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Glossary 
Table 1-1 Glossary 

Acronym Term Description 

ACPI Advanced Configuration 

and Power Interface 

Advanced Configuration and Power Interface is an 

open standard that operating systems can use to 

discover and configure computer hardware 

components, to perform power management, auto 

configuration, and status monitoring.  

CAT Cache Allocation 

Technology 

Software-guided redistribution of cache capacity is 

enabled by CAT, enabling important data center VMs, 

containers or applications to benefit from improved 

cache capacity and reduced cache contention. CAT 

may be used to enhance runtime determinism and 

prioritize important applications. 

CDP Code and Data 

Prioritization 

As a specialized extension of CAT, Code and Data 

Prioritization (CDP) enables separate control over 

code and data placement in the L2 cache and the 

last-level (L3) cache. Certain specialized types of 

workloads may benefit with increased runtime 

determinism, enabling greater predictability in 

application performance. 

CH Channel An I/O device channel, used to communicate between 

a device and an I/O Block and onto the coherent 

fabric. 

CLOS Class(es) of Service  A fundamental tag in RDT used for resource controls  

CMT Cache Monitoring 

Technology 

Monitors the last-level cache (L3) utilization by 

individual threads, applications, or Virtual Machines, 

CMT improves workload characterization, enables 

advanced resource-aware scheduling decisions, aids 

“noisy neighbor” detection and improves performance 

debugging. 

Intel® RDT Intel® Resource Director 

Technology 

Intel® RDT is the “umbrella” technology name for 

Intel’s Platform Quality of Service technologies, 

including CPU Agents and Non-CPU Agents. 

I/O Intel® 

Resource 

Director 

Technology 

(Intel® RDT) 

I/O Device Intel® 

Resource Director 

Technology 

Intel RDT technologies specifically focusing on I/O 

devices including PCIe, CXL and integrated 

accelerators  

MBA  Memory Bandwidth 

Allocation 

MBA enables approximate and indirect control over 

memory bandwidth available to workloads, enabling 

new levels of interference mitigation and bandwidth 

shaping for “noisy neighbors” present on the system. 

MBM Memory Bandwidth 

Monitoring 

Multiple VMs or applications can be tracked 

independently via Memory Bandwidth Monitoring 

(MBM), which provides memory bandwidth monitoring 

for each running thread simultaneously. Benefits 

include detection of noisy neighbors, characterization 

and debugging of performance for bandwidth-

sensitive applications, and more effective non-uniform 

memory access (NUMA)-aware scheduling. 
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Acronym Term Description 

MMIO Memory Mapped I/O  I/O Intel RDT defines a series of MMIO-mapped 

interfaces to enable association of I/O devices to 

RMIDs and CLOS for monitoring and control. 

PQR PQR A shorthand for the IA32_PQR_ASSOC MSR, which 

associates IA threads to RMID and CLOS tags. 

RMD Resource Management 

Domain 

A set of features defined within a particular cache 

domain, such as an L3 cache supporting a number of 

logical processors. 

RTD Resource Telemetry 

Domain 

A Resource Management Doman within which one or 

more resource monitoring (telemetry) controls are 

supported 

RAD Resource Allocation 

Domain 

A Resource Management Doman within which one or 

more resource allocation controls are supported 

RMID Resource Monitoring ID(s) A fundamental tag used for resource monitoring in 

Intel RDT. 

SoC System-on-Chip An integrated chip composed of host processors, 

accelerators, memory, and I/O agents. 

TC Traffic Class A PCI Express feature that allows differentiation of 

transactions to apply appropriate servicing policies. 

VC Virtual Channel A PCI Express feature for differential bandwidth 

allocation. Virtual channels have dedicated physical 

resources (buffering, flow control management, and 

so on) across the hierarchy. 

VMM Virtual Machine Monitor A software layer that controls virtualization. 
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1 Introduction 

This document defines the architecture of the Intel® Resource Director 

Technology (Intel® RDT) feature set. The goal of Intel RDT is to bring new 

levels of monitoring and control over how shared platform resources such as 

last-level cache (L3) and main memory (typically DRAM) bandwidth are utilized 

by CPU Agents and non-CPU Agents. The monitoring and allocation are not 

necessarily applied across the entire system but are applied to a Resource 

Management Domain (RMD) which corresponds to a set of agents sharing a set 

of system resources, such as L2 cache capacity, L3 cache capacity, memory 

bandwidth, and I/O devices. A Resource Management Domain (RMD) consists 

of a collection of CPU agents or non-CPU agents. The set of CPU agents consist 

of one or more logical processors associating an RMID and/or CLOS tag with a 

software thread. Non-CPU agents include PCI Express* (PCIe*)/Compute 

Express Link (CXL)* devices and integrated accelerators, thus broadly 

encompassing the set of agents which read from and write to either caches or 

memory, excluding IA cores. 

The Intel RDT feature set provides a series of monitoring and allocation 

capabilities such as Cache Monitoring Technology (CMT), Memory Bandwidth 

Monitoring (MBM), Cache Allocation Technology (CAT), Code and Data 

Prioritization (CDP), Memory Bandwidth Allocation (MBA) and others. These 

technologies enable monitoring and control of shared platform resources, such 

as the L3 cache capacity or main memory bandwidth, which may be in use by 

many applications, containers or VMs running on the platform concurrently. As 

described in subsequent chapters, these features enable deterministic behavior 

and fairness in communications, real-time and other usages, and are initially 

introduced in Section 1.3. 

The Intel RDT features are based on a set of architectural tags, described in the 

following section, and fundamental capabilities for enabling monitoring and 

control over shared platform resources under the control of an operating 

system (OS) or virtual machine monitor (VMM), as described in the chapter on 

Reference Software Architecture. 

1.1 High Level Usage Models 

A wide variety of industry deployment models find value in either enhanced 

visibility into system resource utilization, or control over shared resources. As a 

result, a broad set of customer usage models are observed with Intel RDT, 

including but not limited to: 

• Cloud Hosting in the datacenter – Prioritizing important Virtual 

Machines (VMs) and containing or mitigating “noisy neighbors”. 

• Public/Private Cloud – Isolating an important infrastructure VM which 

provides networking services such as a VPN to bridge the private cloud to 

the public cloud. 
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• Datacenter Infrastructure – Protecting virtual switches which provide 

local networking. 

• Communications – Ensuring consistent performance and containing 

background tasks on a network appliance built atop an Intel® Xeon® Server 

Platform. 

• Content Delivery Network (CDN) – Prioritizing key parts of the content 

serving application in order to improve throughput. 

• Networking – Containing the impact of consolidated or co-located 

containers to help reduce jitter and reduce packet loss in noisy scenarios, 

and protecting high-performance applications based on the Dataplane 

Development Kit (DPDK). 

• Industrial Control – Prioritizing important sections of code to help meet 

real-time requirements. 

Varying usage models drive differing requirements. Datacenter usages may 

require control over relative container prioritization and management of tail 

latencies, for instance, while industrial control usages may require strict 

management of control loop cycle times, including the use of model-specific 

extended Intel RDT features. A number of examples use cases are described in 

more detail based on abstracted examples of real-world deployments in the 

chapter on Reference Software Architecture. 

1.2 Scope 

Broadly, this document discusses the following topics: 

• An introduction to key Intel RDT architectural concepts and design 

philosophy. 

• Details of architectural Intel RDT monitoring and allocation features for CPU 

agents and non-CPU agents. 

• Details of model-specific Intel RDT monitoring and allocation features for 

CPU agents and non-CPU agents. 

• Considerations for BIOS writers, and those consuming ACPI enumeration 

tables generated by BIOS. 

• An overview of various real-world software usages of Intel RDT features 

that have been observed, and recommended software enabling strategies. 

The following topics are not covered (or are covered in a limited context): 

• Intel RDT for CPU Agents and non-CPU Agents architectural details - 

feature enumeration and interfaces using CPUID and configuration using 

MSRs. These details are provided in the Intel® 64 Architecture Software 

Developer’s Manual (SDM), Volume 3B, Chapter Title: Debug, Branch 

Profile, TSC, and Intel® Resource Director Technology (Intel® RDT) 

Features. 
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1.3 Audience 

The intended audience for this specification includes Intel RDT consumers, 

users and implementers, across OS/VMM software, resource management 

driver and control loop developers, administrators, managers of datacenter 

infrastructure, workload owners and embedded and communications 

developers. Additionally, this specification may be of interest to those 

developing utilities, BIOS routines, administrative libraries and orchestration 

frameworks.  

1.4 References 

Table 1-1. References 

Description 

[1] Intel® 64 and IA-32 Architectures Software Developer’s Manual.  

Volume 3B, Chapters 18.18 and 18.19. 

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html  

[2] Intel® Architecture Instruction Set Extensions and Future Features. 

Instruction Set Architecture (intel.com) 

[3] Intel® Virtualization Technology for Directed I/O Specification. 

http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-

spec.html  

[4] Unified Extensible Firmware Interface Forum – Links to ACPI-Related Documents (incudes 

IRDT table title and signature). 

https://uefi.org/acpi  

[5] PCIe Express Specification, v5.0 or newer. 

https://pcisig.com/specifications  

[6] Compute Express Link Specification, v1.0 or newer. 

https://www.computeexpresslink.org/download-the-specification  

[7] User space software for Intel® Resource Director Technology 

https://github.com/intel/intel-cmt-cat 

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
https://uefi.org/acpi
https://pcisig.com/specifications
https://www.computeexpresslink.org/download-the-specification
https://github.com/intel/intel-cmt-cat


 

Document Number: 356688-001US, Revision: 1.0  13 

  

2 Intel® Resource Director 
Technology Overview 

This chapter provides an overview of Intel® RDT features, including goals, key 

ingredients, and the architectural framework, which are discussed in more 

detail in the chapters that follow. 

2.1 Common Tags 

Intel RDT provides a layer of abstraction between applications and logical 

processors through the use of numeric tags. Both CPU agents and non-CPU 

agents use the following tags for resource monitoring and allocation, 

respectively: 

• Resource Monitoring IDs (RMIDs) are used for monitoring of shared 

platform resource utilization. 

• Classes of Service (CLOS) are used for control of shared platform 

resources, such as L3 cache occupancy or memory bandwidth. 

The RMID and CLOS tags are described in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. RMID and CLOS tags 

are independent. Usage of RMID tags does not affect CLOS, and vice versa 

(however, when CLOS tags are used to affect resource allocations, the effects 

may be observed with RMID-based monitoring features.) An RMID-based 

monitoring feature does not incur hardware overhead or affect a CLOS-based 

allocation feature. A product may be built to implement RMID-based monitoring 

features, CLOS-based control features, or both. 

For CPU agents, RMIDs and CLOS tags are associated with the operation of a 

logical processor through the IA32_PQR_ASSOC MSR. 

For non-CPU agents, a series of MMIO interfaces is used to associate upstream 

traffic from I/O devices with RMID and CLOS tags, and the numerical 

interpretation of the tags is the same as for processor traffic. (For example, the 

RMID value “5” used to track processor thread resource consumption means 

the same thing as when the RMID value “5” is used to track the cache fill 

behavior of a PCIe device.) These MMIO interfaces for tagging non-CPU agents 

are discovered using an ACPI structure called I/O Intel RDT, that is, IRDT. (see 

Chapter 5.) 

2.2 L3 Configurations 

This specification describes two types of high level L3 configurations that may 

support Intel RDT features: 

1. Shared-L3 Configuration: There is a common shared L3 cache for all 

the agents in the SoC, as shown in Figure 2-1. This SoC configuration 

supports interfaces for Intel RDT features based on the CPUID instruction 
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for feature enumeration and Model-Specific Registers (MSRs) for feature 

configuration and telemetry retrieval. 

Figure 2-1. Shared-L3 Configuration System Model and Presence of Intel® RDT 

Features 

 

2. Multiple-L3 Configuration: There may be more than one L3 cache 

instances that are local to CPU Agents or non-CPU Agents respectively, as 

shown in Figure 2-2. 

Figure 2-2. Multiple-L3 Configuration System Model and Presence of Intel ® RDT 

Features 
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A set of features defined within a particular cache domain, such as an L3 cache 

supporting a number of logical processors, may be referred to as a Resource 

Telemetry Domain (RTD, for monitoring features) or a Resource Allocation 

Domain (RAD, for allocation features). More generally, a resource which 

supports Intel RDT monitoring features, allocation features or both may be 

referred to as a Resource Management Domain (RMD).Figure 2-2 shows 

example of multiple RMDs. 

See Appendix A.4 for Intel RDT feature mapping for CPU agents and non-CPU 

agents in different SoC configurations. 

2.3 Intel® RDT Monitoring Technologies 

2.3.1 Intel® RDT Monitoring Key Ingredients 

Intel RDT Monitoring enables monitoring shared platform resources, such as L3 

cache occupancy and memory bandwidth, based on software-defined Resource 

Monitoring IDs (RMIDs) that are tagged to applications or VMs on a per-thread 

basis (Figure 2-3). For CPU Agents, each logical processor exposes the 

IA32_PQR_ASSOC MSR to allow the OS/VMM to specify an RMID when an 

application, thread or VM is scheduled on a core. 

Resource monitoring for the indicated application/thread/VM is then performed 

by hardware based on the RMID with which it is associated, and software can 

read back the L3 cache occupancy for a given RMID via counter registers (if the 

CMT feature is supported for instance). Each thread of an application may be 

tracked with a distinct RMID, or threads may be grouped into a single RMID, 

based on the granularity of monitoring required. Threads within a VM, apps 

within a VM, entire VMs or groups of VMs can similarly be tracked with RMIDs 

with variable granularity as needed. 

Figure 2-3. Intel® RDT Monitoring – Enabling RMID-Based Monitoring for 

Shared Resources 

 

The basic ingredients of Intel RDT Monitoring are as follows: 

• CPUID and/or ACPI constructs to indicate support for Intel RDT Monitoring 

and sub-features (CMT, MBM, and so on) for Resource Telemetry Domains 

(RTD). 
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• Enumeration of the total number of RMIDs that can be tracked in the given 

RTD. 

• Mechanisms to allow system software (OS/VMM) to specify the RMID of 

software threads and non-CPU agents. 

• Mechanisms to allow system software to retrieve collected metrics on a 

per-RMID basis via architectural MSRs or MMIO interfaces. 

The first ingredient to make use of Intel RDT Monitoring is to enumerate the 

set of monitoring capabilities provided on the given Resource Management 

domain via CPUID or ACPI and determine the number of RMIDs available for 

tracking on a particular Resource Telemetry Domain (RTD, that is, caching 

domain). This will allow the OS/VMM to determine how many unique IDs it may 

use. Given that certain processor topologies may include heterogenous 

capabilities which vary per-processor, it is recommended that software 

enumerate Intel RDT CPUID leaves from the perspective of each logical 

processor (LP) to construct the list of supported capabilities and which 

resources (such as L3 cache) may be shared among various LPs. 

The second ingredient (Intel RDT Monitoring association) allows the OS/VMM to 

specify the RMID of the running software thread to the platform for CPU 

agents. The OS/VMM can also specify the RMID for upstream traffic and 

operation of non-CPU agents. 

The third ingredient (Intel RDT marking and associated hardware support) 

enables each memory request from the CPU agents and non-CPU agents to be 

tagged with the RMID provided by the OS/VMM. 

The fourth ingredient is Intel RDT Monitoring reporting. When the monitoring 

data retrieval register is programmed with the RMID and the specific event 

code of interest (L3 Cache Occupancy for example), this information is 

appropriately retrieved and provided back. 

Multiple Intel RDT Monitoring features may exist within a platform, but the 

software should not assume that the presence of one Intel RDT Monitoring 

feature implies the existence of any others. Intel RDT features are 

independently enumerated in the sequence described in the Intel® 64 and IA-

32 Architectures Software Developer’s Manual, Volume 3B, Section 18.18.4, in 

order to avoid ambiguous situations. 

2.3.2 Shared-L3 versus Multiple-L3 Configuration 

Intel RDT Monitoring features may have different scope definitions depending 

on L3 configuration. With the shared-L3 configuration, CPU agents and non-

CPU agents allocate into a shared L3 cache. Hence, all monitoring features 

have a consistent definition for CPU agents and non-CPU agents. 

With the multiple-L3 configuration, non-CPU agents may have a separate 

nearby L3 cache which is distinct from CPU agents’ L3 cache. Hence, 

monitoring features may have different definitions for CPU agents and non-CPU 

agents. For example, in certain implementations, non-CPU agents with a near 
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L3 cache implementation may report memory bandwidth monitoring data from 

the near cache only. 

2.4 Intel® RDT Allocation Technologies 

2.4.1 Intel® RDT Allocation Key Ingredients 

Intel RDT Allocation enables resource allocation based on Class of Service 

(CLOS) tags. The processor exposes Classes of Services into which applications 

(or individual threads) and traffic from I/O devices may be assigned. A CLOS 

may have multiple associated resource allocation properties. For example, 

there may exist controls for each CLOS to specify L2 capacity available to that 

CLOS, L3 capacity available, memory bandwidth available, and other properties 

(Figure 2-4). 

In the case of L3 capacity control features, for instance, such as Cache 

Allocation Technology (CAT), the cache allocation for a given is restricted based 

on the class with which they are associated. Similarly, in certain 

implementations supporting non-CPU agent controls, context-associated and 

upstream traffic from I/O devices may be controlled as it utilizes shared system 

resources. Each CLOS can be configured using bitmasks which represent 

capacity, and the degree of overlap and isolation between classes in allocation 

features which influence the SOC caches. 

For CPU agents, each logical processor exposes the IA32_PQR_ASSOC MSR to 

allow the OS/VMM to specify a CLOS when an application, thread or VM is 

scheduled. Cache Allocation for the application/thread/VM is then controlled 

based on the CLOS and the associated bitmask. 

Figure 2-4. Intel® RDT Allocation – Enabling CLOS-based Allocation for Shared 

Resources 

 

The basic ingredients of Intel RDT Allocation are as follows: 

• CPUID or ACPI constructs to indicate whether Intel RDT Allocation and sub-

features (CAT, MBA, and so on) for Resource Allocation Domains (RADs) 

are supported and enumerate the total number of CLOS that may be 

associated to shared platform resources on the platform. 
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• Mechanisms to allow system software (OS/VMM) to specify the CLOS of 

software threads and non-CPU agents. 

• Mechanisms to allow system software to configure the shared platform 

resource levels available to each CLOS via architectural MSRs or MMIO 

interfaces. 

The first ingredient to make use of Intel RDT Allocation is to enumerate the 

level of allocation capability provided on the given Resource Allocation Domain 

via CPUID and/or ACPI and determine the number of CLOSs available for 

allocating shared platform resources on a particular RAD (that is, a certain L3 

caching domain). This will allow the OS/VMM to determine how many unique 

IDs it may use. Given that certain processor topologies may include 

heterogenous capabilities which vary per-processor, it is recommended that 

software enumerate Intel RDT CPUID leaves from the perspective of each 

logical processor (LP) to construct the list of supported capabilities and which 

resources (such as L3 cache) may be shared among various LPs. 

The second ingredient (Intel RDT Allocation association) allows the OS/VMM to 

specify the CLOS of the running software thread to the platform for CPU 

agents. The OS/VMM can also specify the CLOS for upstream traffic and 

operation of non-CPU agents. 

The third ingredient (Intel RDT marking and associated hardware support) 

enables each memory request from CPU agents and non-CPU agents to be 

tagged with the CLOS provided by the OS/VMM.  

The fourth ingredient is Intel RDT Allocation control, when the allocation 

register is programmed with the CLOS and allocation control is performed by 

the specific shared platform resource (L3 Cache capacity for example). 

Multiple Intel RDT Allocation features may exist within a platform. The software 

should not assume that the presence of one RDT Allocation feature implies the 

existence of any others. Intel RDT features are independently enumerated in 

the sequence described in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3B, in order to avoid ambiguous situations. 

2.4.2 Shared-L3 versus Multiple-L3 Configuration 

Intel RDT Allocation features may have different definitions depending on L3 

configuration. With the shared-L3 configuration, CPU agents and non-CPU 

agents allocate into a shared-L3 cache. Hence, all allocation features have a 

consistent definition for CPU agents and non-CPU agents. With the multiple-L3 

configuration, non-CPU agents may have a separate near L3 cache which is 

different from the CPU agents’ L3 cache. Hence, allocation features may have 

different definitions for CPU agents and non-CPU agents. For example, non-CPU 

agents with a near L3 cache implementation provide separate interfaces for 

cache capacity allocation for the near L3 cache. 

Chapter 3 and Chapter 4 provide details about each Intel RDT Monitoring and 

Allocation features for CPU agents and non-CPU agents. 
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3 Intel® Resource Director 
Technology for CPU Agents 

This chapter contains an overview of the Intel RDT features for CPU agents. 

Chapter 4 describes details about features for non-CPU agents.  

3.1 Intel® RDT Monitoring Features 

The Intel RDT Monitoring architecture enables monitoring of the utilization level 

of critical shared platform resources and provides this data directly to the 

Hypervisor, Operating System or other privileged software. Intel RDT 

Monitoring supports three event codes: 1) L3 cache occupancy 2) L3 Total 

External bandwidth 3) L3 Local External bandwidth. This allows more efficient 

scheduling based on resource use, as well as application tuning and 

performance prediction based on resource use characterization, and optionally 

better reporting and billback. This functionality complements Intel RDT 

Allocation, which provides control over shared platform resources available to 

CPU agents. 

3.1.1 Common Framework 

The following mechanisms are shared by Intel RDT Monitoring features: 

• CPUID feature bits to enumerate the presence of the Intel RDT Monitoring 

capabilities and the details of each sub feature. 

• The IA32_PQR_ASSOC MSR, which the OS or Hypervisor uses to specify 

the RMID for each software thread scheduled to run on a logical processor. 

See Figure 3-2. 

• The IA32_QM_EVTSEL and IA32_QM_CTR MSRs, to read cache occupancy 

and bandwidth statistics. See Figure 3-3. 

Software may flexibly associate RMIDs with threads, applications, VMs, or 

containers. (See Figure 3-1). If multiple logical processors within a Resource 

Telemetry Domain (RTD) are assigned the same RMID, the total resource 

monitoring telemetry by these logical processors will be accumulated together 

and the total reported by hardware. 

Monitoring data is retrieved using a window-based interface. Software writes 

an event ID and RMID to the IA32_QM_EVTSEL MSR and hardware provides 

the resulting data back in the IA32_QM_CTR MSR. 

Refer to Intel® 64 and IA-32 Architectures Software Developer’s Manual, 

Volume 3B, for details on CPUID and MSR usage. 
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Figure 3-1. Resource Monitoring IDs (RMIDs) Assignment Flow 

 

Figure 3-2. IA32_PQR_ASSOC MSR to Set RMID 
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Figure 3-3. IA32_QM_EVTSEL and IA32_QM_CTR MSRs 

 

3.1.2 Cache Occupancy Monitoring Technology 

Intel RDT Cache Occupancy Monitoring Technologies provide visibility into 

cache utilization. Features such as Cache Monitoring Technology (CMT) provide 

occupancy counters on a per-RMID basis such that cache occupancy by each 

RMID may be tracked and read back in real-time during system operation.  

More specific feature details about CMT are provided in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are 

listed in Appendix A.5. See Appendix A.2 for CMT feature supported product 

details. 

3.1.2.1 L3 Cache Monitoring Technology 

L3 Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor 

or similar system management agent to determine the usage of L3 cache of 

the Resource Telemetry Domain (RTD) by applications running on the platform.  

3.1.3 Memory Bandwidth Monitoring 

Memory Bandwidth Monitoring (MBM) provides monitoring of bandwidth from 

one level of the cache or resource hierarchy to the next, allowing bandwidth-

aware scheduling decisions, inter-RTD scheduling optimization, and enabling 

feedback to bandwidth allocation features which allow control over memory 

bandwidth. 

More specific feature details about MBM are provided in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are 

listed in Appendix A.5. See Appendix A.2 for MBM feature supported product 

details. 
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3.1.3.1 L3 Total and Local External Memory Bandwidth Monitoring 

L3 Total and Local External Memory Bandwidth Monitoring allows system 

software to monitor the use of bandwidth between L3 cache and local or 

remote memory. In certain implementations, MBM is not guaranteed to track 

directory and Extended Prediction Table (XPT) prefetcher traffic. 

3.2 Intel® RDT Allocation Features 

The Intel RDT Allocation architecture enables control over utilization level of 

critically shared platform resources and provides this control directly to the 

Hypervisor or Operating System. This allows more efficient resource usage as 

well as application prioritization and determinism restoration based on resource 

repartitioning. The implementation of Intel RDT Allocation features may be 

product-specific or architectural. These capabilities compliment Intel RDT 

monitoring, which provides insight into shared platform resource utilization by 

CPU agents. 

3.2.1 Common Framework 

The following mechanisms are shared by Intel RDT allocation features: 

• CPUID feature bits to enumerate the presence of Intel RDT Allocation 

capabilities and the details of each sub feature. 

• The IA32_PQR_ASSOC MSR which software uses to specify the CLOS for 

each software thread. See Figure 3-5. 

• Mechanisms in hardware to specify resource usage to apply to each Class 

of Service. 

Software can flexibly associate Classes of Service with threads, applications, 

VMs, or containers (see Figure 3-4). CLOS values are shared across all 

allocation features. A particular numeric CLOS value has the same meaning 

from the viewpoint of all cores. Each CLOS has an associated set of mask 

registers as described later to associate that CLOS with a fraction of the shared 

platform resources. If multiple logical processors within a Resource Allocation 

Domain (RAD) are assigned the same CLOS, then resource allocations 

associated with that CLOS will be shared among that set of logical processors. 



 

Document Number: 356688-001US, Revision: 1.0  23 

  

Figure 3-4. Classes of Service (CLOS) Association Flow 

 

Figure 3-5. The IA32_PQR_ASSOC MSR to Set CLOS 

 

For each resource, a block of registers is defined for software to configure the 

allocation values for each CLOS. The definition of the register fields depends on 

the type of resource being managed and is discussed in subsequent sections. 

3.2.2 Cache Occupancy Allocation Technologies  

A family of Cache Occupancy Allocation Technologies allows control over shared 

cache space on a per-CLOS basis, enabling both isolation and overlap for better 

throughput, fairness, determinism and differentiation. Typically, these features 

are known as Cache Allocation Technology (CAT), which is the term used in this 

document. Certain processors may support architectural or model-specific 

forms of CAT depending on the product generation. Model-specific 

implementations are discussed in Appendix B.1.4. 
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More specific feature details about CAT are provided in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are 

listed in Appendix A.5. See Appendix A.2 for CAT feature supported product  

details. 

3.2.2.1 L2 Cache Allocation Technology 

L2 Cache Allocation Technology (L2 CAT) allows system software to specify the 

amount of L2 cache space of the Resource Allocation Domain into which an 

application can fill. 

3.2.2.2 L2 Cache Code and Data Prioritization 

L2 Code Data Prioritization (L2 CDP) provides differentiation between code and 

data for L2 cache usage by a single Class of Service. In a case where an 

application has a large code footprint which can overwhelm data in the cache, 

or vice versa, the ability to separately prioritize code and data is valuable. 

L2 CDP provides a pair of allocation bitmasks for each Class of Service (rather 

than a single bitmask per CLOS as in L2 CAT), to allow system software to 

independently configure the amount of L2 cache available to code and data. 

3.2.2.3 L3 Cache Allocation Technology 

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (OS), a 

Hypervisor, Virtual Machine Manager (VMM), or similar system service 

management agent to specify the amount of L3 cache space within a Resource 

Allocation Domain into which a CLOS may fill. 

3.2.2.4 L3 Cache and Data Prioritization 

L3 Code Data Prioritization (L3 CDP) provides differentiation between code and 

data for L3 usage by a single Class of Service. In a case where an application 

has a large code footprint which can overwhelm data in the cache, or vice 

versa, the ability to separately prioritize code and data is valuable. 

L3 CDP provides a pair of allocation bitmasks for each Class of Service (rather 

than a single bitmask per CLOS as in L3 CAT), to allow system software to 

independently configure the amount of L3 cache available to code and data. 

3.2.3 Memory Bandwidth Allocation 

Memory Bandwidth Allocation (MBA) allows the system software to control 

access bandwidth to memory. It allows slowing “noisy neighbor” threads which 

may be overutilizing bandwidth and enables the creation of closed-loop control 

systems (monitoring and control combined) by exposing control over a credit-

based throttling mechanism. 

More specific feature details about MBA are provided in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are 
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listed in Appendix A.5. See Appendix A.2 for MBA feature supported product 

details. 

There are three different generations of MBA, each extending additional 

capabilities: 

1. First Generation MBA (Interface Scope) – This is initial 

implementation of the MBA feature which provides indirect and 

approximate control over memory bandwidth available per-core. See 

Section 3.2.3.1 for implementation details and see Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B, for legacy 

enumeration, interface and per-CLOS delay value resolution details. 

2. Second Generation MBA (Interface Scope) - This enhanced MBA 

capability provides improved efficiency and accuracy in throttling, along 

with providing increased system throughput. Rather than a strict 

bandwidth control mechanism, a dynamic hardware controller is 

implemented, which can react to changing bandwidth conditions at the 

microsecond level. Before using the second-generation MBA feature, the 

MBA hardware controller requires a BIOS-assisted calibration process that 

may include inputs such as the number of memory channels populated 

and other system parameters; this is a change from the first generation of 

MBA. 

Intel’s BIOS reference code includes a default configuration that is 

recommended for general usage, and BIOS profiles may be created with 

alternate tuning values to optimize for certain usages (such as stricter 

throttling). See Section 3.2.3.2 for implementation details and Intel® 64 

and the IA-32 Architectures Software Developer’s Manual, Volume 3B, for 

legacy enumeration and interface details. 

3. Third Generation MBA (Agent Scope) - The third generation MBA 

feature on future processors based on the codename Granite Rapids 

microarchitecture further enhances MBA with per-logical-processor control 

and a further improved controller design. Total memory bandwidth (all L3 

miss traffic) is now managed by MBA 3.0. This implementation follows the 

past MBA precedent of delivering significant enhancements without a 

major software overhaul, and while preserving backward compatibility. 

See Section 3.2.3.3 for implementation details and Intel® 64 and the IA-

32 Architectures Software Developer’s Manual, Volume 3B, for legacy 

enumeration and interface details. 

MBA performance properties change over time, for instance enhancing system-

level efficiency. Software should not assume that performance properties or 

specific tunings of MBA remain identical across product generations. Third 

generation MBA shifts from interface-scope to agent-scope throttling support, 

and scheduler re-tuning to take advantage of this enhancement may be 

beneficial. Legacy architectural implementations of MBA are enumerated in the 

sequence described in Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3B, in order to avoid ambiguous situations. 

The MBA feature provides the following architectural components: 

• A mechanism to enumerate the MBA capability to control the bandwidth 

from each level of the cache (for example, L2, L3) to the next level. 
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• A mechanism for the OS or Hypervisor to configure the amount of 

bandwidth available to a particular Class of Service via a throttling value 

(discussed later). 

• Mechanisms for the OS or Hypervisor to specify the Class of Service to 

which a thread belongs. 

• Hardware mechanisms to guide and enforce the delay value at each level 

of the cache hierarchy when an application has been designated to belong 

to a specific Class of Service. 

Note that in some usages such as those seeking bandwidth control in MB/s, 

MBA may require either application-level performance feedback or 

complimentary Memory Bandwidth Monitoring (MBM) to use in the most 

optimal way. Backward compatibility of the software interfaces is preserved, 

and enhanced MBA generational changes manifest as enhancements atop the 

MBA feature baseline. 

3.2.3.1 First Generation Memory Bandwidth Allocation 

The Memory Bandwidth Allocation (MBA) feature provides indirect and 

approximate control over memory band-width available per-core and was 

introduced on the Intel® Xeon® Scalable Processor Family. This feature 

provides a method to control applications which may be over-utilizing 

bandwidth relative to their priority in environments such as the datacenter. 

The MBA feature uses existing constructs from the Intel RDT feature set 

including Classes of Service (CLOS). A given CLOS used for L3 CAT for instance 

means the same thing as a CLOS used for MBA. Infrastructure such as the MSR 

used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and 

some elements of the CPUID enumeration (such as CPUID leaf 10H [Cache 

Allocation Technology Enumeration Leaf]) are shared. 

The high-level implementation of Memory Bandwidth Allocation is shown in 

Figure 3-6. 
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Figure 3-6. A High-Level Overview of the First-Generation MBA Feature 

 

As shown here, the MBA feature introduces a programmable request rate 

controller between the cores and the high-speed interconnect, enabling indirect 

control over memory bandwidth for cores over-utilizing bandwidth relative to 

their priority. For instance, high-priority cores may be run un-throttled, but 

lower priority cores generating an excessive amount of traffic may be throttled 

to enable more bandwidth availability for the high-priority cores. 

Because the MBA uses a programmable rate controller between the cores and 

the interconnect, higher-level shared caches and memory controller, bandwidth 

to these caches may also be reduced, so care should be taken to throttle only 

bandwidth-intense applications which do not use the off-core caches 

effectively. 

The throttling values exposed by MBA are approximate and are calibrated to 

specific traffic patterns. As workload characteristics vary, the throttling values 

provided may affect each workload differently. In cases where precise control is 

needed, the Memory Bandwidth Monitoring (MBM) feature can be used as input 

to a software controller which makes decisions about the MBA throttling level to 

apply. 

Legacy enumeration and configuration details are discussed in Intel® 64 and 

IA-32 Architectures Software Developer’s Manual, Volume 3B.  
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3.2.3.1.1 Usage Considerations 

As the memory bandwidth control that MBA provides is indirect and 

approximate, using the feature with a closed-loop controller to also monitor 

memory bandwidth and how effectively the applications use the cache (via the 

Cache Monitoring Technology feature) may provide additional value. This 

approach also allows administrators to provide a bandwidth target or set point 

which a controller could use to guide MBA throttling values applied, and this 

allows bandwidth control independent of the execution characteristics of the 

application. 

As control is provided per processor core (the max of the delay values of the 

per-thread CLOS applied to the core), the user should take care in scheduling 

threads so as to not inadvertently place a high-priority thread (with zero 

intended MBA throttling) next to a low-priority thread (with MBA throttling 

intended), which would lead to inadvertent throttling of the high-priority 

thread, as the maximum resolved throttling value is applied. 

3.2.3.2 Second Generation Memory Bandwidth Allocation 

The second generation of Memory Bandwidth Allocation (MBA) is implemented 

in the 3rd Gen Intel® Xeon® Scalable Processor Family, and related Intel Atom® 

processors such as the P5000 Series. This enhanced MBA capability provides 

improved efficiency and accuracy in throttling, along with providing increased 

system throughput. Rather than a strict bandwidth control mechanism, a 

dynamic hardware controller is implemented, which can react to changing 

bandwidth conditions at the microsecond level. 

Before using the second-generation MBA feature, the MBA hardware controller 

requires a BIOS-assisted calibration process that may include inputs such as 

the number of memory channels populated and other system parameters; this 

is a change from the first generation of MBA. Intel BIOS reference code 

includes a default configuration that is recommended for general usage, and 

BIOS profiles may be created with alternate tuning values to optimize for 

certain usages (such as stricter throttling) as described in the subsequent BIOS 

Considerations chapter. 

Second generation MBA moves from static throttling at the core/uncore 

interface, to a more dynamic control method based on a hardware controller 

that tracks actual main memory bandwidth. This allows software that uses 

primarily the L3 cache to observe increased throughput for a given throttling 

level, or fine-grained throughput benefits for software that exhibits L3-bound 

phases. Due to the closer consideration of memory bandwidth loading, this 

enhancement may lead to an increase in system efficiency when using second 

generation MBA relative to prior implementations of the feature. Backward 

compatibility of the software interfaces is preserved, and second-generation 

MBA changes manifest as enhancements atop the MBA feature baseline. 

As with the prior generation feature, the second generation MBA uses CPUID 

for enumeration and throttling is performed using a mapping created from 

software thread-to-CLOS (in the IA32_PQR_ASSOC MSR), which is then 

mapped per-CLOS to delay values via the IA32_L2_QoS_Ext_BW_Thrtl_n 
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MSRs. A privileged operating system or virtual machine manager software may 

specify a per-CLOS delay value, 0-90% bandwidth throttling for instance, 

though the max and granularity values are platform dependent and 

enumerated in CPUID. 

3.2.3.2.1 Second Generation MBA Advantages 

Additional features added over first generation MBA are described next: 

1. Previously, only the maximum delay value across two CLOS on a physical 

core could be selected in MBA. Second generation MBA allows a minimum 

delay value to be selected instead, which may enhance usage with Intel® 

Hyper-Threading Technology. 

2. Only a single preprogrammed calibration table was possible in first 

generation MBA, meaning different memory configurations had the 

potential for different linearity and percent delay value error values 

depending on the configuration. This is addressed by the BIOS support in 

the second generation of MBA, and certain BIOS implementations may 

program a different calibration table per memory configuration, for 

instance. 

3. The second-generation MBA controller provides the ability to more closely 

monitor the memory bandwidth loading and deliver more optimal results. 

4. The new MBA hardware controller reduces the need for a fine-grained 

software controller to manage application phases for optimal efficiency. 

Note that a software controller may still be valuable to translate MBA 

throttling values to bandwidths in GB/s or application Service Level 

Objectives (SLOs), such as performance targets. 
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Figure 3-7. Second Generation MBA, Including a Fast-Responding Hardware 

Controller 

 

The second-generation MBA implementation is shown in Figure 3-7. The 

feature operates through the use of an advanced hardware controller and 

feedback mechanism, which allows automated hardware monitoring and control 

around the user-provided delay value set point. This set point and associated 

throttling value infrastructure remains unchanged from prior generation MBA, 

preserving software compatibility. 

MBA enhancements, in addition to the new hardware controller, include: 

1. Configurable delay selection across threads. 

⎯ MBA 1.0 implementation statically picks the max MBA Throttling Level 

(MBAThrotLvl) across the threads running on a core (by calculating 

value = max(MBAThrotLvl(CLOS[thread0]), 

MBAThrotLvl(CLOS[thread1]))). 

⎯ Software may have the option to pick either maximum or minimum 

delay to be resolved and applied across the threads; maximum value 

remains the default. 

2. Increasing CLOSIDs from 8 to 15 in certain implementations (product-

specific, see CPUID)  

⎯ Previous certain implementations of the feature provided 8 CLOS tags 

for MBA. 

⎯ The 3rd Gen Intel® Xeon® Scalable Processor Family and related Intel 

Atom® processors, such as the P5000 Series, increase this value to 

15 (also consistent with L3 CAT). 
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3.2.3.2.2 Software-Visible Changes 

A new model specific MSR is introduced with second generation MBA to allow 

software to select from the maximum (default) or minimum of resolved 

throttling values (see the previous formula). This capability is controlled via a 

bit in the new MBA_CFG MSR, shown in Table 3-1. 

Table 3-1. MBA_CFG MSR Definition 

Register Address 
Architectural MSR Name 

/ Bit Fields 
Description 

Hex Decimal 

C84H 3204 MBA_CFG MBA Configuration Register 

0 Min (1) or max (0) of per-thread MBA delays. 

63:1 
Reserved. Attempts to write to reserved bits 

result in a #GP(0). 

Note that bit[0] for min/max configuration is supported in second generation 

MBA but is removed in the third generation MBA when the controller logic 

becomes capable of managing throttling values on a per-logical-processor or 

per-agent basis. The transient nature of this enhancement is why the min/max 

control remains model specific. 

To enumerate and manage support for the model-specific min/max feature, 

software may use processor family/model/stepping to match supported 

products, then CPUID to later detect enhanced third generation MBA support. 

3.2.3.3 Third Generation Memory Bandwidth Allocation 

The third-generation MBA feature on future processors based on the codename 

Granite Rapids microarchitecture further enhances the feature with per-logical-

processor control and a further improved controller design. Total memory 

bandwidth (all L3 miss traffic) is now managed by MBA. 

This implementation follows the past MBA precedent of delivering significant 

enhancements without a major software overhaul, and while preserving 

backward compatibility. 

3.2.3.3.1 Hardware Changes 

The third generation of MBA builds upon the hardware controller introduced in 

the previous generation, which enabled significant system-level benefits, while 

providing the new capability to independently throttle logical processors, rather 

than more coarse-grained per-core throttling in prior generations. Throttling 

values are no longer selected as the “min” or “max” of the two throttling values 

for the threads running on the core; instead, throttling values are 

independently and directly applied to each logical processor. The third 

generation MBA implementation is shown in Figure 3-8. 
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Figure 3-8. High-Level Overview of the Third Generation MBA Feature 

 

While this enhancement means that more direct throttling of threads is 

possible, re-tuning of software may be helpful to comprehend the effects of 

Intel® Hyper-Threading Technology contention versus cache and memory 

contention, and the effects on software performance. 

3.2.3.3.2 Software-Visible Changes 

In order to allow software to change its tuning behavior and detect that per-

logical-processor throttling is supported on a particular product generation, a 

CPUID bit is added to the MBA CPUID leaf to indicate support. See “CPUID—

CPU Identification” in Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3B for details. 

Despite another significant improvement of the hardware controller 

infrastructure architecture and improved capabilities, controller responsiveness, 

new internal microarchitecture, and transient-arresting capabilities, no new 

software interface changes are required to make use of the third generation of 

MBA relative to prior generations. Software previously using the second-

generation MBA min/max selection capability should discontinue the use of the 

MBA_CFG MSR. The third-generation MBA capabilities are the default mode of 

operation on the codename Granite Rapids server microarchitecture. 

Note that the MBA MSRs are listed in Appendix A.5 for completeness, but 

details of these legacy MSRs are available in Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 3B. See Appendix A.2 for MBA feature 

supported product details. 
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3.2.4 Cache Bandwidth Allocation 

Cache Bandwidth Allocation (CBA) allows an Operating System, Hypervisor, or 

similar system management agent to control internal core and downstream 

memory bandwidth for each of the logical processors. This feature is 

complimentary to MBA and provides OS/VMMs with the ability to throttle 

threads within the core. 

The CBA feature along with the existing MBA feature provides a system-wide 

mechanism to throttle the bandwidth across different caches in the system 

including external memory, as well as control within a processor core or 

module. In combination, CBA and MBA provide both deterministic control and 

dynamic management of bandwidth resources to meet system Service Level 

Objectives (SLOs). The CBA feature reuses and extends existing constructs 

from the Intel RDT feature set including Classes of Service (CLOS). 

A given CLOS used for L3 CAT for instance means the same thing as a CLOS 

used for CBA. Infrastructure such as the MSR used to associate a thread with a 

CLOS (the IA32_PQR_ASSOC_MSR) and some elements of the CPUID 

enumeration (such as CPUID leaf 10H (Cache Allocation Technology 

Enumeration Leaf)) are shared. 

The Cache Bandwidth Allocation (CBA) feature provides control over bandwidth 

available between Level 1 (L1) caches, Level 2 (L2) Caches, and Level 3 (L3) 

Caches (as applicable) for each of the logical processors. Since reducing 

upstream bandwidth can also reduce bandwidth to external memory, this also 

provides an indirect control of memory bandwidth. This indirect control of 

external memory bandwidth can also reduce memory bandwidth. The CBA 

feature along with the MBA provides a mechanism to control the bandwidth of 

different applications. 

Software should understand that the effective throttling of an application may 

be whichever of CBA or MBA specifies more throttling. 

Similar to Intel RDT features, CBA includes the following key ingredients: 

• A mechanism to enumerate the CBA capability to control the bandwidth 

from each level of the cache (for example, L1, L2, L3) to the next level 

(CPUID). 

• A mechanism for the OS or Hypervisor to configure the amount of 

bandwidth available to a logical processor with a particular Class of Service 

via a throttle Level (MSRs, discussed later). 

• Mechanisms for the OS or Hypervisor to signal the Class of Service to 

which an application belongs (the PQR MSR). 

• Hardware mechanisms to guide and enforce the bandwidth  throttle level 

across the cache hierarchy. 

In some usages, the software may measure the memory bandwidth consumed 

by a given thread, application, VM or container at different Levels of cache 

hierarchy and external memory using performance monitor events and Memory 

Bandwidth Monitoring (MBM). Once the memory bandwidth is measured 

software can dynamically adjust the bandwidth throttling level for the class of 
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service (CLOS) used by that application. In other usages, software control 

loops may monitor application performance and adjust throttling levels 

dynamically to achieve certain performance targets. 

More specific feature details about CBA are provided in the Intel® Architecture 

Instruction Set Extensions and Future Features. Note that the MSRs are listed 

in Appendix A.5. See Appendix A.2 for CBA feature supported product details. 

3.2.4.1 CBA Overview 

The CBA feature implements a local hardware controller which when enabled 

provides the capability to independently throttle memory bandwidth of the 

logical processors across cache hierarchy and complements the MBA controller 

which throttles the external memory bandwidth.  

3.2.4.2 Example of CBA Throttling Mechanism 

An example of the bandwidth throttling enforced between L2 cache and L3 

cache is the maximum of the bandwidth throttling from the local CBA controller 

within the logical processor and the MBA hardware controller. An example of 

CBA implementation is shown in Figure 3-9. 

Figure 3-9. Example of CBA Throttling between L2 and L3 caches 
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3.2.4.3 Software Interface 

In order to allow software to adapt its tuning behavior and detect that cache 

bandwidth throttling is supported on a particular product generation, a CPUID 

bit is added to the Intel RDT A CPUID leaf to indicate support (details are 

provided in the Intel® Architecture Instruction Set Extensions Manual). 

The IA32_PQR_ASSOC MSR specifies the Class of Service associated with each 

logical processor. The CBA feature defines a set of MSRs known as 

IA32_QoS_Core_BW_Thrtl_n which provide a byte-encoded field for each CLOS 

to program the memory bandwidth throttle level. A higher value of throttling 

level means more bandwidth throttling and lower number indicates lesser 

throttling. The CPUID of the CBA feature enumerates the number of levels and 

maximum level supported by the logical processor. The reset value of each of 

the CLOS throttle values of the logical processor is 0 which indicates 

unthrottled bandwidth.  

Each of the fields in the CBA IA32_QoS_Core_BW_Thrtl_n MSRs may be 

programmed from 0 to the maximum throttle level provided in the CPUID. If a 

value beyond the range from 0 to maximum throttle level is programmed, it 

will cause a #GP fault. The Resource Management Domain (RMD) for CBA is 

per logical processor and thus the IA32_QoS_Core_BW_Thrl_n MSRs are logical 

processor scope. Further details are provided in the Intel® Architecture 

Instruction Set Extensions and Future Features Programming reference 

manual. 

3.2.4.4 Software Usage 

The next sequence of steps provides a typical software usage of CBA feature: 

1. System is setup with the desired workloads. 

2. The software can use the performance counters along with MBM counters 

when available to profile and understand the bandwidth characteristics of 

the application. 

3. The system administrator sets up the bandwidth throttling level field in 

the IA32_QoS_Core_BW_Thrtl_n MSR (for example, in the VMM) to 

enforce the desired limits and the CLOS for each application. They can 

monitors the bandwidth to confirm the setting is appropriate and adjust 

when needed. 

In some cases, a specialized application software such as in embedded or 

communications usages will be able to communicate the memory bandwidth 

and latency requirements. This information may be used be performance 

management software to program the RDT features including CBA to meet the 

software memory bandwidth and latency requirements.  
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4 Intel® Resource Director 
Technology for Non-CPU 

Agents 

This chapter details Intel RDT features for non-CPU agents. Discussion is 

included on use cases and how Intel RDT monitoring, and controls are provided 

for non-CPU agents through extensions to the foundational CPU Agent Intel 

RDT features. Chapter 3 describes the components of the Intel RDT feature set 

which are common. 

4.1 Introduction 

Intel RDT for non-CPU agents is a set of features to monitor and control the 

resource utilization of non-CPU agents including PCI Express* (PCIe*) [5] and 

Compute Express Link (CXL)* [6] devices and integrated accelerators. The 

feature set enables monitoring usage of shared cache and memory bandwidth 

and control of cache usage by non-CPU agents. This feature set provides the 

equivalent CPU agent Intel RDT capabilities of CMT, MBM, and CAT for I/O 

devices. 

The non-CPU agent Intel RDT includes controls at the device level and channel-

level granularity in some cases. However, this granularity is fundamentally 

coarser than for software threads. CPU cores may execute hundreds of threads, 

all of which are tagged with RMIDs and CLOS, whereas an I/O device such as a 

NIC may serve hundreds of software threads, but it may only be monitored and 

controlled at a device level or channel level (see subsequent sections for details 

on channel-level monitoring and controls.) 

Figure 4-1. Non-CPU Agent Building Atop CPU Agent Intel® RDT Features 
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4.2 Features 

Cache Monitoring Technology (CMT) provides visibility into the cache (typically 

L3 cache). CMT provides occupancy counters on a per-RMID basis for non-CPU 

agents so cache occupancy (for example, capacity used by a particular RMID 

for I/O agents) can be tracked and read back dynamically during system 

operation. See Appendix A.2 for L3 CMT feature supported product details. 

L3 Total and Local External Memory Bandwidth Monitoring (MBM) allows 

system software to monitor the usage of bandwidth between L3 cache and local 

or remote memory by non-CPU agents on a per-RMID basis. See Appendix A.2 

for L3 Total and Local External MBM feature supported product details. 

Cache Allocation Technology (CAT) allows control over shared cache capacity 

on a per-CLOS basis for non-CPU agents, enabling both isolation and overlap 

for better throughput, fairness, determinism and differentiation. See 

Appendix A.2 for L3 CAT feature supported product details. 

4.3 Enumeration 

Intel RDT uses the CPUID instruction to enumerate supported features and 

uses architectural Model-Specific Registers (MSRs) as interfaces to the 

monitoring and allocation features as described in Chapter 3 and in the Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. 

There are no CPUID leaves or sub-leaves that are created for non-CPU agent 

Intel RDT; rather, existing CPUID leaves are augmented. CPUID.0xF(Shared 

Resource Monitoring Enumeration leaf).[ResID=1]:EAX[bit 9,10] enumerates 

presence of CMT and MBM features for non-CPU agents. CPUID.0x10(Cache 

Allocation Technology Enumeration Leaf).[ResID=1(L3 CAT)]:ECX[bit 1] 

enumerates the presence of the L3 CAT feature for non-CPU agents. Refer to 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for 

CPUID details. 

Additional enumeration information for Intel RDT for non-CPU agents is 

provided in the I/O Intel RDT table (IRDT), a vendor-specific extension to 

Advanced Configuration and Power Interface (ACPI) [4]. The IRDT table 

provides information on supported features, the structure of devices attached 

to particular links behind I/O blocks, the forms of tagging and controls 

supported on each link, and the specific MMIO interfaces used to control a 

given device. Details of IRDT are described in Chapter 5. 

Confirming the presence of Intel RDT for CPU agents is a prerequisite for using 

the equivalent non-CPU agent Intel RDT feature. A compatibility matrix is 

provided in Appendix A.4. If a particular CPU agent Intel RDT feature is not 

present, any attempt to use non-CPU agent Intel RDT equivalents will result in 

a general protection fault in the MSR interface. Attempts to enable unsupported 

features in the I/O complex will result in writes to the corresponding MMIO 

enable or configuration interfaces being ignored. 
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Software may use the existing CPUID leaves to gather the maximum number of 

RMID and CLOS tags for each resource level (for example, L3 cache), and non-

CPU agent Intel RDT is also subject to these limits. 

Some platforms may support a mix of features, for instance supporting L3 CAT 

and the non-CPU agent Intel RDT equivalent, but no CMT or MBM monitoring. 

4.4 Interface 

Before configuring non-CPU agent Intel RDT (through MMIO), the feature 

should be enabled. The presence of one or more CPUID bits indicating support 

for one or more non-CPU agent Intel RDT features implies the presence of the 

IA32_L3_IO_RDT_CFG architectural MSR. This MSR is used to enable the non-

CPU agent Intel RDT features.  

Two bits are defined in this MSR. IRAE (Bit[0]) enables non-CPU agent RDT 

resource allocation features. IRME (Bit[1]) enables non-CPU agent RDT 

monitoring features.  

The non-CPU agent Intel RDT Monitoring bit is supported if CPUID indicates 

that one or more non-CPU agent Intel RDT resource monitoring features are 

present.  

The non-CPU agent Intel RDT Allocation bit is supported if CPUID indicates that 

one or more non-CPU agent Intel RDT resource allocation features are present.  

The default value is 0x0 (both the monitoring and allocation features are 

disabled by default). All bits not defined are reserved. Any writes to reserved 

bits will generate a General Protection Fault (#GP(0)).  

This MSR is die-scoped and is cleared on system reset. It is expected that 

software will configure this MSR consistently across all L3 caches that may be 

present on a particular SOC die. 

The definition of the IA32_L3_IO_RDT_CFG MSR is shown in Figure 4-2, and its 

MSR address is 0C83h. 

Non-CPU agent RDT uses the RMID and CLOS tags in the same way that they 

are used for CPU agents. 

Figure 4-2. The IA32_L3_IO_QOS_CFG MSR for Enabling Non-CPU Agent 

Intel® RDT 
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MMIO interfaces, discussed in subsequent sections, are defined by non-CPU 

agent Intel RDT to enable devices and/or channels to be tagged with RMIDs 

and CLOS, as applicable.  

An example of device tagging with RMIDs, and CLOS is shown in Figure 4-3, 

where a PCIe device and a CXL device are tagged for monitoring and control of 

upstream resources in the L3 cache (shown within the fabric). Note that CPU 

cores are also shown, and as defined in the CPU agent Intel RDT feature set, 

their bandwidths may be controlled with the Memory Bandwidth Allocation 

(MBA) feature set.  

In the model of Figure 4-3, cores, PCIe devices and CXL devices are 

symmetrically arranged about the fabric and are symmetric in their ability to 

use RMIDs and CLOS.  

The Intel RDT monitoring data retrieval MSRs IA32_QM_EVTSEL and 

IA32_QM_CTR are used for monitoring usage by non-CPU agents in the same 

way that they are used for Intel RDT for CPU agents.  

The CPU cache capacity control MSR interfaces are also used for controlling I/O 

device access to the L3 cache. The CLOS assigned to the device and the 

corresponding capacity bitmask in the IA32_L3_QOS_MASK_n MSR governs the 

fraction of the L3 cache into which the data may be filled, as described in the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. 

The CLOS tag retains the same meaning with regard to L3 fills for both CPU 

agents and non-CPU agents. Other cache levels may also be applicable 

depending on model-specific data flow patterns, which are governed by how 

I/O device data is filled into the cache in a model-specific fashion as governed 

by a given product generation’s implementation of the DDIO (the Data Direct 

I/O feature). 
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Figure 4-3. Tagging for PCIe and CXL Devices 

 

4.5 Common Tags 

Non-CPU agent Intel RDT allows the traffic and operation of non-CPU agents to 

be associated with RMIDs and CLOS. In CPU agent Intel RDT, RMIDs and CLOS 

are numeric tags which may be associated with the operation of a thread 

through the IA32_PQR_ASSOC MSR. In non-CPU agent Intel RDT, a series of 

MMIO interfaces may be used to associate I/O devices with RMID and CLOS 

tags, and the numerical interpretation of the tags remains the same.  

To wit, a particular CLOS tag, such as CLOS[5], means the same thing from the 

perspective of an CPU core or a non-CPU agent, and the same holds for RMIDs. 

In this fashion, RMIDs and CLOS used for non-CPU agents are said to be drawn 

from a “common pool” of RMID or CLOS tags, defined at the common L3 

configuration level. Often these tags have specific meanings at a particular 

level of resource such as the L3 cache.  

With non-CPU agent Intel RDT, specific devices may be selected for monitoring 

and control, and software enumeration and control are added to (1) enable 

non-CPU agent Intel RDT to build atop CPU agent Intel RDT, and (2) to 

comprehend the topology of devices behind I/O links, such as PCIe or CXL, and 

(3) to enable association of devices with RMID and CLOS tags. 

4.6 I/O Blocks and Channels 

I/O interfacing blocks are used to bridge from the ordered, non-coherent 

domain (such as PCIe) to the unordered, coherent domain (for example, the 
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shared interconnect fabric hosting the L3 cache). The non-CPU agent Intel RDT 

interface describes the devices connected behind each I/O complex (which may 

contain downstream PCIe root ports or CXL links) and enables configuration 

RMID/CLOS tagging for the same. 

The I/O architecture is formalized as shown next. Channel mapping may occur 

anywhere between the device and the I/O block. 

Figure 4-4. Mapping of Channels in the I/O Domain (PCIe Example) 

 

Figure 4-5. Mapping of Channels in the I/O Domain (CXL Example) 

 

As shown in Figure 4-4, PCIe devices connected through a root port are routed 

through an I/O block, which applies non-CPU agent Intel RDT tagging (RMID 
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which is routed on various TCs and mapped to VCs, as defined in the PCIe 

specification [5], may be mapped to internal “Channels” between the root port 

and the I/O block. The non-CPU agent Intel RDT enumeration structures define 

the mapping between PCIe VCs and the non-CPU agent Intel RDT Channels so 

that software may perform tagging configuration based on Channels for 

platforms which support this capability (see the following sections for more 

detail). 

An example with CXL [6] is shown in Figure 4-5. In this case a CXL.IO and 

CXL.Cache link may be in use, and the I/O block is again responsible for 

tagging, if supported. The links (CXL.IO and CXL.Cache) are controlled 

separately, through separate software interfaces. (See Chapter 7 for MMIO 

control interfaces.)  

4.7 I/O Block Configuration 

As described in the preceding section, PCIe devices mapped through their VCs 

to “Channels” may be configured on a per-Channel basis in the I/O Block. CXL 
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is a subset example of this, with the same configuration format, but only one 

configuration entry (the equivalent of a single Channel).  

An enumerated number of Channels are supported in IRDT ACPI and configured 

through an MMIO interface to a “Mapping Table”, as shown in Figure 4-6. A 

number of downstream PCIe devices may be mapped to various channels, and 

their traffic streams may be tagged, as applicable, through configuration of the 

I/O block. 

Figure 4-6. Resource Monitoring and Control for PCIe and CXL Endpoints 

 

4.8 Shared-L3 Configuration 

The following sub-sections describe shared-L3 configuration and non-CPU agent 

Intel RDT features interplay. 

4.8.1 Software Flow  

Key software actions required to utilize non-CPU agent Intel RDT include (1) 

enumeration of the supported capabilities and details of that support, and (2) 

usage of the features through architectural platform interfaces.  

• The software may enumerate the presence of non-CPU agent Intel RDT 

through a combination of parsing bit fields from CPUID and the IRDT ACPI 

table. The CPUID infrastructure provides basic information on the level of 
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CPU agent Intel RDT and non-CPU agent Intel RDT support present, and 

details of the common CLOS/RMID tags shared with CPU agent Intel RDT. 

The IRDT ACPI extensions provide many more details on non-CPU agent 

RDT specifically, such as which I/O blocks support non-CPU agent Intel 

RDT and where the control interfaces to configure the I/O blocks are 

located in MMIO space. 

• Once software has enumerated the presence of non-CPU agent Intel RDT, 

configuration changes may be made through selecting a subset of 

RMID/CLOS tags to use with non-CPU agent Intel RDT, and configuring 

resource limits for those tags through MSRs for shared platform resources 

such as L3 cache (for example, for I/O use of L3 CAT) may be configured 

through the I/O block MMIO interfaces (the location of which is enumerated 

via IRDT ACPI).  

• After resource limits are associated, RMID/CLOS tagging may be applied to 

the I/O device upstream traffic by assigning each I/O device into 

RMID/CLOS tags through its mapping to channels (and corresponding 

configuration through the MMIO interfaces for each I/O block, the location 

of which is enumerated via IRDT ACPI).  

• It should be noted that while upstream shared SoC resources like L3 cache 

are monitored and controlled via shared RMID/CLOS tags, certain 

resources which are closer to the I/O may be controlled locally within each 

I/O block. In this view, RMIDs and CLOS are used for upstream resources 

which may be shared with CPU cores, but capabilities unique to the I/O 

device domain are controlled through I/O block-specific interfaces.  

• Once tags are assigned and resource limits are applied, upstream traffic 

from I/O devices, though I/O blocks are tagged with the corresponding 

RMIDs/CLOS and such traffic is monitored and controlled within the shared 

resources of the SoC, much as CPU agent resources are controlled against 

these tags in CPU agent Intel RDT. 

• As the IRDT ACPI tables used to enumerate non-CPU agent Intel RDT are 

generated by the BIOS, in the event of a hot-plug operation the OS or VMM 

software should update its internal tracking of device mappings based on 

newly added or removed device.  

• In the case of bifurcation of a set of PCIe lanes, downstream devices which 

may be mapped to individual Channels may still be separately tagged and 

controlled, but devices sharing Channels will be mapped together against 

the same RMID/CLOS tags. As CXL devices have no notion of Channels, in 

the case of a bifurcated CXL link all downstream devices will be subject to 

the same RMID/CLOS. 

4.8.2 Monitoring: Data Flows for RMIDs 

As previously described, once RMID tags are applied to non-CPU agent traffic, 

all RMID-driven counter infrastructure in the platform may be used with non-

CPU agent Intel RDT. In the case of the features in Appendix A.2 for instance, 

RMID-based cache occupancy and memory bandwidth overflow data is 

collected for non-CPU agents and may be retrieved by software. For each 

supported Cache Monitoring resource type, hardware supports only a finite 
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number of RMIDs. CPUID.(EAX=0FH(Shared Resource Monitoring Enumeration 

leaf), ECX=1H). ECX enumerates the highest RMID value that can be 

monitored with this resource type, see the Intel® 64 and IA-32 Architectures 

Software Developer’s Manual, Volume 3B for details. 

As the interfaces for CPU agent Intel RDT data retrieval for RMID-based 

counters area already defined, the same interfaces are used, including MSR-

based data retrieval for the corresponding set of three Event IDs (EvtIDs) 

defined for CPU agent Intel RDT’s CMT and MBM features (See Chapter 3).  

RMIDs are allocated to devices by software from the pool of RMIDs defined at 

the L3 cache level, and the IA32_QM_EVTSEL / IA32_QM_CTR MSRs can be 

used to specify RMIDs and Event IDs and retrieve data.  

The MSR pair used to retrieve event data is shown in Figure 3-3, however as all 

properties are inherited from CPU agent RDT (See Chapter 3 for details) . All of 

access rules and usage sequence, reserved bit properties, initial values, and 

virtualization properties are inherited from CPU agent Intel RDT. 

4.8.3 Allocation: CLOS-based Control Interfaces 

The Intel RDT Allocation features for non-CPU agent use CLOS-based tagging 

for control of cache at a given level, subject to where data fills from I/O devices 

in a particular cache and SoC implementation. In common cases this will be the 

last-level cache (L3) as described in the ACPI – specifically in the IRDT sub-

table known as RCS and its flags. Software may adjust the levels of cache that 

it controls based on the expected level(s) of cache into which I/O data may fill 

subject to flags in the RCS. This in turn may affect which CPU agent CAT 

control masks software programs to control the data fills of non-CPU agents 

and may vary depending on how a particular RCS is connected to shared 

resources on a platform. 

For each supported Cache Allocation resource type, the hardware supports only 

a finite number of CLOS. CPUID.(EAX=10H(Cache Allocation Technology 

Enumeration Leaf), ECX=2):EDX[15:0] reports the maximum CLOS supported 

for the resource (CLOS are zero-referenced, meaning a reported value of “15” 

would indicate 16 total supported CLOS). Bits 31:16 are reserved, see the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for 

details. 

In a typical example, with a non-CPU agent (for example, a PCIe device) filling 

data into an L3 cache, the RCS structure’s “Cache Level Bit Vector” would have 

bit 17 set to indicate the L3 cache, and software may control the CPU agent 

Intel RDT L3 CAT masks (in IA32_L3_QoS_MASK_n MSRs) to define the 

amount of cache into which non-CPU agents may fill. As with RMID 

management, the CLOS used in this context are drawn from the pool at the 

applicable resource (L3 cache in this context).  

If other cache levels are introduced or used in the future, incremental software 

enabling may be required to comprehend fills into other cache levels. 
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As the masks used for control are drawn from the existing definitions of such 

cache controls in the CPU agent Intel RDT definitions, details such as reserved 

fields, initialization values, and so on, are defined in the Intel® 64 and IA-32 

Architectures Software Developer’s Manual, Volume 3B. Figure 4-7 shows an 

example of the CPU agent Intel RDT L3 CAT control MSRs. 

Figure 4-7. Reuse of the IA32_L3_QOS_MASK_n MSRs for L3 CAT Control 

 

4.9 CXL-Specific Considerations 

This section describes CXL-specific device considerations including 

management of traffic on multiple links and CXL device types. 

4.9.1 CXL block Interfacing Fundamentals 

CXL devices may connect to an RMUD via multiple RCSes, and independent 

control of each RCS may be required. See Chapter 5 for RMUD and RCS details. 

Non-CPU agent Intel RDT features provide monitoring and controls for CXL.IO 

and CXL.Cache link types. CXL.mem is not subject to controls in the I/O block 

as it is viewed as a resource rather than an agent in Intel RDT terms. Instead 

bandwidth to CXL.mem is controlled at the agent source (for example, using 

MBA) as previously described and where supported. 

4.9.2 Integrated Accelerators 

Integrated accelerators, including those using integrated CXL links, may be 

monitored and controlled using the semantics described in preceding sections.  
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4.10 Use Cases 

A number of non-CPU agent Intel RDT use cases are described in this section 

involving PCIe, CXL, and integrated accelerators. 

As an implementation of the architectural model shown in Figure 4-4 and 

Figure 4-5, I/O block tags upstream DMA traffic (such as PCIe writes) as shown 

in Figure 4-8, enabling the device’s resource utilization in the shared resources 

of the fabric, such as L3 cache, to be monitored and controlled through Intel 

RDT RMIDs and CLOS. 

The applicable features for each tag are described in Appendix A.2, and 

software may configure these tags as described in Chapter 5, which describes 

the ACPI; see the Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3B, for CPUID enumeration, and Section 4.8 and Chapter 7 for 

how the software may actuate these controls. 

Figure 4-8. Device Traffic Tagging Model with PCIe as the Sole Traffic Path 

 

As a concrete example, Figure 4-9 shows a high-performance PCIe SSD, 

subject to tagging with CLOS (so that its L3 cache footprint may be controlled), 

and RMIDs (so that its L3 cache occupancy and overflow bandwidth to memory 

may be monitored). 

Figure 4-9. PCIe Device Example, with Traffic on a Channel Tagged with an 

RMID and CLOS 
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An example with a CXL device is shown in Figure 4-10, in which two paths are 

used for the device’s traffic, one over CXL.IO, and one over CXL.Cache, 

through two separate I/O blocks, and note that the CXL.Cache link defines only 

one channel. In such a case, the software may configure RMID and CLOS 

tagging separately for the links. The links operate independently. 

Note that no controls are provided for CXL.Mem, as the use of CXL.Mem 

resolves around accessing memory on a target device, and bandwidths from 

logical processors may be controlled with Intel RDT’s Memory Bandwidth 

Allocation (MBA) feature. A more detailed discussion of this case surrounds 

Figure 4-14.  

Figure 4-10. CXL Example of Device Tagging Model with CXL.IO and CXL.Cache 

Traffic Paths 
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independently, with separate RMID and CLOS tags. In this case a PCIe SSD 

which does not utilize the cache effectively may be limited, but a NIC which fills 

into the cache for data to be consumed by CPU cores may be prioritized. 

Figure 4-11. Example of Controlling Two Different PCIe Devices 
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The following image shows an example with one CXL accelerator, perhaps a 

CXL-enabled FPGA card, utilizing CXL.IO and CXL.Cache, controlled 

independently from an I/O block with a PCIe device attached. 

Figure 4-12. Example of Controlling a CXL Accelerator 

 

An example of tagging and controlling an integrated accelerator, the Data 

Streaming Accelerator (DSA) alongside a PCIe device is shown in Figure 4-13. 
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Figure 4-13. Example of Controlling a High-Bandwidth Integrated Accelerator 
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As the main purpose of CXL.Mem is for host accesses to device memory, 

however, traffic responses up through the CXL.mem path are not subject to 

MBA bandwidth shaping, though they are sent with RMID and CLOS tags. If 

bandwidth is constrained on this link and software seeks to redistribute 

bandwidth across different priorities of accessing agents, such as CPU cores, 

the MBA feature may be used to redistribute bandwidth and throttle at the 

source of the requests (the agent’s traffic injection point). 

This example shows that for comprehensive management of cache and 

bandwidth resources on the platform, a combination of CPU agent Intel RDT 

and non-CPU agent Intel RDT controls may be necessary.  

Figure 4-14. MBA to Control a CXL.Mem Pooling Device 
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5 BIOS Considerations 

Software may query processor support of shared resource monitoring and 

allocation capabilities by executing CPUID for the CPU Agents Intel RDT 

features. An ACPI structure named IRDT may be consulted for further details 

on the enhanced Intel RDT feature support for non-CPU Agents. These ACPI 

structures also provide the locations of specific MMIO interfaces used to 

allocate or monitor shared resources. 

5.1 Architectural Intel® RDT Features for Non-

CPU Agents 

This section describes ACPI enumeration for architectural Intel RDT features for 

non-CPU agents. 

5.1.1 RMID/CLOS tagging - ACPI Enumeration 

5.1.1.1 ACPI Definitional Goals 

A number of goals are accomplished through the IRDT ACPI enumeration 

definition in this chapter, including: 

1. Providing top-level configuration information for the SoC, such as how 

many RMID/CLOS tags non-CPU agent Intel RDT supports relative to CPU 

agent Intel RDT (as enumerated by CPUID, see Chapter 3). 

2. Providing a logical description of the control hierarchy – meaning which 

MMIO address to use to configure a link’s RMID/CLOS tagging. 

3. Provide flexibility in the implementation topology of devices behind I/O 

blocks, and cover cases with discrete or integrated PCIe and CXL links, 

and integrated accelerators. 

4. Provide enhanced ease-of-use information for software, including device 

topologies, TC/VC/Channel mapping information for advanced QoS usages 

for forward-compatibility. 

5.1.1.2 IRDT ACPI Enumeration Overview 

This section provides a number of diagrams introducing key I/O Intel RDT 

structures and their mapping to Intel SoC components. Section 5.1.1.4 

provides table specifics. 

The top-level ACPI structure defined to support I/O Intel RDT is the “IRDT” 

structure. This is a vendor-specific extension to the ACPI table space [4]. The 

named IRDT structure is generated by BIOS and contains all other non-CPU 

agent Intel RDT ACPI enumeration structures and fields as described in this 

chapter. 
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Figure 5-1. Non-CPU Agent Intel® RDT ACPI Enumeration 

 

Note that all Reserved fields in IRDT structures should be initialized to 0 by 
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Figure 5-2 shows an example of the RMUD mapping to DSS and RCS 

structures. Each device attached to an I/O block is described by a DSS, and 

has one or more links, with properties described in the RCS structures. The 

RCS structures contain pointers to MMIO locations (in absolute address form, 

not BAR-relative) to allow software to configure the RMID/CLOS tags and 

bandwidth shaping properties, if supported, in an I/O Block.  

Figure 5-2. ACPI Enumeration – Detail of DSS and RCS Structures Downstream 

from an RMUD 

 

Figure 5-3 shows a further layer of detail where devices mapped through I/O 
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Figure 5-3. Mapping from RCS Structures to MMIO Addresses for Per-link 

Control 

 

5.1.1.3 Example ACPI Enumeration Cases 

Given the table hierarchy described in the preceding section, an example CXL 

Type 1 (CXL.IO + CXL.Cache) device mapping is shown in Figure 5-4. The 

device is described by one DSS behind an RMUD, while two RCSes are used, 

one for each link type (CXL.IO and CXL.Cache). 

Figure 5-4. CXL Enumeration Example with CXL.IO and CXL.Cache Links 

 

Xeon SOC

I/O Block

…

I/O RDT

ACPI

Devices

IORDT-DSS
IO RDT Device-

Specific Structures

1:N,
N>=1

List of 
Structs

Optional: CXL 
Block(s)

Contains a simple table: 
Channel to RMID/CLOS 

mapping controls location (for 
this link) → points to MMIO

Enumerates TC/VC/Channel 
mapping details of the traffic 

flows in this path 

Provides a list of what devices 
are behind this RMUD

Note: Distinct sets of channels 
exist per path 

MMIO

IORDT-RCS
IO RDT RMUD Control 

Structures

IORDT-RMUD
IO RDT Resource 

Management Unit 
Description Structure

ACPI

Xeon SOC
I/O Block

I/O RDT

IRDT
System-Level Parameter 

Enumeration

CXL Device (A:B.C) 

List of 
Structs

IORDT-RMUD
IO RDT Resource 

Management Unit 
Description Structure

Associated CXL 
I/O Block

IORDT-DSS

Two RCS instances, 
one for each port, in 

this example

One instance in this example

MMIO

MMIO

IORDT-RCS

IORDT-RCS



 

54  Document Number: 356688-001US, Revision: 1.0 

 

5.1.1.4 ACPI Feature Enumeration – Table Structure Details 

5.1.1.4.1 Introduction and Notation 

Given the previously described relationships of RMUD, DSS and RCS structures, 

table format details are described in this section.  

Using the ACPI table hierarchy shown earlier in this chapter, following are the 

details of each table type and constituent fields. Field definitions are detailed in 

the table, and the text covers interpretation, corner cases, and interactions 

between fields. 

5.1.1.4.2 IRDT Table Format and Field Descriptions 

The top-level ACPI table, the I/O Resource Director Technology table (IRDT) is 

shown in Table 5-1, and one instance of this table is defined at the system 

level, generated by the system BIOS. This table includes a unique signature, 

and length including all sub-structures, including embedded RMUDs. The length 

of the IRDT table is variable. 

Table 5-1. IRDT Table Format (Variable Length) 

Field Byte Length Byte Offset Description 

Signature 4 0 
“IRDT”. Signature for the top-level I/O 

Intel RDT Description Table. 

Length 4 4 

Length, in bytes, of the description table 

including the length of the associated 

remapping structures. 

Revision 1 8 1 

Checksum 1 9 Checksum: Entire table must sum to zero.  

OEMID  6 10 OEM ID. 

OEM Table ID  8 16 
For IORDT description table, the Table ID is 

the manufacturer model ID. 

OEM Revision  4 24 
OEM Revision of IRDT Table for OEM Table 

ID. 

Creator ID  4 28 Vendor ID of utility that created the table. 

Creator revision 4 32 Revision of utility that created the table. 

IO Protocol Flags 2 36 

Bit 0: IO_PROTO_MON -- Set if I/O Intel 

RDT Monitoring capabilities are supported 

somewhere on the platform for I/O protocol 

devices. 

Bit 1: IO_PROTO_CTL -- Set if I/O Intel 

RDT Allocation capabilities are supported 

somewhere on the platform for I/O protocol 

devices. 

Bit 2-15 : Reserved. 
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Field Byte Length Byte Offset Description 

Cache Protocol Flags 2 38 

Bit 0: IO_COH_MON -- Set if I/O Intel RDT 

Monitoring capabilities are supported 

somewhere on the platform for coherent 

non-IA agents. 

Bit 1: IO_COH_CTL -- Set if I/O Intel RDT 

Allocation capabilities are supported 

somewhere on the platform for coherent 

non-CPU agents. 

Bit 2-15 : Reserved. 

Reserved  8 40 - 

Resource 

Management 

Hardware Blocks[] 

- 48 

A list of structures. The list will contain one 

or more Resource Management Unit 

Descriptors (RMUDs). 

The RMUD structure is described next. 

A series of high-level flags allows the basic capabilities of monitoring and 

control for I/O links (for example, PCIe) and coherent links (for example, CXL) 

to be quickly extracted. Embedded within the IRDT table is a set of one or 

more Resource Management Unit Descriptor Structures (RMUDs), which are 

typically mapped to I/O blocks and define their properties. In some 

instantiations, one RMUD may be defined for the system, or in a finer-grained 

approach, one RMUDs may be defined for each downstream link and device 

combination, though this is expected to be an uncommon case.  

5.1.1.4.3 RMUD Table Format and Field Descriptions 

The Resource Management Unit Descriptor (RMUD) structure, definition is 

shown in Table 5-2, and includes a number of fields including length of the 

RMUD instance and all embedded sub-structures (DSS and RCS entries), an 

integration parameter that map to the SoC properties, including the minimum 

and maximum RMID and CLOS tags that are available for use in monitoring and 

controlling devices under this RMUD. While the common case is that these 

parameters would match the CPU agent Intel RDT parameters, there may be 

certain RMUDs which support a subset of the overall RMID and CLOS space. 

Table 5-2. RMUD Table Format (Variable length) 

Field Byte Length Byte Offset Description 

Type  1 0 

Type 0 = “RMUD”. Signature for the I/O 

Intel RDT Resource Management Unit 

Descriptor. 

Reserved  3 1 Reserved. 

Length 4 4 
Total length of this RMUD and all sub-

structures. 

Segment 2 8 
The PCI Segment containing this RMUD, 

and all of the devices that are within it.  

Reserved  3 10 Reserved. 
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Field Byte Length Byte Offset Description 

DSS and RCS 

Structures [] 
--- 13 

List of devices behind this RMUD, with one 

DSS table instance per device. 

Contains a list of DSS control structures 

and RCS control structures,  identified by 

their “Type” field at offset zero in the sub-

structures.  

The DSS and RCS structures described 

next. 

Each RMUD entry contains a number of embedded DSS and RCS structures, 

identified by their “Type” fields, which describe the devices and links behind a 

given RMUD. 

5.1.1.4.4 DSS Table Format and Field Descriptions 

The Device Scope Structures behind each RMUD describe the properties of a 

device, that is, each DSS maps 1:1 with a device behind a particular RMUD. 

The DSS table definition is shown in Table 5-3, including a “type” field (Type = 

0 identifies a DSS), the length of the entry, device type, and an embedded 

channel management structure (CHMS). The CHMS defines which RCS(es) are 

applicable to controlling this device (DSS), and which internal I/O block 

Channels each of the link’s virtual channels (VCs) may map to (in the case of 

PCIe, up to eight VCs are supported, but only the first entry is valid in the case 

of CXL). Valid configurations for the CHMS include one entry per RCS (link). 

In the DSS Device Type field, a value of 0x02 denotes that a PCIe Sub-

hierarchy is described by this DSS. Each root port described by a DSS will have 

type 0x02. System software may use the enumerated devices found under 

such a root port to comprehend share bandwidth relationships in the channels 

under an RMUDS. 

DSS type 0x01 indicates the presence of a root complex integrated endpoint 

device (RCEIP), such as an accelerator. Note that a PCI sub-hierarchy may 

denote a root port, and for every DSS that corresponds to a root port it is 

expected that Device Type = 0x2. 

Note that the CHMS field contains a list of CHMS structures, which may 

describe for instances DSS entries which are capable of sending traffic over 

multiple channels (which are in turn described by unique RCS entries). 

Note that no discrete pluggable devices (for example, PCIe cards) are directly 

described by the DSS entries, rather the root ports are indicated (Device Type 

0x2). 

Table 5-3. DSS Table Format (Variable length) 

Field Byte Length Byte Offset Description 

Type 2 0 0 = DSS  

Length  2 2 Length of this Entry in Bytes.  
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Field Byte Length Byte Offset Description 

Device Type  1 4 

The following values are defined for this 

field. 

0x01: Root Complex Integrated Endpoint 

(RCEIP) Device - The device identified by 

the ‘Path’ field is a root complex integrated 

PCI endpoint device. 

0x02: PCI Sub-hierarchy - The device 

identified by the ‘Path’ field is a PCI-PCI 

bridge. In this case, the specified bridge 

device and all its downstream devices are 

included in the scope. 

Other values for this field are reserved for 

future use. 

Enumeration ID  2 5 
If Device Type equals 1 or 2, this field lists 

the BDF  

Reserved  1 7 Reserved  

Structure: CHMS 

and RCS 

Enumeration []  

--- 8 

Packed as byte fields. 

One RCS may support multiple DSSes, and 

one DSS may have multiple RCSs (links), 

so this is an array, with size derivable from 

the DSS Length field. Within each entry: 

Byte 0: RCS Enumeration ID controlling 

this link. Corresponds to the enumeration 

ID of the RCS structure under this DSS.  

Bytes 1-8: Represents the index into the 

“RCS-CFG-Table” used by the 

corresponding VC. Byte 1 represents the 

channel for VC0, Byte 2 represents the 

channel for VC1, and so on. In this field, bit 

7 is a valid bit (entry is not valid if enable 

bit is cleared). Bit 6, when set, indicates 

that this channel is shared with another 

DSS. The number of valid bytes in this field 

is defined in the per-RCS “Channel Count” 

field, any unused bytes (for example, for a 

single-Channel CXL link) are Reserved. 

Bytes 9-15: Reserved (padding) 

5.1.1.4.5 RCS Table Format and Field Descriptions 

The RCS structure provides details of the type of monitoring and controls 

supported for a particular link interface type, such as PCIe or CXL, and an 

MMIO location in which a table exists that can be used to apply monitoring and 

control features. The MMIO location provided is absolute location in MMIO 

space (64 bits), rather than hosted in a particular device and defined relative to 

a BAR. 
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Table 5-4. RCS Table Format (Currently 40B) 

Field Byte Length Byte Offset Description 

Type  2 0 RCS = 1. 

Length 2 2 

Length, in bytes, of the description table 

including the length of the associated 

remapping structures. 

Link Interface Type 2 4 

Type of link interface: 

0x0 = PCIe or CXL.IO 

0x1 = CXL.Cache 

0x2 and above: Reserved 

RCS Enumeration ID  1 6 
A unique identifier for this RCS under this 

RMUD. 

Channel Count  1 7 

Number of Channels defined for this link 

interface (affects the interpretation of the 

CHMS structure within the corresponding 

DSS). 

Flags 2 8 

Bit 0: Reserved. 

Bit 1: RTS: RMID Tagging supported. 

Bit 2: CTS: CLOS Tagging Supported. 

Bit 3: REGW: if set, the RMID and CLOS 

defined in the RCS Block MMIO locations 

are 2B registers. If clear, they are 8B 

registers. 

Bits 4-15: Reserved. 

RMID Block Offset 2 10 

Byte offset from the RCS Block MMIO 

Location where the RMID tagging fields 

begin. 

CLOS Block Offset 2 12 

Byte offset from the RCS Block MMIO 

Location where the CLOS  tagging fields 

begin. 

Reserved  18 14 Reserved. 

RCS Block MMIO 

Location 
8 32 

RCS Hosting I/O Block MMIO BAR Location 

defines an MMIO physical address. 

Note that if CXL.IO and PCIe devices share the bandwidth of a certain RCS and 

its channels, then traffic for both protocols is carried on the same channel 

entries.   

Note that in the enumeration the fields, the RMID offset, and CLOS offset are 

specified relative to the “RCS Block MMIO Location” field, meaning that the 

RMID and CLOS offsets may be relocatable within the MMIO space. The offset 

defines the block of a contiguous set of RMID or CLOS tagging fields, and the 

number of entries is defined by the “Channel Count” field (for example, a value 

of 8 channels may be common in certain PCIe tagging implementations).  
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5.2 Model-Specific Intel® RDT Features for CPU 

Agents 

This section describes BIOS knobs for Model-Specific Intel RDT features for CPU 

agents. 

5.2.1 BIOS knobs for Resource Aware MBA  

See Appendix A.3 for Resource Aware MBA (MBA 4.0) feature supported 

product details. See Appendix B.1.1 for Resource Aware MBA (MBA4.0) feature 

details. 

The Resource-aware MBA feature is a model-specific extension to the Third 

Generation of MBA (Chapter 3) which provides a set of extended capabilities to 

better handle heterogenous memory types on complex modern SoCs. A model-

specific implementation is used as memory types may change significantly over 

the course of time. A more detailed description of Resource Aware MBA is 

provided in the next chapter.  

To support Resource Aware MBA, the system BIOS shall support a legacy BW 

profile configuration knob with a drop-down menu of three options as with 

Second-Generation MBA.  

• MBA BW profile  

⎯ Linear(default) 

⎯ Biased 

⎯ Legacy 

In addition, BIOS shall add three knobs with a drop-down menu for Resource-

Aware MBA in particular. These scaling ratios enable tuning of MBA calibration 

values to the typical bandwidth levels available from each type of 

heterogeneous downstream memory type, and tuning values may be further 

scaled by the number of memory channels or links populated with each type of 

memory. An example implementation of this tuning code will be provided with 

the Intel Reference BIOS implementation for each applicable platform. 

1. Description: “PMM BW downscaling vs the baseline Total memory BW 

profile. For example: picking 1/2x at results in scaling PMM BW throttling 

in a 2:1 ratio versus DDR throttling.” 

⎯ PMM MBA BW downscale 

o 1x (default) 

o 1/2x 

o 1/4x 

o 1/8x 

2. Description: “CXL (Type3) BW downscaling vs the baseline Total memory 

BW profile. For example: picking 1/2x results in scaling CXL (Type3) BW 

throttling in a 2:1 ratio versus DDR throttling.” 

⎯ CXL (Type3) MBA BW downscale 

o 1x (default) 
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o 1/2x 

o 1/4x 

o 1/8x 

3. Description: “Remote Target BW downscaling vs the baseline Total 

memory BW profile. For example: picking 1/2x results in scaling Remote 

Target BW throttling in a 2:1 ratio versus DDR throttling.” 

⎯ Remote Target MBA (UPI) BW downscale 

o 1x (default) 

o 1/2x 

o 1/4x 

o 1/8x 
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6 MMIO Register Descriptions 

This chapter describes the Intel RDT related MMIO registers. As mentioned in 

previous chapters, traditional interfaces such as MSRs are discussed in the 

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. 

6.1 Non-CPU Agent Intel® RDT Register Location 

The Non-CPU agent Intel RDT related register set (MMIO interfaces) must 

reside on at least one 4 KB-aligned memory mapped page. The exact location 

for the register region is implementation-dependent and is communicated to 

system software by BIOS through the IRDT ACPI structure (see Chapter 5). 

Multiple RCSes could be mapped to the same 4 KB-aligned page, or distinct 

pages. No other unrelated registers may be present in the pages used for non-

CPU agent Intel RDT. A Virtual Machine Monitor (VMM) or operating system 

may use page-based access controls to ensure that only designated entities 

may use the non-CPU agent Intel RDT controls.  

When accessing non-CPU agent Intel RDT MMIO interfaces, note that writes to 

reserved fields, writes to reserved offsets within the MMIO space, or writes of 

values greater than the supported maximum for a field will be ignored by 

hardware. 

6.1.1 Software Access to Registers 

Software interacts with the non-CPU agent Intel RDT features by reading and 

writing memory-mapped registers. The following requirements are defined for 

software access to these registers. 

• When updating registers through multiple accesses (whether in software or 

due to hardware disassembly), certain registers may have specific 

requirements on how the accesses should be ordered for proper behavior. 

These are documented as part of the respective register descriptions. 

• Locked operations to non-CPU agent Intel RDT related registers are not 

supported. Software should not issue locked operations to non-CPU agent 

Intel RDT feature hardware registers. 

6.1.2 Register Descriptions for Non-CPU Agents 

6.1.2.1 Link Interface Type RMID/CLOS Tagging MMIO Interfaces 

The IRDT ACPI structures defined in Chapter 4 define MMIO interfaces for 

configuring the RMID/CLOS for each link interface type, as defined in the RCS 

structures. An MMIO pointer defined in the RCS fields describes where the 

configuration interface exists for a particular link interface type. The MMIO 

locations are specified as absolute physical addresses. 
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Table 6-1 shows the MMIO field layout for RMID and CLOS tagging, and 

bandwidth shaping. A common format is used for all RCS types, including for 

instance RCS instances that support PCIe or CXL use the same field layout.  

Common table format across all RCS-Enumerated MMIO. 

Table 6-1. MMIO Table Format 

Register Name Mem Offset Length (B) Comments 

IO RDT Reserved 0x0000 Variable Reserved 

IO_PQR_CLOS0 RCS ::  CLOS Block 

Offset 

RCS :: REGW Common across all 

RCS types 

IO_PQR_CLOS1 IO_PQR_CLOS0 + RCS 

:: REGW 

RCS :: REGW Per-channel 

IO_PQR_CLOS2 IO_PQR_CLOS0 + RCS 

:: REGW*2 

RCS :: REGW Per-channel 

… Variable Variable - 

Reserved Variable Variable - 

IO_PQR_RMID0 RCS :: RMID Block 

Offset 

RCS :: REGW Common across all 

RCS types 

IO_PQR_RMID1 IO_PQR_RMID0 + RCS 

:: REGW 

RCS :: REGW Per-channel 

IO_PQR_RMID2 IO_PQR_RMID0 + RCS 

:: REGW*2 

RCS :: REGW Per-channel 

… Variable Variable - 

Reserved Variable Variable - 

IO_RDT Reserved Variable Variable Remainder of the page 

Note that the RCS :: REGW field indicates the register access width of the fields 

in Table 6-1, either 2B or 8B. Depending on the implementation, this width 

may be 2 bytes or 8 bytes. The width is indicated by the REGW field in the RCS 

Table (Section 5.1.1.4.5). 

Note that the base of the RMID and CLOS fields are enumerated in the RCS 

structure, and the size of these fields varies with the number of supported 

channels. The set of configurable RMIDs and CLOSs are organized as 

contiguous blocks of 4B registers. 

The “PQR” fields starting at the enumerated offset (RCS :: CLOS Block Offset) 

are defined with enumerated register field spacing of RCS :: REGW, which may 

require either 2B or 8B register accesses. A block of CLOS registers exists, 

followed by a block of RMID registers, indexed per Channel. That is, setting a 

value in the IO_PQR_CLOS0 field will specify the CLOS to be used for 

Channel[0] on this RCS. 

The valid field width for RMID and CLOS is defined via CPUID leaves (see Intel® 

64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for 

details) for shared-L3 configuration. 
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Higher offsets allow multiple Channels to be programmed (above Channel 0) if 

supported. Given that PCIe supports multiple VCs, multiple channels may be 

supported in the case of PCIe links, but CXL links support only two entries, one 

at IA_PQR_CLOS0 and one at IO_PQR_RMID0 in this table. 

The RMID and CLOS fields are interpreted as numeric tags, exactly as they are 

in the CPU agent Intel RDT feature set, and software may assign RMID and 

CLOS values as needed. 

Software may reconfigure RMID and CLOS field values at any point during 

runtime, and values may be read back at any time. As all architectural CPU 

agent Intel RDT infrastructure, it is dynamically reconfigurable, this enables 

control loops to work across the capabilities sets collaboratively and 

consistently. 
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7 Programming Guidelines  

7.1 Intel® RDT Monitoring Software Flows for 

CPU Agents 

Intel RDT Monitoring software flows for CPU agents in certain example software 

implementations are briefly described in this section to provide context for how 

an end-user could view and use the RDT features. While this chapter provides 

examples and recommended flows, it is in no way limiting to use models once 

enumeration and configuration capabilities are enabled in software, and many 

varied software implementations and usages of RDT beyond the listed 

examples have been observed.  

7.1.1 Intel® RDT Monitoring Software Flows for CPU 
Agents 

Software should first verify the existence of the RDT Monitoring feature(s) 

before attempting to configure it and read back monitoring data. Periodic 

management by software may also be required to maintain the proper RMID 

mapping on a logical thread when context switching or receiving an interrupt 

for instance (see Section 3.1.1 for details). 

7.1.1.1 Step 1 – Enumeration 

Before attempting to read or write MSRs associated with the Intel RDT 

Monitoring feature software should first execute the CPUID instruction and 

parse its output to ensure that Intel RDT Monitoring and any sub-features to be 

used (for example, CMT, MBM) are supported on the platform, otherwise 

General Protection (#GP(0)) faults will be generated. 

As discussed in the Intel® 64 and IA-32 Architectures Software Developer’s 

Manual, Volume 3B, if CPUID feature flag CPUID.0x7(Structured Extended 

Feature Flags).0:EBX[12] is set to ‘1’ then Intel RDT Monitoring is generally 

supported on the platform.  

Once Intel RDT Monitoring support has been verified software should use 

CPUID.0xF(Shared Resource Monitoring Enumeration leaf).0:EDX to examine 

which platform resources support monitoring. After the call to CPUID, the EBX 

register will indicate the maximum RMID supported on the current socket 

(though particular resources may support fewer RMIDs and this can be 

enumerated on a per-resource basis as described next). 

Software may use CPUID.0xF(Shared Resource Monitoring Enumeration 

leaf).ResID to determine the number of RMIDs supported for the specific 

resource in question, the event type bitmask to program into IA32_QM_EVTSEL 

to retrieve the data for that event in IA32_QM_CTR, and the upscaling factor as 

discussed in the feature-specific chapters. Software may optionally choose to 
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build a record of these enumeration responses for each resource to reduce 

overhead from repeated CPUID calls. 

Given that certain processors may support multiple L2 caches, multiple-L3 

caches, and a variety of logical processor types, it is recommended that 

software use CPUID from the perspective of each logical processor to 

comprehend any asymmetric resource support which may be present.  

Software should parse Processor Family, Model and Stepping (FMS) to verify 

that a particular processor includes support for a given model-specific feature. 

To find out which features are supported on which specific products, refer to 

Appendix A.3. 

7.1.1.2 Step 2 – RMID Association 

After verifying that the platform supports Intel RDT Monitoring, software should 

associate each logical thread or VM of interest with an RMID such that resource 

utilization by the threads can be tracked. It is expected in general that if an OS 

or VMM moves an application from one core or socket to another that the 

RMIDs will be updated (moved along with the app or remapped onto another 

socket as needed) to maintain an accurate mapping between the applications 

of interest and the RMIDs programmed onto a logical thread. 

Threads by default are initialized to RMID[0], which provides insight into 

memory bandwidths for the system but not necessarily cache occupancy 

(which would read 100% occupied in a non-idle system). 

7.1.1.3 Step 3 – Event Selection Setup 

After associating RMIDs with threads and updating the IA32_PQR_ASSOC 

register for each thread as needed while running (to account for context swaps 

and thread migration between cores), software may execute for an arbitrary 

period of time while hardware tracks occupancy before polling for the resulting 

occupancy. 

After applications have executed for the desired time period software may 

program an RMID and event code into the IA32_QM_EVTSEL MSR, which will 

cause the corresponding data to be available in the IA32_QM_CTR MSR 

(discussed in the following section). 

7.1.1.4 Step 4 – Data Sampling 

After the IA32_QM_EVTSEL MSR has been programmed with an RMID / Event 

ID combination the corresponding event data can be read back from the 

IA32_QM_CTR MSR, which has a bit field layout as defined in Section 3.1.1. 

Software must check both the Error bit and the Unavailable bit to verify that 

the data returned is valid (along with the Overflow bit if supported) – if an 

error is indicated the monitoring data reported back must not be used. 

As described in Section 3.1.1 the Error bit will be set if an RMID greater than 

the global maximum (specified in CPUID) is programmed into 

IA32_QM_EVTSEL, or an unknown/unsupported Event ID is programmed. 
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Similarly, the Unavailable bit is set when data is requested for an RMID that 

does not support that particular resource or does not support an RMID value 

that high. 

An example is if occupancy monitoring of resource “A” supported four RMIDs, 

and resource “B” supported 2 RMIDs. If software requested the occupancy of 

either Resource A or B for RMIDs 0 or 1 then valid data would be reported 

back. If occupancy data for RMIDs 2 or 3 was requested for resource “B” 

however data would not be reported, and the Unavailable bit would be set.  

The Overflow bit, if supported, is set when an overflow of an incrementing 

counter is triggered, allowing software to correct or discard errant values that 

may lead to erroneous bandwidth calculations.  

If an error is indicated, it will be cleared automatically once valid values are 

programmed into IA32_QM_EVTSEL and any hardware conditions preventing 

accurate monitoring are resolved. The Overflow bit, if implemented, is cleared 

on a read of IA32_QM_CTR.  

7.1.1.5 Step 5 – Sample CMT/MBM Data Collection and Analysis 

Once CMT and MBM data has been collected it can be interpreted as described 

in the following example.  

Consider the case where CMT and MBM are supported on a platform, and a 

large number of RMIDs are available. On this platform the user seeks to profile 

two threads within an application, so both threads are assigned individual 

RMIDs and run on separate physical cores for a period of one second, then 

occupancy and bandwidths are read back via the MSR interface 

(IA32_QM_EVTSEL and IA32_QM_CTR). In this example, the following 

parameters are key to interpreting the results: 

• System topology – two Intel® Xeon™ CPUs with 14 cores per socket, and a 

3-level cache subsystem, where the last-level cache totals 35 MB per 

socket. 

• The last-level cache is verified using CPUID leaf 0x4 as the last level cache 

between the cores and memory, meaning L3 external bandwidth values 

can be used to measure memory bandwidth. 

• As enumerated via CPUID the upscaling factor (CPUID.0xF(Shared 

Resource Monitoring Enumeration leaf).1:EBX) to convert counter values to 

final values in bytes is 0xE000 (decimal 57344). 

• Since the total L3 cache size is 36700160 bytes and the upscaling factor is 

57344, we know that the maximum possible CMT occupancy counter value 

reported by the system will be total cache size divided by the conversion 

factor, or 36700160/57344 = 640. 

⎯ As the threads are profiled, we can compare the reported occupancy 

to the maximum occupancy counter value, giving an indication of 

what fraction of the total cache an application is using without 

needing to convert to bytes first.  

Suppose that the threads are configured as follows: 



 

Document Number: 356688-001US, Revision: 1.0  67 

  

• Associate thread[0] with RMID[1]. 

• Associate thread[1] with RMID[2]. 

• Leave all other threads in the system with the default RMID[0] association.  

In order to profile memory bandwidth an initial sampling of the free-running 

MBM counters is required: 

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event 

code 0x2 for total L3 external bandwidth, then read the corresponding data 

from IA32_QM_CTR (and verify that the Unavailable and Error bits in 

IA32_QM_CTR are not set so the data is valid). 

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event 

code 0x3 for local L3 external bandwidth, then read the corresponding data 

from IA32_QM_CTR (and verify that the Unavailable and Error bits in 

IA32_QM_CTR are not set so the data is valid). 

• Repeat these steps with RMID[2] for the second thread. 

Note that we assume that RMID[1] and RMID[2] have previously been used for 

profiling other applications, so they may initially contain nonzero occupancy 

and bandwidth counter values.  

Note that in this example we assume that RMID[1] and RMID[2] are set up 

exclusively for the use of the two threads being profiled, and that these threads 

are not currently scheduled, and they have no data in the L3 cache, so the 

bandwidth counters, even if they contain initial values, are not changing. The 

occupancy counters may change even if no threads are scheduled using 

RMID[1] and RMID[2] however if they have previously run and have data in 

the L3 cache as other threads on the system run and cache space is 

dynamically redistributed due to evictions and standard cache LRU policies.  

Note that if the threads in RMID[1] and RMID[2] are running while we measure 

initial counter values then skew may appear in the counter values, proportional 

to the time delay between reading each of the event codes (which should be 

minimized) and the bandwidths consumed by the application (which may vary 

significantly based on application behavior).  

Now that initial MBM counter values have been established, the program can be 

left to run for a period of time, in this case one second. The Intel RDT 

Monitoring data can then be read back as follows: 

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event 

code 0x1 for L3 cache occupancy, then read the corresponding data from 

IA32_QM_CTR (and verify that the Unavailable and Error bits in 

IA32_QM_CTR are not set so the data is valid). 

• Program IA32_QM_EVTSEL with RMID[1] and the event code for total L3 

external bandwidth (0x2), read the data from IA32_QM_CTR and again 

verify that the “U” and “E” bits are not set. 

• Similarly read back local L3 external bandwidth using the event code 0x3 

and verify that the data is valid.  
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• Repeat the previous three steps with RMID[1] to read back the Intel RDT 

monitoring metrics for the second thread.  

Example data read back after profiling for one second is shown in the following 

table. 

Table 7-1. Example CMT and MBM Counter Values 

 Thread 0 Thread 1 

Event Type First Sample Second Sample First Sample Second Sample 

L3 Cache Occupancy N/A 0x25 N/A 0x180 

Total L3 External Bandwidth 0x00FE985E 0x00FEBC14 0x00002541 0x0000D9F7 

Local L3 External Bandwidth 0x0A8C9512 0x0A8CB5ED 0x00000314 0x0000AC5D 

Note that in the previous sample data the counter values are shown as 32-bit 

values, implying that the upper fields in the counter MSR were either zeroes or 

not changing and can be disregarded – this may not always be the case 

however when bandwidths are high, or in the case of future counters which 

may increment quickly.  

In the example, the final cache occupancy for the threads can be calculated as 

follows: 

• Thread[0]: CounterValue * UpscalingFactor = 37*57344  = 2121728 bytes 

(roughly 2.02 MB). 

• Thread[1]: CounterValue * UpscalingFactor = 22020096 bytes = 21 MB. 

Thus, based on the CMT profiling of the two example threads, we see that 

Thread[0] consumes around 2MB of cache space, and Thread[1] consumes 

around 21MB, over 10x more, which indicates that it likely has a larger data 

working set or it may be partly streaming through memory. Software should 

also consider memory bandwidth readings to determine whether Thread[1] is 

simply cache-friendly or whether it is a streaming application.  

Total memory bandwidth values for the two threads can be determined as 

follows: 

• Thread[0]: (Second counter reading – First counter 

reading)*UpscalingFactor = (0x00FEBC14-0x00FE985E)*57344 = 

9142*57344 = 524238848 bytes/second, or around 500 MB/s since we 

sampled for one second.  

• Thread[1]: (Second counter reading – First counter 

reading)*UpscalingFactor = (0x0000D9F7-0x00002541)*57344 = 

46262*57344 = 2652848128 bytes/second, or around 2.5 GB/s.  

Local memory bandwidth values for the two threads can be determined as 

follows: 

• Thread[0]: (Second counter reading – First counter 

reading)*UpscalingFactor = (0x0A8CB5ED-0x0A8C9512)*57344 = 

8411*57344 = 482320384 bytes/second, or around 460 MB/s. 
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• Thread[1]: (Second counter reading – First counter 

reading)*UpscalingFactor = (0x0000AC5D-0x00000314)*57344 = 

43337*57344 = 2485116928 bytes/second, or around 2.3 GB/s. 

Based on the prior calculations we observe that Thread[0] has low memory 

bandwidth demands at roughly 500 MB/s, and Thread[1] uses more bandwidth 

at 2.5 GB/s, but not enough to classify it as a streaming thread. With its 21 MB 

cache occupancy and moderate memory bandwidth, Thread[1] is best classified 

as a cache-friendly thread, though observing its behavior over a longer period 

of time and sampling other system metrics to better understand its time-

variant behavior and compute requirements is recommended if detailed 

profiling is the goal. 

Note that in this example most of the bandwidth demands of the threads are 

satisfied by the memory controller on the local CPU, meaning bandwidth 

associated with the QPI link and other sources is low, implying that the NUMA-

aware OS properly located the memory allocation for the threads on the same 

socket as the running threads. 

This may not always be the case however, and if a bandwidth imbalance is 

detected then we may choose to either move the compute threads to the other 

CPU (closer to the data in memory) or move the data in memory to another 

address range within the scope of the local CPU memory controller for better 

performance. 

7.1.2 Native OS Environments 

In a non-virtualized environment, the RMIDs can be associated with 

applications or application threads. The OS may even choose to associate 

different parts of a single application to be associated with different RMIDs if 

needed. But a typical usage would save and restore the RMIDs along with the 

context information during the context switch. 

For multi-threaded applications, multiple threads can share the same RMID. 

The implications stated earlier also apply to multi-threaded applications with 

the following additional considerations for shared code/data. For example, if 

app0 was multi-threaded (for example, two threads per application), then we 

can get occupancy information for each thread of application. The only 

additional implication here is that the occupancy of the threads that share data 

will be associated to the thread that filled the shared data. Heuristics that 

minimize contention in the shared cache for single threaded workloads to 

optimize total system throughput and to provide QoS will also be effective for 

the multi-threaded workloads.  

7.1.3 Virtualization Scenarios 

In case of virtualization, RMIDs can be allocated in different ways. The VMM 

can choose to allocate the RMIDs to different VMs or vCPUs. The current 

planned implementations do not support reporting individual occupancies of 

applications running within a VM unless the VMM and guest OS are both 
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enabled to support Intel RDT. The RMID assignment at VM and VCPU level are 

described next. 

RMIDs assigned to Virtual Machines (VMs): In this usage case RMIDs are 

assigned to VMs instead of applications and the occupancy reported is on a per 

VM basis. Multiple applications running within a VM will have a consolidated 

occupancy which will be reported by the RMID. Profiling of workloads and 

heuristics that optimize for overall system throughput and for providing QoS 

based on SLAs would be based in the granularity of VMs. Hence to provide 

QoS, HP applications can be mapped to a VM with a high priority so that 

scheduling decisions to minimize contention will treat all applications running in 

the HP VM as high priority. The heuristics that work on occupancy monitoring 

based on contention in the shared cache will still be effective but will work in 

the granularity of VMs. When scheduling VMs, the VMM can use the occupancy 

monitoring information available for the VMs from the RMIDs. There are no 

other additional implications for VMs. 

RMIDs assigned to vCPUs within VMs: In this usage case scenario, RMIDs 

are assigned to vCPUs within a VM. Since there maybe multiple applications 

within a VM running on the vCPUs, the occupancy reported by the RMID for a 

vCPU will represent the consolidated occupancy of the applications running on 

that vCPU. As an example, if there are two VMs with 2 vCPUs each and there 

are four applications in each VM as shown in Figure 7-1. 

Figure 7-1. RMIDs Assigned to vCPUs 

 

The occupancy reported by the RMID assigned to vCPU0 will represent the 

consolidated occupancy of App0 and App1. Similarly, only the consolidated 

occupancy of App2 and App3 is what will be reported and so on. Hence 

optimizations for system throughput, QoS and application profiling would have 

to be at the granularity of vCPUs. The OS running within a VM will have its own 

scheduling policy that would determine how applications are scheduled to the 

vCPUs. 

When applications migrate within a VM from one vCPU to another, the 

consolidated occupancy reported will also be affected as it would depend on the 

nature of the applications scheduled to a vCPU. Hence any policy or heuristic 

that is implemented should be in the granularity of VCPU profiling. The 

recommended approach is to profile the workload at a vCPU level and then 

design heuristics based on vCPU profiles to optimize for throughput and provide 

QoS.  
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7.2 Intel® RDT Allocation Software Flows for 

CPU Agents 

RDT Allocation software flows for CPU agents are briefly described in this 

section to provide context for how and end-user may view the feature. 

7.2.1 Intel® RDT Software Allocation Flows for CPU 
Agents  

7.2.1.1 Step 1 – Enumeration 

Before attempting to read or write MSRs associated with the Intel RDT 

Allocation feature software should first poll CPUID to ensure that Intel RDT 

Allocation and any sub-features to be used (for example, L3 CAT, L2 CAT, MBA) 

are supported on the platform, otherwise General Protection (#GP(0)) faults 

will be generated. As discussed in Section 3.2, if CPUID feature flag 

CPUID.0x7(Structured Extended Feature Flags).0:EBX[15] is set to ‘1’ then 

Intel RDT Allocation is generally supported on the platform. 

Once Intel RDT Allocation support has been verified software should poll and 

examine CPUID.0x10.0:EBX to examine which platform resources support 

allocation. After the call to CPUID, the EBX register will indicate the supported 

Intel RDT Allocation features on the current socket. 

Software may use CPUID.0x10.ResID to determine the number of CLOS 

supported for the specific resource in question, the max length of the CAT 

bitmask, the max MBA delay value, and so on, and presence of sub-features 

like CDP on top of CAT for a given level of the cache. Software may optionally 

choose to build a record of these enumeration responses for each resource to 

reduce overhead from repeated CPUID calls. 

Software should parse Processor Family, Model and Stepping (FMS) to verify 

that a particular processor includes support for a given model-specific feature. 

To find out which features are supported on which specific products, refer to 

Appendix A.3. 

Note that it is important that software enumerate the Intel RDT Monitoring 

capabilities of the platform in the order specified in Section 3.1.1. 

7.2.1.2 Step 2 – Optionally Enable CDP 

If software wants to use CDP, enable it via the IA32_PQOS_CFG MSR. 

7.2.1.3 Step 3 – Mask and Bandwidth Control Setup 

After determining the presence of hardware Intel RDT Allocation support 

software should configure the CAT masks and MBA delay values if supported to 

provide capacity allocation/bandwidth hints to the hardware via the 

IA32_ResourceType_QOS_MASK_n MSRs and IA32_L2_QOS_Ext_BW_Thrtl_n 
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MSRs, depending on the usage model specified in Section 3.1.1 and the 

number of CLOS available (enumerated in feature-specific ResID sub-leaves). 

It is considered good practice to first verify that IA32_L3_QOS_MASK_0 

contains all “1” to the length of the bitmask (such that CLOS0 can access the 

entire cache) and that all threads are in CLOS0 before making changes to the 

masks (which may otherwise result in rapidly changing cache available to 

applications, which may lead to performance variation, though no functional 

errors are possible). Also verify that no bandwidth enforcement is configured in 

the IA32_L2_QOS_Ext_BW_Thrtl_n MSRs. It is also considered best practice to 

set up CLOS[0] as the highest priority CLOS with a large fraction of the cache, 

CLOS1 as the next highest, and so on. 

7.2.1.4 Step 4 – CLOS Association 

After the CAT/CDP per-CLOS mask MSRs are set up to known values, whether 

overlapped, shared or a combination depending on application needs and goals, 

and after MBA delay values are set up, each of the threads should be 

associated into a desired Class of Service via the IA32_PQR_ASSOC MSR. This 

MSR may be read or written at any time. 

As part of some implementations an OS may choose to set up masks then 

change the IA32_PQR_ASSOC MSR on context switches (to associate a portion 

of the cache with an application or thread for instance). 

7.3 Intel® RDT Software Flows for Non-CPU 

Agents 

This section describes software architecture considerations for Intel RDT 

features for non-CPU agents, recommended usage flows and related 

considerations. This builds upon the architectural concepts and software usage 

examples discussed in Chapter 4. 

Software seeking to use RDT for non-CPU agents has a number of tasks to 

comprehend:  

• Enumeration of the capabilities of  Intel RDT for CPU agents (through 

CPUID) and Intel RDT for non-CPU agents (through CPUID and ACPI). 

• Reservation of (or comprehension of the sharing implications of using) 

RMIDs and CLOS from the pools available at each resource level and 

subject to the RMID and CLOS management best practices on a particular 

processor. 

• Pre-configuration of any resource limits to be used for modulating device 

activity, such as a cache mask for a CLOS intended to be used with a 

device. 

• Configuration of each device’s tagging properties through the MMIO 

interface described by the ACPI structures, such as associating a device 

with a particular RMID, CLOS and bandwidth limit, as applicable. 
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• Enabling the Intel RDT features for non-CPU agents through the enable 

MSR infrastructure -- the IA32_L3_IO_QoS_CFG MSR is shown in Figure 

4-2, at MSR address 0xC83. 

• Periodically adjusting resource limits subject to software policies and any 

control loops which may be present. 

• Comprehending the implications of Sub-NUMA clustering (SNC) if present 

and enabled. 
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A Intel® RDT Feature Details 

A.1 Intel® RDT Feature Evolution 

This section describes various generations of product and Intel RDT feature 

intercepts. Intel RDT provides a number of monitoring and control capabilities 

for shared resources in multiprocessor systems. This section covers updates to 

the feature that are available in current and future Intel processors, starting 

with brief descriptions followed by tables with details. 

1. Intel® RDT on the 3rd Gen Intel® Xeon® Scalable Processor Family. 

The 3rd Gen Intel® Xeon® Scalable Processor Family, based on Ice Lake 

server microarchitecture, adds the following Intel RDT enhancements: 

⎯ 32-bit MBM counters (versus 24-bit in prior generations), and new 

CPUID enumeration capabilities for counter width. 

⎯ Second generation Memory Bandwidth Allocation (MBA): Introduces 

an advanced hardware feedback controller that operates at 

microsecond timescales, and software-selectable min/max throttling 

value resolution capabilities. Baseline descriptions of the MBA 

“throttling values” applied to the threads running on a core are 

described in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3B. 

Second generation MBA capabilities also add a work-conserving 

feature in which applications that frequently access the L3 cache may 

be throttled by a lesser amount until they exceed the user-specified 

memory bandwidth usage threshold, enhancing system throughput 

and efficiency, in addition to adding more precise calibration and 

controls. Certain BIOS implementations may further aid flexibility by 

providing selectable calibration profiles for various usages. 

⎯ 15 MBA / L3 CAT CLOS: Improved feature consistency and interface 

flexibility. The previous generation of processors supported 16 L3 CAT 

Class of Service tags (CLOS), but only 8 MBA CLOS. The changes in 

enumerated CLOS counts per-feature are enumerated in the 

processor as before, via CPUID. 

2. Intel® RDT on Intel Atom® Processors, Including the P5000 Series. 

Intel Atom® processors, such as the P5000 series, based on Tremont 

microarchitecture add the following Intel RDT enhancements: 

⎯ L2 CAT/CDP: L2 CAT/CDP and L3 CAT/CDP may be enabled 

simultaneously on supported processors. As these are existing 

features defined in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3B, no new software enabling should be 

required. 

⎯ Supported processors match the capabilities of the 3rd Gen Intel Xeon 

Scalable Processor Family based on Ice Lake Server 

microarchitecture, including traditional Intel RDT uncore features: L3 

CAT/CDP, CMT, MBM, and second-generation MBA. As these features 

are architectural, no new software enabling is required. Related 

enhancements in Intel Xeon processors also carry forward to 
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supported Intel Atom processors, with consistent software enabling. 

These features include 32-bit MBM counters, second generation MBA, 

and 15 MBA/L3 CAT CLOS. 

3. Intel® RDT in processors based on the 4th Gen Intel® Xeon® 

Scalable Processor Family. 

Processors based on 4th Gen Intel® Xeon® Scalable Processor Family add 

the following Intel RDT enhancements: 

⎯ STLB QoS: Model-specific capability to manage the second-level 

translation lookaside buffer structure within the core (STLB) in a 

manner quite similar to CAT (CLOS-based, with capacity masks). This 

may enable software that is sensitive to TLB performance to achieve 

better determinism. This is a model-specific feature due to the 

microarchitectural nature of the STLB structure. The code regions of 

interest should be manually accessed. 

4. Intel® RDT in Processors Based on 5th Gen Intel® Xeon® 

Processors. 

Processors based on 5th Gen Intel® Xeon® Processors add the following 

Intel RDT enhancements: 

⎯ L2 CAT and CDP: Includes control over the L2 cache and the ability to 

partition the L2 cache into separate code and data virtual caches. No 

new software enabling is required; this is the same architectural 

feature described in the Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 3B. 

5. Future Intel® RDT. 

Future processors add the following Intel RDT enhancements: 

⎯ Third generation Memory Bandwidth Allocation (MBA): new per-

logical-processor capability for bandwidth control (rather than the 

more coarse-grained core-level throttling value resolution in prior 

generations). This capability enables more precise bandwidth shaping 

and noisy neighbor control. Some portions of the control 

infrastructure now operate at core frequencies for controls that are 

responsive at the nanosecond level. 

⎯ Intel® RDT features support for non-CPU agents, enabling advanced 

monitoring and control capabilities for PCIe and CXL devices, as well 

as integrated processor accelerators.  
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A.2 Intel® RDT Architectural Features and 
Supported Products 
 

 Intel RDT 
Feature 

Category 

Shared 
Resource 

Agent Intel RDT 
Sub-Feature 

Intel RDT 
Scope 

Supported Products 

M
o

n
it

o
r
in

g
 

Cache 

Monitoring 

Technology 

(CMT) 

L3 CPU L3 CMT for 

CPU agents 

Per-thread 

RMID-based 

Intel® Xeon® E5/E7 v3,v4, Intel® Xeon® D, 

Intel® Xeon® Scalable Processor, 2nd Gen 

Intel® Xeon® Scalable Processor, 3rd Gen 

Intel® Xeon® Scalable Processor, 4th Gen 

Intel® Xeon® Scalable processor, 5th Gen 

Intel® Xeon® Scalable processor, Intel 

Atom® Processor P5000 Series, Intel® 

Xeon® processors (codename Granite 

Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 

L3 I/O L3 CMT for 

non-CPU 

agents 

Per-agent 

RMID-based 

Intel® Xeon® processors (codename 

Granite Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 

Memory 

Bandwidth 

Monitoring 

(MBM) 

- CPU MBM Local for 

CPU agents 

Per-thread 

RMID-based 

Intel® Xeon® E5/E7 v4, Intel® Xeon® D, 

Intel® Xeon® Scalable Processor, 2nd Gen 

Intel® Xeon® Scalable Processor, 3rd Gen 

Intel® Xeon® Scalable Processor, 4th Gen 

Intel® Xeon® Scalable processor, 5th Gen 

Intel® Xeon® Scalable processor, Intel 

Atom® Processor P5000 Series, Intel® 

Xeon® processors (codename Granite 

Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 

CPU MBM Total for 

CPU agents 

Per-thread 

RMID-based 

Intel® Xeon® E5/E7 v4, Intel® Xeon® D, 

Intel® Xeon® Scalable Processor, 2nd Gen 

Intel® Xeon® Scalable Processor, 3rd Gen 

Intel® Xeon® Scalable Processor, 4th Gen 

Intel® Xeon® Scalable processor, 5th Gen 

Intel® Xeon® Scalable processor, Intel 

Atom® Processor P5000 Series (Selected 

Processors), Intel® Xeon® processors 

(codename Granite Rapids), Intel® Xeon® 

processors (codename Sierra Forest) 

I/O MBM Local for 

non-CPU 

agents 

Per-agent 

RMID-based 

Intel® Xeon® processors (codename 

Granite Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 

I/O MBM Total for 

non-CPU 

agents 

Per-agent 

RMID-based 

Intel® Xeon® processors (codename 

Granite Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 



 

Document Number: 356688-001US, Revision: 1.0  77 

  

 Intel RDT 
Feature 

Category 

Shared 
Resource 

Agent Intel RDT 
Sub-Feature 

Intel RDT 
Scope 

Supported Products 
A

ll
o

c
a
ti

o
n

 

Cache 

Allocation 

Technology 

(CAT) 

L2 CPU  L2 CAT for 

CPU agents 

Per-thread 

CLOS-based 

Atom Server C3000, 5th Gen Intel® Xeon® 

Scalable processor, Intel Atom® Processor 

P5000 Series, Intel® Xeon® Scalable 

processor (codename Granite Rapids), 

Intel® Xeon® processors (codename Sierra 

Forest) 

L2 CDP for 

CPU agents 

Per-thread 

CLOS-based 

5th Gen Intel® Xeon® Scalable processor, 

Intel Atom® Processor P5000 Series, Intel® 

Xeon® Scalable processor(codename 

Granite Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 

L3 CPU L3 CAT for 

CPU agents 

Per-thread 

CLOS-based 

Intel Atom® X Series (Selected 

Processors), Intel® Xeon® E5/E7 v3 

(Selected Processors), Intel® Xeon® E5/E7 

v4 , Intel® Xeon® D, Intel® Xeon® 

Scalable, 2nd Gen Intel® Xeon® Scalable 

Processor, 3rd Gen Intel® Xeon® Scalable 

Processor, 4th Gen Intel® Xeon® Scalable 

processor, 5th Gen Intel® Xeon® Scalable 

processor, Intel® Xeon® W, Intel Atom® 

Processor P5000 Series, Intel® Xeon® 

Scalable processor(codename Granite 

Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 

L3 CDP for 

CPU agents 

Per-thread 

CLOS-based 

Intel® Xeon® E5/E7 v4, Intel® Xeon® 

Scalable Processor, 2nd Gen Intel® Xeon® 

Scalable Processor, 3rd Gen Intel® Xeon® 

Scalable Processor, 5th Gen Intel® Xeon® 

Scalable processor, Intel Atom® Processor 

P5000 Series,  Intel® Xeon® Scalable 

processor(codename Granite Rapids), 

Intel® Xeon® processors (codename Sierra 

Forest) 

I/O L3 CAT for 

non-CPU 

agents 

Per-agent 

CLOS-based 

Intel® Xeon® processors (codename 

Granite Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 

Memory 

Bandwidth 

Allocation 

(MBA) 

- CPU MBA for CPU 

agents 

(Second 

Generation 

MBA) 

Per-thread 

CLOS-based 

Intel® Xeon® Scalable Processor, 2nd Gen 

Intel® Xeon® Scalable Processor, 3rd Gen 

Intel® Xeon® Scalable Processor, 4th Gen 

Intel® Xeon® Scalable processor, 5th Gen 

Intel® Xeon® Scalable processor, Intel 

Atom® Processor P5000 Series, Intel® 

Xeon® Scalable processor(codename 

Granite Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 

CPU MBA for CPU 

agents (Third 

Generation 

MBA) 

Per-thread 

CLOS-based 

Intel® Xeon® processors (codename 

Granite Rapids), Intel® Xeon® processors 

(codename Sierra Forest) 

Cache 

Bandwidth 

Allocation 

(CBA) 

- CPU CBA for CPU 

agents 

Per-Logical 

Processor 

based 

Future Intel® Processors  
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A.3 Intel® RDT Model-Specific Features and 
Supported Products 
 

Intel RDT Feature Category Supported Products 

Resource Aware MBA (MBA4.0) • Intel® Xeon® processors (codename Granite Rapids). 

• Intel® Xeon® processors (codename Sierra Forest). 

Intel® RDT and Sub-NUMA 

Clustering (SNC) Compatibility 

• 3rd Gen Intel® Xeon® processors. 

• 4th Gen Intel® Xeon® processors. 

• 5th Gen Intel® Xeon® processors. 

STLB QoS 4th Gen Intel® Xeon® processors. 

The following product generations on SKUs with Intel® Time 

Coordinated Computing (Intel® TCC) support: 

• 11th Gen Intel® Core™ Processors (UP3-Series). 

• Intel® Xeon® W Processors (TGL-H). 

• 12th Gen Intel® Core™ Processors (S-Series). 

• 13th Gen Intel® Core™ Processors (P-Series). 

• 13 Gen Intel® Core™ Processors (S-Series). 

• Intel Atom® x7000E Series Processors. 
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A.4 Feature Mapping: CPU Agents, Non-CPU 
Agents in Different L3 Configurations 
 

Configuration Intel RDT 
Feature 

CPU Agents Intel RDT 
Scope 

Non-CPU 
Agents Intel 
RDT Scope 

Comments  

Shared-L3 Cache Monitoring 

Technology (CMT) 

Per-thread RMID-based  Per-agent RMID-

based 

Unified per-RMID 

counters across CPU 

Agents and non-CPU 

Agents. 

Shared-L3 Memory 

Bandwidth 

Monitoring (MBM) 

Per-thread RMID-based Per-agent RMID-

based 

Unified per-RMID 

counters across CPU 

Agents and non-CPU 

Agents. 

Shared-L3 Cache Allocation 

Technology (CAT)  

Per-thread CLOS-based Per-agent CLOS-

based 

Unified per-CLOS controls 

across CPU Agents and 

non-CPU Agents. 

Shared-L3 Code and Data 

Prioritization 

(CDP) 

Per-thread CLOS-based N/A CDP is not supported for 

non-CPU Agents. 

Shared-L3 Memory 

Bandwidth 

Allocation (MBA) 

Per-thread MBA throttling 

(MBA3.0 and higher) or 

Per-core MBA throttling 

(MBA1.0-2.0) 

N/A MBA is not supported for 

non-CPU Agents. 
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A.5 Architectural MSRs used with Intel® RDT 
Features 

The following architectural Model-Specific Registers are used with Intel® RDT 

features. 

 

MSR Name Comments 

IA32_PQR_ASSOC Set the RMID and CLOS pair. 

IA32_QM_EVTSEL Set event codes and RMID to be monitored. 

IA32_QM_CTR Reports monitoring telemetry data. 

IA32_L3_MASK_n Bitmask to assign L3 cache ways for each CLOS. “n” registers, 

one register per CLOS. 

IA32_L2_QoS_Ext_BW_Thrtl_n Set valid throttling levels. “n” registers, one register per CLOS 

IA32_L2_QOS_MASK_n Bitmask to assign L2 cache ways for each CLOS. “n” registers, 

one register per CLOS. 

IA32_L3_IO_QOS_CFG Set to enable Allocation and Monitoring for non-CPU Agents 

IA32_QoS_Core_BW_Thrtl_n Set valid throttling levels, one byte per CLOS. “n = 0 to 

(((CLOS_MAX+1)/8) -1)” registers 

A.6 Model-Specific Registers for Intel® RDT 
Model Specific Features 

The following notable non-architectural Model-Specific Registers are used with 

Intel® RDT features and will be expanded over time. Others are discussed in 

preceding model-specific chapters. 

 

MSR Name Comments 

MBA_CFG Set the RMID and CLOS pair. 

RMID_SNC_CONFIG  Clear to enable RMID Sharing Mode. 

STLB_QOS_INFO Discover STLB QOS parameters 

STLB_QOS_MASK_N STLB QOS Capacity Bitmasks 

STLB_FILL_TRANSLATION Fill a logical address into the STLB 

PQR_ASSOC Resource Association Register 

L3_QOS_MASK_N L3 Class of Service Mask 
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B Model-Specific Intel® RDT 
Features 

B.1 Model-Specific Intel® RDT Features for CPU 
Agents 

This section gives an overview of non-architectural features that are 

implemented on specific products. To find out which features are supported on 

which specific products, refer to Appendix A.3. 

In certain cases, model-specific features may be implemented rather than 

architectural features in cases where the cache or memory hierarchies are 

rapidly evolving, or in cases where usages are specialized and require intricate 

software enabling and tuning, or in cases where a subset of special-purpose 

processors are enabled with certain features within a broader product line. 

Support for a certain model-specific feature in a particular product generation 

does not imply that future products will support the same model-specific 

feature; furthermore, this does not guarantee software forward-compatibility. 

Software should use Processor Family, Model and Stepping (FMS) to verify that 

a particular processor includes support for a given model-specific feature.  

B.1.1 Resource Aware MBA 

Resource Aware MBA (MBA 4.0) for CPU-agent was formerly known as Fourth 

Generation MBA (MBA 4.0) which supports over Third Generation MBA 

capabilities as Bandwidth management support is implemented to support up 

to three different resources – DDR Memory, CXL links, and UPI Links on a pre 

thread basis. Third generation MBA capabilities (see Section 3.2.3.3) are the 

default mode of operation, with Resource Aware MBA being opt-in. See 

Appendix A.3 for Resource Aware MBA feature intercept details. 

B.1.1.1 Overview 

Resource Aware MBA allows per-thread tracking and control of Bandwidth to 

different resources – that is, enabling bandwidth control per-thread and per-

resource simultaneously. As in the third generation of MBA, each resource and 

thread are managed by a hardware controller which modulates the bandwidth 

of each thread targeting a particular downstream resource around a bandwidth 

target set by Intel RDT software interfaces. 

The resource types that are managed are: 

1. DDR – All traffic towards DDR Memory regardless of location of location 

(local, remote or CXL). 

2. CXL – All traffic towards CXL resources such as CXL.mem pools including 

remote. 
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3. UPI - All traffic that utilizes the Intel® Ultra Path Interconnect (Intel® UPI) 

link(s) for cross socket data transfer regardless of target on the remote 

socket.  

The high-level implementation of Resource Aware MBA is shown in Figure B-1. 

Figure B-1. High-Level Overview of the Resource Aware MBA (MBA 4.0) 

 

B.1.1.2 Enable MSR 

Resource Aware MBA (MBA 4.0) is opt-in feature. Before configuring MBA 

throttling values per-thread and per-resource, the feature should be enabled 

(through a configuration MSR). The MBA_CFG MSR is used to enable the 

Resource Aware MBA feature for CPU agents. 

One bit is defined in this MBA_CFG MSR, bit[2], which when set enables the 

Resource Aware MBA feature and switches between third-generation MBA and 

Resource Aware MBA modes. 

The default value is 0x0 (Resource Aware MBA is disabled by default), and all 

bits not defined are reserved. Any writes to reserved bits will generate a 

General Protection Fault (#GP(0)).  

This MSR is scoped at the die level and is cleared on system reset. It is 

expected that software will configure this MSR consistently across all L3 caches 

that may be present in the SoC. 

The definition of the MBA_CFG MSR is shown in Figure B-2, and its MSR 

address is 0xC84.  
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Figure B-2. The MBA_CFG MSR for Enabling Resource Aware MBA Feature 

 

Reference BIOS implementations supporting Resource Aware MBA will extend 

the legacy bandwidth profile knobs from Second Generation MBA with a drop-

down menu of three options (see Section 5.2 for details) 

B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility 

The following sub-sections describe Intel RDT and Sub-NUMA Clustering (SNC) 

compatibility enabling components. Utilizing SNC and RDT simultaneously may 

provide resource contention isolation benefits but requires incremental 

software enabling with the introduction of SNC.  

B.1.2.1 Introduction 

Following sub-sections describe Intel RDT monitoring features behavior in the 

presence of either multiple NUMA domains per socket, other product 

implementations in which multiple NUMA domains may appear per processor, 

due to either logical or physical resource partitioning. This section references 

Intel RDT features such as MBA, MBM, CMT and CAT for CPU agents and non-

CPU agents described in Chapter 3 and Chapter 4 respectively. 

The Sub-NUMA Clustering (SNC) feature creates localization domains within a 

processor by mapping addresses from a local memory controller to a subset of 

the L3 slices that are at a reduced distance to nearby memory controller(s), 

reducing latency, and increasing equivalent traffic isolation across memory 

channels controllers. 

MBA usage is not affected in presence SNC; bandwidth targets apply globally 

across all SNC domains. L3 CAT and Monitoring features (L3 CMT and MBM) 

usage is affected in the presence of SNC. Following sections provide details. 

See Appendix A.3 for Intel RDT and Sub-Numa Clustering (SNC) Compatibility 

feature supported product details (for example, products where the features 

are simultaneously supported). 

B.1.2.2 SNC Enabled and L3 Cache Allocation Technology 

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (OS), 

Hypervisor / Virtual Machine Manager (VMM) or similar system service 

management agent to specify the amount of L3 cache capacity of the Resource 

Allocation Domain (RAD) into which an application can fill.  
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In the presence of SNC, cache capacity bitmasks are still die-scoped and apply 

across multiple-L3 domains. Each bit in the cache capacity bitmask manages all 

clusters and dictates the portion of each SNC cluster available for a given 

Resource Management Domain. For example, each bit in cache capacity 

bitmask represents half as much L3 cache capacity at each cluster when SNC2 

is enabled, or one-quarter as much L3 cache capacity at each cluster when 

SNC4 is enabled and so on. Note that total L3 cache capacity does not change. 

Software may choose to apply consistent policies across SNC domains utilizing 

this property, such as CLOS[0] having full access to the cache across any SNC 

domain in which it may run, but CLOS[1] having access to only half of the 

cache, implying that it contains a set of lower-priority threads. 

B.1.2.3 SNC Enabled and RMID Distribution Modes 

There are two modes available to control Resource Monitoring ID (RMID) 

distribution when SNC is enabled: Default mode and RMID Sharing. 

Software should consider and select the mode in which RMIDs are distributed 

or shared across the SoC and SNC domains depending on its usage needs. 

B.1.2.3.1 Default Mode 

When SNC is enabled the available pool of RMIDS are distributed across all the 

L3 slices. RMIDs are distributed across the cores in the same fashion as done 

when SNC is not enabled, see Figure B-3. 

This distribution scheme allows the RMIDS enumerated by CPUID to be directly 

used. Software should be aware of the distribution of RMIDs between the SNC 

domains. For instance, if there are 320 RMIDs available (enumerated via 

CPUID.(EAX=0FH(Shared Resource Monitoring Enumeration leaf), ECX=0H) ) 

and an SNC-4 configuration is selected, four localization domains exist within a 

processor. 

These 320 RMIDs can be dived into four groups of 80 RMIDS with first 80 

allocated to SNC domain 0, the next 80 to SNC domain 1 and so forth. Due to 

this distribution policy, RMIDs may be visualized as localized to SNC domains, 

and there maybe cases where bandwidth is not counted. Consider for instance 

the case where thread with RMID 0 accesses will generate counts only for 

traffic in SNC domain 0. Any traffic from this thread that accesses other SNC 

domains will not increment any of the other counters. In other words, each 

SNC domain will get an equal number of distinct RMIDS from the global pool of 

RMIDS that are not shared.  
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Figure B-3. Default Mode Demonstrating SNC-4 and RMID Distribution 

 

B.1.2.3.2 RMID Sharing Mode 

RMID sharing mode allows the same RMID to be distributed with traffic 

accessing any and all SNC domains, but at the cost of a reduced number of 

SoC-level RMIDs available. This model-specific mode aims to mitigate the 

disadvantage of the Default mode where software should be aware of the RMID 

distribution per SNC domain (and NUMA-aware) and where traffic tagged with 

an RMID in one domain will not be counted if it accesses resources in another 

SNC domain. RMID sharing mode allows same RMID to sample across SNC 

domains, thus ensuring a complete count. 

• This is an opt-in mode and requires that the software clears an enable bit 

defined in the following MSR 0XCA0, bit[0], see Figure B-4. Note that as a 

model-specific capability, this mode is not guaranteed to be supported on 

all processors (see Appendix A.3 for support details). 

Figure B-4. The RMID_SNC_CONFIG MSR for Enabling RMID Sharing Mode 

 

In this mode the number of RMIDs are distributed across all the L3 slices 

effectively reducing the number of RMIDs by the number of SNC domains. In 

the case of four SNC domains, the number of RMIDs are divided by four. 

Number of valid RMIDs = (Highest RMID value/#SNC_clusters) 
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Using the previous example of 320 RMIDs, in this mode with SNC-2 enabled 

there would be (320/2), that is, 160 RMIDs, with SNC-4 enabled there would 

be (320/4), that is, 80 RMIDs. 

Note: In SNC4 mode, to determine the count for RMID0, the count for RMID0, 

RMID80, RMID160, and RMID240 should be read and added to provide the 

total count for RMID0. 

Note: It is the responsibility of software to read the values from each of the 

counters and calculate and interpret the sum using the output of the 

IA32_QM_CTR MSR. This is illustrated in Figure B-5. 

Figure B-5. RMID Sharing Mode Demonstrating SNC-4 and RMID Distribution 

 

B.1.2.4 Intel® RDT Software Considerations 

Depending on its preferred use model and whether this model-specific 

capability is supported on a particular processor, software may select either the 

mode in which RMIDs are distributed or shared across the SoC and SNC 

domains. The default mode where each SNC cluster has a defined group of 

RMIDs or the opt-in mode which shares the same RMID across the SNC 

domains. 

• Without SNC mode enabled the Remote Memory Bandwidth can be 

calculated by: 

⎯ Remote Memory BW = (Total Memory BW – Local Memory BW) * 

Scaling Factor. 

• With SNC Mode enabled software should scale the measured BW depending 

on the SNC_RMID Mode. 

• CMT is similarly affected. 
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Table B-1. SNC Enabled and RMID Distribution Mode Summary 

 Default Mode Opt-In : RMID Sharing Mode 

Key highlights  

• RMID_SNC_CONFIG MSR is Set. 

• Each SNC domain has its own 

group of RMIDs. 

• RMID_SNC_CONFIG MSR is Clear. 

• Number of RMIDs divided by the number of 

SNC Domains. 

• Opt-In mode is enabled by software setting 

the MSR 0xCA0[0] = 0. 

Example: 

RMID Distribution 

per SNC Example 

for each Mode: 

SNC-4 config and 

Max 320 RMIDs 

1. For each SNC domain, the software 

should select an RMID from the range 

mentioned next to program 

IA32_PQR_ASSOC MSR. This range will 

be dependent on NUMA cluster you 

choose: 

• SNC_Domain_0 : RMID[79:0] 

• SNC_Domain_1 : RMID[159: 80] 

• SNC_Domain_2 : RMID[239:160] 

• SNC_Domain_3 : RMID[319:240] 

2. To obtain monitoring data read via 

IA32_QM_EVTSEL, MSR uses only the 

RMID value to read counter value. 

1. Number of Valid RMIDs = 

(#RMIDS/#SNC_Domains). 

Choose d in {0...79} in this example. 

**This range is used to program RMID field in the 

IA32_PQR_ASSOC MSR so that the appropriate 

hardware counters within the SNC domain are 

updated. 

2. To obtain monitoring data via IA32_QM_EVTSEL 

MSR read 4 counter value from using the next 

formula: 

MAX_VALID_RMID = #RMIDS/#SNC_DOMAINS 

SNC_DOMAIN_0: RMID[0+d] 

SNC_DOMAIN_1: RMID[MAX_VALID_RMID*1 + d] 

SNC_DOMAIN_2: RMID[MAX_VALID_RMID*2 + d]  

SNC_DOMAIN_3: RMID[MAX_VALID_RMID*3 + d] 

For this example: 

SNC_DOMAIN_0: RMID[0+d] 

SNC_DOMAIN_1: RMID[80+d] 

SNC_DOMAIN_2: RMID[160+d] 

SNC_DOMAIN_3: RMID[240+d] 

Differences 
• Same number of RMIDS across 

SoC. 

• RMIDS divided down by the number of SNC 

Domains and hence reduced number of 

RMIDS available for use. 

Differences 

• Miss traffic count due to software 

that traverses SNC domains. This 

can lead to inaccurate counts for 

CMT/MBM. 

• Counts traffic that traverses SNC domains. 

Differences 
• Software needs to know the 

distribution of RMIDS to SNC 

domains. 

• Software required to read all the RMID 

counters in the SNC domains and add up the 

individual count to get the final count. 

Note: Only the monitoring features of Intel RDT are affected by the SNC feature. 

The allocation features, that is, CAT and MBA are not affected. Bit masks and 

BW targets apply globally across all domains. See Table B-1 for SNC enabled 

and RMID distribution summary. 

B.1.2.5 Scaling Factor Adjustment 

CPUID-provided scaling factor (CPUID(0xF(Shared Resource Monitoring 

Enumeration leaf).0x1).EBX[31:0]), which software will use to convert MBM 

counts into bandwidth figures, needs adjustment in software when the system 

is configured in SNC mode. Moreover, calculating different types of bandwidths, 

such as local, total, or remote, also needs special considerations. This section 

describes how software needs to handle these special cases. 
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When using scaling factor under SNC mode, the scaling factor provided by 

CPUID will not account for the reduced number of L3 slices that will be handling 

local traffic. The scaling factor value will remain the same as any other 

clustering mode. software will then need to adjust the scaling factor. For this 

purpose, we define: 

AdjustedScalingFactor = ScalingFactor / SNCClusterCount 

B.1.2.6 SNC and Intel® RDT for Non-CPU Agent Implications 

Intel RDT for non-CPU agents is affected similarly to traditional Intel RDT 

features in the presence of SNC. To obtain a correct CMT or MBM data sampling 

software should either localize I/O device memory allocations to a given cluster 

or sum RMID counts periodically, depending on the RMID localization mode 

selected. 

In cases where multiple contexts are present on a device (SR-IOV, SIOV, with 

attached VMs that may span multiple SNC domains for their execution or 

multiple devices are behind an IOSF channel, if memory accesses are 

distributed across SNC clusters, then monitoring accuracy decreases 

considerably, and the risk of missing cache occupancy or memory bandwidth 

increases considerably.  

SNC also affects I/O traffic. Software seeking to monitor I/O capacity or 

overflow BW to memory (I/O equivalent of CMT or MBM), should determine 

which SNC cluster a given address falls into using NUMA-aware supporting 

constructs (for example, ACPI HMAT, SLIT tables [4]) and pick a corresponding 

RMID for that cluster. As an example, if a device DMA write assigned to an 

RMID which does not land in the same SNC cluster as the address and its 

memory controller will not be tracked. 

B.1.2.7 Calculating Local MBM Bandwidth per Cluster 

When MSR 0xCA0 is set to 1 (Default Mode) software will be able to monitor 

local BW only from one SNC cluster. If MSR 0xCA0 is set to 0 (RMID Sharing 

Mode) then software will be able to monitor Local BW from all SNC clusters. 

Independent of the value in MSR 0xCA0, Local MBM Counts from a given SNC 

cluster can be converted to BW figures using the adjusted scaling factor 

following the same mechanism used under non-SNC modes: 

LocalMbmBwClusterN = (LocalMbmCountDeltaClusterN * AdjustedScalingFactor) / 

SampleTime 

Where: 

• ‘LocalMbmCountDeltaClusterN”  = (Second Sample of LocalMbmCounter 

value (ClusterN) – First sample of LocalMbmCounter value (ClusterN). 

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount. 

B.1.2.8 Calculating Local MBM Bandwidth for Entire Socket 

While operating under any non-SNC mode Local MBM BW will correspond to all 

the total traffic within the full socket. To obtain the same metric under SNC 
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mode software may add up the Local BW from each cluster. This can be 

achieved only when MSR 0xCA0 is set to 0. Otherwise, software will only be 

able to capture the local BW from a single cluster. 

LocalMbmBwSocket = ((LocalMbmCountDeltaCluster0 + ...  LocalMbmCountDeltaClusterN) * 

AdjustedScalingFactor) / SampleTime 

Where: 

• ‘LocalMbmCountDeltaCluster0”  = (Second Sample of LocalMbmCounter 

value (Cluster0) – First Sample of LocalMbmCounter value (Cluster0)… 

Similarly, delta for for each 1,2,…N. 

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount. 

B.1.2.9 Calculating Total MBM Bandwidth for the Socket 

Calculating the Total MBM BW for the full socket, including the traffic from all 

clusters, will require that MSR 0xCA0 is set to 0. 

TotalMbmBwSocket = ((TotalMbmCountDeltaCluster0 + ...  TotalMbmCountDeltaClusterN) * 

AdjustedScalingFactor) / SampleTime 

Where: 

•  ‘TotalMbmCountDeltaCluster0”  = (Second Sample of TotalMbmCounter 

value (Cluster0) – First Sample of TotalMbmCounter value (Cluster0)… 

Similarly, delta for each 1,2,…N. 

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount. 

B.1.2.10 Estimating Remote Traffic 

As with Non-SNC modes, remote traffic can be estimated out of the socket’s 

Total MBM BW and Local MBM BW with this simple relation: 

RemoteMbmBwSocket = TotalMbmBwSocket – LocalMbmBwSocket 

Calculating both TotalMbmBwSocket and LocalMbmBwSocket will require MSR 

0xCA0 to be set to 0. However, if software decides to keep MSR 0xCA0 set to 

“1”, its default value, an alternative mechanism exists to calculate the socket’s 

MBM Remove BW as described in the following section. 

B.1.2.11 Estimating Remote Bandwidth with MSR 0xCA0 set to 1 

If software decides not to switch MSR 0xCA0 to value 0 (for example, out of 

Default mode) the mechanism described earlier to calculate the socket remote 

traffic will not work. However, it is still possible to estimate the remote traffic 

of the entire socket by using MBM counts from a single cluster. 

RemoteMbmBwSocket = (TotalMbmBwClusterN - LocalMbmBwClusterN) * SNCClusterCount 

B.1.2.12 Example for Local and Total MBM Bandwidth 

In this example, software runs on a system configured in SNC-4 mode where 

CPUID(0xF(Shared Resource Monitoring Enumeration leaf).0x1).EBX[31:0] 
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reads 0x1E000 (ScalingFactor). AdjustedScalingFactor is then calculated to be 

0x7800. If the system is configured with MSR 0xCA0=0 (RMID Distribution 

Mode) then software will have the ability to sample BW across all four clusters 

in this example. After sampling MBM counts with a delay of one second the 

following MBM Count increments are observed: 

Table B-2. Local and Total Count Increment 

Cluster Local MBM Count Increment Total MBM Count Increment 

0 174762 192238 

1 43690 61166 

2 0 17476 

3 0 17476 

Software can then calculate Local Bandwidth (BW), Total Bandwidth(BW) and 

Remote Bandwidth(BW) following these steps. 

1. Calculate Local BW for Cluster 0 using the formula for LocalMbmBw 

described earlier: 

LocalMbmBwCluster0 = (LocalMbmCountDeltaCluster0 * 

AdjustedScalingFactor) / SampleTime 

LocalMbmBwCluster0 = (174762 * 0x7800) / 1 

LocalMbmBwCluster0 = 5368688640 B/s ~= 5GB/s 

2. Calculate Total BW for Cluster 0 using the formula for TotalMbmBw 

described earlier: 

TotalMbmBwCluster0 = (TotalMbmCountDeltaCluster0 * 

AdjustedScalingFactor) / SampleTime 

TotalMbmBwCluster0 = (192238* 0x7800) / 1 

TotalMbmBwCluster0 = 5905551360B/s ~= 5.5GB/s 

3. Following the same procedure Local and Total BWs for the different 

clusters may be calculated as shown in Table B-3.  

Table B-3. Local and Total Bandwidth Example 

Cluster LocalMbmBwClusterN TotalMbmBwClusterN 

0 5 GB/s 5.5 GB/s 

1 1.25 GB/s 1.75 GB/s 

2 0 0.5 GB/s 

 0 0.5 GB/s 

4. We can also calculate the socket Local and Total BWs: 

LocalMbmBwSocket =((LocalMbmCountDeltaCluster0 + ...  

LocalMbmCountDeltaClusterN) * AdjustedScalingFactor) / 

SampleTime 

LocalMbmBwSocket = ((174762 + 43690 + 0 + 0) * 0x7800) / 1 

LocalMbmBwSocket = 6710845440B/s ~= 6.25GB/s 

TotalMbmBwSocket =((TotalMbmCountDeltaCluster0 + ...  

TotalMbmCountDeltaClusterN) * AdjustedScalingFactor) / 

SampleTime 
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TotalMbmBwSocket = ((192238 + 61166 + 17476 + 17476) * 

0x7800) / 1 

TotalMbmBwSocket = 8858296320B/s ~= 8.25GB/s 

5. Finally, the remote BW for the socket can be estimated: 

RemoteMbmBwSocket = TotalMbmBwSocket – LocalMbmBwSocket 

RemoteMbmBwSocket = 8.25GB/s - 6.25GB/s ~= 2GB/s 

We can also use this example to show to estimate the socket’s remote BW if 

MSR 0xCA0 is set to 1 (Default mode). Under such conditions only MBM counts 

from a single cluster can be obtained. Assuming that the software has picked 

and RMID from cluster 0, we can use the values calculated earlier for 

LocalMbmBwCluster0 and TotalMbmBwCluster0. Then: 

RemoteMbmBwSocket = (TotalMbmBwCluster0- 

LocalMbmBwCluster0) * SNCClusterCount 

RemoteMbmBwSocket = (5.5GB/s – 5.0GB/s) * 4 ~= 2GB/s 

Note that the value for RemoteMbmBwSocket obtained through this mechanism 

matches that obtained by using the MBM counts from all clusters. 

By analyzing the results from this example, we can conclude, from the thread 

or threads assigned to the selected RMID that: 

• Thread(s) are generating 5 GB/s of traffic towards cluster 0. 

• Thread(s) are generating 1.25 GB/s of traffic towards cluster 1. 

• Thread(s) are not generating local traffic towards clusters 2 or 3. 

• Thread(s) are generating 2 GB/s of traffic towards a remote socket. 

• Each SNC cluster is handling 0.5 GB/s of that remote traffic. 

B.1.3 STLB QoS 

Translation Lookaside Buffer (TLB) misses can cause costly execution delays 

due to page walks. Considered from a capacity management perspective, STLB 

QoS behaves in a similar manner as Cache Allocation Technology (CAT) does 

on the data caches, by giving software the ability to provide hints to hardware 

that guide the placement of translations in the STLB. This control can provide 

fair sharing or improved isolation of TLB resources between applications 

organized by Classes of Service. 

Note: This model-specific feature is intended for use primarily with specialized real-

time operating systems that provide extensions to bound the number of tasks 

running on a core and thus sharing a TLB. Depending on the software 

environment, additional runtime restrictions and software optimizations may 

be needed to observe the potential performance benefits of STLB QoS. 

Contact your Intel representative for additional details. 

Refer to Appendix A.3 for supported product details, which vary across 

generation and processor type. 
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B.1.3.1 Enumerating Support for STLB QoS 

STLB QoS is model specific and support for it is enumerated through the 

IA32_CORE_CAPABILITIES MSR. To determine if the processor supports the 

IA32_CORE_CAPABILITIES MSR, software can check whether the CPUID 

Extended Feature flag at CPUID.0x7(Structured Extended Feature 

Flags).0:EDX[30] is set to ‘1’. 

If CPUID.0x7(Structured Extended Feature Flags).0:EDX[30] is ‘1’, then 

support for STLB QoS can be confirmed via the IA32_CORE_CAPABILITIES MSR 

as defined next. 

Table B-4. STLB QoS Enumeration in IA32_CORE_CAPABILITIES MSR 

Name Address Scope Bit RW Bit Name Description 

IA32_CORE_CAPABILITIES CFh Core 0 RO STLB_QOS When set to 1, processor 

supports STLB QoS 

B.1.3.2 STLB QoS Register Interfaces 

This section contains the register interfaces for configuring STLB QoS. Software 

should first read the STLB_QOS_INFO to determine the maximum number of 

classes of service and capacity bitmask length and may then proceed to 

partitioning the STLB using the STLB_QOS_MASK_n registers. 

B.1.3.2.1 STLB_QOS_INFO 

Software may discover the necessary information for configuring STLB QoS via 

the STLB_QOS_INFO MSR as defined next. 

Table B-5. STLB_QOS_INFO MSR Definition 

Name Address Scope Bit RW Bit Name Description 

STLB_QOS_INFO 1A8Fh Core 

5:0 RO NCLOS 
Number of CLOS supported for STLB 

resource using minus-1 notation. 

19:16 RO 4K_2M_CBM 
Length of capacity bitmask for 4K and 

2M pages using minus-1 notation. 

29:29 RO 

STLB_FILL_ 

TRANSLATION 

_MSR_SUPPORTED 

MSR interface to fill STLB translations 

supported. 

30:30 RO 4K_2M_ALIAS 
Indicates that 4K/2M pages alias into 

the same structure. 

B.1.3.2.2 STLB_QOS_MASK_N 

STLB_QOS_MASK_n registers define the capacity bitmask to be applied when 

filling new translations into the STLB. The mask used will depend on the core’s 

current Class of Service at the time of TLB miss, as configured via the 

IA32_PQR_ASSOC MSR (covered in Chapter 3.2 Intel RDT Allocation Common 

Framework). The STLB_QOS_MASK_n registers are dynamic and may be 

changed at runtime. 
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Software should limit the number of mask registers used to the number of 

supported STLB QoS CLOS. For example, if STLB_QOS_INFO[NCLOS] returns 

0x7, then a total of eight classes of service are supported and valid 

STLB_QOS_MASK_n registers would be 1A90h – 1A97h as defined in Table B-6. 

Attempts to use unsupported STLB QoS mask registers will generate #GP(0). 

Table B-6. STLB_QOS_MASK_N MSR Definition 

Name Address Scope Bit RW Bit Name Description 

STLB_QOS_MASK_n 1A90h 

- 

1A9Fh 

Core 7:0 RW WAY_MASK STLB QoS mask for CLOS 

n. The number of mask 

bits is enumerated in MSR 

STLB_QOS_INFO.  

‘1 in bit indicates 

allocation to the way is 

allowed. ‘0 indicates 

allocation to the way i‘ not 

allowed.1,2 

NOTES: 1. Mask values must be contiguous 1s. 

 2. Way mask only applies to 4K/2M STLB. 

B.1.3.2.3 STLB_FILL_TRANSLATION 

As a further specialized extension to STLB QoS, certain processors support a 

mechanism to manually populate entries in the STLB, rather than requiring that 

pages of interest be accessed by software as part of a TLB fill flow to populate 

the entries. 

If STLB_QOS_INFO[STLB_FILL_TRANSLATION_MSR_SUPPORTED] is ‘1’, 

software may populate entries in the STLB directly by writing the logical 

address (LA) and Class of Service to use for the fill to 

STLB_FILL_TRANSLATION as defined next. 

Table B-7. STLB_FILL_TRANSLATION MSR Definition 

Name Address Scope Bit RW Bit 
Name 

Description 

STLB_FILL_ 

TRANSLATION 

1A8Eh Core 3:0 WO CLOS Class of service to use for the fill. 

10:10 WO X Set to 1 when LA is to an 

executable page. 

11:11 WO RW Set to 1 when LA is to a writeable 

page. 

63:12 WO LA Logical address to use for fill. 

Note: The STLB_FILL_TRANSLATION MSR should not be used in the VMX load list as 

a #GP(0) will occur. 

B.1.4 L3 Cache Allocation Technology 

Certain Intel® Core™ and Intel Atom® processors with support for Intel® Time 

Coordinated Computing (Intel® TCC), and certain communications related 

Intel® Xeon® processors implement a model specific, non-architectural version 
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of L3 Cache Allocation Technology (L3 CAT). In model-specific 

implementations, parameters such as CBM bitmask length and number of 

supported CLOS are specified on a per-processor basis rather than in CPUID 

(see the following section). 

The non-architectural implementations of L3 CAT behave similarly to the 

architectural implementation, however under certain circumstances the 

performance characteristics may vary. Intel recommends evaluating overall 

system performance with model-specific non-architectural L3 CAT to verify 

performance targets are met. 

B.1.4.1 Processor Support List 

The following table can be used to identify which processors support the model 

specific non-architectural implementation of L3 CAT. Registers for programming 

the capacity bitmask for a given CLOS follow the same location and definition 

of the IA32_L3_MASK_n MSR’s as defined in the Intel® Software Developer’s 

Manual. 

Table B-8. Processor support list 

Processor Brand String # L3 Classes of 
Service (CLOS) 

Capacity Bitmask 
Length (CBM) 

Intel Atom® Processors 

Intel Atom® x6427FE Processor 

4 

16 

Intel Atom® x6425RE Processor 16 

Intel Atom® x6414RE Processor 16 

Intel Atom® x6212RE Processor 16 

Intel Atom® x6200FE Processor 8 

Intel Atom® X6416RE Processor 16 

Intel Atom® X6214RE Processor 16 

Intel Atom® x7211E Processor 

16 

12 

Intel Atom® x7425E Processor 12 

Intel Atom® x7213E Processor 12 

11 Gen Intel® Core™ 

Processors (UP3-Series) 

Intel® Core™ i7-1185GRE Processor 

4 

12 

Intel® Core™ i5-1145GRE Processor 8 

Intel® Core™ i3-1115GRE Processor 12 

Intel® Xeon® W Processors 

(TGL-H) 

Intel® Xeon® W-11865MRE Processor 

4 

12 

Intel® Xeon® W-11865MLE Processor 12 

Intel® Xeon® W-11555MRE Processor 8 

Intel® Xeon® W-11555MLE Processor 8 

Intel® Xeon® W-11155MRE Processor 8 

Intel® Xeon® W-11155MLE Processor 8 

12 Gen Intel® Core™ 

Processors (S-Series) 

Intel® Core™ i9-12900E Processor 

16 

12 

Intel® Core™ i7-12700E Processor 10 

Intel® Core™ i5-12500E Processor 12 
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Processor Brand String # L3 Classes of 
Service (CLOS) 

Capacity Bitmask 
Length (CBM) 

Intel® Core™ i3-12100E Processor 12 

13 Gen Intel® Core™ 

Processors (P-Series) 

Intel® Core™ i7-1365UE Processor 

16 

12 

Intel® Core™ i7-1365URE Processor 12 

Intel® Core™ i5-1345UE Processor 12 

Intel® Core™ i5-1345URE Processor 12 

Intel® Core™ i3-1335UE Processor 12 

Intel® Core™ i3-1315UE Processor 10 

Intel® Core™ i3-1315URE Processor 10 

Intel® Core™ i7-1370PE Processor 12 

Intel® Core™ i7-1370PRE Processor 12 

Intel® Core™ i5-1350PE Processor 8 

Intel® Core™ i5-1350PRE Processor 8 

Intel® Core™ i3-1340PE Processor 8 

Intel® Core™ i3-1320PE Processor 8 

Intel® Core™ i3-1320PRE Processor 8 

Intel® Core™ i7-13800HE Processor 12 

Intel® Core™ i7-13800HRE Processor 12 

Intel® Core™ i5-13600HE Processor 12 

Intel® Core™ i5-13600HRE Processor 12 

Intel® Core™ i3-13300HE Processor 8 

Intel® Core™ i3-13300HRE Processor 8 

13 Gen Intel® Core™ 

Processors (S-Series) 

Intel® Core™ i9-13900E Processor 

16 

12 

Intel® Core™ i9-13900TE Processor 12 

Intel® Core™ i7-13700E Processor 12 

Intel® Core™ i7-13700TE Processor 12 

Intel® Core™ i5-13500E Processor 12 

Intel® Core™ i5-13500TE Processor 12 

Intel® Core™ i5-13400E Processor 10 

Intel® Core™ i3-13100E Processor 12 

Intel® Core™ i3-13100TE Processor 12 

NOTES: 1. L3 CDP is not supported on any Intel® Core™ or Intel® Atom™ processors that 

implement model specific L3 CAT. 

 2. Communications-oriented processors from the Intel® Xeon® E5 v3 Family also support 

a form of model-specific L3 CAT. 

B.1.4.2 Register Definitions 

This section identifies deltas in the register definitions for programming model 

specific L3 CAT. The deltas are derived against the architectural equivalent 
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register as documented in the Intel® 64 Architecture Software Developer's 

Manual (SDM), Volume 4: Chapter Title: MSRS IN THE 6TH GENERATION, 7TH 

GENERATION, 8TH GENERATION, 9TH GENERATION, 10TH GENERATION, 11TH 

GENERATION, 12TH GENERATION, AND 13TH GENERATION INTEL® CORE™ 

PROCESSORS, INTEL® XEON® SCALABLE PROCESSOR FAMILY, 2ND, 3RD, AND 

4TH GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILY, 8TH 

GENERATION INTEL® CORE™ I3 PROCESSORS, AND INTEL® XEON® E 

PROCESSORS. 

The naming convention for model specific L3 CAT registers mirrors the 

architectural L3 CAT registers without the “IA32_” prefix, for example, 

PQR_ASSOC (model specific) versus IA32_PQR_ASSOC (architectural). 

The following deltas are consistent across all platforms that support model 

specific L3 CAT: 

• Resource Monitoring ID’s (RMIDs) are not guaranteed to be supported 

unless indicated by CPUID. 

• L3 CDP is not supported. 

B.1.4.2.1 PQR_ASSOC 

The PQR_ASSOC MSR closely follows the IA32_PQR_ASSOC definition with 

exception of RMID. Platforms that support model specific L3 CAT typically do 

not support RDT Monitoring, with the exception of the Intel® Xeon® E5 v3 

Family, and software should carefully consult CPUID before assuming support 

for any RDT Monitoring features. 

B.1.4.2.2 L3_QOS_MASK_n 

The L3_QOS_MASK_N MSRs are identical in definition to the 

IA32_L3_QOS_MASK_N for architectural L3 CAT. For the number of mask 

registers supported and acceptable CBM bit vector lengths, refer to Table B-8 

for the processor support list. 

B.1.4.3 Shareable Bit Mask 

Processors with an integrated GPU may be configured, by default, to allow the 

GPU full access to the L3 cache in certain performance modes. This behavior 

remains consistent independent of the values written to the L3_QOS_MASK_n 

registers, as these mask registers do not affect the cache policy for 

transactions initiated from the GPU. Software should consider all L3 cache ways 

as shared with the GPU. 

For processors that support Intel® Time Coordinated Computing (Intel® TCC), 

optimizations are available for those that require improved isolation in the L3 

cache. Contact your Intel representative for additional details. 

B.1.4.4 Software considerations 

Software that discovers enumerated support for architectural L3 CAT using 

CPUID.(EAX=07H(Structured Extended Feature Flags), ECX=0) will not 
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automatically work with the non-architectural implementation. This section will 

cover known nuances and recommendations for working with the model 

specific non-architectural L3 CAT. 

Note: Processors that support both L2 CAT and L3 CAT may have a delta in the 

number of CLOS supported between the L2 and L3. Intel recommends limiting 

software to use no more classes of service than the lesser of the two values. 

B.1.4.4.1 Linux* Resource Control Groups (/sys/fs/resctrl) 

Intel enables support for Intel RDT features in the Linux* kernel via Resource 

Control (CONFIG_X86_CPU_RESCTRL). Resource control provides an OS 

interface for configuring and using Cache Allocation Technology (CAT), Cache 

Monitoring Technology (CMT), Memory Bandwidth Monitoring (MBM), and 

Memory Bandwidth Allocation (MBA). 

Resource Control leverages CPUID to detect hardware support for the various 

Intel RDT sub-features. On processors that support model specific non-

architectural L3 CAT, CPUID.(EAX=07H(Structured Extended Feature Flags), 

ECX=0) will not enumerate support and therefore Resource Control will not 

support L3 CAT. Configuring of the L3_MASK_n registers will not be possible 

through the resctrl interface and must be completed through direct MSR access. 

One feature of Resource Control is being able to associate a Class of Service 

with a Process Identifier (PID), and having the kernel automatically update the 

CLOS on context switch. If using a CPU that supports model specific non-

architectural L3 CAT and updating the class of service on context switch is 

desired, it is possible to achieve this if the platform also supports L2 CAT. 

Resource Control would be utilized to configure L2 CAT and create the 

appropriate PID to CLOS mapping, while the L3 masks would need to be 

configured out-of-band (for example, direct MSR programming). 

B.1.4.4.2 Intel-cmt-cat Tool 

The Intel RDT software package intel-cmt-cat is a software library that 

supports the Allocation and Monitoring features of Intel® RDT. It can work with 

or without kernel support of Intel RDT, which makes intel-cmt-cat a useful tool 

when working with model specific non-architectural L3 CAT.  

Intel-cmt-cat provides a pqos utility which access to the Intel RDT features 

through a command line interface. pqos can be used to program the 

L3_MASK_n registers on platforms that support non-architecture L3 CAT. Use 

the ‘--iface=msr’ parameter to force enumeration and programming to be 

completed through MSR interfaces and not the OS interfaces. 
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