
RSEQ(2) Linux Programmer’s Manual RSEQ(2)

NAME
rseq − Restartable sequences and cpu number cache

SYNOPSIS
#include <linux/rseq.h>

int rseq(struct rseq * rseq, uint32 t rseq len, int flags, uint32 t sig);

DESCRIPTION
A restartable sequence is a sequence of instructions guaranteed to be executed atomically with re-
spect to other threads and signal handlers on the current CPU. If its execution does not complete
atomically, the kernel changes the execution flow by jumping to an abort handler defined by user-
space for that restartable sequence.

Using restartable sequences requires to register a rseq abi thread-local storage data structure
(struct rseq) through the rseq() system call. Only one rseq abi can be registered per thread,
so user-space libraries and applications must follow a user-space ABI defining how to share this re-
source. The ABI defining how to share this resource between applications and libraries is defined
by the C library.

The rseq abi contains a rseq cs field which points to the currently executing critical section.
For each thread, a single rseq critical section can run at any given point. Each critical section need
to be implemented in assembly.

The rseq() ABI accelerates user-space operations on per-cpu data by defining a shared data struc-
ture ABI between each user-space thread and the kernel.

It allows user-space to perform update operations on per-cpu data without requiring heavy-weight
atomic operations.

The term CPU used in this documentation refers to a hardware execution context. For instance,
each CPU number returned by sched getcpu() is a CPU. The current CPU means to the CPU
on which the registered thread is running.

Restartable sequences are atomic with respect to preemption (making it atomic with respect to
other threads running on the same CPU), as well as signal delivery (user-space execution contexts
nested over the same thread). They either complete atomically with respect to preemption on the
current CPU and signal delivery, or they are aborted.

Restartable sequences are suited for update operations on per-cpu data.

Restartable sequences can be used on data structures shared between threads within a process,
and on data structures shared between threads across different processes.

Some examples of operations that can be accelerated or improved by this ABI:

• Memory allocator per-cpu free-lists,

• Querying the current CPU number,

• Incrementing per-CPU counters,

• Modifying data protected by per-CPU spinlocks,

• Inserting/removing elements in per-CPU linked-lists,

• Writing/reading per-CPU ring buffers content.

Linux 2020-06-05 1

RSEQ(2) Linux Programmer’s Manual RSEQ(2)

• Accurately reading performance monitoring unit counters with respect to thread migration.

Restartable sequences must not perform system calls. Doing so may result in termination of the
process by a segmentation fault.

The rseq argument is a pointer to the thread-local rseq structure to be shared between kernel and
user-space.

The layout of struct rseq is as follows:

Structure alignment
This structure is aligned on 32-byte boundary.

Structure size
This structure is fixed-size (32 bytes). Its size is passed as parameter to the rseq system
call.

struct rseq {

__u32 cpu_id_start;

__u32 cpu_id;

union {

/* Edited out for conciseness. [...] */

} rseq_cs;

__u32 flags;

} __attribute__((aligned(32)));

Fields

cpu id start
Optimistic cache of the CPU number on which the registered thread is running. Its value
is guaranteed to always be a possible CPU number, even when rseq is not registered. Its
value should always be confirmed by reading the cpu id field before user-space performs
any side-effect (e.g. storing to memory).

This field is an optimistic cache in the sense that it is always guaranteed to hold a valid
CPU number in the range [0 .. nr possible cpus - 1]. It can therefore be loaded by user-
space and used as an offset in per-cpu data structures without having to check whether its
value is within the valid bounds compared to the number of possible CPUs in the system.

Initialized by user-space to a possible CPU number (e.g., 0), updated by the kernel for
threads registered with rseq.

For user-space applications executed on a kernel without rseq support, the cpu id start
field stays initialized at 0, which is indeed a valid CPU number. It is therefore valid to use
it as an offset in per-cpu data structures, and only validate whether it’s actually the cur-
rent CPU number by comparing it with the cpu id field within the rseq critical section. If
the kernel does not provide rseq support, that cpu id field stays initialized at -1, so the
comparison always fails, as intended.

It is up to user-space to implement a fall-back mechanism for scenarios where rseq is not
available.

cpu id
Cache of the CPU number on which the registered thread is running. Initialized by user-
space to -1, updated by the kernel for threads registered with rseq.

Linux 2020-06-05 2

RSEQ(2) Linux Programmer’s Manual RSEQ(2)

rseq cs
The rseq cs field is a pointer to a struct rseq cs. Is is NULL when no rseq assembly block
critical section is active for the registered thread. Setting it to point to a critical section
descriptor (struct rseq cs) marks the beginning of the critical section.

Initialized by user-space to NULL.

Updated by user-space, which sets the address of the currently active rseq cs at the be-
ginning of assembly instruction sequence block, and set to NULL by the kernel when it
restarts an assembly instruction sequence block, as well as when the kernel detects that it
is preempting or delivering a signal outside of the range targeted by the rseq cs. Also
needs to be set to NULL by user-space before reclaiming memory that contains the tar-
geted struct rseq cs.

Read and set by the kernel.

flags
Flags indicating the restart behavior for the registered thread. This is mainly used for de-
bugging purposes. Can be a combination of:

• RSEQ CS FLAG NO RESTART ON PREEMPT: Inhibit instruction sequence block
restart on preemption for this thread.

• RSEQ CS FLAG NO RESTART ON SIGNAL: Inhibit instruction sequence block
restart on signal delivery for this thread.

• RSEQ CS FLAG NO RESTART ON MIGRATE: Inhibit instruction sequence block
restart on migration for this thread.

Initialized by user-space, used by the kernel.

The layout of struct rseq cs version 0 is as follows:

Structure alignment
This structure is aligned on 32-byte boundary.

Structure size
This structure has a fixed size of 32 bytes.

struct rseq_cs {

__u32 version;

__u32 flags;

__u64 start_ip;

__u64 post_commit_offset;

__u64 abort_ip;

} __attribute__((aligned(32)));

Fields

version
Version of this structure. Should be initialized to 0.

flags
Flags indicating the restart behavior of this structure. Can be a combination of:

• RSEQ CS FLAG NO RESTART ON PREEMPT: Inhibit instruction sequence block
restart on preemption for this critical section.

• RSEQ CS FLAG NO RESTART ON SIGNAL: Inhibit instruction sequence block
restart on signal delivery for this critical section.

Linux 2020-06-05 3

RSEQ(2) Linux Programmer’s Manual RSEQ(2)

• RSEQ CS FLAG NO RESTART ON MIGRATE: Inhibit instruction sequence block
restart on migration for this critical section.

start ip
Instruction pointer address of the first instruction of the sequence of consecutive assembly
instructions.

post commit offset
Offset (from start ip address) of the address after the last instruction of the sequence of
consecutive assembly instructions.

abort ip
Instruction pointer address where to move the execution flow in case of abort of the se-
quence of consecutive assembly instructions.

The rseq len argument is the size of the struct rseq to register.

The flags argument is 0 for registration, and RSEQ FLAG UNREGISTER for unregistration.

The sig argument is the 32-bit signature to be expected before the abort handler code.

A single library per process should keep the rseq structure in a thread-local storage variable. The
cpu id field should be initialized to -1, and the cpu id start field should be initialized to a possi-
ble CPU value (typically 0).

Each thread is responsible for registering and unregistering its rseq structure. No more than one
rseq structure address can be registered per thread at a given time.

Reclaim of rseq object’s memory must only be done after either an explicit rseq unregistration is
performed or after the thread exits.

In a typical usage scenario, the thread registering the rseq structure will be performing loads and
stores from/to that structure. It is however also allowed to read that structure from other threads.
The rseq field updates performed by the kernel provide relaxed atomicity semantics (atomic store,
without memory ordering), which guarantee that other threads performing relaxed atomic reads
(atomic load, without memory ordering) of the cpu number cache will always observe a consistent
value.

RETURN VALUE
A return value of 0 indicates success. On error, −1 is returned, and errno is set appropriately.

ERRORS
EINVAL

Either flags contains an invalid value, or rseq contains an address which is not appropri-
ately aligned, or rseq len contains an incorrect size.

ENOSYS
The rseq() system call is not implemented by this kernel.

EFAULT
rseq is an invalid address.

EBUSY
Restartable sequence is already registered for this thread.

Linux 2020-06-05 4

RSEQ(2) Linux Programmer’s Manual RSEQ(2)

EPERM
The sig argument on unregistration does not match the signature received on registration.

VERSIONS
The rseq() system call was added in Linux 4.18.

CONFORMING TO
rseq() is Linux-specific.

SEE ALSO
sched getcpu(3), membarrier(2)

Linux 2020-06-05 5

