intel

Intel® Trust Domain Extensions (Intel® TDX) Module
TD Partitioning Architecture Specification

354807-005US
September 2025

Copyright © 2025 Intel Corporation. All rights reserved.

10

15

20

TD Partitioning Spec Section 1: Introduction and Overview 354807-005US

Notices and Disclaimers

|II

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others.

September 2025 . Page 2 of 48

Introduction and Overview

Section 1:

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

10

15

20

25

30

35

40

TD Partitioning Spec Section 1: Introduction and Overview 354807-005US

Table of Contents

SECTION 1: INTRODUCTION AND OVERVIEW......ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisssenns 6
10. ADOUL thisS DOCUMENT ...ceiiiiiiiiiiineetiiiiiiiisisnseetisississsssssesssssssssssssssssssssssssssssesssnnssssssssss 7
10.1. 5COPE Of tNIS DOCUMENL ...ttt ettt e e sttt et e et e e st e e e esaeeeatneenseeeans 7
10.2. DOCUMENT OFGANIZATION ...ttt ettt ettt st e e et e s et e st e e e sttt e s satneesainnees 7
10.3. GIOSSAIY .ottt et et e e st e et s e et s e et et e et e et e et e st e e bt e st e enee s 8
10.4. INOTQTION ...ttt e e ettt e e e ettt e e e e ettt e e e e e st e eeeeesassnneeeeessaannnnes 8
10.5. L= = =L ol =X TSR 8
11. TDX TD Partitioning OVEIVIEWcciiieeeeeiiiiiiiiiennniiiiiiiiiemmssiiisiiiessmsssssiissssmssssssssisssssssssssssssssssssssssssssssnnnsssssss 9
11.1. Lo e [V ol Lo T RO PSPPI 9
11.2. SECUITTY PIOPEITIES ...ttt ettt e et e et e s ettt e st e e e st e s saneeesnseesesinneeennns 10
11.3. L2 VM Private Memory MONGAGEIMENT...........ccoccueiiriiieieiiiie et etee ettt st s ettt e sttt e e et e s snneas 11
11.4. [1Y e To Y1 [o] KOOIt 11
11.5. L2 VM CPU VIFtUGHZATION ..ottt ettt ettt ettt ettt stta ettt e sataestta e saaaeatsasstasstassssaenssasnsssenssasnsnaess 12
11.6. L2 VM Measurement QN ATEESTALION.ccoeeueeieriiieeeeiee ettt ettt et e ettt e et e e st e e s ssneeensnees 12
11.7. L2 VM DEDUG......eeeeeeeiiieiieeiet ettt ettt et ettt et ettt ate ettt s ate ettt e st e et e s ata e btesataebsasnstaaatsaanseasabsasnsseenssesnanasnss 12
11.8. TD Partitioning Interaction With TD MiGIQUiONc.eecueeeveeseeesiiiesieesieesieesiseesteesssssiseessessseesseessseesanes 12
11.9. Intel TDX TD Partitioning INtErface FUNCLIONSc.ueeeecuieeeeeiieeesiieeesiteeeetteessteeeesstteaessaeessssseeesssaeasssnes 13
11.9.1. Host-Side (SEAMCALL Leaf) INterface FUNCLIONSccceicvieeciieeiiieeieecieeeieesee et te e e st e e e s baeeaae s 13
11.9.2. Guest-Side (TDCALL Leaf) INterface FUNCLIONSccueiciiiecieciie ettt esee et e staeetae s aeesaae e saaeennae s 13
SECTION 2: TD PARTITIONING ARCHITECTURE SPECIFICATIONccooiiiiiiiiiiiiiiiiiiiiiniiisininssnnns 14
20. L2 VM Non-Memory State (Metadata) and Control STrUCLUIES.......cccceireecccrrcmeereriecesssnneesseesessssnnneessssesssssnnnnens 15
20.1. OVBIVIBW ...ttt e ettt e+ ettt e e e e ettt e e e e e ettt e e e e e e stsa et e e e aeaasbssneeaeeesasssnneeeens 15
20.1.1. (O oF: [o [V LI A @] o} fo] I} d (U (] <SP URPPROt 15
20.1.2. Private CONTrOl STIUCTUIES.viiiiiiiie et ctte st e et e e s e e e e st e e seareeeesaaeeeessteeesensaeeesnseeeesnsseasanes 15
20.1.3. Shared CONTIOl SEIUCTUIES......ciiiieeecciee ettt e e s e e e eee e e e saa e e e e s sbe e e ssaaeeesanseeeesnseeeesnneeeesnsenenn 15
20.2. Additions to EXiSting TD CONTIOl SEIUCLUIEScccccuvveeeeieeesciieeeesieeeeeite e sstaeestteaeessteesssteesessseaesaseaesasenaans 16
20.2.1. LI L O PSP PP PPPPOP 16
20.2.2. TDVPS ettt ettt ettt ettt e e ettt e s bt e e e b et e e e h bt e e s abte e e e b et e e e ah b et e s aabe e e e e be e e e e ab e e e s aabteeeebbeeeeaataeeseanees 16
20.2.2.1. NEW TDVPS FIBIAS ...eveieiiiee ettt ettt ettt et e ettt e s ettt e e sbe e e s aa bt e e seasbeeesbbeeeesabbeessasneeesanbeeenn 16
20.2.2.2. NeW Per-VIM TDVPS FIIASceeieiiiiiiiee ettt sttt ettt sttt e e ettt e s st e e sttt e e sabeeessasbeeesnreeens 16

20.3. Concurrency Restrictions GNd ENFOICEMENTccccveveeeceeeeeeiieeeestiteeeetteeesteeessteaesstteaeastaassssteaesssaeassasses 17
21. L2 VIM Memory ManagemeNntccceeciiiiieiiiimieiiiinieiiiimmeiiiimmeiiimmeisimmessissssssmsnssssmssssssmssssssssssssssasssssssssssssassssssnns 18
21.1. INEFOAUCTION ..ottt ettt ettt ettt e at e ettt st e ettt e ate e bt e e st e sabteeseeeabtaensneensseenanaenss 18
21.2. [o o = Y Lo 1 [o SR 19
21.2.1. Logical View of a TD Private Page With Pages AlIasescccuuveiieeiiiiiiiiiiiee ettt 19
21.2.2. L2 Secure EPT Entry Partial State Diagram.......cccccuiiiieiii ittt et e e e e e et e e e e e s eeanraeeeas 19
21.2.3. L2 Page Alias Management: TDG.MEM.PAGE. ATTR.RD/WR.....ccovviiiriieiieeitieeiteeesteeeereeeeteeeeteeeeteeeesee e 20
21,230, OVBIVIBW ittt e ettt e e ettt et e e e e ettt et e e e e e s e s be bt e e e e e e s e b nb e e e e e e e ea e anbeeeteeeea e nnbabeeeeeeeaanbaraeeeeaeaan 20
21.2.3.2. AddING L2 PAGE AlI@SES.....eeeiiiiieieeieieciee e ettt e ee e e e s rtte e e e s ate e e e s asteeessaeeeasateeesasteeesneeeeeanreeeeanaeeeennreeean 21
21.2.3.3. Modifying L2 Page ATErHDULES ..ccccueiiii et et e e s nre e e et e e s naae e e s nreee s 22
21.2.3.4. ReMOVING L2 PAZE AlIGSES .eeeuviieeeeiiieiiiee e ctieeee et e ettt e e e st e e s stte e e snaeeeesatseesenseeeesasaneeasteeesannsneesnnsenenn 22

21.3. Updates to SEPT Tre€ MANGGEMENTuuveeieeeeeeiieeeee e eeesettt e e e e e ettt a e e e e s ess e s e aaeeessstsssaaaaeeesssssssenaaas 23
21.3.1. Host VIMIM’s L2 SEPT Management SEFatEEYccueeeeiiiieeiiieeecitieeeeeiteeeeetteeeeetteeeeeaveeeeessaesesaseeaessseaennes 23

September 2025 . Page 3 of 48

Introduction and Overview

Section 1:

10

15

20

25

35

40

45

TD Partitioning Spec Section 1: Introduction and Overview 354807-005US
21.3.2. PN (o [T Y=] X ol I Y= TSP PPPP 23
21.3.3. REMOVING SEPT PABES oiiiiiiiiiiiiiiiiiiiiiiieieieieee ettt ee ettt e te e et e eeteeeeeeeteteeetete e e e et e ee e et e e e e e et e s e e e e e s e s eeesesesesesesenarens 24
21.3.4. e 1=l D =Y 4 o[1 [] DTSR PPPPPPPPPPPPPPPRE 24
21.3.5. e 1=l e Ce T g Lo} { o] TP PPPPPPPPPPPPPPRE 24

21.4. Other Updates to Memory Management INterface FUNCLIONS.............cccueeeeceeeeecrieeeiiieeesiveeeecseeeessaeaeeneeas 24
21.5. LI VMM CONEIrOl Of L2 EPT FEATUIES......eeeueeieieeiee ettt ettt ettt ettt ettt et e st e e saee e eesaeeeaes 24
21.6. L2 VM TLB INVGIIAGLEION .ottt ettt s st e e st a s st e e s e e s asteassstaassasteaessnsaeasssseas 25
21.7. L2 VM Shared Memory MONGGEMENT..........ccueevuiemieeiiieieeiet ettt ettt ettt ettt site st e e saee st e e sseeesineenaeeeans 25
21.8. Handling EPT Violation VIM EXit frOM L2ccc.eeeiieeiieiiieeiee ettt ettt et 25
21.9. Handling EPT Misconfiguration VIMl EXit frOM L2ccccuueeeeeueeeeiieeeeeiieeecieeeesteaeesaeaeestaaaestaaaeasseaeesnnes 26
21.10. L2 GPA-TO-HPA SOft TrANSIATIONccc.veeeeeee e et e et e e ettt e e ettt e e et e e e ettt e e e astaaaeassaasessesesassesennsees 26
22. TD VCPU Enhancements for TD PartitioNiNgccceeeeeeeeiieiieiiieiieieieeeeeeeeeeeeeeeeeeeessesssnnns 27
22.1. OVBIVIBW ..ttt et ettt ettt et ettt et st e s s e e sess s s s s s s sesessasssasasssasssssssssssssasssssssssssassssssasssssssssasesesssssssesesasesssasesesesesasess 27
22.2. L0 U g T K [o Kt 27
22.2.1. L1-to-L2 VM Entry and L2-to-L1 VM Exit: TDG.VP.ENTERccoocuviiieiiiie e ceeeeeieee e svee e ee e 27
22.2.1.1. TDG.VP.ENTER INPULS @N0 OULPULS...cuttiiiiertiieiieeite ettt ettt ettt ettt seee bt sanesbe e saeesnee s 28
22.2.1.2. L2 State Preservation Across L1-to-L2-to-L1 Transitions (TDG.VP.ENTER)ccccevvverrviinivernirenveenennn 29
22.2.1.3. L2 VM EXIT HANAIING coevieiiieeiee ettt sttt st s st e saae et e et e enbaeesabeensseesaseensneas 29
22.2.1.4. L2-t0-L1 VM EXit: RetUrNed L2 Statecccoiiiiiiiiiiiiiieiee ettt sttt sttt e st e e s are e s 29
22.2.2. Direct Asynchronous TD Exit from L2, and Subsequent TD ENtrycccccoccieeeiiiieeecciiee e 30
22.2.2.1. Asynchronous TD EXit frOm L2coouieiiiiiiieiiieeie ettt sttt st et saee s b e s e snee s 30
22.2.2.2. VCPU Resumption to L2 on TD Entry following @ TD EXit from L2ccccceevieriiiinieniieenieenieeneeeeen 30
22.2.3. TDG.VP.VMCALL: Synchronous TD Exit from L2 and Subsequent TD ENtrycccccovveeviieniennerenieennnen. 30
22.2.4. TD Exit from L2 Routed by the Host VMM to L1 on Subsequent TD ENtryccceccvveeeeiieeeciiee e 31
22.2.4.1. Asynchronous TD ExXit from L2 ROULEA t0 L1.....cceeveiiiiiieiiiiiiiiiieeiieesieeeieeesitesieeesiseesie e saeeseeeesiaeenaee s 31
22.2.4.2. Synchronous (TDG.VP.VMCALL) TD Exit from L2 Routed tO L1......ccccevvuviirieiniiinieenieenieenieeesveenenees 31
22.3. Virtual Interrupts Handling for TD PArtitioNingc..eeccueeeeeeueeeeiieeeesiieeeeeiteeeesiaeaeesitseaeestssseesssasesssnaans 31
22.4. L2 VM TLB Address SPAce IA@NLIfIEr (ASID)ccuueeeeeeieeeeeeeiiteeieesteeeestaesteesttaeesaeessssssssssssssessssesssseassanns 31
23. L2 VM CPU Virtualization (Non-Root Mode OPeration)........ccceeveeirisseesiissnenisssnisisssssssisssesssssssssssssssssssssssess 33
23.1. General Aspects Of L1 Operation GS G VIMIMccc.uuieeecueeeeiieeeesiiieeeeitaessitaeesiteaessstaasassaassssseaessssasasssses 33
23.1.1. L1 VIMM Usage of VIMX FACIIITIESueeeeuiiiiciiec ettt ettt et e et e e et e e e aaae e sabaeeeeasaeaennns 33
23.1.2. Enumeration of VMX Capabilities Available to the L1 VIMIMccocciiiiiiiiii e eevee e 33
23.1.3. UNIT CONVEISION ittt ettt ettt et e e e sttt e e e s et ettt e e e se s mnbe e e eeeesesannbaeeeeeeeesannsneeeeeeesannnraneeas 34
23.1.4. [0 o I AV o = g Vo |1 = USSR 35
23.2. L2 VM VCPU INGEIQI SEATE ..ottt ettt ettt ettt et ettt e et e ssteebteenaneenuneenaeeenns 35
23.3. L2 VM Run Time Environment ENUMEIGTIONcueeeeiiieeeeiieeeeee et ettt e et e et e s st e e e e 35
23.4. L2 VM CPU MOGE RESLIICLIONS.....eeeueeeeiieeiie ettt ettt ettt ettt et et e st e st e e seeebteenaeeenbseenanaenns 35
23.5. L2 VM VCPU INSErUCtiONS RESTIICTIONScccneveeeeiieieeieeeesiee ettt st e et e et e e st e e e ssnneeenanneas 36
23.5.1. Mechanisms OF BIOCKINGccoouueiiiiiei et e e e e e e e e e s etbb e e e e e e e e eeebatbeeeeeesennnnraaneas 36
23.5.2. Instructions that Cause an L2-to-L1 Exit Unconditionallyc.ceeoieiiiiiiiieiiiiiceee e, 36
23.5.3. Instructions that Cause a #HUD UNconditionallyceoeiiieiiiiiiiee et 36
23.5.4. Instructions that Cause an L2-10-L1 EXit ...c.eeeveeriiiiiiieniiieeiee sttt 36
23.5.5. Other Cases of Unconditionally Blocked INSTruCtionSccccueiiicieiriiiie s 36
23.6. L2 VM EXEENAEA FEALUIE SEL ..ottt ettt ettt ettt et e ate et a e st e et eeateenbteenaseenbseenaneenns 36
23.7. L2 VM CR HONAIING ettt ettt ettt ettt ettt e sate et e e st e st eeseeebeaeseesbeeenaneenns 37
23.7.1. (003 {0 I T @1 USSR 37
23.7.1.1. Background: CRO and CR4 EXecUtion CONTIOIS.......coccuiiiiiiiiiiniiit ettt sree et s 37
23.7.1.2. CRO and CR4 Enumeration t0 the L1 VIVIMccccciiiiiiiiiiiiieeciee ettt ettt 37
23.7.1.3. L2 CRO/A INTEIAI VAIUES ..c.eveeeeree ettt ettt ettt ettt e et e e etae et e eetaeenbeeeesaeetseeeaseensseesaneensrens 38
September 2025 Page 4 of 48

Introduction and Overview

Section 1:

10

15

20

25

30

35

TD Partitioning Spec Section 1: Introduction and Overview 354807-005US

23.7.2. (0121 I T 101 3 PSPPSR 38
23.8. L2 VM MISR HONGIING ..ottt ettt ettt ettt et et e et e st e e seesabaaesaeebeaensneenns 38
23.9. L2 VM CPUID VirtUQLIZATIONccuveesiiieiieesiiiesiieestit et et esite ettt e sita sttt esateestte e sateestsaestesbsesssssenstesnsseenssesnssaenss 39
23.10. L2 VM Interrupt Handling and APIC VirtUQliZAtiONccccueeeeecuvieeeeiiieeeiieaessieeeeseeaaesiaeaeesveeessssaeaeenaes 39
23,11, VECLOIEMA EVENLS ..ottt ee sttt s st e st e st e st e s te e s abe e s abeesabaesbe e s beasaseesabeesnseasabeasnsesenssesnseaenss 40

23.11.1. Vector-on-Entry (VOE) INJECTION T0 L2 ...ouiiiuiiiieiieieeieeie sttt ettt sttt et st st st s ae e 40

23.11.2. L2-to-L1 Exit during EVent DeliVery via IDTcoocuiiiiieriieeiienite ettt et sttt st s e 40
23.12. Prevention of L2 VM-INAUCEd DENIQI Of SEIVICEoeeeeeeeieesiiieeeiiiieesiiteeeiee st eestaa e esiie e s ssiiesessiaeasssaes 40
23.13. Time StAMP COUNTEE (TSC) cnuveeeeieeeieeeiee ettt e st e ettt e st e ettt e sttt a e st e et aease e s st s e aseaeatsaeassseassaeassseassasnssanns 40

23.13.1. L2 VM TSC VIrtUIIZAION c..eeeiie ettt sttt sttt et e st e st e e sbeesabaesbeesabaesnbaesares 40

23.13.2. (Y Y R O DT To |17 YR U] o o Lo o USSR 40
23.14. SUPEIVISOI PrOtECLION KEYS (PKS)...eeeeeeeeeeeeee ettt ettt e ettt e e ettt e e et e e e et e e s aatsaaesssaaeasssasasansseaennnaees 41
23.15. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption (MKTME)................ 41

23.15.1. LY S [(U F=1 121 o] o PO PRURUSPPPP 41

23.15.2. MKTIME VIrTUGHZATION ..vveiieeiieciieeeee ettt e e e e et ee e e e e e e st aaeeee e s e s ntbbeaeeeeeeeeeasraeseeeeeennnnraenens 42
23.16. Management of Idle and BIOCKEd CONTILIONSoeeeeeeereesiieeeesiieeeeciiteeeieeesstte e e st e st aeesateeessssaeasssaes 42

23.16.1. [1 T o U Tt o o PP UPPR 42

23.16.2. PAUSE Instruction and PAUSE-LOOP EXItINGccooiuiiiiiiiiiiciieee ettt e e e e s e nnree s 42

23.16.3. MONITOR and MWAIT INSTIUCTIONS .eenueiiiiiiiiet ettt eeitee ettt st e e st e s et e e ssbaee e sabreeeenabeeeenans 42

23.16.4. WAITPKG: TPAUSE, UMONITOR and UMWAIT INStrUCLIONS ...eevvieiiiiiriieiiiieeiieeiie e snieeeseeesiveesae e 42
23.17. Other Changes in TDX NON-ROOt MOc.oeueecuieeeeeiiseesiieessiiteeeette e estaaesstieeesstteesasteasssssesessssaeassssees 42

23.17.1. (Y 1V I I T [T~ PSSR 42

23.17.2. L2 VIM PAUSE-LOOP EXITING .ccieiiiiiiiieiieeiiiiieet ettt ettt e e sttt e e e s e sttt e e e e s e sebabbeeeeessessnnaeaeas 43

24, L2 VM Debug and Profiling Archit@CtUreeeeeeeeeeeeeeeeeeeeeemeemmmmesessssmsssssmsss 44
24.1. ON-L2 VIM DEDUQGccevveeiieeiiesiieeeeste et stee st stt st s e st e st esate e s ataesateesataesateesataesateesaseenatessaseenstessaseenates 44
24.1.1. OVEBIVIBW .ttt et e ettt e e e ettt et e e e sttt e e e e s e ne b et et e e e e e s anbe et e eeeea s asbbe et eeeeesansnbaeeeeeesannnbeeaeeeeeesannnen 44
24.1.2. (Gl a1 g (ol DT o TU =4l o - Ta T L1V -SRI 44
24.1.2.1.0 CONEEXE SWILCR .eeiiiiieeieee ettt ettt e s b e e bt e e b et e sa b e e bt e sab e e bt e e saneenneeas 44
24.1.2.2. 1A32_DEBUGCTL MSR VirtUaliZationccocueeriiieriieiiieeiee ettt sttt ettt e s 44

24.1.3. Debug Feature-Specific HaNAIINGccoueiriiiiieeee e s st 44
24.2. ON-L2 VM Performance MONITOIING...............ccccuueeeeiueeeeeiieeeesieeeeesteeeetteaeesittaaestseseesssssesssaassstsesaeassssessssees 46
24.3. LI VIMIM DEBUG Of L2 VIMIS ...ttt et e e ettt e e ettt e ettt s e e et e e e e ttaa e e taaaaeastsaaenssssaaenstsaaaansseaenssns 46
24.4. Off-TD DEDUG Of L2 VIVIS ...ttt ettt e ettt e ettt e e e ettt e e et e e ettt s e e aatseaeesssaseaatsaaaatsesaeasssssenasses 46

24.4.1. L2 VM Debug Controls Used by the HOSt VIVIMcciiiiiiiiiieiee ettt et e e e 46

24.4.2. Host VMM Access of Debuggable TD’s L2 VM State, Controls and Memory........cccceeeeveieeeieeniieeenieennne 47

25, Guest-Side TDX FUNCEIONS (TDCALL) fOr L2 VIMIS........ccerrrrrrrerrrrsssnsnnnns 48
25.1. TDGVPNIMCALL ..ottt ettt ettt et et ettt et e ettt et e ettt e st e et e st e et e e sateeateenaseenanes 48

September 2025 . Page 5 of 48

Introduction and Overview

Section 1:

TD Partitioning Spec

Section 1: Introduction and Overview

354807-005US

SECTION 1:

INTRODUCTION AND OVERVIEW

September 2025

Page 6 of 48

Section 1: Introduction and Overview

10

15

TD Partitioning Spec

Section 1: Introduction and Overview

354807-005US

10. About this Document

10.1. Scope of this Document

This document describes the architecture and the external Application Binary Interface (ABI) of the Intel® Trust Domain
Extensions (Intel® TDX) module’s TD Partitioning feature, implemented using the Intel TDX Instruction Set Architecture

(ISA) extensions.

This document is part of the TDX Module Architecture Specification Set, which includes the following documents:

Table 10.1: TDX Module Architecture Specification Set

Document Name

Reference

Description

TDX Module
Base Architecture Specification

[TDX Module Base
Spec]

Base TDX Module architecture overview
and specification, covering key
management, TD lifecycle management,
memory management, virtualization,
measurement and attestation, service TDs,
debug aspects etc.

TDX Module
TD Migration Architecture Specification

[TD Migration Spec]

Architecture overview and specification for
TD migration

TDX Module
TD Partitioning Architecture
Specification

[TD Partitioning
Spec]

Architecture overview and specification for
TD Partitioning

TDX Module Interrupt Virtualization
Architecture Specification

[Interrupt
Virtualization Spec]

Architecture overview and specification for
interrupt virtualization

TDX Module
TDX Connect Specification

[TDX Connect Spec]

Architecture overview and specification for
TDX Connect

TDX Module
ABI Reference Specification

[TDX Module ABI
Spec]

Detailed TDX Module Application Binary
Interface (ABI) reference specification,
covering the entire TDX Module
architecture

TDX Module
TDX Connect ABI Reference
Specification

[TDX Connect ABI
Spec]

Detailed TDX Module Application Binary
Interface (ABI) reference specification,
covering the TDX connect architecture

TDX Module ABI Reference Tables

[TDX Module ABI
Tables]

A set of files detailing TDX Module
Application Binary Interface (ABI)

TDX Module ABI Incompatibilities

[TDX Module ABI
Incompatibilities]

Description of the incompatibilities
between TDX 1.0 and TDX 1.4/1.5 that may
impact the host VMM and/or guest TDs

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This
document does not imply any product commitment from Intel to anything in terms of features and/or behaviors.

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to update this document in real time when such changes
occur.

10.2. Document Organization

The document has multiple sections:

e Section 1 contains an introduction to the document, overview of TD Partitioning, scenarios and requirements.
e Section 2 contains the Intel TDX Module TD Partitioning architecture

September 2025 Page 7 of 48

Introduction and Overview

Section 1:

TD Partitioning Spec Section 1: Introduction and Overview 354807-005US

e Section 3 contains updates to the TD Module ABI. This section will eventually be merged into the [TDX Module ABI
Spec].

10.3. Glossary

For a complete TDX Module glossary, see the [TDX Module Base Spec].
Table 10.2: Intel TDX Glossary for TD Partitioning

Acronym | Full Name New for | Description
TDX
L2 Page Yes Mapping of a TD private page in an L2 VM’s GPA space
Alias
L1VM Layer 1 VM No The main virtual machine of the TD, which may also have the role on an L1 VMM
L1 VMM | Layer1 No The main virtual machine of the TD, which also serves as a Virtual Machine
VMM Monitor (VMM) for nested L2 VM guests
L2VM Layer 2 VM No A virtual machine which is nested within a TD, and is logically a guest of the L1
VMM
VM Virtual No A virtual multi-LP processor, contained within a TD
Machine

10.4. Notation
See the [TDX Module Base Spec].
10.5. References

See the [TDX Module Base Spec].

September 2025 . Page 8 of 48

Introduction and Overview

Section 1:

Host-VMM-managed access
control, enhanced with MK-TME

TD Partitioning Spec Section 1: Introduction and Overview 354807-005US

11. TDX TD Partitioning Overview

For an overview of TDX, refer to the [TDX Module Base Spec].
11.1. Introduction

TDX TD Partitioning, as described in this document, is designed to provide a minimal environment for supporting the
Microsoft VSM and similar architectures. It supports a single unmodified legacy VM and up to two additional supervisory
VMs within a guest TD.

TD Partitioning extends the base TDX architecture by allowing TDs to contain multiple virtual machines (VMs). A TD may
contain up to 4 VMs. The primary VM (known as the L1 VM) may act as a virtual machine monitor (known as the L1
VMM). Up to 3 nested VMs (known as the L2 VMs) serve as the guest of the L1 VMM.

TDX Module-managed access
. g L1-VMM-managed
control, leveraging MK-TME and
access control
Secure EPT :

Partitioned Trust Domain

Legacy VM Legacy VM Trust Domain
icati U dified L2 VM L2 VM
Applications Applications A nT.O e L2 VM
pplications Optionally Optionally Unmodified
i Unmodified .TDX- .TDX_ Legacy VM
Drivers Drivers A Enlightened Enlightened
Drivers
TDX-Enlightened TDX-Enlightened
0S
03 0s L1 VMM
L t] t
TDX TDX
I S S O I A S I N I A N I B BN W Guest-Side API Guest-Side API S L I 1T,
== v v
TDX
Host .VMM e oot aide s Intel TDX Module
TDX-Enlightened AP Running in SEAM Root Mode
[

10

15

Figure 11.1: TDX Components with TD Partitioning

A TD may have one or more virtual CPUs (VCPUs). With TD partitioning, each VCPU can run in either L1 VMM or in one
of the L2 VMs. Transitions between L1 VMM and L2 VMs always occur within the same VCPU.

The diagram below shows an example of how the TD Partitioning architecture can be mapped to Microsoft’s VSM
architecture.

September 2025 Page 9 of 48

Introduction and Overview

Section 1:

TD Partitioning Spec Section 1: Introduction and Overview 354807-005US

Intel TDX Names are in Black Partitioned Trust Domain
Microsoft Hyper-V Names are in Red
VM #0 VTLO VTL1
(L1 VM/VMM) VM #1 (L2 VM) VM #2 (L2 VM)
VP #0
VMCS VCPU #0 VMCS VMCS
1 1
VP #1
VMCS VCPU #1 VMCS VMCS

“Paravisor”

Inter-VTL Transitions
L1€=>1L2VM
Entries/Exits
Hypervisor Hypervisor’
Host VMM Intel TDX Module

Figure 11.2: Example of TDX TD Partitioning Mapping to Microsoft’s VSM Architecture

Legacy Legacy Legacy Partitioned
VM VM VM)
| - _

11.2. Security Properties

C B < ’

N

=

All ACM’s and MCHECK are in NP-SEAMLDR
the same TCB group

~_ -

N A,

SOC H/W

Figure 11.3: TDX TCB Dependency Diagram

Within a TD, the L1 VMM is in the TCB of L2 VMs; the L1 VMM to L2 VM relationship is similar to that of a legacy VMM to
legacy VMs. Other than that, TD Partitioning maintains the same security properties of the base TDX architecture.

Note: The L1 VMM is expected to protect itself against untrusted L2 VMs using the mechanisms provided by the TDX
10 Module and the underlying CPU’s VMX technology. For example, the L1 VMM should properly assign memory
access permissions to L2 VMs.

September 2025 . Page 10 of 48

Introduction and Overview

Section 1:

TD Partitioning Spec Section 1: Introduction and Overview 354807-005US

11.3. L2 VM Private Memory Management

TD Partitioning extends the TD private memory model such that each TD private page is managed as a single entity, with
a single GPA mapping and state, but a separate set of attributes for each VM within the TD.

Table 11.1: Logical View of a TD Private Page Attributes

Common L1 VMM L2 VM #1 L2 VM #2 L2 VM #3
GPA R=1, W=1, X=1 R, W, Xs, Xu R, W, Xs, Xu R, W, Xs, Xu
HPA SSS, VGP, PWA | SSS, VGP, PWA | SSS, VGP, PWA
State

e The L1 VMM and all L2 VMs share the same GPA space; however, the access rights and other attributes of pages
within this GPA space may be different between each VM.
e Al TD private pages are mapped in the L1 VMM GPA space with read, write and execute permissions.
e Individual TD private pages (4KB, 2MB or 1GB) may be mapped by the L1 VMM into the GPA space of an L2 VM. This
10 mapping is called page alias. A page alias has the same GPA but may have different access permissions and other
attributes than the L1 mapping of the same TD private page.

VM #0 VM #1 VM #2 VM #3
L1 VMM L2 VM L2 VM L2 VM

GPA Space

R None

R R

None

RW

D | ™| =D | =

Figure 11.4: Example of Page Permissions for L1 VMM and L2 VMs
11.4. L2 VM Transitions

With TD Partitioning, each TD VCPU can run in either L1 VMM or in one of the L2 VMs. Inter-VM transitions always
15 happen within the same VCPU.

e AVCPU runningin L1 VMM can initiate an L1>L2 VM entry.

e AVCPU running in L2 VM normally exits back to the to the L1 VMM (L2>L1 VM exit).

e Insome cases, TD exit to the host VMM may happen directly from a VCPU running in L2 VM.

e Insuch cases, the host VMM may re-enter the TD to either resume the exited L2 VM or to resume the L1 VMM.

September 2025 . Page 11 of 48

Introduction and Overview

Section 1:

10

15

20

TD Partitioning Spec Section 1: Introduction and Overview 354807-005US

<4—— Legacy Mode SEAM Mode T
Host&—>TD Transitions D 5 4
L1<—>L2 Transitions L1 L2 T ;‘3

o
Local Flows VCPU 4 \ ZL
17l \
Guest-Side Guest-Sid
TDX Module uestide
Local L1112 Local
TD Entry Flow Entry Flow
resuming L1
TD Exit °
from L1 f 83
L2->L1 Exit 28
Host-Side TD Entry & TD Entry)
Local L2->L1 Exit e e =
Flow from L2

Figure 11.5: TDX Transitions

11.5. L2 VM CPU Virtualization

As a general rule, L2 VM CPU virtualization is controlled by the L1 VMM, within the feature set available to the whole TD
and limitation imposed by the TDX architecture. The L1 VMM virtualized CPUID and controls the virtualization of MSRs,
thus controlling CPU feature enumeration, for L2 VMs. The L1 VMM configures the L2 VCPUs’ VMCS and additional VMX
control structures such as MSR exit bitmaps to control L2 VCPU virtualization, within the limitations imposed by the TDX
Module.

TD Partitioning is designed to support unmodified legacy VMs running as L2 VM. To that end, all CPU modes supported
in VMX non-root mode are supported for L2 VMs.

11.6. L2 VM Measurement and Attestation

TD Partitioning does not modify the TDX measurement and attestation architecture. Measurement and attestation of L2
VMs are the responsibility of the L1 VMM.

11.7. L2 VM Debug

The TD Partitioning architecture enhances the off-TD debug facilities to support L2 VMs. In addition, it enables on-L2 VM
debug facilities for debugging an L2 VM using software that runs inside that VM, and L1 VMM debug of L2 VMs.

11.8. TD Partitioning Interaction with TD Migration

The TD Migration architecture is extended to support live migration of TDs that contains nested L2 VMs.

e The whole TD is always migrated, including any L2 VMs it might have.
e L2 VMs' non-memory state (metadata) is migrated, as well as memory aliasing information.

September 2025 . Page 12 of 48

Introduction and Overview

Section 1:

TD Partitioning Spec

Section 1: Introduction and Overview

354807-005US

11.9.

11.9.1. Host-Side (SEAMCALL Leaf) Interface Functions

Intel TDX TD Partitioning Interface Functions

Table 11.2: Updated Host-Side (SEAMCALL Leaf) Interface Functions

Class Interface Function Name Leaf | Description
#

VCPU Scope TDH.VP.ENTER 0 | Enter TDX non-root operation

VCPU Scope TDH.VP.FLUSH 18 | Flush the address translation caches and cached TD
VMCS associated with a TD VCPU

Private Memory Management TDH.MEM.PAGE.DEMOTE 15 | Split a 2MB or a 1GB private TD page mapping into 512
4KB or 2MB page mappings respectively

Private Memory Management TDH.MEM.PAGE.PROMOTE 23 | Merge 512 consecutive 4KB or 2MB private TD page
mappings into one 2MB or 1GB page mapping
respectively

Private Memory Management TDH.MEM.PAGE.RELOCATE 5 | Relocate a 4KB mapped page from its HPA to another

Private Memory Management TDH.MEM.PAGE.REMOVE 29 | Remove a private page from a guest TD

Private Memory Management TDH.MEM.RANGE.BLOCK 7 | Block a TD private GPA range

Private Memory Management TDH.MEM.RANGE.UNBLOCK 39 | Remove the blocking of a TD private GPA range

Private Memory Management TDH.MEM.SEPT.ADD 3 | Add and map a 4KB Secure EPT page toa TD

Private Memory Management TDH.MEM.SEPT.RD 25 | Read a Secure EPT entry

Private Memory Management TDH.MEM.SEPT.REMOVE 30 | Remove a Secure EPT page from a TD

5 11.9.2. Guest-Side (TDCALL Leaf) Interface Functions
Table 11.3: New and Updated Guest-Side (TDCALL Leaf) Interface Functions
Class Interface Function Name Leaf | Description
#

VCPU Scope TDG.VP.ENTER 25 | Enter L2 VCPU operation

VCPU Scope TDG.VP.INVEPT 26 | Invalidate cached EPT translations for selected L2 VMs

VCPU Scope TDG.VP.INVGLA 27 | Invalidate cached translations for selected pages in an
L2 VM

Private Memory Management TDG.MEM.PAGE.ACCEPT 6 | Accept a pending private page into the TD

Private Memory Management TDG.MEM.PAGE.ATTR.RD 23 | Read the GPA mapping and attributes of a TD private
page

Private Memory Management TDG.MEM.PAGE.ATTR.WR 24 | Write the attributes of a private page

September 2025

Page 13 of 48

Introduction and Overview

Section 1:

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

SECTION 2:

TD PARTITIONING ARCHITECTURE SPECIFICATION

September 2025 . Page 14 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

20. L2 VM Non-Memory State (Metadata) and Control Structures

This chapter discusses the guest TD control structures that hold non-memory state (metadata) and how they are intended
to be used during the TD life cycle.

20.1. Overview

Not Mapped to TD GPA, Host VMM Allocated, TDX Module Managed Mapped to TD GPA, L1 Allocated & Host VMM Allocated &
Global Private TD Private HKID Managed, TD Private HKID Managed, Shared HKID
HKID
0 n MSR Exit | |SEPTO Root| || | SEPTPage
Context IR Bitmaps Page |
ontex D Exec. VMO (L1) SEPT Tree
Control L
TOR | [Other TD- SEPT1Root| | | | SEPTPage
Scope State Page e
VM1 (L2) SEPT Tree
SEPT2Root| | | | SEPTPage
Page P —
TDCS VM2 (L2) SEPT Tree
VCPU 1 L1 MSR Exit || VCPU 1 L1 Shared PID |i PML
VCPU Manage. | | VMCS | | Bitmaps || State || VAPIC | |VEInfo EPT Tree S
Context L2 VCPU 12 12 MSR Exit L2 MSR Exit L2 L2 HLAT Shared o
Manage. VMCS Bitmaps Bitmaps Shadow VE Info VAPIC PT Tree EPT Tree i UL
L2 VcPU 12 L2 MSR Exit L2 MSR Exit L2 L2 HLAT Shared o
Manage. VMCS Bitmaps Bitmaps Shadow VE Info VAPIC PT Tree EPT Tree i UL
TDVPS Debug Only
5
Figure 20.1: Overview of Guest TD Control Structures with TD Partitioning Support
TD Partitioning extends the TD’s control structures and adds new ones to control the operation and hold the state of L2
VMs. All guest TD control structures reside in memory pages that are allocated by the host VMM and are addressable by
it.
10 20.1.1. Opaque L2 Control Structures
The following L2 control structure reside in memory pages that are encrypted by the TD’s private key, but are not directly
accessible to either the L1 VMM or to the host VMM:
L2 SEPT: Secure EPT tree for mapping the L2 VM’s GPA space.
20.1.2. Private Control Structures
15 Multiple standard VMX control structures that are used by the L1 VMM and its L2 VM guests are mapped in the TD’s GPA
space:
e Virtual APIC page
e VE Info page
e HLAT page table tree
20 The L1 VMM may map specific control structure pages (e.g., VE Info) in the L2 VM’s GPA space by creating page aliases.

20.1.3. Shared Control Structures

Standard VMX control structures that are to be accessible by the host VMM can reside in shared memory:

e Shared EPT
e Page Modification Log (PML)

September 2025 . Page 15 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec Section 2: TD Partitioning Architecture

354807-005US

20.2. Additions to Existing TD Control Structures

20.2.1. TDCS

TDCS holds a set of L2 VM related fields. For each of the L2 VMs, the following fields are maintained:
Table 20.1: TDCS L2 VM Related Fields High Level Definition

Field Description Reference
NUM_L2VMS Number of L2 VMs in this TD
L2_SEPT_ROOT Per-L2 VM Secure EPT root page
5
For a detailed definition of TDCS, please see the [TDX Module ABI Spec].
20.2.2. TDVPS
20.2.2.1. New TDVPS Fields
TDVPS is extended with the following per-VCPU fields:
10 Table 20.2: New TDVPS Per-VCPU Fields High Level Definition
Field Description Reference
CURR_VM VM index currently used for this VCPU 22.2
ACTIVE_VMCS VM index of the active VMCS (last VMCS target of VMPTRLD). If
there’s no active VMCS or the last VMPTRLD was not of one of the
guest VMCSes, value is -1.
20.2.2.2. New Per-VM TDVPS Fields
TDVPS is extended with the following fields, per VM:
L2 VM Management Fields
15 Table 20.3: TDVPS Per-VM (L1 and L2) Management Fields High Level Definition
Field Description Reference
VM_LAUNCHED A Boolean flag, indicating whether the VM (i.e., it’s VMCS)
has been VMLAUNCH’ed on this LP since it has last been
associated with this VCPU.
If TRUE, VM entry should use VMRESUME.
Else, VM entry should use VMLAUNCH.
LP_DEPENDENT_HPA_UPDATED | Flags that the LP-dependent HPA fields have been updated.
Cleared after new VCPU-to-LP association.
Table 20.4: TDVPS Per-VM (L2 Only) Management Fields High Level Definition
Field Description Reference

L2_ENTER_GUEST_STATE_GPA GPA of the TDG.VP.ENTER guest state buffer

L2_ENTER_GUEST_STATE_HPA HPA of the TDG.VP.ENTER guest stats buffer

L2_VE_INFO_GPA GPA of the L2 VE_INFO area
L2_VE_INFO_HPA HPA of the L2 VE_INFO area
L2_VAPIC_PAGE_GPA GPA of the L2 virtual APIC page (used by the L1 VMM)

September 2025

Page 16 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec

Section 2: TD Partitioning Architecture

354807-005US

Field Description Reference
L2_VAPIC_PAGE_HPA HPA of the L2 virtual APIC page (used by the L1 VMM)
L2 VM Execution Control Fields
Table 20.5: TDVPS Per-VM Execution Control Fields High Level Definition
Field Description Reference
L2_CTLS.ENABLE_SHARED_EPTP L2 VCPU policy for using shared memory, set by the L1 21.7
VMM
L2_CTLS.ENABLE_TDVMCALL Allow the L2 VM to use TDG.VP.VMCALL 22.2.3
SHADOW_MSR_BITMAPS Shadow MSR exit bitmaps page, defining the L2 VM 23.8
policy for handling MSR access, set by the L1 VMM
SHADOW_PROCBASED_EXEC_CTRL2 | Shadow of the L2 VMCS “secondary processor-based 23.12
execution controls”. Holds the L2 policy as set by the L1
VMM for the following bits:
e Bit 30: Bus-lock detection
e Bit 31: Notification exiting
SHADOW_NOTIFY_WINDOW Shadow of the L2 VMCS “notify window” execution 23.12
control. Holds the L2 policy as set by the L1 VMM.
TSC_DEADLINE L2 VCPU execution deadline, set by the L1 VMM 23.13
5 L2 VM VMX Standard Control Structures
Table 20.6: TDVPS Per-VM VMX Standard Control Structures High Level Definition
Field Description Reference
VMCS VMCS used when the VCPU runs in this VM
MSR_BITMAPS Exit bitmaps page used by the CPU

For a detailed definition of TDVPS, please see the [TDX Module ABI Spec].

20.3. Concurrency Restrictions and Enforcement

10 Currently, TD partitioning adds no additional concurrency restrictions to the TD’s non-memory state.

September 2025

Page 17 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec

Section 2: TD Partitioning Architecture

354807-005US

21. L2 VM Memory Management

This chapter described how the Intel TDX Module helps manage TD private memory and guest-physical address (GPA)

translation.

21.1. Introduction

5 Each VM in a TD uses its own SEPT tree to translate GPA to HPA. Every TD private page must be mapped in the L1 SEPT
tree; in addition, it may be mapped in one or more L2 SEPT trees. The L2 SEPT mapping creates an alias.

L2 GPA

\ 4
i e i [[OEOOEO0E
L1 SEPT L2 SEPT

Figure 21.1: GPA>HPA Translation for L1 and L2 VM

10

The table below summarizes page aliasing features.

Table 21.1: Page Aliasing

Item

Page Aliasing

Mechanism

TD private page is mapped in both L1 SEPT as a leaf entry and L2 SEPT as a leaf
entry.

SEPT Leaf Entry

L1 VMM and L2 VM see different SEPT leaf entries.

Mapping Type and Size

Leaf: 4KB, 2MB, 1GB

Mapping Constraints

L2 GPA == L1 GPA

L2 mapping size == L1 mapping size

Page Access Permissions

Page access permissions for L2 may be different than its access permissions for
L1.

Page Attributes: CET SSS,

HLAT, Suppress VE

Page attributes for L2 may be different than its attributes for L1.

Management

Page aliases are managed by the L1 VMM. The host VMM is not directly
involved.

September 2025

Page 18 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

Legend

[] secureEPT Page (PT_EPT)

A Private Physical Page (PT_REG), size = 4KB, 2MB or 1GB

L2 VM SEPT Tree Main (L1 VMM) SEPT Tree

T

ﬁ e
2

Page Aliases Aliased Pages Non-Aliased Pages Non-Aliased Pages

-

ooo

Figure 21.2: Page Aliasing

L2 SEPT Properties

e L2 SEPT trees have the same number of levels (4 or 5) as the L1 SEPT.
5 e Each non-free L2 SEPT entry has an applicable (same GPA and level) L1 SEPT entry.

21.2. L2 Page Aliasing

21.2.1. Logical View of a TD Private Page with Pages Aliases

Logically, L2 page aliases extend a private TD page attributes to include the attributes as seen by each L2 VM.

Table 21.2: Logical Attributes of a TD Private Page with Page Aliases

GPA

Common HPA

Main SEPT entry state

L1 VMM L2 VM #1 L2 VM #2 L2 VM #3

L2 SEPT entry state | L2 SEPT entry state | L2 SEPT entry state

Per VM R, W, Xs, Xu R, W, Xs, Xu R, W, Xs, Xu R, W, Xs, Xu
SSS, VGP, PWA SSS, VGP, PWA SSS, VGP, PWA
SVE SVE SVE SVE

10

The main SEPT entry state, used for memory management and TD migration, is held by the L1 SEPT entry. Memory
management interface functions process the L1 SEPT entry and its L2 alias SEPT entries together.

21.2.2. L2 Secure EPT Entry Partial State Diagram

The L2 SEPT entry state machine is relatively simple since the overall page state management is done using the L1 SEPT
15 entry for the page.

September 2025 . Page 19 of 48

Section 2: TD Partitioning Architecture

10

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

The diagram below is a partial state diagram which covers memory management operations for a page alias, not including
TD migration. TD migration does not add new states; for details, see [TD Migration Spec].

TDH.MEM.PAGE.PROMOTE TDH.MEM.PAGE.DEMOTE [TD is paused] /
[L2_NL_MAPPED with 512 L2_MAPPED/L2_BLOCKED entries] / - Entry becomes non-leaf, - =
Entry becomes leaf L2_NL_MAPPED

TDH.MEM.PAGE.DEMOTE

1]

[L1is MAPPED] /
New leaf

_ _TDH.MEM.PAGE.PROMOTE
[TD is paused]

Page is mapped and

From Leaf Entry
State Diagram

TDG.MEM.PAGE.ATTR.WR accessible to guest
TDH.MEM.PAGE.PROMOTE [non-0, L1 is MAPPED] TD -
[L2_NL_MAPPED with N
512 L2_FREE entri
Entw—becorjzsrl':jl/ TDG.MEM.PAGEATTR.WR [0] <
TDH.MEM.RANGE.
| BLOCK
TDH.MEM.PAGE.REMOVE : TDHL’J\?\‘EB'\C(')RCAKNGE'
SEPT entry is not - [TDis paused] - 1115 BLOCKED
TDH.MEM SEPT.ADD mapped to a physical TDG.MEM.PAGE. [L1is]
: : ’ page ACCEPT
TDH.MEM.PAGE.REMOVE
TDH.MEM.PAGE.
RELOCATE
[L1is BLOCKED]
From Non-Leaf
— L2_BLOCKED
Entry State TDG.MEM.PAGE.ATTR.WR [0] —
Diagram TDG.MEM.PAGE.ATTR.WR Page is mapped but
- i t lati
TDH.MEM.PAGE.DEMOTE [non-0, L1 is PENDING] Eleo"zkgzns ations are
.— [L1is PENDING] / > .
New leaf
————TDH.MEM.PAGE.PROMOTE
_J
TDH.MEM.RANGE. TDH.MEM.PAGE.DEMOTE /
UNBLOCK ——— Entry becomes non-leaf,
[L1is PENDING] L2_NL_MAPPED
TDH.MEM.PAGE.RELOCATE To Non-Leaf Entry
[L1is PENDING] State Diagram

Figure 21.3: L2 Secure EPT Leaf Entry Partial State Diagram

TDH.MEM.PAGE.DEMOTE / TDH.MEM.PAGE.PROMOTE [TD is paused] /

Previous leaf entry becomes NL_MAPPED | | Non-leaf entry becomes leaf, MAPPED

TDH.MEM.PAGE.PROMOTE /
Non-leaf entry becomes
leaf, MAPPED

To Leaf Entry
State Diagram

L2_NL_BLOCKED

TDH.MEM.RANGE.BLOCK:

SEPT entry is not
mapped to a physical

SEPT page is mapped
and new SEPT walks
to GPA range are
permitted

SEPT page is mapped
but new SEPT walks
to GPArange are
blocked

page -TDH.MEM.SEPT.ADD

TDH.MEM.RANGE.UNBLOCK

|
|
|
- TDH.MEM.SEPT.REMOVE o
[all entries are FREE && [TD is paused]

TDH.MEM.SEPT.REMOVE(all entries are FREE]
Figure 21.4: L2 Secure EPT Non-Leaf Entry Basic Operation Partial State Diagram

21.2.3. L2 Page Alias Management: TDG.MEM.PAGE.ATTR.RD/WR

21.2.3.1. Overview

A TD private page is managed by the L1 VMM as a single entity, including its L1 state and attributes and any L2 page alias
state and attributes. L1 VMM operates on page attributes using the GPA mapping size as set by the host VMM (i.e., 4KB,

September 2025 . Page 20 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

30

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

2MB or 1GB). This requires the L1 VMM to understand the concept of mapping size and to cooperate with the host VMM
if there’s a need to control page attributes with a different granularity than currently configured.*

A single interface function TDG.MEM.PAGE.ATTR.WR enables the L1 VMM to create L2 page aliases, modify their
attributes and remove them. The host VMM is not directly involved, except when there’s an EPT violation due to the
need to add L2 SEPT pages.

L2 aliases may be added, modified and removed from pending pages. When the L1 VMM accepts a pending page
(TDG.MEM.PAGE.ACCEPT) it also accepts its L2 page aliases.

TDG.MEM.PAGE.ATTR.RD enables the L1 VMM to read L2 page attributes.

21.2.3.2. Adding L2 Page Aliases

The L1 VMM adds new L2 page aliases and sets its attributes using TDG.MEM.PAGE.ATTR.WR with a set of attributes
whose R, W, Xs or Xu bits are not all-0. The host VMM is not directly involved. TDG.MEM.PAGE.ATTR.WR may encounter
an EPT violation; in this case the TDX Module TD-exits to the host VMM to indicate the need to add SEPT pages. This is
shown in the picture below.

Unmapped GPA
access
L2 * So
o Emulated L2>L1 VM
~ . o
. \ exit (EPT violation)
TD VCPU ?/E'\Fl’lTEXIt \ Re-issue same TDCALL
\
violation) \
\ TDG.MEM.PAGE.ATTR.WR TDG.MEM.PAGE.ATTR.WR
L1 (GPA, level, (GPA, level,]
VM attributes, attributes_mask) VM attributes, attributes mask)
entry entry
i TDCALL VM exit l TDCALL VM exit
A\ 4
1. Walk L1 SEPT
TDX 1. WalkLLSEPT 1. Walk L1 SEPT Build L2 SEPT 2. Walk L2 SEPT
Module 2. PageSEPTentryis 2. Walk L2 SEPT (failed) tree 3. Create alias leaf entry
MAPPED or PENDING and set attributes
TDH.MEM.
Host VMM TDH.VP.ENTER
SEPT.ADD

EPT violation TD exit

Figure 21.5: Example of Adding an L2 Page Alias where Secure EPT Build is Required

The L1 VMM may add L2 page aliases to a PENDING page. In this case, the page alias is created in an L2_BLOCKED state.
When the L1 VMM accepts the page using TDG.MEM.PAGE.ACCEPT, it also accepts any page alias it has; the L2 page alias
state becomes L2_MAPPED and its attributes, set by TDG.MEM.PAGE.ATTR.WR, become effective.

The L1 VMM specifies a page size and may fail if the specified size is different than the actual SEPT mapping size.

e Ifthe page is mapped at a lower SEPT level than requested, TDG.MEM.PAGE.ATTR.WR returns an error code and the
actual mapping size. The L1 VMM may re-invoke TDG.MEM.PAGE.ATTR.WR specifying the actual mapping size.

e Ifthe page is mapped at a higher SEPT level than requested, this results in an EPT violation TD exit, with information
about the guest-requested mapping level. The host VMM typically demotes the page, then re-enter the guest TD so
TDG.MEM.PAGE.ATTR.WR is re-invoked.

Typical Use Case
Adding page aliases may be done dynamically, based on an EPT violation L2>L1 VM exit.

1. The L1 VMM invokes TDG.MEM.PAGE.ATTR.WR to set non-0 L2 page attributes to a given GPA.

2. The L2 SEPT tree is missing an EPT page to map the new alias. The TDX Module performs a TD exit, indicating an EPT
violation with an extended exit qualification providing the L2 VM index and other details.

The host VMM invokes TDH.MEM.SEPT.ADD to build the L2 SEPT tree.

4. The host VMM invokes TDH.VP.ENTER to resume the TD.

w

1This is not a new concept in TDX. It already exists for TDG.MEM.PAGE.ACCEPT

September 2025 . Page 21 of 48

Section 2: TD Partitioning Architecture

10

15

20

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

5. The guest state, including RIP, hasn’t been modified. Thus, TDG.MEM.PAGE.ATTR.WR is executed again. This time
the operation succeeds.

21.2.3.3. Modifying L2 Page Attributes

The L1 VMM can modify an existing L2 page alias using TDG.MEM.PAGE.ATTR.WR with a set of attributes whose R, W, Xs

EPT violation on L1 or L2
SEPT walk errors

INVEPT on L1212 VM
Entry (for Permission

Reduction)

Virtual IPI for TLB Shootdown (for Permission Reduction)

Figure 21.6: Example of L1 VMM Modifying a Page Alias Attributes
The L1 VMM can update the page alias attributes of a PENDING page.

Typical Use Case

1. The Ll VMM rendezvous all VCPUs:
1.1. To do that, the L1 VMM requests the host VMM to issue IPIs to all the LPs running the current TD (the L1 VMM
doesn’t directly know if a VCPU is running in L1 or L2 on each LP).
1.2. Each VCPU running in L2 that receives the IPI TD-exits to the host VMM.
1.3. The host VMM resumes the L1 VMM by invoking TDH.VP.ENTER.
2. The L1 VMM invokes TDG.MEM.PAGE.ATTR.WR to update the L2 page alias attributes.
3. Thell VMM resumes L2 by invoking TDG.VP.ENTER, indicating that EPT invalidation should be done before each VM
entry.

21.2.3.4. Removing L2 Page Aliases

The L1 VMM removes existing L2 page aliases using TDG.MEM.PAGE.ATTR.WR with a set of attributes whose R, W, Xs
and Xu bits are all-0. The L1 VMM is responsible for TLB shootdown of its L2 VM. TDG.MEM.PAGE.ATTR.WR,
TDG.VP.INVEPT and TDG.VP.ENTER allow the guest TD to invalidate cached SEPT translations.

Note: Since the TD private page is still owned by the TD, there is no need for the host VMM to be involved.

September 2025 . Page 22 of 48

or Xu bits are not all-0. The L1 VMM is responsible for TLB shootdown of its L2 VM if this is required, e.g., if page access
permissions are reduced. TDG.MEM.PAGE.ATTR.WR, TDG.VP.INVEPT and TDG.VP.ENTER allow the L1 VMM to invalidate
cached SEPT translations after modifying page attributes.
12 f : : :
1 N
! ! VM 1
{ ' entry 1
TD VCPU ! ! E
| oG, : i TDG.VP.ENTER E
' i TDG.MEM.PAGE.ATTR.WR :)
i : (VM index,)
o HH e el = BT e e
: e T : attributes, attributes_mask) i dolinvent) i
—————1I i E
i ‘l’ i v b
i v i If requested, do E
DX ! ; a:::: 'é :EE ' | INVEPT for L2 SEPT :
Module i 3. Update attributes H and emulate L1-to-L2 i
! : ' VM entry |
! - i :
i 1 ! :
i v - ;

Section 2: TD Partitioning Architecture

10

15

20

25

30

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

L2 i

EPT violation on L1 or L2
SEPT walk errors

Virtual IPI for TLB Shootdown (for Permission Reduction) Flushing EPT Translations

Figure 21.7: Example of L1 VMM Removing a Page Alias

Typical Use Case

1. The L1l VMM rendezvous all VCPUs
1.1. To do that, the L1 VMM requests the host VMM to issue IPIs to all the LPs running the current TD (the L1 VMM
doesn’t directly know if a VCPU is running in L1 or L2 on each LP).
1.2. Each VCPU running in L2 that receives the IPI TD-exits to the host VMM.
1.3. The host VMM resumes the L1 VMM by invoking TDH.VP.ENTER.
2. The L1 VMM invokes TDG.MEM.PAGE.ATTR.WR to remove the page alias.
3. The L1 VMM invokes TDG.VP.INVEPT or TDG.VP.INVGLA on each VCPU to invalidate EPT for the whole VM or for
specific pages.

21.3. Updates to SEPT Tree Management

Secure EPT tree management interface functions are extended to support coordinated management of the L1 and
multiple L2 SEPT trees, as described in the following sections.

21.3.1. Host VMM'’s L2 SEPT Management Strategy

The host VMM may deploy various strategies for populating the L2 SETP tree(2):

Dense L2 SEPT Tree: The host VMM may choose to populate the L2 SEPT tree(s) as densely as the L1 SEPT tree is
populated. To do so, it allocates an L2 SEPT page in each L2 SEPT tree for each L1 SEPT page.

Sparse L2 SEPT Tree: The host VMM may choose to populate L2 SEPT pages on demand, i.e., when the L1 VMM creates
a page alias and there’s a need an L2 SEPT page to map it (indicated by an EPT violation TD exit or
by an explicit request from the L1 VMM using TDG.VP.VMCALL).

The host VMM may also choose to maintain L2 SEPT trees only for a subset of the L2 VMs (e.g., if a TD is created with a
certain number of L2 VMs, but not all of them are currently in use).

21.3.2. Adding SEPT Pages

TDH.MEM.SEPT.ADD is extended to support adding of L2 SEPT pages:

e The host VMM may add SEPT pages to one or more of the TD’s VMs in a single TDH.MEM.SEPT.ADD invocation.

e To add L2 SEPT pages at a certain level, an L1 SEPT page must either already exist at that level or be added during
the same TDH.MEM.SEPT.ADD invocation.

e The operation is atomic, in the sense that either all requested SEPT pages are added successfully, or none is added.
An exception to this rule is in the case of interrupted operation; see the [TDX Module ABI Spec] for details.

September 2025 . Page 23 of 48

! 1
i :
v 1
1 1
i i :
1 ! :
! I
TD VCPU ! |
i i TDG.VP.INVEPT L
| TDG.vP i : '
! VMéALL Rendezvous TDG.MEM.PAGE.ATTR.WR ' (VM bitmap) |
1 HH all L2 VM’s (GPA, level, — or !
1| Reguest VCPUs attributes, attributes_mask) | TDG.VP.INVVPID !
| Virtual IPI | (VM, GLA list) !
| E— : 1 1 :
: l : | 1 1
: : vl :
L
]] Do INVEPT for the h !
i v 1. Walk L1 SEPT ' | selected VMs’ SEPTs !
TDX i 2. Walk L2 SEPT ! or i
Module ! 3. Mark the leaf L2 SEPT ! Do INVVPID for the
i entry a FREE | selected VM and GLA
: i list
e | B
1 I 1
! I
1 0 1
!]
! I
! I
! 1
! I
! I
! I
! I
! I

Section 2: TD Partitioning Architecture

TD Partitioning Spec

Section 2: TD Partitioning Architecture 354807-005US

21.3.3. Removing SEPT Pages

TDH.MEM.SEPT.REMOVE is extended to support removal of L2 SEPT pages. When removing an L1 SEPT page at the
specified GPA and level, all associated L2 SEPT pages at the same GPA and level are removed.

21.3.4. Page Demotion

5 TDH.MEM.PAGE.DEMOTE is extended to support adding of L2 SEPT pages, which map the demoted 512 smaller-sized
pages. The host VMM may choose whether to add an L2 SEPT page only if there’s a page alias for the relevant L2 VM (to
support the dense L2 SEPT management policy mentioned above).

21.3.5. Page Promotion

TDH.MEM.PAGE.PROMOTE is extended to remove any L2 SEPT pages which map the promoted 512 smaller-sized pages.

10 21.4. Other Updates to Memory Management Interface Functions

Existing memory management interface functions are modified to support page aliasing as follows:

Table 21.3: Updates to Memory Management Functions to Support L2 Page Aliasing

Memory Management Description
Function
TDH.MEM.RANGE.BLOCK (of 1. New: Block all aliases (sets L2 SEPT leaf entries to L2_BLOCKED)
a leaf SEPT entry) 2. Block L1 mapping: Set L1 SEPT leaf entry to *BLOCKED
3. Record TD_EPOCH in PAMT.BEPOCH
TDH.MEM.PAGE.REMOVE 1. New: Remove all aliases (sets L2 SEPT leaf entries to FREE)
2. Set L1 SEPT leaf entry to FREE
3. Mark PAMT as free
TDH.MEM.PAGE.PROMOTE 1. Check that all 512 small page L1 SEPT entries have the same attributes
and contiguous HPA mappings.
2. New: For each L2 SEPT tree, check that either all 512 small page aliases
have the same attributes, or none of them exists.
3. Promote L1 SEPT mapping.
4. New: Promote applicable L2 SEPT mappings.
TDH.MEM.PAGE.DEMOTE 1. Demote L1 SEPT mapping.
2. New: For each page alias, demote L2 SEPT mapping.

Additional SEPT pages for L2 SEPT are provided by the host VMM as inputs.

TDH.MEM.PAGE.RELOCATE

1.
2.
3.

Relocate the physical page.
Updates HPA of L1 SEPT entry.
New: For each page alias (L2 SEPT entry), update HPA.

TDG.MEM.PAGE.ACCEPT

Extended to accept any aliases that exist to the page.

21.5. L1 VMM Control of L2 EPT Features

15 The L1 VMM can enable or disable L2 EPT features by writing to the L2 VMCS (e.g., using TDG.VP.WR). Note that these
setting impact both secure EPT and shared EPT (if enabled).

Table 21.4: L1 VMM Control of L2 VM EPT Features

SEPT Feature EPT Bits L2 VMCS
Name Field Name Bit # | Bit name
CET 60 | Supervisor shadow stack (SSS) 7 Enable SSS

September 2025

Page 24 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec

Section 2: TD Partitioning Architecture

354807-005US

SEPT Feature EPT Bits L2 VMCS
Name Field Name Bit # | Bit name
Mode-Based Execution 10 | Execute in user mode (Xu) Secondary processor- | 22 Mode-based execution
Control (MBEC) 2 | Execute in supervisor mode (Xs) | based VM-execution control for EPT
controls
HLAT 57 | Verify guest paging (VGP) Tertiary processor- 3 Guest-paging verification
based VM- ti
58 | Paging-Write Access ase execution 2 EPT paging-write control
controls
access(PWA)
21.6. L2 VM TLB Invalidation

Two interface functions are provided for L2 TLB invalidation initiated by the L1 VMM:

e TDH.VP.INVEPT allows the L1 VM to request invalidation of all TLB entries that belong the selected L2 VMs.
5 e TDG.VP.INVGLA allows the L1 VMM to request invalidation TLB of a list of page guest linear addresses that belong to
a specific L2 VM.

For details, see the [ABI Spec].

21.7. L2 VM Shared Memory Management

Shared GPA (where SHARED bit is 1) mapping is controlled by the host VMM:

10 e The host VMM may or may not use the same shared EPT tree for the L1 VMM and for one or more of the L2 VMs.
e The host VMM should write each L2 VMCS “shared EPTP” field with the HPA of the applicable shared EPT root page.

To provide defense-in-depth for unmodified legacy VMs running as L2 VMs, the L1 VMM can enable or disable shared
memory access using the TDVPS.L2_CTLS[VM].ENABLE_SHARED_EPTP field.

21.8. Handling EPT Violation VM Exit from L2

15 An EPT violation L2 VM exit can be the result of multiple reasons and should be handled by either the L1 VMM or the
host VMM.

EPT Violation VM
exit from L2

“Accessible to L1” means either:

Is GPA mis-) Walk L1 SEPT and * Pagestate is MAPPED
formatted? ——No»<_IsGPAprivate? Yes—» find the offending o Pagestate is EXPORTED_DIRTY

entry o Pagestate is *BLOCKEDW* and access was
not for writing
Is offending Is offending
GPA;‘:CL‘:;S'ME No—8><__ GPA PENDING? ves
Yes No

Yes

Figure 21.8: Handling EPT Violation VM Exit from L2

September 2025 Page 25 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

30

35

40

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

The TDX Module handles such EPT violations as follows:

1. If the offending GPA is mis-formatted, i.e., GPA bit at position higher than GPAW but lower than MAXPA is set to 1:
1.1. TDX Module completes an L2->L1 VM exit.
1.2. L1 VMM is expected to check the GPA vs. the virtual MAXPA value it enumerated to the L2 VM and inject a
#PF(PFEC.RSVD=1) to the L2 VCPU.
2. Else, if the GPA is private:
2.1. The TDX Module walks the L1 SEPT tree to find the SEPT entry for the offending GPA.
2.2. Ifthe offending GPA is not accessible to L1 (i.e., to the TD as a whole TD), i.e., one of the following cases is true:
2.2.1. Non-leaf L1 SEPT entry state for a containing GPA range is NL_BLOCKED.
2.2.2. There is no leaf L1 SEPT entry for the page.
2.2.3. Leaf L1 SEPT entry state is FREE or REMOVED.
2.2.4. The page has been blocked by the host VMM (L1 SEPT entry state is *BLOCKED).
2.2.5. The page has been blocked-for-writing by the host VMM (L1 SEPT entry state is *BLOCKEDW*), and access
attempt was a write.
The TDX Module complete an asynchronous TD exit, indicating an EPT violation exit from L2.
2.3. Else, if the offending GPA if of a PENDING or PENDING_EXPORTED_DIRTY:
2.3.1. The TDX Module completes an L2->L1 VM exit.
2.4. Else, the EPT violation’s cause is under L1 VMM control, e.g.:
2.4.1. The offending GPA has not been added as an alias.
2.4.2. The alias attributes don’t match the attempted memory access.
In all the above cases, the TDX Module completes an L2->L1 VM exit. The L1 VMM is expected to handle the
EPT violation.
3. Else (the GPA is shared):
3.1. Shared GPAs are managed by the host VMM. The TD module complete an asynchronous TD exit, indicating an
EPT violation exit from an L2 VCPU.

To handle L2 VM EPT violations, the L1 VMM can query the alias status using TDG.MEM.PAGE.ATTR.RD.
21.9. Handling EPT Misconfiguration VM Exit from L2

This is similar to EPT misconfiguration VM exit from L1, as described in the [TDX Module Base Spec]. An EPT
misconfiguration on a private GPA indicates a TDX Module bug and is handled as a fatal error. EPT misconfiguration on
a shared GPA causes a TD exit and is handled by the host VMM.

21.10. L2 GPA-to-HPA Soft Translation

The GPAs of some structures in TD private memory are specified by the guest TD (using TDG.VP.WR and TDG.VP.ENTER).
Such addresses are translated by the TDX Module to shadow HPA values and stored in internal variables. Using the TLB
tracking mechanism, the TDX model is designed to ensure that the shadow HPA values correspond to the correct private
GPAs whenever the CPU or the TDX Module itself may use them.

Table 21.5: GPAs Specified by the Guest TD

Address GPA HPA Shadow | Field Name Applicable When | GPA
Stored Stored in | HPA Mapping
in Stored in in L2

TDG.VP.ENTER TDVPS N/A TDVPS Multiple VCPU is entering | None

output memory to L2

operands VCPU is exiting

from L2
L2 Virtual APIC TDVPS L2 VMCS | TDVPS virtual-APIC address VCPU is running None
page (shadow) in L2
Notes

e GPA mappingin L2 is not enforced by the TDX Module. The TDX Module helps ensure that the page is mapped in L1;
it is up to the L1 VMM to ensure L2 accessibility for correct L2 VM operation.

September 2025 . Page 26 of 48

Section 2: TD Partitioning Architecture

(Logical)

22.2. VCPU Transitions
Legacy VMX |
> -t SEAM Mod >
(non-SEAM) Mode | ode T
|
| - (]
! TDX.Non Root Mode TD VCPU 3
! (Logical) S
| =
| L1 i coo | Trap-Like L2 i 000 | Trap-Like §
| Instruction ~ —— VM Exit Instruction —— VM Exit !
[Next Instruction [; —» Next Instruction — ;
} - Enﬁy—’ ext Instruction Fault-Ll!(e VM Entry ext Instruction Fault-Ll!(e
| : e : VM Exit { : e I VM Exit
| . . N
} A
|
TDX Root Mode VMLAUNCH/ VM Exit VMLAUNCH/ VM Exit
LP-Scope VMRESUME Entry Point VMRESUME Entry Point
State (incl. l ? l
SEAM VMCS) Restore TD State |
(ot TS LLVMEXit | 1pGyp.enter | L2 VM Exit

TD Partitioning Spec

Section 2: TD Partitioning Architecture

354807-005US

22.

TD VCPU Enhancements for TD Partitioning

This chapter discusses multiple items related how TD VCPUs are enhanced to support TD Partitioning.

22.1.

Overview

Each TD VCPU is a single logical entity with multiple modes of operation, one for each VM. From the CPU’s perspective,
each of the VCPU’s VM modes is controlled by its own VMCS and associated control structures.

TDH.VP.ENTER

(Selected GPR/

Handler

10

Async
TD Exit

Save all TD State
to TDVPS & Init

-
TDG.VP.VMCALL

o

Handler
T
VM Exit /
Emulation

Async
TD Exit

Intel TDX Module

(after XMM) T~a
TDG.VP.VMCALL) ™ Entw‘ <o -———-—
to L1
SEAMCALL [0 enTer | Restore all L
Entry Normal) TD State
/ Point _i from TDVPS [TD Entry to L2
| Other
tee :/ } ; Save TD State to
SEAMCALL | Host-Side T(I?VII’S (TSD\l/Ps a;(é Lr;; L
- | q incl. electe
Next Instruction } API Function D XMM)
! | J vrwcu
|
\ SEAMRET |«
Host VMM | o
.
|
|
Figure 22.1: TD VCPU Transitions Overview
22.2.1. L1-to-L2 VM Entry and L2-to-L1 VM Exit: TDG.VP.ENTER

The L1 VMM can enter an L2 VCPU by invoking TDG.VP.ENTER, if its state is READY.

;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1\
|
|
|
|
|
|
|
|
|
|
|

/
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v\
|
|
|
|
|
l
|

<« VMXRoot Mode————————————»«—VMX Non

September 2025

Page 27 of 48

Section 2: TD Partitioning Architecture

10

15

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

Emulated L1>L2 VM entry Emulated L2=>L1 VM exit
L2 P S I
- VM ~
1. Save L1 CPU state not , - VM . RN
entry exit ~
TDVCPU preserved by ’ ~
TDG.VP.ENTER R [l 4 1. Save L2 CPU GPRs
2. Restore L2 CPU state TDG.VP.ENTER(! 2. Save L2 CPU state not in
" not in L2 VMCS guest vm_index, '_ L2 VMCS guest state
state (excluding GPRs) GPR state, | 3. Restore L1 CPU state not
3. Prepare L2 CPU GPR invept_flag) ! preserved by
state in a memory Y TDG.VP.ENTER
buffer (buffer most VM VM
probably already exists) exit entry
1. Examine exit reason, decide on VM
exit to L1
TDX & MAALTDIAYAS 2. Save L2 GPRs to GPR state
2. Restore GPRs from GPR state
Module IRy e memory buffer
Lo 3. VMPTRLD L1 VMCS
& WILAURERASITEEURE 4. Advance guest RIP past TDCALL
5. VMLAUNCH/VMRESUME
Host
YL L] L]
I 1
L1->L2 entry virtualization L2->L1 exit virtualization

Figure 22.2: Example of L1->L2 VM Entry and Exit

22.2.1.1. TDG.VP.ENTER Inputs and Outputs

Intel SDM, Vol. 3, 24.7.2 VM-Exit Controls for MSRs

Intel SDM, Vol. 3, 24.8.2 VM-Entry Controls for MSRs
Intel SDM, Vol. 3, 26.4 Loading MSRs
Intel SDM, Vol. 3, 27.4 Saving MSRs
Fixed-Format Inputs in GPRs Fixed-Format Values Returned in GPRs
VM_INDEX Exit Reason
DOTINVERT Input to S \’ Exit Qualification
L2VM TDG.VP.ENTER fromL2
Entry VM Exit Interruption Information

Fixed-Format L2 VCPU State Buffer

RAX Value

R15 Value

RFLAGS value

RIP value

SSP value

GUEST_INTERRUPT_STATUS

Figure 22.3: TDG.VP.ENTER Inputs and Outputs

22.2.1.1.1. Fixed-Format L2 Entry Guest State Buffer

The state of the L2 GPRs, RFLAGS, RIP and SSP and the L2 guest interrupt state is provided in a fixed-formal
L2_ENTER_GUEST_STATE buffer in the L1 VPCU’s private memory. Immediately before L2 VM entry, TDG.VP.ENTER reads
this buffer and sets the applicable L2 guest state values. After L2 VM exit, if an L2-> L1 exit or a TD exit is to be done, the
TDX Module writes the L2_ENTER_GUEST_STATE buffer with the current guest state values. The
L2_ENTER_GUEST_STATE format is defined in the [TDX Module ABI Spec].

22.2.1.1.2. L2 VM Exit Information

On L2->L1 VM exit, the most useful VM exit information fields are provided as GPR output values. These include the
following:

e VM exit reason

September 2025 . Page 28 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

30

35

40

45

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

e VM exit qualification

e Guest linear address

e Guest physical address

e GPA

e VM-exit interruption information

e |IDT-vectoring information

e VM-exit instruction information

e Guest CS information (base, selector, limit and access rights)
e Current privilege level (CPL)

For details, see the TDG.VP.ENTER definition in the [TDX Module ABI Spec].

22.2.1.2. L2 State Preservation Across L1-to-L2-to-L1 Transitions (TDG.VP.ENTER)
Intel SDM, Vol. 3, 23.4.1 Guest-State Area

A subset of the L2 VCPU state is preserved across L2 VM exit and subsequent L2 VM entry transitions. The preserved
state includes the following fields, which are the fields supported by the L2 VMCS guest state area:

e CRO, CR3, CR4, DR7, RSP, RFLAGS

o (S, DS, ES, FS, GS, SS, LDTR, TR, GDTR, IDTR

e MSRs that are stored in VMCS guest state:

IA32_DEBUGCTL

IA32_SYSENTER_CS

IA32_SYSENTER_ESP

IA32_SYSENTER_EIP

IA32_PERF_GLOBAL_CTRL (if the TD is allowed to use it, i.e., ATTRIBUTES.PERFMON is 1)
IA32_PAT

IA32_EFER

IA32_RTIT_CTL (if the TD is allowed to use it, i.e., XFAM[8] is 1)

IA32_S_CET (if the TD is allowed to use it, i.e., XFAM[12:11] are 11)
IA32_INTERRUPT_SSP_TABLE_ADDR (if the TD is allowed to use it, i.e., XFAM[12:11] are 11)
IA32_PKRS (if the TD is allowed to use it, i.e., ATTRIBUTES.PKS is 1)

IA32_SPEC_CTRL

O O O O O O O O O O O O

The L1 VMM is responsible for preserving other L2 VCPU state after L2->L1 VM exit (termination of previous
TDG.VP.ENTER) and restoring it before invoking TDG.VP.ENTER.

22.2.1.3. L2 VM Exit Handling
On VM exit from an L2, the TDX Module examines the VM exit information and decides on a proper way to handle the
VM exit, which may be one of the following:

Local Flow: Handle the L2 VM exit locally and resume the VCPU in L2 mode. An example of this case is #GP(0) injection
on a WRMSR VM exit from L2.

L2->L1 Exit: Handle the L2 VM exit as an L2->L1 VM exit and resume the VCPU in L1 mode. Examples of this case are
CPUID handling (23.9) and posted interrupt handling.

TD Exit: Handle the L2 VM exit as a TD exit to the host VMM. An example of this case is physical NMI handling.

22.2.1.4. L2-to-L1 VM Exit: Returned L2 State

On L2 VM exit which results in a virtual L2->L1 VM exit, the TDX Module completes the TDG.VP.ENTER operation as
follows:

e The TDX Module dumps the content of GPRs, RFLAGS, RIP and SSP to the fixed-format L2_ENTER_GUEST_STATE
provided by the L1 VMM.

e The TDX Module reads the fixed-format VM exit information (VM-exit reason etc.) from the L2 VMCS and returns
them in GPRs.

September 2025 . Page 29 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

22.2.2. Direct Asynchronous TD Exit from L2, and Subsequent TD Entry

22.2.2.1. Asynchronous TD Exit from L2

On VM exit from L2, multiple VM exit reasons lead to a TD exit to the host VMM. In such cases, these events have no
meaning for the TD. They may be physical in nature (interrupts, NMI, machine check etc.), or they may be logical (e.g.,
EPT violation) but the TDX Module determines they are a in the responsibility of the host VMM.

Before exiting to the host VMM, the TDX Module does the following:

e The TDX Module saves the CPU state into TDVPS; this would become the VCPU L1 state if a subsequent TD entry
causes a virtual L2>L1 VM entry as described below. The identity of the exited L2 VM is recorded in
TDVPS.CURR_VM.

e The TDX Module writes the TDG.VP.ENTER output memory operands, e.g., L2_ENTER_GUEST_STATE. This is required
since memory operands are specified by GPA. GPA->HPA translation may no longer be valid (e.g., the page may be
removed by the host VMM) once TD exit is done and TLB tracking variables have been updated. For details of
GPA->HPA translation tracking, see the [TDX Module Base Spec].

The outputs of TDH.VP.ENTER indicate the VM and VCPU index to the host VMM. For details, see the [TDX Module ABI
Spec].

22.2.2.2. VCPU Resumption to L2 on TD Entry following a TD Exit from L2

By default, the TDH.VP.ENTER following a TD exit from an L2 resumes that VCPU in L2.
The TDX Module restores the VCPU L2 state from the TDVPS, where it was saved before TD exit.

L2 A
VM VM
exit entry
TD VCPU
L1
\ 4
1. Examine exit reason, decide 1. Associate VCPU
TDX on async TD exit 2. Update TLB tracking
Module —— 2. Update TLB tracking 3. Restore non-VMCS CPU state —
LO 3. Save non-VMCS CPU state in from TDVPS
TDVPS 4. VMLAUNCH/VMRESUME
SEAMRET

Figure 22.4: Example of Direct TD Exit from L2 and TD Entry Back to L2

22.2.3. TDG.VP.VMCALL: Synchronous TD Exit from L2 and Subsequent TD Entry

TDG.VP.VMCALL may be invoked by an L2 VM, if TDVPS.L2_CTLS[VM].ENABLE_TDVMCALL has been set to 1 by the L1
VMM. The behavior is similar to TDG.VP.VMCALL invoked by L1. The TDX Module saves and restores the CPU state
to/from TDVPS. TD entry following a TDG.VP.VMCALL resumes the VM that exited, unless routing to L1 has been
requested by the host VMM, as described below.

Note: The L1 VMM has no control how the L2 VM uses TDG.VP.VMCALL. L1 should only set
TDVPS.L2_CTLS[VM].ENABLE_TDVMCALL if it trusts the L2 VM to work correctly (e.g., to understand that any
response from the host VMM is untrusted).

September 2025 . Page 30 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

22.2.4. TD Exit from L2 Routed by the Host VMM to L1 on Subsequent TD Entry

When resuming the TD after a TD exit, the host VMM can request that L1 will be resumed, by setting the RESUME_L1
input flag of TDH.VP.ENTER. From the point of view of the L1 VMM, the L2->Host—> L1 transition looks as a normal L2-> L1
VM exit, except the completion status of TDG.VP.ENTER indicates TDX_L2_EXIT_HOST_ROUTED.

If resuming into L1 after a synchronous (TDG.VP.VMCALL) TD exit, L1 is resumed (i.e., the TDG.VP.ENTER it has invoked is
terminated) with a TDX_L2_EXIT_HOST_ROUTED_TDVMCALL status. The L2 VCPU state reflects the successful
completion of TDG.VP.VMCALL.

RESUME_L1 is sticky. If resumption of L1 encountered a problem that required a TD exit (e.g., an EPT violation) the
following TD entry resumes L1 and provides the same TDX_L2_EXIT_HOST_ROUTED status.

22.24.1. Asynchronous TD Exit from L2 Routed to L1

A possible use case is TD exit due to an interrupt, where this was requested by the L1 VMM for, e.g., L2 VPUs rendezvous.

L2 A ==
A =< Emulated L2->L1 VM exit
: VM S -
Hd exit S
TD VCPU : N
: N
TDG.VP. AN
VMCALL H
L1
Request
Virtual IPI M
entry
v

J' . Examine exit reason, decide . Restore non-VMCS CPU state
TDX on async TD exit from TDVPS
Module i . Update VCPU TLB tracking . Update VCPU TLB tracking
Lo 3. Save non-VMCS CPU state in 3. VMPTRLD L1 VMCS
: TDVPS 4. VMLAUNCH/VMRESUME

SEAMRET

= -

Figure 22.5: Example of Direct TD Exit from L2 and TD Entry Back to L1

In this case, the TDX Module emulates the L2>L1 VM exit behavior:

e The TDX Module has already written the output memory operands of TDG.VP.ENTER as part of the TD exit from L2,
as described above.

e The TDX Module updates the output GPR operands (exit information etc.) of TDG.VP.ENTER, based on the L2 VMCS.

e TLBtracking is updated as described in the [TDX Module Base Spec].

22.2.4.2. Synchronous (TDG.VP.VMCALL) TD Exit from L2 Routed to L1

A possible use case if for some service requested by the L2 VM from the host VMM, which needs to be handled by the L1
VMM as soon as possible after TD resumption.

On TD entry, if the last TD exit was due to a TDG.VP.VMCALL from L2, and L1 is to be resumed, the TDX Module first
updates the L2 VCPU state as if TDG.VP.VMCALL was completed, then emulates an L2 L1 exit. L2’s GPR and XMM values
are as returned by the host VMM, and RIP is advanced to the next L2 instruction.

22.3. Virtual Interrupts Handling for TD Partitioning

Interrupt virtualization is discussed in the [Interrupt Virtualization Spec].

22.4. L2 VM TLB Address Space Identifier (ASID)

See the [TDX Module Base Spec]. Note the following points:

e Each VM within a TD has its own EPTP, and thus its own ASID.

September 2025 Page 31 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

e INVEPT, used by the TDX Module as part of, e.g., TDH.VP.FLUSH, is required to be done for the EPTP of each VM
within the TD.

September 2025 . Page 32 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

23. L2 VM CPU Virtualization (Non-Root Mode Operation)

This chapter describes how the Intel TDX Module virtualizes the CPU to a guest TD.

23.1. General Aspects of L1 Operation as a VMM

23.1.1. L1 VMM Usage of VMX Facilities

VMX Instructions

VMX instructions are not directly available to the L1 VMM. This is indicated by CR4.VMXE (bit 13) value being 0. Instead,
it uses interface functions provided by the TDX Module.

e Toenterinto L2 VM operation, the L1 VMM invokes TDG.VP.ENTER.
e Toread and write L2 VMCS, the L1 VMM uses TDG.VP.RD and TDG.VP.WR.
e To flush cached L2 EPT translations, the L1 VMM uses TDG.VP.INVEPT or TDG.VP.ENTER.

L2 VMCS

L2 VMCS is accessible to the L1 VMM using the metadata access interface functions TDG.VP.RD and TDG.VP.WR. The
TDX Module controls which L2 VMCS fields can be written. In addition, selected L2 VMCS fields are provided as
TDG.VP.ENTER inputs and outputs.

L2 VMCS fields, as visible to the L1 VMM, are virtual. E.g., addresses are Guest-Physical Addresses (GPAs). The TDX
Module translates the virtual values to real values stored in the L2 VMCS and used by the CPU.

Other VMX Control Structures

e The L2 MSR bitmaps page is not directly accessible to the L1 VMM. Instead, it used TDG.VP.RD and TDG.VP.WR to
access it.

e The L2 Virtual APIC page is mapped in the L1 VMM'’s GPA space as a private page and is directly accessible to the L1
VMM. The L1 VMM configures the address by writing its GPA to the L2 VMCS'’ virtual-APIC address field.

e The L2 secure EPT is not directly accessible to the L1 VMM. The L1 VMM controls L2 GPA mapping attributes (but
not GPA-to-HPA translations) using TDG.MEM.PAGE.ATTR.WR.

23.1.2. Enumeration of VMX Capabilities Available to the L1 VMM
Intel SDM, Vol. 3, Appendix A VMX Capability Reporting Facility

The virtual values of IA32_VMX_* MSRs enumerate VMX capabilities available to the L1 VMM. Not all bits are applicable
since, e.g., VMX instructions and EPT management are done indirectly via TDX Module functions.

Table 23.1: Enumeration of VMX Capabilities Available to the L1 VMM

MSR Name MSR Description
Index
1A32_VMX_BASIC 0x0480 | For details, see the [TDX Module ABI Spec].
1A32_VMX_MISC 0x0485 | For details, see the [TDX Module ABI Spec].
IA32_VMX_PINBASED_CTLS 0x0481 | These MSRs are not used; read access results in a #VE. Use the
IA32_VMX_PROCBASED_CTLS 0x0482 IA32_VMX_TRUE_* MSRs listed below.
IA32_VMX_EXIT_CTLS 0x0483
IA32_VMX_ENTRY_CTLS 0x0484

IA32_VMX_TRUE_PINBASED_CTLS | 0x048D

IA32_VMX_TRUE_PROCBASED_CTLS | Ox048E

I1A32_VMX_PROCBASED_CTLS2 0x048B

I1A32_VMX_PROCBASED_CTLS3 0x0492

September 2025 . Page 33 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

MSR Name MSR Description
Index
I1A32_VMX_TRUE_EXIT_CTLS 0x048F | These MSRs enumerate L2 VMCS fields that are either fixed-0,
fixed-1 or that can be modified by the L1 VMM. The virtual
IA32_VMX_EXIT_CTLS2 0x0433 values depend on the values supported by the CPU (i.e., the
IA32_VMX_TRUE_ENTRY_CTLS 0x0490 | native values of the same MSRs) and on the TD configuration.
See the section below describing non-standard behavior of
IA32_VMX_CRO_FIXEDO OX0486 | 1\ MSRs.
IA32_VMX_CRO_FIXED1 0x0487
IA32_VMX_CR4_FIXEDO 0x0488
IA32_VMX_CR4_FIXED1 0x0489
1A32_VMX_VMCS_ENUM 0x048A | This MSR is not used; read access results in a #VE.
I1A32_VMX_EPT_VPID_CAP 0x048C | For details, see the [TDX Module ABI Spec].
1A32_VMX_VMFUNC 0x0491 | Virtualized as 0.

Non-Standard Behavior of Virtual IA32_VMX_* MSRs

In multiple cases, the L2 VMCS bit values are set based on the TD configuration and are not writable by the host VMM.
For example, the L2 VMCS' tertiary processor-based execution controls bit 5 (GPAW) is set based on the TD’s GPAW
configuration; the L1 VMM can’t modify the value of this bit. Such bits are enumerated by the applicable IA32_VMX_*
MSR as fixed-0, even though their value may be 1. This mean that the L1 VMM must not attempt to modify their value.

When writing to such L2 VMCS fields using TDG.VP.WR, the L1 VMM may use the write mask parameter to avoid
modifying any bit that is enumerated as either fixed-0 or fixed-1.

23.1.3. Unit Conversion

As arule, L1 VMM access to L2 VMCS fields and TD migration of L2 VMCS fields use virtual units (e.g., GPA, TSC ticks etc.).
The values are converted to/from native units (e.g., HPA) when the L2 VMCS is written/read.

L2 VMCS Fields Specified as Physical Address

L2 VMCS fields that are specified as physical address are converted to/from GPA when read/written by the L1 VMM. GPA
to HPA conversion is discussed in [REF].

L2 VMCS Fields Specified as TSC Ticks

L2 VMCS fields that are specified using TSC tick units are converted to/from virtual TSC units when read/written by the
L1 VMM. Those fields are migrated using virtual TSC units so similar conversion is done for export/import. The same
fields are not converted when read/written by the host VMM (for debuggable TDs) — the real h/w units are used. These
fields include:

e PLE_Gap
e PLE_Window
L2 VMCS Fields Specified as Crystal Clock Ticks

L2 VMCS fields that are specified using crystal clock tick units, as enumerated by CPUID(0x15), are converted to/from
virtual crystal clock units when read/written by the L1 VMM. Those fields are migrated using virtual crystal clock units so
similar conversion is done for export/import. The same fields are not converted when read/written by the host VMM —
the real h/w units are used. These fields include:

e Instruction Timeout Control

September 2025 . Page 34 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

23.1.4. L2-to-L1 VM Exit Handling

Intel SDM, Vol. 3, 27.2.3 Information About NMI Unblocking Due to IRET
Intel SDM, Vol. 3, 27.2.4 Information for VM Exits During Event Delivery
The L1 VMM is expected to handle special L2 VM exit conditions that may occur in the Intel VMX architecture, such as:

e Handling of NMI unblocking due to IRET, e.g., re-blocking NMI by updating the L2 VMCS’ guest interruptibility state
field.

e Handling of VM exit during event delivery, e.g., re-injecting the event to L2 based on the L2 VMCS’ IDT-vectoring
information field etc.

Such conditions are handled by the TDX Module itself if a VM exit from L2 results in a local flow that ends by VM entry
back into L2.

23.2. L2 VM VCPU Initial State

The TDX Module initializes the L2 VM state of each VCPU as part of the VCPU initialization (TDH.VP.INIT). The initial state
is detailed in the [TDX Module ABI Spec].

The L1 VMM is responsible for properly setting the VCPU L2 state to the desired values, by writing to the TDVPS (including
L2 VMCS) using the TDG.VP.WR* interface functions.

23.3. L2 VM Run Time Environment Enumeration

The TDX Module does not implement any special behavior. The L1 VMM may virtualize CPUID leaves/sub-leaves and
MSRs to enumerate the run time environment for its guest L2 VMs.

23.4. L2 VM CPU Mode Restrictions

Intel SDM, Vol. 3, 2.2 Modes of Operation

Intel SDM, Vol. 3, 9.8.5 Initializing 1A-32e Mode

Intel SDM, Vol. 3, 11.5.1 Cache Control Registers and Bits

Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

An L2 VM running in TDX non-root mode may use any CPU mode available in VMX non-root mode.

Table 23.2: L2 VM CPU Mode Restrictions

Restriction L2 VM
CPU and Paging The CPU is allowed to run in the following modes:
Modes

e Real mode

e Protected mode (32-bit) with or without paging

e |A-32e mode with paging, with the sub-modes controlled by CS.L:
o 64-bit mode
o Compatibility (32-bit) mode

Contrary to L1 VMs, CRO.PE and 1A32_EFER.LME are not enforced by the TDX Module.
The L1 VMM may enforce them.

Execute Disable When running in IA-32e mode, the PT Execute Disable bit (63) is always enabled.
To achieve this, IA32_EFER.NXE is enforced to 1, as described in the following sections.

Caching is Always The L2 VM runs in Normal Cache Mode.
Enabled To achieve this, CR0.CD and CRO.NW are enforced to 0, as described in the following
sections.

The L1 VMM may set the L2 VMCS’ CRO guest/host mask and read shadow execution
control such that the L2 VM may attempt to set CRO.CD and CRO.NW and sees their
virtual value as if setting was successful.

See the following sections for details.

September 2025 . Page 35 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

30

35

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

23.5. L2 VM VCPU Instructions Restrictions

TDX rules for CPU instructions restrictions apply to the whole TD, i.e., instructions that are always blocked in the L1 VM
are also blocked in the L2 VM. The L1 VMM may configure further restrictions.

Instructions may be blocked depending on VCPU features enabled by the L1 VMM, which may virtualize CRs and MSRs to
its L2 VMs. The L1 VMM is responsible for proper feature enumeration to the L2 VM, by virtualized CPUID, CR4 and MSRs.
The TDX Module restricts this virtualization based on the overall TD restrictions, as described in the following sections.

23.5.1. Mechanisms of Blocking

e In some cases, the CPU will block (#UD) instructions based on VMX controls, CRs, MSRs and XCRO
e In other cases, execution of instructions causes a VM exit to the TDX Module. By default, the TDX Module emulates
an L2 VM exit to the L1 VMM.

23.5.2. Instructions that Cause an L2-to-L1 Exit Unconditionally
Intel SDM, Vol. 3, 25.1.2 Instructions That Cause VM Exits Unconditionally

e Instructions that architecturally cause VM exit unconditionally: CPUID, GETSEC, INVD, XSETBV, INVEPT, INVVPID,
VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMRESUME, VMXOFF, and VMXON

e VMFUNC, VMREAD and VMWRITE

e RSM

e SEAMCALL

e ENCLS, ENCLV

23.5.3. Instructions that Cause a #UD Unconditionally

e SEAMRET

23.5.4. Instructions that Cause an L2-to-L1 Exit

e String I/0 (INS*, OUTS*), IN, OUT
e HLT

e MONITOR, MWAIT

e WBINVD, INVD

23.5.5. Other Cases of Unconditionally Blocked Instructions

e Guest TD execution of PCONFIG results in a #UD, #VE or an L2->L1 VM Exit. See 23.15 for details.

e Guest TD execution of ENQCMD results in a #GP(0).

e Guest TD execution of ENQCMDS when CPL is O results in an L2 VM exit to the L1 VMM. Otherwise, it results in a
#GP(0).

23.6. L2 VM Extended Feature Set

At the whole guest TD scope, TDCS.XFAM (Extended Features Allowed Mask) is provided as an input during guest TD
build process. The L1 VMM may allow its L2 VMs any subset of the TD’s extended features allowed by XFAM.

L1 VMM is responsible for context-switching: saving extended state (XSAVES) before L2 VCPU entry and restoring it
(XRSTORS) after exit.

CR4 virtualization, MSR virtualization and instructions virtualization are discussed in the following sections. The
architecture helps ensure that the L1 VMM can only enable features that are enabled for the whole TD.

September 2025 . Page 36 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

30

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

23.7. L2 VM CR Handling

23.7.1. CROand CR4

Intel SDM, Vol. 3, 2.5 Control Registers

Intel SDM, Vol. 3, 23.8 Restrictions on VMX Operation

Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4
Intel SDM, Vol. 3, 25.6 Unrestricted Guests

23.7.1.1. Background: CRO and CR4 Execution Controls

The VMCS CRO and C4 VM-execution control fields include guest/host masks and read shadows.
Guest/host mask bits set to 1 correspond to bits “owned” by the host:

e Aguest attempt to set host-owned CR bit X to a value differing from bit X of the corresponding read shadow causes
a VM exit.
e Guest reads return values for host-owned bits from the corresponding read shadow.

Guest/host mask bits cleared to 0 correspond to bits “owned” by the guest:

e A guest attempt to modify guest-owned bit X succeeds.
e Guest reads return values for guest-owned bits from the CR itself.

For TDX, the real host is always the TDX Module. For TD Partitioning, the TDX Module virtualizes the guest/host behavior
so that the L1 VMM can configure itself as the host of L2 VM’s CRO/4 bits.

23.7.1.2. CRO and CR4 Enumeration to the L1 VMM

The virtual values of IA32_VMX_CR0/4_FIXEDO/1 MSRs, to enumerate to the L1 VMM which L2 guest’s CR bits may be
freely set, and which bits must be fixed as 0 or as 1. Bits enumerated as fixed-0 or fixed-1 bits are considered to be owned
by the TDX Module. Other bits are owned by the TD (L1 VMM).

Enumeration is based on the following:

e Platform capabilities, as enumerated by the real values of the same MSRs
e Bits known to the TDX Module as reserved

e TDX architecture restrictions

e TD configuration

The table below lists CRO bits whose enumeration is impacted by the TDX architecture and the TD configuration.

Table 23.3: L2 VM CRO Enumeration to the L1 VMM (by IA32_VMX_CRO_FIXEDO/1)

Bit | Name | Condition

5 NE Enumerated as fixed-1
29 NW Enumerated as fixed-0
30 CcD Enumerated as fixed-0
31 PG Enumerated as non-fixed

The table below lists CR4 bits whose enumeration is impacted by the TDX architecture and the TD configuration.

Table 23.4: L2 VM CR4 Enumeration to the L1 VMM (by IA32_VMX_CR4_FIXEDO/1)

Bit Name Condition

6 MCE Enumerated as fixed-1

13 VMXE Enumerated as fixed-1

14 SMXE Enumerated as fixed-0

19 KL If TDCS.ATTRIBUTES.KL is 0, enumerated as fixed-0

September 2025 . Page 37 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

Bit | Name | Condition

22 PKE If TDCS.XFAM[9] is 0, enumerated as fixed-0

23 CET If TDCS.XFAM[12:11] are 00, enumerated as fixed-0

24 PKS If TDCS.ATTRIBUTES.PKS is 0, enumerated as fixed-0

25 UINTR | If TDCS.XFAM[14] is 0, enumerated as fixed-0

32 FRED If virtual CPUID(0x7,1).EAX[17] is O, enumerated as fixed-0

In addition to the above, CPUID values virtualized by the TDX Module enumerate the availability of multiple CRO/CR4 bits,
but not all of them.

23.7.1.3. L2 CRO/4 Initial Values
5 For CRO, bits PE (0) and NE (5) are initialized to 1. All the other bits are initialized to 0.
For CR4, bits MCE (6) and VMXE (13) are initialized to 1. All the other bits are initialized to 0.
23.7.2. CR3 and CR8
The L1 VMM can use the L2 VMCS controls to induce L2-> L1 exit on CR3 and/or CR8 loads and/or stores. It has access to
the guest CR3 and CR8 state. The L1 VMM can also access L2 VMCS CR3-target values and CR3-target count fields. No

10 special TDX Module handling is required.

23.8. L2 VM MSR Handling

The L1 VMM configures MSR virtualization policy per VCPU per L2 VM by writing to the L2 MSR Bitmaps page, which is
part of TDVPS, page using TDG.VM.WR. The format is as specified in the [Intel SDM]: a bit value of 1 indicates an L2 to
L1 VM exit on MSR read or write. A bit value of 0 indicates that no L2 to L1 VM exit is requested.

15 The value written by the L1 VMM is actually saved in a shadow page. The TDX Module combines the L1 VMM'’s policy
with the whole TD’s MSR handling policy and sets the value in the real L2 MSR Bitmaps page, linked to the L2 VMCS and
used by the CPU.

Depending on the whole TD MSR virtualization policy, a VM exit to the TDX Module may still happen. In this case the TDX
Module may emulate the MSR access. By default, in cases where for L1 it would inject a #VE, the TDX Module emulates
20 an L2 to L1 VM exit. This means that the L1 VMM must be ready to accept such VM exit even if it didn’t request them.
The default value of the MSR exit bitmaps shadow page is all-1, i.e., L2->L1 exit on all MSR accesses.
Table 23.5: Combining MSR Virtualization Policies (L2 VM and Whole TD)
Whole TD MSR Virtualization Policy, Configured by the Host VMM
Direct CPU Access MSR Virtualization #VE
TD MSR Exit Bitmap 2> | 0 1 1
L2 VM MSR 0: L2 MSR Exit 0: No VM exit 1: VM exit 1: VM exit
Virtualization | Nyo 12511 | Bitmap 2
Policy, ;
CZr::iyured Exit L2 VCPU RD/WRMSR executed TDX Module emulates | TDX Module emulates
by thi L1 RD/WRMSR by CPU MSR access. May L2>L1 VM exit
VMM Handling > inject a #GP.
(Stored in 1: L2 MSR Exit 1: VM exit 1: VM exit 1: VM exit
the L2 MSR 12511 Bitmap >
Exit Bitmaps Exit L2 VCPU TDX Module emulates TDX Module emulates TDX Module emulates
Shadow RD/WRMSR | L2>L1 VM exit L2->L1 VM exit L2->L1 VM exit
Page) Handling >

September 2025

Page 38 of 48

Section 2: TD Partitioning Architecture

10

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

The TDX Module combines the VCPU-scope per-L2 VM’s MSR exit bitmaps shadow page with the TD-scope MSR exit
bitmaps page by a bitwise-OR, to create an architectural L2 MSR exit bitmaps page, which is used by the CPU. This
operation is done on TD initialization and on L1 VMM writes to the L2 MSR exit bitmaps page.

TDVPS

Per L2 VM

L2 MSR Exit TDG.VP.WR
Bitmaps (<« mm—
Shadow

Per L2 VM

TDCS
Per D > L2 MSR Exit DR L1 VMM

Bitmaps

TDH.MNG.INIT TD MSR Exit

Host VMM > Bitmaps = Bitwise OR Per L2 VM

L2 VMCS

Figure 23.1: MSR Virtualization Policy Configuration
23.9. L2 VM CPUID Virtualization

CPUID execution by an L2 VM results in a VM exit to the TDX Module, which then emulates an L2 to L1 VM exit. The L1
VMM may then emulate the CPUID instruction and resume the L2 VM.

L2 CPUID . P §
Emulated L2511 Emulated L1>12 ,
i VM entr
VM exit N VM exit (CPUID) y ,/ WM
TD VCPU \ / entry
\ I
\ i I
L1 % —1 CPUID :_A_ TDG.VP.ENTER
I |
VM Entry 1 1 VM
| I Entry
1 1
1 |
\ 4 - . 2 ; y
TDX L2 VM Exit Emulation CPU“.) b L2 VM Entry Emulation [
Module I Emulation I
| J
1

May be saved if L1 VMM
caches CPUID information

Figure 23.2: L2 VM CPUID Virtualization

23.10. L2 VM Interrupt Handling and APIC Virtualization

Interrupt virtualization is discussed in a separate document [Interrupt Virtualization Spec].

September 2025 . Page 39 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

30

35

40

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

23.11. Vectored Events

23.11.1. Vector-on-Entry (VOE) Injection to L2
Intel SDM, Vol. 3, 26.6.1 Vectored-Event Injection

The L1 VMM can inject vectored event to an L2 VM using the L2 VMCS VM-entry interruption information, VM-entry
exception error code and VM-entry instruction-length fields.

The L1 VMM can determine whether the event was injected successfully, based on TDG.VP.ENTER’s completion status
and exit reason, as follows:

e If L2 VM entry fails for some reason (e.g., bad guest state), VM-entry interruption-information remains valid and a
subsequent L2 VM entry (e.g., after fixing bad guest state) will inject the event again. The host VMM can determine
this based on TDG.VP.ENTER’s completion status and exit reason.

e If L2 VM entry succeeds but triggers a VM exit that occurs before the event is injected, this is the case of VM exit
during event delivery via IDT, described below. The L1 VMM typically reinjects the event.

e In other cases, VM entry succeeds, and the event is injected successfully. Guest execution starts at the entry point
for the handler of the injected event.

23.11.2. L2-to-L1 Exit during Event Delivery via IDT

Intel SDM, Vol. 3, 24.9.3 Information for VM Exits That Occur During Event Delivery
Intel SDM, Vol. 3, 27.2.4 Information for VM Exits during Event Delivery
Intel SDM, Vol. 3, 26.5.1 Vectored-Event Injection

The L1 VMM is responsible for handling the case where an L2->L1 exit occurred during event delivery via IDT. This is
indicated by the L2 VMCS IDT-vectoring information Valid bit (31). Typically, the L1 VMM re-injects the event using the
L2 VMCS VM-entry interruption information, VM-entry exception error code and VM-entry instruction-length fields.

Note: VM exits from L2 where no L2->L1 exit happens are handled by the TDX Module; the L1 VMM is not involved.

23.12. Prevention of L2 VM-Induced Denial of Service

By default, handling of L2 VM-induced denial of service is done the same way as that of the whole TD, as described in the
[TDX Module Base Spec]. Bus lock detection and instruction timeout VM exits cause a TD exit.

23.13. Time Stamp Counter (TSC)

23.13.1. L2 VM TSC Virtualization

The virtual TSC frequency and value as seen by the L2 VM are the same as for the L1 VMM.
The L2 VM has the same access restrictions to TSC MSRs as the L1 VMM. It is not allowed to:

e Write IA32_TIME_STAMP_COUNTER
e Access IA32_TSC_ADJUST
e Access IA32_TSC_DEADLINE

Any access violation results in an L2>L1 VM.

23.13.2. L2 VM TSC Deadline Support

Intel SDM, Vol. 3, 10.5.4.1 TSC-Deadline Mode
Intel SDM, Vol. 3, 25.5.1 VMX-Preemption Timer
Intel SDM, Vol.3, A.6 Miscellaneous Data

The L1 VMM can set an L2 execution deadline, in absolute virtual TSC units. If the L2 VCPU is running when the deadline
time arrives, it exits to the L1 VMM. The TSC deadline is set using TDVPS.TSC_DEADLINE[VM] using TDG.VP.WR. This
field has similar semantics to the IA32_TSC_DEADLINE MSR. It provides a similar functionality as the MSR but does not
emulate its exact MSR behavior.

September 2025 . Page 40 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

Internally, the TDX Module uses the L2 VMCS’ VMX-preemption timer fields; thus, VMX-preemption timer is not available
directly to the L1 VMM.

On return from TDG.VP.ENTER, the provided exit reason is VMX-preemption timer expired (52).

10

15

20

25

Deadline
S
Emulated L2>L1
VM exit
L2 - A M A S~o
Emulated L1>12 .=~ oxit M VRN
VM entry 4 exit
4 entry N\
TD VCPU £ o eitri ____________________ ——] |
k TDG.VP.WR(
L1 TSC_DEALINE) [TDG.VP.ENTER
VM
entry
\ 4
v
TDX Write Set VMX Set VMX L2 VM
Module TDVPS.TSC_ preemption ¢ preemption i ileny —
DEADLINE timer timer

Figure 23.3: TSC Deadline Handling

Details

e Setting TSC_DEADLINE to -1 disables its operation.

e Setting TSC_DEADLINE to a value lower than the current virtual TSC value (e.g., 0) causes immediate L2>L1 VM exit
after L1>L2 VM entry.

e Ifon L2 VM entry the TSC deadline is in the past (e.g., in the example above, the deadline passed while the host VMM
was executing), VM entry into L2 will immediately result in a VM exit and the TDX Module will emulate an L2>L1
exit.

23.14. Supervisor Protection Keys (PKS)
By design, guest TD usage of Supervisor Protection Keys (PKS) is controlled by the ATTRIBUTES.PKS bit. When PKS is

supported by the CPU and ATTRIBUTES.PKS is set to 1, the L1 VMM may enable PKS for its L2 VMs as follows:

e Virtualize CPUID to enumerate PKS availability to the L2 VM.

e Enable L2 VM setting CR4.PKS flag by setting the L2 VMCS’ “CR4 guest/host mask” and “CR4 read shadow” fields.

e Allow L2 VM access to the IA32_PKRS MSR by setting the L2 MSR exit bitmaps. The TDX Module sets L2 VMCS “load
guest PKRS” control to context-switch the IA32_PKRS MSR.

23.15. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption
(MKTME)

Guest TDs may not directly use the Intel TME and MKTME MSRs and the PCONFIG instruction. The Intel TDX Module
supports para-virtualization of this ISA for L2 VMs, as described below.

23.15.1. TME Virtualization
TME is enumerated by CPUID(0x7, 0x0).ECX[13]. The host VMM can configure the virtualization of this bit to the whole
TD as enabled or disabled on TDH.MNG.INIT.

The L1 VMM can virtualize CPUID(0x7, 0x0).ECX[13] to enumerate availability of TME to an L2 VM. If TME is virtualized
as enabled, then L2 VM access to those MSRs causes an L2—>L1 VM exit.

September 2025 . Page 41 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

30

35

40

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

23.15.2. MKTME Virtualization

MKTME is enumerated by CPUID(0x7, 0x0).EDX[18]. The host VMM can configure the virtualization of this bit to the
whole TD as enabled or disabled on TDH.MNG.INIT. In both cases, MKTME is not actually enabled to the TD; the
difference is in enabling para-virtualization of MKTME.

The L1 VMM can virtualize CPUID(0x7, 0x0).EDX[18] to enumerate availability of MKTME to an L2 VM. If MKTME is
virtualized as enabled, the TDX Module supports para-virtualization as follows. The following operations cause an L2->L1
VM exit:

e L2 VM access to the IA32_MKTME_PARTITIONING MSR (0x87)
e PCONFIG execution by the L2 VM

If MKTME is virtualized as disabled, then:

e Guest TD access to the IA32_MKTME_PARTITIONING MSR (0x87) causes an L2>L1 VM exit.
e PCONFIG execution by the L2 VM causes a #UD.

23.16. Management of Idle and Blocked Conditions

Intel SDM, Vol. 3, 9.10 Management of Idle and Blocked Conditions
23.16.1. HLT Instruction

HLT executed by an L2 VM results in an L2>L1 exit.

23.16.2. PAUSE Instruction and PAUSE-Loop Exiting
Intel SDM, Vol. 3, 25.1.3 Instructions That Cause VM Exits Conditionally

L2 VMs can execute PAUSE. The L1 VMM can set up PAUSE-loop exiting by using the L2 VMCS “PAUSE-loop exiting”,
“PLE_Gap” and “PLE_Window” VM-execution controls. A PAUSE-loop VM exit from the L2 VM results in an L2>L1 VM
exit.

23.16.3. MONITOR and MWAIT Instructions
By default, guest TDs are expected not to use MONITOR/MWAIT. The virtual value of CPUID(1).ECX[3] is, by default, 0.
Execution of MONITOR or MWAIT by an L2 VM results in an L2->L1 exit.

However, the host VMM may configure the guest TD to allow MONITOR/MWAIT, using the CPUID configuration table
which is part the TD_PARAMS input to TDH.MNG.INIT. Configuring the virtual value of CPUID(1).ECX[3] to 1 also enables
the TD (and its L2 VMs) to execute MONITOR and MWAIT.

23.16.4. WAITPKG: TPAUSE, UMONITOR and UMWAIT Instructions
Intel SDM, Vol. 3, 26.1.3 Instructions That Cause VM Exits Conditionally

As described in the [Base Spec], the host VMM may allow guest TDs to use the TPAUSE, UMONITOR and UMWAIT
instructions, if the CPU supports them, by configuring the virtual value of CPUID(7,0).ECX[5] (WAITPKG).
If enabled, the L1 VMM has the following control over L2 VM execution:

e The L1 VMM may control L2 VMs’ execution of TPAUSE, UMONITOR and UMWAIT instructions by writing to the L2
VMCS’ secondary processor-based execution controls “enable user-level wait and pause” bit (26).

e The L1 VMM may also configure an L2->L1 exit on those instructions using the L2 VMCS’ primary processor-based
execution controls “RDTSC exiting” bit (12).

e The L1 VMM may configure L2->L1 exit on read and/or write of IA32_UMWAIT_CONTROL (MSR OxE1).

23.17. Other Changes in TDX Non-Root Mode

23.17.1. L2 VM Tasking

Any task switch results in an L2->L1 VM exit. The L1 VMM can handle the task switch as it requires.

September 2025 . Page 42 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

23.17.2. L2 VM PAUSE-Loop Exiting
Intel SDM, Vol. 3, 25.1.3 Instructions That Cause VM Exits Conditionally

The L1 VMM can set up PAUSE-loop exiting by using the L2 VMCS “PAUSE-loop exiting”, “PLE_Gap” and “PLE_Window”
VM-execution controls. A PAUSE-loop VM exit from the L2 VM results in an L2->L1 VM exit.

September 2025 . Page 43 of 48

Section 2: TD Partitioning Architecture

10

15

20

25

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

24. L2 VM Debug and Profiling Architecture

This chapter discusses how the Intel TDX Module debug architecture is extended to support TD Partitioning. The
extended debug architecture includes the following debug facilities:

On-L2 VM Debug: Facilities for debugging an L2 VM using software that runs inside that VM
L1 VMM Debug of L2 VM: Facilities for debugging an L2 VM using software that runs inside the L1 VMM

Off-TD Debug of L2 VM: Facilities for debugging an L2 VM, which resides in a TD configured in debug mode, using
software that runs outside the TD

24.1. On-L2 VM Debug

Intel SDM, Vol. 3, 17 Debug, Branch Profile, TSC and Intel Resource Director Technology (Intel RDT) Features
24.1.1. Overview

On-VM debug is the normal mode used to debug an L2 VM within a TD. A debug agent resides inside the L2 VM, and it
can interact with external entities (e.g., a debugger) via standard 1/0 interfaces. It can also interact with other entities
(e.g., a debugger) running in the L1 VMM or another L2 VM within the TD. The Intel TDX Module is designed to virtualize
and isolate TD debug capabilities from the host VMM and other guest TDs or legacy VMs. On-VM debug can be used for
production or debug TDs —i.e., regardless of the guest TD’s ATTRIBUTES.DEBUG state.

As described in the [TDX Module Base FAS], guest TDs are allowed to use almost all architectural debug and tracing
features supported by the processor. This applies to L2 VMs as well. The L1 VMM may restrict the enumeration or
enabling of debug and trace features to L2 VMs, using the standard VMX capabilities available to it.

24.1.2. Generic Debug Handling
24.1.2.1. Context Switch

Context-switch for TD exits directly from an L2 VM and TD entry back to an L2 VM is handled the same way as context
switch for the TD as a whole, as described in the [TDX Module Base FAS].

24.1.2.2, IA32_DEBUGCTL MSR Virtualization

IA32_DEBUGCTL MSR is virtualized for L2 VMs similarly to how all L2 MSRs are virtualized, as described in 23.8.

24.1.3. Debug Feature-Specific Handling

Table 24.1: Debug Feature-Specific Handling

Debug Feature

How the Feature is Controlled

Handling

Hardware
Breakpoints

e DR7,DRO-3 and DR6

By default, no special handling. L1 VMM may configure
L2->L1 VM exit on DR access. DR7 is context-switched on
L2 VM exit/entry.

General Detect

e DR7 bit 13 (GD)

No special handling: DR7 is context-switched on L2 VM
entry/exit.

TSX Debug

e DR7 bit 11 (RTM)
e 1A32_DEBUGCTL bit 15 (RTM)

No special handling: DR7 and IA32_DEBUGCTL are
context-switched on L2 VM entry/exit.

Single Stepping

e RFLAGS bits 18 (Trap Flag) and
16 (Resume Flag)

e IA32_DEBUGCTL bit 1 (BTF)

No special handling: RFLAGS and IA32_DEBUGCTL are
context-switched on L2 VM entry/exit.

Bus-Lock e |A32 DEBUGCTL bit 2 No special handling: IA32_DEBUGCTL is context-switched
Detection (BUS_LOCK_DETECT) on L2 VM entry/exit.
Software None No special handling: software breakpoints are stateless.

Breakpoints (INT3)

September 2025

Page 44 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec

Section 2: TD Partitioning Architecture

354807-005US

Debug Feature

How the Feature is Controlled

Handling

Branch Trace
Message (BTM)

e |A32 _DEBUGCTL bits 6 (TR)
and 7 (BTS)

Not allowed: when an L2 VM attempts to set
IA32_DEBUGCTL[7:6] to 0x1, the Intel TDX Module causes
an L2211 VM exit.

In debug mode (ATTRIBUTES.DEBUG == 1), the host VMM
is allowed to activate BTM by setting the above bits to
Ox1.

Branch Trace Store
(BTS)

e |IA32_DEBUGCTL bits 6 (TR), 7
(BTS), 8 (BTINT), 9
(BTS_OFF_0S) and 10
(BTS_OFF_USR)

IA32_DEBUGCTL is context-switched on L2 VM entry/exit.
IA32_DS_AREA needs to be context-switched by the L1
VMM.

Note:

e The L2 VM can configure BTS to raise PMI on buffer
overflow (by setting BTINT = 1). However, since PMls
are virtualized by the host VMM, the L2 VM and L1
VMM should be ready to handle spurious, delayed
and dropped PMls. See Perfmon discussion in 24.2
below.

e BTS may allow the L2 VM to hang the machine if BTS
record generation causes a #PF or a #GP(0), because
the act of getting to the exception handler may
deliver another BTS. As described in the [TDX
Module Base FAS], it is highly recommended that the
host VMM enables notification TD exit.

Processor Trace
(PT)

e |A32_RTIT_CONTROL

e Requires VMM’s consent on
TD initialization by setting
TD_PARAMS.XFAM[8] to 1

e L1 VMM can configure
IA32_RTIT_CONTROL
virtualization by requesting
L2->L1 VM exit on MSR read
and/or write

PT state handling as part of the extended feature set
state is discussed in 23.6 and in the [TDX Module Base
Spec].

The Intel TDX Module sets the following control bits the
L2 VMCSs. Since the setting is essential to TD and TDX
Module security, the L1 VMM can’t modify them.

e “Conceal VMX from PT” exit control, so PIP and VMCS
packets are not generated on L2 VM exit

e “Conceal VMX from PT” entry control, so PIP and
VMCS packets are not generated on L2 VM entry

e “Conceal VMX from PT” execution control, so PIP
packets do not report “non-root”, and PSB+
sequences do not include VMCS packets, during L2
VM execution

e “PT2GPA” execution control, so PT addresses are
treated as GPAs

Architectural Last
Branch Records
(LBRs)

e IA32_LBR_CONTROL

e Requires VMM’s consent on
TD initialization by setting
TD_PARAMS.XFAM[15] to 1

e L1 VMM can configure
IA32_LBR_CONTROL
virtualization by requesting
L2->L1 VM exit on MSR read
and/or write

Non-Architectural
LBRs

e |A32_DEBUGCTL bit O (LBR)

L2 VM attempt to set IA32_DEBUGCTL[O] is ignored by
the CPU.

September 2025

Page 45 of 48

Section 2: TD Partitioning Architecture

10

15

20

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

24.2. On-L2 VM Performance Monitoring

The host VMM controls whether a guest TD can use the performance monitoring ISA using the TD’s
ATTRIBUTES.PERFMON bit. If performance monitoring is allowed for the TD, the L1 VMM controls whether performance
monitoring is allowed for each L2 VM, by controlling the virtualization of the applicable MSR. For details, see the [TDX
Module Base FAS].

24.3. L1 VMM Debug of L2 VMs

L1 VMM is in the TCB of its L2 VMs, and thus have access to the VMX debug features as they are enabled for the whole
TD. The L1 VMM has access to some of the L2 VMs’ VMCSes control fields. For many execution controls, L1 VMM access
is read-only, because their value is essential for TD and TDX Module security and correct operation. For details, see the
[TDX Module ABI Spec].

24.4. Off-TD Debug of L2 VMs

As described in the [TDX Module Base Spec], a guest TD is defined as debuggable if its ATTRIBUTES.DEBUG bit is 1. In this
mode, the host VMM can use Intel TDX functions to read and modify TD VCPU state and TD private memory, which is not
accessible when the TD is non-debuggable.

This definition directly extends to nested L2 VMs, as described in the table below.
Table 24.2: Off-TD Debug Interface Extensions for TD Partitioning

Intel TDX Function Extensions for TD Partitioning

TDH.MNG.RD Access L2 VM metadata

TDH.MNG.WR

TDH.MEM.SEPT.RD Read L2 Secure EPT entry

TDH.VP.RD Access TD VCPU’s L2 state in TDVPS (including L2 VMCS)
TDH.VP.WR

24.4.1. L2 VM Debug Controls Used by the Host VMM

The host VMM can control L2 VM off-TD debug using the TDVPS L2_DEBUG_CTLS field, which is defined below. This field
may only be written by the host VMM if the TD is debuggable.

Table 24.3: L2_DEBUG_CTLS: L2 VM Debug Controls

Bit(s) | Name Description

0 TD_EXIT_ON_L1_TO_L2 If set, TDG.VP.ENTER will TD-exit instead of entering an L2 VM. For
simplicity, TD exit will happen before the L1-->L2 transition is done.
TDH.VP.ENTER’s completion status will be
TDX_TD_EXIT_BEFORE_L2_ENTRY. This TD exit is fault-like, which allows
the debugger to modify whatever it wishes and TD-enter to re-invoke
TDG.VP.ENTER.

1 TD_EXIT_ON_L2_TO_L1 If set, VM exit from L2 which results in an L2>L1 exit is mutated into a
TD exit. TDH.VP.ENTER’s completion status will be
TDX_TD_EXIT_ON_L2_TO_L1.

2 TD_EXIT_ON_L2_VM_EXIT | All L2 VM exits (except fatal errors) will result in a TD exit.
TDH.VP.ENTER’s completion status will be
TDX_TD_EXIT_ON_L2_VM_EXIT.

63:3 RESERVED Reserved, must be 0

September 2025 . Page 46 of 48

Section 2: TD Partitioning Architecture

10

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

24.4.2. Host VMM Access of Debuggable TD’s L2 VM State, Controls and Memory

When the TD is debuggable, the off-TD debugger can:

e Read and modify L2 VMCS fields that contain guest state, VM entry load controls, VM exit save controls, and VM
execution controls.
e Read and modify TDVPS fields that contain additional TD VCPU’s L2 VM state and control.

This may cause the next VM entry into the L2 VM to fail due to bad guest state. It may also generate VM exits that
wouldn’t have happened otherwise (e.g., VM exit due to a #PF within the L2 VM, even if not configured so by the L1
VMM). By default, such VM exits from L2 are routed to the L1 VMM as L2->L1 VM entries. However, the L1 VMM may
not expect such VM entries. To avoid unexpected L2->L1 VM entries, the host VMM can set
TDVPS.L2_DEBUG_CTLS.TD_EXIT_ON_L1_TO_L2. With this bit set, any L2->L1 exit is mutated into a TD exit; the host
VMM may, on the following TD entry, control whether the L2 VM or the L1 VMM is resumed, using the RESUME_L1 input
flag of TDH.VP.ENTER.

September 2025 . Page 47 of 48

Section 2: TD Partitioning Architecture

TD Partitioning Spec Section 2: TD Partitioning Architecture 354807-005US

25. Guest-Side TDX Functions (TDCALL) for L2 VMs

A subset of the guest-side (TDCALL) TDX functions can be called by L2 VMs, depending on configuration by the L1 VMM.
If L2 call a function that is not allowed, it results in an L2 L1 exit.

Currently, the only guest-side TDX function that can be called by L2 VMs is TDG.VP.VMCALL.
25.1. TDG.VP.VMCALL

By default, L2 VMs can’t call TDG.VP.VMCALL. The L1 VMM may enable TDG.VP.VMCALL usage by a specific L2 VCPU
setting TDVPS.L2_CTLS[VM].ENABLE_TDVMCALL using TDG.VP.WR. The behavior is described in 22.2.3 and 22.2.4.

September 2025 . Page 48 of 48

Section 2: TD Partitioning Architecture

	Notices and Disclaimers
	Table of Contents
	SECTION 1: INTRODUCTION AND OVERVIEW
	10. About this Document
	10.1. Scope of this Document
	10.2. Document Organization
	10.3. Glossary
	10.4. Notation
	10.5. References

	11. TDX TD Partitioning Overview
	11.1. Introduction
	11.2. Security Properties
	11.3. L2 VM Private Memory Management
	11.4. L2 VM Transitions
	11.5. L2 VM CPU Virtualization
	11.6. L2 VM Measurement and Attestation
	11.7. L2 VM Debug
	11.8. TD Partitioning Interaction with TD Migration
	11.9. Intel TDX TD Partitioning Interface Functions
	11.9.1. Host-Side (SEAMCALL Leaf) Interface Functions
	11.9.2. Guest-Side (TDCALL Leaf) Interface Functions

	SECTION 2: TD PARTITIONING ARCHITECTURE SPECIFICATION
	20. L2 VM Non-Memory State (Metadata) and Control Structures
	20.1. Overview
	20.1.1. Opaque L2 Control Structures
	20.1.2. Private Control Structures
	20.1.3. Shared Control Structures

	20.2. Additions to Existing TD Control Structures
	20.2.1. TDCS
	20.2.2. TDVPS
	20.2.2.1. New TDVPS Fields
	20.2.2.2. New Per-VM TDVPS Fields
	L2 VM Management Fields
	L2 VM Execution Control Fields
	L2 VM VMX Standard Control Structures

	20.3. Concurrency Restrictions and Enforcement

	21. L2 VM Memory Management
	21.1. Introduction
	L2 SEPT Properties

	21.2. L2 Page Aliasing
	21.2.1. Logical View of a TD Private Page with Pages Aliases
	21.2.2. L2 Secure EPT Entry Partial State Diagram
	21.2.3. L2 Page Alias Management: TDG.MEM.PAGE.ATTR.RD/WR
	21.2.3.1. Overview
	21.2.3.2. Adding L2 Page Aliases
	Typical Use Case

	21.2.3.3. Modifying L2 Page Attributes
	Typical Use Case

	21.2.3.4. Removing L2 Page Aliases
	Typical Use Case

	21.3. Updates to SEPT Tree Management
	21.3.1. Host VMM’s L2 SEPT Management Strategy
	21.3.2. Adding SEPT Pages
	21.3.3. Removing SEPT Pages
	21.3.4. Page Demotion
	21.3.5. Page Promotion

	21.4. Other Updates to Memory Management Interface Functions
	21.5. L1 VMM Control of L2 EPT Features
	21.6. L2 VM TLB Invalidation
	21.7. L2 VM Shared Memory Management
	21.8. Handling EPT Violation VM Exit from L2
	21.9. Handling EPT Misconfiguration VM Exit from L2
	21.10. L2 GPA-to-HPA Soft Translation
	Notes

	22. TD VCPU Enhancements for TD Partitioning
	22.1. Overview
	22.2. VCPU Transitions
	22.2.1. L1-to-L2 VM Entry and L2-to-L1 VM Exit: TDG.VP.ENTER
	22.2.1.1. TDG.VP.ENTER Inputs and Outputs
	22.2.1.1.1. Fixed-Format L2 Entry Guest State Buffer
	22.2.1.1.2. L2 VM Exit Information

	22.2.1.2. L2 State Preservation Across L1-to-L2-to-L1 Transitions (TDG.VP.ENTER)
	22.2.1.3. L2 VM Exit Handling
	22.2.1.4. L2-to-L1 VM Exit: Returned L2 State

	22.2.2. Direct Asynchronous TD Exit from L2, and Subsequent TD Entry
	22.2.2.1. Asynchronous TD Exit from L2
	22.2.2.2. VCPU Resumption to L2 on TD Entry following a TD Exit from L2

	22.2.3. TDG.VP.VMCALL: Synchronous TD Exit from L2 and Subsequent TD Entry
	22.2.4. TD Exit from L2 Routed by the Host VMM to L1 on Subsequent TD Entry
	22.2.4.1. Asynchronous TD Exit from L2 Routed to L1
	22.2.4.2. Synchronous (TDG.VP.VMCALL) TD Exit from L2 Routed to L1

	22.3. Virtual Interrupts Handling for TD Partitioning
	22.4. L2 VM TLB Address Space Identifier (ASID)

	23. L2 VM CPU Virtualization (Non-Root Mode Operation)
	23.1. General Aspects of L1 Operation as a VMM
	23.1.1. L1 VMM Usage of VMX Facilities
	VMX Instructions
	L2 VMCS
	Other VMX Control Structures

	23.1.2. Enumeration of VMX Capabilities Available to the L1 VMM
	Non-Standard Behavior of Virtual IA32_VMX_* MSRs

	23.1.3. Unit Conversion
	L2 VMCS Fields Specified as Physical Address
	L2 VMCS Fields Specified as TSC Ticks
	L2 VMCS Fields Specified as Crystal Clock Ticks

	23.1.4. L2-to-L1 VM Exit Handling

	23.2. L2 VM VCPU Initial State
	23.3. L2 VM Run Time Environment Enumeration
	23.4. L2 VM CPU Mode Restrictions
	23.5. L2 VM VCPU Instructions Restrictions
	23.5.1. Mechanisms of Blocking
	23.5.2. Instructions that Cause an L2-to-L1 Exit Unconditionally
	23.5.3. Instructions that Cause a #UD Unconditionally
	23.5.4. Instructions that Cause an L2-to-L1 Exit
	23.5.5. Other Cases of Unconditionally Blocked Instructions

	23.6. L2 VM Extended Feature Set
	23.7. L2 VM CR Handling
	23.7.1. CR0 and CR4
	23.7.1.1. Background: CR0 and CR4 Execution Controls
	23.7.1.2. CR0 and CR4 Enumeration to the L1 VMM
	23.7.1.3. L2 CR0/4 Initial Values

	23.7.2. CR3 and CR8

	23.8. L2 VM MSR Handling
	23.9. L2 VM CPUID Virtualization
	23.10. L2 VM Interrupt Handling and APIC Virtualization
	23.11. Vectored Events
	23.11.1. Vector-on-Entry (VOE) Injection to L2
	23.11.2. L2-to-L1 Exit during Event Delivery via IDT

	23.12. Prevention of L2 VM-Induced Denial of Service
	23.13. Time Stamp Counter (TSC)
	23.13.1. L2 VM TSC Virtualization
	23.13.2. L2 VM TSC Deadline Support
	Details

	23.14. Supervisor Protection Keys (PKS)
	23.15. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption (MKTME)
	23.15.1. TME Virtualization
	23.15.2. MKTME Virtualization

	23.16. Management of Idle and Blocked Conditions
	23.16.1. HLT Instruction
	23.16.2. PAUSE Instruction and PAUSE-Loop Exiting
	23.16.3. MONITOR and MWAIT Instructions
	23.16.4. WAITPKG: TPAUSE, UMONITOR and UMWAIT Instructions

	23.17. Other Changes in TDX Non-Root Mode
	23.17.1. L2 VM Tasking
	23.17.2. L2 VM PAUSE-Loop Exiting

	24. L2 VM Debug and Profiling Architecture
	24.1. On-L2 VM Debug
	24.1.1. Overview
	24.1.2. Generic Debug Handling
	24.1.2.1. Context Switch
	24.1.2.2. IA32_DEBUGCTL MSR Virtualization

	24.1.3. Debug Feature-Specific Handling

	24.2. On-L2 VM Performance Monitoring
	24.3. L1 VMM Debug of L2 VMs
	24.4. Off-TD Debug of L2 VMs
	24.4.1. L2 VM Debug Controls Used by the Host VMM
	24.4.2. Host VMM Access of Debuggable TD’s L2 VM State, Controls and Memory

	25. Guest-Side TDX Functions (TDCALL) for L2 VMs
	25.1. TDG.VP.VMCALL

