

Document Number: 356688-001US

Intel® Resource Director
Technology (Intel® RDT)
Architecture Specification

September 2023

Revision 1.0

2 Document Number: 356688-001US, Revision: 1.0

Notice: This document contains information on products in the design phase of development. The information here is

subject to change without notice. Do not finalize a design with this information.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service

activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages

resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel

products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted

which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The

products described may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject

to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for

a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or

usage in trade.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your

purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and

configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or

cost reduction.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling and provided to you

for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Intel is a sponsor and member of the Benchmark XPRT Development Community and was the major developer of the XPRT family of

benchmarks. Principled Technologies is the publisher of the XPRT family of benchmarks. You should consult other information and

performance tests to assist you in fully evaluating your contemplated purchases.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725

or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2023, Intel Corporation. All Rights Reserved.

http://www.intel.com/performance
http://www.intel.com/design/literature.htm

Document Number: 356688-001US, Revision: 1.0 3

Contents
1 Introduction .. 10

1.1 High Level Usage Models ... 10
1.2 Scope ... 11
1.3 Audience ... 12
1.4 References .. 12

2 Intel® Resource Director Technology Overview 13

2.1 Common Tags.. 13
2.2 L3 Configurations ... 13
2.3 Intel® RDT Monitoring Technologies .. 15

2.3.1 Intel® RDT Monitoring Key Ingredients 15
2.3.2 Shared-L3 versus Multiple-L3 Configuration 16

2.4 Intel® RDT Allocation Technologies ... 17
2.4.1 Intel® RDT Allocation Key Ingredients 17
2.4.2 Shared-L3 versus Multiple-L3 Configuration 18

3 Intel® Resource Director Technology for CPU Agents 19

3.1 Intel® RDT Monitoring Features .. 19
3.1.1 Common Framework .. 19
3.1.2 Cache Occupancy Monitoring Technology 21
3.1.3 Memory Bandwidth Monitoring ... 21

3.2 Intel® RDT Allocation Features ... 22
3.2.1 Common Framework .. 22
3.2.2 Cache Occupancy Allocation Technologies 23
3.2.3 Memory Bandwidth Allocation .. 24
3.2.4 Cache Bandwidth Allocation ... 33

4 Intel® Resource Director Technology for Non-CPU Agents 36

4.1 Introduction .. 36
4.2 Features ... 37
4.3 Enumeration .. 37
4.4 Interface ... 38
4.5 Common Tags.. 40
4.6 I/O Blocks and Channels ... 40
4.7 I/O Block Configuration ... 41
4.8 Shared-L3 Configuration ... 42

4.8.1 Software Flow .. 42
4.8.2 Monitoring: Data Flows for RMIDs 43
4.8.3 Allocation: CLOS-based Control Interfaces 44

4.9 CXL-Specific Considerations ... 45
4.9.1 CXL block Interfacing Fundamentals 45
4.9.2 Integrated Accelerators ... 45

4.10 Use Cases ... 46

5 BIOS Considerations ... 50

5.1 Architectural Intel® RDT Features for Non-CPU Agents 50
5.1.1 RMID/CLOS tagging - ACPI Enumeration 50

4 Document Number: 356688-001US, Revision: 1.0

5.2 Model-Specific Intel® RDT Features for CPU Agents 59
5.2.1 BIOS knobs for Resource Aware MBA 59

6 MMIO Register Descriptions .. 61

6.1 Non-CPU Agent Intel® RDT Register Location 61
6.1.1 Software Access to Registers ... 61
6.1.2 Register Descriptions for Non-CPU Agents 61

7 Programming Guidelines ... 64

7.1 Intel® RDT Monitoring Software Flows for CPU Agents 64
7.1.1 Intel® RDT Monitoring Software Flows for CPU Agents 64
7.1.2 Native OS Environments ... 69
7.1.3 Virtualization Scenarios ... 69

7.2 Intel® RDT Allocation Software Flows for CPU Agents 71
7.2.1 Intel® RDT Software Allocation Flows for CPU Agents 71

7.3 Intel® RDT Software Flows for Non-CPU Agents 72

A Intel® RDT Feature Details .. 74

A.1 Intel® RDT Feature Evolution ... 74
A.2 Intel® RDT Architectural Features and Supported Products 76
A.3 Intel® RDT Model-Specific Features and Supported Products 78
A.4 Feature Mapping: CPU Agents, Non-CPU Agents in Different L3

Configurations ... 79
A.5 Architectural MSRs used with Intel® RDT Features 80
A.6 Model-Specific Registers for Intel® RDT Model Specific Features 80

B Model-Specific Intel® RDT Features ... 81

B.1 Model-Specific Intel® RDT Features for CPU Agents 81
B.1.1 Resource Aware MBA .. 81
B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility 83
B.1.3 STLB QoS .. 91
B.1.4 L3 Cache Allocation Technology ... 93

Figures

Figure 2-1. Shared-L3 Configuration System Model and Presence of Intel®

RDT Features ... 14
Figure 2-2. Multiple-L3 Configuration System Model and Presence of Intel ®

RDT Features ... 14
Figure 2-3. Intel® RDT Monitoring – Enabling RMID-Based Monitoring for

Shared Resources .. 15
Figure 2-4. Intel® RDT Allocation – Enabling CLOS-based Allocation for Shared

Resources ... 17
Figure 3-1. Resource Monitoring IDs (RMIDs) Assignment Flow 20
Figure 3-2. IA32_PQR_ASSOC MSR to Set RMID 20
Figure 3-3. IA32_QM_EVTSEL and IA32_QM_CTR MSRs 21
Figure 3-4. Classes of Service (CLOS) Association Flow 23
Figure 3-5. The IA32_PQR_ASSOC MSR to Set CLOS 23
Figure 3-6. A High-Level Overview of the First-Generation MBA Feature 27

Document Number: 356688-001US, Revision: 1.0 5

Figure 3-7. Second Generation MBA, Including a Fast-Responding Hardware

Controller .. 30
Figure 3-8. High-Level Overview of the Third Generation MBA Feature 32
Figure 3-9. Example of CBA Throttling between L2 and L3 caches 34
Figure 4-1. Non-CPU Agent Building Atop CPU Agent Intel® RDT Features ... 36
Figure 4-2. The IA32_L3_IO_QOS_CFG MSR for Enabling Non-CPU Agent

Intel® RDT .. 38
Figure 4-3. Tagging for PCIe and CXL Devices.. 40
Figure 4-4. Mapping of Channels in the I/O Domain (PCIe Example) 41
Figure 4-5. Mapping of Channels in the I/O Domain (CXL Example) 41
Figure 4-6. Resource Monitoring and Control for PCIe and CXL Endpoints 42
Figure 4-7. Reuse of the IA32_L3_QOS_MASK_n MSRs for L3 CAT Control .. 45
Figure 4-8. Device Traffic Tagging Model with PCIe as the Sole Traffic Path . 46
Figure 4-9. PCIe Device Example, with Traffic on a Channel Tagged with an

RMID and CLOS ... 46
Figure 4-10. CXL Example of Device Tagging Model with CXL.IO and

CXL.Cache Traffic Paths .. 47
Figure 4-11. Example of Controlling Two Different PCIe Devices 47
Figure 4-12. Example of Controlling a CXL Accelerator 48
Figure 4-13. Example of Controlling a High-Bandwidth Integrated Accelerator

.. 48
Figure 4-14. MBA to Control a CXL.Mem Pooling Device 49
Figure 5-1. Non-CPU Agent Intel® RDT ACPI Enumeration 51
Figure 5-2. ACPI Enumeration – Detail of DSS and RCS Structures

Downstream from an RMUD ... 52
Figure 5-3. Mapping from RCS Structures to MMIO Addresses for Per-link

Control ... 53
Figure 5-4. CXL Enumeration Example with CXL.IO and CXL.Cache Links 53
Figure 7-1. RMIDs Assigned to vCPUs ... 70
Figure B-1. High-Level Overview of the Resource Aware MBA (MBA 4.0) 82
Figure B-2. The MBA_CFG MSR for Enabling Resource Aware MBA Feature .. 83
Figure B-3. Default Mode Demonstrating SNC-4 and RMID Distribution 85
Figure B-4. The RMID_SNC_CONFIG MSR for Enabling RMID Sharing Mode . 85
Figure B-5. RMID Sharing Mode Demonstrating SNC-4 and RMID Distribution

.. 86

Tables

Table 1-1 Glossary ... 8
Table 1-1. References ... 12
Table 3-1. MBA_CFG MSR Definition ... 31
Table 5-1. IRDT Table Format (Variable Length) 54
Table 5-2. RMUD Table Format (Variable length) 55
Table 5-3. DSS Table Format (Variable length) .. 56
Table 5-4. RCS Table Format (Currently 40B) .. 58
Table 6-1. MMIO Table Format ... 62
Table 7-1. Example CMT and MBM Counter Values 68
Table B-1. SNC Enabled and RMID Distribution Mode Summary 87
Table B-2. Local and Total Count Increment .. 90

6 Document Number: 356688-001US, Revision: 1.0

Table B-3. Local and Total Bandwidth Example .. 90
Table B-4. STLB QoS Enumeration in IA32_CORE_CAPABILITIES MSR 92
Table B-5. STLB_QOS_INFO MSR Definition ... 92
Table B-6. STLB_QOS_MASK_N MSR Definition .. 93
Table B-7. STLB_FILL_TRANSLATION MSR Definition 93
Table B-8. Processor support list .. 94

Document Number: 356688-001US, Revision: 1.0 7

Revision History
Revision
Number

Description Date

001 • Initial release of the document. September 2023

8 Document Number: 356688-001US, Revision: 1.0

Glossary
Table 1-1 Glossary

Acronym Term Description

ACPI Advanced Configuration

and Power Interface

Advanced Configuration and Power Interface is an

open standard that operating systems can use to

discover and configure computer hardware

components, to perform power management, auto

configuration, and status monitoring.

CAT Cache Allocation

Technology

Software-guided redistribution of cache capacity is

enabled by CAT, enabling important data center VMs,

containers or applications to benefit from improved

cache capacity and reduced cache contention. CAT

may be used to enhance runtime determinism and

prioritize important applications.

CDP Code and Data

Prioritization

As a specialized extension of CAT, Code and Data

Prioritization (CDP) enables separate control over

code and data placement in the L2 cache and the

last-level (L3) cache. Certain specialized types of

workloads may benefit with increased runtime

determinism, enabling greater predictability in

application performance.

CH Channel An I/O device channel, used to communicate between

a device and an I/O Block and onto the coherent

fabric.

CLOS Class(es) of Service A fundamental tag in RDT used for resource controls

CMT Cache Monitoring

Technology

Monitors the last-level cache (L3) utilization by

individual threads, applications, or Virtual Machines,

CMT improves workload characterization, enables

advanced resource-aware scheduling decisions, aids

“noisy neighbor” detection and improves performance

debugging.

Intel® RDT Intel® Resource Director

Technology

Intel® RDT is the “umbrella” technology name for

Intel’s Platform Quality of Service technologies,

including CPU Agents and Non-CPU Agents.

I/O Intel®

Resource

Director

Technology

(Intel® RDT)

I/O Device Intel®

Resource Director

Technology

Intel RDT technologies specifically focusing on I/O

devices including PCIe, CXL and integrated

accelerators

MBA Memory Bandwidth

Allocation

MBA enables approximate and indirect control over

memory bandwidth available to workloads, enabling

new levels of interference mitigation and bandwidth

shaping for “noisy neighbors” present on the system.

MBM Memory Bandwidth

Monitoring

Multiple VMs or applications can be tracked

independently via Memory Bandwidth Monitoring

(MBM), which provides memory bandwidth monitoring

for each running thread simultaneously. Benefits

include detection of noisy neighbors, characterization

and debugging of performance for bandwidth-

sensitive applications, and more effective non-uniform

memory access (NUMA)-aware scheduling.

Document Number: 356688-001US, Revision: 1.0 9

Acronym Term Description

MMIO Memory Mapped I/O I/O Intel RDT defines a series of MMIO-mapped

interfaces to enable association of I/O devices to

RMIDs and CLOS for monitoring and control.

PQR PQR A shorthand for the IA32_PQR_ASSOC MSR, which

associates IA threads to RMID and CLOS tags.

RMD Resource Management

Domain

A set of features defined within a particular cache

domain, such as an L3 cache supporting a number of

logical processors.

RTD Resource Telemetry

Domain

A Resource Management Doman within which one or

more resource monitoring (telemetry) controls are

supported

RAD Resource Allocation

Domain

A Resource Management Doman within which one or

more resource allocation controls are supported

RMID Resource Monitoring ID(s) A fundamental tag used for resource monitoring in

Intel RDT.

SoC System-on-Chip An integrated chip composed of host processors,

accelerators, memory, and I/O agents.

TC Traffic Class A PCI Express feature that allows differentiation of

transactions to apply appropriate servicing policies.

VC Virtual Channel A PCI Express feature for differential bandwidth

allocation. Virtual channels have dedicated physical

resources (buffering, flow control management, and

so on) across the hierarchy.

VMM Virtual Machine Monitor A software layer that controls virtualization.

10 Document Number: 356688-001US, Revision: 1.0

1 Introduction

This document defines the architecture of the Intel® Resource Director

Technology (Intel® RDT) feature set. The goal of Intel RDT is to bring new

levels of monitoring and control over how shared platform resources such as

last-level cache (L3) and main memory (typically DRAM) bandwidth are utilized

by CPU Agents and non-CPU Agents. The monitoring and allocation are not

necessarily applied across the entire system but are applied to a Resource

Management Domain (RMD) which corresponds to a set of agents sharing a set

of system resources, such as L2 cache capacity, L3 cache capacity, memory

bandwidth, and I/O devices. A Resource Management Domain (RMD) consists

of a collection of CPU agents or non-CPU agents. The set of CPU agents consist

of one or more logical processors associating an RMID and/or CLOS tag with a

software thread. Non-CPU agents include PCI Express* (PCIe*)/Compute

Express Link (CXL)* devices and integrated accelerators, thus broadly

encompassing the set of agents which read from and write to either caches or

memory, excluding IA cores.

The Intel RDT feature set provides a series of monitoring and allocation

capabilities such as Cache Monitoring Technology (CMT), Memory Bandwidth

Monitoring (MBM), Cache Allocation Technology (CAT), Code and Data

Prioritization (CDP), Memory Bandwidth Allocation (MBA) and others. These

technologies enable monitoring and control of shared platform resources, such

as the L3 cache capacity or main memory bandwidth, which may be in use by

many applications, containers or VMs running on the platform concurrently. As

described in subsequent chapters, these features enable deterministic behavior

and fairness in communications, real-time and other usages, and are initially

introduced in Section 1.3.

The Intel RDT features are based on a set of architectural tags, described in the

following section, and fundamental capabilities for enabling monitoring and

control over shared platform resources under the control of an operating

system (OS) or virtual machine monitor (VMM), as described in the chapter on

Reference Software Architecture.

1.1 High Level Usage Models

A wide variety of industry deployment models find value in either enhanced

visibility into system resource utilization, or control over shared resources. As a

result, a broad set of customer usage models are observed with Intel RDT,

including but not limited to:

• Cloud Hosting in the datacenter – Prioritizing important Virtual

Machines (VMs) and containing or mitigating “noisy neighbors”.

• Public/Private Cloud – Isolating an important infrastructure VM which

provides networking services such as a VPN to bridge the private cloud to

the public cloud.

Document Number: 356688-001US, Revision: 1.0 11

• Datacenter Infrastructure – Protecting virtual switches which provide

local networking.

• Communications – Ensuring consistent performance and containing

background tasks on a network appliance built atop an Intel® Xeon® Server

Platform.

• Content Delivery Network (CDN) – Prioritizing key parts of the content

serving application in order to improve throughput.

• Networking – Containing the impact of consolidated or co-located

containers to help reduce jitter and reduce packet loss in noisy scenarios,

and protecting high-performance applications based on the Dataplane

Development Kit (DPDK).

• Industrial Control – Prioritizing important sections of code to help meet

real-time requirements.

Varying usage models drive differing requirements. Datacenter usages may

require control over relative container prioritization and management of tail

latencies, for instance, while industrial control usages may require strict

management of control loop cycle times, including the use of model-specific

extended Intel RDT features. A number of examples use cases are described in

more detail based on abstracted examples of real-world deployments in the

chapter on Reference Software Architecture.

1.2 Scope

Broadly, this document discusses the following topics:

• An introduction to key Intel RDT architectural concepts and design

philosophy.

• Details of architectural Intel RDT monitoring and allocation features for CPU

agents and non-CPU agents.

• Details of model-specific Intel RDT monitoring and allocation features for

CPU agents and non-CPU agents.

• Considerations for BIOS writers, and those consuming ACPI enumeration

tables generated by BIOS.

• An overview of various real-world software usages of Intel RDT features

that have been observed, and recommended software enabling strategies.

The following topics are not covered (or are covered in a limited context):

• Intel RDT for CPU Agents and non-CPU Agents architectural details -

feature enumeration and interfaces using CPUID and configuration using

MSRs. These details are provided in the Intel® 64 Architecture Software

Developer’s Manual (SDM), Volume 3B, Chapter Title: Debug, Branch

Profile, TSC, and Intel® Resource Director Technology (Intel® RDT)

Features.

12 Document Number: 356688-001US, Revision: 1.0

1.3 Audience

The intended audience for this specification includes Intel RDT consumers,

users and implementers, across OS/VMM software, resource management

driver and control loop developers, administrators, managers of datacenter

infrastructure, workload owners and embedded and communications

developers. Additionally, this specification may be of interest to those

developing utilities, BIOS routines, administrative libraries and orchestration

frameworks.

1.4 References

Table 1-1. References

Description

[1] Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Volume 3B, Chapters 18.18 and 18.19.

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

[2] Intel® Architecture Instruction Set Extensions and Future Features.

Instruction Set Architecture (intel.com)

[3] Intel® Virtualization Technology for Directed I/O Specification.

http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-

spec.html

[4] Unified Extensible Firmware Interface Forum – Links to ACPI-Related Documents (incudes

IRDT table title and signature).

https://uefi.org/acpi

[5] PCIe Express Specification, v5.0 or newer.

https://pcisig.com/specifications

[6] Compute Express Link Specification, v1.0 or newer.

https://www.computeexpresslink.org/download-the-specification

[7] User space software for Intel® Resource Director Technology

https://github.com/intel/intel-cmt-cat

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
http://www.intel.com/content/www/us/en/embedded/technology/virtualization/vt-directed-io-spec.html
https://uefi.org/acpi
https://pcisig.com/specifications
https://www.computeexpresslink.org/download-the-specification
https://github.com/intel/intel-cmt-cat

Document Number: 356688-001US, Revision: 1.0 13

2 Intel® Resource Director
Technology Overview

This chapter provides an overview of Intel® RDT features, including goals, key

ingredients, and the architectural framework, which are discussed in more

detail in the chapters that follow.

2.1 Common Tags

Intel RDT provides a layer of abstraction between applications and logical

processors through the use of numeric tags. Both CPU agents and non-CPU

agents use the following tags for resource monitoring and allocation,

respectively:

• Resource Monitoring IDs (RMIDs) are used for monitoring of shared

platform resource utilization.

• Classes of Service (CLOS) are used for control of shared platform

resources, such as L3 cache occupancy or memory bandwidth.

The RMID and CLOS tags are described in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. RMID and CLOS tags

are independent. Usage of RMID tags does not affect CLOS, and vice versa

(however, when CLOS tags are used to affect resource allocations, the effects

may be observed with RMID-based monitoring features.) An RMID-based

monitoring feature does not incur hardware overhead or affect a CLOS-based

allocation feature. A product may be built to implement RMID-based monitoring

features, CLOS-based control features, or both.

For CPU agents, RMIDs and CLOS tags are associated with the operation of a

logical processor through the IA32_PQR_ASSOC MSR.

For non-CPU agents, a series of MMIO interfaces is used to associate upstream

traffic from I/O devices with RMID and CLOS tags, and the numerical

interpretation of the tags is the same as for processor traffic. (For example, the

RMID value “5” used to track processor thread resource consumption means

the same thing as when the RMID value “5” is used to track the cache fill

behavior of a PCIe device.) These MMIO interfaces for tagging non-CPU agents

are discovered using an ACPI structure called I/O Intel RDT, that is, IRDT. (see

Chapter 5.)

2.2 L3 Configurations

This specification describes two types of high level L3 configurations that may

support Intel RDT features:

1. Shared-L3 Configuration: There is a common shared L3 cache for all

the agents in the SoC, as shown in Figure 2-1. This SoC configuration

supports interfaces for Intel RDT features based on the CPUID instruction

14 Document Number: 356688-001US, Revision: 1.0

for feature enumeration and Model-Specific Registers (MSRs) for feature

configuration and telemetry retrieval.

Figure 2-1. Shared-L3 Configuration System Model and Presence of Intel® RDT

Features

2. Multiple-L3 Configuration: There may be more than one L3 cache

instances that are local to CPU Agents or non-CPU Agents respectively, as

shown in Figure 2-2.

Figure 2-2. Multiple-L3 Configuration System Model and Presence of Intel ® RDT

Features

Document Number: 356688-001US, Revision: 1.0 15

A set of features defined within a particular cache domain, such as an L3 cache

supporting a number of logical processors, may be referred to as a Resource

Telemetry Domain (RTD, for monitoring features) or a Resource Allocation

Domain (RAD, for allocation features). More generally, a resource which

supports Intel RDT monitoring features, allocation features or both may be

referred to as a Resource Management Domain (RMD).Figure 2-2 shows

example of multiple RMDs.

See Appendix A.4 for Intel RDT feature mapping for CPU agents and non-CPU

agents in different SoC configurations.

2.3 Intel® RDT Monitoring Technologies

2.3.1 Intel® RDT Monitoring Key Ingredients

Intel RDT Monitoring enables monitoring shared platform resources, such as L3

cache occupancy and memory bandwidth, based on software-defined Resource

Monitoring IDs (RMIDs) that are tagged to applications or VMs on a per-thread

basis (Figure 2-3). For CPU Agents, each logical processor exposes the

IA32_PQR_ASSOC MSR to allow the OS/VMM to specify an RMID when an

application, thread or VM is scheduled on a core.

Resource monitoring for the indicated application/thread/VM is then performed

by hardware based on the RMID with which it is associated, and software can

read back the L3 cache occupancy for a given RMID via counter registers (if the

CMT feature is supported for instance). Each thread of an application may be

tracked with a distinct RMID, or threads may be grouped into a single RMID,

based on the granularity of monitoring required. Threads within a VM, apps

within a VM, entire VMs or groups of VMs can similarly be tracked with RMIDs

with variable granularity as needed.

Figure 2-3. Intel® RDT Monitoring – Enabling RMID-Based Monitoring for

Shared Resources

The basic ingredients of Intel RDT Monitoring are as follows:

• CPUID and/or ACPI constructs to indicate support for Intel RDT Monitoring

and sub-features (CMT, MBM, and so on) for Resource Telemetry Domains

(RTD).

16 Document Number: 356688-001US, Revision: 1.0

• Enumeration of the total number of RMIDs that can be tracked in the given

RTD.

• Mechanisms to allow system software (OS/VMM) to specify the RMID of

software threads and non-CPU agents.

• Mechanisms to allow system software to retrieve collected metrics on a

per-RMID basis via architectural MSRs or MMIO interfaces.

The first ingredient to make use of Intel RDT Monitoring is to enumerate the

set of monitoring capabilities provided on the given Resource Management

domain via CPUID or ACPI and determine the number of RMIDs available for

tracking on a particular Resource Telemetry Domain (RTD, that is, caching

domain). This will allow the OS/VMM to determine how many unique IDs it may

use. Given that certain processor topologies may include heterogenous

capabilities which vary per-processor, it is recommended that software

enumerate Intel RDT CPUID leaves from the perspective of each logical

processor (LP) to construct the list of supported capabilities and which

resources (such as L3 cache) may be shared among various LPs.

The second ingredient (Intel RDT Monitoring association) allows the OS/VMM to

specify the RMID of the running software thread to the platform for CPU

agents. The OS/VMM can also specify the RMID for upstream traffic and

operation of non-CPU agents.

The third ingredient (Intel RDT marking and associated hardware support)

enables each memory request from the CPU agents and non-CPU agents to be

tagged with the RMID provided by the OS/VMM.

The fourth ingredient is Intel RDT Monitoring reporting. When the monitoring

data retrieval register is programmed with the RMID and the specific event

code of interest (L3 Cache Occupancy for example), this information is

appropriately retrieved and provided back.

Multiple Intel RDT Monitoring features may exist within a platform, but the

software should not assume that the presence of one Intel RDT Monitoring

feature implies the existence of any others. Intel RDT features are

independently enumerated in the sequence described in the Intel® 64 and IA-

32 Architectures Software Developer’s Manual, Volume 3B, Section 18.18.4, in

order to avoid ambiguous situations.

2.3.2 Shared-L3 versus Multiple-L3 Configuration

Intel RDT Monitoring features may have different scope definitions depending

on L3 configuration. With the shared-L3 configuration, CPU agents and non-

CPU agents allocate into a shared L3 cache. Hence, all monitoring features

have a consistent definition for CPU agents and non-CPU agents.

With the multiple-L3 configuration, non-CPU agents may have a separate

nearby L3 cache which is distinct from CPU agents’ L3 cache. Hence,

monitoring features may have different definitions for CPU agents and non-CPU

agents. For example, in certain implementations, non-CPU agents with a near

Document Number: 356688-001US, Revision: 1.0 17

L3 cache implementation may report memory bandwidth monitoring data from

the near cache only.

2.4 Intel® RDT Allocation Technologies

2.4.1 Intel® RDT Allocation Key Ingredients

Intel RDT Allocation enables resource allocation based on Class of Service

(CLOS) tags. The processor exposes Classes of Services into which applications

(or individual threads) and traffic from I/O devices may be assigned. A CLOS

may have multiple associated resource allocation properties. For example,

there may exist controls for each CLOS to specify L2 capacity available to that

CLOS, L3 capacity available, memory bandwidth available, and other properties

(Figure 2-4).

In the case of L3 capacity control features, for instance, such as Cache

Allocation Technology (CAT), the cache allocation for a given is restricted based

on the class with which they are associated. Similarly, in certain

implementations supporting non-CPU agent controls, context-associated and

upstream traffic from I/O devices may be controlled as it utilizes shared system

resources. Each CLOS can be configured using bitmasks which represent

capacity, and the degree of overlap and isolation between classes in allocation

features which influence the SOC caches.

For CPU agents, each logical processor exposes the IA32_PQR_ASSOC MSR to

allow the OS/VMM to specify a CLOS when an application, thread or VM is

scheduled. Cache Allocation for the application/thread/VM is then controlled

based on the CLOS and the associated bitmask.

Figure 2-4. Intel® RDT Allocation – Enabling CLOS-based Allocation for Shared

Resources

The basic ingredients of Intel RDT Allocation are as follows:

• CPUID or ACPI constructs to indicate whether Intel RDT Allocation and sub-

features (CAT, MBA, and so on) for Resource Allocation Domains (RADs)

are supported and enumerate the total number of CLOS that may be

associated to shared platform resources on the platform.

18 Document Number: 356688-001US, Revision: 1.0

• Mechanisms to allow system software (OS/VMM) to specify the CLOS of

software threads and non-CPU agents.

• Mechanisms to allow system software to configure the shared platform

resource levels available to each CLOS via architectural MSRs or MMIO

interfaces.

The first ingredient to make use of Intel RDT Allocation is to enumerate the

level of allocation capability provided on the given Resource Allocation Domain

via CPUID and/or ACPI and determine the number of CLOSs available for

allocating shared platform resources on a particular RAD (that is, a certain L3

caching domain). This will allow the OS/VMM to determine how many unique

IDs it may use. Given that certain processor topologies may include

heterogenous capabilities which vary per-processor, it is recommended that

software enumerate Intel RDT CPUID leaves from the perspective of each

logical processor (LP) to construct the list of supported capabilities and which

resources (such as L3 cache) may be shared among various LPs.

The second ingredient (Intel RDT Allocation association) allows the OS/VMM to

specify the CLOS of the running software thread to the platform for CPU

agents. The OS/VMM can also specify the CLOS for upstream traffic and

operation of non-CPU agents.

The third ingredient (Intel RDT marking and associated hardware support)

enables each memory request from CPU agents and non-CPU agents to be

tagged with the CLOS provided by the OS/VMM.

The fourth ingredient is Intel RDT Allocation control, when the allocation

register is programmed with the CLOS and allocation control is performed by

the specific shared platform resource (L3 Cache capacity for example).

Multiple Intel RDT Allocation features may exist within a platform. The software

should not assume that the presence of one RDT Allocation feature implies the

existence of any others. Intel RDT features are independently enumerated in

the sequence described in the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3B, in order to avoid ambiguous situations.

2.4.2 Shared-L3 versus Multiple-L3 Configuration

Intel RDT Allocation features may have different definitions depending on L3

configuration. With the shared-L3 configuration, CPU agents and non-CPU

agents allocate into a shared-L3 cache. Hence, all allocation features have a

consistent definition for CPU agents and non-CPU agents. With the multiple-L3

configuration, non-CPU agents may have a separate near L3 cache which is

different from the CPU agents’ L3 cache. Hence, allocation features may have

different definitions for CPU agents and non-CPU agents. For example, non-CPU

agents with a near L3 cache implementation provide separate interfaces for

cache capacity allocation for the near L3 cache.

Chapter 3 and Chapter 4 provide details about each Intel RDT Monitoring and

Allocation features for CPU agents and non-CPU agents.

Document Number: 356688-001US, Revision: 1.0 19

3 Intel® Resource Director
Technology for CPU Agents

This chapter contains an overview of the Intel RDT features for CPU agents.

Chapter 4 describes details about features for non-CPU agents.

3.1 Intel® RDT Monitoring Features

The Intel RDT Monitoring architecture enables monitoring of the utilization level

of critical shared platform resources and provides this data directly to the

Hypervisor, Operating System or other privileged software. Intel RDT

Monitoring supports three event codes: 1) L3 cache occupancy 2) L3 Total

External bandwidth 3) L3 Local External bandwidth. This allows more efficient

scheduling based on resource use, as well as application tuning and

performance prediction based on resource use characterization, and optionally

better reporting and billback. This functionality complements Intel RDT

Allocation, which provides control over shared platform resources available to

CPU agents.

3.1.1 Common Framework

The following mechanisms are shared by Intel RDT Monitoring features:

• CPUID feature bits to enumerate the presence of the Intel RDT Monitoring

capabilities and the details of each sub feature.

• The IA32_PQR_ASSOC MSR, which the OS or Hypervisor uses to specify

the RMID for each software thread scheduled to run on a logical processor.

See Figure 3-2.

• The IA32_QM_EVTSEL and IA32_QM_CTR MSRs, to read cache occupancy

and bandwidth statistics. See Figure 3-3.

Software may flexibly associate RMIDs with threads, applications, VMs, or

containers. (See Figure 3-1). If multiple logical processors within a Resource

Telemetry Domain (RTD) are assigned the same RMID, the total resource

monitoring telemetry by these logical processors will be accumulated together

and the total reported by hardware.

Monitoring data is retrieved using a window-based interface. Software writes

an event ID and RMID to the IA32_QM_EVTSEL MSR and hardware provides

the resulting data back in the IA32_QM_CTR MSR.

Refer to Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3B, for details on CPUID and MSR usage.

20 Document Number: 356688-001US, Revision: 1.0

Figure 3-1. Resource Monitoring IDs (RMIDs) Assignment Flow

Figure 3-2. IA32_PQR_ASSOC MSR to Set RMID

Document Number: 356688-001US, Revision: 1.0 21

Figure 3-3. IA32_QM_EVTSEL and IA32_QM_CTR MSRs

3.1.2 Cache Occupancy Monitoring Technology

Intel RDT Cache Occupancy Monitoring Technologies provide visibility into

cache utilization. Features such as Cache Monitoring Technology (CMT) provide

occupancy counters on a per-RMID basis such that cache occupancy by each

RMID may be tracked and read back in real-time during system operation.

More specific feature details about CMT are provided in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are

listed in Appendix A.5. See Appendix A.2 for CMT feature supported product

details.

3.1.2.1 L3 Cache Monitoring Technology

L3 Cache Monitoring Technology (CMT) allows an Operating System, Hypervisor

or similar system management agent to determine the usage of L3 cache of

the Resource Telemetry Domain (RTD) by applications running on the platform.

3.1.3 Memory Bandwidth Monitoring

Memory Bandwidth Monitoring (MBM) provides monitoring of bandwidth from

one level of the cache or resource hierarchy to the next, allowing bandwidth-

aware scheduling decisions, inter-RTD scheduling optimization, and enabling

feedback to bandwidth allocation features which allow control over memory

bandwidth.

More specific feature details about MBM are provided in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are

listed in Appendix A.5. See Appendix A.2 for MBM feature supported product

details.

22 Document Number: 356688-001US, Revision: 1.0

3.1.3.1 L3 Total and Local External Memory Bandwidth Monitoring

L3 Total and Local External Memory Bandwidth Monitoring allows system

software to monitor the use of bandwidth between L3 cache and local or

remote memory. In certain implementations, MBM is not guaranteed to track

directory and Extended Prediction Table (XPT) prefetcher traffic.

3.2 Intel® RDT Allocation Features

The Intel RDT Allocation architecture enables control over utilization level of

critically shared platform resources and provides this control directly to the

Hypervisor or Operating System. This allows more efficient resource usage as

well as application prioritization and determinism restoration based on resource

repartitioning. The implementation of Intel RDT Allocation features may be

product-specific or architectural. These capabilities compliment Intel RDT

monitoring, which provides insight into shared platform resource utilization by

CPU agents.

3.2.1 Common Framework

The following mechanisms are shared by Intel RDT allocation features:

• CPUID feature bits to enumerate the presence of Intel RDT Allocation

capabilities and the details of each sub feature.

• The IA32_PQR_ASSOC MSR which software uses to specify the CLOS for

each software thread. See Figure 3-5.

• Mechanisms in hardware to specify resource usage to apply to each Class

of Service.

Software can flexibly associate Classes of Service with threads, applications,

VMs, or containers (see Figure 3-4). CLOS values are shared across all

allocation features. A particular numeric CLOS value has the same meaning

from the viewpoint of all cores. Each CLOS has an associated set of mask

registers as described later to associate that CLOS with a fraction of the shared

platform resources. If multiple logical processors within a Resource Allocation

Domain (RAD) are assigned the same CLOS, then resource allocations

associated with that CLOS will be shared among that set of logical processors.

Document Number: 356688-001US, Revision: 1.0 23

Figure 3-4. Classes of Service (CLOS) Association Flow

Figure 3-5. The IA32_PQR_ASSOC MSR to Set CLOS

For each resource, a block of registers is defined for software to configure the

allocation values for each CLOS. The definition of the register fields depends on

the type of resource being managed and is discussed in subsequent sections.

3.2.2 Cache Occupancy Allocation Technologies

A family of Cache Occupancy Allocation Technologies allows control over shared

cache space on a per-CLOS basis, enabling both isolation and overlap for better

throughput, fairness, determinism and differentiation. Typically, these features

are known as Cache Allocation Technology (CAT), which is the term used in this

document. Certain processors may support architectural or model-specific

forms of CAT depending on the product generation. Model-specific

implementations are discussed in Appendix B.1.4.

24 Document Number: 356688-001US, Revision: 1.0

More specific feature details about CAT are provided in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are

listed in Appendix A.5. See Appendix A.2 for CAT feature supported product

details.

3.2.2.1 L2 Cache Allocation Technology

L2 Cache Allocation Technology (L2 CAT) allows system software to specify the

amount of L2 cache space of the Resource Allocation Domain into which an

application can fill.

3.2.2.2 L2 Cache Code and Data Prioritization

L2 Code Data Prioritization (L2 CDP) provides differentiation between code and

data for L2 cache usage by a single Class of Service. In a case where an

application has a large code footprint which can overwhelm data in the cache,

or vice versa, the ability to separately prioritize code and data is valuable.

L2 CDP provides a pair of allocation bitmasks for each Class of Service (rather

than a single bitmask per CLOS as in L2 CAT), to allow system software to

independently configure the amount of L2 cache available to code and data.

3.2.2.3 L3 Cache Allocation Technology

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (OS), a

Hypervisor, Virtual Machine Manager (VMM), or similar system service

management agent to specify the amount of L3 cache space within a Resource

Allocation Domain into which a CLOS may fill.

3.2.2.4 L3 Cache and Data Prioritization

L3 Code Data Prioritization (L3 CDP) provides differentiation between code and

data for L3 usage by a single Class of Service. In a case where an application

has a large code footprint which can overwhelm data in the cache, or vice

versa, the ability to separately prioritize code and data is valuable.

L3 CDP provides a pair of allocation bitmasks for each Class of Service (rather

than a single bitmask per CLOS as in L3 CAT), to allow system software to

independently configure the amount of L3 cache available to code and data.

3.2.3 Memory Bandwidth Allocation

Memory Bandwidth Allocation (MBA) allows the system software to control

access bandwidth to memory. It allows slowing “noisy neighbor” threads which

may be overutilizing bandwidth and enables the creation of closed-loop control

systems (monitoring and control combined) by exposing control over a credit-

based throttling mechanism.

More specific feature details about MBA are provided in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Note that the MSRs are

Document Number: 356688-001US, Revision: 1.0 25

listed in Appendix A.5. See Appendix A.2 for MBA feature supported product

details.

There are three different generations of MBA, each extending additional

capabilities:

1. First Generation MBA (Interface Scope) – This is initial

implementation of the MBA feature which provides indirect and

approximate control over memory bandwidth available per-core. See

Section 3.2.3.1 for implementation details and see Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B, for legacy

enumeration, interface and per-CLOS delay value resolution details.

2. Second Generation MBA (Interface Scope) - This enhanced MBA

capability provides improved efficiency and accuracy in throttling, along

with providing increased system throughput. Rather than a strict

bandwidth control mechanism, a dynamic hardware controller is

implemented, which can react to changing bandwidth conditions at the

microsecond level. Before using the second-generation MBA feature, the

MBA hardware controller requires a BIOS-assisted calibration process that

may include inputs such as the number of memory channels populated

and other system parameters; this is a change from the first generation of

MBA.

Intel’s BIOS reference code includes a default configuration that is

recommended for general usage, and BIOS profiles may be created with

alternate tuning values to optimize for certain usages (such as stricter

throttling). See Section 3.2.3.2 for implementation details and Intel® 64

and the IA-32 Architectures Software Developer’s Manual, Volume 3B, for

legacy enumeration and interface details.

3. Third Generation MBA (Agent Scope) - The third generation MBA

feature on future processors based on the codename Granite Rapids

microarchitecture further enhances MBA with per-logical-processor control

and a further improved controller design. Total memory bandwidth (all L3

miss traffic) is now managed by MBA 3.0. This implementation follows the

past MBA precedent of delivering significant enhancements without a

major software overhaul, and while preserving backward compatibility.

See Section 3.2.3.3 for implementation details and Intel® 64 and the IA-

32 Architectures Software Developer’s Manual, Volume 3B, for legacy

enumeration and interface details.

MBA performance properties change over time, for instance enhancing system-

level efficiency. Software should not assume that performance properties or

specific tunings of MBA remain identical across product generations. Third

generation MBA shifts from interface-scope to agent-scope throttling support,

and scheduler re-tuning to take advantage of this enhancement may be

beneficial. Legacy architectural implementations of MBA are enumerated in the

sequence described in Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3B, in order to avoid ambiguous situations.

The MBA feature provides the following architectural components:

• A mechanism to enumerate the MBA capability to control the bandwidth

from each level of the cache (for example, L2, L3) to the next level.

26 Document Number: 356688-001US, Revision: 1.0

• A mechanism for the OS or Hypervisor to configure the amount of

bandwidth available to a particular Class of Service via a throttling value

(discussed later).

• Mechanisms for the OS or Hypervisor to specify the Class of Service to

which a thread belongs.

• Hardware mechanisms to guide and enforce the delay value at each level

of the cache hierarchy when an application has been designated to belong

to a specific Class of Service.

Note that in some usages such as those seeking bandwidth control in MB/s,

MBA may require either application-level performance feedback or

complimentary Memory Bandwidth Monitoring (MBM) to use in the most

optimal way. Backward compatibility of the software interfaces is preserved,

and enhanced MBA generational changes manifest as enhancements atop the

MBA feature baseline.

3.2.3.1 First Generation Memory Bandwidth Allocation

The Memory Bandwidth Allocation (MBA) feature provides indirect and

approximate control over memory band-width available per-core and was

introduced on the Intel® Xeon® Scalable Processor Family. This feature

provides a method to control applications which may be over-utilizing

bandwidth relative to their priority in environments such as the datacenter.

The MBA feature uses existing constructs from the Intel RDT feature set

including Classes of Service (CLOS). A given CLOS used for L3 CAT for instance

means the same thing as a CLOS used for MBA. Infrastructure such as the MSR

used to associate a thread with a CLOS (the IA32_PQR_ASSOC_MSR) and

some elements of the CPUID enumeration (such as CPUID leaf 10H [Cache

Allocation Technology Enumeration Leaf]) are shared.

The high-level implementation of Memory Bandwidth Allocation is shown in

Figure 3-6.

Document Number: 356688-001US, Revision: 1.0 27

Figure 3-6. A High-Level Overview of the First-Generation MBA Feature

As shown here, the MBA feature introduces a programmable request rate

controller between the cores and the high-speed interconnect, enabling indirect

control over memory bandwidth for cores over-utilizing bandwidth relative to

their priority. For instance, high-priority cores may be run un-throttled, but

lower priority cores generating an excessive amount of traffic may be throttled

to enable more bandwidth availability for the high-priority cores.

Because the MBA uses a programmable rate controller between the cores and

the interconnect, higher-level shared caches and memory controller, bandwidth

to these caches may also be reduced, so care should be taken to throttle only

bandwidth-intense applications which do not use the off-core caches

effectively.

The throttling values exposed by MBA are approximate and are calibrated to

specific traffic patterns. As workload characteristics vary, the throttling values

provided may affect each workload differently. In cases where precise control is

needed, the Memory Bandwidth Monitoring (MBM) feature can be used as input

to a software controller which makes decisions about the MBA throttling level to

apply.

Legacy enumeration and configuration details are discussed in Intel® 64 and

IA-32 Architectures Software Developer’s Manual, Volume 3B.

28 Document Number: 356688-001US, Revision: 1.0

3.2.3.1.1 Usage Considerations

As the memory bandwidth control that MBA provides is indirect and

approximate, using the feature with a closed-loop controller to also monitor

memory bandwidth and how effectively the applications use the cache (via the

Cache Monitoring Technology feature) may provide additional value. This

approach also allows administrators to provide a bandwidth target or set point

which a controller could use to guide MBA throttling values applied, and this

allows bandwidth control independent of the execution characteristics of the

application.

As control is provided per processor core (the max of the delay values of the

per-thread CLOS applied to the core), the user should take care in scheduling

threads so as to not inadvertently place a high-priority thread (with zero

intended MBA throttling) next to a low-priority thread (with MBA throttling

intended), which would lead to inadvertent throttling of the high-priority

thread, as the maximum resolved throttling value is applied.

3.2.3.2 Second Generation Memory Bandwidth Allocation

The second generation of Memory Bandwidth Allocation (MBA) is implemented

in the 3rd Gen Intel® Xeon® Scalable Processor Family, and related Intel Atom®

processors such as the P5000 Series. This enhanced MBA capability provides

improved efficiency and accuracy in throttling, along with providing increased

system throughput. Rather than a strict bandwidth control mechanism, a

dynamic hardware controller is implemented, which can react to changing

bandwidth conditions at the microsecond level.

Before using the second-generation MBA feature, the MBA hardware controller

requires a BIOS-assisted calibration process that may include inputs such as

the number of memory channels populated and other system parameters; this

is a change from the first generation of MBA. Intel BIOS reference code

includes a default configuration that is recommended for general usage, and

BIOS profiles may be created with alternate tuning values to optimize for

certain usages (such as stricter throttling) as described in the subsequent BIOS

Considerations chapter.

Second generation MBA moves from static throttling at the core/uncore

interface, to a more dynamic control method based on a hardware controller

that tracks actual main memory bandwidth. This allows software that uses

primarily the L3 cache to observe increased throughput for a given throttling

level, or fine-grained throughput benefits for software that exhibits L3-bound

phases. Due to the closer consideration of memory bandwidth loading, this

enhancement may lead to an increase in system efficiency when using second

generation MBA relative to prior implementations of the feature. Backward

compatibility of the software interfaces is preserved, and second-generation

MBA changes manifest as enhancements atop the MBA feature baseline.

As with the prior generation feature, the second generation MBA uses CPUID

for enumeration and throttling is performed using a mapping created from

software thread-to-CLOS (in the IA32_PQR_ASSOC MSR), which is then

mapped per-CLOS to delay values via the IA32_L2_QoS_Ext_BW_Thrtl_n

Document Number: 356688-001US, Revision: 1.0 29

MSRs. A privileged operating system or virtual machine manager software may

specify a per-CLOS delay value, 0-90% bandwidth throttling for instance,

though the max and granularity values are platform dependent and

enumerated in CPUID.

3.2.3.2.1 Second Generation MBA Advantages

Additional features added over first generation MBA are described next:

1. Previously, only the maximum delay value across two CLOS on a physical

core could be selected in MBA. Second generation MBA allows a minimum

delay value to be selected instead, which may enhance usage with Intel®

Hyper-Threading Technology.

2. Only a single preprogrammed calibration table was possible in first

generation MBA, meaning different memory configurations had the

potential for different linearity and percent delay value error values

depending on the configuration. This is addressed by the BIOS support in

the second generation of MBA, and certain BIOS implementations may

program a different calibration table per memory configuration, for

instance.

3. The second-generation MBA controller provides the ability to more closely

monitor the memory bandwidth loading and deliver more optimal results.

4. The new MBA hardware controller reduces the need for a fine-grained

software controller to manage application phases for optimal efficiency.

Note that a software controller may still be valuable to translate MBA

throttling values to bandwidths in GB/s or application Service Level

Objectives (SLOs), such as performance targets.

30 Document Number: 356688-001US, Revision: 1.0

Figure 3-7. Second Generation MBA, Including a Fast-Responding Hardware

Controller

The second-generation MBA implementation is shown in Figure 3-7. The

feature operates through the use of an advanced hardware controller and

feedback mechanism, which allows automated hardware monitoring and control

around the user-provided delay value set point. This set point and associated

throttling value infrastructure remains unchanged from prior generation MBA,

preserving software compatibility.

MBA enhancements, in addition to the new hardware controller, include:

1. Configurable delay selection across threads.

⎯ MBA 1.0 implementation statically picks the max MBA Throttling Level

(MBAThrotLvl) across the threads running on a core (by calculating

value = max(MBAThrotLvl(CLOS[thread0]),

MBAThrotLvl(CLOS[thread1]))).

⎯ Software may have the option to pick either maximum or minimum

delay to be resolved and applied across the threads; maximum value

remains the default.

2. Increasing CLOSIDs from 8 to 15 in certain implementations (product-

specific, see CPUID)

⎯ Previous certain implementations of the feature provided 8 CLOS tags

for MBA.

⎯ The 3rd Gen Intel® Xeon® Scalable Processor Family and related Intel

Atom® processors, such as the P5000 Series, increase this value to

15 (also consistent with L3 CAT).

Document Number: 356688-001US, Revision: 1.0 31

3.2.3.2.2 Software-Visible Changes

A new model specific MSR is introduced with second generation MBA to allow

software to select from the maximum (default) or minimum of resolved

throttling values (see the previous formula). This capability is controlled via a

bit in the new MBA_CFG MSR, shown in Table 3-1.

Table 3-1. MBA_CFG MSR Definition

Register Address
Architectural MSR Name

/ Bit Fields
Description

Hex Decimal

C84H 3204 MBA_CFG MBA Configuration Register

0 Min (1) or max (0) of per-thread MBA delays.

63:1
Reserved. Attempts to write to reserved bits

result in a #GP(0).

Note that bit[0] for min/max configuration is supported in second generation

MBA but is removed in the third generation MBA when the controller logic

becomes capable of managing throttling values on a per-logical-processor or

per-agent basis. The transient nature of this enhancement is why the min/max

control remains model specific.

To enumerate and manage support for the model-specific min/max feature,

software may use processor family/model/stepping to match supported

products, then CPUID to later detect enhanced third generation MBA support.

3.2.3.3 Third Generation Memory Bandwidth Allocation

The third-generation MBA feature on future processors based on the codename

Granite Rapids microarchitecture further enhances the feature with per-logical-

processor control and a further improved controller design. Total memory

bandwidth (all L3 miss traffic) is now managed by MBA.

This implementation follows the past MBA precedent of delivering significant

enhancements without a major software overhaul, and while preserving

backward compatibility.

3.2.3.3.1 Hardware Changes

The third generation of MBA builds upon the hardware controller introduced in

the previous generation, which enabled significant system-level benefits, while

providing the new capability to independently throttle logical processors, rather

than more coarse-grained per-core throttling in prior generations. Throttling

values are no longer selected as the “min” or “max” of the two throttling values

for the threads running on the core; instead, throttling values are

independently and directly applied to each logical processor. The third

generation MBA implementation is shown in Figure 3-8.

32 Document Number: 356688-001US, Revision: 1.0

Figure 3-8. High-Level Overview of the Third Generation MBA Feature

While this enhancement means that more direct throttling of threads is

possible, re-tuning of software may be helpful to comprehend the effects of

Intel® Hyper-Threading Technology contention versus cache and memory

contention, and the effects on software performance.

3.2.3.3.2 Software-Visible Changes

In order to allow software to change its tuning behavior and detect that per-

logical-processor throttling is supported on a particular product generation, a

CPUID bit is added to the MBA CPUID leaf to indicate support. See “CPUID—

CPU Identification” in Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3B for details.

Despite another significant improvement of the hardware controller

infrastructure architecture and improved capabilities, controller responsiveness,

new internal microarchitecture, and transient-arresting capabilities, no new

software interface changes are required to make use of the third generation of

MBA relative to prior generations. Software previously using the second-

generation MBA min/max selection capability should discontinue the use of the

MBA_CFG MSR. The third-generation MBA capabilities are the default mode of

operation on the codename Granite Rapids server microarchitecture.

Note that the MBA MSRs are listed in Appendix A.5 for completeness, but

details of these legacy MSRs are available in Intel® 64 and IA-32 Architectures

Software Developer’s Manual, Volume 3B. See Appendix A.2 for MBA feature

supported product details.

Document Number: 356688-001US, Revision: 1.0 33

3.2.4 Cache Bandwidth Allocation

Cache Bandwidth Allocation (CBA) allows an Operating System, Hypervisor, or

similar system management agent to control internal core and downstream

memory bandwidth for each of the logical processors. This feature is

complimentary to MBA and provides OS/VMMs with the ability to throttle

threads within the core.

The CBA feature along with the existing MBA feature provides a system-wide

mechanism to throttle the bandwidth across different caches in the system

including external memory, as well as control within a processor core or

module. In combination, CBA and MBA provide both deterministic control and

dynamic management of bandwidth resources to meet system Service Level

Objectives (SLOs). The CBA feature reuses and extends existing constructs

from the Intel RDT feature set including Classes of Service (CLOS).

A given CLOS used for L3 CAT for instance means the same thing as a CLOS

used for CBA. Infrastructure such as the MSR used to associate a thread with a

CLOS (the IA32_PQR_ASSOC_MSR) and some elements of the CPUID

enumeration (such as CPUID leaf 10H (Cache Allocation Technology

Enumeration Leaf)) are shared.

The Cache Bandwidth Allocation (CBA) feature provides control over bandwidth

available between Level 1 (L1) caches, Level 2 (L2) Caches, and Level 3 (L3)

Caches (as applicable) for each of the logical processors. Since reducing

upstream bandwidth can also reduce bandwidth to external memory, this also

provides an indirect control of memory bandwidth. This indirect control of

external memory bandwidth can also reduce memory bandwidth. The CBA

feature along with the MBA provides a mechanism to control the bandwidth of

different applications.

Software should understand that the effective throttling of an application may

be whichever of CBA or MBA specifies more throttling.

Similar to Intel RDT features, CBA includes the following key ingredients:

• A mechanism to enumerate the CBA capability to control the bandwidth

from each level of the cache (for example, L1, L2, L3) to the next level

(CPUID).

• A mechanism for the OS or Hypervisor to configure the amount of

bandwidth available to a logical processor with a particular Class of Service

via a throttle Level (MSRs, discussed later).

• Mechanisms for the OS or Hypervisor to signal the Class of Service to

which an application belongs (the PQR MSR).

• Hardware mechanisms to guide and enforce the bandwidth throttle level

across the cache hierarchy.

In some usages, the software may measure the memory bandwidth consumed

by a given thread, application, VM or container at different Levels of cache

hierarchy and external memory using performance monitor events and Memory

Bandwidth Monitoring (MBM). Once the memory bandwidth is measured

software can dynamically adjust the bandwidth throttling level for the class of

34 Document Number: 356688-001US, Revision: 1.0

service (CLOS) used by that application. In other usages, software control

loops may monitor application performance and adjust throttling levels

dynamically to achieve certain performance targets.

More specific feature details about CBA are provided in the Intel® Architecture

Instruction Set Extensions and Future Features. Note that the MSRs are listed

in Appendix A.5. See Appendix A.2 for CBA feature supported product details.

3.2.4.1 CBA Overview

The CBA feature implements a local hardware controller which when enabled

provides the capability to independently throttle memory bandwidth of the

logical processors across cache hierarchy and complements the MBA controller

which throttles the external memory bandwidth.

3.2.4.2 Example of CBA Throttling Mechanism

An example of the bandwidth throttling enforced between L2 cache and L3

cache is the maximum of the bandwidth throttling from the local CBA controller

within the logical processor and the MBA hardware controller. An example of

CBA implementation is shown in Figure 3-9.

Figure 3-9. Example of CBA Throttling between L2 and L3 caches

Issue
rate

Flow controladjustBandwidth Target

0 100

Memory BW usage signaling per logical core

Target BW
Meter

Flow control adjust Bandwidth Target

0100

Target BW
Meter

Logical
Processor 0

Software

Maximum of
(ext_bw_throttling,

local_bw_throttling)

Local
bandwidth

control

Issue
rate

Logical
Processor 1

Maximum of
(ext_bw_throttling,

local_bw_throttling)

Local
bandwidth

control

local_bandwidth_throttling
(local_bw_throttling)

local_bandwidth_throttling
(local_bw_throttling)

ext_bandwidth_throttling
(ext_bw_throttling)

ext_bandwidth_throttling
(ext_bw_throttling)

Document Number: 356688-001US, Revision: 1.0 35

3.2.4.3 Software Interface

In order to allow software to adapt its tuning behavior and detect that cache

bandwidth throttling is supported on a particular product generation, a CPUID

bit is added to the Intel RDT A CPUID leaf to indicate support (details are

provided in the Intel® Architecture Instruction Set Extensions Manual).

The IA32_PQR_ASSOC MSR specifies the Class of Service associated with each

logical processor. The CBA feature defines a set of MSRs known as

IA32_QoS_Core_BW_Thrtl_n which provide a byte-encoded field for each CLOS

to program the memory bandwidth throttle level. A higher value of throttling

level means more bandwidth throttling and lower number indicates lesser

throttling. The CPUID of the CBA feature enumerates the number of levels and

maximum level supported by the logical processor. The reset value of each of

the CLOS throttle values of the logical processor is 0 which indicates

unthrottled bandwidth.

Each of the fields in the CBA IA32_QoS_Core_BW_Thrtl_n MSRs may be

programmed from 0 to the maximum throttle level provided in the CPUID. If a

value beyond the range from 0 to maximum throttle level is programmed, it

will cause a #GP fault. The Resource Management Domain (RMD) for CBA is

per logical processor and thus the IA32_QoS_Core_BW_Thrl_n MSRs are logical

processor scope. Further details are provided in the Intel® Architecture

Instruction Set Extensions and Future Features Programming reference

manual.

3.2.4.4 Software Usage

The next sequence of steps provides a typical software usage of CBA feature:

1. System is setup with the desired workloads.

2. The software can use the performance counters along with MBM counters

when available to profile and understand the bandwidth characteristics of

the application.

3. The system administrator sets up the bandwidth throttling level field in

the IA32_QoS_Core_BW_Thrtl_n MSR (for example, in the VMM) to

enforce the desired limits and the CLOS for each application. They can

monitors the bandwidth to confirm the setting is appropriate and adjust

when needed.

In some cases, a specialized application software such as in embedded or

communications usages will be able to communicate the memory bandwidth

and latency requirements. This information may be used be performance

management software to program the RDT features including CBA to meet the

software memory bandwidth and latency requirements.

36 Document Number: 356688-001US, Revision: 1.0

4 Intel® Resource Director
Technology for Non-CPU

Agents

This chapter details Intel RDT features for non-CPU agents. Discussion is

included on use cases and how Intel RDT monitoring, and controls are provided

for non-CPU agents through extensions to the foundational CPU Agent Intel

RDT features. Chapter 3 describes the components of the Intel RDT feature set

which are common.

4.1 Introduction

Intel RDT for non-CPU agents is a set of features to monitor and control the

resource utilization of non-CPU agents including PCI Express* (PCIe*) [5] and

Compute Express Link (CXL)* [6] devices and integrated accelerators. The

feature set enables monitoring usage of shared cache and memory bandwidth

and control of cache usage by non-CPU agents. This feature set provides the

equivalent CPU agent Intel RDT capabilities of CMT, MBM, and CAT for I/O

devices.

The non-CPU agent Intel RDT includes controls at the device level and channel-

level granularity in some cases. However, this granularity is fundamentally

coarser than for software threads. CPU cores may execute hundreds of threads,

all of which are tagged with RMIDs and CLOS, whereas an I/O device such as a

NIC may serve hundreds of software threads, but it may only be monitored and

controlled at a device level or channel level (see subsequent sections for details

on channel-level monitoring and controls.)

Figure 4-1. Non-CPU Agent Building Atop CPU Agent Intel® RDT Features

Document Number: 356688-001US, Revision: 1.0 37

4.2 Features

Cache Monitoring Technology (CMT) provides visibility into the cache (typically

L3 cache). CMT provides occupancy counters on a per-RMID basis for non-CPU

agents so cache occupancy (for example, capacity used by a particular RMID

for I/O agents) can be tracked and read back dynamically during system

operation. See Appendix A.2 for L3 CMT feature supported product details.

L3 Total and Local External Memory Bandwidth Monitoring (MBM) allows

system software to monitor the usage of bandwidth between L3 cache and local

or remote memory by non-CPU agents on a per-RMID basis. See Appendix A.2

for L3 Total and Local External MBM feature supported product details.

Cache Allocation Technology (CAT) allows control over shared cache capacity

on a per-CLOS basis for non-CPU agents, enabling both isolation and overlap

for better throughput, fairness, determinism and differentiation. See

Appendix A.2 for L3 CAT feature supported product details.

4.3 Enumeration

Intel RDT uses the CPUID instruction to enumerate supported features and

uses architectural Model-Specific Registers (MSRs) as interfaces to the

monitoring and allocation features as described in Chapter 3 and in the Intel®

64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

There are no CPUID leaves or sub-leaves that are created for non-CPU agent

Intel RDT; rather, existing CPUID leaves are augmented. CPUID.0xF(Shared

Resource Monitoring Enumeration leaf).[ResID=1]:EAX[bit 9,10] enumerates

presence of CMT and MBM features for non-CPU agents. CPUID.0x10(Cache

Allocation Technology Enumeration Leaf).[ResID=1(L3 CAT)]:ECX[bit 1]

enumerates the presence of the L3 CAT feature for non-CPU agents. Refer to

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for

CPUID details.

Additional enumeration information for Intel RDT for non-CPU agents is

provided in the I/O Intel RDT table (IRDT), a vendor-specific extension to

Advanced Configuration and Power Interface (ACPI) [4]. The IRDT table

provides information on supported features, the structure of devices attached

to particular links behind I/O blocks, the forms of tagging and controls

supported on each link, and the specific MMIO interfaces used to control a

given device. Details of IRDT are described in Chapter 5.

Confirming the presence of Intel RDT for CPU agents is a prerequisite for using

the equivalent non-CPU agent Intel RDT feature. A compatibility matrix is

provided in Appendix A.4. If a particular CPU agent Intel RDT feature is not

present, any attempt to use non-CPU agent Intel RDT equivalents will result in

a general protection fault in the MSR interface. Attempts to enable unsupported

features in the I/O complex will result in writes to the corresponding MMIO

enable or configuration interfaces being ignored.

38 Document Number: 356688-001US, Revision: 1.0

Software may use the existing CPUID leaves to gather the maximum number of

RMID and CLOS tags for each resource level (for example, L3 cache), and non-

CPU agent Intel RDT is also subject to these limits.

Some platforms may support a mix of features, for instance supporting L3 CAT

and the non-CPU agent Intel RDT equivalent, but no CMT or MBM monitoring.

4.4 Interface

Before configuring non-CPU agent Intel RDT (through MMIO), the feature

should be enabled. The presence of one or more CPUID bits indicating support

for one or more non-CPU agent Intel RDT features implies the presence of the

IA32_L3_IO_RDT_CFG architectural MSR. This MSR is used to enable the non-

CPU agent Intel RDT features.

Two bits are defined in this MSR. IRAE (Bit[0]) enables non-CPU agent RDT

resource allocation features. IRME (Bit[1]) enables non-CPU agent RDT

monitoring features.

The non-CPU agent Intel RDT Monitoring bit is supported if CPUID indicates

that one or more non-CPU agent Intel RDT resource monitoring features are

present.

The non-CPU agent Intel RDT Allocation bit is supported if CPUID indicates that

one or more non-CPU agent Intel RDT resource allocation features are present.

The default value is 0x0 (both the monitoring and allocation features are

disabled by default). All bits not defined are reserved. Any writes to reserved

bits will generate a General Protection Fault (#GP(0)).

This MSR is die-scoped and is cleared on system reset. It is expected that

software will configure this MSR consistently across all L3 caches that may be

present on a particular SOC die.

The definition of the IA32_L3_IO_RDT_CFG MSR is shown in Figure 4-2, and its

MSR address is 0C83h.

Non-CPU agent RDT uses the RMID and CLOS tags in the same way that they

are used for CPU agents.

Figure 4-2. The IA32_L3_IO_QOS_CFG MSR for Enabling Non-CPU Agent

Intel® RDT

Document Number: 356688-001US, Revision: 1.0 39

MMIO interfaces, discussed in subsequent sections, are defined by non-CPU

agent Intel RDT to enable devices and/or channels to be tagged with RMIDs

and CLOS, as applicable.

An example of device tagging with RMIDs, and CLOS is shown in Figure 4-3,

where a PCIe device and a CXL device are tagged for monitoring and control of

upstream resources in the L3 cache (shown within the fabric). Note that CPU

cores are also shown, and as defined in the CPU agent Intel RDT feature set,

their bandwidths may be controlled with the Memory Bandwidth Allocation

(MBA) feature set.

In the model of Figure 4-3, cores, PCIe devices and CXL devices are

symmetrically arranged about the fabric and are symmetric in their ability to

use RMIDs and CLOS.

The Intel RDT monitoring data retrieval MSRs IA32_QM_EVTSEL and

IA32_QM_CTR are used for monitoring usage by non-CPU agents in the same

way that they are used for Intel RDT for CPU agents.

The CPU cache capacity control MSR interfaces are also used for controlling I/O

device access to the L3 cache. The CLOS assigned to the device and the

corresponding capacity bitmask in the IA32_L3_QOS_MASK_n MSR governs the

fraction of the L3 cache into which the data may be filled, as described in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

The CLOS tag retains the same meaning with regard to L3 fills for both CPU

agents and non-CPU agents. Other cache levels may also be applicable

depending on model-specific data flow patterns, which are governed by how

I/O device data is filled into the cache in a model-specific fashion as governed

by a given product generation’s implementation of the DDIO (the Data Direct

I/O feature).

40 Document Number: 356688-001US, Revision: 1.0

Figure 4-3. Tagging for PCIe and CXL Devices

4.5 Common Tags

Non-CPU agent Intel RDT allows the traffic and operation of non-CPU agents to

be associated with RMIDs and CLOS. In CPU agent Intel RDT, RMIDs and CLOS

are numeric tags which may be associated with the operation of a thread

through the IA32_PQR_ASSOC MSR. In non-CPU agent Intel RDT, a series of

MMIO interfaces may be used to associate I/O devices with RMID and CLOS

tags, and the numerical interpretation of the tags remains the same.

To wit, a particular CLOS tag, such as CLOS[5], means the same thing from the

perspective of an CPU core or a non-CPU agent, and the same holds for RMIDs.

In this fashion, RMIDs and CLOS used for non-CPU agents are said to be drawn

from a “common pool” of RMID or CLOS tags, defined at the common L3

configuration level. Often these tags have specific meanings at a particular

level of resource such as the L3 cache.

With non-CPU agent Intel RDT, specific devices may be selected for monitoring

and control, and software enumeration and control are added to (1) enable

non-CPU agent Intel RDT to build atop CPU agent Intel RDT, and (2) to

comprehend the topology of devices behind I/O links, such as PCIe or CXL, and

(3) to enable association of devices with RMID and CLOS tags.

4.6 I/O Blocks and Channels

I/O interfacing blocks are used to bridge from the ordered, non-coherent

domain (such as PCIe) to the unordered, coherent domain (for example, the

Document Number: 356688-001US, Revision: 1.0 41

shared interconnect fabric hosting the L3 cache). The non-CPU agent Intel RDT

interface describes the devices connected behind each I/O complex (which may

contain downstream PCIe root ports or CXL links) and enables configuration

RMID/CLOS tagging for the same.

The I/O architecture is formalized as shown next. Channel mapping may occur

anywhere between the device and the I/O block.

Figure 4-4. Mapping of Channels in the I/O Domain (PCIe Example)

Figure 4-5. Mapping of Channels in the I/O Domain (CXL Example)

As shown in Figure 4-4, PCIe devices connected through a root port are routed

through an I/O block, which applies non-CPU agent Intel RDT tagging (RMID

and CLOS tagging) before traffic reaches the coherent fabric. Device traffic

which is routed on various TCs and mapped to VCs, as defined in the PCIe

specification [5], may be mapped to internal “Channels” between the root port

and the I/O block. The non-CPU agent Intel RDT enumeration structures define

the mapping between PCIe VCs and the non-CPU agent Intel RDT Channels so

that software may perform tagging configuration based on Channels for

platforms which support this capability (see the following sections for more

detail).

An example with CXL [6] is shown in Figure 4-5. In this case a CXL.IO and

CXL.Cache link may be in use, and the I/O block is again responsible for

tagging, if supported. The links (CXL.IO and CXL.Cache) are controlled

separately, through separate software interfaces. (See Chapter 7 for MMIO

control interfaces.)

4.7 I/O Block Configuration

As described in the preceding section, PCIe devices mapped through their VCs

to “Channels” may be configured on a per-Channel basis in the I/O Block. CXL

Coherent Fabric
(Unordered Domain)

I/O Block
(PCIe endpoint + MMIO

interface)
Required for I/O RDT

Enum & Control

Root Port
PCIe Device(s)

PCIe Device(s)
PCIe Device(s)

PCIe Device(s)
PCIe Device(s)

“Channel”
Mapping

TC→VC
Mapping

Root Port
Root Port

Coherent Fabric
(Unordered Domain)

I/O Block
(PCIe endpoint + MMIO

interface)
Required for I/O RDT

Enum & Control

CXL Device

CXL.IO and/or
CXL.Cache

Links

42 Document Number: 356688-001US, Revision: 1.0

is a subset example of this, with the same configuration format, but only one

configuration entry (the equivalent of a single Channel).

An enumerated number of Channels are supported in IRDT ACPI and configured

through an MMIO interface to a “Mapping Table”, as shown in Figure 4-6. A

number of downstream PCIe devices may be mapped to various channels, and

their traffic streams may be tagged, as applicable, through configuration of the

I/O block.

Figure 4-6. Resource Monitoring and Control for PCIe and CXL Endpoints

4.8 Shared-L3 Configuration

The following sub-sections describe shared-L3 configuration and non-CPU agent

Intel RDT features interplay.

4.8.1 Software Flow

Key software actions required to utilize non-CPU agent Intel RDT include (1)

enumeration of the supported capabilities and details of that support, and (2)

usage of the features through architectural platform interfaces.

• The software may enumerate the presence of non-CPU agent Intel RDT

through a combination of parsing bit fields from CPUID and the IRDT ACPI

table. The CPUID infrastructure provides basic information on the level of

Document Number: 356688-001US, Revision: 1.0 43

CPU agent Intel RDT and non-CPU agent Intel RDT support present, and

details of the common CLOS/RMID tags shared with CPU agent Intel RDT.

The IRDT ACPI extensions provide many more details on non-CPU agent

RDT specifically, such as which I/O blocks support non-CPU agent Intel

RDT and where the control interfaces to configure the I/O blocks are

located in MMIO space.

• Once software has enumerated the presence of non-CPU agent Intel RDT,

configuration changes may be made through selecting a subset of

RMID/CLOS tags to use with non-CPU agent Intel RDT, and configuring

resource limits for those tags through MSRs for shared platform resources

such as L3 cache (for example, for I/O use of L3 CAT) may be configured

through the I/O block MMIO interfaces (the location of which is enumerated

via IRDT ACPI).

• After resource limits are associated, RMID/CLOS tagging may be applied to

the I/O device upstream traffic by assigning each I/O device into

RMID/CLOS tags through its mapping to channels (and corresponding

configuration through the MMIO interfaces for each I/O block, the location

of which is enumerated via IRDT ACPI).

• It should be noted that while upstream shared SoC resources like L3 cache

are monitored and controlled via shared RMID/CLOS tags, certain

resources which are closer to the I/O may be controlled locally within each

I/O block. In this view, RMIDs and CLOS are used for upstream resources

which may be shared with CPU cores, but capabilities unique to the I/O

device domain are controlled through I/O block-specific interfaces.

• Once tags are assigned and resource limits are applied, upstream traffic

from I/O devices, though I/O blocks are tagged with the corresponding

RMIDs/CLOS and such traffic is monitored and controlled within the shared

resources of the SoC, much as CPU agent resources are controlled against

these tags in CPU agent Intel RDT.

• As the IRDT ACPI tables used to enumerate non-CPU agent Intel RDT are

generated by the BIOS, in the event of a hot-plug operation the OS or VMM

software should update its internal tracking of device mappings based on

newly added or removed device.

• In the case of bifurcation of a set of PCIe lanes, downstream devices which

may be mapped to individual Channels may still be separately tagged and

controlled, but devices sharing Channels will be mapped together against

the same RMID/CLOS tags. As CXL devices have no notion of Channels, in

the case of a bifurcated CXL link all downstream devices will be subject to

the same RMID/CLOS.

4.8.2 Monitoring: Data Flows for RMIDs

As previously described, once RMID tags are applied to non-CPU agent traffic,

all RMID-driven counter infrastructure in the platform may be used with non-

CPU agent Intel RDT. In the case of the features in Appendix A.2 for instance,

RMID-based cache occupancy and memory bandwidth overflow data is

collected for non-CPU agents and may be retrieved by software. For each

supported Cache Monitoring resource type, hardware supports only a finite

44 Document Number: 356688-001US, Revision: 1.0

number of RMIDs. CPUID.(EAX=0FH(Shared Resource Monitoring Enumeration

leaf), ECX=1H). ECX enumerates the highest RMID value that can be

monitored with this resource type, see the Intel® 64 and IA-32 Architectures

Software Developer’s Manual, Volume 3B for details.

As the interfaces for CPU agent Intel RDT data retrieval for RMID-based

counters area already defined, the same interfaces are used, including MSR-

based data retrieval for the corresponding set of three Event IDs (EvtIDs)

defined for CPU agent Intel RDT’s CMT and MBM features (See Chapter 3).

RMIDs are allocated to devices by software from the pool of RMIDs defined at

the L3 cache level, and the IA32_QM_EVTSEL / IA32_QM_CTR MSRs can be

used to specify RMIDs and Event IDs and retrieve data.

The MSR pair used to retrieve event data is shown in Figure 3-3, however as all

properties are inherited from CPU agent RDT (See Chapter 3 for details) . All of

access rules and usage sequence, reserved bit properties, initial values, and

virtualization properties are inherited from CPU agent Intel RDT.

4.8.3 Allocation: CLOS-based Control Interfaces

The Intel RDT Allocation features for non-CPU agent use CLOS-based tagging

for control of cache at a given level, subject to where data fills from I/O devices

in a particular cache and SoC implementation. In common cases this will be the

last-level cache (L3) as described in the ACPI – specifically in the IRDT sub-

table known as RCS and its flags. Software may adjust the levels of cache that

it controls based on the expected level(s) of cache into which I/O data may fill

subject to flags in the RCS. This in turn may affect which CPU agent CAT

control masks software programs to control the data fills of non-CPU agents

and may vary depending on how a particular RCS is connected to shared

resources on a platform.

For each supported Cache Allocation resource type, the hardware supports only

a finite number of CLOS. CPUID.(EAX=10H(Cache Allocation Technology

Enumeration Leaf), ECX=2):EDX[15:0] reports the maximum CLOS supported

for the resource (CLOS are zero-referenced, meaning a reported value of “15”

would indicate 16 total supported CLOS). Bits 31:16 are reserved, see the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for

details.

In a typical example, with a non-CPU agent (for example, a PCIe device) filling

data into an L3 cache, the RCS structure’s “Cache Level Bit Vector” would have

bit 17 set to indicate the L3 cache, and software may control the CPU agent

Intel RDT L3 CAT masks (in IA32_L3_QoS_MASK_n MSRs) to define the

amount of cache into which non-CPU agents may fill. As with RMID

management, the CLOS used in this context are drawn from the pool at the

applicable resource (L3 cache in this context).

If other cache levels are introduced or used in the future, incremental software

enabling may be required to comprehend fills into other cache levels.

Document Number: 356688-001US, Revision: 1.0 45

As the masks used for control are drawn from the existing definitions of such

cache controls in the CPU agent Intel RDT definitions, details such as reserved

fields, initialization values, and so on, are defined in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3B. Figure 4-7 shows an

example of the CPU agent Intel RDT L3 CAT control MSRs.

Figure 4-7. Reuse of the IA32_L3_QOS_MASK_n MSRs for L3 CAT Control

4.9 CXL-Specific Considerations

This section describes CXL-specific device considerations including

management of traffic on multiple links and CXL device types.

4.9.1 CXL block Interfacing Fundamentals

CXL devices may connect to an RMUD via multiple RCSes, and independent

control of each RCS may be required. See Chapter 5 for RMUD and RCS details.

Non-CPU agent Intel RDT features provide monitoring and controls for CXL.IO

and CXL.Cache link types. CXL.mem is not subject to controls in the I/O block

as it is viewed as a resource rather than an agent in Intel RDT terms. Instead

bandwidth to CXL.mem is controlled at the agent source (for example, using

MBA) as previously described and where supported.

4.9.2 Integrated Accelerators

Integrated accelerators, including those using integrated CXL links, may be

monitored and controlled using the semantics described in preceding sections.

46 Document Number: 356688-001US, Revision: 1.0

4.10 Use Cases

A number of non-CPU agent Intel RDT use cases are described in this section

involving PCIe, CXL, and integrated accelerators.

As an implementation of the architectural model shown in Figure 4-4 and

Figure 4-5, I/O block tags upstream DMA traffic (such as PCIe writes) as shown

in Figure 4-8, enabling the device’s resource utilization in the shared resources

of the fabric, such as L3 cache, to be monitored and controlled through Intel

RDT RMIDs and CLOS.

The applicable features for each tag are described in Appendix A.2, and

software may configure these tags as described in Chapter 5, which describes

the ACPI; see the Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3B, for CPUID enumeration, and Section 4.8 and Chapter 7 for

how the software may actuate these controls.

Figure 4-8. Device Traffic Tagging Model with PCIe as the Sole Traffic Path

As a concrete example, Figure 4-9 shows a high-performance PCIe SSD,

subject to tagging with CLOS (so that its L3 cache footprint may be controlled),

and RMIDs (so that its L3 cache occupancy and overflow bandwidth to memory

may be monitored).

Figure 4-9. PCIe Device Example, with Traffic on a Channel Tagged with an

RMID and CLOS

RMID/CLOS to Channel
Mapping Block

I/O Block

SOC Shared Resources and Fabric

CLOS
RMID

PCIe Traffic on an I/O Channel

PCIe Device

C
h

an
n

el

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

SOC Shared Resources and Fabric

PCIe Device
PCIe SSDs:
10GB/s+

C
h

an
n

el

Document Number: 356688-001US, Revision: 1.0 47

An example with a CXL device is shown in Figure 4-10, in which two paths are

used for the device’s traffic, one over CXL.IO, and one over CXL.Cache,

through two separate I/O blocks, and note that the CXL.Cache link defines only

one channel. In such a case, the software may configure RMID and CLOS

tagging separately for the links. The links operate independently.

Note that no controls are provided for CXL.Mem, as the use of CXL.Mem

resolves around accessing memory on a target device, and bandwidths from

logical processors may be controlled with Intel RDT’s Memory Bandwidth

Allocation (MBA) feature. A more detailed discussion of this case surrounds

Figure 4-14.

Figure 4-10. CXL Example of Device Tagging Model with CXL.IO and CXL.Cache

Traffic Paths

An example with multiple devices with different properties is shown in Figure

4-11, where a pair of PCIe devices on separate I/O blocks may be controlled

independently, with separate RMID and CLOS tags. In this case a PCIe SSD

which does not utilize the cache effectively may be limited, but a NIC which fills

into the cache for data to be consumed by CPU cores may be prioritized.

Figure 4-11. Example of Controlling Two Different PCIe Devices

SOC Shared Resources and Fabric

CXL.Cache/Mem TrafficCXL.IO Traffic

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID RMID/CLOS to Channel

Mapping Block

CXL I/O Block

CLOS
RMID

CXL Device

C
h

an
n

el

C
h

an
n

el

SOC Shared Resources and Fabric

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

PCIe Device
PCIe SSDs:
10GB/s+ PCIe Device NICs:

400Gbps+

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

e.g., Set CLOS[5]=5%
of L3 Cache

e.g., Set CLOS[6]=25%
of L3 Cache

C
h

an
n

el

C
h

an
n

e
l

48 Document Number: 356688-001US, Revision: 1.0

The following image shows an example with one CXL accelerator, perhaps a

CXL-enabled FPGA card, utilizing CXL.IO and CXL.Cache, controlled

independently from an I/O block with a PCIe device attached.

Figure 4-12. Example of Controlling a CXL Accelerator

An example of tagging and controlling an integrated accelerator, the Data

Streaming Accelerator (DSA) alongside a PCIe device is shown in Figure 4-13.

Depending on system load conditions and the DSA usage case, software may

choose to allocate non-overlapping portions of the cache to minimize cache

contention effects.

Figure 4-13. Example of Controlling a High-Bandwidth Integrated Accelerator

A complex example with multiple features in use is shown in Figure 4-14,

where various PCIe devices are controlled with non-CPU agent Intel RDT, but a

CXL device is also present, using CXL.IO and CXL.Mem links. The CXL device

may be tagged and controlled on its CXL.IO interface.

SOC Shared Resources and Fabric .

PCIe I/O Block

RMID/CLOS to
Channel
Mapping Block

RMID/CLOS to
Channel

Mapping Block

RMID/CLOS to
Channel
Mapping Block

PCIe I/O Block

RMID/CLOS Tagging

CXL.IO Traffic

CXL
Accelerator

BW Spikes but
Collaborates

with Cores

PCIe Traffic

RMID/CLOS Tagging

PCIe
Device

NICs:
400Gbps+

e.g., Set
CLOS[3]=25% of

L3 Cache

CXL I/O Block .

CXL.Cache Traffic

RMID/CLOS
Tagging

e.g., Set
CLOS[8]=10% of

L3 Cache

C
h

an
n

el

C
h

an
n

el

C
h

an
n

el

SOC Shared Resources and Fabric

Data Streaming
Accelerator (DSA)

DSA DMA Engine:
30GB/s+ per

instance
PCIe Device NICs:

400Gbps+

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

RMID/CLOS to Channel
Mapping Block

I/O Block

CLOS
RMID

PCIe Traffic on an I/O Channel

e.g., Set CLOS[15] =
1 CBM Bit in L3

Cache

e.g., Set CLOS[14]= non-
overlapping 25% of L3 Cache

C
h

an
n

el

C
h

an
n

el

Document Number: 356688-001US, Revision: 1.0 49

As the main purpose of CXL.Mem is for host accesses to device memory,

however, traffic responses up through the CXL.mem path are not subject to

MBA bandwidth shaping, though they are sent with RMID and CLOS tags. If

bandwidth is constrained on this link and software seeks to redistribute

bandwidth across different priorities of accessing agents, such as CPU cores,

the MBA feature may be used to redistribute bandwidth and throttle at the

source of the requests (the agent’s traffic injection point).

This example shows that for comprehensive management of cache and

bandwidth resources on the platform, a combination of CPU agent Intel RDT

and non-CPU agent Intel RDT controls may be necessary.

Figure 4-14. MBA to Control a CXL.Mem Pooling Device

SOC Shared Resources and Fabric

PCIe I/O Block

RMID/CLOS to
Channel
Mapping Block

RMID/CLOS to
Channel

Mapping Block

RMID/CLOS to
Channel
Mapping Block

PCIe I/O Block

RMID/CLOS Tagging

CXL.IO Traffic PCIe Traffic

RMID/CLOS Tagging

CXL I/O Block .

CXL.Mem Traffic

RMID/CLOS
Tagging

3DXP
CXL.Mem
Pool

Subject to BW
Contention

from Threads

Core accesses subject to IA L3 Cache
Masks; Cores throttled with MBA; No

upstream CXL.Mem BW Shaping as
CXL.Mem is a resource, not an agent

Other
Devices

Noisy Neighbor Core

MBA Bandwidth
Controls

High Priority Core

MBA Bandwidth
Controls

C
h

an
n

el

C
h

an
n

el

C
h

an
n

el

50 Document Number: 356688-001US, Revision: 1.0

5 BIOS Considerations

Software may query processor support of shared resource monitoring and

allocation capabilities by executing CPUID for the CPU Agents Intel RDT

features. An ACPI structure named IRDT may be consulted for further details

on the enhanced Intel RDT feature support for non-CPU Agents. These ACPI

structures also provide the locations of specific MMIO interfaces used to

allocate or monitor shared resources.

5.1 Architectural Intel® RDT Features for Non-

CPU Agents

This section describes ACPI enumeration for architectural Intel RDT features for

non-CPU agents.

5.1.1 RMID/CLOS tagging - ACPI Enumeration

5.1.1.1 ACPI Definitional Goals

A number of goals are accomplished through the IRDT ACPI enumeration

definition in this chapter, including:

1. Providing top-level configuration information for the SoC, such as how

many RMID/CLOS tags non-CPU agent Intel RDT supports relative to CPU

agent Intel RDT (as enumerated by CPUID, see Chapter 3).

2. Providing a logical description of the control hierarchy – meaning which

MMIO address to use to configure a link’s RMID/CLOS tagging.

3. Provide flexibility in the implementation topology of devices behind I/O

blocks, and cover cases with discrete or integrated PCIe and CXL links,

and integrated accelerators.

4. Provide enhanced ease-of-use information for software, including device

topologies, TC/VC/Channel mapping information for advanced QoS usages

for forward-compatibility.

5.1.1.2 IRDT ACPI Enumeration Overview

This section provides a number of diagrams introducing key I/O Intel RDT

structures and their mapping to Intel SoC components. Section 5.1.1.4

provides table specifics.

The top-level ACPI structure defined to support I/O Intel RDT is the “IRDT”

structure. This is a vendor-specific extension to the ACPI table space [4]. The

named IRDT structure is generated by BIOS and contains all other non-CPU

agent Intel RDT ACPI enumeration structures and fields as described in this

chapter.

Document Number: 356688-001US, Revision: 1.0 51

Figure 5-1. Non-CPU Agent Intel® RDT ACPI Enumeration

Note that all Reserved fields in IRDT structures should be initialized to 0 by

BIOS.

Under the IRDT structure in the hierarchy (embedded within the IRDT

structure) are the I/O Intel RDT Resource Management Unit Descriptors

(RMUDs.). The RMUDs typically map to I/O blocks within the system, though it

is possible that one RMUD may be defined at other levels (such as one RMUD

per SoC).

An example mapping is shown in Figure 5-1, showing ACPI details at the top,

and Intel® Xeon® SoC mappings to hardware blocks at the bottom. The IRDT

and RMUD relationships are shown for a typical implementation, in which

RMUDs describe the properties of an I/O block. The IRDT table defines zero or

more RMUDs, and an RMUD contains one of more RPs.

The RMUD structures contain two embedded structures, the Device Specific

Structures (DSSes) and Resource Control Structures (RCSes) which map to

devices and links and help describe the relationships regarding which I/O

devices are connected to particular links, and which I/O links are in use by

which devices. Each RMUD defines one or more DSS and RCS structures.

In the example of Figure 5-1, one DSS exists per PCIe, CXL or other non-CPU

agent device (including accelerators), subservient to an RMUD. A CXL device

may be expected to have multiple links (for example, CXL.Cache and CXL.IO)

and this topology is described by the associated DSS structure and multiple

RCS structures for the device and its links. Note that Figure 5-1 shows the DSS

structure downstream of the RMUD but does not show the RCS for simplicity.

Xeon SOC

I/O Block

I/O Block

I/O Block

…

I/O RDT

I/O RDT

I/O RDT

ACPI

IORDT-RMUD
IO RDT Resource

Management Unit
Description Structure

IRDT
System-Level Parameter

Enumeration

PCIe Device

CXL Device

1:N,
N>=1

List of
Structs

IORDT-RMUD
IO RDT Resource

Management Unit
Description Structure

IORDT-RMUD
IO RDT Resource

Management Unit
Descriptors

1:N,
N>=1

List of
Structs

Associated CXL
$MEM Block

I/O block may be
exposed as a PCIe
EP, with O/S driver

(VT-d equivalent: DRHD)(VT-d equivalent: DMAR) (VT-d equivalent: DSS)

IORDT-DSS
IO RDT Device-

Specific Structures

52 Document Number: 356688-001US, Revision: 1.0

Figure 5-2 shows an example of the RMUD mapping to DSS and RCS

structures. Each device attached to an I/O block is described by a DSS, and

has one or more links, with properties described in the RCS structures. The

RCS structures contain pointers to MMIO locations (in absolute address form,

not BAR-relative) to allow software to configure the RMID/CLOS tags and

bandwidth shaping properties, if supported, in an I/O Block.

Figure 5-2. ACPI Enumeration – Detail of DSS and RCS Structures Downstream

from an RMUD

Figure 5-3 shows a further layer of detail where devices mapped through I/O

blocks are described by the RMUDs, the DSS describes the properties of the

device, and the RCS provides a pointer to the MMIO locations used for

configuring the tagging and bandwidth shaping for a particular link.

Xeon SOC

I/O Block

…

I/O RDT

ACPI

Devices

IORDT-RMUD
IO RDT Resource

Management Unit
Descriptor

IORDT-DSS
IO RDT Device-

Specific Structures

1:N,
N>=1

List of
Structs

Optional: CXL
Block(s)

IORDT-CHMS
IO RDT Channel

Mapping byte array

IORDT-RCS
IO RDT RMUD Control

Structures

Contains a simple table:
Channel to RMID/CLOS

mapping controls location (for
this link) → points to MMIO

Fixed field: 1B per VC, with a
count of how many entries
are there: Channel for each

indexed VC for the traffic
flows in this path, uppermost

bit is an enable

Provides a list of what devices
are behind this RMUD

Note: Distinct sets of channels
exist per path

Document Number: 356688-001US, Revision: 1.0 53

Figure 5-3. Mapping from RCS Structures to MMIO Addresses for Per-link

Control

5.1.1.3 Example ACPI Enumeration Cases

Given the table hierarchy described in the preceding section, an example CXL

Type 1 (CXL.IO + CXL.Cache) device mapping is shown in Figure 5-4. The

device is described by one DSS behind an RMUD, while two RCSes are used,

one for each link type (CXL.IO and CXL.Cache).

Figure 5-4. CXL Enumeration Example with CXL.IO and CXL.Cache Links

Xeon SOC

I/O Block

…

I/O RDT

ACPI

Devices

IORDT-DSS
IO RDT Device-

Specific Structures

1:N,
N>=1

List of
Structs

Optional: CXL
Block(s)

Contains a simple table:
Channel to RMID/CLOS

mapping controls location (for
this link) → points to MMIO

Enumerates TC/VC/Channel
mapping details of the traffic

flows in this path

Provides a list of what devices
are behind this RMUD

Note: Distinct sets of channels
exist per path

MMIO

IORDT-RCS
IO RDT RMUD Control

Structures

IORDT-RMUD
IO RDT Resource

Management Unit
Description Structure

ACPI

Xeon SOC
I/O Block

I/O RDT

IRDT
System-Level Parameter

Enumeration

CXL Device (A:B.C)

List of
Structs

IORDT-RMUD
IO RDT Resource

Management Unit
Description Structure

Associated CXL
I/O Block

IORDT-DSS

Two RCS instances,
one for each port, in

this example

One instance in this example

MMIO

MMIO

IORDT-RCS

IORDT-RCS

54 Document Number: 356688-001US, Revision: 1.0

5.1.1.4 ACPI Feature Enumeration – Table Structure Details

5.1.1.4.1 Introduction and Notation

Given the previously described relationships of RMUD, DSS and RCS structures,

table format details are described in this section.

Using the ACPI table hierarchy shown earlier in this chapter, following are the

details of each table type and constituent fields. Field definitions are detailed in

the table, and the text covers interpretation, corner cases, and interactions

between fields.

5.1.1.4.2 IRDT Table Format and Field Descriptions

The top-level ACPI table, the I/O Resource Director Technology table (IRDT) is

shown in Table 5-1, and one instance of this table is defined at the system

level, generated by the system BIOS. This table includes a unique signature,

and length including all sub-structures, including embedded RMUDs. The length

of the IRDT table is variable.

Table 5-1. IRDT Table Format (Variable Length)

Field Byte Length Byte Offset Description

Signature 4 0
“IRDT”. Signature for the top-level I/O

Intel RDT Description Table.

Length 4 4

Length, in bytes, of the description table

including the length of the associated

remapping structures.

Revision 1 8 1

Checksum 1 9 Checksum: Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16
For IORDT description table, the Table ID is

the manufacturer model ID.

OEM Revision 4 24
OEM Revision of IRDT Table for OEM Table

ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator revision 4 32 Revision of utility that created the table.

IO Protocol Flags 2 36

Bit 0: IO_PROTO_MON -- Set if I/O Intel

RDT Monitoring capabilities are supported

somewhere on the platform for I/O protocol

devices.

Bit 1: IO_PROTO_CTL -- Set if I/O Intel

RDT Allocation capabilities are supported

somewhere on the platform for I/O protocol

devices.

Bit 2-15 : Reserved.

Document Number: 356688-001US, Revision: 1.0 55

Field Byte Length Byte Offset Description

Cache Protocol Flags 2 38

Bit 0: IO_COH_MON -- Set if I/O Intel RDT

Monitoring capabilities are supported

somewhere on the platform for coherent

non-IA agents.

Bit 1: IO_COH_CTL -- Set if I/O Intel RDT

Allocation capabilities are supported

somewhere on the platform for coherent

non-CPU agents.

Bit 2-15 : Reserved.

Reserved 8 40 -

Resource

Management

Hardware Blocks[]

- 48

A list of structures. The list will contain one

or more Resource Management Unit

Descriptors (RMUDs).

The RMUD structure is described next.

A series of high-level flags allows the basic capabilities of monitoring and

control for I/O links (for example, PCIe) and coherent links (for example, CXL)

to be quickly extracted. Embedded within the IRDT table is a set of one or

more Resource Management Unit Descriptor Structures (RMUDs), which are

typically mapped to I/O blocks and define their properties. In some

instantiations, one RMUD may be defined for the system, or in a finer-grained

approach, one RMUDs may be defined for each downstream link and device

combination, though this is expected to be an uncommon case.

5.1.1.4.3 RMUD Table Format and Field Descriptions

The Resource Management Unit Descriptor (RMUD) structure, definition is

shown in Table 5-2, and includes a number of fields including length of the

RMUD instance and all embedded sub-structures (DSS and RCS entries), an

integration parameter that map to the SoC properties, including the minimum

and maximum RMID and CLOS tags that are available for use in monitoring and

controlling devices under this RMUD. While the common case is that these

parameters would match the CPU agent Intel RDT parameters, there may be

certain RMUDs which support a subset of the overall RMID and CLOS space.

Table 5-2. RMUD Table Format (Variable length)

Field Byte Length Byte Offset Description

Type 1 0

Type 0 = “RMUD”. Signature for the I/O

Intel RDT Resource Management Unit

Descriptor.

Reserved 3 1 Reserved.

Length 4 4
Total length of this RMUD and all sub-

structures.

Segment 2 8
The PCI Segment containing this RMUD,

and all of the devices that are within it.

Reserved 3 10 Reserved.

56 Document Number: 356688-001US, Revision: 1.0

Field Byte Length Byte Offset Description

DSS and RCS

Structures []
--- 13

List of devices behind this RMUD, with one

DSS table instance per device.

Contains a list of DSS control structures

and RCS control structures, identified by

their “Type” field at offset zero in the sub-

structures.

The DSS and RCS structures described

next.

Each RMUD entry contains a number of embedded DSS and RCS structures,

identified by their “Type” fields, which describe the devices and links behind a

given RMUD.

5.1.1.4.4 DSS Table Format and Field Descriptions

The Device Scope Structures behind each RMUD describe the properties of a

device, that is, each DSS maps 1:1 with a device behind a particular RMUD.

The DSS table definition is shown in Table 5-3, including a “type” field (Type =

0 identifies a DSS), the length of the entry, device type, and an embedded

channel management structure (CHMS). The CHMS defines which RCS(es) are

applicable to controlling this device (DSS), and which internal I/O block

Channels each of the link’s virtual channels (VCs) may map to (in the case of

PCIe, up to eight VCs are supported, but only the first entry is valid in the case

of CXL). Valid configurations for the CHMS include one entry per RCS (link).

In the DSS Device Type field, a value of 0x02 denotes that a PCIe Sub-

hierarchy is described by this DSS. Each root port described by a DSS will have

type 0x02. System software may use the enumerated devices found under

such a root port to comprehend share bandwidth relationships in the channels

under an RMUDS.

DSS type 0x01 indicates the presence of a root complex integrated endpoint

device (RCEIP), such as an accelerator. Note that a PCI sub-hierarchy may

denote a root port, and for every DSS that corresponds to a root port it is

expected that Device Type = 0x2.

Note that the CHMS field contains a list of CHMS structures, which may

describe for instances DSS entries which are capable of sending traffic over

multiple channels (which are in turn described by unique RCS entries).

Note that no discrete pluggable devices (for example, PCIe cards) are directly

described by the DSS entries, rather the root ports are indicated (Device Type

0x2).

Table 5-3. DSS Table Format (Variable length)

Field Byte Length Byte Offset Description

Type 2 0 0 = DSS

Length 2 2 Length of this Entry in Bytes.

Document Number: 356688-001US, Revision: 1.0 57

Field Byte Length Byte Offset Description

Device Type 1 4

The following values are defined for this

field.

0x01: Root Complex Integrated Endpoint

(RCEIP) Device - The device identified by

the ‘Path’ field is a root complex integrated

PCI endpoint device.

0x02: PCI Sub-hierarchy - The device

identified by the ‘Path’ field is a PCI-PCI

bridge. In this case, the specified bridge

device and all its downstream devices are

included in the scope.

Other values for this field are reserved for

future use.

Enumeration ID 2 5
If Device Type equals 1 or 2, this field lists

the BDF

Reserved 1 7 Reserved

Structure: CHMS

and RCS

Enumeration []

--- 8

Packed as byte fields.

One RCS may support multiple DSSes, and

one DSS may have multiple RCSs (links),

so this is an array, with size derivable from

the DSS Length field. Within each entry:

Byte 0: RCS Enumeration ID controlling

this link. Corresponds to the enumeration

ID of the RCS structure under this DSS.

Bytes 1-8: Represents the index into the

“RCS-CFG-Table” used by the

corresponding VC. Byte 1 represents the

channel for VC0, Byte 2 represents the

channel for VC1, and so on. In this field, bit

7 is a valid bit (entry is not valid if enable

bit is cleared). Bit 6, when set, indicates

that this channel is shared with another

DSS. The number of valid bytes in this field

is defined in the per-RCS “Channel Count”

field, any unused bytes (for example, for a

single-Channel CXL link) are Reserved.

Bytes 9-15: Reserved (padding)

5.1.1.4.5 RCS Table Format and Field Descriptions

The RCS structure provides details of the type of monitoring and controls

supported for a particular link interface type, such as PCIe or CXL, and an

MMIO location in which a table exists that can be used to apply monitoring and

control features. The MMIO location provided is absolute location in MMIO

space (64 bits), rather than hosted in a particular device and defined relative to

a BAR.

58 Document Number: 356688-001US, Revision: 1.0

Table 5-4. RCS Table Format (Currently 40B)

Field Byte Length Byte Offset Description

Type 2 0 RCS = 1.

Length 2 2

Length, in bytes, of the description table

including the length of the associated

remapping structures.

Link Interface Type 2 4

Type of link interface:

0x0 = PCIe or CXL.IO

0x1 = CXL.Cache

0x2 and above: Reserved

RCS Enumeration ID 1 6
A unique identifier for this RCS under this

RMUD.

Channel Count 1 7

Number of Channels defined for this link

interface (affects the interpretation of the

CHMS structure within the corresponding

DSS).

Flags 2 8

Bit 0: Reserved.

Bit 1: RTS: RMID Tagging supported.

Bit 2: CTS: CLOS Tagging Supported.

Bit 3: REGW: if set, the RMID and CLOS

defined in the RCS Block MMIO locations

are 2B registers. If clear, they are 8B

registers.

Bits 4-15: Reserved.

RMID Block Offset 2 10

Byte offset from the RCS Block MMIO

Location where the RMID tagging fields

begin.

CLOS Block Offset 2 12

Byte offset from the RCS Block MMIO

Location where the CLOS tagging fields

begin.

Reserved 18 14 Reserved.

RCS Block MMIO

Location
8 32

RCS Hosting I/O Block MMIO BAR Location

defines an MMIO physical address.

Note that if CXL.IO and PCIe devices share the bandwidth of a certain RCS and

its channels, then traffic for both protocols is carried on the same channel

entries.

Note that in the enumeration the fields, the RMID offset, and CLOS offset are

specified relative to the “RCS Block MMIO Location” field, meaning that the

RMID and CLOS offsets may be relocatable within the MMIO space. The offset

defines the block of a contiguous set of RMID or CLOS tagging fields, and the

number of entries is defined by the “Channel Count” field (for example, a value

of 8 channels may be common in certain PCIe tagging implementations).

Document Number: 356688-001US, Revision: 1.0 59

5.2 Model-Specific Intel® RDT Features for CPU

Agents

This section describes BIOS knobs for Model-Specific Intel RDT features for CPU

agents.

5.2.1 BIOS knobs for Resource Aware MBA

See Appendix A.3 for Resource Aware MBA (MBA 4.0) feature supported

product details. See Appendix B.1.1 for Resource Aware MBA (MBA4.0) feature

details.

The Resource-aware MBA feature is a model-specific extension to the Third

Generation of MBA (Chapter 3) which provides a set of extended capabilities to

better handle heterogenous memory types on complex modern SoCs. A model-

specific implementation is used as memory types may change significantly over

the course of time. A more detailed description of Resource Aware MBA is

provided in the next chapter.

To support Resource Aware MBA, the system BIOS shall support a legacy BW

profile configuration knob with a drop-down menu of three options as with

Second-Generation MBA.

• MBA BW profile

⎯ Linear(default)

⎯ Biased

⎯ Legacy

In addition, BIOS shall add three knobs with a drop-down menu for Resource-

Aware MBA in particular. These scaling ratios enable tuning of MBA calibration

values to the typical bandwidth levels available from each type of

heterogeneous downstream memory type, and tuning values may be further

scaled by the number of memory channels or links populated with each type of

memory. An example implementation of this tuning code will be provided with

the Intel Reference BIOS implementation for each applicable platform.

1. Description: “PMM BW downscaling vs the baseline Total memory BW

profile. For example: picking 1/2x at results in scaling PMM BW throttling

in a 2:1 ratio versus DDR throttling.”

⎯ PMM MBA BW downscale

o 1x (default)

o 1/2x

o 1/4x

o 1/8x

2. Description: “CXL (Type3) BW downscaling vs the baseline Total memory

BW profile. For example: picking 1/2x results in scaling CXL (Type3) BW

throttling in a 2:1 ratio versus DDR throttling.”

⎯ CXL (Type3) MBA BW downscale

o 1x (default)

60 Document Number: 356688-001US, Revision: 1.0

o 1/2x

o 1/4x

o 1/8x

3. Description: “Remote Target BW downscaling vs the baseline Total

memory BW profile. For example: picking 1/2x results in scaling Remote

Target BW throttling in a 2:1 ratio versus DDR throttling.”

⎯ Remote Target MBA (UPI) BW downscale

o 1x (default)

o 1/2x

o 1/4x

o 1/8x

Document Number: 356688-001US, Revision: 1.0 61

6 MMIO Register Descriptions

This chapter describes the Intel RDT related MMIO registers. As mentioned in

previous chapters, traditional interfaces such as MSRs are discussed in the

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

6.1 Non-CPU Agent Intel® RDT Register Location

The Non-CPU agent Intel RDT related register set (MMIO interfaces) must

reside on at least one 4 KB-aligned memory mapped page. The exact location

for the register region is implementation-dependent and is communicated to

system software by BIOS through the IRDT ACPI structure (see Chapter 5).

Multiple RCSes could be mapped to the same 4 KB-aligned page, or distinct

pages. No other unrelated registers may be present in the pages used for non-

CPU agent Intel RDT. A Virtual Machine Monitor (VMM) or operating system

may use page-based access controls to ensure that only designated entities

may use the non-CPU agent Intel RDT controls.

When accessing non-CPU agent Intel RDT MMIO interfaces, note that writes to

reserved fields, writes to reserved offsets within the MMIO space, or writes of

values greater than the supported maximum for a field will be ignored by

hardware.

6.1.1 Software Access to Registers

Software interacts with the non-CPU agent Intel RDT features by reading and

writing memory-mapped registers. The following requirements are defined for

software access to these registers.

• When updating registers through multiple accesses (whether in software or

due to hardware disassembly), certain registers may have specific

requirements on how the accesses should be ordered for proper behavior.

These are documented as part of the respective register descriptions.

• Locked operations to non-CPU agent Intel RDT related registers are not

supported. Software should not issue locked operations to non-CPU agent

Intel RDT feature hardware registers.

6.1.2 Register Descriptions for Non-CPU Agents

6.1.2.1 Link Interface Type RMID/CLOS Tagging MMIO Interfaces

The IRDT ACPI structures defined in Chapter 4 define MMIO interfaces for

configuring the RMID/CLOS for each link interface type, as defined in the RCS

structures. An MMIO pointer defined in the RCS fields describes where the

configuration interface exists for a particular link interface type. The MMIO

locations are specified as absolute physical addresses.

62 Document Number: 356688-001US, Revision: 1.0

Table 6-1 shows the MMIO field layout for RMID and CLOS tagging, and

bandwidth shaping. A common format is used for all RCS types, including for

instance RCS instances that support PCIe or CXL use the same field layout.

Common table format across all RCS-Enumerated MMIO.

Table 6-1. MMIO Table Format

Register Name Mem Offset Length (B) Comments

IO RDT Reserved 0x0000 Variable Reserved

IO_PQR_CLOS0 RCS :: CLOS Block

Offset

RCS :: REGW Common across all

RCS types

IO_PQR_CLOS1 IO_PQR_CLOS0 + RCS

:: REGW

RCS :: REGW Per-channel

IO_PQR_CLOS2 IO_PQR_CLOS0 + RCS

:: REGW*2

RCS :: REGW Per-channel

… Variable Variable -

Reserved Variable Variable -

IO_PQR_RMID0 RCS :: RMID Block

Offset

RCS :: REGW Common across all

RCS types

IO_PQR_RMID1 IO_PQR_RMID0 + RCS

:: REGW

RCS :: REGW Per-channel

IO_PQR_RMID2 IO_PQR_RMID0 + RCS

:: REGW*2

RCS :: REGW Per-channel

… Variable Variable -

Reserved Variable Variable -

IO_RDT Reserved Variable Variable Remainder of the page

Note that the RCS :: REGW field indicates the register access width of the fields

in Table 6-1, either 2B or 8B. Depending on the implementation, this width

may be 2 bytes or 8 bytes. The width is indicated by the REGW field in the RCS

Table (Section 5.1.1.4.5).

Note that the base of the RMID and CLOS fields are enumerated in the RCS

structure, and the size of these fields varies with the number of supported

channels. The set of configurable RMIDs and CLOSs are organized as

contiguous blocks of 4B registers.

The “PQR” fields starting at the enumerated offset (RCS :: CLOS Block Offset)

are defined with enumerated register field spacing of RCS :: REGW, which may

require either 2B or 8B register accesses. A block of CLOS registers exists,

followed by a block of RMID registers, indexed per Channel. That is, setting a

value in the IO_PQR_CLOS0 field will specify the CLOS to be used for

Channel[0] on this RCS.

The valid field width for RMID and CLOS is defined via CPUID leaves (see Intel®

64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for

details) for shared-L3 configuration.

Document Number: 356688-001US, Revision: 1.0 63

Higher offsets allow multiple Channels to be programmed (above Channel 0) if

supported. Given that PCIe supports multiple VCs, multiple channels may be

supported in the case of PCIe links, but CXL links support only two entries, one

at IA_PQR_CLOS0 and one at IO_PQR_RMID0 in this table.

The RMID and CLOS fields are interpreted as numeric tags, exactly as they are

in the CPU agent Intel RDT feature set, and software may assign RMID and

CLOS values as needed.

Software may reconfigure RMID and CLOS field values at any point during

runtime, and values may be read back at any time. As all architectural CPU

agent Intel RDT infrastructure, it is dynamically reconfigurable, this enables

control loops to work across the capabilities sets collaboratively and

consistently.

64 Document Number: 356688-001US, Revision: 1.0

7 Programming Guidelines

7.1 Intel® RDT Monitoring Software Flows for

CPU Agents

Intel RDT Monitoring software flows for CPU agents in certain example software

implementations are briefly described in this section to provide context for how

an end-user could view and use the RDT features. While this chapter provides

examples and recommended flows, it is in no way limiting to use models once

enumeration and configuration capabilities are enabled in software, and many

varied software implementations and usages of RDT beyond the listed

examples have been observed.

7.1.1 Intel® RDT Monitoring Software Flows for CPU
Agents

Software should first verify the existence of the RDT Monitoring feature(s)

before attempting to configure it and read back monitoring data. Periodic

management by software may also be required to maintain the proper RMID

mapping on a logical thread when context switching or receiving an interrupt

for instance (see Section 3.1.1 for details).

7.1.1.1 Step 1 – Enumeration

Before attempting to read or write MSRs associated with the Intel RDT

Monitoring feature software should first execute the CPUID instruction and

parse its output to ensure that Intel RDT Monitoring and any sub-features to be

used (for example, CMT, MBM) are supported on the platform, otherwise

General Protection (#GP(0)) faults will be generated.

As discussed in the Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3B, if CPUID feature flag CPUID.0x7(Structured Extended

Feature Flags).0:EBX[12] is set to ‘1’ then Intel RDT Monitoring is generally

supported on the platform.

Once Intel RDT Monitoring support has been verified software should use

CPUID.0xF(Shared Resource Monitoring Enumeration leaf).0:EDX to examine

which platform resources support monitoring. After the call to CPUID, the EBX

register will indicate the maximum RMID supported on the current socket

(though particular resources may support fewer RMIDs and this can be

enumerated on a per-resource basis as described next).

Software may use CPUID.0xF(Shared Resource Monitoring Enumeration

leaf).ResID to determine the number of RMIDs supported for the specific

resource in question, the event type bitmask to program into IA32_QM_EVTSEL

to retrieve the data for that event in IA32_QM_CTR, and the upscaling factor as

discussed in the feature-specific chapters. Software may optionally choose to

Document Number: 356688-001US, Revision: 1.0 65

build a record of these enumeration responses for each resource to reduce

overhead from repeated CPUID calls.

Given that certain processors may support multiple L2 caches, multiple-L3

caches, and a variety of logical processor types, it is recommended that

software use CPUID from the perspective of each logical processor to

comprehend any asymmetric resource support which may be present.

Software should parse Processor Family, Model and Stepping (FMS) to verify

that a particular processor includes support for a given model-specific feature.

To find out which features are supported on which specific products, refer to

Appendix A.3.

7.1.1.2 Step 2 – RMID Association

After verifying that the platform supports Intel RDT Monitoring, software should

associate each logical thread or VM of interest with an RMID such that resource

utilization by the threads can be tracked. It is expected in general that if an OS

or VMM moves an application from one core or socket to another that the

RMIDs will be updated (moved along with the app or remapped onto another

socket as needed) to maintain an accurate mapping between the applications

of interest and the RMIDs programmed onto a logical thread.

Threads by default are initialized to RMID[0], which provides insight into

memory bandwidths for the system but not necessarily cache occupancy

(which would read 100% occupied in a non-idle system).

7.1.1.3 Step 3 – Event Selection Setup

After associating RMIDs with threads and updating the IA32_PQR_ASSOC

register for each thread as needed while running (to account for context swaps

and thread migration between cores), software may execute for an arbitrary

period of time while hardware tracks occupancy before polling for the resulting

occupancy.

After applications have executed for the desired time period software may

program an RMID and event code into the IA32_QM_EVTSEL MSR, which will

cause the corresponding data to be available in the IA32_QM_CTR MSR

(discussed in the following section).

7.1.1.4 Step 4 – Data Sampling

After the IA32_QM_EVTSEL MSR has been programmed with an RMID / Event

ID combination the corresponding event data can be read back from the

IA32_QM_CTR MSR, which has a bit field layout as defined in Section 3.1.1.

Software must check both the Error bit and the Unavailable bit to verify that

the data returned is valid (along with the Overflow bit if supported) – if an

error is indicated the monitoring data reported back must not be used.

As described in Section 3.1.1 the Error bit will be set if an RMID greater than

the global maximum (specified in CPUID) is programmed into

IA32_QM_EVTSEL, or an unknown/unsupported Event ID is programmed.

66 Document Number: 356688-001US, Revision: 1.0

Similarly, the Unavailable bit is set when data is requested for an RMID that

does not support that particular resource or does not support an RMID value

that high.

An example is if occupancy monitoring of resource “A” supported four RMIDs,

and resource “B” supported 2 RMIDs. If software requested the occupancy of

either Resource A or B for RMIDs 0 or 1 then valid data would be reported

back. If occupancy data for RMIDs 2 or 3 was requested for resource “B”

however data would not be reported, and the Unavailable bit would be set.

The Overflow bit, if supported, is set when an overflow of an incrementing

counter is triggered, allowing software to correct or discard errant values that

may lead to erroneous bandwidth calculations.

If an error is indicated, it will be cleared automatically once valid values are

programmed into IA32_QM_EVTSEL and any hardware conditions preventing

accurate monitoring are resolved. The Overflow bit, if implemented, is cleared

on a read of IA32_QM_CTR.

7.1.1.5 Step 5 – Sample CMT/MBM Data Collection and Analysis

Once CMT and MBM data has been collected it can be interpreted as described

in the following example.

Consider the case where CMT and MBM are supported on a platform, and a

large number of RMIDs are available. On this platform the user seeks to profile

two threads within an application, so both threads are assigned individual

RMIDs and run on separate physical cores for a period of one second, then

occupancy and bandwidths are read back via the MSR interface

(IA32_QM_EVTSEL and IA32_QM_CTR). In this example, the following

parameters are key to interpreting the results:

• System topology – two Intel® Xeon™ CPUs with 14 cores per socket, and a

3-level cache subsystem, where the last-level cache totals 35 MB per

socket.

• The last-level cache is verified using CPUID leaf 0x4 as the last level cache

between the cores and memory, meaning L3 external bandwidth values

can be used to measure memory bandwidth.

• As enumerated via CPUID the upscaling factor (CPUID.0xF(Shared

Resource Monitoring Enumeration leaf).1:EBX) to convert counter values to

final values in bytes is 0xE000 (decimal 57344).

• Since the total L3 cache size is 36700160 bytes and the upscaling factor is

57344, we know that the maximum possible CMT occupancy counter value

reported by the system will be total cache size divided by the conversion

factor, or 36700160/57344 = 640.

⎯ As the threads are profiled, we can compare the reported occupancy

to the maximum occupancy counter value, giving an indication of

what fraction of the total cache an application is using without

needing to convert to bytes first.

Suppose that the threads are configured as follows:

Document Number: 356688-001US, Revision: 1.0 67

• Associate thread[0] with RMID[1].

• Associate thread[1] with RMID[2].

• Leave all other threads in the system with the default RMID[0] association.

In order to profile memory bandwidth an initial sampling of the free-running

MBM counters is required:

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event

code 0x2 for total L3 external bandwidth, then read the corresponding data

from IA32_QM_CTR (and verify that the Unavailable and Error bits in

IA32_QM_CTR are not set so the data is valid).

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event

code 0x3 for local L3 external bandwidth, then read the corresponding data

from IA32_QM_CTR (and verify that the Unavailable and Error bits in

IA32_QM_CTR are not set so the data is valid).

• Repeat these steps with RMID[2] for the second thread.

Note that we assume that RMID[1] and RMID[2] have previously been used for

profiling other applications, so they may initially contain nonzero occupancy

and bandwidth counter values.

Note that in this example we assume that RMID[1] and RMID[2] are set up

exclusively for the use of the two threads being profiled, and that these threads

are not currently scheduled, and they have no data in the L3 cache, so the

bandwidth counters, even if they contain initial values, are not changing. The

occupancy counters may change even if no threads are scheduled using

RMID[1] and RMID[2] however if they have previously run and have data in

the L3 cache as other threads on the system run and cache space is

dynamically redistributed due to evictions and standard cache LRU policies.

Note that if the threads in RMID[1] and RMID[2] are running while we measure

initial counter values then skew may appear in the counter values, proportional

to the time delay between reading each of the event codes (which should be

minimized) and the bandwidths consumed by the application (which may vary

significantly based on application behavior).

Now that initial MBM counter values have been established, the program can be

left to run for a period of time, in this case one second. The Intel RDT

Monitoring data can then be read back as follows:

• Program IA32_QM_EVTSEL with RMID[1] for the first thread and event

code 0x1 for L3 cache occupancy, then read the corresponding data from

IA32_QM_CTR (and verify that the Unavailable and Error bits in

IA32_QM_CTR are not set so the data is valid).

• Program IA32_QM_EVTSEL with RMID[1] and the event code for total L3

external bandwidth (0x2), read the data from IA32_QM_CTR and again

verify that the “U” and “E” bits are not set.

• Similarly read back local L3 external bandwidth using the event code 0x3

and verify that the data is valid.

68 Document Number: 356688-001US, Revision: 1.0

• Repeat the previous three steps with RMID[1] to read back the Intel RDT

monitoring metrics for the second thread.

Example data read back after profiling for one second is shown in the following

table.

Table 7-1. Example CMT and MBM Counter Values

 Thread 0 Thread 1

Event Type First Sample Second Sample First Sample Second Sample

L3 Cache Occupancy N/A 0x25 N/A 0x180

Total L3 External Bandwidth 0x00FE985E 0x00FEBC14 0x00002541 0x0000D9F7

Local L3 External Bandwidth 0x0A8C9512 0x0A8CB5ED 0x00000314 0x0000AC5D

Note that in the previous sample data the counter values are shown as 32-bit

values, implying that the upper fields in the counter MSR were either zeroes or

not changing and can be disregarded – this may not always be the case

however when bandwidths are high, or in the case of future counters which

may increment quickly.

In the example, the final cache occupancy for the threads can be calculated as

follows:

• Thread[0]: CounterValue * UpscalingFactor = 37*57344 = 2121728 bytes

(roughly 2.02 MB).

• Thread[1]: CounterValue * UpscalingFactor = 22020096 bytes = 21 MB.

Thus, based on the CMT profiling of the two example threads, we see that

Thread[0] consumes around 2MB of cache space, and Thread[1] consumes

around 21MB, over 10x more, which indicates that it likely has a larger data

working set or it may be partly streaming through memory. Software should

also consider memory bandwidth readings to determine whether Thread[1] is

simply cache-friendly or whether it is a streaming application.

Total memory bandwidth values for the two threads can be determined as

follows:

• Thread[0]: (Second counter reading – First counter

reading)*UpscalingFactor = (0x00FEBC14-0x00FE985E)*57344 =

9142*57344 = 524238848 bytes/second, or around 500 MB/s since we

sampled for one second.

• Thread[1]: (Second counter reading – First counter

reading)*UpscalingFactor = (0x0000D9F7-0x00002541)*57344 =

46262*57344 = 2652848128 bytes/second, or around 2.5 GB/s.

Local memory bandwidth values for the two threads can be determined as

follows:

• Thread[0]: (Second counter reading – First counter

reading)*UpscalingFactor = (0x0A8CB5ED-0x0A8C9512)*57344 =

8411*57344 = 482320384 bytes/second, or around 460 MB/s.

Document Number: 356688-001US, Revision: 1.0 69

• Thread[1]: (Second counter reading – First counter

reading)*UpscalingFactor = (0x0000AC5D-0x00000314)*57344 =

43337*57344 = 2485116928 bytes/second, or around 2.3 GB/s.

Based on the prior calculations we observe that Thread[0] has low memory

bandwidth demands at roughly 500 MB/s, and Thread[1] uses more bandwidth

at 2.5 GB/s, but not enough to classify it as a streaming thread. With its 21 MB

cache occupancy and moderate memory bandwidth, Thread[1] is best classified

as a cache-friendly thread, though observing its behavior over a longer period

of time and sampling other system metrics to better understand its time-

variant behavior and compute requirements is recommended if detailed

profiling is the goal.

Note that in this example most of the bandwidth demands of the threads are

satisfied by the memory controller on the local CPU, meaning bandwidth

associated with the QPI link and other sources is low, implying that the NUMA-

aware OS properly located the memory allocation for the threads on the same

socket as the running threads.

This may not always be the case however, and if a bandwidth imbalance is

detected then we may choose to either move the compute threads to the other

CPU (closer to the data in memory) or move the data in memory to another

address range within the scope of the local CPU memory controller for better

performance.

7.1.2 Native OS Environments

In a non-virtualized environment, the RMIDs can be associated with

applications or application threads. The OS may even choose to associate

different parts of a single application to be associated with different RMIDs if

needed. But a typical usage would save and restore the RMIDs along with the

context information during the context switch.

For multi-threaded applications, multiple threads can share the same RMID.

The implications stated earlier also apply to multi-threaded applications with

the following additional considerations for shared code/data. For example, if

app0 was multi-threaded (for example, two threads per application), then we

can get occupancy information for each thread of application. The only

additional implication here is that the occupancy of the threads that share data

will be associated to the thread that filled the shared data. Heuristics that

minimize contention in the shared cache for single threaded workloads to

optimize total system throughput and to provide QoS will also be effective for

the multi-threaded workloads.

7.1.3 Virtualization Scenarios

In case of virtualization, RMIDs can be allocated in different ways. The VMM

can choose to allocate the RMIDs to different VMs or vCPUs. The current

planned implementations do not support reporting individual occupancies of

applications running within a VM unless the VMM and guest OS are both

70 Document Number: 356688-001US, Revision: 1.0

enabled to support Intel RDT. The RMID assignment at VM and VCPU level are

described next.

RMIDs assigned to Virtual Machines (VMs): In this usage case RMIDs are

assigned to VMs instead of applications and the occupancy reported is on a per

VM basis. Multiple applications running within a VM will have a consolidated

occupancy which will be reported by the RMID. Profiling of workloads and

heuristics that optimize for overall system throughput and for providing QoS

based on SLAs would be based in the granularity of VMs. Hence to provide

QoS, HP applications can be mapped to a VM with a high priority so that

scheduling decisions to minimize contention will treat all applications running in

the HP VM as high priority. The heuristics that work on occupancy monitoring

based on contention in the shared cache will still be effective but will work in

the granularity of VMs. When scheduling VMs, the VMM can use the occupancy

monitoring information available for the VMs from the RMIDs. There are no

other additional implications for VMs.

RMIDs assigned to vCPUs within VMs: In this usage case scenario, RMIDs

are assigned to vCPUs within a VM. Since there maybe multiple applications

within a VM running on the vCPUs, the occupancy reported by the RMID for a

vCPU will represent the consolidated occupancy of the applications running on

that vCPU. As an example, if there are two VMs with 2 vCPUs each and there

are four applications in each VM as shown in Figure 7-1.

Figure 7-1. RMIDs Assigned to vCPUs

The occupancy reported by the RMID assigned to vCPU0 will represent the

consolidated occupancy of App0 and App1. Similarly, only the consolidated

occupancy of App2 and App3 is what will be reported and so on. Hence

optimizations for system throughput, QoS and application profiling would have

to be at the granularity of vCPUs. The OS running within a VM will have its own

scheduling policy that would determine how applications are scheduled to the

vCPUs.

When applications migrate within a VM from one vCPU to another, the

consolidated occupancy reported will also be affected as it would depend on the

nature of the applications scheduled to a vCPU. Hence any policy or heuristic

that is implemented should be in the granularity of VCPU profiling. The

recommended approach is to profile the workload at a vCPU level and then

design heuristics based on vCPU profiles to optimize for throughput and provide

QoS.

Document Number: 356688-001US, Revision: 1.0 71

7.2 Intel® RDT Allocation Software Flows for

CPU Agents

RDT Allocation software flows for CPU agents are briefly described in this

section to provide context for how and end-user may view the feature.

7.2.1 Intel® RDT Software Allocation Flows for CPU
Agents

7.2.1.1 Step 1 – Enumeration

Before attempting to read or write MSRs associated with the Intel RDT

Allocation feature software should first poll CPUID to ensure that Intel RDT

Allocation and any sub-features to be used (for example, L3 CAT, L2 CAT, MBA)

are supported on the platform, otherwise General Protection (#GP(0)) faults

will be generated. As discussed in Section 3.2, if CPUID feature flag

CPUID.0x7(Structured Extended Feature Flags).0:EBX[15] is set to ‘1’ then

Intel RDT Allocation is generally supported on the platform.

Once Intel RDT Allocation support has been verified software should poll and

examine CPUID.0x10.0:EBX to examine which platform resources support

allocation. After the call to CPUID, the EBX register will indicate the supported

Intel RDT Allocation features on the current socket.

Software may use CPUID.0x10.ResID to determine the number of CLOS

supported for the specific resource in question, the max length of the CAT

bitmask, the max MBA delay value, and so on, and presence of sub-features

like CDP on top of CAT for a given level of the cache. Software may optionally

choose to build a record of these enumeration responses for each resource to

reduce overhead from repeated CPUID calls.

Software should parse Processor Family, Model and Stepping (FMS) to verify

that a particular processor includes support for a given model-specific feature.

To find out which features are supported on which specific products, refer to

Appendix A.3.

Note that it is important that software enumerate the Intel RDT Monitoring

capabilities of the platform in the order specified in Section 3.1.1.

7.2.1.2 Step 2 – Optionally Enable CDP

If software wants to use CDP, enable it via the IA32_PQOS_CFG MSR.

7.2.1.3 Step 3 – Mask and Bandwidth Control Setup

After determining the presence of hardware Intel RDT Allocation support

software should configure the CAT masks and MBA delay values if supported to

provide capacity allocation/bandwidth hints to the hardware via the

IA32_ResourceType_QOS_MASK_n MSRs and IA32_L2_QOS_Ext_BW_Thrtl_n

72 Document Number: 356688-001US, Revision: 1.0

MSRs, depending on the usage model specified in Section 3.1.1 and the

number of CLOS available (enumerated in feature-specific ResID sub-leaves).

It is considered good practice to first verify that IA32_L3_QOS_MASK_0

contains all “1” to the length of the bitmask (such that CLOS0 can access the

entire cache) and that all threads are in CLOS0 before making changes to the

masks (which may otherwise result in rapidly changing cache available to

applications, which may lead to performance variation, though no functional

errors are possible). Also verify that no bandwidth enforcement is configured in

the IA32_L2_QOS_Ext_BW_Thrtl_n MSRs. It is also considered best practice to

set up CLOS[0] as the highest priority CLOS with a large fraction of the cache,

CLOS1 as the next highest, and so on.

7.2.1.4 Step 4 – CLOS Association

After the CAT/CDP per-CLOS mask MSRs are set up to known values, whether

overlapped, shared or a combination depending on application needs and goals,

and after MBA delay values are set up, each of the threads should be

associated into a desired Class of Service via the IA32_PQR_ASSOC MSR. This

MSR may be read or written at any time.

As part of some implementations an OS may choose to set up masks then

change the IA32_PQR_ASSOC MSR on context switches (to associate a portion

of the cache with an application or thread for instance).

7.3 Intel® RDT Software Flows for Non-CPU

Agents

This section describes software architecture considerations for Intel RDT

features for non-CPU agents, recommended usage flows and related

considerations. This builds upon the architectural concepts and software usage

examples discussed in Chapter 4.

Software seeking to use RDT for non-CPU agents has a number of tasks to

comprehend:

• Enumeration of the capabilities of Intel RDT for CPU agents (through

CPUID) and Intel RDT for non-CPU agents (through CPUID and ACPI).

• Reservation of (or comprehension of the sharing implications of using)

RMIDs and CLOS from the pools available at each resource level and

subject to the RMID and CLOS management best practices on a particular

processor.

• Pre-configuration of any resource limits to be used for modulating device

activity, such as a cache mask for a CLOS intended to be used with a

device.

• Configuration of each device’s tagging properties through the MMIO

interface described by the ACPI structures, such as associating a device

with a particular RMID, CLOS and bandwidth limit, as applicable.

Document Number: 356688-001US, Revision: 1.0 73

• Enabling the Intel RDT features for non-CPU agents through the enable

MSR infrastructure -- the IA32_L3_IO_QoS_CFG MSR is shown in Figure

4-2, at MSR address 0xC83.

• Periodically adjusting resource limits subject to software policies and any

control loops which may be present.

• Comprehending the implications of Sub-NUMA clustering (SNC) if present

and enabled.

74 Document Number: 356688-001US, Revision: 1.0

A Intel® RDT Feature Details

A.1 Intel® RDT Feature Evolution

This section describes various generations of product and Intel RDT feature

intercepts. Intel RDT provides a number of monitoring and control capabilities

for shared resources in multiprocessor systems. This section covers updates to

the feature that are available in current and future Intel processors, starting

with brief descriptions followed by tables with details.

1. Intel® RDT on the 3rd Gen Intel® Xeon® Scalable Processor Family.

The 3rd Gen Intel® Xeon® Scalable Processor Family, based on Ice Lake

server microarchitecture, adds the following Intel RDT enhancements:

⎯ 32-bit MBM counters (versus 24-bit in prior generations), and new

CPUID enumeration capabilities for counter width.

⎯ Second generation Memory Bandwidth Allocation (MBA): Introduces

an advanced hardware feedback controller that operates at

microsecond timescales, and software-selectable min/max throttling

value resolution capabilities. Baseline descriptions of the MBA

“throttling values” applied to the threads running on a core are

described in the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3B.

Second generation MBA capabilities also add a work-conserving

feature in which applications that frequently access the L3 cache may

be throttled by a lesser amount until they exceed the user-specified

memory bandwidth usage threshold, enhancing system throughput

and efficiency, in addition to adding more precise calibration and

controls. Certain BIOS implementations may further aid flexibility by

providing selectable calibration profiles for various usages.

⎯ 15 MBA / L3 CAT CLOS: Improved feature consistency and interface

flexibility. The previous generation of processors supported 16 L3 CAT

Class of Service tags (CLOS), but only 8 MBA CLOS. The changes in

enumerated CLOS counts per-feature are enumerated in the

processor as before, via CPUID.

2. Intel® RDT on Intel Atom® Processors, Including the P5000 Series.

Intel Atom® processors, such as the P5000 series, based on Tremont

microarchitecture add the following Intel RDT enhancements:

⎯ L2 CAT/CDP: L2 CAT/CDP and L3 CAT/CDP may be enabled

simultaneously on supported processors. As these are existing

features defined in the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3B, no new software enabling should be

required.

⎯ Supported processors match the capabilities of the 3rd Gen Intel Xeon

Scalable Processor Family based on Ice Lake Server

microarchitecture, including traditional Intel RDT uncore features: L3

CAT/CDP, CMT, MBM, and second-generation MBA. As these features

are architectural, no new software enabling is required. Related

enhancements in Intel Xeon processors also carry forward to

Document Number: 356688-001US, Revision: 1.0 75

supported Intel Atom processors, with consistent software enabling.

These features include 32-bit MBM counters, second generation MBA,

and 15 MBA/L3 CAT CLOS.

3. Intel® RDT in processors based on the 4th Gen Intel® Xeon®

Scalable Processor Family.

Processors based on 4th Gen Intel® Xeon® Scalable Processor Family add

the following Intel RDT enhancements:

⎯ STLB QoS: Model-specific capability to manage the second-level

translation lookaside buffer structure within the core (STLB) in a

manner quite similar to CAT (CLOS-based, with capacity masks). This

may enable software that is sensitive to TLB performance to achieve

better determinism. This is a model-specific feature due to the

microarchitectural nature of the STLB structure. The code regions of

interest should be manually accessed.

4. Intel® RDT in Processors Based on 5th Gen Intel® Xeon®

Processors.

Processors based on 5th Gen Intel® Xeon® Processors add the following

Intel RDT enhancements:

⎯ L2 CAT and CDP: Includes control over the L2 cache and the ability to

partition the L2 cache into separate code and data virtual caches. No

new software enabling is required; this is the same architectural

feature described in the Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3B.

5. Future Intel® RDT.

Future processors add the following Intel RDT enhancements:

⎯ Third generation Memory Bandwidth Allocation (MBA): new per-

logical-processor capability for bandwidth control (rather than the

more coarse-grained core-level throttling value resolution in prior

generations). This capability enables more precise bandwidth shaping

and noisy neighbor control. Some portions of the control

infrastructure now operate at core frequencies for controls that are

responsive at the nanosecond level.

⎯ Intel® RDT features support for non-CPU agents, enabling advanced

monitoring and control capabilities for PCIe and CXL devices, as well

as integrated processor accelerators.

76 Document Number: 356688-001US, Revision: 1.0

A.2 Intel® RDT Architectural Features and
Supported Products

 Intel RDT
Feature

Category

Shared
Resource

Agent Intel RDT
Sub-Feature

Intel RDT
Scope

Supported Products

M
o

n
it

o
r
in

g

Cache

Monitoring

Technology

(CMT)

L3 CPU L3 CMT for

CPU agents

Per-thread

RMID-based

Intel® Xeon® E5/E7 v3,v4, Intel® Xeon® D,

Intel® Xeon® Scalable Processor, 2nd Gen

Intel® Xeon® Scalable Processor, 3rd Gen

Intel® Xeon® Scalable Processor, 4th Gen

Intel® Xeon® Scalable processor, 5th Gen

Intel® Xeon® Scalable processor, Intel

Atom® Processor P5000 Series, Intel®

Xeon® processors (codename Granite

Rapids), Intel® Xeon® processors

(codename Sierra Forest)

L3 I/O L3 CMT for

non-CPU

agents

Per-agent

RMID-based

Intel® Xeon® processors (codename

Granite Rapids), Intel® Xeon® processors

(codename Sierra Forest)

Memory

Bandwidth

Monitoring

(MBM)

- CPU MBM Local for

CPU agents

Per-thread

RMID-based

Intel® Xeon® E5/E7 v4, Intel® Xeon® D,

Intel® Xeon® Scalable Processor, 2nd Gen

Intel® Xeon® Scalable Processor, 3rd Gen

Intel® Xeon® Scalable Processor, 4th Gen

Intel® Xeon® Scalable processor, 5th Gen

Intel® Xeon® Scalable processor, Intel

Atom® Processor P5000 Series, Intel®

Xeon® processors (codename Granite

Rapids), Intel® Xeon® processors

(codename Sierra Forest)

CPU MBM Total for

CPU agents

Per-thread

RMID-based

Intel® Xeon® E5/E7 v4, Intel® Xeon® D,

Intel® Xeon® Scalable Processor, 2nd Gen

Intel® Xeon® Scalable Processor, 3rd Gen

Intel® Xeon® Scalable Processor, 4th Gen

Intel® Xeon® Scalable processor, 5th Gen

Intel® Xeon® Scalable processor, Intel

Atom® Processor P5000 Series (Selected

Processors), Intel® Xeon® processors

(codename Granite Rapids), Intel® Xeon®

processors (codename Sierra Forest)

I/O MBM Local for

non-CPU

agents

Per-agent

RMID-based

Intel® Xeon® processors (codename

Granite Rapids), Intel® Xeon® processors

(codename Sierra Forest)

I/O MBM Total for

non-CPU

agents

Per-agent

RMID-based

Intel® Xeon® processors (codename

Granite Rapids), Intel® Xeon® processors

(codename Sierra Forest)

Document Number: 356688-001US, Revision: 1.0 77

 Intel RDT
Feature

Category

Shared
Resource

Agent Intel RDT
Sub-Feature

Intel RDT
Scope

Supported Products
A

ll
o

c
a
ti

o
n

Cache

Allocation

Technology

(CAT)

L2 CPU L2 CAT for

CPU agents

Per-thread

CLOS-based

Atom Server C3000, 5th Gen Intel® Xeon®

Scalable processor, Intel Atom® Processor

P5000 Series, Intel® Xeon® Scalable

processor (codename Granite Rapids),

Intel® Xeon® processors (codename Sierra

Forest)

L2 CDP for

CPU agents

Per-thread

CLOS-based

5th Gen Intel® Xeon® Scalable processor,

Intel Atom® Processor P5000 Series, Intel®

Xeon® Scalable processor(codename

Granite Rapids), Intel® Xeon® processors

(codename Sierra Forest)

L3 CPU L3 CAT for

CPU agents

Per-thread

CLOS-based

Intel Atom® X Series (Selected

Processors), Intel® Xeon® E5/E7 v3

(Selected Processors), Intel® Xeon® E5/E7

v4 , Intel® Xeon® D, Intel® Xeon®

Scalable, 2nd Gen Intel® Xeon® Scalable

Processor, 3rd Gen Intel® Xeon® Scalable

Processor, 4th Gen Intel® Xeon® Scalable

processor, 5th Gen Intel® Xeon® Scalable

processor, Intel® Xeon® W, Intel Atom®

Processor P5000 Series, Intel® Xeon®

Scalable processor(codename Granite

Rapids), Intel® Xeon® processors

(codename Sierra Forest)

L3 CDP for

CPU agents

Per-thread

CLOS-based

Intel® Xeon® E5/E7 v4, Intel® Xeon®

Scalable Processor, 2nd Gen Intel® Xeon®

Scalable Processor, 3rd Gen Intel® Xeon®

Scalable Processor, 5th Gen Intel® Xeon®

Scalable processor, Intel Atom® Processor

P5000 Series, Intel® Xeon® Scalable

processor(codename Granite Rapids),

Intel® Xeon® processors (codename Sierra

Forest)

I/O L3 CAT for

non-CPU

agents

Per-agent

CLOS-based

Intel® Xeon® processors (codename

Granite Rapids), Intel® Xeon® processors

(codename Sierra Forest)

Memory

Bandwidth

Allocation

(MBA)

- CPU MBA for CPU

agents

(Second

Generation

MBA)

Per-thread

CLOS-based

Intel® Xeon® Scalable Processor, 2nd Gen

Intel® Xeon® Scalable Processor, 3rd Gen

Intel® Xeon® Scalable Processor, 4th Gen

Intel® Xeon® Scalable processor, 5th Gen

Intel® Xeon® Scalable processor, Intel

Atom® Processor P5000 Series, Intel®

Xeon® Scalable processor(codename

Granite Rapids), Intel® Xeon® processors

(codename Sierra Forest)

CPU MBA for CPU

agents (Third

Generation

MBA)

Per-thread

CLOS-based

Intel® Xeon® processors (codename

Granite Rapids), Intel® Xeon® processors

(codename Sierra Forest)

Cache

Bandwidth

Allocation

(CBA)

- CPU CBA for CPU

agents

Per-Logical

Processor

based

Future Intel® Processors

78 Document Number: 356688-001US, Revision: 1.0

A.3 Intel® RDT Model-Specific Features and
Supported Products

Intel RDT Feature Category Supported Products

Resource Aware MBA (MBA4.0) • Intel® Xeon® processors (codename Granite Rapids).

• Intel® Xeon® processors (codename Sierra Forest).

Intel® RDT and Sub-NUMA

Clustering (SNC) Compatibility

• 3rd Gen Intel® Xeon® processors.

• 4th Gen Intel® Xeon® processors.

• 5th Gen Intel® Xeon® processors.

STLB QoS 4th Gen Intel® Xeon® processors.

The following product generations on SKUs with Intel® Time

Coordinated Computing (Intel® TCC) support:

• 11th Gen Intel® Core™ Processors (UP3-Series).

• Intel® Xeon® W Processors (TGL-H).

• 12th Gen Intel® Core™ Processors (S-Series).

• 13th Gen Intel® Core™ Processors (P-Series).

• 13 Gen Intel® Core™ Processors (S-Series).

• Intel Atom® x7000E Series Processors.

Document Number: 356688-001US, Revision: 1.0 79

A.4 Feature Mapping: CPU Agents, Non-CPU
Agents in Different L3 Configurations

Configuration Intel RDT
Feature

CPU Agents Intel RDT
Scope

Non-CPU
Agents Intel
RDT Scope

Comments

Shared-L3 Cache Monitoring

Technology (CMT)

Per-thread RMID-based Per-agent RMID-

based

Unified per-RMID

counters across CPU

Agents and non-CPU

Agents.

Shared-L3 Memory

Bandwidth

Monitoring (MBM)

Per-thread RMID-based Per-agent RMID-

based

Unified per-RMID

counters across CPU

Agents and non-CPU

Agents.

Shared-L3 Cache Allocation

Technology (CAT)

Per-thread CLOS-based Per-agent CLOS-

based

Unified per-CLOS controls

across CPU Agents and

non-CPU Agents.

Shared-L3 Code and Data

Prioritization

(CDP)

Per-thread CLOS-based N/A CDP is not supported for

non-CPU Agents.

Shared-L3 Memory

Bandwidth

Allocation (MBA)

Per-thread MBA throttling

(MBA3.0 and higher) or

Per-core MBA throttling

(MBA1.0-2.0)

N/A MBA is not supported for

non-CPU Agents.

80 Document Number: 356688-001US, Revision: 1.0

A.5 Architectural MSRs used with Intel® RDT
Features

The following architectural Model-Specific Registers are used with Intel® RDT

features.

MSR Name Comments

IA32_PQR_ASSOC Set the RMID and CLOS pair.

IA32_QM_EVTSEL Set event codes and RMID to be monitored.

IA32_QM_CTR Reports monitoring telemetry data.

IA32_L3_MASK_n Bitmask to assign L3 cache ways for each CLOS. “n” registers,

one register per CLOS.

IA32_L2_QoS_Ext_BW_Thrtl_n Set valid throttling levels. “n” registers, one register per CLOS

IA32_L2_QOS_MASK_n Bitmask to assign L2 cache ways for each CLOS. “n” registers,

one register per CLOS.

IA32_L3_IO_QOS_CFG Set to enable Allocation and Monitoring for non-CPU Agents

IA32_QoS_Core_BW_Thrtl_n Set valid throttling levels, one byte per CLOS. “n = 0 to

(((CLOS_MAX+1)/8) -1)” registers

A.6 Model-Specific Registers for Intel® RDT
Model Specific Features

The following notable non-architectural Model-Specific Registers are used with

Intel® RDT features and will be expanded over time. Others are discussed in

preceding model-specific chapters.

MSR Name Comments

MBA_CFG Set the RMID and CLOS pair.

RMID_SNC_CONFIG Clear to enable RMID Sharing Mode.

STLB_QOS_INFO Discover STLB QOS parameters

STLB_QOS_MASK_N STLB QOS Capacity Bitmasks

STLB_FILL_TRANSLATION Fill a logical address into the STLB

PQR_ASSOC Resource Association Register

L3_QOS_MASK_N L3 Class of Service Mask

Document Number: 356688-001US, Revision: 1.0 81

B Model-Specific Intel® RDT
Features

B.1 Model-Specific Intel® RDT Features for CPU
Agents

This section gives an overview of non-architectural features that are

implemented on specific products. To find out which features are supported on

which specific products, refer to Appendix A.3.

In certain cases, model-specific features may be implemented rather than

architectural features in cases where the cache or memory hierarchies are

rapidly evolving, or in cases where usages are specialized and require intricate

software enabling and tuning, or in cases where a subset of special-purpose

processors are enabled with certain features within a broader product line.

Support for a certain model-specific feature in a particular product generation

does not imply that future products will support the same model-specific

feature; furthermore, this does not guarantee software forward-compatibility.

Software should use Processor Family, Model and Stepping (FMS) to verify that

a particular processor includes support for a given model-specific feature.

B.1.1 Resource Aware MBA

Resource Aware MBA (MBA 4.0) for CPU-agent was formerly known as Fourth

Generation MBA (MBA 4.0) which supports over Third Generation MBA

capabilities as Bandwidth management support is implemented to support up

to three different resources – DDR Memory, CXL links, and UPI Links on a pre

thread basis. Third generation MBA capabilities (see Section 3.2.3.3) are the

default mode of operation, with Resource Aware MBA being opt-in. See

Appendix A.3 for Resource Aware MBA feature intercept details.

B.1.1.1 Overview

Resource Aware MBA allows per-thread tracking and control of Bandwidth to

different resources – that is, enabling bandwidth control per-thread and per-

resource simultaneously. As in the third generation of MBA, each resource and

thread are managed by a hardware controller which modulates the bandwidth

of each thread targeting a particular downstream resource around a bandwidth

target set by Intel RDT software interfaces.

The resource types that are managed are:

1. DDR – All traffic towards DDR Memory regardless of location of location

(local, remote or CXL).

2. CXL – All traffic towards CXL resources such as CXL.mem pools including

remote.

82 Document Number: 356688-001US, Revision: 1.0

3. UPI - All traffic that utilizes the Intel® Ultra Path Interconnect (Intel® UPI)

link(s) for cross socket data transfer regardless of target on the remote

socket.

The high-level implementation of Resource Aware MBA is shown in Figure B-1.

Figure B-1. High-Level Overview of the Resource Aware MBA (MBA 4.0)

B.1.1.2 Enable MSR

Resource Aware MBA (MBA 4.0) is opt-in feature. Before configuring MBA

throttling values per-thread and per-resource, the feature should be enabled

(through a configuration MSR). The MBA_CFG MSR is used to enable the

Resource Aware MBA feature for CPU agents.

One bit is defined in this MBA_CFG MSR, bit[2], which when set enables the

Resource Aware MBA feature and switches between third-generation MBA and

Resource Aware MBA modes.

The default value is 0x0 (Resource Aware MBA is disabled by default), and all

bits not defined are reserved. Any writes to reserved bits will generate a

General Protection Fault (#GP(0)).

This MSR is scoped at the die level and is cleared on system reset. It is

expected that software will configure this MSR consistently across all L3 caches

that may be present in the SoC.

The definition of the MBA_CFG MSR is shown in Figure B-2, and its MSR

address is 0xC84.

Document Number: 356688-001US, Revision: 1.0 83

Figure B-2. The MBA_CFG MSR for Enabling Resource Aware MBA Feature

Reference BIOS implementations supporting Resource Aware MBA will extend

the legacy bandwidth profile knobs from Second Generation MBA with a drop-

down menu of three options (see Section 5.2 for details)

B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility

The following sub-sections describe Intel RDT and Sub-NUMA Clustering (SNC)

compatibility enabling components. Utilizing SNC and RDT simultaneously may

provide resource contention isolation benefits but requires incremental

software enabling with the introduction of SNC.

B.1.2.1 Introduction

Following sub-sections describe Intel RDT monitoring features behavior in the

presence of either multiple NUMA domains per socket, other product

implementations in which multiple NUMA domains may appear per processor,

due to either logical or physical resource partitioning. This section references

Intel RDT features such as MBA, MBM, CMT and CAT for CPU agents and non-

CPU agents described in Chapter 3 and Chapter 4 respectively.

The Sub-NUMA Clustering (SNC) feature creates localization domains within a

processor by mapping addresses from a local memory controller to a subset of

the L3 slices that are at a reduced distance to nearby memory controller(s),

reducing latency, and increasing equivalent traffic isolation across memory

channels controllers.

MBA usage is not affected in presence SNC; bandwidth targets apply globally

across all SNC domains. L3 CAT and Monitoring features (L3 CMT and MBM)

usage is affected in the presence of SNC. Following sections provide details.

See Appendix A.3 for Intel RDT and Sub-Numa Clustering (SNC) Compatibility

feature supported product details (for example, products where the features

are simultaneously supported).

B.1.2.2 SNC Enabled and L3 Cache Allocation Technology

L3 Cache Allocation Technology (L3 CAT) allows an Operating System (OS),

Hypervisor / Virtual Machine Manager (VMM) or similar system service

management agent to specify the amount of L3 cache capacity of the Resource

Allocation Domain (RAD) into which an application can fill.

84 Document Number: 356688-001US, Revision: 1.0

In the presence of SNC, cache capacity bitmasks are still die-scoped and apply

across multiple-L3 domains. Each bit in the cache capacity bitmask manages all

clusters and dictates the portion of each SNC cluster available for a given

Resource Management Domain. For example, each bit in cache capacity

bitmask represents half as much L3 cache capacity at each cluster when SNC2

is enabled, or one-quarter as much L3 cache capacity at each cluster when

SNC4 is enabled and so on. Note that total L3 cache capacity does not change.

Software may choose to apply consistent policies across SNC domains utilizing

this property, such as CLOS[0] having full access to the cache across any SNC

domain in which it may run, but CLOS[1] having access to only half of the

cache, implying that it contains a set of lower-priority threads.

B.1.2.3 SNC Enabled and RMID Distribution Modes

There are two modes available to control Resource Monitoring ID (RMID)

distribution when SNC is enabled: Default mode and RMID Sharing.

Software should consider and select the mode in which RMIDs are distributed

or shared across the SoC and SNC domains depending on its usage needs.

B.1.2.3.1 Default Mode

When SNC is enabled the available pool of RMIDS are distributed across all the

L3 slices. RMIDs are distributed across the cores in the same fashion as done

when SNC is not enabled, see Figure B-3.

This distribution scheme allows the RMIDS enumerated by CPUID to be directly

used. Software should be aware of the distribution of RMIDs between the SNC

domains. For instance, if there are 320 RMIDs available (enumerated via

CPUID.(EAX=0FH(Shared Resource Monitoring Enumeration leaf), ECX=0H))

and an SNC-4 configuration is selected, four localization domains exist within a

processor.

These 320 RMIDs can be dived into four groups of 80 RMIDS with first 80

allocated to SNC domain 0, the next 80 to SNC domain 1 and so forth. Due to

this distribution policy, RMIDs may be visualized as localized to SNC domains,

and there maybe cases where bandwidth is not counted. Consider for instance

the case where thread with RMID 0 accesses will generate counts only for

traffic in SNC domain 0. Any traffic from this thread that accesses other SNC

domains will not increment any of the other counters. In other words, each

SNC domain will get an equal number of distinct RMIDS from the global pool of

RMIDS that are not shared.

Document Number: 356688-001US, Revision: 1.0 85

Figure B-3. Default Mode Demonstrating SNC-4 and RMID Distribution

B.1.2.3.2 RMID Sharing Mode

RMID sharing mode allows the same RMID to be distributed with traffic

accessing any and all SNC domains, but at the cost of a reduced number of

SoC-level RMIDs available. This model-specific mode aims to mitigate the

disadvantage of the Default mode where software should be aware of the RMID

distribution per SNC domain (and NUMA-aware) and where traffic tagged with

an RMID in one domain will not be counted if it accesses resources in another

SNC domain. RMID sharing mode allows same RMID to sample across SNC

domains, thus ensuring a complete count.

• This is an opt-in mode and requires that the software clears an enable bit

defined in the following MSR 0XCA0, bit[0], see Figure B-4. Note that as a

model-specific capability, this mode is not guaranteed to be supported on

all processors (see Appendix A.3 for support details).

Figure B-4. The RMID_SNC_CONFIG MSR for Enabling RMID Sharing Mode

In this mode the number of RMIDs are distributed across all the L3 slices

effectively reducing the number of RMIDs by the number of SNC domains. In

the case of four SNC domains, the number of RMIDs are divided by four.

Number of valid RMIDs = (Highest RMID value/#SNC_clusters)

86 Document Number: 356688-001US, Revision: 1.0

Using the previous example of 320 RMIDs, in this mode with SNC-2 enabled

there would be (320/2), that is, 160 RMIDs, with SNC-4 enabled there would

be (320/4), that is, 80 RMIDs.

Note: In SNC4 mode, to determine the count for RMID0, the count for RMID0,

RMID80, RMID160, and RMID240 should be read and added to provide the

total count for RMID0.

Note: It is the responsibility of software to read the values from each of the

counters and calculate and interpret the sum using the output of the

IA32_QM_CTR MSR. This is illustrated in Figure B-5.

Figure B-5. RMID Sharing Mode Demonstrating SNC-4 and RMID Distribution

B.1.2.4 Intel® RDT Software Considerations

Depending on its preferred use model and whether this model-specific

capability is supported on a particular processor, software may select either the

mode in which RMIDs are distributed or shared across the SoC and SNC

domains. The default mode where each SNC cluster has a defined group of

RMIDs or the opt-in mode which shares the same RMID across the SNC

domains.

• Without SNC mode enabled the Remote Memory Bandwidth can be

calculated by:

⎯ Remote Memory BW = (Total Memory BW – Local Memory BW) *

Scaling Factor.

• With SNC Mode enabled software should scale the measured BW depending

on the SNC_RMID Mode.

• CMT is similarly affected.

Document Number: 356688-001US, Revision: 1.0 87

Table B-1. SNC Enabled and RMID Distribution Mode Summary

 Default Mode Opt-In : RMID Sharing Mode

Key highlights

• RMID_SNC_CONFIG MSR is Set.

• Each SNC domain has its own

group of RMIDs.

• RMID_SNC_CONFIG MSR is Clear.

• Number of RMIDs divided by the number of

SNC Domains.

• Opt-In mode is enabled by software setting

the MSR 0xCA0[0] = 0.

Example:

RMID Distribution

per SNC Example

for each Mode:

SNC-4 config and

Max 320 RMIDs

1. For each SNC domain, the software

should select an RMID from the range

mentioned next to program

IA32_PQR_ASSOC MSR. This range will

be dependent on NUMA cluster you

choose:

• SNC_Domain_0 : RMID[79:0]

• SNC_Domain_1 : RMID[159: 80]

• SNC_Domain_2 : RMID[239:160]

• SNC_Domain_3 : RMID[319:240]

2. To obtain monitoring data read via

IA32_QM_EVTSEL, MSR uses only the

RMID value to read counter value.

1. Number of Valid RMIDs =

(#RMIDS/#SNC_Domains).

Choose d in {0...79} in this example.

**This range is used to program RMID field in the

IA32_PQR_ASSOC MSR so that the appropriate

hardware counters within the SNC domain are

updated.

2. To obtain monitoring data via IA32_QM_EVTSEL

MSR read 4 counter value from using the next

formula:

MAX_VALID_RMID = #RMIDS/#SNC_DOMAINS

SNC_DOMAIN_0: RMID[0+d]

SNC_DOMAIN_1: RMID[MAX_VALID_RMID*1 + d]

SNC_DOMAIN_2: RMID[MAX_VALID_RMID*2 + d]

SNC_DOMAIN_3: RMID[MAX_VALID_RMID*3 + d]

For this example:

SNC_DOMAIN_0: RMID[0+d]

SNC_DOMAIN_1: RMID[80+d]

SNC_DOMAIN_2: RMID[160+d]

SNC_DOMAIN_3: RMID[240+d]

Differences
• Same number of RMIDS across

SoC.

• RMIDS divided down by the number of SNC

Domains and hence reduced number of

RMIDS available for use.

Differences

• Miss traffic count due to software

that traverses SNC domains. This

can lead to inaccurate counts for

CMT/MBM.

• Counts traffic that traverses SNC domains.

Differences
• Software needs to know the

distribution of RMIDS to SNC

domains.

• Software required to read all the RMID

counters in the SNC domains and add up the

individual count to get the final count.

Note: Only the monitoring features of Intel RDT are affected by the SNC feature.

The allocation features, that is, CAT and MBA are not affected. Bit masks and

BW targets apply globally across all domains. See Table B-1 for SNC enabled

and RMID distribution summary.

B.1.2.5 Scaling Factor Adjustment

CPUID-provided scaling factor (CPUID(0xF(Shared Resource Monitoring

Enumeration leaf).0x1).EBX[31:0]), which software will use to convert MBM

counts into bandwidth figures, needs adjustment in software when the system

is configured in SNC mode. Moreover, calculating different types of bandwidths,

such as local, total, or remote, also needs special considerations. This section

describes how software needs to handle these special cases.

88 Document Number: 356688-001US, Revision: 1.0

When using scaling factor under SNC mode, the scaling factor provided by

CPUID will not account for the reduced number of L3 slices that will be handling

local traffic. The scaling factor value will remain the same as any other

clustering mode. software will then need to adjust the scaling factor. For this

purpose, we define:

AdjustedScalingFactor = ScalingFactor / SNCClusterCount

B.1.2.6 SNC and Intel® RDT for Non-CPU Agent Implications

Intel RDT for non-CPU agents is affected similarly to traditional Intel RDT

features in the presence of SNC. To obtain a correct CMT or MBM data sampling

software should either localize I/O device memory allocations to a given cluster

or sum RMID counts periodically, depending on the RMID localization mode

selected.

In cases where multiple contexts are present on a device (SR-IOV, SIOV, with

attached VMs that may span multiple SNC domains for their execution or

multiple devices are behind an IOSF channel, if memory accesses are

distributed across SNC clusters, then monitoring accuracy decreases

considerably, and the risk of missing cache occupancy or memory bandwidth

increases considerably.

SNC also affects I/O traffic. Software seeking to monitor I/O capacity or

overflow BW to memory (I/O equivalent of CMT or MBM), should determine

which SNC cluster a given address falls into using NUMA-aware supporting

constructs (for example, ACPI HMAT, SLIT tables [4]) and pick a corresponding

RMID for that cluster. As an example, if a device DMA write assigned to an

RMID which does not land in the same SNC cluster as the address and its

memory controller will not be tracked.

B.1.2.7 Calculating Local MBM Bandwidth per Cluster

When MSR 0xCA0 is set to 1 (Default Mode) software will be able to monitor

local BW only from one SNC cluster. If MSR 0xCA0 is set to 0 (RMID Sharing

Mode) then software will be able to monitor Local BW from all SNC clusters.

Independent of the value in MSR 0xCA0, Local MBM Counts from a given SNC

cluster can be converted to BW figures using the adjusted scaling factor

following the same mechanism used under non-SNC modes:

LocalMbmBwClusterN = (LocalMbmCountDeltaClusterN * AdjustedScalingFactor) /

SampleTime

Where:

• ‘LocalMbmCountDeltaClusterN” = (Second Sample of LocalMbmCounter

value (ClusterN) – First sample of LocalMbmCounter value (ClusterN).

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount.

B.1.2.8 Calculating Local MBM Bandwidth for Entire Socket

While operating under any non-SNC mode Local MBM BW will correspond to all

the total traffic within the full socket. To obtain the same metric under SNC

Document Number: 356688-001US, Revision: 1.0 89

mode software may add up the Local BW from each cluster. This can be

achieved only when MSR 0xCA0 is set to 0. Otherwise, software will only be

able to capture the local BW from a single cluster.

LocalMbmBwSocket = ((LocalMbmCountDeltaCluster0 + ... LocalMbmCountDeltaClusterN) *

AdjustedScalingFactor) / SampleTime

Where:

• ‘LocalMbmCountDeltaCluster0” = (Second Sample of LocalMbmCounter

value (Cluster0) – First Sample of LocalMbmCounter value (Cluster0)…

Similarly, delta for for each 1,2,…N.

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount.

B.1.2.9 Calculating Total MBM Bandwidth for the Socket

Calculating the Total MBM BW for the full socket, including the traffic from all

clusters, will require that MSR 0xCA0 is set to 0.

TotalMbmBwSocket = ((TotalMbmCountDeltaCluster0 + ... TotalMbmCountDeltaClusterN) *

AdjustedScalingFactor) / SampleTime

Where:

• ‘TotalMbmCountDeltaCluster0” = (Second Sample of TotalMbmCounter

value (Cluster0) – First Sample of TotalMbmCounter value (Cluster0)…

Similarly, delta for each 1,2,…N.

• ‘AdjustedScalingFactor’ = ScalingFactor / SNCClusterCount.

B.1.2.10 Estimating Remote Traffic

As with Non-SNC modes, remote traffic can be estimated out of the socket’s

Total MBM BW and Local MBM BW with this simple relation:

RemoteMbmBwSocket = TotalMbmBwSocket – LocalMbmBwSocket

Calculating both TotalMbmBwSocket and LocalMbmBwSocket will require MSR

0xCA0 to be set to 0. However, if software decides to keep MSR 0xCA0 set to

“1”, its default value, an alternative mechanism exists to calculate the socket’s

MBM Remove BW as described in the following section.

B.1.2.11 Estimating Remote Bandwidth with MSR 0xCA0 set to 1

If software decides not to switch MSR 0xCA0 to value 0 (for example, out of

Default mode) the mechanism described earlier to calculate the socket remote

traffic will not work. However, it is still possible to estimate the remote traffic

of the entire socket by using MBM counts from a single cluster.

RemoteMbmBwSocket = (TotalMbmBwClusterN - LocalMbmBwClusterN) * SNCClusterCount

B.1.2.12 Example for Local and Total MBM Bandwidth

In this example, software runs on a system configured in SNC-4 mode where

CPUID(0xF(Shared Resource Monitoring Enumeration leaf).0x1).EBX[31:0]

90 Document Number: 356688-001US, Revision: 1.0

reads 0x1E000 (ScalingFactor). AdjustedScalingFactor is then calculated to be

0x7800. If the system is configured with MSR 0xCA0=0 (RMID Distribution

Mode) then software will have the ability to sample BW across all four clusters

in this example. After sampling MBM counts with a delay of one second the

following MBM Count increments are observed:

Table B-2. Local and Total Count Increment

Cluster Local MBM Count Increment Total MBM Count Increment

0 174762 192238

1 43690 61166

2 0 17476

3 0 17476

Software can then calculate Local Bandwidth (BW), Total Bandwidth(BW) and

Remote Bandwidth(BW) following these steps.

1. Calculate Local BW for Cluster 0 using the formula for LocalMbmBw

described earlier:

LocalMbmBwCluster0 = (LocalMbmCountDeltaCluster0 *

AdjustedScalingFactor) / SampleTime

LocalMbmBwCluster0 = (174762 * 0x7800) / 1

LocalMbmBwCluster0 = 5368688640 B/s ~= 5GB/s

2. Calculate Total BW for Cluster 0 using the formula for TotalMbmBw

described earlier:

TotalMbmBwCluster0 = (TotalMbmCountDeltaCluster0 *

AdjustedScalingFactor) / SampleTime

TotalMbmBwCluster0 = (192238* 0x7800) / 1

TotalMbmBwCluster0 = 5905551360B/s ~= 5.5GB/s

3. Following the same procedure Local and Total BWs for the different

clusters may be calculated as shown in Table B-3.

Table B-3. Local and Total Bandwidth Example

Cluster LocalMbmBwClusterN TotalMbmBwClusterN

0 5 GB/s 5.5 GB/s

1 1.25 GB/s 1.75 GB/s

2 0 0.5 GB/s

 0 0.5 GB/s

4. We can also calculate the socket Local and Total BWs:

LocalMbmBwSocket =((LocalMbmCountDeltaCluster0 + ...

LocalMbmCountDeltaClusterN) * AdjustedScalingFactor) /

SampleTime

LocalMbmBwSocket = ((174762 + 43690 + 0 + 0) * 0x7800) / 1

LocalMbmBwSocket = 6710845440B/s ~= 6.25GB/s

TotalMbmBwSocket =((TotalMbmCountDeltaCluster0 + ...

TotalMbmCountDeltaClusterN) * AdjustedScalingFactor) /

SampleTime

Document Number: 356688-001US, Revision: 1.0 91

TotalMbmBwSocket = ((192238 + 61166 + 17476 + 17476) *

0x7800) / 1

TotalMbmBwSocket = 8858296320B/s ~= 8.25GB/s

5. Finally, the remote BW for the socket can be estimated:

RemoteMbmBwSocket = TotalMbmBwSocket – LocalMbmBwSocket

RemoteMbmBwSocket = 8.25GB/s - 6.25GB/s ~= 2GB/s

We can also use this example to show to estimate the socket’s remote BW if

MSR 0xCA0 is set to 1 (Default mode). Under such conditions only MBM counts

from a single cluster can be obtained. Assuming that the software has picked

and RMID from cluster 0, we can use the values calculated earlier for

LocalMbmBwCluster0 and TotalMbmBwCluster0. Then:

RemoteMbmBwSocket = (TotalMbmBwCluster0-

LocalMbmBwCluster0) * SNCClusterCount

RemoteMbmBwSocket = (5.5GB/s – 5.0GB/s) * 4 ~= 2GB/s

Note that the value for RemoteMbmBwSocket obtained through this mechanism

matches that obtained by using the MBM counts from all clusters.

By analyzing the results from this example, we can conclude, from the thread

or threads assigned to the selected RMID that:

• Thread(s) are generating 5 GB/s of traffic towards cluster 0.

• Thread(s) are generating 1.25 GB/s of traffic towards cluster 1.

• Thread(s) are not generating local traffic towards clusters 2 or 3.

• Thread(s) are generating 2 GB/s of traffic towards a remote socket.

• Each SNC cluster is handling 0.5 GB/s of that remote traffic.

B.1.3 STLB QoS

Translation Lookaside Buffer (TLB) misses can cause costly execution delays

due to page walks. Considered from a capacity management perspective, STLB

QoS behaves in a similar manner as Cache Allocation Technology (CAT) does

on the data caches, by giving software the ability to provide hints to hardware

that guide the placement of translations in the STLB. This control can provide

fair sharing or improved isolation of TLB resources between applications

organized by Classes of Service.

Note: This model-specific feature is intended for use primarily with specialized real-

time operating systems that provide extensions to bound the number of tasks

running on a core and thus sharing a TLB. Depending on the software

environment, additional runtime restrictions and software optimizations may

be needed to observe the potential performance benefits of STLB QoS.

Contact your Intel representative for additional details.

Refer to Appendix A.3 for supported product details, which vary across

generation and processor type.

92 Document Number: 356688-001US, Revision: 1.0

B.1.3.1 Enumerating Support for STLB QoS

STLB QoS is model specific and support for it is enumerated through the

IA32_CORE_CAPABILITIES MSR. To determine if the processor supports the

IA32_CORE_CAPABILITIES MSR, software can check whether the CPUID

Extended Feature flag at CPUID.0x7(Structured Extended Feature

Flags).0:EDX[30] is set to ‘1’.

If CPUID.0x7(Structured Extended Feature Flags).0:EDX[30] is ‘1’, then

support for STLB QoS can be confirmed via the IA32_CORE_CAPABILITIES MSR

as defined next.

Table B-4. STLB QoS Enumeration in IA32_CORE_CAPABILITIES MSR

Name Address Scope Bit RW Bit Name Description

IA32_CORE_CAPABILITIES CFh Core 0 RO STLB_QOS When set to 1, processor

supports STLB QoS

B.1.3.2 STLB QoS Register Interfaces

This section contains the register interfaces for configuring STLB QoS. Software

should first read the STLB_QOS_INFO to determine the maximum number of

classes of service and capacity bitmask length and may then proceed to

partitioning the STLB using the STLB_QOS_MASK_n registers.

B.1.3.2.1 STLB_QOS_INFO

Software may discover the necessary information for configuring STLB QoS via

the STLB_QOS_INFO MSR as defined next.

Table B-5. STLB_QOS_INFO MSR Definition

Name Address Scope Bit RW Bit Name Description

STLB_QOS_INFO 1A8Fh Core

5:0 RO NCLOS
Number of CLOS supported for STLB

resource using minus-1 notation.

19:16 RO 4K_2M_CBM
Length of capacity bitmask for 4K and

2M pages using minus-1 notation.

29:29 RO

STLB_FILL_

TRANSLATION

_MSR_SUPPORTED

MSR interface to fill STLB translations

supported.

30:30 RO 4K_2M_ALIAS
Indicates that 4K/2M pages alias into

the same structure.

B.1.3.2.2 STLB_QOS_MASK_N

STLB_QOS_MASK_n registers define the capacity bitmask to be applied when

filling new translations into the STLB. The mask used will depend on the core’s

current Class of Service at the time of TLB miss, as configured via the

IA32_PQR_ASSOC MSR (covered in Chapter 3.2 Intel RDT Allocation Common

Framework). The STLB_QOS_MASK_n registers are dynamic and may be

changed at runtime.

Document Number: 356688-001US, Revision: 1.0 93

Software should limit the number of mask registers used to the number of

supported STLB QoS CLOS. For example, if STLB_QOS_INFO[NCLOS] returns

0x7, then a total of eight classes of service are supported and valid

STLB_QOS_MASK_n registers would be 1A90h – 1A97h as defined in Table B-6.

Attempts to use unsupported STLB QoS mask registers will generate #GP(0).

Table B-6. STLB_QOS_MASK_N MSR Definition

Name Address Scope Bit RW Bit Name Description

STLB_QOS_MASK_n 1A90h

-

1A9Fh

Core 7:0 RW WAY_MASK STLB QoS mask for CLOS

n. The number of mask

bits is enumerated in MSR

STLB_QOS_INFO.

‘1 in bit indicates

allocation to the way is

allowed. ‘0 indicates

allocation to the way i‘ not

allowed.1,2

NOTES: 1. Mask values must be contiguous 1s.

 2. Way mask only applies to 4K/2M STLB.

B.1.3.2.3 STLB_FILL_TRANSLATION

As a further specialized extension to STLB QoS, certain processors support a

mechanism to manually populate entries in the STLB, rather than requiring that

pages of interest be accessed by software as part of a TLB fill flow to populate

the entries.

If STLB_QOS_INFO[STLB_FILL_TRANSLATION_MSR_SUPPORTED] is ‘1’,

software may populate entries in the STLB directly by writing the logical

address (LA) and Class of Service to use for the fill to

STLB_FILL_TRANSLATION as defined next.

Table B-7. STLB_FILL_TRANSLATION MSR Definition

Name Address Scope Bit RW Bit
Name

Description

STLB_FILL_

TRANSLATION

1A8Eh Core 3:0 WO CLOS Class of service to use for the fill.

10:10 WO X Set to 1 when LA is to an

executable page.

11:11 WO RW Set to 1 when LA is to a writeable

page.

63:12 WO LA Logical address to use for fill.

Note: The STLB_FILL_TRANSLATION MSR should not be used in the VMX load list as

a #GP(0) will occur.

B.1.4 L3 Cache Allocation Technology

Certain Intel® Core™ and Intel Atom® processors with support for Intel® Time

Coordinated Computing (Intel® TCC), and certain communications related

Intel® Xeon® processors implement a model specific, non-architectural version

94 Document Number: 356688-001US, Revision: 1.0

of L3 Cache Allocation Technology (L3 CAT). In model-specific

implementations, parameters such as CBM bitmask length and number of

supported CLOS are specified on a per-processor basis rather than in CPUID

(see the following section).

The non-architectural implementations of L3 CAT behave similarly to the

architectural implementation, however under certain circumstances the

performance characteristics may vary. Intel recommends evaluating overall

system performance with model-specific non-architectural L3 CAT to verify

performance targets are met.

B.1.4.1 Processor Support List

The following table can be used to identify which processors support the model

specific non-architectural implementation of L3 CAT. Registers for programming

the capacity bitmask for a given CLOS follow the same location and definition

of the IA32_L3_MASK_n MSR’s as defined in the Intel® Software Developer’s

Manual.

Table B-8. Processor support list

Processor Brand String # L3 Classes of
Service (CLOS)

Capacity Bitmask
Length (CBM)

Intel Atom® Processors

Intel Atom® x6427FE Processor

4

16

Intel Atom® x6425RE Processor 16

Intel Atom® x6414RE Processor 16

Intel Atom® x6212RE Processor 16

Intel Atom® x6200FE Processor 8

Intel Atom® X6416RE Processor 16

Intel Atom® X6214RE Processor 16

Intel Atom® x7211E Processor

16

12

Intel Atom® x7425E Processor 12

Intel Atom® x7213E Processor 12

11 Gen Intel® Core™

Processors (UP3-Series)

Intel® Core™ i7-1185GRE Processor

4

12

Intel® Core™ i5-1145GRE Processor 8

Intel® Core™ i3-1115GRE Processor 12

Intel® Xeon® W Processors

(TGL-H)

Intel® Xeon® W-11865MRE Processor

4

12

Intel® Xeon® W-11865MLE Processor 12

Intel® Xeon® W-11555MRE Processor 8

Intel® Xeon® W-11555MLE Processor 8

Intel® Xeon® W-11155MRE Processor 8

Intel® Xeon® W-11155MLE Processor 8

12 Gen Intel® Core™

Processors (S-Series)

Intel® Core™ i9-12900E Processor

16

12

Intel® Core™ i7-12700E Processor 10

Intel® Core™ i5-12500E Processor 12

Document Number: 356688-001US, Revision: 1.0 95

Processor Brand String # L3 Classes of
Service (CLOS)

Capacity Bitmask
Length (CBM)

Intel® Core™ i3-12100E Processor 12

13 Gen Intel® Core™

Processors (P-Series)

Intel® Core™ i7-1365UE Processor

16

12

Intel® Core™ i7-1365URE Processor 12

Intel® Core™ i5-1345UE Processor 12

Intel® Core™ i5-1345URE Processor 12

Intel® Core™ i3-1335UE Processor 12

Intel® Core™ i3-1315UE Processor 10

Intel® Core™ i3-1315URE Processor 10

Intel® Core™ i7-1370PE Processor 12

Intel® Core™ i7-1370PRE Processor 12

Intel® Core™ i5-1350PE Processor 8

Intel® Core™ i5-1350PRE Processor 8

Intel® Core™ i3-1340PE Processor 8

Intel® Core™ i3-1320PE Processor 8

Intel® Core™ i3-1320PRE Processor 8

Intel® Core™ i7-13800HE Processor 12

Intel® Core™ i7-13800HRE Processor 12

Intel® Core™ i5-13600HE Processor 12

Intel® Core™ i5-13600HRE Processor 12

Intel® Core™ i3-13300HE Processor 8

Intel® Core™ i3-13300HRE Processor 8

13 Gen Intel® Core™

Processors (S-Series)

Intel® Core™ i9-13900E Processor

16

12

Intel® Core™ i9-13900TE Processor 12

Intel® Core™ i7-13700E Processor 12

Intel® Core™ i7-13700TE Processor 12

Intel® Core™ i5-13500E Processor 12

Intel® Core™ i5-13500TE Processor 12

Intel® Core™ i5-13400E Processor 10

Intel® Core™ i3-13100E Processor 12

Intel® Core™ i3-13100TE Processor 12

NOTES: 1. L3 CDP is not supported on any Intel® Core™ or Intel® Atom™ processors that

implement model specific L3 CAT.

 2. Communications-oriented processors from the Intel® Xeon® E5 v3 Family also support

a form of model-specific L3 CAT.

B.1.4.2 Register Definitions

This section identifies deltas in the register definitions for programming model

specific L3 CAT. The deltas are derived against the architectural equivalent

96 Document Number: 356688-001US, Revision: 1.0

register as documented in the Intel® 64 Architecture Software Developer's

Manual (SDM), Volume 4: Chapter Title: MSRS IN THE 6TH GENERATION, 7TH

GENERATION, 8TH GENERATION, 9TH GENERATION, 10TH GENERATION, 11TH

GENERATION, 12TH GENERATION, AND 13TH GENERATION INTEL® CORE™

PROCESSORS, INTEL® XEON® SCALABLE PROCESSOR FAMILY, 2ND, 3RD, AND

4TH GENERATION INTEL® XEON® SCALABLE PROCESSOR FAMILY, 8TH

GENERATION INTEL® CORE™ I3 PROCESSORS, AND INTEL® XEON® E

PROCESSORS.

The naming convention for model specific L3 CAT registers mirrors the

architectural L3 CAT registers without the “IA32_” prefix, for example,

PQR_ASSOC (model specific) versus IA32_PQR_ASSOC (architectural).

The following deltas are consistent across all platforms that support model

specific L3 CAT:

• Resource Monitoring ID’s (RMIDs) are not guaranteed to be supported

unless indicated by CPUID.

• L3 CDP is not supported.

B.1.4.2.1 PQR_ASSOC

The PQR_ASSOC MSR closely follows the IA32_PQR_ASSOC definition with

exception of RMID. Platforms that support model specific L3 CAT typically do

not support RDT Monitoring, with the exception of the Intel® Xeon® E5 v3

Family, and software should carefully consult CPUID before assuming support

for any RDT Monitoring features.

B.1.4.2.2 L3_QOS_MASK_n

The L3_QOS_MASK_N MSRs are identical in definition to the

IA32_L3_QOS_MASK_N for architectural L3 CAT. For the number of mask

registers supported and acceptable CBM bit vector lengths, refer to Table B-8

for the processor support list.

B.1.4.3 Shareable Bit Mask

Processors with an integrated GPU may be configured, by default, to allow the

GPU full access to the L3 cache in certain performance modes. This behavior

remains consistent independent of the values written to the L3_QOS_MASK_n

registers, as these mask registers do not affect the cache policy for

transactions initiated from the GPU. Software should consider all L3 cache ways

as shared with the GPU.

For processors that support Intel® Time Coordinated Computing (Intel® TCC),

optimizations are available for those that require improved isolation in the L3

cache. Contact your Intel representative for additional details.

B.1.4.4 Software considerations

Software that discovers enumerated support for architectural L3 CAT using

CPUID.(EAX=07H(Structured Extended Feature Flags), ECX=0) will not

Document Number: 356688-001US, Revision: 1.0 97

automatically work with the non-architectural implementation. This section will

cover known nuances and recommendations for working with the model

specific non-architectural L3 CAT.

Note: Processors that support both L2 CAT and L3 CAT may have a delta in the

number of CLOS supported between the L2 and L3. Intel recommends limiting

software to use no more classes of service than the lesser of the two values.

B.1.4.4.1 Linux* Resource Control Groups (/sys/fs/resctrl)

Intel enables support for Intel RDT features in the Linux* kernel via Resource

Control (CONFIG_X86_CPU_RESCTRL). Resource control provides an OS

interface for configuring and using Cache Allocation Technology (CAT), Cache

Monitoring Technology (CMT), Memory Bandwidth Monitoring (MBM), and

Memory Bandwidth Allocation (MBA).

Resource Control leverages CPUID to detect hardware support for the various

Intel RDT sub-features. On processors that support model specific non-

architectural L3 CAT, CPUID.(EAX=07H(Structured Extended Feature Flags),

ECX=0) will not enumerate support and therefore Resource Control will not

support L3 CAT. Configuring of the L3_MASK_n registers will not be possible

through the resctrl interface and must be completed through direct MSR access.

One feature of Resource Control is being able to associate a Class of Service

with a Process Identifier (PID), and having the kernel automatically update the

CLOS on context switch. If using a CPU that supports model specific non-

architectural L3 CAT and updating the class of service on context switch is

desired, it is possible to achieve this if the platform also supports L2 CAT.

Resource Control would be utilized to configure L2 CAT and create the

appropriate PID to CLOS mapping, while the L3 masks would need to be

configured out-of-band (for example, direct MSR programming).

B.1.4.4.2 Intel-cmt-cat Tool

The Intel RDT software package intel-cmt-cat is a software library that

supports the Allocation and Monitoring features of Intel® RDT. It can work with

or without kernel support of Intel RDT, which makes intel-cmt-cat a useful tool

when working with model specific non-architectural L3 CAT.

Intel-cmt-cat provides a pqos utility which access to the Intel RDT features

through a command line interface. pqos can be used to program the

L3_MASK_n registers on platforms that support non-architecture L3 CAT. Use

the ‘--iface=msr’ parameter to force enumeration and programming to be

completed through MSR interfaces and not the OS interfaces.

	1 Introduction
	1.1 High Level Usage Models
	1.2 Scope
	1.3 Audience
	1.4 References

	2 Intel® Resource Director Technology Overview
	2.1 Common Tags
	2.2 L3 Configurations
	2.3 Intel® RDT Monitoring Technologies
	2.3.1 Intel® RDT Monitoring Key Ingredients
	2.3.2 Shared-L3 versus Multiple-L3 Configuration

	2.4 Intel® RDT Allocation Technologies
	2.4.1 Intel® RDT Allocation Key Ingredients
	2.4.2 Shared-L3 versus Multiple-L3 Configuration

	3 Intel® Resource Director Technology for CPU Agents
	3.1 Intel® RDT Monitoring Features
	3.1.1 Common Framework
	3.1.2 Cache Occupancy Monitoring Technology
	3.1.2.1 L3 Cache Monitoring Technology

	3.1.3 Memory Bandwidth Monitoring
	3.1.3.1 L3 Total and Local External Memory Bandwidth Monitoring

	3.2 Intel® RDT Allocation Features
	3.2.1 Common Framework
	3.2.2 Cache Occupancy Allocation Technologies
	3.2.2.1 L2 Cache Allocation Technology
	3.2.2.2 L2 Cache Code and Data Prioritization
	3.2.2.3 L3 Cache Allocation Technology
	3.2.2.4 L3 Cache and Data Prioritization

	3.2.3 Memory Bandwidth Allocation
	3.2.3.1 First Generation Memory Bandwidth Allocation
	3.2.3.1.1 Usage Considerations

	3.2.3.2 Second Generation Memory Bandwidth Allocation
	3.2.3.2.1 Second Generation MBA Advantages
	3.2.3.2.2 Software-Visible Changes

	3.2.3.3 Third Generation Memory Bandwidth Allocation
	3.2.3.3.1 Hardware Changes
	3.2.3.3.2 Software-Visible Changes

	3.2.4 Cache Bandwidth Allocation
	3.2.4.1 CBA Overview
	3.2.4.2 Example of CBA Throttling Mechanism
	3.2.4.3 Software Interface
	3.2.4.4 Software Usage

	4 Intel® Resource Director Technology for Non-CPU Agents
	4.1 Introduction
	4.2 Features
	4.3 Enumeration
	4.4 Interface
	4.5 Common Tags
	4.6 I/O Blocks and Channels
	4.7 I/O Block Configuration
	4.8 Shared-L3 Configuration
	4.8.1 Software Flow
	4.8.2 Monitoring: Data Flows for RMIDs
	4.8.3 Allocation: CLOS-based Control Interfaces

	4.9 CXL-Specific Considerations
	4.9.1 CXL block Interfacing Fundamentals
	4.9.2 Integrated Accelerators

	4.10 Use Cases

	5 BIOS Considerations
	5.1 Architectural Intel® RDT Features for Non-CPU Agents
	5.1.1 RMID/CLOS tagging - ACPI Enumeration
	5.1.1.1 ACPI Definitional Goals
	5.1.1.2 IRDT ACPI Enumeration Overview
	5.1.1.3 Example ACPI Enumeration Cases
	5.1.1.4 ACPI Feature Enumeration – Table Structure Details
	5.1.1.4.1 Introduction and Notation
	5.1.1.4.2 IRDT Table Format and Field Descriptions
	5.1.1.4.3 RMUD Table Format and Field Descriptions
	5.1.1.4.4 DSS Table Format and Field Descriptions
	5.1.1.4.5 RCS Table Format and Field Descriptions

	5.2 Model-Specific Intel® RDT Features for CPU Agents
	5.2.1 BIOS knobs for Resource Aware MBA

	6 MMIO Register Descriptions
	6.1 Non-CPU Agent Intel® RDT Register Location
	6.1.1 Software Access to Registers
	6.1.2 Register Descriptions for Non-CPU Agents
	6.1.2.1 Link Interface Type RMID/CLOS Tagging MMIO Interfaces

	7 Programming Guidelines
	7.1 Intel® RDT Monitoring Software Flows for CPU Agents
	7.1.1 Intel® RDT Monitoring Software Flows for CPU Agents
	7.1.1.1 Step 1 – Enumeration
	7.1.1.2 Step 2 – RMID Association
	7.1.1.3 Step 3 – Event Selection Setup
	7.1.1.4 Step 4 – Data Sampling
	7.1.1.5 Step 5 – Sample CMT/MBM Data Collection and Analysis

	7.1.2 Native OS Environments
	7.1.3 Virtualization Scenarios

	7.2 Intel® RDT Allocation Software Flows for CPU Agents
	7.2.1 Intel® RDT Software Allocation Flows for CPU Agents
	7.2.1.1 Step 1 – Enumeration
	7.2.1.2 Step 2 – Optionally Enable CDP
	7.2.1.3 Step 3 – Mask and Bandwidth Control Setup
	7.2.1.4 Step 4 – CLOS Association

	7.3 Intel® RDT Software Flows for Non-CPU Agents

	A Intel® RDT Feature Details
	A.1 Intel® RDT Feature Evolution
	A.2 Intel® RDT Architectural Features and Supported Products
	A.3 Intel® RDT Model-Specific Features and Supported Products
	A.4 Feature Mapping: CPU Agents, Non-CPU Agents in Different L3 Configurations
	A.5 Architectural MSRs used with Intel® RDT Features
	A.6 Model-Specific Registers for Intel® RDT Model Specific Features

	B Model-Specific Intel® RDT Features
	B.1 Model-Specific Intel® RDT Features for CPU Agents
	B.1.1 Resource Aware MBA
	B.1.1.1 Overview
	B.1.1.2 Enable MSR

	B.1.2 Intel® RDT and Sub-NUMA Clustering Compatibility
	B.1.2.1 Introduction
	B.1.2.2 SNC Enabled and L3 Cache Allocation Technology
	B.1.2.3 SNC Enabled and RMID Distribution Modes
	B.1.2.3.1 Default Mode
	B.1.2.3.2 RMID Sharing Mode

	B.1.2.4 Intel® RDT Software Considerations
	B.1.2.5 Scaling Factor Adjustment
	B.1.2.6 SNC and Intel® RDT for Non-CPU Agent Implications
	B.1.2.7 Calculating Local MBM Bandwidth per Cluster
	B.1.2.8 Calculating Local MBM Bandwidth for Entire Socket
	B.1.2.9 Calculating Total MBM Bandwidth for the Socket
	B.1.2.10 Estimating Remote Traffic
	B.1.2.11 Estimating Remote Bandwidth with MSR 0xCA0 set to 1
	B.1.2.12 Example for Local and Total MBM Bandwidth

	B.1.3 STLB QoS
	B.1.3.1 Enumerating Support for STLB QoS
	B.1.3.2 STLB QoS Register Interfaces
	B.1.3.2.1 STLB_QOS_INFO
	B.1.3.2.2 STLB_QOS_MASK_N
	B.1.3.2.3 STLB_FILL_TRANSLATION

	B.1.4 L3 Cache Allocation Technology
	B.1.4.1 Processor Support List
	B.1.4.2 Register Definitions
	B.1.4.2.1 PQR_ASSOC
	B.1.4.2.2 L3_QOS_MASK_n

	B.1.4.3 Shareable Bit Mask
	B.1.4.4 Software considerations
	B.1.4.4.1 Linux* Resource Control Groups (/sys/fs/resctrl)
	B.1.4.4.2 Intel-cmt-cat Tool

