intel

Intel® Trust Domain Extensions (Intel® TDX) Module
Base Architecture Specification

348549-007US
September 2025

Copyright © 2025 Intel Corporation. All rights reserved.

10

15

20

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

Notices and Disclaimers

|II

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others.

September 2025 . Page 2 of 196

Introduction and Overview

Section 1:

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

10

15

20

25

30

35

45

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US
Table of Contents
SECTION 1: INTRODUCTION AND OVERVIEW.cccooinuneeeiiiiiisssssnneenssnnsanss 13
1. PAY o To 101 o 4 TE 0 Te ol U]y 111 o | SO TRt 14
1.1, S5COPE Of thiS DOCUMENL ...ttt ettt sttt sat e st e et e st e e ase e st e s neesateesanee s 14
1.2. DOCUMENT OFGARNUZATION ...ttt ettt e e e e ettt e e e e s sttt e e e e e s sastsbbeeaeeessaasnbeneees 14
i A € [0 X1 Yo T PSP PPUPPPPPP 15
1.4. INOTGLION .ottt ettt ettt et et et et et et et et et et et eteeea et e e e s etesaterseasaseaaearararararaes 18
1.4.1. Requirement and Definition COmMMItMENt LEVEISccccveeieiuiiie ettt e et e e vre e e are e 18
T 0 =7 -1 o =X F SRS 19
1.5.1. T =Y I U o] [ol 3o Yol T3 o =T o1 {3 PR UPPRRt 19
1.5.2. INTEI TDX PUDIIC DOCUMEBNTS ..etiiiiiiiiiiteeeiitee ettt ee e sttt e e sttt e st e e s st e e s sateeesabeeeesabaeesessaeesnssaeesnnseeesnnes 19
2. Overview of Intel® Trust DOMAiN EXTENSIONScccvviiiiiniiiiiisniiiissniiisssnisisssssssssssesssssssesssssssessssssssssssssssssssasssss 21
D B 1 =T I D) Q1 [oTe (V] = N Lol o - USRS 21
2.1.1. Boot-Time Configuration and Intel TDX Module LOadingccocuieeiiiiieeeiiiee et eecvee e eevee e e e 21
2.1.2. Intel TDX Module Initialization, Enumeration and Configurationcceeccviiiiiiieeecciee e 21
2.2, GUESE TD Life CYCIE QVEIVIEWcoc.eeeeeeeeieeeeee ettt e ettt ette e e sttt e e et e e e et e e e e tsaaaeastsaaeetssaaassasasasssesenssees 22
2.2.1. LRI DN 2T 1] o P RS SP 22
2.2.2. (UL I =T ol U T o PP PPPPPRE 22
2.2.3. Guest TD Management during itS RUN-TIME......ccciiiiiiiiieiiieeiee ettt sttt s e sbe e s b e earee e 22
2.3. Intel TDX Operation Modes aNd TIANSILIONScceecuueeeeeiuiseesiieeeesiie e ettt eeeteeesstieaeesstteassssseasssssesessssaeassssaees 23
2.4. Guest TD Private MEmOry PrOTECEIONccccueiivouiiiieiiie ettt ettt ettt st e st e e et e s ainnes 24
2411, MEMOTY ENCIYPLION woiiiiiiiiiiiiiiiii e rre e s 24
2.4.2. Fi¥e [o [T N = 0 1 - 4 o] o PP UUPRRE 24
2.5. GUESTE TD SEALE PrOLECTLION ...eeeeeeeeeeeeeeseeesese s ese s et et e sese s e s e s e s e s s s e s s s s sssesssssssssesesssssssesssasesasssssesssssssssssssssssssssesssesssees 25
2.6. Intel TDX [/O Model (W/0 TDX COMNECL)cveeeeeeeeereereereeeeeteeteesieeereesaeesaeeaeeseeesseesseaseessesssessessssassesssesssessenes 25
2.7. MeaSUIremMENt ANA ALLESTALION.........ccccueeeeeeeieeeeeee e et e e et e e ettt e e e sttt e e e teeestteaesasteasasteaesasseaassssesssasssessansenaens 26
2.8. TD PAIEIEIONING «.vvvvveeeeiiiiiees ettt e e sttt e e e se ettt e e e s sttt a e e e s ssssstbaaaasessssstteaasssssssstaansassssssanssnneaesssnaas 26
D R 0 N 1V 1o [4o L1 o] F OSSP TPPPPPPRNE 27
2.10. Intel TDX Managed CONLIOl SEIUCTUIEScceeeeueeieeeeeeeeeeeeeeeee e eeee ettt e e e e e ee ettt a e e e e essstaeaaeaseesssssasasaseessinsses 28
2.11. INEEI TDX INTEIFACE FUNCLIONS ...t e e e ettt e et e e e et e e et e e e taa e e e aatsaaeesssaseastssaeassseaeessees 28
2.11.1. Host-Side (SEAMCALL Leaf) Interface FUNCLIONSccciiiiiiiiee ettt e vve e e e vee e e eareeeenes 29
2.11.2. Guest-Side (TDCALL Leaf) INterface FUNCHIONSuviiiiieiiieiiee ettt e e e e e enarareeeeeeean 31
3.1.2.1.
3.3.1.2.2. SOFtWAIE USE CASES ...uuuvrriiiiiiiisiinrteiiiiiiisisssstetiiiisssssssssesssissssssssssessssssssssssssesssanssssssssss 32
2 S [1=T I D) Q1Y [o e (V] = N o) o - 32
3.1.1. Intel TDX Module Platform-Scope First-Time Initialization..........ccccveeiiiieiecie e 32
3_3_%1_1.2. Intel TDX Module Shutdown and UpPdateuuiiiiiiiiiiiiiee ettt etre e e e e e e e e snrrer e e e e e e eanees 32
3.3.1.2. Intel TDX MOdUIE REIOAM ...t e et e e e e e e et brr e e e e e e s e s antaeseeeeeeenannes 33
3.3.1.3. INtel TDX MOAUIE UPAALE ...ovviieieeiiieeeee ettt ettt ettt s et et e e sabeeeaae e sabeeetaeesabeeeaseesabeeesseesareenanens 33
3.3.1.4.
BB5. TD BUIIU .ottt ettt ettt e et b e ts e tteat et et e et e et s etsetteab et et et e et s e teetteab e s et e eteetaeteetteas e s e ranns 33
3.3. L Y I 1= USRI PUUPPRN 35
3.3.1. Private Memory IManagemMeENTt.......ocicuuriiiierieiiciiiiteee e e e sttt e e e e e ssstreeeeeeeesesaataeeeeessassstaeeeasssasssssneeesssssnnnses 35
Dynamic Page Addition (Shared to Private CONVEIrSiON)cccccereicieeeeriieeeeciee e sieeeesee e e eee e e seeeee s 35
Dynamic Page Removal (Private to Shared CONVErsioNn)........cccoeiieiiieeeciiie et 36
Page Promotion (Mapping IMEIEE)uueeieiiiieeeeiee et ette e ettt e ettt e e e et e e e e ate e e eeabeeeesbaeeeessaeeeeareaans 37
Page Demotion (Mapping SPIT)uii ittt e e et e e et e e e ettt e e eetae e eeaaeeeeareaans 38
GPA RANGE UNDIOCK. ..cii ittt e e e e e et e e e e e e e st b e e e e e e eeeeasaaaeeaaaesennsnaaeeaaaeann 38

September 2025

Page 3 of 196

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

3.3.2. GUEST TD EXOCULION .ttt ettt e e ettt e e e e s e et b et e e e e e e s e abeb e e eeeee s e sabbeeeeeesenannreeaeas 39

TD VCPU First-Time INVOCATION ..cceiiiiiiiiiiiee ittt e e e s e e e s e e mnneee s 39

TD VCPU Entry, Exit on TDG.VP.VMCALL and Re-ENtry.....ccccoviuieiiiiiieeecieie et 40

TD VCPU Entry, Exit on Asynchronous Event and RE-ENtrycccccevcuveeeeiiiii i 40

GUESE-SIAE FUNCLIONS ..eiiiiiiiieiiee ittt ettt ettt st st e st e e s te e s e e sate e sabeesabeesabeesabeesabaesabeesasaesaseesns 41

TD VCPU Rescheduling (Migration t0 ANOTNEr LP)......cccueiiuiieiieiciieesie et esre et ve e siveesvae e sae e s 42

3.4. TD DESEIUCTION ..ottt ettt ettt e e ettt e e e e e sttt e e e e e s sbst b e e e e eesaassstbeeaaeesaaaassbaneaaeeanaas 42

SECTION 2: INTEL TDX MODULE ARCHITECTURE SPECIFICATIONciceuiiiiemeiiiinnnieiiensieinensieiisnsseissssssssssssssssssssssnssssssnsnns 45
3.3.2.2.

4.::§:§:i]ntel TDX Module Lifecycle: Enumeration, Initialization and Shutdownccccceereereeericveeerccreeescseeesecsaneens 46

o e T o 46

4.1.1. Intel TDX Module Lifecycle State Machingooociiie ittt e e e et are e s baeaeenes 46

4.1.2. Platform Compatibility and Configuration Checkingceeccuiiiiiiiee e 47

OVEIVIBW ..tteveeeieietereteeeteserereseseeesessseeaessesetaesesseasssressesssasssssssesssssesssssssssssssssssssssssssssssssssesssesereresessrernrene 47

CPU CONFIGUIAtION ...ttt ettt ettt et s e e bt e s b et s bt e sabe e e st e e baeeneesabeeenneesanes 47

MSR SampPling @aNd ChECKSeeeiiiiiiieiieiiee ettt sttt e et sar e e saa e e sareesaee s 47

CPUID Sampling, Checks and ENUMEration.........ocueeiiiiiiieriiiiee ettt 47

:-1-?;1.3. Physical Memory CONfigUration OVEIVIEW............cviveviiuieriieeeteereeeeetesteetesteeteeseeseessesrestesasereessesseseessessesaeas 47

4123 Intel TDX ISA Background: Convertible Memory Ranges (CMRS)ccoeeiviniiieniniiiniecceicne, 48

4.1.2.4. TDMRs and PAMT Arrays CONfigUrationcocuieeiiiiie ettt ettt erte e eevae e e stve e e e ata e e e enaae e saaeeeas 48

4.1.34.1.1.4. TDX MOAUIE EXLENSION OVEIVIEW .. .veiiiiiiiiieiiieiieesieesieesteessseesbeessteesbeessseesabeesnseessbessnseesssessnsessnsesensessnnes 50

Y32 Intel TDX Module INItiGlIZALION INEEITACEcvcveveeeeeeeeeeereeeieeereeieeeseeesesesesssesssssesessssesssassesassesssssasessssesasassans 50

4.2.1. TDH.SYS.INIT: Global INitialiZationccuuvieiieeeeecieeeee e et e e e e e e earr e e e e e e e e s ntnaaeeeeeeens 50

4.2.2. TDH.SYS.LP.INIT: LP-Scope INitializationccooeuiiiiiiiieeeiee ettt e st e e et e e s saaae e e saaee s 50

4.2.3. TDH.SYS.RD/RDALL and TDH.SYS.INFO: TDX Module ENUMEration..........ccceceevereereeriesie e e seee e 50

4.2.4, TDH.SYS.CONFIG: TDX Module Global CoNfigUrationcccceeviiiiiieeiiiiiiiie et 51

4.2.5. TDH.SYS.KEY.CONFIG: Key Configuration (per Package).......ccccuciriieiiiiiiiiie it 51

4.3. TDH.SYS.TDMR.INIT: TDMR and PAMT INitiQliIZAtIONcc..eeeeeneieieaiiieeiiie ettt 51

4.4. TDX Module EXtension INItIQIZATIONc.eeeueerieeeieeiieeeee ettt ettt ettt e st eesaeeesbeeesaee e 52

4.5. TD-Preserving TDX MOAUIE UDAOLEoeeeeueeeeeeeiieeeiie et estee e stta e e tte e e et a e sttt e e s astaesasteassssesesssneassnsees 52

T = S © 17T T O 52

452425.2. Data Preserved across TDX Module UPdateeeeiiieiiiiiiei ettt e e rtvee e e e e e s snrvenee e e e e eanens 53

Handoff Data in SEAM RANGE.....cccuiiiiiiieeeciieeeeciie e eetiee e e stteeeestte e e eetteeeesabaeeeestaeesbbeeeesstaeseessaeesnsseeans 53

TDX Data in Memory outside SEAM RANGE........c.c.uuiiieiiieiiiiieiee e ccittree e e settre e e e e e s eaaaree e e e e s esansaeneas 53

4.5.3. [Y aTe Lo AV Z=T Y T o 112V SRS PR UPTUPRRRNt 53

1'3'21;5.4. TDH.SYS.SHUTDOWN: Shut Down the TDX Module as a Preparation for an Update..........cccevererenen.e. 55

4.5435.5. TDH.SYS.UPDATE: Restore TDX Module State after a TD-Preserving Update........cccceeeveeeeecieeencneeescneennnn 55

4.5.6. Compatibility Aspects of TD-Preserving UpPdate......ccoccueiiiiieieiiciee et ctiee e ree e see e st e e saeee e e 55

2= 1ol €= o TV o RS 55

Avoid TDX Module Update during Update-Sensitive TD Lifecycle Phases........ccccceeeeciiieeeeeeeeccnnneenen. 56

Detect Incompatibilities after TDX Module Update.........ccccuviiiiiiiiiiciiiiieee et 56

4.6. TDX Module Fatal Error Handling
4.6.1. OVEIVIBW ...ttt ettt ettt e e e st e e ettt e sttt e st e e e s b et e s eane et e s se e e e e nbe e e s an s et e sans e e e e anbeeesennreeesannneessaseeesennreeesannnes

4.6.2. FATAL_INFO: Fatal Error Diagnostic INfOrmation..........ccceeeeeiiii e e e 57
4.6.3. Expected Host VMM and BIOS Behavior on TDX Module Fatal Error.......cccccvveveeeeeivciee e cieeeeiee e 57
Memory Encryption Key Management.......cccceiiiiiiiiiemmueiiiniiiiemmmesiiiiiiiesssssssiimssssssssssiimssssssssssssissssssssssssssees 58

T B 0 o] =o)X SO UUUPRRE 58
5.2, Background: HKID SPACE PAItItIONINGceeveeeieeiieieeeeeeeeeiieeee e e eeetiettttt e e e eeetetstaaaeeeassssssaaaaeesssssssesasaseesssnsnes 58
5.3. WBINVD DOMQINS ...ttt ettt e ettt e e+ e ettt e e a2 e sttt e e e e e s asbsbteaaeeeaassssneeaaaeeaanannnes 59
5.3.1. OVEIVIBW .ttt ettt e ettt et e e e sttt e e e e e e s e aa bt e e e e e e eaaaanbe et e e e e s e s anbeeeeaeeeesanbebeeeeeeesansnbbeeeeeesannnnrenaeas 59
5.3.2. Host VMM Enumeration of WBINVD DOM@INScciviiriieeriiieeiieeniieeiieesieesreesbeesnteesbeessseessbeessseesaseesnseesanes 59
5.3.3. Enumerating Non-Package WBINVD DOMaiNs SUPPOIt.....ccccciiieicieieeeitieeeeiteeeseteeeesreeeseseneeesneeeessssesennes 59

September 2025 . Page 4 of 196

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

5.4, K@Y MANAGEMENT TADIES ...ttt ettt e e e e e ettt e e e e e ettt e e e e eeasassssaaaaeesaasasssssasaeeeasinsses 59
5.5, Combined Key MONAGEMENT SEALEveeeeeeeeeeeeeeeeeeiieeeetet e estea e sttt e e e ettt e essaeaesatsesasastssasssseasasssesanssseseessees 60
5.6, Key MaNQGEMENT SEQUENCESccccueeeeeieieieieieieieiee ettt ettt ettt ettt ettt et et et et et et et et ete e et eteeeteresarssasasasasssessessananees 62
5.6.1. Intel TDX Module Initialization: Setting an Ephemeral Key and Reserving an HKID for Intel TDX Data 62
5.6.2. TD Creation, Keys Assignment and Configurationccuieieiiiiiiiiiee e 62
5.6.3. TD Keys Reclamation, TLB and Cache FIUSNuiiiiiiiiiiiiee ettt saaee s 62
TD Non-Memory State (Metadata) and CoNtrol STrUCLUIEScccceeriiieicirsnneeririisssssnnneesesssesssnnnessessssssssnnnnens 64
6.1. OVEIVIBW ...ttt ettt e e ettt e e e e ettt e e e e e ettt e e e e e s as bt e e e e e e s e sas bt e e e e e e eaaasbsbteaaeessaanssnnenaens 64
6.1.1. Opaque vs. Private vs. Shared Control StrUCTUIESccceiiiiiieiiiiiieeiee ettt st s 64
6.1.2. SCOPE OF CONTIOI STFUCTUIES ..eiieiiieeeiiiee ettt ettt e st e e ettt e e tae e e st eeeeateeeeeasaeeessseeeessaeesanssaeesssaeeaansseeaanes 64
6.2. TD-5COPE CONLIOI SEIUCLUIES ..o et e eee ettt e e ettt e e et a e et e e e ettt e e e ssaaeassesesaasseaeesssaeesssasanasssesanssees 65
6.2.1. TDR (Trust DOMAIN ROOL) ..eeevieiiiiiiiieiiieeiieesitesiee st e st sebe e st e st e sbeesabeesaeesabeesabaesabaesnbaesabaeenbaesabaeenseesnses 65
6.2.2. TDCS (Trust DOmMain CONTrol STTUCTUIE)viiiiiiciie ettt e st e et e et e e bee e ba e e saeeebaeeaeeenees 65
6.3. TD VCPU-SCOPE CONLIOI SEIUCEUIES ..ottt sttt sttt e e st e st e st e s neesteesanee s 65
6.3.1. Trust Domain Virtual Processor STate (TDVPS)cccuiiicieiciieeiiesieeeireesieeesteesteeeteesteeeveeebaeesseessaeenneeenens 65
Physical View of TDVPS: TDVPR/TDCX ...ccviiuieiuieiteeiteeieeeeetreeteesteesteeteetesaesaaesseesseesseeseensesasesssessenns 66
LOZICAl VIEW OF TDVPSoeiiitiie ettt ettt e ettt e e e ette e e e st e e e e bte e e satbee e e ataeeeeastaeesnsbaeaeantaeseenssaeessseaann 66
6.3.2. Non-Protected Control Structures: Shared EPT and VMCS Auxiliary Control Structurescccceeeevveeennes 67
6.3.1.1.
@54.2. TD Non-Memory State (Metadata) ACCESS FUNCLIONSoeeecueeeeeciiieeeiiiieeeeiieeeectteeestaaaesiavaasessaseesssaaensses 67
6.5. Concurrency Restrictions ANd ENFOICEMENTuueeecueeeeeeiiieeeeee e esteeeestteeeetaa e e setaaaessesasesssaaesssssasasssesananes 67
TD Life Cycle ManagemeNntcuceeeeeeiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeessesssssssesssssessssssssssssssssssssssssssssnnnsnnnnnnnnnnnnn 68
7.1 TD Life CYcle StAte MACRINEcc.ooecueieieeiieeeeeet ettt et ettt sttt e sat e et e st e et e e sateenbseenaeeeans 68
7.2. OP_STATE: TD Operation Secondary-Level State MACHINEcccueeeeciveeeeiiieesiieeeesieeescieeessieaesesieaessnaeas 68
7.3. TD Creation and CONfigUIQLION SEQUENCEcccuvercueesiieesieesiitesiieesieesiteesseesssesteessseessesssseessesssseesssessssessnses 69
7.4. VCPU Creation and INitialiZAtion SEQUENCE................ueeeieeeeeeieieiee e eeecettt e e e eeestc e aa e e e esesstaeaaeesessssassaaaeessinsees 70
7.5. LD K=o T Lo B =T TV =] (ol =P UURN 71
Physical Memory ManagemeENnt.... ... cciiiiiieieeniiiiiiieennneiseesieeennsssssssssssennsssssssssesennnsssssssssssnnnsssssssssssnnnssssssssanes 72
8.1. Trust Domain Memory Regions (TDMRs) and Physical Address Metadata Tables (PAMTS).......ccccccvveecvveecreenie. 72
8.2, TDIMR DELAIIS ...ttt ettt ettt ettt et ettt ettt st ettt e s e e at e et e ettt e at e ettt e s ate e ateenaneenares 72
31 PAMT DEEGIIS oottt sttt sttt ittt s s bbb st st si s bbb 72
8.3.823.1. L AT PAMT BNy .iiiiiiiieeiiieeieestee st e st e st e st e st e e st esabeesabe e s abeesabeeesbeesabeesabeesabaeeseesabaeenseesnbaeenseesnbaeenseesnses 72
838332, Y2 R o TN (2 1) TSR 73
381330 STALIC PAMT oottt ettt es st bbb 8 s8R 74
8.3.4.2. OVEBIVIBW ..ttt ettt ettt et e e e e ettt e e e e e e e s aabe e et e e e e e s e n bbbt e eeeeesaannbeeeeeeesaannbeeeeeeesesannbnnaeeeasann 74
:i':'i' Static PAMT BlOcks @nd Static PAMT AITAYScvcucuiuiiiieeeeeeeeeeeeeseeeeeeseseesesessssssssessssesesesssesssesesesesasenas 74
8345, SEAtIC PAMT HIBIArCRY ..ottt bttt be bbbt e s be e 75
8.3.4. DT o Yol = 2N Y PP STPSPPPRN 76
OVEIVIBW ...ttt ettt ettt e s ettt e st e e sttt e s e st e s as e e e s sa b et e s e st et e s mn e e e e sabeeesaanseeesanneeeeaareeesenreeesannnes 76
PAMT P Pail..cciiiiiiiiiiiiiiiiieieeeeeeeeeeeee ettt ettt e et e et e e e e e e e e e e e e e e e e e s e e e e e s e e e e e e e s e e e s e s e s e e e s e s e s e s e s e s aeeaerereran 77
PAMT Page BilmMa..ciciiiiiiiiiiiiiiiiieieeececeeeeeeeee ettt e et e s e e e e e s e s e s e s e s e s e s e raserareaereraran 77
NON-LEAT PAMT ENEIY..uiiiiiiiiieiiiiiie ettt e e ettt e e e e e sttt e e e e e e e e abaaaeeeaeesenssataeseeaeeeasnstssseaaseesnnnses 77
(DT oF: 1o o ol o 1 I o =Y =T ol oSS 78
8.4. Overview of Memory Protection using Access CONtrol TABIE (ACT)oovueeveeeeieeriiesieesieeeieesie e 78
FSBC YR Vo [[1 o I o 43 VA Lol | I oo T =X 3SR 78
8.5.1. DYNamic PAMT CONSIAEIAtIONSuiiieieieiiiiieeeiiie e ceitee st e e e etee e setee e e s teeeeesteeesnneeeesntaeesesseeesssseeessnsseenanns 79
8.5.2. Adding Pages not Mapped t0 the GUEST TD.......uiiiiiiiieiiiiieee ettt ee ettt e e e e eeearre e e e e e e e e sanraeeeeaeeeenannes 79
8.5.3. Adding Pages and Mapping to the GUESt TD’'S GPA ... e e e e e e e e e e e 79
8.6. ReclOiming PRYSICOI PAGESccooueeeeeiieeeeiee ettt s e ettt e e st e e sttt e e e satte e s sstaaesaseaeesbtesssassaaesassenaens 79

September 2025 . Page 5 of 196

Introduction and Overview

Section 1:

15

20

25

30

35

40

45

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

8.6.1. Dynamic PAMT Considerations
8.6.2. Platforms not Using ACT: Required Cache Flush and Initialization by the Host VMM
8.6.3. Platforms Using ACT: Required Cache Flush, Initialization and ACT Update
ACT Platforms: Overview of the Host VMM Operationccccceeevcveeeeiiveeens
ACT Platforms: Overview of the TDX Module Operation.........ccccceecveeeeivveeenns
ACT Platforms: Page Reclamation Sequence for Large Pages.......ccccccocveeeueene
8.6.4. Reclaiming Pages not Mapped to the Guest TD’s GPA Space
Reclaiming TD Pages in TD_TEARDOWN Stateccccceeveienieniiiinieneeeeeeieen
Reclaiming PT_TR Pages in the TD_KEYS_CONFIGURED Stateccccceeueeueen.
8.6.5. Reclaiming Physical Pages as Part of TD Private Memory Management

8.6.3.1.

9.86221p private Memory Management

8.6.3.3.

896‘5' 1 Overview

& 22 Secure

9.3. Secure
9.4. Secure

9.5, Secure

9.6. Secure

9.7. Introduction to TLB Tracking

9.8. Secure

9.9. Adding TD Private Pages during TD Build Time: TDH.MEM.PAGE.ADD

9.10. Dynamically Adding TD Private Pages
OVEBIVIBW ..ttt ettt ettt e e e e e sttt et e e e s e e ettt e e e sesanbeteeeeeeesannbeneeeeenennn
PENDING Page Addition by the Host VMM: TDH.MEM.PAGE.AUG......................

9.10.1.
9.10.2.
9.10¢40.3.

9.10.3.2.

9.10.4.

9.11. Interaction with TDX Connect

9.12. Releasing a TD Private Page by the Guest TD: TDG.MEM.PAGE.RELEASE

9.13.2.1.

1132, Page Mapping Resize: Merge and Split
Overview: Non-Blocking Mapping RESIZEccevevuveieriieeeeiiiee e
Page Merge: TDH.MEM.PAGE.PROMOTEccocuiimiiinieinieenieeniee e esee e
Blocking @and TLB TraCKing......cceecuereiireeeeriieeeeiee e stteeeesteeeeeeee e snaeeeesnreeesnees
PrOMOTION ceiiiiieeee et e s s e s e e s
Page Split: TDH.MEM.PAGE.DEMOTEooiiiiiiiiiiiiee ettt e e eesrree e e e
Blocking and TLB Tracking........ueeeiiieiciiiiiei et e e e e
(DT g Lo} o] o IR PP PP PPPUPUPPPTR

9 139.13.1.
13332

9.13.3.

9.14. Relocating TD Private Pages: TDH.MEM.PAGE.RELOCATE
9.15. Removing TD Private Pages: TDH.MEM.PAGE.REMOVE
9.16. Removing a Secure EPT Page: TDH.MEM.SEPT.REMOVE
9.17. Unblocking a GPA Range: TDH.MEM.RANGE.UNBLOCK

10. TD VCPU

10.1. VCPU Transitions
Initial TD Entry, Asynchronous TD Exit and Subsequent TD Entryccccceeennnnee
Synchronous TD Exit and Subsequent TD ENtry.....ccccooocciiiieeeieeicciiieeee e,

10.1.1.
10.1.2.

EPT ENEIY oottt e st eeeeeeaees
9.2.1. Overview
9.2.2. SEPT Entry State Diagrams

EPT WWGIK. ettt ettt e e e et tee s e s e e et e aaesesssesesaaansasesaeenanan
EPT INAUCEA TD EXItS.ccevevveeeeereeeeieieeeeeieieeeieeeeeeeeeeeeveeeeeeeseessesesssesesesssssssssssssssssssesenens

EPT INAUCEA EXCEPLIONS ..ccveeeeeieeeiee ettt eeeetteea e e eeesteaa e e e e e s sssasaaaseesnsnnes
9.5.1. #PF Exceptions Related to GPA Reserved Bits
9.5.2. EPT Violation Mutated into #VE

EPT CONCUITENCY ...ttt ettt

EPT Build and Update: TDH.MEM.SEPT.ADD.........ccccueevoueeveienieesieesieeieesieenaeees

PENDING Page Acceptance by the Guest TD: TDG.MEM.PAGE.ACCEPT

(D L=T ol o} o] o PP PPPTPUPPP
TDG.MEM.PAGE.ACCEPT CONCUITENCY ceeeeieieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e
Guest TD (L1) Access t0 @ PENDING PAgEccccuveeeeiiiieeiiieeecieeeeeciteeeevee e e svvee e

September 2025

Page 6 of 196

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

50

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

10.1.3. VCPU ACtiVity STate@ MaChinegoeoei oot e e e e st e e e e e e eba e e e e e e e e eeeanraeneas 105
10.2. TD VCPU TLB Address SPace IAdeNtifier (ASID)uueeeeeeeeeeeeeeeeieeeeeeaeestaeeestea e ettt aesvaaaessaaassssseaennsnes 107
10.2.1. TD ASID COMPONENTS i 107
10.2.2. INVEPT by the Host VMM for Managing the Shared EPTccoviiiiieieciee e 107
10.3. VICPU-TO-LP ASSOCITTION. ...ccccooeeeeeeeeeeeeee ettt e e et e e e e st e e e e s e e e e eensnnneeeeeeenaas 108
10.3.1. NON-CONEIENT CACRING ..ccutiiiiiiietee ettt st e e st e st e e st e e st esabeesaneesabeesaneenas 108
10.3.2. Intel TDX Functions for VCPU-LP Association and Dis-AssOCIationccccvvevriiieeiniieeinniiee e 108
10.3.3. Performance CONSIAEIAtIONSciiicuiiiiiiiiiecriiee ettt st e st e e e st e e s s ate e e sabaeeesabaeesssteeesnaneeessnseeenn 108
11. CPU Virtualization (Non-Root Mode OPeration)........ccccccevcerereiiiicssssnneesiisssssssnneesesssssssssnnsesssssssssssnssesssssssssnns 109
11.1. Overview: Virtualization vs. Paravirtualization of CPU Features and #VEccccccvveeecvvereeiiieeeeiveaeecnnnn 109
11.1.1. Architectural X86 ViIrtUalizZationcocuiirieiiiiiiiecie ettt ste e saa e s te e sabeesbeesnee e 109
11.1.2. Paravirtualization @and HVEooouiiiiiiiieeieeeee sttt sttt st st s e st e e s be e sbaesbeena 109
11.1.3. HVE for x86 Behavior not SUPPOrted BY TDXcc.eeiiuiiiiieiiiieiieesiie ettt e 109
11.1.4. HVE for TDX-SPECifiC BERAVIOI.....ciiiiiiiiiiiieet ettt sttt et e s e s b e eanee e 109
11.2. CPU Virtualization Configuration and CONLIOc.coeuiemueeeiieiieeeieeeeeeie ettt 109
11.2.1. Host VMM Configuration of CPU Virtualization..........c.ceeeeiiiieniiiiieeee et 109
11.2.2. Guest TD Control of CPU VIrtualiZationc.eoiieeiiieiiiieniee et s esaee s 110
11.3. INTEIQ] VIFEUGT CPU SEQLE.....eoevvveeeeiee ettt ettt ettt ettt e st s e st e s st e st essaasabtessessssesseessnesasesn 111
11.3.1. OVEBIVIBW ..ttt ettt et ettt e e e e ettt e e e e e s a b ettt et e e e s s s e e et e e e e e sanne s e eeeeeesaannrateeeeesaaannreneeeeesesannne 111
11.3.2. INitial STAate Of GUEST TD GPRS ..cuviiiiiiiiee ittt ettt st s te e st esbeesabeesabeesabeesabeesabeesaseesabeesnseesns 111
11.3.3. INITIAL STATE OF CRS .. niiiiiiieie ettt e e ee et e e e e e s tr e e e e e e eeeettaraeeeeeesenstasaeeeeeeeenanraeseaeeeennnnssenens 112
11.3.4. Initial State of SEEMENT REZISTEISeiiiiiiiieeiie ettt sttt et s e s esnee e 112
11.3.5. INITIAl SEATE OF IMISRS ..uviieiiee ettt ettt e e et e e e e e st e e e e e e e e e e tbaaaeeeeeesenstasaeeeaeeeeaansaeseeeeeennnnsreneas 112
11.4. Guest TD Run Time Environment ENUMEIATION.........cco..uueeeeeeeeieeeeeeee ettt e e e 112
11.5. Uniform VM Virtualization 0n @ HYBEA SOCoeeeeeeeeeeeeeeeeeee et et eetteeeeetaa e e eaaaaesrasaeesasaaenssnas 113
11.6. CPU MO RESEIICLIONS....ccueeeeeiieeeeee ettt ettt ettt e e et e ettt e ettt e et e e ettt e e et e e esastaaeetseeeassnesenasneas 114
11.7. INSEUCTIONS RESTIICEIONS ...ttt ettt e e e e ettt e e e e e st teeaeesesssseneaeeeanaas
11.71117.1. Unconditionally Blocked INSTrUCTIONSeiiiiiiiiiiiieniieeiee ettt sttt e e
E;i; Instructions that Cause a #HUD UnNconditionallyccoovcuieiieiiiiiiiiiee e
11.7.1.4. Instructions that Cause a #VE Unconditionally to Allow Paravirtualization
Instructions that Cause a #UD or #VE Depending on Feature Enabling, to Allow Paravirtualization115
Other Cases of Unconditionally Blocked INSTrUCtIONSccueieeiiiieieiee ettt 115
11.7.2. Conditionally Blocked INStrUCHIONS.cciiiiiiiiiiiee et e e ee et e e e e s e e snrrar e e e s e e snnees 115
11.7.3. (@14 o1 ol o ol =T o J o] I 0= YT SR USPRRN 115
11.8. | =T g Lo [=Te I o =To LV = Y =4 oSSR 116
11.81118.1. Allowed Extended FEatures CONTIOLoccuiiiiiiiiiiciiee et e et e e st e e e s bae e e e atee e ssnneeeesnraeeeenns 116
11.8.2. e g [Te IR F= L I K] =1 o o TSR 116
11.8.3. Extended Features EXeCUtion CONTIOL........cccuviiiiiiiie et e e e e e e e e saeae e e snaeee s 116
11.8.4. AVX10.2 (CONVEIZEA VECLOT ISA) ..ottt ettt e e e et e e e et e e e eeabeeeeeabbeeeesseeeeasseeaeantaeaeanes 119
11.9.2.1. Vector-Extension Packed Matrix Multiplication (VPIMM)cooiiiiiieeiiiiic ettt 119
11.92:2
ToEEs.s. APX oottt 119
11.9. (01 o [T 1o [o S 119
11.9.1. CRO ettt ettt ettt ettt ettt ettt et b et e bt e e b et bt e e b et e bt e e bt e e bt e e bt e e h e e e b et e b be e beeehte e b et e nabeenhteesabeenneees 119
11.9.2. CRA ettt ettt e h e bt e h et b et e h e e e b et e ah et e bt e e h e e e b et e b te e b et e hte e bbeesabeenateesabeenneees 120
CR4 Bits which are Architecturally Virtualized...........occueviioieee e e e 120
CRA.MCE (Bit 6) VIrtUaliZAtiONccviiieeiiieeeiiee ettt e et e e et e e e tee e e e tae e e eatee e eeabaeaeeaseaeanns 120
CR4 Bits which are Non-Architecturally Virtualized..........cccoooiiiiiiiiiiecee e 121
11,10, MSR VITEUGHZOTION ..ottt ettt ettt e ettt e ettt e st e e e st e e e ssbteesabtaeesasbeassssseessasaneans 121
11.10.1. OVEBIVIBW ..ttt ettt ettt e e e e ettt e e e e e e s b ettt e e e e e saaaeb et e e e e e saaaebeeeeeeesaannbateeeeeseannbeeeeaeeeasannne 121
11.10.2. MSR Virtualization Configuration by the HOSt VIMMccciiiiiiiiiiiiiinec ettt 121
11.10.3. MSR Virtualization Control by the GUEST TDcccuiiiiiiiiiieiee ettt s s 122
11.11. CPUID VirtUGHIZATION. c...c..eeveeeeeies ettt ettt ettt s st s e et e e sateesateesbeesabeesbaesaseasseasaseen 122

September 2025 . Page 7 of 196

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

50

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

11.11.1. CPUID Configuration by the HOSt VIMIIVI.........coiiiiiiiieeee ettt e e e tve e e e e e e e abaaa e e e e e e ennens 122
Fine Grained Control of CPU Extended Features EnUmerationccccccveveeviieeneeniiieeneesnieeeneeene 123

Configurable Family/Model/Stepping (CPUID(1).EAX) ENUMErationcccccevveviveerireeeireesreesneens 123

11.11.2. Guest TD Control of CPUID VirtUaliZationoccveeeieeiiieinieenieeeiee ettt s s s 123
Guest TD Control of Specific CPUID Leaves and Sub-Leaves Virtualizationccccceevvveeeicivenenns 123

Per-VCPU Guest TD Control of HVE 0N CPUID.......c.uuiiiiiiieieiie e cieeeesiteesstee e siveeessiee e s saaee s saveee s 124

11.11.3. CPUID Configuration & Checks at Guest TD Migrationcoccueereierieriiienieerieenreesee e 124
11.11.4. CPUID Virtualization for Hybrid SOCSccueiiiiiiiiiie ettt ettt et s 125
WBLURL. Platform Topology VIrtUGHZAtIONcoeueeiieieiiiiieeeee ettt ettt e saee e 125
33432.1. CONFIGUIation DY the HOSE VIMIMeeeeeeeeeee et eee e eev s s ses s s e eese et en s s e eesesesnsneenenenns 125
11.1313.12.2. ENabIiNG DY the GUEST TD ...iiiiiiiiieiieecee ettt st st st st e st e e st e e sabeesabeesabeesabaesaneenas 125
11.112.22.3. Virtual Topology Information Provided t0 the GUEST TDccuieeiiiiieiciiee et e e 125
Derivation of CPUID(0xB) Virtual Values from CPUID(0x1F) Configuration..........cccceevvevriveenenennne 126

11.13. Interrupt Handling and APIC VirtUQliZQtiON.............ccc.eovueeeieenieiniiesieeeitesie ettt 126
11.14. Virtu@lization EXCEPTION (BVE).......ueoeeeeeeeeteeeeeeeeete e ettte ettt e st e s teeste e ettt e sttt e s saaaataeessaasseesssaasseasnseasseesasen 126
1 1%%.%4.1. Virtualization EXception INfOrmMationcueiiiiiieiiiiee et e e s e e e e e 126
"11.14.2. Architectural #VE Injection due t0 EPT VIOlationsccccvveeereeieieieceieresee et sve et st et saeene e 128
11.14.3. Non-Architectural #VE Injected by the Intel TDX ModUIEceeeeeiiiiiiciiiie e 128
11.15. GPA Space, Secure and Shared Extended PAGe TADIES (EPTS)ccoucueeeecieeeeeiiieeeiieeeesiveeeseiveaeesssaaesvanaens 128
11.15.1. GPA Space Size Configuration and Virtualization...........cccceeiciireeciiic e e 129
Overview of the GPA Space Size Virtualization Modes..........cccevueeriieiiieniieeiieeeee e 129

MAXPA (CPUID(0x80000008).EAX[7:0]) VIrtualiZationeveeeeeeeeeereeeereseeeeeeeseeeeseseeseeneseeseenan 129

11.15.1.1. MAXGPA (CPUID(0x80000008).EAX[23:16]) VirtualiZation...........c.eveveeeeeeeeeeeseeeeeeeeeeesseeeeeseseeseenas 130
Eigig GPA Space Implications of MAXPA and MAXGPA Virtualizationeeeeeeeeeeeveeereeeeeressenenn. 130
111514, Exceptions Related t0 GPA RESEIVEA BitS.........cciviiueeiiieeeiieieeeeesieeeeeeee st se st s ssere s seenens 130
11.1$1.35.2. EPT Violation MUtated iNtO H#VE.......c.uiiiiiiiiieiiee sttt sttt ste e sbe e s be e sbe e sbeesabeesaaeesnbaesaneesns 131
11.16. Prevention of TD-INAUCEd DENIQI Of SEIVICEcccuuevcueesiiiesiiiesiiesiiesiitesitessitesteesieestaessseestesssseessesssseesases 131
11.16.1. Bus Lock Detection by the TD OS.....cccciiiiiciee e ciee et seetee e st e e e stee e s et e e ssntae e e sbaeeeesteeesnnnneassnseeean 131
11.16.2. Impact of MSR_MEMORY_CTRL (MSR OX33) ...ccicuiieiieeiiieeieeiieeeiteesteeeteesreeeseessseesnseesnsaesnsesssassnseenns 131
11.16.3. BUS LOCK TD EXIt cuveeuveeueieiiintienieeteeiee e sttesiee st esteeaesetesaeesaeasseenteensesntesneesaeesaeenseanseensesnsessaenseensesnsesnsesnes 131
11.16.4. INSErUCtion TIMEOUL TD EXIT ..uueeieiiieieie ettt et e e e e st e e e e e s ber e e e e e e s e nnreeeeas 132
11.16.5. Denial of Service due to Long Latency Guest-Side Interface FUNCLIONS.........cccceeeeciiieeeciiec e, 132
11.17. Time StAMP COUNTEE (TSC) .ooevuveeeeeeesiiesieesieeeite st este e st e s teesateesataesataesataesataesstaesasaesssessasaesasessaseesssessseennses 132
11.17.1. TSC VIrUAIIZAION .ttt ettt e e e sttt e s sttt e e sbb e e e e s bbeeessbeeesanbeeessabaeeenans 132
11.17.2. LTI 0 1T o 11T T TSP 132
R T 200 | Y N o 1= 01 o Yol < (2 L O O E 133
11.18.1. 2 OV (U E-] - 4 e o PR 133
11.18.2. 2 O o Yo 7 {¥] = o HO PR 133
1,09, KEYLOCKEE (KL) ..eeveneeeeeeeee ettt e e et e e ettt e e e et a e et e e ettt e e e astsaaensssaeeaassaaeaatsaaansssaaeaassnaeas 133
11.19.1. A W Tol =T VA T (U= 172 14 o o [P 133
11.19.2. Host VMM KeyLocker State Restoration after TDH.WVP.ENTERcccouviieiiiiiciiiieee e 133
7 L O I Yo i Y Vo [=0 @e Yo [o =] =1 (ol ¢ SR 134
i B U L Y-V K SO PP PP 134
i R o) 3 BTSSP PPTPPPP 134
11.23. SUPEIVISOr ProOteCtion KEYS (PKS)......uueeeeeeeeeeeeeeette e etee ettt e e ettt e e e tea e et ta e e s tteaesnteasesassaasaasseaeesnseaessnsenanas 134
11.24. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption (MKTME).............. 134
11.24.1. TIMEE VIrUGLIZAtION c..eeieeiiee ettt st e ettt e s ettt e e s bt e e e s sabbeessasbaeesanbaeesanbaeeenans 134
11.24.2. MEKTME VIrUGIIZAtION ittt ettt e et st ae e s st a e e e e abaeessasbeeesanbeeean 135
11.25. Virtualization of Machine Check Capabilities and CONIroOISccceeeeeuevveeiieeeeeciieeieee et e 135
11.26. Transactional Synchronization EXteNSiONS (TSX)ccueevueerieeiieesieesieesieesieesiteesteesite st steesseesiteesseesanes 136
11.27. Management of Idle and BIOCKEA CONAITIONSccc.eeeeeecreeeeeiieeeeee et eeectee e e cttaeese e e e taaeestaaaesraeaens 136
11.27.1. L I I 1 3 o 0Tt o o SO PTPPR 136

September 2025 . Page 8 of 196

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

50

Intel® TDX Module Base Spec Section 1: Introduction and Overview

348549-007US

11.27.2. PAUSE Instruction and PAUSE-LOOP EXitiNg.......cccouerieiiiiiiiiieieee e
11.27.3. MONITOR and MWAIT INStFUCLIONS ..ceevveeiiiiiieeiie et sreeseeesteesaeesreesieee e
11.27.4. WAITPKG: TPAUSE, UMONITOR and UMWAIT INStructionscccceevveenvennnnenn
11.28. Other Changes in SEAM NON-ROOt MOdE...........ccuveeeeceeieeieeeeeiiieeesieeeesiieaeseieaeenans
11.28.1. 61 P PP PP PP PPPPOPPUPON
11.28.2. TASKINEG .ttt sttt sttt e e s e e neenane
12. Measurement and Attestationeeeeeeeeeeeeeeeennmeneeeeeeeeeeeeeeneeesemesssssssssssssssssssssssssssssses
12.1. Overview of the Attested Measurements and Configuration Information
12.2. TD MEGSUIEIMENT ...ttt sssssssssssssssssssssssssssnsssnnes
12.2.1. MRTD: Build-Time Measurement REGISTErccceeevvuieeeiiiie e
12.2.2. RTMR: Run-Time Measurement RegIStersccccccvviiiiiiiiiiiiiiiiiiiiiiieieiereeereeeeeees
12.2.3. SERVTD_HASH: Service TDs Measurement Register......cccoeveveieieieieieieieieienenenn,

12.2.4. SERVTD_EXT_HASH: Service TDs Extended Measurement Register

12.3. Security Version Numbers and Signer AtteStationcceeecevevveeenceveneeenieeenneennee.
12.3.1. R = 1 Lol YV N3
12.3.2. DYNAMIC SVNS L.t e e s

12.4. TD Measurement REPOITINGeeeeeeieeiiieieee et e et e e e et e e e e e

12.5. ToTolo [at=T o oY VL =Tq) (oo L1 [o) s OSSR

12.6. Creating AtEESTATIONSueeeeeeeeeeeeeee ettt e et e e et e e e
12.6.1. OVEBIVIBW ettt ettt et e e e e st e e e e e st et e e e sesnnreeeeeeesesnnreneeeeens
12.6.2. Intel SGX-Based AtTeSTationcceeiieeiciiiieeee et ee e

Quote Signing Key for SGX-Based Attestationcccecevvevvcveesiiieeeenciiee e

12.6226.3. Security Engine-Based Attestation.......cccoccveriviiieieiiiee e

12.7. TCB RECOVEIY ..uuuvvevieiviuiuiuiaiaisissasssasssnsssssssnns
12.7.1. TD Preserving TDX Module Update Implicationscoeeeieeerriieeiiiieeeeniieeene

12.8. Y =0 [T O UUU R PUPRNE

13. =T T I 0 L

13.1. OVEBIVIBW ...ttt ettt et e ettt e ettt e e st e e e st e e s snneeennneeeeas

13.2. RY =1V o= 0 2] 4T [o TSRS
13.2.1. Service TD Binding Table in the Target TD’s TDCScccveevvierieeniienieenee e,

13.21%2.2. SERVTD_BINDING_STATE: Service TD Binding State.......ccccceeeeevcciiiieeeeeeiciinns
13.2.3. SERVTD_TYPE: Service TD Binding TYPe....cccecuriiriieeiieiiieeeee e eeecirtree e e e seinnnes
13.2.4. SERVTD_ATTR: Service TD Binding Attributes......cccccoevvviiieeiiiiiiiiieee s

13.2.7.1. IGNORE_TDINFO: TDINFO Component Filtering........cccoccueeeeviereiniieeeniieeeenne
1;-21;3;.-2.5. SERVTD_UUID: Service TD Instance ldentifierccccevvevveeveeeereceeeeeeeennens
“13.2.6. Service TD's Binding SERVTD_INFO_HASH Calculation........cccceeevcvveeeecieeeeenen.
13.28312.7. Target TD’s SERVTD_HASH Calculation.........cccoeuieeiiciiieeeiee e
E;:g SERVTD_HASH Calculation on Finalization of TD BUildc.cevvveveeveeeereeene.
T SERVTD_HASH Calculation on TD IMPOrt....c.ccceieeieeieeneeeeeceeeeeereeereeereeneen
SERVTD_HASH Calculation Methodcccoooiiiiiiiiiieiciieee e

13.2.8. Target TD’s SERVTD_EXT_HASH Calculation........cccceeeeieeicciiiiieeeee e
SERVTD_EXT_HASH Calculation on Finalization of TD Buildcccccvveenne.
SERVTD_EXT_HASH Calculation on TD IMpPort......ccccceeeiieeeecieeesiieeeesieee s
SERVTD_EXT_HASH Calculation Methodcccoccveeiiiiiiiiee e

13.2.9. 2 T o [T aY =4 o - T o | L USSP

13.3. Srvice TD REDINAING.........coueeeeeeieies ettt e e e ettt e e e e e e sssatsaaaaeesessnnaes
13.3.1. OVEBIVIBW ettt ettt ettt e e e e ettt e e e e e s et et et e e e seaanbeeeeeeesesanrnneeeaens
13.3.2. Typical RebiNdiNgG FIOW......ccocuuiiiiiieei ettt e et e e e e

13.4. Target TD Metadata Access bY O SEIVICe TD........cccccuuueeeeeeeeieiiiiiieeeeeeecsiiiveeaaeeeessieans
13.4.1. TDG.SERVTD.RD/WR: Metadata Read/Write Interface Functions.........cccee......
13.4.2. Metadata Access Error Handling........cccveeiiiiieeeiiee e

September 2025

Page 9 of 196

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

13.4.3. Cross-TD Concurrency Handling: Maintaining Host-Side Priorityccceecveiiniieeiiiiieeeniiec e 154
Problem DESCIIPLIONeiiiiieiieiieeee ettt sttt e st e s bt e st e s beesabeesbeesabaessbeesbaeeseesares 154

Yo [V 4T] o PRSP PPOUPRPP 154

13.5. Service TD INterface FUNCLIONS SUMIMGAIYccecuueeeeiieseeiieeeeeaseeeeesteaesssaseesstssaeessssasssssaessssssesssssssssenanns 154
14. 1/0 SuppPOrt (Without TDX CONNECE)eeerriireerieireeeeireeeeeereeesesssneeessssseesessnsssssssnsessssasssssssnsesssssnsesesssnsesessanees 156

14.1. OVBIVIBW ..ottt ettt e ettt e e e e e ettt e e e s ettt e e e e e e e s s bs b et e e e e e s ststteaaeeesaasssbenaaeeseanssnes 156

1. B O oo 4o 1V 14 0 oL =Te 1 O OSSR 156

13.4.3.2,

14.3. MMIO Emulation and EMUIGEEA DEVICEScc.uuveeecuieeeiiiieeesiiieeeieeessiite e et e esiiaeessiieaessstesessneesssssesesnaes 156

14.4. Direct Device Assignment (DDA) QNG SRIOVcccuueeiuieeeieesiieeeieesiteeeteesteestassttaestassvtaesaaassssaesseassssassseeen 156

14.5. TIOMMU = DMA REMAPPING .cccooveeeeeeeieieieeeieeeeeeeeeeee ettt ettt ettt ettt ettt ettt et et et et e teteeeeeeasesesasesesesssssssessearanens 156

14.6. ShAred Virtual MEMOIY (SVIMI) ..ottt ettt e ettt e et e et e e e et e e e e staa e e aseaaesasseseesnssaaesasenaans 157

15. Debug and Profiling Archit@CHUIEeesseeassssasssssssssssssssssssnnnnnsnnnnnnnnnnnnn 158

15.1. ON-TD DEDUG.....ccueeeeeeeieeeeeeee ettt ettt ettt ettt e s e et st e sat e e s ate e ase e s ateesateesaseenaseesateesaseesseasaneens 158
15.1.1. OVEIVIEW ..etiieieeeteteteeeteseeeteteseteseteeesaeeseteseesesessaeeressssssssesssssesssssesasssssssssssssssssssssssssssssssssesssesesssssssesesesenens 158
15.1.2. GeNeric DEBUG HaNGIING ..cc.viieiiiiiieeiee et sttt sttt sttt s ne e sbeeeneesanes 158

CONTEXE SWITCN ..t e e e e e e e e e e e e s abaeeeeeeeeesntbraeeeeeesennsnraeeeaeeean 158
IA32_DEBUGCTL (MSR 0X1D9) Virtualizationc.ccueeveeriiieiiieeiiieeieesieeesieesieesnee e e ssieessasessveesnes 158

15.1551.3. Debug Feature-Specific HandliNg........cccceviiiiiiiiiiiiiic e 159

15.1.2.2,

15.2. ON-TD Performance MONIEOIINGccccueeeeeieieeeiieeeseteeeee e e et tte e e e aaeeesttaeestasaeatsaaessssseesssesasesssesesssnes 160
15.2.1. OVEBIVIBW .ttt ettt ettt e e e e ettt e e e e e e a b e e et e e e e e s s s e e et e e e e e saans s et e eeeesannsraneeeeeseannnreneeeeseasannne 160
15.2.2. Performance Monitoring CPUID Virtualizationc.cooueiiieeiiieniieiieeeee e 161
15.2.3. Performance MonItoring MSRS.........ui ittt sttt st s e st e st e st e saneesabeesaneenas 161

15.2.3.1. OVEIVIBW ...ttt sttt r e e bbb et as bbb s beebeeaeeae et et et s 161

15.2.3.2. NEW Perfmon MSR RANEEccocuiiiieiieeecteee ettt e eette e e et e e e ette e e e tte e e e e ataeeeebteeesbbeeasastaeeeensseeessreeann 162

15.233. Virtualization of Architectural PEBS 10 TDS.......coviivivivirieriieeeeeeeeiesessssssessssssesssssssssssssessssssssssssnsens 163
15.2.4. Performance Monitoring INTErrupPts (PIVIIS)ccuueeeeiiiee ettt e e st e et e et e e e ete e e e e eaba e e eeaaee e eareaeas 163

15.21512.5. Perfmon EVENTS FIILEIINEG....ccoiiie ittt ettt e et e e e te e e e ettt e e eette e e sabaaeesataeeeessaesenasaeeessseeann 163

15.2.5.2. :

15253 Enumeration

15.2.5.4. 31 Yol 4= o TV o 1SR

15.2.5.5. Event Filtering Configuration and the Filtering Algorithmcccooviiiiiiiii i 164

GUEST TD POISPECTIVE ...t eet ettt ettt ettt e e e sttt et e e e s e ae bttt eeeesesnnbaebeeeeeesannnneneeeeean 165
=) 6] X oL S PP P PP UUPTRPPRP 165

15.3. Off-TD DEDUQG ...t e e ettt e e ettt e e e et a e et e e e et s e e e sts e e eesssaeeatasaeastsaseenssaaaessasaeassseaenassnes 165
15.3.1. Modifying Debuggable TD’s State, Controls and MEMOIYccueeeeciieeeeiiiee et e e eeaeee e 165
15.3.2. Preventing Guest TD Corruption Of DRS......cc.uiiiiuieeiiiiieeceiee e ciee s e ste e st e e saee e e sare e e esntee s esnnaeessnneeeas 166

15.4. PlALfOIrM-LEVEI PrOfiliNGc.eeeeeeiee oottt e e ettt e et e e ettt e e e st e e e esteaessteaesssssaaeasanasesssenennnes 166
15.4.1. Profiling by IA32_FIXED_CTR1 and IA32_FIXED_CTR2cccccteiiieriieeriieeieesieeeieesieesteesbeesneesreesneenns 166
15.4.2. Hardware-Guided Scheduling (HGS+) Profiling.......cccccuveiieiiii i 166

15.5. Uncore Performance Monitoring INterrupts (UNCOIre PMIS)............oeeeeueeeeceeeeecieeeeeiieeeeiieeeeecieaeeeeveaeeaenas 167

1.%%?1 Interaction with Core Out-Of-Band (OOB) TEIEMELIYocccueeeeeeeeeeeeeeeeeeee et eteeeeesteaeeesiaaeesreaeeaans 167

16.2.1.2.

16. Memory Integrity Protection and Machine Check Handlingcceeeeeeeeeemmmememeeennnnnnnenenneennnnmnnnnnenennesssssssnnnes 168
16.2.2.1.

R o N 0TV 1= PSPPSR PPTPPPPPPINt 168

16.2. TDX Memory Integrity Protection BACKGIrOUNGc..ueeecueeeeeeiiieeeeiieesseeeessteaeesttaaeseaeaessssesassssssaennsees 168
16.2.1. Platforms not Using ACT for Memory ProteCtionccceceereiciieeesiee et e e e e ree e e eeee e snaee s 168

Non-ACT Platforms Memory Integrity ProteCtioncccceveciereiiiieeeeiee e e e s 168
Non-ACT Platforms Memory Writes: No Integrity nor TD Owner Bit Checksccccvveeeeeicennnnnenn. 170
16.2.2. Platforms Using ACT for Memory Integrity Protectioneeeviiiieiiiiiiii et 171
ACT Platforms: Logical Integrity (Li) Provided by an Access Control Table (ACT)cccoceeeeeveeeennnnn. 171
ACT Platforms: TD Owner Bit Update on Page Conversion between Shared and Private................ 171

September 2025 . Page 10 of 196

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

50

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

ACT Platforms Memory Access: TD Owner Bit Checks, Poison Generation and Poison Consumption

171
16.2.3. Memory Integrity Error Logging, Machine Checks and Unbreakable Shutdownscccccovveeennnenn. 172
16.3. Machine Check Architecture (MCA) BACKGIOUNGc..vueeeeueieeeieeeesieeeeeit e escteaessteeeesstsaaesiasasessesannnns 173
16.3.1. Uncorrected Maching ChECK EFTOr.......cuuiiuiiiieeiiiesieesieesiee st esieesbeesteesbeesbeesbeesbeesabaesabeesabeesaseesns 173
16.3.2. Corrected Machine Check INterrupt (CIMICI)cecveecieeiieccieeste e e esee e seeeeiae e eaeesave e saeesaaeesaaeesnneas 173
16.3.3. Machine Check System Management Interrupt (IMSMI)ccoeiieriiiiieniieneene e 173
16.246;3.4. Local Machine Check Event (LIMCE)cccvuiiiiiiiiiiiiiicctcce st 173
16.4. Recommended MCA Platform Configuration fOr TDXccceeeveeeseeeieeesieieeeeieeeee sttt 173
16.5. Handling Machine Check Events during GuUest TD OPeIraliONcceccueeeeecuvreesiiieeeesiieeeesiseaesiiseasssisenennnns 174
16.5.1. Machine Check Events Delivered as an #MC EXCEPLION........cceiciieeeiiieeieciee e ecree e eree e re e e sene e eaaee s 174
16.5.2. EMCA2: Machine Check Events Delivered as an MSMI.......ccocvirieiiiiinieeniienieesieeeieesveesreesveesneesns 175
Determining CPU SUPPOIT ittt ettt et e e ettt e e e e e s e bt e e e e e e e seababaeeeeee s e anraeeeas 175
Pending MSMI CauSing @ TD EXit «.c..eeiieeiiieiiieniee ittt ettt et sbe e e e e s 175
Operation FOIOWING TD EXItccocteiiiieiiiieiieeiiie ettt sttt st s e st s st e st e sareesabeesaneesabeesnneenas 175
16.5.3. LMCE Disabled (Not RECOMMENAEA)ccciiiiciieiiiecie sttt e e s e e e e e s teeeaeesbeeenteesraesnseeens 176
16.556:5.4. Machine Check Events Delivered as @ CIMClccuuiiiueiiiiiriieeiiienieesieeeiee e e steesteesaeesbeesreesbeesneesns 176
16.5.2.2.
16.63. Handling MCE during Intel TDX Module OPErationccueeeecuveeeeciueieeiiieeeesieeeeeiieeeesiaaeeesiseseeessssaeesssns 176
17. Side Channel Attack Mitigation MeChaniSmscccceviiiiiiiiiiiiiiiiicc e e e e e e e e e e s e e e s e sesseeenns 177
17.1. Checking and Virtualization of CPU Side Channel Protection Mechanisms Enumeration............................. 177
17.1.1. IA32_ARCH_CAPABILITIES (MSR OX10A) .. .teeeteeiiieeieesieeeiteesteeeiseesteesseessteesssessnsaesnsessnsesssesssesssseenns 177
17.1.2. (] 5 PSP 178
17.2. Branch Prediction Side Channel Attacks Mitigation MechaniSmscccooeceevveeeseeeseeeseeesieeee e 179
17.3. Single-Step and Zero-Step Attacks Mitigation MECRANISMScccueeeeciueeeeeciiieeeciieeesieeeeecveeeescreaaesiaeeaens 179
17.3.1. PN Tol DY T 14 o] o U 179
17.3.2. Mitigation DY the TDX MOTUIEccei it e e e et e e e e e s e b ra e e e e e e e e ansaeeeas 179
i;gi; Single-Step Attack Detection aNd MItIZATIONc.vveeveveerereeeeeeeeereeeeeeereseeeeseseseeseeeeneessesseseneens 179
o Zero-Step Attack Detection and MitiZAtioNc.cccvivveiriirieiriireeer e aens 180
17.3.3. HOSt VIMIM EXPECLEA BENAVIONeiiiiieiieeeieeeiee sttt sttt sttt st st st e s b e sabeesneenas 180
1;'3137;3.4. Optional Guest TD Zero-Step NOtifiCationcoccciiiiiiiiee e seaee s 180
o NOTIFICATION 1v.vuvereisetecieisetesie ettt ettt s bbbt et s bbb s s s s ns s s s s b nsns 180
EXpected GUESE TD BENAVIOI .. .cciii ittt ettt e e e et e e e e e s etatr e e e e e e seabataeeeeeesennnnraeneas 181
18. General Aspects of the Intel TDX Interface FUNCLIONS........ccccciiiiiiiiirrcrisssssssssssssssssssss s s sssssssssssssnssnnsnnnnns 182
18.1. Concurrency Restrictions ANd ENfOICEMENToeeecuveeeeeieeeeeiieeeeeteeeecteeeesteeaeetseaeesaaaeesrasaeesasesenssns 182
1815 1.1, EXplicit CONCUITENCY RESEIICHIONSiiieiiiie ettt e e e e st e e e snte e e esanaeaesnaeeean 182
181121.2. IMplicit CONCUITENCY RESTIICLIONS ..vviiieeiiiecciiee ettt e ettt e st e e e s e e e et e e ssaeae e e sbaeeeesntaeessnnneeesnseeean 182
18.1 .
18_1_];%:52_1.3. LI 12 1= Lot 4o o OSSO PPRPP 183
18.1.4. Concurrency Restrictions With HOSt PriOrityccccveiiiciiiiiiiie e eee e 183
OVEIVIBW ...ttt ettt e e ettt e e e e e e b bttt e e e e e saaae b et eeeeesaaaab et e eeeeaaaaanbeeeeeeeeasnnbabeeeeeeesannsnnaeeaeeean 183
18.2.1.1. Host-Side (SEAMUCALL) OPEIatioN ...cccuveeeeiiiieeeiiee e ettt e eett e eeite e e ettt e e eete e e eeeateeeeeabeeeeebaeeeesseeeesreaans 183
iggi; GUESt-Side (TDCALL) OPEIAtION ...cccuveieeeiiie e ettt e ettt e ettt ettt e e ettt e e ette e e e eabeeeeebaeeeeeseeeeeessaeaeessseaeanns 183
18.2.14, HOSt PriOFity BUSY TIMEOUL .vvvveeiieeieeereteeeeeetcec ettt ses et ee st essesstes e sesaese s etessssstesssetenessesessasssensns 183
18.2.15.
188.2¢. Memory and ReSOUICE OPEIANGS ACCESSccecueeeeeiueeeesiiieeesieeeesiteeesstteaesssstsassisseasssssesesssssssesssseessssesennnes 184
18.2.1. OVEIVIBW ...ttt ettt ettt ettt ettt e s ettt e sttt e e sttt e s e e e et e s ane e e e e abe e e s ane e e e sana e e e e nbeeesannaeeesaneeeeennreeesannneeesanneenan 184
ACCESS SEIMANTICS ..eeereiriieeiiiieeiiitee ettt e se et esr e e e b e e s ebr et e snneeeesabeeesenreeesanseeessasneesennraeesannneeesanreeean 184
EXPICIE VS. IMPIICIT ACCESS ..uuvvriiiiee e ettt ettt e e e e ettt e e e e e e ae e e e e e e seabataeaeeesseasataeeeaaesennnraeneas 184
Memory Operand Address SPeCifiCationc..uuiiiiii e e 185
Y/ LT aaTeT oV BV o - U USSP 185
Actual Memory Access Vs. Memory REFEIrENCEooocciiiiiiie e 185
0T 000 F= L VA - LSRR 186
18.3. Register Operands and CPU State CONVENLION...........cccveecueeesieeesieesiieesieeesiteesieessitessieestteesieessiaessseessieesssee s 186
18.3.1. Overview: Regular vs. Transition Leaf FUNCLIONSc.cooviiiiiiiiieiie ettt 186
18.3.2. Interface Function Leaf and Version NUMDETSccooiiiiiiiiiiiiieeee et 186

September 2025 . Page 11 of 196

Introduction and Overview

Section 1:

10

15

20

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

18.3.3. CPU State Preservation CoONVENTION.........uuuuiuveieieieieieieieisieeeieieiererereeerea—..
BT AR o VI 3 R

Other Interface FUNCLIONScccvvii i et e e

18.3.4. Transition Cases: TD Entry and EXit.......ccceccvieeieiiie e e
TD Entry: TDH.VP.ENTER ...ttt ettt etee e e e e e s

TD Synchronous Exit: TDG.VP.VMCALLcccovciiiiriiiiieiiiee e eeiee e

18.4. Interface Function Completion StAtUS............ceceeeveeeseiinieesiieeeee e
18.4.1. Least Detailed Level: Success/Warning/Error........ccceeeeeeecveevveeiveseesreesveenens
18.38814.2. Medium Detailed Level: Class, Recoverability and Fatality..........ccceeeveveennen.
183804 3, MOSE DELAIEA LEVEL ..o eeeee e eseeeene s sese s senenens

gég%; 7D, VM and VCPU Identification

18.6. Metadata Access Interface

18.6.1. [[a] o Te [T o1 o o PSP SRSUPUPPPN
18.6.2. Metadata Fields and Elements........ccoovieiiiiieeiniiiee e
18.6.3. Arrays of Metadata Fieldsoocueeeieiiiienieeeeeeee e
18.6.4. Metadata Field SEQUENCES.......coceeriiiiieeiei ettt
18.6.5. MELAATa LiSTS...ueeieiiiiiiiiiii ettt st e s e e sbeee e
18.7. INEEITUPE LALENCY.cccccoveeeeeeeieieeeeeeeeee ettt ettt s e s v e s aeesesaaaaanans
18.7.1. INEFOAUCTION 1.t e et e e e e e sabeeeeeas
18.7.2. Latency of the Intel TDX Interface FUNCLIONSoceeiiieeiiiiieecceee e,
18.7.3. Interruptible Host-Side Interface FUNCLIONScccvvveieiieriicieeece e
18.7.4. Interruptible Guest-Side Interface FUNCLIONScoovviieriiiiieeiiiec e
18.7.5. Rate-Limited Guest-Side Interface FUNCLIONScoevviieriiiieeeeiee e,

18.8. DRNG Entropy Errors

September 2025

Page 12 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec Section 1: Introduction and Overview

348549-007US

SECTION 1:

INTRODUCTION AND OVERVIEW

September 2025

Page 13 of 196

Section 1: Introduction and Overview

10

15

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

1. About this Document

1.1. Scope of this Document

This document describes the architecture of the Intel® Trust Domain Extensions (Intel® TDX) module, implemented using
the Intel TDX Instruction Set Architecture (ISA) extensions, for confidential execution of Trust Domains in an untrusted

hosted cloud environment.

This document is part of the TDX Module Architecture Specification Set, which includes the following documents:

Table 1.1: TDX Module Architecture Specification Set

Document Name

Reference

Description

TDX Module
Base Architecture
Specification

[TDX Module Base
Spec]

Base TDX Module architecture overview and
specification, covering key management, TD lifecycle
management, memory management, virtualization,
measurement and attestation, service TDs, debug
aspects etc.

TDX Module
TD Migration Architecture
Specification

[TD Migration Spec]

Architecture overview and specification for TD
migration

TDX Module
TD Partitioning Architecture
Specification

[TD Partitioning
Spec]

Architecture overview and specification for TD
Partitioning

TDX Module Interrupt
Virtualization Architecture
Specification

[Interrupt
Virtualization Spec]

Architecture overview and specification for interrupt
virtualization

TDX Module
TDX Connect Specification

[TDX Connect Spec]

Architecture overview and specification for TDX
Connect

TDX Module
ABI Reference Specification

[TDX Module ABI
Spec]

Detailed TDX Module Application Binary Interface
(ABI) reference specification, covering the entire TDX
Module architecture

TDX Module
TDX Connect ABI Reference
Specification

[TDX Connect ABI
Spec]

Detailed TDX Module Application Binary Interface
(ABI) reference specification, covering the TDX
connect architecture

TDX Module ABI Reference
Tables

[TDX Module ABI
Tables]

A set of files detailing TDX Module Application Binary
Interface (ABI)

TDX Module ABI
Incompatibilities

[TDX Module ABI
Incompatibilities]

Description of the incompatibilities between TDX 1.0
and TDX 1.4/1.5 that may impact the host VMM
and/or guest TDs

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This

document does not imply any product commitment from Intel to anything in terms of features and/or behaviors.

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to updating this document in real time when such changes
occur.

1.2. Document Organization

The document has the following main sections:

e Section 1 contains an introduction to the document and an overview of the Intel TDX Module.
e Section 2 contains the Intel TDX Module architecture specification.

September 2025 Page 14 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview 348549-007US

1.3. Glossary
Table 1.2: Intel TDX Glossary
Acronym | Full Name New | Description
for
TDX

ABI Application No A programming interface defined at the binary level (i.e., instruction opcode and
Binary CPU registers). The Intel TDX Module interface is specified as an ABI.
Interface

ACM Authenticated | No A code module that is designed to be loaded, verified and executed by the CPU in
Code Module on-chip memory (CRAM).

ACT Access Control | Yes A table in memory which controls memory access. Each bit in the table represents
Table the state of a 4K memory page: shared or private.

N/A Accessible No Memory whose content is readable and/or writeable (e.g., TD private memory is
(Memory) accessible to the guest TD).

N/A Addressable No Memory that can be referred to by its address. The content of addressable
(Memory) memory might not necessarily be accessible (e.g., TDCS is not accessible to the

host VMM).

CMR Convertible Yes A range of physical memory configured by BIOS and verified by MCHECK. MCHECK

Memory Range verification is intended to help ensure that a CMR may be used to hold TDX
memory pages encrypted with a private HKID.
N/A Enlightened No A TD OS is considered enlightened if it is aware that it is running as a TD (see
(01 Paravirtualization).

EPxE Extended No The CPU’s cache of EPT intermediate translations (as opposed to TLB, which
Paging caches full LA or GPA to HPA translations).
Structures
Cache

GPA Guest Physical | No An address viewed as a physical address, from a guest VM’s point of view. A GPA
Address is subject to further translation (by EPT) to produce an HPA.

N/A Hidden No A resource or a data structure that is not directly addressable by software (except
the Intel TDX Module).

HKID Host Key ID Yes When MKTME is activated, HKID is a key identifier for an encryption key used by
one or more memory controllers on the platform.

N/A Host VMM Yes The VMM that serves as a host to guest TDs. The term “host” is used to
differentiate between the “host VMM” and future VMMs that may be nested
within TDs.

HPA Host Physical No A physical address at the host VMM level. This is the actual physical address used

Address by the hardware (e.g., caches). See also PA.

KD Key Domain Yes Represents the control state associated with an ephemeral TDX key resource. Key
domains are managed as a resource by the host VMM with the security attributes
of the lifecycle of a key domain for Trust Domains (TDs) is enforced by the Intel
TDX Module. A TD is assigned to a single Key Domain.

KET Key Encryption | Yes A table held by each MKTME encryption engine, intended for holding encryption

Table key information, indexed by HKID.
KOT Key Ownership | Yes An internal, hidden table held by the Intel TDX Module, intended for controlling

Table

the assignment of HKIDs to TDs.

September 2025

Page 15 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview 348549-007US

Acronym | Full Name New | Description

for
TDX

MBzZ Must Be Zero No Normally used to indicate that reserved fields must contain 0.

MKTME Multi-Key TME | No This SoC capability adds support to the TME to allow software to use one or more
separate keys for encryption of volatile or persistent memory encryption. When
used with TDX, it can provide confidentiality via separate keys for memory used by
TDs. MKTME can be used with and without TDX extensions.?

MRTD Measurement | Yes The SHA-384 measurement of a TD accumulated during TD build.

of Trust
Domain

NP- Non-Persistent | Yes An ACM intended to load an Intel P-SEAMLDR module into the SEAM range.

SEAMLDR | SEAM Loader

NRX Non-Root Yes An extension of the TDX Module, which consists of the NRX framework that runs

Extension as part of the TDX Module in SEAM root mode, and NRX TDs that run in SEAM non-
root mode.
P- Persistent Yes A SEAM module intended to install (load or update) Intel TDX Modules into SEAM
SEAMLDR | SEAM Loader range.
PA Physical No The physical address used by the hardware (e.g., caches). See also HPA.
Address

PAMT Physical Yes An internal, hidden data structure used by the Intel TDX Module, which is
Address intended to hold the metadata of physical pages.
Metadata
Table

PV Para- No A virtualization technique where the VM can be aware it is being virtualized (as
Virtualization opposed to running directly on hardware).

RTMR Run-Time Yes A SHA-384 measurement register that can be updated during TD run-time.
Measurement
Register

SEAM Secure Yes See TDX ISA.
Arbitration
Mode

SEAMRR SEAM Range Yes A range register used by BIOS to help configure the SEAM memory range, where
Register the Intel TDX Module is loaded and executed.

Service Service TD Yes A Trust Domain (TD) VM used to provide a dedicated service/utility. Extends the

D TCB of the tenant TD for which it provides the service. Migration TD (MigTD) is an
example Service TD.

SEPT Secure EPT Yes An Extended Page Table for GPA-to-HPA translation of TD private HPA. A Secure

EPT is designed to be encrypted with the TD’s ephemeral private key. SEPT pages
are allocated by the host VMM via Intel TDX functions, but their content is
intended to be hidden and is not architectural.

1n this document, the term “MK-TME” is used to mean both the feature and the encryption engine itself.

September 2025

Page 16 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview 348549-007US

Acronym | Full Name New | Description
for
TDX

Intel® Intel® No An Intel CPU mode and ISA extensions that support operation and management of

SGX Software Intel® SGX enclaves.
Guard
Extensions

SoC System on No A whole system, including cores, uncore, interconnects etc., packaged as a single
Chip device.

SPA System No The physical address used by the hardware (e.g., caches). See also HPA.
Physical
Address

D Trust Domain Yes Trust Domains (TDs) are designed to be hardware isolated Virtual Machines (VMs)

deployed using Intel® Trust Domain Extensions (Intel® TDX).

TD OS Trust Domain Yes The guest operating system that runs in a TD.
Operating
System

TD VM TD Virtual Yes Same as TD
Machine

N/A TD Private Yes TD Private Memory is designed to hold TD private content, encrypted by the CPU
Memory using the TD ephemeral key.
(Access)

N/A TD Shared Yes TD Shared memory is designed to hold content accessible to the TD and the host
Memory software (and/or other TDs). TD shared memory may be encrypted using MKTME
(Access) keys managed by the VMM.

TDCS Trust Domain Yes Multi-page control structure for a TD. TDCS pages are allocated by the host VMM
Control via Intel TDX functions, but their content is intended to be non-architectural and
Structure not directly accessible to software.

TDCX Trust Domain Yes 4KB physical pages that are intended to hold parts of a multi-page control
Control structure.
Extension

TDR Trust Domain Yes The root control structure for a TD. The TDR page is allocated by the host VMM
Root via Intel TDX functions, but its content is intended to be non-architectural and not

directly accessible to software.

TDMR Trust Domain Yes A range of memory, configured by the host VMM, that is covered by PAMT and is
Memory Range intended to hold TD private memory and TD control structures.

TDVPS Trust Domain Yes A multi-page structure for holding a TD Virtual CPU (VCPU) state. TDVPS pages are
Virtual allocated by the host VMM via Intel TDX functions, but their content is intended to
Processor be non-architectural and not directly accessible to software.
State

TDVPR Trust Domain Yes A 4KB physical page that is intended to be the root (first) page of a TDVPS.
Virtual
Processor Root

Intel® Intel® Trust Yes An architecture, based on the TDX Instruction Set Architecture (ISA) extensions

TDX Domain and the Intel TDX Module, which supports operation and management of Trust
Extensions Domains.

September 2025 Page 17 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview 348549-007US

Acronym | Full Name New | Description
for
TDX
TDX ISA Intel® TDX Yes Intel CPU Instruction Set Architecture (ISA) extensions that support the Intel TDX
Instruction Set Module: an isolated software module that facilitates the operation and
Architecture management of Trust Domains.
TEE Trusted No An isolated processing environment in which software can be securely executed
Execution irrespective of the rest of the system.
Environment
TME Intel® Total No A memory encryption/decryption engine using an ephemeral platform key
Memory designed to encrypt memory contents exposed externally from the SOC.
Encryption
N/A WBINVD No A set of LPs for which a single WBINVD or WBNOINVD instruction, and the
Domain TDH.PHYMEM.CACHE.WB interface function, apply.
XFAM Extended Yes A mask of CPU extended features (in XCRO format) that the TD is allowed to use.
Features
Allowed Mask

1.4. Notation

This section describes the notation used in this document.

1.4.1. Requirement and Definition Commitment Levels

When specifying requirements or definitions, the level of commitment is specified following the convention of RFC 2119:
Key words for use in RFCs to indicate Requirement Levels, as described in the following table:

Table 1.3: Requirement and Definition Commitment Levels

Keyword

Description

Must

“Must”, "Required" or "Shall" means that the definition is an absolute requirement of the
specification.

Must Not

“Must Not” or "Shall Not" means that the definition is an absolute prohibition of the
specification.

Should

“Should”, or the adjective "Recommended", means that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

Should Not

“Should Not”, or the phrase "Not Recommended" means that there may exist valid reasons in
particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood, and the case must be carefully weighed before
implementing any behavior described with this label.

May

“May”, or the adjective "Optional"”, means that an item is discretionary. An implementation
may choose to include the item, while another may omit the same item, because of various
reasons.

September 2025

Page 18 of 196

Introduction and Overview

Section 1:

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

1.5, References

1.5.1. Intel Public Documents

Table 1.4: Intel Public Documents

Reference

Document

Version & Date

Intel SDM

Intel® 64 and 1A-32 Architectures
Software Developer’s Manual

325462-078US,
December 2022

ISA Extensions

Intel® Architecture
Instruction Set Extensions and Future Features
Programming Reference

319433-047,
December 2022

Error Reporting RAS Integration and Validation Guide for the Intel Xeon April 2015
through EMCA2 Processor — Error Reporting through EMCA Gen 2

Key Locker Spec Intel Key Locker Specification Sept 2020
FRED Flexible Return and Event Delivery (FRED) May 2022

Processor Topology
Enumeration

Intel® 64 Architecture Processor Topology Enumeration

337015-002, April
2023

1.5.2. Intel TDX Public Documents

Table 1.5: Intel TDX Public Documents

Reference

Document

Version & Date

TDX Web Page

Intel® Trust Domain Extensions (Intel® TDX)

Note: Most documents below are on this web page

TDX Overview

An introductory overview of the Intel TDX technology

February 2023

platform

TDX Arch Extensions | A specification of Intel CPU architectural support for Intel TDX May 2021
Spec
TDX Loader Spec A specification of how a VMM loads the Intel TDX Module on a | March 2022

Incompatibilities

1.4/1.5 that may impact the host VMM and/or guest TDs

MKTMEi Spec Intel® Architecture Memory Integrity Specification Rev. 1.0, March 2020
TDX Module Base Overview and base architecture specification of the Intel TDX March 2023
Spec Module version 1.5
TD Migration Spec Overview and architecture specification of the TD Migration March 2023
feature of the Intel TDX Module version 1.5
TD Partitioning Spec | Overview and Architecture Specification for TD partitioning of March 2023
the TDX Module version 1.5
TDX Module ABI Application Binary Interface (ABI) specification of the Intel TDX | March 2023
Spec Module version 1.5
TDX Module ABI Description of the incompatibilities between TDX 1.0 and TDX March 2023

September 2025

Page 19 of 196

Introduction and Overview

Section 1:

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/content/dam/develop/external/us/en/documents/emca2-integration-validation-guide-556978.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/emca2-integration-validation-guide-556978.pdf
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html
https://cdrdv2.intel.com/v1/dl/getContent/678938
https://cdrdv2.intel.com/v1/dl/getContent/775917
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

Reference

Document

Version & Date

TDX GHCI Spec

Specification of the software interface between the Guest OS
(Tenant and Service TD VMs) and the VMM required for
enabling Intel TDX version 1.5

July 2022

MigTD Design Guide

A design guide on how to design and implement a Migration
TD for TDX 1.5 Live migration

October 2021

TDX Developers Intel® TDX Guidance for Developers March 2023
Guide
TDX Guest Kernel Intel® TDX Guest Kernel Hardening Documentation March 2023
Hardening
September 2025 Page 20 of 196

Introduction and Overview

Section 1:

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-domain-security-guidance-for-developers.html
https://intel.github.io/ccc-linux-guest-hardening-docs/index.html

10

15

20

25

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

2. Overview of Intel® Trust Domain Extensions

Intel® Trust Domain Extensions (Intel® TDX) refers to an Intel technology that extends Virtual Machines Extensions (VMX)
and Multi-Key Total Memory Encryption (MKTME) with a new kind of virtual machine guest called a Trust Domain (TD).
A TD runs in a CPU mode that is designed to protect the confidentiality of its memory contents and its CPU state from
any other software, including the hosting Virtual Machine Monitor (VMM), unless explicitly shared by the TD itself.

The TDX solution is built using a combination of Intel® Virtual Machine Extensions (VMX) and Multi-Key Total Memory
Encryption (MK-TME), as extended by the Intel® Trust Domain Extensions Instruction Set Architecture (Intel TDX ISA).
An attested software module called the Intel TDX Module is designed to implement the TDX architecture.

The platform is managed by a TDX-aware host VMM. As shown in Figure 2.1 below, a host VMM can launch and manage
both guest TDs and legacy guest VMs. The host VMM maintains all legacy functionality from the legacy VMs’ perspective;
it is restricted only with regard to the TDs it manages.

Host VMM managed access Intel TDX module managed access control,
control, enhanced with MK-TME / leveraging MK-TME and Secure EPT x
Legacy VM Legacy VM Trust Domain Trust Domain
Applications Applications Unmodified Sl
PP PP Applications Applications
. . Unmodified Unmodified
Drivers Drivers . .
Drivers Drivers
TDX- TDX-
0S 0S Enlightened Enlightened
oS oS
t t
Intel TDX Intel TDX
Guest-Side Interface Guest-Side Interface
—) — {
Intel TDX Intel TDX Module
TDX-Aware Host VMM 4 Host-Side =/ o
Interface Running in SEAM Root Mode
-]
I
Platform (Cores, Caches, Devices etc.)

Figure 2.1: Intel® Trust Domain Extension Components Overview

2.1. Intel TDX Module Lifecycle

2.1.1. Boot-Time Configuration and Intel TDX Module Loading

1. BIOS should activate MKTME with TDX private key IDs, configure the SEAMRR registers and prepares a table of
Convertible Memory Regions (CMRs) — memory regions that can hold TD-private memory pages.

2. BIOS or OS should then install P-SEAMLDR by launching the NP-SEAMLDR ACM.

3. BIOS or OS can retrieve the trusted platform topology and CMR information, as previously checked by MCHECK, using
P-SEAMLDR’s SEAMINFO APIl. Based on the above, the host VMM should then decide on a set of Trust Domain
Memory Regions (TDMRs). TDMR is a region of convertible memory that may contain some reserved sub-regions.

4. The host VMM can then load the Intel TDX Module using P-SEAMLDR’s INSTALL API.

2.1.2. Intel TDX Module Initialization, Enumeration and Configuration

1. After loading the Intel TDX Module, the host VMM should call the TDH.SYS.INIT function to globally initialize the
module.

2. The host VMM should then call the TDH.SYS.LP.INIT function on each logical processor. TDH.SYS.LP.INIT is intended
to initialize the module within the scope of the Logical Processor (LP).

September 2025 . Page 21 of 196

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

3. The host VMM should then call the TDH.SYS.RD/RDALL or TDH.SYS.INFO function to enumerate the Intel TDX Module
functionality and parameters; it should retrieve the trusted platform topology and CMR information as previously
checked by MCHECK.

4. The host VMM should then call the TDH.SYS.RD/RDALL or TDH.SYS.INFO function to enumerate the Intel TDX Module
functionality and parameters. Ifitis not done already, the host VMM can retrieve the trusted platform topology and
CMR information, as previously checked by MCHECK, and decide on the set of TDMRs.

5. The host VMM should then call the TDH.SYS.CONFIG function and pass TDMR information with other configuration
information. TDH.SYS.CONFIG is intended to check the configuration information vs. the Intel TDX Module’s trusted
internal data.

6. The host VMM should then call the TDH.SYS.KEY.CONFIG function per package. TDH.SYS.KEY.CONFIG is intended to
configure a CPU-generated random key that is used as the Intel TDX Module’s global private key. On platforms with
ACT-protected memory, TDH.SYS.KEY.CONFIG also enables ACT memory protection.

7. The host VMM should then use the TDH.SYS.TDMR.INIT function to initialize the TDMRs and their associated control
structures.

The Intel TDX Module lifecycle is detailed in Chapter 4.

2.2. Guest TD Life Cycle Overview

2.2.1. Guest TD Build

The host VMM can create a new guest TD by allocating and initializing a TD Root (TDR) control structure using the
TDH.MNG.CREATE function. As an input to TDH.MNG.CREATE, the host VMM assigns the TD with a memory protection
key identifier, also known as a Host Key ID (HKID). The HKID can be used by the CPU to tag memory accesses done by the
TD and by the multi-key total memory encryption engines (MKTMEs) to select the encryption/decryption keys — the keys
themselves are designed to not be exposed to the host VMM. The VMM should then program the HKID and encryption
key into the MKTME encryption engines using the TDH.MNG.KEY.CONFIG function on each package.

Once keys are configured for the TD, the host VMM can build the TD Control Structure (TDCS) by adding control structure
pages, using the TDH.MNG.ADDCX function, and initialize using the TDH.MNG.INIT function. It can then build the Secure
EPT tree using the TDH.MEM.SEPT.ADD function and add the initial set of TD-private pages using the
TDH.MEM.PAGE.ADD function. These pages typically contain Virtual BIOS code and data along with some clear pages for
stacks and heap. Most of the guest TD code and data is dynamically loaded at a later stage. The guest TD can extend
run-time measurement registers, designed to be securely maintained by the Intel TDX Module, for the added contents
using the TDG.MR.RTMR.EXTEND function.

The host VMM can then create and initialize TD Virtual CPUs (VCPUs). After creating each VCPU using the TDH.VP.CREATE
function, the VMM allocates a set of pages to hold the VCPU state (in a structure called TDVPS) using the TDH.VP.ADDCX
function. The host VMM can then initialize the VCPU using the TDH.VP.INIT function.

After the initial set of pages is added and extended, the VMM can finalize the TD measurement using the
TDH.MR.FINALIZE function.

2.2.2. Guest TD Execution

The host VMM may enter the TD (launch the TD for the first time or resume a previously intercepted TD execution) using
the TDH.VP.ENTER function. The Intel TDX Module is designed to load CPU state from the TDVPS structure and perform
VM entry to go into SEAM non-root mode.

When TD exit is triggered, the Intel TDX Module is designed to save CPU state into the TDVPS structure, load the CPU
state saved on TD entry, and switch back to non-SEAM root mode (SEAMRET) at the instruction following SEAMCALL. The
VMM can then inspect the TD exit information in General Purpose Registers (GPRs).

2.2.3. Guest TD Management during its Run-Time

During TD lifetime, the VMM might need to dynamically control the TD and manage the resources assigned to it. The
Intel TDX Module provides the VMM with functions to support scenarios such as:

e Adding and removing TD pages.

e Changing page mapping sizes.

e Reclaiming the HKIDs from a TD and assigning them to another TD.
e Destroying an existing TD.

September 2025 . Page 22 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

2.3. Intel TDX Operation Modes and Transitions

The Intel TDX Module is designed to provide two main new logical modes of operation built upon the new SEAM root
and non-root CPU modes added to the Intel VMX architecture: logical TDX Root Mode, and logical TDX Non-Root Mode.
Figure 2.2 below shows the Intel TDX logical modes and transitions (in red) on top of the CPU architectural modes.

SMM

Legacy VMX | SEAM

} |
| |
|
Parallel VM Legacy VM | : VMX
/ I : Non-Root
|
VM I 1
Entry : |
Parallel VM Enlty T T -0
Parallel VM
Parallel VMM Host VMM i VMX
~ i Root
Opt-in SMM ADXRoot | |
,,,,,,,,,,,,,,,,,,, o === S T T T T TS T T e .
Opt-out SMM | VMXON
|
|
|
} Default Out of
! VMX
|
|
5 |
Figure 2.2: Overview of Intel TDX Modes & Transitions based on VMX and SEAM Modes and Transitions
The following table adds more details.
Table 2.1: Overview of Intel TDX Modes
Intel TDX Intel VMX Mode | SEAM Mode Description
Logical Mode
Logical TDX VMX Root Non-SEAM TDX root mode is mostly identical to the legacy VMX root operation
Root (mostly), mode. It is generally used for host VMM operations.
SEAM R°°t_ Host-side Intel TDX functions, triggered by SEAMCALL, are provided
Mode.(durmg by the Intel TDX Module. Logically, host-side functions run in TDX
host-side Intel root mode, though the CPU’s SEAM mode is on.
TDX functions
execution)
Logical TDX VMX Non-Root SEAM TDX non-root mode is used for TD guest operation. TDX non-root
Non-Root (mostly), operation is similar to legacy VMX non-root operation, with
VMX Root changes and restrictions to better ensure that no other software or
(during guest- hardware has direct visibility of the TD memory and state.
side Intel TDX The changes in TDX non-root mode vs. legacy VMX non-root
flows execution) operation are implemented by:
e The CPU is running in SEAM non-root mode. This modifies the
address translation to support Secure EPT and usage of private
HKIDs, and it also modifies the VMX operation (entry, exit,
etc.).
e The Intel TDX Module, acting as the root VMM for the guest
TD, uses VMX and SEAM to virtualize the CPU behavior and
emulate the required TDX non-root behavior.

September 2025 . Page 23 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

Intel TDX Intel VMX Mode | SEAM Mode Description

Logical Mode

the Intel TDX Module. Logically, guest-side functions run in TDX
non-root mode, though the CPU runs VMX root mode.

TDX non-root operation is described in Chapter 11.

Guest-side Intel TDX flows, triggered by a VM Exit, are provided by

10

15

20

25

30

35

Intel TDX transitions between TDX root operation and TDX non-root operation include TD Entries, from logical TDX root
to logical TDX non-root mode, and TD Exits from logical TDX non-root to logical TDX root mode. A TD Exit might be
asynchronous, triggered by some external event (e.g., external interrupt or SMI) or an exception, or it might be
synchronous, triggered by a TDCALL(TDG.VP.VMCALL) function.

2.4. Guest TD Private Memory Protection

Memory Encryption

The Intel TDX Module helps protect guest TD private memory using memory encryption and integrity protection as
enabled by the CPU’s MKTME and TDX ISA features. The Intel TDX Module adds key management functionality to help

24.1.1

enforce its security objectives.

Memory encryption is designed to be performed by encryption engines that reside at each memory controller. An
encryption engine holds a table of encryption keys, known as the Key Encryption Table (KET). An encryption key is
selected for each memory transaction based on a Host Key Identifier (HKID) that should be provided with the transaction.

In the first generation of MKTME, HKID is “stolen” from the physical address by allocating a configurable number of bits
from the top of the physical address. TDX ISA is designed to further partition the HKID space into shared HKIDs for legacy
MKTME accesses and private HKIDs for SEAM-mode-only accesses. Future generations might choose to express HKID
differently.

During SEAM non-root operation, memory access can be qualified as either shared or private, based on the value of a
new SHARED bit in the Guest Physical Address (GPA). Shared accesses are intended to behave as legacy memory accesses
and use the upper bits of the host physical address as an HKID, which must be from the range allocated to legacy MKTME.
Private accesses use the guest TD’s private HKID.

The host-side Intel TDX functions help provide the means for the host VMM to manage HKID assignment to guest TDs,
configure the memory encryption engines, etc., while better assuring proper operation to help maintain the TDX’s
security objectives. By design, the host VMM does not have access to the encryption keys.

Key management is described in Chapter 4.

2.4.2. Address Translation

Guest Physical Address (GPA) space is divided into private and shared sub-spaces, determined by the SHARED bit of GPA.

As designed, the CPU translates shared GPAs using the Shared EPT, which resides in host VMM memory. The Shared EPT
is directly managed by the host VMM — the same as with legacy VMX.

As designed, the CPU translates private GPAs using a separate Secure EPT. The Secure EPT pages are encrypted and
integrity-protected with the TD’s ephemeral private key. The Secure EPT is not intended to be directly accessible by any
software other than the Intel TDX Module, nor by any device. Secure EPT can be managed indirectly by the host VMM,
using Intel TDX functions. The Intel TDX Module helps ensure that the Secure EPT security properties are kept. At the
end of translation, the CPU sets the HKID bits in the HPA to the TD’s assigned HKID.

TD private memory management is described in Chapter 9.

September 2025 . Page 24 of 196

Introduction and Overview

Section 1:

10

15

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US
Private GPA Space

TDO /{ Guest Physical Address }
— Memory encrypted with a

CR3 Private Code/data ‘ TD private key

—[Private Code/data ‘

}—4 Shared Data ‘

lGuest Physical Address (GPA)

Shared GPA Space
— Memory encrypted with a
key shared with VMM

Ll

CPU PMH
. ‘ HPA Space
TD Privat .
Hl?l\s . GPA.SHARED . Physical Memory
Physical Pages
No Address +
Yesl HKID

[
Shared Extended Extended
Page Tables Page Tables
(Shared EPT) (Secure EPT)

Figure 2.3: Secure EPT Concept
2.5. Guest TD State Protection

Intel TDX helps protect the confidentiality and integrity of a guest TD and the state of its Virtual CPUs (VCPUs) with the
following mechanisms:

Protected Control TD-scope and TD VCPU-scope control structures, which hold guest TD metadata and TD VCPU

Structures state, are not directly accessible to any software (besides the Intel TDX Module) or devices. As
designed, the control structures are encrypted and integrity-protected with a private key and
managed by Intel TDX functions. TD control structures are described in Chapter 6.

VCPU State on TD On asynchronous TD exits, which usually happen due to external events, the CPU state is saved
Transitions to the VCPU control structures, and a synthetic state is loaded into the CPU registers. On the
following TD Entry, the CPU state is restored from the protected control structures.

On synchronous TD-initiated exit, using the TDCALL(TDG.VP.VMCALL) function, selected GPR
and XMM state can be passed as-is to the host VMM. On the following TD entry, that state can
be passed back as-is to the guest TD.

2.6. Intel TDX I/0 Model (w/o TDX Connect)

Note: This section describes I/O support without TDX Connect. For TDX Connect details, see the [TDX Connect Spec].
The TD guest can use the following I/0 models:

e Paravirtualized devices
e Paravirtualized devices with MMIO emulation
e Direct assignment of devices to a TD

The Intel TDX architecture does not provide specific mechanisms for trusted 1/O. Any integrity or confidentiality
protection of data submitted to or received from physical or emulated devices must be done by the guest software using

cryptography.
Intel TDX 1/O is detailed in Chapter 13.

September 2025 . Page 25 of 196

Introduction and Overview

Section 1:

10

15

20

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

2.7. Measurement and Attestation

As designed, during TD launch, the initial contents and configuration of the TD are recorded by the Intel TDX Module. In
addition, run-time measurement registers can be used by the guest TD software, e.g., to measure a boot process. At run-
time, the Intel TDX architecture reuses the Intel® Software Guard Extensions (Intel® SGX) attestation infrastructure to
provide support for attesting to these measurements as described below.

Intel TDX attestation is intended to be used in two phases:

1. Software within the guest TD can use the TDCALL(TDG.MR.REPORT) function to request the Intel TDX Module to
generate an integrity protected TDREPORT structure. The Intel TDX ISA provides support for enabling the Intel TDX
Module to create this structure that includes the TD’s measurements, the Intel TDX Module’s measurements, and a
value provided by the guest TD software. This will typically be an asymmetric key that the attestation verifier can
use to establish a secure channel or protect sensitive data to be sent to the TD software.

2. An Intel SGX Quoting Enclave, written specifically to support quoting Intel TDX TDs, uses a new ENCLU instruction
leaf, EVERIFYREPORT?2, to help check the integrity of the TDG.MR.REPORT. If it passes, the Quoting Enclave can use
a certified quote signing key to sign a quote containing the guest TD’s measurements and the additional data being
quoted.

The Quoting Enclave can run anywhere on the platform where Intel SGX is supported.

Note: Running Intel SGX enclaves within a guest TD is not supported.

1) TDREPORT 2) EVERIFYTDREPORT2
Data/Ke (TDCALL Leaf) TDREPORT (Instruction)
more] [EEEE
MAC Key MAC Key

Trust Domain TD Quoting Enclave -

Figure 2.4: TD Attestation

TD measurement and attestation are described in Chapter 12.
2.8. TD Partitioning
TD Partitioning extends the base TDX architecture by allowing TDs to contain multiple virtual machines (VMs). A TD may

contain up to 4 VMs. The primary VM (known as the L1 VM) may act as a virtual machine monitor (known as the L1
VMM). Up to 3 nested VMs (known as the L2 VMs) serve as the guests of the L1 VMM.

September 2025 . Page 26 of 196

Introduction and Overview

Section 1:

Host-VMM-managed access
control, enhanced with MK-TME

Intel® TDX Module Base Spec

Section 1: Introduction and Overview 348549-007US

TDX Module-managed access
control, leveraging MK-TME and

L1-VMM-managed
access control

Secure EPT
Legacy VM Legacy VM Trust Domain Partitioned Trust Domain
icati U dified L2 VM L2 VM
Applications Applications A nT.O e L2 VM
pplications Optionally Optionally -
Unmodified
— TDX- TDX- Legacy VM
Drivers Drivers U”m_od'f'ed Enlightened Enlightened gacy
Drivers
TDX-Enlightened TDX-Enlightened
0S
o3 0s L1 VMM
L t o t
TDX TDX
e e i Guest-Side AP Guest Side AP| FETE T
== v v
TDX
Host .VMM e Hona e Intel TDX Module
TDX-Enlightened AP Running in SEAM Root Mode

Figure 2.5: TD Partitioning

TD Partitioning is described in the [TD Partitioning Spec].

2.9. TD Migration

A guest TD may be migrated between platforms. Live migration is supported, i.e., the guest TD may continue to run

during most of the migration time.

Source Platform

Migration TD |«
A 7'\
) > Migrated TD
Session
Keys
Exchange *
v v A
Service TD
Metadata
API TDX Module
TD Export API
A
Session N I I
Control . on-
Session Memory Memory
Control State State

v .

Host VMM —

Destination Platform

Session Control,

Keys Exchange » Migration TD

7'y A
Migrated TD <)
Session
Keys
| Y Exchange
v v
Service TD
Metadata
TDX Module AP|
TD Export API

A
f T Session
Control

n-
Memory Memory Session

State State Control

I v v

1

1

1

1

1

i

1

1

1

1

1

1

1

i

1

1

1

1

1

1

1

1

1

1

1

1

1

1

i

Session Control, '

TD Non-Memory State, |
TD Private Memory, .' Host VMM

Non-TDX Information i

1

1

Figure 2.6: TD Migration

TD Migration is described in the [TD Migration Spec].

September 2025

Page 27 of 196

Introduction and Overview

Section 1:

10

15

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

2.10. Intel TDX Managed Control Structures

As designed, the Intel TDX Module holds and manages a set of control structures that are not directly accessible to
software (except the Intel TDX Module itself). The controls structures are encrypted with private keys and HKIDs, and
their content is only accessible in SEAM mode. Most control structures are addressable by the host VMM, which is
responsible for allocating the memory to hold them.

The Intel TDX Module uses control structures to help manage TD-private memory, transitions into and out of logical TDX

non-root operation (TD entries and TD exits), as well as processor behavior in SEAM non-root operation.

Table 2.2: TDX-Managed Control Structures Overview

Scope Name Meaning Description
Platform KOT Key Ownership Designed to control private HKID assignment. KOT is internal to
Table the Intel TDX Module, intended not to be directly accessible to
any other software.

PAMT Physical Address PAMT is designed to hold metadata of each page in a Trust

Metadata Table Domain Memory Range (TDMR). It controls the assignment of
physical pages to guest TDs, etc. The PAMT is intended not to
be directly accessible to software. It resides in memory
allocated by the host VMM on TDX initialization.

Guest TD TDR Trust Domain TDR is intended to be the root control structure of a guest TD.

Root It controls the key management and build/teardown process.
The TDR is not intended to be directly accessible to software. It
resides in memory allocated by the host VMM, via Intel TDX
interface functions.

TDCS Trust Domain TDCS is intended to control the operation of a guest TD as a

Control Structure | whole. The TDCS is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via
Intel TDX interface functions.

SEPT Secure EPT Secure EPT is an Extended Page Table (EPT) tree, managed by
the TDX Module, and used to help securely manage address
translation for the TD private pages. The SEPT is not intended
to be directly accessible to software. SEPT pages reside in
memory allocated by the host VMM via Intel TDX interface
functions.

Guest TD TDVPS Trust Domain The TDVPS helps control the operation and hold the state of a
VCPU Virtual Processor guest TD virtual processor. It holds the TD VMCS and its

State auxiliary structures as well as other non-VMX control and state
fields. The TDVPS is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via
Intel TDX interface functions.

Intel TDX control structures are described in Chapter 6.
2.11. Intel TDX Interface Functions

The Intel TDX Module implements functions that are triggered by executing two TDX instructions:

SEAMCALL The instruction used by the host VMM to invoke host-side TDX interface functions. The desired interface
function is selected by an input operand (leaf number, in RAX). Host-side interface function names start

with TDH (Trust Domain Host).

September 2025 Page 28 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

TDCALL

The instruction used by the guest TD software (in SEAM non-root mode) to invoke guest-side TDX

functions. The desired interface function is selected by an input operand (leaf number, in RAX). Guest-
side interface function names start with TDG (Trust Domain Guest).

Intel TDX interface function details are described in the [TDX Module ABI Spec].

5 2.11.1. Host-Side (SEAMCALL Leaf) Interface Functions

Table 2.3: Host-Side (SEAMCALL Leaf) Interface Functions

Class

Interface Function Name

Leaf
#

Description

Intel TDX Module Management

TDH.SYS.CONFIG

45

Globally configure the Intel TDX Module

Intel TDX Module Management

TDH.SYS.INFO

32

Get Intel TDX Module information

Intel TDX Module Management

TDH.SYS.INIT

33

Globally initialize the Intel TDX Module

Intel TDX Module Management

TDH.SYS.KEY.CONFIG

31

Configure the Intel TDX global private key on the
current package

Intel TDX Module Management | TDH.SYS.LP.INIT 35 | Initialize the Intel TDX Module per logical processor
Intel TDX Module Management | TDH.SYS.LP.SHUTDOWN 44 | Does nothing; provided for backward compatibility
Intel TDX Module Management | TDH.SYS.RD 34 | Read a TDX Module global-scope metadata field
Intel TDX Module Management | TDH.SYS.RDALL 37 | Read all host-readable TDX Module global-scope

metadata fields

Intel TDX Module Management

TDH.SYS.SHUTDOWN

52

Shutdown the Intel TDX Module and prepare handoff
data

Intel TDX Module Management | TDH.SYS.TDMR.INIT 36 | Partially initialize a Trust Domain Memory Region
(TDMR)

Intel TDX Module Management | TDH.SYS.UPDATE 53 | Populate Intel TDX Module state from handoff data

TD Management TDH.MNG.ADDCX 1 | Add a control structure page to a TD

TD Management TDH.MNG.CREATE Create a guest TD and its TDR root page

TD Management TDH.MNG.INIT 21 | Initialize per-TD control structures

TD Management TDH.MNG.KEY.CONFIG 8 | Configure the TD private key on a single package

TD Management TDH.MNG.KEY.FREEID 20 | Mark the guest TD’s HKID as free

TD Management TDH.MNG.KEY.RECLAIMID 27 | Does nothing; provided for backward compatibility
TD Management TDH.MNG.RD 11 | Read TD metadata

TD Management TDH.MNG.VPFLUSHDONE 19 | Check all of a guest TD’s VCPUs have been flushed by

TDH.VP.FLUSH

TD Management

TDH.MNG.WR

13

Write TD metadata

VCPU Scope TDH.VP.ADDCX 4 | Add a control structure page to a TD VCPU

VCPU Scope TDH.VP.CREATE 10 | Create a guest TD VCPU and its TDVPR root page

VCPU Scope TDH.VP.ENTER 0 | Enter TDX non-root operation

VCPU Scope TDH.VP.FLUSH 18 | Flush the address translation caches and cached TD
VMCS associated with a TD VCPU

VCPU Scope TDH.VP.INIT 22 | Initialize the per-VCPU control structures

VCPU Scope TDH.VP.RD 26 | Read VCPU metadata

VCPU Scope TDH.VP.WR 43 | Write VCPU metadata

Physical Memory Management TDH.PHYMEM.CACHE.WB 40 | Write back the contents of the cache on a package

Physical Memory Management TDH.PHYMEM.PAGE.RDMD 24 | Read the metadata of a page in a TDMR

Physical Memory Management TDH.PHYMEM.PAGE.RECLAIM 28 | Reclaim a physical memory page owned by a TD (i.e.,
TD private page, Secure EPT page or a control structure
page)

Physical Memory Management TDH.PHYMEM.PAGE.WBINVD 41 | Write back and invalidate all cache lines associated
with the specified memory page and HKID

Private Memory Management TDH.MEM.PAGE.ADD 2 | Add a 4KB private page to a TD during TD build time

Private Memory Management TDH.MEM.PAGE.AUG 6 | Dynamically add a 4KB private page to an initialized TD

Private Memory Management TDH.MEM.PAGE.DEMOTE 15 | Splita 2MB or a 1GB private TD page mapping into 512

4KB or 2MB page mappings respectively

September 2025

Page 29 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

Class

Interface Function Name

Leaf

Description

Private Memory Management

TDH.MEM.PAGE.PROMOTE

23

Merge 512 consecutive 4KB or 2MB private TD page
mappings into one 2MB or 1GB page mapping
respectively

Private Memory Management TDH.MEM.PAGE.RELOCATE 5 | Relocate a 4KB mapped page from its HPA to another

Private Memory Management TDH.MEM.PAGE.REMOVE 29 | Remove a private page from a guest TD

Private Memory Management TDH.MEM.RANGE.BLOCK 7 | Block a TD private GPA range

Private Memory Management TDH.MEM.RANGE.UNBLOCK 39 | Remove the blocking of a TD private GPA range

Private Memory Management TDH.MEM.RD 12 | Read from private memory of a debuggable guest TD

Private Memory Management TDH.MEM.SEPT.ADD 3 | Add and map a 4KB Secure EPT page toa TD

Private Memory Management TDH.MEM.SEPT.RD 25 | Read a Secure EPT entry

Private Memory Management TDH.MEM.SEPT.REMOVE 30 | Remove a Secure EPT page from a TD

Private Memory Management TDH.MEM.TRACK 38 | Increment the TD’s TLB tracking counter

Private Memory Management TDH.MEM.WR 14 | Write to private memory of a debuggable guest TD

Measurement and Attestation TDH.MR.EXTEND 16 | Extend the guest TD measurement register during TD
build

Measurement and Attestation TDH.MR.FINALIZE 17 | Finalize the guest TD measurement register

Service TD TDH.SERVTD.BIND 48 | Bind a service TD to a target TD

Service TD TDH.SERVTD.PREBIND 49 | Pre-bind a service TD to a target TD

Migration TDH.MIG.STREAM.CREATE 96 | Create a migration stream

Migration Export TDH.EXPORT.ABORT 64 | Abort an export session

Migration Export TDH.EXPORT.BLOCKW 65 | Block a TD private page for writing

Migration Export TDH.EXPORT.MEM 68 | Export a list of TD private pages contents and/or
cancellation requests

Migration Export TDH.EXPORT.PAUSE 70 | Pause the exported TD

Migration Export TDH.EXPORT.RESTORE 66 | Restore a list of TD private 4KB pages’ Secure EPT entry
states after an export abort

Migration Export TDH.EXPORT.STATE.IMMUTABLE 72 | Start an export session and export the TD's immutable
state

Migration Export TDH.EXPORT.STATE.TD 73 | Export the TD's mutable state

Migration Export TDH.EXPORT.STATE.VP 74 | Export a VCPU mutable state

Migration Export TDH.EXPORT.TRACK 71 | End the current in-order export phase epoch and either
start a new epoch or start the out-of-order export
phase

Migration Export TDH.EXPORT.UNBLOCKW 75 | Unblock a page that has been blocked for writing

Migration Import TDH.IMPORT.ABORT 80 | Abort an import session

Migration Import TDH.IMPORT.COMMIT 82 | Commit the import session and allow the imported TD
to run

Migration Import TDH.IMPORT.END 81 | End an import session

Migration Import TDH.IMPORT.MEM 83 | Import a list of TD private pages contents and/or
cancellation requests based on a migration bundle in
shared memory

Migration Import TDH.IMPORT.STATE.IMMUTABLE 85 | Start an import session and import the TD's immutable
state

Migration Import TDH.IMPORT.STATE.TD 86 | Import the TD's mutable state

Migration Import TDH.IMPORT.STATE.VP 87 | Import a VCPU mutable state

Migration Import TDH.IMPORT.TRACK 84 | End the current in-order import phase epoch and either

start a new epoch or start the out-of-order import
phase

September 2025

Page 30 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

2.11.2. Guest-Side (TDCALL Leaf) Interface Functions

Table 2.4: Guest-Side (TDCALL Leaf) Interface Functions

Class

Interface Function Name

Leaf
#

Description

Intel TDX Module Management

TDG.SYS.RD

11

Read a TDX Module global-scope metadata field

Intel TDX Module Management

TDG.SYS.RDALL

12

Read all gust-readable TDX Module global-scope
metadata fields

TD Management TDG.VM.RD 7 | Read a TD-scope metadata field

TD Management TDG.VM.WR 8 | Write a TD-scope metadata field

VCPU Scope TDG.VP.CPUIDVE.SET 5 | Control delivery of #VE on CPUID instruction execution

VCPU Scope TDG.VP.ENTER 25 | Enter L2 VCPU operation

VCPU Scope TDG.VP.INFO 1 | Get TD execution environment information

VCPU Scope TDG.VP.INVEPT 26 | Invalidate cached EPT translations for selected L2 VMs

VCPU Scope TDG.VP.INVGLA 27 | Invalidate cached translations for selected pages in an
L2 VM

VCPU Scope TDG.VP.RD 9 | Read a VCPU-scope metadata field

VCPU Scope TDG.VP.VEINFO.GET 3 | Get Virtualization Exception Information for the recent
#VE exception

VCPU Scope TDG.VP.VMCALL 0 | Call a host VM service

VCPU Scope TDG.VP.WR 10 | Write a VCPU-scope metadata field

Private Memory Management TDG.MEM.PAGE.ACCEPT 6 | Accept a pending private page into the TD

Private Memory Management TDG.MEM.PAGE.ATTR.RD 23 | Read the GPA mapping and attributes of a TD private
page

Private Memory Management TDG.MEM.PAGE.ATTR.WR 24 | Write the attributes of a private page

Measurement and Attestation TDG.MR.REPORT 4 | Creates a cryptographic report of the TD

Measurement and Attestation TDG.MR.RTMR.EXTEND 2 | Extend a TD run-time measurement register

Measurement and Attestation TDG.MR.VERIFYREPORT 22 | Verify a cryptographic report of a TD, generated on the
current platform

Service TD TDG.SERVTD.RD 18 | Read a target TD metadata field

Service TD TDG.SERVTD.WR 20 | Write a target TD metadata field

September 2025

Page 31 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

3. Software Use Cases

This chapter summarizes the software use cases (also known as software flows) used with the Intel TDX Module.

3.1.

3.1.1.

Intel TDX Module Lifecycle

Intel TDX Module Platform-Scope First-Time Initialization

5 This sequence is intended to be used by the host VMM to initialize the Intel TDX Module at the platform scope.

Table 3.1: Typical Intel TDX Module Platform-Scope First-Time Initialization Sequence

Phase Intel TDX Function Scope Execute On Description
Boot 1 N/A Platform | Each core BIOS configures Convertible Memory Regions
(CMRs) and activates MKTME; MCHECK checks
them and securely stores the information.
P-SEAMLDR 2 N/A Platform | One of the BIOS or OS launches the NP-SEAMLDR ACM,
Loading BSPs which loads the Intel P-SEAMLDR module.
Intel TDX 3 SEAMLDR.INSTALL Platform | Each LP, VMM calls the Intel P-SEAMLDR module with
Module serially “load” scenario to install the first TDX Module.
Loading The TDX Module is installed when
SEAMLDR.INSTALL is called on the last LP.
Intel TDX 4 | TDH.SYS.INIT Platform | Any one LP Perform global initialization of the Intel TDX
Module Module.
Initialization
5 | TDH.SYS.LP.INIT LP Each LP Perform LP-scope, core-scope and package-
scope initialization, checking and configuration
of the platform and the Intel TDX Module.
Enumeration 6 | TDH.SYS.RD* or Platform | Any Retrieve Intel TDX Module information and
and TDH.SYS.INFO initialized LP convertible memory (CMR) information.
Configuration
& 7 | TDH.SYS.CONFIG Platform | Any one LP Configure the Intel TDX Module with TDMR and
PAMT setup.
8 N/A Package | Each Package | If any MODIFIED cache lines may exist for the
PAMT ranges, flush them to memory using, e.g.,
WBINVD.
9 TDH.SYS.KEY.CONFIG | Package | Each Package | Configure the Intel TDX global private key used
for encrypting PAMT and TDR on the hardware
(other TD-scope control structures are
encrypted with their respective TD’s ephemeral
private keys).
At this point any Intel TDX function may be executed on any LP.
Memory 10 | TDH.SYS.TDMR.INIT Platform | One or more Called multiple times to gradually initialize the
Initialization (multiple) LPs PAMT structure for each TDMR.
Once each 1GB block of TDMR has been initialized by TDH.SYS.TDMR.INIT, it can be used to hold TD-
private pages.
3.1.2. Intel TDX Module Shutdown and Update

This sequence is intended to be used by the host VMM to gracefully shut down the Intel TDX Module and install a new

10 Intel TDX Module. There are 2 scenarios:

e Reload scenario — guest TDs’ context and memory are lost.
e Update scenario - guest TDs’ context and memory are preserved.

September 2025

Page 32 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

Intel TDX Module Reload

In the reload scenario, the previous TDX Module in SEAM range is erased when the next TDX Module is installed. Since
in this scenario the previous module can’t pass any information to the next TDX Module, the next TDX Module starts
afresh, and all guest TDs’ context and memory out of SEAM range becomes effectively inaccessible.

5 Table 3.2: TDX Module Reload Sequence

Phase Intel TDX Function Scope Execute On Description

P-SEAMLDR | 1 | SEAMLDR.INSTALL with | Platform | All LPs Installs the next TDX Module, regardless of the
“load” scenario previous TDX Module.

Next TDX The initialization sequence continues in the same way as described in 3.1.1 above, steps 3 to 8.

Module

Intel TDX Module Update

In the update scenario, the previous TDX Module in SEAM range is not fully erased; the previous TDX Module can be
asked to leave “handoff data” in a specific location of the SEAM range, so that the next TDX Module would be able to
10 3 Zfitialize itself from this handoff data. The next TDX Module can thus keep supporting guest TDs’ context and memory.

Table 3.3: TDX Module TD-Preserving Update Sequence

Phase Intel TDX Function Scope Execute On Description

Previous 1 | TDH.SYS.SHUTDOWN Platform | Selected LP Prepare handoff data and mark the TDX

TDX Module’s global state as “shutdown”.

Module

P-SEAMLDR | 2 | SEAMLDR.INSTALL with | Platform | All LPs, Install the next TDX Module without clearing the
“update” scenario serially handoff data.

Next TDX 3 | TDH.SYS.INIT Platform | Selected LP Perform global initialization of the Intel TDX

Module Module.

4 | TDH.SYS.LP.INIT LP All LPs Perform LP-scope, core-scope and package-
scope initializations, checking and configuration
of the platform and the Intel TDX Module.

5 | TDH.SYS.UPDATE Platform | Selected LP Populate internal variables from handoff data.
Mark the TDX Module’s global state as “ready”.

At this point any Intel TDX function may be executed on any LP (don’t call TDH.SYS.CONFIG,

TDH.SYS.KEY.CONFIG and TDH.SYS.TDMR.INIT).

In particular, TDs created by previous TDX Modules can be re-entered.

3.2, TD Build

The following sequence is intended to be used by the host VMM to build a TD.

15

Table 3.4: Typical TD Build Sequence

Step

Description

SEAMCALL Leaf
Functions

A | TD Creation 1

The host VMM finds/allocates a free HKID for the new TD.

TDH.MNG.CREATE

TDH.MNG.KEY.CONFIG

page.

and Key .

2 | The host VMM allocates a 4KB page in TDMR for the TDR.
Resource
Assignment 3 | The host VMM creates the new TD by calling the TDH.MNG.CREATE

function (passing HPA of the TDR page). This initializes the target TDR

September 2025

Page 33 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

Step Description SEAMCALL Leaf
Functions

The TD host VMM configures the MKTME hardware with the TD’s

private key by calling the TDH.MNG.KEY.CONFIG function on each

package.

At this point, the TD private memory is accessible. The VMM can use

Intel TDX interface functions to create control structures and TD private

pages as described below.
TDCS The host VMM allocates multiple 4KB TDCX pages for TDCS. The TDH.MNG.ADDCX
Memory number of TDCX pages required is enumerated by TDH.SYS.RD* or TDH.MNG.INIT
Allocation TDH.SYS.INFO.
and TD

Initialization

For each TDCX page, the host VMM calls the TDH.MNG.ADDCX function
(passing HPA of TDCX) to add the page to the TD.

The host VMM builds a TD_PARAMS structure. For example, the TD
configuration parameters can be obtained from a TD manifest supplied
by the TD owner.

The host VMM calls the TDH.MNG.INIT function (passing the
TD_PARAMS structure) to initialize the TD.

Virtual
Processor
Creation and
Configuration
(Executed per

The host VMM allocates target pages for the VCPU’s TDVPR and TDCX
pages in TDMR in the context of a TD. The number of TDCX pages
required is enumerated by TDH.SYS.RD* or TDH.SYS.INFO.

The host VMM creates a new TD virtual CPU by calling the
TDH.VP.CREATE function (passing the HPA of the new TDVPR page and

TDH.VP.CREATE
TDH.VP.ADDCX
TDH.VP.INIT
TDH.VP.WR

each VCPU
) its owner TDR page).

For each TDCX page, the host VMM calls the TDH.VP.ADDCX function

(passing the HPA of the new TDCX page and its parent TDVPR page).

The host VMM initializes the TD VCPU by calling the TDH.VP.INIT

function (passing the HPA of its TDVPR page). It also passes a single 64b

parameter that is later passed to the VBIOS in the initial value of RCX.

This parameter can be used as a pointer to a configuration structure in

shared memory.

The host VMM allocates Shared EPT for each VP.

The host VMM uses the TDH.VP.WR function to write to the TD VMCS

Shared EPTP field.

The host VMM may modify a few TD VMCS execution control fields

using TDH.VP.WR.
TD Boot The host VMM loads the TD boot image to its memory. The boot image | TDH.MEM.SEPT.ADD
Memory contains code and data pages that typically include a virtual BIOS, OS TDH.MEM.PAGE.ADD
Setup boot loader, configuration, etc.

The host VMM builds the TD Secure EPT by allocating physical pages
and calling the TDH.MEM.SEPT.ADD function multiple times.

The host VMM allocates the initial set of physical pages for the TD boot
image and maps them into host address space.

TDH.MR.EXTEND

September 2025

Page 34 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

Step Description SEAMCALL Leaf
Functions
4 | For each TD page:
1. The host VMM specifies a TDR as a parameter and calls the
TDH.MEM.PAGE.ADD function. It copies the contents from the TD
image page into the target TD page which is encrypted with the TD
ephemeral key. TDH.MEM.PAGE.ADD also extends the TD
measurement with the page GPA.
2. The host VMM extends the TD measurement with the contents of
the new page by calling the TDH.MR.EXTEND function on each 256-
byte chunk of the new TD page.
E | TD 1 | The host VMM calls the TDH.MR.FINALIZE function, which finalizes the TDH.MR.FINALIZE
Measurement TD measurement.
Finalization
inaizatl 2 | At this point, the TD is finalized.
e Its measurement cannot be modified anymore (except the run-time
measurement registers).
e TD VCPUs can be entered using SEAMCALL(TDH.VP.ENTER).
3.3. TD Run Time
3.3.1. Private Memory Management
Dynamic Page Addition (Shared to Private Conversion)
3.3.1.1.
5 The following sequence is intended to be used by the host VMM to dynamically add a page to a guest TD.

Intel TDX
Module
T

TDG.VP.VMCALL | |
Request GPA Range Allocation
TD Exit

Guest TD

I
e T |
| |
TDH.MEM.SEPT.ADD(TDR, GPA, level) | |
I Build S-EPT tree as required |
e — I
I I
I I
TDH.MEM.PAGE.AUG(TDR, GPA) |
| Add one or more 4KB pages as requested |
< —————— == |
I I
TDH.VP.ENTER | |
| Return TDVMCALL output ’ |
| VM entry b
I I
| |
| TDG.MEM.PAGE.ACCEPT(GPA)
| For every 4KB page that was added |
e >
I I
I I
Figure 3.1: Typical Dynamic Page Addition Sequence
September 2025 Page 35 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

Table 3.5: Typical Dynamic Page Addition (Shared to Private Conversion) Sequence

Phase Side | Intel TDX Function Scope | Execute | Description
On

Allocation 1|TD TDG.VP.VMCALL TD Any LP Optional software protocol: Request
Request GPA range allocation.
Page 2 | VMM | TDH.MEM.SEPT.ADD D Any LP If required, update the Secure EPT.
Addition

3 | VMM | TDH.MEM.PAGE.AUG D Any LP Add one or more new 4KB or 2MB

(multiple) private pages.
At this point, the new page is pending acceptance by the guest TD and cannot be accessed by it yet.
4 | VMM | TDH.VP.ENTER D Any LP Optional software protocol: Return
TDG.VP.VMCALL result.

Page 5| TD TDG.MEM.PAGE.ACCEPT D Any LP | Accept the new pending page(s). The
Acceptance (multiple) content of each page is zeroed out.

At this point, the new page can be accessed by the guest TD.

Dynamic Page Removal (Private to Shared Conversion)

3.3.17he following sequence is intended to be used by the host VMM to dynamically remove a page from a guest TD.

Intel TDX
Module Guest TD
! TDG.VP.VMCALL |_|
Release GPA Range
]fm Exit (TDVMCALL)
[TDH.VP.ENTER
Return TDG.VP.VMCALL output I
VM Entry | -

TLB Tracking Seq uence)

1

|

I

| | TDH.MEM.RANGE.BLOCK(TDR, GPA, level) |
For every page to be removed I

I

I

Exit (external interrupt)

VM
147TD Exit (external interrupt)
<

—TDH‘VP'ENTER—E‘_‘
I

VM Entry

TDH.MEM.PAGE.REMOVE(TDR, GPA, level)

For every page to be removed

"

Figure 3.2: Typical Dynamic Page Removal Sequence

September 2025

Page 36 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

Table 3.6: Typical Dynamic Page Removal (Private to Shared Conversion) Sequence

Phase Side Intel TDX Function Scope Execute | Description
On
Ballooning TD TDG.VP.VMCALL TD Any LP Optional software protocol: Release
Notification GPA range.
VMM | TDH.VP.ENTER TD Any LP Optional software protocol: Return
TDG.VP.VMCALL result.
TLB VMM | TDH.MEM.RANGE.BLOCK TD Any LP Block private pages from further address
Tracking (multiple) translation.
Sequence
VMM | TDH.MEM.TRACK TD Any one | Increment the TD’s TLB epoch.
LP
VMM | N/A TD Multiple | Send an IPI, causing TD exit on any
LPs remote LP associated with a VCPU.
Subsequent TDH.VP.ENTER will flush
TLB.
Page VMM | TDH.MEM.PAGE.REMOVE TD Any LP Clear Secure EPT entry.
Removal (multiple) Non-ACT platforms: Mark the physical
page as free.
ACT platforms: Flush cache lines of the
removed page(s) and fill them with
random encrypted data. Then mark the
physical page(s) as free and set the ACT
bit(s) to shared.
3.3.1.3.

Page Promotion (Mapping Merge)

Page size promotion is intended to be used by the host VMM to merge 512 pages mapped as 4KB or 2MB into a single

5 page mapped as 2MB or 1GB, respectively. It is detailed in 9.13.2.

Intel TDX
Guest TD

Module
| |
f f
TLB Tracking Sequence (not detailed here)) | I
| |
| |
| |
| |
f f
| |
TDH.MEM.PAGE.PROMOTE(TDR, GPA, level) |
D<o |
| |
I I

Figure 3.3: Typical Page Promotion Sequence
September 2025 Page 37 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US

Table 3.7: Typical Page Promotion (Mapping Merge) Sequence

Phase Intel TDX Function Scope Execute On Description
TLB 1 | TDH.MEM.RANGE.BLOCK TD Any LP Block the GPA range to be merged from
Tracking further address translation.
Sequence
2 | TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.
3 | N/A TD Multiple LPs Send an IPI, causing TD exit on any remote

LP associated with a VCPU. Subsequent
TDH.VP.ENTER will flush TLB.

Promotion 4 | TDH.MEM.PAGE.PROMOTE TD Any LP Merge small pages in the GPA range into a
large page.

Page Demotion (Mapping Split)

Page size demotion is intended to be used by the host VMM to split a page mapped as 1GB or 2MB into 512 pages mapped
5 1aqs 2MB or 4KB, respectively. It is detailed in 9.13.3.

3.3
Intel TDX
Module Guest TD
T I
f f
TLB Tracking Sequence (not detailed here)) I |
I I
I I
I I
I I
f f
TDH.MEM.PAGE.DEMOTE([|
| TDR, GPA, level, new S-EPT page) ' :
|J-ﬁ __________________ | |
Figure 3.4: Typical Page Demotion Sequence
Table 3.8: Typical Page Demotion (Mapping Split) Sequence
Phase Intel TDX Function Scope Execute On Description
TLB 1 | TDH.MEM.RANGE.BLOCK TD Any LP Block private large page from further
Tracking address translation.
Sequence
2 | TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.
3 | N/A TD Multiple LPs Send an IPI, causing TD exit on any

remote LP associated with a VCPU.
Subsequent TDH.VP.ENTER will flush
TLB.

3.3.1.5.

Demotion 4 | TDH.MEM.PAGE.DEMOTE TD Any LP Split the large page into multiple small
pages.

10

GPA Range Unblock

GPA range unblock is intended to be used when a range has been blocked, for example, for page removal, but the host
VMM decides to cancel the operation. Unblock is detailed in 0.

September 2025 . Page 38 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

Intel TDX
Module

Guest TD

TLB Tracking Sequence (not detailed here))

T TDH.MEM.RANGE.UNBLOCK(TDR, GPA, Ievel)—tl:l

Figure 3.5: Typical GPA Range Unblock Sequence

Table 3.9: Typical GPA Range Unblock Sequence

Phase Intel TDX Function Scope Execute On Description

TLB 1 | TDH.MEM.RANGE.BLOCK TD Any LP Block private GPA range from further address
Tracking (multiple) translation.

Sequence

2 | TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.
3 | N/A TD Multiple LPs Send an IPI, causing TD exit on any remote LP
associated with a VCPU. Subsequent
TDH.VP.ENTER will flush TLB.

Unblocking | 4 | TDH.MEM.RANGE.UNBLOCK | TD Any LP Remove the private GPA range blocking.

5
3.3.2. Guest TD Execution
3.3.2.1.
TD VCPU First-Time Invocation
Table 3.10: Typical TD VCPU First-Time Invocation Sequence
Phase Side Intel TDX Scope Execute | Description
Function On

Entering TD 1| VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry

VCPU (First to TD exit.

Time)

2 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore the initial LP state, as set by TDH.VP.INIT,
from TDVPS and enter SEAM non-root mode.

TD VCPU TD software (VBIOS) starts execution in 32-bit protected mode with no paging.

Initial

Execution 31D N/A VCPU/LP | LP x TD software parses initial information in GPR,

builds page tables and switches to 64-bit mode.

TD software (VBIOS) now executes in 64-bit mode.

Enumeration

4 | TD TDG.VP.INFO VCPU/LP | LP x TD software retrieves basic TD and execution
environment information.
5| TD TDG.MR.REPORT | VCPU/LP | LP x TD software retrieves additional TD information.

TD continues execution in SEAM non-root mode.

September 2025

Page 39 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

TD VCPU Entry, Exit on TDG.VP.VMCALL and Re-Entry

Table 3.11: Typical TD Entry, Exit on TDG.VP.VMCALL and Re-Entry Sequence

Phase Side | Intel TDX Scope Execute | Description
Function On
TD Entry 1| VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry
3.3.2.2. to TD exit.
2 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore LP state from TDVPS and enter SEAM
non-root mode.
TD executes in TDX non-root mode.
Software 3| TD TDG.VP.VMCALL | VCPU/LP | LP x Exit SEAM non-root mode, save LP state to TDVPS,
Protocol over and set synthetic state (except most GPRs and all
TDG.VP.VMCALL XMMs).
4 | VMM | N/A LP LP x Optionally: Restore VMM LP state saved before
TDH.VP.ENTER.
5| VMM | N/A LP LP x Perform TDG.VP.VMCALL function, as determined
by the TD-VMM software contract (out of scope
for this document).
6 | VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry
to TD exit.
7 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore LP state from TDVPS (except most GPRs
and all XMMs). Enter SEAM non-root mode.
8| TD N/A VCPU/LP | LP x Parse TDG.VP.VMCALL output operands as
determined by TD — VMM software contract.
TD Execution TD continues execution in SEAM non-root mode.

3.3.2.3.
TD VCPU Entry, Exit on Asynchronous Event and Re-Entry
5 Table 3.12: Typical TD Entry, Exit on Asynchronous Event and Re-Entry Sequence
Phase Side Intel TDX Scope Execute | Description
Function On
TD Entry 1| VMM | N/A LP LP x Save LP state not preserved across TD Entry to TD exit.
2 | VMM | TDH.VP.ENTER | VCPU/LP | LP x Restore LP state from TDVPS. Enter SEAM non-root
mode.
TD executes in TDX non-root mode.
Async. TD 3| TD N/A VCPU/LP | LP x Asynchronous events (interrupt, exception, EPT
Exit and Re- violation, etc.) cause TD exit. Save LP state to TDVPS
Entry and set synthetic state.
4 | VMM | N/A LP LP x Restore any required LP state saved by the VMM
before TDH.VP.ENTER.
5| VMM | N/A LP LP x Handle the asynchronous event.
6 | VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry to
TD exit.

September 2025

Page 40 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec Section 1: Introduction and Overview 348549-007US
Phase Side | Intel TDX Scope Execute | Description
Function On
7 | VMM | TDH.VP.ENTER | VCPU/LP | LP x Restore LP state from TDVPS and enter SEAM non-root
mode.
D TD continues execution in SEAM non-root mode.
Execution
Guest-Side Functions
Intel TDX
TD
Module Guest
|
332 : ’J-riTDG.M R.REPORT ITl
| T VM entry
I I
I I
[fTDG,M R.REPORT: I
Async. TD Exit (EPT Violation) | :
I I
I TDH.VP.ENTER—P,J-‘ :
| I VM entry >|_|
I I
Figure 3.6: Typical Guest-Side Function Sequences
5
Table 3.13: Typical Guest-Side Functions Sequences
Case Side Intel TDX Scope Execute | Description
Function On
Guest-Side TD executes in SEAM non-root mode
Function
Returns to 1|TD TDG.MR.REPORT | VCPU/LP | LP x The guest TD VM-exits to the Intel TDX Module, which
Guest TD handles the guest-side function and re-enters the TD.
TD continues execution in SEAM non-root mode
Guest-Side 2| TD TDG.MR.REPORT | VCPU/LP | LP x The guest TD exits to the Intel TDX Module, which
Function handles the guest-side function, but an asynchronous
Causes event (e.g., EPT violation, etc.) causes TD exit.
Async. TD
Exit 3 | VMM | N/A LP LP x Optional: The host VMM restores the VMM LP state
saved before TDH.VP.ENTER.
4 | VMM | N/A LP LP x The host VMM handles the asynchronous event.
5| VMM | N/A LP LP x The host VMM saves any VMM LP state not preserved
across TD Entry to TD exit.
6 | VMM | TDH.VP.ENTER VCPU/LP | LP x The Intel TDX Module restores LP state from TDVPS
and enters SEAM non-root mode.
TD continues execution in SEAM non-root mode.
September 2025 Page 41 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec

Section 1: Introduction and Overview

348549-007US

TD VCPU Rescheduling (Migration to Another LP)

The Intel TDX Module is designed to allow a TD VCPU to be associated with at most one LP at any time. The host VMM
must explicitly break this association in order to migrate the VCPU to another LP.

Table 3.14: Typical VCPU Migration to Another LP Sequence

Phase Intel TDX Scope Execute On Description
Function

oid 1 | Any VCPU-specific | VCPU Old LP Any VCPU-specific SEAMCALL leaf (e.g., TDH.VP.INIT,
VCPUDLP SEAMCALL leaf TDH.VP.ENTER, TDH.VP.RD, etc.) creates an
Association association between the current LP and the VCPU.
Breaking 2 | TDH.VP.FLUSH VCPU Old LP Break the VCPU-LP association: flush the VCPU’s TD
oid VMCS to TDVPS memory and flush the VCPU’s TLB
VCPUDLP ASID.

Association

At this point the VCPU is not associated with any LP.

New 3 | Any VCPU-specific | VCPU New LP Create a new VCPU-LP association.

VCPUDLP SEAMCALL leaf

Association
5

3.4. TD Destruction

The following sequence is intended to be used by the host VMM to destroy a TD and reclaim all its resources.

10

Intel TDX
Guest TD

|

I

I

I IPI
VM Exit (external interrupt)
-— D Exit (external interrupt) ————)
¥ I
I I
TDH.VP.FLUSH(TDVPR) I I
On all LPs associated with the TD I
e ——_—_—_——— e ———— I
< === — == |
I I
I I
TDH.M NG.VPFLUSHDONE(TDR)—tD |
I<: —————————————————— |
I I
I I
J_ TDH.PHYMEM.CACHE.WB(START) I
I
4 ——————| Interrupted— — — — — — — |
I I
I I
J_ TDH.PHYMEM.CACHE.WB(RESUM E)—tl:' |
4 -—-—————- Success= — — — — — — — I :
| |
Figure 3.7: Typical TD Destruction Sequence Step A: Stopping and Flushing Out
September 2025 Page 42 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec Section 1: Introduction and Overview

348549-007US

Intel TDX
Module

Guest TD

loop

For each private page, S-EPT page and control structure page except TDR

TDH.PHYMEM.PAGE.RECLAIM(TDR)4t|:|
J_< __________________

TDH.PHYMEM.PAGE.WBINVD(TDR, HKID)

P ———)

Figure 3.8: Typical TD Destruction Sequence Step B: Resource Reclamation

Table 3.15: Typical TD Destruction Sequence

Step

Description

SEAMCALL Leaf Functions

TD Stopping 1
and Flushing

The host VMM selects a TD to destroy. It sends a virtual
interrupt to the TD to shut down gracefully.

Out

The host VMM broadcasts inter-processor interrupts (IPIs) and
must ensure TD exit on all logical processors.

The host VMM calls the TDH.VP.FLUSH function on all LPs
associated with a TD VCPU to flush the TLBs and cached TD VMCS
associated with a TD VCPU on those LPs.

The host VMM calls the TDH.MNG.VPFLUSHDONE function. It
checks that the above step executed for all the TD’s VCPUs are
associated with an LP.

Note: This step may be skipped if
TDX_FEATURESO.SKIP_PHYMEM_CACHE_WB (bit 34),
readable by TDH.SYS.RD, is 1.

The host VMM calls the TDH.PHYMEM.CACHE.WB function on
each WBINVD domain to write back to memory the TD contents
from all caches.

TDH.PHYMEM.CACHE.WB is interruptible by external events. The
host VMM should restart it if it indicates it was interrupted, until
successfully completed.

At this point, no address translations or cache lines may exist for
this TD except for the TDR page.

TDH.VP.FLUSH
TDH.MNG.VPFLUSHDONE
TDH.PHYMEM.CACHE.WB

Resource 1
Reclamation

The host VMM calls the TDH.MNG.KEY.FREEID function. It marks
the HKID used by the TD as available for other TDs.

For each physical page in TDMR allocated to the TD (TD private
pages, Secure EPT pages, and control structures except TDR), the
host VMM calls the TDH.PHYMEM.PAGE.RECLAIM function to
mark the page as free and initializes its content using
MOVDIR64B.

TDH.MNG.KEY.FREEID
TDH.PHYMEM.PAGE.RECLAIM
TDH.PHYMEM.PAGE.WBINVD

September 2025

Page 43 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec Section 1: Introduction and Overview

348549-007US

Step

Description

SEAMCALL Leaf Functions

The host VMM calls the TDH.PHYMEM.PAGE.RECLAIM function to
mark the TDR page as free. The function checks that all other TD
physical pages have been reclaimed before.

Before allocating the reclaimed TDR physical page to any use, the
host VMM calls TDH.PHYMEM.PAGE.WBINVD to flush its cache
lines and initializes its content using MOVDIR64B.

September 2025

Page 44 of 196

Introduction and Overview

Section 1:

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

SECTION 2:

INTEL TDX MODULE ARCHITECTURE SPECIFICATION

September 2025 . Page 45 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

4. Intel TDX Module Lifecycle: Enumeration, Initialization and Shutdown

This chapter discusses the design of the Intel TDX Module life cycle: how its capabilities are enumerated by the host
VMM, how it is initialized, how it is configured and how it is shut down.

4.1. Overview

5 TDX Module lifecycle use cases are described in 3.1.

4.1.1. Intel TDX Module Lifecycle State Machine

The Intel TDX lifecycle state machine helps track the module’s life cycle through the initialization sequence and shutdown.

TDH.SYS.KEY.CONFIG
[Non-last package]

TDH.SYS.LP.INIT TDH.SYS.INFO or
TDH.SYS.RD*

v [LPinitialized]
(" SYSINIT_DONE SYSCONFIG_DONE
Intel TDX module is Intel TDX module Intel TDX module
pending global global initialization TDH'SJISI'_%ONHG global configuration
initalization IS done . [M LPs done
initialized]

TDH.SYS.UPDATE
[All LPs initialized] TDH.SYS.KEY.CONFIG
[Last package]

Intel TDX module "1 Intel TDX module is

has been shut down. ready
TDH.SYS.TDMR.INIT

TDH.SYS.SHUTDOWN

All other
SEAMCALL
leaf functions

Figure 4.1: Intel TDX Module Lifecycle State Machine
10

Table 4.1: Intel TDX Module Lifecycle States

State Name Description Allowed SEAMCALL Leaf Functions
SYSINIT_PENDING TDH.SYS.INIT has not been called TDH.SYS.INIT

yet.
SYSINIT_DONE TDH.SYS.INIT has completed TDH.SYS.LP.INIT

successfully. TDH.SYS.LP.INIT must

TDH.SYS.RD* (if current LP has been initialized)
be called on each LP.

TDH.SYS.INFO (if current LP has been initialized)
TDH.SYS.CONFIG (if all LPs have been initialized)
TDH.SYS.UPDATE (if all LPs have been initialized)

SYSCONFIG_DONE TDH.SYS.CONFIG has completed TDH.SYS.KEY.CONFIG

successfully. TDH.SYS.RD*
TDH.MNG.KEY.CONFIG must be
TDH.SYS.INFO

called on each package.

September 2025 . Page 46 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

State Name Description Allowed SEAMCALL Leaf Functions
SYS_READY The Intel TDX Module is ready for Any

use.
SYS_SHUTDOWN Shutdown operation has been None

initiated. No new host-side

interface functions can be called.

10

4.1

15

20

4.1,

4.1,

25

30

35

4.1.2. Platform Compatibility and Configuration Checking

Overview

The Intel TDX Module is built assuming a certain set of core and platform features. Most platform configuration required
to support the Intel TDX Module is checked by MCHECK. However, some configurations are designed to be checked by
t?e Intel TDX Module. During the initialization process, the Intel TDX Module is designed to check that the platform on

“which it is running is compatible with this core and platform feature set and/or that the same set of features is provided

across the platform. Some of the checks are done per core, and some are done per package. Most of the details are part
of the Intel TDX Module detailed design.

CPU Configuration

2During platform boot, MCHECK verifies all logical CPUs to ensure they meet TDX's security and certain functionality

requirements, and MCHECK passes the following CPU configuration information to the NP-SEAMLDR, P-SEAMLDR and
the TDX Module:

e Total number of logical processors in the platform.
e Total number of packages installed on the platform.
e Atable of per-package CPU family, model and stepping etc. identification, as enumerated by CPUID(1).EAX.

The above information is static and does not change after platform boot and MCHECK run.

Note: TDXdoesn’t supportadding or removing CPUs from TDX security perimeter, as checked by MCHECK. BIOS should
prevent CPUs from being hot-added or hot-removed after platform boots.

The TDX Module performs additional checks of the CPU’s configuration and supported features, by reading MSRs and
ZEPUID information as described in the following sections.

MSR Sampling and Checks

2PH.SYS.INIT reads and checks the contents of some MSRs. In many cases, the MSR value read by TDH.SYS.INIT is also
checked for consistency (i.e., having the same values) by TDH.SYS.LP.INIT. In other cases, TDH.SYS.LP.INIT may perform
additional checks.

CPUID Sampling, Checks and Enumeration

Note: CPUID virtualization is described in 11.11.

The TDH.SYS.INIT and TDH.SYS.LP.INIT functions sample CPUID leaf and sub-leaf return values. This is intended to check
compatibility with the Intel TDX Module and with any guest TD operation. If any of these checks fail, Intel TDX Module
initialization is designed to fail.

The TDH.SYS.RD, TDH.SYS.RDALL and TDH.SYS.INFO functions may be called by the host VMM to enumerate the directly
configurable and allowable CPUID fields.

4.1.3. Physical Memory Configuration Overview

Configuration of the physical memory available to the Intel TDX Module (TDMRs) and its associated metadata (PAMT
arrays) is done using the TDH.SYS.CONFIG function. If supported by the TDX Module, this function can set dynamic PAMT
mode.

September 2025 . Page 47 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Intel TDX ISA Background: Convertible Memory Ranges (CMRs)

A 4KB memory page is defined as convertible if it can be used to hold an Intel TDX private memory page or any Intel TDX
control structure pages while helping guarantee Intel TDX security properties (i.e., if it can be converted from a Shared
page to a private page).

Convertible Memory Ranges (CMRs) are defined as contiguous convertible physical address ranges, declared by BIOS.
CMRs are checked by MCHECK during platform boot to help ensure their configuration matches TDX security. All memory

2.1.3%ithin each CMR must be convertible and must be present when checked by MCHECK during platform boot. CMRs are

static and do not change after platform boot and checking by MCHECK.

Note: The above definition implies that TDX does not support hot-plugin or hot-removal of convertible memory. BIOS
should prevent hot removal of convertible memory after platform boot.

CMRs have the following characteristics:

e CMR configuration is “soft” —no hardware range registers are used.

e Each CMR defines a single contiguous physical address range.

e All the memory within each CMR is convertible, and it must comply with the rules checked by MCHECK.

e Each CMR has its own size. CMR size is a multiple of 4KB, and it is not required to be a power of two.

e CMRs cannot overlap with each other.

e CMRs must reside within the effective physical address range of the platform (after considering the most significant
PA bits stolen for holding Key IDs).

e CMRs are configured at platform scope (no separate configuration per package).

e The maximum number of CMRs is implementation specific. It is not explicitly enumerated; it is deduced from
Family/Model/Stepping information provided by CPUID. The current maximum number of CMRs is 32.

e CMRs are available on systems with TDX |ISA capabilities, as enumerated by bit 5 of the
IA32_VMX_PROCBASED_CTLS3 MSR.

e CMR configuration is checked by MCHECK and cannot be modified afterwards.

MCHECK stores the CMR table, and other platform topology information, in a pre-defined location in SEAM range, so it
can be read later and trusted by the P-SEAMLDR module. On TDX Module installation, P-SEAMLDR copies MCHECK data
to another page in the SEAM range, which is accessible by the Intel TDX Module.

4.1.3.2.

TDMRs and PAMT Arrays Configuration

TDMRs and PAMTs are described in 8.1. This section provides an overview of their configuration and their relationships
to CMRs.

By default, the TDX Module uses a static PAMT configuration. If supported by the TDX Module, it can be configured to
use dynamic PAMT allocation.

4.1.3.2.1. Background: Reserved Areas within TDMRs

As described in 8.1, the Intel TDX Module physical memory management is done using PAMT Blocks — each holding the
metadata of a 1GB block of TDMR. This implies that TDMR granularity must be 1GB.

However, there is a requirement for the host VMM to be able to allocate memory at granularities smaller than 1GB. This
is especially important in systems that have a relatively small amount of memory.

To support the two requirements above, the Intel TDX Module’s design allows arbitrary reserved areas within TDMRs.
Reserved areas are still covered by PAMT. However, during initialization their respective PAMT entries are marked with
a PT_RSVD page type, so pages in reserved areas are not used by the Intel TDX Module for allocating privately encrypted
memory pages (but they can be used for PAMT areas, see below).

If the TDX Module has been configured for static PAMT, reserved areas must be aligned to 4KB, and their size must be a
multiple of 4KB. Else (dynamic PAMT has been configured), reserved areas must be aligned on 2MB, and their size must
be a multiple of 2MB.

Only the non-reserved parts of a TDMR are required to be inside CMRs.

4.1.3.2.2. Background: Three PAMT Areas

As described in 8.1, when static PAMT is used, a logical PAMT Block is composed of 1 PAMT_1G entry, 512 PAMT_2M
entries and 5122 PAMT_4K entries or 5122 PAMT_PAGE_BITMAP entries, depending on whether static PAMT or dynamic
PAMT is used. Thus, the overall size of a PAMT Block, and as a result of the whole PAMT, is not a power of 2.

September 2025 . Page 48 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

However, the host VMM may only be able to allocate memory buffers for PAMT in sizes that are power of 2.

To enable this, buffers for PAMT_1G entries, PAMT_2M entries and PAMT_4K entries are allocated separately. As a
result, if the host VMM allocates a TDMR whose size is a power of 2, its three respective PAMT areas will also have sizes
that are a power of 2.

PAMT areas are required to be inside CMRs because PAMT is encrypted with a private HKID.

Physical Memory Space

PAMT_1G 1
PAMT _2M 1

1GB-Aligned
Reserved

TDMR 2
CMR 3 Available

1GB-Aligned

TDMR 1 Available

Reserved

***** - 1GB-Aligned

[PAMT_1G 0 |

PAMT_2M 0
PAMT_4K 0

CMR 2

1GB-Aligned
Available

PAMT_1G 2
CMR 1 PAMT 4K 1

Reserved

TDMR O Available

CMR 0 [PAMT 2M2 |
| PAMT 4K2 |

Reserved

1GB-Aligned
Figure 4.2: Example of Convertible Memory Ranges (CMRs) vs. Trust Domain Memory Regions (TDMRs)

4.1.3.2.3. Configuration Rules
In addition to the rules described in 8.1, the following rules apply to TDMR configuration as related to CMRs:

e Any non-reserved 4KB page within a TDMR must be convertible —i.e., it must be within a CMR.
e Reserved areas within a TDMR need not be within a CMR.

Three PAMT areas must be configured for each TMDR — one for each physical page size controlled by PAMT:

o Area for PAMT_4K (for static PAMT) or PAMT_PAGE_BITMAP (for dynamic PAMT) entries
e Area for PAMT_2M entries
e Area for PAMT_1G entries

September 2025 . Page 49 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

PAMT areas have the following attributes:

e A PAMT area size is directly proportional to the TDMR with which it is associated. The size ratio is enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO. Note that the size ratio may be different for each of the 3 PAMT array types
and for PAMT_PAGE_BITMAP.

e A PAMT area must reside in convertible memory —i.e., each PAMT area page must be a CMR page.

e PAMT areas must not overlap with TDMR non-reserved areas; however, they may reside within TDMR reserved areas
(as long as these are convertible).

e PAMT areas must not overlap with each other.

4.1.4. TDX Module Extension Overview

TDX Module versions which support some TDX features, such as TDX Connect, implement an extension which includes
the following:

Non-Root Extension (NRX) Extends the functionality of the TDX Module, by implementing some of its functionality as
one or more guests running in SEAM non-root mode. Technically, each NRX guest is a TD.
However, logically and from the usage perspective it is part of the TDX Module and is
hidden from the host VMM. The NRX TD images are embedded in the TDX Module image.
The TDX Module builds the NRX TDs as part of the module’s initialization sequence and
calls them when their functionality is required for execution of some TDX Module
interface functions.

Memory Pool To support the TDX Module extension, the TDX Module holds a pool of 4KB physical pages.
The host VMM, as part of the TDX Module initialization flow, allocates memory for the
memory pool, based on the required pool size calculated and provided to the host VMM
by the TDX Module. All pages in the memory pool are considered equal, e.g., the TDX
Module does not track their package affinity.

4.2. Intel TDX Module Initialization Interface

4.2.1. TDH.SYS.INIT: Global Initialization

TDH.SYS.INIT is intended to globally initialize the Intel TDX Module. It works as follows:

1. |Initialize Intel TDX Module global data.

2. Sample and check platform features that need to be checked for platform-wide compatibility — i.e., the Intel TDX
Module supports several options, but they must be the same across platform. These are later checked on each LP.

3. Sample and check the platform configuration on the current LP. For example, TDH.SYS.INIT samples SMRR and
SMRR2, checks they are locked and do not overlap any CMR, and stores their values to be checked later on each LP.

4. Set the system state to SYSINIT_DONE.

For a detailed description of TDH.SYS.INIT, see the [TDX Module ABI Spec].

4.2.2. TDH.SYS.LP.INIT: LP-Scope Initialization

TDH.SYS.LP.INIT is intended to perform LP-scope, core-scope and package-scope initialization of the Intel TDX Module. It
can be called only after TDH.SYS.INIT completes successfully, and it can run concurrently on multiple LPs. At a high level,
TDH.SYS.LP.INIT works as follows:

1. Do aglobal EPT flush (INVEPT type 2).

2. Initialize Intel TDX Module LP-scope data.

3. Check features and configuration compatibility and uniformity — once per LP, core or package, depending on the
scope of the checked feature or configuration:
3.1. Check features compatibility with the Intel TDX Module.
3.2. Check configuration uniformity.

For a detailed description of TDH.SYS.LP.INIT, see the [TDX Module ABI Spec].

4.2.3. TDH.SYS.RD/RDALL and TDH.SYS.INFO: TDX Module Enumeration

Once an LP has been initialized, the host VMM can call TDH.SYS.RD, TDH.SYS.RDALL or TDH.SYS.INFO on that LP to help
enumerate the Intel TDX Module capabilities and platform configuration.

September 2025 . Page 50 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

TDH.SYS.RD and TDH.SYS.RDALL are the recommended enumeration methods. They enable the host VMM to read the
values of TDX Module global metadata fields, enumerating the TDX Module capabilities. The list of fields is described in
the [TDX Module ABI Spec].

To read all host readable TDX Module fields, the host VMM can invoke TDH.SYS.RDALL. This function returns the
information as a metadata list.

To read a single TDX Module field, TDH.SYS.RD can be invoked. It returns the next host-readable field identifier, thus it
can also be used to enumerate the TDX Module by calling it in a loop, starting from field identifier value of 0, until it
returns a next field identifier value of 0.

TDH.SYS.INFO is provided for backward compatibility with previous TDX Module versions:

e Intel TDX Module capabilities are enumerated in the returned TDSYSINFO_STRUCT (see the [TDX Module ABI Spec]).
e Convertible Memory Ranges (CMRs), as previously set by BIOS and checked by MCHECK, are enumerated in the
returned CMR_INFO table.

For a detailed description of interface functions and metadata fields, see the [TDX Module ABI Spec].

4.2.4. TDH.SYS.CONFIG: TDX Module Global Configuration

After performing global and LP-scope initialization, the host VMM can call TDH.SYS.CONFIG to globally configure the Intel
TDX Module, providing the following information:

e PAMT mode (static or dynamic).

e TDMR and PAMT Table, where each entry contains a TDMR base address, size and corresponding PAMT reserved
area base address and size. Refer to 8.1 for definition of TDMRs.

e The HKID to be used by the Intel TDX Module for its global private key, used for encrypting PAMT and TDRs.

TDH.SYS.CONFIG is also used for enabling some TDX features, such as TDX Connect.
For further TDX Connect related details, refer to the [TDX Module TDX Connect Spec].
For a detailed description of the table format (TDMR_INFO) and TDH.SYS.CONFIG, see the [TDX Module ABI Spec].

4.2.5. TDH.SYS.KEY.CONFIG: Key Configuration (per Package)

After performing global configuration, the host VMM calls TDH.SYS.KEY.CONFIG to perform package-scope configuration
of the Intel TDX Module’s global private key on the hardware.

For a detailed description of TDH.SYS.KEY.CONFIG, see the [TDX Module ABI Spec].

4.3. TDH.SYS.TDMR.INIT: TDMR and PAMT Initialization

TDMR and PAMT initialization procedure is designed to be performed during VMM run-time, after VMM boot. The host
VMM should be able to work normally while initialization takes place, at any time using memory that has already been
initialized. At a high level, TDMR initialization has the following characteristics:

e Initialization is performed gradually.

e Initialization function TDH.SYS.TDMR.INIT adheres to the latency rules of most Intel TDX functions — i.e., they take
no more than a predefined number of clock cycles.

e Initialization function TDH.SYS.TDMR.INIT can run concurrently on multiple LPs if each concurrent flow initializes a
different TDMR.

e After each 1GB page of a TDMR has been initialized, that 1GB page becomes available for use by any Intel TDX
function that creates a private TD page or a control structure page —e.g., TDH.MEM.PAGE.ADD, TDH.VP.ADDCX, etc.

For each TDMR, the VMM should execute a loop of TDH.SYS.TDMR.INIT providing the TDMR start address (at 1GB
granularity) as an input.

TDH.SYS.TDMR.INIT initializes an (implementation-defined) number of PAMT entries. The maximum number of PAMT
entries to be initialized is designed to avoid latency issues. Initialization uses direct writes (MOVDIR64B).

Once the PAMT for each 1GB block of TDMR has been fully initialized, TDH.SYS.TDMR.INIT marks that 1GB block as ready
for use; that means 4KB pages in this 1GB block may be converted to private pages —e.g., by TDH.MEM.PAGE.ADD. This
can be done concurrently with adding and initializing other TDMRs.

For a detailed description of TDH.SYS.TDMR.INIT, see the [TDX Module ABI Spec].

September 2025 . Page 51 of 196

Section 2: Intel TDX Module Architecture Specification

10

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

4.4. TDX Module Extension Initialization

The following sequence is typically used to initialize the TDX Module extension:

1. The host VMM configures the desired TDX features, such as TDX Connect. This is done as part of the TDX Module
initialization sequence or as part of the TDX Module update sequence, as an input parameter to TDH.SYS.CONFIG or
TDH.SYS.UPDATE respectively.

2. Based on the enabled features, the TDX Module checks whether a memory pool is required and if so, calculates its
required size.

3. The host VMM reads MEMORY_POOL_REQUIRED_PAGES, the number of missing TDX Module’s memory pool pages,
using TDH.SYS.RD.

4. Once the TDX Module has been initialized (TDH.SYS.KEY.CONFIG was called on all packages), the host VMM can call
TDH.EXT.MEM.ADD multiple times to add the required number of memory pages to the TDX Module’s memory pool.

5. The host VMM reads EXT_REQUIRED, which indicates whether the TDX Module extension is required to be initialized,
using TDH.SYS.RD.

6. If required, the host VMM can then call TDH.EXT.INIT to initialize the TDX Module extension.

New sub-states
of SYS_READY

EXT_MEM_
NOT_READY

TDH.SYS.KEY.CONFIG
[Non-last package]

}

1
TDH.SYS.LP.INIT TDH.SYS.INFO or
TDH.SYS.RD/RDM
[LPinitialized]

Memory pool is not

full TDH.EXT.MEM.ADD

(" SYSINIT_DONE | SYSCONFIG_DONE ’
Intel TDX module is Intel TDX module Intel TDX module Vs /
pending global global initialization TDH.SYS.CONFIG global configuration
-TDH.SYS.INIT— — [AlIl LPs /

TDH.EXT.MEM.ADD
[Enough memory in pool]

initalization done done

initialized]

EXT_MEM_READY

i

TDH.SYS.UPDATE P Memory pool is full
[All LPs initialized] TDH.SYS.KEY.CONFIG /

[Last package]

TDH.EXT.INIT
[Interrupted]

Intel TDX module Intel TDX module is

TDH.EXT.INIT
has been shut down. ready

TDH.SYS.TDMR.INIT [Done]

-TDH.SYS.SHUTDOWN:

SEAMCALL functions
that require NRX can
~ be called

All other

SEAMCALL ~
O leaf functions

Figure 4.3: TDX Module Extension Initialization as Part of the TDX Module Lifecycle

To avoid long initialization latency, most TDX Module interface functions, which are not dependent on the TDX Module
extension, may be called regardless of the extension initialization. Interface functions defined as dependent on the TDX
Module extension can only be called after the extension initialization is done; calling such functions before that fails with
a TDX_EXT_NOT_INITIALIZED status code.

4.5. TD-Preserving TDX Module Update

45.1. Overview

The TDX Module, in cooperation with the P-SEAMLDR, supports updating the TDX Module while preserving the state of
all TDs. The overall flow is as follows:

1. The host VMM calls TDH.SYS.SHUTDOWN to do the following:
1.1. Check that no other LP runs in SEAM mode.
1.2. Pack state information that needs to be preserved across the TDX Module update as handoff data, to be
consumed by the updated module. Handoff data is hidden — stored internally in SEAM range.
1.3. Shut down the old TDX Module.
2. The host VMM calls P-SEAMLDR functions to update the TDX Module. For details, see the [P-SEAMLDR Spec].
The host VMM calls TDH.SYS.INIT to initialize the new TDX Module.
4. The host VMM calls TDH.SYS.LP.INIT on each LP.

w

September 2025 . Page 52 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

5. The host VMM calls TDH.SYS.UPDATE to do the following:
5.1. Restore state information from the handoff data prepared by the old TDX Module.
5.2. Optionally, set TDX Module configuration that is allowed to change on update.

@ TDH.SYS.KEY.CONFIG

[Non-last package]

1
TDH.SYS.LP.INIT TDH.SYS.INFO or

TDH.SYS.RD*
. [LPinitialized]
PP ——
(" sYsNITDONE)| SYSCONFIG_DONE

Intel TDX module is Intel TDX module Intel TDX module
pending global global initialization TDH'SJISL(;ONHG global configuration
initalization I done . [NI LPS done

initialized]

TDH.SYS.UPDATE
[All LPs initialized] TDH.SYS.KEY.CONFIG
[Last package]

)

Intel TDX module “| Intel TDX module is
has been shut down. ready

TDH.SYS.TDMR.INIT

TDH.SYS.SHUTDOWN

®

All other
SEAMCALL
leaf functions

5 Figure 4.4: TDX Module Lifecycle State Machine — TD-Preserving Update

4.5.2. Data Preserved across TDX Module Update
45.2.1.
Handoff Data in SEAM Range

Handoff data contains internal state information that needs to be preserved across TDX Module update. It resides in the
SEAM range; it is not accessible by host or guest s/w. The handoff data format is implementation dependent; however,

10 45-%the updated TDX Module needs to understand the handoff data saved by the old TDX Module. This is controlled by the
handoff versioning protocol described below.

TDX Data in Memory outside SEAM Range

TDX Module update does not impact DRAM contents and MKTME state. Thus, it does not directly impact TDX data
residing in regular memory, out of SEAM range, such as:

15 e TDX Module global metadata data, e.g., PAMT
e TD metadata (Secure EPT, TDR, TDCS, TDVPS etc.)
e TD private memory

The updated TDX Module needs to understand all such metadata. This is also controlled by the handoff versioning
protocol described below.

20 4.5.3. Handoff Versioning

The handoff protocol is based on the notion of Handoff Version (HV) — an unsigned 16-bit number which identifies the

contents, syntax and semantics of all TDX metadata fields, in the handoff data region and out of SEAM range, that the

old TDX Module passes to the new TDX Module. A TDX Module may understand one or more HVs. This allows the new

module to consume handoff data prepared by an older TD module and “upgrade” it with new contents (e.g., put data in
25 TDCS fields that were previously reserved).

Section 2: Intel TDX Module Architecture Specification

September 2025 . Page 53 of 196

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

In preparation to TD-preserving TDX Module update, the host VMM calls the TDH.SYS.SHUTDOWN function with a
REQ_HV (requested HV) parameter. If the TDX Module understands the requested HV and was not built as “non-
downgradable” (see below), then the TDH.SYS.SHUTDOWN prepares handoff data with the requested syntax and
semantics in the handoff data region; it marks the handoff data region as valid with the requested HV.

5 After P-SEAMLDR updated the TDX Module in SEAM range, the host VMM initializes the new TDX Module, and calls its
TDH.SYS.UPDATE function which consumes the handoff data and marks it as invalid.
Specifically, each TDX Module is built with the following constants:
Table 4.2: TDX Module Handoff Constants
Name Meaning Description
MODULE_HV Module Handoff Version Handoff version that this TDX Module works with
MIN_UPDATE_HV Minimum Updatable The “oldest” HV this TDX Module understands
Handoff Version
NO_DOWNGRADE | No-Downgrade Flag A non-zero value indicates that this TDX Module cannot
“downgrade” the data is leaves behind to a lower handoff
version
10 The above constants must satisfy the inequality 0 <=MIN_UPDATE_HV <= MODULE_HV. If
MIN_UPDATE_HV < MODULE_HV, then this TDX Module can consume (in TDH.SYS.UPDATE) older handoff data (i.e., data
whose syntax/semantics has lower HV than the syntax/semantics this TDX Module was built to work with). In addition,
if the NO_DOWNGRADE flag is zero, then this TDX Module can generate (in TDH.SYS.SHUTDOWN) older handoff data.
The following table illustrates this protocol with several examples.
15 Table 4.3: TDX Module Handoff Protocol Examples

Old TDX Module’s New TDX Module’s Requested HV HV of Handoff Module Update by P- New TDX Module’s
Parameters Parameters to Old TDX Data Prepared SEAMLDR TDH.SYS.UPDATE

Module’s by Old TDX Action

TDH.SYS. Module

SHUDOWN
MODULE_HV=10 MODULE_HV=10 10 10 Installed Consume as is
MIN_UPDATE_HV=10 MIN_UPDATE_HV=10
NO_DOWNGRADE=0 NO_DOWNGRADE=0
MODULE_HV=10 MODULE_HV=10 11 None (shutdown | Not installed (invalid Fail (invalid handoff
MIN_UPDATE_HV=10 MIN_UPDATE_HV=10 failed — handoff data) data)
NO_DOWNGRADE=0 NO_DOWNGRADE=O requested HV is Note: the host VMM Note: the host VMM

too large) can install using “Load” |should re-configure the
scenario new TDX Module (TDs
are not preserved)
MODULE_HV=10 MODULE_HV=10 9 None (shutdown [Not installed (invalid Fail (invalid handoff
MIN_UPDATE_HV=10 MIN_UPDATE_HV=10 failed — handoff data) data)
NO_DOWNGRADE=0 NO_DOWNGRADE=0 requested HV is | Note: the host VMM Note: the host VMM
too small) can install using “Load” |should re-configure the
scenario new TDX Module (TDs
are not preserved)

MODULE_HV=10 MODULE_HV=11 10 10 Installed Upgrade to 11 and
MIN_UPDATE_HV=10 MIN_UPDATE_HV=10 consume
NO_DOWNGRADE=0 NO_DOWNGRADE=0
MODULE_HV=11 MODULE_HV=10 10 10 Installed Consume as is
MIN_UPDATE_HV=10 |MIN_UPDATE_HV=10 (downgraded)
NO_DOWNGRADE=0 NO_DOWNGRADE=0
MODULE_HV=11 MODULE_HV=10 11 11 Not installed (HV- Fail (invalid handoff
MIN_UPDATE_HV=10 MIN_UPDATE_HV=10 incompatible module) data)
NO_DOWNGRADE=0 NO_DOWNGRADE=0

September 2025

Page 54 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Old TDX Module’s New TDX Module’s Requested HV HV of Handoff Module Update by P- New TDX Module’s
Parameters Parameters to Old TDX Data Prepared SEAMLDR TDH.SYS.UPDATE
Module’s by Old TDX Action
TDH.SYS. Module
SHUDOWN
Note: the host VMM Note: the host VMM
can install using “Load” [should re-configure the
scenario. new TDX Module (TDs
are not preserved).
MODULE_HV=11 MODULE_HV=10 10 Shutdown Not installed (invalid Fail (invalid handoff
MIN_UPDATE_HV=10 MIN_UPDATE_HV=10 failure (can’t handoff data) data)
NO_DOWNGRADE=1 NO_DOWNGRADE=0 downgrade) Note: the host VMM Note: the host VMM
can install using “Load” [should re-configure the
scenario. new TDX Module (TDs
are not preserved).

10

15

20

25

30

4.5.4. TDH.SYS.SHUTDOWN: Shut Down the TDX Module as a Preparation for an Update

To begin the TDX Module update sequence, the host VMM can initiate Intel TDX Module shutdown at any time by
ensuring that no LP executes in SEAM mode (i.e.,, all SEAMCALLs, if any, have returned) and calling the
TDH.SYS.SHUTDOWN function on one LP. TDH.SYS.SHUTDOWN also prepares handoff data in a designated area in SEAM
range, to be used by TDH.SYS.UPDATE after a new TDX Module is installed (see below).

For a detailed description of TDH.SYS.SHUTDOWN, see the [TDX Module ABI Spec].

4.5.5. TDH.SYS.UPDATE: Restore TDX Module State after a TD-Preserving Update

When updating the TDX Module, the host VMM calls TDH.SYS.UPDATE after initializing the new TDX Module on all LPs,
so that the new TDX Module will update itself with the handoff data prepared by TDH.SYS.SHUTDOWN on the previous
TDX Module.

Some TDX features, such as TDX Connect, may be enabled on update, as specified by a TDH.SYS.UPDATE input parameter.

If TDH.SYS.UPDATE returns successfully, the TDX Module is ready. TDH.SYS.CONFIG and TDH.SYS.KEY.CONFIG cannot
(and need not) be called.

If TDH.SYS.UPDATE returns an error, then the host VMM can continue with the non-update sequence (TDH.SYS.CONFIG,
TDH.SYS.KEY.CONFIG etc.). In this case all existing TDs are lost. Alternatively, the host VMM can request the P-SEAMLDR
to update to another TDX Module. If that update is successful, existing TDs are preserved.

For further TDX Connect related details, refer to the [TDX Module TDX Connect Spec].

a.5.600r a detailed description of TDH.SYS.UPDATE, see the [TDX Module ABI Spec].

4.5.6. Compatibility Aspects of TD-Preserving Update

Background

TD-preserving TDX Module update may cause some TD management operations to fail in some cases, if the update
happens during phases of the TD lifecycle that are sensitive to update compatibility.

Currently, update-sensitive cases are related to the TDX Module’s crypto library. In both cases below, the format of an
intermediate state held by the old TD module’s crypto library may be incompatible with the format used by the updated
TDX Module’s crypto library. The two current cases are listed below:

e TD build, where the TD Measurement Register (TDMR) accumulates over multiple TDH.MEM.PAGE.ADD,
TDH.MR.EXTEND and TDH.MR.FINALIZE calls.

e TD migration, where an intermediate crypto state is saved if a state migration function (TDH.EXPORT.STATE.* or
TDH.IMPORT.STATE.*) is interrupted and restored when the function is resumed.

Note: Future TDX Module versions may have different or additional update-sensitive cases. By design, such cases
apply to a small portion of the overall TD lifecycle.
September 2025 Page 55 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

4.,5.6.3.

If supported by the TDX Module, it offers the host VMM two ways to detect and overcome or avoid such compatibility
issues, as described below.

Table 4.4: Comparison of Update Incompatibility Detection and/or Avoidance Methods

Method Pros Cons

None e Simplest. e Failures due to
incompatibilities are more
difficult to detect as such.

e TDX Module updates are never

delayed.
Avoid updates during update- e Avoid failures due to e False alarms: update may be
sensitive times incompatibility. avoided even if no actual
incompatibility exists.
Detect incompatibility after e TDX Module updates are never | ® The host VMM needs to
update delayed. implement the recovery flows.

e Failures detected after an
update are recoverable.

Avoid TDX Module Update during Update-Sensitive TD Lifecycle Phases

The host VMM can instruct TDH.SYS.SHUTDOWN to fail if any of the TDs are currently in a state that is impacted by the

3 'supdate sensitive cases. If, at the time TDH.SYS.SHUTDOWN, any of the TD management happens be in one of the states

described above, TDH.SYS.SHUTDOWN returns an error code.

Note that TDH.SYS.SHUTDOWN has no way to know whether the new module’s crypto library will be compatible with the
current one.

Detect Incompatibilities after TDX Module Update

On TDH.SYS.UPDATE, the host VMM can configure the TDX Module to detect actual incompatibility cases. A compatibility
version number is saved with each crypto intermediate state. Incompatibility is detected when the actual incompatible
crypto state is consumed.

e If a TD build continues after a TDX Module update, each of the functions that update the TD’s MRTD (i.e.,
TDH.MEM.PAGE.ADD, TDH.MR.EXTEND and TDH.MR.FINALIZE) returns an error if the intermediate crypto state
saved before the TDX Module update is incompatible. In this case, the host VMM can tear down the TD and rebuild
it.

e If a state migration function is resumed after a TDX Module update, it returns an error if the intermediate crypto
state saved before the TDX Module update is incompatible. The host VMM on both sides of the migration is expected
to abort the migration session; it can start a new migration session.

4.6. TDX Module Fatal Error Handling

4.6.1. Overview

A TDX Module fatal error happens when the TDX Module detects some unexpected behavior. Some examples are:

e An unexpected exception happens during TDX Module execution.
e Some sanity check code in the TDX Module detects a situation that shouldn’t have happened.

A TDX Module fatal error condition ends in an unbreakable shutdown, which impacts the current LP and results in a SEAM
shutdown, which prevents further SEAMCALLs on any LP.

If supported by the TDX Module, the host VMM may configure it to provide diagnostic information in memory and
optionally to broadcast a notification interrupt in case they encounter a fatal error, before entering a shutdown state.

When the TDX Module detects a fatal error, it does the following:

1. |If so configured, log diagnostic information to a shared memory buffer.
2. If so configured, broadcast a notification interrupt to all other LPs.
3. Induce an unbreakable shutdown.

September 2025 . Page 56 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

There are some cases, such as poison consumption while in SEAM root mode, which directly result in an unbreakable
shutdown and a SEAM shutdown without being able to log diagnostics and/or issue a notification interrupt:

e A poison consumption by the core while the TDX Module executes (in SEAM root mode), which may be, e.g., the
result of a TDX control structure being overwritten by non-TDX software, causes an immediate unbreakable
shutdown and a SEAM shutdown.

e Due to the way the TDX Module is implemented, certain unexpected exceptions (#PF and #DF) cause an immediate
unbreakable shutdown and a SEAM shutdown.

e Due to the way the TDX Module is implemented, diagnostic information logging may not be possible during global
initialization (TDH.SYS.INIT) and part of the LP-scope initialization (TDH.SYS.LP.INIT).

4.6.2. FATAL_INFO: Fatal Error Diagnostic Information

FATAL_INFO is a 64-bytes diagnostic information structure, written into memory by the TDX Module when it detects a
fatal error. The host VMM should only be aware of FATAL_INFO's first byte, which contains state information. Other
information in FATAL_INFO is intended for use by Intel to help analyze the root cause of the fatal error.

For a detailed definition of FATAL_INFO, see the [ABI Spec].

4.6.3. Expected Host VMM and BIOS Behavior on TDX Module Fatal Error

Host VMM

1. If a notification interrupt has been configured, then the reception of such an interrupt on a certain LP indicates that
the TDX Module on another LP may have entered SEAM shutdown.

2. In a SEAM shutdown condition, SEAMCALL on any LP results in a VMfaillnvalid (RFLAGS.CF == 1) error. Such error
can be caused by multiple other conditions, but for a well-behaving host VMM, this error should only happen due to
a SEAM shutdown.

3. If a SEAM shutdown is suspected, the host VMM can check whether FATAL_INFO.STATE indicates a valid fatal error
information is available.

4. If FATAL_INFO.STATE does not indicate a valid fatal error information, the host VMM can check the machine check
banks to see if a poison was consumed while the TDX Module was running due to memory corruption.

5. If no machine check event happened, it is still possible that a SEAM shutdown happened without logging any
diagnostic information. Depending on the chosen implementation method, some unexpected exception cases may
cause a SEAM shutdown without logging any diagnostics.

6. The host VMM typically logs the fatal error diagnostics information to some persistent storage for later analysis, then
reboots the platform.

BIOS

When entering an unbreakable shutdown state, the CPU increments a counter, readable by BIOS using SMM_BLOCKED
(MSR 0x4E3). BIOS is expected to use this value in order to avoid waiting indefinitely for LPs that are in an unbreakable
shutdown state.

Note: Older CPUs and/or ucode patch versions may fail to increment the SMM_BLOCKED counter. In this case, an
unbreakable shutdown typically results in a system hang when BIOS attempts to wait for all LPs.

September 2025 . Page 57 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

5. Memory Encryption Key Management

5.1. Objectives

The main goal of Intel TDX key management is to enable the VMM to perform the following:

e Manage HKID space as a limited platform resource, assigning HKIDs to TDs and reclaiming them as required.
e Enable the Intel TDX Module to use a global ephemeral key for encrypting its data (e.g., PAMT).
e Enable each TD to use its own ephemeral key.

The Intel TDX interface functions are designed to provide the required building blocks and help ensure that software
cannot perform operations that are not compliant with TDX security objectives, as follows:

1. Help ensure that only HKID values that have been configured for TDX private memory encryption keys can be
assigned to TDs, and that those HKID values cannot be used by non-TD software or devices.

2. Prevent assignment of the same HKID to more than one TD.

3. At the time an HKID is assigned to a TD, there must be no modified cache lines — at any level, for any core — for that
HKID. All such cache lines that may have held modified data have been written to memory (if required). Note that
this requirement applies only to TDX private HKID and not to legacy MKTME HKIDs.

4. TD memory may be accessed, and the TD may run, only when the following conditions are met:

4.1. An HKID has been assigned for the TD’s ephemeral key.
4.2. The encryption key has been configured for all the TD’s ephemeral HKID, on all crypto engines, on all packages.

5.2, Background: HKID Space Partitioning

Since the same MKTME encryption engines and the same set of encryption keys are used for legacy MKTME operation
and for TDX operation, TDX ISA enables the enumeration and partitioning of the activated HKID space between the two
technologies. As designed, the encryption keys and their associated HKIDs are divided into three ranges, as shown in
Table 5.1 below. The values of NUM_HKID_KEYS and NUM_TDX_PRIV_KEYS are read from the
IA32_MKTME_KEYID_PARTITIONING MSR (0x87).

Private HKIDs and private keys are designed to be fully controlled by the Intel TDX Module and are the subject of this
chapter.

Note: To be configured for dynamic PAMT (if supported by the TDX Module), NUM_HKID_KEYS may be required to be
at least a certain minimum. The minimum number of HKID bits for dynamic PAMT is enumerated by
MIN_DYNAMIC_PAMT_NUM_HKID_BITS, readable by TDH.SYS.RD*.

Table 5.1: HKID Space Partitioning

HKID Key
0 Legacy TME key, shared
1 Legacy MKTME key #1
Shared
HKIDs 2 Legacy MKTME key #2
NUM_HKID_KEYS Last legacy MKTME key
NUM_HKID_KEYS + 1 Private key of a specific TD
NUM_HKID_KEYS + 2 Private key of a specific TD
Private . ipr
HKIDs NUM_HKID_KEYS + 3 Private key of a specific TD
NUM_HKID_KEYS + NUM_TDX_PRIV_KIDS Private key of a specific TD

September 2025 . Page 58 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

5.3. WBINVD Domains

Enumeration: TDH.PHYMEM.CACHE.WB is not required if TDX_FEATURESO.SKIP_PHYMEM_CACHE_WB (bit 34),
readable by TDH.SYS.RD, is 1.

5.3.1. Overview

TDX memory encryption key management requires flushing caches. The TDH.PHYMEM.CACHE.WB interface function (as
well as the CPU instructions WBINVD and WBNOINVD) flush caches in the WBINVD domain associated with the LP on
which they execute. The extent of each WBINVD domain, i.e., which LPs belong to it, depends on the CPU architecture.
For older processors, a WBINVD domains includes all LPs single package. For newer processors, a WBINVD domain may
include a group of LPs within a package. TDX operations that involve TDH.PHYMEM.CACHE.WB requires it to be executed
on one LP per WBINVD domain in the platform.

5.3.2. Host VMM Enumeration of WBINVD Domains

The host VMM can use the algorithm described in [Processor Topology Enumeration] to enumerate the WBINVD domain
on the platform. The following description summarizes the operation.

Do detect the WBINVD domains on the platform, do the following for each LP, identified by its x2APIC ID:

1. Find the last cache level for this LP, by iterating on CPUID(4,N) starting from N=0 until the Cache Type returned in
EAX[4:0] is Null (0).

2. If Lis the last cache level, then LogicalProcessorsSharingCacheP2, the maximum number of x2APIC IDs sharing this
cache is provided in CPUID(4,L).EAX[25:14], rounded up to the nearest power of 2.

3. Calculate CACHE_MASK by ~(LogicalProcessorsSharingCacheP2-1).

4. CACHE_ID is calculated by bitwise-and the current LP’s x2APIC ID with CACHE_MASK.

5. If CACHE_ID is new, add it and the associated CACHE_MASK to the list of WBINVD domains.

For any given LP, to determine the associated WBINVD domain, scan the WBINVD domains list, and for each entry:

1. Bitwise-and the current LP’s x2APIC ID with CACHE_MASK.
2. If the result equals CACHE_ID, then the current LP belongs to this WBINVD domain.

5.3.3. Enumerating Non-Package WBINVD Domains Support
The TDX Module indicates that it supports multiple WBINVD domains per package and is running on a CPU where this is
indeed the case, by TDX_FEATURESO.WBINVD_DOMAINS (bit 15), readable by the host VMM using TDH.SYS.RD*.

Note that if TDH.PHYMEM.CACHE.WB is not required, as indicated by TDX_FEATURES0.SKIP_PHYMEM_CACHE_WB (bit
34), then TDX_FEATURESO.WBINVD_DOMAINS (bit 15) is 0.

5.4. Key Management Tables

The CPU and the Intel TDX Module maintain several tables for key management. No table is intended to be directly
accessible by software; the tables are used by the Intel TDX functions. The tables help the Intel TDX Module track the
proper operation of the software and help achieve the Intel TDX security objectives.

Table 5.2: Key Management Tables

Table Scope Description

Key Encryption Package | KET is an abstraction of the CPU micro-architectural hardware table for
Table (KET) configuring the memory encryption engines. The KET is indexed by HKID. All
crypto engines on a package are configured the same way.

KET is part of the legacy MKTME architecture. Intel TDX ISA partitions KET to
shared and private ranges, as described in 5.2 above.

e AKET entry in private HKIDs range is configured per package by the host
VMM using the SEAMCALL(TDH.MNG.KEY.CONFIG) function.

e AKET entry in the shared HKID range is configured by software per package
directly, using the PCONFIG instruction.

September 2025 . Page 59 of 196

Section 2: Intel TDX Module Architecture Specification

https://cdrdv2.intel.com/v1/dl/getContent/775917

D1

TD 2

D3

10

15

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Table Scope Description
KeyID Platform | KOT is an Intel TDX Module hidden table for managing the TDX HKIDs inventory.
Ownership It is used for assigning HKIDs to TDs, revoking HKIDs from TDs and controlling
Table (KOT) cache flush.
KOT is indexed by HKID. Only the KOT entries in the configured TDX HKIDs range
are meaningful.
TD Key D TD-scope key management fields are held in TDR. They include the key state,
Management ephemeral private HKID and key information, and a bitmap for tracking key
Fields configuration.

Figure 5.1 below provides an abstract, high-level picture of how the tables are related. Detailed discussion is provided in
the following sections.

TD-Scope Key Information

In TDR
Lifecycle State HKID
TD_KEYS_CONFIGURED | 8

TD-Scope Key Information

In TDR

Lifecycle State

HKID

TD_HKID_ASSIGNED

64

TD-Scope Key Information

In TDR

Lifecycle State

HKID

TD_BLOCKED

9

VCPU-Scope Private KeyID
In TD VMCS

CPU uses this value to setup h/w on TD entry

HKID

8

Global-Scope KeylD Ownership Table (KOT)
\ Internal to the Intel TDX module

\ HKID

State

N 0

N/A

N/A

\ 1

HKID_ASSIGNED

Package-Scope

Key Encryption Tables (KET)

In each crypto engine, per memory
controller, multiple per package

HKID_FLUSHED

. >

HKID_ASSIGNED

HKID Key

0 TME Key

1 MKTME Key
8 TDX Key

9 TDX Key

10 TDX Key (N/A)
11 TDX Key (N/A)
64 TDX Key (N/A)

Figure 5.1: Overview of the Key Management State at TD-Scope, LP-Scope, Package-Scope and Global-Scope

5.5. Combined Key Management State

Key management state is composed of two state variables:

e Per-HKID KOT Entry State is designed to control how the inventory of private HKIDs is managed using the KOT.
e Per-TD Life Cycle State is designed, among other things, to control how TD keys are configured on the hardware and
the process of shutting down a TD.

The combined key management state is intended to affect whether the TD private memory is accessible, whether its
contents may be cached, whether private GPA-to-HPA address translations are allowed and whether such translations

may be cached.

Table 5.3 below lists the designed combined key management state values and their meaning. Figure 5.2 below shows a

simplified diagram of the combined key state. Refer also to the key management sequences described in 5.6.

September 2025

Page 60 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Table 5.3: Combined TD Key Management States

TD Life Cycle State

KOT Entry (HKID)
State

Private Memory
Access

S-EPT
Translations

Comments

N/A

HKID_FREE

TD_HKID_ASSIGNED

TD_KEYS_CONFIGURED

HKID_ASSIGNED

TD_BLOCKED

HKID_FLUSHED

TD_TEARDOWN

N/A (HKID_FREE)

N/A

HKID_RESERVED

|
:TD doesn't exist
I
|
|
|

TDH.PHYMEM.PAGE.RECLAIM(TDR)

TD has no HKID

|
.
|
L TDH.MNG.CREATE

Cached

New

TDH.MNG.KEY.CONFIG
[non-last package]

TD private key not
configured

New

Cached

TDH.VP.ENTER
TDH.VP.FLUSH

TD build and
execution

TDH.MNG.KEY.CONFIG
[last package]

(non-TDR)

TDH.PHYMEM.PAGE.RECLAIM

r———=/1

TDH.MNG.KEY.FREEID—

TD_BLOCKED

TDH.MNG.VPFLUSHDONE

TD may not run, TD
private memory
access blocked

— -TDH.PHYMEM.CACHE.WB*- — —

* TDH.PHYMEM.CACHE.WB is not required if
TDX_FEATURESO.SKIP_PHYMEM_CACHE_WB
(bit 34), readable by TDH.SYS.RD, is 1.

Figure 5.2: Simplified Combined TD Key Management State Diagram

Chapter 7 discusses TD life cycle management and zooms-in into the TD_KEYS_CONFIGURED state, detailing its secondary
sub-states that control TD operation and TD migration.

September 2025

Page 61 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

5.6. Key Management Sequences

5.6.1. Intel TDX Module Initialization: Setting an Ephemeral Key and Reserving an HKID for Intel TDX Data

This sequence is described as part of the Intel TDX Module initialization sequence in 3.1.

5.6.2. TD Creation, Keys Assignment and Configuration

This sequence is intended to be used by the host VMM to create a new TD, select HKIDs from the global pool in KOT and
assign them to the TD, and configure the TD keys on the hardware.

Refer also to the software flow discussion in 3.2.

Table 5.4: Typical TD Creation, Keys Assignment and Configuration (TD-Scope and KOT-Scope) Sequence

Intel TDX Function Scope Execute On Description
1 | TDH.MNG.CREATE TD One LP Assign the TD’s private HKID.
2 | TDH.MNG.KEY.CONFIG | TD Each package Configure the TD’s random ephemeral key on the
package.

5.6.3. TD Keys Reclamation, TLB and Cache Flush
This sequence is intended to be used by the host VMM to reclaim the HKIDs assigned to a TD and return them to the
global pool in KOT. At the end of this sequence, the HKIDs should be free to be assigned to another TD.

The cache flush operation is long. Since it is designed to run at global scope and is decoupled from any TD, the host VMM
may choose to implement it in a lazy fashion, i.e., wait until a certain number of HKIDs in the KOT pool become
RECLAIMED. This is especially important since TDH.PHYMEM.CACHE.WB operates on all cache lines regardless of HKID.

To avoid long latencies, TDH.PHYMEM.CACHE.WB is designed to be interruptible. The host VMM is expected to repeat
the execution of this instruction until it returns a success indication.

Refer also to the software flow discussion in 3.4.

Table 5.5: Typical TLB and Cache Flush (TD-Scope and KOT-Scope) Sequence

Intel TDX Function Scope Execute On Description

As a preparation, the host VMM avoids any VCPU-specific SEAMCALL function (i.e., TDH.VP.ENTER, TDH.VP.INIT,
TDH.VP.RD and TDH.VP.WR) and waits until no VCPU is running.

1 | TDH.VP.FLUSH TD One each LP Flush the VCPU’s TD VMCS to TDVPS memory and
VCPU associated flush the VCPU’s TLB ASID.
with a TD
VCPU
2 | TDH.MNG.VPFLUSHDONE | TD, One LP Check all the VCPUs have been flushed.
KOT
3 | TDH.PHYMEM.CACHE.WB | KOT Each WBINVD | Note: TDH.PHYMEM.CACHE.WB is not required if
domain? TDX_FEATURESO.SKIP_PHYMEM_CACHE_WB

(bit 34), readable by TDH.SYS.RD, is 1.

Write back cache hierarchy, at least for the HKIDs
marked as TLB_FLUSHED. The instruction execution
time is long; it is interruptible by external events
and may be restarted until completed.

2 Enumerated by CPU during Intel TDX Module initialization, see 4.1.2.4.

September 2025 . Page 62 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Intel TDX Function Scope Execute On Description
4 | TDH.MNG.KEY.FREEID TD, One LP Mark TD’s HKID as FREE.
KOT

September 2025

Page 63 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

6. TD Non-Memory State (Metadata) and Control Structures

This chapter discusses the guest TD control structures that hold non-memory state (metadata) and how they are intended
to be used during the TD life cycle.

6.1. Overview

Opaque (Intel TDX Module' Opaque (TD Private HKID):

: Shared:
obal Private : ocated, Inte odule Manage -Managed, Share
Global Private HKID): |, VMM Allocated, Intel TDX Module M d I VMM-M d, Shared HKID
VMM Allocated, I 1
Intel TDX Module Managed! TD-scope I
I TD-scope I
TD-scope : SEPT Page :
TDCX Page N
TDR Page |~ — I
I 1 *
; i VMM ma
: 3 TDCS 3 secure EPT Tree : maintain Zsingle
I I copy per TD, shared
L MIGSC Page I by all VCPUs
| |
[= [
I Migration Stream Contexts
| |
L PERFMON_EVENTS_ |
I BITMAP Page 1
| \ |
I Perfmon Events Bitmap | VCPU-scope*
| |
: VCPU :
I “scope [Shared
1 ! EPT
I 1 Tree
,,,,,,,,,,, || TDVPRPage . 1pcx page | VCPU-scope®
| |
: TDVPS : VMCS Auxiliary
| | Control Structures
1 1

Figure 6.1: Guest TD Control Structures Overview (Not Including TD Partitioning and TDX Connect)

All guest TD control structures reside in memory pages that are allocated by the host VMM from the pre-configured
TDMRs. Guest TD control structure pages are addressable by the host VMM.

6.1.1. Opaque vs. Private vs. Shared Control Structures

10 Control structures are divided into two classes:

e Shared control structures are intended to be directly managed by the host VMM and are encrypted with a shared
HKID. The Intel TDX Module architecture only describes the shared control structures that might directly impact its
operation. The host VMM may hold additional control structures.

e Private control structures are mapped to the guest TD’s GPA space and are directly accessible by it.

15 e Opaque control structures are not intended to be directly accessible to any software (except the Intel TDX Module)
or DMA. They are intended to be managed via Intel TDX Module functions. Generally speaking, the host VMM is
not aware of the exact format of opaque control structures. Opaque control structures’ memory pages are intended
to be encrypted with a private HKID.

6.1.2. Scope of Control Structures

20 Guest TD control structures have two possible scopes:

e TD-scope control structures are intended to apply for a guest TD as a whole.
e TD VCPU-scope control structures are intended to apply for a single virtual CPU of a guest TD.

September 2025 . Page 64 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

6.2. TD-Scope Control Structures

TD-scope control structures include TDR and TDCS, discussed below, and Secure EPT, discussed in Chapter 9.

6.2.1. TDR (Trust Domain Root)

TDR is the root control structure of a guest TD. As designed, TDR is encrypted using the Intel TDX global private HKID. It
holds a minimal set of state variables that enable guest TD control even during times when the TD’s private HKID is not
known, or when the TD’s key management state does not permit access to memory encrypted using the TD’s private key.

TDR occupies a single 4KB naturally aligned page of memory. It is designed to be the first TD page to be allocated and
the last to be removed. Its physical address serves as a unique identifier of the TD, as long as any TD page or control
structure resides in memory.

At a high level, TDR holds the following information:

e Fields designed to control guest TD build and teardown process.
e Fields designed to manage memory encryption keys.

6.2.2. TDCS (Trust Domain Control Structure)

TDCS is the main control structure of a guest TD. As designed, TDCS is encrypted using the guest TD’s ephemeral private
key. TDCS is a multi-page logical structure composed of multiple TDCX physical pages.

At a high level, TDCS holds the following information:

e Fields designed to control the TD operation as a whole (e.g., a counter of the number of VCPUs currently running).

e Fields designed to control the TD’s execution control (debuggability, CPU features available to the TD, etc.).

e Fields related to TD measurement.

e EPTP: as designed, a pointer (HPA) to the TD’s secure EPT root page and EPT attributes.

e MSR bitmaps, designed to be used by all the TD’s VCPUs.

e As designed, the secure EPT root page.

e A page filled with zeros, designed to be used in cases where the Intel TDX Module needs a read-only constant-0 page
encrypted with the TD’s private key.

TDCS may hold forward links to the following control structures:
e Secure EPT pages.
e Migration Stream Context (MIGSC) pages.

6.3. TD VCPU-Scope Control Structures

6.3.1. Trust Domain Virtual Processor State (TDVPS)

Trust Domain Virtual Processor State (TDVPS) is the root control structure of a TD VCPU. It helps the Intel TDX Module
control the operation of the VCPU and holds the VCPU state while the VCPU is not running. TDVPS is a single logical
control structure composed of multiple physical 4KB pages.

September 2025 . Page 65 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Management Fields
(mapped to TDVPR
page) | .-

TD VCPU State

|
| |
| |
TD VCPU | :
| |
| |

r——————" TDCX Page

e GPRs
e CRs, DRs, MSRs
e Extended State

TD VMCS Auxiliary Info

e Virtual APIC Page

e VEInfo ==~ TDCX Page

TD VMCS
(not mapped in linear
address space)

———————— TDCX Page

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F—————— TDCX Page :
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Logical View Physical View
Figure 6.2: High Level Logical and Physical View of TDVPS

Physical View of TDVPS: TDVPR/TDCX
6.3.1.1.

TDVPS is designed to be opaque to software and DMA access, accessible only by using the Intel TDX Module functions.
5 From the VMM perspective, TDVPS is composed of multiple 4KB pages, where each page may reside in arbitrary locations
in convertible memory.

Trust Domain Virtual Processor Root (TDVPR) is the 4KB root page of TDVPS. Its physical address serves as a unique
identifier of the VCPU (as long as it resides in memory).

Trust Domain Control structure eXtension (TDCX) 4KB pages extend TDVPR to help provide enough physical space for
10 the logical TDVPS structure.

The TDVPR and TDCX pages are designed to be encrypted with the TD’s ephemeral private key. They are addressable by
the host VMM, which is responsible for allocating memory to hold them.

3 1he required number of 4KB TDVPR/TDCX pages in TDVPS is enumerated to the VMM by the TDH.SYS.RD* or
TDH.SYS.INFO function (see 4.2.3).

15 Logical View of TDVPS

Logically, TDVPS is organized as a single large data structure. At a high level, it is composed of the following parts:

VMX (with TDX ISA Extensions) Standard Control Structures

e TDVMCS
e TD VMCS auxiliary structures, such as virtual APIC page, virtualization exception information, etc. Note that MSR
20 bitmaps are held as part of TDCS because they are meant to have the same value for all VCPUs of the same TD.

The TDX design does not require some of the VMX control structures (notably, the Shared EPT) to be protected. They are
described below.

Proprietary Fields

e TD VCPU Management fields designed to manage the operation of the VCPU
25 e TD VCPU State fields designed to hold most of the VPCU state (except state that is saved to the TD VMCS) when the
VCPU is not running

TDVPS organization and format are detailed in the [TDX Module ABI Spec].

Section 2: Intel TDX Module Architecture Specification

September 2025 . Page 66 of 196

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

6.3.2. Non-Protected Control Structures: Shared EPT and VMCS Auxiliary Control Structures

Several VMX control structures are directly managed and accessed by the host VMM. These control structures are
pointed to by fields in the TD VMCS. The Intel TDX Module checks that the pointers conform to the shared-access HPA
semantics (see 18.2.1.1).

Non-protected control structures include:

e Shared EPT tree
e Posted interrupt descriptor

6.4. TD Non-Memory State (Metadata) Access Functions

As set of interface functions is provided to enable host VMM and guest TD access to TD non-memory state (metadata).
These functions employ metadata abstraction, using field code to abstract the actual control structure format. The
generic metadata access interface mechanisms are described in 18.6.

Table 6.1: TD Non-Memory State (Metadata) Single Field Access Functions

Side Scope | Control Structures Intel TDX Functions

Host VMM TD TDR and TDCS TDH.MNG.RD, TDH.MNG.WR

(SEAMCALL) | ycpu | TDVPS (including TD VMCS) | TDH.VP.RD, TDH.VP.WR

Guest TD TD TDR and TDCS TDG.VM.RD, TDG.VM.WR

(TDCALL) VCPU | TDVPS (including TD VMCS) | TDG.VP.RD, TDG.VP.WR

Access to control structure fields using the provided interface functions (down to the bit granularity, if required) depends
on whether the TD is debuggable (ATTRIBUTES.DEBUG bit is 1) or not.

In many cases, control structure field access means more than just reading or writing the field content. For example:

e When a field that contains an HPA is written, its value is checked not to overlap the SEAMRR range.

e In some cases, there may be inter-dependency between fields. When such fields are written, multiple checks may
need to be done, and some actions may need to be taken.

e For some fields, the internal format and/or value may be different than what is visible externally.

For details about the TDX Module’s metadata access interface, see 18.6.
6.5. Concurrency Restrictions and Enforcement

A general description of concurrency restrictions is provided in 18.1.

Normally, exclusive or shared access is acquired, if needed, for the typically short duration of function flows. A TD VCPU
execution is an exception case. Shared access to TDCS and TDVPS is acquired on TD Entry and released on TD Exit. This
implies that SEAMCALL(TDH.VP.ENTER) function, all TDCALL functions, and asynchronous TD Exit have implicit shared
access to TDCS and TDVPS.

This mechanism helps protect running VCPUs against concurrent functions that may try to change their governing control
structures.

September 2025 . Page 67 of 196

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

7. TD Life Cycle Management

This chapter discusses guest TD life cycle management.
7.1. TD Life Cycle State Machine

The TD Life Cycle state machine controls the overall TD build, run-time and destruction process. It operates in conjunction
with the HKID state machine, as described in 5.5. Figure 7.1 below shows the TD Life Cycle state diagram.

TDH.MNG.CREATE

TD private key is configured

TD private key not
configured

TDH.MNG.
KEY.CONFIG
[non-last

package]

TDH.MNG.KEY.CONFIG
[last package]

TD Operation B_O
Sub-State

. J

TDH.MNG.VPFLUSHDONE
[no associated VCPUs,
no bound TDIs]

TD_BLOCKED

TD has no HKID

TD private memory
access is blocked
and caches are
getting flushed

TDH.PHYMEM.
PAGE.RECLAIM
[non-TDR]

TDH.MNG.KEY.FREEID:

(& J

TDH.PHYMEM.PAGE.RECLAIM[TDR]

Figure 7.1: High-Level TD Life Cycle State Diagram
Most of the TD lifetime is spent in the TD_KEYS_CONFIGURED state. Within that state, a secondary-level state machine
controls the overall TD operation and migration.

7.2. OP_STATE: TD Operation Secondary-Level State Machine

The TD Operation state machine controls sub-states of the TD Life Cycle’s TD_KEYS_CONFIGURED state. It shown in
Figure 7.2 below. This document describes the baseline states: UNALLOCATED, UNINITIALIZED, INITIALIZED and
RUNNABLE. Other states and transitions support TD migration and are described in the [TD Migration Spec].

September 2025 . Page 68 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Sp

ec Section 2: Intel TDX Module Architecture Specification

348549

-007US

TDH.MNG.KEY.CONFIG
[last package]

UNALLOCATED

TDCS memory

TDH.SERVTD.BIND TDH.SERVTD.BIND TDH.VP.CREATE,
(MigTD) (MigTD) TDH.VP.ADDCX,
J J TDH.VP.INIT
UNINITIALIZED INITIALIZED
TDCS memory has TD memory
been allocated TDH.MNG.INIT allocation and
measurement,
VCPU creation
TDH.MEM.*,
TDH.MR.EXTEND

TDH.IMPORT.STATE.IMMUTABLE

allocation TDH.MNG.ADDCX
[last page]
TDH.MNG.ADDCX
[non-last page] [import failed
[import fai

TDH.IMPORT.STATE.IMMUTABLE

] [success]
[interrupted]

START_IMPORT

Immutable state
import is in
progress

led] [interrupted]

\ J

TDH.MR.FINALIZE

[success] [

TD is runnable

END TDH.IMPORT.END

TD is runnable,
post-copy memory
import can be done

TDH.MEM. *
MEMORY_IMPORT
TD memory import | TDH.IMPORT.
TDH.IMPORT.MEM TRACK
[in-order
not done]
TDH.IMPORT.
TDH.IMPORT.STATE.TD
TDH.IMPORT.STATE.VP, (T ox TOHMEM®
TDH.IMPORT.MEM S (IS
TD memory and TDH.IMPORT.
non-memory state TRACK
. [in-order
impor
port not done]
TDH.IMPORT.TRACK
[in-order done &&
all non-memory state imported]
POST_IMPORT
Post-copy TD
memory import
TDH.IMPORT.*
(import failed] | TDH.IMPORT._]
COMMIT
TDH.IMPORT.ABORT /

Generate abort token

y
FAILED_IMPORT

Destination TD can

only be destroyed TDH.IMPORT.ABORT /

Generate abort token

TDH.IMPORT.
MEM

TDH.IMPORT.
MEM

TDH.IMPORT.MEM
[import failed]

TDH.EXPORT.
STATE.
IMMUTABLE

TDH.EXPORT.
ABORT

TDH.EXPORT.
STATE.
IMMUTABLE

Notes

e Unless otherwise noted, transition
happen on successful completion of
interface functions

Color Conventions

Transition that acquires an
exclusive lock on OP_STATE

Transition that acquires a
shared lock on OP_STATE

TD is runnable, live
memory export can
be done

TDH.EXPORT.PAUSE

PAUSED_EXPORT

TDH.EXPORT.

| TDH.EXPORT. _|
ABORT

TD memory export,
non-memory state
export

TDH.EXPORT.
TRACK
[in-order
not done]

TDH.EXPORT.ABORT

[good abort token]

—
'y

TDH.EXPORT.
TRACK
[in-order done]

POST_EXPORT

TD memory post-
copy export

Figure 7.2: TD Operation State Machine (Sub-States of TD_KEYS_CONFIGURED)

7.3. TD Creation and Configuration Sequence

TDH.EXPORT.MEM

TRACK
[in-order
not done]

TDH.EXPORT.MEM,
TDH.EXPORT.
STATE.VP

TDH.EXPORT.
STATE.TD

TDH.EXPORT.MEM

The following sequence is intended to be used by the host VMM to create a new TD. Note that only the general aspects
5 of TD creation are described here. Other aspects, such as key management, are described in other chapters.

September 2025

Page 69 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

TD configuration is done by TDH.MNG.INIT. This interface function receives a TD_PARAMS input structure, which
contains the following main sections:

e ATTRIBUTES and XFAM, which specify the set of TD attributes (e.g., whether the TD is debuggable) and CPU features
the TD may use (e.g., whether AVX2 is available to the TD).

e Other TD configuration parameters, such as the number of L2 VMs the TD contains.

e Aset of user-provided measurement fields that will appear in the TD’s TDREPORT_STRUCT.

e Virtual CPUID and virtual MSR configuration for the TD.

For a detailed description of TD_PARAMS and its fields, see the [ABI Spec].
Refer also to the software flow discussion in 3.2.

Table 7.1: Typical TD Creation Sequence

Intel TDX Function Inputs Description

1 | N/A N/A If any MODIFIED cache lines may exist for the
physical pages to be written below (TDR, TDCS,
Secure EPT root page), flush them to memory
using, e.g., CLFLUSH (possibly on multiple LPs).
This is required to avoid corruption due to cache
line aliasing.

2 | TDH.MNG.CREATE TDR page PA Create the TDR and generate the TD’s random

ephemeral key.

3 | Multiple See 5.6.2 Assign an HKID and configure the TD’s random
ephemeral key on all packages, as described in
5.6.2.
4 | TDH.MNG.ADDCX e Owner TDR PA Run multiple times to add the required number of
(multiple) e TDCX page PA TDCX pages.
5 | TDH.MNG.INIT e Owner TDR PA Initialize the TD state in TDR and TDCS.

e TDinitialization parameters

At this point the TD is initialized. Private memory pages can be added as described in Chapter 9. VCPUs can be
created and initialized as described below.

74. VCPU Creation and Initialization Sequence

VCPU creation and initialization is only allowed during TD build time.

The following sequence is intended to be used by the host VMM to create a new TD VCPU. After this sequence is done,
the TD VCPU may be entered on an LP (assuming other conditions are met).

Refer also to the software flow discussion in 3.2.

Table 7.2: Typical TD VCPU Creation and Initialization Sequence

Intel TDX Function Inputs Description

1 | N/A N/A If any MODIFIED cache lines may exist for the
physical pages to be written below (TDVPR, TDCX),
flush them to memory (e.g., using CLFLUSH —
possibly on multiple LPs). This is required to avoid
corruption from cache line aliasing.

2 | TDH.VP.CREATE e TDVPR page PA Create the VCPU and its TDVPR page.
e Owner TDR PA

September 2025 . Page 70 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Intel TDX Function Inputs Description

TDH.VP.ADDCX e TDCX page PA Run multiple times to add the required number of
(multiple) e Parent TDVPR PA TDCX pages as an extension to a parent TDVPR.
TDH.VP.INIT e TDVPRPA Initialize the VCPU state.

e VMM-provided identifier

TDH.VP.WR e TDVPR page PA The host VMM typically writes one or more of the
e Field code following TD VCPU’s VMCS controls:
e New field value e Shared EPTP
e Write mask e Posted-interrupts descriptor address, posted-

interrupts notification vector and process
posted interrupt

e Bus-lock detection
e Notification exiting and notify window

For details, see the [TDX Module ABI Spec].

7.5. TD Teardown Sequence

The following sequence is intended to be used by the host VMM to tear down a TD. Note that only the general aspects
of TD teardown are described here. Other aspects, such as key management, are described in other chapters. See also
the discussion of physical page reclamation in 8.6.

Refer also to the software flow discussion in 3.4.

Table 7.3: Typical TD Teardown Sequence

Intel TDX Function Inputs Description

1 | Multiple See 5.6.3 Reclaim the HKID, and flush TLB and cache,
as described in 5.6.3.

2 | TDH.PHYMEM.PAGE.RECLAIM | TD page or control structure Remove all TD private pages and control

(multiple) PA §tructure pages and mark them as PT_NDA
in the PAMT.
3 | TDH.PHYMEM.PAGE.RECLAIM | TDR PA Remove the TDR page and mark it as
PT_NDA in the PAMT.
4 | TDH.PHYMEM.PAGE.WBINVD | TDR PA Flush MODIFIED cache lines: this is required

to avoid corruption due to cache line
aliasing. Note that all cache lines for all
other TD pages must have been flushed
before the TDR page was reclaimed.

September 2025 . Page 71 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

8. Physical Memory Management

This chapter describes how the Intel TDX Module manages memory as a set of physical pages.
8.1. Trust Domain Memory Regions (TDMRs) and Physical Address Metadata Tables (PAMTs)

Trust Domain Memory Region (TDMR) is defined as a range of convertible memory pages. TDMRs are set by the host
VMM, based on the CMR information previously checked by MCHECK.

By default, the TDX Module uses static PAMT. With static PAMT, each TDMR is defined as controlled by a (logically) single
Physical Address Metadata Table (PAMT), which is composed of 3 PAMT arrays corresponding to the 3 page-mapping
sizes: PAMT_1G, PAMT_2M and PAMT_4K. The PAMT structure is discussed in 8.3 below. PAMT tables reside in VMM-
allocated memory, and they are designed to be encrypted with the Intel TDX global private HKID. The required size of
PAMT memory, as a function of TDMR size, is enumerated to the VMM by TDH.SYS.RD/RDALL or TDH.SYS.INFO.

If supported by the TDX Module, it can be configured to use dynamic PAMT. With dynamic PAMT, 4KB PAMT pages which
hold PAMT_4K entries are allocated dynamically by the host VMM. A separate bitmap (PAMT_PAGE_BITMAP) is used for
controlling the allocation of PAMT pages. That bitmap is statically allocated for each TDMR.

Typically, after the host VMM initializes the Intel TDX Module (TDH.SYS.INIT and TDH.SYS.LP.INIT), it configures the
TDMRs, the PAMT mode (static or dynamic) and their respective PAMTs using TDH.SYS.CONFIG. It then would gradually
initialize the TDMRs using TDH.SYS.TDMR.INIT. For a detailed description of the typical Intel TDX Module initialization
and configuration sequence, see Chapter 4.

8.2. TDMR Details

The following list includes definitions of the characteristics of a TDMR:

e TDMR configuration is "soft" — no hardware range registers are used.

e Each TDMR defines a single physical address range.

e Each TDMR has its own size which must be a multiple of 1GB. TDMR size is not required to be a power of two.

e A TDMR must be aligned on 1GB.

e TDMRs cannot overlap with each other.

e TDMRs may contain reserved areas. This effectively allows the host VMM to flexibly configure TDMRs based on the
VMM'’s own consideration of system memory allocation — without being impacted by the 1GB granularity of the
TDMR size.

o Areserved area must be aligned on 4KB, and its size must be a multiple of 4KB.
o The number of reserved areas that may be configured per TDMR is enumerated by TDH.SYS.RD/RDALL or
TDH.SYS.INFO.

e TDMR memory, except for reserved areas, must be convertible as checked by MCHECK (i.e., every TDMR page must
reside within a CMR).

e There is no requirement for TMDRs to cover all CMRs.

e TDMRs are configured at platform scope (no separate configuration per package).

e The maximum number of TDMRs is Intel TDX Module implementation specific. It is enumerated to the host VMM
using the TDH.SYS.RD/RDALL or TDH.SYS.INFO function, as described below.

8.3. PAMT Details

The Physical Address Metadata Table (PAMT) is designed to track the metadata of every physical page in TDMR. A page
metadata includes page type, page size, assighment to a TD, and other attributes.

The PAMT is used by the Intel TDX Module to help enforce the following properties:
Page Attributes A physical page in TDMR has a well-defined set of attributes, such as page type and page size.
Single TD Assignment A physical page in TDMR can be assigned to at most one TD.

Secure EPT Consistency The page size of any private TD page, mapped in Secure EPT, matches its page size attribute in
PAMT.

8.3.1. Leaf PAMT Entry

Note: The description below is provided at a high level. Implementation details may differ.

September 2025 . Page 72 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification 348549-007US

A leaf PAMT entry is designed to hold metadata for a single physical page. The page size may be 4KB, 2MB or 1GB
depending on the PAMT level (see 8.3.3.2 below).

Table 8.1: High-Level View of a Leaf PAMT Entry

Field

Description

PT

PT indicates the type of page intended to be associated with this PAMT entry. See Table
8.3 below for details.

OWNER

OWNER is designed to contain bits 51:12 of the physical address of the TD’s TDR page.

This field can be applicable in all cases when a page is assigned to the Intel TDX Module at
this PAMT level or at a higher level. See Table 8.3 below for details.

BEPOCH

The value of TDCS.TD_EPOCH at the time the TD private page or the SEPT page was
blocked by TDH.MEM.RANGE.BLOCK

This field is intended to be applicable only if PT is PT_REG, PT_EPT or PT_PR. See 9.7 for a
detailed discussion.

MIG_EPOCH

Migration epoch at the time this page was imported

This field is used only during TD migration, and is intended to be applicable only if PT is
PT_REG. For details, see the TD Migration Spec and the [ABI Spec].

EXPORT_COUNT

TDCS.MIG_COUNT at the time this page was imported

This field is used only during TD migration, and is intended to be applicable only if PT is
PT_REG. For details, see the TD Migration Spec and the [ABI Spec].

8.3.2. Page Type (PT)

Table 8.2 below describes the PAMT entry’s Page Type (PT) field. For details, see the [ABI Spec]. Additional PT values
exist for TDX Connect; see the [TDX Connect Spec] for details.

Table 8.2: PAMT Entry’s Page Type (PT)

Page Type

PAMT Level

Associated TDX
Page

Description

PT_NDA Any

Depending on PT
at higher PAMT
level (if any)

The physical page is Not Directly Assigned to the Intel TDX
Module at this size (4K, 2M or 1G) and PAMT level.

This page may be part of a larger page that is assigned to the
Intel TDX Module at a higher level, or this page may contain

levels. See Table 8.3 below for details.

smaller pages that are assigned to the Intel TDX Module at lower

PT_RSVD

PAMT_4K None

TDX Module will not allow converting this page to any other
page type. The page can be used by the host VMM for any
purpose.

The 4KB physical page is reserved for non-TDX usage. The Intel

PT_RSVD is used for implementing reserved areas within TDMRs.
See 4.1.3.2.1 for details.

PT_REG

Any

TD private page

The physical page at this PAMT level (4K, 2M or 1G) holds TD
private memory and is mapped in the guest TD GPA space by the
Secure EPT.

PT_PR

PAMT_2M,
PAMT_1G

TD private page

The physical page at this PAMT level (2M or 1G) holds a
removed TD private memory that is waiting for the completion
of page removal (by TDH.MEM.PAGE.REMOVE) or reclamation
(by TDH.PHYMEM.PAGE.RECLAIM).

Enumeration: PT_PR applies only to platforms which protect
TDX memory using ACT, as enumerated by
TDX_FEATURESO.ACT (bit 14).

September 2025

Page 73 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

10

Page Type PAMT Level Associated TDX Description
Page

PT_TDR PAMT_4K TDR TDR control structure page

PT_TDCX PAMT_4K TDCX One 4KB physical page of a multi-page control structure

PT_TDVPR PAMT_4K TDVPR Root page of the multi-page TDVPS control structure

PT_EPT PAMT_4K Secure EPT Secure EPT page

PT_TR PAMT_4K - A physical page which has no current GPA mapping but must be

TLB tracked before it can be assigned for any usage
Enumeration: PT_TR applies only for TDX Modules which

implement page resize without tracking, as
enumerated by TDX_FEATURESO.
NON_BLOCKING_RESIZE (bit 35).

PT_PAMT PAMT_2M PAMT If dynamic PAMT is supported, PT_PAMT is the page type for a

(Dynamic PAMT non-leaf PAMT entry pointing to a pair of PAMT pages.
Only)

TDX - - TDX Connect page types are defined in the [TDX Connect Spec]

Connect

Types

8.3.3. Static PAMT
Overview
8.3.3.1.

Static PAMT is the default mode of operation, designed to optimize PAMT entries lookup given a page HPA. With static
PAMT, each TDMR is statically associated with three PAMT arrays, all allocated by the host VMM using TDH.SYS.CONFIG.
The PAMT arrays’ entries are associated with 4BK, 2MB and 1GB physical pages.

8.3.3.2.

Static PAMT Blocks and Static PAMT Arrays

For each 1GB of TDMR physical memory, there is a corresponding PAMT Block. A PAMT Block is logically arranged in a
three-level tree structure of PAMT Entries, as shown in Figure 8.1 below. Levels 0 through 2 (PAMT_4K, PAMT_2M and
PAMT_1G) correspond to 4KB, 2MB and 1GB physical TDMR pages, respectively.

Physically, for each TDMR the design includes three arrays of PAMT entries, one for each PAMT level. This aims to simplify
VMM memory allocation. A logical PAMT Block has one entry from the PAMT_1G array, 512 entries from the PAMT_2M
array, and 5122 entries from the PAMT_4K array.

September 2025

Page 74 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Level 2 Level 1 Level O
PAMT_1G PAMT_2M PAMT_4K
0x00000000 [O 0x00000000 | O 0x00000000 | 0 |
0x00200000 | 1 : 3
Ox3FE00000™-. | 511 "\ 0x001FF000. [511 |
'0x00200000 [512 |
0x00§F\|\:000\\\j 1,023
0x3FE00000 | 261,632 |
OX3FFFFO00 | 262,143 |
Figure 8.1: Typical Example of a PAMT Block Hierarchy for a 1GB TDMR Block
8.3.3.3. Static PAMT Hierarchy

Table 8.3 below shows the page type (PT) of PAMT entries at the three levels of hierarchy, depending on whether the
5 page is assigned to the Intel TDX Module manages the page, whether the page is mapped in secure EPT, and the mapping

size.

Table 8.3: Static PAMT Hierarchy and Page Types

Logical Intel TDX Module Management PAMT Entry Page Type
P T
8¢ TYP€ | Assigned | Physical | GPA Mapping | PAMT_1G | PAMT_2M | PAMT_4K
to TDX? | Page Size | Size (Secure (Level 2) (Level 1) (Level 0)
EPT Level)
Reserved No 4KB N/A PT_NDA PT_NDA PT_RSVD
Free No 4KB N/A PT_NDA PT_NDA PT_NDA
No 2MB N/A PT_NDA PT_NDA All PT_NDA
No 1GB N/A PT_NDA All PT_NDA All PT_NDA
Control Yes 4KB None PT_NDA PT_NDA PT_TDR,
Structure PT_TDCX,
Page PT_TDVPR,
PT_EPT
TD Private | Yes 4KB 4KB (Level 0) PT_NDA PT_NDA PT_REG
Page
& Yes 2MB 2MB (Level 1) PT_NDA PT_REG All PT_NDA
Yes 1GB 1GB (Level 2) PT_REG All PT_NDA | All PT_NDA
Pending Yes 2MB 2MB (Level 1) PT_NDA PT_PR All PT_NDA
Removal
Yes 1GB 1GB (Level 2) PT_PR All PT_NDA | All PT_NDA
September 2025 Page 75 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Note the following:

e A 4KB page is considered free (i.e., not assigned to TDX) if its PAMT.PT at all three PAMT levels is PT_NDA. Any

function that attempts to assign an HPA to TDX (e.g., TDH.MEM.PAGE.ADD) is designed to check this.

In all other cases, PAMT.PT is different than PT_NDA in only one of the three PAMT levels.

e When a page is mapped by Secure EPT at 4KB, 2MB or 1GB GPA mapping size, it is managed by the Intel TDX Module
as a physical page of the same size. Secure EPT is described in Chapter 9.

e PT_RSVD pages cannot be used by the Intel TDX Module. They are used for implementing reserved areas within
TDMRs. See 4.1.3.2.1 for details.

10 8.3.4. Dynamic PAMT

Overview

The TDX Module can be configured to use dynamic PAMT, if it supports that mode. Dynamic PAMT optimizes memory
space by requiring PAMT pages holding PAMT_4K entries to be allocated only for 4KB physical memory pages that are
8.3.40ssigned to TDX.

15 Dynamic PAMT is logically organized as a tree structure, similar in concept to page tables, to hold information about
physical pages that are allocated to TDX. The tree nodes are pairs of 4KB PAMT pages. Each PAMT page pair holds 512
PAMT entries. Non-leaf PAMT entries point to lower level PAMT page pairs, while leaf PAMT entries are associated with
physical pages that are assigned to TDX.

Physically, the PAMT_1G and PAMT_2M levels are statically allocated for each TDMR, same as with static PAMT. Only
20 the PAMT_4K level is dynamically allocated.

PAMT pages, which are 4KB in size, can’t be mapped by the dynamic PAMT tree; they are required to build the dynamic
part of the tree. Thus, a per-TDMR statically allocated bitmap is used to control the allocation of PAMT pages.

PAMT_1G Array (Statically Allocated)

PAMT Root PAMT Root Page 1022 PAMT Root PAMT Root Page 0 (256 PAMT Entry Level 2
Page 1023 (256 entries, maps 256GB) Page 1 entries, maps 256GB) Each PAMT entry maps 1GB (HPA[29:0] == 0)
(maps 256GB) (maps 256GB) Statically allocated by the host VMM as part of
p: Leaf Entry p: Leaf Entry PAMT_1G arrays
", - - i
ae® 2, |
B o Ox PAMT_2M Array (Statically Allocated) !
o 4 !
————— |
PAMT Page | PAMT Page (256 entries, maps 512MB) L PAMT Entry Level 1
TS 1GBTD Each PAMT entry maps 2MB (HPA[20:0] == 0)
512|\/73) LeafEntry| .. |Nomleaf[Non-teaf), oceriry Page Statically allocated by the host VMM as part of
Entry Entry PAMT_2M arrays
S T
\ e
» \ \\\ o PAMT Entry Level 0
‘/' \ ., o N Each PAMT page pair maps 2MB (HPA[20:0] == 0)
2MBTD PAMT Page | PAMT Page PAMT Page | PAMT Page 2MB TD Each PAMT entry maps 4KB (HPA[L1:0] == 0)
Page (maps 1MB) | (maps 1MB) (maps IMB) | (maps 1MB) Page Static PAMT: Statically allocated by the host VMM as
g P P pq P g part of PAMT_4K arrays
e ! DO Dynamic PAMT: Dynamically added and removed by
- ! \\ AN the host VMM
I ’ ! N IR ~.
Pointer (HPA) ———> A 4 — =
4KB TD 4KB TD 4KB TD 4KB TD
[oXeXe]
Mapping =~ -------- > Page Page Page Page

Figure 8.2: Dynamic PAMT Tree Example

25 The table below lists the PAMT tree levels. For a TDX Module to be configured for dynamic PAMT, the effective physical
address width (excluding HKID bits) must be 48 bits or lower. For platforms with a physical address width of 52 bits, this
means that at least 4 bits must be configured as HKID bits. Thus, 4 PAMT levels are required.

Table 8.4: Dynamic PAMT Levels
PAMT | PAMT Entry Maps PAMT Page Pair PAMT Entry
Entry Maps Indexed by HPA
Level Bits
0 4KB 2MB 20:12

September 2025

Page 76 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

PAMT | PAMT Entry Maps PAMT Page Pair PAMT Entry
Entry Maps Indexed by HPA
Level Bits
1 2MB 1GB 29:21
2 1GB 512GB 38:30

PAMT Page Pair

PAMT pages are always managed as a pair of 4KB physical pages, which are not required to be consecutive in physical
address space. Together, a PAMT page pair holds 512 16-byte PAMT entries. Each PAMT entry can be a leaf entry
5 associated with a physical page, or a non-leaf entry, pointing to a lower-level pair of PAMT pages. PAMT pages are

o3 4e2ncrypted in memory using the TDX Module’s global private HKID.

PAMT entries within a PAMT page pair are indexed using 9 bits of the HPA, as shown in the table above. The first 256
entries reside in the first PAMT page of the pair; the last 256 entries reside in the second PAMT page of the pair.

Same as with static PAMT, PAMT page pairs at the PAMT_1G and PAMT_2M levels are statically allocated for each TDMR,
10 as part of the PAMT_1G and PAMT_2M arrays of that TDMR.

PAMT page pairs at the PAMT_4K level are dynamically allocated by the host VMM, as needed to map physical pages
assigned to TDX, using TDH.PHYMEM.PAMT.ADD. The TDH.MEM.PAGE.DEMOTE interface function also requires the host
VMM to allocate a PAMT page pair, as part of its input parameters, when demoting a 2MB page into 512 4KB pages.

PAMT page pairs at the PAMT_4K level (pointed by non-root PAMT_2M entries) can be dynamically removed by the host
15 VMM, if no longer needed, using TDH.PHYMEM.PAMT.REMOVE. The TDH.MEM.PAGE.PROMOTE interface function also
removes a PAMT page pair as part of its operation, when promoting 512 4KB pages to a 2MB page.

PAMT Page Bitmap
8.3.4.3.

Each PAMT page is pointed by a non-leaf PAMT entry, with PT = PT_PAMT. However, since a PAMT page is just 4KB page
that may reside at an arbitrary HPA within a TDMR, it also needs to be mapped in order to control its allocation and

20 removal. But contrary to other page types, a 4KB PAMT page can’t be mapped by normal PAMT_4K entries, since such
entries also reside in 4KB PAMT pages that are dynamically allocated and thus may not even exist.

Thus, PAMT pages are mapped by statically allocated per-TDMR PAMT_PAGE_BITMAPs. Bit N in the bitmap corresponds
to 4KB page N in the TDMR. A bit value of 0 indicates that the applicable page is not a PAMT page. A value of 1 indicates

a3 4tpat the page is either a PAMT page or it is reserved. The combinations of PAMT_PAGE_BITMAP bit value and possible

25 PAMT entry are shown in Table 8.6 below.
Non-Leaf PAMT Entry
Note: The description below is provided at a high level. Implementation details may differ.

A non-leaf PAMT entry holds the metadata for a pair of lower-level PAMT pages.
Table 8.5: High-Level View of a Non-Leaf PAMT Entry

Field Description

PT PT indicates the type of page intended to be associated with this PAMT
entry. For a non-leaf entry, PT is PT_PAMT

PAGE_HPAO | HPA of the first PAMT page pointed by this entry

PAGE_HPA1 | HPA of the second PAMT page pointed by this entry

30

September 2025 . Page 77 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Dynamic PAMT Hierarchy

The table below shows the page type (PT) of PAMT entries and the PAMT_PAGE_BITMAP bit value at the three levels of
hierarchy, depending on whether the Intel TDX Module manages the page, whether the page is mapped in secure EPT,
and the mapping size.

Table 8.6: Dynamic PAMT Hierarchy and Page Types

8345 Logical Page Intel TDX Module Management PAMT Entry Page Type PAMT_
7] Type PAGE
. Assigned | Physical | GPA Mapping | PAMT_1G | PAMT_2M PAMT_4K BITM;P
to TDX? Page Size (Secure (Level 2, (Level 1, (Level O, Bit(s)
Size EPT Level) Static) Static) Dynamic)
Reserved No 4KB N/A PT_NDA PT_NDA PT_NDA 1
Free No 4KB N/A PT_NDA PT_PAMT PT_NDA 0
No 2MB N/A PT_NDA PT_NDA N/A All O
No 1GB N/A PT_NDA All PT_NDA | N/A All O
PAMT Page Yes 4KB N/A PT_NDA PT_PAMT PT_NDA 1
PT_NDA PT_NDA N/A 1
Control Yes 4KB None PT_NDA PT_PAMT PT_TDR, 0
Structure PT_TDCX,
Page PT_TDVPR,
PT_EPT
TD Private Yes 4KB 4KB (Level 0) PT_NDA PT_PAMT PT_REG 0
Page
& Yes 2MB 2MB (Level 1) | PT_NDA PT_REG N/A All O
Yes 1GB 1GB (Level 2) PT_REG All PT_NDA | N/A All O
Pending Yes 2MB 2MB (Level 1) | PT_NDA PT_PR N/A All O
Removal
v Yes 1GB 1GB (Level 2) PT_PR All PT_NDA | N/A All O

8.4. Overview of Memory Protection using Access Control Table (ACT)

Enumeration: Usage of ACT is enumerated by TDX_FEATURESO.ACT (bit 14), readable by TDH.SYS.RD*.

On certain platforms, an Access Control Table (ACT) is used by memory controllers to help protect physical memory
marked as TD private from being accessed using shared HKIDs. ACT resides in memory, inside the SEAM range, and thus
is protected from software access, except for the TDX Module. Each bit in ACT is associated with a 4KB physical memory

page:
0: Shared page — memory that can be accessed using shared HKIDs.

1: Private page — memory that can only be accessed by TDs and the TDX Module, using private HKIDs.
ACT data is duplicated per memory controller.

The TDX Module is responsible for managing the ACT, as follows:

e Initialize the ACT tables.

e Enable the ACT lookup feature in the memory controller.

e Update the table bits whenever a memory page is converted from private to shared and vice versa.
o When PAMT.PT moves from PT_NDA to any TD private page states, update the ACT page bit to private (1).
o When PAMT.PT moves from TD private page states to PT_NDA, the update ACT page bit to shared (0).

8.5. Adding Physical Pages

This section discusses various aspects of adding physical pages to TDX, i.e., converting them from shared memory to
private memory.

September 2025 Page 78 of 196

Section 2: Intel TDX Module Architecture Specification

5

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

8.5.1. Dynamic PAMT Considerations

If the TDX Module is configured for Dynamic PAMT, adding a 4KB physical page requires that the new page HPA will be
mapped by PAMT pages. See 8.3.4.2 above for details.

PAMT pages can be added on demand. An interface function which encounters a missing PAMT page pair returns a
TDX_MISSING_PAMT_PAGE_PAIR status. The host VMM can add the PAMT page pair and retry the failed function. For
details, see the [ABI Spec] definitions for each function which adds 4KB physical pages.

8.5.2. Adding Pages not Mapped to the Guest TD

By design, TD control structure pages TDR, TDCX and TDVPR are not mapped to the guest TD’s GPA space, and they are
only managed using their HPA. The functions TDH.MNG.CREATE, TDH.MNG.ADDCX, TDH.VP.CREATE and TDH.VP.ADDCX
are designed to add 4KB control structure pages PT_TDR, PT_TDCX and PT_TDVPR, respectively. The overall process is
described in 7.3 and 7.4.

8.5.3. Adding Pages and Mapping to the Guest TD’s GPA

The following page types are associated with a guest TD’s GPA:

e Guest TD private pages
e Secure EPT pages are mapped to the guest TD’s GPA space.

Those pages are added given their HPA and the required GPA. The functions TDH.MEM.PAGE.ADD, TDH.MEM.PAGE.AUG,
TDH.MEM.PAGE.RELOCATE and TDH.IMPORT.MEM add a PT_REG page, and the functions TDH.MEM.SEPT.ADD and
TDH.MEM.PAGE.DEMOTE add a 4KB PT_EPT page. TD private memory management functions are described in Chapter
9. This section describes only their physical page management aspects.

8.6. Reclaiming Physical Pages

This section discusses various aspects of reclaiming physical pages from TDX, i.e., converting them from private memory
to shared memory.

8.6.1. Dynamic PAMT Considerations

PAMT pages can be opportunistically removed. If the TDX Module is configured for Dynamic PAMT, when a 4KB physical
page is reclaimed the TDX Module provides a hint that the PAMT page pair mapping it (see 8.3.4.2 above) may be
removed. For details, see the [ABI Spec] definitions for each function which reclaims 4KB physical pages.

8.6.2. Platforms not Using ACT: Required Cache Flush and Initialization by the Host VMM

Once a physical page is reclaimed from a TD, it should be free for use by the host VMM for any purpose, provided that
the operations described below are done.

Page Initialization

Before the physical page is used for anything except TD private memory page or TDX control structure page, the host
VMM should initialize it using MOVDIR64B. This helps ensure that no content encrypted with a private HKID remains for
that physical page, which may result in an integrity violation or TD bit mismatch detection when later being read using a

a'G.ﬂ]ared HKID.

If the page is to be used as a new TD private memory page or TDX control structure page, this initialization is not required
since the TDX Module will initialize the page.

8.6.3. Platforms Using ACT: Required Cache Flush, Initialization and ACT Update
ACT Platforms: Overview of the Host VMM Operation

Reclaiming large pages, as part of TDH.MEM.PAGE.REMOVE and TDH.PHYMEM.PAGE.RECLAIM is a long and interruptible
operation. See below for details.

September 2025 . Page 79 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

ACT Platforms: Overview of the TDX Module Operation

On platforms which use ACT for memory protection, reclaiming physical pages requires cache lines flushing, page write
over and ACT bit clearing. These operations are done by the TDX Module as part of the page reclamation sequence.

8.6.3.2.1. Page Overwrite and Cache Flush

To help avoid stability issues caused by cache line aliasing, the TDX Module is designed to ensure that no cache lines
associated with the reclaimed page are in a Modified state, before the page is reused for any purpose. In addition, the

8.6.3

10

X Module overwrites the page content with a per-TD random value. This value is generated when the TD is created
(TDH.MNG.CREATE). This helps ensure that no cyphertext of known cleartext content is revealed after the page becomes
shared.

8.6.3.2.2. Marking the Page as Shared

The TDX Module clears the applicable ACT bits to mark the page as shared.

ACT Platforms: Page Reclamation Sequence for Large Pages

4KB pages are reclaimed directly by the applicable interface functions (e.g., TDH.MEM.PAGE.REMOVE), as discussed in
the following sections.

8.6.3.3.

15

20

25

For 2MB and 1GB physical pages, page reclamation may take a long time to run, thus this operation is interruptible and
resumable. For backward compatibility, such interface functions (e.g., TDH.MEM.PAGE.REMOVE) have two usage modes,
selected by their version number input parameter:

Backward Compatible Mode: Upon detecting a pending interrupt, the function returns to the host VMM without
incrementing RIP. The host VMM is expected to handle the interrupt; typically, when
done the interface function natively gets called again.

Explicit Mode: Upon detecting a pending interrupt, the function returns to the host VMM with a
TDX_INTERRUTED_RESUMABLE status. The host VMM is expected to handle the
interrupt and then call the interface function again to complete the page.

In both cases, once interrupted the interface functions change the page type to Pending Release (PT_PR). This indicates
that the page can no longer be used for its original purpose but has not yet been fully reclaimed.

Once a physical page is reclaimed from a TD, it should be free for use by the host VMM for any purpose.

8.6.4. Reclaiming Pages not Mapped to the Guest TD’s GPA Space

There are several cases where pages are not considered as mapped to the guest TD:

e Control structure pages are not mapped to the guest TD.

30 35.4%. In TD_TEARDOWN state, as described below, no mapping is in effect.

35

40

e If the TDX Module supports non-blocking mapping resize, PT_TR is a special case. It is not mapped in the TD’s GPA
space, but there may still be TLB entries associated with it.

Reclaiming TD Pages in TD_TEARDOWN State

As part of the TD teardown process, the host VMM needs to put the TD into a TD_TEARDOWN state, as described in 7.4.
This is a non-recoverable state where TD keys have been reclaimed, all address translations and caches have been flushed,
and the TD private memory and control structures (except TDR) are no longer accessible.

By design, in the TD_TEARDOWN state, all TD pages are effectively unmapped. Secure EPT is not accessible, and no GPA-
to-HPA mapping can be used. The host VMM must treat all the TD private pages and control structure pages as physical
memory and reclaim them using the TDH.PHYMEM.PAGE.RECLAIM function in any order, as long as the TDR page is the
last one to be reclaimed.

For TDR page, the intention is for the host VMM to call TDH.PHYMEM.PAGE.WBINVD after calling
TDH.PHYMEM.PAGE.RECLAIM. This is required to avoid corruption due to cache line aliasing because the TDR page has
still been accessed and modified, even when the TD was in TD_TEARDOWN state.

September 2025 . Page 80 of 196

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Reclaiming PT_TR Pages in the TD_KEYS_CONFIGURED State

If the TDX Module supports non-blocking mapping resize, as enumerated by TDX_FEATURESO.NON_BLOCKING_RESIZE
(bit 35), then PT_TR pages can be reclaimed while the TD’s lifecycle state is TD_KEYS_CONFIGURED, its normal state while
operating. PT_TR pages are former SEPT pages released by TDH.MEM.PAGE.PROMOTE.

In this state, the CPU might hold stale TLB entries associated with the PT_TR page. Thus, the VMM is expected to perform
TLB tracking and TDH.PHYMEM.PAGE.RECLAIM checks this.

8.6.4,.2.
82.6.5. Reclaiming Physical Pages as Part of TD Private Memory Management

Functions such as TDH.MEM.PAGE.REMOVE and TDH.MEM.PAGE.PROMOTE are designed to remove TD private pages
and Secure EPT pages, respectively. By design, they first make sure the pages are no longer accessible using a GPA, then
they mark the physical page as free. This is described in Chapter 9; this section only highlights the physical page
reclamation.

September 2025 . Page 81 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

9. TD Private Memory Management

This chapter described how the Intel TDX Module helps manage TD private memory and guest-physical address (GPA)
translation.

9.1. Overview

Intel TDX ISA introduced the concept of private GPA vs. shared GPA, depending on the GPA.SHARED bit. In SEAM non-
root mode, the controlling VMCS has two EPT pointer fields:

e The legacy EPT pointer is used for translating the guest TD’s memory accesses using a private GPA (i.e.,
GPA.SHARED ==0).

e A new Shared EPT pointer is used for translating the guest TD’s memory accesses using shared GPAs (i.e.,
GPA.SHARED ==1).

A new GPAW execution control determines the position of the SHARED bit in the GPA, and a new HKID execution control
defines the HKID used for accessing TD private memory.

TDO /{ Guest Physical Address }

Private GPA Space
— Memory encrypted with a
CR3 Private Code/data TD private key

T Private Code/data ‘

}—+ Shared Data ‘

lGuest Physical Address (GPA)

Shared GPA Space
— Memory encrypted with a
key shared with VMM

Lt

CPU PMH
. HPA Space
TD Privat —) ;
Hl?l\s c GPA.SHARED) Physical Memory
Physical Pages
No Address +
YeSl HKID

[—
Shared Extended Extended
Page Tables Page Tables
(Shared EPT) (Secure EPT)

Figure 9.1: Secure EPT Concept

The Intel TDX Module maintains a single Secure EPT structure per TD. Secure EPT pages are designed to be opaque; they
reside in ordinary memory, and they are encrypted and integrity-protected with the TD’s ephemeral private key. The
Intel TDX Module does not map Secure EPT pages to the guest TD GPA space. Thus, Secure EPT is effectively not accessible
by any software besides the Intel TDX Module, nor by any devices. Any such access using shared HKID to Secure EPT can
lead to data corruption that triggers integrity check failure leading to a machine check fault.

Secure EPT is intended to be managed indirectly by the host VMM using Intel TDX functions. The Intel TDX Module helps
ensure that the Secure EPT is managed correctly.

The CPU translates shared GPAs using the Shared EPT which resides in host VMM memory. The translation uses a shared
HKID, and it is directly managed by the host VMM, just as with legacy VMX.

September 2025 . Page 82 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

9.2 Secure EPT Entry

9.2.1. Overview

From the CPU perspective, Secure EPT has the same structure as a legacy VMX EPT.

For the purpose of private memory management, the Intel TDX Module holds a state value in each Secure EPT entry. This

state value is encoded by multiple bits.

Note: Some Secure EPT entry states are only applicable when certain TDX Module features are supported.

Table 9.1: Secure EPT Entry State High Level Description

State Name Description

FREE L1 Secure EPT entry does not map a GPA range.

REMOVED L1 Secure EPT entry is of a removed page

NL_MAPPED L1 Secure EPT entry maps a private GPA range which is accessible by
the guest TD.

NL_BLOCKED L1 Secure EPT entry maps a private GPA range, but new address
translations to that range are blocked.

MAPPED L1 Secure EPT entry maps a private GPA page which is accessible by
the guest TD.

BLOCKED L1 Secure EPT entry maps a private GPA page but new address
translations to that range are blocked.

BLOCKEDW L1 Secure EPT entry maps a private GPA page, but new address

translations for write operations to that range are blocked.

EXPORTED_BLOCKEDW

L1 Secure EPT entry maps a private page that has been blocked for
writing and exported.

EXPORTED_DIRTY

L1 Secure EPT entry maps a private page that was exported but is
not blocked for writing and its content and/or attributes may have
since been modified.

EXPORTED_DIRTY_BLOCKEDW

L1 Secure EPT entry maps a private page that was previously
exported, its content and/or attributes may have since been
modified and then it was blocked for writing.

PENDING

L1 Secure EPT entry maps a 4KB or a 2MB page that has been
dynamically added to the guest TD using TDH.MEM.PAGE.AUG and
is pending acceptance by the guest TD using
TDG.MEM.PAGE.ACCEPT. This page is not yet accessible by the
guest TD.

PENDING_BLOCKED

L1 Secure EPT entry is both pending and blocked.

PENDING_BLOCKEDW

L1 Secure EPT entry is both pending and blocked for writing.

PENDING_EXPORTED_BLOCKEDW

L1 Secure EPT entry is both pending and exported.

PENDING_EXPORTED_DIRTY

L1 Secure EPT entry is both pending and exported and is not
blocked for writing.

PENDING_EXPORTED_DIRTY_BLOCKEDW

L1 Secure EPT entry is both pending and exported and is blocked for
writing.

REMOVE_IN_PROGRESS

L1 Secure EPT entry maps a private page that is being removed
(TDH.MEM.PAGE.REMOVE has been interrupted).

MMIO_MAPPED

L1 Secure EPT entry maps a private MMIO page which is accessible
by the guest TD.

September 2025

Page 83 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

State Name

Description

MMIO_BLOCKED

L1 Secure EPT entry maps a private MMIO page, but new address

translations to that page are blocked.

MMIO_PENDING

L1 Secure EPT entry maps a 4KB, 2MB or 1GB MMIO page that is
pending acceptance by the guest TD using TDG.MMIO.ACCEPT. This
page is not yet accessible by the guest TD.

Secure EPT entry is opaque; the host VMM may not access it directly. The host VMM may read a Secure EPT entry
information using the TDH.MEM.SEPT.RD interface function. In addition, multiple other interface functions return the
same information in case of an error that is related to a Secure EPT entry. For details, see the [TDX Module ABI Spec].

5 9.2.2,

SEPT Entry State Diagrams

The figures below show partial state diagrams for the basic memory management operation for a leaf and a non-leaf

SEPT entry.

Note:

The diagrams below are partial. SEPT entry state diagrams for TD migration are provided in the [TD Migration

Spec]. SEPT entry state diagrams for TD partitioning are provided in the [TD Partitioning Spec].

TDH.MEM.PAGE.PROMOTE

[non-leaf NL_MAPPED entry] /
Previous non-leaf entry becomes MAPPED

From Non-Leaf Entry State Diagram

TDH.MEM.PAGE.DEMOTE /
Large MAPPED page split into new leaf

—TDH.MEM.PAGE.ADD————p|

D

TDG.MEM.PAGE.RELEASE
[CONFIG_FLAGS.PAGE_RELEASE]

A

Page is mapped and
accessible to guest

Page is merged into large page

TDH.MEM.RANGE.BLOCK
[TDI_REF_COUNT == 0] / —/|
Inc. BLOCKED_COUNT

BLOCKED

Dec. BLOCKED_COUNT blocked

TDH.MEM.RANGE.UNBLOCK?!
Dec. BLOCKED_COUNT

TDH.MEM.PAGE.REMOVE
[TDis not finalized ||
TD is paused?]

TDH.MEM.PAGE.DEMOTE [NON_BLOCKING_RESIZE || TD is not finalized | | TD is paused?] /
Entry becomes non-leaf, NL_MAPPED

Page is mapped but
TDH.MEM.PAGE.RELOCATE? new translations are

TDH.MEM.PAGE.PROMOTE [NO_TRACK | | TD is not finalized || TD is paused®] / @

z

—> €

w

‘©

]

TDH.MEM.PAGE.DEMOTE? / s
Dec. BLOCKED_COUNT, — %
Entry becomes NL_MAPPED L

TDH.MEM.PAGE.PROMOTE? /
Dec. BLOCKED_COUNT, —»@
Page is merged into large page

TDH.MEM.PAGE.REMOVE? /
Dec. BLOCKED_COUNT

SEPT entry is not

{success]&[interrupted} +

mapped to a physical
page

m > REMOVE_
IN_PROGRESS?
& I 1 Ii
< [success] [interrupted]———» Page is being
X removed. SEPT entry
< [success} [interrupted]——p

points to a physical
| pageinaPT_PR

—r/

state.

TDG.MEM.
PAGE.ACCEPT

TDH.MEM.PAGE.DEMOTE /

. Large PENDING page split into new leaf

-TDH.MEM.PAGE. AUG————]

> PENDING

3
[success]&[interru pted]

TDH.MEM.PAGE.REMOVE
[TDis not finalized | |
TDis paused?]

-TDH.MEM.RANGE.BLOCK——

TD acceptance

1. TLB tracking is required if TD has been finalized and is not paused.
2. TLB tracking is required if TD has been finalized and is not paused and non-blocking resize is not supported.
3. This state is applicable only for platforms with ACT-protected memory.

4180te that if the TD is paused, TDI_REF_COUNT is 0.

Page is pending guest

.

TDH.MEM.PAGE.REMOVE?!
[success]

e
PENDING_BLOCKED

TDH.MEM.PAGE.REMOVE

interrupted)]

1
[¢—TDH.MEM.PAGE.RELOCATE is blocked

[¢——TDH.MEM.RANGE.UNBLOCK'——

Page is pending but
guest TD acceptance

~————o

TDH.MEM.PAGE.DEMOTE [NON_BLOCKING_RESIZE || TD is not finalized || TD is paused?] /
Entry becomes non-leaf, NL_MAPPED

TDH.MEM.PAGE.DEMOTE? /
Entry becomes NL_MAPPED

To Non-Leaf Entry

Figure 9.2: Secure EPT Leaf Entry Basic Operation Partial State Diagram

September 2025

Page 84 of 196

State Diagram

State Diagram

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

TDH.MEM.PAGE.DEMOTE /
Previous leaf entry becomes NL_MAPPED

From Leaf Entry
State Diagram

TDH.MEM.PAGE.PROMOTE [TD is paused] /
Non-leaf entry becomes leaf, MAPPED

TDH.MEM.PAGE.PROMOTE? /
Non-leaf entry becomes
leaf, MAPPED /
Dec. BLOCKED_COUNT
To Leaf Entry
State Diagram

TDH.MEM.RANGE.BLOCK

[(TDI_REF_COUNT==0) ||

all child entries are free] /
Inc. BLOCKED_COUNT

NL_BLOCKED

SEPT entry is not
mapped to a physical

SEPT page is mapped
and new SEPT walks
to GPA range are
permitted

SEPT page is mapped
but new SEPT walks
to GPA range are
TDH.MEM.RANGE.UNBLOCK / blocked

Dec. BLOCKED_COUNT |

page -TDH.MEM.SEPT.ADD!

TDH.MEM.SEPT.REMOVE
[all child entries are FREE && TD is paused]

TDH.MEM.SEPT.REMOVE! [all child entries are FREE] /
Dec. BLOCKED_COUNT

1. TLB tracking is required if TD has been finalized and is not paused.

10

15

20

Figure 9.3: Secure EPT Non-Leaf Entry Basic Operation Partial State Diagram

9.3. Secure EPT Walk
Host-side (SEAMCALL) Intel TDX functions that manage TD private memory usually accept GPA and Level parameters.
They perform a Secure EPT walk which locates the target Secure EPT entry.

If the Secure EPT walk is completed successfully, the Intel TDX function may operate on the located Secure EPT entry.
Otherwise, the function typically returns the last visited SEPT entry and its level to the host VMM.

Guest-side (TDCALL) Intel TDX functions typically perform an EPT walk similar to the EPT walk done by the CPU. Only the
GPA is provided as an input, and the function may walk the Shared EPT or the Secure EPT, depending on the specific
function and the GPA’s SHARED bit.

9.4, Secure EPT Induced TD Exits

Intel SDM, Vol. 3, 26.2.1 Basic VM-Exit Information

Guest TD memory access to a non-present private GPA causes, in most cases, an asynchronous TD exit with an EPT
Violation exit reason. As discussed in 9.2 above, a non-present GPA is any private GPA for which there is either no Secure
EPT entry, or the Secure EPT entry is not in the MAPPED state.

Secure EPT-induced TD exits may also be triggered during a guest-side local flow, performing some function on behalf of
the guest TD, and executed by the Intel TDX Module.

On EPT violation TD exit, VM exit information is provided to the host VMM. This helps the VMM analyze the reason for
the EPT violation and take proper action.

Table 9.2: EPT Violation TD Exit Cases and Possible Host VMM Actions

Reason

May be Indicated by

Possible Host VMM Action

Page is not mapped to the
TD GPA space

e Exit qualification bits 6:3 value is
0.

e Extended exit qualification TYPE
(bits 3:0) value is NULL (0).

e The host VMM knows, based on
its internal data, that either the
page or a Secure EPT page that
maps it has not been allocated to
the TD.

The host VMM may use this as a trigger for
dynamic memory allocation
(TDH.MEM.PAGE.AUG) or for a post-copy
migration import (see [TD Migration Spec]).

September 2025

Page 85 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Reason

May be Indicated by

Possible Host VMM Action

Page is BLOCKED or GPA
range is NL_BLOCKED

Exit qualification bits 6:3 value is
0.

Extended exit qualification TYPE
(bits 3:0) value is NULL (0).

The host VMM knows, based on
its internal data, that the page or
a Secure EPT page that maps it
has been blocked.

The host VMM may resume the TD
(TDH.VP.ENTER), possibly after taking some
action (e.g., TDH.MEM.PAGE.PROMOTE) for
which the page has been blocked.

Page is PENDING or
PENDING_EXPORTED_DIRTY

Exit qualification bits 6:3 value is
0.

Extended exit qualification TYPE
(bits 3:0) value is
PENDING_EPT_VIOLATION (6).3
The host VMM knows, based on
its internal data, that the page

has been assigned to the TD using
TDH.MEM.PAGE.AUG.

This happens if the TD is configured to TD-exit
(instead of a #VE) on an EPT violation due to
accessing a PENDING page. It normally
indicates an error condition; the host VMM
may decide to tear the TD down.
Configuration is by
ATTRIBUTES.SEPT_VE_DISABLE.

If CONFIG_FLAGS.FLEXIBLE_PENDING_VE is 1,
then the guest TD may select the desired
behavior.

Page is blocked for writing
(*BLOCKEDW)

Exit qualification bit 1 value is 1,
indicating a write access, and bit
4 is 0, indicating write blocking.
The host VMM knows, based on
its internal data, that the page
has been blocked for writing using
TDH.EXPORT.BLOCKW

The host VMM may unblock the page
(TDH.EXPORT.UNBLOCKW). for details, see
[TD Migration Spec].

EPT violation during
PENDING page acceptance
(TDG.MEM.PAGE.ACCEPT)

Extended exit qualification TYPE
(bits 3:0) value is ACCEPT (1).

See the discussion in 9.10 below
and the [ABI Spec] for details.

Depending on the information provided in the
extended exit qualification, the host VMM
may demote the page, add an SEPT page, add
a page or retry the operation after the page is
not blocked.

See the discussion in 9.10 below and the [ABI
Spec] definition of TDG.MEM.PAGE.ACCEPT
for details.

EPT violation during
TDG.MEM.PAGE.ATTR.WR

Extended exit qualification TYPE
(bits 3:0) value is ATTR_WR (5).

Depending on the information provided in the
extended exit qualification, the host VMM
may demote the page or add an L2 SEPT page.

See the [ABI Spec] definition of
TDG.MEM.PAGE.ATTR.WR for details.

EPT violation caused by
guest-side interface
function failure of
GPA->HPA translation

Extended exit qualification TYPE
(bits 3:0) value is GPA_DETAILS

(2).

Similar to the above cases where the page is
not mapped, is blocked or is blocked for
writing, except that more information is
provided in the extended exit qualification.

By design, since secure EPT is fully controlled by the TDX Module, an EPT misconfiguration on a private GPA indicates a
TDX Module bug and is handled as a fatal error.

3 Availability of this indication is enumerated by TDX_FEATURESO.PENDING_EPT_VIOLATION_V2 (bit 16), readable by TDH.SYS.RD*.

September 2025

Page 86 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

9.5. Secure EPT Induced Exceptions

9.5.1. #PF Exceptions Related to GPA Reserved Bits

Guest TD memory access, with any reserved GPA bit set to 1, causes a #PF exception. See 11.15.1.5 for details.

9.5.2. EPT Violation Mutated into #VE

See 9.10.4 below for details of handling guest TD memory access to a private GPA for which the Secure EPT entry state is
PENDING or PENDING_EXPORTED_DIRTY.

For shared GPA, see 11.15.2 for details.
9.6. Secure EPT Concurrency

Secure EPT concurrency rules are designed to allow concurrent operations on multiple Secure EPT entries. Secure EPT
concurrency is controlled by the following mechanisms:

e An exclusive/shared lock on the whole Secure EPT tree.
e A host-priority mutex on each Secure EPT entry.

Host-Side (SEAMCALL) Interface Functions

e TDX Module interface functions that use GPA as an input acquire a lock on the whole Secure EPT tree of the target
TD to help prevent changes to the tree while they execute.

o Interface functions that may impact a whole sub tree of the Secure EPT tree acquire an exclusive lock on the
Secure EPT tree. These include TDH.MEM.PAGE.PROMOTE, TDH.MEM.RANGE.BLOCK,
TDH.MEM.RANGE.UNBLOCK and TDH.MEM.SEPT.REMOVE.

o Other interface functions acquire a shared lock on the Secure EPT tree.

e Most interface functions that use GPA as an input acquire an exclusive host-priority lock on the Secure EPT entry or
entries which they use. An exception to this is TDH.MEM.SEPT.RD, which just reads a Secure EPT entry and does not
use it to actually access memory.

e Host-side interface functions that obtain exclusive access to the TDR page (and thus, to the whole TD), such as
TDH.MEM.PAGE.ADD, are considered as implicitly having exclusive access to the Secure EPT tree and each of its
entries.

Guest-Side (TDCALL) Interface Functions

Guest-side TDX Module interface functions that need to translate a GPA to an HPA emulate the CPU’s top-down EPT walk
operation.

e Guest-side interface functions have no concurrency restrictions on the whole Secure EPT tree.

e Guest-side interface functions that need to manage a Secure EPT entry acquire an exclusive host-priority lock on
that entry. These include TDH.MEM.PAGE.ACCEPT, TDH.MEM.PAGE.ATTR.RD and TDH.MEM.PAGE.ATTR.WR and
TDH.MEM.PAGE.RELEASE.

For details on host-priority concurrency enforcement, see 18.1.4.
9.7. Introduction to TLB Tracking

The goal of TLB tracking is to be able to prove (when needed) that no logical processor holds any cached Secure EPT
address translations to a given TD private GPA range. TLB tracking is required when removing a mapped TD private page
(TDH.MEM.PAGE.REMOVE) or when changing the page mapping size (TDH.MEM.PAGE.PROMOTE), etc.

Cached address translations include implicit address translations (TLB) and paging structure translations (PxE) held by the
CPU. In addition, GPAs that are translated by the TDX Module to HPA and written to VMX control structure fields, to be
read by the CPU, are also considered cached address translation.

For TDX Connect, TLB tracking is required for MMIO pages. In addition, a similar mechanism is used for IOMMU TLB
tracking, for attached 1/O devices. See the [TDX Connect Spec] for details.

September 2025 . Page 87 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Conditions when TLB Tracking is not Required

TLB tracking is not required when the TD’s OP_STATE implies that no TD VCPU may run at the time GPA mapping
operation modification (e.g., TDH.MEM.PAGE.REMOVE) is done. The only OP_STATE values when TD VCPUs may run are
the following:

e RUNNABLE
e LIVE_EXPORT
e LIVE_IMPORT

In addition, TLB tracking is not required if the GPA range’s Secure EPT entry state implies that no cached address
translations may exist for that Secure EPT entry. This applies to the following SEPT entry states (see the [TDX Module ABI
Spec] for details):

e EXPORTED_BLOCKEDW, PENDING_EXPORTED_BLOCKEDW: The page has been exported by TDH.EXPORT.MEM and
it is blocked for writing.
e FREE, REMOVED: The page has been removed (e.g., by TDH.MEM.PAGE.REMOVE).

GPA Range TLB Tracking Sequence

This sequence is intended to be used by the host VMM to help guarantee no EPT TLB entries exist to a set of GPA ranges.

Intel TDX

Module Guest TD

TDH.MEM.RANGE.BLOCK(TDR, GPA, level)
|
e — — —
T TDH.M EM.TRACK(TDR)4t|:|
J_< __________________

IPI

VM Exit (external interrupt)
[ﬁTD Exit (external interrupt)

————— TDH.VP.ENTER
| VM Entry ?—‘-h

Figure 9.4: Typical TLB Tracking Sequence
The sequence typically includes five steps:

1. Execute TDH.MEM.RANGE.BLOCK on each GPA range, blocking subsequent creation of TLB translation to that range.
Note that cached translations may still exist at this stage.

2. Execute TDH.MEM.TRACK, advancing the TD’s epoch counter.

3. Send an Inter-Processor Interrupt (IPl) to each Remote Logical Processor (RLP) on which any of the TD’s VCPUs is
currently scheduled.

4. Upon receiving the IPI, each RLP will TD exit to the host VMM.

When each of the TD VCPUs has been inactive at least once following TDH.MEM.TRACK, the target GPA ranges are
considered tracked. Even though some LPs may still hold TLB entries to the target GPA ranges, the following TD entry to
each of the TD VCPUs is designed to flush them.

Note: If the host VMM counts the number of active VCPUs, and following TDH.MEM.TRACK this number is 0, the host
VMM may skip the IPIs —all VCPUs are already considered tracked.

5. Normally, the host VMM on each RLP will treat the TD exit as spurious and will immediately re-enter the TD.

September 2025 . Page 88 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

9.8. Secure EPT Build and Update: TDH.MEM.SEPT.ADD

The host VMM can use the TDH.MEM.SEPT.ADD function to add a Secure EPT page to a guest TD. TDH.MEM.SEPT.ADD
inputs are:

e Target TD, identified by its TDR HPA
e Destination physical page for the new Secure EPT table
e Mapping information: GPA and EPT level

At a high level, TDH.MEM.SEPT.ADD works as follows:

1. Check the TD keys are configured.

2. Check the destination physical page is marked as free in the PAMT.

3. Perform a Secure EPT walk to locate the Secure EPT non-leaf entry which will become the parent entry that maps
the new Secure EPT page. To help prevent re-maps, TDH.MEM.SEPT.ADD checks the mapping does not already exist,
else it aborts the operation.

On platforms using ACT-protected memory, mark the new SEPT page’s ACT bit(s) as private.

Initialize the target page to zero using the target TD’s private HKID and direct writes (MOVDIR64B).

Update the parent Secure EPT entry to map the page as MAPPED.

Update the page’s PAMT entry with the PT_EPT page type and the TDR PA as the OWNER.

No vk

The Secure EPT’s root page (EPML4 or EPMLS5, depending on whether the host VMM uses 4-level or 5-level EPT) does not
need to be explicitly added. It is created during TD initialization (TDH.MNG.INIT) and is stored as part of TDCS. On each
VCPU initialization, TDH.VP.INIT copies the address of the Secure EPT root page to the VCPU’s TD VMCS'’s EPTP field
clearing the HKID bits to 0%

The following example illustrates the build process of a 4-level Secure EPT hierarchy:

1. The host VMM calls TDH.MNG.CREATE(TDR_PA = TDRo) to create the TD.

2. The host VMM calls TDH.MNG.ADDCX(TDR_PA = TDRo, DST_PA = TDCX_PAGE_PA) multiple times to allocate pages
for TDCS. One of those pages will be used to host the Secure EPT root page Do.

3. Host VMM calls TDH.MNG.INIT(TDR_PA = TDRo) to initialize the TD and set an EPML4 page in one of the previously

added TDCX pages as the Secure EPT root page. This updates TDCS.EPTP.

TDH.VP.INIT of each VPCU copies TDCS.EPTP to the TD VMCS's EPTP field.

Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDRo, DST_PA = D1, GPA = Go, LVL= 3) to add an EPDPT page.

Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDRo, DST_PA = D2, GPA = Go, LVL=2) to add an EPD page.

Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDRo, DST_PA = D3, GPA = Go, LVL= 1) to add an EPT page.

No vk

4 The CPU adds the TD’s private HKID on EPT walks. Having HKID as O allows the host VMM to use INVEPT, for managing the usage of
shared EPT which shares the ASID with the TD’s secure EPT (see [@).

September 2025 . Page 89 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

10

15

20

25

30

Step 3 TDCS
TDH.MNG.INIT Step 5 Step 6 Step 7
EPTP = Do TDH.MEM.SEPT.ADD TDH.MEM.SEPT.ADD TDH.MEM.SEPT.ADD
Step 4 EPML4 EPDPT EPD EPT
TDH.VP.INIT
PA = D3
TD VMCS PA = D2 NL_MAPPED
By NL_MAPPED
EPTP = Do NL_MAPPED

Dynamic PAMT:

Cache Lines Flushing (Future):

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for D,

OWNER = TDR,
PT = PT_TDCX

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

Figure 9.5: Typical Secure EPT Hierarchy Build Process

If the TDX Module is configured for Dynamic PAMT, adding a 4KB SEPT page requires
that the new page HPA will be mapped by PAMT pages. The PAMT pages may be added
on demand, based on a status code returned by TDH.MEM.SEPT.ADD. See 8.3.4.2 and
the [ABI Spec] for details.

On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES.CLFLUSH_BEFORE_ALLOC (bit 23), then to help avoid stability issues
caused by cache line aliasing, the VMM should ensure that no cache lines associated
with the added physical SEPT page are in a Modified state, before calling
TDH.MEM.PAGE.AUG. This is typically done by calling TDH.PHYMEM.PAGE.WBINVD.

9.9. Adding TD Private Pages during TD Build Time: TDH.MEM.PAGE.ADD

Adding TD private pages with arbitrary content is allowed only during TD build time (before TDH.MR.FINALIZE). The host
VMM adds and maps 4KB private pages to a guest TD using TDH.MEM.PAGE.ADD with the following inputs:

e Target TD, identified by its TDR physical address
e Source page physical address
e Destination page physical address

e Destination page GPA

At a high level, TDH.MEM.PAGE.ADD works as follows:

1. Check the TD has not been initialized.

2. Check the TD keys are configured.

3. Check the destination physical page is marked as free in the PAMT.

4. Perform a Secure EPT walk to locate the parent Secure EPT leaf entry that is going to map the new TD private page.
To help prevent re-maps, TDH.MEM.PAGE.ADD checks the mapping does not already exist, else it aborts the
operation.

5. On platforms using ACT-protected memory, mark the new private page’s ACT bit(s) as private.

6. Copy the source page to the destination page using the target TD’s private HKID and direct writes (MOVDIR64B).

7. Update the previously located parent Secure EPT leaf entry to map the page as MAPPED.

8. Update the TD measurement with the new page GPA (as described in 12.2.1).

9. Update the PAMT entry with the PT_REG page type and the TDR PA as the OWNER.

September 2025 Page 90 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

TDH.MEM.PAGE.ADD

\ 4

EPML4

EPDPT

EPD

PA = D1
NL_MAPPED

PA = D2
NL_MAPPED

PA =D3
NL_MAPPED

EPT

PA = D4
MAPPED

New 4KB TD Private
Page

PAMT Entry for Dy

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for D4

PAMT Entry for D,

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER =TDR,
PT = PT_REG

Figure 9.6: Typical Sequence for Adding a TD Private Page during TD Build Time

Dynamic PAMT: If the TDX Module is configured for Dynamic PAMT, adding a 4KB TD private page
requires that the new page HPA will be mapped by PAMT pages. The PAMT pages may
be added on demand, based on a status code returned by TDH.MEM.PAGE.ADD. See

8.3.4.2 and the [ABI Spec] for details.

Cache Lines Flushing (Future): On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES.CLFLUSH_BEFORE_ALLOC (bit 23), then to help avoid stability issues
caused by cache line aliasing, the VMM should ensure that no cache lines associated
with the added physical page are in a Modified state, before calling
TDH.MEM.PAGE.ADD. This is typically done by calling TDH.PHYMEM.PAGE.WBINVD.

9.10. Dynamically Adding TD Private Pages

9.10.1. Overview

Dynamically adding TD private pages after the guest TD has been initialized is typically done as a three-step process:

e The host VMM can update Secure EPT using TDH.MEM.SEPT.ADD and TDH.MEM.SEPT.REMOVE.

e The host VMM adds and maps a 4KB or a 2MB TD private page using TDH.MEM.PAGE.AUG. This page is not
measured. The Secure EPT entry state for that added page is PENDING.

e The guest TD must accept the page before it can access it, using TDG.MEM.PAGE.ACCEPT. The page content is zeroed
out.

This process is designed to help prevent attacks where the host VMM could remove arbitrary pages from the guest TD’s
GPA space (using TDH.MEM.PAGE.REMOVE) and replace them with zeroed-out pages.

The guest TD should track its GPA space allocation and should only accept PENDING pages that it expects to be added by
the host VMM. The guest TD must not accept pages that are already known to it as TD-owned, i.e., added at TD build
time (TDH.MEM.PAGE.ADD) or accepted before at TD run time. Failing to do so would make the guest TD vulnerable to
the above attack.

An attempt by the guest TD to access a page that has been dynamically added by TDH.MEM.PAGE.AUG but has not yet
been accepted by TDH.MEM.PAGE.ACCEPT results in either a #VE exception or a TD exit, depending on configuration.
See below for details.

Refer also to the software flow described in 3.3.1.1.

September 2025 Page 91 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

9.10.2. PENDING Page Addition by the Host VMM: TDH.MEM.PAGE.AUG

The host VMM can add and map 4KB and 2MB private pages to a guest TD in a non-present and pending state using
TDH.MEM.PAGE.AUG, with the following inputs:

e Target TD, identified by its TDR physical address
e Destination page physical address
e Destination page GPA

At a high level, TDH.MEM.PAGE.AUG works as follows:

1. Check the TD keys are configured.

2. Check that the TD has either been initialized (by TDH.MNG.INIT) and no migration session is in progress, or that
migration is in progress, but the TD is runnable (live export or import).

Check the destination physical page is marked as free in the PAMT.

Perform a Secure EPT walk to locate the parent Secure EPT leaf entry that is going to map the new TD private page.
To help prevent re-maps, TDH.MEM.PAGE.AUG checks the mapping does not already exist, else it aborts the
operation.

5. Update the previously located parent Secure EPT leaf entry to map the page as PENDING.

6. On platforms using ACT-protected memory, mark the new private page’s ACT bit(s) as private.

7. Update the PAMT entry with the PT_REG page type and the TDR PA as the OWNER.

s w

Note that TDH.MEM.PAGE.AUG does not need to access the destination page itself; the page is initialized later on by
TDG.MEM.PAGE.ACCEPT.

TDH.MEM.PAGE.AUG

(2mB)
Ney 2VB D ;- ;-
Private Page. * . * .
(Non-Initfalized) " . *
EPML4 EPDPT EPD
“.°.7.7. . .| TDH.MEM.PAGE.AUG
PA = D3 I R (4KB)
PENDING | £
PA=D2 [| 000 o} e +
PA = D1 NL_MAPPED PA =Da EPT “New 4KB TD:Private
NL_MAPPED NL_MAPPED Pade. |- .-l
= «(Non:Initialized), = .
PA = D5 B
PENDING :
I
I
1 L i
2MB PAMT Entry for D,
PAMT Entry for D, PAMT Entry for D, PAMT Entry for D, OWNER = TDR,
PT = PT_REG
OWNER = TDR, OWNER =TDR, OWNER =TDR, ;
PT = PT_EPT PT = PT_EPT PT = PT_EPT PAMT Entry for D, 4KB PAMT Entry for D
OWNER =TDR, OWNER =TDR,
PT = PT_EPT PT = PT_REG

Figure 9.7: Host VMM Adding a 4KB or a 2MB TD Private Page

Dynamic PAMT: If the TDX Module is configured for Dynamic PAMT, adding a 4KB TD private page
requires that the new page HPA will be mapped by PAMT pages. The PAMT pages may

September 2025 . Page 92 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification 348549-007US

Cache Lines Flushing (Future):

be added on-demand, based on a status code returned by TDH.MEM.PAGE.AUG. See
8.3.4.2 and the [ABI Spec] for details.

On future platforms, if cache line flushing is required, as enumerated by
TDX_FEATURES.CLFLUSH_BEFORE_ALLOC (bit 23), then to help avoid stability issues
caused by cache line aliasing, the VMM should ensure that no cache lines associated

with the added physical

page are in a

Modified

state, before calling

TDH.MEM.PAGE.AUG. This can be done by calling TDH.PHYMEM.PAGE.WBINVD.

9.10.3. PENDING Page Acceptance by the Guest TD: TDG.MEM.PAGE.ACCEPT

Description

10 The guest TD can accept a dynamically added 4KB or 2MB page using TDG.MEM.PAGE.ACCEPT with the page GPA and

size inputs.

9.

10'§Ea high level, TDG.MEM.PAGE.ACCEPT works as follows:

1. Perform aSecure EPT walk to locate the parent Secure EPT leaf entry that maps the TD private page, and handle the

walk results as described in the table below.

15 Table 9.3: TDG.MEM.PAGE.ACCEPT SEPT Walk Cases

SEPT Walk Terminal Entry

TDG.MEM.PAGE.ACCEPT

Typical Software Handling

Level Free, State and Description Operation
Leaf or
Non-
Leaf
Higher Free Free-equivalent states: TD exit with EPT violation This may be used as a guest TD
than FREE, REMOVED, or indicating the error SEPT entry request from the host VMM to add
Requested EXPORTED_REMOVED level and state, and the guest- a page. The host VMM adds SEPT
requested accept level. See the pages (TDH.MEM.SEPT.ADD) and
[TDX Module ABI Spec]. the requested page
(TDH.MEM.PAGE.AUG). It then
resumes the guest.
Non- Not guest-accessible TD exit with EPT violation This may be used as a guest TD
Leaf (e.g., blocked PDE for a 4KB | indicating the error SEPT entry request from the host VMM to add
request). level and state, and the guest- a page. The host VMM adds SEPT
requested accept level. See the pages (TDH.MEM.SEPT.ADD) and
[TDX Module ABI Spec]. the requested page
(TDH.MEM.PAGE.AUG). It then
resumes the guest.
Leaf Guest-accessible state: Return a status code indicating Option 1: This is OK, the host
MAPPED, BLOCKEDW or success, with a warning that the VMM did not use the memory
EXPORTED_* (e.g., 2MB PTE | page is already present and released by the TD.
present for a 4KB request). mapped at a level higher than Option 2: This is a guest bug; the
requested. status code helps debugging it.
Not guest-accessible (e.g., TD exit with EPT violation The host VMM demotes the page
2MB PTE pending for a 4KB indicating the error SEPT entry to match the requested accept
request). level and state, and the guest- size. It then re-enters the guest
requested accept level. See the TD. TDG.MEM.PAGE.ACCEPT is re-
[TDX Module ABI Spec]. invoked.
Same as Free Free-equivalent states: TD exit with EPT violation This may be used as a guest TD
Requested FREE, REMOVED, or indicating the error SEPT entry request from the host VMM to add
EXPORTED_REMOVED level and state, and the guest- a page. The host VMM adds the
requested accept level. See the requested page
[TDX Module ABI Spec]. (TDH.MEM.PAGE.AUG) and
resumes the guest.

September 2025

Page 93 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

SEPT Walk Terminal Entry TDG.MEM.PAGE.ACCEPT Typical Software Handling
0 ti
Level Free, State and Description e
Leaf or
Non-
Leaf
Non- Guest-accessible Return a status code indicating a The guest falls back to accept the
Leaf (NL_MAPPED), e.g., size mismatch error. range using 4K size.

requested 2MB entry is
mapped to an EPT page
instead of being a leaf.

Blocked (NL_BLOCKED) TD exit with EPT violation The host VMM resolves the
indicating the error SEPT entry blocking (e.g., completes the
level and state, and the guest- memory management operation
requested accept level. See the that required blocking) and
[TDX Module ABI Spec]. resumes the guest.

Leaf Guest-accessible, i.e., Return a status code indicating Option 1: This is OK, the host

MAPPED or success, with a warning that the VMM did not use the memory

EXPORTED_DIRTY page is already present. released by the TD.

Option 2: This is a guest bug; the
status code helps debugging it.

Blocked or write-blocked TD exit with EPT violation The host VMM resolves the

(not PENDING nor indicating the error SEPT entry blocking (e.g., completes the

PENDING_EXPORTED_DIRTY) | level and state, and the guest- memory management operation
requested accept level. See the that required blocking) and
[TDX Module ABI Spec]. resumes the guest.

Pending (PENDING or Complete the operation as Success

PENDING_EXPORTED_DIRTY) | described below.

If passed:
Note: Since initializing a 2MB page may take a long time, TDG.MEM.PAGE.ACCEPT is interruptible and resumable.

2. If all the above checks pass, loop until done or interrupted:
5 2.1. Initialize the next 4KB chunk of the page to zero using the target TD’s private HKID and direct writes
(MOVDIR64B).
2.2. Ifthe whole page has been initialized, update the parent Secure EPT entry to set its state to SEPT_PRESENT.
2.3. Else, if there is a pending interrupt, resume the guest TD without updating RIP and any GPR. The CPU may
handle the interrupt, causing a TD exit. When the TD is resumed, TDH.MEM.PAGE.ACCEPT will re-invoked.

September 2025 . Page 94 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

TDG.MEM.PAGE.ACCEPT
(2MmB)

\ 4

2MB TD Private
Page
(Initialized to 0)

EPML4 EPDPT EPD
TDG.MEM.PAGE.ACCEP1
MAPPED T
PA = D2 +
PA = D1 NL_MAPPED PA = D4 EPT 4KB TD Private Page
NL_MAPPED NL MAPPED | | (Initialized to 0)

PA = D5
MAPPED

1

Figure 9.8: Guest TD Accepting a 4KB or 2MB Pending TD Private Page

TDG.MEM.PAGE.ACCEPT Concurrency

9.10.3.2.

Guest-Side

TDG.MEM.PAGE.ACCEPT prevents the guest TD from concurrently accepting the same page by multiple threads.
TDG.MEM.PAGE.ACCEPT may also encounter a concurrent host-side operation, such as TDH.MEM.RANGE.BLOCK, that
attempts to update the same Secure EPT entry. In such cases, an error is returned to the guest TD, indicating that the
Secure EPT entry is busy.

Host-Side

TDG.MEM.PAGE.ACCEPT prevents host-side operations, such as TDH.MEM.RANGE.BLOCK, from concurrently modifying
the Secure EPT entry. This is implemented using a host-priority lock, preventing the guest TD from denying service to the
host VMM. If a host-side operation fails with a busy indication, the host VMM should retry the operation. For details on
host-priority concurrency enforcement, see 18.1.4.

9.10.4. Guest TD (L1) Access to a PENDING Page

The behavior in case of guest TD access to a page in a PENDING or PENDING_EXPORTED_DIRTY page is summarized in
the table below. This only applies to L1. L2 VM access to a PENDING page always results in an L22>L1 exit.

e HVE is useful for implementing an accept-on-demand policy. It can be used by the guest TD to trigger a
TDG.MEM.PAGE.ACCEPT of the PENDING page.

e TD Exit is useful for guest TD implementations that only map memory that has been accepted into the linear address
spaces. For such implementations, an access to a PENDING page indicates a fatal error. The host VMM typically
tears the TD down when this happens.

The combinations of configuration flags allow the host VMM to establish a static policy or allow the guests TD to decide
on the policy.

Enumeration: Availability of CONFIG_FLAGS.FLEXIBLE_PENDING_VE and TDCS.TD_CTLS.PENDING_VE_DISABLE is
enumerated by TDX_FEATURESO.PENDING_EPT_VIOLATION_V2 (bit 16), readable by TDH.SYS.RD*.

September 2025 . Page 95 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Table 9.4: Guest TD (L1) Access to a PENDING Page

Configuration by the Host VMM (TD_PARAMS Input Configuration by the Behavior on Guest TD
to TDH.MNG.INIT) Guest TD Access of a PENDING
ATTRIBUTES. CONFIG_FLAGS. TDCS.TD_CTLS. Page
SEPT_VE_DISABLE FLEXIBLE_PENDING_VE PENDING_VE_DISABLE
0 0 0 #VE(PENDING)
1 0 #VE(PENDING)
1 TD Exit (EPT Violation)
1 0 1 TD Exit (EPT Violation)
1 0 #VE(PENDING)
1 TD Exit (EPT Violation)

9.11. Interaction with TDX Connect

If the TD is configured with TDX Connect enabled (CONFIG_FLAGS.TDX_CONNECT is 1), private memory management is
restricted to prevent the host VMM from blocking pages while TDIs are attached, which would lead to a silent drop of
data. If any TDIs are attached, memory management interface functions are restricted as follows:

e TDH.MEM.RANGE.BLOCK of a leaf SEPT entry is only allowed on PENDING pages.

e TDH.MEM.RANGE.BLOCK of a non-leaf SEPT entry is allowed only if all 512 child SEPT entries are FREE.

e The guest TD must explicitly release a private page using TDG.MEM.PAGE.RELEASE before the host VMM can remove
it. Releasing a page puts it in a PENDING state.

e The host VMM can use the non-blocking resize feature of TDH.MEM.PAGE.PROMOTE and TDH.MEM.PAGE.DEMOTE
to avoid the need for blocking the GPA range to be promoted or demoted.

See the sections below for more details.

9.12. Releasing a TD Private Page by the Guest TD: TDG.MEM.PAGE.RELEASE

Enumeration: TDX Module support of this feature is enumerated by TDX_FEATURESO.PAGE_RELEASE (bit 38),
readable using TDG.SYS.RD*.

If supported by the TDX Module and allowed by the host VMM by setting CONFIG_FLAGS.PAGE_RELEASE and/or
CONFIG_FLAGS.TDX_CONNECT, a guest TD may release a TD private page by TDG.MEM.PAGE.RELEASE, as follows:

1. Before releasing a private page, the guest TD software is expected to ensure all page table TLB translations to the
page’s GPA are invalidated. This is not enforced by the TDX Module.
2. The guest TD then calls TDG.MEM.PAGE.RELEASE, providing the page GPA and the expected mapping size (4KB or
2MB).
2.1. Ifthe pageis mapped at a lower level than requested, the function returns an error code and the actual mapping
size. The guest TD may re-invoke TDG.MEM.PAGE.RELEASE specifying the actual mapping size.
2.2. If the page is mapped at a higher level than requested, this results in an EPT violation TD exit. The host VMM
is expected to demote the page, then re-enter the guest TD so TDG.MEM.PAGE.RELEASE is re-invoked.
2.3. If all checks passed, the TDX Module puts the page in a PENDING state and records the current TD epoch in the
page metadata for TLB tracking.
3. The guest TD is then expected to notify the host VMM that the page is released, using a software protocol over
TDG.VP.VMCALL.
4. The host VMM can remove the page, as with any page in the PENDING state:
4.1. Call TDH.MEM.RANGE.BLOCK to block the page.
4.2. Execute the TLB shootdown sequence (TDH.MEM.TRACK and a round of IPIs).
4.3. Call TDH.MEM.PAGE.REMOVE to remove the page.
5. Alternatively, since the page is in a PENDING state, the guest TD can re-accept it by calling TDG.MEM.PAGE.ACCEPT.
5.1. Note that if the released page size is 1GB, it must be first demoted (by TDH.MEM.PAGE.DEMOTE) before it may
be re-accepted by TDG.MEM.PAGE.ACCEPT.

September 2025 . Page 96 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

9.13. Page Mapping Resize: Merge and Split

Merging and splitting of the SEPT mapping of 1GB or 2MB GPA ranges is done by TDH.MEM.PAGE.PROMOTE and
TDH.MEM.PAGE.DEMOTE.

9.13.1. Overview: Non-Blocking Mapping Resize

5 Non-blocking mapping resize is designed to support TDX Connect, where no pages must be blocked while TDIs are
attached. However, it can be used, if supported by the TDX Module, even if TDX Connect is not supported or not enabled
for the current TD.

If the TDX Module supports non-blocking mapping resize, as enumerated by TDX_FEATURESO.NON_BLOCKING_RESIZE
(bit 35), then the following usage model, which eliminates the need to block GPA ranges, is supported:

10 e No blocking and TLB tracking of the large GPA range to be merged or split is required.
e SEPT pages that are released by TDH.MEM.PAGE.PROMOTE have a new page type: PT_TR.
e The host VMM can keep a pool of such PT_TR pages and use them as inputs to TDH.MEM.PAGE.DEMOTE. TLB track
checking of such pages is done when they are used.
e Alternatively, the host VMM can reclaim those pages using TDH.PHYMEM.PAGE.RECLAIM, and use them for any
15 purpose.

9.13.2. Page Merge: TDH.MEM.PAGE.PROMOTE

The host VMM can merge the mapping of 512 consecutive 4KB or 2MB pages into a single 2MB or 1GB page, respectively.

Blocking and TLB Tracking

9'Hﬁllcicking and TLB Tracking is required if the TDX Module does not support non-blocking mapping resize, as enumerated

20 by TDX_FEATURESO.NON_BLOCKING_RESIZE (bit 35). Even if the TDX Module supports non-blocking mapping resize, the

host VMM can choose to first perform the TLB tracking protocol, since this impacts the operation of
TDH.MEM.PAGE.PROMOTE as described below.

The host VMM performs the TLB tracking protocol on the large (2MB or 1GB) GPA range:

e The host VMM should first call TDH.MEM.RANGE.BLOCK, which operates on the EPT page for the large range (EPT
25 for 2MB, EPD for 1GB). TDH.MEM.RANGE.BLOCK marks the parent EPT entry for that EPT page as BLOCKED and
records the TD epoch in the PAMT entry of the EPT page.
e Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no
active address translation to the large (2MB or 1GB) GPA range.

9.138ven if the TDX Module supports non-blocking mapping resize, the host VMM can choose to first perform the TLB tracking
30 protocol, since this impacts the operation of TDH.MEM.PAGE.PROMOTE as described below.

Promotion
The actual merge operation is done by TDH.MEM.PAGE.PROMOTE. Figure 9.9 below shows the typical situation before
TDH.MEM.PAGE.PROMOTE is called.
Note: For details on TDH.MEM.PAGE.PROMOTE support of partitioned TDs, see the [TD Partitioning Spec].
35 TDH.MEM.PAGE.PROMOTE has the following inputs:

e The large range GPA

e The large page level (2MB or 1GB)

e If the TDX Module supports non-blocking mapping resize, a flag indicating whether TLB tracking check is to be
skipped.

September 2025 . Page 97 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

EPT 512 Consecutive 4KB TD Private Pages
EPD PA =X 2MB Range 4KB TD Private Page |
@PAX @ PAX

MAPPED
- 4KB TD Private Page
@ PA X +511*4K

PA = X + 511*4K

NL_MAPPED [~

mapPED [}

: L 1
PAMT_4K Entry PAMT_4K Entry PAMT_2M Entry 512 Consecutive PAMT_4K Entries
OWNER =TDR, OI\DIYI_'\I_EE: ;ID)TRO OWNER =TDR, OWNER =TDR,

PT = PT_EPT o= PT = PT_NODE PT=PT_R
BEPOCH set OWNER = TDR,
PT = PT_REG
PAMT 2MB Sub-Block

Figure 9.9: Typical State before TDH.MEM.PAGE.PROMOTE of a Range of 512 Consecutive 4KB TD Private Pages

At a high level, TDH.MEM.PAGE.PROMOTE works as follows:

1.

If the TDX Module does not support non-blocking mapping resize, or the host VMM did not indicate that TLB tracking
check should be skipped, check the TLB tracking condition for the large range GPA (i.e., the EPT or EPD page for that
range).

Check that all 512 entries of that EPT or EPD page are in the MAPPED state and point to leaf pages whose physical
address is contiguous within the same 2MB or 1GB range.

If all checks pass, TDH.MEM.PAGE.PROMOTE does the following:

o vk

Mark all the PAMT_4K or PAMT_2M entries of the small leaf pages (4KB or 2MB, respectively) as PT_NDA.

Mark the PAMT_2M or PAMT_1G entry of the merged large (2MB or 1GB, respectively) pages as PT_REG.

Set the parent EPT entry to point to the merged large page and mark it as present.

If TLB tracking has been done, reclaim the original SEPT physical page as described in 8.6.5.

6.1. Platforms not using ACT: The host VMM should initialize the former EPT or EPD physical page’s content before
it is reused as a non-private page, as described in 8.6.2.

Else (TLB tracking has not been done), mark the original SEPT physical page as PT_TR and record the TD’s TD_EPOCH

in its PAMT entry. This page can be later reclaimed or used as a new SEPT page input to TDH.MEM.PAGE.DEMOTE.

Figure 9.10 below shows a typical 2MB merged page after TDH.MEM.PAGE.PROMOTE.

September 2025 . Page 98 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

- S S e reo

EPD Former EPT Page 2MB TD Private E 4KB Unmapped E
Page i Page ST
@ PA X I @PAX 4KB Unmapped

Page

MAPPED | @ PAX+511%4K
"""""" B | s
PAMT_4K Entry
PAMT_4K Entry N OWNER = N/A PAMT_2M Entry 512 Consecutive PAMT_4K Entries
PT = PT_NDA? FoTTTTTTTTTTTITTI T
OWNER=TDR, |& OWNER = TDR, ! OWNER = !}I/A____i ______________
PT=PT_EPT |ZE PT = PT_REG I PT=PT_N: i
OWNER =TDR, ! _. OWNER = N/A
» PT=PT_TR TR i PT=PT_NDA !
BEPOCH set PAMT 2MB Sub-Block [

LIf non-blocking resize is supported and selected
21f non-blocking resize is not supported or not selected

Figure 9.10: Typical State of a 2MB TD Private Page after TDH.MEM.PAGE.PROMOTE
Refer also to the software flow described in 3.3.1.3.

Dynamic PAMT: If the TDX Module is configured for Dynamic PAMT and the promoted range size is 2MB,
5 TDH.MEM.PAGE.PROMOTE removes that PAMT pages mapping the 512 4KB physical pages. It also
returns a hint indicating whether the PAMT pages mapping the removed SEPT pages can be removed.

For details, see the [ABI Spec].

9.13.3. Page Split: TDH.MEM.PAGE.DEMOTE

0 Hli'ile host VMM can split the mapping of a single 2MB or 1GB page to 512 consecutive 4KB or 2MB pages, respectively.

10 Blocking and TLB Tracking

If the TDX Module does not support non-blocking mapping resize, as enumerated by
TDX_FEATURESO.NON_BLOCKING_RESIZE (bit 35), the host VMM should first perform the TLB tracking protocol on the
large (2MB or 1GB) page:

e The host VMM should first call TDH.MEM.RANGE.BLOCK on the large page. TDH.MEM.RANGE.BLOCK marks the
15 #13.3.2. parent EPT entry for that page as BLOCKED and records the TD epoch in the PAMT entry of the page.
e Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPls. After that, there should be no
active address translation to the large (2MB or 1GB) page.

Demotion

The actual split is done by TDH.MEM.PAGE.DEMOTE. Figure 9.11 below shows the typical situation before
20 TDH.MEM.PAGE.DEMOTE is called.

Note: For details on TDH.MEM.PAGE.DEMOTE support of partitioned TDs, see the [TD Partitioning Spec].
TDH.MEM.PAGE.DEMOTE has the following inputs:

e The large page GPA
e The large page level (2MB or 1GB)

25 e The physical address of a page that will be used for a new EPT or EPD page. If the TDX Module does not support non-
blocking mapping resize, this page must be free. Else, the page may also be a PT_TR page, i.e., a former SEPT page
converted by TDH.MEM.PAGE.PROMOTE.

e Ifthe TD is partitioned, up to 3 physical addresses of pages that will be used for new L2 EPT or EPD pages.

Section 2: Intel TDX Module Architecture Specification

September 2025 . Page 99 of 196

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

New page to be EPDPT 1GB TD Private Page | | 2MB Unmapped | o
used as EPD @ PAX i Page .. S
i @PAX 2MB Unmapped
Page
BLOCKED? &

@ PA X +511*2M

HAES S :
PAMT_4K Entry
— OWNER = N/A PAMT_4K Entry PAMT_1G Entry 512 Consecutive PAMT_2M Entries
Ny PT = PT_NDA SRR
£ OWNER = TDR, OF\,/¥'_'E;T=;EGR° | OWNER=N/A i
. | OWNER=TDR, PT = PT_EPT et e i PT=PTN i
PT = PT_TR! BEPOCH set T i OWNER=N/A
| PT=PT_NDA
LIf non-blocking resize is supported PAMT 1GB Block e —— :

2If non-blocking resize is not supported

Figure 9.11: Typical State before Calling TDH.MEM.PAGE.DEMOTE on a 1GB Page
At a high level, TDH.MEM.PAGE.DEMOTE works as follows:

1. Check the TLB tracking condition for the large page.
5 2. Check that the physical page for the new EPT or EPD is either marked as free in the PAMT, or if the TDX Module
supports non-blocking mapping resize, it is marked as PT_TR and its TLB tracking conditions are met.

If all checks pass, TDH.MEM.PAGE.DEMOTE does the following:
3. Mark the PAMT_2M or PAMT_1G entry of the large (2MB or 1GB respectively) page as PT_NDA.

4. Markall the PAMT_4K or PAMT_2M entries of the small (4KB or 2MB respectively) consecutive leaf pages as PT_REG.
10 5. On platforms using ACT-protected memory, mark the new SEPT page’s ACT bit(s) as private.
6. |Initialize the new SEPT page with 512 EPT entries pointing to the 512 consecutive leaf pages.
7. Mark the new SEPT page’s PAMT entry as PT_EPT.
8. Set the parent EPT entry to point to the new EPT or EPD page.
Figure 9.12 below shows the typical state of a 1GB GPA range after TDH.MEM.PAGE.DEMOTE.
New EPD Page 512 Consecutive 2MB TD Private Pages
EPDPT PA=X || 1GBRange i | 2mB D Private
MAPPED | @ PAX ; Page
H]] @ PAX 2MB TD Private
E E Page
NE_MARRED ; i @ PAX +511*2M
PA=X+511*2M i i
NL_MAPPED]
PAMT_4K Entry PAMT_4K Entry PAMT_1G Entry 512 Consecutive PAMT_2M Entries
OWNER =TDR, OWNER =TDR, OWNER = N/A OWNER =TDR,
PT = PT_EPT PT = PT_EPT PT = PT_NODE PT =PT_R|
OWNER =TDR,
PT = PT_REG
PAMT 1GB Block
15

Figure 9.12: Typical State of a 1GB TD Private Range after TDH.MEM.PAGE.DEMOTE

Section 2: Intel TDX Module Architecture Specification

September 2025 . Page 100 of 196

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

TDH.MEM.PAGE.DEMOTE supports the demotion of PENDING pages.
Refer also to the software flow described in 3.3.1.4.

Dynamic PAMT: If the TDX Module is configured for Dynamic PAMT, a new PAMT page pair is required
if the page is demoted into 512 4K pages. In addition, adding the new SEPT page HPAs
also need be mapped by PAMT pages. Those PAMT pages may be added on-demand,
based on a status code returned by TDH.MEM.PAGE.DEMOTE. See 8.3.4.2 and the [ABI
Spec] for details.

9.14. Relocating TD Private Pages: TDH.MEM.PAGE.RELOCATE

The host VMM can relocate a 4KB TD private page to another HPA using TDH.MEM.PAGE.RELOCATE. This is useful for,
e.g., physical address space de-fragmentation.

If the guest TD’s OP_STATE is such that the TD may be running, the host VMM should first perform the TLB tracking
protocol on the page. The host VMM should first call TDH.MEM.RANGE.BLOCK on the page. TDH.MEM.RANGE.BLOCK
marks the parent EPT entry for that page as BLOCKED (if it was MAPPED) or PENDING_BLOCKED (if it was PENDING) and
records the TD epoch in the PAMT entry of the page.

TDX Connect: If the guest TD has been configured with TDX Connect enabled, TDH.MEM.RANGE.BLOCK on a MAPPED
page is only allowed if no TDls are attached.

Dynamic PAMT: If the TDX Module is configured for Dynamic PAMT, relocating to a new 4KB physical page requires that
the new page HPA will be mapped by PAMT pages. The PAMT pages may be added on-demand, based
on a status code returned by TDH.MEM.PAGE.RELOCATE. In addition, TDH.MEM.PAGE.RELOCATE
returns a hint indicating whether the PAMT pages mapping the old 4KB physical page can be removed.
See 8.3.4.2 and the [ABI Spec] for details.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active
address translation to target page.

The actual relocation is done by TDH.MEM.PAGE.RELOCATE which has the following inputs:

e The page GPA
e The target HPA to which the page will be relocated

At a high level, TDH.MEM.PAGE.RELOCATE works as follows:

1. Check the TD keys are configured.

2. Check the TD has been initialized.

3. Check the target physical page is marked as free in the PAMT.

4. Perform a Secure EPT walk to locate the parent Secure EPT leaf entry that maps the TD private page. Check that the
entry has been blocked and get the current HPA.

5. If TLB tracking is required, check the TLB tracking condition for the page.

If all checks pass, TDH.MEM.PAGE.RELOCATE does the following:

6. On platforms using ACT-protected memory, mark the target private page’s ACT bit as private.

7. Copy the current physical page to the target physical page using direct writes (MOVDIR64B).

8. Reclaim the old physical page as described in 8.6.5.

9. Mark the PAMT entry of the target page as PT_REG.

10. Update the Secure EPT entry with the new physical page HPA. Set its state to MAPPED or PENDING depending on
whether its previous state was BLOCKED or PENDING_BLOCKED, respectively.

Non-ACT Platforms: The host VMM should initialize the old physical page’s content before it is reused as a non-private
page, as described in 8.6.2.

9.15. Removing TD Private Pages: TDH.MEM.PAGE.REMOVE

The host VMM can remove TD private pages using TDH.MEM.PAGE.REMOVE, freeing them for any use. 4KB, 2MB and
1MB pages can be removed — no demotion is required for large pages.

If the guest TD’s OP_STATE is such that the TD may be running, the host VMM should first perform the TLB tracking
protocol on the page. The host VMM should first call TDH.MEM.RANGE.BLOCK on the target page.

September 2025 . Page 101 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

TDH.MEM.RANGE.BLOCK marks the parent Secure EPT entry for that page as BLOCKED (if it was MAPPED) or
PENDING_BLOCKED (if it was PENDING) and records the TD epoch in the PAMT entry of the page.

Dynamic PAMT: If the TDX Module is configured for Dynamic PAMT and the removed page size is 4KB,
TDH.MEM.PAGE.REMOVE returns a hint indicating whether the PAMT page pair mapping the removed
page can be removed. For details, see the [ABI Spec].

TDX Connect: If the guest TD has been configured with TDX Connect enabled, TDH.MEM.RANGE.BLOCK on a MAPPED
page is only allowed if no TDIs are attached. If any TDI is attached, the guest TD should first release the
page, by calling TDG.MEM.PAGE.RELEASE as explained in 9.12 above, before the page is blocked and
removed by the host VMM.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active
address translation to target page.

The actual removal is done by TDH.MEM.PAGE.REMOVE which has the following inputs:

e The page GPA
e The page level (4KB, 2MB or 1GB)

At a high level, TDH.MEM.PAGE.REMOVE works as follows:

1. [If TLB tracking is required, check the TLB tracking condition for the page.
2. Check that the mapping size of the page fits the input parameter.

If all checks pass, TDH.MEM.PAGE.REMOVE does the following:

3. Mark the Secure EPT entry for the target page as FREE.
4. Reclaim the physical page as described in 8.6.5.
4.1. On platforms using ACT-protected memory, this is a long operation which may be interrupted. If interrupted,
update the SEPT entry’s state to REMOVE_IN_PROGRESS. In this state the physical page is still associated with
the GPA, but it’s not accessible by the guest.

Non-ACT Platforms: The host VMM should initialize the physical page’s content before it is reused as a non-private
page, as described in 8.6.2.

Refer also to the software flow described in 3.3.1.2.
9.16. Removing a Secure EPT Page: TDH.MEM.SEPT.REMOVE

The host VMM can remove a Secure EPT page using TDH.MEM.SEPT.REMOVE, freeing it for any use, provided all its
entries are FREE.

If the guest TD’s OP_STATE is such that the TD may be running, the host VMM should first perform the TLB tracking
protocol on the GPA range mapped by the Secure EPT page. The host VMM should first call TDH.MEM.RANGE.BLOCK.
TDH.MEM.RANGE.BLOCK marks the parent EPT entry for that page as BLOCKED and records the TD epoch in the PAMT
entry of the page.

Dynamic PAMT: If the TDX Module is configured for Dynamic PAMT, TDH.MEM.PAGE.REMOVE returns a hint indicating
whether the PAMT pages mapping the removed SEPT pages can be removed. For details, see the [ABI
Spec].

TDX Connect: If the guest TD has been configured with TDX Connect enabled, TDH.MEM.RANGE.BLOCK on the GPA
range is allowed only if either no TDIs are attached or if all 512 entries of the applicable Secure EPT
page are free (PT_NDA). Note that the second condition is required in any case for the subsequent
TDH.MEM.SEPT.REMOVE, as described below.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPls. After that, there should be no active
address translation to GPA range represented by the Secure EPT page to be removed.

The actual removal is done by TDH.MEM.SEPT.REMOVE which has the following inputs:

e The Secure EPT page GPA
e The Secure EPT level

At a high level, TDH.MEM.SEPT.REMOVE works as follows:

1. [If TLB tracking is required, check the TLB tracking condition for the page.
2. Check that the mapping size of the page fits the input parameter.

September 2025 . Page 102 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

3. Check that all 512 entries of the Secure EPT page are PT_NDA.
If all checks pass, TDH.MEM.SEPT.REMOVE does the following:

4. Reclaim the physical page as described in 8.6.5.
5. Mark the Secure EPT entry for the Secure EPT page as FREE.

Non-ACT Platforms: The host VMM should initialize the physical page’s content before it is reused as a non-private
page, as described in 8.6.2.

9.17. Unblocking a GPA Range: TDH.MEM.RANGE.UNBLOCK

The host VMM can unblock previously blocked TD private GPA ranges using TDH.MEM.RANGE.UNBLOCK, returning them
to their original state. 4KB, 2MB, 1GB, 512GB or 256TB GPA ranges can be unblocked.

The host VMM should first complete the TLB tracking protocol on the GPA range. It typically calls TDH.MEM.TRACK and
performs a round of IPls. After that, there should be no active address translation to target page.

The actual unblocking is done by TDH.MEM.RANGE.UNBLOCK which has the following inputs:

e The GPA
e The GPA range level (4KB, 2MB, 512GB or 256TB)

At a high level, TDH.MEM.RANGE.UNBLOCK works as follows:

1. Check the TLB tracking condition for the GPA range.
2. Check that the mapping size of the GPA range fits the input parameter.

If all checks pass, TDH.MEM.RANGE.UNBLOCK does the following:
3. Mark the EPT entry for the target GPA as MAPPED (if it was BLOCKED) or PENDING (if it was PENDING_BLOCKED).

Refer also to the software flow described in 3.3.1.5.

September 2025 . Page 103 of 196

Section 2: Intel TDX Module Architecture Specification

5 Note: Additional transitions that are applicable to partitioned TDs are discussed in the [TD Partitioning Spec].
Legacy VMX }
= > SEAM Mode >

(non-SEAM) Mode | T
|
! TDX Non-Root Mode v
! : VCPU B
| (Logical) s
\
\ | | , °
} I 000 | Trap-Like ge!
| Instruction ~ — VM Exit '
} VM Entry—> Next Instruction =r_ 1+ | ike
} / I o I VM Exit

I I
| .
|
|
s
____________________ e e \\ /
\
TDX Root Mode | VMLAUNCH/ VM Exit
(Logical) | LP-Scope VMRESUME Entry Point

| State (incl.
| SEAM VMCS) Restore TD State j A
| o (SfflomtTg\g;sR) L1 VM Exit
[TDH.VP.ENTER electe Handler
} (after XMM)
\
|
|
|
|
|

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

10.TD VCPU

This chapter discusses multiple items related to TD VCPUs.
10.1. VCPU Transitions

This section describes transitions between running in the host VMM, TDX Module and guest TD VCPU.

TDG.VP.VMCALL) /
J Normal TDG.VP.VMCALL

SEAMCALL Restore all _/ Async

TDH.VP.ENTER TD Exit

Entry » TD State

|

Point _\(Normal) from TDVPS
Other

| v
| °c '/ | ; Save TD State to
SEAMCALL | Host-Side TDVPS TDVPS and Init Save all TD State
Next Instruction | API Function (incl. (Selected GPR/ to TDVPS & Init
| eee ,\ | TD VM(CS) XMM)
| | |
\
\

A AL

\ SEAMRET //

Host VMM

10

15

|
; Intel TDX Module
|

Figure 10.1: TD VCPU Transitions Overview

10.1.1. |Initial TD Entry, Asynchronous TD Exit and Subsequent TD Entry

On the initial TD entry to a TD VCPU, the TDX Module restores the initial TD VCPU state from TDVPS (including TD VMCS).

Following a successful TDH.VP.ENTER, asynchronous TD exit may happen as a result of events such as interrupts, EPT
violations etc. In such case, the TDX Module saves the TD VCPU state into TDVPS (including TD VMCS). Most of the host
VMM VCPU state that may have been used by the TD is initialized. For a detailed description of VMM state following
TDH.VP.ENTER, see the [TDX Module ABI Spec].

On the subsequent TD entry following an asynchronous TD exit, the TDX Module restores the TD VCPU state from TDVPS
(including TD VMCS). The host VMM does not impact the VCPU state except in one case: a trap-like asynchronous TD
exit from a guest-side interface function may indicate that the host VMM can apply a recoverability hint in the following
TD entry. In this case, the host VMM provides a recoverability hist to the guest TD, which is combined into the guest-side
interface function’s completion status returned in RAX.

September 2025 . Page 104 of 196

VMX Root Mode————»'«—VMX Non

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

TD VCPU
VM VM
exit entry
1. Examine exit reason, decide 1. Save selected host VMM CPU
on async TD exit state
TDX 2. Save non-VMCS CPU state in 2. Associate VCPU
Module TDVPS 3. Restore non-VMCS CPU state
3. Init or restore host VMM from TDVPS
CPU state 4. VMLAUNCH/VMRESUME

SEAMRET

10.1.2. Synchronous TD Exit and Subsequent TD Entry

Figure 10.2: Example of Asynchronous TD Exit and TD Resumption

5 TDG.VP.VMCALL provides a channel for the guest TD to communicate with the host VMM.

The guest TD can initiate a synchronous TD exit by invoking TDG.VP.VMCALL. The RCX input parameter selects the GPRs
(from RBX, RDX, RBP, RDI, RSl and R8 through R15) and XMM registers whose value is passed through to the host VMM
as the output of TDH.VP.ENTER. RCX itself is passed as-is to the output of TDH.VP.ENTER. Other CPU state components,
including GPRs and XMM registers not selected by RCX, are saved in TDVPS and set to fixed values.

10 On the subsequent TDH.VP.ENTER, the RCX value that was used for TDG.VP.VMCALL selects the GPRs (from RBX, RDX,
RBP, RDI, RSl and R8 through R15) and XMM registers whose value is passed through to the guest TD. Other CPU state
components, including GPRs and XMM registers not selected by RCX, are restored from RCX.

For details, see the TDH.VP.ENTER and TDG.VP.VMCALL definitions in the [TDX Module ABI Spec].

Prepare a Handle VMM
TD VCPU Request TDG.VP.VMCALL
VM
4) exit
1. Examine exit reason, decide 1. Save selected host VMM CPU
on synchronous TD exit state
TDX 2. Save non-VMCS CPU state in 2. Associate VCPU
Module TDVPS, pass through 3. Restore non-VMCS CPU state
selected GPRs and XMMs from TDVPS, pass through
3. Init or restore host VMM selected GPRs and XMMs
CPU state 4. VMLAUNCH/VMRESUME
SEAMRET

15
Figure 10.3: Example of Synchronous TD Exit and TD Resumption

10.1.3. VCPU Activity State Machine

The VCPU activity state machine, controlled by TDVPS.VCPU_STATE as shown in Table 10.1 below and shown in Figure
10.4 below, helps ensure the following:

20 e A VCPU can be entered only when its logical TDVPS control structure, composed of TDVPR and TDCX pages, is
available in memory and has been initialized by TDH.VP.INIT or successfully imported by TDH.IMPORT.STATE.VP.
e A VCPU can be entered only if its state is consistent (no non-recoverable TD exit happened).
e TD entry is done properly, depending on whether it is the first entry or on the last TD exit type.

September 2025 . Page 105 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Table 10.1: TDVPS.VCPU_STATE Definition

State Name Description

VCPU_UNINITIALIZED VCPU has not been initialized yet by TDH.VP.INIT.
VCPU_IMPORT The VCPU state has been incompletely imported.
VCPU_READY The VCPU is ready to be executed.

VCPU_ACTIVE VCPU is active (logical TDX non-root mode) on some LP.

For a partitioned TD, a VCPU is considered active regardless of
whether it executes in the L1 VM or one of the L2 VMs. For details,
see the [TD Partitioning Spec].

VCPU_DISABLED VCPU is being torn down.

TD Entry and TD Exit transitions normally toggle between the VCPU_READY state and the VCPU_ACTIVE state, except
when a non-recoverable VCPU TD Exit (due to a Triple Fault) transitions to a VCPU_DISABLED state.

Partitioned TD:
L1>L2 VM Entry,
L2>L1 VM Exit

TDH.VP.CREATE

(VCPU_READY

TD VCPU has not been TD VCPU may be entered TDH.VP.ENTER TD VCPU running on an LP
initialized
TDH.VP.ADDCX TDH.VP.INIT
TD Exit:
A
TD Exit
TDH.IMPORT.STATE.VP TDH.IMPORT.STATE.VP Xi
[interrupted] [VCPU_DISABLED] [non-recoverable
P | VCPU state]
TD VCPU is being imported TD VCPU is disabled
TDH.IMPORT.STATE.VP

[success]

5
Figure 10.4: VCPU Activity State Machine
LAST_TD_EXIT
In the VCPU_READY and VCPU_IMPORT states, a LAST_TD_EXIT sub-state indicates what was the last TD exit and how a
subsequent TD entry should be done.
10 Table 10.2: TDVPS.LAST_TD_EXIT Definition

Name Description

ASYNC_FAULT | The last TD exit was due to an asynchronous event (non-TDG.VP.VMCALL) which caused a
fault-like exit, i.e., the VCPU state is as if the guest instruction has not been executed. VCPU
state has been fully saved on TD exit and will be restored on the next TD entry.

ASYNC_TRAP The last TD exit was due to an asynchronous event that happened as part of a guest-side
interface function (non-TDG.VP.VMCALL) which caused a trap-like exit, i.e., the VCPU state
is as if the guest instruction has been executed. VCPU state has been fully saved on TD exit
and will be restored on the next TD entry. On the next TD entry, the host VMM provides the
guest with a recoverability hint.

September 2025 . Page 106 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Name Description

TDVMCALL The last TD exit was due to a TDG.VP.VMCALL. On the next TD entry, most GPR and all XMM
state will be forwarded to the guest TD from the host VMM.

CURR_VM

For a partitioned TD, CURR_VM indicates the current VM index for the VCPU. For details, see the [TD Partitioning Spec].
10.2. TD VCPU TLB Address Space Identifier (ASID)

Non-root mode cached address translations are tagged with unique Address Space Identifiers (ASIDs). The goal of TD
ASIDs is to reduce the need to flush TLB entries on TD Entry and TD Exit due to the associated performance costs as a
result of the flushing.

10.2.1. TD ASID Components

Table 10.3 below shows a high-level view of the components of the TD ASID. The exact structure is micro-architectural.

Table 10.3: TD ASID

Field Size Description and TDX Usage
(Bits)
SEAM 1 This is an implicit bit 16 of VPID not directly visible to software. It is set to 1 by the

CPU in SEAM mode. This bit prevents overlapping with legacy (non-TDX) ASIDs.

VPID 16 The TDX Module assigns a platform unique VPID for each TD.

If a TD is partitioned, the TDX Module assigns a platform unique VPID for each VM in
that TD. See the [TD Partitioning Spec] for details.

EPTP 40 Bits [51:12] of the EPTP, which for a TD points to the Secure EPT root — HKID bits are
cleared to 0

Note that EPTP is unique per TD and is used as an ASID component for both Secure
EPT and Shared EPT translations caching.

PCID 16 Same as legacy PCID

Note: All VCPUs of the same TD share the same ASID. Consequently, whenever TDH.VP.ENTER is invoked on a certain
LP, with a VCPU that is different than the last one that executed on that LP, the TDX Module flushes cached TLB
translations for the TD, using INVEPT.

10.2.2. INVEPT by the Host VMM for Managing the Shared EPT

The same ASID based on the TD’s EPTP is used for caching both secure and shared EPT translations (remember: EPTP is
the HPA of the secure EPT root page). Thus, to flush shared EPT translations, the host VMM uses INVEPT specifying the
TD’s EPTP, not its Shared EPTP. The host VMM can obtain the value of EPTP from the TD VMCSs using TDH.VP.RD.

If a TD is partitioned, then to flush shared EPT translations for each L2 VM, the host VMM uses INVEPT specifying that L2
VM'’s EPTP, not its Shared EPTP. The host VMM can obtain the value of EPTP from the L2 VMCSes using TDH.VP.RD.

An alternative method the host VMM may use is to do TLB tracking similar to how it’s done for Secure EPT, i.e., execute
TDH.MEM.TRACK and a round of IPI. Contrary to Secure EPT, this is not enforced by the TDX Module.

September 2025 . Page 107 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

10.3. VCPU-to-LP Association

10.3.1. Non-Coherent Caching

Some TD VCPU states are non-coherently cached. This includes:

e Address translations (TLB/PxE entries) must be explicitly flushed in case they may be stale.

5 e TDVMCS is cached by the CPU. VMX architecture requires making a VMCS current by VMPTRLD before using it with
most VMX instructions, and then explicitly writing it to memory and making it non-current by VMCLEAR before the
VMCS memory image can be handled (e.g., by making it current on another LP).
This non-coherent caching implies that some explicit and/or implicit operations are done to help guarantee correctness.
This is described in the following sections.
10 10.3.2. Intel TDX Functions for VCPU-LP Association and Dis-Association
TDH.VP.CREATE
TDH.VP.ENTER TDH.VP.ENTER
on LP1 TDH.VP.INIT TDH.VP.INIT on LP2
N on LP1 . on LP2
e LP1's current/working e VCPUXx VMCS is not LP2's current/working
VMCS is VCPU x VMCS current/working VMCS VMCS is VCPU x VMCS
e Cached address TDH.VP.ENTER on any LP TDH.VP.ENTER e Cached address
translations & paging onLP1 e No VCPU x cached on LP2 translations & paging
structures may exist Any other address translations & Any other structures may exist
e TD's HKID may not be VCPU-specific paging structures on VCPU-specific TD's HKID may not be
Any other | freed interface function any LP interface function freed) Any other
VCPU-specific 7'y on LP1 7'y 7 on LP2 7y VCPU-specific
interface function interface function
onLP1 on LP2
— L TDH.VP.FLUSH———— L TDH.VP.FLUSH———— L

15

20

25

Figure 10.5: VCPU Association State Machine
The following Intel TDX Module mechanisms are designed to help ensure correct and secure operation:

e TD VCPU to LP association is many-to-one. A TD VCPU can be associated with at most one LP at any given time. An
LP may be associated with multiple VCPUs.

e VCPU to LP association is implicitly done by any VCPU-specific SEAMCALL flow, including TDH.VP.ENTER. Those flows
check that the VCPU is either already associated with the current LP or is not associated with any LP.

e Ifthe host VMM wishes to associate a VCPU with another LP, it must explicitly flush the VCPU state on the LP currently
associated with it using TDH.VP.FLUSH. This function flushes TLB for the TD ASID and extended paging structure
(EPXE) caches using INVEPT. It flushes the VMCS cache using VMCLEAR. For details, see the [TDX Module ABI Spec].

e If the VMM wishes to reclaim the TD’s private HKID, thus making the TDVPS memory inaccessible, it must explicitly
flush the VCPU state on the LP currently associated with it. This is described in 5.5.

10.3.3. Performance Considerations

e Migrating VCPUs between LPs is costly. As described above, it involves flushing address translation caches, paging
structure caches and VMCS cache. The host VMM should minimize that for best performance.

e Address translation and paging structure caches are flushed at TD-scope on the current LP. This flushing impacts the
(possibly non-typical) case where multiple VCPUs of the same TD are associated with a single LP.

September 2025 . Page 108 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

11.CPU Virtualization (Non-Root Mode Operation)

This chapter describes how the Intel TDX Module virtualizes the CPU to a guest TD.
11.1. Overview: Virtualization vs. Paravirtualization of CPU Features and #VE

This section provides an overview of #VE and paravirtualization. The mechanics of #VE are described in 11.14.

11.1.1. Architectural x86 Virtualization

In most cases, TDX is designed to emulate the x86 architectural behavior of the CPU. Many CPU features are configurable
by the host VMM as either available (if the CPU actually supports them) or unavailable. That configuration is reflected
to the guest TD by values returned by the CPUID and RDMSR instructions, and the emulated CPU behavior is designed to
reflect the architectural CPU behavior — e.g., inject a #GP(0) exception on WRMSR of an MSR that is enumerated by the
virtual CPUID values as non-existent.

11.1.2. Paravirtualization and #VE

In many cases, TDX can’t emulate some x86 functionality. In such cases, the guest TD may implement that functionality
using paravirtualization, possibly in cooperation with the host VMM. To do that, the guest TD is required to implement
a paravirtualization agent as part of a #VE exception handler. On execution of, e.g., an instruction that can’t be emulated
by the TDX Module, a #VE exception is injected to the guest TD. The #VE paravirtualization agent may request information
from the host VMM (noting that this information is untrusted) and/or emulate the desired behavior.

If the TDX Module supports #VE reduction, then the guest TD may configure CPU virtualization to greatly reduce the
number of cases where #VE is injected and needs to be handled by the TD’s #VE handler. The guest TD can control this,
if desired, for each of multiple CPU features. For details, see 11.2.2 and the [ABI Spec].

11.1.3. #VE for x86 Behavior not Supported by TDX

TDX imposes some restrictions that are not x86-architectural. In such cases, if the guest TD attempts to use a restricted
feature, there is no architectural way (such as #GP(0)) to notify it, thus #VE is injected. This typically indicates a guest TD
misbehavior.

For example, a TD is not allowed to run in 32-bit protected mode with paging. When a guest TD attempts to set CRO.PE
or IA32_EFER.LME to 0, the TDX Module injects a #VE.

11.1.4. #VE for TDX-Specific Behavior

HVE is also used by the TDX Module to alert the guest TD to some TDX-specific cases, such as an access attempt to a
PENDING page. See 9.10.4 for details.

11.2. CPU Virtualization Configuration and Control

11.2.1. Host VMM Configuration of CPU Virtualization

The host VMM configures CPU virtualization at TD initialization time (TDH.MNG.INIT). The table below shows the
configurable parameters. For details, see the [ABI Spec] definition of TDH.MNG.INIT and TD_PARAMS.

Table 11.1: Host Configuration of CPU Virtualization

Name Description Included in the
TD’s Attestation

ATTRIBUTES TD attributes: a bitmap of configurable TD attributes Yes

XFAM Extended Features Available Mask: indicates the extended state Yes
features allowed for the TD. See 11.8 for details of extended
features virtualization.

Non-Attested A set of TD configuration parameters No
Configuration

September 2025 . Page 109 of 196

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Name Description Included in the
TD’s Attestation

MSR Configuration Configuration of specific MSRs’ virtual values No

CPUID Configuration Direct configuration of CPUID leaves/sub-leaves virtualization. See | No
11.11 for a discussion of CPUID virtualization.

11.2.2. Guest TD Control of CPU Virtualization

The guest TD can control some aspects of CPU virtualization, by setting bits in the TDCS.TD_CTLS field using TDG.VM.WR.
The table below lists the configurable virtualization features. In some cases, this overrides the host VMM'’s configuration
done at TD initialization time. Availability of each control bit depends on the features supported by the TDX Module. For
more details, see the definition of TDCS.TD_CTLS in the [ABI Spec].

Table 11.2: Guest TD Control of CPU Virtualization

Name Description

PENDING_VE_DISABLE | Controls the way guest TD access to a PENDING page is processed

ENUM_TOPOLOGY Controls the enumeration of virtual platform topology
VIRT_CPUID2 Controls the virtualization of CPUID(2)
REDUCE_VE Allows the guest TD to control the way #VE is injected by the TDX Module on guest

TD execution of CPUID, RDMSR/WRMSR and other instructions

LOCK Controls locking of TD-writable virtualization controls

If the TDX Module supports #VE reduction, the guest TD can individually control the virtualization of some CPU features,
by setting bits in the TDCS.FEATURE_PARAVIRT_CTRL field using TDG.VM.WR. The guest TD can configure each feature
to be emulated as non-supported, or as supported by a paravirtualization agent implemented by the TD (as part of its
#VE handler). The table below lists the configurable CPU features. For more details, see the definition of
TDCS.FEATURE_PARAVIRT_CTRL in the [ABI Spec].

Table 11.3: Configurable Paravirtualized CPU Feature

Paravirtualized Feature Name & Description
Applicable Linux Kernel Feature Name

CORE_CAPABILITIES Controls IA32_CORE_CAPABILITIES paravirtualization, enumerated by

(X86_FEATURE_CORE_CAPABILITIES) virtual CPUID(7,0).EDX[30] (support IA32_CORE_CAPABILITIES)

DCA Controls Direct Cache Access paravirtualization, enumerated by virtual

(X86_FEATURE_DCA) CPUID(1).ECX[18] (DCA)

EST Controls Enhanced Intel SpeedStep technology paravirtualization,
enumerated by Virtual CPUID(1).ECX[7] (Enhanced Intel SpeedStep

(X86_FEATURE_EST)
technology)

MCA Controls Machine Check Architecture paravirtualization, enumerated
by virtual CPUID(1).EDX[7] (Machine Check Exception) and virtual

(X86_FEATURE_MCA) CPUID(1).EDX[14] (Machine Check Architecture)

MTRR Controls Memory Type Range Registers paravirtualization, enumerated

(X86_FEATURE_MTRR) by virtual CPUID(1).EDX[12] (Memory Type Range Registers)

PCONFIG Controls PCONFIG paravirtualization, enumerated by virtual
(X86_FEATURE_PCONFIG) CPUID(7,0).EDX[18] (PCONFIG)

September 2025 . Page 110 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Paravirtualized Feature Name & Description
Applicable Linux Kernel Feature Name

RDT_A Controls RDT-A paravirtualization, enumerated by virtual
(X86_FEATURE_RDT_A) CPUID(7,0).EBX[15] (RDT-A)

RDT_M Controls RDT-M paravirtualization, enumerated by virtual
(X86_FEATURE_CQM) CPUID(7,0).EBX[12] (RDT-M)

ACPI Controls Thermal Monitor and Software Controlled Clock Facilities
(X86_FEATURE_ACPI) paravirtualization, enumerated by virtual CPUID(1).EDX[22] (ACPI)

™2 Controls MSR_THERM2_CTL paravirtualization, enumerated by virtual
(X86_FEATURE_TM2) CPUID(1).ECX[8] (TM2)

TME Controls Total Memory Encryption paravirtualization, enumerated by
(X86_FEATURE_TME) virtual CPUID(7,0).ECX[13] (TME_EN)

TSC_DEADLINE Controls IA32_TSC_DEADLINE MSR paravirtualization, enumerated by
(X86_FEATURE_TSC_DEADLINE_TIMER) virtual CPUID(1).ECX[24] (TSC deadline)

The guest TD can also control CPUID virtualization for each VCPU and CPUID leaf/sub-leaf. For details, see 11.11.2.
11.3. Initial Virtual CPU State

Intel SDM, Vol. 3, 10.1.1 Processor State after Reset
11.3.1. Overview

As designed, most of the TD VCPU initial state is the same as the processor architectural state after INIT. However, there
are some differences:

e The TD VCPU starts its life in protected (32-bit) non-paged mode, not in real mode. It is allowed only to switch to
64b mode. This impacts the initial state of segment registers, CRs and MSRs. Mode restrictions in SEAM non-root
mode are described below.

e ThelA32_EFER MSR is initialized to support the CPU modes described below.

e The initial values of some GPRs provide some basic information to the guest TD as described in 11.3.2 below. This
information should be sufficient for the vBIOS to set up paging tables and switch as soon as possible to 64b mode,
where it can use the TDCALL leaf functions.

See also the TDVPS fields and TD VMCS guest state area in the [TDX Module ABI Spec].

11.3.2. |Initial State of Guest TD GPRs

As designed, the following initial state is different than the architectural INIT state:

Table 11.4: Initial Values of GPRs Different from their Architectural INIT Values

Register | Bits Initial Value

RBX 5:0 GPAW, the effective GPA width (in bits) for this TD (do not confuse with MAXPA) —
SHARED bit is at GPA bit GPAW-1

Only GPAW values 48 and 52 are possible.

63:6 Reserved: setto 0

RCX, R8 63:0 | The value of RCX and R8 is provided as an input to TDH.VP.INIT (the same value in both
GPRs). No checking is done on this value; the intention is for vBIOS to read RCX
immediately after the first TDH.VP.ENTER and use the RCX value appropriately as set by
software convention.

September 2025 . Page 111 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Register | Bits Initial Value

RDX 31:0 | Set to the virtualized Family/Model/Stepping returned by CPUID(1).EAX. The value is
calculated by TDH.SYS.INIT as to have the minimum Stepping ID across all packages.

63:32 | Reserved: setto 0

RSI 31:0 | Virtual CPU index, starting from 0 and allocated sequentially on each successful
TDH.VP.INIT

63:32 | Reserved: setto 0

RIP 63:0 Set to OxFFFFFFFO (i.e., 4GB - 16B)

11.3.3. |Initial State of CRs

As designed, the following initial state is different than the architectural INIT state:

e Virtual CRO is initialized to 0x0021 — bits PE (0) and NE (5) are set to 1, and all other bits are cleared to 0. See 11.9.1
for details.
e Virtual CR4 is initialized to 0x0040 — bits MCE (6) is set to 1, and all other bits are cleared to 0.

11.3.4. |Initial State of Segment Registers

As designed, the following initial state is different than the architectural INIT state:

e (S, DS, ES, FS, GS and SS are initialized with a base of 0 and limit of OXFFFFFFFF.
e LDTR, TR and GDTR are initialized with a base of 0 and limit of OxFFFF.
e IDTRis initialized as invalid (limit of 0).

For details, see the [TDX Module ABI Spec].

11.3.5. |Initial State of MSRs

As designed, the following initial state is different than the architectural INIT state:

e |A32_EFER is initialized to 0x901 — SCE (bit 0), LME (bit 8) and NXE (bit 11) are set to 1, and all other bits are
cleared to 0.

11.4. Guest TD Run Time Environment Enumeration

Guest software can be designed to run either as a TD, as a legacy virtual machine, or directly on the CPU, based on
enumeration of its run-time environment. Figure 11.1 below shows a typical flow used by guest software.

September 2025 . Page 112 of 196

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

CPUID(0)

Non-Intel |«

<

CPUID(1)

Y
Not Para- | 0
Virtualized
1

CPUID(0).EAX >= 0x21

A 4

CPUID(0x21, 0x0)

Vendor ID ==
“IntelTDX " ?

TDCALL(TDG.VP.INFO)
TDCALL(TDG.SYS.RD*)
TDCALL(TDG.VM.RD*)
TDCALL(TDG.VP.RD*)

Legend

Legacy

[]
[1]

TDX

Get vendor ID (EBX:EDX:ECX)
and max sub-leaf (EAX)

A 4

Not Intel TDX

Figure 11.1: Typical Run-Time Environment Enumeration by a Guest TD

CPUID leaf 0x21 emulation is done by the Intel TDX Module. Sub-leaf O returns the values shown below. Other sub-
leaves return 0 in EAX/EBX/ECX/EDX.

Table 11.5: TDX Enumeration by CPUID(0x21,0)

GPR | Value (Hex) Description

EAX | 0x00000000 Maximum sub-leaf number
EBX | Ox65746E49 “Inte”

ECX | 0x20202020 « «

EDX 0x5844546C “1TDX”

Once the guest software discovers that it runs as a TD, it can use TDG.VP.INFO to get basic information. It can also use
the metadata read functions TDG.SYS.RD*, TDG.VM.RD* and TDG.VP.RD*.

11.5.

Uniform VM Virtualization on a Hybrid SOC

Hybrid SOCs contain more than one core type. Some CPU features may be different between core types. However, guest
TDs are always virtualized as uniform VMs; all VCPUs have the same virtual CPU behavior.

The CPU features available to a guest TD will be, at maximum, the subset of features that are available across all cores
on the platform. Main impact is on Perfmon virtualization; for details, see 15.2. Other details are discussed in the

following sections.

September 2025

Page 113 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Common
features

E-core
features

P-core
features

Features
available

Features
enabled for TD
by host VMM

Figure 11.2: Virtualizing a Hybrid SOC as a Uniform TD VM

11.6. CPU Mode Restrictions

11.7.1.1.

Intel SDM, Vol. 3, 2.2 Modes of Operation
Intel SDM, Vol. 3, 9.8.5 Initializing 1A-32e Mode
Intel SDM, Vol. 3, 11.5.1 Cache Control Registers and Bits
Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4
A TD OS running in SEAM non-root mode is required to be a 64-bit OS. The Intel TDX Module helps enforce this with the
restrictions described below.
Table 11.6: CPU Mode Restrictions in SEAM Non-Root Mode
Restriction Description
CPU and Paging In SEAM non-root mode, the CPU is allowed to run in the following modes:
Modes e Protected mode (32-bit) with no paging (CRO.PG == 0)
e |A-32e mode with 4-level or 5-level paging (CRO.PG == 1), with the sub-modes
controlled by CS.L:
o 64-bit mode
o Compatibility (32-bit) mode
To achieve this, CRO.PE and IA32_EFER.LME are enforced to 1, as described in the
following sections.
Execute Disable When running in IA-32e mode, the PT Execute Disable bit (63) is always enabled.
To achieve this, IA32_EFER.NXE is enforced to 1, as described in the following sections.
Caching is Always The guest TD runs in Normal Cache Mode.
Enabled To achieve this, CR0.CD and CRO.NW are enforced to 0, as described in the following
sections.
11.7. Instructions Restrictions
The Intel TDX Module is designed to block certain instructions from executing in TDX non-root mode. Execution of those
instructions results in a VM exit to the Intel TDX Module, which then injects an exception to the guest TD. This exception
can be #UD, a #GP(0) or, in case where no Intel64 architectural exception can be used, a #VE (described in 11.14).

11.7.1. Unconditionally Blocked Instructions

Instructions that Cause a #UD Unconditionally

e ENCLS, ENCLV

September 2025 . Page 114 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

11.7

11.7

e Most VMX instructions: [INVEPT, INVVPID, VMCLEAR, VMFUNC, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD,
VMRESUME, VMWRITE, VMXOFF, VMXON

e RSM

e GETSEC

e SEAMCALL, SEAMRET

Instructions that Cause a #VE Unconditionally to Allow Paravirtualization

Guest TD (L1) execution of the following instructions always results in a #/E(NON_CONFIG_PARAVIRT). A #VE handler is
expected to paravirtualize the instruction.

Table 11.7: Instructions that Cause a #VE Unconditionally

Instruction Details

String 1/0O (INS*, There is no standard x86 way to enumerate as unsupported. If used by any guest, then
OUTS*), IN, OUT paravirtualization is necessary.

HLT There is no standard x86 way to enumerate as unsupported. If used by any guest, then
paravirtualization is necessary.

WBINVD There is no standard x86 way to enumerate as unsupported. If used by any guest, then
paravirtualization is necessary.

WBNOINVD Availability of WBNOINVD is enumerated by virtual CPUID(0x80000008).EBX[9], which is
host configurable. However, TDX never allows WBNOINVD to be executed by guest TDs.
WBNOINVD causes #VE regardless of virtual CPUID(0x80000008).EBX[9], to allow
paravirtualization similar to WBINVD.

INVD There is no standard x86 way to enumerate as unsupported. If used by any guest, then
paravirtualization is necessary.

VMCALL There is no standard x86 way to enumerate as unsupported. If used by any guest, then
paravirtualization is necessary.

1.3,

Instructions that Cause a #UD or #VE Depending on Feature Enabling, to Allow Paravirtualization

4.4. PCONFIG (see 11.24)

Other Cases of Unconditionally Blocked Instructions

e Guest TD execution of ENQCMD results in a #GP(0).
e Guest TD execution of ENQCMDS when CPL is 0 results in a #UD. Otherwise, it results in a #GP(0).

11.7.2. Conditionally Blocked Instructions

Execution of some instructions may be conditionally blocked, depending on which CPU features are configured and
available for the TD, as described in the following sections.

11.7.3. Other Exception Cases
In many cases, instructions are not blocked but yet may cause exceptions due to other conditions. For example, the
following is a very partial list:

e CPUID may cause a #VE if the CPUID leaf and sub-leaf are not virtualized by the TDX Module.
e RDMSR and WRMSR may cause a #GP(0) if an MSR is virtualized as non-existent, or a #VE if an MSR is not virtualized.

September 2025 . Page 115 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

11.8. Extended Feature Set

Intel SDM, Vol. 1, 13 Managing State Using the XSAVE Feature Set
Intel SDM, Vol. 3, 13 System Programming for Instruction Set Extensions and Processor Extended State

11.8.1. Allowed Extended Features Control

At the guest TD scope, TDCS.XFAM (Extended Features Allowed Mask) is provided as an input during the guest TD build
process. XFAM is a 64b mask, using the state-component bitmap format used by extended state ISA (XSAVE, XRSTOR,
XCRO, IA32_XSS etc.), which specifies the set of extended features the TD is allowed to use.

XFAM is checked to be compliant with the set of extended features supported by the CPU, as enumerated by CPUID and
the allowed bit combinations, as shown in Table 11.9 below.

11.8.2. Extended State Isolation

The Intel TDX Module helps ensure that any guest TD extended state is saved and isolated from the host VMM across TD
exit and entry. It is the VMM'’s responsibility to save its own extended state across TD entry and exit.

e Before TDH.VP.ENTER, the host VMM should save (e.g., using XSAVES) any extended state that the guest TD VCPU is
allowed to use (per XFAM) and the host VMM expects to need after TDH.VP.ENTER is complete.

e The TDH.VP.ENTER function loads the extended state that the TD VCPU is allowed to use, per XFAM, from the VCPU’s
TDVPS. An exception to this is when TDH.VP.ENTER follows a previous TDG.VP.VMCALL —in the case TDH.VP.ENTER
does not load the XMM state (corresponding to XFAM bit 1) from TDVPS; it passes it directly from the host VMM.

e On an asynchronous TD exit, the Intel TDX Module saves the extended state that the TD VCPU was allowed to use,
per XFAM, to the VCPU’s TDVPS. It then clears the extended state.

e OnTDG.VP.VMCALL, the Intel TDX Module works similarly, but it selectively does not clear some of the XMM register
state (corresponding to XFAM bit 1). That XMM state is passed directly to the host VMM.

e On completion of TDH.VP.ENTER (following TD exit), the VMM may restore any extended state that it saved before
TDH.VP.ENTER.

11.8.3. Extended Features Execution Control

The Intel TDX Module is designed to prohibit the guest TD from using any extended feature not allowed by XFAM. Many
extended state features are controlled by XCRO and IA32_XSS MSR. Other features are controlled by CR4 or by specific
MSRs.

Table 11.8: XFAM Interaction with XCRO, IA32_XSS, CR4 and Other MSRs

Register Description

XCRO and On XSETBV, which attempts to write to XCRO, and on WRMSR of IA32_XSS, the TDX Module
I1A32_XSS MSR | emulates the architectural behavior of the CPU. The following cases cause a #GP(0):

e The new value is not natively valid for XCRO or IA32_XSS (it sets reserved bits, sets bits
for features not recognized by the Intel TDX Module, or uses invalid bit combinations).

e The new value has any bits set that are not allowed by XFAM.

CR4 On MOV to CR4, the guest TD attempts to set bits not allowed according to XFAM will cause
a #GP(0).
Other MSRs The guest TD attempts to write or read certain MSRs that are not enabled according to

XFAM can cause a #GP(0) or a #VE, as described below.

The following table describes how a guest TD executes each of the extended features.

September 2025 . Page 116 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Table 11.9: Extended Features Enumeration and Execution Control

Bits U/S | Feature Enumeration® XFAM | Description
Value
0 u FP Always available 1 Always enabled
1 u SSE Always available 1 Always enabled
2 u AVX CPUID(0xD, 0x0).EAX[2] Oor1 | Execution is directly controlled by XCRO.
CPUID(0x7, 0x0).EBX[2]
CPUID(0x7, 0x0).ECX[10:9]
CPUID(0x7, Ox1).EAX[5]
CPUID(0xD, 0x2).*
Specific AVX instructions
support is enumerated by
other CPUID bits.
4:3 U MPX CPUID(0xD, 0x0).EAX[4:3] 00 MPX is being deprecated.
CPUID(0x7, 0x0).EBX[14]
CPUID(0xD, 0x3).*
CPUID(0xD, 0x4).*
7:5 U AVX512 CPUID(0xD, 0x0).EAX[7:5] 000 or | Execution is directly controlled by XCRO. AVX512
CPUID(0x7, 0x0).EBX[31:30, | 111 may be enabled only if AVX is enabled —i.e.,
28:26, 21, 17:16] XFAM[7:5] may be set to 111 only when XFAM[2] is
CPUID(0x7, 0x0).ECX[14, setto 1.
12:11, 6, 1]
CPUID(0x7, 0x0).EDX[8]
CPUID(0x7, Ox1).EAX]5]
CPUID(0xD, 0x5).*
CPUID(0xD, 0x6).*
CPUID(0xD, 0x7).*
Specific AVX512 instructions
support is enumerated by
other CPUID bits.
8 S PT (RTIT) CPUID(0xD, Ox1).ECX[8] Oorl Execution is controlled by IA32_RTIT_CTL. If PTis
CPUID(0x7, 0x0).EBX[25] enabled by XFAM, the guest TD is allowed access to
" .
CPUID(0x14, *).* all IA32_RTIT_* MSRs. Otherwise, any access causes
#GP(0).
CPUID(0xD, 0x8).*
9 U PK CPUID(0xD, 0x0).EAX[9] Oor1l Execution is controlled by CR4.PKE (bit 22). If PK is
CPUID(0XD, 0x9).* disabled by XFAM, the guest TD is disallowed from
setting CR4.PKE. An attempt to set this bit causes a
#GP(0).
10 S ENQCMD | CPUID(0xD, 0x1).ECX[10] 0 Execution is controlled by IA32_PASID MSR.
(PASID) CPUID(0xD, OxA).* There is no direct I/O from guest TDs. ENQCMD and
ENQCMDS from the guest TD are not supported and
cause a #UD or #GP(0) (see 11.7.1.4). Access to
IA32_PASID causes a #GP(0).

5 An extended feature controlled by bits N:M is available if all bits in the range N:M returned by CPUID are set to 1.

September 2025

Page 117 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Bits U/S | Feature Enumeration® XFAM | Description
Value
12:11 | S CET CPUID(0xD, 0x1).ECX[12:11] 00 or Execution is controlled by CR4.CET (bit 23). If CET is
CPUID(OXD, OxB).* 11 disabled by XFAM, the guest TD is disallowed from
CPUID(0XD, 0xC).* setting CR4.CET. An attempt to set this bit causes a
#GP(0).
13 S HDC CPUID(0xD, 0x1).ECX[13] 0 Hardware Duty Cycle is controlled by package-scope
CPUlD(OXD, OXD)* |A32_PKG_H DC_CTL and LP-scope |A32_PM_CTL1
MSRs.
HDC is disabled. If the TDX Module supports #VE
reduction and the guest TD has set
TDCS.TD_CTLS.REDUCE_VE, guest TD access to the
above MSRs causes a #GP(0). Else, it causes
#VE(CONFIG_PARAVIRT).
14 S ULl CPUID(0xD, 0x1).ECX[14] Oor1l | Execution is controlled by CR4.UINTR (bit 25). If ULI
CPUID(0x7, 0x0).EDX[5] is disabled by XFAM, then the guest TD is not
CPUID(OXD, OXE).* allowed the following:
e Setting CR4.ULIl. An attempt to set this bit
causes a #GP(0).
e Accesstoall IA32_UINTR_* MSRs. Any access
causes a #GP(0).
15 S LBR CPUID(0xD, 0x1).ECX[15] Oor1 | Execution is controlled by IA32_LBR_CTL. If LBR is
CPUID(0x7, 0x0).EDX[19] disabled by XFAM, the guest TD is not allowed the
CPUID(OXD, OxF).* following:
*
CPUID(OX1C). * e Accesstoall IA32_LBR_* MSRs. Any access
causes a #GP(0).
e Setting EN_LBR_LOG (bit 35) in
IA32_PMC_GPn_CFG_A or IA32_PERFEVTSELX
MSRs. Setting this bit causes #GP(0).
16 S HWP CPUID(0xD, 0x1).ECX[16] 0 Execution of Hardware-Controlled Performance
CPUID(0XD, 0x10).* State is controlled by IA32_HWP MSRs.
This feature is disabled. If the TDX Module supports
#VE reduction and the guest TD has set
TDCS.TD_CTLS.REDUCE_VE, guest TD access to the
above MSRs causes a #GP(0). Else, it causes
#VE(CONFIG_PARAVIRT).
18:17 | U AMX CPUID(0xD, 0x0).EAX[18:17] 00 or Advanced Matrix Extensions (AMX) is directly
CPUID(0xD, 0x11).* 11 controlled by XCRO.
CPUID(0xD, 0x12).*
Specific AMX instructions
support is enumerated by
other CPUID bits.
19 u APX CPUID(0x7, 0x1).EDX[21] Oor1 | Execution is controlled by XCRO.APX (bit 19). If APX
CPUID(0xD,0).EAX[19] is disabled by XFAM, the guest TD is disallowed from
setting XCRO.APX. An attempt to set this bit causes a
#GP(0).
Other | N/JA | RESERVED | N/A 0 Reserved

September 2025

Page 118 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

11.8

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

11.8.4. AVX10.2 (Converged Vector ISA)

Converged Vector ISA (AVX10.2) is enumerated by CPUID(0x7, Ox1).EDX[19]. If the TDX Module supports AVX10.2, it
enumerates the virtual value of that CPUID bit as configurable. The host VMM can configure AVX10.2 support and
enumeration, as part of the CPUID configuration during TDH.MNG.INIT.

If the host VMM configures CPUID(0x7, 0x1).EDX[19] as 1, and the CPU supports AVX10.2, then the virtual value of
CPUID(0x7, 0x1).EDX[19] is 1:

e AVX10.2 is available to the guest TD.
e Virtual CPUID AVX10.2 leaf CPUID(0x24) is made available to the guest TD.

Vector-Extension Packed Matrix Multiplication (VPMM)

VPMM is enumerated by CPUID(0x24, 0x1).ECX[0]. If the TDX Module supports VPMM, it enumerates the virtual value
of that CPUID bit as configurable. The host VMM can then configure VPMM support and enumeration, as part of the
CPUID configuration during TDH.MNG.INIT.

4.1
If the virtual value of CPUID(0x24, 0x1).ECX[0] is 1, then VPMM is available to the guest TD.

11.8.5. APX

Enumeration: TDX Module support of APX is enumerated by TDX_FEATURESO.APX (bit 28), readable by TDH.SYS.RD*.

Guest TD usage of Advanced Performance Extension (APX) is controlled by the XFAM[19] (APX) bit (see the [TDX Module
ABI Spec]). If supported by the TDX Module and by the CPU, and the host VMM configured XFAM[19] as 1, then:

e Virtual CPUID enumerates APX availability to the guest TD.
e Guest TDs may enable APX by setting XCRO[19] (APX) bit.
e TDG.VP.VEINFO.GET called with version 2 returns the VM Exit Extended Instruction Information.

11.9. CR Handling

11.9.1. CRO

Intel SDM, Vol. 3, 2.5 Control Registers

Intel SDM, Vol. 3, 23.8 Restrictions on VMX Operation

Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

Intel SDM, Vol. 3, 25.6 Unrestricted Guests
31302928 1918 1716 15 654 3210
FIC(N A W N(E|T|E|M|P
G|D|wW M| [P elTls|m|ple| CRO

Figure 11.3: CRO

From the guest TD’s point of view, as virtualized by the Intel TDX Module, CRO bits PE (0) and NE (5) are always set to 1,
and bits NW (29) and CD (30) are always cleared to 0.

Guest TD writes to CRO are handled by the Intel TDX Module as follows:

e Writes to CRO that are architecturally invalid (such as attempts to set bits that must be 0) or writes to CRO that set
architecturally invalid bit combinations, result in a #GP(0).

e Writes to CRO that are architecturally invalid but not permitted by the TDX architecture (such as clearing CR0.CD)
result in a #VE(UNSUPPORTED_FEATURE).

e Other writings are allowed.

For TD migration, the same rules are used for checking the imported value of guest CRO. Any violation results in a failed
import.

September 2025 . Page 119 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

11.9.2. CR4
Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4
CR4 Bits which are Architecturally Virtualized

For most CR4 bits, the TDX Module emulates the x86 architectural behavior of the CPU. If a certain CPU feature is not
enabled for the guest TD, the guest TD’s attempt to set the corresponding CR4 bit can result in a #GP(0):

1. Depending on the TD’s XFAM, guest TD modification of CR4 bits PKE (22), CET (23) and UINTR (25) is prevented. Any
guest TD attempt to change those bits results in a #GP(0).

11.93.1, Ifthe TD’s ATTRIBUTES.KL is 0, guest TD attempts to set bit KL (19) results in a #GP(0). See 11.19 below.

3. Ifthe TD’s ATTRIBUTES.PKS is 0, guest TD attempts to set bit PKS (24) results in a #GP(0). See 11.23 below.

4. If the TD's virtual value of CPUID(7,1).EAX[6] (LASS) is 0, the TD is not allowed to use LASS, and guest TD attempts to
set bit LASS (27) results in a #GP(0).

5. If the TD’s virtual value of CPUID(0x7,1).EAX[17] is O (either configured by the host VMM or the CPU does not
support FRED), the TD is not allowed to use FRED, and guest TD attempts to set bit FRED (32) results in a #GP(0).
See 11.22 below.

In addition, any guest TD attempts to modify any of the architecturally reserved CR4 bits, or to set architectural-invalid
bit combinations, can result in a #GP(0).

For TD migration, the same rules are used for checking the imported value of guest CR4. Any violation results in a failed
import.

CR4.MCE (Bit 6) Virtualization

20 e guest TD’s ability to modify the virtual value of CR4.MCE depends on the configuration set by the host VMM and the

25

30

35

40

guest TD. There are multiple configurations, described below.

Note: The real value of CR4.MCE is always set to 1, to allow proper TDX operation, but the guest TD never handles
#MC. Machine check events always cause a VM exit to the TDX Module and are handled by it. For details, see
Ch. 16.

Default Virtualization as Fixed-1

By default, virtual CR4.MCE is fixed at 1, and the guest TD is not allowed to modify it. A guest TD attempt to modify
CR4.MCE results in a #/E(CONFIG_PARAVIRT).

Note: |If the TD sets TDCS.TD_CTLS.REDUCE_VE to 1, then clears CR4.MCE as described below, then clears
TDCS.TD_CTLS.REDUCE_VE, the TD-visible value of CR4.MCE will still be 0.

Architectural, Non-Paravirtualized Virtualization

If the TDX Module supports #VE reduction, and the guest TD enables it (by setting TDCS.TD_CTLS.REDUCE_VE to 1) but
does not enable MCA paravirtualization (TDCS.FEATURE_PARAVIRT_CTLS.MCA is 0), then the virtual value of
CPUID(1).EDX[7] is 0, meaning MCE is disabled. The guest TD is not allowed to modify the value of virtual CR4.MCE from
0to 1; aguest TD attempt to do so results in a #GP(0).

Note: Virtual CR4.MCE’s value is initialized to 1, which is the default value as described above. The guest TD may clear
this bit but not set it back to 1 as long as TDCS.TD_CTLS.REDUCE_VE is 1.

Architectural, Paravirtualized Virtualization

If the TDX Module supports #VE reduction, and the guest TD enables it (by setting TDCS.TD_CTLS.REDUCE_VE to 1) and
enables MCA paravirtualization (by setting TDCS.FEATURE_PARAVIRT_CTLS.MCA to 1), then virtual CPUID(1).EDX[7] is
configured by the host VMM.

e [f virtual CPUID(1).EDX[7] is 0, meaning MCE is disabled, the behavior is the same as with the non-paravirtualized
configuration above. The guest TD is not allowed to modify the value of virtual CR4.MCE from 0 to 1; a guest TD
attempt to do so results in a #GP(0).

e Else (virtual CPUID(1).EDX[7] is 1, meaning MCE is enabled), the guest TD is allowed to modify CR4.MCE.

September 2025 . Page 120 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

CR4 Bits which are Non-Architecturally Virtualized
From the guest TD’s point of view, the following bits are virtualized as fixed-0 by Intel TDX Module. Guest TD attempts
to modify their values result in a #/E(UNSUPPORTED_FEATURE):

e CR4.VMXE (bit 13)
e CR4.SMXE (bit 14)

11914.10. MSR Virtualization

11.10.1. Overview

From the guest TD’s point of view, as virtualized by the Intel TDX Module, MSRs are divided into the following categories:

e MSRs that are context-switched on TD entry and exit — guest TD access to such MSRs may be full, partial or none
e MSRs that are not context-switched, but guest TD access is read-only
e MSRs that are not context-switched, and are inaccessible to the guest TD

MSR behavior can be either fixed or dependent on the TD configuration via the XFAM, ATTRIBUTES and CPUID
configuration parameters. The host VMM has no direct interface to configure specific MSR behavior (e.g., it cannot set
a specific MSR to TD exit on write). Instead, guest TD access violations to MSRs can cause a #GP(0) in most cases where
the MSR is enumerated as inaccessible by the Intel TDX Module via CPUID virtualization. In other cases, guest TD access
violations to MSRs can cause a #VE. A guest TD that wishes to access an MSR that is not allowed by the Intel TDX Module
should do so via explicit requests from the host VMM using TDCALL(TDG.VP.VMCALL).

A detailed list of MSR virtualization is provided in the [TDX Module ABI Spec].

11.10.2. MSR Virtualization Configuration by the Host VMM

For afew MSRs, the virtualized values of some bit field returned to the guest TD when executing RDMSR can be configured
by the host VMM. Configuration is done as an input to TDH.MNG.INIT.

Table 11.10: Host VMM Configurable MSR Field Virtualization

MSR Bit Description
Configuration

ALLOW_DIRECT | An MSR bit’s virtual value can be configured as follows:
e Allowed by the host VMM, i.e., reflects the native value returned by the CPU.

e Forced to 0 by the host VMM, regardless of its native values.

FORCE_DIRECT | An MSR bit’s virtual value can be configured as follows:
e Forced to 1 by the host VMM, regardless of whether or not supported by the CPU.
e Allowed by the host VMM, i.e., reflects the native value returned by the CPU.

For details, see the TD_PARAMS definition in the [ABI Spec].

Implication on TD Migration

The virtual MSR values calculated on TDH.MNG.INIT are stored in TDCS. If the TD is migrated, the values are exported by
TDH.EXPORT.STATE.IMMUTABLE and checked on import to the destination TD by TDH.IMPORT.STATE.IMMUTABLE to be
compatible with the destination platform.

For MSR bits that are configurable as ALLOW_DIRECT, an imported value of 0 is always allowed, regardless of the
destination CPU’s native value.

For MSR bits that are configurable as FORCE_DIRECT, an imported value of 1 is always allowed, regardless of the
destination CPU’s native value.

September 2025 . Page 121 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

11.10.3. MSR Virtualization Control by the Guest TD

Depending on the TDX features supported by the TDX Module, the guest TD may control the virtualization of specific
MSRs. Refer to 11.1 for an overview of virtualization and paravirtualization, and to 11.2 for an overview of guest TD
controls.

#VE Reduction and Feature Paravirtualization Control
By default, guest TD MSR access of many MSRs results in #VE. The guest TD is expected to implement a paravirtualization
agent as part of its #VE exception handler (see 11.1 for an overview).
If the TDX Module supports #VE reduction, as indicated by TDX_FEATURESO.VE_REDUCTION (bit 30), readable by
TDG.SYS.RD*, the guest TD may set TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1. This greatly reduces the number of cases
where an MSR access results in a #VE, by virtualizing many CPU features as unsupported and eliminating the need to
paravirtualize them. The guest TD may also control specific CPU features paravirtualization by setting bits in
TDCS.FEATURE_PARAVIRT_CTRL.
For details, see 11.1 and the [ABI Spec] definition of TDCS.TD_CTLS, TDCS.FEATURE_PARAVIRT_CTRL and of CPUID
virtualization.
11.11. CPUID Virtualization
11.11.1. CPUID Configuration by the Host VMM
For some CPUID leaves and sub-leaves, the virtualized bit fields of CPUID return values (in guest EAX/EBX/ECX/EDX) are
configurable by the host VMM. For such cases, the Intel TDX Module architecture defines two virtualization types:
Table 11.11: Host VMM Configurable CPUID Field Virtualization

CPUID Field Description Comments

Virtualization

As Bit fields for which the host VMM

Configured configures the value seen by the guest TD.

Configuration is done on TDH.MNG.INIT.

As Bit fields for which the host VMM If a CPUID bit enumerates a CPU feature, and the

Configured (if | configures the value such that the guest feature is natively supported, then the feature can

Native) TD either sees their native value or a either be allowed by the host VMM, or it will be
value of 0. Configuration is done on effectively deprecated for the guest TD.
TDH.MNG.INIT.

The above CPUID fields can be specified by the host VMM at guest TD initialization time TDH.MNG.INIT using the
TD_PARAMS input structure of TDH.MNG.INIT. TDH.MNG.INIT and its input TD_PARAMS structure are described in the
[TDX Module ABI Spec]. Configuration is further classified as follows:

Table 11.12: CPUID Configuration by the TD_PARAMS Input of TDH.MNG.INIT

TD_PARAMS Description Notes

Section

CPUID_CONFIG Bit fields configurable directly based on a configuration Some bit fields are
table configurable by both

XFAM Bit fields configurable based on th t TD’s XFAM CPUID_CONFIG and either
IT Tields contigurable pased on e gues S XFAM or ATTRIBUTES. See

XFAM control of extended features virtualization is the discussion below.
described in 11.8.

ATTRIBUTES Bit fields configurable based on the guest TD’s ATTRIBUTES
Other Bits fields configurable based on some other field of
TD_PARAMS

September 2025 . Page 122 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

A detailed list of CPUID virtualization is provided in the [TDX Module ABI Spec]. For any valid CPUID leaf / sub-leaf
combination that is not listed, the Intel TDX Module injects a #VE.

The host VMM should always consult the list of directly configurable CPUID leaves and sub-leaves, as enumerated by
TDH.SYS.RD/RDALL or TDH.SYS.INFO, described in 4.1.2.4.

Fine Grained Control of CPU Extended Features Enumeration
Some CPUID bit fields are configurable based on both CPUID_CONFIG and either XFAM or ATTRIBUTES sections of
TD_PARAMS. This is intended to support fine-grained virtualization of sub-features of extended features. For example:

e The host VMM can configure the TDX Module to virtualize some AVX512 as available, but to virtualize other AVX512
instructions as unavailable.

10 11-1%1.1.- The host VMM can configure the TDX Module to virtualize the Perfmon architectural events support.

This is useful for TD migration, as it allows the host VMM to configure a common subset of supported sub-features.

Configurable Family/Model/Stepping (CPUID(1).EAX) Enumeration

By default, the CPU’s Family/Model/Stepping value, as enumerated to the guest TD by CPUID(1).EAX, is set to the native
value of the platform. In a multi-package platform, the stepping value is the minimum of all the packages’ native values.

15 11-141@pUID(1).EAX is enumerated by the TDX Module as configurable, then the host VMM can select the default native

20

25

30

5
11.11.2.1.

40

45

configuration by setting CPUID(1).EAX in TD_PARAMS.CPUD_CONFIG input to TDH.MNG.INIT to all-0.

If supported by the TDX Module, then if the TD is migratable (ATTRIBUTES.MIGRATABLE is 1), the value of CPUID(1).EAX
may be configured by the host VMM as described below. This allows the host VMM to create migration pools containing
multiple CPU types. As with all configurable features, the host VMM would need to be careful and configure the
migratable TDs virtual Family/Model/Stepping values to be recognizable by all platforms in the migration pool.

Enumeration TDX Module’s support of CPUID(1).EAX configuration is enumerated by the global metadata field
TDX_FEATURESO.FMS_CONFIG (bit 17), which is readable by the host VMM using TDH.SYS.RD*. For
details, see the [ABI Spec].

The TDX Module allows the host VMM to configure Family/Model/Stepping to one of a specific set of values. Those
values are known to the TDX Module as CPUs, each conforming to the following criteria:

e There’s a TDX Module version that supports the CPU denoted by the Family/Model/Stepping value.

e The CPU denoted by the Family/Model/Stepping value is “not newer” than the current (native) CPU at the time of
TD initialization, in a sense that it does not implement any security feature that is not implemented by the current
CPU. E.g., that CPU does not implement some side channel mitigation that the current CPU does not implement.

The specific list of family/model/stepping values is provided by the following global metadata fields), readable by the
host VMM using TDH.SYS.RD*:

ALLOWED_FMS A list of 32-bit values in CPUID(1).EAX Family/Model/Stepping format. For each, the allowed Family
and Model fields are specified. The Stepping value is the maximum allowed value.

DISALLOWED_FMS A list of 32-bit fields in CPUID(1).EAX Family/Model/Stepping format, listing explicitly disallowed
F/M/S settings.

For details, see the [ABI Spec].

11.11.2. Guest TD Control of CPUID Virtualization

Guest TD Control of Specific CPUID Leaves and Sub-Leaves Virtualization

Depending on the TDX features supported by the TDX Module, the guest TD may control the virtualization of specific
CPUID leaves and sub-leaves. Refer to 11.1 for an overview of virtualization and paravirtualization, and to 11.2 for an
overview of guest TD controls.

11.11.2.1.1. H#VE Reduction and Feature Paravirtualization Control

By default, guest TD execution of CPUID with many leaf and sub-leaf numbers result in #VE. The guest TD is expected to
implement a paravirtualization agent as part of its #VE exception handler (see 11.1 for an overview).

If the TDX Module supports #VE reduction, as indicated by TDX_FEATURESO.VE_REDUCTION (bit 30), readable by
TDG.SYS.RD*, the guest TD may set TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1. This greatly reduces the number of cases

September 2025 . Page 123 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

where a CPUID results in a #VE, by virtualizing many CPU features as unsupported and eliminating the need to
paravirtualize them. The guest TD may also control specific CPU features paravirtualization by setting bits in
TDCS.FEATURE_PARAVIRT_CTRL.

Guest TD execution of CPUID with a leaf number in the range 0x40000000 - Ox4FFFFFFF always results in a
H#VE(NON_CONFIG_PARAVIRT). This CPUID leaf range is typically used for guest-host communication by multiple host
VMM types; the guest’s #VE handler may paravirtualize the host VMM response (e.g., using a hypercall over
TDG.VP.VMCALL).

For details, see 11.1 and the [ABI Spec] definition of TDCS.TD_CTLS, TDCS.FEATURE_PARAVIRT_CTRL and of CPUID
virtualization.

11.11.2.1.2. Topology Virtualization

Note: Topology virtualization control is a subset of the #VE reduction control described above, which was implemented
in earlier TDX Module versions. It is available as a separate control for backward compatibility.

By default, virtual topology enumeration by CPUID(0x1F) and CPUID(0xB) is disabled. If the TDX Module supports
topology virtualization, as indicated by TDX_FEATURESO.TOPOLOGY_ENUM, readable by TDG.SYS.RD*, the guest TD may
enable it by setting TDCS.TD_CTLS.ENUM_TOPOLOGY (bit 1) to 1. If the TDX Module supports #VE reduction, as indicated
by TDX_FEATURESO.VE_REDUCTION (bit 30), the guest TD may set TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1; this will also
implicitly set ENUM_TOPOLOGY (bit 1). See 11.12 below for details.

11.11.2.1.3. CPUID(2) (Cache and TLB Information) Virtualization

Note: CPUID(2) virtualization control is a subset of the #VE reduction control described above, which was implemented
in earlier TDX Module versions. It is available as a separate control for backward compatibility.

By default, cache and TLB enumeration by CPUID(0x2) is disabled. If the TDX Module supports CPUID(2) virtualization, as
indicated by TDX_FEATURESO.CPUID2_VIRT (bit 29), readable by TDG.SYS.RD*, the guest TD may enable it by setting
TDCS.TD_CTLS.VIRT_CPUID2 (bit 2) to 1. If the TDX Module supports #VE reduction, as indicated by
TDX_FEATURESO.VE_REDUCTION (bit 30), the guest TD may set TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1; this will also
implicitly set VIRT_CPUID2 (bit 2).

11.11.2.2. Per-VCPU Guest TD Control of #VE on CPUID

11.11.2.2.1. Per-VCPU #VE for all CPUID Leaves and Sub-Leaves

The guest TD may toggle on or off the unconditional injection of #VE(CONFIG_PARAVIRT) on all CPUID leaves and sub-
leaves, per VCPU. That can be done in supervisor mode (CPL == 0) and/or user mode (CPL >0). For example, this enables
the TD OS to control CPUID as seen by drivers or by user-level code.

The guest TD may do this by writing to the VCPU-scope metadata fields CPUID_SUPERVISOR_VE and CPUID_USER_VE
using TDG.VP.WR.

For backward compatibility, the guest TD may use TDG.VP.CPUIDVE.SET, described in the [TDX Module ABI Spec].

11.11.2.2.2. Per-VCPU #VE for Specific CPUID Leaves and Sub-Leaves

A finer grained control is provided per CPUID leaf and sub-leaf that is virtualized by the TDX Module. The guest TD may
configure the following, per VCPU:

e H#VE(CONFIG_PARAVIRT) injection instead of the normal CPUID virtualization is the guest executed CPUID in
supervisor mode (CPL == 0).

e #VE(CONFIG_PARAVIRT) injection instead of the normal CPUID virtualization is the guest executed CPUID in user
mode (CPL > 0).

The guest TD may do this by writing to the VCPU-scope metadata field array CPUID_CONTROL using TDG.VP.WR.

Note: This feature is only available for CPUID leaves and sub-leaves that do not inject a #VE if
TDCS.TD_CTLS.REDUCE_VE is 0.

11.11.3. CPUID Configuration & Checks at Guest TD Migration

The CPUID virtualization configuration stored in TDCS is exported by TDH.EXPORT.STATE.IMMUTABLE and checked on
import to the destination TD by TDH.IMPORT.STATE.IMMUTABLE to be compatible with the destination platform.

September 2025 . Page 124 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

CPUID fields that are virtualized as fixed values (defined as “FIXED”), are based on some calculation (defined as
“ASSIGNED”) or that their value depends on the underlying CPU capabilities (defined as “ALLOWED” or “DIRECT”) must
retain the same value across migration.

CPUID fields that are virtualized as pass-through (defined as “NATIVE”) are considered fixed once exported and are
checked for compatibility on import.

11.11.4. CPUID Virtualization for Hybrid SOCs

As described above, a TD is always virtualized as a uniform VM. This implies the following:

e The virtual value of CPUID(7,0).EDX[15], which enumerates the SOC as hybrid, is 0.

e When a TD is initialized on a hybrid SOC, CPUID(0x1A).EAX, which enumerates the core type and native model ID, is
virtualized as 0, indicating non-applicable information. When a TD is initialized on a uniform SOC, the virtual value
of CPUID(Ox1A).EAX reflects its native value.

Other CPUID virtualization cases related to SOC are for performance monitoring (Perfmon), processor trace (PT) and last
branch record (LBR). They are described in Ch. 15.

11.12. Platform Topology Virtualization

If supported by the TDX Module, it provides the guest TD with virtual platform topology information, configured by the
host VMM.

Enumeration: TDX Module support for Vvirtual platform topology enumeration is enumerated by
TDX_FEATURESO.TOPOLOGY_ENUM, readable by the host VMM and the guest TD using TDH.SYS.RD or
TDG.SYS.RD respectively. For details see the [ABI Spec].

11.12.1. Configuration by the Host VMM

As an input to TD initialization (TDH.MNG.INIT), the host VMM can configure the values of the CPUID extended topology
leaf (Ox1F) and its sub-leaves. Alternatively, the host VMM can configure the CPUID(0x1F) values as all 0; in this case, the
virtual values are set to the native CPUID(0Ox1F) values.

The following conditions must be met:

e CPUID(0x1F) sub-leaves must specify level types (CPUID(0x1F, *).ECX[15:8]) in an ascending order, except the last
one.

e The last CPUID(0x1F) sub-leaf must specify level type O (INVALID).

e The host VMM must provide configuration for the core level (2).

As an input to each VCPU initialization (TDG.VP.INIT), the host VMM must specify a virtual x2APIC ID for that VCPU. That
value must be unique across all VCPUs of the current TD.

The virtual values of CPUID(0xB) are calculated by the TDX Module from the configured virtual values of CPUID(0x1F), as
described below.

For details, see the [ABI Spec].

11.12.2. Enabling by the Guest TD

See also 11.11.2 for a generic discussion of guest TD control of CPUID virtualization.

By default, virtual topology enumeration is disabled. The guest TD may enable virtual topology enumeration by setting
TDCS.TD_CTLS.ENUM_TOPOLOGY (bit 1) to 1 or by setting TDCS.TD_CTLS.REDUCE_VE (bit 3) to 1, if supported. This
depends on the following conditions:

e TDX Module enumerates this feature as supported, as described above.
e The host VMM properly configured the virtual x2APIC ID for each VCPU. This is indicated by
TDCS.TOPOLOGY_ENUM_CONFIGURED, which may be read using TDG.VM.RD.

For details, see the [ABI Spec].

11.12.3. Virtual Topology Information Provided to the Guest TD

The table below shows the virtual topology information, depending on enabling by the guest TD.

September 2025 . Page 125 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Table 11.13: Virtual Topology Information Provided to the Guest TD

CPUID or MSR TD_CTLS.ENUM_TOPOLOGY =0 | TD_CTLS.ENUM_TOPOLOGY =1
CPUID(0x1F) (V2 Extended H#VE(CONFIG_PARAVIRT) EAX, EBX, ECX: Host VMM configured platform
Topology Enumeration) topology values
EDX: Current VCPU’s host VMM configured
x2APIC ID
CPUID(0xB) (Extended #VE(CONFIG_PARAVIRT) EAX, EBX, ECX: Derived from the CPUID(Ox1F)
Topology Enumeration) values — see below.
EDX: Current VCPU’s host VMM configured
x2APIC ID
CPUID(1).EBX[31:24] least significant 8 bits of the Least significant 8 bits of the VCPU’s x2APIC ID
VCPU’s sequential index
MSR 0x802 H#VE(CONFIG_PARAVIRT) Current VCPU’s host VMM configured x2APIC ID
(IA32_X2APIC_APICID)

Derivation of CPUID(0xB) Virtual Values from CPUID(0x1F) Configuration

Intel SDM, Vol. 2 CPUID

11.12.3.1.

CPUID(0x1F) can enumerate multiple domain levels (Logical Processor, Core, Module, etc.) while CPUID(0xB) can only
enumerate the Logical Processor and Core level. The TDX Module derives the virtual values of CPUID(0xB) from the
configured virtual values of CPUID(0x1F) as follows:

e If a Logical Processor domain has been configured for CPUID(0x1F), then the same values are used as CPUID(0xB)’s
Logical Processor domain.
e CPUID(0xB)’s Core domain value is set to the CPUID(0x1F)’s highest configured domain value.

11.13. Interrupt Handling and APIC Virtualization
Interrupt virtualization is discussed in a separate document [Interrupt Virtualization Spec].
11.14. Virtualization Exception (#VE)

Intel SDM, Vol. 3, 24.9.4 Information for VM Exits Due to Instruction Execution
Intel SDM, Vol. 3, 25.5.6 Virtualization Exceptions
Intel SDM, Vol. 3, 27.2.5 Information for VM Exits Due to Instruction Execution

The Intel TDX Module extends the VMX architectural definition of #VE. It injects #VE into the guest TD in multiple cases
where an operation is not allowed by TDX, but an architectural exception (e.g., #GP(0)) is not applicable. Such cases
include disallowed instruction executions, disallowed MSR accesses, many CPUID leaves, etc.

The intended usage is for the TDX-enlightened guest TD OS to have a #VE handler. By analyzing the #VE information, the
handler would be able to emulate the requested operation for non-enlightened parts of the guest TD — e.g., drivers and
applications.

11.14.1. Virtualization Exception Information

The virtualization-exception information area (VE_INFO) is maintained as part of TDVPS. It is not intended to be directly
accessible by the guest TD. Instead, the #VE information can be retrieved using the TDG.VP.VEINFO.GET function (see
the [TDX Module ABI Spec]). This is a simple way to help ensure the availability and privacy of this area.

September 2025 . Page 126 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Table 11.14: Virtualization Exception Information Area (VE_INFO), based on [Intel SDM, Vol. 3, Table 24-1]

Section Field Offset | Size Description
(Bytes) | (Bytes)

Architectural EXIT_REASON 0 4 The value that would have been saved into the VMCS as an exit
reason if a VM exit had occurred instead of the virtualization
exception.

VALID 4 4 0 indicates that VE_INFO has no valid contents.

The CPU and the Intel TDX Module will not update VE_INFO if
VALID is not 0.

After updating VE_INFO, the CPU and the Intel TDX Module
write OXFFFFFFFF to the VALID field.

EXIT_ 8 8 The value that would have been saved into the VMCS as an exit

QUALIFICATION qualification if a VM exit had occurred instead of the
virtualization exception.

GLA 16 8 The value that would have been saved into the VMCS as a
guest-linear address if a VM exit had occurred instead of the
virtualization exception.

GPA 24 8 The value that would have been saved into the VMCS as a
guest-physical address if a VM exit had occurred instead of the
virtualization exception.

EPTP_INDEX 32 2 The current value of the EPTP index VM-execution control

Non- INSTRUCTION_ Non- 4 The 32-bit value that would have been saved into the VMCS as

Architectural LENGTH arch. VM-exit instruction length if a legacy VM exit had occurred

(EXIT_REASON is instead of the virtualization exception.

“f’t EP.T INSTRUCTION_ Non- 4 The 32-bit value that would have been saved into the VMCS as

Violation) INFORMATION arch. VM-exit instruction information if a legacy VM exit had occurred
instead of the virtualization exception.

EXTENDED_ Non- 8 The 64-bit value that would have been saved into the VMCS as

INSTRUCTION_ arch. VM-exit extended instruction information if a legacy VM exit

INFORMATION had occurred instead of the virtualization exception.

This field is only applicable for TDX Modules and CPUs which
support the VM-exit extended instruction information VMCS
field.

VE_INFO CATEGORY Non- 1 Category of the VE_INFO — intended to help the guest TD decide

Category arch. how to handle the #VE exception. See the table below for
details.

Enumeration: CATEGORY information is supported if the TDX
Module supports #VE reduction, as enumerated
by TDX_FEATURESO.VE_REDUCTION (bit 30).

10

The architectural section format for VE_INFO is as defined in the [Intel SDM], and it is used directly by the CPU when it
injects a #VE (see 11.14.2 below). VE_INFO can also be used for #VE injected by the Intel TDX Module. Some VE_INFO
fields are applicable only for some exit reasons.

VE_INFQO’s non-architectural section is only applicable for TDX-extended #VE (injected by the TDX Module), where
EXIT_REASON is not EPT violation (48). It should be ignored for EPT violations converted by the CPU to #VE. See below
for details.

VE_INFO.VALID is initialized to 0, and it is set to OXxFFFFFFFF when a #VE is injected to the guest TD. When handling a
#VE, the guest TD retrieves the #VE information using the TDG.VP.VEINFO.GET function (see the [TDX Module ABI Spec]).
TDG.VP.VEINFO.GET checks that VE_INFO.VALID is OxFFFFFFFF. After reading the information, it sets VE_INFO.VALID to
0.

September 2025 Page 127 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Table 11.15: #VE Category Information

Value | Category Description Expected Guest TD Behavior
0x00 ARCH #VE which has been converted from Handle the #VE
an EPT Violation
0x01 PENDING #VE which has been converted from Handle the #VE, e.g., by calling
an EPT Violation on a PENDING page | TDG.MEM.PAGE.ACCEPT
0x02 RESERVED_GPA_BITS #VE which has been converted from Handle this as a guest TD error
an EPT Violation due to GPA bits
above the MAXGPA range (except
the SHARED bit) being set to 1
0x10 CONFIG_PARAVIRT CPU feature configured by the host Either be prepared to handle the
VMM (via CPUID configuration) to be | paravirtualization case (triggered by
paravirtualized by the guest TD #VE) or treat it as error resulting from
incorrect configuration by VMM.
0x11 NON_CONFIG_PARAVIRT | CPU feature that must be Handle the paravirtualization case in
paravirtualized by the guest TD #VE handler.
0x80 UNSUPPORTED_FEATURE | Guest TD attempted to use an x86 Indicates a bug in guest TD software —
feature which is not supported by not allowed values should not be
TDX written

11.14.2. Architectural #VE Injection due to EPT Violations

EPT Violation mutation to #VE is enabled unconditionally for SEAM non-root operation. The Intel TDX Module sets the
TD VMCS EPT-violation #VE VM-execution control to 1.

For shared memory accesses (i.e., when GPA.SHARED == 1), as with legacy VMX, the VMM can choose which pages are
eligible for #VE mutation based on the value of the Shared EPTE bit 63.

For private memory accesses (GPA.SHARED == 0), an EPT Violation causes a TD Exit in most cases, except when the Secure
EPT entry state is PENDING (an exception to this is described in 11.15.1.5). Secure EPT entry bit 63 is always set to 1; the
CPU never directly mutates EPT violations to #VE. However, EPT violations on PENDING pages may be mutated by the
TDX Module to #VE(PENDING); this is described in 9.5.2 and 9.10.4.

11.14.3. Non-Architectural #VE Injected by the Intel TDX Module

H#VE may be injected by the Intel TDX Module in several cases:

e Emulation of the architectural #VE injection on EPT violation, done by a guest-side Intel TDX Module flow that
performs an EPT walk.

e As aresult of guest TD execution of a disallowed instruction (see 11.7 above), a disallowed MSR access (see 11.10
above), or CPUID virtualization (see 11.11 above).

e A notification to the guest TD about anomalous behavior (e.g., too many EPT violations reported on the same TD
VCPU instruction without making progress). This kind of #VE is raised only if the guest TD enabled the specific
notification (using TDG.VM.WR to write the TDCS.NOTIFY_ENABLES field) and when a #VE can be injected. See 17.3
for details.

If, when attempting to inject a #VE, the Intel TDX Module discovers that the guest TD has not yet retrieved the information
for a previous #VE (i.e., VE_INFO.VALID is not 0), the TDX Module injects a #DF into the guest TD to indicate a #VE overrun.

11.15. GPA Space, Secure and Shared Extended Page Tables (EPTs)

EPT is enabled in SEAM non-root mode. SEAM non-root mode uses two EPTs: Secure EPT and Shared EPT.

EPT level is the same for both Secure and Shared EPT. If the guest TD’s GPA width is greater than 48 bits (TDCS.GPAW is
1), then 5-level EPT trees are used. Otherwise, 4-level EPT trees can be used.

For further Secure EPT details, refer to Chapter 9.

September 2025 Page 128 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

EPT violations and misconfigurations generally cause a TD Exit, except for the cases described below.

11.15.1. GPA Space Size Configuration and Virtualization

Overview of the GPA Space Size Virtualization Modes

The host VMM can configure one of the TDX Module’s options for configuring and virtualizing the GPA space size available

to guest TDs:

e No virtualization (native values are used)

e MAXPA (CPUID(0x80000008).EAX[7:0]) virtualization
11.121.1. MAXGPA (CPUID(0x80000008).EAX[23:16]) virtualization

Specific TDX Module releases may not support all the above features; note the enumeration of each feature support as

documented below.

In all cases, the TDX Module calculates an internal value TDCS.VIRT_MAXPA, which is used for virtualizing the GPA space

size; see more details below.

The following table compares the GPA space virtualization modes.

Table 11.16: GPA Space Size Virtualization Modes Comparison

GPA Space Virtualization Mode

None

MAXPA Virtualization

MAXGPA Virtualization

Virtual
CPUID(0x80000008).EAX[7:0]

Native value (at
TDH.MNG.INIT time)

Directly configured by
the host VMM

Native value (at
TDH.MNG.INIT time)

Virtual 0 0 Configured by the host
CPUID(0x80000008).EAX[23:16] VMM'’s GPAW setting
TDCS.VIRT_MAXPA Used by the | Native Set to the configured Set to the configured

TDX Module

CPUID(0x80000008).
EAX[7:0] value (at
TDH.MNG.INIT time)

virtual
CPUID(0x80000008).
EAX[7:0] value

virtual
CPUID(0x80000008).
EAX[23:16] value

Exception on GPA bits above #PF(RSVD) #PF(RSVD) #PF(RSVD)

physical MAXPA (excl. SHARED

bit) being set

Exception on GPA bits above #PF(RSVD) #PF(RSVD) #VE(RESERVED_GPA_BITS)

TDCS.VIRT_MAXPA (excl.
LSHARED bit) being set

MAXPA (CPUID(0x80000008).EAX[7:0]) Virtualization

Enumeration:

using TDH.SYS.RD*.

TDX Module’s support of this feature is enumerated by TDX_FEATURESO.MAXPA_VIRT (bit 27), readable

MAXPA, the number of physical address bits, is enumerated to the guest TD by the virtual value of

CPUID(0x80000008).EAX[7:0]. That value can be configured by the host VMM as follows:

o If the host VMM sets TD_PARAMS.CONFIG_FLAGS.MAXPA_VIRT (bit 3) to 0, as an input to TDH.MNG.INIT, then
MAXPA virtualization is disabled:
o Virtual CPUID(0x80000008).EAX[7:0] is set to the native value at the time of TD initialization by TDH.MNG.INIT.
o TDCS.VIRT_MAXPA (the value used by the TDX Module) and virtual CPUID(0x80000008).EAX[23:16] are set
depending on the value of TD_PARAMS.CONFIG_FLAGS.MAXGPA_VIRT (bit 4), as described below.
e Else (TD_PARAMS.CONFIG_FLAGS.MAXPA_VIRT (bit 3) is set to 1), then:
o TD_PARAMS.CONFIG_FLAGS.MAXGPA_VIRT (bit 4) must be 0.
o Ifthe host VMM configured a virtual CPUID(0x80000008).EAX[7:0] value of O:
= TDCS.VIRT_MAXPA (the value used by the TDX Module) is set to the smaller value between the native

MAXPA value and of the TD’s configured GPAW (which can be either 52 or 48).

September 2025

Page 129 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

50

11

11

11

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

o Else, the configured virtual CPUID(0x80000008).EAX[7:0] value is checked as detailed below:
= The value must not be higher than the native MAXPA (native CPUID(0x80000008).EAX[7:0]).
= The value must not be higher than the TD’s configured GPAW (which can be either 52 or 48).
= The value must not be lower than the supported minimum value. The host VMM can read that value by
reading field MIN_VIRT_MAXPA using TDH.SYS.RD*.
If all checks pass, the configured virtual CPUID(0x80000008).EAX[7:0] value is used as TDCS.VIRT_MAXPA.

MAXGPA (CPUID(0x80000008).EAX[23:16]) Virtualization

Enumeration: TDX Module’s support of this feature is enumerated by TDX_FEATURESO.MAXGPA_VIRT (bit 33),
readable using TDH.SYS.RD*.

MAXGPA, the number of guest physical address bits, is enumerated to the guest TD by virtual value of
15C{’;JID(Ox80000008).EAX[23:16]. That value can be configured by the host VMM as follows:

e If the host VMM sets TD_PARAMS.CONFIG_FLAGS.MAXGPA_VIRT (bit 4) to 0, as an input to TDH.MNG.INIT, then
MAXGPA virtualization is disabled:
o TDCS.VIRT_MAXPA (the value used by the TDX Module) and virtual CPUID(0x80000008).EAX[7:0] are set
depending on the value of TD_PARAMS.CONFIG_FLAGS.MAXPA_VIRT (bit 3), as described above.
o Virtual CPUID(0x80000008).EAX[23:16] is set to 0.
e Else (TD_PARAMS.CONFIG_FLAGS.MAXGPA_VIRT (bit 4) is set to 1), then:
o TD_PARAMS.CONFIG_FLAGS.MAXPA_VIRT (bit 3) must be 0.
o Virtual CPUID(0x80000008).EAX[7:0] is set to the native value at the time of TD initialization by TDH.MNG.INIT.
o TDCS.VIRT_MAXPA (the value used by the TDX Module) and virtual CPUID(0x80000008).EAX[23:16] are set to
the smaller value between the native MAXPA value (native CPUID(0x80000008).EAX[7:0]) and of the TD’s
configured GPAW (which can be either 52 or 48).

GPA Space Implications of MAXPA and MAXGPA Virtualization
.15.1.4.
TDCS.VIRT_MAXPA, the value used by the TDX Module, is set as described above. The TDX Module considers any GPA
parameter where bit TDCS.VIRT_MAXPA or higher is 1 as illegal. Among other things, this prevents the host VMM from
building Secure EPT with entries associated with a GPA that is above the range allowed by the TDCS.VIRT_MAXPA.

For shared GPA, the host VMM manages the Shared EPT; it is expected to properly virtualize the shared GPA space size.
It should never map pages in a GPA range that is not allowed by the TDCS.VIRT_MAXPA setting.

If the TDX Module supports TDX Connect, then TDH.MEM.SHARED.SEPT.WR is used by the host VMM to set shared GPA
-1®hfries in Secure EPT pages. The TDX Module enforces TDCS.VIRT_MAXPA for the requested shared GPA.

Exceptions Related to GPA Reserved Bits

Address translation with any of the reserved bits of GPA set to 1 causes an exception injection to the guest TD. This
includes the following cases:

e GPA bits higher than the SHARED bit are considered reserved and must be 0.

e GPA bits higher than the virtual value of MAXPA, as enumerated to the guest TD by CPUID(0x80000008).EAX[7:0],
are considered reserved and must be 0. An exception to this case is the SHARED bit which is never reserved; if
TDCS.VIRT_MAXPA is lower than GPAW, e.g., TDCS.VIRT_MAXPA is 46 and the configured GPAW is 48, then the
SHARED bit (at position 47) may be set to 1 indicate a shared GPA.

e For L1, the behavior is as follows:

o If MAXGPA virtualization, as described above, is configured, then:
= TDCS.VIRT_MAXPA is enumerated to the guest TD by virtual CPUID(0x80000008).EAX[23:16].
= If any GPA bit not lower than the physical MAXPA, as enumerated by CPUID(0x80000008).EAX[7:0] but
excluding the SHARED bit, is set to 1, the injected exception is a #PF with PFEC (Page Fault Error Code) RSVD
bit set.
= Else (GPA bit not lower than the TDCS.VIRT_MAXPA but lower than the physical MAXPA is set to 1), then
the injected exception is #VE(RESERVED_GPA_BITS).
o Else:
= TDCS.VIRT_MAXPA is enumerated to the guest TD by virtual CPUID(0x80000008).EAX[7:0].
= Theinjected exception is a #PF with PFEC (Page Fault Error Code) RSVD bit set.
e For L2, a reserved bits violation causes an L2->L1 exit with an EPT Violation exit reason.

September 2025 . Page 130 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

11.15.2. EPT Violation Mutated into #VE

An EPT violation is converted into #VE in the following cases:

e For Secure EPT, see 9.5.2 for details.

e ForShared EPT, if the EPT entry has been configured by host VMM deliver EPT violations to the guest TD as #VE(ARCH)
exceptions for usages such as MMIO, as described in 11.14 above.

e Onreserved bits violation, if the MAXGPA virtualization mode is configured, as described in 11.15 above.

11.16. Prevention of TD-Induced Denial of Service

VMs, including TDs, can exploit Intel ISA characteristics to cause performance and functional Denial of Service (DOS) to
the VMM. The Intel architecture has several mechanisms that help prevent such DOS cases. This section describes how
those mechanisms are used in the context of TDX.

11.16.1. Bus Lock Detection by the TD OS

The guest TD OS can enable debug exception traps due to bus locks by setting I1A32_DEBUGCTL.BUS_LOCK_DETECT bit
(2), which is disabled by default. When enabled, the feature works identically to how it functions in legacy VMX non-root
mode or in non-VMX mode. The IA32_DEBUGCTL MSR and DR6 are part of the state that is saved and restored on VM
exit and VM entry, respectively. If the delivery of #DB was pre-empted by a trap-like VM exit, then the pending debug
exceptions (including due to BUS_LOCK_DETECT if pending) are saved in TD VMCS and restored on subsequent VM Entry.
For fault-like VM Exit due to conditions such as EPT violation and EPT misconfiguration that are encountered during
execution of an instruction, there is no pending debug exception recorded, including the bus lock debug exception.

11.16.2. Impact of MSR_MEMORY_CTRL (MSR 0x33)

The host VMM can set bits in MSR_MEMORY_CTRL (MSR 0x33, formerly named MSR_TEST_CTRL) to cause exceptions in
VMs (including TDs) in case of bus locks:

e Bit 28 (UC_LOCK_DISABLE): If this bit is set to 1, a UC load lock will trigger a fault which depends on the CPU:
o Older CPUs will generate a #GP(0) fault. This is enumerated by IA32_CORE_CAPABILITIES[4] value of 1 and
CPUID(7,2).EDX[6] value of 0.
o Newer CPUs will generate an #AC(0) fault. This is enumerated by IA32_CORE_CAPABILITIES[4] value of 0 and
CPUID(7,2).EDX[6] value of 1.
e Bit 29 (SPLIT_LOCK_DISABLE): If set to 1, a split lock will trigger an #AC fault.

MSR 0x33 is not virtualizable; it is a core-scope MSR and may be modified by the host VMM on one SMT thread while
another SMT thread is running a TD VCPU. The TDX Module does not allow a guest TD to access this MSR (a
#VE(NON_CONFIGURABLE_PARAVIRT) is generated).

To avoid any security issues, a correctly written TD OS should always be ready to handle #AC and #GP(0) faults if the TD
software might cause UC locks or split locks.

11.16.3. Bus Lock TD Exit

Bus lock TD exit is disabled by default. The host VMM can enable the TD VMCS “bus-lock detection” VM execution control
using the TDH.VP.WR function.

Bus Lock VM Exit Reason (74)

If “bus-lock detection” is enabled, then if the processor detects that one or more bus locks were caused by the instruction
that was executed, then the processor generates a bus lock VM exit (exit reason 74). This VM exit is trap-like, i.e., it is
delivered following the execution of that instruction that caused it. The Intel TDX Module then completes a TD exit with
the exit information provided in the VM exit.

Bus Lock Detected Bit (26) in VM Exit Reason

If delivery of bus lock VM exit was pre-empted by a higher priority VM exit (e.g., EPT Misconfiguration, EPT Violation,
etc.), then the procession sets a “bus lock detected” notification bit (bit 26) in the exit reason. The Intel TDX Module
reflects this bit to the host VMM on TD exit.

September 2025 . Page 131 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

11.16.4. Instruction Timeout TD Exit

Instruction Timeout TD exit is disabled by default. The host VMM can write the TD VCMS “Instruction Timeout Control”
and “Instruction Timeout” execution controls using the TDH.VP.WR function. If enabled and configured, then if the
processor detects a no-commit case, the processor causes a notification VM exit (exit reason 75) which the Intel TDX
Module converts to the TD exit.

The conditions that cause an instruction timeout TD exit are the same as those in legacy VMX non-root mode. An example
of such a case is the nested #AC exception. If an #AC exception occurs during the delivery of a previous #AC exception,
then the CPU may get into an endless loop of #AC without responding to external events.

Bit 0 (VM context invalid) of the exit qualification indicates whether the guest TD context is corrupted and not valid in
the TD VMCS. If this bit is set to 1, then it is a non-recoverable situation; thus, the Intel TDX Module marks the TD as
disabled to help prevent further TD entry. If no TD context corruption occurred (exit qualification bit O is cleared to 0),
then the TD may be resumed normally.

11.16.5. Denial of Service due to Long Latency Guest-Side Interface Functions

The TDX Module limits the rate at which some guest-side interface functions may be called by the guest TD. See 18.7.5
for details.

11.17. Time Stamp Counter (TSC)

Intel SDM, Vol. 3, 10.5.4.1 TSC-Deadline Mode

Intel SDM, Vol. 3, 18.17 Time-Stamp Counter

Intel SDM, Vol. 3, 24.6.5 Time-Stamp Counter Offset and Multiplier

Intel SDM, Vol. 3, 25.3 Changes to Instruction Behavior in VMX Non-Root Operation

11.17.1. TSC Virtualization

For virtual time stamp counter (TSC) values read by guest TDs, the Intel TDX Module is designed to achieve the following:

e Virtual TSC values are consistent among all the TD’s VCPUs at the level supported by the CPU, see below.
e The virtual TSC value for any single VCPU is monotonously incrementing (except roll over from 2%-1 to 0).
e The virtual TSC frequency is determined by TD configuration.

The host VMM is required to do the following:

e Set up the same IA32_TSC_ADJUST values on all LPs before initializing the Intel TDX Module.
e Make sure IA32_TSC_ADJUST is not modified from its initial value before calling SEAMCALL.

The Intel TDX Module checks the above as part of TDH.VP.ENTER and any other SEAMCALL leaf function that reads TSC.
The virtualized TSC is designed to have the following characteristics:

e The virtual TSC frequency is specified by the host VMM as an input to TDH.MNG.INIT in units of 25MHz — it can be
between 4 and 400 (corresponding to a range of 100MHz to 10GHz).

e The virtual TSC starts counting from 0 at TDH.MNG.INIT time.

e TSC parameters are enumerated to the guest TD by CPUID(0x15).

e Guest TDs are not allowed to modify the TSC. WRMSR attempts of IA32_TIME_STAMP_COUNTER result in a
#VE(NON_CONFIGURABLE_PARAVIRT).

e Guest TDs are not allowed to access IA32_TSC_ADJUST because its value is meaningless to them. If the TDX Module
supports #VE reduction, as enumerated by TDX_FEATURESO.VE_REDUCTION (bit 30), and the guest TD has set
TD_CTLS.REDUCE_VE to 1, then WRMSR or RDMSR attempts result in a #GP(0). Else, WRMSR or RDMSR attempts
result in a #VE(CONFIGURABLE_PARAVIRT).

e RDTSCP is supported. This instruction returns the contents of the IA32_TSC_AUX MSR in RCX. The Intel TDX Module
allows the guest TD to access that MSR and context-switches it on TD entry and exit as part of the VCPU state in
TDVPS.

11.17.2. TSC Deadline

Guest TDs are not allowed to access the 1A32_TSC_DEADLINE MSR directly. Virtualization of IA32_TSC_DEADLINE
depends on the virtual value of CPUID(1).ECX[24] bit (TSC Deadline). The host VMM may configure (as an input to
TDH.MNG.INIT) virtual CPUID(1).ECX[24] to be a constant 0 or allow it to be 1 if the CPU’s native value is 1.

September 2025 . Page 132 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

If the TDX Module supports #VE reduction, as enumerated by TDX_FEATURESO.VE_REDUCTION (bit 30), and the guest TD
has set TD_CTLS.REDUCE_VE to 1, it may control the value of virtual CPUID(1).ECX[24] by writing
TDCS.FEATURE_PARAVIRT_CTRL.TSC_DEADLINE. See 11.2.2 for details.

e If the virtual value of CPUID(1).ECX[24] is O, IA32_TSC_DEADLINE is virtualized as non-existent. WRMSR or RDMSR
attempts result in a #GP(0).

e If the virtual value of CPUID(1).ECX[24] is 1, WRMSR or RDMSR attempts result in a #/E(CONFIG_PARAVIRT). This
enables the TD’s #VE handler to para-virtualize the TSC deadline functionality, e.g., by requesting an (untrusted)
service from the host VMM.

TSC Deadline Service for L2 VMs

The TDX Module provides a TSC Deadline service for L2 VMs. This service does not virtualize the IA32_TSC_DEADLINE
MSR. For details, see the [TD Partitioning Spec] section titled “L2 VM TSC Deadline Support”.

11.18. Real-Time Clock (RTC)

Enumeration: TDX Module support of RTC virtualization is enumerated by the TDX_FEATURESO.NRX (bit 39), readable
by TDH.SYS.RD* and TDG.SYS.RD*.

11.18.1. RTC Virtualization
Real-Time Clock (RTC) value is the number of seconds passed since 1/1/1970. If supported, guest TDs may read an
untrusted RTC value using TDG.SYS.RD. A value of 0 indicates that no RTC is available.

Security Note: The returned RTC value is calculated based on host VMM input. The guest TD must treat this value as
untrusted and insecure.

11.18.2. RTC Configuration

The host VMM configures a base RTC value during the TDX Module initialization sequence (TDH.SYS.CONFIG) or update
sequence (TDH.SYS.UPDATE). For details, see the [ABI Spec]. Base RTC must be lower than 252. A value of 0 indicates
that no base RTC is configured. If TDX Connect is enabled, a non-0 base RTC value must be configured.

11.19. KeylLocker (KL)

Enumeration: TDX Module support of KeyLocker is enumerated by the KL bit (31) of ATTRIBUTES_FIXEDO/1 fields,
readable by TDH.SYS.RD*.

11.19.1. KeyLocker Virtualization

Guest TDs usage of KeyLocker (KL) is controlled by the ATTRIBUTES.KL bit (see the [TDX Module ABI Spec]). When KL is
supported by the CPU and ATTRIBUTES.KL is set to 1, the following KL features are available to the guest TD:

e CPUID virtualization enumerates KeyLocker availability to the guest TD. Virtual CPUID(0x19) values can be configured
by the host VMM.

e Guest TDs may enable KeyLocker by setting CR4.KL flag.

e Guest TDs may create KL handles using the ENCODEKEY* instructions, use them using AES*KL instructions, and load
Internal Wrapping Keys (IWKs) using the LOADIWKEY instruction.

The following KeyLocker features are not supported:

e Guest TDs may not use the KeyLocker backup MSRs.

11.19.2. Host VMM KeyLocker State Restoration after TDH.VP.ENTER

If the host VMM is using KL and the guest TD’s ATTRIBUTES.KL is set to 1, the host VMM must restore its own IWK after
every TDH.VP.ENTER if the IWK has changed. To avoid unnecessary IWK restore, the host VMM can check if IWK has
been changed, as follows:

1. After loading a new IWK, encode key 0 and save the resulting handle H.
2. After successful TDH.VP.ENTER to a guest TD which is allowed to use KeyLocker, encode key 0 again.
2.1. If the resulting handle is the same as H, then the VMM does not need to reload its IWK.

September 2025 . Page 133 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

2.2. Else, the host VMM needs to restore IWK, depending on its type:
2.2.1. If the IWKis "direct", then IWK restore can be done using LOADIWKEY instruction.
2.2.2. If the IWK is "randomized", then IWK restore is done using KL backup MSRs.

11.20. Software Code Prefetch

SW code prefetch is enumerated by CPUID(0x7,0x1).EDX[14]. If both the TDX Module and the CPU support it, the host
VMM can configure the virtual value of CPUID(0x7,0x1).EDX[14] to be 1, as part of the CPUID configuration parameters
of TDH.MNG.INIT.

Note: It is the TD’s responsibility to execute PREFETCHITO and PREFETCHIT1 only if the virtual value of
CPUID(0x7,0x1).EDX[14] is 1. This is not enforced by TDX.
11.21. User MSR

Intel Extended Inst. URDMSR and UWRMSR instruction specifications

CPU support of User MSRs is enumerated by CPUID(0x7,0x1).EDX[15]. If both the TDX Module and the CPU support it,
the host VMM can configure the virtual value of CPUID(0x7,0x1).EDX[15] to be 1, as part of the CPUID configuration
parameters of TDH.MNG.INIT.

e When the User MSR feature is enabled for a guest TD, it can access the IA32_USER_MSR_CTL MSR (0x1C).
e |A32_USER_MSR_CTL is always cleared on TD exit, regardless of whether this feature is enabled for the guest TD.

11.22. FRED

The host VMM can configure FRED as available to the TD, if both the TDX Module and the CPU support FRED, by
configuring both applicable CPUID bits (CPUID(7, 1).EAX[17] (FRED) and CPUID(7, 1).EAX[18] (LKGS), as 1 as part of the
CPUID configuration during TDH.MNG.INIT.

If the virtual values of CPUID(7, 1).EAX[17] (FRED) and CPUID(7, 1).EAX[18] (LKGS) are both 1, then:

e Virtual CPUID values enumerate FRED & LKGS availability to the guest TD.
e Guest TDs may enable FRED by setting CR4[32] (FRED).

e Guest TDs may access FRED MSRs.

e Guest TDs may execute FRED & LKGS ISA.

11.23. Supervisor Protection Keys (PKS)

By design, guest TD usage of Supervisor Protection Keys (PKS) is controlled by the ATTRIBUTES.PKS bit (see the [TDX
Module ABI Spec]). When PKS is supported by the CPU and ATTRIBUTES.PKS is set to 1, the following features are
available to the guest TD:

e CPUID virtualization enumerates PKS availability to the guest TD.
e Guest TDs may enable PKS by setting CR4.PKS flag.
e Guest TDs may access the PKS state using the IA32_PKRS MSR.

Note: Enumeration of User Mode Protection Keys (PKU) availability to the guest TD is configured as part of the
configuration of virtual CPUID(7,0).ECX[3].

11.24. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption
(MKTME)

Guest TDs may not directly use the Intel TME and MKTME MSRs and the PCONFIG instruction. The Intel TDX Module
supports para-virtualization of this ISA, as described below.

11.24.1. TME Virtualization

TME is enumerated by CPUID(0x7, 0x0).ECX[13]. The host VMM can configure the virtualization of this bit as enabled or
disabled on TDH.MNG.INIT.

September 2025 . Page 134 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

If the TDX Module supports #VE reduction, as enumerated by TDX_FEATURESO.VE_REDUCTION (bit 30), and the guest TD
has set TD_CTLS.REDUCE_VE to 1, it may control the value of virtual CPUID(0x7, O0x0).ECX[13] by writing
TDCS.FEATURE_PARAVIRT_CTRL.TME. See 11.2.2 for details.

If enabled, then a guest TD access to the IA32_TME_* MSRs (0x981 — 0x984) causes a #VE, allowing the guest TD’s #VE
handler to emulate the desired operation. Else, guest TD access to those MSRs causes a #GP(0).

11.24.2. MKTME Virtualization

MKTME is enumerated by CPUID(0x7, 0x0).EDX[18]. The host VMM can configure the virtualization of this bit as enabled
or disabled on TDH.MNG.INIT.

If the TDX Module supports #VE reduction, as enumerated by TDX_FEATURESO.VE_REDUCTION (bit 30), and the guest TD
has set TD_CTLS.REDUCE_VE to 1, it may control the value of virtual CPUID(0x7, 0x0).EDX[30] by writing
TDCS.FEATURE_PARAVIRT_CTRL.PCONFIG. See 11.2.2 for details.

If enabled, then the following operations cause a #VE(CONFIG_PARAVIRT). The guest TD’s #VE handler may then
communicate with the host VMM over TDG.VP.VMCALL to request the desired operation.

e Guest TD access to the IA32_MKTME_PARTITIONING MSR (0x87)
e PCONFIG execution by the guest TD

If the host VMM or guest TD configured CPUID(0x7, 0x0).EDX[18] virtualized value as 0, then:

e Guest TD access to the IA32_MKTME_PARTITIONING MSR (0x87) causes a #GP(0).
e PCONFIG execution by the guest TD causes a #UD.

11.25. Virtualization of Machine Check Capabilities and Controls

Although the guest TD is not allowed to handle machine check events, the following virtualization is used in order to
allow possible pare-virtualization behavior, e.g., future handling of MCE by the TD.

By default, the behavior is as follows:

e The values of CPUID(1).EDX[7] (MCE) and CPUID(1).EDX[14] (MCA), as seen by the guest TD, are 1.

e The value of CR4[6] (MCE), as seen by the guest TD, is 1. Guest TD attempt to set this bit to 0 results in a #VE.

e Guest TD accesses to MSRs 0x179 (IA32_MCG_CAP), MSRs 0x17A, 0x17B, 0x4DO0 (IA32_MCG_*), MSRs 0x281 through
0x29D (IA32_MCx_CTL2) and MSRs 0x400 through 0x473 (IA32_MCx_*) result in a #VE(CONFIG_PARAVIRT).

If the TDX Module supports #VE reduction, as enumerated by TDX_FEATURESO.VE_REDUCTION (bit 30), and the guest TD
has set TD_CTLS.REDUCE_VE to 1, it may control the behavior by writing TDCS.FEATURE_PARAVIRT_CTRL.MCA. See
11.2.2 for details.

If TDCS.FEATURE_PARAVIRT_CTRL.MCA is O (default), then:

e The values of CPUID(1).EDX[7] (MCE) and CPUID(1).EDX[14] (MCA), as seen by the guest TD, are 0.

e The value of CR4[6] (MCE), as seen by the guest TD, is initialized to 1. The guest TD may clear CR4.MCE but not set
it back to 1; an attempt to do so results in a #GP(0).

e Guest TD accesses to MSRs 0x179 (IA32_MCG_CAP), MSRs 0x17A, 0x17B, 0x4DO0 (IA32_MCG_*), MSRs 0x281 through
0x29D (IA32_MCx_CTL2) and MSRs 0x400 through 0x473 (IA32_MCx_*) result in a #GP(0).

If TDCS.FEATURE_PARAVIRT_CTRL.MCA is 1, then:

e The values of CPUID(1).EDX[7] (MCE) and CPUID(1).EDX[14] (MCA), as seen by the guest TD, are configured by the
host VMM.

e The value of CR4[6] (MCE), as seen by the guest TD, is initialized to 1. If virtual CPUID(1).EDX[7] is O, the guest TD
may clear CR4.MCE but not set it back to 1; an attempt to do so results in a #GP(0. Else, guest TD is allowed to modify
CR4.MCE.

e If virtual CPUID(1).EDX[14] is O, guest TD accesses to MSRs 0x179 (IA32_MCG_CAP), MSRs 0x17A, 0x17B, 0x4D0
(IA32_MCG_*), MSRs 0x281 through 0x29D (IA32_MCx_CTL2) and MSRs 0x400 through 0x473 (IA32_MCx_*) result
in a #GP(0). Else, such accesses result in a #VE(CONFIG_PARAVIRT).

September 2025 . Page 135 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

11.26. Transactional Synchronization Extensions (TSX)

Intel SDM, Vol. 1, 16 Programming with Intel TSX

The host VMM can enable TSX for a TD by configuring the following CPUID bits as enabled in the TD_PARAMS input to
TDH.MNG.INIT:

e CPUID(7,0).EBX[4] (HLE)
e CPUID(7,0).EBX[11] (RTM)

The virtual values of the above bits, as seen by the guest TD, are the bitwise AND of the real values enumerated by the
CPU and of the configuration values. To enable TSX for guest TDs, TDX requires the following conditions to be true:

e The virtual values of the HLE and the RTM bits are the same, either 0 or 1.
e The CPU supports the IA32_TSX_CTRL MSR (as enumerated by IA32_ARCH_CAPABILITIES[7]).

Note: If the real value of the HLE bit and the RTM bit are different, the host VMM must configure both virtual values
as 0.

If TSX is enabled for the guest TD:

e |A32_TSX_CTRL is accessible by the TD.
e On TD exit:
o |A32_TSX_CTRL s cleared to 0.
o On CPUs that support IA32_TSX_STORE_ADDRESS (MSR OxF3D), as indicated by
IA32_PERF_CAPABILITIES.TSX_ADDRESS[18], if the TD’s ATTRIBUTES.PERFMON is 1 then
IA32_TSX_STORE_ADDRESS is cleared to 0.

The host VMM is responsible for restoring these MSRs to their desired values, if applicable.
If TSX is disabled for the guest TD:

e CPUID(7,0).EBX bits 4 and 11 are virtualized as 0.

e |A32_TSX_CTRLis virtualized as non-existent: 1A32_ARCH_CAPABILITIES bit 7 is virtualized as 0, and TD access results
in a #GP(0).

e IfIA32_TSX_CTRL is supported by the CPU, then XBEGIN, XEND and XABORT instructions execution by the TD cause
a #UD.

11.27. Management of Idle and Blocked Conditions

Intel SDM, Vol. 3, 9.10 Management of Idle and Blocked Conditions
11.27.1. HLT Instruction

HLT executed by a guest TD results in a #VE(NON_CONFIG_PARAVIRT). The TD’s #VE handler may notify the host VMM
(using TDG.VP.VMCALL), which may schedule other software to execute on the current LP.

11.27.2. PAUSE Instruction and PAUSE-Loop Exiting
Intel SDM, Vol. 3, 25.1.3 Instructions That Cause VM Exits Conditionally
Guest TDs can execute PAUSE. However, modern enlightened guests use a VMM -provided service (hypercall) instead of

PAUSE loops — this is the expected usage for Intel TDX.

For TDs running in debug mode (ATTRIBUTES.DEBUG is 1), the host VMM may set the guest TD’s “PAUSE-loop exiting”
VM-execution control, using TDH.VP.WR.

“PAUSE-loop exiting” allows the VMM to request an exit if the guest (in ring 0) executes PAUSE in a loop (e.g., busy-wait).
This is intended to help avoid cases where a guest thread loops, waiting for another thread that is not currently scheduled
by the VMM.

11.27.3. MONITOR and MWAIT Instructions

By default, guest TDs are expected not to use MONITOR/MWAIT. The virtual value of CPUID(1).ECX[3] is, by default, 0.
Execution of MONITOR or MWAIT by a guest TD results in a #UD exception.

September 2025 . Page 136 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

However, the host VMM may configure the guest TD to allow MONITOR/MWAIT, using the CPUID configuration table
which is part of the TD_PARAMS input to TDH.MNG.INIT. Configuring the virtual value of CPUID(1).ECX[3] to 1 also
enables the TD to execute MONITOR and MWAIT.

11.27.4. WAITPKG: TPAUSE, UMONITOR and UMWAIT Instructions

The host VMM may allow guest TDs to use the TPAUSE, UMONITOR and UMWAIT instructions, if the CPU supports them,
by configuring the virtual value of CPUID(7,0).ECX[5] (WAITPKG) to 1 using the CPUID configuration table which is part
the TD_PARAMS input to TDH.MNG.INIT. Enabling CPUID(7,0).ECX[5] also enables TD access to IA32_UMWAIT_CONTROL
(MSR OXE1).

If not allowed, then TD execution of TPAUSE, UMONITOR or UMWAIT results in a #UD, and access to
IA32_UMWAIT_CONTROL results in a #GP(0).

11.28. Other Changes in SEAM Non-Root Mode

11.28.1. CET
Intel SDM, Vol. 1, 17.2.3 Supervisor Shadow Stack Token

Guest TDs should execute CPUID(7,1) and use the CET_SSS bit value returned in EDX[18] as an indication of whether
supervisor shadow stack can be enabled. The TDX Module virtualizes CPUID(7,1).EDX[18] as O if certain supervisor
shadow-stack pushes might cause VM exits, indicating to the guest TD that it should refrain from enabling supervisor
shadow stack. For details, see the [Intel SDM].

11.28.2. Tasking

Any task switch results in a VM exit to the Intel TDX Module (this is a fixed-1 exit) which then performs a TD exit to the
host VMM.

The VMM is expected not to reenter the TD VCPU since this case is non-recoverable; the instruction that caused the task
switch (CALL, JMP or IRET) will re-execute and cause another VM exit. If the task switch was incidental to an exception
delivery, then the VM entry following TDH.VP.ENTER will reattempt the delivery and cause another task switch VM exit.
The expected response from the VMM is to terminate this TD.

September 2025 . Page 137 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

12.Measurement and Attestation

12.1. Overview of the Attested Measurements and Configuration Information

The table below summarizes the attested TD measurements and configuration information. For details, see the following
sections and the TDINFO_STRUCT definition in the [ABI Spec].

Table 12.1: Attested Measurements and Configuration Information

Field Class Name Description
Parameters configured by the host | ATTRIBUTES TD’s ATTRIBUTES
VMM at TD initialization time
XFAM TD’s XFAM
MRCONFIGID Software-defined ID for non-owner-defined

configuration of the guest TD — e.g., run-time or OS
configuration

MRCONFIGSVN

SVN of MRCONFIG®

MROWNER

Software-defined ID for the guest TD’s owner

MROWNERCONFIG

Software-defined ID for owner-defined configuration
of the guest TD — e.g., specific to the workload rather
than the run-time or OS

MROWNERCONFIGSVN

SVN of MROWNERCONFIG’

Build-time measurement, finalized
at the end of TD build

MRTD

Measurement of the initial contents of the TD

Build/migration-time measurement
register, finalized at the end of TD
build and updated on migration

SERVTD_HASH

Measurement of the bound service TDs, if any

Run-time measurement registers, RTMR Run-time extendable measurement registers
updated at run time by the guest
TD using TDG.MR.RTMR.EXTEND
Fields assigned by the guest TD at MRSIGROOT Signer Roots of MRSIGNER
run time using
TDG.MR.ASSIGNSVNS, based on MRSIGNER Signer of TD’s TDSIGSTRUCT
sighature®
PRODID Product ID
ISVSVN SVNs of the TD

6 Support of MRCONFIGSVN is enumerated by TDX_FEATURESO.SEALING (bit 12), readable by TDG.SYS.RD and TDH.SYS.RD.

7 Support of MROWNERCONFIGSVN is enumerated by TDX_FEATURESO.SEALING (bit 12), readable by TDG.SYS.RD and TDH.SYS.RD.

8 Support of TDG.MR.ASSIGNSVNS and the associated fields is enumerated by TDX_FEATURESO.TD_SIGNING_AND_SVN (bit 22),
readable by TDG.SYS.RD and TDH.SYS.RD.

September 2025 Page 138 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

12.2. TD Measurement

12.2.1. MRTD: Build-Time Measurement Register
The Intel TDX Module measures the TD during the build process. The measurement register TDCS.MRTD is a SHA384
digest of the build process, designed as follows:

e TDH.MNG.INIT begins the process by initializing the digest.

e TDH.MEM.PAGE.ADD adds a TD private page to the TD and inserts its properties (GPA) into the MRTD digest
calculation.

e Control structure pages (TDR, TDCX and TDVPR) and Secure EPT pages are not measured.

e For pages whose data contributes to the TD, that data should be included in the TD measurement via
TDH.MR.EXTEND. TDH.MR.EXTEND inserts the data contained in those pages and its GPA, in 256-byte chunks, into
the digest calculation. If a page will be wiped and initialized by TD code, the loader may opt not to measure the
initial contents of the page with TDH.MR.EXTEND.

e The measurement is then completed by TDH.MR.FINALIZE. Once completed, further TDH.MEM.PAGE.ADDs or
TDEXTENDs will fail.

MRTD extension by GPA uses a 128B buffer which includes the GPA and the leaf function name for uniqueness.

12.2.2. RTMR: Run-Time Measurement Registers

The RTMR array is initialized to zero on build, and it can be extended at run-time by the guest TD using the
TDCALL(TDG.MR.RTMR.EXTEND) leaf. The syntax of the RTMR registers is designed to be similar to that of TPM PCRs,
where a register’s value after TDG.MR.RTMR.EXTEND(index=i, value=x) is:

RTMR[i] = SHA384(RTMR[i] || x);
Four RTMR registers are provided.

Typical expected usage is for TPM emulation during guest TD OS secure boot by the VBIOS.

12.2.3. SERVTD_HASH: Service TDs Measurement Register

See the discussion in 13.2.7 for details.

12.2.4. SERVTD_EXT_HASH: Service TDs Extended Measurement Register

See the discussion in 13.2.8 for details.
12.3. Security Version Numbers and Signer Attestation

If supported, guest TDs can have two groups of SVNs: statically set at TD initialization time and dynamically set at TD
runtime.

12.3.1. Static SVNs
MRCONFIGSVN and MROWNERCONFIGSVN are set at TD initialization time, as part of the TD_PARAMS input to
TDH.MNG.INIT, similarly to their corresponding field MRCONFIG and MROWNERCONFIG.

Enumeration: Support of MRCONFIGSVN and MROWNERCONFIGSVN is enumerated by TDX_FEATURESO.SEALING (bit
12), readable by TDG.SYS.RD and TDH.SYS.RD.

12.3.2. Dynamic SVNs

Dynamic SVNs are assigned at TD runtime; they may be associated with software that is measured during TD boot, for
example values in the RTMRs. Dynamic SVNs are set using the TDG.MR.ASSIGNSVNS guest-side interface function, which
is provided with a TDSIGSTRUCT containing the SVN and additional information. See the [ABI Spec] for details.

Enumeration: Support of TDG.MR.ASSIGNSVNS and the associated fields is enumerated by
TDX_FEATURESO.TD_SIGNING_AND_SVN (bit 22), readable by TDG.SYS.RD and TDH.SYS.RD.

The TD’s build time measurement (MRTD) and runtime measurements (RTMRs) can be used to measure software in the
TD that composes multiple software layers (for example, BIOS, OS, application apace, etc.). Each layer can be defined to

September 2025 . Page 139 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

use a subset of the values in MRTD/RTMRs. The TDSIGSTRUCT input to TDG.MR.ASSIGNSVNS specifies which of TDMR
and RTMRs is applicable, and a set of PRODID, ISVSVN, SIGNER, and SIGROOT field.

Theoretically, multiple layers can be supported, each with its own dynamic SVN assigned by its own TDSIGSTRUCT.
However, TDX currently supports only one SVN layer.

12.4. TD Measurement Reporting

TD attestation is initiated from inside the TD by calling TDG.MR.REPORT and specifying a REPORTDATA value.
TDG.MR.REPORT creates a TDREPORT_STRUCT structure containing the following fields:

CPUSVN: Current SVN of the CPU running the TD.
TEE_TCB_INFO: Information about the TDX Module running the TD:

e SVN and measurement of the TDX Module at the time of TD creation on the current platform.
e SVN of the current TDX Module on the current platform.

TDINFO_STRUCT: Information about the guest TD:

e TD measurements and initial configuration of the TD, calculated at TD build finalization time
(TDH.MR.FINALIZE).

e By default, SERVTD_HASH, the hash of service TDs, calculated at TD build finalization time
(TDH.MR.FINALIZE) but updated on TD migration. If TD’s ATRRIBUTES.SERVTD_EXT is 1, then
SERVTD_EXT_HASH, the hash of SERVTD_EXT_STRUCT, is used instead.

e Run-time measurement registers, updated by the guest TD using TDG.MR.RTMR.EXTEND.

e If supported, fields updated by the guest TD using TDG.MR.ASSIGNSVNS.

REPORTDATA: The caller provided REPORTDATA value.
TDREPORT_STRUCT structure and TDG.MR.REPORT are detailed in the [TDX Module ABI Spec].

TDREPORT_STRUCT is HMAC ed using an HMAC key that is designed to be accessible only to the CPU. This helps protect
the integrity of the structure and, by design, can only be verified on the local platform via the TDG.MR.VERIFYREPORT
interface function or the SGX ENCLU(EVERIFYREPORT2) instruction. By design, TDREPORT_STRUCT cannot be verified off
platform; it first must be converted into signed Quotes, as described in 12.6 below.

TDREPORT_STRUCT Version 0 or 1

TEE_TCB_INFO
MRSEAM
MRSEAMSIGNER

>———» SHA384

TEE_TCB_SVNs
SREIEOIES REPORTMACSTRUCT

Ly Ro it T REPORTTYPE(TDX)
ATTRIBUTES ETETS > Quote
XFAM »| TEE_TCB_INFO_HASH
MRTD] TD_INFO_HASH
MRCONFIGID > SHA384 ORI
MROWNER —
RTMRO..RTMR3 1
SERVTD_HASH

1Updated by the guest TD, using TDG.MR.RTMR.EXTEND

Figure 12.1: TD Measurement Reporting

The REPORTYPE field of REPORTMACSTRUCT indicates that this is a TDX report (TYPE ==0x81) and whether
SERVTD_HASH contains a valid hash of service TDs (VERSION == 1) or O (VERSION == 0). For details, see Ch. 13 and the
[ABI Spec].

September 2025 . Page 140 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

TDREPORT_STRUCT Version 2

TDREPORT_STRUCT version 2 is supported if MRCONFIGSVN and MROWNERCONFIGSVN are supported, or if
TDG.MR.ASSIGNSVNS is supported.

If the host VMM configured MRCONFIGSVN or MROWNERCONFIGSVN to non-0 values, or guest TD called
TDG.MR.ASSIGNSVNS with at least one non-0 value, then TDREPORT_STRUCT version 2 is returned by TDG.MR.REPORT,
as shown below.

TDREPORT_STRUCT Version 2
TEE_TCB_INFO LB e
MRSEAM
MRSEAMSIGNER
> SHA384
TEE_TCB_SVNs
ATTRIBUTES
REPORTMACSTRUCT
TDINFO2_STRUCT

REPORTTYPE(TDX)
ATTRIBUTES

CPUSVN
XFAM

» TEE_TCB_INFO_HASH
MRTD ¢
» TD_INFO_HASH > uote

MRCONFIGID - Q

REPORTDATA
MROWNER

MAC
RTMRO..RTMR3

——> SHA384
SERVTD_HASH
MRSIGROOT 2
MRSIGNER
ISVSVN 2
MRCONFIGSVN
1 Updated by the guest TD, using TDG.MR.RTMR.EXTEND

MROWNERCONFIGSVN 2Updated by the guest TD, using TDG.MR.ASSIGNSVNS

Figure 12.2: TD Measurement Reporting Including TDINFO2_STRUCT
12.5. Local Report Verification

A TD can verify a report generated by another TD on the same platform using the TDG.MR.VERIFYREPORT interface
function. Internally, TDG.MR.VERIFYREPORT executes the SEAMVERIFYREPORT instruction, which uses the same HMAC
key, accessible only to the CPU, that was used for generating TDREPORT_STRUCT.

September 2025 . Page 141 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Verifying Trust Domain

Reporting Trust Domain

Data

TDREPORT TDREPORT
(SEAM Report (SEAM Report
+ TD Info) + TD Info)
y

C— h 4
REPORTMAC TDG.MR.REPORT ¢

v

SEAM
TDG.MR.VERIFYREPORT REPORT Intel TDX
Function (MACed) d |
Module
v v
.
SEAMVERIFYREPORT SEAMDB_REPORT
CPU Instruction MAC Key Instruction
SEAM

Measurements

Figure 12.3: High-Level View of Local Report Verification

Local Report Verification Failure

Local report verification may fail in cases where the MAC key, held by the CPU, has changed between the generation of
the TDREPORT by TDG.MR.REPORT and its verification by TDG.MR.VERIFYREPORT. Some examples are:

e After report generation by TDG.MR.REPORT, both the reporting TD and the verifying TD have been migrated to a
different platform. Both TDs are not directly aware of the migration.

e After report generation by TDG.MR.REPORT, either the CPU microcode has been updated or the TDX Module has
been updated using the TD-preserving update process. Both TDs are not directly aware of the TDX Module update.

To account for the above cases, the following is recommended in case of local report verification failure. The verifying
TD should ask for a fresh report to be generated. The reporting TD should then generate a new report, using
TDG.MR.REPORT, and send it to the verifying TD to be verified using TDG.MR.VERIFYREPORT. This can be repeated
several times (e.g., 3 — 5 times) and/or coordinated with the host VMM.

12.6. Creating Attestations

12.6.1. Overview

To create a remotely verifiable attestation, the TDREPORT_STRUCT should be converted into a Quote signed by a certified
Quote signing key. The following models are supported for creating a Quote:

e Platforms that support Intel SGX can support Quoting Enclaves producing either TDX or SGX Quotes. A TD Quoting
Enclave, when available, will produce legacy quotes for TDX.

On platforms that support an enabled Security Engine (ESE/S3M):

e The security engine can be used to create an attestation x509 certificate.
e A Quoting TD can create legacy-style Quotes or x509 certificates. The Quoting TD itself is certified by a Security
Engine-based Attestation.

12.6.2. Intel SGX-Based Attestation

The Intel SGX attestation architecture is designed to provide facilities for multiple Quoting Enclaves from multiple
providers. This is intended to allow the host to instantiate a Quoting Enclave for Intel SGX attestations and another
Quoting Enclave for TD attestation without interference — i.e., each provider can supply its own quoting enclave, and
the quoting enclave for Intel SGX and for Intel TDX may be separate; the design does not require the quoting enclave to
run inside the TD.

September 2025 Page 142 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

12.6.2.1.

Host or Dom O Trust Domain
TD Quoting Enclave
Quote
(Signed)
(@ (G] D
TDREPORT TDREPORT Data
O (SEAM Report (SEAM Report [¢
Attest Key + TD Info) | + TD Info)
A4
TDG.MR.REPORT
Host VMM SEAM
REPORT Intel TDX
(MACed)
73 Module
v
"
CPU EVERIFYREPORT Instruction
Instruction SEAM o=
Measurements MAC Key

Figure 12.4: High-Level View of the Intel SGX-Based TD Attestation
Quote generation using a quoting enclave is typically performed as follows:

1. Guest TD invokes the TDCALL(TDG.MR.REPORT) function.

2. If the TDX Module supports TD-preserving updates, it uses the SEAMOPS(SEAMDB_REPORT) instruction to create
MAC’ed TDREPORT_STRUCT with the Intel TDX Module measurements from CPU and TD measurements from TDCS.
Else, it uses the SEAMOPS(SEAMREPORT) instruction for the same purpose.

3. Guest TD uses TDCALL(TDG.VP.VMCALL) to request that TDREPORT_STRUCT be converted into Quote.

4. The TD Quoting enclave uses EVERIFYREPORT2 to check the TDREPORT_STRUCT. This allows the Quoting Enclave to
check the report without requiring direct access to the CPU’s HMAC key. Once the integrity of the
TDREPORT_STRUCT has been verified, the TD Quoting Enclave signs the TDREPORT_STRUCT body with an ECDSA 384
signing key.

EVERIFYREPORT Failure

Report verification may fail in cases where the MAC key, held by the CPU, has changed between the generation of the

TDREPORT by TDG.MR.REPORT and its verification by EVERIFYREPORT. Some examples are:

e After report generation by TDG.MR.REPORT, the reporting TD has been migrated to a different platform. The
reporting TD is not directly aware of the migration.

e After report generation by TDG.MR.REPORT, either the CPU microcode has been updated or the TDX Module has
been updated using the TD-preserving update process. The reporting TD is not directly aware of the TDX Module
update.

To account for the above cases, the following is recommended in case of report verification failure. The Quoting Enclave

should ask for a fresh report to be generated. The reporting TD should then generate a new report, using

TDG.MR.REPORT, and send it to the Quoting Enclave to be verified using EVERIFYREPORT. This can be repeated several

times (e.g., 3 — 5 times) and/or coordinated with the host VMM.

Quote Signing Key for SGX-Based Attestation

The Intel SGX infrastructure provides primitives and a certificate infrastructure to allow Quoting Enclaves to certify their
own Quoting Keys. The Intel SGX Provisioning Certification Enclave (PCE) uses an Intel-Certified ECDSA-256 signing key

September 2025 . Page 143 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

to issue certificates to Quoting Enclaves for their attestation keys. Intel offers a service to allow third parties to download
these certificates.

Typically, on first launch, the TD Quoting Enclave generates a random ECDSA 384-bit quoting key. It then contacts the
Provisioning Certification Enclave which uses its signing key to sign the new quoting key’s public key.

Note that the TD Quoting Enclave uses an ECDSA 384 bit key, while the PCE certifies it with an ECDSA-256 key. This is
due to the limitations of the SPR platform.

12.6.3. Security Engine-Based Attestation

On supported platforms, security engine-based attestation uses the S3M or ESE for attestation, depending on the
platform type as the root for attestation, and a Quoting TD to create attestation at runtime.

A Quoting TD creates attestations similarly to how the SGX Quoting Enclave does. The Quoting TD’s attestation key is
certified by the security engine, which issues an x509-based attestation.

0. Prior to tenant TDs running, the Quoting TD starts up and generates an Attestation Key. The Quoting TD uses the
S3M/ESE to certify its Attestation Pub Key. The certificate chain, rooted in Intel, for the Attestation key will
accompany the resulting attestation created by the Quoting TD.

1. Guest TD invokes the TDCALL(TDG.MR.REPORT) function.

2. If the TDX Module supports TD-preserving updates, it uses the SEAMOPS(SEAMDB_REPORT) instruction to create

MAC’ ed TDREPORT_STRUCT with the Intel TDX Module measurements from CPU and TD measurements from TDCS.

Else, it uses the SEAMOPS(SEAMREPORT) instruction for the same purpose.

Guest TD uses TDCALL(TDG.VP.VMCALL) or VSOCK to request that TDREPORT_STRUCT be converted into Quote.

4. The Quoting TD uses TDCALL(TDG.MR.VERIFYREPORT) to verify the TDREPORT_STRUCT. This allows the Quoting TD
to verify the report without requiring direct access to the CPU’s Report MAC key. Once the integrity of the
TDREPORT_STRUCT has been verified, the Quoting TD creates a TD attestation containing the measurements from
the TDREPORT_STRUCT body, the QE Certification Data from step 0, and certification information for the ESE/S3M'’s
signing key.

w

September 2025 . Page 144 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Host or Quoting TD Tenant Trust Domain
Dom O
p| Attest Key Quote
Certificate (Signed)
’g
Attest Key
C)) @)
TDREPORT TDREPORT Data
Attest Key (SEAM Report (SEAM Report [€
TDREPORT o *TDInfo) + 7D Info)
A
ai=>rey TDX Module
Certificate TDG.MR.REPORT
VMM
e g TDG.MR.VERIFYREPORT SEAM
! REPORT
S3M/ESE Mgmt aced)
A\ 4
S3M/ESE: — v SEAMBD_REPORT
TDREPORT SEAMVERIFYREPORT Instruction
0 T - - J
PCK Key MACKe + 1D lnfo SEAM
¥ y MAC Key Measurements

Figure 12.5: Security Engine Based Attestation
12.7. TCB Recovery

The Intel TDX architecture has several levels of TCB:

e CPUHW level, which includes microcode patch, ACMs and PFAT
e Intel TDX Module software
e Attestation Enclaves which include the TD Quoting Enclave and Provisioning Certification Enclave

The TCB Recovery story is different for each level. The existing SGX TCB Recovery model for CPU level items applies in
the same way with TDX and SGX. The model requires a restart of the platform to take effect. The Intel TDX Module can
be unloaded and reloaded to reflect an upgraded Intel TDX Module. The enclaves can be upgraded at run-time, but if
the PCE is upgraded, the design requires a new certificate to be downloaded.

12.7.1. TD Preserving TDX Module Update Implications

TEE_TCB_INFO fields TEE_TCB_SVN and MRSEAM reflect the TDX Module at the time of TD creation.
TEE_TCB_INFO.TEE_TCB_SVN2 reflects the current TDX Module at the time TDG.MR.REPORT is called.

The underlying assumptions are:

e TD preserving update can only happen to a more secure TDX Module.
e Microcode updates can only happen to a more secure microcode.

12.8. Seadling

Enumeration: TDX Module support of sealing and TDG.MR.KEY.GET is enumerated by TDX_FEATURESO.SEALING (bit
12), readable by TDG.SYS.RD.

September 2025 Page 145 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

The TDG.MR.KEY.GET interface function allows a TD to request a persistent sealing key to be derived for the TD. The key
derivation is done according to a key request structure, which specifies a measurement register policy (e.g., which RTMRs
are used), TD configuration policy (e.g., which bits of the TD’s XFAM and ATTRIBUTES are used) and SVNs.

The sealing key can be used to seal information, i.e., encrypt it so later it can be decrypted by a TD that has a compatible
set of measurements, configuration and SVNs as used when deriving the sealing key. TDX sealing keys are not migratable.

Sealing keys are bound to the current platform. Thus, by default, using the hardware-based keys by migratable TD is not
allowed. A migratable TD may allow using hardware keys by setting TDCS.TD_CTLS.ALLOW_HW_KEYS to 1. In this case,
a key request done after migration will not return the same key as a key request done prior to migration.

For further details, see the [ABI Spec].

September 2025 . Page 146 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

13.Service TDs

13.1. Overview

One or more service TDs may be bound to a target TD. Service TD binding relationship has the following characteristics:

A service TD has a type (SERVTD_TYPE).

A service TD may read and/or write certain target TD metadata. Access permission to target TD metadata fields
depends on SERVTD_TYPE.

Unsolicited service TD binding is done without target TD approval. The target TD needs not be aware of the binding.
The target TD’s TDREPORT indicates binding to service TDs.

The service TD protocol consists of:

o Binding

o Metadata access

Service TD to target TD binding relationship is many-to-many

o Multiple service TDs of different types may be bound to a single target TD.

o Multiple target TDs may be bound to a single service TD.

A service TD may itself be a target TD to other service TDs.

Typical Unsolicited Service TD Binding and Metadata Access Use Case

1.

Optional Pre-Binding: During target TD build, before calling TDH.MR.FINALIZE, the host VMM calls
TDH.SERVTD.PREBIND to write the binding fields (SERVTD_HASH etc.) in the target TD’s service TD table.

Binding: Sometime later, the host VMM calls TDH.SERVTD.BIND to bind the service TD. It gets back a binding handle.
The VMM communicates the binding handle, target TD_UUID and other binding parameters to the service TD.
Metadata Access: The service TD uses TDG.SERVTD.RD/WR* to access target TD metadata.

Rebinding to the same service TD: May be required due to, e.g., both target TD and service TD have been migrated,
or a new service TD instance replaces the original one. The host VMM calls TDH.SERVTD.BIND to rebind the service
TD. It gets back a binding handle. The VMM communicates the binding handle, target TD_UUID and other binding
parameters to the service TD.

Rebinding to a Different service TD: May be required due to, e.g., upgrading a service TD to a newer service TD
version. The existing bound service TD calls the TDG.SERVTD.REBIND.APPROVE to approve the new service TD for a
target TD bound to it. The host VMM calls TDH.SERVTD.REBIND to rebind the new service TD. It gets back a binding
handle. The VMM communicates the binding handle, target TD_UUID and other binding parameters to the new
service TD.

September 2025 . Page 147 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

13.2. Service TD Binding

-
NOT_BOUND) PRE_BOUND

TDH.SERVTD.PREBIND TDH%EPRVSTT'Z\':ER,EB'ND
[OP_STATE in {UNINITIALIZED, INITIALIZED)] [OP_ n
{UNINITIALIZED, INITIALIZED}]

TDH.SERVTD.BIND

TDH.SERVTD.BIND
[SERVTD_INFO_HASH, SERVTD_TYPE
—— and SERVTD_ATTR match]

TDH.SERVTD.REBIND* .
¢« [SERVTD_BINDING_TOKEN, SERVTD_TYPE * Support is enumerated by
SERVTD_ATTR, SERVTD_EXT_HASH match] TDX_FEATURESO.SERVTD_REBIND

TDG.SERVTD.REBIND.APPROVE*
[SERVTD_INFO_HASH, SERVTD_TYPE
and SERVTD_ATTR match] /

Store accepted SERVTD_BINDING_TOKEN

Figure 13.1: Service TD Binding State Machine

13.2.1. Service TD Binding Table in the Target TD’s TDCS
5 The target TD’s TDCS holds a service TD binding table. Each row (binding slot) in the table contains the following fields,
which are detailed in the following sections:

e SERVTD_BINDING_STATE
e SERVTD_INFO_HASH
e SERVTD_TYPE
10 e SERVTD_ATTR
e SERVTD_UUID

The available number of slots in the table is enumerated by TDH.SYS.RD*.

13.2.2. SERVTD_BINDING_STATE: Service TD Binding State

SERVTD_BINDING_STATE indicates the state of the service TD binding slot. It has the following values:

15 Table 13.1: SERVTD_BINDING_STATE Definition
Value | Name Meaning
0 NOT_BOUND No service TD is bound. The binding fields in this slot are N/A.
1 PRE_BOUND No service TD is bound. SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR
have been set. They will be included in SERVTD_HASH calculation and be checked
on any following binding.

September 2025 . Page 148 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Value | Name Meaning

2 BOUND A service TD is bound. SERVTD_UUID, SERVTD_INFO_HASH, SERVTD_TYPE and
SERVTD_ATTR have been set and be checked on any following binding.
SERVTD_INFO_HASH, SERVTD_TYPE will be included in SERVTD_HASH calculation
and be checked on any following binding.

3 REBIND_BOUND | A service TD is bound and has approved a rebinding to a new service TD.

13.2.3. SERVTD_TYPE: Service TD Binding Type

A service TD implements one or more SERVTD_TYPEs. A specific SERVTD_TYPE is specified per binding; the same service
TD may be bound multiple times if it implements more than one SERVTD_TYPE.

SERVTD_TYPE controls the following:

e The target TD metadata fields that the service TD may read and/or write.
e Whether or not multiple bindings of this SERVTD_TYPE can exist at the same time for a specific target TD.

SERVTD_TYPE values supported by the TDX Module are defined in the [TDX Module ABI Spec].

13.2.4. SERVTD_ATTR: Service TD Binding Attributes

SERVTD_ATTR is a set of service TD binding attributes. Currently, all attribute bits are fixed-0, effectively setting the
following attributes. These are used for Migration TD, which is currently the only supported service TD type.

Class Binding

Rebinding can be done with any TD with the same SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR as the original
binding. Those parameters are migrated when the target TD is migrated. SERVTD_UUID is not checked; it is updated by
rebinding.

Non-Migratable Binding

Only some of the binding state of the service TD is migrated. A different service TD may be bound at the destination
platform, subject to the conditions described below.

SERVTD_BINDING_STATE, SERVTD_TYPE and SERVTD_ATTR are exported as part of the TD’s immutable state.

When importing the target TD’s mutable state to the destination platform, if the imported SERVTD_BINDING_STATE is
PRE_BOUND or BOUND, and there is already a PRE_BOUND or BOUND service TD at this binding slot, then the
SERVTD_TYPE must match. The other imported fields for that binding slot are ignored.

If the imported SERVTD_TYPE allows only a single instance of that type, no other service TD slot may have a PRE_BOUND
grlBOUND service TD of the same SERVTD_TYPE.

SERVTD_HASH and SERVTD_EXT_HASH are recalculated after all service TD bindings have been imported as part of the
immutable TD state.

IGNORE_TDINFO: TDINFO Component Filtering

IGNORE_TDINFO is a bit array which determines which component of the service TD’s TDINFO_STRUCT field is included
in the calculation of SERVTD_INFO_HASH. For details see 13.2.6 below.

13.2.5. SERVTD_UUID: Service TD Instance Identifier

TD_UUID is a 256-bit random number that serves as a universally unique identifier of a TD. TD_UUID is created by
TDH.MNG.CREATE and is stored in the TD’s TDR. When a service TD is bound to a target TD, its TD_UUID is stored in the
target TD’s service TD table slot’s SERVTD_UUID field.

13.2.6. Service TD’s Binding SERVTD_INFO_HASH Calculation

For the purpose of service TD binding, a SHA384 hash of the service TD’s measurable attribute is calculated in a similar
way to the calculation done by TDG.MR.REPORT (see 12.4), except that filtering is applied based on the binding
SERVTD_ATTR:

September 2025 . Page 149 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

e The SERVTD_ATTR.IGNORE_TDINFO selects which TDINFO_STRUCT field is ignored (a value of 0 is used in the

calculation).
Filter by
Service TD’s SERVTD_ATT
TDINFO_STRUCT IGNORE
ATTRIBUTES »>
XFAM » Service TD Binding Table in Ta CS
MRTD »> SERVTD_ SERVTD_ | SERVTD_ D_
MRCONFIGID R BINDING_ . (NFO_ TYPE
CONFIG 7 Filter by ATE HASH
MROWNER > .
—— SHA384 N SEEXLD;:HR -
RTMRO > — 1
BINDING
RTMR1 >
RTMR2 >
RTMR3 > -
SERVTD_HASH >

13

13

13

Figure 13.2: SERVTD_INFO_HASH Calculation

13.2.7. Target TD’s SERVTD_HASH Calculation

SERVTD_HASH is a single field that summarizes all the service TDs bound or pre-bound to the target TD in an unsolicited
mode. SERVTD_HASH is calculated at the end of TD build (by TDH.MR.FINALIZE) and on TD import (by
TDH.IMPORT.STATE.IMMUTABLE).

SERVTD_HASH Calculation on Finalization of TD Build

2.7.1.
On TD build, SERVTD_HASH is calculated by TDH.MR.FINALIZE. At that time, the binding information for all bound or pre-
bound service TDs is known.

2.7.2. SERVTD_HASH Calculation on TD Import

On TD import, SERVTD_HASH is recalculated by TDH.IMPORT.STATE.IMMUTABLE. The imported binding information is
checked but does not replace the existing binding information. E.g., the Migration TD bound on the source platform may
have a different INFO_HASH than that of the Migration TD bound on the destination platform. The recalculated
SERVTD_HASH reflects the service TDs bound on the destination platform.

The reason for this recalculation is to narrow down the TCB for the migrated TD attestation. E.g., suppose the Migration
TD on either or both sides are malicious and can forge any migration information. Even in this case the target TD’s

-23ttestation is based on information collected by the TDX Module. Itis independent of any TD and reflects the true identity
of the service TDs bound to the target TD.

SERVTD_HASH Calculation Method

SERVTD_HASH is calculated as follows:

1. Get all service TD binding slots whose SERVTD_BINDING_STATE is not NOT_BOUND.

2. Sort by SERVTD_TYPE as the primary key, SERVTD_INFO_HASH as a secondary key (if multiple service TDs of the same
type are bound).

Concatenate SERVTD_INFO_HASH, SERVTD_TYPE and SERVTD_ATTR of each slot

Concatenate all slots.

5. Calculate SHA384.

W

September 2025 . Page 150 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Target TD’s
TDINFO_STRUCT

ATTRIBUTES

Service TDs Binding Table in Target TD’s TDCS

XFAM
Slot | SERVTD_ SERVTD_ | SERVTD_ | SERVTD_ MRTD
BINDING_ | INFO_ TYPE ATTR

STATE HASH MRCONFIGID

v

0 Sort by MROWNER

TYPE
RTMR1

RTMR2

N-1 RTMR3

SERVTD_HASH

Figure 13.3: SERVTD_HASH Calculation

13.2.8. Target TD’s SERVTD_EXT_HASH Calculation

SERVTD_EXT_HASH Calculation on Finalization of TD Build

5 On TD build, SERVTD_EXT_HASH is calculated by TDH.MR.FINALIZE. At that time, the binding information for all bound
13.28fpre-bound service TDs is known.

SERVTD_EXT_HASH Calculation on TD Import

13288 TD import, SERVTD_EXT_HASH is recalculated by TDH.IMPORT.STATE.IMMUTABLE. The imported binding information

is checked but does not replace the existing binding information. E.g., the Migration TD bound on the source platform

10 may have a different INFO_HASH than that of the Migration TD bound on the destination platform. The recalculated
SERVTD_EXT_HASH reflects the service TDs bound on the destination platform.

The reason for this recalculation is to narrow down the TCB for the migrated TD attestation. E.g., suppose the Migration
TD on either or both sides are malicious and can forge any migration information. Even in this case the target TD’s
attestation is based on information collected by the TDX Module. Itis independent of any TD and reflects the true identity

15 13_2_ngche service TDs bound to the target TD.

SERVTD_EXT_HASH Calculation Method

SERVTD_EXT_HASH is calculated as follows:

1. Ifnoservice TD is bound to the TD, SERVTD_EXT_HASH is 0.
2. Fill the SERVTD_EXT_STRUCT as detailed in the figure below.
20 3. Calculate SHA384 hash of the SERVTD_EXT_STRUCT structure.

Target TD’s TDCS
~ SERVTD_EXT_STRUCT
SERVTD_INIT_INFO_HASH
SERVTD_INIT_ATTR (| SERVTD_INIT_INFO_HASH | |
INIT_CPUSVN)1 SERVTD_INIT_ATTR
S
INIT_TEE_TCB_SVN — INIT_CPUSVN
INIT_TEE_MODEL) INIT_TEE_TCB_SVN ——| SHA384 | » SERVTD_EXT_HASH
_ INIT_TEE_MODEL

Service TDs Binding Table | SERVTD CUR INFO HASH
Entry in Target TD’s TDCS —_— —

»| SERVTD_CUR_ATTR)
BINDING_STATE
INFO_HASH —
TYPE
ATTR

Figure 13.4: SERVTD_EXT_HASH Calculation

Section 2: Intel TDX Module Architecture Specification

September 2025 . Page 151 of 196

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

13.2.9. Binding Handle

The binding handle is used as a shortcut, to quickly identify both the target TD and the binding slot. It should be noted
that the target TD identity is verified by its TD_UUID; the binding handle does not replace it. The binding handle is not a
secret.

The binding handle is calculated from the following variables, using a simple addition:

e Least significant 64 bits of SERVTD_UUID — this serves to obfuscate the handle, so the service TD does not use HPA
or slot number directly.

e Target TD’s TDR HPA (platform-specific unique identifier of the target TD)

e Target TD’s binding slot number

Given the handle, the TDX Module can reconstruct TDR_HPA and the binding slot number.

The binding handle is platform-specific and must be recreated after migration. This may be triggered when the service
TD attempts to access target TD metadata using TDG.SERVTD.RD/WR* and an error is returned.

13.3. Service TD Rebinding

13.3.1. Overview

Enumeration: TDX Module support of Service TD rebinding is enumerated by TDX_FEATURESO.SERVTD_REBIND (bit
48), readable using TDH.SYS.RD*.

If supported by the TDX module, it is possible to rebind a new service TD to a target TD. Rebinding is possible if the
currently bound service TD approves the new service TD.

13.3.2. Typical Rebinding Flow

Sequence outlines the rebind process of a target TD from a current bound service TD to a new service TD.

1. Prerequisite:
1.1. The old service TD is bound to the target TD.
2. New Service TD Setup:
2.1. The host VMM launches the new service TD.
2.2. The host VMM instructs the existing service TD to initiate a rebind. It provides it with a list of binding handles
for each of the currently bound target TDs.
3. Quote Exchange and Verification:
3.1. The existing service TD performs a key exchange with the new service TD, creating a secure communication
channel between the two service TDs.
3.2. The two service TDs exchange quotes and approve the rebind according to their policies.
3.3. The two service TDs agree on a rebind session token.
3.4. The new service TD stores the rebind session token in its TDCS, allowing the TDX module to read the value.
3.5. The new service TD stores its SERVTD_ATTR in its TDCS, allowing the TDX module to read the value.
4. Rebind Process for each Bound TD:
4.1. The existing service TD sends the target TD’s SERVTD_EXT information to the new service TD.
4.2. The new service TD verifies that the SERVTD_EXT is acceptable by its policy.
4.3. The existing service TD approves the rebind by calling TDG.SERVTD.REBIND_APPROVE, providing the rebind
session token.
4.4. The host VMM rebinds the new service TD using TDH.SERVTD.REBIND.

Note: Until the new service TD is bound, the host VMM can use the existing service TD. After a successful rebind to
the new service TD, the host VMM will not be able to use the existing service TD.

The diagram below shows the rebind flow.

September 2025 . Page 152 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification

348549-007US

Existing Service TD Host VMM New Service TD TOX_Module |
| | 1 Launch Service TD | |
Toop Tror each D1 ' :
| 2 TDH. SERVTD.BIND (Existing Service TD, slot, servtd_attr, servtd_type, TD_TDR) !

| 3 Launch New Service TD

| ¢4 rebind (list of old_binding_handles)

| 5 Quote(Existing Service TD), key exchange messages _|

| 6 Quote(Existing Service TD), key exchange messages _|

|7 Verify existing service TD as acceptable source

| 8 TDG.VM.WRITE(rebind_session_token)

|9 Quote(New Service TD), rebind_session_token

|« 10 Quote(New ServiceTD), rebind_session_token

| 11 Verify new service TD as acceptable target

loop) | [for each bound TD1

1 12 TD's SERVTD_EXT information

| 13 TD's SERVTD_EXT i
V | 14 Verify target TD's SERVTD_EXT information is consistent with Existing Service TD |

| 15 Verify target TD's SERVTD_EXT information s approved by the Service TO policy |
| 16 Calculate the SERVTD_EXT HASH from the SERVTD_EXT information

| 17 TDG.VM.WRITE(approved servtd_ext hash)

| 18 TDG.VM.WRITE(servd_rebind_attr)

| 19 TDG.SERVTD.REBIND_APPROVE (rebind_session_token!, old_binding_handle, TD_UUID)

20 Save the rebind_session_token in the target TD

| 21 TDH.SERVTD.REBIND (New Service TD, slot, New Service TD Attributes, Service TD Type, TD_TDR)

| 22 Verify that the new Service TD's rebind_session_token equals to target TD's rebind_session_token

|
| 23 Calculate and verify that the TD's SERVTD_EXT hash equals to the New Service TD accepted hash
[
| 24 Verify that the Service TD Attributes input equals to servtd_rebind_attr
« 1
25 Cleanup; : |
| 26 TDG.VM.WRITE(servtd_rebind_accept_token, 0}
27 shutdown(); !
| 28 Shutdown();
[Gxsting serviee 0 [Fiost vi] [Tox roaute|
Figure 13.5: Service TD Rebind Flow
13.4. Target TD Metadata Access by a Service TD

13.4.1. TDG.SERVTD.RD/WR: Metadata Read/Write Interface Functions

5 TDG.SERVTD.RD and TDG.SERVTD.WR are similar to other metadata access functions, e.g.:

e Host-side: TDH.MNG.RD/WR
e Guest-side: TDG.VM.RD/WR
Refer to 18.6 for a description of the TDX Module metadata interface.

Input Operands
10 e Target TD_UUID, uniquely identifying the target TD
e Binding handle, identifies the binding slot and a shortcut for identifying the target TD
e Asingle metadata field ID or metadata field list
Output Operand
e For asingle field access: Field value
15 Operation
1. Calculate the target TD’s TDR HPA and binding slot number from the binding handle.
2. Check that the target TD_UUID is the same as specified.
2.1. A special case (used by Migration TDs) is when the binding had been done on destination platform before the
TD was imported. In this case the target TD_UUID is overwritten at the beginning of import, as part of the TD’s
20 immutable state import by TDH.IMPORT.STATE.IMMUTABLE. The pre-import TD_UUID is saved in the target
TD’s TDCS. If the specified target TD_UUID doesn’t match the actual value, but matches the pre-import value,
a status code is returned to the service TD, with the updated TD_UUID.
3. Get the binding parameters from the target TD’s service TD table binding slot.
4. Check that the service TD’s TD_UUID is equal to the target TD’s bind slot’s SERVTD_UUID.
25 5. Access the metadata (similar to other metadata access operations).

September 2025

Page 153 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

13.4.3.1.

13.4.2. Metadata Access Error Handling

TDG.SERVTD.RD/WR interface functions run in the context of the service TD but access the target TD’s control structures.
This introduces an opportunity for the service TD to create a denial-of-service to the host VMM, which is handled as
described below.

Local Errors (in the Service TD Context)

Local errors that only impact the service TD context are handled normally, as in other TDCALL flows. These include, e.g.,

the following cases:

e Errors such as incorrect service TD state result in an error code returned to the caller service TD.

e EPTviolations when accessing the service TD’s memory cause a fault-like TD exit ; The VMM may resolve the situation
(e.g., TDH.EXPORT.UNBLOCKW if the service TD is being live-migrated) and resume the service TD.

Cross-TD Errors

Cross-TD errors impact the target TD. For example, errors may happen due to the target TD state, e.g., the target TD may

be migrated or may be torn down. The service TD may not be aware of the target TD state when invoking the interface

function.

Cross-TD errors cause a trap-like TD exit:

1. TDG.SERVTD.RD/WR* flow sets output operands (e.g., completion status returned in RAX) and advances the virtual
CPU state to the next service TD guest instruction, but TD-exits immediately before resuming the guest TD.

2. The host VMM may take action to detect denial of service, e.g., the guest calling TDG.SERVTD.RD/WR* in a tight loop.

3. The host VMM may let the service TD resolve the situation by resuming it, using TDH.VP.ENTER. On TD entry, the
service TD gets the status code as returned by TDG.SERVTD.RD*/WR*,

13.4.3. Cross-TD Concurrency Handling: Maintaining Host-Side Priority

Problem Description

Host VMM access to the target TD has a higher priority than service TD access to that target TD. This helps mitigate

denial-of-service cases such as when the service TD loops on TDG.SERV.RD/WR*, locking target TD resources and

preventing the host VMM from doing host-side operations that require access to such resources.

Applicable target TD resources are, e.g.:

e TDG.SERV.RD/WR locks the target TD’s TDR in a shared mode, to help ensure that the target TD is available
throughout the guest-side flow. This may interfere with critical host-side operations (e.g., disabling a TD) that require
locking that target TD’s TDR in an exclusive mode.

e TDG.SERV.RD/WR locks the target TD’s TDCS.OP_STATE to help ensure that OP_STATE doesn’t change in a way that

prevents access during the guest-side flow. This may interfere with critical host-side operations (e.g., pausing a TD

13.43.2 during export) that require locking that target TD’s OP_STATE in an exclusive mode.

We currently assume that guest-side flows can only acquire locks in shared mode; thus, they only compete with the host-
side flows acquiring locks in exclusive mode.

Solution

A new HOST_PRIORITY flag is added to shared/exclusive locks protecting resources that may be accessed by the host
VMM and a guest service TD. For details, see 18.1.4.

13.5. Service TD Interface Functions Summary

This section provides a short summary of the service TD interface functions. A detailed specification is provided in [TDX
Module ABI Spec].

September 2025 . Page 154 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification 348549-007US

Table 13.2: Service TD Interface Functions

Name

Description

TDH.SERVTD.BIND

Bind a service TD to the target TD. Must either be done before the target
TD’s measurements have been finalized, or match the parameters of a pre-
bound service TD.

TDH.SERVTD.REBIND

Bind a new service TD to the target TD, to replace an existing service TD
which is already bound to the target TD. The rebinding must have been
approved by the existing service TD.

TDH.SERVTD.PREBIND

Pre-bind a service TD to the target TD, given its SERVTD_INFO_HASH, type
and attributes. This function enables the actual service TD to be bound
later, even after the target TD’s measurements have been finalized.

TDG.SERVTD.RD

Used by a service TD to read TD-scope metadata of the target TD.

TDH.SERVTD.REBIND.APPROVE

Used by a service TD to set a secret rebind session token, to approve
rebinding with a new service TD.

TDG.SERVTD.WR

Used by a service TD to write TD-scope metadata of the target TD.

September 2025

Page 155 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

14.1/0 Support (without TDX Connect)

This chapter specifies the Intel TDX 1/O model (for TDX Module versions and platforms that don’t support TDX Connect).
14.1. Overview

Intel TDX architecture does not prescribe a specific software convention to perform I/O from the guest TD. Guest TD
providers have many choices to provide I/O to the guest. The common I/O models are emulated devices, para-virtualized
devices, SRIOV devices and Direct Device assignments. Guest TD providers can choose to offer combinations of 1/0
models based on the workload and use case. To virtualize MMIO, the following options can be utilized:

e Para-Virtualized Drivers can replace MMIO accesses with TDG.VP.VMCALL to invoke VMM provided MMIO
emulation functions.

e MMIO Emulation by #VE Handlers can use non-para-virtualized drivers in the guest TD, with the emulation
performed by the #VE handler. EPT and #VE mechanisms can be used to reflect violations to the #VE handler in
the guest TD on access to virtual MMIO ranges. These violations can invoke VMM-provided MMIO emulation
functions through TDG.VP.VMCALL. In this model, the #VE handler is expected to emulate the faulting instruction
in the guest TD.

14.2. Paravirtualized I/0

Para-virtualization (e.g., using virtio APIs in KVM, etc.) helps provide a mechanism for the guest TD to use devices on the
host machine that are owned and managed by the VMM. The guest TD drivers can use the TDG.VP.VMCALL function to
invoke the functions provided by the VMM to perform 1/0. The TD drivers must ensure that the data buffers passed
to/from functions invoked using TDG.VP.VMCALL are placed in the TD’s shared memory space.

14.3. MMIO Emulation and Emulated Devices

An alternate technique that the guest TD may employ to invoke VMM functions for 1/0 is to emulate MMIO access from
legacy device drivers. To support this use model, the VMM may enable reflection of EPT violation to emulated MMIO
guest physical addresses as virtualization exceptions (#VE), as described in 11.14. A #VE exception handler in the guest
TD OS can emulate the instruction causing the #VE, and as part of the emulation, it can invoke the 1/0 functions provided
by the VMM using TDCALL(TDG.VP.VMCALL). Similar to the paravirtualized /O model, the TD software must ensure that
the data buffers passed to/from functions invoked using TDG.VP.VMCALL are placed in the TD’s shared memory space.

14.4. Direct Device Assignment (DDA) and SRIOV

The VMM may assign devices directly to the guest TD. The addresses mapping the MMIO resources of such devices must
be mapped in the shared memory space of the TD. When submitting data buffers to these devices, the guest TD must
locate the data buffers in shared memory such that the directly assigned device can move data in/out of such buffers
using DMA. The data buffers placed in shared memory should be programmed in IOMMU page tables.

The SRIOV virtual function devices assigned to guest TD also follow the DDA guidelines stated above with respect to
MMIO and data buffers. The control plane of the virtual function would use the soft or hard mechanism to configure the
virtual functions:

e The soft mechanism would use para-virtualization to configure the virtual function.
e The hard mechanism would use hardware mailboxes accessed using MMIO in the shared memory region.

14.5. IOMMU - DMA Remapping

The IOMMU uses the VT-d remapping tables to translate GPA in the DMA from device to HPA. The VT-d remapping tables
will reflect the mapping of memory used by 1/0O devices in the guest TD. The programming of the VT-d remapping tables
and management will be done by the VMM.

Only shared GPA memory should be mapped in the VT-d tables:

e If the result of the translation results in a physical address with a TD private key ID, then the IOMMU will abort the
transaction and report a VT-d DMA remapping failure.

September 2025 . Page 156 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

e Ifthe GPA in the transaction that is input to the IOMMU is private (SHARED bit is 0), then the IOMMU may abort the
transaction and report a VT-d DMA remapping failure, even if the translated physical address is with a non-private
HKID. This is intended to support debug wherein a TD or VMM could program a bad GPA into the device.

14.6. Shared Virtual Memory (SVM)

Shared Virtual Memory enables applications to access buffers directly accessed by the devices. The VT-d tables help
provide the mechanism to map application buffers using the first level and second-level page tables to provide
applications access to the same memory accessed by devices.

SVM should be avoided because VT-d tables can only map shared memory.

September 2025 . Page 157 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

15
30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

15.Debug and Profiling Architecture

The Intel TDX Module debug architecture includes the following debug facilities:
On-TD Debug: Facilities for debugging a guest TD using software that runs inside the TD

Off-TD Debug: Facilities for debugging a guest TD, configured in debug mode, using software that runs outside the TD
15.1. On-TD Debug

Intel SDM, Vol. 3, 17 Debug, Branch Profile, TSC and Intel Resource Director Technology (Intel RDT) Features
15.1.1. Overview

On-TD debug means that the TD software is using CPU debug capabilities. A debug agent inside the guest TD can use
available CPU debug features and — if needed — interact with external debug entities (e.g., a debugger running in a VM
on the same platform, or a debugger running on another platform) via standard I/O interfaces. The Intel TDX Module is
designed to virtualize and isolate TD debug capabilities from the host VMM and software. On-TD debug can be used for
production or debug TDs —i.e., regardless of the guest TD’s ATTRIBUTES.DEBUG state.

Guest TDs are allowed to use almost all architectural debug features supported by the processor, e.g.:

e Single stepping

e Code, data and I/O breakpoints
e INT3

e Bus lock detection

e DR access detection

e TSXdebug

However, the TDX architecture does not allow guest TDs to toggle IA32_DEBUGCTL uncore PMI enabling bit (13).
Guest TDs are allowed to use almost all architectural tracing features, e.g.:

e LBR (if allowed by the TD’s XFAM, see 11.8)
e PT(if allowed by the TD’s XFAM, see 11.8)
e BTS

e PEBS

e PERF_METRICS

However, the TDX architecture does not allow guest TDs to use BTM.

14812, Generic Debug Handling

Context Switch

122,
By design, the Intel TDX Module context-switches all debug/tracing state that the guest TD is allowed to use. The host

VMM'’s state of those resources is either restored or initialized following a TD entry/exit. For details, see the [ABI Spec]
definition of TDH.VP.ENTER.

IA32_DEBUGCTL (MSR 0x1D9) Virtualization
Intel SDM, Vol. 3, 17.4.1 IA32_DEBUGCTL MSR

By design, IA32_DEBUGCTL (MSR 0x1D9) access by the guest TD is restricted as follows:

e Guest TD attempts to set any of the architecturally reserved bits 63:16 and 5:3 result in a #GP(0).

e Guest TD attempts to set bit 14 (FREEZE_WHILE_SMM) to 1 when the virtual value of IA32_PERF_CAPABILITIES[12]
(FREEZE_WHILE_SMM_SUPPORTED) is 0 results in a #GP(0). See 15.2 below for Performance Monitoring details.

e Guest TD attempts to set bit 15 (RTM_DEBUG) to 1 when the virtual value of CPUID(7,0).EBX[11] (RTM) is O results
in a #GP(0).

e Guest TD attempts to set TDX-disallowed values result in a #/E(UNSUPPORTED_FEATURE). This includes the
following cases:
o Enable BTM by setting bits 7:6 to Ox1 (see details in 15.1.3 below).

September 2025 . Page 158 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

e Uncore PMlI is virtualized as disabled; bit 13 is read as 0 and ignored on write (see 15.5 below).

15.1.3. Debug Feature-Specific Handling

The following table discusses how specific debug features are handled.

Table 15.1: Debug Feature-Specific Handling

Debug Feature

How the Feature is Controlled

Handling

Hardware
Breakpoints

e DR7, DR0O-3 and DR6

No special handling: DRs are context-switched.

General Detect

e DR7 bit 13 (GD)

No special handling: DR7 is context-switched.

TSX Debug

e DR7 bit 11 (RTM)
e IA32_DEBUGCTL bit 15 (RTM)

No special handling: DR7 and IA32_DEBUGCTL are
context-switched.

Single Stepping

e RFLAGS bits 18 (Trap Flag) and
16 (Resume Flag)

e IA32_DEBUGCTL bit 1 (BTF)

No special handling: RFLAGS and IA32_DEBUGCTL are
context-switched.

Bus-Lock e |A32_DEBUGCTL bit 2 No special handling: IA32_DEBUGCTL is context-
Detection (BUS_LOCK_DETECT) switched.
Software None No special handling: software breakpoints are stateless.

Breakpoints (INT1,
INT3)

Branch Trace
Message (BTM)

e IA32_DEBUGCTL bits 6 (TR)
and 7 (BTS)

Not allowed: when a guest TD attempts to set

IA32_DEBUGCTL[7:6] to 0x1, the Intel TDX Module injects

a #VE(UNSUPPORTED_FEATURE) (see 15.1.2 above).

In debug mode (ATTRIBUTES.DEBUG == 1), the host VMM

is allowed to activate BTM by setting the above bits to
Ox1.

Branch Trace Store
(BTS)

e IA32_DEBUGCTL bits 6 (TR), 7
(BTS), 8 (BTINT), 9
(BTS_OFF_0S) and 10
(BTS_OFF_USR)

No special handling: 1A32_DEBUGCTL and IA32_DS_AREA

are context-switched.
Notes:

The guest TD can configure BTS to raise PMI on buffer
overflow (by setting BTINT = 1). However, since PMls
are virtualized by the host VMM, the guest TD should
be ready to handle spurious, delayed and dropped
PMIs. See Perfmon discussion in 15.2 below.

BTS may allow the guest TD to hang the machine if
BTS record generation causes a #PF or a #GP(0),
because the act of getting to the exception handler
may deliver another BTS. It is highly recommended
that the host VMM enables instruction timeout TD
exit.

September 2025

Page 159 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification 348549-007US

Debug Feature

How the Feature is Controlled

Handling

Processor Trace
(PT)

e IA32_RTIT_* (MSR 0x560 —
0x587)

e Requires VMM’s consent on
TD initialization by setting
TD_PARAMS.XFAM[8] to 1

e Setting
IA32_RTIT_OUTPUT_BASE with
a shared GPA is discouraged®.

PT state handling as part of the extended feature set
state is discussed in 11.8.

On hybrid SOCs, CPUID(0x14,0).ECX[31] (IP values contain
linear IP) is always virtualized as 0.

Architectural Last
Branch Records
(LBRs)

e |A32_LBR_CONTROL
e Requires VMM’s consent on

TD initialization by setting
TD_PARAMS.XFAM[15] to 1

LBR state handling as part of the extended feature set
state is discussed in 11.8.

On hybrid SOCs, CPUID(0x1C).EAX[31] (IP values contain
linear IP) is always virtualized as 0.

Non-Architectural
LBRs

e IA32_DEBUGCTL bit O (LBR)

Guest TD attempt to set IA32_DEBUGCTL[O] is ignored by
the CPU.

15.2. On-TD Performance Monitoring

Intel SDM, Vol. 3, 18 Performance Monitoring
15.2.1. Overview

If the TDX Module supports on-TD performance monitoring, then the host VMM controls whether a guest TD can use the
performance monitoring ISA using the TD’s ATTRIBUTES.PERFMON bit — part of the TD_PARAMS input to TDH.MNG.INIT
(see the [TDX Module ABI Spec]).

By design, if a guest TD is allowed to use performance monitoring, then:

e The guest TD enumerates native architectural Perfmon capabilities via CPUID leaf Ox0A.

e Theguest TDis allowed to use all Perfmon ISA. This includes executing the RDPMC instruction and accessing Perfmon
MSRs (see 15.2.3 below).

e Perfmon state is context-switched by the Intel TDX Module across TD entry and exit transitions.

Context-switching the Perfmon state has a performance impact. TD entry and exit latencies are longer than when a guest
TD is not allowed to use Perfmon.

By design, if a guest TD is not allowed to use performance monitoring, then:

e The guest TD enumerates no architectural Perfmon capabilities. CPUID leaf Ox0A returns all Os.
e The guest TD is not allowed to use Perfmon ISA, including RDPMC.
e Perfmon state is not context-switched across TD entry and exit transitions.

Regardless of Perfmon enabling, per the design:

e |A32_DS_AREA MSR is context-switched across TD entry and exit transitions.

e Counter freeze control (IA32_DEBUGCTL bit 12) is context-switched across TD entry and exit transitions.

e The uncore PMI enable bit (IA32_DEBUGCTL bit 13) is preserved during SEAM mode execution, including Intel TDX
Module and guest TD execution. This bit is virtualized to the guest TD as 0, and the TD is prevented from setting it.
See 15.5 below for details.

See also 15.1 above.
The Intel TDX Module is designed to support the following performance monitoring capabilities:

e Architectural performance monitoring version 5, described in [Intel SDM, Vol. 3, 18.2.5)
e Exactly 8 performance monitoring counters (IA32_PMCO through IA32_PMC7)

9 The CPU does not allow setting the IA32_RTIT_OUTPUT_BASE value’s SHARED bit if it is outside the physical address bits. E.g., when
GPAW is 48 and the physical address width is 46. A TD is not typically aware of the physical address width.

September 2025 . Page 160 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

e Up to 7 fixed counters (IA32_FIXED _CTRO through IA32_FIXED_CTR7)

e Some non-architectural MSRs (see 15.2.3 below)

e |f the TDX Module supports Architectural PEBS (Virtual CPUID(0x23, 0).EAX[5] is configurable), and the CPU supports
this feature, the host VMM can enable guest TDs to use Architectural PEBS. The host VMM can limit the TD to using
only a subset of the counters with Architectural PEBB. In this case, the host VMM must reset the Architectural PEBS
control MSRs for the disallowed counters before calling TDH.VP.ENTER.
Else (the TDX Module does not support Architectural PEBS, virtual CPUID(0x23, 0).EAX[5] is not configurable), guest
TDs are not allowed to use this feature. In this case, if the CPU does support Architectural PEBS, the host VMM must
reset all Arch PEBS configuration MSRs (see below) before calling TDH.VP.ENTER on a Perfmon-allowed TD.

15.2.2. Performance Monitoring CPUID Virtualization

CPUID(0xA) is the legacy Perfmon leaf. CPUID(0x23) is the new Perfmon leaf, supported if CPUID(7,1).EAX[8] is 1.

Both leaves are virtualized to the guest TD if ATTRIBUTES.PERFMON is 1. CPUID(0x23) is virtualized as O if the virtual

value of CPUID(7,1).EAX[8] is O.

TDX does not allow the host VMM to directly configure the virtualization of CPUID(0xA) and CPUID(0x23).

15.2.3. Performance Monitoring MSRs

Overview

5 Z'Ia'hle following tables describe TDX handling of MSRs used by Perfmon:

Table 15.2: Performance Monitoring MSRs

MSR Comments Enumeration Reference
1A32_PMCx multiple MSRs x < CPUID(0x0A).EAX[15:8])
I1A32_A_PMCx Aliases of Same as IA32_PMCx [Intel SDM,
IA32_PMCx Vol. 3,
21.2.6]
IA32_PERFEVTSELxX multiple MSRs Same as 1A32_PMCx
IA32_PMC_GPn_CTR Aliases of (x < CPUID(0x0A).EAX[15:8]) &&
IA32_PMCx ((CPUID(7,1).EAX[8] == 0) | |
(CPUID(0x23,0).EAX[1] == 0) | |
(CPUID(0x23,1).EAX[n] == 1))
IA32_PMC_GPn_CFG_A Aliases of Same as IA32_PMC_GPn_CTR
IA32_PERFEVTSELx
IA32_FIXED_CTRx multiple MSRs (x < CPUID(0X0A).EDX[4:0]) | | [Intel SDM,
(CPUID(OX0A).ECX[x] == 1)) Vol. 3,
21.2.5.2]
The Intel TDX Module supports counters 0
through 6, if supported by the CPU.
IA32_PMC_FXn_CTR Aliases of ((x < CPUID(Ox0A).EDX[4:0]) | |

IA32_FIXED_CTRx

(

(CPUID(OX0A).ECX[n] == 1)) &&
((CPUID(7,1).EAX[8] == 0) ||
(CPUID(0x23,0).EAX[1] == 0) | |
(CPUID(0x23,1).EBX[n] == 1))

The Intel TDX Module supports counters 0
through 6, if supported by the CPU.

IA32_FIXED_CTR_CTRL

IA32_PERF_METRICS

IA32_PERF_CAPABILITIES[15]

September 2025

Page 161 of 196

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Base Spec

Section 2:

Intel TDX Module Architecture Specification

348549-007US

MSR Comments Enumeration Reference
IA32_PERF_CAPABILITIES
MSR_OFFCORE_RSPx 2 MSRs, non-

architectural
IA32_PERF_GLOBAL_STATUS
IA32_PERF_GLOBAL_CTRL
IA32_PERF_GLOBAL_STATUS_RESET | Command MSRs —
IA32_PERF_GLOBAL_STATUS_SET not context-

switched
IA32_PERF_GLOBAL_INUSE
IA32_PMC_GPn_CFG_C Architectural PEBS | CPUID(7,1).EAX[8] &&

event control CPUID(0x23,0).EAX[5] &&

CPUID(0x23,5).EAX[n]

IA32_PMC_FXn_CFG_C Architectural PEBS | CPUID(7,1).EAX[8] &&

fixed counter CPUID(0x23,0).EAX[5] &&

control CPUID(0x23,5).ECX[n]
IA32_PEBS_BASE?® CPUID(7,1).EAX[8] &&
IA32_PEBS_INDEX CPUID(0x23,0).EAX[5]

Table 15.3: Legacy PEBS MSRs

MSR Comments Enumeration Reference

IA32_PEBS_ENABLE

non-architectural

IA32_MISC_ENABLE[12]

MSR_PEBS_DATA_CFG

non-architectural

IA32_MISC_ENABLE[12]

MSR_PEBS_LD_LAT

non-architectural

IA32_MISC_ENABLE[12]

MSR_PEBS_FRONTEND

non-architectural

IA32_MISC_ENABLE[12]

Not supported on E-cores

15.2.3.2.

MBSR virtualization is described in 1

1.10.

New Perfmon MSR Range

Intel SDM, Vol. 3, 21.2.6.1 Performance Monitoring MSR Aliasing

A new range of Perfmon MSRs is supported by newer CPUs, which support Perfmon version 6, as enumerated by
CPUID(0xA).EDX[7:0]. The new MSR index range, starting at 0x1900, includes (among other) MSRs which are aliases of

legacy MSRs.

Table 15.4: New Perfmon MSR Aliases

Legacy MSR

New MSR

IA32_A_PMCn

IA32_PMC_GPn_CTR

IA32_PERFEVTSELn

IA32_PMC_GPn_CFG_A

IA32_FIXED_CTRn

IA32_PMC_FXn_CTR

10 Setting IA32_PEBS_BASE with a shared GPA is discouraged. The CPU does not allow setting the IA32_PEBS_BASE value’s SHARED bit
if it is outside the physical address bits. E.g., when GPAW is 48 and the physical address width is 46. A TD is not typically aware of

the physical address width.

September 2025

Page 162 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

15.2

5
15.2

30

35

15.2

TDX virtualizes the MSR aliases the same way as it virtualizes the legacy MSRs, since the underlying MSR for an alias index
and for its respective legacy index is the same.

Virtualization of Architectural PEBS to TDs

CPU support of Architectural PEBS is enumerated by CPUID(0x23,0).EAX[5]. If the TDX Module support Architectural
PEBS, the host VMM can configure the virtual value of a Perfmon-allowed TD’s CPUID(0x23,0).EAX[5] to be 1, if the CPU
supports it, as part of the CPUID configuration parameters of TDH.MNG.INIT.

The Host VMM can allow the TD to use specific PEBS by configuring CPUID(0x23, 5).EAX[31:0] for the programmable
gaunters and CPUID(0x23, 5).ECX[31:0] for the fixed-function counters.

Host VMM Behavior

If a TD is allowed to use Performance Monitoring (ATTRIBUTES.PERFMON is 1), but is not allowed to use some PEBS
counters, then the host VMM must clear the control MSRs for the disallowed PEBS counters before TD entry. This is
enforced by the TDX Module on TDH.VP.ENTER.

15.2.4. Performance Monitoring Interrupts (PMis)

By design, when a guest TD is allowed to use Perfmon, it can also configure the counters to raise PMI on overflow. When
such a TD counter overflows, the physical interrupt or an NMI configured by the host VMM into the local APIC is delivered.
This interrupt or NMI causes a VM exit, and it is delivered as a TD exit to the host VMM. The host VMM is then expected
to inject the PMI into the guest TD, either as a virtual interrupt using the posted interrupt mechanism, or as virtual NMI
using the NMI injection interface. See the [Interrupt Virtualization Spec] for details.

Since the host VMM is not trusted, the guest TD must be ready to handle spurious, delayed or dropped PMls. Thus, it is
recommended for the guest TD to use PEBS instead of PMls in order to record TD state at counter overflows.

Uncore PMIs are discussed in 15.5 below.

15.2.5. Perfmon Events Filtering

Perfmon event filtering, if supported by the TDX Module, enables the host VMM to specify a set of Perfmon events which
'Er'hle TD is allowed to use.

Enumeration

Support of Perfmon events filtering is enumerated to the host VMM by TDX_FEATURESO, readable by TDH.SYS.RD*:

4.2. EVENT_FILTERING (bit 24) enumerates support of basic event filtering.
e ENHANCED_EVENT_FILTERING (bit 31) enumerates support of enhanced event filtering.

Background
Programmable Perfmon counters are configured by the guest TD, using their applicable 1A32_PMC_GPn_CFG_A or
IA32_PERFEVTSELx MSRs, to counts specific events. An event is identified by the following fields:
Event Select: 8 bits

Unit Mask: 8 bits (UMASK) on CPUs that support Perfmon version 5 or lower, 16 bits (UMASK2/UMASK) on CPUs that
support Perfmon version 6.

September 2025 . Page 163 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

15.2.5.3.

g3 A7 40 BN 24232221 201918 1716 15 a8 7 a

Unit Mask2 E
(UMASK2) Q

A Counter Mask E

R (CMASK) Unit Mask (UMASK) Event Select

L
E
L

<Z>
b
Q

ninC

}
N
T

< Z—

USR—User Mode

05—Operaling System Mode
E—Edge Detect
PC—Pin Control
INT—APIC Interrupt Enable
ANY—Any Thread
EM—Enable Counters

INV—Invert Counter Mask
IN_TX—In Trans. Rgn
IN_TXCP—In Tx exclude abort (PERFEVTSELZ2 Only)

AR—Adaplive_Record (legacy)

|:| 5 J LEL—LBR Event Logging enable
eserve
EQ—Equal-bit

Figure 15.1: Layout of IA32_PMC_GPn_CFG_A or IA32_PERFEVTSELXx MSRs
Some of the Perfmon events are architectural; they are enumerated by CPUID(0xA) and CPUID(0x23), as follows:

e CPUID(0OxA).EAX[31:24]: Number of events

e CPUID(0OxA).EBX: Bitmap of unsupported events
e CPUID(0x23,3).EAX: Bitmap of supported events
Most events are non-architectural and may vary between CPU models. The list of supported events, per CPU model, is
provided by Intel in https://github.com/intel/perfmon.
Event Filtering Configuration and the Filtering Algorithm
On TD initialization (TDH.MNG.INIT), the host VMM may optionally provide an array of PERFMON_EVENT entries.
Basic Event Filtering
Each PERFMON_EVENT entry specifies Event Select and UMASK values. When the TD writes to an
IA32_PMC_GPn_CFG_A or an IA32_PERFEVTSELx MSR, the requested Event Select and UMASK values are matched
against all PERFMON_EVENT entries. If a match is found, the IA32_PMC_GPn_CFG_A or IA32_PERFEVTSELx MSR is
written. Else, the applicable Perfmon counter is disabled.
Enhance Event Filtering
With enhanced events filtering, if supported by the TDX Module, each PERFMON_EVENT entry specifies an Event Select
and UMASK values to match, a bit mask to mask UMASK before matching, and a flag indicating that the match is negative.
When the TD writes to an IA32_PMC_GPn_CFG_A or an IA32_PERFEVTSELx MSR, the TDX Module first looks for a positive
match, where:
e The requested Event Select is equal to the PERFMON_EVENT entry’s Event Select.
e The requested UMASK, bit-masked by the PERFMON_EVENT entry’s UMASK mask, is equal to the PERFMON_EVENT
entry’s UMASK.
e The PERFMON_EVENT entry’s negative flag is 0.
If a positive match is found, the TDX Module first looks for a negative match, where:
e The requested Event Select is equal to the PERFMON_EVENT entry’s Event Select.
e The requested UMASK, bit-masked by the PERFMON_EVENT entry’s UMASK mask, is equal to the PERFMON_EVENT
entry’s UMASK.
e The PERFMON_EVENT entry’s negative flag is 1.
If no negative match is found, then the IA32_PMC_GPn_CFG_A or IA32_PERFEVTSELx MSR is written. Else, the applicable

Perfmon counter is disabled.

September 2025 . Page 164 of 196

Section 2: Intel TDX Module Architecture Specification

https://github.com/intel/perfmon

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Guest TD Perspective

If the guest TD executes WRMSR(IA32_PMC_GPn_CFG_A) or WRMSR(IA32_PERFEVTSELx) with an EVENT_ID (UMASK and
Event Select) value that has not been configured as allowed, the operation appears to complete successfully; there is no
error indication. However, the TDX Module disables the counter, and no events are counted. If the guest TD executes
5 RDMSR(IA32_PMC_GPn_CFG_A) or RDMSR(IA32_PERFEVTSELx), it reads back the value that it wrote to that MSR before.

Perfmon event filtering affects the TD as a whole; L2 VMs are subject to the same restrictions as L1. If required, then L1
15288y implement additional logic by configuring the L2’s MSR bitmaps to cause an L2->L1 exit on L2 access to
IA32_PMC_GPn_CFG_A or IA32_PERFEVTSELx MSRs.

Perfmon event filtering has no impact on the fixed Perfmon counters. They may be used by the guest TD regardless of
10 the allowed events configuration.

Statistics

The TDX Module maintains FILTERED_EVENTS_COUNT, an array of 4 64-bit counters per TD and L1 or L2 VM, which count
the number of times the guest TD VM executed WRMSR(IA32_PMC_GPn_CFG_A) or WRMSR(IA32_PERFEVTSELx) with

15230 EVENT_ID (UMASK and Event Select) value that has not been configured as allowed. The counters are readable by the

15 host VMM using TDH.MNG.RD.
15.3. Off-TD Debug

A guest TD is defined as debuggable if its ATTRIBUTES.DEBUG bit is 1. In this mode, the host VMM can use Intel TDX
Module functions to read and modify TD VCPU state and TD private memory, which are not accessible when the TD is
non-debuggable.

20 A debuggable TD is, by nature, untrusted. Since the TD’s ATTRIBUTES are included in the TDREPORT_STRUCT, the TD's
debuggability state is visible to any third party to which the TD attests.

A debuggable TD can’t be migrated; its ATTRIBUTES.MIGRATABLE bit must be 0.

The applicable Intel TDX Module functions are listed in Table 15.5 below. Note that some of the functions can access
non-secret guest TD state regardless of the DEBUG attribute. The lists of state information that can be read and/or
25 written in non-DEBUG and in DEBUG modes are detailed in the referenced sections.

Table 15.5: Off-TD Debug Interface

Intel TDX Function ATTRIBUTES.DEBUG =0 ATTRIBUTES.DEBUG =1

TDH.MNG.RD N/A Access secret and non-secret TD-scope

TDH.MNG.WR state in TDR and TDCS.

TDH.MEM.SEPT.RD Read Secure EPT entry Read Secure EPT entry

TDH.VP.RD Access non-secret TD VCPU state in Access secret and non-secret TD VCPU

TDH.VP.WR TDVPS (including TD VMCS) state in TDVPS (including TD VMCS).

TDH.MEM.WR N/A Access TD-private memory.

TDH.MEM.RD

TDH.PHYMEM.PAGE.RDMD | Read page metadata (PAMT Read page metadata (PAMT
information) information).

15.3.1. Modifying Debuggable TD’s State, Controls and Memory

When the TD is debuggable, the off-TD debugger can:

30 e Read and modify TDVMCS fields that contain guest state, VM entry load controls, VM exit save controls, and VM
execution controls.
e Read and modify TDVPS fields that contain additional TD VCPU's state (e.g., extended register state).
e Read and modify a per-VCPU copy of the TD’s extended feature mask (XFAM), such that more extended register state
would be saved to TDVPS on TD exit and restore from TDVPS on TD entry.

September 2025 . Page 165 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

This may cause the next VM entry into the TD VCPU to fail due to bad guest state. It may also generate VM exits that
wouldn’t have happened otherwise (e.g., VM exit due to a #PF within the TD). In non-debuggable TD such VM exits are
not expected, and thus treated as fatal TD errors that cause a TD exit with a TDX_NON_RECOVERABLE_TD status. In
debuggable TDs, however, such VM exits are expected and cause TD exit.

Specifically, the TDX Module handling of TD VM exits works as follows:

1. If this TD VM exit might happen on non-debuggable TDs:
1.1. Do “standard” handling (may result a TD exit).
1.2. If an exception is pending to be injected into the TD:
1.2.1. If the TD is debuggable and its exception bitmap is programmed to intercept that exception:
1.2.1.1. TD exit to the VMM, as if the exception has been raised during TD execution.
1.3. Resume the TD (may inject an exception).
2. Else (an unexpected VM exit happened):
2.1. If the TD is debuggable then TD exit.
2.2. Else handle this as a fatal TD error. Do non-recoverable TD exit.

In any case, the security of other guest TDs running in production mode is not impacted.

15.3.2. Preventing Guest TD Corruption of DRs
The off-TD (host-side) debugger may need to have full control over guest DRs to help prevent their corruption by the
guest TD. To do so, the debugger can do the following:

e Use TDH.VP.WR to set the TD VMCS GUEST_DR?7 field’s Global Detect bit.
e Set the TD VMCS exception bitmap execution control to intercept debug exceptions.

15.4. Platform-Level Profiling

This section discusses the interoperation of guest TD with platform-level profiling features.

15.4.1. Profiling by IA32_FIXED_CTR1 and 1A32_FIXED_CTR2
Intel SDM, Vol. 3, Table 20-2: Association of Fixed-Function Performance Counters with Architectural Performance Events

Enumeration: Availability of the following feature is enumerated by TDX_FEATURESO.FIXED_CTR12_PROF (bit 26),
readable by the host VMM using TDH.SYS.RD.

Two of the fixed-function performance monitoring counters continue counting while running in the TDX Module. They
also continue counting while running is a guest TD, unless the TD is enabled for debugging (ATTRIBUTES.DEBUG is 1) or
for performance monitoring (ATTRIBUTES.PERFMON is 1).

The applicable counters are:
IA32_FIXED_CTR1 The number of clock cycles while the logical processor is not in a halt state

IA32_FIXED_CTR2 The number of TSC cycles while the logical processor is not in a halt state and not in a TM stop-
clock state

15.4.2. Hardware-Guided Scheduling (HGS+) Profiling

Enumeration: TDX Module support of HGS+ profiling is enumerated by ATTRIBUTES_FIXEDO.HGS_PLUS_PROF (bit 4)
value of 1, readable by TDH.SYS.RD*. This value indicates that the TD’s ATTRIBUTES.HGS_PLUS_PROF bit
may be set to 1.

If HGS+ profiling is supported, the host VMM can configure guest TDs to either disable HGS+ profiling or enable it during
the TD runtime. Enabling HGS+ may impact TD security by, e.g., creating side channels, and thus is reflected in the TD’s
attestation as part of its ATTRIBUTES. HGS+ profiling is configured by the TD’s ATTRIBUTES.HGS_PLUS_PROF bit, provided
as an input to TDH.MNG.INIT. HGS+ profiling is always disabled during TDX Module runtime, except during TDX Module
initialization (TDH.SYS.INIT and TDH.SYS.LP.INIT) and during TD entry (TDH.VP.ENTER) into and exit from a TD for which
ATTRIBUTES.HGS_PLUS_PROF is set to 1.

September 2025 . Page 166 of 196

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

15.5. Uncore Performance Monitoring Interrupts (Uncore PMis)

By design, neither the Intel TDX Module itself nor its guest TDs are allowed to use Uncore PMIs. The state of
I1A32_DEBUGCTL MSR bit 13 (ENABLE_UNCORE_PMI) is preserved across SEAMCALL, SEAM root and non-root mode and
SEAMRET, except for very short time periods immediately after SEAMCALL and VM exit.

15.6. Interaction with Core Out-Of-Band (OOB) Telemetry

Enumeration: TDX Module support of OOB profiling during TD runtime is enumerated by
ATTRIBUTES_FIXEDO.PMT_PROF (bit 6) value of 1, readable by TDH.SYS.RD*. This value indicates that the
TD’s ATTRIBUTES.PMT_PROF bit may be set to 1.

If OOB profiling is supported, the host VMM can configure guest TDs to either disable (default) or enable OOB profiling
during TD runtime. This is configured by the TD’s ATTRIBUTES.PMT_PROF bit, provided as an input to TDH.MNG.INIT.
Enabling PMT_PROF may have security implications due to possible leakage of side channel information.

OOB telemetry is always disabled during runtime of the TDX Module itself.

September 2025 . Page 167 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

16.Memory Integrity Protection and Machine Check Handling

16.1. Overview

The Intel TDX Module’s memory integrity protection and machine check handling are designed to address the following
security objectives:

e Corruption of TD private data or Intel TDX Module memory must be detectable before the decrypted corrupted data
are consumed by the guest TD or by the Intel TDX Module.

e To help improve resistance to brute force attacks, software must not be able to repeatedly cause memory integrity
violations during Intel TDX Module or guest TD operation. When an integrity violation is detected, the affected guest
TD and the key corresponding to its affected HKID must become unusable for normal operation of the TD —i.e., the
TD may only be torn down.

e Anysoftware except guest TD or TDX Module must not be able to speculatively or non-speculatively access TD private
memory, to detect if a prior corruption attempt was successful in finding an integrity collision or failed and received
zero-data.

As a best effort, the TDX Module is designed to enable limiting the impact of memory integrity violations in a guest TD
context to that guest TD, i.e., requiring only that guest TD to be torn down. However, there are cases where memory
integrity violations result in an unbreakable shutdown of the LP.

16.2. TDX Memory Integrity Protection Background

16.2.1. Platforms not Using ACT for Memory Protection

Non-ACT Platforms Memory Integrity Protection

16.2.1.1.

16.2.1.1.1. Non-ACT Platforms: Cryptographic Integrity (Ci) vs. Logical Integrity (Li), MAC and TD Owner

TDX architecture aims to provide resiliency against confidentiality and integrity attacks by software. Towards this goal,
the TDX architecture helps enforce the enabling of memory integrity for all private HKIDs. It supports two memory
integrity modes that can be configured on the platform:

Cryptographic Integrity (Ci) Memory content is encrypted and protected by a MAC and a TD Owner bit.
Logical Integrity (Li) Memory content is encrypted and protected by a TD Owner bit.

In both Ci and Li modes, the memory controllers store a 1-bit TD Owner metadata for each cache line. The TD Owner bit
is set to 1 for writes with a private HKID and is cleared to O for writes with a shared HKID. The TD Owner bit is covered
by ECC.

When Ci mode is enabled, the CPU’s memory controllers compute a 28-bit integrity check value (MAC) for the data (cache
line) during writes and store the MAC with the memory as meta-data. The MAC is calculated over the components
described in the table below. The MAC is covered by ECC.

Table 16.1: Components for MAC Calculation (Ci Mode)

Component Description

Ciphertext Data 512 bits of data being written to memory.

Encryption Tweak | 128-bit encryption tweak, generated by encrypting the physical address with the 128-bit
per-HKID ephemeral AES-XTS tweak key. The tweak key is generated on key
configuration (TDH.SYS.KEY.CONFIG and TDH.MNG.KEY.CONFIG).

TD Owner Bit Indicates that the data was written using a private HKID.

MAC Key 128-bit MAC key, generated by hardware on platform initialization, when BIOS
configures the IA32_TME_ACTIVATE MSR.

September 2025 . Page 168 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

16.2.1.1.2. Non-ACT Platforms: MAC and TD Owner Update on Memory Writes
The MAC and the TD Owner bit are updated on memory writes by the memory controller per the following criteria:

e If memory write is for a private HKID, the TD Owner bit is set, and integrity information (MAC) is computed and
stored as meta-data along with ciphertext in memory.

e Else (write is for a shared HKID), the TD Owner bit is clear, and based on the key configuration, integrity information
(MAC) may be stored along with ciphertext in memory.

The state diagram below shows the TD Owner bit state changes due to memory state changes.

TDX module converts from
shared HKID to private HKID
(write using private HKID)

_ y _ x
Write Qsing TD or TDX module
shared HKID write using private

HKID
Host VMM converts from private
HKID to shared HKID
(write using shared HKID)
Figure 16.1: Non-ACT Platforms: TD Owner Bit Setting on Write
16.2.1.1.3. Non-ACT Platforms Memory Reads: Integrity and TD Owner Bit Checks, Poison Generation and

Poison Consumption

On platforms not using ACT for memory protection, checks on memory reads depend on whether Cryptographic Integrity
(Ci) is enabled on the platform, or Logical Integrity (Li) is used. This is shown in the tables below.

e When the memory read transaction uses a private HKID, TD Owner bit mismatch and/or integrity check failure (for
Ci) result in a new poison generation. An all-0 data is returned, with a poison indication.

e The poison indication is sticky; it is stored back to memory. Subsequent read transactions that read a previously
poisoned memory line return a poison indication regardless of the TD Owner bit or integrity checks. A sticky poison
indication is cleared when the whole memory line is written; the correct way to do so is by using the MOVDIR64B
instruction.

e Any reads of TD private data (TD Owner is 1) done outside SEAM mode (i.e., with a shared HKID) return all-0. This is
intended to prevent the host VMM from testing malicious ciphertext for a MAC collision, since the VMM will
deterministically see zeroed data in the cache for speculative accesses. No new poison indication is returned;
however, a previous poison indication that has been stored in memory may be returned.

September 2025 . Page 169 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Table 16.2: Non-ACT Platforms Checks on Memory Reads in Ci Mode

HKID Integrity | TD Integrity | Returned New Comments
Type Enabled | Owner | Check Data Poison
for HKID | Bit
Private | Yes 0 N/A 0 Poison TD bit mismatch failure may be triggered
if the memory was previously written
using a shared HKID.
1 Pass Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
a poison.

1 Fail 0 Poison Integrity check failure may be triggered if
the memory was previously written using
a different encryption key.

Shared | Yes 0 Pass Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
a poison.

0 Fail 0 Poison Integrity check failure may be triggered if
the memory was previously written using
a different encryption key.

1 N/A 0 Poison TD bit mismatch failure may be triggered
if the memory was previously written
using a private HKID.

Shared | No 0 N/A Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
a poison.

1 N/A 0 None If the memory line has been previously
poisoned, the read transaction may return
a poison.

Table 16.3: Non-ACT Platforms Checks on Memory Reads in Li Mode
HKID Integrity | TD Integrity | Returned | New Comments
Type Enabled | Owner | Check Data Poison
for HKID | Bit
Private | No 0 N/A 0 Poison TD bit mismatch failure may be triggered
if the memory was previously written
using a shared HKID.
1 N/A Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
a poison.
Shared | No 0 N/A Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
12 a poison.
1 N/A 0 None If the memory line has been previously

poisoned, the read transaction may return
a poison.

On platforms not using ACT for memory protection, the TD Owner bit is not checked on memory writes.

Non-ACT Platforms Memory Writes: No Integrity nor TD Owner Bit Checks

It is the

responsibility of the host VMM to prevent writing to memory that has been assigned as TD private memory. Failing to

September 2025

Page 170 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

do so will result in memory corruption; such corruption will be detected when the guest TD or the TDX Module attempts
to read that memory, as described above.

The host VMM should always initialize memory that has been used with a private HKID (i.e., TD private memory and TDX
control structures), and is about to be used with a shared HKID, using a full line write. The correct way to do so is by
5 using the MOVDIR64B instruction. This helps ensure that the TD Owner bit and any stored poison indication are cleared.

16.2.2. Platforms Using ACT for Memory Integrity Protection

ACT Platforms: Logical Integrity (Li) Provided by an Access Control Table (ACT)

On platforms using ACT-protected memory, memory integrity protection is provided by a 1-bit TD Owner metadata for
each 4KB of physical memory. The TD owner bits are stored in Access Control Tables, separate from the memory lines
10 being protected. There is a separate ACT per memory controller; the content of all ACTs is the same, except for a short

. 2tzirlne during transitions, where the TDX Module sets the ACT bits as described below.

TD Owner bits in the ACTs are written by the TDX Module on 4KB page conversion between shared and private. They are
read by the memory controllers during memory read and write transactions.

ACT Platforms: TD Owner Bit Update on Page Conversion between Shared and Private

15 On platforms using ACT-protected memory, page ownership is updated explicitly by the TDX Module.

16232 When the TDX Module converts a page from being a shared page to being a private page, it sets the applicable ACT(s)’

TD Owner bits to 1.
e When the TDX Module converts a page from being a private page to being a shared page, it sets the applicable ACT(s)’
TD Owner bits to 0.

TDX module converts page
from shared to private

TDX module converts page from

rivate to shared
20 16.2.2.3. P

Figure 16.2: ACT TD Owner Bit Transition

ACT Platforms Memory Access: TD Owner Bit Checks, Poison Generation and Poison Consumption

On platforms using ACT-protected memory, checks are done on both memory write and memory reads. This is shown in
the tables below.

25 & Any read of TD private data (TD Owner is 1) done outside SEAM mode (i.e., with a shared HKID) returns all-0. This is
intended to prevent the host VMM from testing malicious ciphertext for a MAC collision, since the VMM will
deterministically see zeroed data in the cache for speculative accesses.

September 2025 . Page 171 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification 348549-007US

Table 16.4: ACT Checks on Memory Reads

HKID Integrity | TD Operation | Returned | New Comments
Type Enabled | Owner Data Poison
for HKID | Bit
Private | No 0 Read Decrypted | None This case is prevented by the TDX
data Module’s control of Secure EPT
1 Read
Shared | No 0 Read
1 Read 0 None

e When a memory write transaction uses a private HKID, no TD Owner bit check is performed. The data is encrypted
with the private key and written to memory.
e When a memory write transaction uses a shared HKID, the TD Owner bit is checked to be 0. If not O, the write is

silently dropped.

Table 16.5: ACT Checks on Memory Writes

HKID Integrity | TD Operation | Saved New Comments
Type Enabled | Owner Data Poison
for HKID | Bit
Private | No 0 Write Encrypted | None This case is prevented by the TDX
data Module’s control of Secure EPT
1 Write
Shared | No 0 Write
1 Write Dropped

16.2.3. Memory Integrity Error Logging, Machine Checks and Unbreakable Shutdowns

Memory integrity errors that result in poison generation are logged by the memory controller as UCNA (uncorrected no-
action required) UCR errors which are signaled via CMCI (if CMCl is enabled) or CSMI (if enabled).

On a subsequent consumption (read) of the poisoned data by software, there are two possible scenarios:

Machine Check:

Unbreakable Shutdown:

In most cases, the core determines that the execution can continue, and it treats poison with
fault-like exception semantics signaled as an MCE (Machine Check Exception) or MSMI
(Machine-check System Management Interrupt).

The poison memory address, at a granularity no finer than 32 bytes, is logged in
IA32_MCi_ADDRESS MSRs.

Handling of machine check events (MCE or MSMI) when executing in a guest TD (in SEAM non-
root mode) and in the Intel TDX Module (in SEAM root mode) is described in the following
sections.

In some cases, the core determines that execution cannot continue (e.g., long uCode flows),
and it goes into an unbreakable shutdown.

An unbreakable shutdown that happens while running in SEAM mode, either in a guest TD or
in the TDX Module, globally marks TDX as disabled — all subsequent SEAMCALL invocations on
any logical processor of the platform lead to a VMfaillnvalid error.

September 2025

Page 172 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

16.3. Machine Check Architecture (MCA) Background

Intel SDM, Vol. 3, 15 Machine-Check Architecture

The machine-check architecture (MCA) provides a mechanism for detecting and reporting hardware (machine) errors.
These include system bus errors, ECC errors, parity errors, cache errors and TLB errors. MCA consists of a set of model-
specific registers (MSRs) that are used to set up machine checking, and it includes additional banks of MSRs used for
recording errors that are detected.

16.3.1. Uncorrected Machine Check Error

The processor signals the detection of an uncorrected machine-check error by generating a machine-check exception
(MCE), which is a fault-like exception. An MCA enhancement supports software recovery from certain uncorrected
recoverable machine check errors. Poisoned cache line consumption by the guest TD is considered such an error. The
machine-check exception handler is expected to be implemented in the VMM.

16.3.2. Corrected Machine Check Interrupt (CMCI)
Intel SDM, Vol. 3, 15.5 Corrected Machine Check Error Interrupt
Processors on which TDX will be supported can also report information on corrected machine-check errors and deliver a

programmable interrupt for software to respond to MC errors —referred to as corrected machine-check interrupt (CMCI).

CMCl is delivered as a normal interrupt. If delivered during guest TD operation, this interrupt causes a VM exit, and Intel
TDX Module performs a TD exit to the host VMM. If delivered during Intel TDX Module operation, this interrupt remains
pending until either SEAMRET to the host VMM or until VM entry to a guest TD.

16.3.3. Machine Check System Management Interrupt (MSMI)

MSMl is part of the Enhanced Machine Check Architecture, Gen. 2 (EMCA2). With EMCA2 enabled, each machine check
bank can be configured to assert SMI instead of MCE or CMCI. This is intended to allow the SMM handler to correct the
error when possible. For details, see [Error Reporting through EMCA2].

When the processor observes an SMI while a guest TD is running (i.e., SEAM non-root mode) it causes a VM exit to the
TDX Module with exit reason set to “IO SMI” or “Other SMI” VM exit appropriately. The observed SMI remains pending
following the VM exit. The exit qualification bit O is set to 1 if the SMI is a machine check initiated SMI (MSMI).

The core ignores MSMI configuration for poison consumption error; they are always reported as MCE.

16.3.4. Local Machine Check Event (LMCE)
Intel SDM, Vol. 3, 15.3.1.5 Enabling Local Machine Check

When system software has enabled LMCE, then hardware will determine if a particular error can be delivered only to a
single logical processor, instead of being broadcast to all logical processors. This is the recommended configuration for
TDX.

16.4. Recommended MCA Platform Configuration for TDX

The following platform MCA configuration is recommended for TDX:

e LMCE should be enabled, so that machine check events that happen in the scope of a certain logical processor are
delivered only to that logical processor.
e EMCA2 should be enabled only if the CPU supports status indication of MCE during non-root SEAM mode execution.

The following sections provide additional details.

September 2025 . Page 173 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

16.5. Handling Machine Check Events during Guest TD Operation

16.5.1. Machine Check Events Delivered as an #MC Exception

If EMCAZ2 is not enabled, the machine check event is delivered as an #MC exception. With LMCE enabled, the MCE is
delivered only to the logical processor that consumed the poisoned cache line.

The Intel TDX Module configures the MCE events when they occur in a TD guest to cause a VM exit to the Intel TDX
Module. This includes the following cases:

e MCE during guest TD operation
e MCE during a successful VM entry to a guest TD
e MCE during a failed VM exit, where normally execution would remain in the guest TD

The Intel TDX Module implements this as follows:

e The Intel TDX Module enforces guest TD CR4.MCE to 1.
e The Intel TDX Module sets bit 18 (MC) of the TD VMCS Exception Bitmap to 1.

On VM exit, if the exit reason is Exception or NMI (0), the Intel TDX Module reads the TD VMCS’ VM-exit interruption
information to determine if the VM exit was caused by a #MC (18). If so, the Intel TDX Module puts the TD in a FATAL
state, preventing further TD entries. The TDX Module then completes the TD exit flow. The TDH.VP.ENTER outputs
indicate the status as TDX_NON_RECOVERABLE_TD_FATAL and provides the exit reason, exit qualification and exit
interruption information.

Note: The TDX Module does not analyze the MCE to determine its source — whether it's a memory integrity violation
or some other event. The TDX Module does not read nor write the IA32_MC* MSRs.

Based on the TDH.VM.ENTER outputs (exit reason etc.), the host VMM is expected to understand that a Machine Check
event happened, and that the TD should be torn down.

The host VMM can reclaim memory assigned to TDs in a FATAL state using the normal TD teardown flow (TDH.VP.FLUSH,
TDH.MNG.VPFLUSHDONE, TDH.PHYMEM.CACHE.WB, TDH.MNG.KEY.FREEID, TDH.PHYMEM.PAGE.RECLAIM).

Note: The host VMM should not attempt to read the poisoned memory locations. Doing so results in a poison
consumption and an MCE in the VMM context.

Integrity violation
detected, causing machine
check event

Read attempt

TD VCPU from TD
Private Page

VM
exit

1. Examine exit reason (0: Exception
or NMI)

. Examine interruption information
(vector 18: #MC)

3. Mark TD as FATAL

TDX 2
Module

1

TDH.VP.FLUSH

Determine that the TDH.MNG.VPFLUSHDONE

Write to TD

Host VMM TD encountered a TDH.PHYMEM.CACHE.WB —

Private Page

TD exit machine check event TDH.MNG.KEY.FREEID

TDH.PHYMEM.PAGE.RECLAIM

TD Teardown

Figure 16.3: Example of Handling an MCE in a TD Context

September 2025 . Page 174 of 196

Section 2: Intel TDX Module Architecture Specification

16

10 15

15

16

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

16.5.2. EMCA2: Machine Check Events Delivered as an MSMI

Determining CPU Support

Host VMM enabling of EMCA2 is only recommended with CPUs that support MCE during non-root SEAM mode, by
IA32_MCG_STATUS (MSR 0x17A) SEAM_NR bit (12). Support of this bit is enumerated by IA32_MCG_CAP (MSR 0x179)
bit 12.

Pending MSMI Causing a TD Exit

5.2.1.
If EMCA2 is enabled, the machine check event is delivered as an MSMI. With LMCE enabled, the MSMI is delivered only
to the logical processor that consumed the poisoned cache line.

Contrary to non-TDX operation, an SMI that occurs in a TD guest does not immediately invoke the SMM handler. Instead,
5an SMI causes a VM exit to the Intel TDX Module and remains pending.

On VM exit, if the exit reason is Other SMI (6), the Intel TDX Module reads the TD VMCS’ exit qualification bit 0 to
determine if the VM exit was caused by a Machine Check that was mutated into an SMI. If so, the Intel TDX Module puts
the TD in a FATAL state, preventing further TD entries. The TDX Module then completes the TD exit flow. The
TDH.VP.ENTER outputs indicate the status as TDX_NON_RECOVERABLE_TD_FATAL and provides the exit reason and exit
qualification.

Note: The TDX Module does not analyze the MCE to determine its source — whether it's a memory integrity violation
or some other event.

Operation Following TD Exit
>&fice TD exit has completed and the CPU is no longer in SEAM mode, the pending SMI event is taken and the platform’s
SMM handler is invoked. On RSM, the SMM handler injects an #MC into the host VMM.

If the CPU supports IA32_MCG_STATUS[SEAM_NR], the host VMM'’s #MC handler can determine that the error happened
during guest TD execution if both conditions below are true:

e The error is recoverable, as indicated by IA32_MCi_STATUS[PCC] == 0, and
e The error happened while executing in a TD, as indicated by IA32_MCG_STATUS[SEAM_NR].

The #MC handler should then clear IA32_MCG_STATUS[SEAM_NR]; the CPU doesn’t clear it.

If the #MC handler determines that the error happens while executing in the guest TD, then based on the TD exit status
the host VMM can then tear down the affected guest TD.

September 2025 . Page 175 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification

348549-007US

Integrity violation
detected, causing MSMI
event

TD Teardown

Read attempt
TD VCPU from TD
Private Page
SMI converted to a
VM exit
1. Examine exit reason (6: Other SMI)
2. Examine exit qualification (bit 0: 1)
TDX 3. Mark TD as FATAL

Module HMC

SMI delivered immediately &

K Read
TD exit | following SEAMRET IA32_MCG_STATUS[
Write to TD SEAM_NR] to
Host VMM Private Page determine if MCE
happened during TD
SMM RSM execution
entry
SMM . .Handle SMI,
Handler inject #MC event
to host VMM

10

15

Figure 16.4: Example of Handling an MSMI in a TD Context

16.5.3. LMCE Disabled (Not Recommended)

If LMCE is disabled, then an MCE or MSMI is broadcast to all logical processors on the platform. Any TD that happens to
be running will be put in a FATAL state.

Note: The TDX Module does not check the MCE details. Any MCE that causes a VM exit from a guest TD is considered
fatal to that TD.

16.5.4. Machine Check Events Delivered as a CMCI

CMCl is treated as a normal interrupt, causing an asynchronous TD exit; there’s no special handling.

On VM exit, if the exit reason is Exception or NMI (0), the Intel TDX Module reads the TD VMCS’ VM-exit interruption
information to determine if the VM exit was caused by a #MC (18). If not, the Intel TDX Module completes the TD exit
flow. The TDH.VP.ENTER outputs indicate the status as TDX_SUCCESS and provides the exit reason, exit qualification and
exit interruption information.

Based on the TDH.VM.ENTER outputs, the host VMM is expected to process the CMCI interrupt.
16.6. Handling MICE during Intel TDX Module Operation

Any machine check event that occurs during Intel TDX Module operation (in SEAM root mode) forces an unbreakable
shutdown on a current LP. Shutdown also globally marks TDX as disabled — all subsequent SEAMCALL invocations on any
logical processor of the platform lead to a VMfaillnvalid error.

September 2025 . Page 176 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

17.Side Channel Attack Mitigation Mechanisms

17.1. Checking and Virtualization of CPU Side Channel Protection Mechanisms Enumeration

17.1.1. 1A32_ARCH_CAPABILITIES (MSR 0x10A)

On TDX Module initialization (TDH.SYS.INIT and TDH.SYS.LP.INIT), the TDX Module reads the I1A32_ARCH_CAPABILITIES
MSR to check the value of multiple bits, indicating whether the CPU is vulnerable to a list of known attacks. The TDX
Module virtualizes the IA32_ARCH_CAPABILITIES MSR, as seen by guest TDs. Some of the bits are configurable, to allow

TD migration between dissimilar platforms. For more information, refer to 11.10.2 and to the [ABI Spec].

Table 17.1: 1A32_ARCH_CAPABILITIES MSR Checks and Virtualization

Bit(s) Name

Native Value

Virtual Value as Seen by

Virtual Value Checked on

Checked on Guest TDs Migration Import
TDX Module
Init
0 RDCL_NO 1 1 Must be 1
1 IBRS_ALL 1 1 Must be 1
2 RSBA 0 0 Must be 0
3 SKIP_L1DFL_VMENTRY 1 1 Must be 1
4 SSB_NO Same on all LPs | Configurable by the host May be 1 only if native is 1
VMM - can allow to be 1
5 MDS_NO 1 1 Must be 1
6 IF_PSCHANGE_MC_NO 1 1 Must be 1
7 TSX_CTRL Same on all LPs | Configurable by the host Must be 1 if CPUID
VMM - allowed to be 1 only if | configuration enables TSX
CPUID configuration enables
TSX
8 TAA_NO 1 1 Must be 1
9 RESERVED SameonallLPs | 0 Must be 0
10 MISC_PACKAGE_CTRLS 1 0 Must be 0
11 ENERGY_FILTERING_CTL 1 0 Must be 0
12 DOITM 1 1 Must be 1
13 SBDR_SSDP_NO 1 1 Must be 1
14 FBSDP_NO 1 1 Must be 1
15 PSDP_NO 1 1 1
16 RESERVED SameonallLPs | O 0
17 FB_CLEAR SameonallLPs | O 0
18 FB_CLEAR_CTRL SameonallLPs | O 0
19 RRSBA Same on all LPs | Configurable by the host Must be 1 if native is 1
VMM — can force to 1
20 BHI_NO Same on all LPs | Configurable by the host May be 1 only if native is 1
VMM — can allow to be 1
21 XAPIC_DISABLE_STATUS 1 1 1
22 RESERVED SameonallLPs | 0 0

September 2025

Page 177 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Bit(s) Name Native Value Virtual Value as Seen by Virtual Value Checked on
Checked on Guest TDs Migration Import
TDX Module
Init

23 OVERCLOCKING_STATUS SameonallLPs | 0 0

24 PBRSB_NO Same on all LPs | Configurable by the host May be 1 only if native is 1

VMM - can allow to be 1

25 GDS_CTRL SameonallLPs | O 0

26 GDS_NO SameonallLPs | O 0

27 RFDS_NO SameonallLPs | O 0

28 RFDS_CLEAR SameonallLPs | O 0

29 IGN_UMONITOR_SUPPORT SameonallLPs | O 0

30 MON_UMON_MITG_SUPPORT | Sameon all LPs | O 0

63:31 | RESERVED SameonallLPs | O 0

17.1.2. CPUID

On TDX Module initialization (TDH.SYS.INIT and TDH.SYS.LP.INIT), the TDX Module reads some CPUID fields to check the
value of multiple bits, indicating whether the CPU is vulnerable to a list of known attacks. The TDX Module virtualizes the

5 CPUID values, as seen by guest TDs.

platforms. For more information, refer to 11.11 and to the [ABI Spec].

Some of the bits are configurable, to allow TD migration between dissimilar

Table 17.2: Checks and Virtualization of Side Channel Related CPUID Fields

Leaf | Sub- | Reg. | Bit | Name Verified on TDX Virtual Value as Seen by Guest
Leaf Module Init TDs

7 0 EDX |9 MCU_OPT 0 0
10 | MD_CLEAR 1 1
13 TSX_FORCE_ABORT 0 0
26 IBRS and IBPB support 1 1
27 STIBP support 1 1
28 L1D_FLUSH support 1 1
29 IA32_ARCH_CAPABILITIES 1 1
30 | IA32_CORE_CAPABILITIES 1 1
31 SSBD supported 1 1

2 EDX | O PSFD supported 1 1
1 IPRED_CTRL 1 1
2 RRSBA_CTRL 1 1
3 DDPD Same on all LPs Configurable by the host VMM —
can allow to be 1
4 BHI_NO 1
5 MCDT_NO Same on all LPs Configurable by the host VMM —
can allow to be 1
September 2025 Page 178 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

17.2. Branch Prediction Side Channel Attacks Mitigation Mechanisms

Branch predictions cached by the CPU before entering a guest TD should not impact the behavior of that TD. The Intel
TDX Module helps ensure that by applying CPU mechanisms to isolate the branch predictions of each guest TD from
branch predication done outside its execution.

In a partitioned TD, the L1 VMM is responsible for isolating indirect branch predictors (IBPs) between the L1 VMM and
L2 VMMs. The L1 VMM should issue an indirect branch prediction barrier (IBPB) command to the CPU, by writing the
IA32_PRED_CMD MSR with the IBPB bit set, immediately before L1->L2 VM entry and immediately after L2->L1 VM exit.

17.3. Single-Step and Zero-Step Attacks Mitigation Mechanisms

17.3.1. Attacks Description

Single-step attacks, zero-step attacks and EPT fault attacks are techniques that provide an adversary with access to a class
of powerful, low-noise side channel attacks. They do so by exploiting control over hardware such as fine resolution APIC
timers and using TDX Module memory management interface functions.

e Single-Step Attacks involve timing pin-based events such as interrupts, NMI, SMI and INIT to interrupt the guest TD
execution after every instruction executed in the guest TD. This allows the attacker to examine the state of the
machine following each instruction execution in interesting regions of code and use side channels to leak information
used by that region of code.

e EPT Fault Attacks involve causing EPT violations or EPT misconfigurations to infer the control flow of execution inside
a guest TD. Such control flow inference coupled with other side channel techniques, such as branch shadowing, can
be used as a side channel to leak information from the guest TD.

e Zero-Step Attacks involve using an EPT fault on targeted instructions in a guest TD with an intent to glean side
channel information from speculative execution past the faulting instruction. Such instructions are called “replay
anchors”, as every resumption of the TD execution leads to the same EPT fault and thus the same speculative
execution with the same stimulus to be replayed repeatedly, such that noise in side-channel observation of that
speculative execution can be reduced.

17.3.2. Mitigation by the TDX Module

17 3]i'tle Intel TDX Module provides mechanisms to help assist in mitigating single and zero step attacks:

Single-Step Attack Detection and Mitigation

To help mitigate single-step attacks, the TDX Module attempts to detect when a TD VCPU interruption by an interrupt,
NMI, SMI or INIT event may indicate a single step attack. An attack is suspected if the interruption happens too soon
after TD entry. Two methods are available for detection: instruction counting or heuristics.

Suspected Single-Step Attack Detection Using Instruction Counting

This attack detection method is applicable if the TDX Module implements Instruction-Count Single-Step Defense (ICSSD),
as indicated by TDX_FEATURESO.ICSSD, readable by the host VMM using TDH.SYS.RD*. It is used only if the TD is not
Perfmon-enabled, i.e., ATTRIBUTES.PERFMON is 0. An interruption is considered far enough from the last TD entry if
either of the following conditions is true:

e More than one instruction has been retired since the last TD entry, or
e More than one round of a REP-prefixed instruction has been executed since the last TD entry.

Instruction counting is considered the better method of the two. If the TD’s ATTRIBUTES.ICSSD bit is set, then the TD will
only be allowed to execute if instruction counting can be used.

Suspected Single-Step Attack Detection Using Heuristics

If the instruction counting method can’t be used, either because it is not supported by the TDX Module or because the
TD is Perfmon-enabled (ATTRIBUTES.PERFMON is 1), then an interruption is considered far enough from the last TD entry
if either of the following conditions is true:

e More than enough time (around 2 to 3 usec) has passed since the last TD entry, or
e RIP has changed by more than 32 bytes since the last TD entry, indicating that at least 2 instructions have been
retired.

September 2025 . Page 179 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Single-Step Attack Mitigation

If a suspected attack is detected, the TDX Module doesn’t do an immediate asynchronous TD exit. Instead, it provides
execution opportunities to the TD VCPU for a small random number of instructions, and only then does it deliver the
interruption to the host VMM as an asynchronous TD exit.

Zero-Step Attack Detection and Mitigation

Suspected Zero-Step Attack Detection

Per TD VCPU, the Intel TDX Module counts Secure EPT faults that result in a TD exit. After a pre-determined number of

such EPT violations occur on the same instruction, the TDX Module starts tracking the GPAs that caused Secure EPT faults.

17.3Note: For a partitioned TD, EPT violations that happen in the context of L2 VMs may result in a TD exit or in an
L2->L1 exit. Only the TD exit cases are counted for the purpose of zero step attack detection.

Zero-Step Attack Mitigation

Once faulting GPA tracking starts, if any of the previously faulting private GPAs are still not properly mapped in the Secure

EPT, the TDX Module prevents TD entry to the VCPU. Instead, TDH.VP.ENTER returns immediately, emulating a TD exit

due to an EPT violation.

17.3.3. Host VMM Expected Behavior

No change is required to the host VMM’s normal memory management behavior:

e The host VMM should block (TDH.MEM.RANGE.BLOCK) TD private pages and remove them
(TDH.MEM.PAGE.REMOVE) only after the guest TD has explicitly relinquished the ownership of that page through a
software protocol between the VMM and the TD. E.g., such a protocol is implemented by the balloon driver
mechanism employed by guest Linux kernel to allow the host VMM to overcommit a guest VM assigned memory.

e The host VMM can block TD private pages and perform the following GPA-to-HPA mapping updates without
coordination with the guest TD:

o Physical page relocation (TDH.MEM.PAGE.RELOCATE)

o Mapping merge or split (TDH.MEM.PAGE.PROMOTE, TDH.MEM.PAGE.DEMOTE)

o Unblock (TDH.MEM.RANGE.UNBLOCK)

An attempt by guest TD VCPU to access such pages while they are blocked results in an EPT violation TD exit. A well-
behaved host VMM should not re-enter the TD until the mapping operation is done. Failing to do so will immediately
result in another EPT violation and the TD VCPU won’t make any progress.

e The host VMM can block TD private pages for writing (TDH.EXPORT.BLOCKW) as part of a write-blocking based TD
migration. An attempt by the guest TD VCPU to write to such pages while they are blocked for writing results in an

EPT violation TD exit. A well-behaved host VMM should not re-enter the TD VCPU before unblocking the page
(TDH.EXPORT.UNBLOCKW). Failing to do so will immediately result in another EPT violation and the TD VCPU won’t

17.3.4.1. make any progress.

17.3.4. Optional Guest TD Zero-Step Notification

Notification

The TDX Module provides the guest TD with an optional notification facility, by which the guest TD can get notified about
a suspected zero-step attack that was mitigated by the TDX Module as described above. This mechanism allows the guest
TD to employ its own policies in addition to the mitigation done by the TDX Module.

The guest TD may use this mechanism, e.g., as extra protection for security-critical memory pages or when running
security critical code. The guest TD may enable this notification by setting bit 0 of TDCS.NOTIFY_ENABLES field, using
TDG.VM.WR. If notification is enabled and both of the following conditions are true, then the guest TD is notified:

e Asuspected zero-step attack was detected as part of a TD exit due to an EPT violation, as described in 17.3.2.2 above.
e On the following TD entry, all the previously faulting private GPAs are properly mapped in the Secure EPT.

The guest TD is notified as follows:

e If the suspected zero-step attack happened when L1 was running (i.e., the TD is not partitioned, or L1 VMM was
running) the TDX Module injects a #VE(ARCH) exception indicating an EPT violation.

September 2025 . Page 180 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

e If the TD is partitioned, and the suspected EPT violation happened when an L2 VM was running, the TDX Module
induces an L2 L1 exit indicating an EPT violation.

Expected Guest TD Behavior

As part of its normal memory management behavior, the guest TD should track its GPA space allocation and should only
accept (TDG.MEM.PAGE.ACCEPT) Pending pages that it expects to be added (TDH.MEM.PAGE.AUG) by the host VMM.
The guest TD must not accept pages that are already known to it as TD-owned, i.e., added at TD build time
(TDH.MEM.PAGE.ADD) or accepted before at TD run time. Failing to do so would make the TD vulnerable to attacks, e.g.,
the host VMM could zero-out a page by removing it and adding a new one at the same GPA.

17.3.4,2. e s
‘ilhus, when the guest TD attempts to access a page and a #VE is raised indicating an EPT violation'?, the expected guest

TD’s #VE handler behavior is described below. The #VE handler should call TDG.VP.VEINFO.GET specifying version 1 or
higher, if supported. This enables TDG.VP.VEINFO.GET to return the #VE category.

1. |Ifthe TDis configured for #VE on Pending pages (TD_CTLS.PENDING_VE_DISABLE is 0), it should check if the reason
for #VE is Pending page access:
1.1. If TDG.VP.VEINFO.GET was called with version 1 or higher, and #VE category was provided and it is PENDING,
then no O-step attack is suspected.
1.2. If TDG.VP.VEINFO.GET was called with version 0, an attack is suspected if the guest TD cannot accept this page,
i.e., it is known to it as already TD-owned as described above. This is not necessarily a 0-step attack.
2. Ifthe TD is not configured for #VE on Pending pages, or if the #VE category is not PENDING, the #VE may indicate a
0-step attack.

If the conclusion of the above steps is that a 0-step attack was indeed suspected and mitigated by the TDX Module, the
guest TD may employ its own policy. For example, the guest TD may halt if this page is one of the pages expected to be
resident when a security critical workload is executing.

The guest TD’s #VE handler, as well as its virtual NMI handler, should not have any secrets that are susceptible to leakage.

The TDX Module does not provide protection against attacks when accessing shared pages. The guest TD should treat
shared memory access as communicating with a potential attacker and not do any secure processing while accessing
shared memory.

11 Note that the guest is not directly aware of the 0-step mitigation actions that caused EPT violation TD exits to the host VMM.

September 2025 . Page 181 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

18.General Aspects of the Intel TDX Interface Functions

18.1. Concurrency Restrictions and Enforcement

18.1.1. Explicit Concurrency Restrictions

Intel TDX functions may specify concurrency restrictions on accessing one or more resources, as described below. In
most cases, the restriction applies for the duration of the instruction execution. However, in some cases, the restriction
applies for a longer duration. For example, TDH.VP.ENTER requires shared access to the TD-scope logical control
structures TDR and TDCS, and it also requires shared access to TDVPS — the VCPU-scope logical control structure which
applies during logical TDX non-root operation through TD Exit.

Table 18.1: Concurrency Restrictions of Intel TDX Functions or Flows

Concurrency | Description Examples

Restriction

Exclusive During the period when an LP has exclusive access to | ¢ TDH.VP.CREATE requires exclusive
Access a certain resource, any attempt by another LP to access to the TDVPR page.

concurrently execute an instruction that requires
either exclusive or shared access to the same resource

will fail.
Shared During the period when an LP has shared accesstoa | ¢ TDH.VP.CREATE requires shared
Access certain resource, any attempt by another LP to access to the TDR page.

concurrently execute an instruction that requires
exclusive access to the same resource will fail. No
such restriction exists on another LP that attempts to
concurrently execute an instruction that requires
shared access.

e TDH.PHYMEM.CACHE.WB requires
shared access to the KOT.

Software is expected to comply with the specified concurrency restrictions. The Intel TDX Module helps enforce them
(using internal locks) for proper TDX operation.

Table 18.2: Concurrency Restrictions Cross-Table

Logical Processor Y
Concurrency | Exclusive Shared None
Restriction
Logical Exclusive Not Allowed | Not Allowed | Allowed
Processor
X Shared Not Allowed | Allowed Allowed
None Allowed Allowed Allowed

Intel TDX functions do not wait on a resource that requires exclusive or shared access. If the resource is busy, the function
fails immediately.

18.1.2. Implicit Concurrency Restrictions

In some cases, Intel TDX functions and whole flows (e.g., TD Entry through TD Exit) may have implicit exclusive or shared
access to resources. This means that the access restriction is implied by the architecture, but no direct enforcement is
made by the flow itself.

An important case is logical TDX non-root mode. TDH.VP.ENTER acquires shared locks on the TD’s TDR and TDCS control
structures and on the VCPU’s TDVPS control structure. These shared locks are released only on TD exit. Thus, during all
the time the LP is in the logical TDX non-root mode, including during TDCALL leaf functions, the LP has implicit shared
access to TDVPS, TDR and TDCS.

September 2025 . Page 182 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

18.1.3. Transactions

In some cases, Intel TDX Module flows update some state as a transaction. They first read the current state, then do

some calculations and eventually attempt to update the state using an atomic operation (e.g., LOCK CMPXCHG) to check

that the state has not changed and set its new value. If that check fails, an Intel TDX Module interface function may fail
5 with a TDX_OPERAND_BUSY status.

18.1.4. Concurrency Restrictions with Host Priority

Overview

Host priority is a variant on explicit concurrency restrictions, where the host VMM side is given priority over guest TD
side. A HOST_PRIORITY flag is added to locks protecting resources that may be accessed by the host VMM and a guest
10 TD. Both mutexes and shared/exclusive locks can be enhanced with host priority.

18.1.4.1. Host-Side (SEAMCALL) Operation

The host VMM is expected to retry host-side operations that fail with a TDX_OPERAND_BUSY status. The host priority
mechanism helps guarantee that at most after a limited time (the longest guest-side TDX Module flow) there will be no
18.1da@ntention with a guest TD attempting to acquire access to the same resource.

15 Lock operations process the HOST_PRIORITY bit as follows:

e A SEAMCALL (host-side) function that fails to acquire a lock sets the lock’s HOST_PRIORITY bit and returns a
TDX_OPERAND_BUSY status to the host VMM. It is the host VMM’s responsibility to re-attempt the SEAMCALL
function until it succeeds; otherwise, the HOST_PRIORITY bit remains set, preventing the guest TD from acquiring
the lock.

20 e A SEAMCALL (host-side) function that succeeds to acquire a lock clears the lock’s HOST_PRIORITY bit.

Guest-Side (TDCALL) Operation
18.1.4.3.
A TDCALL (guest-side) function that attempts to acquire a lock fails if HOST_PRIORITY is set to 1; a TDX_OPERAND_BUSY
status is returned to the guest. The guest is expected to retry the operation.

Guest-side TDCALL flows that acquire a host priority lock have an upper bound on the host-side latency for that lock; once
25 a lock is acquired, the flow either releases within a fixed upper time bound or periodically monitors the HOST_PRIORITY
18.1flag to see if the host is attempting to acquire the lock.

Host Priority Busy Timeout

Once a host-side operation failed with a TDX_OPERAND_BUSY status, the host VMM should retry this operation until it
no longer fails with the same TDX_OPERAND_BUSY status. Otherwise, the guest TD may be stuck trying to acquire a lock
30 where the HOST_PRIORITY bit is set.

The TDX Module implements a timeout mechanism for guest-side host priority lock acquisition failures. If the guest TD
loops on a TDCALL (guest-side) function that fails with TDX_OPERAND_BUSY due to HOST_PRIORITY value of 1 for more
than a configurable timeout, the TDX Module initiates a trap-like TD exit with a TDX_HOST_PRIORITY_BUSY_TIMEOUT
status. Itis expected that this will never happen with a properly operating host VMM. However, it is still possible for the
35 host VMM to resolve the lock contention by calling the SEAMCALL function that previously failed with a
TDX_OPERAND_BUSY status until successful, and then re-entering the guest TD by calling TDH.VP.ENTER with the
HOST_RECOVERABILITY_HINT bit cleared to 0. For details, see the [TDX Module ABI Spec].

The host priority timeout’s default value is 1 second. It is configurable between 10 msec to 100 seconds by using
TDH.MNG.WR to update TDCS.HP_LOCK_TIMEOUT.

September 2025 . Page 183 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

18.2. Memory and Resource Operands Access

Intel SDM, Vol. 3, 11.5.2 Precedence of Cache Controls
Intel SDM, Vol. 3, 11.11 Memory Type Range Registers (MTRRs)
Intel SDM, Vol. 3, 11.12 Page Attribute Table (PAT)

5 18.2.1. Overview

In this section, we discuss Intel TDX functions’ memory and resource operands access from the following perspectives:

e Access semantics (shared, private, opaque and hidden)
Explicit vs. implicit accesses
Operand address specification (host-physical address, guest-physical address)

Section 2: Intel TDX Module Architecture Specification

10 e Actual memory access (read or write) vs. memory reference
Access Semantics
Access semantics, as used in this document, convey the intended purpose of the access. Intel TDX functions are designed
to use one of the following access semantics when accessing their memory and/or platform resource parameters:
18.2.1.1.
Table 18.3: Access Semantics Definition
Access Description Intel TDX Module Usage
Semantics
Shared Memory is accessed using one of the shared HKIDs (in e Source page of
the range 0 to MAX_MKTME_HKIDS - 1). This is mostly TDH.MEM.PAGE.ADD
used for memory parameters accessed by the VMM. e Memory operands of TDCALL leaf
functions
Private The memory is mapped in the TD’s private GPA space. e TD private pages
Memory accessed using the target TD’s private HKID (in e Secure EPT pages
the range MAX_MKTME_HKIDS - 1 to MAX_HKIDS - 1).
Such memory pages can be mapped in the TD’s private
GPA space.
Opaque Memory is addressable by the host VMM, but its content | ® TDR
is not directly accessible to software or devices. Memory | ¢ TDCX
is encrypted using either the Intel TDX global private key e TDVPR
(for TDR) or the TD’s ephemeral private key (for other
control structures).
Hidden Access is to an Intel TDX Module internal resource. That | e KOT
resource is not directly addressable as a memory e WBT
operand to software or devices.
15
18.2.1.2.
Note that on guest-side (TDCALL) functions, shared vs. private semantics is determined by the GPA provided as an
operand to the function. A specific TDCALL leaf function may or may not impose a private or a shared access — e.g.,
TDG.MEM.PAGE.ACCEPT requires a private GPA, while TDG.MR.REPORT may work with either a private GPA or a shared
GPA.
20 Explicit vs. Implicit Access

Explicit memory access is defined as an access where the memory location is provided as explicit operand to an Intel TDX
function. The address may be provided directly in a GPR or indirectly via some address field in a software-accessible
memory data structure.

The HKID for accessing the memory can be inferred by the instruction —implicitly or explicitly from the explicitly provided
25 access.

September 2025 . Page 184 of 196

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Implicit memory access is defined as an access to a platform physical memory address, or to some other resource, that
is not passed as an operand of an instruction (either directly or indirectly) but is implied by use of the Intel TDX function.
TDX architecture helps guarantee that an implicit access is performed correctly, or a proper error action is taken.

Memory Operand Address Specification

Host-side Intel TDX functions (SEAMCALL leaf functions) memory operands are specified using their host-physical address
(HPA), their guest-physical address (GPA), or when a GPA-to-HPA mapping is done (e.g., TDH.MEM.PAGE.ADD) by both
HPA and GPA.

In most cases, HPA for private or opaque access semantics must be specified with all HKID bits set to 0.

18.2&dest-side Intel TDX functions (TDCALL leaf functions) memory operands are specified using their guest-physical address

(GPA).

Memory Type

18.2.1.4.1. Memory Type for Private and Opaque Accesses

The memory type for private and opaque access semantics, which use a private HKID, is WB.

18.2.1.4.

18.2.1.4.2. Memory Type for Shared Accesses
Intel SDM, Vol. 3, 28.2.7.2 Memory Type Used for Translated Guest-Physical Addresses

The memory type for shared access semantics, which use a shared HKID, is determined as described below. Note that
this is different from the way memory type is determined by the hardware during non-root mode operation. Rather, it
is a best-effort approximation that is designed to still allow the host VMM some control over memory type.

e For shared access during host-side (SEAMCALL) flows, the memory type is determined by MTRRs.
e For shared access during guest-side flows (VM exit from the guest TD), the memory type is determined by a
combination of the Shared EPT and MTRRs.
o If the memory type determined during Shared EPT walk is WB, then the effective memory type for the access is
determined by MTRRs.
o Else, the effective memory type for the access is UC.

18.2.1.5.

Actual Memory Access vs. Memory Reference

In some cases, Intel TDX functions only reference memory —i.e., use its address, but no actual access is done.

In other cases, Intel TDX functions access the memory —i.e., perform read or write (but not execute) operations.

September 2025 . Page 185 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Summary Table

Table 18.4: Memory Access Summary

18

Explicit/ | Intel TDX Access Address | HKID Derivation Memory Example
Implicit | Function Semantics | Operand Type
Explicit Host-Side Shared HPA Derived HPA From MTRR | SRCPAGE operand of
2.1.6. (SEAMCALL operand’s HKID TDH.MEM.PAGE.ADD
Leaf) bits
Private HPA TD’s HKID WB Target page of
TDH.PHYMEM.PAGE.RECLAIM
GPA TD’s HKID WB CHUNK operand of
TDH.MR.EXTEND
HPA and | TD’s HKID WB Target page of
GPA TDH.MEM.PAGE.ADD
Opaque HPA TD’s HKID or Intel | WB TDVPR operand of
TDX global HKID TDADDVPR
Guest-Side | Shared GPA From Shared EPT | From REPORTDATA operand of
(TDCALL Shared EPT | TDG.MR.REPORT
Leaf) and MTRR
Private GPA TD’s HKID WB Target page of
TDG.MEM.PAGE.ACCEPT
Implicit | All Private/ N/A TD’s HKID or Intel | WB TDCS access by
Opaque TDX global HKID TDH.VP.ENTER
Hidden N/A N/A N/A KOT access by
TDH.MNG.KEY.CONFIG
18.3. Register Operands and CPU State Convention

VM-Exit Information Fields
VMX Basic Exit Reasons

Intel SDM, Vol. 3, 24.9
Intel SDM, Vol. 3, App. C

18.3.1. Overview: Regular vs. Transition Leaf Functions

Intel TDX functions can be divided into transition functions and non-transition functions.

The non-transition functions are where SEAMCALL and TDCALL leaf functions behave as emulated CPU instructions from
the perspective of the host VMM and the guest TD, respectively. In those cases, the meaning of input and output register
operands is straightforward — similar to CPU instructions.

Transition cases are SEAMCALL(TDH.VP.ENTER) and TDCALL(TDG.VP.VMCALL) leaf functions, where a full cycle (until the
start of the next instruction) includes TD transitions to the guest TD or host VMM, respectively, and back to the host
VMM or guest TD, respectively. In those cases, we look at the functions from the point of view of the caller. The meaning
of input and output register operands is more complicated.

Both cases are explained in the following sections and in the function reference sections.

18.3.2. Interface Function Leaf and Version Numbers

Interface functions are selected by a leaf number, provided in RAX. A version number enables supporting multiple
versions of the same function, if required for backward compatibility. Unless otherwise specified, the default version
number is 0.

September 2025 Page 186 of 196

Section 2: Intel TDX Module Architecture Specification

10
18

15

20

25

30

35

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Table 18.5: Intel TDX Interface Functions Leaf and Version Numbers in RAX

Bits Field Description

15:0 Leaf Number Selects the SEAMCALL or TDCALL interface function

23:16 Version Number Selects the SEAMCALL or TDCALL interface function version

63:24 Reserved Must be 0

18.3.3. CPU State Preservation Convention

TDH.VP.ENTER

TDH.VP.ENTER is a special case. In addition to explicit output operands, TDH.VP.ENTER is not designed to preserve the
extended CPU state that the TD may use according to TDCS.XFAM.

18.3FHe host VMM is expected to save any state it needs before calling TDH.VP.ENTER. Details are provided in the

TDH.VP.ENTER leaf function definition (see the [TDX Module ABI Spec]).

Other Interface Functions

3§I?I_ Intel TDX functions except TDH.VP.ENTER are designed to preserve the CPU state not explicitly defined as output.

Most interface functions preserve the AVX, AVX2 and AVX512 state. There are some exceptions, as described in the
specific function definitions (see the [ABI Spec]):

e TDG.VP.VMCALL may use some XMM registers to pass information to and from the host VMM.
e Some interface functions may reset AVX, AVX2 and AVX512 state and/or the APX state (if the CPU supports it) to the
architectural INIT state.

18.3.4. Transition Cases: TD Entry and Exit

18.3.4.1.

TD Entry: TDH.VP.ENTER

Transfer of Host VMM State to TD Guest

By design, in the case of a TDH.VP.ENTER leaf function that follows a previous TDG.VP.VMCALL, the RCX input parameter
of the previous TDG.VP.VMCALL is used as a bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSl and R8 through
R15) and XMM registers whose value is transferred to the guest TD as-is. RAX is set to 0. See the TDG.VP.VMCALL
description in the [TDX Module ABI Spec].

The rest of the CPU state is restored from the TD VCPU state as saved on TDG.VP.VMCALL.

Output State (Back to the Host VMM)

On completion of TDH.VP.ENTER, a success — indicated by the ERROR bit (RAX[63]) being 0 — means that TD Entry into
the TD guest was successful. The TD guest ran for some time and then exited to the Intel TDX Module. That exit can be
due to execution of TDG.VP.VMCALL) or due to an asynchronous exit (e.g., an EPT Violation). The Intel TDX Module then
executes SEAMRET, transferring control to the instruction following TDH.VP.ENTER. In this case, the DETAILS field
(RAX[31:0]) format is designed to be the same as the VMX Exit reason.

If the completion of TDH.VP.ENTER (i.e., exit from the TD guest) was due to TDCALL(TDG.VP.VMCALL), then the RCX input
parameter of TDG.VP.VMCALL is designed to be used as a bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSI and
R8 through R15) and XMM registers whose value is passed to the host VMM as the output of TDH.VP.ENTER. RCX itself
is passed as-is to the output of TDH.VP.ENTER, and RAX[31:0] indicates the VMCALL exit reason (see below). See the
TDG.VP.VMCALL description in the [TDX Module ABI Spec].

If the completion of TDH.VP.ENTER was due to another reason, then other VMX-like Exit Information fields are provided
in other GPRs. Details are provided in the TDH.VP.ENTER leaf function definition (see the [TDX Module ABI Spec]).

By design, any GPRs and extended states that do not return values as described above are set to synthetic values. If the
VMM uses any of them, it must explicitly save them before TDH.VP.ENTER and restore them afterward.

September 2025 . Page 187 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

TD Synchronous Exit: TDG.VP.VMCALL

Transfer of TD Guest State to Host VMM

In the case of a TDG.VP.VMCALL leaf function, the RCX input parameter of TDG.VP.VMCALL is designed to be used as a
bitmap. It selects the GPRs (from RBX, RDX, RDI, RSI and R8 through R15) and XMM registers whose value is passed to
the host VMM as the output of TDH.VP.ENTER. RCX itself is passed as-is to the output of TDH.VP.ENTER.

RAX provides TDH.VP.ENTER completion status (see above). All other CPU state components, including GPRs and XMM

18.3.4.2

registers not selected by RCX, are saved in TDVPS and set to fixed values (see the [TDX Module ABI Spec]). The value of
RCX itself is also saved to TDVPS.

Output State (Back to the Guest TD)

On completion of TDG.VP.VMCALL, a success — indicated by the ERROR bit (RAX[63]) being 0 — means that a SEAMRET
into the VMM was successful. The VMM ran for some and then executed TDH.VP.ENTER successfully (possibly on another
LP). The Intel TDX Module executed VMRESUME successfully, transferring control to the instruction following TDCALL.

In this case, the RCX input parameter of TDG.VP.VMCALL is designed to be used as a bitmap. It selects the GPRs (from
RBX, RDX, RDI, RSI and R8 through R15) and XMM registers whose value reflects their state as input to TDH.VP.ENTER.
All other CPU states, including GPRs and XMM registers not selected by RCX, are restored from TDVPS.

18.4. Interface Function Completion Status

Intel TDX function completion status is returned in RAX. The status is structured to provide as many details to software
about error conditions as practically possible. At the same time, the status enables software to ignore details that it does
not need. Software may parse the completion status at three detail levels, as described below.

18.4.1. Least Detailed Level: Success/Warning/Error

At this simplest level, software can differentiate between three cases:

Table 18.6: Intel TDX Interface Functions Completion Status in RAX at the Least Detailed Level

RAX Value Meaning Description

0 Success Function completed successfully

Positive Informational / | Function completed successfully, but with some informational
(0x00000000_00000001 Warning or warning code — e.g., TDH.PHYMEM.PAGE.RECLAIM of a TDCX

— OX7FFFFFFF_FFFFFFFF) page that is already not VALID

Negative Error Function aborted due to some error

(0x80000000_00000000
— OXFFFFFFFF_FFFFFFFF)

18.4.2. Medium Detailed Level: Class, Recoverability and Fatality

At this level, software can understand the following information:

Table 18.7: Intel TDX Interface Functions Completion Status in RAX at the Medium Detailed Level

Name Description

CLASS Class of the function completion status

ERROR Indicates that the instruction was aborted due to error
NON_RECOVERABLE Recoverability hint:

e Incase of an error, it indicates that the error is probably not recoverable.

e In case of a TD exit, it indicates that the TD failed in a non-recoverable
way.

September 2025 . Page 188 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US
Name Description
FATAL Fatality hint — applicable only for SEAMCALL (TDH.*), indicates that the TD

entered a state where it can only be torn down.

HOST_RECOVERABILITY_HINT

As a TDH.VP.ENTER output, indicates a TDCALL (TDG.*) that resulted in a trap-
like TD exit for which the host VMM needs to provide a recoverability hint in
the following TD entry.

As a TDCALL (TDG.*) output, indicates that the host VMM provided a hint that
the error is probably not recoverable.

18.4.3. Most Detailed Level

At this level, software can understand more details of an error that happened —e.g., if TDH.VP.ADDCX fails, software may
understand if it is due to a wrong number of TDCX pages or due to the VCPU already being initialized.

Refer to the [TDX Module ABI Spec] for a detailed definition of function completion status.

18.5. TD, VM and VCPU Identification

Table 18.8: TD and VCPU Identification

Unique Identifier | integer

Identifier Format Details

TD Handle TDR HPA While residing in memory, a TD is uniquely identified by the TDR page
HPA, serving as the TD handle input operand of TDX Module host-side
interface functions. TDR HPA may change when, e.g., a TD is migrated.

TD Universally 256-bit TD_UUID serves as a globally unique TD identifier, randomly created

when the TD is created. TD_UUID survives migration.

VCPU Handle TDVPR HPA While residing in memory, a VCPU is uniquely identified by the TDVPR

page HPA, serving as the VCPU handle input operand of TDX Module
host-side interface functions. TDVPR HPA may change when, e.g., a TD
is migrated.

VCPU Index 16-bit integer | A sequential VCPU index is assigned when the VCPU is created. VCPU

index survives migration.

VM Index 16-bit integer | VM index identifies a VM within a TD.

e VM index 0O identifies the L1 VMM.
e VM indices higher than 0 identify L2 VMs.

18.6. Metadata Access Interface

18.6.1. Introduction

Metadata access interface is the architecture that allows representing TDX metadata, i.e., TD non-memory state and TDX

Module control state, in a way that is independent of the way it is stored. It does this by hiding the memory format of

TDX control structures and allowing abstraction of data, as follows:

e The actual fields stored in the TD control structures may be different than their abstract representation. E.g., a TDVPS
field may be provided as a GPA to TDH.VP.WR, while internally stored as an HPA.

e Access to a TD metadata field may trigger some operation. E.g., writing the TD VMCS’s “posted-interrupt descriptor
address” control triggers the verification of related control and may enable posted interrupt handling.

e TD metadata fields may be completely virtual, i.e., there may be no actual control structure fields represented by

them.

September 2025

Page 189 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

Metadata abstraction is used in the following cases:

e Read of TDX Module information by the host VMM and guest TD using the following SEAMCALL and TDCALL
functions:
o Single Field Read: TDH.SYS.RD, TDG.SYS.RD
o All Fields Read: TDH.SYS.RDALL, TDG.SYS.RDALL
e Read and write of TDR, TDCS and TDVPS control structures by the host VMM using the following SEAMCALL functions:
o Single Field Access: TDH.MNG.RD, TDH.MNG.WR, TDH.VP.RD, TDH.VP.WR
e Read and write of TDR, TDCS and TDVPS control structures by the guest TD using the following TDCALL functions:
o Single Field Access: TDG.VM.RD, TDG.VM.WR, TDG.VP.RD, TDG.VP.WR
e Read and write of TDR and TDCS a service TD using the following TDCALL functions:
o Single Field Access: TDG.SERVTD.RD, TDG.SERVTD.WR
e For TD migration, export and import of TD metadata by the host VMM using the following SEAMCALL functions:
o State Export: TDH.EXPORT.STATE.IMMUTABLE, TDH.EXPORT.STATE.TD, TDH.EXPORT.STATE.VP
o State Import: TDH.IMPORT.STATE.IMMUTABLE, TDH.IMPORT.STATE.TD, TDH.IMPORT.STATE.VP

18.6.2. Metadata Fields and Elements

Metadata fields are identified by field identifiers (MD_FIELD_ID). A field identifier contains a FIELD_CODE and other
information. A detailed description and MD_FIELD_ID values are defined in tables provided in the [TDX Module ABI Spec].
Metadata fields size may be up to 128 bytes.

For the purpose of metadata abstraction interface, fields are divided into multiple field elements; the size of each
element can be 1, 2, 4 or 8 bytes. Elements in a field have consecutive field codes, incremented by 1 or 2 as encoded in
by the field identifier’s INC_SIZE.

Figure 18.1 below shows an example of a SHA384 fields (e.g., TDCS.MRCONFIGID), whose size is 48B. When access using
the metadata access functions, this field is divided into six 8-byte elements.

Element 0 Element 1 Element 2 Element 3 Element 4 Element 5
FIELD_CODE X X+1 X+2 X+3 X+4 X+5
Content Bytes 7:0 Bytes 15:8 Bytes 23:16 Bytes 31:24 Bytes 39:32 Bytes 47:40

Figure 18.1: Example of a 48 Byte TDCS.MRCONFIGID Field Composed of Six 8 Byte Elements
A detailed definition of a field identifier is provided in the [TDX Module ABI Spec].

18.6.3. Arrays of Metadata Fields

Metadata fields can be organized in arrays. Figure 18.2 below shows an example of an array of 4 fields, each composed
of 1 element. In this case, fields in the array have consecutive field codes, incremented by 1 or 2 as encoded in by the
field identifier’s INC_SIZE field.

Array Field Content
Index Code

0 X+0 Array[0]
1 X+1 Array[1]
2 X+2 Array[2]
3 X+3 Array[3]

Figure 18.2: Example of an Array of 4 Single-Element Fields

Figure 18.3 below shows an example where each field is composed of multiple elements. TDCS.RTMR is such a case. The
base FIELD_ID of each field in the array is incremented by the number of elements in each field, multiplied by 1 or 2 as
encoded in by the field identifier’s INC_SIZE field.

September 2025 Page 190 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

Array|Base Element 0’s |Element 1’s |Element2’s |Element3’s |[Element4’s |Element5’s
Index|FIELD_ID |FIELD_ID FIELD_ID FIELD_ID FIELD_ID FIELD_ID FIELD_ID

0 X+0 X+0 X+1 X+2 X+3 X+4 X+5

1 X+6 X+6 X+7 X+8 X+9 X+10 X+11

2 X+12 X+12 X+13 X+14 X+15 X+16 X+17

3 X+18 X+18 X+19 X+ 20 X+21 X+22 X+ 23

Figure 18.3: Example of an Array of Four 48 Byte TDCS.RTMR Fields, Each Composed of 6 Elements

18.6.4. Metadata Field Sequences

Field sequences contain one or more whole metadata fields, each composed of one or more elements. A sequence is
composed of a sequence header and one or more values.

o All fields in a sequence have the same CONTEXT_CODE, CLASS_CODE and field size (i.e., the same number of
elements and the same element size).

e Each element is a sequence occupies 8 bytes, even if its size is 1, 2 or 4 bytes. When a sequence is used as an output
of the TDX Module, the upper bytes beyond the element size are zeroed out. When a sequence is used as an input
of the TDX Module, the upper bytes are ignored.

e The FIELD_CODEs of each element in a sequence are consecutive.

o A field sequence may contain a write mask, which applies to each element value in the sequence. This is applicable
when the sequence is used for writing bit fields, e.g., VMCS execution controls.

e A sequence always contains whole fields, i.e., if a field is composed of multiple elements, the sequence contains all
of them.

A field sequence header contains the initial field code and other information — for a detailed description see the [TDX
Module ABI Spec].

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 0)

FIELD[O] / ELEMENTI[O]

FIELD[O] / ELEMENTI[1]

FIELD[0] / ELEMENT[LAST_ELEMENT_IN_FIELD]

Figure 18.4: Example of a Metadata Field Sequence with One Field Composed of Multiple Elements

September 2025 Page 191 of 196

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 1)

FIELD[O] / ELEMENTIO]

FIELD[O] / ELEMENTI[1]

FIELD[O] / ELEMENT[LAST_ELEMENT_IN_FIELD]

FIELD[1] / ELEMENTI[O]

FIELD[1] / ELEMENTI[1]

FIELD[1] / ELEMENT[LAST_ELEMENT_IN_FIELD]

Figure 18.5: Example of a Metadata Field Sequence with 2 Fields Composed of Multiple Elements

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 7)

FIELD[O] / ELEMENTI[O]

FIELD[1] / ELEMENTI[O]

FIELD[2] / ELEMENTI[O]

FIELD[7] / ELEMENTI[O]

Figure 18.6: Example of a Metadata Field Sequence with 7 Fields Composed of a Single Element

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 3,
WRITE_MASK_VALID = 1)

WRITE_MASK

FIELD[O] / ELEMENTI[O]

FIELD[1] / ELEMENTI[O]

FIELD[2] / ELEMENTI[O]

FIELD[3] / ELEMENT[O]

Figure 18.7: Example of a Metadata Field Sequence with a Write Mask

18.6.5. Metadata Lists

A metadata list is composed of a list header and one or more field sequences. The list header specifies list buffer size in
bytes and the number of sequences. Metadata lists are used, e.g.,, for exporting VCPU metadata by
THD.EXPORT.STATE.VP.

September 2025 . Page 192 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

List Header LIST_HEADER(SIZE = s, NUM_SEQUENCES = 3)

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 2)

FIELD[O] / ELEMENTIO]

Multi-Field FIELD[O] / ELEMENT[1]

Sequence FIELD[1] / ELEMENT([O]

FIELD[1] / ELEMENT([1]

FIELD[2] / ELEMENT[O]

FIELD[2] / ELEMENTI[1]

SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 0)

Single-Field
Sequence FIELD[O] / ELEMENT[O]
FIELD[O] / ELEMENT[1]
SEQUENCE_HEADER(LAST_FIELD_IN_SEQUENCE = 3,
WRITE_MASK_VALID = 1)
WRITE_MASK
Multi-Field
Sequence with a FIELD[O] / ELEMENTI[O]
Write Mask FIELD[1] / ELEMENTI[O]

FIELD[2] / ELEMENTI[O]

FIELD[3] / ELEMENTI[O]

Figure 18.8: Metadata List Example
The metadata list header format is defined in the [TDX Module ABI Spec].

18.7. Interrupt Latency

18.7.1. Introduction

While the TDX Module is running, no external events (interrupts, NMI, SMI, INIT) are recognized. To support proper
system responsiveness, the TDX Module is designed to limit the latency from the time an external event occurs until the
host VMM gets control and may respond to that event.

Applicable cases are:

e Events that occur during local host-side flows (i.e., SEAMCALL interface functions except TDH.VP.ENTER).

e Events that occur during TD execution: from the beginning of TDH.VP.ENTER until completion of asynchronous TD
exit.

e Events that occur during local guest-side flows (i.e., TDCALL interface functions except TDG.VP.VMCALL).

e Events that occur during synchronous TD exit (i.e., TDG.VP.VMCALL).

18.7.2. Latency of the Intel TDX Interface Functions

There are infrequent cases where the latency of some interface functions may be longer than normal, as listed below.

e Host-side interface functions that are invoked a limited number of times during TDX Module lifecycle. The interface
functions below are known to have longer than normal latencies:
o TDH.SYS.INIT
o TDH.SYS.LP.INIT
o TDH.SYS.KEY.CONFIG
o TDH.IDE.STREAM.IDEKMREQ
e Host-side interface functions that are invoked a limited number of times during TD lifetime. The interface functions
below are known to have longer than normal latencies:
o TDH.MNG.KEY.CONFIG

September 2025 . Page 193 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

o TDH.MNG.INIT
o TDH.VP.NIT

e TDH.VP.ENTER may have a long latency if the single/zero step attack mitigation (described in 17.3) is activated due
to a suspected attack.

e Guest-side interface functions that are invoked a limited number of times during TD lifetime. Such interface
functions are rate-limited to avoid VM-DOS by the guest TD; see 11.16.5. The interface functions below are known
to have longer than normal latencies (they may not be supported by some TDX Module versions):

o TDH.MR.ASSIGNSVNS

18.7.3. Interruptible Host-Side Interface Functions

Some SEAMCALL flows, which have long execution times, are designed to be interruptible. Interruptible flows check for
pending events after doing some part of their work. E.g., TDH.EXPORT.MEM, which exports multiple 4KB pages, checks
for pending events after processing each page. Detection of pending interrupts, but not of other events (NMI, SMI, etc.),
is conditioned by the host VMM'’s interrupt enabling status (i.e., RFLAGS.IF).

There are two types of interruptible host-side interface functions:

e Resumable functions store their intermediate state securely before returning to the host VMM on interruption. They
return a TDX_INTERRUPTED_RESUMABLE status. The host VMM is expected to call them again, indicating a
resumption. Upon resumption, the resumable function continues from the point where it was interrupted.

e Restartable functions don’t store any intermediate state before returning to the host VMM on interruption. They
return a TDX_INTERRUPTED_RESTARTABLE status. The host VMM is expected to call them again. The resumable
function starts from scratch.

SEAMCALL Leaf Function

I
|
I
SEAMCALL Leaf Function :

SEAMCALL Check SEAMCALL
DX SEAMCALL || ek 1] qpamcare || Check ec
pending pending flow part pending flow part
Module flow part 1 flow part 2
events events N-1 events N
A | ﬂ»
I SEAMRET
1 Status =
1 TDX_INTERRUPTED_RESUMABLE
|
: CPU delivers SEAMRET
I _ _ theinterrupt Status =
I e \ TDX_SUCCESS
|
| v
Host SEAMCALL . Interrupt SEAMCALL
VMM Interrupt Handler (resume) T

l<
latency
Interrupt

Figure 18.9: Typical Interruptible & Resumable SEAMCALL Leaf Function

18.7.4. Interruptible Guest-Side Interface Functions

Description

Some TCALL flows, which have long execution times, are designed to be interruptible. Interruptible flows check for
pending events after doing some part of their work. E.g., TDG.MEM.PAGE.ACCEPT, which may need to initialize a 2MB
page, checks for pending events after initializing each 4KB block. Contrary to SEAMCALL flows, detection of pending
interrupts is not conditioned by the host VMM'’s interrupt enabling status (i.e., RFLAGS.IF).

When a pending event is detected, the interruptible TDCALL flow stores its intermediate state securely and resumes the
guest TD. The guest virtual state, specifically RIP, is unmodified — except for the interruptibility state (STI Blocking and
MOVSS Blocking). Thus, upon resuming the guest TD, the CPU delivered the event. This causes an asynchronous TD exit.
The host VMM processes the TD exit information and processes the event, and then re-enters the TD. Since the guest
RIP has not changed, the same TDCALL is executed again and the interrupted TDCALL flow is resumed.

September 2025 . Page 194 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Base Spec

Section 2: Intel TDX Module Architecture Specification

348549-007US

CPU delivers
PPt S ~ _ the interrupt
1 .~ AN
74
N
G#g“ TDCALL L
! VMRESUME .
1 - VM Exit
| (unmodified (H/W
VM Exit | RIP,STland || "
(TDCALL) I MOVSS P
| blocking
TDCALL Leaf Function | cleared)
1 v
TDX TDCALL Che;k TDCALL Che(.:k Async TD
- flow pending flow pending .
Module Exit
part 1 events part 2 events
1
! TD Exit
: (H/W
| Interrupt)
1
T
| PE— Interrupt
Interrupt * latency

TDCALL A
VMRESUME | VM Exit VMRESUME
(TDCALL) (advance RIP)
TDCALL Leaf Function
TDCALL Check TDCALL
TD Entry - flow pending flow
part N-1 events part N

Figure 18.10: Typical Interruptible TDCALL Leaf Function — Hardware Interrupt Example

Posted Interrupts

In case the pending event is a posted interrupt notification, the posted interrupt is delivered by CPU when the guest TD
is resumed, and the TD’s interrupt handler is called.

Note:

Guest TD software should treat guest side interface functions as functions calls, not as a single TDCALL
instruction. The guest TD should not immediately precede an TDCALL to an interruptible leaf function with an
STl instruction or a MOV to SSinstruction. If it does, it should be aware that virtual interrupts will not be blocked
until the completion of that TDCAL leaf function.

CPU delivers
posted interrupt
e - b X4
Guest Interrupt Same
TD TDCALL 1 Handler TDCALL
1
1
VM Exit VMRESUME VM Exit VMRESUME
(TDCALL) 1 (unmodified RIP, STI (TDCALL) (advance RIP)
1 and MOVSS
! Blocking cleared)
v 1 v
Interrupted Done
DX TDCALL Leaf Function TDCALL Leaf Function
Module

Notification *
interrupt

Figure 18.11: Typical Interruptible TDCALL Leaf Function — Posted Interrupt Example

Guest-Visible State when a Guest-Side Function is Interrupted

Interruptible guest-side functions may be designed in either of the following ways:

e For some interface functions, their effect is not visible to the guest TD when the function is interrupted; it becomes
visible to the guest TD only when the whole function is completed. An example of such interface function is

TDG.MEM.PAGE.ACCEPT.

TDG.MEM.PAGE.ACCEPT is successfully completed.

An accepted 2MB page becomes accessible to the guest TD only when

September 2025

Page 195 of 196

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Base Spec Section 2: Intel TDX Module Architecture Specification 348549-007US

e Other interface functions are designed so they execute in parts, and each completed part is visible to the guest TD
as soon as it is completed. An example of such interface function is TDG.VP.INVGLA. It works on a list of GLAs; when
interrupted, is adjusts the list information provided in RDX to reflect the work completed so far.

18.7.5. Rate-Limited Guest-Side Interface Functions

Some guest-side (TDCALL) interface functions may have longer execution time than the maximum for supporting the
interrupt latency requirements but are difficult to design as interruptible. For example, TDG.MR.ASSIGNSVNS uses crypto
functions that are difficult to break into smaller units.

For such rate-limited functions, the rate at which the guest TD VCPU can call them is limited by the TDX Module. If the
guest TD calls such functions before 200usec have passed since the last successful call, the TDX Module induces a TD exit
with a TDX_TDCALL_RATE_LIMIT status, without modifying the guest CPU state.

The host VMM can then introduce a delay before calling TDH.VP.ENTER to resume the guest TD VCPU. After the following
TD entry, the rate-limited function is called again; in this case the TDX Module doesn’t check the time passed since the
last call.

18.8. DRNG Entropy Errors

Multiple TDX Module interface functions may use the CPU’s digital random number generation (DRNG) facility, via the
RDSEED, RDRAND and PCONFIG instructions. Such interface functions may fail on entropy errors due to the inability of
the DRNG to generate random values at the requested rate, returning a TDX_RND_NO_ENTROPY or a similar status code.
This may happen where, e.g., software running on other LPs in the same package also executes RDSEED at a high rate.

September 2025 . Page 196 of 196

Section 2: Intel TDX Module Architecture Specification

