
MMX TM Technology Overview

4

INTRODUCTION
The volume and complexity of data processed by today’s personal computer is increasing
exponentially, placing incredible demands on the microprocessor. New communications, games
and “edutainment” applications feature video, 3-D, animation, audio and virtual reality, all of
which demand ever increasing levels of performance.

MMXTM technology is designed to accelerate multimedia and communications software. The
technology includes new instructions and data types that allow applications to achieve significant
new levels of performance. It exploits the parallelism inherent in many multimedia and
communication algorithms, yet maintains full compatibility with existing operating system and
application software.

MMX technology is the most significant enhancement to the Intel Architecture since the Intel386TM

processor, which extended the architecture to 32 bits. Processors enabled with MMX technology
will deliver enough performance to execute compute-intensive communication and multimedia
tasks with headroom left to run other tasks or applications. It allows software developers to design
richer, more exciting applications for the PC. The volume of MMX technology-enabled systems
will grow rapidly in 1997 as the technology is incorporated into multiple-processor generations
from Intel.

The definition of MMX technology resulted from a joint effort between Intel’s microprocessor
architects and software developers. A wide range of software applications were analyzed, including
graphics, MPEG video, music synthesis, speech compression, speech recognition, image
processing, games, video conferencing and more. These applications were broken down to identify
the most compute-intensive routines, which were then analyzed in detail using advanced computer-
aided engineering tools. The results of this extensive analysis showed many common,
fundamental characteristics across these diverse software categories. The key attributes of these
applications were:

• Small integer data types (for example: 8-bit graphics pixels, 16-bit audio samples)

• Small, highly repetitive loops

• Frequent multiplies and accumulates

• Compute-intensive algorithms

• Highly parallel operations

MMX technology is designed as a set of basic, general purpose integer instructions that can be
easily applied to the needs of the wide diversity of multimedia and communications applications.
The highlights of the technology are:

• Single Instruction, Multiple Data (SIMD) technique

• 57 new instructions

• Eight 64-bit wide MMX registers

• Four new data types

The basis for MMX technology is a technique called Single Instruction, Multiple Data (SIMD).
This allows many pieces of information to be processed with a single instruction, provide
parallelism that greatly increases performance. This technology combined with the IA superscalar
architecture will provide substantial performance enhancement to the PC platform. MMX
technology is integrated into Intel Architecture processors in a way that maintains full
compatibility with existing operating systems, including MS DOS*, Windows* 3.1, Windows 95,
OS/2* and Unix*. In addition, the full base of Intel architecture software will run on MMX
technology-enabled systems.

MMX technology was defined to be simple. MMX technology is general enough to address the
needs of a large domain of PC applications built from current and future algorithms. MMX

MMX TM Technology Overview

5

instructions are not privileged; they can be used in applications, codecs, algorithms, and drivers.
These instructions are also optimized for short arithmetic where the overhead for converting to and
from floating-point is significant.

DATA TYPES
The principal data type of the IA MMX instruction set is the packed, fixed-point integer, where
multiple integer words are grouped into a single 64-bit quantity. These 64-bit quantities are moved
into the 64-bit MMX registers. The decimal point of the fixed-point values is implicit and is left for
the programmer to control for maximum flexibility. The supported data types are signed and
unsigned fixed-point integers, bytes, words, doublewords and quadwords.

The four MMX technology data types are:

Packed byte Eight bytes packed into one 64-bit quantity

Packed word Four 16-bit words packed into one 64-bit quantity

Packed doubleword Two 32-bit double words packed into one 64-bit quantity

Quadword One 64-bit quantity

As an example, graphics data are generally represented in 8-bit integers, or bytes. With MMX
technology, eight of these pixels are packed together in a 64-bit quantity and moved into an MMX
register. When an MMX instruction executes, it takes all eight of the pixel values at once from the
MMX register, performs the arithmetic or logical operation on all eight elements in parallel, and
writes the result into an MMX register.

Data Types in 64-bit Registers

 63 0

 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 Packed byte (eight 8-bit elements)

 63 48 47 32 31 16 15 0

 Packed word (four 16-bit elements)

Quadword (64-bit element)

 63 32 31 0

 Packed doubleword (two 32-bit elements)

COMPATIBILITY
MMX technology retains its full compatibility with existing operating systems and applications by
aliasing its registers and state upon the IA floating-point registers and state. No new registers or
state are added to support MMX technology. This means the operating system uses the standard
mechanisms for interacting with the floating point state to save and restore MMX code. For
example, during a task switch, the operating system would use an FSAV and FRSTR to preserve
either floating point or MMX code. Aliasing the MMXstate upon the floating-point state does not
preclude applications from executing both MMX technology routines and floating point routines.

Floating-point instructions that save/restore the floating-point state also handle the MMX

MMX TM Technology Overview

6

state (for example, during context switching). The same techniques used by the floating-point
architecture to interface with the operating system are used by MMX technology. MMX
technology does not introduce any new exception or state information, so today’s operating
systems can enable applications using MMX instructions.

DETECTING THE PRESENCE OF MMX ™ TECHNOLOGY
Detecting existence of MMX technology on an Intel microprocessor is done by executing the
CPUID instruction and checking a set bit. This gives software developers the flexibility to
determine the specific code in their software to execute. During install or run time the software can
query the microprocessor to determine if MMX technology is supported and install or execute the
code that includes, or does not include, MMX instructions based on the result.

INSTRUCTIONS
The MMX instructions cover several functional areas including:

• Basic arithmetic operations such as add, subtract, multiply, arithmetic shift and multiply-add

• Comparison operations

• Conversion instructions to convert between the new data types - pack data together, and unpack
from small to larger data types

• Logical operations such as AND, AND NOT,OR, and XOR

• Shift operations

• Data Transfer (MOV) instructions for MMX register-to-register transfers, or 64-bit and 32-bit
load/store to memory

Arithmetic and logical instructions are designed to support the different packed integer data types.
These instructions have a different op code for each data type supported. As a result, the new
MMX technology instructions are implemented with 57 op codes.

MMX technology uses general-purpose, basic instructions that are fast and are easily assigned to
the parallel pipelines in Intel processors. By using this general-purpose approach, MMX
technology provides performance that will scale well across current and future generations of Intel
processors.

MMX TM Technology Overview

7

MMX™ Instruction Set Summary
The instructions and corresponding mnemonics in the table below are grouped by categories of
related functions.

If an instruction supports multiple data types—byte (B), word (W), doubleword (DW), or
quadword (QW), the datatypes are listed in brackets. Only one data type may be chosen for a
given instruction. For example, the base mnemonic PADD (packed add) has the following
variations: PADDB, PADDW, and PADDD. The number of opcodes associated with each base
mnemonic is listed.

Category Mnemonic

Number of
DifferentO

pcodes Description

Arithmetic PADD[B,W,D]

PADDS[B,W]

PADDUS[B,W]

PSUB[B,W,D]

PSUBS[B,W]

PSUBUS[B,W]

PMULHW

PMULLW

PMADDWD

3

2

2

3

2

2

1

1

1

Add with wrap-around on [byte, word, doubleword]

Add signed with saturation on [byte, word]

Add unsigned with saturation on [byte, word]

Subtraction with wrap-around on [byte, word, doubleword]

Subtract signed with saturation on [byte, word]

Subtract unsigned with saturation on [byte, word]

Packed multiply high on words

Packed multiply low on words

Packed multiply on words and add resulting pairs

Comparison PCMPEQ[B,W,D]

PCMPGT[B,W,D]

3

3

Packed compare for equality [byte, word, doubleword]

Packed compare greater than [byte, word, doubleword]

Conversion PACKUSWB

PACKSS[WB,DW]

PUNPCKH

 [BW,WD,DQ]

PUNPCKL

 [BW,WD,DQ]

1

2

3

3

Pack words into bytes (unsigned with saturation)

Pack [words into bytes, doublewords into words]

 (signed with saturation)

Unpack (interleave) high-order

 [bytes, words, doublewords] from MMXTM register

Unpack (interleave) low-order

 [bytes, words, doublewords] from MMX register

Logical PAND

PANDN

POR

PXOR

1

1

1

1

Bitwise AND

Bitwise AND NOT

Bitwise OR

Bitwise XOR

Shift PSLL[W,D,Q]

PSRL[W,D,Q]

PSRA[W,D]

6

6

6

Packed shift left logical [word, doubleword, quadword] by

 amount specified in MMX register or by immediate value

Packed shift right logical [word, doubleword, quadword] by

 amount specified in MMX register or by immediate value

Packed shift right arithmetic [word, doubleword] by

 amount specified in MMX register or by immediate value

Data Transfer MOV[D,Q] 4 Move [doubleword, quadword] to MMX register or from

 MMX register

FP & MMX
State Mgmt

EMMS 1 Empty MMX state

