
This document contains information on a product under development at Advanced Micro
Devices (AMD). The information is intended to help you evaluate this product. AMD re-
serves the right to change or discontinue work on this proposed product without notice.

Publication # 21928 Rev: B Amendment/0
Issue Date: February 1998

AMD-3D
Technology

Manual

TM

© 1998 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc. (“AMD”) reserves the right to make changes in its
products without notice in order to improve design or performance characteristics.

The information in this publication is believed to be accurate at the time of
publication, but AMD makes no representations or warranties with respect to the
accuracy or completeness of the contents of this publication or the information
contained herein, and reserves the right to make changes at any time, without
notice. AMD disclaims responsibility for any consequences resulting from the use
of the information included in this publication.

This publication neither states nor implies any representations or warranties of any
kind, including but not limited to, any implied warranty of merchantability or
fitness for a particular purpose. AMD products are not authorized for use as critical
components in life support devices or systems without AMD’s written approval.
AMD assumes no liability whatsoever for claims associated with the sale or use
(including the use of engineering samples) of AMD products, except as provided in
AMD’s Terms and Conditions of Sale for such products.

Trademarks

AMD, the AMD logo, and combinations thereof, K86, AMD-K5, AMD-3D, and the AMD-K6 logo are trademarks, and
RISC86 and AMD-K6 are registered trademarks of Advanced Micro Devices, Inc.

MMX is a trademark of the Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

21928B/0—February 1998 AMD-3D™ Technology Manual
Contents

Revision History . ix

1 AMD-3D™ Technology 1

Introduction . 1

Key Functionality . 2

Feature Detection . 3

Register Set . 4

Data Types . 5

AMD-3D™ Instruction Formats . 6

Definitions . 7

Execution Resources. 9

Task Switching . 13

Exceptions . 13

Prefixes . 14

2 AMD-3D Instruction Set 15

FEMMS. 16

PAVGUSB . 17

PF2ID . 19

PFACC . 21

PFADD . 23

PFCMPEQ . 25

PFCMPGE . 27

PFCMPGT . 29

PFMAX. 31

PFMIN . 33

PFMUL . 35

PFRCP . 37

PFRCPIT1 . 39

PFRCPIT2 . 41
Contents iii

AMD-3D™ Technology Manual 21928B/0—February 1998
PFRSQIT1 . 43

PFRSQRT. 45

PFSUB . 47

PFSUBR . 49

PI2FD . 51

PMULHRW . 52

PREFETCH/PREFETCHW . 54

Appendix A . 56

Division and Square Root. 56
iv Contents

21928B/0—February 1998 AMD-3D™ Technology Manual
List of Figures

Figure 1. AMD-3D/MMX™ Registers . 4

Figure 2. AMD-3D Data Type . 5

Figure 3. Single-Precision, Floating-Point Data Format. 6

Figure 4. Integer Data Types. 6

Figure 5. Register X Unit and Register Y Unit Resources 11
List of Figures v

AMD-3D™ Technology Manual 21928B/0—February 1998
vi List of Figures

21928B/0—February 1998 AMD-3D™ Technology Manual
List of Tables

Table 1. AMD-3D Technology Exponent Ranges. 9

Table 2. AMD-3D Floating-Point Instructions 12

Table 3. AMD-3D Performance-Enhancement Instructions 12

Table 4. AMD-3D and MMX Instruction Exceptions 13

Table 5. Numerical Range for the PF2ID Instruction. 20

Table 6. Numerical Range for the PFACC Instruction 22

Table 7. Numerical Range for the PFADD Instruction. 24

Table 8. Numerical Range for the PFCMPEQ Instruction 26

Table 9. Numerical Range for the PFCMPGE Instruction 28

Table 10. Numerical Range for the PFCMPGT Instruction 30

Table 11. Numerical Range for the PFMAX Instruction 32

Table 12. Numerical Range for the PFMIN Instruction 34

Table 13. Numerical Range for the PFMUL Instruction 36

Table 14. Numerical Range for the PFRCP Instruction 38

Table 15. Numerical Range for the PFRCPIT1 Instruction 40

Table 16. Numerical Range for the PFRCPIT2 Instruction 42

Table 17. Numerical Range for the PFSQIT1 Instruction 44

Table 18. Numerical Range for PFRSQRT Instruction 46

Table 19. Numerical Range for the PFSUB Instruction 48

Table 20. Numerical Range for the PFSUBR Instruction 50

Table 21. Summary of PREFETCH Instruction Type
Options . 55
List of Tables vii

AMD-3D™ Technology Manual 21928B/0—February 1998
viii List of Tables

21928B/0—February 1998 AMD-3D™ Technology Manual
Revision History

Date Rev Description

Feb 1998 A Initial Release

Feb 1998 B Clarified CPUID usage in ”Feature Detection” on page 3.
Revision History ix

AMD-3D™ Technology Manual 21928B/0—February 1998
x Revision History

21928B/0—February 1998 AMD-3D™ Technology Manual
1
AMD-3D™ Technology
Introduction

AMD-3D™ Technology is a significant innovation to the x86
architecture that drives today's personal computers. AMD-3D
technology is a group of new instructions that open the
traditional processing bottlenecks for floating-point-intensive
and multimedia applications. With AMD-3D technology,
hardware and software applications can implement more
powerful solutions to create a more entertaining and productive
PC platform. Examples of the type of improvements that
AMD-3D technology enables are faster frame rates on
high-resolution scenes, much better physical modeling of
real-world environments, sharper and more detailed 3D
imaging, smoother video playback, and near theater-quality
audio.

AMD has taken a leadership role in developing these new
instructions that enable exciting new levels of performance and
realism. AMD-3D technology was defined and implemented in
collaboration with independent software developers, including
operating system designers, application developers, and
graphics vendors. It is compatible with today's existing x86
software and requires no operating system support, thereby
enabling AMD-3D applications to work with all existing
operating systems. AMD-3D technology will first appear in the
AMD-K6® 3D and AMD-K6 3D+ processors.
Chapter 1 AMD-3D™ Technology 1

AMD-3D™ Technology Manual 21928B/0—February 1998
Key Functionality

The AMD-3D technology instructions are intended to open a
major processing bottleneck in a 3D graphics application—
floating-point operations. Today's 3D applications are facing
limitations due to the fact that only one floating-point
execution unit exists in the most advanced x86 processors. The
front end of a typical 3D graphics software pipeline performs
object physics, geometry transformations, clipping, and
l ight ing calculat ions . These computat ions are very
floating-point intensive and often limit the features and
functionality of a 3D application. The source of performance for
the AMD-3D instructions originates from the Single
Instruction, Multi-Data (SIMD) implementation. Each
instruction not only operates on two single-precision,
floating-point operands, but the microarchitecture within the
AMD-K6 3D processor family can execute up to two 3D
instructions per clock through two register execution pipelines,
which allows for a total of four floating-point operations per
clock. In addition, because the AMD-3D instructions use the
same f loat ing -point stack as the MMX™ technology
instructions, task switching between MMX and AMD-3D
operations is eliminated.

The AMD-3D technology instruction set contains 21 instructions
that support SIMD floating-point operations and includes SIMD
integer operat ions , data prefetching , and faster
MMX-to-floating-point switching. To improve MPEG decoding,
the AMD-3D instructions include a specific SIMD integer
instruction created to facilitate pixel-motion compensation.
Because media-based software typically operates on large data
sets, the processor often needs to wait for this data to be
transferred from main memory. The extra time involved with
retrieving this data can be avoided by using the new AMD-3D
instruction called PREFETCH. This instruction can ensure that
data is in the level 1 cache when it is needed. To improve the
time it takes to switch between MMX and x87 code, the
AMD-3D instructions includes the FEMMS (Fast Entry/Exit
Multimedia State) instruction, which eliminates much of the
overhead involved with the switch between these two
functional units. The addition of AMD-3D technology expands
the capabilities of the AMD-K6 family of processors and
enables a new generation of enriched user applications.
2 AMD-3D™ Technology Chapter 1

21928B/0—February 1998 AMD-3D™ Technology Manual
Feature Detection

To properly identify and use the AMD-3D instructions, the
application program must determine if the processor supports
them. The CPUID instruction gives programmers the ability to
determine the presence of AMD-3D technology on a processor.
Software applications must first test to see if the CPUID
instruction is supported. For a detailed description of the
CPUID instruction, see the AMD Processor Recognition
Application Note, order# 20734.

The presence of the CPUID instruction is indicated by the ID
bit (21) in the EFLAGS register. If this bit is writable, the
CPUID instruction is supported. The following code sample
shows how to test for the presence of the CPUID instruction.

pushfd ; save EFLAGS
pop eax ; store EFLAGS in EAX
mov ebx, eax ; save in EBX for later testing
xor eax, 00200000h ; toggle bit 21
push eax ; put to stack
popfd ; save changed EAX to EFLAGS
pushfd ; push EFLAGS to TOS
pop eax ; store EFLAGS in EAX
cmp eax, ebx ; see if bit 21 has changed
jz NO_CPUID ; if no change, no CPUID

Once the software has identified the processor’s support for
CPUID, it must test for extended functions by executing
extended function 0 (EAX=8000_000h). The EAX register
returns the largest extended function input value defined for
the CPUID instruction on the processor. If the value is not zero,
extended functions are supported.

The next step is for the programmer to determine if the
AMD-3D instructions are supported. Extended function 1 of the
CPUID instruction provides this information. Extended
function 1 (EAX=8000_0001h) of the CPUID instruction returns
the feature bits in the EDX register. If bit 31 in the EDX
register is set to 1, AMD-3D instructions are supported. The
following code sample shows how to test for AMD-3D
instruction support.

mov eax, 8000_0001h ; setup extended function 1
CPUID ; call the function
test edx, 8000_0000h ; test 31st bit
jnz YES_AMD-3D ; AMD-3D technology supported
Chapter 1 AMD-3D™ Technology 3

AMD-3D™ Technology Manual 21928B/0—February 1998
Register Set

The complete multimedia units in the AMD-K6 3D processor
combine the existing MMX instructions with the new AMD-3D
instructions. In addition, by merging AMD-3D with MMX, it
becomes possible to write x86 programs containing both
integer, MMX, and floating-point graphics instructions with no
performance penalty for switching between the MMX (integer)
and AMD-3D (floating-point) units.

The AMD-K6 3D processor implements e ight 64 -bi t
AMD-3D/MMX registers. These registers are mapped onto the
floating-point registers. As shown in Figure 1 on page 4, the
AMD-3D and MMX instructions refer to these registers as mm0
to mm7. Mapping the new AMD-3D/MMX registers onto the
floating-point register stack enables backwards compatibility
for the register saving that must occur as a result of task
switching.

Figure 1. AMD-3D™/MMX™ Registers

Aliasing the AMD-3D/MMX registers onto the floating-point
register stack provides a safe method to introduce AMD-3D and
MMX technology, because it does not require modifications to
existing operating systems. Instead of requiring operating

TAG BITS 63 0

mm0

mm7

mm1

mm6

mm5

mm2

mm3

mm4

xx

xx

xx

xx

xx

xx

xx

xx
4 AMD-3D™ Technology Chapter 1

21928B/0—February 1998 AMD-3D™ Technology Manual
system modifications, new AMD-3D and MMX applications are
supported through device drivers, AMD-3D and MMX libraries,
or Dynamic Link Library (DLL) files.

Current operating systems have support for floating-point
operations and the floating-point register state. Using the
floating-point registers for AMD-3D and MMX code is a
convenient way of implementing non-intrusive support for
AMD-3D and MMX instructions. Every time the processor
executes an AMD-3D or MMX instruction, all the floating-point
register tag bits are set to zero (00b=valid), except for the
FEMMS and EMMS instructions, which sets all tag bits to one
(11b=empty).

Note: Executing the PREFETCH instruction does not change the
tag bits.

Data Types

AMD-3D technology uses a packed data format. The data is
packed in a single, 64-bit AMD-3D/MMX register or a quadword
memory operand.

Figure 2 shows the AMD-3D floating-point data type. D0 and D1
each hold an IEEE 32-bit single-precision, floating-point
doubleword.

Figure 2. AMD-3D™ Data Type

Figure 3 on page 6 shows the format of the IEEE 32-bit,
single-precision, floating-point format.

63 032 31
(32 bits x 2) Two packed, single-precision, floating-point doublewords

D0D1
Chapter 1 AMD-3D™ Technology 5

AMD-3D™ Technology Manual 21928B/0—February 1998
Figure 3. Single-Precision, Floating-Point Data Format

Figure 4 on page 6 shows the formats for the integer data types.

Figure 4. Integer Data Types

AMD-3D™ Instruction Formats
The format of AMD-3D instruction encodings is based on the
conventional x86 modR/M instruction format and is similar to
the format used by MMX instructions. The assembly language
syntax used for the AMD-3D instructions is as follows:

AMD-3D Mnemonic mmreg1, mmreg2/mem64

031
32-bit, single-precision, floating-point doubleword

22
SignificandBiased ExponentS

Value definitions

1.X=(–1)S*0 Biased Exponent=0
2.X=(–1)S*2(Biased Exponent – 127)*Significand 0<Biased Exponent<FFh
3.X=Undefined Biased Exponent=FFh

X is the value of the 32-bit, single-precision, floating-point doubleword.

23

63 56 55 47

63

39 31 23 15 7

47

63

63

31 15

48 40 32 24 16

0

032

48 32 16 0

08

31

(8 bits x 8) Packed bytes

(16 bits x 4) Packed words

(32 bits x 2) Packed double words

(64 bits x 1) Quadword

B2 B1B4 B3B5 B0B6B7

W0W1W2W3

D0D1

Q0
6 AMD-3D™ Technology Chapter 1

21928B/0—February 1998 AMD-3D™ Technology Manual
The destination and source1 operand (mmreg1) must be an
MMX register (mm0–mm7) . The source2 operand
(mmreg2/mem64) can be either an MMX register or a 64-bit
memory value.

The encoding uses the opcode prefix 0Fh followed by a second
opcode byte of 0Fh. To differentiate the various AMD-3D
instructions, a third instruction suffix byte is used. This suffix
byte occupies the same position at the end of a AMD-3D
instructions as would an imm8 byte. The opcode format is as
follows:

0Fh 0Fh modR/M [sib] [displacement] AMD-3D_suffix

The specific operands (mmreg1 and mmreg2/mem64)
determine the values used in modR/M [sib] [displacement], and
follow conventional x86 encodings. The AMD-3D suffix is
determined by the actual AMD-3D instruction. The AMD-3D
suffixes are defined in Table 2 on page 12.

As an example, the AMD-3D PFMUL instruction can produce
the following opcodes, depending on its use:

Opcode Instruction

0F 0F CA B4 PFMUL mm1, mm2
0F 0F 0B B4 PFMUL mm1, [ebx]
0F 0F 4B 0A B4 PFMUL mm1, [ebx+10]

26 0F 0F 0B B4 PFMUL mm1, es:[ebx]
0F 0F 4C 83 0A B4 PFMUL mm1, [ebx+eax*4+10]

The encoding of the two performance-enhancement
instructions (FEMMS and PREFETCH) uses a single opcode
prefix 0Fh. The details of the opcodes for these instructions are
shown on pages 16 and 54 respectively.

Definitions

AMD-3D technology provides 21 additional instructions to
support high-performance, 3D graphics and audio processing.
AMD-3D instructions are vector instructions that operate on
64-bit registers. AMD-3D instructions are SIMD—operating on
eight 8-bit operands, four 16-bit operands, or two 32-bit
operands.
Chapter 1 AMD-3D™ Technology 7

AMD-3D™ Technology Manual 21928B/0—February 1998
The definitions for the AMD-3D instructions starting on page 15
contain designations for the classification of the instruction as
vectored or scalar. Vector instructions operate in parallel on
two sets of 32-bit, single-precision, floating-point words.
Instructions that are labeled as scalar instructions operate on a
single set of 32-bit operands (from the low halves of the two
64-bit operands).

The AMD-3D single-precision, floating-point format is
compatible with the IEEE-754, single-precision format. This
format comprises a 1-bit sign, an 8-bit biased exponent, and a
23-bit significand with one hidden integer bit for a total of 24
bits in the significand. The bias of the exponent is 127,
consistent with the IEEE single-precision standard. The
significands are normalized to be within the range of [1,2).

In contrast to the IEEE standard that dictates four rounding
modes, AMD-3D technology supports one rounding mode —
either round-to-nearest or round-to-zero (truncation). The
hardware implementation of AMD-3D technology determines
the rounding mode. The AMD-K6 3D processor implements
round-to-nearest mode. Regardless of the rounding mode used,
the floating-point-to-integer and integer-to-floating-point
conversion instructions, PF2ID and PI2FD, always use the
round-to-zero (truncation) mode.

The largest, representable, normal number in magnitude for
this precision in hexadecimal has an exponent of FEh and a
significand of 7FFFFFh, with a numerical value of 2127 (2 – 2–23).
All results that overflow above the maximum-representable
posi t ive value are saturated to e i ther this
maximum-representable normal number or to positive infinity.
S imi larly, a l l result s that overf low below the
minimum-representable negative value are saturated to either
this minimum-representable normal number or to negative
infinity.

The implementation of AMD-3D technology determines how
arithmetic overflow is handled — either properly signed
maximum- or minimum-representable normal numbers or
properly signed infinities. The AMD-K6 3D processor generates
properly signed maximum- or minimum-representable normal
numbers.

Infinities and NaNs are not supported as operands to AMD-3D
instructions.
8 AMD-3D™ Technology Chapter 1

21928B/0—February 1998 AMD-3D™ Technology Manual
The smallest representable normal number in magnitude for
this precision in hexadecimal has an exponent of 01h and a
significand of 000000h, with a numerical value of 2 – 1 2 6.
Accordingly, all results below this minimum representable
value in magnitude are held to zero. Table 1 shows the
exponent ranges supported by the AMD-3D technology.

Like MMX instructions, AMD-3D instructions do not generate
exceptions nor do they set any status flags. It is the user’s
responsibility to ensure that in-range data is provided to
AMD-3D instructions and that all computations remain within
valid ranges (or are held as expected).

Execution Resources

The register operations of all AMD-3D floating-point
instructions are executed by either the register X unit or the
register Y unit. One operation can be issued to each register
unit each clock cycle, for a maximum issue and execution rate
of two AMD-3D operations per cycle. All AMD-3D operations
have an execution latency of two clock cycles and are fully
pipelined.

Even though AMD-3D execution resources are not duplicated in
both register units (for example, there are not two pairs of
AMD-3D multipliers, just one shared pair of multipliers), there
are no instruction-decode or operation-issue pairing
restrictions. When, for example, an AMD-3D multiply operation
starts execution in a register unit, that unit grabs and uses the
one shared pair of AMD-3D multipliers. Only when actual

Table 1. AMD-3D™ Technology Exponent Ranges

Biased
Exponent Description

FFh Unsupported *

00h Zero

00h<x<FFh Normal

01h 2 (1–127) lowest possible exponent

FEh 2 (254–127) largest possible exponent
Note:

* Unsupported numbers can be used as operands. The results of
operations with unsupported numbers are undefined.
Chapter 1 AMD-3D™ Technology 9

AMD-3D™ Technology Manual 21928B/0—February 1998
contention occurs between two AMD-3D operations starting
execution at the same time is one of the operations held up for
one cycle in its first execution pipe stage while the other
proceeds. The delay is never more than one cycle.

For code optimization purposes, AMD-3D operations are
grouped into two categories. These categories are based on
execution resources and are important when creating properly
scheduled code. As long as two AMD-3D operations that start
execution simultaneously do not fall into the same category,
both operations will start execution without delay.

The first category of instructions contains the operations for the
following AMD-3D instructions: PFADD, PFSUB, PFSUBR,
PFACC, PFCMPx, PFMIN, PFMAX, PI2FD, PF2ID, PFRCP, and
PFRSQRT.

The second category contains the operations for the following
AMD-3D instructions: PFMUL, PFRCPIT1, PFRSQIT1, and
PFRCPIT2.

Note: AMD-3D add and multiply operations, among other
combinations, can execute simultaneously.

Normally, in high-performance AMD-3D code, all of the
AMD-3D instructions are properly scheduled apart from each
other so as to avoid delays due to execution resource
contentions (as well as taking into account dependencies and
execution latencies). For further information regarding code
optimization, see the AMD-K6® 3D Processor x86 Code
Optimization Application Note, order# 21849. This document
provides in-depth discussions of code optimization techniques
for the AMD-K6 3D processor.

The SIMD 3D instructions are summarized in Table 2 on
page 12. The dedicated and shared execution resources of the
register X unit and register Y unit are shown in Figure 5 on
page 11. The execution resources for some MMX operations, as
well as all AMD-3D operations, are shared between the two
register units. For contention-checking purposes, each box
represents a category of operations that cannot start execution
simultaneously. In addition, the MMX and AMD-3D multiplies
use the same hardware, while MMX and AMD-3D adds and
subtracts do not.
10 AMD-3D™ Technology Chapter 1

21928B/0—February 1998 AMD-3D™ Technology Manual
The two AMD-3D performance-enhancement instructions are
summarized in Table 3 on page 12. The FEMMS instruction
does not use any specific execution resource or pipeline. The
PREFETCH instruction is operated on in the Load unit.

Figure 5. Register X Unit and Register Y Unit Resources

Integer ALU

Integer Shift

Integer Multiply
and Divide Integer ALU

MMX ALU
Add/Subtract,

Compare

MMX Shifter

Integer Byte
Operations

Integer Special
Registers

Integer Segment
Register Loads

MMX ALU
Add/Subtract,

Compare

MMX ALU
Logical, Pack,

Unpack

Register X Execution
Pipeline

AMD-3D
Add/Subtract,

Compare, Integer
Conversion,

Reciprocal and
Reciprocal

Square Root
Table Lookup

MMX and
AMD-3D
Multiply,

Reciprocal and
Reciprocal

Square Root
Iteration

MMX ALU
Logical, Pack,

Unpack

Shared Register X and Y
Resources

Register Y Execution
Pipeline

Dedicated Register X
Resources

Dedicated Register Y
Resources
Chapter 1 AMD-3D™ Technology 11

AMD-3D™ Technology Manual 21928B/0—February 1998
Table 2. AMD-3D™ Floating-Point Instructions

Operation Function Opcode
Suffix

PAVGUSB Packed 8-bit Unsigned Integer Averaging BFh

PFADD Packed Floating-Point Addition 9Eh

PFSUB Packed Floating-Point Subtraction 9Ah

PFSUBR Packed Floating-Point Reverse Subtraction AAh

PFACC Floating-Point Accumulate AEh

PFCMPGE Packed Floating-Point Comparison, Greater or Equal 90h

PFCMPGT Packed Floating-Point Comparison, Greater A0h

PFCMPEQ Packed Floating-Point Comparison, Equal B0h

PFMIN Packed Floating-Point Minimum 94h

PFMAX Packed Floating-Point Maximum A4h

PI2FD Packed 32-bit Integer to Floating-Point Conversion 0Dh

PF2ID Packed Floating-Point to 32-bit Integer 1Dh

PFRCP Floating-Point Reciprocal Approximation 96h

PFRSQRT Floating-Point Reciprocal Square Root Approximation 97h

PFMUL Packed Floating-Point Multiplication B4h

PFRCPIT1 Packed Floating-Point Reciprocal First Iteration Step A6h

PFRSQIT1 Packed Floating-Point Reciprocal Square Root First Iteration Step A7h

PFRCPIT2 Packed Floating-Point Reciprocal/Reciprocal Square Root Second Iteration Step B6h

PMULHRW Packed 16-bit Integer Multiply with rounding B7h

Table 3. AMD-3D™ Performance-Enhancement Instructions

Operation Function Opcode
Suffix

FEMMS Faster entry/exit of the MMX or floating-point state 0Eh

PREFETCH Prefetch at least a 32-byte line into L1 data cache (Dcache) 0Dh
12 AMD-3D™ Technology Chapter 1

21928B/0—February 1998 AMD-3D™ Technology Manual
Task Switching
With respect to task switching, treat the AMD-3D instructions
exactly the same as MMX instructions. Operating system design
must be taken into account when writing an AMD-3D program.

The programmer must know whether the operating system
automatically saves the current states when task switching, or if
the AMD-3D program has to provide the code to save states.

If a task switch occurs, the Control Register (CR0) Task Switch
(TS) bit is set to 1. The processor then generates an interrupt 7
(int 7—Device Not Available) when it encounters the next
floating-point, AMD-3D, or MMX instruction, allowing the
operating system to save the state of the AMD-3D/MMX/FP
registers.

In a multitasking operating system, if there is a task switch
when AMD-3D/MMX applications are running with older
applications that do not include MMX instructions, the
MMX/FP register state is still saved automatically through the
int 7 handler.

Exceptions

Table 4 contains a list of exceptions that AMD-3D and MMX
instructions can generate.

Table 4. AMD-3D™ and MMX™ Instruction Exceptions

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X X X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1. (In
Protected Mode, CPL = 3.)
Chapter 1 AMD-3D™ Technology 13

AMD-3D™ Technology Manual 21928B/0—February 1998
The rules for exceptions are the same for both MMX and
AMD-3D instructions. In addition, exception detection and
handling is identical for MMX and AMD-3D instructions. None
of the exception handlers need modification.

Notes:

1. An invalid opcode exception (interrupt 6) occurs if an
AMD-3D instruction is executed on a processor that does
not support AMD-3D instructions.

2. If a floating-point exception is pending and the processor
encounters an AMD-3D instruction, FERR# is asserted
and, if CR0.NE = 1, an interrupt 16 is generated. (This is
the same for MMX instructions.)

Prefixes

The following prefixes can be used with AMD-3D instructions:

■ The segment override prefixes (2Eh/CS, 36h/SS, 3Eh/DS,
26h/ES, 64h/FS, and 65h/GS) affect AMD-3D instructions
that contain a memory operand.

■ The address-size override prefix (67h) affects AMD-3D
instructions that contain a memory operand.

■ The operand-size override prefix (66h) is ignored.

■ The LOCK prefix (F0h) triggers an invalid opcode exception
(interrupt 6).

■ The REP prefixes (F3h/ REP/ REPE/ REPZ, F2h/ REPNE/
REPNZ) are ignored.
14 AMD-3D™ Technology Chapter 1

21928B/0—February 1998 AMD-3D™ Technology Manual
2
AMD-3D™ Instruction Set
The following AMD-3D instruction definitions are in
alphabetical order according to the instruction mnemonics.
Chapter 2 AMD-3D™ Instruction Set 15

AMD-3D™ Technology Manual 21928B/0—February 1998
FEMMS

mnemonic opcode description

FEMMS 0F 0Eh Faster Enter/Exit of the MMX or floating-point state

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

Like the EMMS instruction, the FEMMS instruction can be used to clear the MMX
state following the execution of a block of MMX instructions. Because the MMX
registers and tag words are shared with the floating-point unit, it is necessary to clear
the state before executing floating-point instructions. Unlike the EMMS instruction,
the contents of the MMX/floating-point registers are undefined after a FEMMS
instruction is executed. Therefore, the FEMMS instruction offers a faster context
switch at the end of an MMX routine where the values in the MMX registers are no
longer required. FEMMS can also be used prior to executing MMX instructions where
the preceding floating-point register values are no longer required, which facilitates
faster context switching.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set
to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the
control register (CR0) is set to 1.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.
16 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PAVGUSB

mnemonic opcode/suffix description

PAVGUSB mmreg1, mmreg2/mem64 0F 0Fh / BFh Average of unsigned packed 8-bit values

Privilege: None
Registers Affected: MMX
Flags Affected: None
Exceptions Generated:

The PAVGUSB instruction produces the rounded averages of the eight unsigned 8-bit
integer values in the source operand (an MMX register or a 64-bit memory location)
and the eight corresponding unsigned 8-bit integer values in the destination operand
(an MMX register). It does so by adding the source and destination byte values and
then adding a 001h to the 9-bit intermediate value. The intermediate value is then
divided by 2 (shifted right one place) and the eight unsigned 8-bit results are stored
in the MMX register specified as the destination operand.

The PAVGUSB instruction can be used for pixel averaging in MPEG-2 motion
compensation and video scaling operations.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point
exception pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 17

AMD-3D™ Technology Manual 21928B/0—February 1998
Functional Illustration of the PAVGUSB Instruction

The following list explains the functional illustration of the PAVGUSB instruction:

■ The rounded byte average of FFh and FFh is FFh.

■ The rounded byte average of FFh and 00h is 80h.

■ The rounded byte average of 01h and FFh is also 80h.

■ The rounded byte average of 0Fh and 10h is 10h.

■ The rounded byte average of 00h and 01h is 01h.

■ The rounded byte average of 70h and 44h is 5Ah.

■ The rounded byte average of 07h and F7h is 7Fh.

■ The rounded byte average of 9Ah and A8h is A1h.

The equations for byte averaging with rounding are as follows:

■ mmreg1[63:56] = (mmreg1[63:56] + mmreg2/mem64[63:56] + 01h)/2

■ mmreg1[55:48] = (mmreg1[55:48] + mmreg2/mem64[55:48] + 01h)/2

■ mmreg1[47:40] = (mmreg1[47:40] + mmreg2/mem64[47:40] + 01h)/2

■ mmreg1[39:32] = (mmreg1[39:32] + mmreg2/mem64[39:32] + 01h)/2

■ mmreg1[31:24] = (mmreg1[31:24] + mmreg2/mem64[31:24] + 01h)/2

■ mmreg1[23:16] = (mmreg1[23:16] + mmreg2/mem64[23:16] + 01h)/2

■ mmreg1[15:8] = (mmreg1[15:8] + mmreg2/mem64[15:8] + 01h)/2

■ mmreg1[7:0] = (mmreg1[7:0] + mmreg2/mem64[7:0] + 01h)/2

FFh FFh 01h 0Fh 9Ah00h 70h 07hmmreg2/mem64

mmreg1

per byte averaging

= = = = = = ==

FFh 80h 80h 10h A1h01h 5Ah 7Fhmmreg1

FFh 00h FFh 10h A8h01h 44h F7h

063

063

063

Indicates a value that was rounded-up
18 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PF2ID

mnemonic opcode/imm8 description

PF2ID mmreg1, mmreg2/mem64 0Fh 0Fh / 1Dh Converts packed floating-point operand to packed
32-bit integer

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PF2ID is a vector instruction that converts a vector register containing
single-precision, floating-point operands to 32-bit signed integers using truncation.
Table 5 on page 20 shows the numerical range of the PF2ID instruction.

The PF2ID instruction performs the following operations:

IF (mmreg2/mem64[31:0] >= 231)
THEN mmreg1[31:0] = 7FFF_FFFFh

ELSEIF (mmreg2/mem64[31:0] <= –231)
THEN mmreg1[31:0] = 8000_0000h

ELSE mmreg1[31:0] = int(mmreg2/mem64[31:0])
IF (mmreg2/mem64[63:32] >= 231)

THEN mmreg1[63:32] = 7FFF_FFFFh
ELSEIF (mmreg2/mem64[63:32] <= –231)

THEN mmreg1[63:32] = 8000_0000h
ELSE mmreg1[63:32] = int(mmreg2/mem64[63:32])

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 19

AMD-3D™ Technology Manual 21928B/0—February 1998
Related Instructions See the PI2FD instruction.

Table 5. Numerical Range for the PF2ID Instruction

Source 2 Source 1 and Destination

0 0

Normal, abs(Source 1) <1 0

Normal, –2147483648 < Source 1 <= –1 round to zero (Source 1)

Normal, 1 <= Source 1< 2147483648 round to zero (Source 1)

Normal, Source 1 >= 2147483648 7FFF_FFFFh

Normal, Source 1 <= –2147483648 8000_0000h

Unsupported Undefined
20 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFACC

mnemonic opcode/imm8 description

PFACC mmreg1, mmreg2/mem64 0Fh 0Fh / AEh Floating-point accumulate

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFACC is a vector instruction that accumulates the two words of the destination
operand and the source operand and stores the results in the low and high words of
destination operand respectively. Both operands are single-precision, floating-point
operands with 24-bit significands. Table 6 on page 22 shows the numerical range of the
PFACC instruction.

The PFACC instruction performs the following operations:

mmreg1[31:0] = mmreg1[31:0] + mmreg1[63:32]
mmreg1[63:32] = mmreg2/mem64[31:0] + mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 21

AMD-3D™ Technology Manual 21928B/0—February 1998
Table 6. Numerical Range for the PFACC Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 * Source 2 Source 2

Normal Source 1 Normal, +/– 0 ** Undefined

Unsupported Source 1 Undefined Undefined

Notes:
* The sign of the result is the logical AND of the signs of the source operands.
** If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand

that is larger in magnitude (if the magnitudes are equal, the sign of source 1 is used). If the absolute value of the result
is greater than or equal to 2 128, the result is the largest normal number with the sign being the sign of the source operand
that is larger in magnitude.
22 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFADD

mnemonic opcode/imm8 description

PFADD mmreg1, mmreg2/mem64 0Fh 0Fh / 9Eh Packed, floating-point addition

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFADD is a vector instruction that performs addition of the destination operand and
the source operand. Both operands are single-precision, floating-point operands with
24-bit significands. Table 7 on page 24 shows the numerical range of the PFADD
instruction.

The PFADD instruction performs the following operations:

mmreg1[31:0] = mmreg1[31:0] + mmreg2/mem64[31:0]
mmreg1[63:32] = mmreg1[63:32] + mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 23

AMD-3D™ Technology Manual 21928B/0—February 1998
Table 7. Numerical Range for the PFADD Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 * Source 2 Source 2

Normal Source 1 Normal, +/– 0 ** Undefined

Unsupported Source 1 Undefined Undefined

Notes:
* The sign of the result is the logical AND of the signs of the source operands.
** If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand

that is larger in magnitude (if the magnitudes are equal, the sign of source 1 is used). If the absolute value of the result
is greater than or equal to 2 128, the result is the largest normal number with the sign being the sign of the source operand
that is larger in magnitude.
24 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFCMPEQ

mnemonic opcode/imm8 description

PFCMPEQ mmreg1, mmreg2/mem64 0Fh 0Fh / B0h Packed floating-point comparison, equal to

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFCMPEQ is a vector instruction that performs a comparison of the destination
operand and the source operand and generates all one bits or all zero bits based on the
result of the corresponding comparison. Table 8 on page 26 shows the numerical range
of the PFCMPEQ instruction.

The PFCMPEQ instruction performs the following operations:

IF (mmreg1[31:0] = mmreg2/mem64[31:0])
THEN mmreg1[31:0] = FFFF_FFFFh

ELSE mmreg1[31:0] = 0000_0000h
IF (mmreg1[63:32] = mmreg2/mem64[63:32]

THEN mmreg1[63:32] = FFFF_FFFFh
ELSE mmreg1[63:32] = 0000_0000h

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 25

AMD-3D™ Technology Manual 21928B/0—February 1998
Related Instructions See the PCMPGE instruction.

See the PCMPGT instruction.

Table 8. Numerical Range for the PFCMPEQ Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 FFFF_FFFFh * 0000_0000h 0000_0000h

Normal 0000_0000h
0000_0000h,

FFFF_FFFFh **
0000_0000h

Unsupported 0000_0000h 0000_0000h Undefined

Notes:
* Positive zero is equal to negative zero.
** The result is FFFF_FFFFh if source 1 and source 2 have identical signs, exponents, and mantissas. Otherwise, the result is

0000_0000h.
26 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFCMPGE

mnemonic opcode/imm8 description

PCMPGE mmreg1, mmreg2/mem64 0Fh 0Fh / 90h Packed floating-point comparison, greater than or
equal to

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFCMPGE is a vector instruction that performs a comparison of the destination
operand and the source operand and generates all one bits or all zero bits based on the
result of the corresponding comparison. Table 9 on page 28 shows the numerical range
of the PFCMPGE instruction.

The PFCMPGE instruction performs the following operations:

IF (mmreg1[31:0] >= mmreg2/mem64[31:0])
THEN mmreg1[31:0] = FFFF_FFFFh

ELSE mmreg1[31:0] = 0000_0000h
IF (mmreg1[63:32] >= mmreg2/mem64[63:32]

THEN mmreg1[63:32] = FFFF_FFFFh
ELSE mmreg1[63:32] = 0000_0000h

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 27

AMD-3D™ Technology Manual 21928B/0—February 1998
Related Instructions See the PCMPEQ instruction.

See the PCMPGT instruction.

Table 9. Numerical Range for the PFCMPGE Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 FFFF_FFFFh *
0000_0000h,

FFFF_FFFFh **
Undefined

Normal
0000_0000h,

FFFF_FFFF ***

0000_0000h,

FFFF_FFFFh ****
Undefined

Unsupported Undefined Undefined Undefined

Notes:
* Positive zero is equal to negative zero.
** The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
*** The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
**** The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative and source 1 is smaller

than or equal in magnitude to source 2, or if source 1 and source 2 are both positive and source 1 is greater than or equal
in magnitude to source 2. The result is 0000_0000h in all other cases.
28 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFCMPGT

mnemonic opcode/imm8 description

PCMPGT mmreg1, mmreg2/mem64 0Fh 0Fh / A0h Packed floating-point comparison, greater than

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFCMPGT is a vector instruction that performs a comparison of the destination
operand and the source operand and generates all one bits or all zero bits based on the
result of the corresponding comparison. Table 10 on page 30 shows the numerical
range of the PFCMPGT instruction.

The PFCMPGT instruction performs the following operations:

IF (mmreg1[31:0] > mmreg2/mem64[31:0])
THEN mmreg1[31:0] = FFFF_FFFFh

ELSE mmreg1[31:0] = 0000_0000h
IF (mmreg1[63:32] > mmreg2/mem64[63:32]

THEN mmreg1[63:32] = FFFF_FFFFh
ELSE mmreg1[63:32] = 0000_0000h

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 29

AMD-3D™ Technology Manual 21928B/0—February 1998
Related Instructions See the PCMPEQ instruction.

See the PCMPGE instruction.

Table 10. Numerical Range for the PFCMPGT Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 0000_0000h
0000_0000h,

FFFF_FFFFh *
Undefined

Normal
0000_0000h,

FFFF_FFFF **

0000_0000h,

FFFF_FFFFh ***
Undefined

Unsupported Undefined Undefined Undefined

Notes:
* The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
** The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.
*** The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative and source 1 is smaller

in magnitude than source 2, or if source 1 and source 2 are positive and source 1 is greater in magnitude than source 2.
The result is 0000_0000h in all other cases.
30 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFMAX

mnemonic opcode/imm8 description

PFMAX mmreg1, mmreg2/mem64 0Fh 0Fh / A4h Packed floating-point maximum

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFMAX is a vector instruction that returns the larger of the two single-precision,
floating-point operands. Any operation with a zero and a negative number returns
positive zero. An operation consisting of two zeros returns positive zero. Table 11 on
page 32 shows the numerical range of the PFMAX instruction.

The PFMAX instruction performs the following operations:

IF (mmreg1[31:0] > mmreg2/mem64[31:0])
THEN mmreg1[31:0] = mmreg1[31:0]

ELSE mmreg1[31:0] = mmreg2/mem64[31:0]
IF (mmreg1[63:32] > mmreg2/mem64[63:32])

THEN mmreg1[63:32] = mmreg1[63:32]
ELSE mmreg1[63:32] = mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 31

AMD-3D™ Technology Manual 21928B/0—February 1998
Related Instructions See the PFMIN instruction.

Table 11. Numerical Range for the PFMAX Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +0 * Undefined

Normal Source 1, +0 ** Source 1/Source 2 *** Undefined

Unsupported Undefined Undefined Undefined

Notes:
* The result is source 2, if source 2 is positive. Otherwise, the result is positive zero.
** The result is source 1, if source 1 is positive. Otherwise, the result is positive zero.
*** The result is source 1, if source 1 is positive and source 2 is negative. The result is source 1, if both are positive and source 1

is greater in magnitude than source 2. The result is source 1, if both are negative and source 1 is lesser in magnitude than
source 2. The result is source 2 in all other cases.
32 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFMIN

mnemonic opcode/imm8 description

PFMIN mmreg1, mmreg2/mem64 0Fh 0Fh / 94h Packed floating-point minimum

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFMIN is a vector instruction that returns the smaller of the two single-precision,
floating-point operands. Any operation with a zero and a positive number returns
positive zero. An operation consisting of two zeros returns positive zero. Table 12 on
page 34 shows the numerical range of the PFMIN instruction.

The PFMIN instruction performs the following operations:

IF (mmreg1[31:0] < mmreg2/mem64[31:0])
THEN mmreg1[31:0] = mmreg1[31:0]

ELSE mmreg1[31:0] = mmreg2/mem64[31:0]
IF (mmreg1[63:32] < mmreg2/mem64[63:32])

THEN mmreg1[63:32] = mmreg1[63:32]
ELSE mmreg1[63:32] = mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 33

AMD-3D™ Technology Manual 21928B/0—February 1998
Related Instructions See the PFMAX instruction.

Table 12. Numerical Range for the PFMIN Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +0 Source 2, +0 * Undefined

Normal Source 1, +0 ** Source 1/Source 2 *** Undefined

Unsupported Undefined Undefined Undefined

Notes:
* The result is source 2, if source 2 is negative. Otherwise, the result is positive zero.
** The result is source 1, if source 1 is negative. Otherwise, the result is positive zero.
*** The result is source 1, if source 1 is negative and source 2 is positive. The result is source 1, if both are negative and source

1 is greater in magnitude than source 2. The result is source 1, if both are positive and source 1 is lesser in magnitude than
source 2. The result is source 2 in all other cases.
34 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFMUL

mnemonic opcode/imm8 description

PFMUL mmreg1, mmreg2/mem64 0Fh 0Fh / B4h Packed floating-point multiplication

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFMUL is a vector instruction that performs multiplication of the destination
operand and the source operand. Both operands are single-precision, floating-point
operands with 24-bit significands. Table 13 on page 36 shows the numerical range of
the PFMIN instruction.

The PFMUL instruction performs the following operations:

mmreg1[31:0] = mmreg1[31:0] * mmreg2/mem64[31:0]
mmreg1[63:32] = mmreg1[63:32] * mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 35

AMD-3D™ Technology Manual 21928B/0—February 1998
Table 13. Numerical Range for the PFMUL Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 * +/– 0 * +/– 0 *

Normal +/– 0 * Normal, +/– 0 ** Undefined

Unsupported +/– 0 * Undefined Undefined

Notes:
* The sign of the result is the exclusive-OR of the signs of the source operands.
** If the absolute value of the result is less then 2 –126, the result is zero with the sign being the exclusive-OR of the signs of the source

operands. If the absolute value of the product is greater than or equal to 2 128, the result is the largest normal number with the
sign being exclusive-OR of the signs of the source operands.
36 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFRCP

mnemonic opcode/imm8 description

PFRCP mmreg1, mmreg2/mem64 0Fh 0Fh / 96h Floating-point reciprocal approximation

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRCP is a scalar instruction that returns a low-precision estimate of the reciprocal of
the source operand. The single result value is duplicated in both high and low halves
of this instruction’s 64-bit result. The source operand is single-precision with a 24-bit
significand, and the result is accurate to 14 bits. Table 14 on page 38 shows the
numerical range of the PFRCP instruction.

Increased accuracy (the full 24 bits of a single-precision significand) requires the use
of two additional instructions (PFRCPIT1 and PFRCPIT2). The first stage of this
increase or refinement in accuracy (PFRCPIT1) requires that the input and output of
the already executed PFRCP instruction be used as input to the PFRCPIT1
instruction. Refer to “Appendix A” on page 56 for an application-specific example of
how to use this instruction and related instructions.

The PFRCP instruction performs the following operations:

mmreg1[31:0] = reciprocal(mmreg2/mem64[31:0])
mmreg1[63:32] = reciprocal(mmreg2/mem64[31:0])

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 37

AMD-3D™ Technology Manual 21928B/0—February 1998
In the following code example, the bold line illustrates the PFRCP instruction in a
sequence used to compute q = a/b accurate to 24 bits:

X0 = PFRCP(b)
X1 = PFRCPIT1(b,X0)
X2 = PFRCPIT2(X1,X0)
q = PFMUL(a,X2)

Related Instructions See the PFRCPIT1 instruction.

See the PFRCPIT2 instruction.

Table 14. Numerical Range for the PFRCP Instruction

Source 1 and
Destination

Source 2

0 +/– Maximum Normal*

Normal Normal, +/– 0 **

Unsupported Undefined

Notes:
* The result has the same sign as the source operand.
** If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand.

Otherwise, the result is a normal with the sign being the same sign as the source operand.
38 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
Chapter 2 AMD-3D™ Instruction Set 39

PFRCPIT1

mnemonic opcode/imm8 description

PFRCPIT1 mmreg1, mmreg2/mem64 0Fh 0Fh / A6h Packed floating-point reciprocal, first iteration step

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRCPIT1 is a vector instruction that performs the first step in a Newton-Raphson
iteration to refine the reciprocal approximation produced by the PFRCP instruction
(the second and final step yields a result accurate to 24 bits). Table 15 on page 40
shows the numerical range of the PFRCPIT1 instruction.

The behavior of this instruction is only defined for those combinations of operands
such that one source operand was the input to the PFRCP instruction and the other
source operand was the output of the same PFRCP instruction. Refer to “Appendix A”
on page 56 for an application-specific example of how to use this instruction and
related instructions.

In the following code example, the bold line illustrates the PFRCPIT1 instruction in a
sequence used to compute q = a/b accurate to 24 bits:

X0 = PFRCP(b)
X1 = PFRCPIT1(b,X0)
X2 = PFRCPIT2(X1,X0)
q = PFMUL(a,X2)

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)

AMD-3D™ Technology Manual 21928B/0—February 1998
Related Instructions See the PFRCP instruction.

See the PFRCPIT2 instruction.

Table 15. Numerical Range for the PFRCPIT1 Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 * +/– 0 * +/– 0 *

Normal +/– 0 * Normal ** Undefined

Unsupported +/– 0 * Undefined Undefined

Notes:
* The sign of the result is the exclusive-OR of the signs of the source operands.
** The sign is positive.
40 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFRCPIT2

mnemonic opcode/imm8 description

PFRCPIT2 mmreg1, mmreg2/mem64 0Fh 0Fh / B6h Packed floating-point reciprocal/reciprocal square
root, second iteration step

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRCPIT2 is a vector instruction that performs the second and final step in a
Newton-Raphson iteration to refine the reciprocal or reciprocal square root
approximation produced by the PFRCP and PFSQRT instructions, respectively.
Table 16 on page 42 shows the numerical range of the PFRCPIT2 instruction.

The behavior of this instruction is only defined for those combinations of operands
such that the first source operand (mmreg1) was the output of either the PFRCPIT1 or
PFRSQIT1 instructions and the second source operand (mmreg2/mem64) was the
output of either the PFRCP or PFRSQRT instructions. Refer to “Appendix A” on
page 56 for an application-specific example of how to use this instruction and related
instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 41

AMD-3D™ Technology Manual 21928B/0—February 1998
In the following code example, the bold line illustrates the PFRCPIT2 instruction in a
sequence used to compute q = a/b accurate to 24 bits:

X0 = PFRCP(b)
X1 = PFRCPIT1(b,X0)
X2 = PFRCPIT2(X1,X0)
q = PFMUL(a,X2)

Related Instructions See the PFRCPIT1 instruction.

See the PFRSQIT1 instruction.

See the PFRCP instruction.

See the PFRSQRT instruction.

Table 16. Numerical Range for the PFRCPIT2 Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 * +/– 0 * +/– 0 *

Normal +/– 0 * Normal, +/– 0 ** Undefined

Unsupported +/– 0 * Undefined Undefined

Notes:
* The sign of the result is the exclusive-OR of the signs of the source operands.
** If the absolute value of the result is less then 2 –126, the result is zero with the sign being the exclusive-OR of the signs of the source

operands. If the absolute value of the product is greater than or equal to 2 128, the result is the largest normal number with the
sign being exclusive-OR of the signs of the source operands.
42 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFRSQIT1

mnemonic opcode/imm8 description

PFRSQIT1 mmreg1, mmreg2/mem64 0Fh 0Fh / A7h Packed floating-point reciprocal square root, first
iteration step

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRSQIT1 is a vector instruction that performs the first step in a Newton-Raphson
iteration to refine the reciprocal square root approximation produced by the PFSQRT
instruction (the second and final step is accurate to 24 bits). Table 17 on page 44
shows the numerical range of the PFRCPIT2 instruction.

The behavior of this instruction is only defined for those combinations of operands
such that one source operand was the input to the PFRSQRT instruction and the other
source operand is the square of the output of the same PFRSQRT instruction. Refer to
“Appendix A” on page 56 for an application-specific example of how to use this
instruction and related instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 43

AMD-3D™ Technology Manual 21928B/0—February 1998
In the following code example, the bold lines illustrate the PFMUL and PFRSQIT1
instructions in a sequence used to compute a = 1/sqrt (b) accurate to 24 bits:

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
a = PFRCPIT2(X2,X0)

Related Instructions See the PFRCPIT2 instruction.

See the PFRSQRT instruction.

Table 17. Numerical Range for the PFSQIT1 Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 * +/– 0 * +/– 0 *

Normal +/– 0 * Normal ** Undefined

Unsupported +/– 0 * Undefined Undefined

Notes:
* The sign of the result is the exclusive-OR of the signs of the source operands.
** The sign is 0.
44 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFRSQRT

mnemonic opcode/imm8 description

PFRSQRT mmreg1, mmreg2/mem64 0Fh 0Fh / 97h Floating-point reciprocal square root approximation

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFRSQRT is a scalar instruction that returns a low-precision estimate of the
reciprocal square root of the source operand. The single result value is duplicated in
both high and low halves of this instruction’s 64-bit result. The source operand is
single-precision with a 24-bit significand, and the result is accurate to 15 bits.
Negative operands are treated as positive operands for purposes of reciprocal square
root computation, with the sign of the result the same as the sign of the source
operand. Table 18 on page 46 shows the numerical range of the PFRSQRT instruction.

Increased accuracy (the full 24 bits of a single-precision significand) requires the use
of two additional instructions (PFRSQIT1 and PFRCPIT2). The first stage of this
increase or refinement in accuracy (PFRSQIT1) requires that the input and squared
output of the already executed PFRSQRT instruction be used as input to the
PFRSQIT1 instruction. Refer to “Appendix A” on page 56 for an application-specific
example of how to use this instruction and related instructions.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 45

AMD-3D™ Technology Manual 21928B/0—February 1998
The PFRSQRT instruction performs the following operations:

mmreg1[31:0] = reciprocal square root(mmreg2/mem64[31:0])
mmreg1[63:32] = reciprocal square root(mmreg2/mem64[31:0])

In the following code example, the bold line illustrates the PFRSQRT instruction in a
sequence used to compute a = 1/sqrt (b) accurate to 24 bits:

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
X3 = PFRCPIT2(X2,X0)
a = PFMUL(b,X3)

Related Instructions See the PFRSQIT1 instruction.

See the PFRCPIT2 instruction.

Table 18. Numerical Range for PFRSQRT Instruction

Source 1 and
Destination

Source 2

0 +/– Maximum Normal*

Normal Normal *

Unsupported Undefined *

Notes:
* The result has the same sign as the source operand.
46 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFSUB

mnemonic opcode/imm8 description

PFSUB mmreg1, mmreg2/mem64 0Fh 0Fh / 9Ah Packed floating-point subtraction

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFSUB is a vector instruction that performs subtraction of the source operand from
the destination operand. Both operands are single-precision, floating-point operands
with 24-bit significands. Table 19 on page 48 shows the numerical range of the PFSUB
instruction.

The PFSUB instruction performs the following operations:

mmreg1[31:0] = mmreg1[31:0] – mmreg2/mem64[31:0]
mmreg1[63:32] = mmreg1[63:32] – mmreg2/mem64[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 47

AMD-3D™ Technology Manual 21928B/0—February 1998
Related Instructions See the PFSUBR instruction.

Table 19. Numerical Range for the PFSUB Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 * Source 2 Source 2

Normal Source 1 Normal, +/– 0 ** Undefined

Unsupported Source 1 Undefined Undefined

Notes:
* The sign of the result is the logical AND of the sign of source 1 and the inverse of the sign of source 2.
** If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand that is

larger in magnitude (if the magnitudes are equal, the sign of source 1 is used). If the absolute value of the result is greater than
or equal to 2 128, the result is the largest normal number with the sign being the sign of the source operand that is larger in
magnitude.
48 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PFSUBR

mnemonic opcode/imm8 description

PFSUBR mmreg1, mmreg2/mem64 0Fh 0Fh / AAh Packed floating-point reverse subtraction

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated:

PFSUBR is a vector instruction that performs subtraction of the destination operand
from the source operand. Both operands are single-precision, floating-point operands
with 24-bit significands. Table 20 on page 50 shows the numerical range of the
PFSUBR instruction.

The PFSUBR instruction performs the following operations:

mmreg1[31:0] = mmreg2/mem64[31:0] – mmreg1[31:0]
mmreg1[63:32] = mmreg2/mem64[63:32] – mmreg1[63:32]

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 49

AMD-3D™ Technology Manual 21928B/0—February 1998
Related Instructions See the PFSUB instruction.

Table 20. Numerical Range for the PFSUBR Instruction

Source 2

0 Normal Unsupported

Source 1 and
Destination

0 +/– 0 * Source 2 Source 2

Normal Source 1 Normal, +/– 0 ** Undefined

Unsupported Source 1 Undefined Undefined

Notes:
* The sign of the result is the logical AND of the sign of source 1 and the inverse of the sign of source 2.
** If the absolute value of the result is less then 2 –126, the result is zero with the sign being the sign of the source operand that is

larger in magnitude (if the magnitudes are equal, the sign of source 2 is used). If the absolute value of the result is greater than
or equal to 2 128, the result is the largest normal number with the sign being the sign of the source operand that is larger in
magnitude.
50 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
PI2FD

mnemonic opcode/imm8 description

PI2FD mmreg1, mmreg2/mem64 0Fh 0Fh / 0Dh Packed 32-bit integer to floating-point conversion

Privilege: none
Registers Affected: MMX
Flags Affected: none
Exceptions Generated

PI2FD is a vector instruction that converts a vector register containing signed, 32-bit
integers to single-precision, floating-point operands. When PI2FD converts an input
operand with more significant digits than are available in the output, the output is
truncated.

The PI2FD instruction performs the following operations:

mmreg1[31:0] = float(mmreg2/mem64[31:0])
mmreg1[63:32] = float(mmreg2/mem64[63:32])

Related Instructions See the PF2ID instruction.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
Chapter 2 AMD-3D™ Instruction Set 51

AMD-3D™ Technology Manual 21928B/0—February 1998
PMULHRW

mnemonic opcode/suffix description

PMULHRW mmreg1, mmreg2/mem64 0F 0Fh/B7h Multiply signed packed 16-bit values with rounding
and store the high 16 bits.

Privilege: None
Registers Affected: MMX
Flags Affected: None
Exceptions Generated:

The PMULHRW instruction multiplies the four signed 16-bit integer values in the
source operand (an MMX register or a 64-bit memory location) by the four
corresponding signed 16-bit integer values in the destination operand (an MMX
register). The PMULHRW instruction then adds 8000h to the lower 16 bits of the
32-bit result, which results in the rounding of the high-order, 16-bit result. The
high-order 16 bits of the result (including the sign bit) are stored in the destination
operand.

The PMULHRW instruction provides a numerically more accurate result than the
PMULMH instruction, which truncates the result instead of rounding.

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate instruction bit (EM) of the control register (CR0) is set to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the control
register (CR0) is set to 1.

Stack exception (12) X During instruction execution, the stack segment limit was exceeded.

General protection (13) X During instruction execution, the effective address of one of the segment
registers used for the operand points to an illegal memory location.

Segment overrun (13) X X One of the instruction data operands falls outside the address range 00000h
to 0FFFFh.

Page fault (14) X X A page fault resulted from the execution of the instruction.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.

Alignment check (17) X X An unaligned memory reference resulted from the instruction execution,
and the alignment mask bit (AM) of the control register (CR0) is set to 1.
(In Protected Mode, CPL = 3.)
52 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
Functional Illustration of the PMULHRW Instruction

The following list explains the functional illustration of the PMULHRW instruction:

■ The signed 16-bit negative value D250h (–2DB0h) is multiplied by the signed
16-bit negative value 8807h (–77F9h) to produce the signed 32-bit positive result
of 1569_4030h. 8000h is then added to the lower 16 bits to produce a final result of
1569_C030h. This rounding does not affect the final result of 1569h. The signed
high-order 16 bits of the result are stored in the destination operand.

■ The signed 16-bit positive value 5321h is multiplied by the signed 16-bit negative
value EC22h (–13DEh) to produce the signed 32-bit negative result of F98C_7662h
(–0673_899Eh). 8000h is then added to the lower 16 bits, producing a final result
of F98C_F662h. This rounding does not affect the final result of F98Ch. The
signed high-order 16 bits of the result are stored in the destination operand.

■ The signed 16-bit positive value 7007h is multiplied by the signed 16-bit positive
value 7FFEh to produce the signed 32-bit positive result of 3802_9FF2h. 8000h is
then added to the lower 16 bits to produce a final result of 3803_1FF2h. This result
has been rounded up. The signed high-order 16 bits of the result (3803h) are
stored in the destination operand.

■ The signed 16-bit negative value FFFFh (–1) is multiplied by the signed 16-bit
negative value FFFFh (–1) to produce the signed 32-bit positive result of
0000_0001h. 8000h is then added to the lower 16 bits to produce a final result of
0000_8001h. This rounding does not affect the final result of 0000h. The signed
high-order 16 bits of the result are stored in the destination operand.

∗ ∗ ∗ ∗

= = = =

mmreg2/mem64

mmreg1

mmreg1

FFFFhD250h

FFFFh

0000h

7007h

7FFEh

3803h

5321h

EC22h

F98Ch

8807h

1569h

63

63

63

0

0

0

Indicates a value that was rounded-up
Chapter 2 AMD-3D™ Instruction Set 53

AMD-3D™ Technology Manual 21928B/0—February 1998
PREFETCH/PREFETCHW

mnemonic opcode description

PREFETCH(W) mem8 0F 0Dh Prefetch processor cache line into L1 data cache
(Dcache)

Privilege: none
Registers Affected: none
Flags Affected: none
Exceptions Generated:

The PREFETCH instruction loads a processor cache line into the data cache. The
address of this line is specified by the mem8 value. For the AMD-K6 3D processor, the
line size is 32-bytes. In all future processors, the size of the line that is loaded by the
PREFETCH instruction will be at least 32-bytes. The PREFETCH instruction loads a
line even if the mem8 address is not aligned with the start of the line. Although some
implementations, including the AMD-K6 family of processors, may perform the cache
fill starting from the cache miss or mem8 address. If a cache hit occurs (the line is
already in the Dcache) or a memory fault is detected, no bus cycle is initiated and the
instruction is treated as a NOP.

In applications where a large number of data sets must be processed, the PREFETCH
instruction can pre-load the next data set into the Dcache while, simultaneously, the
processor is operating on the present set of data. This instruction allows the
programmer to explicitly code operation concurrency. When the present set of data
values is completed, the next set is already available in the Dcache. An example of a
concurrent operation is vertices processing in 3D transformations, where the next set
of vertices can be prefetched into the data cache while the present set is being
transformed.

The PREFETCH instruction format in the AMD-K6 3D processor is defined to allow
extensions in future AMD K86™ processors. The instruction mnemonic for the
PREFETCH instruction includes the modR/M byte. Only the memory form of
modR/M is valid (use of the register form results in an invalid opcode exception).
Because there is no destination register, the three destination register field bits of

Exception Real
Virtual
8086 Protected Description

Invalid opcode (6) X X X The emulate MMX instruction bit (EM) of the control register (CR0) is set
to 1.

Device not available (7) X X X Save the floating-point or MMX state if the task switch bit (TS) of the
control register (CR0) is set to 1.

Floating-point exception
pending (16)

X X X An exception is pending due to the floating-point execution unit.
54 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
the modR/M byte are used to define the type of prefetch to be performed. The
PREFETCH and PREFETCHW instructions are defined by the bit pattern 000b and
001b, respectively. All other bit patterns are reserved for future use.

The PREFETCHW instruction will load the prefetched line and set the cache line
MESI state to modified (in anticipation of subsequent data writes to the line), unlike
the PREFETCH instruction, which typically sets the state to exclusive. If the data
that is prefetched into the Dcache is to be modified, use of the PREFETCHW
instruction will save the cycle that the PREFETCH instruction requires for modifying
the Dcache line state. The AMD-K6 3D processor treats a PREFETCHW instruction
the same as a PREFETCH instruction. The PREFETCHW instruction should be used
when the programmer expects that the data in the cache line will be modified.
Otherwise, the PREFETCH instruction should be used.

Table 21 summarizes the PREFETCH type options:

Note: The “Reserved” PREFETCH types do not result in an Invalid Opcode Exception if
executed. Instead, for forward compatibility with future processors that may
implement additional forms of the PREFETCH instruction, all “Reserved”
PREFETCH types are implemented as synonyms for the basic PREFETCH type (for
example, the PREFETCH instruction with type 000b).

Table 21. Summary of PREFETCH Instruction Type Options

Mod R/M Result

11-xxx-xxx Invalid Opcode

mm-000-xxx PREFETCH

mm-001-xxx PREFETCHW

mm-010-xxx Reserved

mm-011-xxx Reserved

mm-100-xxx Reserved

mm-101-xxx Reserved

mm-110-xxx Reserved

mm-111-xxx Reserved
Chapter 2 AMD-3D™ Instruction Set 55

AMD-3D™ Technology Manual 21928B/0—February 1998
Appendix A

Division and Square Root

Division The AMD-3D instructions can be used to compute a very fast,
highly accurate reciprocal or quotient.

Consider the quotient q = a/b. An on-chip, ROM-based table
lookup can be used to quickly produce a 14–15 bit precision
approximation of 1/b (using just one two-cycle latency
instruction—PFRCP). A full-precision reciprocal can then
quickly be computed from this approximation using a
Newton-Raphson algorithm.

The general Newton-Raphson recurrence for the reciprocal is as
follows:

Xi +1 = Xi * (2 – b * Xi)

Given that the initial approximation X0 is accurate to at least 14
bits, and that full IEEE single precision contains 24 bits of
mantissa, just one Newton-Raphson iteration is required. The
following shows the AMD-3D instruction sequence to produce
the initial reciprocal approximation, to compute the
full-precision reciprocal from this, and lastly, to complete the
required division of a/b.

X0 = PFRCP(b)

X1 = PFRCPIT1(b,X0)

X2 = PFRCPIT2(X1,X0)

q = PFMUL(a,X2)

The 24-bit final reciprocal value is X2. In the AMD-K6 3D
processor implementation, the estimate contains the correct
round-to-nearest value for approximately 99% of all arguments.
The remaining arguments di f fer from the correct
round-to -nearest value for the reciprocal by 1
unit-in-the-last-place (ulp). The quotient is formed in the last
step by multiplying the reciprocal by the dividend a.
56 AMD-3D™ Instruction Set Chapter 2

21928B/0—February 1998 AMD-3D™ Technology Manual
Divide Examples These examples illustrate the use of AMD-3D to perform
divides.

(14-Bit precision): MOVD MM0, [mem] ; 0 | w
PFRCP MM0, MM0 ; 1/w | 1/w (approx.)
MOVQ MM2, [mem] ; y | x
PFMUL MM2, MM0 ; y/w | x/w

(24-Bit Precision) MOVD MM0, [mem] ; 0 | w
PFRCP MM1, MM0 ; 1/w | 1/w (approx.)
PFRPIT1 MM0, MM1 ; 1/w | 1/w (intermed.)
MOVQ MM2, [mem] ; y | x
PFRCPIT2 MM0, MM1 ; 1/w | 1/w (full prec.)
PFMUL MM2, MM0 ; y/w | x/w

Square Root The AMD-3D instructions can also be used to compute a
reciprocal square root or square root with high performance.
The general Newton-Raphson reciprocal square root recurrence
is as follows:

Xi +1 = 1/2 * Xi * (3 – b * Xi
2)

To reduce the number of i terat ions , X0 i s an init ia l
approximation read from a table. The AMD-3D reciprocal
square root approximation is accurate to at least 15 bits.
Accordingly, to obtain a single-precision 24-bit reciprocal
square root of an input operand b, one Newton-Raphson
iteration is required using the following AMD-3D instructions:

1. X0 = PFRSQRT(b)

2. X1 = PFMUL(X0,X0)

3. X2 = PFRSQIT1(b,X1)

4. X3 = PFRCPIT2(X2,X0)

5. X4 = PFMUL(b,X3)

The 24-bit final reciprocal square root value is X3. In the
AMD-K6 3D implementation, the estimate contains the correct
round-to-nearest value for approximately 87% of all arguments.
The remaining arguments di f fer from the correct
round-to-nearest value by 1 ulp. The square root (X4) is formed
in the last step by multiplying by the input operand b.
Chapter 2 AMD-3D™ Instruction Set 57

AMD-3D™ Technology Manual 21928B/0—February 1998
Square Root
Examples

These examples illustrate the use of AMD-3D technology to
perform square roots.

(15-Bit precision): MOVD MM0, [mem] ; 0 | a
PFRSQRT MM1, MM0 ; 1/(sqrt a) | 1/(sqrt a) (approx.)
PFMUL MM0, MM1 ; (sqrt a) | (sqrt a)

(24-Bit precision): MOVD MM0, [mem] ; 0 | a
PFRSQRT MM1, MM0 ; 1/(sqrt a) | 1/(sqrt a) (approx.)
MOVQ MM2, MM1 ; 1/(sqrt a) | 1/(sqrt a) (approx.)
PFMUL MM1, MM1 ; (sqrt a) | (sqrt a) step 1
PFRSQIT1 MM1, MM0 ; (sqrt) (intermed.) step 2
PFRCPIT2 MM1, MM2 ; (sqrt) (full prec.) step 3
PFMUL MM0, MM1 ; (sqrt a) | (sqrt a)
58 AMD-3D™ Instruction Set Chapter 2

	Contents
	List of Figures
	List of Tables
	Revision History
	1
	AMD�3D™ Technology
	Introduction
	Key Functionality
	Feature Detection
	Register Set
	Data Types
	AMD�3D™ Instruction Formats
	Definitions
	Execution Resources
	Task Switching
	Exceptions
	Prefixes

	AMD�3D™ Instruction Set
	FEMMS
	PAVGUSB
	PF2ID
	PFACC
	PFADD
	PFCMPEQ
	PFCMPGE
	PFCMPGT
	PFMAX
	PFMIN
	PFMUL
	PFRCP
	PFRCPIT1
	PFRCPIT2
	PFRSQIT1
	PFRSQRT
	PFSUB
	PFSUBR
	PI2FD
	PMULHRW
	PREFETCH/PREFETCHW
	Appendix A
	Division and Square Root

