MMX™ Technology Overview

intal.

Instruction Examples

The following section will describe briefly five examples of MMX instructions. For illustration, the
data type shown in this section will be the 16-bit word data type; most of these operations also exist
for 8-bit or 32-bit packed data types also.

The following example shows a packed add word with wrap around. It performs four additions of
the eight, 16-bit elements, each addition independent of the others, in parallel. In this case, the
right-most result exceeds the maximum value representable in 16-bits—thus it wraps-around. This
is the way regular IA arithmetic behaves. FFFFh + 8000h would be a 17 bit result. The 17th bit is
lost because of wrap around, so the result is 7FFFh.

a3 a2 al FFFFh

+ + + +
b3 b2 bl 8000h
a3+b3 | a2+b2 | al+bl | 7FFFh

Wrap-around Add

The following example is for a packed add word with unsigned saturation. This example uses the
same data values from before. The right-most add generates a result that does not fit into 16 bits;
consequently, in this case saturation occurs. Saturation means that if addition results in overflow
or subtraction results in underflow, the result is clamped to the largest or the smallest value
representable. For an unsigned, 16-bit word, the largest and the smallest representable values are
FFFFh and 0x0000; for a signed word the largest and the smallest representable values are 7FFFh
and 0x8000. This is important for pixel calculations where this would prevent a wrap-around add
from causing a black pixel to suddenly turn white while, for example, doing a 3\\D graphics
Gouraud shading loop.

a3 a2 al FFFFh

+ + + +
b3 b2 bl 8000h
a3+b3 | a2+b2 | al+bl | FFFFh

Saturating Arithmetic

The specific instruction here is Packed Add Unsigned Saturation Word (PADDUSW). A complete
set of ADD operations exists for signed and unsigned cases. The number FFFFh, treated as
unsigned (65,535 decimal), is added to 0x8000 unsigned (32,768), and the result saturates to FFFFh
- the largest representable unsigned 16-bit value.

There is no “saturation mode bit” as a new mode bit would require a change to the Operating
System (OS). Separate instructions are used to generate wrap-around and saturating results.

The next example shows the key instruction used for multiply-accumulate operations, which are
fundamental to many signal processing algorithms like vector-dot-products, matrix multiplies, FIR
and IIR Filters, FFTs, DCTs etc. This instruction is the packed multiply add (PMADD).



MMX™ Technology Overview

a3

a2

al

a0

*

*

*

*

b3

b2

bl

b0

a3*b3+a2*b2 |al*b1+a0*b0

16b x 16b -> 32b Multiply Add

The PMADD instruction starts from a 16-bit, packed data type and generates a 32-bit packed, data
type result. It multiplies all the corresponding elements generating four
32-bit results, and adds the two products on the left together for one result and the two products on
the right together for the other result. To complete a multiply-accumulate operation, the results
would then be added to another register which is used as the accumulator.

The following example is a packed parallel compare. This example compares four pairs of 16-bit
words. It creates a result of true (FFFFh), or false (0000h). This result is a packed mask of ones for
each true condition, or zeros for each false condition. The following example shows an example of
a compare “greater than” on packed word data. There are no new condition code flags, nor any
existing 1A condition code flags affected by this instruction.

23 45 16 34

gt? gt? gt? gt?

31 7 16 67
0000h | FFFFh | 0000h 0000h

Parallel Compares

The packed compare result can be used as a mask to select elements from different inputs using a
logical operation, eliminating the need for a branch or set of branch instructions. The ability to do a
conditional move instead of using branch instructions is an important performance issue in
advanced processors that have deep pipelines and employ branch prediction. A branch based on the
result of a compare operation on the incoming data is usually difficult to predict, as incoming data
in many cases can change randomly. Eliminating branches that are used to perform data selection
by using the conditional select capability, together with the parallelism of the MMX instruction set,
is an important performance enhancement feature.

Following is an example of a pack instruction. It takes four 32-bit values and packs them into four
16-bit values, performing saturation if one of the 32-bit source values does not fit into a 16-bit
result. There are also instructions that perform the opposite - unpack, for example, a packed byte
data type into a packed word data type.

bl

b0

al a0

bl | bO’ al’




MMX™ Technology Overview |nte|®

The pack and unpack instructions exist to facilitate conversion between the new packed data types.
These are especially important when an algorithm needs higher precision in its intermediate
calculations, as in image filtering. A filter on an image usually involves a set of multiply
operations between filter coefficients and a set of adjacent image pixels, accumulating all the
values together. These multiplies and accumulations need more precision than 8-bits, the original
data type of the pixels. The solution is to unpack the image’s 8-bit pixels into 16-bit words,
perform the calculations in 16-bit words without concern for overflow, then pack back to 8-bit
pixels before storing the filtered pixels to memory.

APPLICATION EXAMPLES

The following section describes example uses of the MMX instruction set to implement basic
coding structures:

Conditional Select

Multimedia applications must process large sets of data. In some cases there is a need to select
different data based on a condition query performed on the incoming data. Intel has been able to
improve performance in its family of processors by implementing micro-architectural features for
faster performance and deeper pipelines. Branch prediction is an important part of making the pipe
run efficiently, as a mis-prediction can cause the pipe to flush and degrade performance. The
following example shows an efficient way to reduce the need to use branch instructions, especially
those that are data dependent, and thus very difficult to predict. The Chroma Keying example
demonstrates how conditional selection using the MMX instruction set removes branch mis-
predictions, in addition to performing multiple selection operations in parallel. Text overlay on a
graphics/video background, or Sprite overlays in games are some of the other operations that would
benefit from this technique.

Chroma Keying

Most have seen the television weather man overlaid on the image of a weather map. In this
example we use a green screen to overlay an image of a woman on a picture of a Spring blossom.
We’ll illustrate this example processing four 16-bit pixels in parallel. The instructions also allow
the processing of eight 8-bit pixels in parallel, a substantial performance speed-up potential.

First we’ll take four pixels from the picture with the woman on a green background. The top row
of data below represents pixels that alternate green, not green, green, and not green. The compare
instruction builds a mask for that data. That mask is a sequence of words that are all ones or all
zeros representing the Boolean values of true and false. We now know what is the unwanted
background and what we want to keep. This is shown below using the shadow picture.

10



