
MEMBARRIER(2) Linux Programmer’s Manual MEMBARRIER(2)

NAME
membarrier − issue memory barriers on a set of threads

SYNOPSIS
#include <linux/membarrier.h>

int membarrier(int cmd , unsigned int flags, int cpu id);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
The membarrier() system call helps reducing the overhead of the memory barrier instructions
required to order memory accesses on multi-core systems. However, this system call is heavier
than a memory barrier, so using it effectively is not as simple as replacing memory barriers with
this system call, but requires understanding of the details below.

Use of memory barriers needs to be done taking into account that a memory barrier always needs
to be either matched with its memory barrier counterparts, or that the architecture’s memory
model doesn’t require the matching barriers.

There are cases where one side of the matching barriers (which we will refer to as "fast side") is
executed much more often than the other (which we will refer to as "slow side"). This is a prime
target for the use of membarrier(). The key idea is to replace, for these matching barriers, the
fast-side memory barriers by simple compiler barriers, for example:

asm volatile ("" : : : "memory")

and replace the slow-side memory barriers by calls to membarrier().

This will add overhead to the slow side, and remove overhead from the fast side, thus resulting in
an overall performance increase as long as the slow side is infrequent enough that the overhead of
the membarrier() calls does not outweigh the performance gain on the fast side.

The cmd argument is one of the following:

MEMBARRIER CMD QUERY (since Linux 4.3)
Query the set of supported commands. The return value of the call is a bit mask of sup-
ported commands. MEMBARRIER CMD QUERY, which has the value 0, is not it-
self included in this bit mask. This command is always supported (on kernels where
membarrier() is provided).

MEMBARRIER CMD GLOBAL (since Linux 4.16)
Ensure that all threads from all processes on the system pass through a state where all
memory accesses to user-space addresses match program order between entry to and re-
turn from the membarrier() system call. All threads on the system are targeted by this
command.

MEMBARRIER CMD GLOBAL EXPEDITED (since Linux 4.16)
Execute a memory barrier on all running threads of all processes that previously regis-
tered with MEMBARRIER CMD REGISTER GLOBAL EXPEDITED.

Upon return from the system call, the calling thread has a guarantee that all running
threads have passed through a state where all memory accesses to user-space addresses
match program order between entry to and return from the system call (non-running
threads are de facto in such a state). This guarantee is provided only for the threads of
processes that previously registered with MEMBARRIER CMD REGIS-
TER GLOBAL EXPEDITED.

Given that registration is about the intent to receive the barriers, it is valid to invoke
MEMBARRIER CMD GLOBAL EXPEDITED from a process that has not em-
ployed MEMBARRIER CMD REGISTER GLOBAL EXPEDITED.

The "expedited" commands complete faster than the non-expedited ones; they never
block, but have the downside of causing extra overhead.

Linux 2020-11-01 1

MEMBARRIER(2) Linux Programmer’s Manual MEMBARRIER(2)

MEMBARRIER CMD REGISTER GLOBAL EXPEDITED (since Linux 4.16)
Register the process’s intent to receive MEMBARRIER CMD GLOBAL EXPE-
DITED memory barriers.

MEMBARRIER CMD PRIVATE EXPEDITED (since Linux 4.14)
Execute a memory barrier on each running thread belonging to the same process as the
calling thread.

Upon return from the system call, the calling thread has a guarantee that all its running
thread siblings have passed through a state where all memory accesses to user-space ad-
dresses match program order between entry to and return from the system call (non-run-
ning threads are de facto in such a state). This guarantee is provided only for threads in
the same process as the calling thread.

The "expedited" commands complete faster than the non-expedited ones; they never
block, but have the downside of causing extra overhead.

A process must register its intent to use the private expedited command prior to using it.

MEMBARRIER CMD REGISTER PRIVATE EXPEDITED (since Linux 4.14)
Register the process’s intent to use MEMBARRIER CMD PRIVATE EXPE-
DITED.

MEMBARRIER CMD PRIVATE EXPEDITED SYNC CORE (since Linux 4.16)
In addition to providing the memory ordering guarantees described in MEMBAR-
RIER CMD PRIVATE EXPEDITED, upon return from system call the calling
thread has a guarantee that all its running thread siblings have executed a core serializing
instruction. This guarantee is provided only for threads in the same process as the calling
thread.

The "expedited" commands complete faster than the non-expedited ones, they never
block, but have the downside of causing extra overhead.

A process must register its intent to use the private expedited sync core command prior
to using it.

MEMBARRIER CMD REGISTER PRIVATE EXPEDITED SYNC CORE (since
Linux 4.16)

Register the process’s intent to use MEMBARRIER CMD PRIVATE EXPE-
DITED SYNC CORE.

MEMBARRIER CMD PRIVATE EXPEDITED RSEQ (since Linux 5.10)
Ensure the caller thread, upon return from system call, that all its running thread siblings
have any currently running rseq critical sections restarted if flags parameter is 0; if flags
parameter is MEMBARRIER CMD FLAG CPU, then this operation is performed
only on CPU indicated by cpu id . This guarantee is provided only for threads in the
same process as the calling thread.

RSEQ membarrier is only available in the "private expedited" form.

A process must register its intent to use the private expedited rseq command prior to us-
ing it.

MEMBARRIER CMD REGISTER PRIVATE EXPEDITED RSEQ (since Linux 5.10)
Register the process’s intent to use MEMBARRIER CMD PRIVATE EXPE-
DITED RSEQ.

MEMBARRIER CMD SHARED (since Linux 4.3)
This is an alias for MEMBARRIER CMD GLOBAL that exists for header back-
ward compatibility.

The flags argument must be specified as 0 unless the command is MEMBAR-
RIER CMD PRIVATE EXPEDITED RSEQ, in which case flags can be either 0 or
MEMBARRIER CMD FLAG CPU.

Linux 2020-11-01 2

MEMBARRIER(2) Linux Programmer’s Manual MEMBARRIER(2)

The cpu id argument is ignored unless flags is MEMBARRIER CMD FLAG CPU, in
which case it must specify the CPU targeted by this membarrier command.

All memory accesses performed in program order from each targeted thread are guaranteed to be
ordered with respect to membarrier().

If we use the semantic barrier() to represent a compiler barrier forcing memory accesses to be per-
formed in program order across the barrier, and smp mb() to represent explicit memory barriers
forcing full memory ordering across the barrier, we have the following ordering table for each pair-
ing of barrier(), membarrier(), and smp mb(). The pair ordering is detailed as (O: ordered, X:
not ordered):

barrier() smp mb() membarrier()
barrier() X X O
smp mb() X O O
membarrier() O O O

RETURN VALUE
On success, the MEMBARRIER CMD QUERY operation returns a bit mask of supported
commands, and the MEMBARRIER CMD GLOBAL, MEMBAR-
RIER CMD GLOBAL EXPEDITED, MEMBARRIER CMD REGIS-
TER GLOBAL EXPEDITED, MEMBARRIER CMD PRIVATE EXPEDITED,
MEMBARRIER CMD REGISTER PRIVATE EXPEDITED, MEMBAR-
RIER CMD PRIVATE EXPEDITED SYNC CORE, and MEMBAR-
RIER CMD REGISTER PRIVATE EXPEDITED SYNC CORE operations return
zero. On error, −1 is returned, and errno is set appropriately.

For a given command, with flags set to 0, this system call is guaranteed to always return the same
value until reboot. Further calls with the same arguments will lead to the same result. Therefore,
with flags set to 0, error handling is required only for the first call to membarrier().

ERRORS
EINVAL

cmd is invalid, or flags is nonzero, or the MEMBARRIER CMD GLOBAL com-
mand is disabled because the nohz full CPU parameter has been set, or the MEMBAR-
RIER CMD PRIVATE EXPEDITED SYNC CORE and MEMBAR-
RIER CMD REGISTER PRIVATE EXPEDITED SYNC CORE commands
are not implemented by the architecture.

ENOSYS
The membarrier() system call is not implemented by this kernel.

EPERM
The current process was not registered prior to using private expedited commands.

VERSIONS
The membarrier() system call was added in Linux 4.3.

Before Linux 5.10, the prototype for membarrier() was:

int membarrier(int cmd , int flags);

CONFORMING TO
membarrier() is Linux-specific.

NOTES
A memory barrier instruction is part of the instruction set of architectures with weakly ordered
memory models. It orders memory accesses prior to the barrier and after the barrier with respect
to matching barriers on other cores. For instance, a load fence can order loads prior to and fol-
lowing that fence with respect to stores ordered by store fences.

Program order is the order in which instructions are ordered in the program assembly code.

Examples where membarrier() can be useful include implementations of Read-Copy-Update

Linux 2020-11-01 3

MEMBARRIER(2) Linux Programmer’s Manual MEMBARRIER(2)

libraries and garbage collectors.

Glibc does not provide a wrapper for this system call; call it using syscall(2).

EXAMPLES
Assuming a multithreaded application where "fast path()" is executed very frequently, and where
"slow path()" is executed infrequently, the following code (x86) can be transformed using mem-
barrier():

#include <stdlib.h>

static volatile int a, b;

static void

fast_path(int *read_b)

{

a = 1;

asm volatile ("mfence" : : : "memory");

*read_b = b;

}

static void

slow_path(int *read_a)

{

b = 1;

asm volatile ("mfence" : : : "memory");

*read_a = a;

}

int

main(int argc, char **argv)

{

int read_a, read_b;

/*

* Real applications would call fast_path() and slow_path()

* from different threads. Call those from main() to keep

* this example short.

*/

slow_path(&read_a);

fast_path(&read_b);

/*

* read_b == 0 implies read_a == 1 and

* read_a == 0 implies read_b == 1.

*/

if (read_b == 0 && read_a == 0)

abort();

exit(EXIT_SUCCESS);

}

The code above transformed to use membarrier() becomes:

#define _GNU_SOURCE

#include <stdlib.h>

Linux 2020-11-01 4

MEMBARRIER(2) Linux Programmer’s Manual MEMBARRIER(2)

#include <stdio.h>

#include <unistd.h>

#include <sys/syscall.h>

#include <linux/membarrier.h>

static volatile int a, b;

static int

membarrier(int cmd, unsigned int flags, int cpu_id)

{

return syscall(__NR_membarrier, cmd, flags, cpu_id);

}

static int

init_membarrier(void)

{

int ret;

/* Check that membarrier() is supported. */

ret = membarrier(MEMBARRIER_CMD_QUERY, 0, 0);

if (ret < 0) {

perror("membarrier");

return -1;

}

if (!(ret & MEMBARRIER_CMD_GLOBAL)) {

fprintf(stderr,

"membarrier does not support MEMBARRIER_CMD_GLOBAL\n");

return -1;

}

return 0;

}

static void

fast_path(int *read_b)

{

a = 1;

asm volatile ("" : : : "memory");

*read_b = b;

}

static void

slow_path(int *read_a)

{

b = 1;

membarrier(MEMBARRIER_CMD_GLOBAL, 0, 0);

*read_a = a;

}

int

main(int argc, char **argv)

{

Linux 2020-11-01 5

MEMBARRIER(2) Linux Programmer’s Manual MEMBARRIER(2)

int read_a, read_b;

if (init_membarrier())

exit(EXIT_FAILURE);

/*

* Real applications would call fast_path() and slow_path()

* from different threads. Call those from main() to keep

* this example short.

*/

slow_path(&read_a);

fast_path(&read_b);

/*

* read_b == 0 implies read_a == 1 and

* read_a == 0 implies read_b == 1.

*/

if (read_b == 0 && read_a == 0)

abort();

exit(EXIT_SUCCESS);

}

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the project, in-
formation about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man−pages/.

Linux 2020-11-01 6

