10

15

20

Intel.

Intel® TDX Connect Architecture
Specification

Notices and Disclaimers:
Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others.

354629 003-US
June 2025

Copyright © 2025 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

10

15

20

25

30

35

Intel® TDX Connect Architecture Specification 354629 003-US

CONTENTS

1. L LT Q01 LT 5) 3
J O R 1 To 1 SRSt 3
1.2, Introduction t0 TDX COMMECL..........c.uecuueueeeiesiesieest ettt ettt et te et et sat e s st e st e tesas e e et e sttesbeesaeeteenassaeesaes 3
1.3. Introduction to PCI-SIG TDISP GNA IDEcoooooieouieieeieeiieeieeeee ettt ettt 4

2. ATCRItECTUIE O VEIVIEW...ueeiiiiieiiiiiiieeiiiiteiiieteiiees i ssssee s ssse e e as e s ss st e sessane s sessanesssssssessssaneesessanesssssnnenss 8
2.1, TDX CORNECE FFAMEWOFK ...ttt ettt ettt ettt sat st e bt et enesnesate st enaeenneennenas 8
2.2 THUSICA DIMA.....oeeeeeeee ettt ettt ettt st s ettt et st st st nae et ne e 9
2.3, NRX Installation for TDX CORMECEcceecuevueeuiriieirieiieieiesiesitete sttt sttt sttt sttt 10
2.4, TDX CONNECE ENUM@TALION ...ttt ettt et e et a et e st e et e st e et esbe e e aaeesbneenseeeatneenseeenes 10
2.5, ENGDING TDX COMNECT ..ottt sttt ettt sttt ettt sat ettt 11
2.6. TDX Connect Life CYCle OVEFVIEWcocueevuereereesiieiieiieieeitesitesie ettt st st sit ettt esat e st esteesaeeseeaesanenaes 11
2.7, SPDM MARAZEMENL ...ttt ettt sttt sttt sttt e e st e st e st e e st e snessseestnessee st 13

2.7.1. Static DEVICE AtIESTATION. ¢...eetieutiriteriieiteerteeste ettt sttt et et st esbtesaeesbeesbe e bt eatesaeesbeenbe e b e ebesanesmeesaeenbeenseenes 13
2.7.2. Dynamic Device Attestation (Measurement Recollection)..........eceecuerierieieeneenieiiieiesieseeeeeeee e 13
2.7.3. Device AtEStation ODJECLS......ccverterrerrirririietirteitetertesre sttt steese et et e st se e s sbe bt st et e seseesresaeebe e st esnensenaenreseeas 14
2.7.4. SPDIM CIEALEuveeeuveeeiteeetteetee st e ettt e stte ettt e ste e sttt e sbtessbe e e satesabeeesseeesseeesabeeabeeesabeenneeesabeessteesaseesnseesaseesnsaesas 14
2.7.5. SPDM CoNNect and DISCOMMECTcc.viiuieruierieeieeteritesitesteesteetestesatesaeesaeessesntesaeesseesseenseensesasesnsesaeesseenseenes 15
2.7.6. Device Capabilities and TDX Connect Security CONSIAErationsceeververrereeeenrenenereneeeeeessesenennens 16
2.7.7. Other SPDIM OPEIAtiONS ...c..eeveeteeiieniirieenteesteeteetestesieesteesseesseeseeeseesseesseesbeessesasesasesaeesueesseensesnsesssesseesseens 16
2.8, IDE Stream MONGZEMENL...........cccueevueeeiiiiiieeiiestieett sttt ettt ettt ettt et e s st e st e et esatn e s saeesatnesssee st 16
2.8.1. IDE Stream Create, BIOCK and DEIEte.......ccciviiuuriiiiiiiieiiiieiiee ettt ettt e e sesiaree e s e e sesasbeereeeeeessannes 17
2.8.2. IDE Key Managementcocciiiiiiiiiiiiiiiiiiiciic i bbb 17
2.9, TDI Life CYCle MANAZEIMENLcecuveeeeeieeiesiesieesieesieeieeeiasttesttesteestesstestasstasseasssesseessesnsesssesssesseessesssesssessenaes 17
2.9.1. TDI Control Structure (TDICS) and Metadata Table (TDIMT)cccocveruieriirienienieeneenieeiesie st 19
2.9.2. MMIO Metadata Table (MMIOMT)ccccieiuiriirieniieieeieeieste et eeesaeesaeesse e e esesntesaeesaeesaeesseenseenes 19
2.9.3. TD MeMOTY PINNING ...cccueiiiiiiiieiiieiteeitett ettt ettt ettt saee st sbe et e bt eateeaeeebee b e e be e beeabesabesaeesaeesbeenbeenes 21
2.9.4. I/O TLB INVAIAAtION ...ttt ettt sttt b et eat e st saeesbeesbe e bt et e eateebeesbeesbeebeenbesasesanes 21
2.10. Interaction With TD PAFtitIONINGc.cceueerueesueeieeiesieseesie ettt ettt stt ettt et ete st st sae e sttt eseeasesanenaeenaees 23
2.10.1. LT TDI ACCEPL -ttt et st e s b e b e e sab e e e be e s be e e bnesnesensneeneees 24
2.10.2. L1 TOTLB INVAIIAAION ...ttt sttt ettt sae bttt enaennenee e 24
2.11. Interaction With TDX SeAmless UPAAIES.........cc.ueevueeeeiesieeesiiiesieesiie ettt ste et site st este s esseenanes 26

3 N 0] 01231 T 27
30Le GLOSSAFY ettt ettt a e a e h ettt et e et at e ae ettt et e e e e e nbeenaees 27
320 EXIOIIAL RESOUEICES ...ttt et ettt ettt ettt et eat e e at e e bt ettt et e e e e beenae s 28

June 2025 Page 2 of 29

5

10

15

20

25

Intel® TDX Connect Architecture Specification 354629 003-US

1. INTRODUCTION

1.1. About

This document outlines the system architecture specifications for Intel® TDX Connect, a TDX extension
technology for secure and efficient integration with trusted I/O devices.

It is part of the Intel TDX Connect Architecture Specification Set, which also includes the following documents:

Table 1.1: TDX Connect Architecture Specification Set

Document Name Reference Description

Intel® TDX Connect Architecture [TDX Connect Spec] | This document.

Intel® TDX Connect ABI FAS [TDX Connect ABI TDX module Application Binary Interface
Spec] (ABI) reference specification extensions for

TDX Connect.

Intel® TDX Connect Guest-Hypervisor [TDX Connect GHCI] | Intel TDX specification of the software
Communication Interface interface between the Guest TD and the
VMM.

Intel® TDX Connect TEE-10 Device Guide | [TDX Connect TEE- An introductory TDISP device overview on
10 Device Guide] how to implement TEE-IO devices which
are compliant with PCle TDISP 1.0 and with
Intel® TDX Connect.

Intel® TDX Connect Software Developer | [TDX Connect SW Software flow guide and examples for Host
Guide Guide] VMM, TD OS, and PCle driver support of
TDX Connect.

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication,
though Intel does not represent that such information will remain as described indefinitely in light of future
research and design implementations. Intel does not commit to update this document in real time when such
changes occur.

1.2. Introduction to TDX Connect

Intel® TDX base architecture [1] defines a Trusted Execution Environment (TEE) for virtual machines, known as Trusted
Domains (TDs). TDs are isolated virtual machines with hardware-enforced confidentiality and integrity protections for
CPU state, memory, and code execution.

Each TD’s memory is divided into two domains:
- Shared Memory: Accessible to host software and devices. Mapped into the TD’s shared EPT and accessed using
Guest Physical Addresses (GPAs) with the Shared bit set.
- Private Memory: Encrypted on a per-TD basis using dedicated memory encryption keys. Accessible only to the
TD itself, while still mapped via the shared EPT with GPA addresses marked as Shared.

While the TDX base architecture provides strong isolation from the hypervisor and untrusted devices, it imposes
limitations on direct 1/O. By default, all PCle devices are considered untrusted and are therefore not permitted to access
TD private memory directly. Consequently, device 1/O operations must occur through shared memory buffers.

June 2025 Page 3 of 29

10

15

20

25

30

35

Intel® TDX Connect Architecture Specification 354629 003-US

In this model, the TD is responsible for copying and encrypting/decrypting data between private and shared memory.
This process, commonly known as bounce buffering, introduces overhead and complexity —especially for accelerators
that require direct access to plaintext data, such as GPUs or Smart-NICs.

As confidential computing environments evolve, support for efficient trusted 1/O device assignment to TDs becomes
essential for enabling high-performance workloads that rely on 1/0 devices requiring access to unencrypted data.

Intel® TDX Connect is designed to address this challenge by enabling direct assignment of trusted PCle devices, known as
TEE Device Interfaces (TDIs), to TDs. TDX Connect builds upon the TDX foundation and leverages industry-standard
protocols developed through collaboration within PCI-SIG and DMTF:

- TDISP (TEE Device Interface Security Protocol) [2]: Defines the secure lifecycle, attestation process, and binding
of PCle device functions (TDIs) to TEEs.

- IDE (Integrity and Data Encryption for PCle) [3]: Provides cryptographic protection for PCle transactions,
supporting confidentiality, integrity, and replay resistance.

- SPDM (Security Protocol and Data Model) [4][5]: A DMTF-defined protocol used to establish authenticated
sessions, exchange device certificates and measurements, and manage IDE key provisioning.

Built upon these standards Intel® TDX Connect goal is to enable direct TDISP device assignment to TDs while preserving
the isolation and trust guarantees of TEEs.

Intel® TDX Intel® TDX Connect

Trust Compute Boundary

|
I Trust Compute Boundary

Encrypt & copy-out
Decrypt & copy-in

10 Data
° VMM'’s
o I _2 L

Shared

Buffer Bridge/
Switch

Figure 1.1: 10 Virtualization with Intel® TDX vs. Intel® TDX Connect

Application

Application
10 Data

Device

1.3. Introduction to PCI-SIG TDISP and IDE

Recently, Intel and other hardware vendors, strong advocates of confidential computing, collaborated under the PCI-SIG
to define two foundational standards to support secure direct device assignment in Trusted Execution Environments
(TEEs). These are the Trusted Execution Environment Device Interface Security Protocol (TDISP), which defines the
security lifecycle and assignment protocol for PCle-based device functions to TEE-based virtual machines, and Integrity
and Data Encryption (IDE), which provides a cryptographic transport layer to protect PCle data-in-flight with
confidentiality, integrity, and replay protection.

TDISP enables the binding of PCle device functions—known as TEE Device Interfaces (TDIs) to isolated virtual machines
known as TEE Virtual Machines (TVMs). It introduces a trust model that extends the TEE’s protection boundary to include
device functions, while maintaining the strong isolation and attestation principles expected of confidential compute
platforms.

TDISP introduces four key entities:
- TEE VM (TVM): A virtual machine requiring strict isolation and security features. In TDX Connect, this is realized
as a Trust Domain (TD).

June 2025 Page 4 of 29

10

15

20

25

30

Intel® TDX Connect Architecture Specification 354629 003-US

- TEE Device Interface (TDI): TDISP device unit of assignment (e.g., device function) including its associated device
resource that can be securely bound to a TVM. This concept remains the same in TDX Connect, referring to the
device-side function capable of TDISP interactions.

- TEE Security Manager (TSM): The host-site security authority that protects the TVM isolation and extend by
TDISP to manage the security of TDI assignment to a TVM. In TDX Connect this is role realized by the TDX module
and by the Intel CPU Root Complex extension to support trusted DMA mapping , secure MMIO and PCle IDE link
protection.

- Device Security Manager (DSM): A logical component residing on the device that enforces TDISP security
policies. It manages device-side operations via TDISP protocol messages, including SPDM session establishment,
attestation reporting, PCle IDE link setup, locking and reporting TDI configurations, TDI state tracking, and
maintaining TDI security and isolation.

To protect data in transit between the host and device, TDISP refers to the PCle Integrity and Data Encryption (IDE). “IDE
supports two types of link encryption: Link IDE (port-to-port) and Selective IDE (end-to-end). TDX Connect uses Selective
IDE with the goal to exclude switches the trust boundary.

To establish trust, the TSM and DSM initiate a secure SPDM session over the PCle DOE mailbox transport [6]. TDISP and
IDE use protocol messages which are encapsulated within secure SPDM session using AES-256-GCM encryption. This
secure session is used to exchange device identity certificates and attestation measurements and to establish a secure
channel for provisioning IDE keys and managing TDI state transitions.

Security isolation enforced

Legacy
VM

I
: TEE Security
|
: b
I
I

-
| |
| I
I
VMM L (TVM) | Manager (TSM)
I
| |
| |
I
|

A

Device Interface | | ' | TA
Configuration : : : }
|

v S

PF Driver ' ' ' |

| | | |

MMIO, DMA MMIO, DMA MMIO, DMA SPDM, TDISP IDE

,,,,,,,,,,,i,,,,,,,,,,,,,,,,,J ,,,,,,,,,,,,,,, R S S, - i

| | | | |

@ and Dér'w'ce connected dlver PCle Fabric—: Switches need not b}e truD

,,,,,,,,,,, Y
: I | —_——t e = —— | —® ;
i | I | I I | I I ! IDE !
! \J \J & \J | " Y | \J I
!)) Device Security ATC |
| Physical Function TDI L : - TDI : Manager (DSM) |
I ModelCert i
i | ‘) | | .’>| Per-part i
I | | TDISP stat DevPrivKey i
| | TDISP state | | state | e !
: — 1

TEE I/O Capable Device

— — — —
___ |
In TCB of TVMs accepting the device \/

Security isolation
In TCB of all TVMs enforced by DSM

Notin TVM TCB

Figure 1.2: PCle Base Spec TDISP Overview

The TDISP trust model requires the TVM to explicitly and independently inspect and verify the TDISP devices identities
and measurements are not automatically part of a TVM’s TCB unless the TVM explicitly accepts and verifies them. This
verification process involves:
- Using the TSM, the VMM can manage TVM mapping to TDI’s private MMIO resources and enable trusted DMA
mapping to allow TDI access TVM private memory. The trusted MMIO and DMA traffic is transmitted over PCle
IDE Selective Stream.

June 2025 Page 5 of 29

15

20

25

30

35

Intel® TDX Connect Architecture Specification 354629 003-US

- The TSM generates TDISP messages over the secure SPDM session, which are then transported by the VMM to
the device's DOE mailbox. The DSM operates the TDI state machine and reports the TDI configuration in
response.

- Device Identity Validation — The TVM must independently check the device's identity as reflected in the SPDM
certificates and measurements to ensure it is known and trustworthy.

- TDI Configuration Check — The TVM must review the TDI configuration, as reflected in the TDISP report, ensuring
that the TDI is properly configured and does not introduce security risks.

The DSM maintains a per TDI state machine which governs its security lifecycle to ensure controlled transitions between
states while maintaining confidentiality and integrity for TVMs and bound TDls.
The state machine consists of the following key states:

- CONFIG_UNLOCKED (Default State): The VMM configures the TDI in preparation for assignment to a TVM.
Confidential data should not be placed in the TDI while in this state. Memory requests originating from a TVM
are rejected.

- CONFIG_LOCKED (Pre-Assignment Security Lock): The VMM finalizes the TDI configuration and requests the
TSM to lock it. The DSM ensures that the TDI meets security requirements before transitioning. Any detected
configuration changes result in a TDISP ERROR state.

- RUN (Operational State): The TVM has accepted the TDI into its TCB. The TDI is fully operational and securely
interacts with the TVM. Any unauthorized changes or security violations transition the TDI to ERROR.

- ERROR (Failure State): Triggered by security violations or misconfigurations. The TDI must not expose
confidential TVM data. Memory requests originating from a TVM are rejected.

GET_DEVICE_INTERFACE_REPORT/
GET_DEVICE_INTERFACE_STATE/
BIND_P2P_STREAM_REQUEST/
UNBIND_P2P_STREAM_REQUEST/

/) SET_MMIO_ATTRIBUTE_REQUEST

> RUN STOP_INTERFACE_REQUEST

Error GET_DEVICE_INTERFACE_STATE/

GET_DEVICE_INTERFACE_STATE STOP_INTERFACE_REQUEST

@

ERROR STOP_INTERFACE_REQUEST:

START_INTERFACE_REQUEST CONFIG_

UNLOCKED

Error

GET_DEVICE_INTERFACE_REPORT/
GET_DEVICE_INTERFACE_STATE

CONFIG_
LOCKED

LOCK_INTERFACE_REQUEST

STOP_INTERFACE_REQUEST
Figure 1.3: PCI-SIG TDI State Machine

These key messages form the TDISP protocol are generated by the TSM to operate the TDI binding state machine and
report TDI status and configuration to the TVM:

LOCK_INTERFACE_REQUEST: Transitions the TDI from its default CONFIG_UNLOCKED state to CONFIG_LOCKED,
preventing unauthorized configuration changes. The DSM ensures that the TDI remains in a locked configuration state
and transitions it to ERROR if the TDI configuration is altered.

GET_DEVICE_INTERFACE_REPORT: Reports the device attestation and TDI locked configuration to the TVM, ensuring the
TVM can verify the device identity and TDI configuration before accepting it into its TCB. TDISP relies on SPDM protocol

June 2025 Page 6 of 29

10

15

Intel® TDX Connect Architecture Specification 354629 003-US

messages for device attestation and TDISP protocol messages for TDI configuration reporting, both delivered to the TVM
by the VMM, with integrity enforced by the TSM.

START_INTERFACE_REQUEST: If the TD accepts the device into its TCB, the TSM enables trusted DMA access from the
TDI to the TVM and trusted MMIO access from the TVM to the TDI. The TSM then issues the TDISP
START_INTERFACE_REQUEST message, instructing the DSM to transition the TDI into its operational state (RUN).

STOP_INTERFACE_REQUEST: Used during the TDI unbind process, ensuring that the VMM reclaims TDI resources (e.g.,
MMIO pages) and removes DMA access to the TVM. Before detaching the TDI, the TSM generates this message to securely
instruct the DSM to quiesce the TDI and drain outstanding TLPs, ensuring that all traffic related to the TDI binding is
completed or flushed.

June 2025 Page 7 of 29

Intel® TDX Connect Architecture Specification 354629 003-US

2. ARCHITECTURE OVERVIEW

2.1. TDX Connect Framework

The TDX Connect framework is composed of the following core components:

Trusted
Host DMA/MMIO
VMM
SPDM %
Session Key:
CPU :
(Host) :
Secure SPDM Selective
Session IDE Stream
Bridges & Switches
Devi E 23 IDE
evice sPDM * Keys EP Port
Session Key v
} I Trusted by all TDs
(VF) . .
PF DSM <— Device selective trust
D:Ar:/sl\t/lel\jlo TDIZ [Not trusted by any TD
=== Hardware encryption

9 = = = Software encryption

5 Figure 2.1: Intel TDX Connect Framework
1. TDX Connect CPU and Module Extensions (TSM):

The TDX module (TSM) provides critical ABI extensions to securely manage the lifecycle of TDISP device connections
and the binding of TDIs to TDs. This functionality is achieved through several enhancements at both the hardware
and software layers:

10 - CPU Root Complex Extensions: The CPU Root Complex has been extended to support PCle Integrity and Data
Encryption (IDE) and trusted IOMMU mechanisms. These enhancements isolate between non-confidential /0
page tables and invalidation interfaces allowing orthogonal and TDX module controlled secure IOMMU
management. The VMM is responsible for opting into TDX Connect per IOMMU (and corresponding Root
Complex), once this is enabled, the TDX module is the only entity allowed to write into specific VTd registers or

15 modify the security related PCle configuration registers of the Root Port IDE and related settings.

- TDISP Device Connection and Secure Configuration: The TDX module exposes a secure ABI that facilitates the
entire TDISP device connection process. This includes the establishment of a secure SPDM (Security Protocol
and Data Model) session and the management of IDE encryption keys. Once the secure connection between the

June 2025 Page 8 of 29

10

15

20

25

30

35

40

45

Intel® TDX Connect Architecture Specification 354629 003-US

CPU and the TDISP device is established, the VMM can utilize the TDX module’s TDISP ABIs to lock down the TDI
configuration, request configuration reports, and proceed with the TDI-TD binding process.

- TDI Binding to TD: After successfully binding the TDI to a TD, the TDX module ensures the mapping of private
MMIO (Memory-Mapped 1/0) and DMA operations specific to that TDI. The TDX module also provides the TD
with a set of ABIs to verify the TDI attestation report and confirm its integrity before transitioning the TDI into
its operational state.

- TDI Unbinding and Disconnection: In addition to binding, the TDX module includes ABIs for the VMM to unbind
a TDI from a TD and to safely disconnect the TDISP device. Furthermore, the TDX module offers specific ABIs for
TDs, ensuring that when a TDI is unbound, all resources, configurations, and cryptographic keys are securely
cleaned up, maintaining the integrity and security of the system.

In essence, the TDX module acts as the trusted intermediary between the VMM, TD, and TDISP devices, enforcing secure
device management, binding, and ensuring the protection of the TEE during the lifecycle of 1/0 operations.

2. TDISP Compatible Device (DSM):

The Device Security Manager (DSM) is embedded in the trusted device. It operates in coordination with TDX
module (TSM) responding to request to setup SPDM session, manage IDE keys and the secure binding of TDIs to
TDs using TDISP protocol messages.

3. Attestation and Secure Message Transport (DMTF SPDM Protocol and Secure Session):

The Security Protocol and Data Model (SPDM) helps ensure secure communication between the TDX module
(TSM) on the CPU and DSM on the device. It enables attestation of the device's identities and measurements
required to establish TD trust and provides a secure messaging framework that protects data exchanged
between the TSM and the DSM for the IDE Key management and TDISP protocols.

4. PCle Link Encryption (Selective IDE Stream):

PCle Integrity and Data Encryption (IDE) ensures that data exchanged over the PCle link between the CPU and
the device is encrypted, protecting it from eavesdropping and tampering. IDE selectively encrypts streams to
secure data paths for trusted devices without incurring unnecessary overhead on non-critical data paths.

Together, these ingredients form the TDX Connect framework, which securely enables the direct assignment of TEE 1/O
Device Interfaces (TDIs) to TDs, while maintaining uniform TD and TDI TEE confidentiality and integrity.

2.2. Trusted DMA

According to the TDISP specification, when a TDI is bound and in the RUN state, it must send DMA requests to the host
via the default IDE stream marked as a TEE request (IDE T = 1). Once the host Root Port (RP) decrypts and authenticates
the IDE request, it forwards it to the IOMMU for access control, preserving the T = 1 designation. The IOMMU identifies
these as TEE-IO requests.

TDX Connect introduces IOMMU support for TEE-IO requests, allowing access to TD private memory and includes Trusted
VT-d interfaces to let the TDX module enforce binding permissions for TD private memory. Only TEE-IO DMA requests
can access TD private memory, and only the TDX module can configure the access control permissions for TEE-IO.

Specifically, IOMMU and VT-d are enhanced with:

1. Trusted DMA translation root table — A second root table address register, restricted to SEAM SAI, which the
TDX module programs with the root of the TDX-managed DMA translation tables for TD-assigned devices. This
allows the TDX module to enforce the integrity of DMA translations.

2. Trusted invalidation queue — A second invalidation queue address register, along with corresponding head and
tail registers, also restricted to SEAM SAIl. The TDX module manages these, allowing it to control IOMMU and
device TLB invalidations securely.

3. 1/OTLB and DID Isolation — When IOMMU is enabled by the VMM to support TDX Connect, the IOMMU restricts
the VMM'’s DID setting, reserving the MSB bit for the TDX module. The TDX module always sets this reserved bit

June 2025 Page 9 of 29

10

15

20

25

Intel® TDX Connect Architecture Specification 354629 003-US

on the trusted DMA table. IOMMU tags IOTLB, PASID cache, and context entries to indicate whether they were
created from TEE-IO transactions, ensuring isolation between TEE and non-TEE requests in translation caches.

The TDX module provides ABIs for the VMM to manage trusted (TEE-IO) DMA page tables, while the VMM directly
manages shared (non-TEE-IO) DMA page tables. Trusted DMA mappings require acceptance from the TD owning the TDI,
proving to the TDX module that the TD accepts the TDI into its trust boundary. Once accepted, the TDX module connects
the second-level page table (EPT) to the TD secure EPT, ensuring consistency between the I/0 and core view of the GPA
space, preventing effective remapping attacks. Trusted and shared page tables are isolated with separate root table
address registers.

Additionally, the TDX module provides an IOTLB invalidation ABI to invalidate cached I/O translations of TEE-IO requests
as necessary to protect the TD. The TDX module ensures that the VMM completes IOTLB invalidations before freeing a
TD private page or unbinding a TDI and its trusted DMA mappings.

TD, DRAM Device

DI,
(TEE-10)

Device Mem

Em

MMIO or Memory Access

MMIO (IDE TLP with T bit = 1) *

DMA (IDE TLP with T bit = 1)

S PCleRP+IDE
Core MK-TME IsTDX =1 Root
y N Engine GPA,RID,PASID, Thit=1 Complex
Shared Extended Secure Extended
Page Tables Page Tables
Shared EPT
(Share) Core (PMH) (Secure EPT)
Trusted DMA (Shared) DMA
Is MMIO? Remapping Tables Remapping Tables
(Trusted DMAR) IOMMU (DMAR)

Physical
Address +
Private HKID

Physical
Address +
Shared HKID

RID + PASID walk

SLPTR points to

TD, Secure EPT

[Private context or memory. Managed by the TDX module APIs
[shared context or memory. Managed by the VMM

SOC

Figure 2.2: Trusted DMA and Secure-EPT

2.3. NRX Installation for TDX Connect

SEAM Root mode in TDX is non-interruptible, making the implementation of SPDM connections and the management of
lengthy cryptographic operations challenging. To address this, Intel extended the TDX architecture to support SEAM non-
root mode through the NRX (Non-Root TDX Module). NRX allows these cryptographic tasks, such as SPDM session
management with TDISP devices, to be performed in an interruptible mode. NRX functions as an architectural TD,
providing secure and isolated execution while remaining transparent to both the VMM and TD.

The NRX architecture requires the host VMM to opt in and install the TDX Connect NRX module during TDX module build
and update. These operations are beyond the scope of this document. For more details, refer to the Intel TDX NRX
Architecture Specification (which is still under development).

2.4. TDX Connect Enumeration

TDX Connect enumeration discovery is done similarly to other TDX module features, using TDH. SYS.RD ABI. The VMM
first reads the TDX_FEATURES[TDX_CONNECT] (bit 6) to check if TDX Connect is supported by this TDX module on this
platform.

When TDX Connect capability is supported, TDX_CONNECT_FEATURES bitmask provides the features supported by TDX
module and platform (e.g., ATS, PRS, etc.). For more information refer to the TDX Connect ABI FAS specification.

June 2025 Page 10 of 29

10

15

20

25

30

35

40

Intel® TDX Connect Architecture Specification 354629 003-US

2.5. Enabling TDX Connect

Intel host CPUs may support multiple PCle Root Complex |0 hubs, each forming a full x16 PCle hierarchy with a
corresponding IOMMU and Root Ports. To maintain integrity of PCle transaction routing between the hierarchy, CPU
memory, and cores, TDX Connect restricts the host VMM's control over the IOMMU VTd BAR, the IDE Key Configuration
BAR, and the PCle Root Port IDE, ACS and PCI header registers to enforce the integrity of private MMIO and DMA over
PCle IDE transactions.

Initially, TDX Connect is disabled on all 10 Hubs, allowing VMM to configure the IOMMU and enumerate the PCle
hierarchy.

Once setup is complete, the VMM requests the TDX module to enable TDX Connect per 10 Hub using the
TDH.IOMMU.SETUP command. The VMM can disable TDX Connect via TDH. IOMMU . CLEAR, for example if PCle links need
to be retrained or re-enumerated, but first, the VMM must unbind all TDIs from TDs and disconnect all the TDISP devices
from TDX module.

2.6. TDX Connect Life Cycle Overview

The diagram below illustrates the conceptual TDISP Lifecycle for TDX Connect. The process starts with the VMM Host
establishing an SPDM (Security Protocol and Data Model) session and programming the IDE Selective Stream keys during
the device connection phase. This phase outcome is that the SPDM session and IDE link with the device are established
and the VMM gets the device SPDM attestation structures it can cache for later TD to TDI binding attestation purposes.

This lifecycle supports both SR-IOV (Single Root I/0 Virtualization), where device FVs and/or PF can be assignable by a
device as TEE-IO Device Interfaces (TDI). All the TDIs hosted by a physical device, shared the same SPDM session and
default IDE Stream which collectively represent TDISP device to TDX host connection.

A TDI may be assigned as Shared TDI and used as non-confidential device interface by a TD. During TD runtime, the TD
guest may enumerate Shared TDI as TDISP capable and request the host VMM to configure and bind it as a Private TDI.

The VMM configures the devices and issues the TDH.TDI.BIND ABI command. The TDI bind command outputs the TDISP
report which the host VMM returns to the guest along with the SPDM attestation reports obtained during the device
connect.

As part of the device attestation, TD must verify the integrity of the device attestation info and TDISP report using
TDG.TDI.VALIDATE. If the TD decides to accept the TDI into its TCB, the guest uses TDG.MMIO.ACCEPT and
TDH.DMAR.ACCEPT to enable the TDI DMA and MMIO mappings which allow private memory access between the guest
and TDL. Finally, the guest notifies the device to transition the TDI into RUN state using the TDG.TDI.START and requesting
the VMM to orchestrate and deliver the message. The VMM involves the TDH.TDI.START ABI command which generates
the SPDM secure TDISP message delivered by the VMM to the device DOE mailbox.

In case the TDI encounters an error or if the guest wishes to disconnect the TDI from its TCB, it issues a VMM GHCI TDI
unbind request. The host VMM uses the TDH.TDI.LUNBIND ABI to generate the TDISP request and follow the subsequent
MMIO and DMA mapping process and return to the guest indicating TDI unbind is complete. The TD guest can confirm
TDI is unbound reading the TDI state using TDG. TDI .RD.

In any case, the host VMM is in full control and can unbind any TDI from a TD and disconnect TDISP device (stopping
SPDM session and disable IDE). The TDX module also allows a secure process of aborting SPDM device connection only
from the host side in case the device hangs or cannot respond to SPDM messages (i.e. DOE mailbox timeout).

The diagram and steps below describe a typical end-to-end life cycle stating with device connection followed by TDI
binding, unbinding and device disconnect.

June 2025 Page 11 of 29

10

15

20

25

30

35

40

Intel® TDX Connect Architecture Specification 354629 003-US

Per Device

= TDX Connect ABI
= TDX Connect GHCI Per TDI

VMM
Host

J

ER | Device Shared TDI

Cépabllltv i Conhnect Assignment
Discovery

Device
Disconnect

A 4

TDI Bind TDI Unbind >

n N

A 4 v

TDISP
D BisEmwEsy) Device and TDI MMIO/DMA TDI Run
i &
Guest | Bind Request Attestation Accept (or ERROR)

y

A 4

\ 4

A

Figure 2.3: TDX Connect Conceptual Life Cycle

TDISP Capability Discovery: The VMM Host begins by discovering the TDISP capabilities of the device using the
device configuration space.

Device Connect: The host establishes a connection with the TDISP device using TDX Connect ABI. It first uses
TDH.SPDM.CONNECT to establish the SPDM session, followed by TDH. IDE . STREAM. KM to set up the IDE stream
and program its keys on both the host and the device.

Shared TDI Assignment: The host VMM assigns the TDI to the guest as a shared (non-confidential) in
CONFIG_UNLOCKED state. The host VMM may not know if the guest is willing or capable of supporting TDISP.
Assigning the TDI as shared, allows the guest to enumerate TDISP (using virtualized PCl config space or para-
virtualized guest-host interface).

TDI Bind: At runtime, after the TD guest discovers the device's TDISP capability and decides to use it as a private
TDI, the guest requests the host VMM to bind the TDI to itself. The host VMM uses the TDH. TDI .BIND command
to bind the TDI in the CONFIG_LOCKED state to the TD. As part of the binding process, the host VMM maps the
TDI MMIO using TDH.MMIO.MAP and trusted DMA using TDH.DMAR.ADD. Both the MMIO and DMA mappings
are initially mapped as “pending”, allowing the TD guest to independently accept the TDI into its trust boundary
before the mappings become active.

Device and TDI Attestation: During the SPDM session establishment, the device generates an attestation
composed of its certificate chain and measurements, both signed by the device's private key. Likewise, during
the TDI bind, the TDI generates its TDISP report. The TDX module calculates and stores a SHA-384 digest of the
attestation and report. The host VMM retrieves this data, passing it to the TD. The TD verifies the attestation
and report, ensuring the authenticity of the device and the TDI. If the TDI is accepted, the TD guest invokes
TDG.TDI.ACCEPT, providing the digests of the attestation and report to the TDX module. The module compares
the digests to verify the integrity of the TDI information passed by the host VMM. Once verified, the TDX module
marks the TDI as valid for subsequent TD operations.

MMIO/DMA Accept: After a successful attestation and the acceptance of the TDI by the TD guest, the TD uses
the information provided in the TDISP report, which includes the device function ID and its MMIO ranges. The
TD then explicitly accepts both the DMA and MMIO mappings of the TDI. This process makes the mappings
present, allowing both the TD and TDI to securely access each other’s private (TEE) memory.

TDI Run or Error: To complete the binding process, the TD guest uses TDG.TDI .START, signaling to the TDX
module that the TD is ready for the TDI to transition into the RUN state. The TD guest then requests the host
VMM to start the TDI. In turn, the VMM calls TDH.TDI.START, requesting the TDX module to transition the TDI
to the RUN state. At this point, the TDI is bound to the TD and becomes operational.

Note: As indicated by TDISP, the device may experience a security-related failure, leading to its voluntary
transition into the ERROR state. The discovery of the TDI ERROR state is vendor-specific and outside the scope
of this specification. If an ERROR is detected, the TD guest can request the host VMM to re-bind the TDI, which
is handled as a sequence of TDI unbind and re-bind operations.

TDI Unbind: In the event of a TD teardown, migration, device maintenance, or error handling, the host VMM
can unbind the TDI from the TD by using the TDH.TDI.UNBIND command. Unbinding can also be initiated by
the TD guest, either because the TD no longer requires the device, for handling device errors, or for device
maintenance. If the TD requests a TDI unbind, it should not rely on the VMM to complete the operation. The TD
must independently verify the TDI binding status reading its INTERFACE_STATE using the TDG.TDI.RD
command. Failing to do so could result in the TD releasing the TDI resources (e.g., DMA), while the TDI remains
connected to the TD, potentially allowing access to the released DMA buffer.

June 2025 Page 12 of 29

10

15

20

25

30

Intel® TDX Connect Architecture Specification 354629 003-US

9. Device Disconnect: Once no TDI hosted by a TDISP device is bound to a TD, the host VMM can disconnect the
device by disabling its IDE stream using the TDH. IDE.STREAM.BLOCK command and tearing down its SPDM
session using the TDH.SPDM.DISCONNECT command. In some cases, disconnecting a device is necessary to
update the device firmware and demonstrate its new security posture to a new tenant through attestation. In
other cases, device disconnection is performed as a recovery step following PCle link, IDE, or device errors,
prompting the host VMM to reprogram the IDE stream keys or reset the SPDM session.

2.7. SPDM Management

TDX Connect uses SPDM 1.2 for TDISP device attestation and sets up a Secure SPDM over (unprotected) DOE message
transport channel to protect communication between the device's DSM and the TDX module (TSM). This secure channel
is essential for ensuring the integrity and confidentiality of device attestation, while also securing IDE key management
and TDISP protocol messages.

The SPDM session management in TDX Connect involves the secure initialization, handling, and termination of
communication between the TDX module and a TDISP device, with the VMM acting as the orchestrator. The VMM is
responsible for issuing the necessary commands to establish and manage the SPDM session and transporting (copying)
the messages between the SPDM command buffers and the device’s DOE mailbox, while the TDX module handles the
actual secure communication with the TDISP device.

2.7.1. Static Device Attestation

During device life cycle management, the VMM issues the TDH. SPDM . CONNECT command requesting the TDX module to
establish the SPDM session with the device. TDX module collects the SPDM attestation info and returns the VMM
SPDM_DEVICE_ATTESTATION_INFO structure. The VMM can then cache this object and deliver it to any TD as part of
TDI binding and attestation flow. In order to prove the integrity of VMM delivered SPDM_DEVICE_ATTESTATION_INFO,
the TD must calculate the SHA-384 digest of this structure call TDG.TDI.VALIDATE which verifies the TD calculated digest
matches with the one stored by the TDX module during the SPDM session setup with the device.

Load Static
VMM Device Connect LA TDI Bind - Attestation
! Ob)j.
A 1 A T
1 Device » poisp : :
:Attgstatlon :Report | .
Obj 1 1
1 1
1 1
T [
1 1
1 1
Record Record
N [ImN 1
SHA384[@R] SHA384[|=]] 1 | SR SHA384[* 7]
. L SHA384[2]
1 \'4
. ! Get Device
TDI Bind 1 . Verify Integrity Device
TD Guest > N ;
Request Atteg;a;tlon of @R & Attestation...

Figure 2.4: Static Device Attestation

2.7.2. Dynamic Device Attestation (Measurement Recollection)

The dynamic attestation model extends the static approach by supporting real-time measurement re-collection. In this
model, the TD can request the VMM to provide a fresh SPDM_DEVICE_ATTESTATION_INFO. To prove freshness the TD
may generate a nonce and send it to the VMM along with the measurement recollection request. The VMM uses the
TDH.SPDM.MNG (GET_MEASUREMENT) command to request the device measurement re-collection providing the TD
generated none as input. When the device attestation is re-collected with the TD provided nonce, the device DSM signs
updated certificates and measurements along with the nonce.

June 2025 Page 13 of 29

10

15

20

25

30

35

Intel® TDX Connect Architecture Specification 354629 003-US

The dynamic attestation could be useful when for example the TD remote verifier needs to ensure TCB recovery or
requires to verify specific firmware or components are updated even accepting the TDI into the TD TCB.

TD Device
T T T

] GHCIGET_MEAS, NONCE)]| TDH.SPDM.MNG(GET_MEAS, NONCE) | i
t > Repeat for:
1 SPDM_DOE_REQ
O RE R e rmmmmmmmemsmmEme oo GET_CERTIFICATES
Copy SPDM Request to DOE 1 GET_MEASURMENTS(NONCE)
Copy SPDM ___SE’I_DI:’I_R_e_sE)c_Jr_us_e __________ Process SPDM request (i)
Response to SPDM
Command Buffer ,: !
TDH.SPDM.MNG(SPDM) 1
T
SUCCESS (MEAS_TRANSCRIPT) !
Authenticate__| |, SUCCESS (MEAS_ TRANSCRIPT) | . -SUCCESS (IEAS TRATSCRY] b
using device : :
1

certificates 1

Figure 2.5: Dynamic Attestation Model

2.7.3. Device Attestation Objects

The static device attestation objects, generated by TDH.SPDM. CONNECT is called SPDM_DEVICE_ATTESTATION_INFO_T
and it contains:

- DEVICE_INFORMATION: Includes key device details such as the SPDM session index and interface ID, essential
for communication between the TDX module and the device.

- SPDM_POLICY: Outlines SPDM session rules, including supported SPDM versions and security capabilities.

- TDISP_POLICY: Specifies details related to the TDISP version and capabilities.

- DEVICE_SPDM_INFORMATION: Contains session-specific data, such as cryptographic algorithms (e.g., AES-
GCM-256), session ID, and heartbeat interval.

- DEVICE_SPDM_CERTIFICATE: Stores the SPDM certificate chain for device authentication.

- DEVICE_SPDM_MEAS_TRANSCRIPT: Records of the full measurement transcript with the digital signature.

Note that delivering a signed measurement transcript (instead of just the measurement record from the SPDM
GET_MEASUREMENTS response) provide several functionality and security advantages:

- Enhanced Protection: The measurement record is safeguarded by a digital signature, eliminating the need for
other protective mechanisms (e.g., TLS) during transmission between the host and a remote verifier.

- Device-Specific Data: The SPDM MEASUREMENTS response includes opaque data that can store extra device-
specific information, useful for device-specific verification processes.

- SPDM Connection Parameter Attestation: Verifiers can attest to negotiated SPDM connection parameters such
as version, capabilities, and algorithms.

- Resistance to Internal Device Attacks: A digital signature secures the measurement record against internal
device attacks. For instance, a device with a Root of Trust (RoT) may generate measurements, hold private keys,
and sign the data. However, if the SPDM session is managed by a higher-level component, that component could
forge the measurement record. Digital signature protection limits the Trusted Computing Base (TCB) to the
device's RoT, whereas session-based protection extends the TCB to include the higher-level SPDM component.

2.7.4. SPDM Create

For each TDISP device, the host VMM must establish an SPDM session by first calling the TDH. SPDM.CREATE command.
This command receives a VMM input of an ordered HPA list (of 4KB pages) which the VMM allocates as the TDX module
SPDM object context. These pages are used for tracking the SPDM session's AES-GCM-256 cryptographic context and
serve as a scratchpad buffer for the TDX module to securely generate, process, and manage SPDM, IDE_KM, and TDISP
protocol messages.

When the SPDM-associated IDE stream is disabled and no device TDI is bound to a TD, the host VMM may reclaim the
SPDM object pages by using the TDH. SPDM. DELETE command.

June 2025 Page 14 of 29

Intel® TDX Connect Architecture Specification 354629 003-US

2.7.5. SPDM Connect and Disconnect

To initiate the SPDM connection with the device, the host VMM calls the TDH.SPDM.CONNECT ABI with the

START SESSION command. This command generates SPDM requests into the SPDM command buffer and causes

multiple SPDM DOE REQ exits from the TDX module. Upon each such exit, the host VMM retrieves the SPDM request
5 from the command buffer output and copies it into the device's DOE mailbox.

When the device generates a response, the host VMM retrieves the response from the DOE mailbox, copies it into the
SPDM command buffer input, and re-invokes the TDH.SPDM.CONNECT ABI with the SPDM command to continue the
process.

At the end of this sequence, the command returns the SPDM DEVICE ATTESTATION INFO_T structure to the host
10 VMM, while the TDX module securely stores its SHA-384 digest in the SPDM object to ensure the integrity of the
attestation data which is verified later by the TD calling TDG. TDI .ACCEPT

Repeat for:

- 1. GET_VERSION
VMM ?S;:\;? 2. GET_CAPABILITIES
: : 3. NEGOTIATE_ALGO
1

(Negotiation Done)

1
[] TDH.SPDM.CONNECT(StartSession)

4. GET_CERTIFICATES
(Identification Done)
Copy SPDM Request (i) to DOE

Copy SPDM SPDM Response (i) Process SPDM request (i)

Response(i)toSPDM | [T~~~ 7T TTTTTTTTTTTTTTT
Command Buffer l:

5. KEY_EXCHANGE
6. FINISH
(Session Created)

TDH.SPDM.CONNECT(SPDM) (i) 7. GET_MEASURMENTS

8. TDISP.GET_VERSION
9. TDISP.GET_CAPABILITIES
(TDISP Negotiated)

SUCCESS (DEVICE_ATTESTATION_INFO)

e i
| 1 |

Figure 2.6: TDH.SPDM.CONNECT Sequence Diagram

Compose and digest
DEVICE_INFO_DATA

15

Once a device is no longer required to maintain the SPDM session—when none of its TDIs are assigned to a TD and its
associated IDE streams are disabled—the host VMM may disconnect the SPDM session using the
TDH.SPDM.DISCONNECT command and reclaim the SPDM object memory resources via TDH. SPDM. DELETE.

In the event of a broken SPDM session, the VMM can forcefully remove the SPDM resources without first calling the
20 SPDM disconnect command. There is no security risk in doing so, as the TDX module ensures that the IDE streams are
disabled and all associated TDIs are unbound from their respective TDs.

Device

VMM (DSM)

I
TDH.SPDM.DISCONNECT(EndSession)i

Copy SPDM Request to DOE
Copy SPDM SPDM Response Process SPDM request (i)

Response to SPDM
Command Buffer [:

/| SPDM_END_SESSION

TDH.SPDM.DISCONNECT(SPDM)

SUCCESS

Figure 2.7: TDH.SPDM.DISCONNECT Sequence Diagram

June 2025 Page 15 of 29

10

15

20

25

30

35

40

Intel® TDX Connect Architecture Specification 354629 003-US

2.7.6. Device Capabilities and TDX Connect Security Considerations

Some device capabilities enumerated via the PCle configuration space may not be supported or deemed secure by the
TDX Connect module, which acts as the TSM. For instance, while the TDX module may allow ATS (Address Translation
Services) to be enabled for Integrated TDISP devices, it might restrict such enabling for external devices unless an
appropriate ATS access control mechanism is in place.

This per-device capability enabling policy enumeration is communicated to the host VMM as part of the SPDM session
establishment. The details are conveyed via the TDH.SPDM.CONNECT command. For further information, refer to the
TDX Connect ABI FAS.

2.7.7. Other SPDM Operations

During an SPDM session lifetime, TDX Connect supports other management operations through the TDH. SPDM. MNG ABI:

- KEY_REFRESH: The TDX module monitors the SPDM session’s cryptographic algorithms and security policies,
and if the SPDM session key shows signs of wear, it will need to be refreshed. When this happens, the TDX
module will fail to generate a new SPDM request message and will exit with an SPDM_KEY REFRESH REQ code.
Upon receiving this exit code, the host VMM must call TDH. SPDM.MNG (KEY REFRESH) to begin the SPDM key
refresh process.

- HEART_BEAT: When the SPDM session is set up with the TDH. SPDM. CONNECT command, the TSM and DSM can
negotiate the frequency of optional HEART_BEAT messages that must be exchanged to keep the session active.
If the HEART_BEAT feature is enabled, the VMM must manage these messages by regularly calling the
TDH.SPDM.MNG (HEART BEAT) command, ensuring the SPDM session remains alive.

- DEV_INFO_RECOLLECT: At the start of the SPDM session, the TDH.SPDM.CONNECT command collects initial
device measurements, which are used to create the SPDM_DEVICE_ATTESTATION_INFO_T structure. However,
the device might receive updates or new firmware during the session, and the initial measurements may no
longer be valid indicators of the device’s current security posture. In such cases, the TDX module allows for the
recollection of updated measurements. The TD generates its own nonce and send it to the VMM to requests a
new TDISP device measurement via the TDH. SPDM.MNG (DEV_INFO RECOLLECT) command. The device signs
this new set of measurements along with the TD’s nonce to ensure freshness and integrity. The TDX module
returns the updated DEVICE SPDM MEAS TRANSCRIPT structure to the host VMM, which in turn passes it to
the TD guest. The guest can then verify the authenticity of the new measurements by checking the signature
against the device’s public key, which is stored in its certificate.

2.8. IDE Stream Management

The TDX Connect architecture secures communication with TDISP PCle devices using the PCI-SIG IDE protocol, which
defines two types of streams:

- Link IDE streams: Secure communication between two directly connected PCle ports (e.g., device and switch).
- Selective IDE streams: End-to-end secure communication between ports connected through PCle switches,
where the switches are excluded from the trust boundary.

TDX Connect exclusively utilizes Selective IDE streams to secure communication between PCle device endpoints, ensuring
that switches, routers, or any PCle connectivity fabric devices remain outside the TD trust boundary.

A single TDISP device may host multiple devices, and TDISP defines a model that uses a shared IDE stream to protect all
TDI traffic between the device and the CPU. This shared IDE stream, known as the device's default IDE stream, ensures
that all traffic with the device's upstream port is secured using that single stream, providing end-to-end protection for
the communication.

June 2025 Page 16 of 29

10

15

20

25

30

35

40

Intel® TDX Connect Architecture Specification 354629 003-US

2.8.1. IDE Stream Create, Block and Delete

The TDH.IDE.STREAM.CREATE command creates the IDE stream object and pre-configures the root port's IDE-ECAP
registers using inputs provided by the host VMM. This command initializes the necessary metadata for the IDE stream,
which the TDX module uses to track the stream'’s lifecycle.

The VMM can use this command to create either a Selective or Link IDE stream. While TDX Connect exclusively uses
Selective IDE streams, this command also supports the creation of Link IDE streams, giving the VMM the flexibility to
manage and configure IDE streams for its own purposes, even if they are not used by TDX Connect.

The command assigns a unique STREAM_ID to the stream and configures it accordingly as either a Link or Selective IDE
stream. It also pre-configures the root port's IDE capability registers, including the RID (Requester ID) and address
association ranges, based on the inputs provided by the host VMM.

To disable the IDE stream and remove it, the VMM first calls the TDH.IDE.STREAM.BLOCK and then
TDH.IDE.STREAM.DELETE command. On IDE Stream deletion, TDX module verifies that no TDI (Trusted Device
Interface) associated with the IDE stream is bound to any TD (Trusted Domain) before proceeding.

2.8.2. IDE Key Management

The TDH. IDE.STREAM. KM ABI is used by the VMM to manage key programming for an IDE stream, involving three main
commands: SETUP, REFRESH, and STOP. The commands operate using the PCle IDE_KM protocol over the Secure SPDM
session previously established with the device.

The ABI input consists of an SPDM command buffer with host VMM, and each command generates IDE_KM request
messages based on the operation type. After each request is generated, the ABI exits with SPDM DOE REQ code,
prompting the VMM to send the IDE_KM request to the device via its DOE mailbox. The VMM resumes the command
with the device's response, and once the entire sequence completes successfully, the operation returns with a success
status.

The commands TDH. IDE.STREAM.KM are:

- SETUP: Programs the initial Tx/Rx keys for all three sub-streams (completion, non-posted, posted) of the IDE
stream. The command generates 256-bit random keys using HMAC & RDSEED, then programs these keys into
the relevant root

- REFRESH: Run time key refresh by programming the alternate key set Tx/Rx keys with new ones for all three
sub-streams along with generation of the IDE_KM requests and authentication of the device responses. Once
the new key set is and programmed and all the device IDE_KM response messages are authenticated, the refresh
is complete and TDX module triggers the root port to switch into the new key set.

- STOP: Deletes the Tx/Rx keys from of a specific IDE stream and key set while generating the corresponding
IDE_KM key stop messages to the device and confirming the device response indicating the device is following
the protocol.

2.9. TDI Life Cycle Management

TDX Connect Supports TDISP Secure TDI Binding and Unbinding. On a typical TDI device assignment life cycle, the VMM
assigns the TDI to the TD as non-confidential (i.e., in the CONFIG_UNLOCKED state), allowing the TD to discover the TDI
as TDISP capable.

TDX Connect extends the GHCI with a TD VMCALL, enabling the TD to request a VMM service to bind the TDI as private
(i.e., converting the TDI from shared to private).

To bind the TDI to the TD, the VMM must follow these steps:

1. TDI Assignment: The VMM creates the TDI context structure using TDH. TDI .MT.ADD and TDH.TDI.CREATE
to allocate TDI metadata pages for the TDI's FUNCTION_ID. The VMM also allocates MMIO metadata pages

June 2025 Page 17 of 29

10

15

20

25

30

Intel® TDX Connect Architecture Specification 354629 003-US

using TDH.MMIO.MT.ADD to support the TDI's MMIO bars and associates the MMIO pages with the TDI using
TDH.MMIO.MT.SET.

TDI Bind: The VMM requests the TDX module to bind the TDI using the TDH. TDI.BIND command, which
generates TDISP protocol messages transitioning the TDI to the CONFIG LOCKED state and produces the TDI
TDISP Report.

Trusted DMA Mapping: The VMM uses the TDH. DMAR . ADD command to build trusted DMA page tables and
map the TDI as “pending” to the TD. The TD must accept the mapping using TDG.DMAR . ACCEPT.

Private MMIO Mapping: The VMM maps the TDI's private (TEE) MMIO pages in the TD Secure-EPT using
TDH.MMIO.MAP. These MMIO pages are mapped as “pending” and become present only when explicitly
accepted by the TD using TDG.MMIO.ACCEPT.

TDI Start: Once the VMM completed with the TDI binding, MMIO and DMA mapping, it resumes the guest with
the TDI attestation objects (Device Info Data and TDISP Report).The TD invokes the TDG.TDI.VALIDATE
command, providing the calculated SHA-384 digests of the Device Info Data and TDI Report to verify their
integrity and then, it performs the device attestation. Following the attestation, the TD accepts both the MMIO
and DMA private mappings and finally invokes the TDG.TDI.START command and request the VMM host to
transition the TDI into the RUN state. The VMM then invokes the TDH. TDI.START command which generates
the TDISP START)INTERFACE_REQUEST message which transition the TDI to RUN state.

VMM

Trusted

> TDIBind H r - —> DI
MMIO Map DMA Map ! Return Success + start

Lo |

| Device Info +
| TDISP Report
1

TD Guest

o

TDI Bind Device/TDI Ac.cept Ac.cept
i\ ¢ *| Attestation Private Private |—
== MMIO DMA

Figure 2.8: TDI Binding Sequence

To unbind the TDI from the TD, the VMM must follow these steps:

1.

TDI Unbind: The VMM requests the TDX module to unbind the TDI using the TDH. TDI.UNBIND command,
which generates TDISP protocol messages transitioning the TDI back to the CONFIG_UNLOCKED state.

MMIO Unmap: The VMM removes the TDI private MMIO mappings using TDH.MMIO.BLOCK, invalidating all
TLBs. It then removes the mappings and frees the MMIO pages using the TDH.MMIO.UNMAP command.
Optionally, the VMM may also remove the MMIO metadata tables using TDH.MMIO.MT .REMOVE.

Trusted DMA Unmap: The VMM blocks the DMA mapping using TDH. DMAR . BLOCK, invalidates the IOTLB, and
removes the TDI trusted DMA mapping using TDH. DMAR . REMOVE.

Reclaim the TDI: Finally, the VMM removes the TDI context object using TDH. TDI .REMOVE. Optionally, the
VMM may reclaim the TDI metadata tables using TDH. TDI .MT . REMOVE.

For TD-Initiated unbinding, TDX Connect extends the GHCI with a TD VMCALL, enabling the TD to request the VMM to
unbind the TDI from its TCB. The TD can confirm that the TDI was removed from its TCB by reading the TDI binding state
using the TDG.TDI.RD (INTERFACE STATE) command. If the TDI is not bound, this command will return the

TDX TDI_ NOT BOUND error. Otherwise, it will return SUCCESS along with the TDISP TDI state.

June 2025 Page 18 of 29

10

15

20

25

30

35

Intel® TDX Connect Architecture Specification 354629 003-US

2.9.1. TDI Control Structure (TDICS) and Metadata Table (TDIMT)

The TDISP standard defines a unique ID for a TDI called INTERFACE_ID. This ID is composed of a FUNCTION ID field,
which identifies the function of the device hosting the TDI by its RID (Bus, Device, Function) and, when supported,
Segment.

The TDX module enforces the following TDI binding and unbinding properties:

- Single Assignment: Ensures that each TDI can be uniquely assigned to a single TD at a time.

- Trusted DMA Provisioning: Only the TD owner of the TDI can enable trusted DMA access to its private memory.

- Trusted MMIO Provisioning: TDs ensure that TDI TEE MMIO resources are correctly mapped to their Secure-
EPT.

- Secure TDI Unbinding: The TDX module ensures proper TDI unbinding through the TDISP protocol and properly
unmap TEE MMIO and trusted DMA from its TD owner before allowing the TDI to be reassigned to the same or
another TD.

To facilitate tracking of these TDI properties, the TDX module manages a per-TDI Control Structure (TDICS), which the
VMM creates using the TDH.TDI.CREATE command and removes using the TDH. TDI.REMOVE command. TDX module
enumerates how many pages are needed to allocate per TDICS.

To enforce unique TDI assignment and tracking per FUNCTION ID, the TDX module uses a TDI Mapping Table (TDIMT) to
index and track TDICS objects. TDIMT is a fully dynamic structure, consisting of:

- Non-leaf entries, which map to a child TDIMT (4KB) page.
- Leaf entries, which map to a TDICS page.

The TDIMT hierarchy is defined as follows:

- Segment Level: A TDX Connect platform may be configured to support segments. A single Segment Page is
needed to support maximum number of 256 segments. When the platform has no Segment support, the first
Segment page entry (0) is used to point the Bus page.

- BUS Level: Each Segment page entry points to a single 4KB BUS page hosting up to 256 BUS entries, each
representing a unique PCle BUS, and potentially pointing to a single Device Function page.

- Device-Function Level: Each Device Function 4KB page has up to 256 TDIMT leaf entries, each potentially
pointing to a single TDICS structure (of one or more pages).

Before adding a TDICS, the host VMM must ensure that its TDIMT pages for its FUNCTION ID exist or create them using
the TDH.TDI.MT.ADD command. A TDIMT page can be reclaimed using the TDH. TDIMT . REMOVE command when all its
entries are free.

TDIMT Segment TDIMT BUS TDIMT Device- TDICS
Page Page Function Page Page(s)
Non-Leaf[0] ~ — Non-Leaf[0] ~ —— Leaf [0] —
Non-Leaf [255 .
on-Leaf [255] Non-Leaf [255] Leaf [255] TDICS

1 - 1 f

FUNCTION_ID.SEGMENT FUNCTION_ID.RID(B) FUNCTION_ID.RID(DF)

Figure 2.9: TDIMT and TDICS

2.9.2. MMIO Metadata Table (MMIOMT)

To enforce MMIO to TDI assighment and mapping state to TDs, the TDX module uses an MMIO Metadata Table
(MMIOMT). The MMIOMT is a fully dynamic structure, consisting of:

- Non-leaf entries, which map to a set of 4KB MMIOMT child pages.
- Leaf entries, which hold the MMIO metadata with an enumerated entry size.

June 2025 Page 19 of 29

10

15

20

25

30

35

Intel® TDX Connect Architecture Specification 354629 003-US

The MMIOMT hierarchy is defined as follows:
- MMIOMT_LO: A 4KB page set indexed by HPA bits 20:12, holding up to 512 4KB leaf entries.

- MMIOMT_L1: A 4KB page set indexed by HPA bits 29:21, holding a combination of upto 512 2MB leaf entries
or non-leaf entries with pointers toan MMIOMT LO page set covering a 2MB range.

- MMIOMT_L2: A 4KB page set indexed by HPA bits 38:30, holding a combination of upto 512 1GB leaf entries
ornon-leaf entries with pointers to an MMIOMT_L1 page set covering a 1GB range.

- MMIOMT_L3: A 4KB page set indexed by HPA bits 47:39, holding up to 512 non-leaf entries with pointers
to an MMIOMT_L2 page set.

- MMIOMT_L4 (Optional): Let TDX MaX PA be defined as platform MAX_PA minus the number of HKID bits. This
level is only required if TDX MAX PA >48. It holds up to 512 non-1eaf entries with pointers to an MMIOMT_L3
page set.

- MMIOMT_ROOT: The TDX module maintains a global MMIOMT root entry, pointing to MMIOMT_L4 if applicable
or MMIOMT_L3 otherwise.

HPA[TDX_MAX_PA-1:48]

MMIOMT Root
HPA[47:39]
0: Non-Leaf
HPA[38:30]
(Optional) 0: Non-Leaf
MMIOMT_L4
HPA[29:21]
0: Non-Leaf
511: Free MMIOMT_L3 1: Leaf 1GB
HPA[20:12]
0: Non-Leaf
511: Free MMIOMT_L2 1: Leaf 2MB
0: Leaf 4KB
511: Free MMIOMT_L1 1: Leaf 4KB
511: Free MMIOMT_LO
511: Free

Figure 2.10: MMIOMT

The MMIOMT entries are opaque to the VMM, but the VMM needs to allocate the MMIOMT pages and associate each
MMIOMT page to a TDI before MMIO pages can be mapped to a TD.

Typically, the host VMM binds a TDI after its MMIO BARs have been enumerated. At this point, the VMM can allocate the
MMIOMT TDH.MMIO.MT.ADD command or ensure the MMIOMT pages to cover the TDI BARs already exist.

TDX module enumerates the MMIOMT entry sizes. Depending on the MMIOMT entry size, each MMIOMT level will
require one or more pages to host up to 512 MMIOMT entries. For example, if the entry size is 16 Bytes, 512 entries require
the parent MMIOMT entry to point to a set 2x4KB pages. The VMM enumerates the MMIOMT entry size to know how
many pages it needs to allocate when building the MMIOMT.

Before mapping the MMIO pages to the TD, the VMM must assign each MMIO page owner to the TDI and determine its
size using the TDH.MMIO.MT.SET command. The VMM may default to 4KB mapping of the MMIO pages or, to optimize
and allocate pages at 2MB granularity, the VMM may inspect the TDISP report and decide based on the MMIO ranges if
larger page sizes are possible (Note, TDX Connect does not support MMIO page promote and demote, and this feature
may be added later).

The MMIOMT entries are used by the TDX module to enforce secure MMIO management through the following
commands:

- TDH.MMIO.MAP, TDH.MMIO.BLOCK, and TDH.MMIO.UNMAP: Track MMIO GPA to HPA mapping. Handle
blocking, TLB invalidation, and removal, similar to how PAMT entries are used for tracking TD memory (DRAM)
pages.

June 2025 Page 20 of 29

10

15

20

25

30

35

40

Intel® TDX Connect Architecture Specification 354629 003-US

- TDG.MMIO.ACCEPT: Used by the TD to enforce the secure TDI binding process. The TD uses this command to
verify that MMIO pages have been correctly mapped and assigned by the VMM to the TD owner of the TDI,
ensuring alignment with the TDISP report.

- TDH.TDI.UNBIND: MMIOMT is used by the TDX module to enforce TDI unbinding is completed and the TDI can
be freed once all its MMIO pages have been unmapped, and their MMTIOMT ownership has been cleared.

A MMIOMT page set can only be reclaimed using the TDH.MMIOMT . REMOVE command when all its entries are free.

2.9.3. TD Memory Pinning

In a typical non-confidential VM pass-through device assignment, the host VMM pins the guest VM memory mappings to
prevent device DMA from being blocked.

The TDX module does not dictate any software pinning solution or design. However, the TDX module enforces that the
VMM cannot block DMA while TDIs are assigned to a TD and does not allow binding a TDI to a TD while TD pages that can
be accessed by the TD are blocked.

This mechanism is referred to as implicit Secure-EPT pinning and is implicitly enforced by the TDX module when the per-
TD TDX CONNECT EN flag is set during TD build time.

If TDX CONNECT EN is set:

- Attaching a TDI to a TD is allowed only when no TD pages are blocked.
- When any TDI is bound to the TD, TD-mapped pages cannot be blocked (implicitly pinned).

To handle page promotion and demotion, the TDX module introduces a new version of TD page promotion and demotion
that does not require blocking (allowing TLB invalidation only for reclaiming Secure-EPT pages during page promotion).

To support page conversion from private to shared, the TDX module introduces a new TDX Connect enlightened guest
ABI, TDG.MEM. PAGE . RELEASE, which allows the TD to explicitly release (un-pin) a private page.

2.9.4. /O TLB Invalidation

IOMMU has context-cache, PASID-cache, IOTLB, and paging structure caches storing 10 translations page table entries
save DMA remapping table translation overhead for recurrent DMA accesses.

For non-confidential VMs, the VMM software is responsible for the blocking and the invalidation of the relevant IOTLB
caches before changing the mapping structures that may have been cached. The invalidation operation is done using the
VTd invalidation queue (IQ) interface. The 1Q is a software (producer) and hardware (consumer) FIFO. To request 10
invalidation, software pushes invalidation requests (descriptors) and updates the 1Q tail, and hardware consumes
requests from the 1Q head.

With TDX Connect, the TDX module is responsible for invalidating the IOTLB caches to ensure that stale entries cannot
be used to perform DMA attacks and access trusted TD memory assets once a TDI binding has been removed from the
TD or when TD private page permissions are downgraded (e.g., on TD page removal).

This tracking is done by extending the TDX module memory management TLB invalidation and follows the BLOCK, TRACK,
INVALIDATE, REMOVE paradigm.

In addition, the removal of a trusted DMA entries and pages also require IOTLB invalidation of their cached information
in the IOMMU and to fence potential hardware races of entry removal during an ongoing trusted IOMMU translation
(DMA walk).

The TDX module provides two ABI functions for the VMM to handle 10 TLB invalidations:

- TDH.IQ.INV.REQUEST: Enqueue invalidation request in the IOMMU’s invalidation queue.
- TDH.IQ.INV.PROCESS: Process completed IOMMU invalidations and update their TDX tracking state.

The VMM calls TDH. IQ. INV.REQUEST indicating the invalidation type (e.g., IOTLB, DMAR entry), IOMMU_ID, RID, PASID,
and the “invalidation wait descriptor” allowing the VMM to define if and how to get notified about the invalidation
completion.

June 2025 Page 21 of 29

10

15

20

25

Intel® TDX Connect Architecture Specification

354629 003-US

The TDX module does not have a synchronous mechanism to poll or get notified about invalidation processing by the
hardware. The VMM needs to call TDH.IQ.INV.PROCESS to request the TDX module to poll the trusted 1Q head and
update corresponding |0 TLB invalidation completion status.

Before the VMM can remove a TD private page (regular or MMIO page) mapping from a TD’s Secure-EPT, the TDX module
enforces that in addition to core TLB invalidations, also the relevant IOTLB invalidations are completed. This fundamental
security requirement ensures that TD private memory cannot be accessed due to stale Core or IOMMU TLB and mapping

entry caches.

The TDX Connect extends TLB tracking steps to handle IOTLB tracking as follows:

1. Block: When the VMM blocks a page in Secure-EPT, the TDX module logs the current TD-EPOCH in the BEPOCH
field of regular pages in the PAMT and for MMIO pages in the MMIOMT.
2. Track: TDH.MEM.TRACK is extended to update new TDCS records of current and previous EPOCH IOTLB
reference counters, which snapshot the total attached IOMMUs to a TD (connected to the TD assigned device

interfaces).

3. Invalidate: The VMM is required to invalidate the relevant IOTLBs using the TDH.IQ.INV.* functions. When
the relevant IOTLB is invalidated, the corresponding TD IOTLB reference counter is decremented.

4. Verify: TDX APIs that require IOTLB invalidation (e.g., TDH.MEM. PAGE . REMOVE) are extended to ensure both
core TLB and IOTLB tracking is complete for the target page BEPOCH.

TDEPOCH =X /\
AL

TDEPOCH = X+1

-

\/

~

TDX
Module
vmm - TOH-MEM.PAGE. TDHMEM.PAGE. L 1 MEM.TRACK [TDH.IQINV.REQUEST H TDH.IQINV.PROCESS H TDH.MEM.PAGE.REMOVE
BLOCK BLOCK
For each page to remove For each I0/DTLB
on epoch X+1 attached to this TD

Figure 2.11: TD Memory Management with IOTLB Tracking

Before a PASID (PASIDTE) or a context table entry (CTE) can be removed from the trusted DMA remapping tables, the
TDX module verifies that the relevant IOMMU caches were invalidated.

To remove trusted DMA entries and invalidate the corresponding IOMMU caches, the VMM should follow these steps:

1. Block the PASIDTE/CTE using TDH.DMAR . BLOCK

2. Request TDX to enqueue the invalidation using TDH. IQ.INV.REQUEST
3. When the invalidation is done, invoke TDH.IQ.INV.PROCESS

4. Remove the trusted DMA entry mapping using TDH.DMAR . REMOVE

June 2025

Page 22 of 29

10

15

20

25

30

Intel® TDX Connect Architecture Specification 354629 003-US

TDH.DMAR.BLOCK l

Blocks the PASIDTE/PDE/CTE/RTE entry -.-_@ |
in the trusted DMAR structure and updates the
corresponding DMAR entry invalidation state to <~ ————————

INV_PENDING

Enqueues required invalidations in the trusted —@ j;l

1Q and saves the trackinginfo in 1Q_CTX and e
updates the corresponding DMAR entry
invalidation state to INV_REQUESTED

Dequeues all HW completed invalidations from _@ jj

1Q_CTX and updates all the corresponding DMAR <
entries invalidation states to INV_DONE

Updates the DMAR entry mapping state to —@
DMAR_FREE and frees the child DMAR page in e

PAMT (except for PASIDTE)

Figure 2.12: Trusted DMA Remove and IOTLB Invalidation

2.10. Interaction with TD Partitioning

To support TD Partitioning, TDX Connect is enhanced to enable the L1 VM context to manage TDX Connect enlightened
commands and effectively control the TDI binding within the TD. From the host VMM's perspective, the TDI is bound to
the entire TD.

This translates to the following key aspects from the TD guest perspective:

- Exclusive TD L1 VM Context Control: The TD L1 VM context is the only context capable of accepting the TDI for
itself or for any of its L2 VMs.

- Private GPA Space Permissions Management: The TD L1 VM context, responsible for managing private GPA
space permissions for any L2 VM context, is extended with TDX Connect interfaces to request and track I0TLB
invalidations, ensuring that DMA access permissions align with the L2 VMs' core perspective access permissions.

- Dynamic TDI Reassignment: Unlike the host VMM, the L1 VM can remove and reassign a TDI to an L2 VM even
while the TDI remains in the RUN state.

The VMM binds the TDI to a TD, mapping the private MMIO and DMA in a pending state. Recall that each VM index has
its own Secure-EPT root, but each TDI has only one PASID table entry that can be mapped to a single Secure-EPT at a
time.

To enable the L1 VM context to assign the TDI to itself or any L2 VM context (without requiring L2 VM enlightenment),
the L1 VM can invoke TDG.DMAR.ACCEPT, providing a VM index. A default value of 0 means the TDI is self-assigned to
the L1, while any other VM index value corresponds to an L2 VM index. The TDI is then mapped by aliasing the Secure-
EPT root of the corresponding L2 VM.

For MMIO mappings, the L2 VM does not need to accept MMIO pages itself. The L1 VM accepts the MMIO pages and
then assigns permissions to each L2 VM GPA using the existing TD partitioning TDG.MEM.ATTR.WR ABI command.

Note that the L1 VM is responsible for tracking IOTLB invalidations for L2 VMs upon downgrading their private GPA
permissions or unbinding a TDI from an L2 VM. Since the L1 VM cannot trust the host VMM to properly invalidate the
IOTLB, the TDX module provides a para-virtualized IOTLB invalidation interface for the L1 VM.

June 2025 Page 23 of 29

10

15

20

25

30

35

40

45

Intel® TDX Connect Architecture Specification 354629 003-US

To perform this, the L1 VM must follow this sequence:

1. Thell VM uses TDG.DMAR.RELEASE to release the TDI binding from an L2 VM or TDG.MEM.ATTR.WR to
remove page access permissions.

2. The L1 VM requests IOTLB invalidation using the TDG. IQ.INV.REQUEST command, which allows up to 256
virtual invalidation requests, including virtual wait descriptor indicating the TD GPA address for the IQ
invalidation completion status write address and value. The TDX module identifies the IOMMUs associated
with the TD at the time of the request and exits to the host VMM with a new exit status and an IOMMU
bitmap, indicating the TD request and hinting at which IOMMU requires invalidation.

3. The VMM processes the request for each IOMMU using TDH. IQ. INV.REQUEST, with special parameters
indicating the TD-requested IOTLB invalidation.

4. Once the hardware completes the invalidations, the VMM invokes TDH. IQ.INV.PROCESS. The TDX module
marks the request as complete only after ensuring IOTLB invalidation is finalized on all IOMMUs identified at
request time.

5. Finally, the L1 VM reads which IOTLB invalidation status to check verify its completion (the status write is
virtualized by the TDX module on the previous step).

2.10.1. L1 TDI Accept

The VMM binds the TDI to a TD, mapping the private MMIO and DMA in a pending state. Each TD VM context has its own
Secure-EPT root, but each TDI has only one PASID table entry that can be mapped to a single VM context (Secure-EPT) at
a time.

To assign the TDI to itself or any L2 VM context (without requiring L2 VM enlightenment), the L1 VM invokes
TDG.DMAR.ACCEPT, providing a VM index. A default value of 0 means the TDI is self-assigned to the L1 VM, while any
other VM index value corresponds to an L2 VM index. The TDI is then mapped by aliasing the Secure-EPT root of the
corresponding L2 VM.

For MMIO mappings, the L2 VM does not need to accept MMIO pages itself. The L1 VM accepts the MMIO pages and
assigns permissions to each L2 VM GPA using the existing TD partitioning TDG.MEM.ATTR.WR ABl command.

2.10.2. L1 I0TLB Invalidation

The L1 VM is responsible for tracking IOTLB invalidations for L2 VMs upon downgrading their private GPA permissions or
unbinding a TDI from an L2 VM. Since the L1 VM cannot trust the host VMM to properly invalidate the IOTLB, the TDX
module provides a para-virtualized I0TLB invalidation interface for the L1 VM. This interface supports Domain-Selective
or Page-Selective-Within-Domain descriptors.

The process involves the following steps:

1. Remove TDI Binding or Adjust GPA Permissions: The L1 VM uses TDG.DMAR.RELEASE to release the TDI DMA
mapping converting it back to PENDING state enabling its re-assignment to L1 or L2 VM. Alternatively, the L1
VM may change L2 VM page access permissions using TDG.MEM.ATTR.WR. In both cases, the L1 VM needs to
first block the DMA mapping and then request IOLB invalidation.

2. Request IOTLB Invalidation: The L1 VM uses the TDG.IQ.INV.REQUEST command to request |OTLB
invalidation. This command supports up to 127 invalidation requests per 4KB page, including a Wait Descriptor.
The Wait Descriptor allows the L1 VM to specify a Status Address (GPA) and Status Value that will be written
upon completion of the invalidation.

3. TDX Module virtual IOTLB Invalidation: The TDX module initializes an internal TD Invalidation Tracker with the
IOMMUs associated with the TD based on the TDIs bound at the time of the request. The TDX module exits to
the host VMM with TDX IOTLB INV_REQUEST code, indicating the TD request and providing the relevant
IOMMU bitmap and total invalidation request count.

June 2025 Page 24 of 29

Intel® TDX Connect Architecture Specification 354629 003-US

VMM Processes the Invalidation: For each IOMMU in the bitmap, the VMM processes the invalidation request
using TDH.IQ.INV.REQUEST, with TD_INV_REQ type and TDR input. The VMM determines schedule and
invalidation request capacity to enqueue on each call per each IOMMU.

5 Invalidation Completion: The VMM invokes TDH.IQ.INV.PROCESS once the hardware completes the
invalidations. The TDX module ensures that invalidation is finalized on all IOMMUs before marking the operation
complete.

Completion Confirmation: Upon finalizing all descriptors, the TDX module writes the Wait Descriptor’s Status
10 Value to the provided GPA Status Address, signaling to the L1 VM that the invalidation is complete.
L1 VM Verification: The L1 VM polls the Wait Descriptor’s Status Address to confirm the completion of the
invalidation request before reassigning the TDI.
TD . 1. Request invalidation Uil
- > Marks TD has TDIs on IOMMU1, IOMMU2
TDITand TDI2 are connected ¢ 6. Write Status | 1racks yMM INV.REQUEST/PROCESS
2,3. TDEXIT 4,5. INV.REQUEST/
(TDX_IOTLB_INV_REQUEST, | INV.PROCESS for
NUM_REQ) IOMMU1, IOMMU2
v N
TDN TDI2]
Knows what IOMMUs need invalidation.
[OMOT (onoaadUa) Invokes TDH.IQ.INV.REQUEST/PROCESS on each.
15 - .
A generic API flow can be described by the following diagram:
Figure 2.13: Trusted DMA Remove and IOTLB Invalidation
TD TDX_Module VMM
TDG.IQ.INV.REQUEST(NUM_REQ, REQ_PA)
TDEXIT with the reason TDX_IOTLB_INV_REQUEST (NUM_REQ)
loo [For each IOMMU the TDR has TDIs connected to]
loo [For POOL_SIZE in (1..NUM_REQ) till all NUM_REQ done]
1 . TDH.IQ.INVREQUEST(IOMMU, TD_INV_REQ, POOL_SIZE)
2 ,.BF?.’T!?.i.'?iT‘.Q.F?.‘!T.‘??.’.Qf.‘.’.e..s.?'.i???’..f.‘?.’..‘!‘.ﬁ.'.Q.M.M.l:'.............................,
_ TDH.IQ.INV.PROCESS(IOMMU)
DX SUCCESS e
< OENTER (VMM resumes TD @tany BME) i o oooeeeceeeeeeeeeeeeemsseeeeesssmeseessssmseessssmmeeesessmssesesssamseeesesend
 Write Status after all descriptor processed
TD TDX_Module VMM
20 Figure 2.14: Trusted DMA Remove and IOTLB Invalidation

June 2025 Page 25 of 29

Intel® TDX Connect Architecture Specification 354629 003-US

2.11. Interaction with TDX Seamless Updates

The TDX seamless update mechanism is microarchitecturally extended to preserve TDX Connect context and metadata
without requiring explicit changes to host VMM software.

The existing requirement for the host VMM software to exit and pause all TDs before and during a TDX module update
remains unaltered.

While TDs are paused, devices attached to the TDs may remain in the RUN state, performing private DMA read/write
operations to TD private memory. The TD memory remains intact during the update process.

After the TDX module update, when TDs are resumed, the TDs can continue interacting with attached TDIs since the DMA
buffers retain confidentiality and integrity, ensuring secure and seamless operation.

June 2025 Page 26 of 29

Intel® TDX Connect Architecture Specification

354629 003-US

3. APPENDIX

3.1. Glossary

Acronym Full Name Description
ACS Access Control PCle ACS defines a set of control points within a PCI Express topology
Service to determine whether a TLP is to be routed normally, blocked, or
redirected. ACS is applicable to RCs, Switches, and Multi-function
Devices (See [PCle Base spec])
ATS Address Translation | ATS is a PCle extended capability which uses a request-completion
Service protocol between a Device and a root complex (RC) to provide
translation services. In addition, a new AT field is defined within the
memory read and memory write TLP to enable the RC to determine
whether a given request has been
translated or not via the ATS protocol (See [PCle Base spec])

CPL Completion Completion PCle TLP. All read, non-posted write, DMWR, and AtomicOp
requests require Completion. Completions include a Completion header
that, for some types of Completions, will be followed by some number
of DWs of data (See [PCle Base spec])

DOE Data Object Data Object Exchange (DOE) is a PCle optional mechanism for system

Exchange firmware/software to perform data object exchanges with a function or
RCRB. Software discovers DOE support via the Data Object Exchange
(DOE) extended capability structure (See [PCle Base spec])
DSM Device Security Device Security Manager (DSM) is a logical entity in the device that may
Manager be admitted into the TCB for a TVM by the TSM and enforces security
policies on the device (See [TDISP spec])

FLR Function Level FLR is a PCle optional mechanism which enables software to quiesce

Reset and reset endpoint hardware with function-level granularity (See [PCle
Base spec])
Integrity & Data Extended PCle capability for Integrity & Data Encryption (IDE) for

IDE Encryption confidentiality, integrity, and replay protection of PCle transport layer
packets (See [PCle IDE spec])

IDE_KM IDE Key IDE Key Management (IDE_KM) protocol builds upon [SPDM] and

Management [Secured-SPDM], and can be used over multiple transports (See [PCle
IDE spec])
IOMMU Input—Output CPU-RC Input-Output Memory Management Unit (IOMMU) that
Memory translates device virtual addresses to physical addresses
Management Unit

KCBAR Key Config Bar Intel CPU implementation of PCle IDE key configuration interface (See
[Intel RC IDE Programing Guide])

RC Root Complex PCle root of an I/0O hierarchy that connects the CPU/memory
subsystem to the 1I/0. RC may support one or more PCl Express Ports.
Each interface defines a separate hierarchy domain (See [PCle IDE
spec])

June 2025 Page 27 of 29

Intel® TDX Connect Architecture Specification

354629 003-US

Acronym Full Name Description
RP Root Port A PCle port on a root complex that maps a portion of a hierarchy
through an associated virtual PCI-PCl bridge (See [PCle Base spec])
EP End Point Function that can be the Requester or Completer of a PCI Express.
Endpoints are classified as either legacy, PCl Express, or root complex
Integrated Endpoints RCIiEPs (See [PCle Base spec])
SPDM Secure Protocol and | The Security Protocol and Data Model (SPDM) Specification which
Data Model defines messages, data objects, and sequences for performing message
exchanges between devices over a variety of transport and physical
media. (See [SPDM spec])
TCB Trusted Computing | A trusted computing base (TCB) is everything in a computing system
Base that provides a secure environment for operations. This includes its
hardware, firmware, software, operating system, physical locations,
built-in security controls, and prescribed security and safety
procedures.
TDI TEE Device The unit of assignment for an 10-virtualization capable device. For
Interface example, a TDI may be an entire device, a non-I0V Function, or a VF
(See [TDISP spec])
TEE Trusted Execution A secure area of a main processor. It helps ensure code and data
Environment loaded inside to be protected with respect to confidentiality and
integrity.
Trusted Execution A conceptual framework for establishing and managing Trusted
TEE-10 Environment with Execution Environments (TEEs) that include a composition of resources
10 Devices from one or more devices (See [TDISP spec])
TSM TEE Security The TEE security manager (TSM) is a logical entity in a host that is in
Manager the TCB for a TVM and enforces security policies on the host (See
[TDISP spec])
TVM TEE Virtual Machine | A Trusted Execution Environment Virtual Machine as defined in the TEE
Device Interface Security Protocol (TDISP) reference architecture

3.2. External References

Table 3.1: Specification References

Specification

Document Name Reference Version, Date

1 | Intel® TDX Module Base Architecture Specification Intel TDX Base April 2025

2 | PCI-SIG TEE Device Interface Security Protocol (TDISP) [PCle TDISP] 5.x, Aug 2022

3 | PCI-SIG Integrity and Data Encryption (IDE) ECN [PCle IDE] A, Jan 2022

4 | DMTF Security Protocol and Data Model (SPDM) Specification [SPDM] 1.4, May 2025

5 | DMTF Secured Messages using SPDM Specification Secure SPDM 1.2, Jun 2024

6 | PCI-SIG Data Object Exchange (DOE) ECN [PCle DOE] 5.x, March 2020
7 | Intel® Virtualization Technology for Directed 1/O Architecture Intel VTd 4.1, March 2023

June 2025

Page 28 of 29

https://cdrdv2.intel.com/v1/dl/getContent/733575
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.4.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0277_1.2.0.pdf
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html

Intel® TDX Connect Architecture Specification 354629 003-US

Document Name Reference Version, Date

8 Intel® Root Complex IDE Key Configuration Unit - Software [Intel RC-IDE Guide] 1.03, Feb 2025
Programming Guide

June 2025 Page 29 of 29

https://cdrdv2.intel.com/v1/dl/getContent/732838

