter 0 Counter 1 Performance Monitoring Event
Occurrence or

Duration

30 011110 Yes Yes Non-cacheable memory reads OCCURRENCE

31 011111 Yes Yes Pipeline stalled because of an
address generation interlock

DURATION

32 100000 Yes Yes Reserved

33 100001 Yes Yes Reserved

34 100010 Yes Yes FLOPs OCCURRENCE

35 100011 Yes Yes Breakpoint match on DR0 Register OCCURRENCE

36 100100 Yes Yes Breakpoint match on DR1 Register OCCURRENCE

37 100101 Yes Yes Breakpoint match on DR2 Register OCCURRENCE

38 100110 Yes Yes Breakpoint match on DR3 Register OCCURRENCE

39 100111 Yes Yes Hardware Interrupts OCCURRENCE

40 101000 Yes Yes Data Read or Data Write OCCURRENCE

41 101001 Yes Yes Data Read Miss or Data Write Miss OCCURRENCE

43 101011 Yes No MMXTM instructions executed in
u-pipe

OCCURRENCE

43 101011 No Yes MMX instructions executed in v-
pipe

OCCURRENCE

45 101101 Yes No EMMS instructions executed OCCURRENCE

45 101101 No Yes Transition between MMX
instructions and FP instructions

OCCURRENCE

46 101110 No Yes Writes to Non-Cacheable
Memory

OCCURRENCE

47 101111 Yes No Saturating MMX instructions
executed

OCCURRENCE

47 101111 No Yes Saturations performed OCCURRENCE

48 110000 Yes No Number of Cycles Not in HLT
State

DURATION

49 110001 Yes No MMX instruction data reads OCCURRENCE

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-4

Table 6-1. Performance Monitoring Events (Cont’d)

Serial Encoding Counter 0 Counter 1 Performance Monitoring Event
Occurrence or

Duration

50 110010 Yes No Floating Point Stalls DURATION

50 110010 No Yes Taken Branches OCCURRENCE

51 110011 No Yes D1 Starvation and one
instruction in FIFO

OCCURRENCE

52 110100 Yes No MMX instruction data writes OCCURRENCE

52 110100 No Yes MMX instruction data write
misses

OCCURRENCE

53 110101 Yes No Pipeline flushes due to wrong
branch prediction

OCCURRENCE

53 110101 No Yes Pipeline flushes due to wrong
branch predictions resolved in
WB-stage

OCCURRENCE

54 110110 Yes No Misaligned data memory
reference on MMX instruction

OCCURRENCE

54 110110 No Yes Pipeline stalled waiting for MMX
instruction data memory read

DURATION

55 110111 Yes No Returns Predicted Incorrectly OCCURRENCE

55 110111 No Yes Returns Predicted (Correctly and
Incorrectly)

OCCURRENCE

56 111000 Yes No MMX instruction multiply unit
interlock

DURATION

56 111000 No Yes MOVD/MOVQ store stall due to
previous operation

DURATION

57 111001 Yes No Returns OCCURRENCE

57 111001 No Yes RSB Overflows OCCURRENCE

58 111010 Yes No BTB false entries OCCURRENCE

58 111010 No Yes BTB miss prediction on a Not-
Taken Branch

OCCURRENCE

59 111011 Yes No Number of clocks stalled due to
full write buffers while executing
MMX instructions

DURATION

59 111011 No Yes Stall on MMX instruction write
to E or M line

DURATION

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-5

6.1.1 DESCRIPTION OF MMX TM INSTRUCTION EVENTS

The event codes/counter are provided in parenthesis.

•• MMX instructions executed in U-pipe (101011/0):

− Total number of MMX instructions executed in U-pipe.

• MMX instructions executed in V-pipe (101011/1):

− Total number of MMX instructions executed in V-pipe.

• EMMS instructions executed (101101/0):

− Counts number of EMMS instructions executed.

• Transition between MMX instructions and FP instructions (101101/1):

− Counts first floating-point instruction following any MMX instruction or first MMX
instruction following a floating-point instruction. May be used to estimate the
penalty in transitions between FP state and MMX state. An even count indicates the
processor is in MMX state. An odd count indicates it is in FP state.

• Writes to non-cacheable memory (101110/1):

− Counts the number of write accesses to non-cacheable memory. It includes write
cycles caused by TLB misses and I/O write cycles. Cycles restarted due to BOFF#
are not re-counted.

• Saturating MMX instructions executed (101111/0):

− Counts saturating MMX instructions executed, independently of whether or not they
actually saturated. Saturating MMX instructions may perform add, subtract, or pack
operations .

• Saturations performed (101111/1):

− Counts number of MMX instructions that used saturating arithmetic where at least
one of the results actually saturated (that is, if an MMX instruction operating on four
dwords saturated in three out of the four results, the counter will be incremented by
only one).

•• Number of cycles not in HALT (HLT) state (110000/0):

− This event counts the number of cycles the processor is not idle due to HALT (HLT)
instruction. This event will enable the user to calculate "net CPI". Note that during
the time that the processor is executing the HLT instruction, the Time Stamp
Counter (TSC) is not disabled. Since this event is controlled by the Counter Controls
CC0, CC1 it can be used to calculate the CPI at CPL=3 which the TSC cannot
provide.

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-6

•• MMX instruction data reads (110001/0):

− Analogous to “Data reads”, counting only MMX instruction accesses.

•• MMX instruction data read misses (110001/1):

− Analogous to “Data read misses”, counting only MMX instruction accesses.

•• Floating-Point stalls (110010/0):

− This event counts the number of clocks while pipe is stalled due to a floating-point
freeze.

•• Number of Taken Branches (110010/1):

− This event counts the number of taken branches.

• D1 starvation and FIFO is empty (110011/0), D1 starvation and only one instruction
in FIFO (110011/1):

− The D1 stage can issue 0, 1, or 2 instructions per clock if instructions are available in
the FIFO buffer. The first event counts how many times D1 cannot issue ANY
instructions because the FIFO buffer is empty. The second event counts how many
times the D1-stage issues just a single instruction because the FIFO buffer had just
one instruction ready. Combined with two other events, Instruction Executed
(010110) and Instruction Executed in the V-pipe (010110), the second event enables
the user to calculate the number of times pairing rules prevented issue of two
instructions.

•• MMX instruction data writes (110001/1):

− Analogous to “Data writes”, counting only MMX instruction accesses.

•• MMX instruction data write misses (110100/1):

− Analogous to “Data write misses”, counting only MMX instruction accesses.

•• Pipeline flushes due to wrong branch prediction (110101/0), Pipeline flushes due to
wrong branch prediction resolved in WB-stage(110101/1):

− Counts any pipeline flush due to a branch which the pipeline did not follow
correctly. It includes cases where a branch was not in the BTB, cases where a branch
was in the BTB but was mispredicted, and cases where a branch was correctly
predicted but to the wrong address. Branches are resolved in either the Execute stage
(E-stage) or the Writeback stage (WB-stage). In the latter case, the misprediction
penalty is larger by one clock. The first event listed above counts the number of
incorrectly predicted branches resolved in either the E-stage or the WB-stage. The
second event counts the number of incorrectly predicted branches resolved in the
WB-stage. The difference between these two counts is the number of E-stage
resolved branches.

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-7

• Misaligned data memory reference on MMX instruction (110110/0):

− Analogous to “Misaligned data memory reference”, counting only MMX instruction
accesses.

•• Pipeline stalled waiting for data memory read (110110/1):

− Analogous to “Pipeline stalled waiting for data memory read”, counting only MMX
accesses.

•• Returns predicted incorrectly or not predicted at all (110111/0):

− These are the actual number of Returns that were either incorrectly predicted or were
not predicted at all. It is the difference between the total number of executed returns
and the number of returns that were correctly predicted. Only RET instructions are
counted (that is, IRET instructions are not counted).

•• Returns predicted (correctly and incorrectly) (110111/1):

− This is the actual number of Returns for which a prediction was made. Only RET
instructions are counted (that is, IRET instructions are not counted).

•• MMX multiply unit interlock (111000/0):

− This event counts the number of clocks the pipe is stalled because the destination of
a previous MMX multiply instruction is not yet ready. The counter will not be
incremented if there is another cause for a stall. For each occurrence of a multiply
interlock, this event may be counted twice (if the stalled instruction comes on the
next clock after the multiply) or only once (if the stalled instruction comes two
clocks after the multiply).

•• MOVD/MOVQ store stall due to previous operation (111000/1):

− Number of clocks a MOVD/MOVQ store is stalled in D2 stage due to a previous
MMX operation with a destination to be used in the store instruction.

•• Returns (111001/0):

− This is the actual number of Returns executed. Only RET instructions are counted
(that is, IRET instructions are not counted). Any exception taken on a RET
instruction also updates this counter.

•• RSB overflows (111001/1):

− This event counts the number of times the Return Stack Buffer (RSB) cannot
accommodate a call address.

•• BTB false entries (111010/0):

− This event counts the number of false entries in the Branch Target Buffer. False
entries are causes for misprediction other than a wrong prediction.

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-8

•• BTB miss-prediction on a Not-Taken Branch (111010/1):

− This event counts the number of times the BTB predicted a Not-Taken branch as
Taken.

•• Number of clocks stalled due to full write buffers while executing MMX instructions
(111011/0):

− Analogous to “Number of clocks stalled due to full write buffers”, counting only
MMX instruction accesses.

•• Stall on MMX instruction write to an E or M state line (111011/1):

− Analogous to “Stall on write to an E or M state line”, counting only MMX
instruction accesses.

6.2 Dynamic Execution (P6-Family) Performance Monitoring
Events

This section describes the counters on P6-family processors. Table 4-2 lists the events that
can be counted with the performance-monitoring counters and read with the RDPMC
instruction.

In the table, the:

• Unit column gives the microarchitecture or bus unit that produces the event.

• Event number column gives the hexadecimal number identifying the event.

• Mnemonic event name column gives the name of the event.

• Unit mask column gives the unit mask required (if any).

• Description column describes the event.

• Comments column gives additional information about the event.

These performance monitoring events are intended to be used as guides for performance
tuning. The counter values reported are not guaranteed to be absolutely accurate and should
be used as a relative guide for tuning. Known discrepancies are documented where
applicable. All performance events are model-specific to P6-family processors and are not
architecturally guaranteed in future versions of the processor. All performance event
encodings not listed in the table are reserved and their use will result in undefined counter
results.

Further details will be made available in a later version of this document.

See the end of the table for notes related to certain entries in the table.

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-9

Table 6-2. Performance Monitoring Counters

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

Data Cache
Unit (DCU)

43H DATA_MEM_ REFS 00H All memory references,
both cacheable and
non- cacheable

45H DCU_LINES_IN 00H Total lines allocated in
the DCU.

46H DCU_M_LINES_IN 00H Number of M state lines
allocated in the DCU.

47H DCU_M_LINES_
OUT

00H Number of M state lines
evicted from the DCU.
This includes evictions
via snoop HITM,
intervention or
replacement.

48H DCU_MISS_
OUTSTANDING

00H Weighted number of
cycles while a DCU
miss is outstanding.

An access that also
misses the L2 is short-
changed by 2 cycles.
(i.e. if counts N cycles,
should be N+2 cycles.)

Subsequent loads to
the same cache line
will not result in any
additional counts.

Count value not
precise, but still useful.

Instruction
Fetch Unit
(IFU)

80H IFU_IFETCH 00H Number of instruction
fetches, both cacheable
and non-cacheable.

81H IFU_IFETCH_MISS 00H Number of instruction
fetch misses.

85H ITLB_MISS 00H Number of ITLB
misses.

86H IFU_MEM_STALL 00H Number of cycles that
the instruction fetch
pipe stage is stalled,
including cache misses,
ITLB misses, ITLB
faults, and victim cache
evictions.

87H ILD_STALL 00H Number of cycles that
the instruction length
decoder is stalled.

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-10

Table 6-2. Performance Monitoring Counters (Cont’d)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

29H L2_LD MESI
0FH

Number of L2 data loads.

2AH L2_ST MESI
0FH

Number of L2 data stores.

24H L2_LINES_IN 00H Number of lines allocated
in the L2.

26H L2_LINES_OUT 00H Number of lines removed
from the L2 for any
reason.

25H L2_M_LINES_INM 00H Number of modified lines
allocated in the L2.

27H L2_M_LINES_OUTM 00H Number of modified lines
removed from the L2 for
any reason.

2EH L2_RQSTS MESI
0FH

Number of L2 requests.

21H L2_ADS 00H Number of L2 address
strobes.

22H L2_DBUS_BUSY 00H Number of cycles during
which the data bus was
busy.

23H L2_DBUS_BUSY_RD 00H Number of cycles during
which the data bus was
busy transferring data
from L2 to the processor.

External
Bus Logic
(EBL)2

62H BUS_DRDY_CLOCKS 00H
(Self)
20H

(Any)

Number of clocks during
which DRDY is asserted.

Unit Mask = 00H
counts bus clocks
when the
processor is
driving DRDY.

Unit Mask = 20H
counts in
processor clocks
when any agent is
driving DRDY.

63H BUS_LOCK_CLOCKS 00H
(Self)
20H
(Any)

Number of clocks during
which LOCK is asserted

Always counts in
processor clocks

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-11

Table 6-2. Performance Monitoring Counters (Cont’d)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

66H BUS_TRAN_RFO 00H
(Self)
20H
(Any)

Number of read for
ownership transactions.

68H BUS_TRAN_IFETCH 00H
(Self)
20H
(Any)

Number of instruction
fetch transactions.

69H BUS_TRAN_INVAL 00H
(Self)
20H
(Any)

Number of invalidate
transactions.

6AH BUS_TRAN_PWR 00H
(Self)
20H
(Any)

Number of partial write
transactions.

6BH BUS_TRANS_P 00H
(Self)
20H
(Any)

Number of partial
transactions.

6CH BUS_TRANS_IO 00H
(Self)
20H
(Any)

Number of I/O
transactions.

6DH BUS_TRAN_DEF 00H
(Self)
20H
(Any)

Number of deferred
transactions.

6EH BUS_TRAN_BURST 00H
(Self)
20H
(Any)

Number of burst
transactions.

70H BUS_TRAN_ANY 00H
(Self)
20H
(Any)

Number of all
transactions.

6FH BUS_TRAN_MEM 00H
(Self)
20H
(Any)

Number of memory
transactions

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-12

Table 6-2. Performance Monitoring Counters (Cont’d)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

61H BUS_BNR_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
BNR pin.

7AH BUS_HIT_DRV 00H
(Self)

Number of bus clock
cycles during which this
processor is driving the
HIT pin.

Includes cycles
due to snoop
stalls.

7EH BUS_SNOOP_STALL 00H
(Self)

Number of clock cycles
during which the bus is
snoop stalled.

Floating
Point Unit

C1H FLOPS 00H Number of computational
floating-point operations
retired.

Counter 0 only

10H FP_COMP_OPS_EXE 00H Number of computational
floating-point operations
executed.

Counter 0 only.

11H FP_ASSIST 00H Number of floating-point
exception cases handled
by microcode.

Counter 1 only.

12H MUL 00H Number of multiplies. Counter 1 only.
13H DIV 00H Number of divides. Counter 1 only.
14H CYCLES_DIV_BUSY 00H Number of cycles during

which the divider is busy.
Counter 0 only.

Memory
Ordering

03H LD_BLOCKS 00H Number of store buffer
blocks

04H SB_DRAINS 00H Number of store buffer
drain cycles.

05H MISALIGN_MEM_REF 00H Number of misaligned
data memory references.

Instruction
Decoding
and
Retiremen
t

C0H INST_RETIRED OOH Number of instructions
retired.

C2H UOPS_RETIRED 00H Number of micro-ops
retired.

D0H INST_DECODER 00H Number of instructions
decoded.

Interrupts C8H HW_INT_RX 00H Number of hardware
interrupts received.

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-13

Table 6-2. Performance Monitoring Counters (Cont’d)

Unit
Event
Num.

Mnemonic Event
Name

Unit
Mask Description Comments

C6H CYCLES_INT_MASKED 00
H

Number of processor
cycles for which interrupts
are disabled.

Branches C4H BR_INST_RETIRED 00
H

Number of branch
instructions retired.

C5H BR_MISS_PRED_
RETIRED

00
H

Number of mispredicted
branches retired.

C9H BR_TAKEN_RETIRED
00
H

Number of taken branches
retired.

CAH BR_MISS_PRED_TAKEN_
RET 00

H

Number of taken
mispredictions branches
retired.

E0H BR_INST_DECODED
00
H

Number of branch
instructions decoded.

E4H BR_BOGUS 00
H

Number of bogus
branches.

E6H BACLEARS 00
H

Number of time BACLEAR
is asserted

Stalls A2 RESOURCE_STALLS 00
H

Number of cycles during
which there are resource
related stalls.

D2H PARTIAL_RAT_STALLS 00
H

Number of cycles or
events for partial stalls

Segment
Register
Loads

06H SEGMENT_REG_LOADS 00
H

Number of segment
register loads

Clocks 79H CPU_CLK_UNHALTED 00
H

Number of cycles during
which the processor is not
halted

Notes:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the

PerfEvtSel0 and PerfEvtSel1 registers. The lower four bits of the Unit Mask field are used in conjunction
with L2 events to indicate the cache state or cache states involved. The P6-family processor identifies
cache states using the “MESI” protocol, and consequently, each bit in the Unit Mask field represents one of
the four states: UMSK[3] = M (8H) state, UMSK[2] = E (4H) state, UMSK[1] = S (2H) state, and UMSK[0] =
I (1H) state. UMSK[3:0] = MES” (FH) should be used to collect data for all states; UMSK = 0H, for the
applicable events, will result in nothing being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit Mask
(UMSK) field in the PerfEvtSel0 and PerfEvtSel1 registers. Bit 5 of the UMSK field is used in conjunction
with the EBL events to indicate whether the processor should count transactions that are self generated
(UMSK[5] = 0) or transactions that result from any processor on the bus (UMSK[5] = 1).

MMXTM PERFORMANCE MONITORING EXTENSIONS

6-14

6.3 RDPMC Instruction

RDPMC enables the user to read the performance monitoring counters in CPL=3 given bit #8
is set in CR4 (CR4.PCE). This is similar to the RDTSC (Read Time Stamp Counter)
instruction, which is enabled in CPL=3 if the Time Stamp Disable bit in CR4 (CR4.TSD) is
not disabled. Note that access to the performance monitoring Control and Event Select
Register (CESR) is not possible in CPL=3.

6.3.1 INSTRUCTION SPECIFICATION

Opcode: 0F 33

Description: Read event monitor counters indicated by ECX into EDX:EAX

Operation: EDX:EAX ← Event Counter [ECX]

The value in ECX (either 0 or 1) specifies one of the two 40-bit event counters of the
processor. EDX is loaded with the high-order 32 bit, and EAX with the low order 32 bits.

IF CR4.PCE = 0 AND CPL <> 0 THEN # GP(0)

IF ECX = 0 THEN EDX:EAX := PerfCntr0

IF ECX = 1 THEN EDX:EAX := PerfCntr1

ELSE #GP(0)

END IF

Protected & Real Address Mode Exceptions.

#GP(0) if ECX does not specify a valid counter (either 0 or 1).

#GP(0) if RDPMC is used in CPL<> 0 and CR4.PCE = 0

Remarks:

16 bit code: RDPMC will execute in 16 bit code and VM mode but will give a 32-bit
result. It will use the full ECX index.

MMXTM Instruction
Set

A

3/18/96 11:02 AM APPABMP.DOC

INTEL CONFIDENTIAL
(until publication date)

A-1

APPENDIX A
MMXTM INSTRUCTION SET

The table below contains a summary of the MMX instruction set. The instruction
mnemonics below are the base set of mnemonics; most instructions have multiple variations
(e.g., packed-byte, -word, and -dword variations). Complete information on the MMX
instructions may be found in the Intel Architecture MMX TM Technology Programmer’s
Reference Manual (Order Number 243007).

Table A-1. Intel Architecture MMX  Instruction Set

Packed Arithmetic Wrap Around Signed Sat Unsigned Sat
Addition PADD PADDS PADDUS
Subtraction PSUB PSUBS PSUBUS
Multiplication PMULL/H
Multiply & add PMADD
Shift right Arithmetic PSRA
Compare PCMPcc

Conversions Regular Signed Sat Unsigned Sat
Pack PACKSS PACKUS
Unpack PUNPCKL/H

Logical Operations Packed Full 64-bit
And PAND
And not PANDN
Or POR
Exclusive or PXOR
Shift left PSLL PSLL
Shift right PSRL PSRL

Transfers and Memory Operations 32-bit 64-bit
Register-register move MOVD MOVQ
Load from memory MOVD MOVQ
Store to memory MOVD MOVQ

Miscellaneous
Empty multimedia state EMMS

