
LIBTHR (3) FreeBSD Library Functions Manual LIBTHR (3)

NAME
libthr — 1:1 POSIX threads library

LIBRARY
1:1 Threading Library (libthr, −lthr)

SYNOPSIS
#include <pthread.h>

DESCRIPTION
The libthr library provides a 1:1 implementation of the pthread(3) library interfaces for applica-
tion threading. It has been optimized for use by applications expecting system scope thread seman-
tics, and can provide significant performance improvements compared to N:M Threading Library
(libkse, −lkse).

The library is tightly integrated with the run-time link editor ld-elf.so.1(1) and Standard
C Library (libc, −lc); all three components must be built from the same source tree. Mixing libc

and libthr libraries from different versions of FreeBSD is not supported. The run-time linker
ld-elf.so.1(1) has some code to ensure backward-compatibility with older versions of libthr.

The man page documents the quirks and tunables of the libthr. When linking with -lpthread,
the run-time dependency libthr.so.3 is recorded in the produced object.

MUTEX ACQUISITION
A locked mutex (see pthread_mutex_lock(3)) is represented by a volatile variable of type lwpid_t,
which records the global system identifier of the thread owning the lock. libthr performs a con-
tested mutex acquisition in three stages, each of which is more resource-consuming than the previ-
ous. The first two stages are only applied for a mutex of PTHREAD_MUTEX_ADAPTIVE_NP type and
PTHREAD_PRIO_NONE protocol (see pthread_mutexattr(3)).

First, on SMP systems, a spin loop is performed, where the library attempts to acquire the lock by
atomic(9) operations. The loop count is controlled by the LIBPTHREAD_SPINLOOPS environment
variable, with a default value of 2000.

If the spin loop was unable to acquire the mutex, a yield loop is executed, performing the same
atomic(9) acquisition attempts as the spin loop, but each attempt is followed by a yield of the CPU
time of the thread using the sched_yield(2) syscall. By default, the yield loop is not executed.
This is controlled by the LIBPTHREAD_YIELDLOOPS environment variable.

If both the spin and yield loops failed to acquire the lock, the thread is taken off the CPU and put
to sleep in the kernel with the _umtx_op(2) syscall. The kernel wakes up a thread and hands the
ownership of the lock to the woken thread when the lock becomes available.

THREAD STACKS
Each thread is provided with a private user-mode stack area used by the C runtime. The size of the
main (initial) thread stack is set by the kernel, and is controlled by the RLIMIT_STACK process
resource limit (see getrlimit(2)).

By default, the main thread’s stack size is equal to the value of RLIMIT_STACK for the process. If
the LIBPTHREAD_SPLITSTACK_MAIN environment variable is present in the process environment (its
value does not matter), the main thread’s stack is reduced to 4MB on 64bit architectures, and to
2MB on 32bit architectures, when the threading library is initialized. The rest of the address space
area which has been reserved by the kernel for the initial process stack is used for non-initial thread
stacks in this case. The presence of the LIBPTHREAD_BIGSTACK_MAIN environment variable overrides
LIBPTHREAD_SPLITSTACK_MAIN; it is kept for backward-compatibility.

FreeBSD 10.3 May 17, 2016 1



LIBTHR (3) FreeBSD Library Functions Manual LIBTHR (3)

The size of stacks for threads created by the process at run-time with the pthread_create(3) call is
controlled by thread attributes: see pthread_attr(3), in particular, the
pthread_attr_setstacksize(3), pthread_attr_setguardsize(3) and
pthread_attr_setstackaddr(3) functions. If no attributes for the thread stack size are specified,
the default non-initial thread stack size is 2MB for 64bit architectures, and 1MB for 32bit architec-
tures.

RUN-TIME SETTINGS
The following environment variables are recognized by libthr and adjust the operation of the
library at run-time:

LIBPTHREAD_BIGSTACK_MAIN Disables the reduction of the initial thread stack enabled by
LIBPTHREAD_SPLITSTACK_MAIN.

LIBPTHREAD_SPLITSTACK_MAIN Causes a reduction of the initial thread stack, as described in the
section THREAD STACKS. This was the default behaviour
of libthr before FreeBSD 11.0.

LIBPTHREAD_SPINLOOPS The integer value of the variable overrides the default count of
iterations in the spin loop of the mutex acquisition. The
default count is 2000, set by the MUTEX_ADAPTIVE_SPINS con-
stant in the libthr sources.

LIBPTHREAD_YIELDLOOPS A non-zero integer value enables the yield loop in the process of
the mutex acquisition. The value is the count of loop opera-
tions.

LIBPTHREAD_QUEUE_FIFO The integer value of the variable specifies how often blocked
threads are inserted at the head of the sleep queue, instead of its
tail. Bigger values reduce the frequency of the FIFO discipline.
The value must be between 0 and 255.

The following sysctl MIBs affect the operation of the library:

kern.ipc.umtx_vnode_persistent By default, a shared lock backed by a mapped file in
memory is automatically destroyed on the last unmap of
the corresponding file’s page, which is allowed by POSIX.
Setting the sysctl to 1 makes such a shared lock object
persist until the vnode is recycled by the Virtual File
System. Note that in case file is not opened and not
mapped, the kernel might recycle it at any moment, mak-
ing this sysctl less useful than it sounds.

kern.ipc.umtx_max_robust The maximal number of robust mutexes allowed for one
thread. The kernel will not unlock more mutexes than
specified, see _umtx_op for more details. The default
value is large enough for most useful applications.

debug.umtx.robust_faults_verbose A non zero value makes kernel emit some diagnostic
when the robust mutexes unlock was prematurely aborted
after detecting some inconsistency, as a measure to pre-
vent memory corruption.

The RLIMIT_UMTXP limit (see getrlimit(2)) defines how many shared locks a given user may create
simultaneously.

FreeBSD 10.3 May 17, 2016 2



LIBTHR (3) FreeBSD Library Functions Manual LIBTHR (3)

INTERACTION WITH RUN-TIME LINKER
On load, libthr installs interposing handlers into the hooks exported by libc. The interposers pro-
vide real locking implementation instead of the stubs for single-threaded processes in , cancellation
support and some modifications to the signal operations.

libthr cannot be unloaded; the dlclose(3) function does not perform any action when called with
a handle for libthr. One of the reasons is that the internal interposing of libc functions cannot be
undone.

SIGNALS
The implementation interposes the user-installed signal(3) handlers. This interposing is done to
postpone signal delivery to threads which entered (libthr-internal) critical sections, where the calling
of the user-provided signal handler is unsafe. An example of such a situation is owning the internal
library lock. When a signal is delivered while the signal handler cannot be safely called, the call is
postponed and performed until after the exit from the critical section. This should be taken into
account when interpreting ktrace(1) logs.

SEE ALSO
ktrace(1), ld-elf.so.1(1), getrlimit(2), errno(2), thr_exit(2), thr_kill(2), thr_kill2(2),
thr_new(2), thr_self(2), thr_set_name(2), _umtx_op(2), dlclose(3), dlopen(3), getenv(3),
pthread_attr(3), pthread_attr_setstacksize(3), pthread_create(3), signal(3), atomic(9)

AUTHORS
The libthr library was originally created by Jeff Roberson <jeff@FreeBSD.org>, and enhanced by
Jonathan Mini <mini@FreeBSD.org> and Mike Makonnen <mtm@FreeBSD.org>. It has been sub-
stantially rewritten and optimized by David Xu <davidxu@FreeBSD.org>.

FreeBSD 10.3 May 17, 2016 3


