AMD (¥

AMD 64-Bit Technology

AMD x86-64 Architecture
Programmer’s Manual
Volume 3:

General-Purpose and System
Instructions




AMDZU

© 2002 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc.
("AMD") products. AMD makes no representations or warranties with respect to the accuracy or
completeness of the contents of this publication and reserves the right to make changes to
specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this
publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes
no liability whatsoever, and disclaims any express or implied warranty, relating to its products
including, but not limited to, the implied warranty of merchantability, fitness for a particular pur-
pose, or infringement of any intellectual property right.

AMD's products are not designed, intended, authorized or warranted for use as components in
systems intended for surgical implant into the body, or in other applications intended to support
or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without
notice.

Trademarks

AMD, the AMD arrow logo, AMD Athlon, AMD Duron, and combinations thereof, and 3DNow! are trademarks, and Am486, Am5,86,
and AMD-K6 are registered trademarks of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.
Windows NT is a registered trademark of Microsoft Corp.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.




AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Contents

Figures ix

Tables xi

Preface Xiii

About This Book . ... ..... ... it xiii

Audience. ... e xiii

Organization . .. ..........iitiiiumneeeeeeeeennnnns. xiii

Definitions. . . ... i i e Xiv

Related Documents .. ............c0iiiiiinennnnennn. XXV

1 Instruction Formats 1

1.1 Instruction Byte Order . ........... ... ... .. ... ..., 1

1.2 Instruction Prefixes. .. ......... ... ... ... .. ... . .. ..., 3

Summary of Legacy Prefixes .......... ... ... 3

Operand-Size Override Prefix .......................... 5

Address-Size Override Prefix. . ............... ... ....... 6

Segment-Override Prefixes ............................ 9

Lock Prefix. .. ... i e i e 10

Repeat Prefixes ... ... ..ot 10

REX Prefixes .. ... i 14

1.3 OPCOdE ..ot e 20

1.4 ModRM and SIBBytes . ........coiiiiiiiiiinnnn.. 20

1.5 Displacement Bytes. .. ...ttt 22

1.6 Immediate Bytes . ... ..ot e e 23

1.7 RIP-Relative Addressing ..............coiiiiiiinnnn... 23

Encoding. ......... .. i e 24

REX Prefix and RIP-Relative Addressing. ............... 24

Address-Size Prefix and RIP-Relative Addressing. ........ 25

2 Instruction Overview 27

21 Instruction Subsets . ....... ... ... . i . 27

2.2 Reference-Page Format .............................. 28

2.3 Summary of Registers and Data Types.................. 30

General-Purpose Instructions. . . . ..., 30

System InStructions. . . .......... ittt 33

128-Bit Media InStructions . . .. .....covuetinnnnnnnnn 35

64-Bit Media Instructions . . .........couuiieeninnnnnn 38

x87 Floating-Point Instructions . ....................... 40

2.4 Summary of Exceptions .. ...........couuiiiiiiinnan. 41

2.5 Notation . .... ottt e 43

Mnemonic SYNtax .. ...cove ittt 43

Opcode Syntax. . ..o e 46

Pseudocode Definitions . ............... ... .. ... ..... 48

Contents i



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
3 General-Purpose Instruction Reference 59
A A A e e 61
AAD e e e e 62
AAM . e e 63
A A S . e e 64
ADC. . e e e 65
AD D e e e 67
AND e e e 69
BOUND. .. . e e 72
BSF e 74
BSOR .. e e 76
BSWAP .. e e 78
BT e 79
BT C . e e e 81
BT R . e e e 83
B S o e e 85
CALL (Near). . . v ottt et ettt et e et et et e e 87
CALL (Far) . .ottt et e e e et et et e et e e 89
CBW,CWDE,CDQE ...... ... it 96
CWD, CDQ, CQO . . e e e e e e e e e e e e e 97
CLC . . e e e e e e 98
CLD . . e e e e 99
CLELUSH. . .. o et e ettt 100
CMC . e e e e 102
CMOVCC .ottt e e e e et e 103
CM P . . e e e e e e 107
CM P S X .t e e 110
CMPXCHG . ...ttt et e ettt e e 113
CMPXCHGSB. . ..ot et ettt 115
CPUID. ... ettt e 117
DA A, e 131
DAS . e 132
DEC. . e e e 133
DIV e e e e 135
ENTER ... e 137
IDIV e e 139
IMUL. . . e e e 141
IN. e e 144
INC . e e 146
INSx .. e 148
INT e e e 151
INTO . . e e e 159
Jec . e 160
[0 ¢/ 164
JMP (Near). . ..o ov it e e et e e 166
TMP (FAL) « v oo e e et e e e e e e 168
LAHEF ... e e 173

iv Contents



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
LDS,LES,LFS,LGS,LSS. ... ... ... .. . .. 174
LEA . e e 177
LEAVE .. e 179
LEENCE . ... e 181
LODSx. .. 182
LOOPCC. . ..o e 184
MFEFENCE . ... e e 186
MOV e e e 187
MOV DD . . e 191
MOVMSKPD. . . ... e e e 194
MOVMSKPS. . ... e 196
MOVNTL. ... e e e e 198
MOVS, MOVSB, MOVSW, MOVSD, MOVSQ............. 200
MOV S X e e e 202
MOVSXD .. e e 203
MOV Z X . . e e 204
MUL . .. e 205
NEG. . . e e 207
NOP. . e e 209
NOT . . e e e 210
OR . . e 211
OUT . .. e e e 214
OUT S .t e e e e e e e e e 216
POP . .. e 218
POPAX. ..o e 221
POPEX. ..o e 222
PREFETCHX ... ...ttt 225
PREFETCHIevel. . ... ..., 227
PUSH ... e 229
PUSHAX . .. e e e 231
PUSHEF X . ... e e e 232
) 234
RCR. . e 236
RET (Near). . .. coo it ettt 238
RET (FaT) .« o o oot e e e e e e e e e 240
ROL . .. e 244
ROR. .. e 246
SAHE .. e 248
SAL, SHL . . . v v e e e e e e e e e 249
SAR . . e 252
SBB .. e 255
SCASX . ot 258
SE T CC et e 260
SFENCE . . ... e e 263
SHL . . .. e 264
SHL D ... e 265
SHRR . . e e 267

Contents v



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
SHRD . .. 269
ST C . e 271
s 2 D 272
STOS X . .t 273
SUB . . 275
TEST . o 278
XADD .. e 280
XCHG . .ot 282
XLATX. .ottt 284
XOR e 286

4 System Instruction Reference 289
ARPL .. e 290
CLI . e 292
CLT S . e 294
HLT . .o 295
INT 3. e 296
INV D . . 299
INVLPG . .. e 300
TRET X ..ot e 301
LAR. . 307
LGDT . 310
LIDT .. e 312
LD . . e 314
LM SW . e 316
LS . . 317
5 319
MOV(CRI) « e e et et e e e 321
1LY (076 0] 37 ) T 323
RDMSR. .. e 325
RDPMC . . . e 326
RDTSC .. 327
RSM .o 328
SGD T . . . 330
SIDT ... e 332
SLDT . .. 334
SM S W L e 336
ST, . e 337
ST R . 339
SWA PGS . .. 341
SYSCALL . ... 343
SYSENTER. . . ... e 348
SYSEXIT. ... e 350
SYSRET ... 352
UD 2. . 356
VERR . . 357
VERW . e 359
WEBINVD . .. 361

vi Contents



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
WRMSR .. e 362

Appendix A Opcode and Operand Encodings 365
A.1 Opcode-Syntax Notation.............ccouiieeeenenn... 365

A2 OpcodeEncodings.............ciiiiiiiiiinnnnnnnn.. 367

One-Byte Opcodes . . ..o iii it 367

Two-Byte Opcodes . . ... oottt et 370

rFLAGS Condition Codes for Two-Byte Opcodes ......... 376

ModRM Extensions to One-Byte and Two-Byte Opcodes. . .377
ModRM Extensions to SWAPGS and CLFLUSH Opcodes . 380

3DNow!™ Opcodes . ..ot 380

x87 Encodings ........... . 382

rFLAGS Condition Codes for x87 Opcodes.............. 391

A3 Operand Encodings..............c.cciiiiiieenennn... 391

ModRM Operand References. ........................ 391

SIB Operand References. . ............ ... ..., 397

Appendix B General-Purpose Instructions in 63-Bit Mode 401
B.1 General Rules for 64-Bit Mode. . ...............o.... 401

B.2  Operation and Operand Size in 64-Bit Mode ............ 402

B3 Invalid and Reassigned Instructions in 64-Bit Mode. .. ... 432

B.4  Instructions with 64-Bit Default Operand Size........... 433

B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode . .. . 435

B.6 NOPin64-BitMode............... ..., 435

B.7  Segment Override Prefixes in 64-Bit Mode ............. 436

Appendix C Differences between Long Mode and Legacy Mode 437
Appendix D Instruction Subsets and CPUID Feature Sets 439
D.1 InstructionSubsets .............cciiiiiir.... 439

D.2 CPUIDFeature Sets ... ....vviiitinnn e 441

D3 Instruction List .. ...ttt 443

Appendix E Instruction Effects on RFLAGS 477
Index 483

Contents vii



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Viii Contents



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Figures
Figure 1-1. Instruction Byte-Order.......... ... ... 1
Figure 1-2. Little-Endian Byte-Order of Instruction Stored in Memory .. .2
Figure 1-3. Encoding Examples of REX-Prefix R, X, and B Bits......... 18
Figure 1-4. ModRM-Byte Format ... ..........cuuiuiiiiiunnnnennnn. 21
Figure 1-5. SIB-Byte Format. . .........c.uttititrrrrennnennnnnnnn.. 22
Figure 2-1. Format of Instruction-Detail Pages ...................... 29
Figure 2-2. General Registers in Legacy and Compatibility Modes. . . . .. 30
Figure 2-3. General Registersin 64-Bit Mode. . ...................... 31
Figure 2-4. Segment Registers . ............. .ttt 32
Figure 2-5. General-Purpose Data Types. . .......... ... .. 33
Figure 2-6. System Registers . ..........c..uiiiiennnnnnn 34
Figure 2-7. System Data StruCtures. . .. .....c.uutterrrrreeeeeeeennn. 35
Figure 2-8. 128-Bit Media Registers. . ..........oiiiiiiiinnnnn. 36
Figure 2-9. 128-BitMediaDataTypes ... .....cuiiiiiiiinnnnnnn.. 37
Figure 2-10.64-Bit Media Registers. .. ...ttt 38
Figure 2-11.64-Bit MediaData Types . . ..., 39
Figure 2-12.X87 ReGiSterS. o v v vttt ittt et ettt ettt ettt ettt e e 40
Figure 2-13.X87 Data TyPeS . « o v v vttt et et et e e ettt et ettt e e e 41
Figure 2-14.Syntax for Typical Two-Operand Instruction .............. 43
Figure 3-1. Processor Signature (EAX Register) .................... 119
Figure 3-2. Initial APIC ID, CLFLUSH Size, and Brand ID (EBX
Register) . ..o 120
Figure 3-3. Advanced Power Management Features (EDX Register) ...129
Figure 3-4. MOVD Instruction Operation .. ............c.cccueeeen... 192
Figure A-1. ModRM-Byte Fields ... ......... ... .. 377
Figure A-2. ModRM-Byte Format . . ... ........0uiiiiiiunnnnnnennn 392
Figure A-3. SIBByte Format.............. ...t iiiiinnnnnnn 398
Figure D-1. Instruction Subsets vs. CPUID Feature Sets.............. 440

Figures

ix



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

X Figures



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Tables
Table 1-1. Legacy Instruction Prefixes ........... ... ... ... ... .... 4
Table 1-2. Operand-Size Overrides. . .........ccouiii i enennnnn. 5
Table 1-3. Address-Size Overrides .. ...........ciiiiinnennn.. 7
Table 1-4. Pointer and Count Registers and the Address-Size Prefix ....8
Table 1-5. Segment-Override Prefixes......... ... ... ... ... ... 9
Table 1-6. REP Prefix Opcodes. ........ ... .. ... 11
Table 1-7. REPE and REPZ PrefixOpcodes . ....................... 12
Table 1-8. REPNE and REPNZ Prefix Opcodes . .................... 13
Table 1-9. REX Instruction Prefixes ............. ... ... ... . ... 14
Table 1-10. Instructions Not Requiring REX Size Prefix in 64-Bit Mode. . 15
Table 1-11. REX Prefix-Byte Fields . .............. ... ... .. ... ... ... 16
Table 1-12. Special REX Encodings for Registers .................... 19
Table 1-13. Encoding for RIP-Relative Addressing . .................. 24
Table 2-1. Interrupt-Vector Sourceand Cause . ..................... 42
Table 2-2. +rb, +rw, +rd, and +rq Register Value.................... 47
Table 3-1. Processor Vendor Return Values....................... 118
Table 3-2. Effective Family Computation . ........................ 119
Table 3-3. Effective Model Computation. . .................oo.... 120
Table 3-4. CPUID Standard Feature Support (Standard Function 1) ..121
Table 3-5. CPUID AMD Feature Support (Extended Function
8000_0001h) . ... e 124
Table 3-6. Processor Name String Example ....................... 126
Table 3-7. CPUID TLB Bits for 2-Mbyte and 4-Mbyte Pages . ......... 127
Table 3-8. CPUID TLB Bits for 4-Kbyte Pages ..................... 127
Table 3-9. CPUID L1 DataCacheBits ................. ..., 127
Table 3-10. CPUID L1 Instruction Cache Bits....................... 127
Table 3-11. CPUID L2 TLB Bits for 2-Mbyte and 4-Mbyte Pages ....... 128
Table 3-12. CPUID L2 TLB Bits for 4-Kbyte Pages. .................. 128
Table 3-13. CPUID L2 Cache Bits. ... ..... ..ot 129
Table 3-14. CPUID Long-Mode Address Sizes. . ..................... 130
Table 3-15. Locality References for the Prefetch Instructions ......... 228
Table A-1. One-Byte Opcodes, Low Nibble0-7h . ................... 368
Table A-2. One-Byte Opcodes, Low Nibble 8-Fh.................... 369
Table A-3. Second Byte of Two-Byte Opcodes, Low Nibble 0-7h....... 370
Tables Xi



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table A-4. Second Byte of Two-Byte Opcodes, Low Nibble 8-Fh ...... 373
Table A-5. rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc. . . .. 376
Table A-6. One-Byte and Two-Byte Opcode ModRM Extensions. ... ... 378
Table A-7. SWAPGS and xFENCE ModRM Extensions .............. 380
Table A-8. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0-7h . .381
Table A-9. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8-Fh . . 382
Table A-10. x87 Opcodes and ModRM Extensions ................... 383
Table A-11. rFLAGS Condition Codes for FCMOVcc ................. 391
Table A-12. ModRM Register References, 16-Bit Addressing .......... 392
Table A-13. ModRM Memory References, 16-Bit Addressing .......... 393
Table A-14. ModRM Register References, 32-Bit and 64-Bit Addressing . 395
Table A-15. ModRM Memory References, 32-Bit and 64-Bit Addressing . 396
Table A-16. SIB base Field References . ............. ..., 398
Table A-17. SIB Memory References ............... .. ..., 399
Table B-1. Operations and Operands in 64-Bit Mode ................ 403
Table B-2. Invalid Instructionsin 64-Bit Mode ..................... 432
Table B-3. Reassigned Instructions in 64-Bit Mode. ................. 433
Table B-4. Invalid InstructionsinLongMode . ..................... 433
Table B-5. Instructions Defaulting to 64-Bit Operand Size ........... 434
Table C-1. Differences Between Long Mode and Legacy Mode. ....... 437
Table D-1. Instruction Subsets and CPUID Feature Sets............. 443
Table E-1. Instruction Effectson RFLAGS ........................ 477

Xii Tables



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD
x86-64 Architecture Programmer’s Manual. This table lists each
volume and its order number.

Title Order No.
Volume 1, Application Programming 24592
Volume 2, System Programming 24593
Volume 3, General-Purpose and System Instructions 24594
Volume 4, 128-Bit Media Instructions 26568
Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume (Volume 3) is intended for all programmers writing
application or system software for a processor that implements
the x86-64 architecture. Descriptions of general-purpose
instructions assume an understanding of the application-level
programming topics described in Volume 1. Descriptions of
system instructions assume an understanding of the system-
level programming topics described in Volume 2.

Organization

Volumes 3, 4, and 5 describe the x86-64 architecture’s
instruction set in detail. Together, they cover each instruction’s
mnemonic syntax, opcodes, functions, affected flags, and
possible exceptions.

The x86-64 instruction set is divided into five subsets:

m  General-purpose instructions
m  System instructions

m 128-bit media instructions

m  64-bit media instructions

»  x87 floating-point instructions

Preface Xiii



AMDZU

AMD 64-Bit Technology

Definitions

Terms and Notation

24594  Rev. 3.02 August 2002

Several instructions belong to—and are described identically
in—multiple instruction subsets.

This volume describes the general-purpose and system
instructions. The index at the end cross-references topics within
this volume. For other topics relating to the x86-64 architecture,
and for information on instructions in other subsets, see the
tables of contents and indexes of the other volumes.

Many of the following definitions assume an in-depth
knowledge of the legacy x86 architecture. See “Related
Documents” on page xxv for descriptions of the legacy x86
architecture.

In addition to the notation described below, “Opcode-Syntax
Notation” on page 365 describes notation relating specifically
to opcodes.

1011b

A binary value—in this example, a 4-bit value.
FOEAh

A hexadecimal value—in this example a 2-byte value.
[1,2)

A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).

7-4
A bit range, from bit 7 to 4, inclusive. The high-order bit is
shown first.

128-bit media instructions

Instructions that use the 128-bit XMM registers. These are a
combination of the SSE and SSE2 instruction sets.

64-bit media instructions

Instructions that use the 64-bit MMX™ registers. These are
primarily a combination of MMX and 3DNow!™ instruction
sets, with some additional instructions from the SSE and
SSE2 instruction sets.

Xiv

Preface



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

16-bit mode

Legacy mode or compatibility mode in which a 16-bit
address size is active. See legacy mode and compatibility
mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute

Said of a displacement that references the base of a code
segment rather than an instruction pointer. Contrast with
relative.

biased exponent

The sum of a floating-point value’s exponent and a constant
bias for a particular floating-point data type. The bias makes
the range of the biased exponent always positive, which
allows reciprocation without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default

address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

commit

To irreversibly write, in program order, an instruction’s
result to software-visible storage, such as a register

Preface

Xxv



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

(including flags), the data cache, an internal write buffer, or
memory.

CPL
Current privilege level.

CRO-CR4

A register range, from register CR0O through CR4, inclusive,
with the low-order register first.

CRO.PE =1

Notation indicating that the PE bit of the CRO register has a
value of 1.

direct

Referencing a memory location whose address is included in
the instruction’s syntax as an immediate operand. The
address may be an absolute or relative address. Compare
indirect.

dirty data

Data held in the processor’s caches or internal buffers that is
more recent than the copy held in main memory.

displacement

A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

DS:rSI

The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

EFER.LME =0

Notation indicating that the LME bit of the EFER register
has a value of 0.

xvi

Preface



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

effective address size

The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size

The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. For all exceptions
except 128-bit media SIMD floating-point exceptions and
x87 floating-point exceptions, control is transferred to the
handler (or service routine) for that exception, as defined by
the exception’s vector. For floating-point exceptions defined
by the IEEE 754 standard, there are both masked and
unmasked responses. When unmasked, the exception
handler is called, and when masked, a default response is
provided instead of calling the handler.

FF /0

Notation indicating that FF is the first byte of an opcode,
and a subopcode in the ModR/M byte has a value of 0.

flush

An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)
invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”

GDT
Global descriptor table.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

Preface

Xxvii



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

indirect
Referencing a memory location whose address is in a
register or other memory location. The address may be an
absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

wr
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on
page xxv for descriptions of the legacy x86 architecture.

legacy mode
An operating mode of the x86-64 architecture in which
existing 16-bit and 32-bit applications and operating systems
run without modification. A processor implementation of
the x86-64 architecture can run in either long mode or legacy
mode. Legacy mode has three submodes, real mode, protected
mode, and virtual-8086 mode.

long mode
An operating mode unique to the x86-64 architecture. A
processor implementation of the x86-64 architecture can run
in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

Xviii Preface



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

mask

(1) A control bit that prevents the occurrence of a floating-
point exception from invoking an exception-handling
routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies
address calculation based on mode (Mod), register (R), and
memory (M) variables.

moffset

A direct memory offset. In other words, a displacement that
is added to the base of a code segment (for absolute
addressing) or to an instruction pointer (for addressing
relative to the instruction pointer, as in RIP-relative
addressing).

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions

A combination of 128-bit media instructions and 64-bit media
instructions.

octword
Same as double quadword.

offset
Same as displacement.

overflow

The condition in which a floating-point number is larger in
magnitude than the largest, finite, positive or negative
number that can be represented in the data-type format
being used.

Preface

Xix



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode

A short name for real-address mode, a submode of legacy
mode.

relative

Referencing with a displacement (also called offset) from an
instruction pointer rather than the base of a code segment.
Contrast with absolute.

REX

An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

RIP-relative addressing

Addressing relative to the 64-bit RIP instruction pointer.
Compare moffset.

set
To write a bit value of 1. Compare clear.

Preface



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SIB

A byte following an instruction opcode that specifies
address calculation based on scale (S), index (I), and base

(B).
SIMD
Single instruction, multiple data. See vector.

SSE

Streaming SIMD extensions instruction set. See 128-bit
media instructions and 64-bit media instructions.

SSE2

Extensions to the SSE instruction set. See 128-bit media
instructions and 64-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CRS8).

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in
magnitude than the smallest nonzero, positive or negative
number that can be represented in the data-type format
being used.

vector

(1) A set of integer or floating-point values, called elements,
that are packed into a single operand. Most of the 128-bit
and 64-bit media instructions use vectors as operands.
Vectors are also called packed or SIMD (single-instruction
multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

Preface

XXi



AMDZU

AMD 64-Bit Technology

Registers

24594  Rev. 3.02 August 2002

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:

AH-DH

The high 8-bit AH, BH, CH, and DH registers. Compare
AL-DL.

AL-DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.

AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B-R15B registers, available in 64-bit mode.

BP
Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX-eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX-rSP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.

EFLAGS
32-bit (extended) flags register.

XXii

Preface



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

elP
16-bit or 32-bit instruction-pointer register. Compare rIP.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For
the 64-bit data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

P
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8-rl5

The 8-bit R8B-R15B registers, or the 16-bit REW-R15W
registers, or the 32-bit RED-R15D registers, or the 64-bit
R8-R15 registers.

rAX-rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with
nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit
size.

Preface

XXiii



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
RAX
64-bit version of the EAX register.
RBP
64-bit version of the EBP register.
RBX
64-bit version of the EBX register.
RCX
64-bit version of the ECX register.
RDI
64-bit version of the EDI register.
RDX
64-bit version of the EDX register.
rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.
RFLAGS
64-bit flags register. Compare rFLAGS.
rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.
RIP
64-bit instruction-pointer register.
RSI
64-bit version of the ESI register.
RSP
64-bit version of the ESP register.
SP
Stack pointer register.
SS
Stack segment register.
TPR
Task priority register, a new register introduced in the
x86-64 architecture to speed interrupt management.
XXiv Preface



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Endian Order

TR

Task register.

The x86 and x86-64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their
least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

Related Documents

Peter Abel, IBM PC Assembly Language and Programming,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume
II, Prentice-Hall, Englewood Cliffs, NJ, 1991.

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia
Technology, Sunnyvale, CA, 2000.

AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

AMD, AMD Extensions to the 3DNow!™ and MMX™
Instruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium Processor System
Architecture, Addison-Wesley, New York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro
Assembler Bible, Sams, Carmel, Indiana, 1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly
Language Programming, Macmillan Publishing Co., New
York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and
Pentium Based Personal Computer, Prentice-Hall, Englewood
Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley,
New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly
Language Programming, Windcrest McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York,
1994.

Chips and Technologies, Inc. Super386 DX Programmer’s
Reference Manual, Chips and Technologies, Inc., San Jose,
1992.

Preface



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

John Crawford and Patrick Gelsinger, Programming the
80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer’s Guide, Cyrix
Corporation, Richardson, TX, 1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix
Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode
Table, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix
Corporation, Richardson, TX, 1997.

Jeffrey P.  Doyer, Introduction to Protected Mode
Programming, course materials for an onsite class, 1992.

Ray Duncan, Extending DOS: A Programmer’s Guide to
Protected-Mode DOS, Addison Wesley, NY, 1991.

William B. Giles, Assembly Language Programming for the
Intel 80xxx Family, Macmillan, New York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley,
New York, 1994.

John L. Hennessy and David A. Patterson, Computer
Architecture, Morgan Kaufmann Publishers, San Mateo, CA,
1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft
Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro,
Peer-to-Peer Communications, Menlo Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 80486DX2 Processor Floating Point
Instructions, IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide,
IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, Blue Lightning 486DXZ2 Data Book, IBM
Corporation, Essex Junction, VT, 1994.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985.

xxvi

Preface



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Institute of Electrical and Electronics Engineers, IEEE
Standard for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86
IBM PC and Compatible Computers, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book,
Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to
Computer Architecture: Using the Intel Pentium, Oxford
University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The
80386/387 Architecture, John Wiley & Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1993.

NexGen Inc., Nx686 Processor Data Book, NexGen Inc.,
Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD
Extensions in the Pentium III, www.x86.org/articles/sse_pt1/
simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC
Programmer’s Bible, Microsoft Press, Redmond, WA, 1993.

PharLap 386lASM Reference Manual, Pharlap, Cambridge
MA, 1993.

PharLap TNT DOS-Extender Reference Manual, Pharlap,
Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, 1386/i486 Advanced
Programming, Van Nostrand Reinhold, New York, 1993.

Tom Shanley, Protected Mode System Architecture, Addison
Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM
Programming Manual, SGS-Thomson Corporation, 1995.

Walter A. Triebel, The 80386DX Microprocessor, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

John Wharton, The Complete x86, MicroDesign Resources,
Sebastopol, California, 1994.

Web sites and newsgroups:
www.amd.com

news.comp.arch

Preface

XXvii



AMDA
AMD 64-Bit Technology 24594  Rev.3.02 August 2002

news.comp.lang.asm.x86
news.intel.microprocessors

news.microsoft

Xxviii Preface



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

1 Instruction Formats

An instruction’s format encodes its operation, as well as
encoding the locations of its initial operands and the result of
the operation. This section describes the general format and
parameters used by all instructions. For information on the
specific format(s) for each instruction, see:

m  Chapter 3, “General-Purpose Instruction Reference.”

m  Chapter 4, “System Instruction Reference.”

m  “128-Bit Media Instruction Reference” in Volume 4.

m  “64-Bit Media Instruction Reference” in Volume 5.

m  “x87 Floating-Point Instruction Reference” in Volume 5.

11 Instruction Byte Order

An instruction can be between one and 15 bytes in length.
Figure 1-1 shows the byte order of the instruction format.

Legacy REX Opcode Displacement Immediate
Prefix Prefix (1 or 2 bytes) ModRM SIB (1, 2, or 4 bytes) (1,2, or 4 bytes)

P hpl el L IS Bl hpl e

’ Instruction Length < 15 Bytes ’

Figure 1-1. Instruction Byte-Order

Instructions are stored in memory in little-endian order. The
least-significant byte of an instruction is stored at its lowest
memory address, as shown in Figure 1-2 on page 2.

Chapter 1: Instruction Formats 1



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

[ Most-signifcant

Immediat
(highest) address mmecae 3*

Immediate [ *
Immediate [ *
Immediate | *
Displacement [ *
Displacement | *
Displacement | *
Displacement | *
SIB *
ModRM *
Opcode *
Opcode (all two-byte opcodes have OFh as their first byte)
REX Prefix | + (available only in 64-bit mode)
Legacy Prefix |+

< 15 Bytes

Legacy Prefix

* optional, depending on the instruction
+ optional, with most instructions

Least-signifcant
L (lowest) address

+
Legacy Prefix |+
Legacy Prefix |+

513-304.ps

Figure 1-2. Little-Endian Byte-Order of Instruction Stored in Memory

The basic operation of an instruction is specified by an opcode.
The opcode is one or two bytes long, as described in “Opcode”
on page 20. An opcode can be preceded by any number of legacy
prefixes. These prefixes can be classified as belonging to any of
the five groups of prefixes described in “Instruction Prefixes”
on page 3. The legacy prefixes modify an instruction’s default
address size, operand size, or segment, or they invoke a special
function such as modification of the opcode, atomic bus-
locking, or repetition. The REX prefix can be used in 64-bit
mode to access the register extensions illustrated in
“Application-Programming Register Set” in Volume 1. If a REX
prefix is used, it must immediately precede the first opcode
byte.

An instruction’s opcode consists of one or two bytes. In several
128-bit and 64-bit media instructions, a legacy operand-size or
repeat prefix byte is used in a special-purpose way to modify
the opcode. The opcode can be followed by a mode-register-
memory (ModRM) byte, which further describes the operation

Chapter 1: Instruction Formats



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

and/or operands. The opcode, or the opcode and ModRM byte,
can also be followed by a scale-index-base (SIB) byte, which
describes the scale, index, and base forms of memory
addressing. The ModRM and SIB bytes are described in
“ModRM and SIB Bytes” on page 20, but their legacy functions
can be modified by the REX prefix (“Instruction Prefixes” on

page 3).

The 15-byte instruction-length limit can only be exceeded by
using redundant prefixes. If the limit is exceeded, a general-
protection exception occurs.

1.2 Instruction Prefixes

121 Summary of
Legacy Prefixes

The instruction prefixes shown in Figure 1-1 on page 1 are of
two types: legacy prefixes and REX prefixes. Each of the legacy
prefixes has a unique byte value. By contrast, the REX prefixes,
which enable use of the x86-64 register extensions in 64-bit
mode, are organized as a group of byte values in which the value
of the prefix indicates the combination of register-extension
features to be enabled.

Table 1-1 on page 4 shows the legacy prefixes—that is, all
prefixes except the REX prefixes, which are described on
page 14. The legacy prefixes are organized into five groups, as
shown in the left-most column of Table 1-1. A single instruction
should include a maximum of one prefix from each of the five
groups. The legacy prefixes can appear in any order within the
position shown in Figure 1-1 for legacy prefixes. The result of
using multiple prefixes from a single group is unpredictable.

Some of the restrictions on legacy prefixes are:

m  Operand-Size Qverride—This prefix affects only general-
purpose instructions and a few x87 instructions. When used
with 128-bit and 64-bit media instructions, this prefix acts in
a special way to modify the opcode.

m  Address-Size Override—This prefix affects only memory
operands.

m  Segment Override—In 64-bit mode, the CS, DS, ES, and SS
segment override prefixes are ignored.

m LOCK Prefix—This prefix is allowed only with certain
instructions that modify memory.

Chapter 1: Instruction Formats 3



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

m  Repeat Prefixes—These prefixes affect only certain string
instructions. When used with 128-bit and 64-bit media
instructions, these prefixes act in a special way to modify the
opcode.

Table 1-1. Legacy Instruction Prefixes

S AW

Prefix Group' Mnemonic Pre(flfl);:)yt € Description
: . Changes the default operand size of a memory or register
- 2
Operand-Size Override | none 66 operand, as shown in Table 1-2 on page 5.
Address-Size Override none 3 Changes the default address size of a memory operand, as
67 shown in Table 1-3 on page 7.
csS 2F4 Forces use of the current CS segment for memory operands.
DS 34 Forces use of the current DS segment for memory operands.
S ¢ Overrid ES 264 Forces use of the current ES segment for memory operands.
egment Override
FS 64 Forces use of the current FS segment for memory operands.
GS 65 Forces use of the current GS segment for memory operands.
SS 364 Forces use of the current SS segment for memory operands.
Causes certain kinds of memory read-modify-write
5
Lock LOCK Fo instructions to occur atomically.
REP Repeats a string operation (INS, MOVS, OUTS, LODS, and
STOS) until the rCX register equals 0.
REPE or F3° Repeats a compare-string or scan-string operation
Repeat REPZ (CMPSx and SCASX) until the rCX register equals 0 or the
P zero flag (ZF) is cleared to 0.
REPNE or Repeats a compare-string or scan-string operation
REPNZ F26 (CMPSx and SCASx) until the rCX register equals 0 or the
zero flag (ZF) is set to 1.
Note:

1. Asingle instruction should include a maximum of one prefix from each of the five groups.

2. When used with 128-bit and 64-bit media instructions, this prefix acts in a special way to modify the opcode. The prefix is ignored
by 64-bit media floating-point (3DNow!) instructions. See “Instructions that Cannot Use the Operand-Size Prefix” on page 6.

This prefix also changes the size of the RCX register when used as an implied count register.
In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.
The LOCK prefix should not be used for instructions other than those listed in “Lock Prefix” on page 10.

This prefix should be used only with compare-string and scan-string instructions. When used with 128-bit and 64-bit media instruc-
tions, the prefix acts in a special way to modify the opcode.

Chapter 1: Instruction Formats



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

1.2.2 Operand-Size
Override Prefix

The default operand size for an instruction is determined by a
combination of its opcode, the D (default) bit in the current
code-segment descriptor, and the current operating mode, as
shown in Table 1-2. The operand-size override prefix (66h)
selects the non-default operand size. The prefix can be used
with any general-purpose instruction that accesses non-fixed-
size operands in memory or general-purpose registers (GPRs),
and it can also be used with the x87 FLDENYV, FNSTENYV,
FNSAVE, and FRSTOR instructions.

In 64-bit mode, the prefix allows mixing of 16-bit, 32-bit, and 64-
bit data on an instruction-by-instruction basis. In compatibility
and legacy modes, the prefix allows mixing of 16-bit and 32-bit
operands on an instruction-by-instruction basis.

Table 1-2. Operand-Size Overrides

Default Effectiv: Instruction Prefix'
Operating Mode Operand Opgran
Size (Bits) | 2 66h | REXWS
(Bits) .
64 don't care yes
64-Bit )
2 32 no no
Mode 3
16 yes no
Long 32 no
Mode 32
Compatibility 16 yes
Mode 32 yes
16
16 no Not
3 no Applicable
32
Legacy Mode 16 yes
(Protected, Virtual-8086,
or Real Mode) 6 32 yes
16 no
Note:
1. “no’ indicates that the default operand size is used.
2. This is the typical default, although some instructions default to other operand sizes. See
Appendix B, “General-Purpose Instructions in 64-Bit Mode,” for details.
3. See “REX Prefixes” on page 14.

Chapter 1: Instruction Formats 5



AMDZU

AMD 64-Bit Technology

1.2.3 Address-Size
Override Prefix

24594  Rev. 3.02 August 2002

In 64-bit mode, most instructions default to a 32-bit operand
size. For these instructions, a REX prefix (page 16) can specify
a 64-bit operand size, and a 66h prefix specifies a 16-bit operand
size. The REX prefix takes precedence over the 66h prefix.
However, if an instruction defaults to a 64-bit operand size, it
does not need a REX prefix and it can only be overridden to a
16-bit operand size. It cannot be overridden to a 32-bit operand
size, because there is no 32-bit operand-size override prefix in
64-bit mode. Two groups of instructions have a default 64-bit
operand size in 64-bit mode:

m Near branches. For details, see “Near Branches in 64-Bit
Mode” in Volume 1.

m All instructions, except far branches, that implicitly
reference the RSP. For details, see “Stack Operation” in
Volume 1.

Instructions that Cannot Use the Operand-Size Prefix. The operand-size
prefix should be used only with general-purpose instructions
and the x87 FLDENYV, FNSTENYV, FNSAVE, and FRSTOR
instructions, in which the prefix selects between 16-bit and 32-
bit operand size. The prefix is ignored by all other x87
instructions and by 64-bit media floating-point (3DNow!)
instructions.

When used with 64-bit media integer instructions, the 66h prefix
acts in a special way to modify the opcode. This modification
typically causes an access to an XMM register or 128-bit
memory operand and thereby converts the 64-bit media
instruction into its comparable 128-bit media instruction. The
result of using an F2h or F3h repeat prefix along with a 66h
prefix in 128-bit or 64-bit media instructions is unpredictable.

Operand-Size and REX Prefixes. The REX operand-size prefix takes
precedence over the 66h prefix. See “REX.W: Operand Width”
on page 16 for details.

The default address size for instructions that access non-stack
memory is determined by the current operating mode, as shown
in Table 1-3. The address-size override prefix (67h) selects the
non-default address size. Depending on the operating mode,
this prefix allows mixing of 16-bit and 32-bit, or of 32-bit and 64-
bit addresses, on an instruction-by-instruction basis. The prefix
changes the address size for memory operands. It also changes

Chapter 1: Instruction Formats



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

the size of the RCX register for instructions that use RCX
implicitly.

For instructions that implicitly access the stack segment (SS),
the address size for stack accesses is determined by the D
(default) bit in the stack-segment descriptor. In 64-bit mode,
the D bit is ignored, and all stack references have a 64-bit
address size. However, if an instruction accesses both stack and
non-stack memory, the address size of the non-stack access is
determined as shown in Table 1-3.

Table 1-3. Address-Size Overrides

. Address-
Default Effective . -
. . - Size Prefix
Operating Mode Address Size | Address Size 1
(Bits) (Bits) (67h)
Required?
. 64 no
Mode 32 yes
32 no
Long Mode 32 -
Compatibility yes
Mode 32 yes
16
16 no
32 no
32
Legacy Mode 16 yes
(Protected, Virtual-8086, or Real
Mode) 32 yes
16
16 no
Note:
1. “no” indicates that the default address size is used.

As Table 1-3 shows, the default address size is 64 bits in 64-bit
mode. The size can be overridden to 32 bits, but 16-bit
addresses are not supported in 64-bit mode. In compatibility
and legacy modes, the default address size is 16 bits or 32 bits,
depending on the operating mode (see “Processor Initialization
and Long-Mode Activation” in Volume 2 for details). In these
modes, the address-size prefix selects the non-default size, but
the 64-bit address size is not available.

Chapter 1: Instruction Formats 7



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Certain instructions reference pointer registers or count
registers implicitly, rather than explicitly. In such instructions,
the address-size prefix affects the size of such addressing and
count registers, just as it does when such registers are explicitly
referenced. Table 1-4 lists all such instructions and the registers
referenced using the three possible address sizes.

Table 1-4. Pointer and Count Registers and the Address-Size Prefix
Pointer or Count Register
Instruction 16-Bit 32-Bit 64-Bit

Address Size | Address Size | Address Size

CMPS, CMPSB, CMPSW,

CMPSD, CMPSQ-Compare SI, DI, CX ESI, EDI, ECX RSI, RDI, RCX

Strings

IN'S. INSB, INSW, INSD—Input DI, CX EDI, ECX RDI, RCX

String

JCXZ, JECXZ, JRCXZ—Jump on

CX/ECX/RCX Zero X ECX RCX

LODS, LODSB, LODSW,

LODSD, LODSQ—Load String Sl CX ESI, ECX RSI, RCX

LOOP, LOOPE, LOOPNZ,

LOOPNE, LOOPZ-Loop X ECX RCX

MOVS, MOVSB, MOVSW,

MOVSD, MOVSQ—Move String SI, DI, CX ESI, EDI, ECX RSI, RDI, RCX

OUTS, OUTSB, OUTSW,

OUTSD—Output String SI, CX ESI, ECX RSI, RCX

REP, REPE, REPNE, REPNZ,

REPZ—Repeat Prefixes & ECX RCX

SCAS, SCASB, SCASW, SCASD,

SCASQ—Scan String DI, CX EDI, ECX RDI, RCX

STOS, STOSB, STOSW, STOSD,

STOSQ-Store String DI, CX EDI, ECX RDI, RCX

XLAT, X_LATB—TabIe Look-up BX EBX RBX

Translation

8 Chapter 1: Instruction Formats




AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology
124 Segment- Segment overrides can be used only with instructions that
Override Prefixes reference non-stack memory. Most instructions that reference

memory are encoded with a ModRM byte (page 20). The default
segment for such memory-referencing instructions is implied by
the base register indicated in its ModRM byte, as follows:

Instructions that Reference a Non-Stack Segment—If an
instruction encoding references any base register other than
rBP or rSP, or if an instruction contains an immediate offset,
the default segment is the data segment (DS). These
instructions can use the segment-override prefix to select
one of the non-default segments, as shown in Table 1-5.

String Instructions—String instructions reference two
memory operands. By default, they reference both the DS
and ES segments (DS:rSI and ES:rDI). These instructions
can override their DS-segment reference, as shown in
Table 1-5, but they cannot override their ES-segment
reference.

Instructions that Reference the Stack Segment—If an
instruction’s encoding references the rBP or rSP base
register, the default segment is the stack segment (SS). All
instructions that reference the stack (push, pop, call,
interrupt, return from interrupt) use SS by default. These
instructions cannot use the segment-override prefix.

Table 1-5. Segment-Override Prefixes

Mnemonic Pre(fI:);:)y te Description

Cs! 2E Forces use of current CS segment for memory operands.
DS! 3E Forces use of current DS segment for memory operands.
ES! 26 Forces use of current ES segment for memory operands.
FS 64 Forces use of current FS segment for memory operands.
GS 65 Forces use of current GS segment for memory operands.
ss! 36 Forces use of current SS segment for memory operands.
Note:

1. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

Chapter 1: Instruction Formats



AMDZU

AMD 64-Bit Technology

1.2.5 Lock Prefix

12.6 Repeat Prefixes

24594  Rev. 3.02 August 2002

Segment Overrides in 64-Bit Mode. In 64-bit mode, the CS, DS, ES,
and SS segment-override prefixes have no effect. These four
prefixes are not treated as segment-override prefixes for the
purposes of multiple-prefix rules. Instead, they are treated as
null prefixes.

The FS and GS segment-override prefixes are treated as true
segment-override prefixes in 64-bit mode. Use of the FS or GS
prefix causes their respective segment bases to be added to the
effective address calculation. See “FS and GS Registers in 64-
Bit Mode” in Volume 2 for details.

The LOCK prefix causes certain kinds of memory read-modify-
write instructions to occur atomically. The mechanism for doing
so is implementation-dependent (for example, the mechanism
may involve bus signaling or packet messaging between the
processor and a memory controller). The prefix is intended to
give the processor exclusive use of shared memory in a
multiprocessor system.

The LOCK prefix can only be used with forms of the following
instructions that write a memory operand: ADC, ADD, AND,
BTC, BTR, BTS, CMPXCHG, CMPXCHGS8B, DEC, INC, NEG,
NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-
opcode exception occurs if the LOCK prefix is used with any
other instruction.

The repeat prefixes cause repetition of certain instructions that
load, store, move, input, or output strings. The prefixes should
only be used with such string instructions. Two pairs of repeat
prefixes, REPE/REPZ and REPNE/REPNZ, perform the same
repeat functions for certain compare-string and scan-string
instructions. The repeat function uses rCX as a count register.
The size of rCX is based on address size, as shown in Table 1-4
on page 8.

REP. The REP prefix repeats its associated string instruction the
number of times specified in the counter register (rCX). It
terminates the repetition when the value in rCX reaches 0. The
prefix can only be used with the INS, LODS, MOVS, OUTS, and
STOS instructions. Table 1-6 shows the valid REP prefix
opcodes.

10

Chapter 1: Instruction Formats



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table 1-6. REP Prefix Opcodes

Mnemonic Opcode

REP INS reg/mem8, DX
REP INSB

REP INS reg/mem16/32, DX
REP INSW F3 6D
REP INSD

REP LODS mems8
REP LODSB

REP LODS mem16/32/64
REP LODSW
REP LODSD
REP LODSQ

REP MOVS mem8, mem8
REP MOVSB

REP MOVS mem16/32/64, mem16/32/64
REP MOVSW
REP MOVSD
REP MOVSQ

REP OUTS DX, reg/mem8
REP OUTSB

REP OUTS DX, reg/mem16/32
REP OUTSW F3 6F
REP OUTSD

REP STOS mem8
REP STOSB

REP STOS mem16/32/64
REP STOSW
REP STOSD
REP STOSQ

F3 6C

F3 AC

F3 AD

F3 A4

F3 A5

F3 6E

F3 AA

F3 AB

REPE and REPZ. REPE and REPZ are synonyms and have
identical opcodes. These prefixes repeat their associated string
instruction the number of times specified in the counter

Chapter 1: Instruction Formats 11



AMDZU

AMD 64-Bit Technology 24594  Rev.3.02 August 2002
register (rCX). The repetition terminates when the value in rCX
reaches 0 or when the zero flag (ZF) is cleared to 0. The REPE
and REPZ prefixes can only be used with the CMPS, CMPSB,
CMPSD, CMPSW, SCAS, SCASB, SCASD, and SCASW
instructions. Table 1-7 shows the valid REPE and REPZ prefix
opcodes.

Table 1-7. REPE and REPZ Prefix Opcodes
Mnemonic Opcode
REPx CMPS mem8, mem8
F3 A6
REPx CMPSB
REPx CMPS mem16/32/64, mem16/32/64
REPXx CMPSW
F3 A7
REPx CMPSD
REPx CMPSQ
REPx SCAS mem8 £3 AE
REPx SCASB
REPx SCAS mem16/32/64
REPx SCASW £3 AF
REPx SCASD
REPx SCASQ
REPNE and REPNZ. REPNE and REPNZ are synonyms and have
identical opcodes. These prefixes repeat their associated string
instruction the number of times specified in the counter
register (rCX). The repetition terminates when the value in rCX
reaches 0 or when the zero flag (ZF) is set to 1. The REPNE and
REPNZ prefixes can only be used with the CMPS, CMPSB,
CMPSD, CMPSW, SCAS, SCASB, SCASD, and SCASW
instructions. Table 1-8 on page 13 shows the valid REPNE and
REPNZ prefix opcodes.
12 Chapter 1: Instruction Formats



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table 1-8. REPNE and REPNZ Prefix Opcodes

Mnemonic Opcode

REPNx CMPS mem8, mems8
REPNx CMPSB

REPNx CMPS mem16/32/64, mem16/32/64
REPNx CMPSW
REPNx CMPSD
REPNx CMPSQ

REPNx SCAS mem8
REPNx SCASB

REPNx SCAS mem16/32/64
REPNx SCASW
REPNx SCASD
REPNx SCASQ

F2 A6

F2 A7

F2 AE

F2 AF

Instructions that Cannot Use Repeat Prefixes. The repeat prefixes
should only be used in the string instructions listed in
tables 1-6, 1-7, and 1-8. When used in 128-bit or 64-bit media
instructions, the F2h and F3h prefixes act in a special way to
modify the opcode rather than cause a repeat operation. The
result of using a 66h operand-size prefix along with an F2h or
F3h prefix in 128-bit or 64-bit media instructions is
unpredictable.

Optimization of Repeats. Depending on the hardware implementa-
tion, the repeat prefixes can have a setup overhead. If the
repeated count is variable, the overhead can sometimes be
avoided by substituting a simple loop to move or store the data.
Repeated string instructions can be expanded into equivalent
sequences of inline loads and stores or a sequence of stores can
be used to emulate a REP STOS.

For repeated string moves, performance can be maximized by
moving the largest possible operand size. For example, use REP
MOVSD rather than REP MOVSW and REP MOVSW rather
than REP MOVSB. Use REP STOSD rather than REP STOSW
and REP STOSW rather than REP MOVSB.

Chapter 1: Instruction Formats 13



AMDZU

AMD 64-Bit Technology

1.2.7 REX Prefixes

24594  Rev. 3.02 August 2002

Depending on the hardware implementation, string moves with
the direction flag (DF) cleared to 0 (up) may be faster than
string moves with DF set to 1 (down). DF =1 is only needed for
certain cases of overlapping REP MOVS, such as when the
source and the destination overlap.

REX prefixes are a group of instruction-prefix bytes that can be
used only in 64-bit mode. They enable access to the x86-64
register extensions. Figure 1-1 on page 1 and Figure 1-2 on
page 2 show how a REX prefix fits within the byte order of
instructions. REX prefixes enable the following features in 64-
bit mode:

m Use of the extended GPR (Figure 2-3 on page 31) or XMM
registers (Figure 2-8 on page 36).
m  Use of the 64-bit operand size when accessing GPRs.

m Use of the extended control and debug registers, as
described in “64-Bit-Mode Extended Control Registers” in
Volume 2 and “64-Bit-Mode Extended Debug Registers” in
Volume 2.

m  Use of the uniform byte registers (AL-R15).

Table 1-9 shows the REX prefixes. The value of a REX prefix is
in the range 40h through 4Fh, depending on the particular
combination of x86-64 register extensions desired.

Table 1-9. REX Instruction Prefixes

. . Prefix Code -
Prefix Type Mnemonic (Hex) Description
REX.W
40!
. . REXR Access an x86-64 register
Register Extensions through .
REX.X extension.
4F!
REX.B

Note:
1. See Table 1-11 for encoding of REX prefixes.

A REX prefix is normally required with an instruction that
accesses a 64-bit GPR or one of the extended GPR or XMM
registers. Only a few instructions have an operand size that
defaults to (or is fixed at) 64 bits in 64-bit mode, and thus do not

14

Chapter 1: Instruction Formats



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

need a REX prefix. These exceptions to the normal rule are
listed in Table 1-10.

An instruction can have only one REX prefix, although the
prefix can express several extension features. If a REX prefix is
used, it must immediately precede the first opcode byte in the
instruction format. Any other placement of a REX prefix, or any
use of a REX prefix in an instruction that does not access an
extended register, is ignored. The legacy instruction-size limit
of 15 bytes still applies to instructions that contain a REX
prefix.

Table 1-10. Instructions Not Requiring REX Size Prefix in 64-Bit Mode

CALL (Near) POP reg/mem

ENTER POP reg

Jec POP FS

IrCXz POP GS

JMP (Near) POPFQ

LEAVE PUSH imm8

LGDT PUSH imm32

LIDT PUSH reg/mem

LLDT PUSH reg

LooP PUSH FS

LOOPcc PUSH GS

LTR PUSHFQ

MOV CR(n) RET (Near)
MOV DR(n)

Chapter 1: Instruction Formats 15



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

REX prefixes are a set of sixteen values that span one row of
the main opcode map and occupy entries 40h through 4Fh.
Table 1-11 and Figure 1-3 on page 18 show the prefix fields and
their uses.

Table 1-11. REX Prefix-Byte Fields

Mnemonic Bit Position Definition

- 7-4 0100

0 = Default operand size

REX.W 3 1 = 64-bit operand size

REXR 2 1-bit (high) extension of the ModRM reg field",
' thus permitting access to 16 registers.

REXX 1 1-bit (high) extension of the SIB index field',
' thus permitting access to 16 registers.

1-bit (high) extension of the ModRM r/m field',

REX.B 0 SIB base field', or opcode reg field, thus
permitting access to 16 registers.

Note:
1. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 20.

REX.W: Operand Width. Setting the REX.W bit to 1 specifies a 64-
bit operand size. Like the existing 66h operand-size prefix, the
REX 64-bit operand-size override has no effect on byte
operations. For non-byte operations, the REX operand-size
override takes precedence over the 66h prefix. If a 66h prefix is
used together with a REX prefix that has the REX.W bit set to
1, the 66h prefix is ignored. However, if a 66h prefix is used
together with a REX prefix that has the REX.W bit cleared to 0,
the 66h prefix is not ignored and the operand size becomes
16 bits.

REX.R: Register. The REX.R bit adds a 1-bit (high) extension to
the ModRM reg field (page 20) when that field encodes a GPR,
XMM, control, or debug register. REX.R does not modify
ModRM reg when that field specifies other registers or opcodes.
REX.R is ignored in such cases.

REX.X: Index. The REX.X bit adds a 1-bit (high) extension to the
SIB index field (page 20).

16

Chapter 1: Instruction Formats



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

REX.B: Base. The REX.B bit either adds a 1-bit (high) extension
to the base in the ModRM r/m field or SIB base field, or it adds a
1-bit (high) extension to the opcode reg field used for accessing
GPRs. (See Table 2-2 on page 47 for more about the REX.B bit.)

Encoding Examples. Figure 1-3 on page 18 shows four examples of
how the R, X, and B bits of REX prefixes are concatenated with
fields from the ModRM byte, SIB byte, and opcode to specify
register and memory addressing. The R, X, and B bits are
described in Table 1-11 on page 16.

Byte-Register Addressing. In the legacy architecture, the byte
registers (AH, AL, BH, BL, CH, CL, DH, and DL, shown in
Figure 2-2 on page 30) are encoded in the ModRM reg or r/m
field or in the opcode reg field as registers 0 through 7. The REX
prefix provides an additional byte-register addressing
capability that makes the least-significant byte of any GPR
available for byte operations (Figure 2-3 on page 31). This
provides a uniform set of byte, word, doubleword, and
quadword registers better suited for register allocation by
compilers.

Special Encodings for Registers. Readers who need to know the
details of instruction encodings should be aware that certain
combinations of the ModRM and SIB fields have special
meaning for register encodings. For some of these
combinations, the instruction fields expanded by the REX
prefix are not decoded (treated as don’t cares), thereby creating
aliases of these encodings in the extended registers. Table 1-12
on page 19 describes how each of these cases behaves.

Implications for INC and DEC Instructions. The REX prefix values are
taken from the 16 single-byte INC and DEC instructions, one for
each of the eight GPRs. Therefore, these single-byte opcodes for
INC and DEC are not available in 64-bit mode, although they
are available in legacy and compatibility modes. The
functionality of these INC and DEC instructions is still
available in 64-bit mode, however, using the ModRM forms of
those instructions (opcodes FF /0 and FF /1).

Chapter 1: Instruction Formats 17



AMDA
AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

Case 1: Register-Register Addressing (No Memory Operand)

ModRM Byte
REX Prefix Opcode mod reg r/m
TR B | [11]rrr|bbb]  REXXisnotused
4
4
Rrrr Bbbb

Case 2: Memory Addressing Without an SIB Byte

ModRM Byte
REX Prefix Opcode mod reg r/m _
4WRX8 || | 11 rrr[onb] REXX is not used
| ModRM reg field = 100
g
4
Rrrr Bbbb

Case 3: Memory Addressing With an SIB Byte

ModRM Byte SIB Byte
REX Prefix Opcode mod reg r/m  scale index base
4WRX8 || | [111] ree | 100 [bb[xxx]|bbb |
|
!
4
Rrrr Xxxx Bbbb

Case 4: Register Operand Coded in Opcode Byte

Opcode Byte
REX Prefix op reg
4WRx8 | | [bbb]  REXRIs notused
| REXX'is not used
4
B b b b 513-302.eps

Figure 1-3. Encoding Examples of REX-Prefix R, X, and B Bits

18 Chapter 1: Instruction Formats



AMDZ1

ModRM Byte:
* mod =00

« r/m' =x101 (EBP)

Base register is not used.

displacement must be
done by setting mod = 01
with a displacement of 0
(with or without an index
register).

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table 1-12.  Special REX Encodings for Registers
ModRM and SIB Meaning in Legacy and Implications in Legacy Additional REX
Encodingsz Compatibility Modes and Compatibility Modes Implications
REX prefix adds a fourth bit
. (x), which is decoded and
ModRM Byte: SIB bvte is reauired for modifies the base register
* mod = 11 SIB byte is present. y quiired in the SIB byte. Therefore,
ESP-based addressing. .
. 1_ the SIB byte is also
r/m' =100 (ESP) .
required for R12-based
addressing.
REX prefix adds a fourth bit
Using EBP without a (x), which is not decoded

(don't care). Therefore,
using RBP or R13 without a
displacement must be
done via mod = 01 with a
displacement of 0 (with or
without an index register).

SIB Byte:
« index' = X100 (ESP)

Index register is not used.

ESP cannot be used as an
index register.

REX prefix adds a fourth bit
(X), which is decoded.
Therefore, there are no
additional implications.
The expanded index field is
used to distinguish RSP
from R12, allowing R12 to
be used as an index.

SIB Byte:
 base =x101 (EBP)
* ModRM.mod = 00

Base register is not used if
ModRM.mod = 00.

Base register depends on
mod encoding. Using EBP
with a scaled index and
without a displacement
must be done by setting
mod = 01 with a
displacement of 0.

REX prefix adds a fourth bit
(x), which is not decoded
(don't care). Therefore,
using RBP or R13 without a
displacement must be
done via mod =01 with a
displacement of 0 (with or
without an index register).

Note:

1. The REX-prefix bit is shown in the fourth (most-significant) bit position of the encodings for the ModRM r/m, SIB index, and SIB
base fields. The lower-case “x” for ModRM /m (rather than the upper-case “B” shown in Figure 1-3 on page 18) indicates that

",

the REX-prefix bit is not decoded (don’t care).
2. for a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 20.

Chapter 1: Instruction Formats

19



AMDZU

AMD 64-Bit Technology

1.3

1.4

Opcode

24594  Rev. 3.02 August 2002

Each instruction has a unique opcode, although assemblers can
support multiple mnemonics for a single instruction opcode.
The opcode specifies the operation that the instruction
performs and, in certain cases, the kinds of operands it uses. An
opcode consists of one or two bytes, but certain 128-bit media
instructions also use a prefix byte in a special way to modify the
opcode. The 3-bit reg field of the ModRM byte (“ModRM and
SIB Bytes” on page 20) is also used in certain instructions
either for three additional opcode bits or for a register
specification.

128-Bit and 64-Bit Media Instruction Opcodes. Many 128-bit and 64-bit
media instructions include a 66h, F2h, or F3h prefix byte in a
special way to modify the opcode. These same byte values can
be used in certain general-purpose and x87 instructions to
modify operand size (66h) or repeat the operation (F2h, F3h). In
128-bit and 64-bit media instructions, however, such prefix
bytes modify the opcode. If a 128-bit or 64-bit media instruction
uses one of these three prefixes, and also includes any other
prefix in the 66h, F2h, and F3h group, the result is
unpredictable.

All opcodes for 64-bit media instructions begin with a OFh byte.
In the case of 64-bit floating-point (3DNow!) instructions, the
OFh byte is followed by a second OFh opcode byte. A third
opcode byte occupies the same position at the end of a 3DNow!
instruction as would an immediate byte. The value of the
immediate byte is shown as the third opcode byte-value in the
syntax for each instruction in “64-Bit Media Instruction
Reference” in Volume 5. The format is:

OFh OFh ModRM [SIB] [displacement] 3DNow!_third _opcode_byte

For details on opcode encoding, see Appendix A, “Opcode and
Operand Encodings.”

ModRM and SIB Bytes

The ModRM byte is used in certain instruction encodings to:

m Define a register reference.

m Define a memory reference.

20

Chapter 1: Instruction Formats



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

m Provide additional opcode bits with which to define the
instruction’s function.

ModRM bytes have three fields—mod, reg, and r/m. The reg field
provides additional opcode bits with which to define the
function of the instruction or one of its operands. The mod and
r/m fields are used together with each other and, in 64-bit
mode, with the REX.R and REX.B bits of the REX prefix
(page 14), to specify the location of an instruction’s operands
and certain of the possible addressing modes (specifically, the
non-complex modes).

Figure 1-4 shows the format of a ModRM byte.

Bits: 7
[ mod

5 4 3 2 1 0
reg | r/m |M0dRM

6
REX.R bit of REX prefix can —T
extend this field to 4 bits

REX.B bit of REX prefix can
extend this field to 4 bits

513-305.eps

Figure 14. ModRM-Byte Format

In some instructions, the ModRM byte is followed by an SIB
byte, which defines memory addressing for the complex-
addressing modes described in “Effective Addresses” in
Volume 1. The SIB byte has three fields—scale, index, and
base—that define the scale factor, index-register number, and
base-register number for 32-bit and 64-bit complex addressing
modes. In 64-bit mode, the REX.B and REX.X bits extend the
encoding of the SIB byte’s base and index fields.

Figure 1-5 shows the format of an SIB byte.

Chapter 1: Instruction Formats 21



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

Bt 7 6 5 4 3 2 1 0
[ scle | index | base | siB

REX.X bit of REX prefix can —T
extend this field to 4 bits

513-306.ps

REX.B bit of REX prefix can
extend this field to 4 bits

Figure 1-5. SIB-Byte Format

The encodings of ModRM and SIB bytes not only define
memory-addressing modes, but they also specify operand
registers. The encodings do this by using 3-bit fields in the
ModRM and SIB bytes, depending on the format:

m  ModRM: the reg and r/m fields of the ModRM byte. (Case 1 in
Figure 1-3 on page 18 shows an example of this).

m  ModRM with SIB: the reg field of the ModRM byte and the
base and index fields of the SIB byte. (Case 3 in Figure 1-3 on
page 18 shows an example of this).

m Instructions without ModRM: the reg field of the opcode.
(Case 4 in Figure 1-3 on page 18 shows an example of this).

In 64-bit mode, the bits needed to extend each field for
accessing the additional registers are provided by the REX
prefixes, as shown in Figure 1-4 and Figure 1-5.

For details on opcode encoding, see Appendix A, “Opcode and
Operand Encodings.”

Displacement Bytes

A displacement (also called an offset) is a signed value that is
added to the base of a code segment (absolute addressing) or to
an instruction pointer (relative addressing), depending on the
addressing mode. The size of a displacement is 1, 2, or 4 bytes. If
an addressing mode requires a displacement, the bytes (1, 2, or
4) for the displacement follow the opcode, ModRM, or SIB byte
(whichever comes last) in the instruction encoding.

22

Chapter 1: Instruction Formats



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

In 64-bit mode, the same ModRM and SIB encodings are used to
specify displacement sizes as those used in legacy and
compatibility modes. However, the displacement is sign-
extended to 64 bits during effective-address calculations. Also,
in 64-bit mode, support is provided for some 64-bit
displacement and immediate forms of the MOV instruction. See
“Immediate Operand Size” in Volume 1 for more information
on this.

1.6 Immediate Bytes

An immediate is a value—typically an operand value—encoded
directly into the instruction. Depending on the opcode and the
operating mode, the size of an immediate operand can be 1, 2,
or 4 bytes. Immediate operands in 64-bit mode are limited to
these same sizes. In 64-bit mode, support is provided for some
64-bit displacement and immediate forms of the MOV
instruction. See “Immediate Operand Size” in Volume 1 for
more information on this.

If an instruction takes an immediate operand, the bytes (1, 2, or
4) for the immediate follow the opcode, ModRM, SIB, or
displacement bytes (whichever come last) in the instruction
encoding. Some 128-bit media instructions use the immediate
byte as a condition code.

1.7 RIP-Relative Addressing

In 64-bit mode, addressing relative to the contents of the 64-bit
instruction pointer (program counter)—called RIP-relative
addressing or PC-relative addressing—is implemented for
certain instructions. In such cases, the effective address is
formed by adding the displacement to the 64-bit RIP of the next
instruction.

In the legacy x86 architecture, addressing relative to the
instruction pointer is available only in control-transfer
instructions. In the 64-bit mode, any instruction that uses
ModRM addressing can use RIP-relative addressing. This
feature is particularly useful for addressing data in position-
independent code and for code that addresses global data.

Without RIP-relative addressing, ModRM instructions address
memory relative to zero. With RIP-relative addressing, ModRM

Chapter 1: Instruction Formats 23



AMDZU

AMD 64-Bit Technology

1.71 Encoding

24594  Rev. 3.02 August 2002

instructions can address memory relative to the 64-bit RIP
using a signed 32-bit displacement. This provides an offset
range of £2 Gbytes from the RIP.

Programs usually have many references to data, especially
global data, that are not register-based. To load such a program,
the loader typically selects a location for the program in
memory and then adjusts program references to global data
based on the load location. RIP-relative addressing of data
makes this adjustment unnecessary.

Table 1-13 shows the ModRM and SIB encodings for RIP-
relative addressing. Redundant forms of 32-bit displacement-
only addressing exist in the current ModRM and SIB encodings.
There is one ModRM encoding with several SIB encodings. RIP-
relative addressing is encoded using one of the redundant
forms. In 64-bit mode, the ModRM Disp32 (32-bit displacement)
encoding is redefined to be RIP + Disp32 rather than
displacement-only.

Table 1-13. Encoding for RIP-Relative Addressing
ModRM and SIB Meaning in Legacy and T Additional 64-bit
Encodings Compatibility Modes Meaning in 64-bit Mode Implications
ModRM Byte: Zero-based (normal)
« mod =00 Disp32 RIP + Disp32 displacement addressing
must use SIB form (see
SIB Byte:
* base =101 (none) )
If mod = 00, Disp32 Same as Legacy None

* index =100 (none)
o scale=1,2,48

1.72 REX Prefix and
RIP-Relative
Addressing

ModRM encoding for RIP-relative addressing does not depend
on a REX prefix. In particular, the r/m encoding of 101, used to
select RIP-relative addressing, is not affected by the REX
prefix. For example, selecting R13 (REX.B =1, r/m = 101) with
mod = 00 still results in RIP-relative addressing.

The four-bit »/m field of ModRM is not fully decoded. Therefore,
in order to address R13 with no displacement, software must
encode it as R13 + 0 using a one-byte displacement of zero.

24

Chapter 1: Instruction Formats



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology
1.73 Address-Size RIP-relative addressing is enabled by 64-bit mode, not by a 64-
Prefix and RIP- bit address-size. Conversely, use of the address-size prefix

Relative Addressing (“Address-Size Override Prefix” on page 6) does not disable
RIP-relative addressing. The effect of the address-size prefix is
to truncate and zero-extend the computed effective address to
32 bits, like any other addressing mode.

Chapter 1: Instruction Formats 25



AMDA
AMD 64-Bit Technology 24594  Rev.3.02 August 2002

26 Chapter 1: Instruction Formats



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
2 Instruction Overview
2.1 Instruction Subsets

For easier reference, the instruction descriptions are divided
into five instruction subsets. The following sections describe
the function, mnemonic syntax, opcodes, affected flags, and
possible exceptions generated by all instructions in the x86-64
architecture:

Chapter 3, “General-Purpose Instruction Reference”—The
general-purpose instructions are used in basic software
execution. Most of these load, store, or operate on data in
the general-purpose registers (GPRs), in memory, or in both.
Other instructions are used to alter sequential program flow
by branching to other locations within the program or to
entirely different programs.

Chapter 4, “System Instruction Reference”—The system
instructions establish the processor operating mode, access
processor resources, handle program and system errors, and
manage memory.

“128-Bit Media Instruction Reference” in Volume 4—The 128-
bit media instructions load, store, or operate on data located
in the 128-bit XMM registers. These instructions define both
vector and scalar operations on floating-point and integer
data types. They include the SSE and SSE2 instructions that
operate on the XMM registers. Some of these instructions
convert source operands in XMM registers to destination
operands in GPR, MMX™, or x87 registers or otherwise
affect XMM state.

“64-Bit Media Instruction Reference” in Volume 5—The 64-bit
media instructions load, store, or operate on data located in
the 64-bit MMX registers. These instructions define both
vector and scalar operations on integer and floating-point
data types. They include the legacy MMX instructions, the
3DNow!™ instructions, and the AMD extensions to the MMX
and 3DNow! instruction sets. Some of these instructions
convert source operands in MMX registers to destination
operands in GPR, XMM, or x87 registers or otherwise affect
MMX state.

Chapter 2: Instruction Overview

27



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

m  “x87 Floating-Point Instruction Reference” in Volume 5—The
x87 instructions are wused in legacy floating-point
applications. Most of these instructions load, store, or
operate on data located in the x87 ST(0)-ST(7) stack
registers (the FPRO-FPR7 physical registers). The
remaining instructions within this category are used to
manage the x87 floating-point environment.

The description of each instruction covers its behavior in all
operating modes, including legacy mode (real, virtual-8086, and
protected modes) and long mode (compatibility and 64-bit
modes). Details of certain kinds of complex behavior—such as
control-flow changes in CALL, INT, or FXSAVE instructions—
have cross-references in the instruction-detail pages to detailed
descriptions in volumes 1 and 2.

Two instructions—CMPSD and MOVSD—use the same
mnemonic for different instructions. Assemblers can
distinguish them on the basis of the number and type of
operands with which they are used.

2.2 Reference-Page Format

Figure 2-1 on page 29 shows the format of an instruction-detail
page. The instruction mnemonic is shown in bold at the top-left,
along with its name. In this example, POPFD is the mnemonic
and POP to EFLAGS Doubleword is the name. Next, there is a
general description of the instruction’s operation. Many
descriptions have cross-references to more detail in other parts
of the manual.

Beneath the general description, the mnemonic is shown again,
together with the related opcode(s) and a description summary.
Related instructions are listed below this, followed by a table
showing the flags that the instruction can affect. Finally, each
instruction has a summary of the possible exceptions that can
occur when executing the instruction. The columns labeled
“Real” and “Virtual-8086” apply only to execution in legacy
mode. The column labeled “Protected” applies both to legacy
mode and long mode, because long mode is a superset of legacy
protected mode.

The 128-bit and 64-bit media instructions also have diagrams
illustrating the operation. A few instructions have examples or
pseudocode describing the action.

28

Chapter 2: Instruction Overview



AMDZ1

24594 Rev. 3.02 August 2002

Mnemonic and any operands Opcode

AMD 64-Bit Technology

Description of operation

AMDAO

24594 Rev.3.00 August 2002

AAM

Converts the value in the A

AH
AL

(AL/10d)
(AL mod 10d).

by coding the instruction d

Using this instruction in 64

ASCII Adjust After Multiply

L register from binary to two unpacked BCD digits in the
AH (most significant) and AL (least significant) registers using the following formula:

bit mode generates an invalid-opcode exception.

In most modern assemblers, the AAM instruction adjusts to base-10 values. However,
rectly in binary, it can adjust to any base specified by the
immediate byte value (ib) suffixed onto the D5h opcode. For example, code D508h for
octal, D50Ah for decimal, and D50Ch for duodecimal (base 12).

AMD 64-Bit Technology

“M” means the flag is either set or
cleared, depending on the result.

Mnemonic Opcode Description
AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)
(None) D4ib Create a pair of unpacked values to the immediate byte base.
(Invalid in 64-bit mode.)
Related Instructions
AAA, AAD, AAS
rFLAGS Affected
ID [VIP|VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u M M U M u
21 20 19 18 7 16 14 13-12 1 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Excep

Virtual
Exception Real | 8086

Protected

Cause of Exception

Divide by zero, #DE X X

X

8-bit immediate value was 0.

Invalid opcode, #UD

X

This instruction was executed in 64-bit mode.

AAM

63

Possible exceptions “Protected” column
and causes, by mode covers both legacy
of operation and long mode

Alphabetic mnemonic locator

Figure 2-1. Format of Instruction-Detail Pages

Chapter 2: Instruction Overview

29



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

2.3 Summary of Registers and Data Types

2.3.1 General-Purpose

This section summarizes the registers available to software
using the five instruction subsets described in “Instruction
Subsets” on page 27. For details on the organization and use of
these registers, see their respective chapters in volumes 1 and 2.

Registers. The size and number of general-purpose registers

Instructions (GPRs) depends on the operating mode, as do the size of the
flags and instruction-pointer registers. Figure 2-2 shows the
registers available in legacy and compatibility modes.

register high  low
encoding 8-bit 8-bit 16-bit  32-bit
0 AH@| AL | AX  EAX
3 BH@)| BL BX EBX
1 CHm| CL X ECX
2 DH )| DL DX EDX
6 SI SI ESI
7 DI DI EDI
5 BP BP EBP
4 SP SP ESP
31 16 15 0
FLAGS FLAGS EFLAGS
IP IP EIP
31 0
513-311.eps
Figure 2-2. General Registers in Legacy and Compatibility Modes
Figure 2-3 on page 31 shows the registers accessible in 64-bit
mode. Compared with legacy mode, registers become 64 bits
wide, eight new data registers (R8-R15) are added and the low
byte of all 16 GPRs is available for byte operations, and the four
high-byte registers of legacy mode (AH, BH, CH, and DH) are
not available if the REX prefix is used. The high 32 bits of
30 Chapter 2: Instruction Overview



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

doubleword operands are zero-extended to 64 bits, but the high
bits of word and byte operands are not modified by operations
in 64-bit mode. The RFLAGS register is 64 bits wide, but the
high 32 bits are reserved. They can be written with anything but
they read as zeros (RAZ).

register ! zero-extended low
encoding for 32-bit operands . 8bit 16-bit  32-bit  64-bit
0 AH* | AL | AX  EAX  RAX
3 BH* | BL BX EBX RBX
1 CH* | CL X ECX RCX
2 DH* | DL DX EDX RDX
6 SIL¥*| Sl ESI RSI
7 DIL**] DI EDI RDI
5 BPL**| BP EBP RBP
4 SPL**| SP ESP RSP
8 ReB| RSW RSD Rs
9 R9B ROW  R9D R9
10 R10B R1OW R10D R10
11 R11B R1IW R1ID Rm
12 R12B R2ZW Ri12D R12
13 R13B R13W R13D RI3
14 R14B R14W R14D R14
15 R15B R1I5W R15D  RI5
63 32 31 615 87 0
0 RFLAGS —
RIP
63 32 31 0 * Notaddressable when

a REX prefix is used.

** Only addressable when
a REX prefix is used.

Figure 2-3. General Registers in 64-Bit Mode

Chapter 2: Instruction Overview 31



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

For most instructions running in 64-bit mode, access to the
extended GPRs requires a REX instruction prefix (page 14).

Figure 2-4 shows the segment registers which, like the
instruction pointer, are used by all instructions. In legacy and
compatibility modes, all segments are accessible. In 64-bit
mode, which uses the flat (non-segmented) memory model, only
the CS, FS, and GS segments are recognized, whereas the
contents of the DS, ES, and SS segment registers are ignored
(the base for each of these segments is assumed to be zero, and
neither their segment limit nor attributes are checked). For
details, see “Segmented Virtual Memory” in Volume 2.

Legacy Mode and 64-Bit
Compatibility Mode Mode

cS CS
(Attributes only)

DS ignored

ES ignored

FS
FS (Base only)

GS

(Base only)

GS

SS ignored

15 0 15 0

513-312.eps

Figure 2-4. Segment Registers

Data Types. Figure 2-5 on page 33 shows the general-purpose
data types. They are all scalar, integer data types. The 64-bit
(quadword) data types are only available in 64-bit mode, and for
most instructions they require a REX instruction prefix.

32

Chapter 2: Instruction Overview



AMDZ1

24594 Rev. 3.02 August 2002

17 Signed Integer

AMD 64-Bit Technology

s 16 bytes (64-bit mode only)

Double
Quadword

S|

8 bytes (64-bit mode only) Quadword

63

Unsigned Integer
127

s 4 bytes Doubleword

3l s 2 bytes Word

15 S Byte

7 0

16 bytes (64-bit mode only)

Double
Quadword

8 bytes (64-bit mode only) Quadword

63

513-326.€ps

Figure 2-5. General-Purpose Data Types

4 bytes Doubleword

31 2 bytes Word

15 Byte

Packed BCD

BCD Digit
7 3L Bit

0

232 System Registers. The system instructions use several specialized
Instructions registers shown in Figure 2-6 on page 34. System software uses
these registers to, among other things, manage the processor’s
operating environment, define system resource characteristics,
and monitor software execution. With the exception of the
RFLAGS register, system registers can be read and written only

from privileged software.

All system registers are 64 bits wide, except for the descriptor-
table registers and the task register, which include 64-bit base-
address fields and other fields.

Chapter 2: Instruction Overview

33



AMDZU

AMD 64-Bit Technology

Control Registers

CRoO

CR2

CR3

CR4

CR8

System-Flags Register

RFLAGS

Debug Registers

DRO

DRI

DR2

DR3

DR6

DR7

Descriptor-Table Registers

GDTR

IDTR

LDTR

Task Register

| TR

Figure 2-6. System Registers

Extended-Feature-Enable Register
| EFER

System-Configuration Register
| SYSCFG

System-Linkage Registers
STAR
LSTAR
CSTAR

SFMASK

FS.base

GS.base
KernelGSbase
SYSENTER_CS
SYSENTER_ESP
SYSENTER_EIP

Debug-Extension Registers
DebugCtIMSR
LastBranchFromIP
LastBranchTolP
LastIntFromIP
LastIntTolP

24594  Rev. 3.02 August 2002

Memory-Typing Registers
MTRRcap
MTRRdefType
MTRRphysBasen
MTRRphysMaskn
MTRRfixn
PAT
TOP_MEM
TOP_MEM2

Performance-Monitoring Registers
TSC
PerfEvtSeln
PerfCtrn

Machine-Check Registers
MCG_CAP
MCG_STAT
MCG_CTL
MG_CTL

MG_STATUS
MCi_ADDR
MG_MISC

Model-Specific Registers

513-260.ps

Data Structures. Figure 2-7 on page 35 shows the system data
structures. These are created and maintained by system
software for use in protected mode. A processor running in
protected mode uses these data structures to manage memory
and protection, and to store program-state information when an
interrupt or task switch occurs.

34

Chapter 2: Instruction Overview



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology
Segment Descriptors (Contained in Descriptor Tables) Task-State Segment
| Code | Gate
| Stack | Task-State Segment
| Data | Local-Descriptor Table

Descriptor Tables

.................................................................................

Global-Descriptor Table Interrupt-Descriptor Table Local-Descriptor Table '
Descriptor Gate Descriptor Descriptor :
Descriptor Gate Descriptor Descriptor .
Descriptor Gate Descriptor Descriptor '

.................................................................................

Page-Map Level-4 Page-Directory Pointer Page Directory Page Table

513-261.ps

Figure 2-7. System Data Structures

2.3.3 128-Bit Media Registers. The 128-bit media instructions use the 128-bit XMM

Instructions registers. The number of available XMM data registers depends
on the operating mode, as shown in Figure 2-8 on page 36. In
legacy and compatibility modes, the eight legacy XMM data
registers (XMMO0-XMM7) are available. In 64-bit mode, eight
additional XMM data registers (XMM8-XMM15) are available
when a REX instruction prefix is used.

The MXCSR register contains floating-point and other control
and status flags used by the 128-bit media instructions. Some
128-bit media instructions also use the GPR (Figure 2-2 and

Chapter 2: Instruction Overview 35



AMDZU

AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

127

Figure 2-3) and the MMX registers (Figure 2-10 on page 38) or
set or clear flags in the rFLAGS register (see Figure 2-2 and
Figure 2-3).

XMM Data Registers

xmmO

xmm1

xmm2

xmm3

xmm4

xmmb5

Xmme6

xmm7

xmm38

xmm9

xmm10

xmm11

xmm12

xmm13

xmm14

xmm15

:| Available in all modes
:| Available only in 64-bit mode

128-Bit Media Control and Status Register MXCSR

31 0

513-314.6ps

Figure 2-8. 128-Bit Media Registers
Data Types. Figure 2-9 on page 37 shows the 128-bit media data
types. They include floating-point and integer vectors and
floating-point scalars. The floating-point data types include
IEEE-754 single precision and double precision types.

36 Chapter 2: Instruction Overview



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Vector (Packed) Floating-Point Double Precision and Single Precision
127 115 63 51 0
s exp significand s exp significand
s exp significand S| exp significand S| exp significand S| exp significand
127 18 95 86 63 54 3 2 0
Vector (Packed) Signed Integer Quadword, Doubleword, Word, Byte
s quadword £ quadword
s doubleword s doubleword g doubleword s doubleword
s word | word |f word | word | word |{ word | word || word
s| byte [f| byte |5 byte |s byte || byte [ byte |5 byte |{| byte || byte [ byte |s byte || byte [ byte |s| byte |f| byte || byte
7 N9 M 05 95 87 79 71 63 55 4 39 3 23 15 7 0
Vector (Packed) Unsigned Integer Quadword, Doubleword, Word, Byte
quadword quadword
doubleword doubleword doubleword doubleword
word word word word word word word word
byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte
7 N9 M 03 9 87 79 71 63 55 4 39 3 23 15 7 0
Scalar Floating-Point Double Precision and Single Precision
s exp significand
63 ! | exp significand
3 2 0
Scalar Unsigned Integers
double quadword
127 quadword
63 doubleword
31 word
15 byte
! bitL
513-316.eps 0
Figure 2-9. 128-Bit Media Data Types
Chapter 2: Instruction Overview 37



AMDZU

AMD 64-Bit Technology

2.3.4 64-Bit Media
Instructions

24594  Rev. 3.02 August 2002

Registers. The 64-bit media instructions use the eight 64-bit
MMX registers, as shown in Figure 2-10. These registers are
mapped onto the x87 floating-point registers, and 64-bit media
instructions write the x87 tag word in a way that prevents an
x87 instruction from using MMX data.

Some 64-bit media instructions also use the GPR (Figure 2-2
and Figure 2-3) and the XMM registers (Figure 2-8).

MMX Data Registers
63 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

513-327eps

Figure 2-10. 64-Bit Media Registers

Data Types. Figure 2-11 on page 39 shows the 64-bit media data
types. They include floating-point and integer vectors and
integer scalars. The floating-point data type, used by 3DNow!
instructions, consists of a packed vector or two IEEE-754 32-bit
single-precision data types. Unlike other kinds of floating-point
instructions, however, the 3DNow! instructions do not generate
floating-point exceptions. For this reason, there is no register
for reporting or controlling the status of exceptions in the 64-
bit-media instruction subset.

38

Chapter 2: Instruction Overview



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Vector (Packed) Single-Precision Floating-Point
s exp significand s exp significand
63 54 3 2 0
Vector (Packed) Signed Integers
£ doubleword 5 doubleword
s word | word | word || word
o byte |1 byte [ byte [f byte || byte |1 byte |1 byte |1 byte
63 55 47 39 3 23 15 7 0
Vector (Packed) Unsigned Integers
doubleword doubleword
word word word word
byte | byte | byte | byte | byte | byte | byte | byte
63 55 47 39 3 23 15 7 0
Signed Integers
E quadword
63 £ doubleword
31 s word
15 s byte
7 0
Unsigned Integers
quadword
63 doubleword
3 word
15 byte
"
513-319.eps 0
Figure 2-11. 64-Bit Media Data Types
Chapter 2: Instruction Overview 39



AMDZU

AMD 64-Bit Technology

2.3.5 x87 Floating-
Point Instructions

24594  Rev. 3.02 August 2002

Registers. The x87 floating-point instructions use the x87
registers shown in Figure 2-12. There are eight 80-bit data
registers, three 16-bit registers that hold the x87 control word,
status word, and tag word, and three registers (last instruction
pointer, last opcode, last data pointer) that hold information
about the last x87 operation.

The physical data registers are named FPRO-FPR7, although
x87 software references these registers as a stack of registers,
named ST(0)-ST(7). The x87 instructions store operands only in
their own 80-bit floating-point registers or in memory. They do
not access the GPR or XMM registers.

x87 Data Registers
79 0

fpro

fpr1

fpr2

fpr3

fpra

fpr5

fpré

fpr7

Instruction Pointer (rIP) Control Word

Data Pointer (rDP) Status Word

63 Opcode Tag Word
10 0 15 0

513-321.eps

Figure 2-12. x87 Registers

Data Types. Figure 2-13 on page 41 shows all x87 data types. They
include three floating-point formats (80-bit double-extended
precision, 64-bit double precision, and 32-bit single precision),
three signed-integer formats (quadword, doubleword, and

40

Chapter 2: Instruction Overview



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

word), and an 80-bit packed binary-coded decimal (BCD)

format.

79 63

Floating-Point

N exp i

significand

79

s exp

significand

63

51

4 exp

significand

31

Signed Integer

22

8 bytes

63

S

4 bytes

31

s\ 2 bytes

Binary-Coded Decimal (BCD)

79 7

Figure 2-13. x87 Data Types

2.4 Summary of Exceptions

Double-Extended
Precision

Double Precision

Single Precision

Quadword
Doubleword

Word

Packed Decimal

513-317eps

Table 2-1 on page 42 lists all possible exceptions. The table
shows the interrupt-vector numbers, names, mnemonics,
source, and possible causes. Exceptions that apply to specific
instructions are documented with each instruction in the
instruction-detail pages that follow.

Chapter 2: Instruction Overview

41



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table 2-1. Interrupt-Vector Source and Cause
Vector Interrupt (Exception) Mnemonic | Source Cause
0 Divide-By-Zero-Error #DE Software | DIV, IDIV, AAM instructions
1 Debug #DB Internal | Instruction accesses and data accesses
2 Non-Maskable-Interrupt #NMI External | External NMI signal
3 Breakpoint #BP Software | INT3 instruction
4 Overflow #OF Software | INTO instruction
5 Bound-Range #BR Software | BOUND instruction
6 Invalid-Opcode #UD Internal | Invalid instructions
7 Device-Not-Available #NM Internal | x87 instructions
8 Double-Fault #DF Internal | Interrupt during an interrupt
9 Coprocessor-Segment-Overrun - External | Unsupported (reserved)
10 Invalid-TSS #TS Internal | Task-state segment access and task switch
11 Segment-Not-Present #NP Internal | Segment access through a descriptor
12 Stack #SS Internal | SS register loads and stack references
13 General-Protection #GP Internal | Memory accesses and protection checks
14 Page-Fault #PF Internal | Memory accesses when paging enabled
15 Reserved -
16 | Floating-Point Exception-Pending #MF Software ?I?)Z]tfil:ga-t;i)r:)gi::?:;;r?;;fi(?:s-bit media
17 Alignment-Check #AC Internal | Memory accesses
18 Machine-Check #MC IEI)](’;:;:?I Model specific
19 SIMD Floating-Point #XF Internal | 128-bit media floating-point instructions
20-31 | Reserved (Internal and External) -
0-255 | External Interrupts (Maskable) #INTR External | External interrupt signal
0-255 | Software Interrupts - Software | INTn instruction
42 Chapter 2: Instruction Overview




AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

2.5 Notation

2.51 Mnemonic
Syntax

Each instruction has a syntax that includes the mnemonic and
any operands that the instruction can take. Figure 2-14 shows
an example of a syntax in which the instruction takes two
operands. In most instructions that take two operands, the first
(left-most) operand is both a source operand (the first source
operand) and the destination operand. The second (right-most)
operand serves only as a source, not a destination.

ADDPD xmm1, xmm2/mem128

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand 513-322.eps

Figure 2-14. Syntax for Typical Two-Operand Instruction

The following notation is used to denote the size and type of
source and destination operands:

m  cReg—Control register.

m  dReg—Debug register.

n imm8—Byte (8-bit) immediate.

n imml16—Word (16-bit) immediate.

m imm16/32—Word (16-bit) or doubleword (32-bit) immediate.
n imm32—Doubleword (32-bit) immediate.

n imm32/64—Doubleword (32-bit) or quadword (64-bit)
immediate.

n imm64—Quadword (64-bit) immediate.

m  mem—An operand of unspecified size in memory.
n  mem8—Byte (8-bit) operand in memory.

m  meml16—Word (16-bit) operand in memory.

m mem16/32—Word (16-bit) or doubleword (32-bit) operand in
memory.

m  mem32—Doubleword (32-bit) operand in memory.

Chapter 2: Instruction Overview 43



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

mem32/48—Doubleword (32-bit) or 48-bit operand in
memory.

mem48—48-bit operand in memory.

mem64—Quadword (64-bit) operand in memory.
mem128—Double quadword (128-bit) operand in memory.
mem16:16—Two sequential word (16-bit) operands in mem-
ory.

mem16:32—A doubleword (32-bit) operand followed by a
word (16-bit) operand in memory.
mem32real—Single-precision (32-bit) floating-point operand
in memory.

mem32int—Doubleword (32-bit) integer operand in mem-
ory.

mem64real—Double-precision (64-bit) floating-point oper-
and in memory.

mem64int—Quadword (64-bit) integer operand in memory.
mem80real—Double-extended-precision (80-bit) floating-
point operand in memory.

mem80dec—80-bit packed BCD operand in memory, contain-
ing 18 4-bit BCD digits.

memZ2env—16-bit x87 control word or x87 status word.
mem14/28env—14-byte or 28-byte x87 environment. The x87
environment consists of the x87 control word, x87 status
word, x87 tag word, last non-control instruction pointer, last

data pointer, and opcode of the last non-control instruction
completed.

mem94/108env—94-byte or 108-byte x87 environment and
register stack.

memb512env—512-byte environment for 128-bit media, 64-bit
media, and x87 instructions.

mmx—Quadword (64-bit) operand in an MMX register.

mmx1—Quadword (64-bit) operand in an MMX register,
specified as the left-most (first) operand in the instruction
syntax.

mmx2—Quadword (64-bit) operand in an MMX register,
specified as the right-most (second) operand in the
instruction syntax.

mmx/mem32—Doubleword (32-bit) operand in an MMX
register or memory.

44

Chapter 2: Instruction Overview



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

n  mmx/mem64—Quadword (64-bit) operand in an MMX
register or memory.

n  mmxl/mem64—Quadword (64-bit) operand in an MMX
register or memory, specified as the left-most (first) operand
in the instruction syntax.

n  mmx2/mem64—Quadword (64-bit) operand in an MMX
register or memory, specified as the right-most (second)
operand in the instruction syntax.

m  moffset—Memory offset of unspecified size.

m  moffset8—Operand in memory located at the specified byte
(8-bit) offset from the instruction pointer.

n  moffsetl6—Operand in memory located at the specified
word (16-bit) offset from the instruction pointer.

n  moffset32—Operand in memory located at the specified
doubleword (32-bit) offset from the instruction pointer.

m  pntrl6:16—Far pointer with 16-bit selector and 16-bit offset.
m  pntrl6:32—Far pointer with 16-bit selector and 32-bit offset.
m reg—Operand of unspecified size in a GPR register.

m reg8—Byte (8-bit) operand in a GPR register.

m regl6—Word (16-bit) operand in a GPR register.

m regl6/32—Word (16-bit) or doubleword (32-bit) operand in a
GPR register.

m reg32—Doubleword (32-bit) operand in a GPR register.
m regb4—Quadword (64-bit) operand in a GPR register.

n reg/mem8—Byte (8-bit) operand in a GPR register or
memory.

m reg/mem16—Word (16-bit) operand in a GPR register or
memory.

m  reg/mem32—Doubleword (32-bit) operand in a GPR register
Or memory.

n  reg/mem64—Quadword (64-bit) operand in a GPR register or
memory.

m rel8off—Relative address in the current code segment, in 8-
bit offset range.

m rell6boff—Relative address in the current code segment, for
16-bit operand size.

m rel32off—Relative address in the current code segment, for
32-bit operand size.

Chapter 2: Instruction Overview 45



AMDZU

AMD 64-Bit Technology

2.5.2 Opcode Syntax

24594  Rev. 3.02 August 2002

segReg or sReg—Word (16-bit) operand in a segment register.
ST(0)—x87 stack register 0.
ST(1)—x87 stack register i, where i is between 0 and 7.

xmm—Double quadword (128-bit) operand in an XMM
register.

xmml—Double quadword (128-bit) operand in an XMM
register, specified as the left-most (first) operand in the
instruction syntax.

xmmZ2—Double quadword (128-bit) operand in an XMM
register, specified as the right-most (second) operand in the
instruction syntax.

xmm/mem64—Quadword (64-bit) operand in a 128-bit XMM
register or memory.

xmm/mem128—Double quadword (128-bit) operand in an
XMM register or memory.

xmm11/mem128—Double quadword (128-bit) operand in an
XMM register or memory, specified as the left-most (first)
operand in the instruction syntax.

xmmZ2/mem128—Double quadword (128-bit) operand in an
XMM register or memory, specified as the right-most
(second) operand in the instruction syntax.

In addition to the notation shown above in “Mnemonic Syntax”
on page 43, the following notation indicates the size and type of
operands in the syntax of an instruction opcode:

/digit—Indicates that the ModRM byte specifies only one
register or memory (r/m) operand. The digit is specified by
the ModRM reg field and is used as an instruction-opcode
extension. Valid digit values range from 0 to 7.

/r—Indicates that the ModRM byte specifies both a register
operand and a reg/mem (register or memory) operand.

cb, cw, cd, cp—Specifies a code-offset value and possibly a
new code-segment register value. The value following the
opcode is either one byte (cb), two bytes (cw), four bytes
(cd), or six bytes (cp).

ib, 1w, i1d—Specifies an immediate-operand value. The
opcode determines whether the value is signed or unsigned.
The value following the opcode, ModRM, or SIB byte is
either one byte (ib), two bytes (iw), or four bytes (id). Word
and doubleword values start with the low-order byte.

46

Chapter 2: Instruction Overview



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

m  +rb, +rw, +rd, +rq—Specifies a register value that is added to
the hexadecimal byte on the left, forming a one-byte opcode.
The result is an instruction that operates on the register
specified by the register code. Valid register-code values are

shown in Table 2-2.

m  m64—Specifies a quadword (64-bit) operand in memory.

m +i—Specifies an x87 floating-point stack operand, ST(7). The
value is used only with x87 floating-point instructions. It is
added to the hexadecimal byte on the left, forming a one-
byte opcode. Valid values range from 0 to 7.

Table 2-2. +rb, +rw, +rd, and +rq Register Value
REX.B Specified Register

Bit' Value +rb +IW +rd +rq

0 AL AX EAX RAX

1 CL X ECX RCX
2 DL DX EDX RDX

0 3 BL BX EBX RBX

or no REX

Prefix 4 AH, SPL' SP ESP RSP

5 CH, BPL' BP EBP RBP

6 DH, SIL' SI ESI RSI

7 BH, DIL' DI EDI RDI

0 R8B R8W R8D R8

1 R9B ROW R9D R9

2 R10B R10W R10D R10

3 R11B R1IW R11D RN

] 4 R12B R12W R12D R12

5 R13B R13W R13D R13

6 R14B R14W R14D R14

7 R15B R15W R15D R15

1. See “REX Prefixes” on page 14.

Chapter 2: Instruction Overview

47



AMDZU

AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

2.5.3 Pseudocode

Definitions

Pseudocode examples are given for the actions of several
complex instructions (for example, see “CALL (Near)” on
page 87). The following definitions apply to all such
pseudocode examples:

[1777777 7777777777777 0707777777077 7 0777777777777 77777777777777777777
// Basic Definitions
[1177777 7777777777707 0700777777777 7777777707 7077777707777 777777777777777777777777

// A1l comments start with these double slashes.

REAL_MODE

PROTECTED_MODE

VIRTUAL_MODE
LEGACY_MODE
LONG_MODE
64BIT_MODE

(cr0.pe=0)

((cr0.pe=1) && (rflags.vm=0))
((cr0.pe=1) && (rflags.vm=1))
(efer.1ma=0)

(efer.lma=1)

((efer.ITma=1) && (cs.L=1) && (cs.d=0))

COMPATIBILITY_MODE = (efer.Ima=1) && (cs.L=0)
PAGING_ENABLED = (cr0.pg=1)
ALIGNMENT_CHECK_ENABLED = ((crO0.am=1) && (eflags.ac=1) && (cpl=3))

CPL
OPERAND_SIZE
ADDRESS_SIZE

the current privilege level (0-3)
16, 32, or 64 (depending on current code and 66h/rex prefixes)

= 16, 32, or 64 (depending on current code and 67h prefixes)

STACK_SIZE = 16, 32, or 64 (depending on current code and SS.attr.B)

old_RIP = RIP at the start of current instruction

old_RSP = RSP at the start of current instruction

old_RFLAGS = RFLAGS at the start of the instruction

ol1d_CS = (CS selector at the start of current instruction

01d_DS = DS selector at the start of current instruction

old_ES = ES selector at the start of current instruction

old_FS = FS selector at the start of current instruction

ol1d_GS = GS selector at the start of current instruction

01d_SS = SS selector at the start of current instruction

RIP = the current RIP register

RSP = the current RSP register

RBP = the current RBP register

RFLAGS = the current RFLAGS register

next_RIP = RIP at start of next instruction

CS = the current CS descriptor, including the subfields:
sel base 1imit attr

SS = the current SS descriptor, including the subfields:
sel base 1imit attr

SRC = the instruction’s Source operand

DEST = the instruction’s Destination operand

temp_* // 64-bit temporary register

48 Chapter 2: Instruction Overview



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology
temp_*_desc // temporary descriptor, with subfields:

// if it points to a block of memory: sel base limit attr

// if it’s a gate descriptor: sel offset segment attr

NULL = 0x0000 // null selector is all zeros

// V,Z,A,S are integer variables, assigned a value when an instruction begins
// executing (they can be assigned a different value in the middle of an
// instruction, if needed)

V = 2 if OPERAND_SIZE=16
4 if OPERAND_SIZE=32
8 if OPERAND_SIZE=64

Z =2 if OPERAND_SIZE=16
if OPERAND_SIZE=32
4 if OPERAND_SIZE=64

~

A =2 if ADDRESS_SIZE=16
if ADDRESS_SIZE=32
8 if ADDRESS_SIZE=64

~

S =2 if STACK_SIZE=16
if STACK_SIZE=32
8 if STACK_SI/ZE=64

~

L1770 777 0070007000700 r i i i iy r i rrrrrry
// Bit Range Inside a Register
L1777 77 0770007000700 r i r i i rrr i rry

temp_data.[X:Y] // Bit X through Y in temp_data, with the other bits
// in the register masked off.

L1707 77 0070007000707 00700700777 r i rr sy r iy r iy
// Moving Data From One Register To Another
L1770 777 0770007000700 r i r i iy r i r i r iy

temp_dest.b = temp_src // 1-byte move (copies lTower 8 bits of temp_src to
// temp_dest, preserving the upper 56 bits of temp_dest)

temp_dest.w = temp_src // 2-byte move (copies Tower 16 bits of temp_src to
// temp_dest, preserving the upper 48 bits of temp_dest)
temp_dest.d = temp_src // 4-byte move (copies Tower 32 bits of temp_src to

// temp_dest, and zeros out the upper 32 bits of temp_dest)
temp_dest.q = temp_src // 8-byte move (copies all 64 bits of temp_src to
// temp_dest)

temp_dest.v = temp_src // 2-byte move if V=2,
// 4-byte move if V=4,

Chapter 2: Instruction Overview 49



AMDA
AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

// 8-byte move if V=8
temp_dest.z = temp_src // 2-byte move if 7=2,
// 4-byte move if 7=4
temp_dest.a = temp_src // 2-byte move if A=2
// 4-byte move if A=4
// 8-byte move if A=8
temp_dest.s = temp_src // 2-byte move if S=2,
// 4-byte move if S=4,
// 8-byte move if S=8

NN
// Bitwise Operations
NN

temp = a AND b
temp = a OR b
temp = a XOR b
temp = NOT a

temp = a SHL b
temp = a SHR b

L1117 770 7707000070000 700777000700 iyl
// Logical Operations
L1177 70 0770700007000 7 0070770700000y iyl

IF (FOO && BAR)
IF (FOO || BAR)
IF (FOO = BAR)
IF (FOO != BAR)
IF (FOO > BAR)
IF (FOO < BAR)
IF (FOO >= BAR)
IF (FOO <= BAR)

N NNy,
// TF-THEN-ELSE
N NNy,

IF (FOO)

IF (FOO)

ELSTF (BAR)

50 Chapter 2: Instruction Overview



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

ELSE

IF ((FOO && BAR) || (CONE && HEAD))

NN,
// Exceptions
NNy,

EXCEPTION [#GP(0)] // error code in parenthesis
EXCEPTION [#UD] // if no error code

possible exception types:

#fDE // Divide-By-Zero-Error Exception (Vector 0)
DB // Debug Exception (Vector 1)

#BP // INT3 Breakpoint Exception (Vector 3)

ffOF // INTO Overflow Exception (Vector 4)

#BR // Bound-Range Exception (Vector 5)

ffUD // Invalid-Opcode Exception (Vector 6)

FNM // Device-Not-Available Exception (Vector 7)
ftDF // Double-Fault Exception (Vector 8)

TS // Invalid-TSS Exception (Vector 10)

NP // Segment-Not-Present Exception (Vector 11)
#SS // Stack Exception (Vector 12)

fFGP // General-Protection Exception (Vector 13)
ftPF // Page-Fault Exception (Vector 14)

JIMF // x87 Floating-Point Exception-Pending (Vector 16)
fFAC // Alignment-Check Exception (Vector 17)

MC // Machine-Check Exception (Vector 18)

#XF // SIMD Floating-Point Exception (Vector 19)

L1770 77 0770007000700 r i rr i r i r i rry
// READ_MEM

// General memory read. This zero-extends the data to 64 bits and returns it.
L1701 77 0770007007007 r i i iy r iy

usage:
temp = READ_MEM.x [seg:offset] // where x is one of {v, z, b, w, d, q}
// and denotes the size of the memory read
definition:
IF ((seg AND OxFFFC) = NULL) // GP fault for using a null segment to
// reference memory

EXCEPTION [#GP(0)]

IF ((seg=CS) || (seg=DS) || (seg=ES) || (seg=FS) || (seg=GS))

Chapter 2: Instruction Overview 51



AMDA
AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

// CS,DS,ES,FS,GS check for segment Timit or canonical
IF ((!'64BIT_MODE) && (offset is outside seg’s limit))
EXCEPTION [4GP(0)]
// #GP fault for segment 1imit violation in non-64-bit mode
IF ((64BIT_MODE) && (offset is non-canonical))
EXCEPTION [4GP(0)]
// #fGP fault for non-canonical address in 64-bit mode
ELSIF (seg=SS) // SS checks for segment 1imit or canonical
IF ((!'64BIT_MODE) && (offset is outside seg’s limit))
EXCEPTION [#SS(0)]
// stack fault for segment 1imit violation in non-64-bit mode
IF ((64BIT_MODE) && (offset is non-canonical))
EXCEPTION [#SS(0)]
// stack fault for non-canonical address in 64-bit mode
ELSE // ((seg=GDT) || (seg=LDT) || (seg=IDT) || (seg=TSS))
// GDT,LDT,IDT,TSS check for segment 1limit and canonical
IF (offset > seg.limit)
EXCEPTION [#GP(0)] // #GP fault for segment limit violation
// in all modes
IF ((LONG_MODE) && (offset is non-canonical))
EXCEPTION [#GP(0)] // #GP fault for non-canonical address in long mode

IF (CALIGNMENT_CHECK_ENABLED) && (offset misaligned, considering its

size and alignment))
EXCEPTION [#AC(0)]

IF ((64_bit_mode) && ((seg=CS) || (seg=DS) || (seg=ES) || (seg=SS))
temp_Tlinear = offset

ELSE
temp_linear = seg.base + offset

IF ((PAGING_ENABLED) && (virtual-to-physical translation for temp_linear
results in a page-protection violation))
EXCEPTION [#PF(error_code)] // page fault for page-protection violation
// (U/S violation, Reserved bit violation)

IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
EXCEPTION [#PF(error_code)] // page fault for not-present page

temp_data = memory [temp_linear].x // zero-extends the data to 64
// bits, and saves it in temp_data

RETURN (temp_data) // return the zero-extended data

L1770 777 0770007000707 r i r i iy iy rry
// WRITE_MEM // General memory write

N NNy,

usage:
WRITE_MEM.x [seg:offset] = temp.x // where <X> is one of these:

52 Chapter 2: Instruction Overview



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

// AV, Z, B, W, D, Q} and denotes the
// size of the memory write

definition:

IF ((seg & OxFFFC)= NULL) // GP fault for using a null segment
// to reference memory
EXCEPTION [#GP(0)]

IF (seg isn’t writable) // GP fault for writing to a read-only segment
EXCEPTION [#GP(0)]

IF ((seg=CS) || (seg=DS) || (seg=ES) || (seg=FS) || (seg=GS))
// CS,DS,ES,FS,GS check for segment 1limit or canonical
IF ((!64BIT_MODE) && (offset is outside seg’s 1imit))
EXCEPTION [#GP(0)]
// #fGP fault for segment 1imit violation in non-64-bit mode
IF ((64BIT_MODE) && (offset is non-canonical))
EXCEPTION [#GP(0)]
// #fGP fault for non-canonical address in 64-bit mode
ELSIF (seg=SS) // SS checks for segment Timit or canonical
IF ((!64BIT_MODE) && (offset is outside seg’s 1imit))
EXCEPTION [#SS(0)]
// stack fault for segment 1imit violation in non-64-bit mode
IF ((64BIT_MODE) && (offset is non-canonical))
EXCEPTION [#SS(0)]
// stack fault for non-canonical address in 64-bit mode
ELSE // ((seg=GDT) || (seg=LDT) || (seg=IDT) || (seg=TSS))
// GDT,LDT,IDT,TSS check for segment 1imit and canonical
IF (offset > seg.limit)
EXCEPTION [#GP(0)]
// #fGP fault for segment 1imit violation in all modes
IF ((LONG_MODE) && (offset is non-canonical))
EXCEPTION [#GP(0)]
// #fGP fault for non-canonical address in long mode

IF (CALIGNMENT_CHECK_ENABLED) && (offset is misaligned, considering
its size and alignment))
EXCEPTION [#AC(0)]

IF ((64_bit_mode) && ((seg=CS) || (seg=DS) || (seg=ES) || (seg=SS))
temp_Tlinear = offset

ELSE
temp_linear = seg.base + offset

IF ((PAGING_ENABLED) && (the virtual-to-physical translation for
temp_linear results in a page-protection violation))
{
EXCEPTION [#PF(error_code)]
// page fault for page-protection violation
// (U/S violation, Reserved bit violation)

Chapter 2: Instruction Overview 53



AMDA
AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

}

IF ((PAGING_ENABLED) && (temp_linear is on a not-present page))
EXCEPTION [#PF(error_code)] // page fault for not-present page

memory [temp_linear].x = temp.x // write the bytes to memory

[17707777777077707770777077707777777777707777077777777777777777777777777777777177177
// PUSH // Write data to the stack
[177077777770777077777777777777777777777077770777707777777777777777777777777777177177

usage:
PUSH.x temp // where x is one of these: {v, z, b, w, d, g} and
// denotes the size of the push

definition:

WRITE_MEM.x [SS:RSP.s - X] = temp.x // write to the stack
RSP.s = RSP - X // point rsp to the data Jjust written

[1177777 7777777777707 0707777777777 77777777 7777777777777 77777777777777777777777777
// POP // Read data from the stack, zero-extend it to 64 bits
[11777 7777777777777 0707077777777 07 7707777777777 777777777777777777777777

usage:
POP.x temp // where x is one of these: {v, z, b, w, d, g} and
// denotes the size of the pop

definition:

temp = READ_MEM.x [SS:RSP.s] // read from the stack
RSP.s = RSP + X // point rsp above the data just written

NN
// READ_DESCRIPTOR // Read 8-byte descriptor from GDT/LDT, return the descriptor
NN

usage:
temp_descriptor = READ_DESCRIPTOR (selector, chktype)
// chktype field is one of the following:

// cs_chk used for far call and far Jjump
// clg_chk used when reading CS for far call or far jump through call gate
// ss_chk used when reading SS

// iret_chk used when reading CS for IRET or RETF
// intcs_chk used when readin the CS for interrupts and exceptions

definition:

54 Chapter 2: Instruction Overview



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

temp_offset = selector AND Oxfff8 // upper 13 bits give an offset
// in the descriptor table

IF (selector.TI = 0) // read 8 bytes from the gdt, split it into
// (base,limit,attr) if the type bits

temp_desc = READ_MEM.q [gdt:temp_offset]
// indicate a block of memory, or split
// it into (segment,offset,attr)
// if the type bits indicate
// a gate, and save the result in temp_desc
ELSE
temp_desc = READ_MEM.q [1dt:temp_offset]

// read 8 bytes from the 1dt, split it into
// (base,limit,attr) if the type bits
// indicate a block of memory, or split

// it into (segment,offset,attr) if the type

// bits indicate a gate, and save the result
// in temp_desc

IF (selector.rpl or temp_desc.attr.dpl is illegal for the current mode/cpl)
EXCEPTION [#GP(selector)]

IF (temp_desc.attr.type is illegal for the current mode/chktype)
EXCEPTION [#GP(selector)]

IF (temp_desc.attr.p=0)
EXCEPTION [#NP(selector)]

RETURN (temp_desc)

NN
// READ_IDT // Read an 8-byte descriptor from the IDT, return the descriptor
NN

usage:
temp_idt_desc = READ_IDT (vector)
// "vector" is the interrupt vector number

definition:

IF (LONG_MODE) // Tong-mode idt descriptors are 16 bytes long
temp_offset = vector*lé6

ELSE // (LEGACY_MODE) legacy-protected-mode idt descriptors are 8 bytes long
temp_offset = vector*8

temp_desc = READ_MEM.q [idt:temp_offset]
// read 8 bytes from the idt, split it into
// (segment,offset,attr), and save it in temp_desc

IF (temp_desc.attr.dpl is illegal for the current mode/cpl)

Chapter 2: Instruction Overview 55



AMDA
AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

// exception, with error code that indicates this idt gate
EXCEPTION [#GP(vector*8+2)]

IF (temp_desc.attr.type is illegal for the current mode)
// exception, with error code that indicates this idt gate
EXCEPTION [#GP(vector*8+2)]

IF (temp_desc.attr.p=0)
EXCEPTION [#NP(vector*8+2)]
// segment-not-present exception, with an error code that
// indicates this idt gate

RETURN (temp_desc)

NN
// READ_INNER_LEVEL_STACK_POINTER

// Read a new stack pointer (rsp or ss:esp) from the tss
NN

usage:
temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER (new_cpl, ist_index)

definition:

IF (LONG_MODE)
{
IF (ist_index>0)
// if IST is selected, read an ISTn stack pointer from the tss
temp_RSP = READ_MEM.q [tss:ist_index*8+28]
ELSE // (ist_index=0)
// otherwise read an RSPn stack pointer from the tss
temp_RSP = READ_MEM.q [tss:new_cpl*8+4]

temp_SS_desc.sel = NULL + new_cpl
// in long mode, changing to lower cpl sets SS.sel to
// NULL+new_cp]
}
ELSE // (LEGACY_MODE)
{
temp_RSP = READ_MEM.d [tss:new_cpl*8+4] // read ESPn from the tss
temp_sel = READ_MEM.d [tss:new_cpl1*8+8] // read SSn from the tss
temp_SS_desc = READ_DESCRIPTOR (temp_sel, ss_chk)
}

return (temp_RSP:temp_SS_desc)
LITTTID 0000777777777 7717700700007 7777177777

// READ_BIT_ARRAY // Read 1 bit from a bit array in memory
L1777 77 0770007007007 0007007007 r 7 r i r i i s i iy

56 Chapter 2: Instruction Overview



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

usage:
temp_value = READ_BIT_ARRAY ([mem], bit_number)

definition:

temp_BYTE = READ_MEM.b [mem + (bit_number SHR 3)]
// read the byte containing the bit

temp_BIT = temp_BYTE SHR (bit_number & 7)
// shift the requested bit position into bit 0

return (temp_BIT & 0x01) // return 0’ or ’1°

Chapter 2: Instruction Overview 57



AMDA
AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

58 Chapter 2: Instruction Overview



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

3 General-Purpose Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes,
affected flags, and possible exceptions generated by the
general-purpose instructions. General-purpose instructions are
used in basic software execution. Most of these instructions
load, store, or operate on data located in the general-purpose
registers (GPRs), in memory, or in both. The remaining
instructions are used to alter the sequential flow of the program
by branching to other locations within the program, or to
entirely different programs. With the exception of the MOVD,
MOVMSKPD and MOVMSKPS instructions, which operate on
MMX/XMM registers, the instructions within the category of
general-purpose instructions do not operate on any other
register set.

Most general-purpose instructions are supported in all
hardware implementations of the x86-64 architecture. The
following general-purpose instructions are implemented only if
their associated CPUID function bit is set:

m CMPXCHGSB, indicated by bit 8 of CPUID standard
function 1 and extended function 8000_0001h.

m  CMOVcce (conditional moves), indicated by bit 15 of CPUID
standard function 1 and extended function 8000_0001h.

m CLFLUSH, indicated by bit 19 of CPUID standard function
1.

» PREFETCH, indicated by bit 31 of CPUID extended
function 8000_0001h.

m MOVD, indicated by bits 25 (MMX) and 26 (XMM) of CPUID
standard function 1.

m  MOVNTI, indicated by bit 26 of CPUID standard function 1.

s  SFENCE, indicated by bit 25 of CPUID standard function 1.

s MFENCE, LFENCE, indicated by bit 26 of CPUID standard
function 1.

m Long Mode instructions, indicated by bit 29 of CPUID
extended function 8000_0001h.

The general-purpose instructions can be used in legacy mode or
64-bit long mode. Compilation of general-purpose programs for
execution in 64-bit long mode offers three primary advantages:
access to the eight extended, 64-bit general-purpose registers

59



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

(for a register set consisting of GPRO-GPR15), access to the 64-
bit virtual address space, and access to the RIP-relative
addressing mode.

For further information about the general-purpose instructions
and register resources, see:

“General-Purpose Programming” in Volume 1.
“Summary of Registers and Data Types” on page 30.
“Notation” on page 43.

“Instruction Prefixes” on page 3.

Appendix B, “General-Purpose Instructions in 64-Bit Mode.”
In particular, see “General Rules for 64-Bit Mode” on
page 401.

60



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

AAA ASCII Adjust After Addition

Adjusts the value in the AL register to an unpacked BCD value. Use the AAA
instruction after using the ADD instruction to add two unpacked BCD numbers.

If the value in the lower nibble of AL is greater than 9 or the AF flag is set to 1, the
instruction increments the AH register, adds 6 to the AL register, and sets the CF and
AF flags to 1. Otherwise, it does not change the AH register and clears the CF and AF
flags to 0. In either case, AAA clears bits 7-4 of the AL register, leaving the correct
decimal digit in bits 3-0.

This instruction also makes it possible to add ASCII numbers without having to mask
off the upper nibble ‘3°.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

AAA 37 Create an unpacked BCD number.
(Invalid in 64-bit mode.)

Related Instructions
AAD, AAM, AAS

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
U U U M U M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

AAA 61



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

AAD ASCII Adjust Before Division

Converts two unpacked BCD digits in the AL (least significant) and AH (most
significant) registers to a single binary value in the AL register using the following
formula: AL = ((10d * AH) + (AL)). After the conversion, it clears AH to 00h.

In most modern assemblers, the AAD instruction adjusts from base-10 values.
However, by coding the instruction directly in binary, it can adjust from any base
specified by the immediate byte value (ib) suffixed onto the D5h opcode. For example,
code D508h for octal, D50Ah for decimal, and D50Ch for duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

AAD D5 0A Adjust two BCD digits in AL and AH.
(Invalid in 64-bit mode.)

(None) D5 ib Adjust two BCD digits to the immediate byte base.
(Invalid in 64-bit mode.)

Related Instructions
AAA, AAM, AAS

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U M| M u | Mm U

21 | 20 | 19 | 18 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

62 AAD



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

AAM ASCII Adjust After Multiply

Converts the value in the AL register from binary to two unpacked BCD digits in the
AH (most significant) and AL (least significant) registers using the following formula:

AH (AL/10d)
AL (AL mod 10d).

In most modern assemblers, the AAM instruction adjusts to base-10 values. However,
by coding the instruction directly in binary, it can adjust to any base specified by the
immediate byte value (ib) suffixed onto the D5h opcode. For example, code D508h for
octal, D50Ah for decimal, and D50Ch for duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)

(None) D4 ib Create a pair of unpacked values to the immediate byte base.
(Invalid in 64-bit mode.)

Related Instructions
AAA, AAD, AAS

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U M| M| U|M/| U

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X 8-bit immediate value was 0.
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

AAM 63



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

AAS ASCII Adjust After Subtraction

Adjusts the value in the AL register to an unpacked BCD value. Use the AAS
instruction after using the SUB instruction to subtract two unpacked BCD numbers.

If the value in AL is greater than 9 or the AF flag is set to 1, the instruction
decrements the value in AH, subtracts 6 from the AL register, and sets the CF and AF
flags to 1. Otherwise, it clears the CF and AF flags and the AH register is unchanged.
In either case, the instruction clears bits 7-4 of the AL register, leaving the correct
decimal digit in bits 3-0.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description
AAS 3F Create an unpacked BCD number from the contents of the AL
register.

(Invalid in 64-bit mode.)

Related Instructions
AAA, AAD, AAM

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U u M| U M

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1 10 9 8 7 6 4 2

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

64 AAS




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

ADC Add with Carry

Adds the carry flag (CF), the value in a register or memory location (first operand),
and an immediate value or the value in a register a memory location (second
operand), and stores the result in the first operand location. The instruction cannot
add two memory operands. The CF flag indicates a pending carry from a previous
addition operation. The instruction sign-extends an immediate value to the length of
the destination register or memory location.

This instruction evaluates the result for both signed and unsigned data types and sets
the OF and CF flags to indicate a carry in a signed or unsigned result, respectively. It
sets the SF flag to indicate the sign of a signed result.

Use the ADC instruction after an ADD instruction as part of a multibyte or multiword
addition.

The forms of the ADC instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
ADCAL, imm8 14ib Add imm8 to AL + CF.
ADC AX, imm16 15 iw Add imm16 to AX + CF.
ADC EAX, imm32 15id Add imm32 to EAX + CF.
ADC RAX, imm32 15 id Add sign-extended imm32 to RAX + CF.
ADC reg/mem8, imm8 80/21b Add imm8 to reg/mem8 + CF.
ADC reg/mem16, imm16 81 /21w Add imm16 to reg/mem 16 + CF.
ADC reg/mem32, imm32 81/2id Add imm32 to reg/mem32 + CF.
ADC reg/mem64, imm32 81/2id Add sign-extended imm32 to reg/mem64 + CF.
ADC reg/mem 16, imm8 83/2ib Add sign-extended imma to reg/mem16 + CF.
ADC reg/mem32, imm8 83/21b Add sign-extended imm8 to reqg/mem32 + CF.
ADC reg/memé64, immé8 83/2ib Add sign-extended imm8 to req/memé4 + CF.
ADC reg/mem8, reg8 10/r Add reg8 to reg/mem8 + CF
ADC reg/mem16, regi6 n/r Add reg16 to reg/mem16 + CF.
ADC reqg/mem32, reg32 n/r Add reg32 to req/mem32 + CF.

ADC 65



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description
ADC reg/mem64, reg64 n/r Add reg64 to reg/memé64 + CF.
ADC reg8, reg/mem8 12/r Add reg/mem8 to reg8 + CF.
ADC reg16, reg/mem 16 13 /r Add reg/mem 16 to regi6 + CF.
ADC reg32, reg/mem32 13/r Add reg/mem32 to reg32 + CF.
ADC reg64, reqg/mem64 13 /r Add reg/mem64 to reg64 + CF.
Related Instructions
ADD, SBB, SUB
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M
21 20 19 18 17 16 14 13-12 1 10 9 8 7 6 4 2

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

66

ADC



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

ADD Signed or Unsigned Add

Adds the value in a register or memory location (first operand) and an immediate
value or the value in a register a memory location (second operand), and stores the
result in the first operand location. The instruction cannot add two memory operands.
The instruction sign-extends an immediate value to the length of the destination
register or memory operand.

This instruction evaluates the result for both signed and unsigned data types and sets
the OF and CF flags to indicate a carry in a signed or unsigned result, respectively. It
sets the SF flag to indicate the sign of a signed result.

The forms of the ADD instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
ADD AL, imm8 04 ib Add immé to AL.
ADD AX, imm16 05 iw Add imm16 to AX.
ADD EAX, imm32 05 id Add imm32 to EAX.
ADD RAX, imm32 05 id Add sign-extended imm32 to RAX.
ADD reg/mem8, imm8 80/01b Add imm8 to req/mem8.
ADD reg/mem 16, imm 16 81/0iw Add imm16 to reg/mem16
ADD reg/mem32, imm32 81 /0id Add imm32 to reg/mem32.
ADD reg/mem64, imm32 81/0id Add sign-extended imm32 to reg/memé64.
ADD reg/mem 16, imm8 83/01b Add sign-extended imm8 to req/mem 16
ADD reg/mem32, imm8 83/01b Add sign-extended imma8 to req/mem32.
ADD reg/memé64, imm8 83/01b Add sign-extended imma8 to req/mem64.
ADD reg/mem8, reg8 00/r Add reg8 to reg/mem8.
ADD reg/mem 16, req16 01/r Add reg16 to reg/mem 6.
ADD reg/mem32, reg32 01/r Add reg32 to req/mem32.
ADD reg/memé64, reg64 01/r Add reg64 to req/mem64.
ADD reg8, reg/mem8 02/r Add reg/mem8 to reg8.

ADD 67



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description
ADD regi6, reg/mem 16 03/r Add reg/mem 6 to reg16.
ADD reg32, reg/mem32 03/r Add reg/mem32 to reg32.
ADD reg64, reg/mem64 03/r Add reg/mem64 to reg64.
Related Instructions
ADC, SBB, SUB
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M
21 20 19 18 17 16 14 13-12 1 10 9 8
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment

checking was enabled.

68

ADD



AMDZ1

24594 Rev. 3.02 August 2002

AND

AMD 64-Bit Technology

Logical AND

Performs a bitwise AND operation on the value in a register or memory location (first
operand) and an immediate value or the value in a register or memory location
(second operand), and stores the result in the first operand location. The instruction

cannot AND two memory operands.

The instruction sets each bit of the result to 1 if the corresponding bit of both
operands is set; otherwise, it clears the bit to 0. The following table shows the truth
table for the AND operation:

X Y XANDY
0 0 0
0 1 0
1 0 0
1 1 1

The forms of the AND instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic

AND AL, imm8

AND AX, imm16

AND EAX, imm32

AND RAX, imm32

AND reg/mem8, imm8

AND reg/mem16, imm16
AND reg/mem32, imm32
AND reg/mem64, imm32

Opcode
241b

25w

25id

25 id

80 /4 b
81 /4 iw
81 /4 id
81 /41d

Description

AND the contents of AL with an immediate 8-bit value and store
the result in AL

AND the contents of AX with an immediate 16-bit value and store
the result in AX.

AND the contents of EAX with an immediate 32-bit value and
store the result in EAX.

AND the contents of RAX with a sign-extended immediate 32-bit
value and store the result in RAX.

AND the contents of req/mem8 with imm8.

AND the contents of reg/mem16 with imm16.

AND the contents of req/mem32 with imm32.

AND the contents of req/mem64 with sign-extended imm32.

AND 69



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
Mnemonic Opcode Description
AND reg/mem 16, imm8 83 /4 b AI\IID the contents of reg/mem16 with a sign-extended 8-bit
value.
AND reg/mem32, imm8 83 /41b AI\IID the contents of reg/mem32 with a sign-extended 8-bit
value.
AND reg/mem64, imm8 83 /4 ib AI\IID the contents of reg/mem64 with a sign-extended 8-bit
value.
AND reg/mem8, reg8 20/r AND the contents of an 8-bit register or memory location with

the contents of an 8-bit register.

AND reg/mem]16, req16 21/r AND the contents of a 16-bit register or memory location with the
contents of a 16-bit register.

AND reg/mem32, reg32 20 /r AND the contents of a 32-bit register or memory location with
the contents of a 32-bit register.

AND reg/mem64, reg64 21/r AND the contents of a 64-bit register or memory location with
the contents of a 64-bit register.

AND reg8, reg/mem8 2/r AND the contents of an 8-bit register with the contents of an 8-bit
memory location or register.

AND reg1i6, reg/mem16 23/r AND the contents of a 16-bit register with the contents of a 16-bit
memory location or register.

AND reg32, req/mem32 23/r AND the contents of a 32-bit register with the contents of a 32-bit
memory location or register.

AND reg64, reg/mem64 23/r AND the contents of a 64-bit register with the contents of a 64-bit
memory location or register.

Related Instructions
TEST, OR, NOT, NEG, XOR
rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|M/|oO

21 | 20 | 19 | 18 17 | 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Nof(f: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.

70 AND



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.

X The destination operand was in a non-writable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

AND 71



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

BOUND Check Array Bounds

Checks whether an array index (first operand) is within the bounds of an array
(second operand). The array index is a signed integer in the specified register. If the
operand-size attribute is 16, the array operand is a memory location containing a pair
of signed word-integers; if the operand-size attribute is 32, the array operand is a pair
of signed doubleword-integers. The first word or doubleword specifies the lower
bound of the array and the second word or doubleword specifies the upper bound.

The array index must be greater than or equal to the lower bound and less than or
equal to the upper bound. If the index is not within the specified bounds, the
processor generates a BOUND range-exceeded exception (#BR).

The bounds of an array, consisting of two words or doublewords containing the lower
and upper limits of the array, usually reside in a data structure just before the array
itself, making the limits addressable through a constant offset from the beginning of
the array. With the address of the array in a register, this practice reduces the number
of bus cycles required to determine the effective address of the array bounds.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

BOUND reg16, mem16&mem 16 62/r Test whether a 16-bit array index is within the bounds specified
by the two 16-bit values in mem16&mem16.
(Invalid in 64-bit mode.)

BOUND reg32, mem32&mem32 62/r Test whether a 32-bit array index is within the bounds specified
by the two 32-bit values in mem32&mem32.
(Invalid in 64-bit mode.)

Related Instructions
INT, INT3, INTO
rFLAGS Affected

None

72 BOUND



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Bound range, #BR X X X The bound range was exceeded.
Invalid opcode, #UD | X X X The source operand was a register.
X Instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit
General protection, X X X A memory address exceeded a data segment limit.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

BOUND

73



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

BSF Bit Scan Forward

Searches the value in a register or a memory location (second operand) for the least-
significant set bit. If a set bit is found, the instruction clears the zero flag (ZF) and
stores the index of the least-significant set bit in a destination register (first operand).
If the second operand contains 0, the instruction sets ZF to 1 and does not change the
contents of the destination register. The bit index is an unsigned offset from bit 0 of
the searched value.

Mnemonic Opcode Description
BSF reg 16, reg/memi6 OFBC/r Bit scan forward on the contents of reg/mem16.
BSF reg32, reg/mem32 OF BC/r Bit scan forward on the contents of reg/mem32.
BSF reg64, reg/mem64 OF BC/r Bit scan forward on the contents of reg/mem64

Related Instructions
BSR

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U u M U U U
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 m |10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-

canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.

X A null data segment was used to reference memory.

74 BSF



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

checking was enabled.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

BSF

75



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

BSR Bit Scan Reverse

Searches the value in a register or a memory location (second operand) for the most-
significant set bit. If a set bit is found, the instruction clears the zero flag (ZF) and
stores the index of the most-significant set bit in a destination register (first operand).
If the second operand contains 0, the instruction sets ZF to 1 and does not change the
contents of the destination register. The bit index is an unsigned offset from bit 0 of
the searched value.

Mnemonic Opcode Description
BSR reg16, reg/mem16 OFBD/r Bit scan reverse on the contents of reg/mem6.
BSR reg32, reg/mem32 OF BD /r Bit scan reverse on the contents of req/mem32.
BSR reg64, reg/mem64 OF BD /r Bit scan reverse on the contents of reg/mem64.

Related Instructions
BSF

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U u ™M U U U
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 m |10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-

canonical.
General protection, X X X A memory address exceeded the stack segment limit or was non-
#GP canonical.

X A null data segment was used to reference memory.

76 BSR



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

checking was enabled.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

BSR

77



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

BSWAP Byte Swap

Reverses the byte order of the specified register. This action converts the contents of
the register from little endian to big endian or vice versa. In a doubleword, bits 7-0 are
exchanged with bits 31-24, and bits 15-8 are exchanged with bits 23-16. In a
quadword, bits 7-0 are exchanged with bits 63-56, bits 15-8 with bits 55-48, bits 23-16
with bits 47-40, and bits 31-24 with bits 39-32. A subsequent use of the BSWAP
instruction with the same operand restores the original value of the operand.

The result of applying the BSWAP instruction to a 16-bit register is undefined. To swap
the bytes of a 16-bit register, use the XCHG instruction and specify the respective byte
halves of the 16-bit register as the two operands. For example, to swap the bytes of AX,
use XCHG AL, AH.

Mnemonic Opcode Description
BSWAP reg32 OF C8 +rd Reverse the byte order of reg32.
BSWAP reg64 OF C8 +rd Reverse the byte order of reg64.

Related Instructions
XCHG

rFLAGS Affected
None

Exceptions

None

78 BSWAP



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

BT Bit Test

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64
(depending on the operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address
is the bit base of the bit string. If the bit index is in a register, the instruction selects a
bit position relative to the bit base in the range 263 t0 +2%3 1 if the operand size is
64, =231 to +231 - 1, if the operand size is 32, and 215 t0 +215 -1 if the operand size is
16. If the bit index is in an immediate value, the bit selected is that value modulo 16,
32, or 64, depending on operand size.

When the instruction attempts to copy a bit from memory, it accesses 2, 4, or 8 bytes
starting from the specified memory address for 16-bit, 32-bit, or 64-bit operand sizes,
respectively, using the following formula:

Effective Address + (NumBytes; * (BitOffset DIV NumBits;xg))

When using this bit addressing mechanism, avoid referencing areas of memory close
to address space holes, such as references to memory-mapped I/O registers. Instead,
use a MOV instruction to load a register from such an address and use a register form
of the BT instruction to manipulate the data.

Mnemonic Opcode Description
BT reg/mem16, req16 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem32, reg32 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/memé64, reg64 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem 16, imm8 OF BA /4 ib Copy the value of the selected bit to the carry flag.
BT reg/mem32, imm8 OF BA/41b Copy the value of the selected bit to the carry flag.
BT reg/mem64, imm8 OF BA /4 ib Copy the value of the selected bit to the carry flag.

Related Instructions

BTC, BTR, BTS

BT 79



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U U U u ™M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 9 8 7 6 4 2

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

80 BT



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

BTC Bit Test and Complement

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register, and then complements (toggles) the bit in the bit string.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64
(depending on the operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address
is the bit base of the bit string. If the bit index is in a register, the instruction selects a
bit position relative to the bit base in the range 263 t0 +2%3 1 if the operand size is
64, =231 to +231 - 1, if the operand size is 32, and 215 t0 +215 -1 if the operand size is
16. If the bit index is in an immediate value, the bit selected is that value modulo 16,
32, or 64, depending the operand size.

This instruction is useful for implementing semaphores in concurrent operating
systems. Such an application should precede this instruction with the LOCK prefix.
For details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

BTC reg/mem16, regi6 OF BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem32, reg32 OF BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/memé64, reg64 OF BB /r Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem16, imm8 OFBA/71b Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem32, imm8 OF BA/7ib Copy the value of the selected bit to the carry flag, then
complement the selected bit.

BTC reg/mem64, imm8 OFBA/71b Copy the value of the selected bit to the carry flag, then
complement the selected bit.

Related Instructions

BT, BTR, BTS

BTC 81



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U U U u ™M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 9 8 7 6 4 2

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

82 BTC



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

BTR Bit Test and Reset

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register, and then clears the bit in the bit string to 0.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64
(depending on the operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address
is the bit base of the bit string. If the bit index is in a register, the instruction selects a
bit position relative to the bit base in the range 263 t0 +2%3 1 if the operand size is
64, =231 to +231 - 1, if the operand size is 32, and 215 t0 +215 -1 if the operand size is
16. If the bit index is in an immediate value, the bit selected is that value modulo 16,
32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating
systems. Such applications should precede this instruction with the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

BTR reg/mem16, reg16 OF B3 /r Copy the value of the selected bit to the carry flag, then clear the
selected bit.

BTR reqg/mem32, reg32 OF B3 /r Copy the value of the selected bit to the carry flag, then clear the
selected bit.

BTR reg/memé64, reg64 OF B3 /r Copy the value of the selected bit to the carry flag, then clear the
selected bit.

BTR reg/mem 16, imm8 OFBA/61b Copy the value of the selected bit to the carry flag, then clear the
selected bit.

BTR reg/mem32, imm8 OF BA/6 b Copy the value of the selected bit to the carry flag, then clear the
selected bit.

BTR reg/mem64, imm8 OFBA/61b Copy the value of the selected bit to the carry flag, then clear the
selected bit.

Related Instructions

BT, BTC, BTS

BTR 83



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U U U u ™M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 9 8 7 6 4 2

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

84 BTR



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

BTS Bit Test and Set

Copies a bit, specified by bit index in a register or 8-bit immediate value (second
operand), from a bit string (first operand), also called the bit base, to the carry flag
(CF) of the rFLAGS register, and then sets the bit in the bit string to 1.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64
(depending on the operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address
is the bit base of the bit string. If the bit index is in a register, the instruction selects a
bit position relative to the bit base in the range 263 t0 +2%3 1 if the operand size is
64, =231 to +231 - 1, if the operand size is 32, and 215 t0 +215 -1 if the operand size is
16. If the bit index is in an immediate value, the bit selected is that value modulo 16,
32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating
systems. Such applications should precede this instruction with the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

BTS reg/mem16, reg16 OF AB /r Copy the value of the selected bit to the carry flag, then set the
selected bit.

BTS reg/mem32, reg32 OF AB /r Copy the value of the selected bit to the carry flag, then set the
selected bit.

BTS reg/mem64, reg64 OF AB /r Copy the value of the selected bit to the carry flag, then set the
selected bit.

BTS reg/mem16, imm8 OFBA/51b Copy the value of the selected bit to the carry flag, then set the
selected bit.

BTS reg/mem32, imm8 OF BA/51b Copy the value of the selected bit to the carry flag, then set the
selected bit.

BTS reg/mem64, imm8 OFBA/51b Copy the value of the selected bit to the carry flag, then set the
selected bit.

Related Instructions

BT, BTC, BTR

BTS 85



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U U U U u ™M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 9 8 7 6 4 2

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

86 BTS



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CALL (Near) Near Procedure Call

Pushes the offset of the next instruction onto the stack and branches to the target
address, which contains the first instruction of the called procedure. The target
operand can specify a register, a memory location, or a label. A procedure accessed by
anear CALL is located in the same code segment as the CALL instruction.

If the CALL target is specified by a register or memory location, then a 16-, 32-, or 64-
bit rIP is read from the operand, depending on the operand size. A 16- or 32-bit rIP is
zero-extended to 64 bits.

If the CALL target is specified by a displacement, the signed displacement is added to
the rIP (of the following instruction), and the result is truncated to 16, 32, or 64 bits,
depending on the operand size. The signed displacement is 16 or 32 bits, depending on
the operand size.

In all cases, the rIP of the instruction after the CALL is pushed on the stack, and the
size of the stack push (16, 32, or 64 bits) depends on the operand size of the CALL
instruction.

For near calls in 64-bit mode, the operand size defaults to 64 bits. The E8 opcode
results in RIP = RIP + 32-bit signed displacement and the FF /2 opcode results in
RIP = 64-bit offset from register or memory. No prefix is available to encode a 32-bit
operand size in 64-bit mode.

At the end of the called procedure, RET is used to return control to the instruction
following the original CALL. When RET is executed, the rIP is popped off the stack,
which returns control to the instruction after the CALL.

See CALL (Far) for information on far calls—calls to procedures located outside of the
current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
CALL rel160ff E8 iw Near call with the target specified by a 16-bit relative
displacement.
CALL rel320ff E8 id Near call with the target specified by a 32-bit relative
displacement.
CALL reg/mem16 FF/2 Near call with the target specified by reg/mem1I6.

CALL (Near) 87



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
Mnemonic Opcode Description
CALL reg/mem32 FF/2 Near call with the target specified by reg/mem32. (There is no

prefix for encoding this in 64-bit mode.)
CALL reg/mem64 FF /2 Near call with the target specified by reqg/mem64.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Related Instructions

CALL(Far), RET(Near), RET(Far)

rFLAGS Affected
None.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X X X The target offset exceeded the code segment limit or was non-
canonical.
X A null data segment was used to reference memory.
Alignment Check, X X An unaligned memory reference was performed while alignment
#AC checking was enabled.
Page Fault, #PF X X A page fault resulted from the execution of the instruction.

88 CALL (Near)



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CALL (Far) Far Procedure Call

Pushes procedure linking information onto the stack and branches to the target
address, which contains the first instruction of the called procedure. The operand
specifies a target selector and offset.

The instruction can specify the target directly, by including the far pointer in the
CALL (Far) opcode itself, or indirectly, by referencing a far pointer in memory. In 64-
bit mode, only indirect far calls are allowed, executing a direct far call (opcode 9A)
generates an undefined opcode exception.

The target selector used by the instruction can be a code selector in all modes.
Additionally, the target selector can reference a call gate in protected mode, or a task
gate or TSS selector in legacy protected mode.

m  Target is a code selector—The CS:rIP of the next instruction is pushed to the stack,
using operand-size stack pushes. Then code is executed from the target CS:rIP. In
this case, the target offset can only be a 16- or 32-bit value, depending on operand-
size, and is zero-extended to 64 bits. No CPL change is allowed.

m Target is a call gate—The call gate specifies the actual target code segment and off-
set. Call gates allow calls to the same or more privileged code. If the target seg-
ment is at the same CPL as the current code segment, the CS:rIP of the next
instruction is pushed to the stack.

If the CALL (Far) changes privilege level, then a stack-switch occurs, using an
inner-level stack pointer from the TSS. The CS:rIP of the next instruction is
pushed to the new stack. If the mode is legacy mode and the param-count field in
the call gate is non-zero, then up to 31 operands are copied from the caller's stack
to the new stack. Finally, the caller's SS:rSP is pushed to the new stack.

When calling through a call gate, the stack pushes are 16-, 32-, or 64-bits, depend-
ing on the size of the call gate. The size of the target rIP is also 16, 32, or 64 bits,
depending on the size of the call gate. If the target rIP is less than 64 bits, it is
zero-extended to 64 bits. Long mode only allows 64-bit call gates that must point to
64-bit code segments.

m Target is a task gate or a TSS—If the mode is legacy protected mode, then a task
switch occurs. See “Hardware Task-Management in Legacy Mode” in volume 2 for
details about task switches. Hardware task switches are not supported in long
mode.

See CALL (Near) for information on near calls—calls to procedures located inside the
current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

CALL (Far) 89



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description
CALL FAR pntri6:16 9A cd Far call direct, with the target specified by a far pointer contained
in the instruction. (Invalid in 64-bit mode.)
CALL FAR pntri16:32 9Acp Far call direct, with the target specified by a far pointer contained
in the instruction. (Invalid in 64-bit mode.)
CALL FAR mem16:16 FF/3 Far call indirect, with the target specified by a far pointer in
memory.
CALL FAR mem16:32 FF/3 Far call indirect, with the target specified by a far pointer in
memory.
Action

// See “Pseudocode Definitions” on page 48.
CALLF_START:

IF (REAL_MODE)
CALLF_REAL_OR_VIRTUAL

ELSIF (PROTECTED_MODE)
CALLF_PROTECTED

ELSE // (VIRTUAL_MODE)
CALLF_REAL_OR_VIRTUAL

CALLF_REAL_OR_VIRTUAL:

IF (OPCODE = callf [mem]) // CALLF Indirect
{
temp_RIP = READ_MEM.z [mem]
temp_CS = READ_MEM.w [mem+Z]
}
ELSE // (OPCODE = callf direct)
{

temp_RIP = z-sized offset specified in the instruction
zero-extended to 64 bits
temp_CS = selector specified in the instruction

}

PUSH.v o1d_CS
PUSH.v next_RIP

IF (temp_RIP>CS.1imit)
EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base = temp_CS SHL 4
RIP = temp_RIP

EXIT

90 CALL (Far)



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CALLF_PROTECTED:

IF (OPCODE = callf [mem]) //CALLF Indirect
{
temp_offset = READ_MEM.z [mem]
temp_sel = READ_MEM.w [mem+Z]
}
ELSE // (OPCODE
{
IF (64BIT_MODE)
EXCEPTION [#UD] // *CALLF direct’ is illegal in 64-bit mode.
temp_offset = z-sized offset specified in the instruction
zero-extended to 64 bits
temp_sel = selector specified in the instruction
}

callf direct)

temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)

IF (temp_desc.attr.type = “available_tss’)
TASK_SWITCH // Using temp_sel as the target TSS selector.
ELSIF (temp_desc.attr.type = ’taskgate’)
TASK_SWITCH // Using the TSS selector in the task gate
// as the target TSS.
ELSIF (temp_desc.attr.type = ’code’)
// 1f the selector refers to a code descriptor, then
// the offset we read is the target RIP.

temp_RIP = temp_offset
CS = temp_desc
PUSH.v 01d_CS
PUSH.v next_RIP
IF ((!64BIT_MODE) && (temp_RIP > CS.Timit))
// temp_RIP can’t be non-canonical because
EXCEPTION [#GP(0)] // it’s a 16- or 32-bit offset, zero-extended
// to 64 bits.
RIP = temp_RIP
EXIT
}
ELSE // (temp_desc.attr.type = ’callgate’)
// If the selector refers to a call gate, then
// the target CS and RIP both come from the call gate.

IF (LONG_MODE)
// The size of the gate controls the size of the stack pushes.
V=8-byte
// Long mode only uses 64-bit call gates, force 8-byte opsize.
ELSIF (temp_desc.attr.type = ’callgate32’)
V=4-byte
// Legacy mode, using a 32-bit call-gate, force 4-byte opsize.

CALL (Far) 91



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

ELSE // (temp_desc.attr.type = "callgatel6’)
V=2-byte
// Legacy mode, using a 16-bit call-gate, force 2-byte opsize.

temp_RIP = temp_desc.offset

IF (LONG_MODE) // In long mode, we need to read the 2nd half of a
// 16-byte call-gate from the GDT/LDT, to get the upper
// 32 bits of the target RIP.

temp_upper = READ_MEM.q [temp_sel+8]
IF (temp_upper’s extended attribute bits != 0)
EXCEPTION [#GP(temp_sel)]
temp_RIP = tempRIP + (temp_upper SHL 32)
// Concatenate both halves of RIP
}

CS = READ_DESCRIPTOR (temp_desc.segment, clg_chk)

temp_CPL = CS.sel.rpl
IF (CPL=temp_CPL)
{
PUSH.v ol1d_CS
PUSH.v next_RIP

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.limit))

{
EXCEPTIONL#GP(0)]

}

RIP = temp_RIP
EXIT
}
ELSE // (CPL != temp_CPL), Changing privilege level.
{
CPL = temp_CPL
temp_ist =0 // Call-far doesn’t use ist pointers.
temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER (CPL, temp_ist)

RSP.q = temp_RSP
SS = temp_SS_desc
PUSH.v 01d_SS // #SS on this and following pushes use
// SS.sel as error code.
PUSH.v old_RSP
IF (LEGACY_MODE) // Legacy-mode call gates have
{ // a param_count field.
temp_PARAM_COUNT = temp_desc.attr.param_count

FOR (I=temp_PARAM_COUNT; I>0; I--)
{

92

CALL (Far)



AMDZ1

24594

}

Rev. 3.02  August 2002 AMD 64-Bit Technology

temp_DATA = READ_MEM.v [0o1d_SS:(old_RSP+I*V)]
PUSH.v temp_DATA
}
}
PUSH.v o1d_CS
PUSH.v next_RIP
IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.T1imit))
{
EXCEPTION [#GP(0)]
}
RIP = temp_RIP
EXIT

Related Instructions

CALL (Near), RET (Near), RET (Far)

rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

CALL (Far) 93



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The CALL far indirect opcode (FF /3) had a register operand.
X The CALL far direct opcode (9A) was executed in 64-bit mode.

Invalid TSS, #TS X As part of a stack switch, the target stack segment selector or rSP in

(selector) the TSS was beyond the TSS limit.

X As part of a stack switch, the target stack segment selector in the TSS
was a null selector.

X As part of a stack switch, the target stack selector’s Tl bit was set, but
LDT selector was a null selector.

X As part of a stack switch, the target stack segment selector in the TSS
was beyond the limit of the GDT or LDT descriptor table.

X As part of a stack switch, the target stack segment selector in the TSS
contained a RPL that was not equal to its DPL.

X As part of a stack switch, the target stack segment selector in the TSS
contained a DPL that was not equal to the CPL of the code segment
selector.

X As part of a stack switch, the target stack segment selector in the TSS
was not a writable segment.

Segment not present, X The accessed code segment, call gate, task gate, or TSS was not

#NP (selector) present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical, and no stack switch occurred.

Stack, #SS X After a stack switch, a memory access exceeded the stack segment

(selector) limit or was non-canonical.

X As part of a stack switch, the SS register was loaded with a non-null

segment selector and the segment was marked not present.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X X X The target offset exceeded the code segment limit or was non-
canonical.
X A null data segment was used to reference memory.
94 CALL (Far)



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Virtual
Exception Real | 8086 |Protected Cause of Exception

General protection, X The target code segment selector was a null selector.

#GP

(selector) X A code, call gate, task gate, or TSS descriptor exceeded the descriptor
table limit.

X A segment selector’s Tl bit was set but the LDT selector was a null

selector.

X The segment descriptor specified by the instruction was not a code
segment, task gate, call gate or available TSS in legacy mode, or not
a 64-bit code segment or a 64-bit call gate in long mode.

X The RPL of the non-conforming code segment selector specified by
the instruction was greater than the CPL, or its DPL was not equal to
the CPL.

X The DPL of the conforming code segment descriptor specified by the
instruction was greater than the CPL.

X The DPL of the callgate, taskgate, or TSS descriptor specified by the
instruction was less than the CPL, or less than its own RPL.

X The segment selector specified by the call gate or task gate was a null
selector.

X The segment descriptor specified by the call gate was not a code
segment in legacy mode, or not a 64-bit code segment in long mode.

X The DPL of the segment descriptor specified by the call gate was
greater than the CPL.

X The 64-bit call gate’s extended attribute bits were not zero.

The TSS descriptor was found in the LDT.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

CALL (Far) 95



AMDZU

AMD 64-Bit Technology

CBW
CWDE
CDQE

Convert to Sign-extended

24594  Rev. 3.02 August 2002

Copies the sign bit in the AL or eAX register to the upper bits of the rAX register. The
effect of this instruction is to convert a signed byte, word, or doubleword in the AL or
eAX register into a signed word, doubleword, or double quadword in the rAX register.
This action helps avoid overflow problems in signed number arithmetic.

The CDQE mnemonic is meaningful only in 64-bit mode.

Mnemonic
CBW 98
CWDE 98
CDQE 98

Related Instructions
CWD, CDQ, CQO
rFLAGS Affected
None

Exceptions

None

Opcode

Description
Sign-extend AL into AX.
Sign-extend AX into EAX.

Sign-extend EAX into RAX.

96

CBW, CWDE, CDQE



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CWD Convert to Sign-extended

CDQ

cQo

Copies the sign bit in the rAX register to all bits of the rDX register. The effect of this
instruction is to convert a signed word, doubleword, or quadword in the rAX register

into a signed doubleword, quadword, or double-quadword in the rDX:rAX registers.
This action helps avoid overflow problems in signed number arithmetic.

The CQO mnemonic is meaningful only in 64-bit mode.

Mnemonic Opcode Description
CWD 99 Sign-extend AX into DX:AX.
CDQ 99 Sign-extend EAX into EDX:EAX.
CQO 99 Sign-extend RAX into RDX:RAX.

Related Instructions
CBW, CWDE, CDQE
rFLAGS Affected
None

Exceptions

None

Cwb, CDQ, CQO 97



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

CLC Clear Carry Flag

Clears the carry flag (CF) in the rFLAGS register to zero.

Mnemonic Opcode Description

CLC F8 Clear the carry flag (CF) to zero.

Related Instructions
STC, CMC
rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0

21 | 20 | 19 | 18 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.

Exceptions

None

98 CLC



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CLD Clear Direction Flag

Clears the direction flag (DF) in the rFLAGS register to zero. If the DF flag is 0, each
iteration of a string instruction increments the data pointer (index registers rSI or
rDI). If the DF flag is 1, the string instruction decrements the pointer. Use the CLD
instruction before a string instruction to make the data pointer increment.

Mnemonic Opcode Description

CLD FC Clear the direction flag (DF) to zero.
Related Instructions
CMPSx, INSx, LODSx, MOVSx, OUTSx, SCASx, STD, STOSx
rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0

21 | 20 | 19 | 18 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.

Exceptions

None

CLD 99



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

CLFLUSH Cache Line Invalidate

Invalidates the cache line specified by the memS8 linear-address. The instruction
checks all levels of the cache hierarchy—internal caches and external caches—and
invalidates the cache line in every cache in which it is found. If a cache contains a dirty
copy of the cache line (that is, the cache line is in the modified or owned MOESI state),
the line is written back to memory before it is invalidated. The instruction sets the
cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address
operand against the processor’s write-combining buffers. If the write-combining
buffer holds data intended for that physical address, the instruction writes the entire
contents of the buffer to memory. This occurs even though the data is not cached in
the cache hierarchy. In a multiprocessor system, the instruction checks the write-
combining buffers only on the processor that executed the CLFLUSH instruction.

The CLFLUSH instruction is weakly-ordered with respect to other instructions that
operate on memory. Speculative loads initiated by the processor, or specified
explicitly using cache-prefetch instructions, can be reordered around a CLFLUSH
instruction. Such reordering can cause freshly-loaded cache lines to be flushed
unintentionally. The only way to avoid this situation is to use the MFENCE instruction
to force strong-ordering of the CLFLUSH instruction with respect to other memory
operations. The LFENCE, SFENCE, and serializing instructions are not ordered with
respect to CLFLUSH.

The CLFLUSH instruction behaves like a load instruction with respect to setting the
page-table accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but
does not set the page-table dirty bit.

The CLFLUSH instruction is supported if CPUID standard function 1 bit 19 is set.
CPUID function 1 returns the CLFLUSH size in EBX bits 23:16. This value reports the
size of a line flushed by CLFLUSH in quadwords. See CPUID for details.

The CLFLUSH instruction executes at any privilege level. CLFLUSH performs all the
segmentation and paging checks that a 1-byte read would perform, except that it also
allows references to execute-only segments.

Mnemonic Opcode Description

CFLUSH mem8 OF AE /7 flush cache line containing mem8.

100 CLFLUSH



AMDZ1

24594 Rev. 3.02 August 2002

Related Instructions

AMD 64-Bit Technology

INVD, WBINVD
rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The CLFLUSH instruction is not supported, as indicated by
bit 19 of CPUID standard function 1.
Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.
General protection, #GP | X X X A memory address exceeded a data segment limit or was
non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

CLFLUSH

101



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

CMC Complement Carry Flag

Complements (toggles) the carry flag (CF) bit of the rFLAGS register.

Mnemonic Opcode Description

CMC F5 Complement the carry flag (CF).

Related Instructions
CLC, STC

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M

21 | 20 | 19 | 18 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.

Exceptions

None

102 cMC



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CMOVcc Conditional Move

Conditionally moves a 16-bit, 32-bit, or 64-bit value in memory or a general-purpose
register (second operand) into a register (first operand), depending upon the settings
of condition flags in the rFLAGS register. If the condition is not satisfied, the
instruction has no effect.

The mnemonics of CMOVcc instructions denote the condition that must be satisfied.
Most assemblers provide instruction mnemonics with A (above) and B (below) tags to
supply the semantics for manipulating unsigned integers. Those with G (greater than)
and L (less than) tags deal with signed integers. Many opcodes may be represented by
synonymous mnemonics. For example, the CMOVL instruction is synonymous with the
CMOVNGE instruction and denote the instruction with the opcode OF 4C.

Support for CMOVcc instructions depends on the processor implementation. To
determine whether a processor can perform CMOVcc instructions, use the CPUID
instruction to determine whether bit 15 of CPUID standard function 1 or extended
function 8000_0001h is set to 1.

Mnemonic Opcode Description

CMOVO regi6, reg/memi6 OF 40 /r Move if overflow (OF =1).
CMOVO reg32, reg/mem32
CMOVO reg64, reg/mem64

CMOVNO reg16, reg/mem16 OF 41 /r Move if not overflow (OF = 0).
CMOVNO reg32, req/mem32
CMOVNO reg64, req/mem64

CMOVB reg16, reg/mem1i6 OF 42 /r Move if below (CF=1).
CMOVB reg32, reg/mem32
CMOVB reg64, reg/mem64

CMOQVCregl6, reg/memi6 OF 42 /r Move if carry (CF=1).
CMOVC reg32, req/mem32
CMOVC reg64, reg/mem64

CMOVNAE reg16, reg/mem16 OF 42 /r Move if not above or equal (CF =1).
CMOVNAE reg32, reg/mem32
CMOVNAE reg64, reg/mem64

CMOVNB reg16,reg/mem16 OF 43 /r Move if not below (CF =0).
CMOVNB reg32,reg/mem32
CMOVNB reg64,reg/mem64

CMOVcc 103



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description
CMOVNC regi6,reg/mem16 OF 43 /r Move if not carry (CF =0).

CMOVNC reg32,reqg/mem32
CMOVNC reg64,req/mem64

CMOVAE reg 16, reg/mem16 OF 43 /r Move if above or equal (CF = 0).
CMOVAE reg32, req/mem32
CMOVAE reg64, reg/mem64

CMQVZ reg 16, reg/memi6 OF 44 /r Move if zero (ZF=1).
CMOVZ reg32, req/mem32
CMOVZ reg64, reqg/mem64

CMOVE regi6, reg/mem16 OF 44 /r Move if equal (ZF =1).
CMOVE reg32, req/mem32
CMOVE reg64, reg/mem64

CMOVNZ regi6, reg/mem 16 OF 45 /r Move if not zero (ZF = 0).
CMOVNZ reg32, reg/mem32
CMOVN/Z reg64, req/mem64

CMOVNE reg1i6, reg/mem 16 OF 45 /r Move if not equal (ZF = 0).
CMOVNE reg32, reg/mem32
CMOVNE reg64, reg/mem64

CMOVBE regi6, reg/mem16 OF 46 /r Move if below or equal (CF=1o0rZF=1).
CMOVBE reg32, reg/mem32
CMOVBE reg64, req/mem64

CMOVNA reg 16, reg/mem16 OF 46 /r Move if not above (CF=1orZF=1).
CMOVNA reg32, reg/mem32
CMOVNA reg64, reg/mem64

CMOVNBE reg 16, reg/memi6 OF 47 /r Move if not below or equal (CF =0 and ZF = 0).
CMOVNBE reg32,reqg/mem32
CMOVNBE reg64,req/mem64

CMOVA reg16, reg/mem16 OF 47 /r Move if above (CF =1 and ZF = 0).
CMOVA reg32, reg/mem32
CMOVA reg64, reg/mem64

CMOVS regi6, reg/memi6 OF 48 /r Move if sign (SF =1).
CMOVS reg32, reg/mem32
CMOVS reg64, reg/memé64

CMOVNS reg1i6, reg/mem16 OF 49 /r Move if not sign (SF = 0).
CMOVNS reg32, reg/mem32
CMOVNS reg64, reqg/mem64

CMOVP regi6, reg/mem16 OF 4A/r Move if parity (PF =1).
CMOVP reg32, req/mem32
CMOVP reg64, reg/memé64

104 CMOVcc



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Mnemonic Opcode Description
CMOVPE reg 16, reg/memi6 OF 4A/r Move if parity even (PF =1).

CMOVPE reg32, req/mem32
CMOVPE reg64, reg/mem64

CMOVNP reg16, reg/mem16 OF 4B /r Move if not parity (PF = 0).
CMOVNP reg32, reg/mem32
CMOVNP reg64, reg/mem64

CMOVPO reg16, reg/mem16 OF 4B /r Move if parity odd (PF = 0).
CMOVPO reg32, reqg/mem32
CMOVPO reg64, reqg/mem64

CMOVL reg16, reg/mem16 OF 4C/r Move if less (SF <> OF).
CMOVL reg32, reg/mem32
CMOVL reg64, reg/mem64

CMOVNGE reg16, reg/mem 16 OF 4C/r Move if not greater or equal (SF <> OF).
CMOVNGE reg32, req/mem32
CMOVNGE reg64, req/mem64

CMOVNL reg16, reg/mem16 OF 4D /r Move if not less (SF = OF).
CMOVNL reg32, reg/mem32
CMOVNL reg64, reg/mem64

CMOVGE regi6, reg/mem16 OF 4D /r Move if greater or equal (SF = OF).
CMOVGE reg32, reg/mem32
CMOVGE reg64, req/mem64

CMOVLE reg1i6, reg/mem16 OF 4E /r Move if less or equal (ZF =1 or SF <> OF).
CMOVLE reg32, req/mem32
CMOVLE reg64, reg/mem64

CMOVNG regi6, reg/memi6 OF 4E /r Move if not greater (ZF =1 or SF <> OF).
CMOVNG reg32, reg/mem32
CMOVNG reg64, reg/memé64

CMOVNLE reg16, reg/mem16 OF 4F /r Move if not less or equal (ZF = 0 and SF = OF)).
CMOVNLE reg32, reg/mem32

CMOVNLE reg64, reg/mem64

CMOVG reg16, reg/memi6 OF 4F /r Move if greater (ZF = 0 and SF = OF).

CMOVG reg32, req/mem32
CMOVG reg64, reqg/mem64

Related Instructions
MOV
rFLAGS Affected

None

CMOVcc 105



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The CMOVcc instruction is not supported, as indicated by bit 15 of
CPUID standard function 1 or extended function 8000_0001.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

106

CMOVcc




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CMP Compare

Compares the contents of a register or memory location (first operand) with an
immediate value or the contents of a register or memory location (second operand),
and sets or clears the status flags in the rFLAGS register to reflect the results. To
perform the comparison, the instruction subtracts the second operand from the first
operand and sets the status flags in the same manner as the SUB instruction, but does
not alter the first operand. If the second operand is an immediate value, the
instruction sign-extends the value to the length of the first operand.

Use the CMP instruction to set the condition codes for a subsequent conditional jump
(Jcc), conditional move (CMOVcc), or conditional SETcc instruction. Appendix E,
“Instruction Effects on RFLAGS,” shows how instructions affect the rFLAGS status
flags.

Mnemonic Opcode Description

CMP AL, imm8 3Cib Compare an 8-bit immediate value with the contents of the AL
register.

CMP AX, imm16 3D iw Compare a 16-bit immediate value with the contents of the AX
register.

CMP EAX, imm32 3Did Compare a 32-bit immediate value with the contents of the EAX
register.

CMP RAX, imm32 3D id Compare a 32-bit immediate value with the contents of the RAX
register.

CMP reg/mem8, imm8 80/71b Compare an 8-bit immediate value with the contents of an 8-bit

register or memory operand.

CMP reg/mem16, imm16 81 /7w Compare a 16-bit immediate value with the contents of a 16-bit
register or memory operand.

CMP reg/mem32, imm32 81/7id Compare a 32-bit immediate value with the contents of a 32-bit
register or memory operand.

CMP reg/memé64, imm32 81/7id Compare a 32-bit signed immediate value with the contents of a
64-bit register or memory operand.

CMP reg/mem16, imm8 83/7ib Compare an 8-bit signed immediate value with the contents of a
16-bit register or memory operand.

CMP reg/mem32, imm8 83/71b Compare an 8-bit signed immediate value with the contents of a
32-bit register or memory operand.

CcMP 107



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description

CMP reg/memé64, imm8 83/71b Compare an 8-bit signed immediate value with the contents of a
64-bit register or memory operand.

CMP reg/mem8, reg8 38/r Compare the contents of an 8-bit register or memory operand
with the contents of an 8-bit register.

CMP reg/mem16, regi16 39/r Compare the contents of a 16-bit register or memory operand
with the contents of a 16-bit register.

CMP reg/mem32, reg32 39/r Compare the contents of a 32-bit register or memory operand
with the contents of a 32-bit register.

CMP reg/mem64, reg64 39/r Compare the contents of a 64-bit register or memory operand
with the contents of a 64-bit register.

CMP reg8, reg/mem8 3A/r Compare the contents of an 8-bit register with the contents of an
8-bit register or memory operand.

CMP reg 16, reg/memi6 3B /r Compare the contents of a 16-bit register with the contents of a
16-bit register or memory operand.

CMP reg32, reg/mem32 3B/r Compare the contents of a 32-bit register with the contents of a
32-bit register or memory operand.

CMP reg64, reg/mem64 3B /r Compare the contents of a 64-bit register with the contents of a

64-bit register or memory operand.

When interpreting operands as unsigned, flag settings are as follows:

Operands CF ZF
dest > source 0 0
dest = source 0 1
dest < source 1 0

When interpreting operands as signed, flag settings are as follows:

Operands OF IF
dest > source SF 0
dest = source 0 1
dest < source NOT SF 0
108 CMP




AMDZ1

24594 Rev. 3.02 August 2002

Related Instructions

SUB, CMPSx, SCASx

AMD 64-Bit Technology

rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M| M| M| M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Not]‘(fs: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
lags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

CcMP 109



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

CMPS Compare Strings
CMPSB

CMPSW

CMPSD

CMPSQ

Compares the bytes, words, doublewords, or quadwords pointed to by the rSI and rDI
registers, sets or clears the status flags of the rFLAGS register to reflect the results,
and then increments or decrements the rSI and rDI registers according to the state of
the DF flag in the rFLAGS register. To perform the comparison, the instruction
subtracts the second operand from the first operand and sets the status flags in the
same manner as the SUB instruction, but does not alter the first operand. The two
operands must be the same size.

If the DF flag is 0, the instruction increments rSI and rDI; otherwise, it decrements the
pointers. It increments or decrements the pointers by 1, 2, 4, or 8, depending on the
size of the operands.

The forms of the CMPSx instruction with explicit operands address the first operand
at seg:[rSI]. The value of seg defaults to the DS segment, but may be overridden by a
segment prefix. These instructions always address the second operand at ES:[rDI]. ES
may not be overridden. The explicit operands serve only to specify the type (size) of
the values being compared and the segment used by the first operand.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to
point to the values to be compared. The mnemonic determines the size of the
operands.

Do not confuse this CMPSD instruction with the same-mnemonic CMPSD (compare
scalar double-precision floating-point) instruction in the 128-bit media instruction set.
Assemblers can distinguish the instructions by the number and type of operands.

For block comparisons, the CMPS instruction supports the REPE or REPZ prefixes
(they are synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For
details about the REP prefixes, see “Repeat Prefixes” on page 10. If a conditional
jump instruction like JL follows a CMPSx instruction, the jump occurs if the value of
the seg:[rSI] operand is less than the ES:[rDI] operand. This action allows
lexicographical comparisons of string or array elements. A CMPSx instruction can
also operate inside a loop controlled by the LOOPcc instruction.

110 CMPSx



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
CMPS mem8, mem8 A6 Compare the byte at DS:rSI with the byte at ES:rDI and then
increment or decrement rSl and rDI.
CMPS mem16, memI16 A7 Compare the word at DS:rSI with the word at ES:rDI and then
increment or decrement rSl and rDI.
CMPS mem32, mem32 A7 Compare the doubleword at DS:rSI with the doubleword at
ES:rDI and then increment or decrement rSl and rDl.
CMPS mem64, mem64 A7 Compare the quadword at DS:rSI with the quadword at ES:rDI
and then increment or decrement rSl and rDI.
CMPSB A6 Compare the byte at DS:rSI with the byte at ES:rDI and then
increment or decrement rSl and rDI.
CMPSW A7 Compare the word at DS:rSI with the word at ES:rDI and then
increment or decrement rSl and rDI.
CMPSD A7 Compare the doubleword at DS:rSI with the doubleword at
ES:rDI and then increment or decrement rSI and rDl.
CMPSQ A7 Compare the quadword at DS:rSI with the quadword at ES:rDI
and then increment or decrement rSl and rDI.
Related Instructions
CMP, SCASx
rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.

CMPSx 111



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

112

CMPSx



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CMPXCHG Compare and Exchange

Compares the value in the AL, AX, EAX, or RAX register with the value in a register
or a memory location (first operand). If the two values are equal, the instruction
copies the value in the second operand to the first operand and sets the ZF flag in the
rFLAGS register to 1. Otherwise, it copies the value in the first operand to the AL, AX,
EAX, or RAX register and clears the ZF flag to 0.

The OF, SF, AF, PF, and CF flags are set to reflect the results of the compare.

The forms of the CMPXCHG instruction that write to memory support the LOCK
prefix. For details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

CMPXCHG reg/mem8, reg8 OF BO /r Compare AL register with an 8-bit register or memory location. If
equal, copy the second operand to the first operand. Otherwise,
copy the first operand to AL.

CMPXCHG reg/mem16, reqi6 OF B1 /r Compare AX register with a 16-bit register or memory location. If
equal, copy the second operand to the first operand. Otherwise,
copy the first operand to AX.

CMPXCHG reg/mem32, reg32 OF B1/r Compare EAX register with a 32-bit register or memory location.
If equal, copy the second operand to the first operand.
Otherwise, copy the first operand to EAX.

CMPXCHG reg/mem64, reg64 OF B1/r Compare RAX register with a 64-bit register or memory location.
If equal, copy the second operand to the first operand.
Otherwise, copy the first operand to RAX.

Related Instructions

CMPXCHGS8B

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M T M M| M M

21 | 20 | 19 | 18 17 16 | 14 13-12 11 10 9 8 7

Note:

Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.

CMPXCHG 113



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

114

CMPXCHG



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CMPXCHGSB Compare and Exchange Eight Bytes

Compares a 64-bit value in the EDX:EAX registers with a 64-bit value in the specified
memory location. If the values are equal, the instruction copies the value in the
ECX:EBX registers to the memory location and sets the zero flag (ZF) of the rFLAGS
register to 1. Otherwise, it copies the value in memory to the EDX:EAX registers and
clears ZF to 0.

The CMPXCHGSB instruction supports the LOCK prefix. For details about the LOCK
prefix, see “Lock Prefix” on page 10.

Support for the CMPXCHGSB instruction depends on the processor implementation.
To find out if a processor can execute the CMPXCHGS8B instruction, use the CPUID

instruction to determine whether bit 8 of CPUID standard function 1 or extended
function 8000_0001h is set to 1.

If the effective operand size is 64-bit, this instruction raises an invalid opcode (#UD)
exception.

Mnemonic Opcode Description

CMPXCHG8B mem64 OF C7/1m64  Compare EDX:EAX register to 64-bit memory location. If equal,
set the zero flag (ZF) to 1 and copy the ECX:EBX register to the
memory location. Otherwise, copy the memory location to
EDX:EAX and clear the zero flag.

Related Instructions
CMPXCHG

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF

21 | 20 | 19 | 18 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note:

Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.

CMPXCHG8B 115



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The CMPXCHS8B instruction is not supported, as indicated by bit 8 of
CPUID standard function 1 or extended function 8000_0001h.
X X X The operand was a register.
X Effective operand size was 64-bit.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

116

CMPXCHG8B



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

CPUID Processor Identification

Provides information about the processor and its capabilities through a number of
different functions. Software should load the number of the CPUID function to
execute into the EAX register before executing the CPUID instruction. The processor
returns information in the EAX, EBX, ECX, and EDX registers; the contents and
format of these registers depend on the function.

The architecture supports CPUID information about standard functions and extended
functions. The standard functions have numbers in the 0000_xxxxh series (for
example, function 1). To determine the largest standard function number that a
processor supports, execute CPUID function 0.

The extended functions have numbers in the 8000_xxxxh series (for example,
function 8000_0001h). To determine the largest extended function number that a
processor supports, execute CPUID function 8000_0000h. If the value returned in
EAX is greater than 8000_0000h, the processor supports extended functions.

Software operating at any privilege level can execute the CPUID instruction to collect
this information. In 64-bit mode, this instruction works the same as in legacy mode
except that it zero-extends 32-bit register results to 64 bits.

CPUID is a serializing instruction.

Mnemonic Opcode Description
CPUID OF A2 Executes the CPUID function whose number is in the EAX
register.

Testing for the CPUID Instruction

To avoid an invalid-opcode exception (#UD) on those processor implementations that
do not support the CPUID instruction, software must first test to determine if the
CPUID instruction is supported. Support for the CPUID instruction is indicated by the
ability to write the ID bit in the rFLAGS register. Normally, 32-bit software uses the
PUSHFD and POPFD instructions in an attempt to write rFLAGS.ID. After reading
the updated rFLAGS.ID bit, a comparison determines if the operation changed its
value. If the value changed, the processor executing the code supports the CPUID
instruction. If the value did not change, rFLAGS.ID is not writable, and the processor
does not support the CPUID instruction.

CPUID 117



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

The following code sample shows how to test for the presence of the CPUID
instruction using 32-bit code.

pushfd ; save EFLAGS

pop eax ; store EFLAGS in EAX

mov ebx, eax ; save in EBX for later testing
xor eax, 00200000h ; toggle bit 21

push eax ; push to stack

popfd ; save changed EAX to EFLAGS
pushfd ; push EFLAGS to TOS

pop eax ; store EFLAGS in EAX

cmp eax, ebx ; see if bit 21 has changed

Jz NO_CPUID ; 1f no change, no CPUID

Function 0: Processor Vendor and Largest Standard Function Number

All software using the CPUID instruction must execute function 0. This function
returns the largest standard function number and the processor vendor.

EAX: Largest Standard Function Number. Function 0 loads EAX with the largest CPUID
standard function number supported by the processor implementation.

EBX, EDX, and ECX: Processor Vendor. Function 0 loads a 12-character string into the EBX,
EDX, and ECX registers identifying the processor vendor. For AMD processors, the
string is AuthenticAMD. This string informs software that it should follow the AMD
CPUID definition for subsequent CPUID function calls. If the function returns a
another vendor’s string, software must use that vendor’s CPUID definition when
interpreting the results of subsequent CPUID function calls. Table 3-1 shows the
contents of the EBX, EDX, and ECX registers after executing function 0 on an AMD
processor.

Table 3-1. Processor Vendor Return Values

Register Return Value ASCII Characters
EBX 6874_7541h “h t u A”
EDX 6974_6E65h “itne”
ECX 444D_4163h “DMAC”

Function 1: Processor Signature and Standard Features
Function 1 returns the processor signature and standard-feature bits.

EAX: Processor Signature. Function 1 returns the processor signature in the EAX register;
the signature provides information on the processor revision (stepping) level and
processor model, as well as the instruction family that the processor supports.

118 CPUID



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Figure 3-1 shows the format of the EAX register following execution of CPUID
standard function 1.

31 28 27 20 19 16 15 12 1 8 7 4 3 0
Reserved Extended Family Extended Model Reserved Family Model Stepping

Bits Mnemonic Description

31-28 Reserved

27-20 Extended Family

19-16 Extended Model

15-12 Reserved

1-8 Family

7-4 Model

3-0 Stepping

Figure 3-1. Processor Signature (EAX Register)

The Extended Family and Extended Model fields extend the Family and Model fields,
respectively, to accommodate larger family and model values. The method for
computing the actual—or effective—family and model depends on the value of the
Family field. The method for computing the effective family is shown in Table 3-2.

Table 3-2. Effective Family Computation

Family Field How to Compute the Effective Family Example

Extended Family
Lolofolofofofi]o]

Add the Extended Family field and the zero-
extended Family field. + Ilﬂﬂﬂ
Effective Family

Lofofof1]ofofo]r]

7 0 s5i3320eps

Fh

Family
[of1]1]o]
3 0

Less than Fh Use the Family field as the effective family. 1
Effective Family

3 0 53330.eps

The method for computing the effective model is shown in Table 3-3 on page 120.

CPUID 119



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table 3-3. Effective Model Computation

Family Field How to Compute the Effective Model Example
Extended Model
3 0
o Shift the Extended Model field four bits to the Model
left and add it to the Model field. + lofo]1]o]
3 0
Effective Model

Lof1]ofo]ofofu]o]

7 0 si3331eps

Less than Fh Use the Model field as the effective model. J
Effective Model

3 0 513-332.eps

EBX: Initial APIC ID, CLFLUSH Size, and Brand ID. Function 1 returns information on the
initial value of the physical ID register associated with the advanced programmable
interrupt controller (APIC), the size of the cache line flushed by the CLFLUSH
instruction, and the processor brand.

Figure 3-2 shows the format of the EBX register following execution of CPUID
standard function 1.

31 24 28 16 15 8 7 0
Initial APIC ID Reserved CLFLUSH Size Brand ID

Bits Mnemonic Description

31-24 Initial APIC ID

23-16 Reserved

15-8 CLFLUSH Size

7-0 Brand ID

Figure 3-2. Initial APIC ID, CLFLUSH Size, and Brand ID (EBX Register)

The Initial APIC ID field contains the initial value of the processor’s local APIC
physical ID register. This value is composed of the Northbridge NodelD (bits 26-24)
and the CPU number within the node (bits 31-27). Subsequent writes by software to

120 CPUID



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

the local APIC physical ID register do not change the value of the Initial APIC ID
field.

The CLFLUSH Size field gives the size (in quadwords) of the cache line that is flushed
by the CLFLUSH instruction. This field is implemented only if the CLFLUSH
instruction is supported. To determine if the CLFLUSH instruction is supported, test
the CLFLUSH Instruction bit provided by function 1 feature flags.

The Brand ID field identifies a processor with a unique set of features as a specific
brand. The BIOS uses the Brand ID field to program the processor name string that is
returned by functions 8000_0002h-8000_0004h. If the Brand ID field is 0, the
processor does not support the Brand ID feature.

ECX. For standard function 1, the ECX register is reserved.

EDX: Standard Feature Support. Function 1 returns standard-feature bits in the EDX
register. The value of each bit indicates whether support for a specific feature is
present on the processor implementation. If the value of a bit is 1, the feature is
supported. If the value is 0, the feature is not supported.

Table 3-4 summarizes the standard-feature bits returned in the EDX register for
function 1.

Table 3-4. CPUID Standard Feature Support (Standard Function 1)

Feature

EDX Bit (feature is supported if bit is set to 1)

0 On-Chip x87-Instruction Unit.

1 Virtual-Mode Extensions. See “Virtual Interrupts” in Volume 2.

2 Debugging Extensions. See “Software-Debug Resources” in Volume 2.

3 Page-Size Extensions (PSE). See “Page-Size Extensions (PSE) Bit” in Volume 2.

4 Time-Stamp Counter. See “Time-Stamp Counter” in Volume 2.

AMD K86 Model-Specific Registers (MSRs), with RDMSR and WRMSR Instructions. See “Model-
Specific Registers (MSRs)” in Volume 2.

6 Physical-Address Extensions (PAE). See “Physical-Address Extensions (PAE) Bit” in Volume 2.

7 Machine Check Exception. See “Handling Machine Check Exceptions” in Volume 2.

8 CMPXCHGSB Instruction.

Advanced Programmable Interrupt Controller (APIC). BIOS must enable the local APIC. See the
documentation for particular implementations of the architecture.

CPUID 121



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table 3-4. CPUID Standard Feature Support (Standard Function 1) (continued)

Feature

EDX Bit (feature is supported if bit is set to 1)

10 Reserved.

SYSENTER and SYSEXIT Instructions. These instructions have different implementations than the
11 SYSCALL and SYSRET instructions indicated by bit 11 of extended function 8000_0001h. See “SYSENTER
and SYSEXIT (Legacy Mode Only)” in Volume 2.

12 Memory-Type Range Registers (MTRRs). See “Memory-Type Range Registers” in Volume 2.

13 Page Global Extension. See “Global Pages” in Volume 2.

14 Machine Check Architecture. See “Machine Check Mechanism” in Volume 2.

Conditional Move Instructions. Indicates support for conditional move (CMOVcc) general-purpose
15 instructions, and—if the on-chip x87-instruction-unit bit (bit 0) is also set—for the x87 floating-point
conditional move (FCMOVcc) instructions.

16 Page Attribute Table (PAT). See “Memory-Type Range Registers” in Volume 2.

17 Page-Size Extensions (PSE). See”Page-Size Extensions (PSE) Bit” in Volume 2.

18 Reserved.

CLFLUSH Instruction. Indicates support for the CLFLUSH (writeback, if modified, and invalidate) general-
purpose instruction.

20-22 | Reserved.

MMX™ Instructions. Indicates support for the integer (MMX) 64-bit media instructions. For details, see
Appendix D, “Instruction Subsets and CPUID Feature Sets.”

24 FXSAVE and FXRSTOR Instructions. See “FXSAVE and FXRSTOR Instructions” in Volume 2.

23

SSE Instructions. Indicates support for the SSE instructions, except that the SSE instructions indicated for
the AMD Extensions to MMX Instructions feature (bit 22 of extended function 8000_0001h; see Table 3-5

2 on page 124) are implemented if bit 25 is cleared and bit 22 of extended function 8000_0001h is set. For
details, see Appendix D, “Instruction Subsets and CPUID Feature Sets.”
26 SSE2 Instruction Extensions. Indicates support for the SSE2 instructions. For details, see Appendix D,

“Instruction Subsets and CPUID Feature Sets.”

27-31 | Reserved.

Function 8000_0000h: Processor Vendor and Largest Extended Function Number

Function 8000_0000h mimics the behavior of function 0, except that
function 8000_0000h returns the largest extended function number instead of the
largest standard function number.

122 CPUID



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

EAX: Largest Extended Function Number. Function 8000_0000h loads EAX with the largest
CPUID extended function number supported by the processor implementation.

EBX, EDX, and ECX: Processor Vendor. Function 8000_0000h loads a 12-character string into
the EBX, EDX, and ECX registers identifying the processor vendor. For AMD
processors, the string is AuthenticAMD. This string informs software that it should
follow the AMD CPUID definition for subsequent CPUID function calls. If the
function returns a another vendor’s string, software must use that vendor’s CPUID
definition when interpreting the results of subsequent CPUID function calls.
Table 3-1 on page 118 shows the contents of the EBX, EDX, and ECX registers after
executing function 8000_0000h on an AMD processor.

Function 8000_0001h: Processor Signature and AMD Features

Like function 1, function 8000_0001h returns the processor signature and feature bits.
However, the feature bits returned by this function include a subset of the bits
reported by standard function 1, along with additional bits for AMD features.

EAX: Processor Signature. Function 8000_0001h returns the processor signature in the
EAX register; the signature provides information on the processor revision (stepping)
level and processor model, as well as the instruction family that the processor
supports.

Figure 3-1 on page 119 shows the format of the EAX register following execution of
CPUID extended function 8000_0001h. (The value returned in the EAX register for
function 8000_0001h is the same as the value returned by standard function 1.)

EBX and ECX. For function 8000_0001h, the EBX and ECX registers are reserved.

EDX: AMD Feature Support. Function 8000_0001h returns information about AMD
features—those features that were originally implemented by AMD—in the EDX
register. The value of each bit indicates whether support for a specific feature is
present on the processor implementation. If the value of a bit is 1, the feature is
supported. If the value is 0, the feature is not supported.

Function 8000_0001h also duplicates some of the standard-feature bits from
function 1 in the EDX register, but this practice is outdated. Any new feature that is
first implemented by a given vendor is now reported only by a function assigned to
that vendor.

Table 3-5 on page 124 summarizes the feature bits returned in the EDX register for
function 8000_0001h. The right-most column of this table indicates whether a given
bit has the same meaning in function 1. If the bit has the same meaning, use
function 1 to test whether the feature is supported. For a list of the feature bits
returned by standard function 1, see Table 3-4 on page 121.

CPUID 123



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table 3-5. CPUID AMD Feature Support (Extended Function 8000_0001h)

E:.:( (feature is su Feat“rf iti Fﬁ:::ieO:SI
pported if bit is set to 1) (Table 3-4)'
0 On-Chip x87-Instruction Unit. yes
1 Virtual-Mode Extensions. See “Virtual Interrupts” in Volume 2. yes
2 Debugging Extensions. See “Software-Debug Resources” in Volume 2. yes
3 Page-Size Extensions (PSE). See “Page-Size Extensions (PSE) Bit” in Volume 2. yes
4 Time-Stamp Counter. See “Time-Stamp Counter” in Volume 2. yes

AMD K86 Model-Specific Registers (MSRs), with RDMSR and WRMSR Instructions. See

> “Model-Specific Registers (MSRs)" in Volume 2. yes

6 Physical-Address Extensions (PAE). See “Physical-Address Extensions (PAE) Bit” in o
Volume 2. y

7 Machine Check Exception. See “Handling Machine Check Exceptions” in Volume 2. yes

8 CMPXCHGB8B Instruction. yes

9 Advanced Programmable Interrupt Controller (APIC). BIOS must enable the local APIC. o
See the documentation for particular implementations of the architecture. y

10 Reserved. no

SYSCALL and SYSRET Instructions. These instructions have different implementations
11 than the SYSENTER and SYSEXIT instructions indicated by bit 11 of standard function 1. For no
additional information, see “Fast System Call and Return” in Volume 2.

Memory-Type Range Registers (MTRRs). See “Memory-Type Range Registers” in

12 Volume 2. yes
13 Page Global Extension. See “Global Pages” in Volume 2. yes
14 Machine Check Architecture. See “Machine Check Mechanism” in Volume 2. yes

Conditional Move Instructions. Indicates support for conditional move (CMOVcc) general-
15 purpose instructions, and—if the on-chip x87-instruction-unit bit (bit 0) is also set—for the yes
x87 floating-point conditional move (FCMOVcc) instructions.

16 Page Attribute Table (PAT). See “Memory-Type Range Registers” in Volume 2. yes
17 Page-Size Extensions (PSE). See “Page-Size Extensions (PSE) Bit” in Volume 2. yes
Note:
1. Ifa bit has the same meaning for function 1 as it does for function 8000_0001h, the processor sets or clears the bit identically
for both functions.

124 CPUID



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table 3-5. CPUID AMD Feature Support (Extended Function 8000_0001h) (continued)

E:.:( (feature is su Feat“rf iti Fﬁ:::ieO:SI
pported if bit is set to 1) (Table 3-4)'
18-19 | Reserved. no
20 No-Execute Page Protection. See “No Execute (NX) Bit” in Volume 2. no
21 Reserved. no

AMD Extensions to MMX™ Instructions. Indicates support for the AMD extensions to the
22 integer (MMX) 64-bit media instructions, including support for certain SSE and SSE2 no
instructions. See Appendix D, “Instruction Subsets and CPUID Feature Sets,” for details.

MMX™ Instructions. Indicates support for the integer (MMX) 64-bit media instructions. For

25 details, see Appendix D, “Instruction Subsets and CPUID Feature Sets.” yes
24 FXSAVE and FXRSTOR Instructions. See “FXSAVE and FXRSTOR Instructions” in Volume 2. yes
25-28 | Reserved. no
29 Long Mode. See “Long Mode” in Volume 2. no

AMD Extensions to 3DNow!™ Instructions. Indicates support for the AMD extensions to
30 | the floating-point (3DNow!) 64-bit media instructions. For details, see Appendix D, no
“Instruction Subsets and CPUID Feature Sets.”

AMD 3DNow!™ Instructions. Indicates support for the floating-point (3DNow!) 64-bit
31 media instructions. For details, see Appendix D, “Instruction Subsets and CPUID Feature no
Sets.”

Note:

1. Ifa bit has the same meaning for function 1 as it does for function 8000_0001h, the processor sets or clears the bit identically
for both functions.

Functions 8000 0002h-8000 0004h: Processor Name

Functions 8000_0002h, 8000_0003h, and 8000_0004h together return an ASCII string
containing the name of the processor implementation. Software can simply call these
three functions in numerical order to obtain a 48-character ASCII name string.
Although the name string can be up to 48 characters in length, shorter names have
unused byte locations filled with the ASCII null character (00h).

Note: The BIOS must program the name string before these functions are executed,;
otherwise, these functions return the default processor name string (48 ASCII
null characters).

The name string returned by these functions is in little-endian format.
Function 8000_0002h returns the first 16 characters of the name and
function 8000_0004h returns the last 16 characters. For each of the three groups of 16

CPUID 125



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

characters, the functions return the name (in order of least-significant to most-
significant byte) in the EAX, EBX, ECX, and EDX registers. The first character resides
in the least-significant byte of EAX, and the last character resides in the most-
significant byte of EDX.

Table 3-6 on page 126 gives an example of the return values and their equivalent
ASCII characters for a processor with the following name string:

AMD Athlon(tm) processor

Table 3-6. Processor Name String Example

Function Register Return Value ASCII Characters
EAX 2044_4D41h “space D M A~
EBX 6C68_7441h “1 htA”
8000_0002h
ECX 7428_6E6Fh “t (no”
EDX 7020_296Dh “p space ) m”
EAX 6563_6F72h “ecor”
EBX 726F_7373h “ros s”
8000_0003h
ECX 0000_0000h
EDX 0000_0000h
EAX 0000_0000h
EBX 0000_0000h
8000_0004h
ECX 0000_0000h
EDX 0000_0000h

Functions 8000 _0005h and 8000 0006h: Cache Information

The CPUID functions 8000_0005h and 8000_0006h provide cache and TLB
information. These functions are useful to diagnostic software that displays
information about the system and the configuration of the processor implementation,
including cache size and organization. For more information about the TLB and on-
chip caches, see “Translation-Lookaside Buffer (TLB)” in Volume 2 and “Memory
Caches” in Volume 2.

Function 8000_0005h returns information about the TLBs and L1 caches integrated on
the processor. Tables 3-7, 3-8, 3-9, and 3-10, all on page 127, show the register formats
for the information returned by function 8000_0005h.

126 CPUID



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

In these tables, the associativity field is encoded as follows:
m 00h—Reserved.
m  0l1h—Direct mapped.

m  02h through FEh—The value represents the actual associativity. For example, a
value of 04h indicates 4-way associativity.

»  FFh—Fully associative.

Table 3-7. CPUID TLB Bits for 2-Mbyte and 4-Mbyte Pages

Data TLB Instruction TLB

Register — —
Associativity Number of Entries’ Associativity Number of Entries’

EAX Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

Note:

1. The number of entries returned is the number of entries available for the 2-Mbyte page size. The 4-Mbyte pages may require two
2-Mbyte entries, depending on the implementation, so the number of entries available for the 4-Mbyte page size would be one-
half the returned value.

Table 3-8. CPUID TLB Bits for 4-Kbyte Pages

Data TLB Instruction TLB
Register

Associativity Number of Entries Associativity Number of Entries

EBX Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

Table 3-9. CPUID L1 Data Cache Bits

L1 Data Cache
Register

Size (Kbytes) Associativity Lines Per Tag Line Size (Bytes)

ECX Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

Table 3-10. CPUID L1 Instruction Cache Bits

L1 Instruction Cache
Register
Size (Kbytes) Associativity Lines Per Tag Line Size (Bytes)
EDX Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

CPUID 127



AMDZ\
AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

Function 8000_0006h returns information about the L2 cache integrated on the
processor. Tables 3-11, 3-12, and 3-13 on page 129 show the register-content formats for
the information returned by function 8000_0006h.

In these tables, the associativity field is encoded as follows:
m  00h—The L2 cache is off (disabled).

m  0l1h—Direct mapped.

m 02h—2-way associative.

m 04h—4-way associative.

m 06h—8-way associative.

m 08h—16-way associative.

m  OFh—Fully associative.

m  All other encodings are reserved.

Table 3-11. CPUID L2 TLB Bits for 2-Mbyte and 4-Mbyte Pages

L2 Data TLB L2 Instruction or Unified L2 TLB!
Register
Associativity Number of Entries? Associativity Number of Entries?
EAX Bits 31-28 Bits 27-16 Bits 15-12 Bits 11-0
Note:

1. The presence of a unified L2 TLB is indicated by a value of 0000h in the upper 16 bits of the EAX register. The unified L2 TLB
information is contained in the lower 16 bits of the EAX register.

2. The number of entries returned is the number of entries available for the 2-Mbyte page size. The 4-Mbyte pages may require two
2-Mbyte entries, depending on the implementation, so the number of entries available for the 4-Mbyte page size would be one-
half the returned value.

Table 3-12. CPUID L2 TLB Bits for 4-Kbyte Pages

_ L2 Data TLB L2 Instruction or Unified L2 TLB'
Register
Associativity Number of Entries Associativity Number of Entries
EBX Bits 31-28 Bits 27-16 Bits 15-12 Bits 11-0
Note:

1. The presence of a unified L2 TLB is indicated by a value of 0000h in the upper 16 bits of the EBX register. The unified [2 TLB
information is contained in the lower 16 bits of the EBX register.

128

CPUID




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table 3-13. CPUID L2 Cache Bits

L2 Cache
Register

Size (Kbytes) Associativity Lines Per Tag Line Size (Bytes)

ECX Bits 31-16 Bits 15-12 Bits 11-8 Bits 7-0

EDX. For function 8000_0006h, the EDX register is reserved.
Function 8000_0007h: Advanced Power Management Features

Function 8000_0007h returns information about the advanced-power-management
features supported by the processor.

EAX, EBX, and ECX. For function 8000_0007h, the EAX, EBX, and ECX registers are
reserved.

EDX. Function 8000_0007h returns information about advanced-power-management
features in the EDX register. Figure 3-3 shows the format of the EDX register
following execution of CPUID extended function 8000_0007h. Each bit indicates
whether support for a specific feature is present on the processor implementation. If
the value of a power-management-feature bit is 1, the feature is supported. If the
value is 0, the feature is not supported.

31 4 3 2 1 0

T|V]|F
Reserved T I | T

p|lo|p|S

Bits Mnemonic Description

31-4 Reserved

3 TTP Thermal Trip

2 VID Voltage ID Control

1 FID Frequency ID Control

0 TS Temperature Sensor

Figure 3-3. Advanced Power Management Features (EDX Register)

Function 8000_0008h: Address Sizes

Function 8000_0008h reports the maximum supported virtual-address and physical-
address sizes.

EAX. Function 8000_0008h reports the address-size information in the EAX register.
Table 3-14 on page 130 shows the format of the EAX register during execution of
CPUID function 8000_0008h. The virtual-address and physical-address sizes that are
returned indicate the address widths, in bits, supported by the processor

CPUID 129



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

implementation. The values returned by this function are not influenced by enabling
or disabling either long mode or physical-address extensions (CR4.PAE).

Table 3-14. CPUID Long-Mode Address Sizes

Long-Mode Address Sizes
Register
Reserved Virtual-Address Size Physical-Address Size
EAX Bits 31-16 Bits 15-8 Bits 7-0

EBX, ECX, and EDX. For function 8000_0008h, the EBX, ECX, and EDX registers are

reserved.

Related Instructions

None

rFLAGS Affected

None
Exceptions

None

130

CPUID



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

DAA Decimal Adjust after Addition

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF
flags in the rFLAGS register to indicate a decimal carry out of either nibble of AL.

Use this instruction to adjust the result of a byte ADD instruction that performed the
binary addition of one 2-digit packed BCD values to another.

The instruction performs the adjustment by adding 06h to AL if the lower nibble is
greater than 9 or if AF = 1. Then 60h is added to AL if the original AL was greater than
99%h or if CF = 1.

If the lower nibble of AL was adjusted, the AF flag is set to 1. Otherwise AF is not
modified. If the upper nibble of AL was adjusted, the CF flagis set to 1. Otherwise, CF
is not modified. SF, ZF, and PF are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Mnemonic Opcode Description

DAA 27 Decimal adjust AL.
(Invalid in 64-bit mode.)

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
U MM M| M| M

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1 10 9 8 7 6 4 2

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

DAA 131



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

DAS Decimal Adjust after Subtraction

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF
flags in the rFLAGS register to indicate a decimal borrow.

Use this instruction adjust the result of a byte SUB instruction that performed a
binary subtraction of one 2-digit, packed BCD value from another.

This instruction performs the adjustment by subtracting 06h from AL if the lower
nibble is greater than 9 or if AF = 1. Then 60h is subtracted from AL if the original AL
was greater than 99h or if CF = 1.

If the adjustment changes the lower nibble of AL, the AF flagis set to 1; otherwise AF
is not modified. If the adjustment results in a borrow for either nibble of AL, the CF
flag is set to 1; otherwise CF is not modified. The SF, ZF, and PF flags are set according
to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Mnemonic Opcode Description

DAS 2F Decimal adjusts AL after subtraction.
(Invalid in 64-bit mode.)

Related Instructions
DAA

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF

U M M M M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2
Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

132 DAS



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

DEC Decrement by 1

Subtracts 1 from the specified register or memory location. The CF flag is not
affected.

The one-byte forms of this instruction (opcodes 48 through 4F) are used as REX
prefixes in 64-bit mode. See “REX Prefixes” on page 14.

The forms of the DEC instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

To perform a decrement operation that updates the CF flag, use a SUB instruction
with an immediate operand of 1.

Mnemonic Opcode Description

DEC reg/mem8 FEN Decrement the contents of an 8-bit register or memory location
by 1.

DEC reg/mem 16 FF N Decrement the contents of a 16-bit register or memory location
by 1.

DEC reg/mem32 FF /1 Decrement the contents of a 32-bit register or memory location
by 1.

DEC reqg/mem64 FF N Decrement the contents of a 64-bit register or memory location
by 1.

DECregl6 48 +rw Decrement the contents of a 16-bit register by 1.

(See "REX Prefixes” on page 14.)

DECreg32 48 +rd Decrement the contents of a 32-bit register by 1.
(See "REX Prefixes” on page 14.)

Related Instructions

INC, SUB

DEC 133



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M
21 20 19 18 17 16 14 13-12 1 10 9 8 7 6 4 2 0
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

General protection, X X X A memory address exceed was data segment limit or was non-

#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

134 DEC



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

DIV Unsigned Divide

Divides the unsigned value in a register by the unsigned value in the specified register
or memory location. The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the
quotient in the AL register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant
word of the dividend is in the rDX register and the least-significant word is in the rAX
register. After the division, the instruction stores the quotient in the rAX register and
the remainder in the rDX register.

The following table summarizes the action of this instruction:

Division Size Dividend Divisor Quotient Remainder Maximum Quotient
Word/byte AX reg/mems8 AL AH 255
Doubleword/word DX:AX reg/mem16 AX DX 65,535
Quadword/doubleword EDX:EAX | reg/mem32 EAX EDX 2321
23::\::0‘3:3‘1""”‘1/ RDXRAX | reg/memé4 |  RAX RDX 264

The instruction truncates non-integral results towards 0 and the remainder is always
less than the divisor. An overflow generates a #DE (divide error) exception, rather
than setting the CF flag.

Division by zero generates a divide-by-zero exception.

Mnemonic Opcode Description

DIV reg/mem8 F6 /6 Perform unsigned division of AX by the contents of an 8-bit
register or memory location and store the quotient in AL and the
remainder in AH.

DIV reg/mem16 F7/6 Perform unsigned division of DX:AX by the contents of a 16-bit
register or memory operand store the quotient in AX and the
remainder in DX.

DIV 135



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description
DIV reg/mem32 F7 /6 Perform unsigned division of EDX:EAX by the contents of a 32-bit

register or memory location and store the quotient in EAX and
the remainder in EDX.

DIV reg/mem64 F7/6 Performs unsigned division of RDX:RAX by the contents of a 64-
bit register or memory location and store the quotient in RAX and
the remainder in RDX.

Related Instructions
MUL

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
U U U U U U
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X The divisor operand was 0.
X X X The quotient was too large for the designated register.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

136 DIV



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

ENTER Create Procedure Stack Frame

Creates a stack frame for a procedure.
The first operand specifies the size of the stack frame allocated by the instruction.

The second operand specifies the nesting level (0 to 31—the value is automatically
masked to 5 bits). For nesting levels of 1 or greater, the processor copies earlier stack
frame pointers before adjusting the stack pointer. This action provides a called
procedure with access points to other nested stack frames.

The 32-bit enter N, 0 (a nesting level of 0) instruction is equivalent to the following
32-bit instruction sequence:

push ebp ; Ssave current EBP
mov ebp, esp ; set stack frame pointer value
sub esp, N ; allocate space for local variables

The ENTER and LEAVE instructions provide support for block structured languages.
The LEAVE instruction releases the stack frame on returning from a procedure.

In 64-bit mode, the operand size of ENTER defaults to 64 bits, and there is no prefix
available for encoding a 32-bit operand size.

Mnemonic Opcode Description
ENTER imm16, 0 C8iw 00 Create a procedure stack frame.
ENTER imm16, 1 C8iw 01 Create a nested stack frame for a procedure.
ENTER imm16, imm8 C8iwib Create a nested stack frame for a procedure.
Action

// See “Pseudocode Definitions” on page 48.
ENTER_START:

temp_ALLOC_SPACE = word-sized immediate specified in the instruction
(first operand), zero-extended to 64 bits

temp_LEVEL = byte-sized immediate specified in the instruction
(second operand), zero-extended to 64 bits

temp_LEVEL = temp_LEVEL AND Ox1f
// only keep 5 bits of level count

PUSH.v o1d_RBP

ENTER 137



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
temp_RBP = RSP // This value of RSP will eventually be Toaded
// into RBP.
IF (temp_LEVEL>0) // Push "temp_LEVEL" parameters to the stack.

{
FOR (I=1; I<temp_LEVEL; I++)
// A11 but one of the parameters are copied
// from higher up on the stack.

temp_DATA = READ_MEM.v [SS:0l1d_RBP-I*V]
PUSH.v temp_DATA
}
PUSH.v temp_RBP // The Tast parameter is the offset of the old
// value of RSP on the stack.
}
RSP.s = RSP - temp_ALLOC_SPACE // Leave "temp_ALLOC_SPACE" free bytes on
// the stack

WRITE_MEM.v [SS:RSP.s] = temp_unused // ENTER finishes with a memory write
// check on the final stack pointer,
// but no write actually occurs.

RBP.v = temp_RBP
EXIT

Related Instructions

LEAVE
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack-segment limit or was non-
canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

138 ENTER



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

IDIV Signed Divide

Divides the signed value in a register by the signed value in the specified register or
memory location. The register to be divided depends on the size of the divisor.

When dividing a word, the dividend is in the AX register. The instruction stores the
quotient in the AL register and the remainder in the AH register.

When dividing a doubleword, quadword, or double quadword, the most-significant
word of the dividend is in the rDX register and the least-significant word is in the rAX
register. After the division, the instruction stores the quotient in the rAX register and
the remainder in the rDX register.

The following table summarizes the action of this instruction:

Division Size Dividend Divisor Quotient Remainder Quotient Range
Word/byte AX reg/mems8 AL AH -128 to +127
Doubleword/word DX:AX reg/mem16 AX DX -32,768 to +32,767
Quadword/doubleword | EDX:EAX | reg/mem32 EAX EDX 231102311
gg:gdfo?:adwmd/ RDXRAX | reg/memé4 RAX RDX 263492631

The instruction truncates non-integral results towards 0. The sign of the remainder is
always the same as the sign of the dividend, and the absolute value of the remainder is
less than the absolute value of the divisor. An overflow generates a #DE (divide error)
exception, rather than setting the OF flag.

To avoid overflow problems, precede this instruction with a CBW, CWD, CDQ, or CQO
instruction to sign-extend the dividend.

Mnemonic Opcode Description

IDIV reg/mem8 F6 /7 Perform signed division of AX by the contents of an 8-bit register
or memory location and store the quotient in AL and the
remainder in AH.

IDIV reg/mem16 F7/7 Perform signed division of DX:AX by the contents of a 16-bit
register or memory location and store the quotient in AX and the
remainder in DX.

IDIV 139



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
Mnemonic Opcode Description
IDIV reg/mem32 F7/7 Perform signed division of EDX:EAX by the contents of a 32-bit

register or memory location and store the quotient in EAX and
the remainder in EDX.

IDIV reg/mem64 F7/7 Perform signed division of RDX:RAX by the contents of a 64-bit
register or memory location and store the quotient in RAX and
the remainder in RDX.

Related Instructions
IMUL

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
U U U U U U
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X The divisor operand was 0.
X X X The quotient was too large for the designated register.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

140 IDIV



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

IMUL Signed Multiply

Multiplies two signed operands. The number of operands determines the form of the
instruction.

If a single operand is specified, the instruction multiplies the value in the specified
general-purpose register or memory location by the value in the AL, AX, EAX, or RAX
register (depending on the operand size) and stores the product in AX, DX:AX,
EDX:EAX, or RDX:RAX, respectively.

If two operands are specified, the instruction multiplies the value in a general-
purpose register (first operand) by an immediate value or the value in a general-
purpose register or memory location (second operand) and stores the product in the
first operand location.

If three operands are specified, the instruction multiplies the value in a general-
purpose register or memory location (second operand), by an immediate value (third
operand) and stores the product in a register (first operand).

The instruction sign-extends immediate value operands to the length of the
destination format.

If the operation carries significant bits into the upper half of the destination location,
the instruction sets the CF and OF flags to 1. If the result fits in the lower half of the
destination location, it clears the CF and OF flags.

The two- and three-operand forms of the instruction truncate the result to the length
of the destination location before storing it. If the CF and OF flags are clear after the
operation of the IMUL instruction, then the truncated bits were all sign bits. However,
if the CF and OF flags are set, then significant bits were lost. Software should check
the CF and OF flags to determine whether bits have been lost in the way.

Mnemonic Opcode Description

IMUL reg/mem8 F6 /5 Multiply the contents of AL by the contents of an 8-bit memory
or register operand and put the signed result in AX.

IMUL reg/mem 16 F7 /5 Multiply the contents of AX by the contents of a 16-bit memory or
register operand and put the signed result in DX:AX.

IMUL reg/mem32 F7 /5 Multiply the contents of EAX by the contents of a 32-bit memory
or register operand and put the signed result in EDX:EAX.

IMUL 141



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
Mnemonic Opcode Description
IMUL reg/mem64 F7 /5 Multiply the contents of RAX by the contents of a 64-bit memory

or register operand and put the signed result in RDX:RAX.

IMUL reg16, reg/mem16 OF AF /r Multiply the contents of a 16-bit destination register by the
contents of a 16-bit register or memory operand and put the
signed result in the 16-bit destination register.

IMUL reg32, req/mem32 OF AF /r Multiply the contents of a 32-bit destination register by the
contents of a 32-bit register or memory operand and put the
signed result in the 32-bit destination register.

IMUL reg64, req/mem64 OF AF /r Multiply the contents of a 64-bit destination register by the
contents of a 64-bit register or memory operand and put the
signed result in the 64-bit destination register.

IMUL reg16, reg/mem 16, imm8 6B /rib Multiply the contents of a 16-bit register or memory operand by a
sign-extended immediate byte and put the signed result in the
16-bit destination register.

IMUL reg32, reg/mem32, imm8 6B /rib Multiply the contents of a 32-bit register or memory operand by
a sign-extended immediate byte and put the signed result in the
32-bit destination register.

IMUL reg64, reg/mem64, imm8 6B /rib Multiply the contents of a 64-bit register or memory operand by
a sign-extended immediate byte and put the signed result in the
64-bit destination register.

IMUL reg 16, reg/mem16, immi6 69 /r iw Multiply the contents of a 16-bit register or memory operand by a
sign-extended immediate word and put the signed result in the
16-bit destination register.

IMUL reg32, reg/mem32, imm32 69 /rid Multiply the contents of a 32-bit register or memory operand by
a sign-extended immediate double and put the signed result in
the 32-bit destination register.

IMUL reg64, reg/mem64, imm32 69 /rid Multiply the contents of a 64-bit register or memory operand by
a sign-extended immediate double and put the signed result in
the 64-bit destination register.

Related Instructions

IDIV

142 IMUL



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M U U U U M
21 20 19 18 17 16 14 13-12 1 10 9 8 7 6 4 2
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

IMUL

143



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

IN Input from Port

Transfers a byte, word, or doubleword from an I/O port (second operand) to the AL,
AX or EAX register (first operand). The port address can be an 8-bit immediate value
(00h to FFh) or contained in the DX register (0000h to FFFFh).

The port is in the processor’s I/0O address space. For 8-bit I/O port accesses, the opcode
determines the port size. For 16-bit and 32-bit accesses, the operand-size attribute
determines the port size. If the operand size is 64-bits, IN reads only 32 bits from the
I/O port.

If the CPL is higher than IOPL, or the mode is virtual mode, IN checks the 1/0
permission bitmap in the TSS before allowing access to the I/O port. (See Volume 2 for
details on the TSS I/O permission bitmap.)

Mnemonic Opcode Description

IN AL, imm8 E41b Input a byte from the port at the address specified by imm8 and
put it into the AL register.

IN AX, imm8 E51b Input a word from the port at the address specified by imm8 and
put it into the AX register.

IN EAX, imm8 E51b Input a doubleword from the port at the address specified by
imm8 and put it into the EAX register.

IN AL, DX EC Input a byte from the port at the address specified by the DX
register and put it into the AL register.

IN AX, DX ED Input a word from the port at the address specified by the DX
register and put it into the AX register.

IN EAX, DX ED Input a doubleword from the port at the address specified by the
DX register and put it into the EAX register.

Related Instructions
INSx, OUT, OUTSx
rFLAGS Affected

None

144 IN



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X One or more I/0 permission bits were set in the TSS for the accessed
#GP port.
X The CPL was greater than the I0OPL and one or more I/O permission
bits were set in the TSS for the accessed port.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

IN 145



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

INC Increment by 1

Adds 1 to the specified register or memory location. The CF flag is not affected, even
if the operand is incremented to 0000.

The one-byte forms of this instruction (opcodes 40 through 47) are used as REX
prefixes in 64-bit mode. See “REX Prefixes” on page 14.

The forms of the INC instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

To perform an increment operation that updates the CF flag, use an ADD instruction
with an immediate operand of 1.

Mnemonic Opcode Description

INC reg/mem8 FE/O Increment the contents of an 8-bit register or memory location
by 1.

INC reg/mem16 FF/0 Increment the contents of a 16-bit register or memory location by
1.

INC reg/mem32 FF /0 Increment the contents of a 32-bit register or memory location by
1.

INC reg/mem64 FF/0 Increment the contents of a 64-bit register or memory location
by 1.

INC regi6 40 +rw Increment the contents of a 16-bit register by 1.

(These opcodes are used as REX prefixes in 64-bit mode. See
“REX Prefixes” on page 14.)

INC reg32 40 +rd Increment the contents of a 32-bit register by 1.

(These opcodes are used as REX prefixes in 64-bit mode.See
“REX Prefixes” on page 14.)

Related Instructions

ADD, DEC

146 INC



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

rFLAGS Affected

ID | VIP| VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M

21 (20 | 19 | 18| 17 | 16 | 14 13-12 n|1m0/| 9 8 7 6 2 0

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

INC

147



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

INS Input String
INSB

INSW

INSD

Transfers data from the I/0 port specified in the DX register to an input buffer
specified in the rDI register and increments or decrements the rDI register according
to the setting of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rDI by 1, 2, or 4, depending on the
number of bytes read. If the DF flagis 1, it decrements the pointer by 1, 2, or 4.

In 16-bit and 32-bit mode, the INS instruction always uses ES as the data segment. The
ES segment cannot be overridden with a segment override prefix. In 64-bit mode, INS
always uses the unsegmented memory space.

The INS instructions use the explicit memory operand (first operand) to determine
the size of the I/O port, but always use ES:[rDI] for the location of the input buffer. The

explicit register operand (second operand) specifies the I/O port address and must
always be DX.

The INSB, INSW, and INSD instructions copy byte, word, and doubleword data,
respectively, from the I/O port (0000h to FFFFh) specified in the DX register to the
input buffer specified in the ES:rDI registers.

If the operand size is 64-bits, the instruction behaves as if the operand size were 32-
bits.

If the CPL is higher than the IOPL or the mode is virtual mode, INSx checks the I/O
permission bitmap in the TSS before allowing access to the I/O port. (See volume 2 for
details on the TSS I/O permission bitmap.)

The INSx instructions support the REP prefix for block input of rCX bytes, words, or
doublewords. For details about the REP prefix, see “Repeat Prefixes” on page 10.

148 INSx



AMDZ1

24594 Rev. 3.02 August 2002

Mnemonic

INS mem8, DX

INS mem16, DX

INS mem32, DX

INSB

INSW

INSD

Related Instructions
IN, OUT, OUTSx
rFLAGS Affected

None

Opcode

6C

6D

6D

6C

6D

6D

AMD 64-Bit Technology

Description

Input a byte from the port specified by DX, put it into the
memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a word from the port specified by DX register, put it into the
memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a doubleword from the port specified by DX, put it into the
memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a byte from the port specified by DX, put it into the
memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a word from the port specified by DX, put it into the
memory location specified in ES:rDI, and then increment or
decrement rDI.

Input a doubleword from the port specified by DX, put it into the
memory location specified in ES:rDI, and then increment or
decrement rDI.

INSx 149



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X One or more I/0 permission bits were set in the TSS for the accessed
port.
X The CPL was greater than the IOPL and one or more I/O permission

bits were set in the TSS for the accessed port.
X A null data segment was used to reference memory.

The destination operand was in a non-writable segment.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

150 INSx



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

INT Interrupt to Vector

Transfers execution to the interrupt handler specified by an 8-bit unsigned immediate
value. This value is an interrupt vector number (00h to FFh), which the processor uses
as an index into the interrupt-descriptor table (IDT).

For detailed descriptions of the steps performed by INTn instructions, see the
following:

m Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in
Volume 2.

m  Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

See also the descriptions of the INT3 instruction on page 296 and the INTO
instruction on page 159.

Mnemonic Opcode Description
INT imm8 CDib Call interrupt service routine specified by interrupt vector imm8.
Action

// See “Pseudocode Definitions” on page 48.
INT_N_START:

IF (REAL_MODE)
INT_N_REAL

ELSIF (PROTECTED_MODE)
INT_N_PROTECTED

ELSE // (VIRTUAL_MODE)
INT_N_VIRTUAL

INT_N_REAL:
temp_int_n_vector = byte-sized interrupt vector specified in the instruction,
zero-extended to 64 bits

temp_RIP = READ_MEM.w [idt:temp_int_n_vector*4]
// read target CS:RIP from the real-mode idt
READ_MEM.w [idt:temp_int_n_vector*4+2]

temp_CS

PUSH.w o1d_RFLAGS
PUSH.w 01d_CS
PUSH.w next_RIP

INT 151



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

IF (temp_RIP>CS.1imit)
EXCEPTION [#GP]

CS.sel = temp_CS
CS.base = temp_CS SHL 4

RFLAGS.AC,TF,IF,RF cleared
RIP = temp_RIP
EXIT

INT_N_PROTECTED:

temp_int_n_vector = byte-sized interrupt vector specified in the instruction,
zero-extended to 64 bits
temp_idt_desc = READ_IDT (temp_int_n_vector)

IF (temp_idt_desc.attr.type = “taskgate’)
TASK_SWITCH // using tss selector in the task gate as the target tss

IF (LONG_MODE) // The size of the gate controls the size of the
// stack pushes.
V=8-byte // Long mode only uses 64-bit gates.
ELSIF ((temp_idt_desc.attr.type = ’intgate32’)
|| (temp_idt_desc.attr.type = ’“trapgate32’))

V=4-byte // Legacy mode, using a 32-bit gate
ELSE // gate is intgatel6 or trapgatelb
V=2-byte // Legacy mode, using a 16-bit gate

temp_RIP = temp_idt_desc.offset

IF (LONG_MODE)
// In long mode, we need to read the 2nd half of a
// 16-byte interrupt-gate from the IDT, to get the
// upper 32 bits of the target RIP

temp_upper = READ_MEM.q [idt:temp_int_n_vector*16+8]

temp_RIP = tempRIP + (temp_upper SHL 32) // concatenate both halves of RIP
}

CS = READ_DESCRIPTOR (temp_idt_desc.segment, intcs_chk)
temp_CPL = CS.sel.rpl

IF (CPL=temp_CPL) // no privilege-level change
{
IF (LONG_MODE)
{
IF (temp_idt_desc.ist!=0)
// In long mode, if the IDT gate specifies an IST pointer,

152

INT



AMDZ1

24594

}

Rev. 3.02  August 2002 AMD 64-Bit Technology

// a stack-switch is always done
RSP = READ_MEM.q [tss:ist_index*8+28]

RSP = RSP AND OxFFFFFFFFFFFFFFFO
// In Tong mode, interrupts/exceptions align RSP to a
// 16-byte boundary

PUSH.q o1d_SS // In Tong mode, SS:RSP is always pushed to the stack
PUSH.q old_RSP
}

PUSH.v ol1d_RFLAGS
PUSH.v 01d_CS
PUSH.v next_RIP

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))

EXCEPTION [#GP(0)]

RFLAGS.VM,NT,TF,RF cleared

RFLAGS.IF cleared if interrupt gate

RIP = temp_RIP
EXIT

ELSE // (CPL > temp_CPL), changing privilege level

{

CPL = temp_CPL

temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER
(CPL, temp_idt_desc.ist)

IF (LONG_MODE)
temp_RSP = temp_RSP AND OxFFFFFFFFFFFFFFFO
// in Tong mode, interrupts/exceptions align rsp
// to a 16-byte boundary

RSP.g = temp_RSP
SS = temp_SS_desc

PUSH.v 01d_SS // #SS on the following pushes uses SS.sel as error code
PUSH.v o1d_RSP
PUSH.v oTd_RFLAGS
PUSH.v 01d_CS
PUSH.v next_RIP
64BIT_MODE) && (temp_RIP is non-canonical)

IF ((
|| (!64BIT_MODE) && (temp_RIP > CS.limit))
EXCEPTION [#GP(0)]

RFLAGS.VM,NT,TF,RF cleared

INT 153



AMDA
AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

RFLAGS.IF cleared if interrupt gate
RIP = temp_RIP
EXIT

INT_N_VIRTUAL:

temp_int_n_vector = byte-sized interrupt vector specified in the instruction,
zero-extended to 64 bits

IF (CR4.VME=0) // vme isn’t enabled
{
IF (RFLAGS.IOPL=3)
INT_N_VIRTUAL_TO_PROTECTED
ELSE
EXCEPTION [#GP(0)]
}

temp_IRB_BASE = READ_MEM.w [tss:102] - 32
// check the vme Int-n Redirection Bitmap (IRB), to see
// 1f we should redirect this interrupt to a virtual-mode
// handler
temp_VME_REDIRECTION_BIT = READ_BIT_ARRAY ([tss:temp_IRB_BASE],
temp_int_n_vector)

IF (temp_VME_REDIRECTION_BIT=1)
{ // the virtual-mode int-n bitmap bit is set, so don’t
// redirect this interrupt
IF (RFLAGS.IOPL=3)
INT_N_VIRTUAL_TO_PROTECTED
ELSE
EXCEPTION [#GP(0)]
}
ELSE // redirect interrupt through virtual-mode idt
{

temp_RIP READ_MEM.w [O:temp_int_n_vector*4]
// read target CS:RIP from the virtual-mode idt at
// linear address 0

READ_MEM.w [O:temp_int_n_vector*4+2]

temp_CS

IF (RFLAGS.IOPL < 3)
01d_RFLAGS = ol1d_RFLAGS with VIF bit shifted into IF bit, and IOPL = 3

PUSH.w o1d_RFLAGS
PUSH.w 01d_CS
PUSH.w next_RIP

CS.sel = temp_CS
CS.base = temp_CS SHL 4

154 INT



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

RFLAGS.TF,RF cleared

RIP = temp_RIP // RFLAGS.IF cleared if IOPL = 3
// RFLAGS.VIF cleared if IOPL < 3

EXIT

INT_N_VIRTUAL_TO_PROTECTED:

temp_idt_desc = READ_IDT (temp_int_n_vector)
IF (temp_idt_desc.attr.type = "taskgate’)
TASK_SWITCH // using tss selector in the task gate as the target tss

IF ((temp_idt_desc.attr.type = “intgate32’)
|| (temp_idt_desc.attr.type = ’trapgate32’))
// the size of the gate controls the size of the stack pushes
V=4-byte // legacy mode, using a 32-bit gate
ELSE // gate is intgatel6 or trapgatel6
V=2-byte // legacy mode, using a 16-bit gate

temp_RIP = temp_idt_desc.offset
CS = READ_DESCRIPTOR (temp_idt_desc.segment, intcs_chk)

IF (CS.attr.dpl!=0) // Handler must run at CPL 0.
EXCEPTION [#GP(CS.sel)]

CPL =0

temp_ist =0 // Legacy mode doesn’t use ist pointers

temp_SS_desc:temp_RSP = READ_INNER_LEVEL_STACK_POINTER (CPL, temp_ist)

RSP.g = temp_RSP
SS = temp_SS_desc

PUSH.v 01d_GS // #SS on the following pushes use SS.sel as error code.
PUSH.v ol1d_FS

PUSH.v 01d_DS

PUSH.v ol1d_ES

PUSH.v 01d_SS

PUSH.v o1d_RSP

PUSH.v 01d_RFLAGS // Pushed with RF clear.

PUSH.v 01d_CS

PUSH.v next_RIP

IF (temp_RIP > CS.limit)
EXCEPTION [#GP(0)]

DS = NULL // can’t use virtual-mode selectors in protected mode
ES = NULL // can’t use virtual-mode selectors in protected mode
FS = NULL // can’t use virtual-mode selectors in protected mode
GS = NULL // can’t use virtual-mode selectors in protected mode

INT 155



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

RFLAGS.VM,NT,TF,RF cleared
RFLAGS.IF cleared if interrupt gate

RIP = temp_RIP
EXIT

Related Instructions
INT 3, INTO, BOUND
rFLAGS Affected

If a task switch occurs, all flags are modified. Otherwise settings are as follows:

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M| M| M| 0 | M M| 0

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1 10 9 8 7 6 4 2 0

Note:

Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.

156 INT



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid TSS, #TS X X As part of a stack switch, the target stack segment selector or rSP in
(selector) the TSS was beyond the TSS limit.

X X As part of a stack switch, the target stack segment selector in the TSS
was a null selector.

X X As part of a stack switch, the target stack segment selector’s Tl bit was
set, but the LDT selector was a null selector.

X X As part of a stack switch, the target stack segment selector in the TSS
was beyond the limit of the GDT or LDT descriptor table.

X X As part of a stack switch, the target stack segment selector in the TSS
contained a RPL that was not equal to its DPL.

X X As part of a stack switch, the target stack segment selector in the TSS
contained a DPL that was not equal to the CPL of the code segment
selector.

X X As part of a stack switch, the target stack segment selector in the TSS
was not a writable segment.

Segment not present, X X The accessed code segment, interrupt gate, trap gate, task gate, or

#NP (selector) TSS was not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical, and no stack switch occurred.

Stack, #SS X X After a stack switch, a memory address exceeded the stack segment

(selector) limit or was non-canonical.

X X As part of a stack switch, the SS register was loaded with a non-null

segment selector and the segment was marked not present.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X X X The target offset exceeded the code segment limit or was non-
canonical.
X The IOPL was less than 3 and CR4.VME was 0.
X IOPL was less than 3, CR4.VME was 1, and the corresponding bit in

the VME interrupt redirection bitmap was 1.

INT 157



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The interrupt vector was beyond the limit of IDT.
#GP
(selector) X X The descriptor in the IDT was not an interrupt, trap, or task gate in

legacy mode or not a 64-bit interrupt or trap gate in long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less than
the CPL.

X X The segment selector specified by the interrupt or trap gate had its Tl
bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X The segment descriptor specified by the interrupt or trap gate was
not a code segment in legacy mode, or not a 64-bit code segment in
long mode.

X The DPL of the segment specified by the interrupt or trap gate was

greater than the CPL.
X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

158 INT



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

INTO Interrupt to Overflow Vector

Checks the overflow flag (OF) in the rFLAGS register and calls the overflow exception
(#OF) handler if the OF flag is set to 1. This instruction has no effect if the OF flag is
cleared to 0. The INTO instruction detects overflow in signed number addition. See
AMD x86-64 Architecture Programmer’s Manual Volume 1: Application Programming for
more information on the OF flag.

Using this instruction in 64-bit mode generates an invalid-opcode exception.
For detailed descriptions of the steps performed by INT instructions, see the

following:

m Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in
Volume 2.

m  Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Mnemonic Opcode Description

INTO CE Call overflow exception if the overflow flag is set.
(Invalid in 64-bit mode.)

Action

IF (64BIT_MODE)
EXCEPTION[4UD]

IF (RFLAGS.OF = 1) // #0F is a trap, and pushes the rIP of the instruction
EXCEPTION [#0F] // following INTO.

EXIT

Related Instructions
INT, INT 3, BOUND
rFLAGS Affected
None.

Exceptions

Virtual
Exception Real | 8086 |Protected Cause of Exception

Overflow, #OF X X X The INTO instruction was executed with OF set to 1.
Invalid opcode, #UD X Instruction was executed in 64-bit mode.

INTO 159



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Jcc Jump on Condition

Checks the status flags in the rFLAGS register and, if the flags meet the condition
specified by the condition code in the mnemonic (cc), jumps to the target instruction
located at the specified relative offset. Otherwise, execution continues with the
instruction following the Jcc instruction.

Unlike the unconditional jump (JMP), conditional jump instructions have only two
forms—short and near conditional jumps. Different opcodes correspond to different
forms of one instruction. For example, the JO instruction (jump if overflow) has
opcode OFh 80h for its near form and 70h for its short form, but the mnemonic is the
same for both forms. The only difference is that the near form has a 16- or 32-bit
relative displacement, while the short form always has an 8-bit relative displacement.

Mnemonics are provided to deal with the programming semantics of both signed and
unsigned numbers. Instructions tagged A (above) and B (below) are intended for use
in unsigned integer code; those tagged G (greater) and L (less) are intended for use in
signed integer code.

If the jump is taken, the signed displacement is added to the rIP (of the following
instruction) and the result is truncated to 16, 32, or 64 bits, depending on operand
size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the
8-bit or 32-bit displacement value to 64 bits before adding it to the RIP.

These instructions cannot perform far jumps (to other code segments). To create a far-
conditional-jump code sequence corresponding to a high-level language statement
like:

IF A =B THEN GOTO FarlLabel
where FarLabel is located in another code segment, use the opposite condition in a

conditional short jump before an unconditional far jump. Such a code sequence might
look like:

cmp A,B ; compare operands

Jne NextInstr ; continue program if not equal

Jmp far Farlabel ; far jump if operands are equal
NextInstr: ; continue program

For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

160 Jec



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Mnemonic Opcode Description

JO rel8off 70 cb Jump if overflow (OF =1).

JO relioff OF 80 aw

JO rel320ff OF 80 cd

INO rel8off 71 cb Jump if not overflow (OF = 0).

INO rel160ff OF 81 aw

INO rel320ff OF 81 ¢d

1B rel8off 72¢h Jump if below (CF=1).

B reli6off OF 82 aw

1B rel320ff OF 82 cd

JCrel8off 72¢h Jump if carry (CF=1).

IC rel160ff OF 82 aw

IC rel320ff OF 82 cd

INAE relSoff 72 ¢h Jump if not above or equal (CF =1).

INAE rel 160ff OF 82 aw

INAE rel320ff OF 82 cd

INB rel8off 73 ¢h Jump if not below (CF = 0).

INB rel160ff OF 83 aw

INB rel320ff OF 83 ¢d

INC rel320ff 73 ¢h Jump if not carry (CF =0).

INC rel8off OF 83 aw

INC rel160ff OF 83 ¢d

JAE rel8off 73 ¢b Jump if above or equal (CF =0).

JAE reli6off OF 83 aw

JAE rel320ff OF 83 ¢d

7 relSoff 74 ¢b Jump if zero (ZF=1).

17 rell6off OF 84 cw

17 rel320ff OF 84 cd

JE rel8off 74 cb Jump if equal (ZF =1).

IE rel160ff OF 84 cw

JE rel320ff OF 84 cd

INZ rel8off 75 ¢h Jump if not zero (ZF = 0).

INZ rel 160ff OF 85 aw

INZ rel320ff OF 85 cd

INE rel8off 75¢h Jump if not equal (ZF =0).

INE rel 160ff OF 85 aw

INE rel320ff OF 85 cd

Jec 161



AMDZU

AMD 64-Bit Technology

Mnemonic

JBE rel8off
JBE reli6off
JBE rel320ff

INA rel8off
INA reli6off
INA rel320ff

INBE rel8off
INBE reli60ff
INBE rel320ff

JA rel8off
JA rel160ff
JA rel320ff

1S rel8off
IS relT60ff
1S rel320ff

INS rel8off
INS rel160ff
INS rel320ff

JP rel8off
P rel160ff
P rel320ff

JPE rel8off
JPE relioff
JPE rel320ff

INP rel8off
INP rel160ff
INP rel320ff

JPO rel8off
PO religoff
JPO rel320ff

L rel8off
L reli6off
L rel320ff

INGE rel8off
INGE reli60ff
INGE rel320ff

INL rel8off
INL reli6off
INL rel320ff

Opcode

76 cb
OF 86 cw
OF 86 cd

76 ¢b
OF 86 aw
OF 86 cd

77 ¢h
OF 87 cw
OF 87 cd

77 ¢h
OF 87 cw
OF 87 cd

78 ¢b
OF 88 aw
OF 88 cd

79¢h
OF 89 cw
OF 89 cd

7A cb
OF 8A aw
OF 8A cd

7A cb
OF 8A aw
OF 8A cd

7B cb
OF 8B aw
OF 8B cd

7B cb
OF 8B aw
OF 8B cd

7Cch
OF 8C aw
OF 8Ccd

7Cch
OF 8C aw
OF 8Ccd

7D ¢b
OF 8D cw
OF 8D cd

24594  Rev. 3.02 August 2002

Description

Jump if below or equal (CF=1o0rZF=1).

Jump if not above (CF=1or ZF=1).

Jump if not below or equal (CF =0 and ZF = 0).

Jump if above (CF =0 and ZF = 0).

Jump if sign (SF=1).

Jump if not sign (SF=0).

Jump if parity (PF=1).

Jump if parity even (PF=1).

Jump if not parity (PF =0).

Jump if parity odd (PF = 0).

Jump if less (SF <> OF).

Jump if not greater or equal (SF <> OF).

Jump if not less (SF = OF).

162

Jec



AMDZ1

24594 Rev. 3.02 August 2002

Mnemonic

JGE rel8off
JGE reli60off
JGE rel320ff

ILE rel8off
ILE rel760ff
ILE rel320ff

ING rel8off
ING reli6off
ING rel320ff

INLE ref8off
INLE reli60ff
INLE ref320ff

)G rel8off
G reli6off
G rel320ff

Related Instructions

Opcode

7D ¢b
OF 8D cw
OF 8D cd

TEch
OF 8E cw
OF 8E cd

7E b
OF 8E cw
OF 8E cd

7F cb
OF 8F aw
OF 8F cd

7F cb
OF 8F aw
OF 8F cd

JMP (Near), JMP (Far), JrCXZ

AMD 64-Bit Technology

Description

Jump if greater or equal (SF = OF).

Jump if less or equal (ZF =1 or SF <> OF).

Jump if not greater (ZF =1 or SF <> OF).

Jump if not less or equal (ZF =0 and SF = OF).

Jump if greater (ZF = 0 and SF = OF).

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-

#GP

canonical.

Jec 163



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

JCXZ Jump if rCX Zero
JECXZ
JRCXZ

Checks the contents of the count register (rCX) and, if 0, jumps to the target
instruction located at the specified 8-bit relative offset. Otherwise, execution
continues with the instruction following the JrCXZ instruction.

The size of the count register used (CX, ECX, or RCX) depends on the address-size
attribute of the JrCXZ instruction. Therefore, JRCXZ can only be executed in 64-bit
mode and JCXZ cannot be executed in 64-bit mode.

If the jump is taken, the signed displacement is added to the rIP (of the following
instruction) and the result is truncated to 16, 32, or 64 bits, depending on operand
size.

In 64-bit mode, the operand size defaults to 64 bits. The processor sign-extends the 8-
bit displacement value to 64 bits before adding the offset to the RIP.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
JCXZ rel8off E3 b Jump short if the 16-bit count register (CX) is zero.
JECXZ rel8off E3 cb Jump short if the 32-bit count register (ECX) is zero.
JRCXZ rel8off E3 b Jump short if the 64-bit count register (RCX) is zero.

Related Instructions
Jcc, JMP (Near), JMP (Far)
rFLAGS Affected

None

164 IxCXz



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-

#GP

canonical

IxCXZ

165



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

JMP (Near) Near Jump

Unconditionally transfers control to a new address without saving the current rIP
value. This form of the instruction jumps to an address in the current code segment
and is called a near jump. The target operand can specify a register, a memory
location, or a label.

If the JMP target is specified in a register or memory location, then a 16-, 32-, or 64-bit
rIP is read from the operand, depending on operand size. This rIP is zero-extended to
64 bits.

If the JMP target is specified by a displacement in the instruction, the signed
displacement is added to the rIP (of teh following instruction), and the result is
truncated to 16, 32, or 64 bits depending on operand size. The signed displacement
can be 8 bits, 16 bits, or 32 bits, depending on the opcode and the operand size.

For near jumps in 64-bit mode, the operand size defaults to 64 bits. The E9 opcode
results in RIP = RIP + 32-bit signed displacement, and the FF /4 opcode results in RTP
= 64-bit offset from register or memory. No prefix is available to encode a 32-bit
operand size in 64-bit mode.

See JMP (Far) for information on far jumps—jumps to procedures located outside of
the current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description

JMP rel8off EB cb Short jump with the target specified by an 8-bit signed
displacement.

JMP rel160ff E9 aw Near jump with the target specified by a 16-bit signed
displacement.

JMP rel32o0ff E9 cd Near jump with the target specified by a 32-bit signed
displacement.

JMP reg/mem16 FF /4 Near jump with the target specified reg/mem?6.

JMP reg/mem32 FF /4 Near jump with the target specified reg/mem32.

(No prefix for encoding in 64-bit mode.)
JMP reg/memé64 FF /4 Near jump with the target specified reg/mem64.

166 JMP (Near)



AMDZ1

24594 Rev. 3.02 August 2002

Related Instructions

AMD 64-Bit Technology

JMP (Far), Jcc, JrCX
rFLAGS Affected
None.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X X X The target offset exceeded the code segment limit or was non-
canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

JMP (Near) 167



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

JMP (Far) Far Jump

Unconditionally transfers control to a new address without saving the current CS:rIP
values. This form of the instruction jumps to an address outside the current code
segment and is called a far jump. The operand specifies a target selector and offset.

The target operand can be specified by the instruction directly, by containing the far
pointer in the jmp far opcode itself, or indirectly, by referencing a far pointer in
memory. In 64-bit mode, only indirect far jumps are allowed, executing a direct far
jmp (opcode EA) will generate an undefined opcode exception.

In all modes, the target selector used by the instruction can be a code selector.
Additionally, the target selector can also be a call gate in protected mode, or a task
gate or TSS selector in legacy protected mode.

m  Target is a code segment—Control is transferred to the target CS:rIP. In this case,
the target offset can only be a 16 or 32 bit value, depending on operand-size, and
is zero-extended to 64 bits. No CPL change is allowed.

m Target is a call gate—The call gate specifies the actual target code segment and off-
set, and control is transferred to the target CS:rIP. When jumping through a call
gate, the size of the target rIP is 16, 32, or 64 bits, depending on the size of the call
gate. If the target rIP is less than 64 bits, it’s zero-extended to 64 bits. In long
mode, only 64-bit call gates are allowed, and they must point to 64-bit code seg-
ments. No CPL change is allowed.

m  Target is a task gate or a TSS—If the mode is legacy protected mode, then a task
switch occurs. See “Hardware Task-Management in Legacy Mode” in volume 2 for
details about task switches. Hardware task switches are not supported in long
mode.

See JMP (Near) for information on near jumps—jumps to procedures located inside
the current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description

JMP FAR pntri6:16 EA cd Far jump direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

JMP FAR pntri6:32 EA ¢p Far jump direct, with the target specified by a far pointer
contained in the instruction. (Invalid in 64-bit mode.)

168 JMP (Far)



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Mnemonic Opcode Description
JMP FAR mem16:16 FF /5 Far jump indirect, with the target specified by a far pointer in
memory.
JMP FAR mem16:32 FF/5 Far jump indirect, with the target specified by a far pointer in
memory.
Action

// Far jumps (JMPF)
// See “Pseudocode Definitions” on page 48.

JMPF_START:

IF (REAL_MODE)
JMPF_REAL_OR_VIRTUAL

ELSIF (PROTECTED_MODE)
JMPF_PROTECTED

ELSE // (VIRTUAL_MODE)
JMPF_REAL_OR_VIRTUAL

JMPF_REAL_OR_VIRTUAL:

IF (OPCODE = jmpf [meml) //JMPF Indirect
{
temp_RIP = READ_MEM.z [mem]
temp_CS = READ_MEM.w [mem+Z]
}
ELSE // (OPCODE = jmpf direct)
{

temp_RIP = z-sized offset specified in the instruction,
zero-extended to 64 bits
temp_CS = selector specified in the instruction

}

IF (temp_RIP>CS.T1imit)
EXCEPTION [#GP(0)]

CS.sel temp_CS
CS.base = temp_CS SHL 4
RIP = temp_RIP

EXIT

JMPF_PROTECTED:

IF (OPCODE = jmpf [meml) // JMPF Indirect
{
temp_offset = READ_MEM.z [mem]
temp_sel READ_MEM.w [mem+Z]

JMP (Far) 169



AMDA
AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

}
ELSE // (OPCODE = Jjmpf direct)
{
IF (64BIT_MODE)
EXCEPTION [4UD] // > jmpf direct’ is illegal in 64-bit mode

temp_offset = z-sized offset specified in the instruction,
zero-extended to 64 bits
selector specified in the instruction

temp_sel
}

temp_desc = READ_DESCRIPTOR (temp_sel, cs_chk)
// read descriptor, perform protection and type checks

IF (temp_desc.attr.type = “available_tss’)

TASK_SWITCH // using temp_sel as the target tss selector
ELSIF (temp_desc.attr.type = ’taskgate’)
TASK_SWITCH // using the tss selector in the task gate as the

// target tss

ELSIF (temp_desc.attr.type = ’code’)
// 1f the selector refers to a code descriptor, then
// the offset we read is the target RIP

temp_RIP = temp_offset
CS = temp_desc
IF ((!'64BIT_MODE) && (temp_RIP > CS.limit))
// temp_RIP can’t be non-canonical because
// it’s a 16- or 32-bit offset, zero-extended to 64 bits
{
EXCEPTION [#GP(0)]
}
RIP = temp_RIP
EXIT

ELSE

// (temp_desc.attr.type = ’callgate’)

// if the selector refers to a call gate, then

// the target CS and RIP both come from the call gate
temp_RIP = temp_desc.offset

IF (LONG_MODE)
{
// in long mode, we need to read the 2nd half of a 16-byte call-gate
// from the gdt/1dt to get the upper 32 bits of the target RIP
temp_upper = READ_MEM.q [temp_sel+8]
IF (temp_upper’s extended attribute bits != 0)
EXCEPTION [#GP(temp_sel)] // Make sure the extended
// attribute bits are all zero.

temp_RIP = tempRIP + (temp_upper SHL 32)

170 JMP (Far)



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

}

// concatenate both halves of RIP

}
CS = READ_DESCRIPTOR (temp_desc.segment, clg_chk)

// set up new CS base, attr, limits
(64BIT_MODE) && (temp_RIP is non-canonical)
| (164BIT_MODE) && (temp_RIP > CS.1imit))
EXCEPTION [#GP(0)]
= temp_RIP

IF (
|

RIP
EXIT

Related Instructions

JMP (Near), Jcc, JrCX

rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The JUMP far indirect opcode (FF /5) had a register operand.
X The JUMP far direct opcode (EA) was executed in 64-bit mode.
Segment not present, X The accessed code segment, call gate, task gate, or TSS was not
#NP (selector) present.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X X X The target offset exceeded the code segment limit or was non-
canonical.
X A null data segment was used to reference memory.

JMP (Far) 171



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Virtual
Exception Real | 8086 |Protected Cause of Exception

General protection, X The target code segment selector was a null selector.

#GP

(selector) X A code, call gate, task gate, or TSS descriptor exceeded the descriptor
table limit.

X A segment selector’s Tl bit was set, but the LDT selector was a null

selector.

X The segment descriptor specified by the instruction was not a code
segment, task gate, call gate or available TSS in legacy mode, or not
a 64-bit code segment or a 64-bit call gate in long mode.

X The RPL of the non-conforming code segment selector specified by
the instruction was greater than the CPL, or its DPL was not equal to
the CPL.

X The DPL of the conforming code segment descriptor specified by the
instruction was greater than the CPL.

X The DPL of the callgate, taskgate, or TSS descriptor specified by the
instruction was less than the CPL or less than its own RPL.

X The segment selector specified by the call gate or task gate was a null
selector.

X The segment descriptor specified by the call gate was not a code
segment in legacy mode or not a 64-bit code segment in long mode.

X The DPL of the segment descriptor specified the call gate was greater
than the CPL and it is a conforming segment.

X The DPL of the segment descriptor specified by the callgate was not
equal to the CPL and it is a non-conforming segment.

X The 64-bit call gate’s extended attribute bits were not zero.

X The TSS descriptor was found in the LDT.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

172 JMP (Far)



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

LAHF Load Status Flags into AH Register

Loads the lower 8 bits of the rFLAGS register, including the trap flag (TF), sign flag
(SF), zero flag (ZF), auxiliary carry flag (AF), parity flag (PF), and carry flag (CF), into
the AH register.

The instruction sets the reserved bits 1, 3, and 5 of the rFLAGS register to 1, 0, and 0,
respectively, in the AH register.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

LAHF 9F Load the SF, ZF, AF, PF, and CF flags into the AH register.
(Invalid in 64-bit mode.)

Related Instructions
SAHF

rFLAGS Affected
None

Exceptions

Virtual
Exception Real | 8086 |Protected Cause of Exception

Invalid opcode, #UD X The instruction was executed in 64-bit mode.

LAHF 173



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

LDS Load Far Pointer
LES
LFS
LGS
LSS

Loads a far pointer from a memory location (second operand) into a segment register
(mnemonic) and general-purpose register (first operand). The instruction stores the
16-bit segment selector of the pointer into the segment register and the 16-bit or 32-
bit offset portion into the general-purpose register. The operand-size attribute
determines whether the pointer is 32-bit or 48-bit.

These instructions load associated segment-descriptor information into the hidden
portion of the specified segment register.

Using LDS or LES in 64-bit mode generates an invalid-opcode exception.

Executing LFS, LES, or LSS with a 64-bit operand size only loads a 32-bit general
purpose register and the specified segment register.

Mnemonic Opcode Description

LDS reg16, mem16:16 C5/r Load DS:reg16 with a far pointer from memory.
(Invalid in 64-bit mode.)

LDS reg32, mem16:32 C5/r Load DS:reg32 with a far pointer from memory.
(Invalid in 64-bit mode.)

LES regi6, mem16:16 Ca /r Load ES:reg16 with a far pointer from memory.
(Invalid in 64-bit mode.)

LES reg32, mem16:32 Ca/r Load ES:reg32 with a far pointer from memory.
(Invalid in 64-bit mode.)

LFS regi6, memi6:16 OF B4 /r Load FS:reg16 with a far pointer from memory.

LFS reg32, mem16:32 OF B4 /r Load FS:reg32 with a far pointer from memory.

LGS reg16, mem16:16 OF B5/r Load GS:reg16 with a far pointer from memory.

LGS reg32, mem16:32 OF B5 /r Load GS:reg32 with a far pointer from memory.

LSS regi6, mem16:16 OF B2 /r Load SS:regi6 with a far pointer from memory.

LSS reg32, mem16.32 OF B2 /r Load SS:reg32 with a far pointer from memory.

174 LxS



AMDZ1

24594 Rev. 3.02 August 2002

Related Instructions

AMD 64-Bit Technology

None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The source operand was a register.

X LDS or LES was executed in 64-bit mode.

Segment not present, X The DS, ES, FS, or GS register was loaded with a non-null segment

#NP (selector) selector and the segment was marked not present.

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

Stack, #SS X The SS register was loaded with a non-null segment selector and the

(selector) segment was marked not present.

General protection, X X X A memory address exceeded a data segment limit or was non-

#GP canonical.

X A null data segment was used to reference memory.

General protection, X A segment register was loaded, but the segment descriptor exceeded
#GP the descriptor table limit.
(selector)

X A segment register was loaded and the segment selector’s Tl bit was
set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in non-64-bit
mode or while CPL =3.

X The SS register was loaded and the segment selector RPL and the
segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was not a
writable data segment.

X The DS, ES, FS, or GS register was loaded and the segment pointed
to was a data or non-conforming code segment, but the RPL or CPL
was greater than the DPL.

X

The DS, ES, FS, or GS register was loaded and the segment pointed
to was not a data segment or readable code segment.

LxS 175



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

176

LxS




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

LEA Load Effective Address

Computes the effective address of a memory location (second operand) and stores it in
a general-purpose register (first operand).

The address size of the memory location and the size of the register determine the
specific action taken by the instruction, as follows:

m If the address size and the register size are the same, the instruction stores the
effective address as computed.

m If the address size is longer than the register size, the instruction truncates the
effective address to the size of the register.

m If the address size is shorter than the register size, the instruction zero-extends
the effective address to the size of the register.

If the second operand is a register, an undefined-opcode exception occurs.

The LEA instruction is related to the MOV instruction, which copies data from a
memory location to a register, but LEA takes the address of the source operand,
whereas MOV takes the contents of the memory location specified by the source
operand. In the simplest cases, LEA can be replaced with MOV. For example:

lTea eax, [ebx]

has the same effect as:

mov eax, ebx

However, LEA allows software to use any valid ModRM and SIB addressing mode for
the source operand. For example:

lea eax, [ebx+tedil]

loads the sum of the EBX and EDI registers into the EAX register. This could not be
accomplished by a single MOV instruction.

The LEA instruction has a limited capability to perform multiplication of operands in
general-purpose registers using scaled-index addressing. For example:

lea eax, [ebx+ebx*8]

loads the value of the EBX register, multiplied by 9, into the EAX register. Possible
values of multipliers are 2, 4, 8, 3, 5, and 9.

The LEA instruction is widely used in string-processing and array-processing to
initialize an index register (rSI or rDI) before performing string instructions such as

LEA 177



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

MOVSx. It is also used to initialize the rBX register before performing the XLAT
instruction in programs that perform character translations. In data structures, the
LEA instruction can calculate addresses of operands stored in memory, and in
particular, addresses of array or string elements.

Mnemonic Opcode Description
LEA regi6, mem 8D /r Store effective address in a 16-bit register.
LEA reg32, mem 8D /r Store effective address in a 32-bit register.
LEA reg64, mem 8D /r Store effective address in a 64-bit register.

Related Instructions

MOV
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The source operand was a register.

178 LEA




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

LEAVE Delete Procedure Stack Frame

Releases a stack frame created by a previous ENTER instruction. To release the
frame, it copies the frame pointer (in the rBP register) to the stack pointer register
(rSP), and then pops the old frame pointer from the stack into the rBP register, thus
restoring the stack frame of the calling procedure.

The 32-bit LEAVE instruction is equivalent to the following 32-bit operation:

MOV ESP,EBP
POP EBP

To return program control to the calling procedure, execute a RET instruction after
the LEAVE instruction.

In 64-bit mode, the LEAVE operand size defaults to 64 bits, and there is no prefix
available for encoding a 32-bit operand size.

Mnemonic Opcode Description

LEAVE @ Set the stack pointer register SP to the value in the BP register
and pop BP.

LEAVE 9 Set the stack pointer register ESP to the value in the EBP register
and pop EBP.
(No prefix for encoding this in 64-bit mode.)

LEAVE @ Set the stack pointer register RSP to the value in the RBP register
and pop RBP.

Related Instructions
ENTER
rFLAGS Affected

None

LEAVE 179



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

180 LEAVE



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

LFENCE Load Fence

Acts as a barrier to force strong memory ordering (serialization) between load
instructions preceding the LFENCE and load instructions that follow the LFENCE. A
weakly-ordered memory system allows hardware to reorder reads and writes between
the processor and memory. The LFENCE instruction guarantees that the system
completes all previous loads before executing subsequent loads.

The LFENCE instruction is weakly-ordered with respect to store instructions, data
and instruction prefetches, and the SFENCE instruction. Speculative loads initiated
by the processor, or specified explicitly using cache-prefetch instructions, can be
reordered around an LFENCE.

In addition to load instructions, the LFENCE instruction is strongly ordered with
respect to other LFENCE instructions, MFENCE instructions, and serializing
instructions.

Support for the LFENCE instruction is indicated when the SSE2 bit (bit 26) is setto 1
in EDX after executing CPUID standard function 1.

Mnemonic Opcode Description

LFENCE OF AE E8 Force strong ordering of (erialize) load operations.

Related Instructions
MFENCE, SFENCE
rFLAGS Affected
None

Exceptions

Virtual
Exception Real | 8086 |Protected Cause of Exception

Invalid opcode, #UD | X X X The LFENCE instruction is not supported as indicated by bit 26 of
CPUID standard function 1.

LFENCE 181



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

LODS Load String
LODSB

LODSW

LODSD

LODSQ

Copies the byte, word, doubleword, or quadword in the memory location pointed to by
the DS:rSI registers to the AL, AX, EAX, or RAX register, depending on the size of the
operand, and then increments or decrements the rSI register according to the state of
the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It
increments or decrements rSI by 1, 2, 4, or 8, depending on the number of bytes being
loaded.

The forms of the LODS instruction with an explicit operand address the operand at
seg:[rSI]. The value of seg defaults to the DS segment, but may be overridden by a
segment prefix. The explicit operand serves only to specify the type (size) of the value
being copied and the specific registers used.

The no-operands forms of the instruction always use the DS:[rSI] registers to point to
the value to be copied (they do not allow a segment prefix). The mnemonic determines
the size of the operand and the specific registers used.

The LODSx instructions support the REP prefixes. For details about the REP prefixes,
see “Repeat Prefixes” on page 10. More often, software uses the LODSx instruction
inside a loop controlled by a LOOPcc instruction as a more efficient replacement for
instructions like:

mov eax, dword ptr ds:[esi]
add esi, 4

The LODSQ instruction can only be used in 64-bit mode.

Mnemonic Opcode Description
LODS mem8 AC Load byte at DS:rSl into AL and then increment or decrement rSI.
LODS memi6 AD Load word at DS:rSI into AX and then increment or decrement
rSl.
LODS mem32 AD Load doubleword at DS:rSI into EAX and then increment or

decrement rSl.

182 LODSx



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
LODS memé64 AD Load quadword at DS:rSI into RAX and then increment or
decrement rSI.
LODSB AC Load byte at DS:rSl into AL and then increment or decrement rSl.
LODSW AD Load the word at DS:rSl into AX and then increment or
decrement rSI.
LODSD AD Load doubleword at DS:rSI into EAX and then increment or
decrement rSl.
LODSQ AD Load quadword at DS:rSI into RAX and then increment or
decrement rSI.
Related Instructions
MOVSx, STOSx
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

LODSx 183



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

LOOP Loop
LOOPE

LOOPNE

LOOPNZ

LOOPZ

Decrements the count register (rCX) by 1, then, if rCX is not 0 and the ZF flag meets
the condition specified by the mnemonic, it jumps to the target instruction specified
by the signed 8-bit relative offset. Otherwise, it continues with the next instruction
after the LOOPcc instruction.

The size of the count register used (CX, ECX, or RCX) depends on the address-size
attribute of the LOOPcc instruction.

The LOOP instruction ignores the state of the ZF flag.

The LOOPE and LOOPZ instructions jump if rCX is not 0 and the ZF flagis set to 1. In
other words, the instruction exits the loop (falls through to the next instruction) if rCX
becomes 0 or ZF = 0.

The LOOPNE and LOOPNZ instructions jump if rCX is not 0 and ZF flag is cleared to
0. In other words, the instruction exits the loop if rCX becomes 0 or ZF = 1.

The LOOPcc instruction does not change the state of the ZF flag. Typically, the loop
contains a compare instruction to set or clear the ZF flag.

If the jump is taken, the signed displacement is added to the rIP (of the following
instruction) and the result is truncated to 16, 32, or 64 bits, depending on operand
size.

In 64-bit mode, the operand size defaults to 64 bits without the need for a REX prefix,
and the processor sign-extends the 8-bit offset before adding it to the RIP.

Mnemonic Opcode Description
LOOP rel8off E2cb Decrement rCX, then jump short if rCX is not 0.
LOOPE rel8off El1ch Decrement rCX, then jump short if rCX is not 0 and ZF is 1.
LOOPNE rel8off EO ¢b Decrement rCX, then Jump short if rCX is not 0 and ZF is 0.

184 LOOPcc



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
LOOPNZ rel8off EO cb Decrement rCX, then Jump short if rCX is not 0 and ZF is 0.
LOOPZ relSoff Elch Decrement rCX, then Jump short if rCX is not 0 and ZF is 1.
Related Instructions
None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-
#GP canonical.

LOOPcc 185



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

MFENCE Memory Fence

Acts as a barrier to force strong memory ordering (serialization) between load and
store instructions preceding the MFENCE, and load and store instructions that follow
the MFENCE. A weakly-ordered memory system allows the hardware to reorder reads
and writes between the processor and memory. The MFENCE instruction guarantees
that the system completes all previous memory accesses before executing subsequent
accesses.

The MFENCE instruction is weakly-ordered with respect to data and instruction
prefetches. Speculative loads initiated by the processor, or specified explicitly using
cache-prefetch instructions, can be reordered around an MFENCE.

In addition to load and store instructions, the MFENCE instruction is strongly ordered
with respect to other MFENCE instructions, LFENCE instructions, SFENCE
instructions, serializing instructions, and CLFLUSH instructions.

Support for the MFENCE instruction is indicated when the SSE2 bit (bit 26) is set to 1
in EDX after executing CPUID with standard function 1.

Mnemonic Opcode Description

MFENCE OF AEFO Force strong ordering of (serialized) load and store operations.

Related Instructions

LFENCE, SFENCE
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The MFENCE instruction is not supported as indicated by bit 26 of
CPUID standard function 1.

186 MFENCE




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

MOV Move

Copies an immediate value or the value in a general-purpose register, segment
register, or memory location (second operand) to a general-purpose register, segment
register, or memory location. The source and destination must be the same size (byte,
word, doubleword, or quadword) and cannot both be memory locations.

In opcodes AO through A3, the memory offsets (called moffsets) are address sized. In
64-bit mode, memory offsets default to 64 bits. Opcodes A0-A3, in 64-bit mode, are the
only cases that support a 64-bit offset value. (In all other cases, offsets and
displacements are a maximum of 32 bits.) The B8 through BF (B8 +rq) opcodes, in 64-
bit mode, are the only cases that support a 64-bit immediate value (in all other cases,
immediate values are a maximum of 32 bits).

When reading segment-registers with a 32-bit operand size, the processor zero-extends
the 16-bit selector results to 32 bits. When reading segment-registers with a 64-bit
operand size, the processor zero-extends the 16-bit selector to 64 bits. If the
destination operand specifies a segment register (DS, ES, FS, GS, or SS), the source
operand must be a valid segment selector.

It is possible to move a null segment selector value (0000-0003h) into the DS, ES, FS,
or GS register. This action does not cause a general protection fault, but a subsequent
reference to such a segment does cause a #GP exception. For more information about
segment selectors, see “Segment Selectors and Registers” on page 82.

When the MOV instruction is used to load the SS register, the processor blocks
external interrupts until after the execution of the following instruction. This action
allows the following instruction to be a MOV instruction to load a stack pointer into
the ESP register (MOV ESP,val) before an interrupt occurs. However, the LSS
instruction provides a more efficient method of loading SS and ESP.

Attempting to use the MOV instruction to load the CS register generates an invalid
opcode exception (#UD). Use the far JMP, CALL, or RET instructions to load the CS
register.

To initialize a register to 0, rather than using a MOV instruction, it may be more
efficient to use the XOR instruction with identical destination and source operands.

MoV 187



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description

MOV reg/mem8, reg8 88,/r Move the contents of an 8-bit register to an 8-bit destination
register or memory operand.

MOV reg/mem16, regi6 89/r Move the contents of a 16-bit register to a 16-bit destination
register or memory operand.

MOV reg/mem32, reg32 89/r Move the contents of a 32-bit register to a 32-bit destination
register or memory operand.

MOV reg/mem64, reg64 89/r Move the contents of a 64-bit register to a 64-bit destination
register or memory operand.

MOV reg8, reqg/mem8 8A/r Move the contents of an 8-bit register or memory operand to an
8-bit destination register.

MOV regi6, req/mem16 8B/r Move the contents of a 16-bit register or memory operand to a
16-bit destination register.

MOV reg32, req/mem32 8B /r Move the contents of a 32-bit register or memory operand to a
32-bit destination register.

MOV reg64, req/mem64 8B/r Move the contents of a 64-bit register or memory operand to a
64-bit destination register.

MOV reqi6/32/64/mem16, segReg ~ 8C/r Move the contents of a segment register to a 16-bit, 32-bit, or 64-
bit destination register or to a 16-bit memory operand.

MOV segReg, reg/mem16 8E/r Move the contents of a 16-bit register or memory operand to a
segment register.

MOV AL, moffset8 A0 Move 8-bit data at a specified memory offset to the AL register.

MOV AX, moffset16 Al Move 16-bit data at a specified memory offset to the AX register.

MOV EAX, moffset32 Al Move 32-bit data at a specified memory offset to the EAX register.

MOV RAX, moffset64 Al Move 64-bit data at a specified memory offset to the RAX
register.

MOV moffset8, AL A2 Move the contents of the AL register to an 8-bit memory offset.

MOV moffseti6, AX A3 Move the contents of the AX register to a 16-bit memory offset.

MOV moffset32, EAX A3 Move the contents of the EAX register to a 32-bit memory offset.

MOV moffset64, RAX A3 Move the contents of the RAX register to a 64-bit memory offset.

MOV reg8, imm8 BO +rb Move an 8-bit immediate value into an 8-bit register.

MOV regi6, imm16 B8 +rw Move a 16-bit immediate value into a 16-bit register.

MOV reg32, imm32 B8 +rd Move an 32-bit immediate value into a 32-bit register.

188 MOV



AMDZ1

24594 Rev. 3.02 August 2002

Mnemonic
MOV reg64, imm64
MOV reg/mem8, imm8

MOV reg/mem16, imm16

MOV reg/mem32, imm32

MOV reg/memé64, imm32

Related Instructions

Opcode
B8 +rg
C6 /0

C7/0

C7/0

C7/0

AMD 64-Bit Technology

Description
Move an 64-bit immediate value into a 64-bit register.

Move an 8-bit immediate value to an 8-bit register or memory
operand.

Move a 16-bit immediate value to a 16-bit register or memory
operand.

Move a 32-bit immediate value to a 32-bit register or memory
operand.

Move a 32-bit signed immediate value to a 64-bit register or
memory operand.

MOV(CRn), MOV(DRn), MOVD, MOVSX, MOVZX, MOVSXD, MOV Sx

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X An attempt was made to load the CS register.
Segment not present, X The DS, ES, FS, or GS register was loaded with a non-null segment
#NP (selector) selector and the segment was marked not present.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
Stack, #SS X The SS register was loaded with a non-null segment selector, and the
(selector) segment was marked not present.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

MoV 189



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X A segment register was loaded, but the segment descriptor exceeded
#GP the descriptor table limit.
(selector)

X A segment register was loaded and the segment selector’s Tl bit was
set, but the LDT selector was a null selector.

X The SS register was loaded with a null segment selector in non-64-bit
mode or while CPL =3.

X The SS register was loaded and the segment selector RPL and the
segment descriptor DPL were not equal to the CPL.

X The SS register was loaded and the segment pointed to was not a
writable data segment.

X The DS, ES, FS, or GS register was loaded and the segment pointed
to was a data or non-conforming code segment, but the RPL or CPL
was greater than the DPL.

X The DS, ES, FS, or GS register was loaded and the segment pointed
to was not a data segment or readable code segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

190

MOV




AMDZ1

24594 Rev. 3.02 August 2002

MOVD

AMD 64-Bit Technology

Move Doubleword or Quadword

Moves a 32-bit or 64-bit value in one of the following ways:

m from a 32-bit or 64-bit general-purpose register or memory location to the low-
order 32 or 64 bits of an XMM register, with zero-extension to 128 bits

m from the low-order 32 or 64 bits of an XMM to a 32-bit or 64-bit general-purpose
register or memory location

m from a 32-bit or 64-bit general-purpose register or memory location to the low-
order 32 bits (with zero-extension to 64 bits) or the full 64 bits of an MMX register

m from the low-order 32 or the full 64 bits of an MMX register to a 32-bit or 64-bit
general-purpose register or memory location

Mnemonic

MOVD xmm, reg/mem32

MOVD xmm, reg/mem64

MOVD reg/mem32, xmm

MOVD reg/mem64, xmm

MOVD mmx, reg/mem32

MOVD mmx, reg/mem64

MOVD reg/mem32, mmx

MOVD reg/mem64, mmx

Opcode

66 OF 6E /r

66 OF 6E /r

66 OF 7E /r

66 OF 7E /r

OF 6E /1

OF 6E /r

OF 7E/r

OF 7E/r

Description

Move 32-bit value from a general-purpose register or 32-bit
memory location to an XMM register.

Move 64-bit value from a general-purpose register or 64-bit
memory location to an XMM register.

Move 32-bit value from an XMM register to a 32-bit general-
purpose register or memory location.

Move 64-bit value from an XMM register to a 64-bit general-
purpose register or memory location.

Move 32-bit value from a general-purpose register or 32-bit
memory location to an MMX register.

Move 64-bit value from a general-purpose register or 64-bit
memory location to an MMX register.

Move 32-bit value from an MMX register to a 32-bit general-
purpose register or memory location.

Move 64-bit value from an MMX register to a 64-bit general-
purpose register or memory location.

The diagrams in Figure 3-4 on page 192 illustrate the operation of the MOVD

instruction.

MOVD 191



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
xmm reg/mem32
127 23 v 0 3] 0
; | | [ ]
|
xmm reg/memé64
127 64 63 v 0 63 0
0 | | |
with REX prefix
reg/mem32 xmm
All operations 1 v 0 127 32 31 0
are "copy" | | | | |
|
reg/mem64 Xxmm
63 v 0 127 64 63 0
with REX prefix
mmx reg/mem32
63 23 v 0 3] 0
o ] | [ ]
|
mmx reg/meme64
63 v 0 63 0
with REX prefix
reg/mem32 mmx
v 0 63 32 3] 0
|
reg/mem64 mmx
63 v 0 63 0
with REX prefix movdeps

Figure 3-4. MOVD Instruction Operation

192 MOVD



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Related Instructions

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ
rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions (All Modes)

Virtual
Exception Real | 8086 | Protected Description
Invalid opcode, #UD X X X The MMX instructions are not supported, as indicated by bit
23 of CPUID standard function 1.
X X X The SSE2 instructions are not supported, as indicated by bit
26 of CPUID standard function 1.
X X X The emulate bit (EM) of CRO was set to 1.
X X X The instruction used XMM registers while CR4.0SFXSR=0.
Device not available, X X X The task-switch bit (TS) of CRO was set to 1.
#NM
Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.
General protection, #GP | X X X A memory address exceeded a data segment limit or was
non-canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
x87 floating-point X X X An x87 floating-point exception was pending and the
exception pending, #MF instruction referenced an MMX register.
Alignment check, #AC X X An unaligned memory reference was performed while
alignment checking was enabled.

MOVD 193



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

MOVMSKPD Extract Packed Double-Precision Floating-Point
Sign Mask

Moves the sign bits of two packed double-precision floating-point values in an XMM
register (second operand) to the two low-order bits of a general-purpose register (first
operand) with zero-extension.

Mnemonic Opcode Description

MOVMSKPD reg32, xmm 66 OF 50 /r Move sign bits 127 and 63 in an XMM register to a 32-bit general-
purpose register.

reg32 xmm
3] ]+l0 127 63 0
o [ |l |
| |
copy sign
‘ copy sign
|

movmskpd.eps

Related Instructions
MOVMSKPS, PMOVMSKB
rFLAGS Affected

None

MXCSR Flags Affected

None

194 MOVMSKPD



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SSE2 instructions are not supported, as indicated by bit
26 of CPUID standard function 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.
X X X The emulate bit (EM) of CRO was set to 1.
Device not available, X X X The task-switch bit (TS) of CRO was set to 1.

#NM

MOVMSKPD

195



AMDA
AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

MOVMSKPS Extract Packed Single-Precision Floating-Point
Sign Mask

Moves the sign bits of four packed single-precision floating-point values in an XMM
register (second operand) to the four low-order bits of a general-purpose register (first
operand) with zero-extension.

Mnemonic Opcode Description

MOVMSKPS reg32, xmm OF 50 /r Move sign bits 127, 95, 63, 31 in an XMM register to a 32-bit
general-purpose register.

reg32 Xmm

31 0

—] o <

127 95 63 31
|l | | |
copy| sign copy| sign copy| sign copy| sign

movmskps.eps

Related Instructions
MOVMSKPD, PMOVMSKB
rFLAGS Affected

None

MXCSR Flags Affected

None

196 MOVMSKPS



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SSE2 instructions are not supported, as indicated by bit
26 of CPUID extended function 1.
X X X The operating-system FXSAVE/FXRSTOR support bit (OSFXSR)
of CR4 was cleared to 0.
X X X The emulate bit (EM) of CRO was set to 1.
Device not available, X X X The task-switch bit (TS) of CRO was set to 1.

#NM

MOVMSKPS 197



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

MOVNTI Move Non-Temporal Doubleword or Quadword

Stores a value in a 32-bit or 64-bit general-purpose register (second operand) in a
memory location (first operand). This instruction indicates to the processor that the
data is non-temporal and is unlikely to be used again soon. The processor treats the
store as a write-combining (WC) memory write, which minimizes cache pollution. The
exact method by which cache pollution is minimized depends on the hardware
implementation of the instruction. For further information, see “Memory
Optimization” in Volume 1.

The MOVNTI instruction is weakly-ordered with respect to other instructions that
operate on memory. Software should use an SFENCE instruction to force strong
memory ordering of MOVNTI with respect to other stores.

Support for the MOVNTI instruction is indicated when the SSE2 bit (bit 26) is set to 1
in EDX after executing CPUID standard function 1.

Mnemonic Opcode Description

MOVNTI mem32, reg32 OFCG3/r Stores a 32-bit general-purpose register value into a 32-bit
memory location, minimizing cache pollution.

MOVNTI mem64, reg64 OF G3 /r Stores a 64-bit general-purpose register value into a 64-bit
memory location, minimizing cache pollution.

Related Instructions

MOVNTDQ, MOVNTPD, MOVNTPS, MOVNTQ

Exceptions
Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SSE2 instructions are not supported, as indicated by bit
26 of CPUID standard function 1.
Stack, #SS X X X A memory address exceeded the stack segment limit or was
non-canonical.
General protection, #GP | X X X A memory address exceeded a data segment limit or was
non-canonical.
X A null data segment was used to reference memory.
X The destination operand was in a non-writable segment.

198 MOVNTI




AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

MOVNTI

199



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

MOVS Move String
MOVSB

MOVSW

MOVSD

MOVSQ

Moves a byte, word, doubleword, or quadword from the memory location pointed to by
DS:rSI to the memory location pointed to by ES:rDI, and then increments or
decrements the rSI and rDI registers according to the state of the DF flag in the
rFLAGS register.

If the DF flag is 0, the instruction increments both pointers; otherwise, it decrements
them. It increments or decrements the pointers by 1, 2, 4, or 8, depending on the size
of the operands.

The forms of the MOV Sx instruction with explicit operands address the first operand
at seg:[rSI]. The value of seg defaults to the DS segment, but can be overridden by a
segment prefix. These instructions always address the second operand at ES:[rDI] (ES
may not be overridden). The explicit operands serve only to specify the type (size) of
the value being moved.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to
point to the value to be moved (they do not allow a segment prefix). The mnemonic
determines the size of the operands.

Do not confuse this MOVSD instruction with the same-mnemonic MOVSD (move
scalar double-precision floating-point) instruction in the 128-bit media instruction set.
Assemblers can distinguish the instructions by the number and type of operands.

The MOVSx instructions support the REP prefixes. For details about the REP
prefixes, see “Repeat Prefixes” on page 10.

Mnemonic Opcode Description
MOVS mem8, mem8 A4 Move byte at DS:rSl to ES:rDI, and then increment or decrement
rSl and rDI.
MOVS mem16, memIi6 A5 Move word at DS:rSl to ES:rDl, and then increment or decrement
rSl and rDI.
MOVS mem32, mem32 A5 Move doubleword at DS:rSl to ES:rDI, and then increment or

decrement Sl and rDI.

200 MOVSx



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
MOVS mem64, memé64 A5 Move quadword at DS:rSI to ES:rDI, and then increment or
decrement rSl and rDI.
MOVSB A4 Move byte at DS:rSl to ES:rDI, and then increment or decrement
rSland rDI.
MOVSW A5 Move word at DS:rSl to ES:rDl, and then increment or decrement
rSland rDI.
MOVSD A5 Move doubleword at DS:rSl to ES:rDI, and then increment or
decrement rSl and rDI.
MOVSQ A5 Move quadword at DS:rSI to ES:rDI, and then increment or
decrement rSl and rDI.
Related Instructions
MOV, LODSx, STOSx
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

MOVSx 201



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

MOVSX Move with Sign-Extension

Copies the value in a register or memory location (second operand) into a register
(first operand), extending the most significant bit of an 8-bit or 16-bit value into all
higher bits in a 16-bit, 32-bit, or 64-bit register.

Mnemonic Opcode Description

MOVSX reg 16, req/mem8 OF BE /r Move the contents of an 8-bit register or memory location to a
16-bit register with sign extension.

MOVSX reg32, reg/mem8 OF BE/r Move the contents of an 8-bit register or memory location to a
32-bit register with sign extension.

MOVSX reg64, req/mem8 OF BE /r Move the contents of an 8-bit register or memory location to a
64-bit register with sign extension.

MOVSX reg32, reg/mem16 OF BF /r Move the contents of an 16-bit register or memory location to a
32-bit register with sign extension.

MOVSX reg64, req/mem16 OF BF /r Move the contents of an 16-bit register or memory location to a
64-bit register with sign extension.

Related Instructions

MOVSXD, MOVZX
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

202 MOVSX



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

MOVSXD Move with Sign-Extend Doubleword

Copies the 32-bit value in a register or memory location (second operand) into a 64-bit
register (first operand), extending the most significant bit of the 32-bit value into all
higher bits of the 64-bit register.

This instruction requires a REX prefix to sign-extend a 32-bit source operand to a 64-
bit result. Without a REX prefix, the operand size is 32 bits and the source is zero-
extended into a 64-bit register. With a 16-bit operand size, only 16 bits are copied,
without modifying the upper 48 bits in the destination.

This instruction is available only in 64-bit mode. In legacy or compatibility mode this
opcode is interpreted as ARPL.

Mnemonic Opcode Description

MOVSXD reg64, req/mem32 63/r Move the contents of a 32-bit register or memory operand to a
64-bit register with sign extension.

Related Instructions

MOVSX, MOVZX
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X A memory address was non-canonical.
General protection, X A memory address was non-canonical.
#GP
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment
checking was enabled.

MOVSXD 203



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

MOVZX Move with Zero-Extension

Copies the value in a register or memory location (second operand) into a register
(first operand), zero-extending the value to fit in the destination register. The
operand-size attribute determines the size of the zero-extended value.

Mnemonic Opcode Description

MOVZX reg 16, reg/mem8 OF B6 /r Move the contents of an 8-bit register or memory operand to a
16-bit register with zero-extension.

MOVZX reg32, reg/mem8 OF B6 /r Move the contents of an 8-bit register or memory operand to a
32-bit register with zero-extension.

MOVZX reg64, req/mem8 OF B6 /r Move the contents of an 8-bit register or memory operand to a
64-bit register with zero-extension.

MOVZX reg32, reg/memi6 OF B7 /r Move the contents of an 16-bit register or memory operand to a
32-bit register with zero-extension.

MOVZX reg64, reg/mem16 OF B7 /r Move the contents of an 16-bit register or memory operand to a
64-bit register with zero-extension.

Related Instructions

MOVSXD, MOVSX
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

204 MOVZX



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

MUL Unsigned Multiply

Multiplies the unsigned byte, word, doubleword, or quadword value in the specified
register or memory location by the value in AL, AX, EAX, or RAX and stores the result
in AX, DX:AX, EDX:EAX, or RDX:RAX (depending on the operand size). It puts the
high-order bits of the product in AH, DX, EDX, or RDX.

If the upper half of the product is non-zero, the instruction sets the carry flag (CF) and
overflow flag (OF) both to 1. Otherwise, it clears CF and OF to 0. The other arithmetic
flags (SF, ZF, AF, PF) are undefined.

Mnemonic Opcode Description

MUL reg/mem8 F6 /4 Multiplies a 8-bit register or memory operand by the contents of
the AL register and stores the result in the AX register.

MUL reg/mem 16 F7 /4 Multiplies a 16-bit register or memory operand by the contents of
the AX register and stores the result in the DX:AX register.

MUL reg/mem32 F7 /4 Multiplies a 32-bit register or memory operand by the contents of
the EAX register and stores the result in the EDX:EAX register.

MUL reg/memé64 F7 /4 Multiplies a 64-bit register or memory operand by the contents
of the RAX register and stores the result in the RDX:RAX register.

Related Instructions
DIV

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M U U U u ™

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1 10 9 8 7 6 4 2

Not;: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.

MUL 205



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference is performed while alignment

checking was enabled.

206

MUL



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

NEG Two’s Complement Negation

Performs the two’s complement negation of the value in the specified register or
memory location by subtracting the value from 0. Use this instruction only on signed
integer numbers.

If the value is 0, the instruction clears the CF flag to 0; otherwise, it sets CF to 1. The
OF, SF, ZF, AF, and PF flag settings depend on the result of the operation.

The forms of the NEG instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

NEG reqg/mem8 F6 /3 Performs a two's complement negation on an 8-bit register or
memory operand.

NEG reg/memi6 F7/3 Performs a two's complement negation on a 16-bit register or
memory operand.

NEG reg/mem32 F7/3 Performs a two's complement negation on a 32-bit register or
memory operand.

NEG reg/mem64 F7/3 Performs a two's complement negation on a 64-bit register or

memory operand.
Related Instructions
AND, NOT, OR, XOR

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF DF | IF | TF | SF | ZF | AF | PF | CF
M MM M| M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1m |10 9 8 7 6 4 2 0

Not;: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
ags are U.

NEG 207



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand is in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

208

NEG



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

NOP No Operation

Does nothing. This one-byte instruction increments the rIP to point to next instruction
in the instruction stream, but does not affect the machine state in any other way.

The NOP instruction is an alias for XCHG rAX, rAX.

Mnemonic Opcode Description

NOP 90 Performs no operation.

Related Instructions
None

rFLAGS Affected
None

Exceptions

None

NOP 209



AMDZU

AMD 64-Bit Technology

NOT

24594  Rev. 3.02 August 2002

One’s Complement Negation

Performs the one’s complement negation of the value in the specified register or
memory location by inverting each bit of the value.

The memory-operand forms of the NOT instruction support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
NOT reqg/mem8 F6 /2 Complements the bits in an 8-bit register or memory operand.
NOT reg/mem16 F7/2 Complements the bits in a 16-bit register or memory operand.
NOT reg/mem32 F7/2 Complements the bits in a 32-bit register or memory operand.
NOT reg/memé64 F7/2 Compliments the bits in a 64-bit register or memory operand.
Related Instructions
AND, NEG, OR, XOR
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference is performed while alignment
checking was enabled.

210

NOT




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

OR Logical OR

Performs a logical OR on the bits in a register, memory location, or immediate value
(second operand) and a register or memory location (first operand) and stores the
result in the first operand location. The two operands cannot both be memory
locations.

If both corresponding bits are 0, the corresponding bit of the result is 0; otherwise, the
corresponding result bit is 1.

The forms of the OR instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description
OR AL, imm8 0oCib OR the contents of AL with an immediate 8-bit value.
OR AX, imm16 0D iw OR the contents of AX with an immediate 16-bit value.
OR EAX, imm32 0D id OR the contents of EAX with an immediate 32-bit value.
OR RAX, imm32 0D id OR the contents of RAX with a sign-extended immediate 32-bit
value.
OR reg/mem8, imm8 80/11b OR the contents of an 8-bit register or memory operand and an

immediate 8-bit value.

OR reg/mem16, imm16 81 /11w OR the contents of a 16-bit register or memory operand and an
immediate 16-bit value.

OR reg/mem32, imm32 81 /1id OR the contents of a 32-bit register or memory operand and an
immediate 32-bit value.

OR reg/mem64, imm32 81/1id OR the contents of a 64-bit register or memory operand and
sign-extended immediate 32-bit value.

OR reg/mem16, imm8 83/1ib OR the contents of a 16-bit register or memory operand and a
sign-extended immediate 8-bit value.

OR reg/mem32, imm8 83/11b OR the contents of a 32-bit register or memory operand and a
sign-extended immediate 8-bit value.

OR reg/mem64, imm8 83/1ib OR the contents of a 64-bit register or memory operand and a
sign-extended immediate 8-bit value.

OR reg/mems, reg8 08,/r OR the contents of an 8-bit register or memory operand with the
contents of an 8-bit register.

OR 211



AMDZU

AMD 64-Bit Technology

Mnemonic

OR reg/memi6, regi6

OR reg/mem32, reg32

OR reg/mem64, reg64

OR reg8, reg/mem8

ORregi6, reg/mem16

OR reg32, reg/mem32

OR reg64, req/mem64

Opcode

09/r

09/r

09/r

0A/r

0B/r

0B/r

0B/r

24594  Rev. 3.02 August 2002

Description

OR the contents of a 16-bit register or memory operand with the
contents of a 16-bit register.

OR the contents of a 32-bit register or memory operand with the
contents of a 32-bit register.

OR the contents of a 64-bit register or memory operand with the
contents of a 64-bit register.

OR the contents of an 8-bit register with the contents of an 8-bit
register or memory operand.

OR the contents of a 16-bit register with the contents of a 16-bit
register or memory operand.

OR the contents of a 32-bit register with the contents of a 32-bit
register or memory operand.

OR the contents of a 64-bit register with the contents of a 64-bit
register or memory operand.

The following chart summarizes the effect of this instruction:

X Y XORY
0 0 0
0 1 1
1 0 1
1 1 1

Related Instructions

AND, NEG, NOT, XOR

rFLAGS Affected

ID |VIP| VIF| AC | VM | RF | NT 10PL OF | DF IF TF | SF | ZF | AF | PF | CF
0 M M U M 0

21 1 20 | 19 | 18| 17 | 16 | 14 13-12 nmJ|1m0]| 9 8 7 6 4 2 0

Note:

are U.

Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags

212

OR




AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.

X The destination operand was in a non-writable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

OR 213



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

ouT Output to Port

Copies the value from the AL, AX, or EAX register (second operand) to an I/O port
(first operand). The port address can be a byte-immediate value (00h to FFh) or the
value in the DX register (0000h to FFFFh). The source register used determines the
size of the port (8, 16, or 32 bits).

If the operand size is 64-bits, OUT only writes to a 32-bit I/O port.

If the CPL is higher than the IOPL or the mode is virtual mode, OUT checks the I/O
permission bitmap in the TSS before allowing access to the I/O port. See Volume 2 for
details on the TSS I/O permission bitmap.

Mnemonic Opcode Description

OUT imms, AL E6 b Output the byte in the AL register to the port specified by an 8-bit
immediate value.

OUT imms8, AX E71b Output the word in the AX register to the port specified by an 8-
bit immediate value.

OUT imm8, EAX E7 b Output the doubleword in the EAX register to the port specified
by an 8-bit immediate value.

OUT DX, AL EE Output byte in AL to the output port specified in DX.

OUT DX, AX EF Output byte in AX to the output port specified in DX.

OUT DX, EAX EF Output byte in EAX to the output port specified in DX.

Related Instructions
IN, INSx, OUTSx
rFLAGS Affected

None

214 ouT



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X One or more I/0 permission bits were set in the TSS for the accessed
#GP port.
X The CPL was greater than the I0OPL and one or more I/O permission
bits were set in the TSS for the accessed port.
Page fault (#PF) X X A page fault resulted from the execution of the instruction.

ouT 215



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

OouTS Output String
OUTSB

ouTsSw

OUTSD

Copies data from the memory location pointed to by DS:rSI to the I/O port address
(0000h to FFFFh) specified in the DX register, and then increments or decrements the
rSI register according to the setting of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments rSI; otherwise, it decrements rSI. It
increments or decrements the pointer by 1, 2, or 4, depending on the size of the value
being copied.

The OUTSx instruction uses an explicit memory operand (second operand) to
determine the type (size) of the value being copied, but always uses DS:rSI for the
location of the value to copy. The explicit register operand specifies the I/0 port
address and must always be DX.

The no-operands forms of the instruction use the DS:[rSI] register pair to point to the
data to be copied and the DX register as the destination. The mnemonic specifies the
size of the I/O port and the type (size) of the value being copied.

The OUTSx instruction supports the REP prefix. For details about the REP prefix, see
“Repeat Prefixes” on page 10.

If the operand size is 64-bits, OUTS only writes to a 32-bit I/O port.

If the CPL is higher than the IOPL or the mode is virtual mode, OUTSx checks the I/O
permission bitmap in the TSS before allowing access to the I/O port. See Volume 2 for
details on the TSS I/O permission bitmap.

Mnemonic Opcode Description

OUTS DX, mem8 6E Output the byte in DS:rSl to the port specified in DX, then
increment or decrement rSl.

OUTS DX, memi6 6F Output the word in DS:rSI to the port specified in DX, then
increment or decrement rSl.

OUTS DX, mem32 6F Output the doubleword in DS:rSl to the port specified in DX, then
increment or decrement rSl.

216 OUTSx



AMDZ1

24594  Rev. 3.02

August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
OUTSB 6E Output the byte in DS:rSl to the port specified in DX, then
increment or decrement rSl.
ouTsw 6F Output the word in DS:rSI to the port specified in DX, then
increment or decrement rSl.
OuTSD 6F Output the doubleword in DS:rSl to the port specified in DX, then
increment or decrement rSl.
Related Instructions
IN, INSx, OUT
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
X One or more I/0 permission bits were set in the TSS for the accessed
port.
X The CPL was greater than the I0OPL and one or more I/O permission
bits were set in the TSS for the accessed port.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference is performed while alignment
checking was enabled.

OUTSx 217



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

POP Pop Stack

Copies the value pointed to by the stack pointer (SS:rSP) to the specified register or
memory location and then increments the rSP by 2 for a 16-bit pop, 4 for a 32-bit pop,
or 8 for a 64-bit pop.

The operand-size attribute determines the amount by which the stack pointer is
incremented (2,4 or 8 bytes). The stack-size attribute determines whether SP, ESP, or
RSP is incremented.

For forms of the instruction that load a segment register (POP DS, POP ES, POP FS,
POP GS, POP SS), the source operand must be a valid segment selector. When a
segment selector is popped into a segment register, the processor also loads all
associated descriptor information into the hidden part of the register and validates it.

It is possible to pop a null segment selector value (0000-0003h) into the DS, ES, FS, or
GS register. This action does not cause a general protection fault, but a subsequent
reference to such a segment does cause a #GP exception. For more information about
segment selectors, see “Segment Selectors and Registers” on page 82.

A null selector can be popped into SS, but only in 64-bit mode at CPL 0, 1, or 2.

In 64-bit mode, the POP operand size defaults to 64 bits and there is no prefix
available to encode a 32-bit operand size. Using POP DS, POP ES, or POP SS
instruction in 64-bit mode generates an invalid-opcode exception.

This instruction cannot pop a value into the CS register. The RET (Far) instruction
performs this function.

Mnemonic Opcode Description
POP reg/mem16 8F /0 Pop the top of the stack into a 16-bit register or memory location.
POP reg/mem32 8F /0 Pop the top of the stack into a 32-bit register or memory location.
(No prefix for encoding this in 64-bit mode.)
POP reg/mem64 8F /0 Pop the top of the stack into a 64-bit register or memory location.
POP regi6 58 +w Pop the top of the stack into a 16-bit register.
POP reg32 58 +rd Pop the top of the stack into a 32-bit register.

(No prefix for encoding this in 64-bit mode.)
POP reg64 58 +rq Pop the top of the stack into a 64-bit register.

218 POP



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
POP DS 1F Pop the top of the stack into the DS register.
(Invalid in 64-bit mode.)
POP ES 07 Pop the top of the stack into the ES register.
(Invalid in 64-bit mode.)
POP SS 17 Pop the top of the stack into the SS register.
(Invalid in 64-bit mode.)
POP FS OF A1 Pop the top of the stack into the FS register.
POP GS OF A9 Pop the top of the stack into the GS register.
Related Instructions
PUSH
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X POP DS, POP ES, or POP SS was executed in 64-bit mode.
Segment not present, X The DS, ES, FS, or GS register was loaded with a non-null segment
#NP (selector) selector and the segment was marked not present.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
Stack, #SS X The SS register was loaded with a non-null segment selector and the
(selector) segment was marked not present.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.

POP 219



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X A segment register was loaded and the segment descriptor exceeded
#GP the descriptor table limit.
(selector)
X A segment register was loaded and the segment selector’s Tl bit was
set, but the LDT selector was a null selector.
X The SS register was loaded with a null segment selector in non-64-bit
mode or while CPL =3.
X The SS register was loaded and the segment selector RPL and the
segment descriptor DPL were not equal to the CPL.
X The SS register was loaded and the segment pointed to was a not a
writable data segment.
X The DS, ES, FS, or GS register was loaded and the segment pointed
to was a data or non-conforming code segment, but the RPL or the
CPL was greater than the DPL.
X The DS, ES, FS, or GS register was loaded and the segment pointed
to was not a data segment or readable code segment.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

220

POP




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

POPA POP All GPRs
POPAD

Pops words or doublewords from the stack into the general-purpose registers in the
following order: eDI, eSI, eBP, eSP (image is popped and discarded), eBX, eDX, eCX,
and eAX. The instruction increments the stack pointer by 16 or 32, depending on the
operand size.

Using the POPA or POPAD instructions in 64-bit mode generates an invalid-opcode
exception.

Mnemonic Opcode Description
POPA 61 Pop the DI, SI, BP, SP, BX, DX, CX, and AX registers.
(Invalid in 64-bit mode.)
POPAD 6l Pop the EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX registers.

(Invalid in 64-bit mode.)

Related Instructions

PUSHA, PUSHAD
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode (#UD) X This instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

POPAX 221



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

POPF POP to rFLAGS
POPFD
POPFQ

Pops a word, doubleword, or quadword from the stack into the rfLAGS register and
then increments the stack pointer by 2, 4, or 8, depending on the operand size.

In protected or real mode, all the non-reserved flags in the rFLAGS register can be
modified, except the VIP, VIF, and VM flags, which are unchanged. In protected mode,
at a privilege level greater than 0 the IOPL is also unchanged. The instruction alters
the interrupt flag (IF) only when the CPL is less than or equal to the IOPL.

In virtual-8086 mode, if IOPL field is less than 3, attempting to execute a POPFx or
PUSHFx instruction while VME is not enabled, or the operand size is not 16-bit,
generates a #GP exception.

In 64-bit mode, this instruction defaults to a 64-bit operand size; there is no prefix
available to encode of a 32-bit operand size.

Mnemonic Opcode Description
POPF 9D Pop a word from the stack into the FLAGS register.
POPFD 9D Pop a double word from the stack into the EFLAGS register. (No
prefix for encoding this in 64-bit mode.)
POPFQ 9D Pop a quadword from the stack to the RFLAGS register.
Action

// See “Pseudocode Definitions” on page 48.
POPF_START:

IF (REAL_MODE)
POPF_REAL

ELSIF (PROTECTED_MODE)
POPF_PROTECTED

ELSE // (VIRTUAL_MODE)
POPF_VIRTUAL

POPF_REAL:

POP.v temp_RFLAGS

222 POPFx



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged

// RF cleared
EXIT

POPF_PROTECTED:

POP.v temp_RFLAGS
RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
// I0PL changed only if (CPL=0)
// IF changed only if (CPL<=0l1d_RFLAGS.IOPL)

// RF cleared
EXIT

POPF_VIRTUAL:

IF (RFLAGS.IOPL=3)
{
POP.v temp_RFLAGS
RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,I0OPL unchanged

// RF cleared
EXIT

}
ELSIF ((CR4.VME=1) && (OPERAND_SIZE=16))
{
POP.w temp_RFLAGS
IF (((temp_RFLAGS.IF=1) && (RFLAGS.VIP=1)) || (temp_RFLAGS.TF=1))
EXCEPTION [#GP(0)]
// notify the virtual-mode-manager to deliver
// the task’s pending interrupts
RFLAGS.w = temp_RFLAGS // TF,I0PL unchanged
// RFLAGS.VIF=temp_RFLAGS.IF

// RF cleared
EXIT

}

FLSE // ((RFLAGS.IOPL<3) && ((CR4.VME=0) || (OPERAND_SIZE!=16)))
EXCEPTION [#GP(0)]

Related Instructions

PUSHF, PUSHFD, PUSHFQ

ID [VIP|VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M M M 0 M M M M M M M M M M M
21 | 20 | 19 | 18 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.

POPFx 223



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X The I/O privilege level was less than 3 and either VME was not
#GP enabled or the operand size was not 16-bit.
X IOPL was less than 3, and instruction execution set VIF while
rFLAGS.VIP was 1.
X
The operand size was 16-bit, IOPL was less than 3, and instruction
execution set TF in rFLAGS while VME was enabled.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

224 POPFx



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

PREFETCH Prefetch L1 Data-Cache Line
PREFETCHW

PREFETCH and PREFETCHW are 3DNow!™ instructions. They load a cache line into
the L1 data cache from the specified memory address. The PREFETCH instruction
loads a cache line even if the memS8 address is not aligned with the start of the line. If
a cache hit occurs, or if a memory fault is detected, no bus cycle is initiated, and the
instruction is treated as a NOP.

The PREFETCHW instruction loads the prefetched line and sets the cache-line state
to Modified, in anticipation of subsequent data writes to the line. The PREFETCH
instruction, by contrast, typically (depending on hardware implementation) sets the
cache-line state to Exclusive.

The opcodes for the instructions include the ModRM byte, and only the memory form
of ModRM is valid. The register form of ModRM causes an invalid-opcode exception.
Because there is no destination register, the three destination register field bits of the
ModRM byte define the type of prefetch to be performed. The bit patterns 000b and
001b define the PREFETCH and PREFETCHW instructions, respectively. All other
bit patterns are reserved for future use.

The reserved PREFETCH types do not result in an invalid-opcode exception if
executed. Instead, for forward compatibility with future processors that may
implement additional forms of the PREFETCH instruction, all reserved PREFETCH
types are implemented as synonyms of the basic PREFETCH type (the PREFETCH
instruction with type 000b).

The operation of these instructions is implementation-dependent. The processor
implementation can ignore or change these instructions. The size of the cache line
also depends on the implementation, with a minimum size of 32 bytes. For details on
the use of this instruction, see the data sheet or other software-optimization
documentation relating to particular hardware implementations.

Mnemonic Opcode Description
PREFETCH mem8 OF0D/0 Prefetch processor cache line into L1 data cache.
PREFETCHW mem8 OF 0D /1 Prefetch processor cache line into L1 data cache and mark it
modified.

PREFETCHx 225



AMDZU

AMD 64-Bit Technology

Related Instructions

24594  Rev. 3.02 August 2002

PREFETCHIevel
rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The AMD 3DNow!™ instructions are not supported, as
indicated by bit 31 of CPUID extended function 8000_0001.
X X X The operand was a register.
226 PREFETCHx




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

PREFETCH/evel Prefetch Data to Cache Level /Jevel

Loads a cache line from the specified memory address into the data-cache level
specified by the locality reference bits 5-3 of the ModRM byte. Table 3-15 on page 228
lists the locality reference options for the instruction.

This instruction loads a cache line even if the mem8 address is not aligned with the
start of the line. If the cache line is already contained in a cache level that is lower
than the specified locality reference, or if a memory fault is detected, a bus cycle is
not initiated and the instruction is treated as a NOP.

The operation of this instruction is implementation-dependent. The processor
implementation can ignore or change this instruction. The size of the cache line also
depends on the implementation, with a minimum size of 32 bytes. For details on the
use of this instruction, see the data sheet or other software-optimization
documentation relating to particular hardware implementations.

Mnemonic Opcode Description
PREFETCHNTA mem8 0F 18 /0 Move data closer to the processor using the NTA reference.
PREFETCHTO mem8 OF 18 /1 Move data closer to the processor using the TO reference.
PREFETCHT1 mem8 0F 18 /2 Move data closer to the processor using the T1 reference.
PREFETCHT2 mem8 OF 18/3 Move data closer to the processor using the T2 reference.

PREFETCHlevel 227



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table 3-15. Locality References for the Prefetch Instructions

Locality .
Reference Description

NTA Non-Temporal Access—Move the specified data into the processor with minimum
cache pollution. This is intended for data that will be used only once, rather than
repeatedly. The specific technique for minimizing cache pollution is
implementation-dependent and may include such techniques as allocating space
in a software-invisible buffer, allocating a cache line in only a single way, etc. For
details, see the software-optimization documentation for a particular hardware
implementation.

TO All Cache Levels—Move the specified data into all cache levels.

T Level 2 and Higher—Move the specified data into all cache levels except Oth level
(L1) cache.

T2 Level 3 and Higher—Move the specified data into all cache levels except Oth level
(L1) and 1st level (L2) caches.

Related Instructions
PREFETCH, PREFETCHW
rFLAGS Affected

None

Exceptions

None

228 PREFETCHlevel



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

PUSH Push onto Stack

Decrements the stack pointer and then copies the specified immediate value or the
value in the specified register or memory location to the top of the stack (the memory
location pointed to by SS:rSP).

The operand-size attribute determines the number of bytes pushed to the stack. The
stack-size attribute determines whether SP, ESP, or RSP is the stack pointer. The
address-size attribute is used only to locate the memory operand when pushing a
memory operand to the stack.

If the instruction pushes the stack pointer (rSP), the resulting value on the stack is
that of rSP before execution of the instruction.

There is a PUSH CS instruction but no corresponding POP CS. The RET (Far)
instruction pops a value from the top of stack into the CS register as part of its
operation.

In 64-bit mode, the operand size of all PUSH instructions defaults to 64 bits, and there
is no prefix available to encode a 32-bit operand size. Using the PUSH CS, PUSH DS,
PUSH ES, or PUSH SS instructions in 64-bit mode generates an invalid-opcode
exception.

Pushing an odd number of 16-bit operands when the stack address-size attribute is 32
results in a misaligned stack pointer.

Mnemonic Opcode Description

PUSH reg/mem16 FF/6 Push the contents of a 16-bit register or memory operand onto
the stack.

PUSH reg/mem32 FF /6 Push the contents of a 32-bit register or memory operand onto
the stack. (No prefix for encoding this in 64-bit mode.)

PUSH reg/memé64 FF/6 Push the contents of a 64-bit register or memory operand onto
the stack.

PUSH reg16 50 +w Push the contents of a 16-bit register onto the stack.

PUSH reg32 50 +rd Push the contents of a 32-bit register onto the stack. (No prefix
for encoding this in 64-bit mode.)

PUSH reg64 50 +rq Push the contents of a 64-bit register onto the stack.

PUSH imm8 6A Push an 8-bit immediate value (sign-extended to 16, 32, or 64

bits) onto the stack.

PUSH 229



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description
PUSH imm16 68 Push a 16-bit immediate value onto the stack.
PUSH imm32 68 Push a 32-bit immediate value onto the stack. (No prefix for
encoding this in 64-bit mode.)
PUSH immé64 68 Push a sign-extended 32-bit immediate value onto the stack.
PUSH CS OE Push the CS selector onto the stack. (Invalid in 64-bit mode.)
PUSH SS 16 Push the SS selector onto the stack. (Invalid in 64-bit mode.)
PUSH DS 1E Push the DS selector onto the stack. (Invalid in 64-bit mode.)
PUSH ES 06 Push the ES selector onto the stack. (Invalid in 64-bit mode.)
PUSH FS OF A0 Push the FS selector onto the stack.
PUSH GS OF A8 Push the GS selector onto the stack.
Related Instructions
POP
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X PUSH CS, PUSH DS, PUSH ES, or PUSH SS was executed in 64-bit
mode.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

230

PUSH




AMDZ1

24594 Rev. 3.02 August 2002

PUSHA
PUSHAD

AMD 64-Bit Technology

Push All GPRs onto Stack

Pushes the contents of the eAX, eCX, eDX, eBX, eSP (original value), eBP, eSI, and
eDI general-purpose registers onto the stack in that order. This instruction decrements
the stack pointer by 16 or 32 depending on operand size.

Using the PUSHA or PUSHAD instruction in 64-bit mode generates an invalid-opcode

exception.
Mnemonic Opcode Description
PUSHA 60 Push the contents of the AX, CX, DX, BX, original SP, BP, SI, and
Dl registers onto the stack.
(Invalid in 64-bit mode.)
PUSHAD 60 Push the contents of the EAX, ECX, EDX, EBX, original ESP, EBP,
ESI, and EDI registers onto the stack.
(Invalid in 64-bit mode.)
Related Instructions
POPA, POPAD
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

PUSHAx 231



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

PUSHF Push rFLAGS onto Stack
PUSHFD
PUSHFQ

Decrements the rSP register and copies the rFLAGS register (except for the VM and
RF flags) onto the stack. The instruction clears the VM and RF flags in the rFLAGS
image before putting it on the stack.

The instruction pushes 2, 4, or 8 bytes, depending on the operand size.

In 64-bit mode, this instruction defaults to a 64-bit operand size and there is no prefix
available to encode a 32-bit operand size.

In virtual-8086 mode, if system software has set the IOPL field to a value less than 3, a
general-protection exception occurs if application software attempts to execute
PUSHFx or POPFx while VME is not enabled or the operand size is not 16-bit.

Mnemonic Opcode Description
PUSHF 9C Push the FLAGS word onto the stack.
PUSHFD 9C Push the EFLAGS doubleword onto stack. (No prefix encoding
this in 64-bit mode.)
PUSHFQ 9C Push the RFLAGS quadword onto stack.
Action

// See “Pseudocode Definitions” on page 48.

PUSHF_START:

IF (REAL_MODE)
PUSHF_REAL

ELSIF (PROTECTED_MODE)
PUSHF_PROTECTED

ELSE // (VIRTUAL_MODE)
PUSHF_VIRTUAL

PUSHF_REAL:

PUSH.v ol1d_RFLAGS // Pushed with RF and VM cleared.
EXIT

PUSHF_PROTECTED:
PUSH.v old_RFLAGS // Pushed with RF cleared.
EXIT

232 PUSHFx



AMDZ1

24594 Rev. 3.02 August 2002

PUSHF_VIRTUAL:
IF (RFLAGS.IOPL=3)
{

AMD 64-Bit Technology

PUSH.v ol1d_RFLAGS // Pushed with RF,VM cleared.

EXIT
}
ELSIF ((CR4.VME=1)
{

&& (OPERAND_SIZE=16))

PUSH.v olTd_RFLAGS // Pushed with VIF in the IF position.
// Pushed with I0PL=3.

EXIT
}

ELSE // ((RFLAGS.IOPL<3) && ((CR4.VME=0) || (OPERAND_SIZE!=16)))

EXCEPTION [#GP(0)]

Related Instructions

POPF, POPFD, POPFQ
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X The 1/0 privilege level was less than 3 and either VME was not
#GP enabled or the operand size was not 16-bit.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

PUSHFx

233



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

RCL Rotate Through Carry Left

Rotates the bits of a register or memory location (first operand) to the left (more
significant bit positions) and through the carry flag by the number of bit positions in
an unsigned immediate value or the CL register (second operand). The bits rotated
through the carry flag are rotated back in at the right end (Isb) of the first operand
location.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

For 1-bit rotates, the instruction sets the OF flag to the exclusive OR of the CF bit
(after the rotate) and the most significant bit of the result. When the rotate count is
greater than 1, the OF flag is undefined.

Mnemonic Opcode Description

RCL reg/mem8,1 D0 /2 Rotate the 9 bits consisting of the carry flag and an 8-bit register
or memory location left 1 bit.

RCL reg/mems, CL D2 /2 Rotate the 9 bits consisting of the carry flag and an 8-bit register
or memory location left the number of bits specified in the CL
register.

RCL reg/mem8, imm8 C0/21b Rotate the 9 bits consisting of the carry flag and an 8-bit register

or memory location left the number of bits specified by an 8-bit
immediate value.

RCL reg/mem]6, 1 D1 /2 Rotate the 17 bits consisting of the carry flag and a 16-bit register
or memory location left 1 bit.

RCL reg/mem16, CL D3 /2 Rotate the17 bits consisting of the carry flag and a 16-bit register
or memory location left the number of bits specified in the CL
register.

RCL reg/memi6, imm8 C1/2ib Rotate the 17 bits consisting of the carry flag and a 16-bit register

or memory location left the number of bits specified by an 8-bit
immediate value.

RCL reg/mem32, 1 D1/2 Rotate the 33 bits consisting of the carry flag and a 32-bit register
or memory location left 1 bit.

RCL reg/mem32, CL D3 )2 Rotate 33 bits consisting of the carry flag and a 32-bit register or
memory location left the number of bits specified in the CL
register.

234 RCL



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description

RCL reg/mem32, imm8 C1/2ib Rotate the 33 bits consisting of the carry flag and a 32-bit register
or memory location left the number of bits specified by an 8-bit
immediate value.

RCL reg/mem64, 1 D1 /2 Rotate the 65 bits consisting of the carry flag and a 64-bit register
or memory location left 1 bit.

RCL reg/mem64, CL D3 /2 Rotate the 65 bits consisting of the carry flag and a 64-bit register
or memory location left the number of bits specified in the CL
register.

RCL reg/mem64, imm8 C1/2ib Rotates the 65 bits consisting of the carry flag and a 64-bit
register or memory location left the number of bits specified by
an 8-bit immediate value.

Related Instructions
RCR, ROL, ROR
rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

RCL 235



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

RCR Rotate Through Carry Right

Rotates the bits of a register or memory location (first operand) to the right (less
significant bit positions) and through the carry flag by the number of bit positions in
an unsigned immediate value or the CL register (second operand). The bits rotated
through the carry flag are rotated back in at the left end (msb) of the first operand
location.

The processor masks the upper three bits in the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

For 1-bit rotates, the instruction sets the OF flag to the exclusive OR of the CF flag
(before the rotate) and the most significant bit of the original value. When the rotate
count is greater than 1, the OF flag is undefined.

Mnemonic Opcode Description

RCR reg/mem8, 1 D0 /3 Rotate the 9 bits consisting of the carry flag and an 8-bit register
or memory location right 1 bit.

RCR reg/mem8,CL D2/3 Rotate the 9 bits consisting of the carry flag and an 8-bit register
or memory location right the number of bits specified in the CL
register.

RCR reg/mem8,mm8 C0/31b Rotate the 9 bits consisting of the carry flag and an 8-bit register

or memory location right the number of bits specified by an 8-bit
immediate value.

RCR reg/mem16,1 D1/3 Rotate the 17 bits consisting of the carry flag and a 16-bit register
or memory location right 1 bit.

RCR reg/mem16,CL D3 /3 Rotate the17 bits consisting of the carry flag and a 16-bit register
or memory location right the number of bits specified in the CL
register.

RCR reg/mem16, imm8 C1/3ib Rotate the 17 bits consisting of the carry flag and a 16-bit register

or memory location right the number of bits specified by an 8-bit
immediate value.

RCR reg/mem32,1 D1/3 Rotate the 33 bits consisting of the carry flag and a 32-bit register
or memory location right 1 bit.

RCR reg/mem32,CL D3 /3 Rotate 33 bits consisting of the carry flag and a 32-bit register or
memory location right the number of bits specified in the CL
register.

236 RCR



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description

RCR reg/mem32, imm8 C1/31b Rotate the 33 bits consisting of the carry flag and a 32-bit register
or memory location right the number of bits specified by an 8-bit
immediate value.

RCR reg/memé64,1 D1/3 Rotate the 65 bits consisting of the carry flag and a 64-bit register
or memory location right 1 bit.

RCR reg/mem64,CL D3 /3 Rotate 65 bits consisting of the carry flag and a 64-bit register or
memory location right the number of bits specified in the CL
register.

RCR reg/mem64, immé8 C1/3ib Rotate the 65 bits consisting of the carry flag and a 64-bit register
or memory location right the number of bits specified by an 8-bit
immediate value.

Related Instructions
RCL, ROR, ROL
rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

RCR 237



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

RET (Near) Near Return from Called Procedure

Returns from a procedure previously entered by a CALL near instruction. This form of
the RET instruction returns to a calling procedure within the current code segment.

This instruction pops the rIP from the stack, with the size of the pop determined by
the operand size. The new rIP is then zero-extended to 64 bits. The RET instruction
can accept an immediate value operand that it adds to the rSP after it pops the target
rIP. This action skips over any parameters previously passed back to the subroutine
that are no longer needed.

In 64-bit mode, the operand size defaults to 64 bits (eight bytes) without the need for a
REX prefix. No prefix is available to encode a 32-bit operand size in 64-bit mode.

See RET (Far) for information on far returns—returns to procedures located outside
of the current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
RET (& Near return to the calling procedure.
RET imm1i6 Qiw Near return to the calling procedure then pop of the specified

number of bytes from the stack.

Related Instructions

CALL (Near), CALL (Far), RET (Far)

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X The target offset exceeded the code segment limit or was non-
#GP canonical.

238 RET (Near)



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

RET (Near) 239



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

RET (Far) Far Return from Called Procedure

Returns from a procedure previously entered by a CALL Far instruction. This form of
the RET instruction returns to a calling procedure in a different segment than the
current code segment. It can return to the same CPL or to a less privileged CPL.

RET Far pops a target CS and rIP from the stack. If the new code segment is less
privileged than the current code segment, the stack pointer is incremented by the
number of bytes indicated by the immediate operand, if present; then a new SS and
rSP are also popped from the stack.

The final value of rSP is incremented by the number of bytes indicated by the
immediate operand, if present. This action skips over the parameters (previously
passed to the subroutine) that are no longer needed.

All stack pops are determined by the operand size. If necessary, the target rIP is zero-
extended to 64 bits before assuming program control.

If the CPL changes, the data segment selectors are set to NULL for any of the data
segments (DS, ES, FS, GS) not accessible at the new CPL.

See RET (Near) for information on near returns—returns to procedures located inside
the current code segment. For details about control-flow instructions, see “Control
Transfers” in Volume 1, and “Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description
RETF CB Far return to the calling procedure.
RETF immi6 CAiw Far return to the calling procedure, then pop of the specified

number of bytes from the stack.

Action

// Far returns (RETF)
// See “Pseudocode Definitions” on page 48.

RETF_START:

IF (REAL_MODE)
RETF_REAL_OR_VIRTUAL

ELSIF (PROTECTED_MODE)
RETF_PROTECTED

ELSE // (VIRTUAL_MODE)
RETF_REAL_OR_VIRTUAL

240 RET (Far)



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

RETF_REAL_OR_VIRTUAL:

IF (OPCODE = retf imml6)
temp_IMM = word-sized immediate specified in the instruction,
zero-extended to 64 bits
ELSE // (OPCODE = retf)
temp_IMM = 0

POP.v temp_RIP
POP.v temp_CS

IF (temp_RIP > CS.limit)
EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base temp_CS SHL 4

RSP.s = RSP + temp_IMM
RIP = temp_RIP
EXIT

RETF_PROTECTED:

IF (OPCODE = retf imml6)
temp_IMM = word-sized immediate specified in the instruction,
zero-extended to 64 bits
ELSE // (OPCODE = retf)
temp_IMM = 0

POP.v temp_RIP
POP.v temp_CS

temp_CPL = temp_CS.rpl

IF (CPL=temp_CPL)
{
CS = READ_DESCRIPTOR (temp_CS, iret_chk)

RSP.s = RSP + temp_IMM

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))
EXCEPTION [#GP(0)]
RIP = temp_RIP
EXIT
}
ELSE // (CPL!=temp_CPL)

RET (Far) 241



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

RSP.s = RSP + temp_IMM

POP.v temp_RSP
POP.v temp_SS

CS = READ_DESCRIPTOR (temp_CS, iret_chk)
CPL = temp_CPL

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))
EXCEPTION [#GP(0)]

SS = READ_DESCRIPTOR (temp_SS, ss_chk)
RSP.s = temp_RSP + temp_IMM

IF (changing CPL)
{
FOR (seg = ES, DS, FS, GS)
IF ((seg.attr.dpl < CPL) && ((seg.attr.type = ’data’)
|| (seg.attr.type = ’non-conforming-code’)))

{

seg = NULL // can’t use lower dpl data segment at higher cpl
}

}

RIP = temp_RIP
EXIT
}

Related Instructions

CALL (Near), CALL (Far), RET (Near)

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Segment not present, X The return code segment was marked not present.

#NP (selector)

Stack, #SS X X X A memory address exceeded the stack segment limit or was non-

canonical.
Stack, #SS (selector) X The return stack segment was marked not present.

242 RET (Far)



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-
#GP canonical.
General protection, X The return code selector was a null selector.
#GP
(selector) X The return stack selector was a null selector and the return mode was
non-64-bit mode or CPL was 3.
X The return code or stack descriptor exceeded the descriptor table
limit.
X The return code or stack selector’s Tl bit was set but the LDT selector
was a null selector.
X The segment descriptor for the return code was not a code segment.
X The RPL of the return code segment selector was less than the CPL.
X The return code segment was non-conforming and the segment
selector’s DPL was not equal to the RPL of the code segment’s
segment selector.
X The return code segment was conforming and the segment selector’s
DPL was greater than the RPL of the code segment'’s segment selector
X The segment descriptor for the return stack was not a writable data
segment.
X The stack segment descriptor DPL was not equal to the RPL of the
return code segment selector.
X The stack segment selector RPL was not equal to the RPL of the return
code segment selector.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned-memory reference was performed while alignment

checking was enabled.

RET (Far) 243



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

ROL Rotate Left

Rotates the bits of a register or memory location (first operand) to the left (more
significant bit positions) by the number of bit positions in an unsigned immediate
value or the CL register (second operand). The bits rotated out left are rotated back in
at the right end (Isb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, it masks
the upper two bits of the count, providing a count in the range of 0 to 63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated
out (the Isb of the result). For 1-bit rotates, the instruction sets the OF flag to the
exclusive OR of the CF bit (after the rotate) and the most significant bit of the result.
When the rotate count is greater than 1, the OF flag is undefined.

Mnemonic Opcode Description

ROL reg/mem8, 1 D0 /0 Rotate an 8-bit register or memory operand left 1 bit.

ROL reg/mems, CL D2 /0 Rotate an 8-bit register or memory operand left the number of
bits specified in the CL register.

ROL reg/mem8, imm8 Co/0ib Rotate an 8-bit register or memory operand left the number of
bits specified by an 8-bit immediate value.

ROL reg/memi6, 1 D1/0 Rotate a 16-bit register or memory operand left 1 bit.

ROL reg/memi6, CL D3 /0 Rotate a 16-bit register or memory operand left the number of
bits specified in the CL register.

ROL reg/mem16, imm8 C1/oib Rotate a 16-bit register or memory operand left the number of
bits specified by an 8-bit immediate value.

ROL reg/mem32, 1 D1/0 Rotate a 32-bit register or memory operand left 1 bit.

ROL reg/mem32, CL D3 /0 Rotate a 32-bit register or memory operand left the number of

bits specified in the CL register.

ROL reg/mem32, imm8 C1/0ib Rotate a 32-bit register or memory operand left the number of
bits specified by an 8-bit immediate value.

ROL reg/memé64, 1 D1/0 Rotate a 64-bit register or memory operand left 1 bit.

244 ROL



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
ROL reg/memé64, CL D3 /0 Rotate a 64-bit register or memory operand left the number of
bits specified in the CL register.
ROL reg/mem64, imm8 C1/oib Rotate a 64-bit register or memory operand left the number of
bits specified by an 8-bit immediate value.
Related Instructions
RCL, RCR, ROR
rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

ROL

245



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

ROR Rotate Right

Rotates the bits of a register or memory location (first operand) to the right (less
significant bit positions) by the number of bit positions in an unsigned immediate
value or the CL register (second operand). The bits rotated out right are rotated back
in at the left end (msb) of the first operand location.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

After completing the rotation, the instruction sets the CF flag to the last bit rotated
out (the msb of the result). For 1-bit rotates, the instruction sets the OF flag to the
exclusive OR of the two most significant bits of the result. When the rotate count is
greater than 1, the OF flag is undefined.

Mnemonic Opcode Description

ROR reg/mems, 1 DO /1 Rotate an 8-bit register or memory location right 1 bit.

ROR reg/mems, CL D2 /1 Rotate an 8-bit register or memory location right the number of
bits specified in the CL register.

ROR reg/mem8, imm8 Co/1ib Rotate an 8-bit register or memory location right the number of
bits specified by an 8-bit immediate value.

ROR reg/mem16, 1 D1 /1 Rotate a 16-bit register or memory location right 1 bit.

ROR reg/mem16, CL D31 Rotate a 16-bit register or memory location right the number of
bits specified in the CL register.

ROR reg/mem16, imm8 Ci/iib Rotate a 16-bit register or memory location right the number of
bits specified by an 8-bit immediate value.

ROR reg/mem32, 1 DI N Rotate a 32-bit register or memory location right 1 bit.

ROR reg/mem32, CL D3N Rotate a 32-bit register or memory location right the number of

bits specified in the CL register.

ROR reg/mem32, imm8 Ci/1ib Rotate a 32-bit register or memory location right the number of
bits specified by an 8-bit immediate value.

ROR reg/mem64, 1 D1 /1 Rotate a 64-bit register or memory location right 1 bit.

246 ROR



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
ROR reg/memé64, CL D3 /1 Rotate a 64-bit register or memory operand right the number of
bits specified in the CL register.
ROR reg/mem64, imm8 Cl1/1ib Rotate a 64-bit register or memory operand right the number of
bits specified by an 8-bit immediate value.
Related Instructions
RCL, RCR, ROL
rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

ROR

247



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SAHF Store AH into Flags

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the
corresponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). The
instruction ignores bits 1, 3, and 5 of register AH; it sets those bits in the EFLAGS
register to 1, 0, and 0, respectively.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description
SAHF 9E Loads the sign flag, the zero flag, the auxiliary flag, the parity flag,
and the carry flag from the AH register into the lower 8 bits of the
EFLAGS register.

(Invalid in 64-bit mode.)

Related Instructions

LAHF
rFLAGS Affected
ID |VIP| VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M| M M| M M
21 20 19 18 17 16 14 13-12 1 10 9 8
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

248 SAHF



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SAL Shift Left
SHL

Shifts the bits of a register or memory location (first operand) to the left through the
CF bit by the number of bit positions in an unsigned immediate value or the CL
register (second operand). The instruction discards bits shifted out of the CF flag. For
each bit shift, the SAL instruction clears the least-significant bit to 0. At the end of the
shift operation, the CF flag contains the last bit shifted out of the first operand.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

The effect of this instruction is multiplication by powers of two.

For 1-bit shifts, the instruction sets the OF flag to the exclusive OR of the CF bit (after
the shift) and the most significant bit of the result. When the shift count is greater
than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

SHL is an alias to the SAL instruction.

Mnemonic Opcode Description

SAL reg/mem8, 1 DO /4 Shift an 8-bit register or memory location left 1 bit.

SAL reg/mem8, CL D2 /4 Shift an 8-bit register or memory location left the number of bits
specified in the CL register.

SAL reg/mem8, imm8 Co/41b Shift an 8-bit register or memory location left the number of bits
specified by an 8-bit immediate value.

SAL reg/mem]6, 1 D1 /4 Shift a 16-bit register or memory location left 1 bit.

SAL reg/mem16, CL D3 /4 Shift a 16-bit register or memory location left the number of bits
specified in the CL register.

SAL reg/mem16, immé& C1/4ib Shift a 16-bit register or memory location left the number of bits
specified by an 8-bit immediate value.

SAL reg/mem32, 1 D1/4 Shift a 32-bit register or memory location left 1 bit.

SAL reg/mem32, CL D3 /4 Shift a 32-bit register or memory location left the number of bits

specified in the CL register.

SAL, SHL 249



AMDZU

AMD 64-Bit Technology

Mnemonic

SAL reg/mem32, imm8

SAL reg/memé64, 1
SAL reg/mem64, CL

SAL reg/memé64, imm8

SHL reg/mems, 1
SHL reg/mem8, CL

SHL reg/mem8, imm8

SHL reg/mem]6, 1
SHL reg/mem16, CL

SHL reg/mem 16, imm8

SHL reg/mem32, 1
SHL reg/mem32, CL

SHL reg/mem32, imm8

SHL reg/mem64, 1
SHL reg/mem64, CL

SHL reg/mem64, imm8

Related Instructions

SAR, SHR, SHLD, SHRD

Opcode
Cl1/41b

D1 /4
D3 /4

C1/41b

DO /4
D2 /4

C0/41ib

D1 /4
D3 /4

C1/41b

D1 /4
D3 /4

C1/4ib

D1 /4
D3 /4

C1/41b

24594  Rev. 3.02 August 2002

Description

Shift a 32-bit register or memory location left the number of bits
specified by an 8-bit immediate value.

Shift a 64-bit register or memory location left 1 bit.

Shift a 64-bit register or memory location left the number of bits
specified in the CL register.

Shift a 64-bit register or memory location left the number of bits
specified by an 8-bit immediate value.

Shift an 8-bit register or memory location by 1 bit.

Shift an 8-bit register or memory location left the number of bits
specified in the CL register.

Shift an 8-bit register or memory location left the number of bits
specified by an 8-bit immediate value.

Shift a 16-bit register or memory location left 1 bit.

Shift a 16-bit register or memory location left the number of bits
specified in the CL register.

Shift a 16-bit register or memory location left the number of bits
specified by an 8-bit immediate value.

Shift a 32-bit register or memory location left 1 bit.

Shift a 32-bit register or memory location left the number of bits
specified in the CL register.

Shift a 32-bit register or memory location left the number of bits
specified by an 8-bit immediate value.

Shift a 64-bit register or memory location left 1 bit.

Shift a 64-bit register or memory location left the number of bits
specified in the CL register.

Shift a 64-bit register or memory location left the number of bits
specified by an 8-bit immediate value.

250

SAL, SHL



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

rFLAGS Affected

ID | VIP| VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M U M M

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 m| 10| 9 8 4

Note:

are U.

Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

SAL, SHL

251



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SAR Shift Arithmetic Right

Shifts the bits of a register or memory location (first operand) to the right through the
CF bit by the number of bit positions in an unsigned immediate value or the CL
register (second operand). The instruction discards bits shifted out of the CF flag. At
the end of the shift operation, the CF flag contains the last bit shifted out of the first
operand.

The SAR instruction does not change the sign bit of the target operand. For each bit
shift, it copies the sign bit to the next bit, preserving the sign of the result.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

For 1-bit shifts, the instruction clears the OF flag to 0. When the shift count is greater
than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

Although the SAR instruction effectively divides the operand by a power of 2, the
behavior is different from the IDIV instruction. For example, shifting -11
(FFFFFFF5h) by two bits to the right (that is, divide -11 by 4), gives a result of
FFFFFFFDh, or -3, whereas the IDIV instruction for dividing -11 by 4 gives a result of
—2. This is because the IDIV instruction rounds off the quotient to zero, whereas the
SAR instruction rounds off the remainder to zero for positive dividends and to
negative infinity for negative dividends. So, for positive operands, SAR behaves like
the corresponding IDIV instruction. For negative operands, it gives the same result if
and only if all the shifted-out bits are zeroes; otherwise, the result is smaller by 1.

Mnemonic Opcode Description
SAR reg/mems, 1 D0 /7 Shift a signed 8-bit register or memory operand right 1 bit.
SAR reg/mem8, CL D2 /7 Shift a signed 8-bit register or memory operand right the number

of bits specified in the CL register.

SAR reg/mem8, imm8 Co/71b Shift a signed 8-bit register or memory operand right the number
of bits specified by an 8-bit immediate value.

SAR reg/mem16, 1 D1/7 Shift a signed 16-bit register or memory operand right 1 bit.

252 SAR



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Mnemonic Opcode Description
SAR reg/mem16, CL D3 /7 Shift a signed 16-bit register or memory operand right the
number of bits specified in the CL register.
SAR reg/mem16, imm8 C1/7ib Shift a signed 16-bit register or memory operand right the
number of bits specified by an 8-bit immediate value.
SAR reg/mem32, 1 D1/7 Shift a signed 32-bit register or memory location 1 bit.
SAR reg/mem32, CL D3 /7 Shift a signed 32-bit register or memory location right the
number of bits specified in the CL register.
SAR reg/mem32, imm8 C1/7ib Shift a signed 32-bit register or memory location right the
number of bits specified by an 8-bit immediate value.
SAR reg/mem64, 1 D1/7 Shift a signed 64-bit register or memory location right 1 bit.
SAR reg/mem64, CL D3 /7 Shift a signed 64-bit register or memory location right the

number of bits specified in the CL register.

SAR reg/memé64, imm8 C1/7ib Shift a signed 64-bit register or memory location right the
number of bits specified by an 8-bit immediate value.

Related Instructions
SAL, SHL, SHR, SHLLD, SHRD

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M| M U M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4

Note:

Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.

SAR 253



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

254

SAR



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SBB Subtract with Borrow

Subtracts an immediate value or the value in a register or a memory location (second
operand) from a register or a memory location (first operand), and stores the result in
the first operand location. If the carry flag (CF) is 1, the instruction subtracts 1 from
the result. Otherwise, it operates like SUB.

The SBB instruction sign-extends immediate value operands to the length of the first
operand size.

This instruction evaluates the result for both signed and unsigned data types and sets
the OF and CF flags to indicate a borrow in a signed or unsigned result, respectively. It
sets the SF flag to indicate the sign of a signed result.

This instruction is useful for multibyte (multiword) numbers because it takes into
account the borrow from a previous SUB instruction.

The forms of the SBB instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

SBB AL, imm8 1Cib Subtract an immediate 8-bit value from the AL register with
borrow.

SBB AX, imm16 1D iw Subtract an immediate 16-bit value from the AX register with
borrow.

SBB EAX, imm32 1D id Subtract an immediate 32-bit value from the EAX register with
borrow.

SBB RAX, imm32 1D id Subtract a sign-extended immediate 32-bit value from the RAX

register with borrow.

SBB reg/mem8, imm8 80/31b Subtract an immediate 8-bit value from an 8-bit register or
memory location with borrow.

SBB reg/mem 16, imm16 81 /3w Subtract an immediate 16-bit value from a 16-bit register or
memory location with borrow.

SBB reg/mem32, imm32 81/3id Subtract an immediate 32-bit value from a 32-bit register or
memory location with borrow.

SBB reg/mem64, imm32 81 /3id Subtract a sign-extended immediate 32-bit value from a 64-bit
register or memory location with borrow.

SBB 255



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description
SBB reg/mem 16, imm8 83/31b Subtract a sign-extended 8-bit immediate value from a 16-bit

register or memory location with borrow.

SBB reg/mem32, imm8 83/31b Subtract a sign-extended 8-bit immediate value from a 32-bit
register or memory location with borrow.

SBB reg/mem64, imm8 83/31b Subtract a sign-extended 8-bit immediate value from a 64-bit
register or memory location with borrow.

SBB reg/mem8, reg8 18/r Subtract the contents of an 8-bit register from an 8-bit register or
memory location with borrow.

SBB reg/mem16, req16 19/r Subtract the contents of a 16-bit register from a 16-bit register or
memory location with borrow.

SBB reg/mem32, reg32 19/r Subtract the contents of a 32-bit register from a 32-bit register or
memory location with borrow.

SBB reg/mem64, reg64 19/r Subtract the contents of a 64-bit register from a 64-bit register or
memory location with borrow.

SBB reg8, reg/mem8 1A/r Subtract the contents of an 8-bit register or memory location
from the contents of an 8-bit register with borrow.

SBB regi6, reg/mem16 1B /r Subtract the contents of a 16-bit register or memory location
from the contents of an 16-bit register with borrow.

SBB reg32, req/mem32 1B/r Subtract the contents of a 32-bit register or memory location
from the contents of an 32-bit register with borrow.

SBB reg64, reg/mem64 1B /r Subtract the contents of a 64-bit register or memory location
from the contents of an 64-bit register with borrow.

Related Instructions
SUB, ADD, ADC

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M MM M| M| M
21 |20 | 19 | 18 [ 17 | 16 | 14 13-12 1mj| 109 8 7

Note:

Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.

256 SBB



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.

X The destination operand was in a non-writable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

SBB 257



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SCAS Scan String
SCASB

SCASW

SCASD

SCASQ

Compares the AL, AX, EAX, or RAX register with the byte, word, doubleword, or
quadword pointed to by ES:rDI, sets the status flags in the rFLAGS register according
to the results, and then increments or decrements the rDI register according to the
state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the rDI register; otherwise, it
decrements it. The instruction increments or decrements the rDI register by 1, 2, 4, or
8, depending on the size of the operands.

The forms of the SCASx instruction with an explicit operand address the operand at
ES:rDI. The explicit operand serves only to specify the size of the values being
compared.

The no-operands forms of the instruction use the ES:rDI registers to point to the value
to be compared. The mnemonic determines the size of the operands and the specific
register containing the other comparison value.

For block comparisons, the SCASx instructions support the REPE or REPZ prefixes
(they are synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For
details about the REP prefixes, see “Repeat Prefixes” on page 10. A SCASx
instruction can also operate inside a loop controlled by the LOOPcc instruction.

Mnemonic Opcode Description

SCAS mem8 AE Compare the contents of the AL register with the byte at ES:rDI,
and then increment or decrement rDI.

SCAS mem16 AF Compare the contents of the AX register with the word at ES:rDI,
and then increment or decrement rDI.

SCAS mem32 AF Compare the contents of the EAX register with the doubleword at
ES:rDI, and then increment or decrement rDI.

SCAS memé64 AF Compare the contents of the RAX register with the quadword at
ES:rDI, and then increment or decrement rDI.

258 SCASX



AMDZ1

24594 Rev. 3.02 August 2002

Mnemonic Opcode
SCASB AE
SCASW AF
SCASD AF
SCASQ AF

Related Instructions

Description

AMD 64-Bit Technology

Compare the contents of the AL register with the byte at ES:rDI,
and then increment or decrement rDI.

Compare the contents of the AX register with the word at ES:rDI,
and then increment or decrement rDI.

Compare the contents of the EAX register with the doubleword at
ES:rDI, and then increment or decrement rDI.

Compare the contents of the RAX register with the quadword at
ES:rDI, and then increment or decrement rDI.

CMP, CMPSx
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M| M| M| M
21 20 19 18 17 16 14 13-12 11 10 9 8 7
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X A null ES segment was used to reference memory.
#GP
X X X A memory address exceeded the ES segment limit or was non-
canonical.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

SCASx

259



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SETcc Set Byte on Condition

Checks the status flags in the rFLAGS register and, if the flags meet the condition
specified in the mnemonic (cc), sets the value in the specified 8-bit memory location or
register to 1. If the flags do not meet the specified condition, SETcc clears the memory
location or register to 0.

Mnemonics with the A (above) and B (below) tags are intended for use when
performing unsigned integer comparisons; those with G (greater) and L (less) tags are
intended for use with signed integer comparisons.

Software typically uses the SETcc instructions to set logical indicators. Like the
CMOVcc instructions (page 103), the SETcc instructions can replace two
instructions—a conditional jump and a move. Replacing conditional jumps with
conditional sets can help avoid branch-prediction penalties that may result from
conditional jumps.

If the logical value “true” (logical one) is represented in a high-level language as an
integer with all bits set to 1, software can accomplish such representation by first
executing the opposite SETcc instruction—for example, the opposite of SETZ is
SETNZ—and then decrementing the result.

A ModR/M byte is used to identify the operand. The reg field in the ModR/M byte is
unused.

Mnemonic Opcode Description
SETO reg/mem8 0F 90 Set byte if overflow (OF =1).
SETNO reg/mem8 OF 91 Set byte if not overflow (OF = 0).
SETB reg/mem8 OF 92 Set byte if below (CF =1).
SETC reg/mem8 Set byte if carry (CF=1).
SETNAE reg/mem8 Set byte if not above or equal (CF =1).
SETNB reg/mem8 OF 93 Set byte if not below (CF = 0).
SETNC reg/mem8 Set byte if not carry (CF = 0).
SETAE reg/mem8 Set byte if above or equal (CF =0).
SETZ reg/mem8 OF 94 Set byte if zero (ZF =1).
SETE reg/mem8 Set byte if equal (ZF =1).
SETNZ reg/mem8 0F 95 Set byte if not zero (ZF = 0).
SETNE reg/mem8 Set byte if not equal (ZF =0).

260 SETcc



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
SETBE reg/mem8 OF 96 Set byte if below or equal (CF=1orZF=1).
SETNA reg/mem8 Set byte if not above (CF=1or ZF=1).
SETNBE reg/mem8 OF 97 Set byte if not below or equal (CF =0 and ZF = 0).
SETA reg/mem8 Set byte if above (CF=0and ZF =0).
SETS reg/mem8 OF 98 Set byte if sign (SF=1).
SETNS reg/mem8 0F 99 Set byte if not sign (SF = 0).
SETP reg/mem8 OF 9A Set byte if parity (PF =1).
SETPE reg/mem8 Set byte if parity even (PF =1).
SETNP reg/mem8 OF 9B Set byte if not parity (PF =0).
SETPO reg/mem8 Set byte if parity odd (PF = 0).
SETL reg/mem8 0F 9C Set byte if less (SF <> OF).
SETNGE reg/mem8 Set byte if not greater or equal (SF <> OF).
SETNL reg/mem8 0F 9D Set byte if not less (SF = OF).
SETGE reg/mem8 Set byte if greater or equal (SF = OF).
SETLE reg/mem8 OF 9E Set byte if less or equal (ZF =1 or SF <> OF).
SETNG reg/mem8 Set byte if not greater (ZF = 1 or SF <> OF).
SETNLE reg/mem8 OF 9F Set byte if not less or equal (ZF = 0 and SF = OF).
SETG reg/mem8 Set byte if greater (ZF = 0 and SF = OF).
Related Instructions
None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

SETcc 261



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.

X The destination operand was in a non-writable segment.

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

262 SETcc



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SFENCE Store Fence

Acts as a barrier to force strong memory ordering (serialization) between store
instructions preceding the SFENCE and store instructions that follow the SFENCE. A
weakly-ordered memory system allows hardware to reorder reads and writes between
the processor and memory. The SFENCE instruction guarantees that the system
completes all previous stores before executing subsequent stores.

The SFENCE instruction is weakly-ordered with respect to load instructions, data and
instruction prefetches, and the LFENCE instruction. Speculative loads initiated by
the processor, or specified explicitly using cache-prefetch instructions, can be
reordered around an SFENCE.

In addition to store instructions, SFENCE is strongly ordered with respect to other
SFENCE instructions, MFENCE instructions, and serializing instructions.

Support for the SFENCE instruction is indicated when the SSE bit (bit 25) is set to 1 in
EDX after executing CPUID standard function 1.

Mnemonic Opcode Description

SFENCE OF AE F8 Force strong ordering of (serialized) store operations.

Related Instructions

LFENCE, MFENCE
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid Opcode, #UD | X X X The SSE instructions are not supported, as indicated by bit 25 in

CPUID standard function 1 and the AMD extensions to MMX are not
supported, as indicated by bit 22 of CPUID extended function
8000_0001.

SFENCE 263



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SHL Shift Left

This instruction is synonymous with the SAL instruction. For information, see “SAL
SHL” on page 249.

264 SHL



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SHLD Shift Left Double

Shifts the bits of a register or memory location (first operand) to the left by the
number of bit positions in an unsigned immediate value or the CL register (third
operand), and shifts in a bit pattern (second operand) from the right. At the end of the
shift operation, the CF flag contains the last bit shifted out of the first operand.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63. If the masked count is greater than the operand size, the result in the destination
register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the operand being shifted changes, the instruction sets
the OF flag to 1. If the count is greater than 1, OF is undefined.

Mnemonic Opcode Description

SHLD reg/mem]6, reg16, imm8 OF A4 /rib Shift bits of a 16-bit destination register or memory operand to
the left the number of bits specified in an 8-bit immediate value,
while shifting in bits from the second operand.

SHLD reg/mem]6, regi6, CL OF A5 /r Shift bits of a 16-bit destination register or memory operand to
the left the number of bits specified in the CL register, while
shifting in bits from the second operand.

SHLD reg/mem32, reg32, imm8 OF A4 /rib Shift bits of a 32-bit destination register or memory operand to
the left the number of bits specified in an 8-bit immediate value,
while shifting in bits from the second operand.

SHLD reg/mem32, reg32, CL OF A5 /r Shift bits of a 32-bit destination register or memory operand to
the left the number of bits specified in the CL register, while
shifting in bits from the second operand.

SHLD reg/mem64, reg64, imm8 OF A4 /rib Shift bits of a 64-bit destination register or memory operand to
the left the number of bits specified in an 8-bit immediate value,
while shifting in bits from the second operand.

SHLD reg/memé64, regé4, CL OF A5 /r Shift bits of a 64-bit destination register or memory operand to
the left the number of bits specified in the CL register, while
shifting in bits from the second operand.

SHLD 265



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Related Instructions

SHRD, SAL, SAR, SHR, SHL

rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M| M|U| M| M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Notgs: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
lags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

266 SHLD



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SHR Shift Right

Shifts the bits of a register or memory location (first operand) to the right through the
CF bit by the number of bit positions in an unsigned immediate value or the CL
register (second operand). The instruction discards bits shifted out of the CF flag. At
the end of the shift operation, the CF flag contains the last bit shifted out of the first
operand.

For each bit shift, the instruction clears the most-significant bit to 0.
The effect of this instruction is unsigned division by powers of two.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the

processor masks the upper two bits of the count, providing a count in the range of 0 to
63.

For 1-bit shifts, the instruction sets the OF flag to the most-significant bit of the
original value. If the count is greater than 1, the OF flag is undefined.

If the shift count is 0, no flags are modified.

Mnemonic Opcode Description

SHR reg/mem8, 1 D0 /5 Shift an 8-bit register or memory operand right 1 bit.

SHR reg/mem8, CL D2 /5 Shift an 8-bit register or memory operand right the number of
bits specified in the CL register.

SHR reg/mem8, immé& Co/51b Shift an 8-bit register or memory operand right the number of
bits specified by an 8-bit immediate value.

SHR reg/mem16, 1 D1/5 Shift a 16-bit register or memory operand right 1 bit.

SHR reg/mem16, CL D3 /5 Shift a 16-bit register or memory operand right the number of
bits specified in the CL register.

SHR reg/mem16, imm8 C1/5ib Shift a 16-bit register or memory operand right the number of
bits specified by an 8-bit immediate value.

SHR reg/mem32, 1 D1/5 Shift a 32-bit register or memory operand right 1 bit.

SHR reg/mem32, CL D3 /5 Shift a 32-bit register or memory operand right the number of

bits specified in the CL register.

SHR reg/mem32, imma8 C1/5ib Shift a 32-bit register or memory operand right the number of
bits specified by an 8-bit immediate value.

SHR 267



AMDZU

AMD 64-Bit Technology

SHR reg/memé64, 1

SHR reg/memé64, CL

SHR reg/memé64, imm8

Related Instructions

D1/5
D3 /5

C1/51b

SHL, SAL, SAR, SHLD, SHRD

24594  Rev. 3.02 August 2002

Shift a 64-bit register or memory operand right 1 bit.

Shift a 64-bit register or memory operand right the number of
bits specified in the CL register.

Shift a 64-bit register or memory operand right the number of
bits specified by an 8-bit immediate value.

rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M U M M
21 20 19 18 17 16 14 13-12 1 10 9 8 4
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

268

SHR



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SHRD shift Right Double

Shifts the bits of a register or memory location (first operand) to the right by the
number of bit positions in an unsigned immediate value or the CL register (third
operand), and shifts in a bit pattern (second operand) from the left. At the end of the
shift operation, the CF flag contains the last bit shifted out of the first operand.

The processor masks the upper three bits of the count operand, thus restricting the
count to a number between 0 and 31. When the destination is 64 bits wide, the
processor masks the upper two bits of the count, providing a count in the range of 0 to
63. If the masked count is greater than the operand size, the result in the destination
register is undefined.

If the shift count is 0, no flags are modified.

If the count is 1 and the sign of the value being shifted changes, the instruction sets
the OF flag to 1. If the count is greater than 1, the OF flag is undefined.

Mnemonic Opcode Description

SHRD reg/mem16, req16, immé8 OF AC/r ib Shift bits of a 16-bit destination register or memory operand to
the right the number of bits specified in an 8-bit immediate
value, while shifting in bits from the second operand.

SHRD reg/mem]6, regi6, CL OF AD /r Shift bits of a 16-bit destination register or memory operand to
the right the number of bits specified in the CL register, while
shifting in bits from the second operand.

SHRD reg/mem32, reg32, imm8 OF AC/r ib Shift bits of a 32-bit destination register or memory operand to
the right the number of bits specified in an 8-bit immediate
value, while shifting in bits from the second operand.

SHRD reg/mem32, reg32, CL OF AD /r Shift bits of a 32-bit destination register or memory operand to
the right the number of bits specified in the CL register, while
shifting in bits from the second operand.

SHRD reg/mem64, reg64, imm8 OF AC/r ib Shift bits of a 64-bit destination register or memory operand to
the right the number of bits specified in an 8-bit immediate
value, while shifting in bits from the second operand.

SHRD reg/mem64, reg64, CL OF AD /r Shift bits of a 64-bit destination register or memory operand to
the right the number of bits specified in the CL register, while
shifting in bits from the second operand.

SHRD 269



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Related Instructions

SHLD, SHR, SHL, SAR, SAL

rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M| M|U| M| M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Notgs: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
lags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

270 SHRD



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
STC Set Carry Flag
Sets the carry flag (CF) in the rFLAGS register to one.
Mnemonic Opcode Description
STC F9 Set the carry flag (CF) to one.
Related Instructions
CLC, CMC
rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
1
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0

flags are U.

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

Exceptions

None

STC

271



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

STD Set Direction Flag

Set the direction flag (DF) in the rFLAGS register to 1. If the DF flag is 0, each
iteration of a string instruction increments the data pointer (index registers rSI or
rDI). If the DF flag is 1, the string instruction decrements the pointer. Use the CLD
instruction before a string instruction to make the data pointer increment.

Mnemonic Opcode Description

STD FD Set the direction flag (DF) to one.
Related Instructions
CLD, INSx, LODSx, MOVSx, OUTSx, SCASx, STOSx, CMPSx

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF

1

21 | 20 | 19 | 18 17 16 | 14 13-12 11 10 9 8 7 6 4 2 0

Note:

Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.

Exceptions

None

272 STD




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

STOS Store String
STOSB

STOSW

STOSD

STOSQ

Copies a byte, word, doubleword, or quadword from the AL, AX, EAX, or RAX
registers to the memory location pointed to by ES:rDI and increments or decrements
the rDI register according to the state of the DF flag in the rFLAGS register.

If the DF flag is 0, the instruction increments the pointer; otherwise, it decrements the
pointer. It increments or decrements the pointer by 1, 2, 4, or 8, depending on the size
of the value being copied.

The forms of the STOSx instruction with an explicit operand use the operand only to
specify the type (size) of the value being copied.

The no-operands forms specify the type (size) of the value being copied with the
mnemonic.

The STOSx instructions support the REP prefixes. For details about the REP prefixes,
see “Repeat Prefixes” on page 10. The STOSx instructions can also operate inside a
LOOPcc instruction.

Mnemonic Opcode Description

STOS reg8 AA Store the contents of the AL register to ES:rDI, and then
increment or decrement rDlI.

STOS regi6 AB Store the contents of the AX register to ES:rDI, and then
increment or decrement rDI.

STOS reg32 AB Store the contents of the EAX register to ES:rDI, and then
increment or decrement rDlI.

STOS reg64 AB Store the contents of the RAX register to ES:rDI, and then
increment or decrement rDI.

STOSB AA Store the contents of the AL register to ES:rDI, and then
increment or decrement rDlI.

STOSW AB Store the contents of the AX register to ES:rDI, and then
increment or decrement rDI.

STOSx 273



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
STOSD AB Store the contents of the EAX register to ES:rDI, and then
increment or decrement rDI.
STOSQ AB Store the contents of the RAX register to ES:rDI, and then
increment or decrement rDI.
Related Instructions
LODSx, MOVSx
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded the ES segment limit or was non-
#GP canonical.
X The ES segment was a non-writable segment.
X A null ES segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

274

STOSx



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SUB Subtract

Subtracts an immediate value or the value in a register or memory location (second
operand) from a register or a memory location (first operand) and stores the result in
the first operand location. An immediate value is sign-extended to the length of the
first operand.

This instruction evaluates the result for both signed and unsigned data types and sets
the OF and CF flags to indicate a borrow in a signed or unsigned result, respectively. It
sets the SF flag to indicate the sign of a signed result.

The forms of the SUB instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

SUB AL, imm8 2Cib Subtract an immediate 8-bit value from the AL register and store
the result in AL.

SUB AX, imm16 2D iw Subtract an immediate 16-bit value from the AX register and store
the result in AX.

SUB EAX, imm32 2D id Subtract an immediate 32-bit value from the EAX register and
store the result in EAX.

SUB RAX, imm32 2D id Subtract a sign-extended immediate 32-bit value from the RAX
register and store the result in RAX.

SUB reg/mem8, imm8 80/51ib Subtract an immediate 8-bit value from an 8-bit destination
register or memory location.

SUB reg/mem 16, imm16 81 /5iw Subtract an immediate 16-bit value from an 16-bit destination
register or memory location.

SUB reg/mem32, imm32 81/5id Subtract an immediate 32-bit value from an 32-bit destination
register or memory location.

SUB reg/mem64, imm32 81 /5id Subtract a sign-extended immediate 32-bit value from an 64-bit
destination register or memory location.

SUB reg/mem 16, imm8 83/51b Subtract a sign-extended immediate 8-bit value from a 16-bit
register or memory location.

SUB reg/mem32, imm8 83/51b Subtract a sign-extended immediate 8-bit value from a 32-bit
register or memory location.

SUB reg/mem64, imm8 83/51b Subtract a sign-extended immediate 8-bit value from a 64-bit
register or memory location.

SuB 275



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description
SUB reg/mem8, reg8 28/r Subtract the contents of an 8-bit register from an 8-bit destination

register or memory location.

SUB reg/mem 16, reg16 29/r Subtract the contents of a 16-bit register from a 16-bit destination
register or memory location.

SUB reg/mem32, reg32 29/r Subtract the contents of an 32-bit register from a 32-bit
destination register or memory location.

SUB reg/mem64, req64 29/r Subtract the contents of an 64-bit register from a 64-bit
destination register or memory location.

SUB reg8, reg/mem8 2A /r Subtract the contents of an 8-bit register or memory operand
from an 8-bit destination register.

SUB reg16, req/mem16 2B/r Subtract the contents of a 16-bit register or memory operand
from a 16-bit destination register.

SUB reg32, reg/mem32 2B /r Subtract the contents of a 32-bit register or memory operand
from a 32-bit destination register.

SUB reg64, req/mem64 2B/r Subtract the contents of a 64-bit register or memory operand
from a 64-bit destination register.

Related Instructions
ADC, ADD, SBB

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M| M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.

276 SuB



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.

X The destination operand was in a non-writable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking is enabled.

SuB 277



AMDA
AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

TEST Test Bits

Performs a bit-wise logical AND on the value in a register or memory location (first
operand) with an immediate value or the value in a register (second operand) and sets
the flags in the rFLAGS register based on the result. While the AND instruction
changes the contents of the destination and the flag bits, the TEST instruction
changes only the flag bits.

Mnemonic Opcode Description

TEST AL, imm8 A8 ib AND an immediate 8-bit value with the contents of the AL
register and set rFLAGS to reflect the result.

TEST AX, imm 16 A9 jw AND an immediate 16-bit value with the contents of the AX
register and set rFLAGS to reflect the result.

TEST EAX, imm32 A9 id AND an immediate 32-bit value with the contents of the EAX
register and set rFLAGS to reflect the result.

TEST RAX, imm32 A9 id AND a sign-extended immediate 32-bit value with the contents
of the RAX register and set rFLAGS to reflect the result.

TEST reg/mem8, imm8 F6 /0 ib AND an immediate 8-bit value with the contents of an 8-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem 16, imm16 F7 /0 iw AND an immediate 16-bit value with the contents of a 16-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem32, imm32 F7 /0id AND an immediate 32-bit value with the contents of a 32-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem64, imm32 F7 /0id AND a sign-extended immediate32-bit value with the contents of
a 64-bit register or memory operand and set rFLAGS to reflect
the result.

TEST reg/mem8, reg8 84/r AND the contents of an 8-bit register with the contents of an 8-bit

register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem16, req16 85/r AND the contents of a 16-bit register with the contents of a 16-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem32, reg32 85/r AND the contents of a 32-bit register with the contents of a 32-bit
register or memory operand and set rFLAGS to reflect the result.

TEST reg/mem64, reg64 85/r AND the contents of a 64-bit register with the contents of a 64-bit
register or memory operand and set rFLAGS to reflect the result.

278 TEST



AMDZ1

24594 Rev. 3.02 August 2002

Related Instructions

AMD 64-Bit Technology

AND, CMP

rFLAGS Affected

ID |VIP| VIF| AC | VM | RF | NT 10PL OF | DF IF TF | SF | ZF | AF | PF | CF
0 M M U M 0

21 120 | 19 | 18 | 17 | 16 | 14 13-12 m| 10| 9 8 7 6 4 2 0

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined

flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

TEST

279



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

XADD Exchange and Add

Exchanges the contents of a register (second operand) with the contents of a register
or memory location (first operand), computes the sum of the two values, and stores the
result in the first operand location.

The forms of the XADD instruction that write to memory support the LOCK prefix.
For details about the LOCK prefix, see “Lock Prefix” on page 10.

Mnemonic Opcode Description

XADD reg/mem8, reg8 OF CO/r Exchange the contents of an 8-bit register with the contents of 8-
bit destination register or memory operand and load their sum
into the destination.

XADD reg/mem16, reqi16 OFCl/r Exchange the contents of a 16-bit register with the contents of a
16-bit destination register or memory operand and load their
sum into the destination.

XADD reg/mem32, reg32 OF C1 /r Exchange the contents of a 32-bit register with the contents of a
32-bit destination register or memory operand and load their
sum into the destination.

XADD reg/mem64, req64 OFCl/r Exchange the contents of a 64-bit register with the contents of a
64-bit destination register or memory operand and load their
sum into the destination.

Related Instructions

None

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M| M M

21 | 20 | 19 | 18 17 16 | 14 13-12 11 10 9 8 7 6 4 2

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined
flags are U.

280 XADD



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.

X The destination operand was in a non-writable segment.

A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

XADD 281



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

XCHG Exchange

Exchanges the contents of the two operands. The operands can be two general-
purpose registers or a register and a memory location. If either operand references
memory, the processor locks automatically, whether or not the LOCK prefix is used
and independently of the value of IOPL. For details about the LOCK prefix, see “Lock
Prefix” on page 10.

The x86 architecture commonly uses the XCHG EAX, EAX instruction (opcode 90h) as
a one-byte NOP. In 64-bit mode, the processor treats opcode 90h as a true NOP only if
it would exchange rAX with itself. Without this special handling, the instruction
would zero-extend the upper 32 bits of RAX, and thus it would not be a true no-
operation. Opcode 90h can still be used to exchange rAX and r8 if the appropriate
REX prefix is used.

This special handling does not apply to the two-byte ModRM form of the XCHG
instruction.

Mnemonic Opcode Description

XCHG AX, regi6 90 +w Exchange the contents of the AX register with the contents of a
16-bit register.

XCHG regi6, AX 90 +w Exchange the contents of a 16-bit register with the contents of the
AX register.

XCHG EAX, reg32 90 +rd Exchange the contents of the EAX register with the contents of a
32-bit register.

XCHG reg32, EAX 90 +rd Exchange the contents of a 32-bit register with the contents of the
EAX register.

XCHG RAX, reg64 90 +rq Exchange the contents of the RAX register with the contents of a
64-bit register.

XCHG reg64, RAX 90 +rq Exchange the contents of a 64-bit register with the contents of
the RAX register.

XCHG reg/mems8, reg8 86,/r Exchange the contents of an 8-bit register with the contents of an

8-bit register or memory operand.

XCHG reg8, reqg/mem8 86,/r Exchange the contents of an 8-bit register or memory operand
with the contents of an 8-bit register.

XCHG reg/memi6, reg16 87 /r Exchange the contents of a 16-bit register with the contents of a
16-bit register or memory operand.

282 XCHG



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Mnemonic Opcode Description
XCHG reg16, reg/mem16 87/r Exchange the contents of a 16-bit register or memory operand
with the contents of a 16-bit register.
XCHG reg/mem32, reg32 87 /r Exchange the contents of a 32-bit register with the contents of a
32-bit register or memory operand.
XCHG reg32, reg/mem32 87/r Exchange the contents of a 32-bit register or memory operand
with the contents of a 32-bit register.
XCHG reg/memé64, reg64 87 /r Exchange the contents of a 64-bit register with the contents of a
64-bit register or memory operand.
XCHG reg64, reg/mem64 87/r Exchange the contents of a 64-bit register or memory operand
with the contents of a 64-bit register.
Related Instructions
BSWAP, XADD
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The source or destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking was enabled.

XCHG 283



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

XLAT Translate Table Index
XLATB

Uses the unsigned integer in the AL register as an offset into a table and copies the
contents of the table entry at that location to the AL register.

The instruction uses seg:[rBX] as the base address of the table. The value of seg
defaults to the DS segment, but may be overridden by a segment prefix.

This instruction writes AL without changing RAX][63:8]. This instruction ignores
operand size.

The single-operand form of the XLAT instruction uses the operand to document the
segment and address size attribute, but it uses the base address specified by the rBX
register.

This instruction is often used to translate data from one format (such as ASCII) to
another (such as EBCDIC).

Mnemonic Opcode Description
XLAT mem8 D7 Set AL to the contents of DS:[rBX + unsigned AL].
XLATB D7 Set AL to the contents of DS:[rBX + unsigned AL].

Related Instructions

None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.

284 XLATx




AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

checking was enabled.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

XLATx

285



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

XOR Logical Exclusive OR

Performs a bitwise exclusive OR operation on both operands and stores the result in
the first operand location. The first operand can be a register or memory location. The
second operand can be an immediate value, a register, or a memory location. XOR-ing
aregister with itself clears the register.

The forms of the XOR instruction that write to memory support the LOCK prefix. For
details about the LOCK prefix, see “Lock Prefix” on page 10.

The instruction performs the following operation for each bit:

X Y XXORY

0 0 0

0 1 1

1 0 1

1 1 0
Mnemonic Opcode Description

XOR AL, imm8 34ib XOR the contents of AL with an immediate 8-bit operand and
store the result in AL.

XOR AX, immi6 35w XOR the contents of AX with an immediate 16-bit operand and
store the result in AX.

XOR EAX, imm32 35id XOR the contents of EAX with an immediate 32-bit operand and
store the result in EAX.

XOR RAX, imm32 351id XOR the contents of RAX with a sign-extended immediate 32-bit
operand and store the result in RAX.

XOR reg/mem8, imm8 80/61b XOR the contents of an 8-bit destination register or memory
operand with an 8-bit immediate value and store the result in the
destination.

XOR reg/mem16, imm16 81 /6w XOR the contents of a 16-bit destination register or memory
operand with a 16-bit immediate value and store the result in the
destination.

286 XOR



AMDZ1

24594 Rev. 3.02 August 2002

Mnemonic

XOR reg/mem32, imm32

XOR reg/mem64, imm32

XOR reg/mem16, imm8

XOR reg/mem32, imm8

XOR reg/mem64, imm8

XOR reg/mem8, reg8

XOR reg/mem]i6, regi16

XOR reg/mem32, reg32

XOR reg/memé64, reg64

XOR reg8, reg/mem8

XOR reg16, reg/memI16

XOR reg32, reg/mem32

XOR reg64, req/mem64

Opcode
81/6id

81 /6id

83 /61b

83 /6ib

83 /6 1b

30/r

31/r

3/

31/r

32/r

33/r

33)r

33/r

AMD 64-Bit Technology

Description

XOR the contents of a 32-bit destination register or memory
operand with a 32-bit immediate value and store the result in the
destination.

XOR the contents of a 64-bit destination register or memory
operand with a sign-extended 32-bit immediate value and store
the result in the destination.

XOR the contents of a 16-bit destination register or memory
operand with a sign-extended 8-bit immediate value and store
the result in the destination.

XOR the contents of a 32-bit destination register or memory
operand with a sign-extended 8-bit immediate value and store
the result in the destination.

XOR the contents of a 64-bit destination register or memory
operand with a sign-extended 8-bit immediate value and store
the result in the destination.

XOR the contents of an 8-bit destination register or memory
operand with the contents of an 8-bit register and store the result
in the destination.

XOR the contents of a 16-bit destination register or memory
operand with the contents of a 16-bit register and store the result
in the destination.

XOR the contents of a 32-bit destination register or memory
operand with the contents of a 32-bit register and store the result
in the destination.

XOR the contents of a 64-bit destination register or memory
operand with the contents of a 64-bit register and store the result
in the destination.

XOR the contents of an 8-bit destination register with the
contents of an 8-bit register or memory operand and store the
results in the destination.

XOR the contents of a 16-bit destination register with the contents
of a 16-bit register or memory operand and store the results in
the destination.

XOR the contents of a 32-bit destination register with the
contents of a 32-bit register or memory operand and store the
results in the destination.

XOR the contents of a 64-bit destination register with the
contents of a 64-bit register or memory operand and store the
results in the destination.

XOR 287



AMDZU

AMD 64-Bit Technology

Related Instructions

24594  Rev. 3.02 August 2002

OR, AND, NOT, NEG
rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M|U/|M/|oO
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment

checking was enabled.

288

XOR



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

4 System Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes,
affected flags, and possible exceptions generated by the system
instructions. The system instructions are used to establish the
operating mode, access processor resources, handle program
and system errors, and manage memory. Many of these
instructions can only be executed by privileged software, such
as the operating system kernel and interrupt handlers, that run
at the highest privilege level. Only system instructions can
access certain processor resources, such as the control registers,
model-specific registers, and debug registers.

System instructions are supported in all hardware
implementations of the x86-64 architecture, except that the
following system instructions are implemented only if their
associated CPUID function bits are set:

m RDMSR and WRMSR, indicated by bit 5 of CPUID standard
function 1 or extended function 8000_0001h.

m SYSENTER and SYSEXIT, indicated by bit 11 of CPUID
standard function 1.

m SYSCALL and SYSRET, indicated by bit 11 of CPUID
extended function 8000_0001h.

m Long Mode instructions, indicated by bit 29 of CPUID
extended function 8000_0001h.

There are also several other CPUID function bits that control
the use of system resources and functions, such as paging
functions, virtual-mode extensions, machine-check exceptions,
advanced programmable interrupt control (APIC), memory-
type range registers (MTRRs), etc. For details, see “Processor
Feature Identification” in Volume 2.

For further information about the system instructions and
register resources, see:

“System-Management Instructions” in Volume 2.

“Summary of Registers and Data Types” on page 30.

“Notation” on page 43.

“Instruction Prefixes” on page 3.

289



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

ARPL Adjust Requestor Privilege Level

Compares the requestor privilege level (RPL) fields of two segment selectors in the
source and destination operands of the instruction. If the RPL field of the destination
operand is less than the RPL field of the segment selector in the source register, then
the zero flag is set and the RPL field of the destination operand is increased to match
that of the source operand. Otherwise, the destination operand remains unchanged
and the zero flag is cleared.

The destination operand can be either a 16-bit register or memory location; the source
operand must be a 16-bit register.

The ARPL instruction is intended for use by operating-system procedures to adjust
the RPL of a segment selector that has been passed to the operating system by an
application program to match the privilege level of the application program. The
segment selector passed to the operating system is placed in the destination operand
and the segment selector for the code segment of the application program is placed in
the source operand. The RPL field in the source operand represents the privilege level
of the application program. The ARPL instruction then insures that the RPL of the
segment selector received by the operating system is no lower than the privilege level
of the application program.

See “Adjusting Access Rights” in Volume 2, for more information on access rights.

In 64-bit mode, this opcode (63H) is used for the MOVSXD instruction.

Mnemonic Opcode Description

ARPL reg/memi6, reqi6 63/r Adjust the RPL of a destination segment selector to a level
not less than the RPL of the segment selector specified in
the 16-bit source register.

(Invalid in 64-bit mode.)

Related Instructions

LAR, LSL, VERR, VERW

290 ARPL



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M
21 20 19 18 17 16 14 13-12 1 10 9 8 7 6 4 2 0
Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank. Unde-
fined flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X This instruction is only recognized in protected legacy and

compatibility mode.

Stack, #SS

A memory address exceeded the stack segment limit.

General protection, #GP

A memory address exceeded a data segment limit.
The destination operand was in a non-writable segment.

A null segment selector was used to reference memory.

Page fault, #PF

A page fault resulted from the execution of the instruction.

Alignment check, #A

C

An unaligned memory reference was performed while alignment
checking was enabled.

ARPL 291




AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

CLI Clear Interrupt Flag

Clears the interrupt flag (IF) in the rFLAGS register to zero, thereby masking external
interrupts received on the INTR input. Interrupts received on the non-maskable
interrupt (NMI) input are not affected by this instruction.

In real mode, this instruction clears IF to 0.

In protected mode and virtual-8086-mode, this instruction is IOPL-sensitive. If the
CPL is less than or equal to the rFLAGS.IOPL field, the instruction clears IF to 0.

In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are
enabled (CR4.PVI =1), then the instruction instead clears rFLAGS.VIF to 0. If none of
these conditions apply, the processor raises a general-purpose exception (#GP). For
more information, see “Protected Mode Virtual Interrupts” in Volume 2.

In virtual-8086 mode, if IOPL < 3 and the virtual-8086-mode extensions are enabled
(CR4.VME = 1), the CLI instruction clears the virtual interrupt flag (rFLAGS.VIF) to
0 instead.

See “Virtual-8086 Mode Extensions” in Volume 2 for more information about IOPL-
sensitive instructions.

Mnemonic Opcode Description
CLl FA Clear the interrupt flag (IF) to zero.
Action

IF (CPL <= IOPL)
RFLAGS.IF =0

ELSEIF (CCVIRTUAL_MODE) && (CR4.VME = 1))
|| (CPROTECTED_MODE) && (CR4.PVI = 1) && (CPL == 3)))
RFLAGS.VIF = 0;

ELSE
EXCEPTIONL#GP(0)]

Related Instructions

STI

292 CLI



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank. Unde-

fined flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X The CPL was greater than the IOPL and virtual mode extensions are
#GP not enabled (CR4.VME = 0).

X The CPL was greater than the IOPL and either the CPL was not 3 or
protected mode virtual interrupts were not enabled (CR4.PVI = 0).

CLI 293



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

CLTS Clear Task-Switched Flag in CRO

Clears the task-switched (TS) flag in the CRO register to 0. The processor sets the TS
flag on each task switch. The CLTS instruction is intended to facilitate the
synchronization of FPU context saves during multitasking operations.

This instruction can only be used if the current privilege level is 0.

See “System-Control Registers” in Volume 2 for more information on FPU
synchronization and the TS flag.

Mnemonic Opcode Description

CLTS 0F 06 Clear the task-switched (TS) flag in CRO to 0.

Related Instructions

LMSW, MOV (CRn)
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X CPL was not 0.
#GP

294 CLTS




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

HLT Halt

Causes the microprocessor to halt instruction execution and enter the HALT state.
Entering the halt state puts the processor in low-power mode. Execution resumes
when an unmasked hardware interrupt (INTR), non-maskable interrupt (NMI), system
management interrupt (SMI), RESET, or INIT occurs.

If an INTR, NMI, or SMI is used to resume execution after a HLT instruction, the saved
instruction pointer points to the instruction following the HLT instruction.

Before executing a HLT instruction, hardware interrupts should be enabled. If
rFLAGS.IF = 0, the system will remain in a halt state until an NMI, SMI, RESET, or
INIT occurs.

If an SMI brings the processor out of the halt state, the SMI handler can decide
whether to return to the halt state or not. See Volume 2, System Programming, for

information on SMIs.

Current privilege level must be 0 to execute this instruction.

Mnemonic Opcode Description

HLT F4 Halt instruction execution.

Related Instructions

STI, CLI
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X CPL was not 0.
#GP

HLT 295



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

INT3 Interrupt to Debug Vector

Calls the debug exception handler. This instruction maps to a 1-byte opcode (CC) that
raises a #BP exception. The INT 3 instruction is normally used by debug software to
set instruction breakpoints by replacing the first byte of the instruction opcode bytes
with the INT 3 opcode.

This one-byte INT 3 instruction behaves differently from the two-byte INT 3
instruction (opcode CD 03) (see “INT” in Chapter 3 “General Purpose Instructions”
for further information) in two ways:

m The #BP exception is handled without any IOPL checking in virtual x86 mode.
(IOPL mismatches will not trigger an exception.)

» In VME mode, the #BP exception is not redirected via the interrupt redirection
table. (Instead, it is handled by a protected mode handler.)

Mnemonic Opcode Description

INT 3 CC Trap to debugger at Interrupt 3.

For complete descriptions of the steps performed by INT instructions, see the
following:

m Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in
Volume 2.

m  Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Action

// Refer to INT instruction’s Action section for the details on INT_N_REAL,
// INT_N_PROTECTED, and INT_N_VIRTUAL_TO_PROTECTED.

INT3_START:

If (REAL_MODE)
INT_N_REAL //N

I
w

ELSEIF (PROTECTED_MODE)
INT_N_PROTECTED //N

I
w

ELSE // VIRTUAL_MODE
INT_N_VIRTUAL_TO_PROTECTED //N

I
w

Related Instructions

INT, INTO, IRET

296 INT 3



AMDZ1

24594 Rev. 3.02 August 2002

rFLAGS Affected

AMD 64-Bit Technology

If a task switch occurs, all flags are modified; otherwise, setting are as follows:

ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M| 0 0| M M| 0

21 20 19 18 17 16 14 13-12 1 10 9 8 7 6 4 2 0

Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Breakpoint, #BP X X X INT 3 instruction was executed.
Invalid TSS, #TS X X As part of a stack switch, the target stack segment selector or rSP in
(selector) the TSS was that was beyond the TSS limit.

X X As part of a stack switch, the target stack segment selector in the TSS
was beyond the limit of the GDT or LDT descriptor table.

X X As part of a stack switch, the target stack segment selector in the TSS
was a null selector.

X X As part of a stack switch, the target stack segment selector’s Tl bit was
set, but the LDT selector was a null selector.

X X As part of a stack switch, the target stack segment selector in the TSS
contained a RPL that was not equal to its DPL.

X X As part of a stack switch, the target stack segment selector in the TSS
contained a DPL that was not equal to the CPL of the code segment
selector.

X X As part of a stack switch, the target stack segment selector in the TSS
was not a writable segment.

Segment not present, X X The accessed code segment, interrupt gate, trap gate, task gate, or
#NP (selector) TSS was not present.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-

canonical.

INT 3 297



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X After a stack switch, a memory address exceeded the stack segment
(selector) limit or was non-canonical and a stack switch occurred.
X X As part of a stack switch, the SS register was loaded with a non-null
segment selector and the segment was marked not present.
General protection, X X X A memory address exceeded the data segment limit or was non-
#GP canonical.
X X X The target offset exceeded the code segment limit or was non-
canonical.
General protection, X X X The interrupt vector was beyond the limit of IDT.
#GP
(selector) X X The descriptor in the IDT was not an interrupt, trap, or task gate in
legacy mode or not a 64-bit interrupt or trap gate in long mode.

X X The DPL of the interrupt, trap, or task gate descriptor was less than
the CPL.

X X The segment selector specified by the interrupt or trap gate had its Tl
bit set, but the LDT selector was a null selector.

X X The segment descriptor specified by the interrupt or trap gate
exceeded the descriptor table limit or was a null selector.

X X The segment descriptor specified by the interrupt or trap gate was
not a code segment in legacy mode, or not a 64-bit code segment in
long mode.

X The DPL of the segment specified by the interrupt or trap gate was
greater than the CPL.

X The DPL of the segment specified by the interrupt or trap gate
pointed was not 0 or it was a conforming segment.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

298

INT 3



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

INVD Invalidate Caches

Invalidates internal caches (data cache, instruction cache, and on-chip L2 cache) and
triggers a bus cycle that causes external caches to invalidate themselves as well.

No data is written back to main memory from invalidating internal caches. After
invalidating internal caches, the processor proceeds immediately with the execution
of the next instruction without waiting for external hardware to invalidate its caches.

This is a privileged instruction. The current privilege level (CPL) of a procedure
invalidating the processor’s internal caches must be 0.

To insure that data is written back to memory prior to invalidating caches, use the
WBINVD instruction.

This instruction does not invalidate TLB caches.

INVD is a serializing instruction.

Mnemonic Opcode Description

INVD OF 08 Flush internal caches and trigger external cache flushes.

Related Instructions

WBINVD, CLFLUSH

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X CPL was not 0.
#GP

INVD 299



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

INVLPG Invalidate TLB Entry

Invalidates the TLB entry that would be used for the 1-byte memory operand.

This instruction invalidates the TLB entry, regardless of the G (Global) bit setting in
the associated PDE or PTE entry and regardless of the page size (4 Kbytes, 2 Mbytes,
or 4 Mbytes). It may invalidate any number of additional TLB entries, in addition to
the targeted entry.

INVLPG is a serializing instruction and a privileged instruction. The current privilege
level must be 0 to execute this instruction.

See “Page Translation and Protection” in Volume 2 for more information on page
translation.

Mnemonic Opcode Description
INVLPG mem8 OF01/7 Invalidate the TLB entry for the page containing a specified memory
location.

Related Instructions

MOV CRn (CR3 and CR4)

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X CPL was not 0.
#GP

300 INVLPG




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

IRET Return from Interrupt
IRETD
IRETQ

Returns program control from an exception or interrupt handler to a program or
procedure previously interrupted by an exception, an external interrupt, or a
software-generated interrupt. These instructions also perform a return from a nested
task. All flags, CS, and rIP are restored to the values they had before the interrupt so
that execution may continue at the next instruction following the interrupt or
exception. In 64-bit mode or if the CPL changes, SS and RSP are also restored.

IRET, IRETD, and IRETQ are synonyms mapping to the same opcode. They are
intended to provide semantically distinct forms for various opcode sizes. The IRET
instruction is used for 16-bit operand size; IRETD is used for 32-bit operand sizes;
IRETQ is used for 64-bit operands. The latter form is only meaningful in 64-bit mode.

IRET, IRETD, or IRETQ must be used to terminate the exception or interrupt handler
associated with the exception, external interrupt, or software-generated interrupt.

IRETx is a serializing instruction.
For detailed descriptions of the steps performed by IRETx instructions, see the
following:

m Legacy-Mode Interrupts: “Legacy Protected-Mode Interrupt Control Transfers” in
Volume 2.

m Long-Mode Interrupts: “Long-Mode Interrupt Control Transfers” in Volume 2.

Mnemonic Opcode Description
IRET CF Return from interrupt (16-bit operand size).
IRETD CF Return from interrupt (32-bit operand size).
IRETQ CF Return from interrupt (64-bit operand size).

Action

IRET_START:

IF (REAL_MODE)
IRET_REAL
ELSIF (PROTECTED_MODE)

IRETX 301



AMDA
AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

IRET_PROTECTED
ELSE // (VIRTUAL_MODE)
IRET_VIRTUAL

IRET_REAL:
POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF (temp_RIP > CS.limit)
EXCEPTION [#GP(0)]

CS.sel = temp_CS
CS.base temp_CS SHL 4

RFLAGS.v = temp_RFLAGS // VIF,VIP,VM unchanged
RIP = temp_RIP
EXIT

IRET_PROTECTED:

IF (RFLAGS.NT=1) // iret does a task-switch to a previous task
IF (LEGACY_MODE)
TASK_SWITCH // using the ’back link’ field in the tss
ELSE // (LONG_MODE)

EXCEPTION [#GP(0)] // task switches aren’t supported in long mode

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF ((temp_RFLAGS.VM=1) && (CPL=0) && (LEGACY_MODE))
IRET_FROM_PROTECTED_TO_VIRTUAL

temp_CPL = temp_CS.rpl

IF ((64BIT_MODE) || (temp_CPL!=CPL))

{
POP.v temp_RSP // in 64-bit mode, iret always pops SS:rsp
POP.v temp_SS

}

CS = READ_DESCRIPTOR (temp_CS, iret_chk)

IF ((64BIT_MODE) && (temp_RIP is non-canonical)
|| (!64BIT_MODE) && (temp_RIP > CS.1imit))

{
EXCEPTION [#GP(0)]

302 IRETX



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

}
CPL = temp_CPL

IF ((started in 64-bit mode) || (changing CPL))
// ss:rsp were popped, so load them into the registers
{
SS = READ_DESCRIPTOR (temp_SS, ss_chk)
RSP.s = temp_RSP
}

IF (changing CPL)
{

FOR (seg = ES, DS, FS, GS)
IF ((seg.attr.dpl < CPL) && ((seg.attr.type = ’data’)
|| (seg.attr.type = ’non-conforming-code’)))
{
seg = NULL // can’t use lower dpl data segment at higher cp]
}
}
RFLAGS.v = temp_RFLAGS // VIF,VIP,IOPL only changed if (old_CPL=0)

// IF only changed if (old_CPL<=01d_RFLAGS.IOPL)
// VM unchanged
// RF cleared

RIP = temp_RIP

EXIT

IRET_VIRTUAL:

IF ((RFLAGS.IOPL<3) && (CR4.VME=0))
EXCEPTION [#GP(0)]

POP.v temp_RIP
POP.v temp_CS
POP.v temp_RFLAGS

IF (temp_RIP > CS.limit)
EXCEPTION [#GP(0)]

IF (RFLAGS.IOPL=3)
{
RFLAGS.v = temp_RFLAGS // VIF,VIP,VM,IOPL unchanged
// RF cleared
CS.sel = temp_CS
CS.base temp_CS SHL 4

RIP = temp_RIP
EXIT

IRETX 303



AMDZU

AMD 64-Bit Technology

/!

ELS

}

24594  Rev. 3.02 August 2002

now ((IOPL<3) && (CR4.VME=1)

IF ((OPERAND_SIZE=16)

&& ! ((temp_RFLAGS.IF=

&& (temp_RFLAGS.TF=0)
RFLAGS.w = temp_RFLAGS
CS.sel = temp_CS
CS.base = temp_CS SHL 4

RIP = temp_RIP
EXIT

1) && (RFLAGS.VIP=1))
)

// RFLAGS.VIF=temp_RFLAGS.IF
// IF,I0PL unchanged
// RF cleared

ELSE // ((RFLAGS.IOPL<3) && (CR4.VME=1) && ((OPERAND_SIZE=32) ||

// ((temp_RFLAGS.IF=1)
EXCEPTION [#GP(0)]

IRET_FROM_PROTECTED_TO_VIRTUAL:

/7
/7

temp_RIP already popped
temp_CS already popped

&& (RFLAGS.VIP=1)) || (temp_RFLAGS.TF=1)))

// temp_RFLAGS already popped, temp_RFLAGS.VM=1

POP.
POP.
POP.
POP.
POP.
POP.

CsS.
CsS.
CsS.
CsS.

SS.
SS.
SS.
SS.

DS.
DS.
DS.
DS.

ES.
ES.
ES.

temp_RSP
temp_SS
temp_ES
temp_DS
temp_FS
temp_GS

O O 0 Qo O

sel = temp_CS

base = temp_CS SHL 4
Timit= OxO0000FFFF

attr 16-bit dpl13 code

sel = temp_SS

base temp_SS SHL 4
Timit= OxO0000FFFF

attr 16-bit dpl13 stack

sel = temp_DS

base = temp_DS SHL 4
Timit= OxO0000FFFF
attr = 16-bit dpl3 data

sel = temp_ES
base = temp_ES SHL 4
Timit= OxO000FFFF

// force the segments to have virtual-mode values

304

IRETx



AMDZ1

24594 Rev. 3.02 August 2002

ES.attr

FS.sel

FS.base
FS.T1imit
FS.attr

GS.sel

GS.base =
GS.Timit
GS.attr

16-bit dpl3 data

= tem

temp_FS SHL 4

p_FS

0x0000FFFF
16-bit dpl3 data

tem

temp_GS SHL 4

p_GS

0x0000FFFF
16-bit dpl3 data

RSP.d = temp_RSP

RFLAGS.d = temp_RFLAGS

CPL =

3

RIP = temp_RIP AND Ox0000FFFF

EXIT

Related Instructions

AMD 64-Bit Technology

INT, INTO, INT3
rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M M| M |[M{M M MM M| M M|M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4
Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank.
Undefined flags are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Segment not present, X The return code segment was marked not present.
#NP (selector)
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
Stack, #SS (selector) X The SS register was loaded with a non-null segment selector and the
segment was marked not present.

IRETX 305



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X The target offset exceeded the code segment limit or was non-
#GP canonical.
X IOPL was less than 3 and CR4.VME was 0.
X IOPL was less than 3, CR4.VME was 1, and one of the following 2
conditions was true:
(1) the effective operand size was 32-bit
(2) both the original EFLAG.VIP and the new EFLAG.IF were set
(3) the new EFLAG.TF was set.
General protection, X The return code selector was a null selector.
#GP
(selector) X The return stack selector was a null selector and the return mode was
non-64-bit mode or CPL was 3.
X The return code or stack descriptor exceeded the descriptor table
limit.
X The return code or stack selector’s Tl bit was set but the LDT selector
was a null selector.
X The segment descriptor for the return code was not a code segment.
X The RPL of the return code segment selector was less than the CPL.
X The return code segment was non-conforming and the segment
selector’s DPL was not equal to the RPL of the code segment’s
segment selector.
X The return code segment was conforming and the segment selector’s
DPL was greater than the RPL of the code segment'’s segment selector
X The segment descriptor for the return stack was not a writable data
segment.
X The stack segment descriptor DPL was not equal to the RPL of the
return code segment selector.
X The stack segment selector RPL was not equal to the RPL of the return
code segment selector.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

306

IRETx




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

LAR Load Access Rights Byte

Loads the access rights from the segment descriptor specified by a 16-bit source
register or memory operand into a specified 16-bit, 32-bit, or 64-bit general-purpose
register and sets the zero (ZF) flag in the rFLAGS register if successful. LAR clears
the zero flag if the descriptor is invalid for any reason.

The LAR instruction checks that:

m the segment selector is not a null selector.
m the descriptor is within the GDT or LDT limit.

m the descriptor DPL is greater than or equal to both the CPL and RPL, or the seg-
ment is a conforming code segment.

m the descriptor type is valid for the LAR instruction. Valid descriptor types are the
following:

Valid Descriptor Type Description
- All code and data descriptors
1 Available 16-bit TSS
2 LDT
3 Busy 16-bit TSS
4 16-bit call gate
5 Task gate
9 Available 32-bit or 64-bit TSS
B Busy 32-bit or 64-bit TSS
C 32-bit or 64-bit call gate

If the segment descriptor passes these checks, the attributes are loaded into the
destination general-purpose register. If it does not, then the zero flag is cleared and
the destination register is not modified.

When the operand size is 16 bits, access rights include the DPL and Type fields located
in bytes 4 and 5 of the descriptor table entry. Before loading the access rights into the
destination operand, the low order word is masked with FFOOH.

When the operand size is 32 or 64 bits, access rights include the DPL and type as well
as the descriptor type (S field), segment present (P flag), available to system (AVL

LAR 307



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

flag), default operation size (D/B flag), and granularity flags located in bytes 4-7 of the
descriptor. Before being loaded into the destination operand, the doubleword is
masked with O0OFF_FFO0OH.

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-
extended to 64 bits.

This instruction can only be executed in protected mode.

Mnemonic Opcode Description

LAR regi6, reg/mem 16 OF 02/r Reads the GDT/LDT descriptor referenced by the 16-bit source
operand, masks the attributes with FFOOh and saves the result in the
16-bit destination register.

LAR reg32, reqg/mem16 OF 02 /r Reads the GDT/LDT descriptor referenced by the 16-bit source
operand, masks the attributes with 00FFFFOOh and saves the result in
the 32-bit destination register.

LAR reg64, reg/mem 16 OF 02/r Reads the GDT/LDT descriptor referenced by the 16-bit source
operand, masks the attributes with 00FFFFOOh and saves the result in
the 64-bit destination register.

Related Instructions

ARPL, LSL, VERR, VERW

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF

21 | 20 | 19 | 18 17 16 | 14 13-12 1 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank. Undefined flags
are U.

308 LAR



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X This instruction is only recognized in protected mode.
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP X A memory address exceeded the data segment limit or was non-
canonical.

X A null data segment was used to reference memory.

Page fault, #PF X A page fault resulted from the execution of the instruction.

Alignment check, #AC X An unaligned memory reference was performed while alignment
checking was enabled.

LAR 309




AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

LGDT Load Global Descriptor Table Register

Loads the pseudo-descriptor specified by the source operand into the global
descriptor table register (GDTR). The pseudo-descriptor is a memory location
containing the GDTR base and limit. In legacy and compatibility mode, the pseudo-
descriptor is 6 bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not
used. The lower two bytes specify the 16-bit limit and the third, fourth, and fifth bytes
specify the 24-bit base address. The high-order byte of the GDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper
four bytes specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit and the upper eight bytes
specify a 64-bit base address. In 64-bit mode, operand-size prefixes are ignored and
the operand size is forced to 64-bits; therefore, the pseudo-descriptor is always 10
bytes.

This instruction is only used in operating system software and must be executed at
CPL 0. It is typically executed once in real mode to initialize the processor before
switching to protected mode.

LGDT is a serializing instruction.

Mnemonic Opcode Description
LGDT mem16:32 OF 01 /2 Loads mem16:32 into the global descriptor table register.
LGDT mem 16:64 0F 01 /2 Loads mem16:64 into the global descriptor table register.

Related Instructions
LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

310 LGDT



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X X The operand was a register.
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP | X X A memory address exceeded the data segment limit or was non-
canonical.
X X CPL was not 0.
X The new GDT base address was non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.

LGDT 311



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

LIDT Load Interrupt Descriptor Table Register

Loads the pseudo-descriptor specified by the source operand into the interrupt
descriptor table register (IDTR). The pseudo-descriptor is a memory location
containing the IDTR base and limit. In legacy and compatibility mode, the pseudo-
descriptor is six bytes; in 64-bit mode, it is 10 bytes.

If the operand size is 16 bits, the high-order byte of the 6-byte pseudo-descriptor is not
used. The lower two bytes specify the 16-bit limit and the third, fourth, and fifth bytes
specify the 24-bit base address. The high-order byte of the IDTR is filled with zeros.

If the operand size is 32 bits, the lower two bytes specify the 16-bit limit and the upper
four bytes specify a 32-bit base address.

In 64-bit mode, the lower two bytes specify the 16-bit limit, and the upper eight bytes
specify a 64-bit base address. In 64-bit mode, operand-size prefixes are ignored and
the operand size is forced to 64-bits; therefore, the pseudo-descriptor is always 10
bytes.

This instruction is only used in operating system software and must be executed at
CPL 0. It is normally executed once in real mode to initialize the processor before
switching to protected mode.

LIDT is a serializing instruction.

Mnemonic Opcode Description
LIDT mem16:32 OF01/3 Loads mem16:32 into the interrupt descriptor table register.
LIDT mem16:64 OF01/3 Loads mem16:64 into the interrupt descriptor table register.

Related Instructions
LGDT, LLDT, LTR, SGDT, SIDT, SLDT, STR

rFLAGS Affected

None

312 LIDT



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X X The operand was a register.
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP | X X A memory address exceeded the data segment limit or was non-
canonical.
X X CPL was not 0.
X The new IDT base address was non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.

LIDT

313



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

LLDT Load Local Descriptor Table Register

Loads the specified segment selector into the visible portion of the local descriptor
table (LDT). The processor uses the selector to locate the descriptor for the LDT in the
global descriptor table. It then loads this descriptor into the hidden portion of the
LDTR.

If the source operand is a null selector, the LDTR is marked invalid and all references
to descriptors in the LDT will generate a general protection exception (#GP), except
for the LAR, VERR, VERW or LSL instructions.

In legacy and compatibility modes, the LDT descriptor is 8 bytes long and contains a
32-bit base address.

In 64-bit mode, the LDT descriptor is 16-bytes long and contains a 64-bit base address.
The LDT descriptor type (02h) is redefined in 64-bit mode for use as the 16-byte LDT
descriptor.

This instruction must be executed in protected mode. It is only provided for use by
operating system software at CPL 0.

LLDT is a serializing instruction.

Mnemonic Opcode Description

LLDT reg/memi6 0F 00 /2 Load the 16-bit segment selector into the local descriptor table register
and load the LDT descriptor from the GDT.

Related Instructions
LGDT, LIDT, LTR, SGDT, SIDT, SLDT, STR
rFLAGS Affected

None

314 LLDT



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X This instruction is only recognized in protected mode.

Segment not present, X The LDT descriptor was marked not present.
#NP (selector)
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP X A memory address exceeded a data segment limit or was non-
canonical.
X CPL was not 0.
X A null data segment was used to reference memory.
X
General protection, #GP X The source selector did not point into the GDT.
(selector)
X The descriptor was beyond the GDT limit.
X The descriptor was not an LDT descriptor.
X The descriptor’s extended attribute bits were not zero in 64-bit
mode.
X The new LDT base address was non-canonical.
Page fault, #PF X A page fault resulted from the execution of the instruction.

LLDT 315




AMDZU

AMD 64-Bit Technology

LMSW

Loads the lower four bits of the 16-bit register or memory operand into bits 3-0 of the
machine status word in register CR0. Only the protection enabled (PE), monitor
coprocessor (MP), emulation (EM), and task switched (TS) bits of CR0 are modified.

24594  Rev. 3.02 August 2002

Load Machine Status Word

Additionally, LMSW can set CR0O.PE, but cannot clear it.

The LMSW instruction can be used only when the current privilege level is 0. It is only

provided for compatibility with early processors.

Use the MOV CRO instruction to load all 32 or 64 bits of CRO.

Mnemonic

LMSW reg/mem 16

Related Instructions

Opcode
OF 01 /6

MOV (CRn), SMSW

Description

Loads the lower 4 bits of the source into the lower 4 bits of CRO.

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X X CPL was not 0.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.

316

LMSW




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

LSL Load Segment Limit

Loads the segment limit from the segment descriptor specified by a 16-bit source
register or memory operand into a specified 16-bit, 32-bit, or 64-bit general-purpose
register and sets the zero (ZF) flag in the rFLAGS register if successful. LSL clears the
zero flag if the descriptor is invalid for any reason.

In 64-bit mode, for both 32-bit and 64-bit operand sizes, 32-bit register results are zero-
extended to 64 bits.

The LSL instruction checks that:
m the segment selector is not a null selector.
m the descriptor is within the GDT or LDT limit.

m the descriptor DPL is greater than or equal to both the CPL and RPL, or the seg-
ment is a conforming code segment.

m the descriptor type is valid for the LAR instruction. Valid descriptor types are the

following:
Valid Descriptor Type Description
- All code and data descriptors
1 Available 16-bit TSS
2 LDT
3 Busy 16-bit TSS
9 Available 32-bit or 64-bit TSS
B Busy 32-bit or 64-bit TSS

If the segment selector passes these checks and the segment limit is loaded into the
destination general-purpose register, the instruction sets the zero flag of the rFLAGS
register to 1. If the selector does not pass the checks, then LSL clears the zero flag to 0
and does not modify the destination.

The instruction calculates the segment limit to 32 bits, taking the 20-bit limit and the
granularity bit into account. When the operand size is 16 bits, it truncates the upper
16 bits of the 32-bit adjusted segment limit and loads the lower 16-bits into the target
register.

LSL 317



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Mnemonic Opcode Description
LSL reg16, reg/mem1i6 OF 03 /r Loads a 16-bit general-purpose register with the segment limit for a

selector specified in a 16-bit memory or register operand.

LSL reg32, reg/mem16 OF 03 /r Loads a 32-bit general-purpose register with the segment limit for a
selector specified in a 16-bit memory or register operand.

LSL reg64, reg/mem16 OF 03 /r Loads a 64-bit general-purpose register with the segment limit for a
selector specified in a 16-bit memory or register operand.

Related Instructions

ARPL, LAR, VERR, VERW
rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M
21 20 19 18 17 16 14 13-12 11 10 9 8 7 6 4 2 0
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X This instruction is only recognized in protected mode.
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment
checking was enabled.

318 LSL



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

LTR Load Task Register

Loads the specified segment selector into the visible portion of the task register (TR).
The processor uses the selector to locate the descriptor for the TSS in the global
descriptor table. It then loads this descriptor into the hidden portion of TR. The TSS
descriptor in the GDT is marked busy, but no task switch is made.

If the source operand is null, a general protection exception (#GP) is generated.

In legacy and compatibility modes, the TSS descriptor is 8 bytes long and contains a
32-bit base address.

In 64-bit mode, the instruction references a 64-bit descriptor to load a 64-bit base
address. The TSS type (09H) is redefined in 64-bit mode for use as the 16-byte TSS
descriptor.

This instruction must be executed in protected mode when the current privilege level
is 0. It is only provided for use by operating system software.

The operand size attribute has no effect on this instruction.

LTR is a serializing instruction.

Mnemonic Opcode Description
LTR reg/mem16 0F 00/3 Load the 16-bit segment selector into the task register and load the TSS
descriptor from the GDT.

Related Instructions
LGDT, LIDT, LLDT, STR, SGDT, SIDT, SLDT
rFLAGS Affected

None

LTR 319



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X This instruction is only recognized in protected mode.
Segment not present, X The TSS descriptor was marked not present.
#NP (selector)
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP X A memory address exceeded a data segment limit or was non-
canonical.

X CPL was not 0.

X A null data segment was used to reference memory.
X The new TSS selector was a null selector.
General protection, #GP X The source selector did not point into the GDT.
(selector)
X The descriptor was beyond the GDT limit.
X The descriptor was not an available TSS descriptor.
X The descriptor’s extended attribute bits were not zero in 64-bit
mode.
X The new TSS base address was non-canonical.
Page fault, #PF X A page fault resulted from the execution of the instruction.

320 LTR



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

MOV(CRn) Move to/from Control Registers

Moves the contents of a 32-bit or 64-bit general-purpose register to a control register
or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix.
In non-64-bit mode, the operand size is fixed at 32 bits and the upper 32 bits of the
destination are forced to 0.

CRO maintains the state of various control bits. CR2 and CR3 are used for page
translation. CR4 holds various feature enable bits. CR8 is used to prioritize external
interrupts. CR1, CR5, CR6, CR7, and CR9 through CR15 are all reserved and raise an
undefined opcode exception (#UD) if referenced.

Reading or writing to CR8 requires a REX prefix, and thus can only be accessed in 64-
bit mode. However, it can also be read and modified using the task priority register
described in “System-Control Registers” in Volume 2.

This instruction is always treated as a register-to-register (MOD = 11) instruction,
regardless of the encoding of the MOD field in the MODR/M byte.

MOV (CRn) is a privileged instruction and must always be executed at CPL = 0.

MOV (CRn) is a serializing instruction.

Mnemonic Opcode Description
MOV CRn, reg32 OF22/r Move the contents of a 32-bit register to CRn
MOV CRn, reg64 OF22/r Move the contents of a 64-bit register to CRn
MOV reg32,CRn OF20/r Move the contents of CRn to a 32-bit register.
MOV reg64,CRn OF20/r Move the contents of CRn to a 64-bit register.
Note:

CRO, CR2, CR3, CR4, and CRS are the only registers to which this instruction applies. See text for details.
Related Instructions
CLTS, LMSW, SMSW
rFLAGS Affected

None

MOV(CRn) 321



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Invalid Instruction, X X X An illegal control register was referenced (CR1, CR5-CR7,

#UD CR9-CR15).

General protection, X X CPL was not 0.

#GP

X X An attempt was made to set CR0.PG =1 and CRO.PE = 0.

X X An attempt was made to set CR0.CD = 0 and CRO.NW = 1.

X X Reserved bits were set in the page-directory pointers table (used in
the legacy extended physical addressing mode) and the instruction
modified CRO, CR3, or CR4.

X An attempt was made to write 1 to any reserved bit in CR0, CR3, CR4
or CR8.

X X An attempt was made to set CR0.PG while long mode was enabled
(EFER.LME = 1, but CR4.PAE = 0).

X An attempt was made to clear CR4.PAE while long mode was active

(EFER.LMA =1).

322

MOV/(CRn)



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

MOV(DRn) Move to/from Debug Registers

Moves the contents of a debug register into a 32-bit or 64-bit general-purpose register
or vice versa.

In 64-bit mode, the operand size is fixed at 64 bits without the need for a REX prefix.
In non-64-bit mode, the operand size is fixed at 32-bits and the upper 32 bits of the
destination are forced to 0.

DRO through DR3 are linear breakpoint address registers. DR6 is the debug status
register and DR7 is the debug control register. DR4 and DR5 are aliased to DR6 and
DRY7 if CR4.DE =0, and are reserved if CR4.DE = 1.

DRS8 through DR15 are reserved and generate an undefined opcode exception if
referenced.

These instructions are privileged and must be executed at CPL 0.
The MOV DRn, reg3Zand MOV DRn, reg64 instructions are serializing instructions.

The MOV(DR) instruction is always treated as a register-to-register (MOD = 11)
instruction, regardless of the encoding of the MOD field in the MODR/M byte.

See “Debug and Performance Resources” in Volume 2 for details.

Mnemonic Opcode Description
MOV reg32, DRn OF 21 /r Move the contents of DRn to a 32-bit register.
MOV reg64, DRn OF 21 /r Move the contents of DRn to a 64-bit register.
MOV DRn, reg32 OF 23 /r Move the contents of a 32-bit register to DRn.
MOV DRn, reg64 OF 23 /r Move the contents of a 64-bit register to DRn.

Related Instructions
None
rFLAGS Affected

None

MOV(DRn) 323



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Debug, #DB X X A debug register was referenced while the general detect (GD) bit
in DR7 was set.
Invalid opcode, #UD X X DR4 or DR5 was referenced while the debug extensions (DE) bit in
CR4 was set.

X An illegal debug register (DR8-DR15) was referenced.
General protection, #GP X X CPL was not 0.

X A 1 was written to any of the upper 32 bits of DR6 or DR7 in 64-bit
mode.

324 MOV(DRn)




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

RDMSR Read Model-Specific Register

Loads the contents of a 64-bit model-specific register (MSR) specified in the ECX
register into registers EDX:EAX. The EDX register receives the high-order 32 bits and
the EAX register receives the low order bits. The RDMSR instruction ignores operand
size; ECX always holds the MSR number, and EDX:EAX holds the data. If a model-
specific register has fewer than 64 bits, the unimplemented bit positions loaded into
the destination registers are undefined.

This instruction must be executed at a privilege level of 0 or a general protection
exception (#GP) will be raised. This exception is also generated if a reserved or
unimplemented model-specific register is specified in ECX.

Use the CPUID instruction to determine if this instruction is supported.

RDMSR is a serializing instruction.

For more information about model-specific registers, see the documentation for
various hardware implementations and Volume 2, System Programming.

Mnemonic Opcode Description

RDMSR OF 32 Copy MSR specified by ECX into EDX:EAX.

Related Instructions

WRMSR, RDTSC, RDPMC

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The RDMSR instruction is not supported, as indicated by bit 5 of
CPUID function 1 or 8000_0001h.
General protection, X X CPL was not 0.
#GP
X X The value in ECX specifies a reserved or unimplemented MSR
address.

RDMSR 325



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

RDPMC Read Performance-Monitoring Counter

Loads the contents of a 64-bit performance counter register (PerfCtrn) specified in
the ECX register into registers EDX:EAX. The EDX register receives the high-order
32 bits and the EAX register receives the low order 32 bits. The RDPMC instruction
ignores operand size; ECX always holds the PerfCtr number, and EDX:EAX holds the
data.

The AMD x86-64 Architecture currently supports four performance counters: PerfCtrQ
through PerfCtr3.

Programs running at any privilege level can read performance monitor counters if the
PCE flag in CR4 is set to 1; otherwise this instruction must be executed at a privilege
level of 0.

This instruction is not serializing. Therefore, there is no guarantee that all instructions
have completed at the time the performance counter is read.

For more information about performance-counter registers, see the documentation for
various hardware implementations and “Performance Counters” in Volume 2.

Mnemonic Opcode Description
RDPMC OF 33 Copy the performance monitor counter specified by ECX
into EDX:EAX.

Related Instructions

RDMSR, WRMSR
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General Protection, X X X The value in ECX specified an unimplemented performance counter
#GP number.
X X CPL was not 0 and CR4.PCE = 0.

326 RDPMC




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

RDTSC Read Time-Stamp Counter

Loads the value of the processor’s 64-bit time-stamp counter into registers EDX:EAX.

The time-stamp counter is contained in a 64-bit model-specific register (MSR). The
processor sets the counter to 0 upon reset and increments the counter every clock
cycle. INIT does not modify the TSC.

The high-order 32 bits are loaded into EDX, and the low-order 32 bits are loaded into
the EAX register. This instruction ignores operand size.

When the time-stamp disable flag (TSD) in CR4 is set to 1, the RDTSC instruction can
only be used at privilege level 0. If the TSD flag is 0, this instruction can be used at any
privilege level.

This instruction is not serializing. Therefore, there is no guarantee that all instructions
have completed at the time the time-stamp counter is read.

Mnemonic Opcode Description

RDTSC OF 31 Copy the time-stamp counter into EDX:EAX.

Related Instructions

RDMSR, WRMSR
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X X The RDTSC instruction is not supported, as indicated by bit 4 of
CPUID function 1 or 8000_0001h.
General protection, #GP X X CPL was not 0 and CR4.TSD = 1.

RDTSC 327



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

RSM Resume from System Management Mode

Resumes an operating system or application procedure previously interrupted by a
system management interrupt (SMI). The processor state is restored from the
information saved when the SMI was taken. If the processor detects invalid state
information in the system management mode (SMM) save area during RSM, it goes
into a shutdown state.

RSM will shutdown if any of the following conditions are found in the save map (SSM):

m  Anillegal combination of flags in CR0O (CR0.PG =1 and CR0O.PE =0, or CRO.NW =
1 and CRO.CD = 0).

m A reserved bit in CR0O, CR3, CR4, DR6, DR7, or the extended feature enable regis-
ter (EFER) is set to 1.

m  The following bit combination occurs: EFER.LME = 1, CR0.PG =1, CR4.PAE = 0.

m  The following bit combination occurs: CR0.PE =1, CR0.PG =1, EFER.LME =1,
CR4.PAE=1,CSD=1,CS.L=1.

m  SMM revision field has been modified.

The x86-64 architecture uses a new 64-bit SMM state-save memory image. This 64-bit
save-state map is used in all modes, regardless of mode. See “System-Management
Mode” in Volume 2 for details.

Mnemonic Opcode Description

RSM OF AA Resume operation of an interrupted program.

Related Instructions

None

328 RSM



AMDZ1

24594 Rev. 3.02 August 2002

rFLAGS Affected

All flags are restored from the state-save map (SSM).

AMD 64-Bit Technology

ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M M M M M M M M M M M M
21 20 19 18 17 16 14 13-12 11 10 9 7 4 0
Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The processor was not in System Management Mode (SMM).

RSM

329



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SGDT Store Global Descriptor Table Register

Stores the global descriptor table register (GDTR) into the destination operand. In
legacy and compatibility mode, the destination operand is six bytes; in 64-bit mode, it
is 10 bytes. In all modes, operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the
upper 4 bytes specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the
upper 8 bytes specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at
any privilege level.

Mnemonic Opcode Description
SGDT mem16:32 OF 01 /0 Store global descriptor table register to memory.
SGDT mem16:64 0F 01 /0 Store global descriptor table register to memory.

Related Instructions

SIDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The operand was a register.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

330 SGDT




AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded a data segment limit or non-canonical.
#GP
The destination operand was in a non-writable segment.
X
A null data segment was used to reference memory.
X
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

SGDT 331



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SIDT Store Interrupt Descriptor Table Register

Stores the interrupt descriptor table register (IDTR) in the destination operand. In
legacy and compatibility mode, the destination operand is 6 bytes; in 64-bit mode it is
10 bytes. In all modes, operand-size prefixes are ignored.

In non-64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the
upper 4 bytes specify the 32-bit base address.

In 64-bit mode, the lower two bytes of the operand specify the 16-bit limit and the
upper 8 bytes specify the 64-bit base address.

This instruction is intended for use in operating system software, but it can be used at
any privilege level.

Mnemonic Opcode Description
SIDT mem16:32 OF 01 /1 Store global descriptor table register to memory.
SIDT mem16:64 OF 01 /1 Store global descriptor table register to memory.

Related Instructions

SGDT, SLDT, STR, LGDT, LIDT, LLDT, LTR

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X The operand was a register.
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.

332 SIDT




AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X X A memory address exceeded a data segment limit or non-canonical.
#GP
The destination operand was in a non-writable segment.
X
A null data segment was used to reference memory.
X
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment

checking was enabled.

SIDT 333



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SLDT Store Local Descriptor Table Register

Stores the local descriptor table (LDT) selector to a register or memory destination
operand.

If the destination is a register, the selector is zero-extended into a 16-, 32-, or 64-bit
general purpose register, depending on operand size.

If the destination operand is a memory location, the segment selector is written to
memory as a 16-bit value, regardless of operand size.

This SLDT instruction can only be used in protected mode, but it can be executed at
any privilege level.

Mnemonic Opcode Description

SLDT regl6 0F00/0 Store the segment selector from the local descriptor table
register to a 16-bit register.

SLDT reg32 0F 00 /0 Store the segment selector from the local descriptor table
register to a 32-bit register.

SLDT reg64 0F00/0 Store the segment selector from the local descriptor table
register to a 64-bit register.

SLDT mem16 0F 00 /0 Store the segment selector from the local descriptor table
register to a 16-bit memory location.

Related Instructions
SIDT, SGDT, STR, LIDT, LGDT, LLDT, LTR
rFLAGS Affected

None

334 SLDT



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X This instruction is only recognized in protected mode.
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment

checking was enabled.

SLDT 335



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SMSW Store Machine Status Word

Stores the lower bits of the machine status word (CRO). The target can be a 16-, 32-, or
64-bit register or a 16-bit memory operand.

This instruction is provided for compatibility with early processors.

This instruction can be used at any privilege level (CPL).

Mnemonic Opcode Description
SMSW reg 16 OF 01 /4 Stores the low 16 bits of CRO to a 16-bit register.
SMSW reg32 OF 01 /4 Stores the low 32 bits of CRO to a 32-bit register.
SMSW reg64 OF 01 /4 Stores the entire 64-bit CRO to a 64-bit register.
SMSW mem16 OF 01 /4 Stores the low 16 bits of CR0 to memory.

Related Instructions

LMSW, MOV (CRn)
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Stack, #SS X X X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X X X A memory address exceeded a data segment limit or was non-
#GP canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, #AC X X An unaligned memory reference was performed while alignment
checking is enabled.

336 SMSW



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

STI Set Interrupt Flag

Sets the interrupt flag (IF) in the rFLAGS register to 1, thereby allowing external
interrupts received on the INTR input. Interrupts received on the non-maskable
interrupt (NMI) input are not affected by this instruction.

In real mode, this instruction sets IF to 1.

In protected mode and virtual-8086-mode, this instruction is IOPL-sensitive. If the
CPL is less than or equal to the rFLAGS.IOPL field, the instruction sets IF to 1.

In protected mode, if IOPL < 3, CPL = 3, and protected mode virtual interrupts are
enabled (CR4.PVI = 1), then the instruction instead sets rFLAGS.VIF to 1. If none of
these conditions apply, the processor raises a general protection exception (#GP). For
more information, see “Protected Mode Virtual Interrupts” in Volume 2.

In virtual-8086 mode, if IOPL < 3 and the virtual-8086-mode extensions are enabled
(CR4.VME = 1), the STI instruction instead sets the virtual interrupt flag
(rFLAGS.VIF) to 1.

If STI sets the IF flag and IF was initially clear, then interrupts are not enabled until
after the instruction following STI. Thus, if IF is 0, this code will not allow an INTR to
happen:

STI
CLI
In the following sequence, INTR will be allowed to happen only after the NOP.

STI
NOP
CLI

If STI sets the VIF flag and VIP is already set, a #GP fault will be generated.

See “Virtual-8086 Mode Extensions” in Volume 2 for more information about IOPL-
sensitive instructions.

Mnemonic Opcode Description

STI FB Set interrupt flag (IF) to 1.

STI 337



AMDZU

AMD 64-Bit Technology

Action
IF (CPL <= IOPL)
RFLAGS.IF =1

ELSIF (C(VIRTUAL_MODE)

&& (CR4.VME

24594  Rev. 3.02 August 2002

= 1))

|| ((PROTECTED_MODE) && (CR4.PVI = 1) && (CPL = 3)))

IF (RFLAGS.VIP = 1)
EXCEPTION[#GP(0)]
RFLAGS.VIF =1
ELSE
EXCEPTIONL#GP(0)]

Related Instructions

CLI

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT IOPL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M
21 20 19 18 17 16 14 13-12 1 10 9 8 7 6 4 2 0
Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. M (modified) is set to either one or zero. Unaffected flags are blank. Undefined flags
are U.
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

General protection, #GP X The CPL was greater than the I0PL and virtual-mode extensions
were not enabled (CR4.VME = 0).
The CPL was greater than the IOPL and either the CPL was not 3 or
protected-mode virtual interrupts were not enabled (CR4.PVI = 0).

X This instruction would set RFLAGS.VIF to 1 and RFLAGS.VIP was

already 1.

338

STI



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

STR Store Task Register

Stores the task register (TR) selector to a register or memory destination operand.

If the destination is a register, the selector is zero-extended into a 16-, 32-, or 64-bit
general purpose register, depending on the operand size.

If the destination is a memory location, the segment selector is written to memory as a
16-bit value, regardless of operand size.

The STR instruction can only be used in protected mode, but it can be used at any
privilege level.

Mnemonic Opcode Description

STRregi6 0F 00 /1 Store the segment selector from the task register to a 16-bit general-
purpose register.

STR reg32 0F00/1 Store the segment selector from the task register to a 32-bit general-
purpose register.

STR reg64 0F 00 /1 Store the segment selector from the task register to a 64-bit general-
purpose register.

STR mem16 0F00/1 Store the segment selector from the task register to a 16-bit memory
location.

Related Instructions

LGDT, LIDT, LLDT, LTR, SIDT, SGDT, SLDT

rFLAGS Affected

None

STR 339



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD X X This instruction is only recognized in protected mode.
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, #GP X A memory address exceeded a data segment limit or was non-
canonical.
X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment

checking was enabled.

340

STR




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SWAPGS Swap GS Register with KernelGSbase MSR

Provides a fast method for system software to load a pointer to system data structures.
SWAPGS can be used upon entering system-software routines as a result of a
SYSCALL instruction, an interrupt or an exception. Prior to returning to application
software, SWAPGS can be used to restore the application data pointer that was
replaced by the system data-structure pointer.

This instruction can only be executed in 64-bit mode. Executing SWAPGS in any other
mode generates an undefined opcode exception.

The SWAPGS instruction only exchanges the base-address value located in the
KernelGSbase model-specific register (MSR address C000_0102h) with the base-
address value located in the hidden-portion of the GS selector register (GS.base). This
allows the system-kernel software to access kernel data structures by using the GS
segment-override prefix during memory references.

The address stored in the KernelGSbase MSR must be in canonical form. The WRMSR
instruction used to load the KernelGSbase MSR causes a general-protection exception
if the address loaded is not in canonical form. The SWAPGS instruction itself does not
perform a canonical check.

This instruction is only valid in 64-bit mode at CPL 0. A general protection exception
(#GP) is generated if this instruction is executed at any other privilege level.

For additional information about this instruction, refer to “System-Management
Instructions” in Volume 2.

Examples

At a kernel entry point, the OS uses SwapGS to obtain a pointer to kernel data
structures and simultaneously save the user's GS base. Upon exit, it uses SwapGS to
restore the user's GS base:

SystemCallEntryPoint:

SwapGS ; get kernel pointer, save user GSbase
mov gs:[SavedUserRSP], rsp ; save user’s stack pointer

mov rsp, gs:[KernelStackPtr] ; set up kernel stack

push rax ; now save user GPRs on kernel stack

; perform system service

SwapGS ; restore user GS, save kernel pointer

SWAPGS 341



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
Mnemonic Opcode Description
SWAPGS OF 01 F8 Exchange GS base with KernelGSBase MSR.
(Invalid in legacy and compatibility modes.)
Related Instructions
None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X This instruction was executed in legacy or compatibility
mode.
General protection, #GP X CPL was not 0.
342 SWAPGS




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

SYSCALL Fast System Call

Transfers control to a fixed entry point in an operating system. It is designed for use
by system and application software implementing a flat-segment memory model.

The SYSCALL and SYSRET instructions are low-latency system call and return
control-transfer instructions, which assume that the operating system implements a
flat-segment memory model. By eliminating unneeded checks, and by loading pre-
determined values into the CS and SS segment registers (both visible and hidden
portions), calls to and returns from the operating system are greatly simplified. These
instructions can be used in protected mode and are particularly well-suited for use in
64-bit mode, which requires implementation of a paged, flat-segment memory model.

This instruction has been optimized by reducing the number of checks and memory
references that are normally made so that a call or return takes considerably fewer
clock cycles than the CALL FAR /RET FAR instruction method.

It is assumed that the base, limit, and attributes of the Code Segment will remain flat
for all processes and for the operating system, and that only the current privilege level
for the selector of the calling process should be changed from a current privilege level
of 3 to a new privilege level of 0. It is also assumed (but not checked) that the RPL of
the SYSCALL and SYSRET target selectors are set to 0 and 3, respectively.

SYSCALL sets the CPL to 0, regardless of the values of bits 33-32 of the STAR
register. There are no permission checks based on the CPL, real mode, or virtual-8086
mode. SYSCALL and SYSRET must be enabled by setting EFER.SCE to 1.

It is the responsibility of the operating system to keep the descriptors in memory that
correspond to the CS and SS selectors loaded by the SYSCALL and SYSRET
instructions consistent with the segment base, limit, and attribute values forced by
these instructions.

Legacy x86 Mode. In legacy x86 mode, when SYSCALL is executed, the EIP register is
copied into the ECX register. Bits 31-0 of the SYSCALL/SYSRET target address
register (STAR) are copied into the EIP register. (The STAR register is model-specific
register C000_0081h.)

New selectors are loaded, without permission checking (see above), as follows:
m  Bits 47-32 of the STAR register specify the selector that is copied into the CS reg-
ister.

m  Bits 47-32 of the STAR register + 8 specify the selector that is copied into the SS
register.

SYSCALL 343



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

m The CS_base and the SS_base are both forced to zero.
m The CS_limit and the SS_limit are both forced to 4 Gbyte.
m The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.

m The SS segment attributes are set to read/write and expand-up with a 32-bit stack
referenced by ESP.

Long Mode. When long mode is activated, the behavior of the SYSCALL instruction
depends on whether the calling software is in 64-bit mode or compatibility mode. In
64-bit mode, SYSCALL saves the RIP of the instruction following the SYSCALL into
RCX and loads the new RIP from LSTAR bits 63-0. (The LSTAR register is model-
specific register C000_0082h.) In compatibility mode, SYSCALL saves the RIP of the
instruction following the SYSCALL into RCX and loads the new RIP from CSTAR bits
63-0. (The CSTAR register is model-specific register C000_0083h.)

New selectors are loaded, without permission checking (see above), as follows:

m  Bits 47-32 of the STAR register specify the selector that is copied into the CS reg-
ister.

m  Bits 47-32 of the STAR register + 8 specify the selector that is copied into the SS
register.

m The CS_base and the SS_base are both forced to zero.
m The CS_limit and the SS_limit are both forced to 4 Gbyte.
m The CS segment attributes are set to execute/read 64-bit code with a CPL of zero.

m The SS segment attributes are set to read/write and expand-up with a 64-bit stack
referenced by RSP.

The WRMSR instruction loads the target RIP into the LSTAR and CSTAR registers. If
an RIP written by WRMSR is not in canonical form, a general-protection exception
(#GP) occurs.

How SYSCALL and SYSRET handle rFLAGS, depends on the processor’s operating
mode.
In legacy mode, SYSCALL treats EFLAGS as follows:

m EFLAGS.IF is cleared to O.
m EFLAGS.RF is cleared to 0.
m EFLAGS.VM is cleared to 0.

In long mode, SYSCALL treats RFLAGS as follows:

m The current value of RFLAGS is saved in R11.
m  RFLAGS is masked using the value stored in SYSCALL_FLAG_MASK.

344 SYSCALL



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

m RFLAGS.RF is cleared to 0.

For further details on the SYSCALL and SYSRET instructions and their associated
MSR registers (STAR, LSTAR, CSTAR and SYSCALL_FLAG_MASK), see “Fast
System Call and Return” in Volume 2.

Mnemonic Opcode Description
SYSCALL OF 05 Call operating system.
Action

// See “Pseudocode Definitions” on page 48.
SYSCALL_START:

IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
EXCEPTION [4fUD]

IF (LONG_MODE)
SYSCALL_LONG_MODE

ELSE // (LEGACY_MODE)
SYSCALL_LEGACY_MODE

SYSCALL_LONG_MODE:

RCX.q = next_RIP
R11.qg RFLAGS // with rf cleared

IF (64BIT_MODE)
temp_RIP.q = MSR_LSTAR
ELSE // (COMPATIBILITY_MODE)
temp_RIP.q = MSR_CSTAR

CS.sel = MSR_STAR.SYSCALL_CS AND OxFFFC

CS.attr = 64-bit code,dpl0 // Always switch to 64-bit mode in long mode.
CS.base = 0x00000000

CS.1imit = OxFFFFFFFF

SS.sel = MSR_STAR.SYSCALL_CS + 8

SS.attr = 64-bit stack,dplO

SS.base = 0x00000000
SS.Timit OXFFFFFFFF

RFLAGS = RFLAGS AND ~MSR_SFMASK
RFLAGS.RF = 0

CPL = 0

SYSCALL 345



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

RIP = temp_RIP

EXIT
SYSCALL_LEGACY_MODE:

RCX.d = next_RIP

temp_RIP.d = MSR_STAR.EIP

CS.sel = MSR_STAR.SYSCALL_CS AND OxFFFC

CS.attr = 32-bit code,dpl0 // Always switch to 32-bit mode in legacy mode.
CS.base = 0x00000000

CS.1imit = OxFFFFFFFF

SS.sel = MSR_STAR.SYSCALL_CS + 8

SS.attr = 32-bit stack,dpl0

SS.base = 0x00000000

SS.Timit = OxFFFFFFFF

RFLAGS.VM, IF,RF=0
CPL =0

RIP = temp_RIP
EXIT

Related Instructions
SYSRET, SYSENTER, SYSEXIT

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M| M M M M M M M M M M M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Note:

Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank. Undefined
flags are U.

346 SYSCALL



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SYSCALL and SYSRET instructions are not supported,
as indicated by bit 11 of CPUID extended function
8000_0001h.
X X X The system call extension bit (SCE) of the extended

feature enable register (EFER) is set to 0. (The EFER
register is MSR C000_0080h.)

SYSCALL 347



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SYSENTER System Call

Transfers control to a fixed entry point in an operating system. It is designed for use
by system and application software implementing a flat-segment memory model. This
instruction is valid only in legacy mode.

Three model-specific registers (MSRs) are used to specify the target address and stack
pointers for the SYSENTER instruction, as well as the CS and SS selectors of the
called and returned procedures:

s MSR_SYSENTER_CS: Contains the CS selector of the called procedure. The SS
selector is set to MSR_SYSENTER_CS + 8.

m MSR_SYSENTER_ESP: Contains the called procedure’s stack pointer.
m MSR_SYSENTER_EIP: Contains the offset into the CS of the called procedure.

The hidden portions of the CS and SS segment registers are not loaded from the
descriptor table as they would be using a legacy x86 CALL instruction. Instead, the
hidden portions are forced by the processor to the following values:

m The CS and SS base values are forced to 0.
m The CS and SS limit values are forced to 4 Gbytes.
m The CS segment attributes are set to execute/read 32-bit code with a CPL of zero.

m The SS segment attributes are set to read/write and expand-up with a 32-bit stack
referenced by ESP.

System software must create corresponding descriptor-table entries referenced by the
new CS and SS selectors that match the values described above.

The return EIP and application stack are not saved by this instruction. System
software must explicitly save that information.

An invalid-opcode exception occurs if this instruction is used in long mode. Software
should use the SYSCALL (and SYSRET) instructions in long mode. If SYSENTER is
used in real mode, a #GP is raised.

For additional information on this instruction, see “SYSENTER and SYSEXIT
(Legacy Mode Only)” in Volume 2.

Mnemonic Opcode Description

SYSENTER OF 34 Call operating system.

348 SYSENTER



AMDZ1

24594 Rev. 3.02 August 2002

Related Instructions

SYSCALL, SYSEXIT, SYSRET

AMD 64-Bit Technology

rFLAGS Affected

ID |VIP| VIF| AC | VM | RF | NT 10PL OF | DF IF TF | SF | ZF | AF | PF | CF
0 0

21 120 | 19 | 18 | 17 | 16 | 14 13-12 1m| 10| 9 8 7 6 4 2 0

are U.

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank. Undefined flags

Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SYSENTER and SYSEXIT instructions are not
supported, as indicated by bit 11 of CPUID standard
function 1.
X This instruction is not recognized in long mode.
General protection, #GP X This instruction is not recognized in real mode.
X X MSR_SYSENTER_CS was cleared to 0.

SYSENTER 349



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SYSEXIT System Return

Returns from the operating system to an application. It is a low-latency system return
instruction designed for use by system and application software implementing a flat-
segment memory model.

This is a privileged instruction. The current privilege level must be zero to execute
this instruction. An invalid-opcode exception occurs if this instruction is used in long
mode. Software should use the SYSRET (and SYSCALL) instructions when running in
long mode.

When a system procedure performs a SYSEXIT back to application software, the CS
selector is updated to point to the second descriptor entry after the SYSENTER CS
value (MSR SYSENTER_CS+16). The SS selector is updated to point to the third
descriptor entry after the SYSENTER CS value (MSR SYSENTER_CS+24). The CPL
is forced to 3, as are the descriptor privilege levels.

The hidden portions of the CS and SS segment registers are not loaded from the
descriptor table as they would be using a legacy x86 RET instruction. Instead, the
hidden portions are forced by the processor to the following values:

m The CS and SS base values are forced to 0.
m  The CS and SS limit values are forced to 4 Gbytes.
s The CS segment attributes are set to 32-bit read/execute at CPL 3.

m The SS segment attributes are set to read/write and expand-up with a 32-bit stack
referenced by ESP.

System software must create corresponding descriptor-table entries referenced by the
new CS and SS selectors that match the values described above.

The following additional actions result from executing SYSEXIT:

m FEIP is loaded from EDX.
m ESP isloaded from ECX.

System software must explicitly load the return address and application software-
stack pointer into the EDX and ECX registers prior to executing SYSEXIT.

For additional information on this instruction, see “SYSENTER and SYSEXIT
(Legacy Mode Only)” in Volume 2.

350 SYSEXIT



AMDZ1

24594 Rev. 3.02 August 2002

Mnemonic

SYSEXIT

Related Instructions

Opcode
OF 35

SYSCALL, SYSENTER, SYSRET

AMD 64-Bit Technology

Description

Return from operating system to application.

rFLAGS Affected
ID |[VIP|VIF| AC | VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0
21 20 | 19 18 17 16 14 13-12 1 10 9 8 7 6 4 2 0
Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank.

Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SYSENTER and SYSEXIT instructions are not
supported, as indicated by bit 11 of CPUID standard
function 1.
X This instruction is not recognized in long mode.
General protection, #GP X X This instruction is only recognized in protected mode.
X CPL was not 0.
X MSR_SYSENTER_CS was cleared to 0.

SYSEXIT 351



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

SYSRET Fast System Return

Returns from the operating system to an application. It is a low-latency system return
instruction designed for use by system and application software implementing a flat
segmentation memory model.

The SYSCALL and SYSRET instructions are low-latency system call and return
control-transfer instructions that assume that the operating system implements a flat-
segment memory model. By eliminating unneeded checks, and by loading pre-
determined values into the CS and SS segment registers (both visible and hidden
portions), calls to and returns from the operating system are greatly simplified. These
instructions can be used in protected mode and are particularly well-suited for use in
64-bit mode, which requires implementation of a paged, flat-segment memory model.

This instruction has been optimized by reducing the number of checks and memory
references that are normally made so that a call or return takes substantially fewer
internal clock cycles when compared to the CALL/RET instruction method.

It is assumed that the base, limit, and attributes of the Code Segment will remain flat
for all processes and for the operating system, and that only the current privilege level
for the selector of the calling process should be changed from a current privilege level
of 0 to a new privilege level of 3. It is also assumed (but not checked) that the RPL of
the SYSCALL and SYSRET target selectors are set to 0 and 3, respectively.

SYSRET sets the CPL to 3, regardless of the values of bits 49-48 of the star register.
SYSRET can only be executed in protected mode at CPL 0. SYSCALL and SYSRET
must be enabled by setting EFER.SCE to 1.

It is the responsibility of the operating system to keep the descriptors in memory that
correspond to the CS and SS selectors loaded by the SYSCALL and SYSRET
instructions consistent with the segment base, limit, and attribute values forced by
these instructions.

When a system procedure performs a SYSRET back to application software, the CS
selector is updated from bits 63-50 of the STAR register (STAR.SYSRET_CS) as
follows:

m If the return is to 32-bit mode (legacy or compatibility), CS is updated with the
value of STAR.SYSRET_CS.

m If the return is to 64-bit mode, CS is updated with the value of STAR.SYSRET_CS
+ 16.

352 SYSRET



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

In both cases, the CPL is forced to 3, effectively ignoring STAR bits 49-48. The SS
selector is updated to point to the next descriptor-table entry after the CS descriptor
(STAR.SYSRET_CS + 8), and its RPL is not forced to 3.

The hidden portions of the CS and SS segment registers are not loaded from the
descriptor table as they would be using a legacy x86 RET instruction. Instead, the
hidden portions are forced by the processor to the following values:

m The CS base value is forced to 0.
m  The CS limit value is forced to 4 Gbytes.
m The CS segment attributes are set to execute-read 32 bits or 64 bits (see below).

m the SS segment attributes are set to read/write and expand-up. (Stack pointer size
is described below.)

When SYSCALLed system software is running in 64-bit mode, it has been entered
from either 64-bit mode or compatibility mode. The corresponding SYSRET needs to
know the mode to which it must return. Executing SYSRET in non-64-bit mode or with
a 16- or 32-bit operand size, returns to 32-bit mode with a 32-bit stack pointer.
Executing SYSRET in 64-bit mode with a 64-bit operand size returns to 64-bit mode
with a 64-bit stack pointer.

The instruction pointer is updated with the return address based on the operating
mode in which SYSRET is executed:

m If returning to 64-bit mode, SYSRET loads RIP with the value of RCX.
m If returning to 32-bit mode, SYSRET loads EIP with the value of ECX.

How SYSRET handles RFLAGS, depends on the processor’s operating mode:

m If executed in 64-bit mode, SYSRET loads the lower-32 RFLAGS bits from
R11[31:0] and clears the upper 32 RFLAGS bits.

m If executed in legacy mode and compatibility mode, SYSRET sets EFLAGS.IF.

For further details on the SYSCALL and SYSRET instructions and their associated
MSR registers (STAR, LSTAR, and CSTAR), see “Fast System Call and Return” in
Volume 2.

Mnemonic Opcode Description
SYSRET OF 07 Return from operating system.
Action

// See “Pseudocode Definitions” on page 48.

SYSRET 353



AMDA
AMD 64-Bit Technology 24594  Rev. 3.02 August 2002

SYSRET_START:

IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
EXCEPTION [4fUD]

IF (CIPROTECTED_MODE) || (CPL !=0))
EXCEPTION [#GP(0)] // SYSRET requires protected mode, cpl0

IF (64BIT_MODE)
SYSRET_64BIT_MODE

ELSE // (!64BIT_MODE)
SYSRET_NON_64BIT_MODE

SYSRET_64BIT_MODE:

IF (OPERAND_SIZE = 64) // Return to 64-bit mode.
{

CS.sel = (MSR_STAR.SYSRET_CS + 16) OR 3

CS.base = 0x00000000

CS.Timit = OxFFFFFFFF

CS.attr = 64-bit code,dpl3
temp_RIP.q = RCX
ELSE // Return to 32-bit compatibility mode.

CS.sel = MSR_STAR.SYSRET_CS OR 3
CS.base = 0x00000000

CS.limit = OxFFFFFFFF

CS.attr = 32-bit code,dpl3

temp_RIP.d = RCX
}

SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed,
// SS base, 1imit, attributes unchanged.

RFLAGS.q = R11 // RF=0,VM=0
CPL =3

RIP = temp_RIP
EXIT

SYSRET_NON_64BIT_MODE:

CS.sel = MSR_STAR.SYSRET_CS OR 3 // Return to 32-bit legacy protected mode.
CS.base = 0x00000000

CS.1imit = OxFFFFFFFF

CS.attr = 32-bit code,dpl3

354 SYSRET



AMDZ1

24594 Rev. 3.02 August 2002

temp_RIP.d = RCX

SS.sel = MSR_STAR.SYSRET_CS + 8

RFLAGS.IF =1
CPL = 3

RIP = temp_RIP
EXIT

Related Instructions

SYSCALL, SYSENTER, SYSEXIT

AMD 64-Bit Technology

// SS selector is changed.
// SS base, 1imit, attributes unchanged.

rFLAGS Affected
ID |VIP | VIF| AC| VM | RF | NT I0PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M| M| M| M M M M M M| M M M| M M
21 20 19 18 17 16 14 13-12 11 10 9 8 7
Note:
Bits }7 1-22, 15, 5, 3, and 1 are reserved. A flag set to one or cleared to zero is M (modified). Unaffected flags are blank. Undefined
lags are U.
Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
Invalid opcode, #UD X X X The SYSCALL and SYSRET instructions are not supported,
as indicated by bit 11 of CPUID extended function
8000_0001h.

X X X The system call extension bit (SCE) of the extended
feature enable register (EFER) is set to 0. (The EFER
register is MSR C000_0080h.)

General protection, #GP X X This instruction is only recognized in protected mode.
X CPL was not 0.

SYSRET 355



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

UD2 Undefined Operation
Generates an invalid opcode exception. Unlike other undefined opcodes that may be

defined as legal instructions in the future, UD2 is guaranteed to stay undefined.

Mnemonic Opcode Description

uD2 OF 0B Raise an invalid opcode exception.

Related Instructions

None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X X This instruction is not recognized.

356 uD2



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

VERR Verify Segment for Reads

Verifies whether a code or data segment specified by the segment selector in the 16-
bit register or memory operand is readable from the current privilege level. The zero
flag (ZF) is set to 1 if the specified segment is readable. Otherwise, ZF is cleared.

A segment is readable if all of the following apply:

m the selector is not a null selector.
m the descriptor is within the GDT or LDT limit.
m the segment is a data segment or readable code segment.

m the descriptor DPL is greater than or equal to both the CPL and RPL, or the seg-
ment is a conforming code segment.

The processor does not recognize the VERR instruction in real or virtual-8086 mode.

Mnemonic Opcode Description
VERR reg/mem 16 OF 00 /4 Set the zero flag (ZF) to 1 if the segment selected can
be read.

Related Instructions
ARPL, LAR, LSL, VERW

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT I0PL OF DF | IF | TF | SF | ZF | AF | PF | CF
M
21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 11 10| 9 8 7 6 4 2 0

Notes: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank. Undefined flags
are U.

VERR 357



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X This instruction is only recognized in protected mode.
Stack, #SS X A memory address exceeded the stack segment limit or is non-
canonical.
General protection, X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment

checking was enabled.

358

VERR




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

VERW Verify Segment for Writes

Verifies whether a data segment specified by the segment selector in the 16-bit
register or memory operand is writable from the current privilege level. The zero flag
(ZF) is set to 1 if the specified segment is writable. Otherwise, ZF is cleared.

A segment is writable if all of the following apply:

m the selector is not a null selector.

m the descriptor is within the GDT or LDT limit.

m the segment is a writable data segment.

m the descriptor DPL is greater than or equal to both the CPL and RPL.

The processor does not recognize the VERW instruction in real or virtual-8086 mode.

Mnemonic Opcode Description
VERW reg/mem 16 0F 00 /5 Set the zero flag (ZF) to 1 if the segment selected can
be written.

Related Instructions
ARPL, LAR, LSL, VERR
rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF

21 | 20 | 19 | 18 | 17 | 16 | 14 13-12 1 10 9 8 7 6 4 2 0

Note:
Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to one or zero is M (modified). Unaffected flags are blank. Undefined flags are U.

VERW 359



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid opcode, #UD | X X This instruction is only recognized in protected mode.
Stack, #SS X A memory address exceeded the stack segment limit or was non-
canonical.
General protection, X A memory address exceeded a data segment limit or was non-
#GP canonical.
X A null data segment was used to access memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while alignment

checking was enabled.

360

VERW




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

WBINVD Writeback and Invalidate Caches

The WBINVD instruction writes all modified cache lines in the internal caches back to
main memory and invalidates (flushes) internal caches. It then causes external caches
to write back modified data to main memory; the external caches are subsequently
invalidated. After invalidating internal caches, the processor proceeds immediately
with the execution of the next instruction without waiting for external hardware to
invalidate its caches.

The INVD instruction can be used when cache coherence with memory is not
important.

This instruction does not invalidate TLB caches.

This is a privileged instruction. The current privilege level of a procedure invalidating
the processor’s internal caches must be zero.

WBINVD is a serializing instruction.

Mnemonic Opcode Description

WBINVD 0F 09 Write modified cache lines to main memory, invalidate internal
caches, and trigger external cache flushes.

Related Instructions

CLFLUSH, INVD

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
General protection, X X CPL was not 0.
#GP

WBINVD 361



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

WRMSR Write to Model-Specific Register

Writes data to 64-bit model-specific registers (MSRs). These registers are widely used
in performance-monitoring and debugging applications, as well as testability and
program execution tracing.

This instruction writes the contents of the EDX:EAX register pair into a 64-bit model-
specific register specified in the ECX register. The 32 bits in the EDX register are
mapped into the high-order bits of the model-specific register and the 32 bits in EAX
form the low-order 32 bits.

This instruction must be executed at a privilege level of 0 or a general protection fault
#GP(0) will be raised. This exception is also generated if an attempt is made to specify
areserved or unimplemented model-specific register in ECX.

WRMSR is a serializing instruction.

The CPUID instruction can provide model information useful in determining the
existence of a particular MSR.

See Volume 2, System Programming, for more information about model-specific
registers, machine check architecture, performance monitoring and debug registers.

Mnemonic Opcode Description

WRMSR OF 30 Write EDX:EAX to the MSR specified by ECX.

Related Instructions
RDMSR
rFLAGS Affected

None

362 WRMSR



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Invalid Opcode, #UD | X X X The WRMSR instruction is not supported, as indicated by bit 5 of
CPUID function 1 or 8000_0001h.
General protection, X X CPL was not 0.
#GP
X X The value in ECX specifies a reserved or unimplemented MSR
address.
X X Writing 1 to any bit that must be zero (MBZ) in the MSR.

WRMSR

363



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

364 WRMSR



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Appendix A Opcode and Operand Encodings

This section specifies the hexadecimal and/or binary encodings
for the opcodes and the implicit operand references used in the
x86-64 instruction set. For an overview of the instruction
formats to which these encodings apply, see Chapter 1,
“Instruction Formats.”

A.l Opcode-Syntax Notation

The following notation is used in this section to specify opcodes
and their operands:

A Direct address of operand is encoded in instruction
without a ModRM byte. Complex addressing using the SIB
byte cannot be done.

C Control register specified by the ModRM reg field.
D Debug register specified by the ModRM reg field.

E  General purpose register or memory operand specified by
the ModRM byte. Memory addresses can be computed
from a segment register, SIB byte, and/or displacement.

F  rFLAGS register.

G General purpose register specified by the ModRM reg
field.

I Immediate value.

J  The instruction includes a relative offset that is added to
the rIP.

M A memory operand specified by the ModRM byte.

O The offset of an operand is encoded in the instruction.
There is no ModRM byte in the instruction. Complex
addressing using the SIB byte cannot be done.

P 64-bit MMX register specified by the ModRM reg field.

PR 64-bit MMX register specified by the ModRM r/m field.
The ModRM mod field must be 11b.

Appendix A: Opcode and Operand Encodings 365



AMDZU

AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

Q 64-bit MMX-register or memory operand specified by the
ModRM byte. Memory addresses can be computed from a
segment register, SIB byte, and/or displacement.

R  General purpose register specified by the ModRM r/m
field. The ModRM mod field must be 11b.

S  Segment register specified by the ModRM reg field.

V'  128-bit XMM register specified by the ModRM reg field.

VR 128-bit XMM register specified by the ModRM r/m field.
The ModRM mod field must be 11b.

W A 128-bit XMM register or memory operand specified by
the ModRM byte. Memory addresses can be computed
from a segment register, SIB byte, and/or displacement.

X A memory operand addressed by the DS.rSI registers. Used
in string instructions.

Y A memory operand addressed by the ES.rDI registers.
Used in string instructions.

a Two 16-bit or 32-bit memory operands, depending on the
effective operand size. Used in the BOUND instruction.

b A byte, irrespective of the effective operand size.

¢ A byte or word, depending on the effective operand size.

d A doubleword (32 bits), irrespective of the effective
operand size.

dq A double-quadword (128 bits), irrespective of the effective
operand size.

p A 32-bit or 48-bit far pointer, depending on the effective
operand size.

pd A 128-bit double-precision floating-point vector operand
(packed double).

pt A 64-bit MMX operand (packed integer).

ps A 128-bit single-precision floating-point vector operand
(packed single).

q A quadword, irrespective of the effective operand size.

366 Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev. 3.02 August 2002

sd

st

SS

/n

AMD 64-Bit Technology

A 6-byte or 10-byte pseudo-descriptor.

A scalar double-precision floating-point operand (scalar
double).

A scalar doubleword (32-bit) integer operand (scalar
integer).

A scalar single-precision floating-point operand (scalar
single).

A word, doubleword, or quadword, depending on the
effective operand size.

A word, irrespective of the effective operand size.

A word if the effective operand size is 16 bits, or a
doubleword if the effective operand size is 32 or 64 bits.

A ModRM-byte reg field or SIB-byte base field that contains
a value (n) between zero (binary 000) and 7 (binary 111).

For definitions of the mnemonics used to name registers, see
“Summary of Registers and Data Types” on page 30.

A.2 Opcode Encodings
A2.1 One-Byte Table A-1 on page 368 shows the one-byte opcodes in which the
Opcodes low nibble is in the range 0-7h. Table A-2 on page 369 shows

those opcodes in which the low nibble is in the range 8-Fh. In
both tables, the rows show the full range (0-Fh) of the high
nibble, and the columns show the specified range of the low
nibble.

Appendix A: Opcode and Operand Encodings 367



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table A-1. One-Byte Opcodes, Low Nibble 0-7h
Nibble' 0 1 2 3 4 5 6 7
0 ADD PUSH POP
EbGh | EwGv | GhEb | GuEv | AL | AXI ES® ES®
; ADC PUSH POP
BGb | E,Gv | GhEb | GuEv | AL | rAXI 5s° 5s°
) AND seg ES° DAA’
EbGh | EwGv | GhE | GuEBv | AL | AXI
3 XOR seg SS° AAA®
BGb | E,Gv | GhEb | GuEv | AL | rAXI
INC®
' eAX | ex | eDX | eBX | eSP | eBP eSl | eDl
PUSH
5 rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSl/r14 1DI/r15
) PUSHA/D® | POPA/D? Bg‘lf’ ':\'AZ ’ EAVEPGL; seg FS segGS | operand size ads‘:zfss
MOVSXD*
Gv, Ed
7 ) INO B INB 1z INZ JBE INBE
Jb Jb Jb Jb Jb Jb Jb Jb
8 Group 17 TEST XCHG
Ebb | Eviz | Ebb® | Bl Eb,Gb | Ev,Gv Eb,Gb | Ev,Gv
XCHG
9 r8, rAX
NOP rCX/r9, rAX | rDX/r10, rAX | rBX/r11, rAX | rSP/r12, rAX | rBP/r13, rAX | rSl/r14,rAX | rDI/r15, rAX
A MoV MOVSB | MOVSW/D/Q| CMPSB | CMPSW/D/Q
ALOb | rAX,Ov | ObAL | OvrAX Yb, Xb Yv, Xv Xb, Yb Xv, W
MoV
B AL Ib CL b DL, Ib BL, Ib AH, Ib CH, 1b DH, Ib BH, Ib
r8b, Ib rob, Ib r1ob, Ib r1ib, Ib r12b, Ib ri3b, Ib riab, Ib risb, Ib
C Group 2° RET near LES® LDS® Group 112
Eblb | Evlb w Gz, Mp Gz, Mp Eb, Ib Bv, Iz
D Group 2* AAM® AAD? SALC® XLAT
Eb, 1 Ev, 1 Eb, CL Ev, CL
E LOOPNE/NZ | LOOPE/Z LOOP IrCxz IN ouTt
Jb Jb Jb Jb AL, Ib eAX, Ib Ib,AL | b, eAX
F LOCK: INT1 REPNE: REP: HLT cmcC Group 3°
ICE Bkpt REPE: |
Note:
1. Rows in this table show the high opcode nibble, columns show the low opcode nibble.
2. An opcode extension Is specified in bits 5-3 of the ModRM byte. See “ModRM Extensions to One-Byte and Two-Byte Opcodes” on
page 377 for details.
3. Invalid in 64-bit mode.
4. Valid only in 64-bit mode.
5. Used as REX prefixes in 64-bit mode.
6. This is a null prefix in 64-bit mode.
368 Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table A-2. One-Byte Opcodes, Low Nibble 8-Fh
Nibble! 8 9 A B C D E F
0 OR PUSH 2-byte
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz cs? opcodes
1 SBB PUSH POP
BGb | E,Gv | GhEb | GuEv | AL | rAXI DS* DS
) SUB seg CS® DAS®
EbGh | EwGv | GhE | GuEBv | AL | AXI
3 CMP seg DS® AAS®
BGb | E,Gv | GhEb | GuEv | AL | rAXI
1 DEC®
eAX | ex | eDX | eBX | eP | eBP | eSI | DI
POP
5 rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSl/r14 1DI/r15
6 PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OuUTSW/D
Iz Gv, Ev, Iz Ib Gv, Ev, Ib Yb, DX Yz, DX DX, Xb DX, Xz
JS INS P JNP IL JNL JLE JNLE
7 Jb Jb b Jb Jb Jb Jb Jb
g MOV LEA MOV Group 1a?
Eb, Gb Ev, Gv Gb, Eb Gv, Ev Mwj/Rv, Sw Gv, M Sw, Ew Ev
9 CBW, CWDE | CWD, CDQ, CALL® WAIT PUSHF/D/Q | POPF/D/Q SAHF? LAHF?
CDQE CcQo Ap FWAIT Fv Fv
A TEST STOSB STOSW/D/Q LODSB LODSW/D/Q SCASB SCASW/D/Q
AL Ib | rAX, Iz Yb, AL Yv, rAX AL, Xb rAX, Xv AL, Yb rAX, Yv
MOV
B rAX, v rcX, v DX, v rBX, v rSP, v rBP, v rSl, v rDI, v
rg, lv r9, v r10, v ri1, v r2, v ri3, v ri4, v r15, v
C ENTER LEAVE RET far INT3 INT INTO? IRET, IRETD
Iw, Ib lw Ib IRETQ
D x87
see Table A-10 on page 383
E CALL JMP IN ouT
)z )z Ap3 Jb AL, DX eAX, DX DX, AL DX, eAX
F CLC STC cul STI CLD STD Group 4° Group 5°
Eb
Note:
1. Rows in this table show the high opcode nibble, columns show the low opcode nibble.
2. An opcode extension Is specified in bits 5-3 of the ModRM byte. See “ModRM Extensions to One-Byte and Two-Byte Opcodes” on
page 377 for details.
3. Invalid in 64-bit mode.
4. Valid only in 64-bit mode.
5. Used as REX prefixes in 64-bit mode.
6. This is a null prefix in 64-bit mode.

Appendix A: Opcode and Operand Encodings

369



AMDZU

AMD 64-Bit Technology

A2.2 Two-Byte

24594  Rev. 3.02 August 2002

All two-byte opcodes have OFh as their first byte. Table A-3

Opcodes below shows the second byte of the two-byte opcodes in which
the second byte’s low nibble is in the range 0-7h. Table A-4 on
page 373 shows those opcodes in which the second byte’s low
nibble is in the range 8-Fh. In both tables, the rows show the
full range (0-Fh) of the high nibble, and the columns show the
low nibble of the opcode. The left-most column shows special-
purpose prefix bytes used in many 128-bit and 64-bit
instructions to modify the opcode.

Table A-3. Second Byte of Two-Byte Opcodes, Low Nibble 0-7h

Prefix | Nibble! 0 1 2 3 4 5 6 7
Group 6° Group 7* LAR LSL invalid SYSCALL CLTS SYSRET
n/a 0
Gv, Ew Gv, Ew
MOVUPS MOVLPS MOVHPS
Vps, Mq MOVLPS | UNPCKLPS | UNPCKHPS | Vps,Mq | MOVHPS
none MOVHLPS MOVLHPS
Vps, Wps | Wps, Vps Vps, VRq Mgq, Vps Vps, Wq Vps, Wq Vps, VRq Mg, Vps
F3 . MOVSS invalid invalid invalid invalid invalid invalid
Vdg/ss, Wss |  Wss, Vss
66 MOVUPD MOVLPD UNPCKLPD | UNPCKHPD MOVHPD
Vpd, Wpd | Wpd, Vpd Vsd, Mq Mgq, Vsd Vpd, Wq Vpd, Wq Vsd, Mq Mgq, Vsd
2 MOVSD invalid invalid invalid invalid invalid invalid
Vdg/sd, Wsd | Wsd, Vsd
2 MoV invalid invalid invalid invalid
Wa Rd/a, Cd/a | Rd/a,Dd/q | Cd/a,Rya | Dd/a, Rejq
n/a 3 WRMSR RDTSC RDMSR RDPMC SYSENTER® | SYSEXIT® invalid invalid
n/a 4 CMOVO CMOVNO CMOVB CMOVNB cMovz CMOVNZ CMOVBE CMOVNBE
Gy, Ev Gy, Ev Gy, Ev Gy, Ev Gv, Ev Gy, Ev Gv, Ev Gv, Ev
none MOVMSKPS |  SQRTPS RSQRTPS RCPPS ANDPS ANDNPS ORPS XORPS
Gd, VRps Vps, Wps Vps, Wps Vps, Wps Vps, Wps Vps, Wps Vps, Wps Vps, Wps
F3 invalid SQRTSS RSQRTSS RCPSS invalid invalid invalid invalid
Vss, Wss Vss, Wss Vss, Wss
66 5 MOVMSKPD | SQRTPD invalid invalid ANDPD ANDNPD ORPD XORPD
Gd,VRpd | Vpd, Wpd Vpd, Wpd | Vpd,Wpd | Vpd,Wpd | Vpd, Wpd
F2 invalid SQRTSD invalid invalid invalid invalid invalid invalid
Visd, Wsd

Note:

1. All two-byte opcodes begin with an OFh byte. Rows in the table show the high nibble of the second opcode bytes, columns show
the low nibble of this byte.

2. An opcode extension Is specified in bits 5-3 of the ModRM byte. See “ModRM Extensions to One-Byte and Two-Byte Opcodes” on
page 377 for details.

3. Invalid in long mode.

370

Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table A-3. Second Byte of Two-Byte Opcodes, Low Nibble 0-7h (continued)
Prefix | Nibble! 0 1 2 3 4 5 6 7
PUNPCKLBW | PUNPCKLWD | PUNPCKLDQ | PACKSSWB | PCMPGTB | PCMPGTW | PCMPGTD | PACKUSWB
none PaQd | PqQd | PqQd | PgQq | PgQq | PgQq | PqQq | PqQg
F3 invalid invalid invalid invalid invalid invalid invalid invalid
6 PUNPCKLBW | PUNPCKLWD | PUNPCKLDQ | PACKSSWB | PCMPGTB | PCMPGTW | PCMPGTD | PACKUSWB
66 Vdq, Wq Vdg, Wq Vdq, Wq Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq, Wdq | Vdq, Wdq
2 invalid invalid invalid invalid invalid invalid invalid invalid
none PSHUFW | Group 12> | Group 132 | Group 14> | PCMPEQB | PCMPEQW | PCMPEQD EMMS
Pq, Qq, Ib Pq, Qq Pq, Qq Pq, Qq
PSHUFHW invalid invalid invalid invalid invalid invalid invalid
F3
7 Vq, Wq, Ib
66 PSHUFD | Group 122 | Group 13 | Group 14> | PCMPEQB | PCMPEQW | PCMPEQD invalid
Vdg, Wdg, Ib Vdq, Wdq | Vdq,Wdq | Vdq, Wdq
PSHUFLW invalid invalid invalid invalid invalid invalid invalid
F2
Vq, Wq, Ib
JO JNO JB IJNB 1z INZ JBE JNBE
n/a 8 Iz Jz Jz Iz Jz Jz Iz Iz
n/a 9 SETO SETNO SETB SETNB SETZ SETNZ SETBE SETNBE
Eb Eb Eb Eb Eb Eb Eb Eb
A PUSH POP CPUID BT SHLD invalid invalid
n/a FS FS E,Gv | Ev,Gylb | Ev,GyCL
n/a B CMPXCHG LSS BTR LFS LGS MOVZX
Eb, Gb Ev, Gv Gz, Mp Ev, Gv Gz, Mp Gz, Mp Gv, Eb Gv, Ew
XADD CMPPS MOVNTI PINSRW PEXTRW SHUFPS Group 92
none Vps, Wps, Ib | Md/q, Gd/q | Pq, Ew,Ib | Gd, PRq, 1b | Vps, Wps, Ib
CMPSS invalid invalid invalid invalid
F3
C Vss, Wss, Ib
66 Eb, Gb Ev, Gv CMPPD invalid PINSRW PEXTRW SHUFPD Mq
Vpd, Wpd, Ib Vdg, Ew, Ib | Gd, VRdg, Ib | Vpd, Wpd, Ib
F2 CMPSD invalid invalid invalid invalid
Vsd, Wsd, Ib
Note:
1. All two-byte opcodes begin with an OFh byte. Rows in the table show the high nibble of the second opcode bytes, columns show
the low nibble of this byte.
2. An opcode extension Is specified in bits 5-3 of the ModRM byte. See “ModRM Extensions to One-Byte and Two-Byte Opcodes” on
page 377 for details.
3. Invalid in long mode.

Appendix A: Opcode and Operand Encodings

371



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table A-3. Second Byte of Two-Byte Opcodes, Low Nibble 0-7h (continued)
Prefix | Nibble! 0 1 2 3 4 5 6 7
none invalid PSRLW PSRLD PSRLQ PADDQ PMULLW invalid PMOVMSKB
Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Gd, PRq
invalid invalid invalid invalid invalid invalid MOvQ2DQ invalid
F3
Vdgq, PRq
66 invalid PSRLW PSRLD PSRLQ PADDQ PMULLW MOovQ PMOVMSKB
Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq, Wdq Wq, Vq Gd, VRdq
invalid invalid invalid invalid invalid invalid MOVDQ2Q invalid
F2
Pg, VRq
none PAVGB PSRAW PSRAD PAVGW PMULHUW | PMULHW invalid MOVNTQ
Pq. Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq. Qq Mg, Pq
invalid invalid invalid invalid invalid invalid CVIDQ2PD invalid
F3
Vpd, Wq
66 PAVGB PSRAW PSRAD PAVGW PMULHUW | PMULHW | CVTTPD2DQ | MOVNTDQ
Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq, Wdq | Vdq, Wdq | Vdg, Wdq Vq, Wpd Mdq, Vdq
invalid invalid invalid invalid invalid invalid CVIPD2DQ invalid
F2
Vg, Wpd
none invalid PSLLW PSLLD PSLLQ PMULUDQ | PMADDWD | PSADBW | MASKMOVQ
Pq. Qq Pq. Qq Pq. Qq Pq. Qq Pq, Qq Pq. Qq Pq, PRq
F3 invalid invalid invalid invalid invalid invalid invalid invalid
invalid PSLLW PSLLD PSLLQ PMULUDQ | PMADDWD | PSADBW MASK-
66 MOVDQU
Vdq, Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq, VRdq
F2 invalid invalid invalid invalid invalid invalid invalid invalid
Note:
1. All two-byte opcodes begin with an OFh byte. Rows in the table show the high nibble of the second opcode bytes, columns show
the low nibble of this byte.
2. An opcode extension is specified in bits 5-3 of the ModRM byte. See “ModRM Extensions to One-Byte and Two-Byte Opcodes” on
page 377 for details.
3. Invalid in long mode.

372 Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table A-4. Second Byte of Two-Byte Opcodes, Low Nibble 8-Fh
Prefix | Nibble! 8 9 A B C D E F
INVD WBINVD invalid uD2 invalid Group P* FEMMS 3DNow!
See
nfa | 0 PREFETCH 3DNow!™
Opcodes” on
page 380
n/a : Group 162 NopP? NOP? NoP? NoP? NOP? NoP? Nop?
none MOVAPS CVIPI2PS | MOVNTPS | CVTTPS2PI | CVTPS2PI | UCOMISS COMISS
Vps, Wps Wps, Vps Vps, Qq Mdg, Vps Pg, Wps Pg, Wps Vss, Wss Vps, Wps
F3 invalid invalid CVTSI2SS invalid CVTTSS2SI | CVTSS2SI invalid invalid
2 Vss, Ed/q Gd/q, Wss | Gd/q, Wss
66 MOVAPD CVTPI2PD | MOVNTPD | CVTTPD2PI | CVTPD2PI UCOMISD COMISD
Vpd, Wpd | Wpd, Vpd Vpd, Qq Mdg, Vpd Pq, Wpd Pq, Wpd Vsd, Wsd Vpd, Wsd
P2 invalid invalid CVTSI2SD invalid CVTTSD2SI | CVTSD2SI invalid invalid
Vsd, Ed/q Gd/q, Wsd | Gd/q, Wsd
invalid invalid invalid invalid invalid invalid invalid invalid
n/a 3
n/a 4 CMOvVS CMOVNS CMOovP CMOVNP CMOVL CMOVNL CMOVLE CMOVNLE
Gy, Ev Gv, Ev Gy, Ev Gv, Ev Gv, Ev Gv, Ev Gy, Ev Gv, Ev
ADDPS MULPS CVTPS2PD | CVTDQ2PS SUBPS MINPS DIVPS MAXPS
none Vps, Wps Vps, Wps Vpd, Wps Vps, Wdq Vps, Wps Vps, Wps Vps, Wps Vps, Wps
F3 ADDSS MULSS CVTSS2SD | CVTTPS2DQ SUBSS MINSS DIVSS MAXSS
Vss, Wss Vss, Wss Vsd, Wss Vdq, Wps Vss, Wss Vss, Wss Vss, Wss Vss, Wss
66 5 ADDPD MULPD CVTPD2PS | CVTPS2DQ SUBPD MINPD DIVPD MAXPD
Vpd, Wpd | Vpd,Wpd | Vps, Wpd Vdq, Wps | Vpd,Wpd | Vpd,Wpd | Vpd,Wpd | Vpd, Wpd
F2 ADDSD MULSD CVTSD2SS invalid SUBSD MINSD DIVSD MAXSD
Vsd, Wsd Vsd, Wsd Vss, Wsd Vsd, Wsd Visd, Wsd Visd, Wsd Vsd, Wsd
none PUHNB‘:,SK' PUH'\\'A';SK' PUIL\'; SK' PACKSSDW | invalid invalid MOVD MovQ
Pq, Qd Pq, Qd Pq, Qd Pq, Qq Pq, Ed/q Pq, Qq
invalid invalid invalid invalid invalid invalid invalid MOVDQU
F3
6 PUNPCK PUNPCK: PUNPCK: PUNPCK: PUNPCK o
66 HBW HWD HDQ PACKSSDW LQDQ HQDQ MOVD MOVDQA
Vdq, Wq Vdg, Wq Vdq, Wq Vdq, Wdq Vdg, Wq Vdq, Wq Vdq, Ed/q | Vdq, Wdq
B2 invalid invalid invalid invalid invalid invalid invalid invalid
Note:
1. All two-byte opcodes begin with an OFh byte. Rows show high opcode nibble (hex), columns show low opcode nibble in hex.
2. An opcode extension Is specified in the ModRM reg field (bits 5-3). See “ModRM Extensions to One-Byte and Two-Byte Opcodes”
on page 377 for details.
3. This instruction takes a ModRM byte.

Appendix A: Opcode and Operand Encodings

373



AMDZU

AMD 64-Bit Technology

24594

Table A-4. Second Byte of Two-Byte Opcodes, Low Nibble 8-Fh (continued)

Rev. 3.02 August 2002

Prefix | Nibble' 8 9 A B C D E F
none invalid invalid invalid invalid invalid invalid MOVD MOVQ
Ed/q,Pd/q | Qq.Pq
F3 invalid invalid invalid invalid invalid invalid MOVQ MOVDQU
Vg, Wq Wdq, Vdq
7 invalid invalid invalid invalid invalid invalid MOVD MOVDQA
66 Ed/q,Vd/q | Wdq, Vdq
F2 invalid invalid invalid invalid invalid invalid invalid invalid
JS JNS P INP L JNL JLE JNLE
n/a 8 Jz Iz Jz Jz Iz Jz Iz Iz
n/a 9 SETS SETNS SETP SETNP SETL SETNL SETLE SETNLE
Eb Eb Eb Eb Eb Eb Eb Eb
n/a A PUSH POP RSM BTS SHRD Group 15 IMUL
GS GS Ev, Gv Ev, Gy, Ib Ev, Gy, CL Gy, Ev
n/a B invalid Group 10 | Group 82 BTC BSF BSR MOVSX
Ev, Ib Ev, Gv Gv, Ev Gv, Ev Gv, Eb Gv, Ew
C BSWAP
n/a rAX/r8 rCx/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 1Sl/r14 rDI/r15
PSUBUSB | PSUBUSW PMINUB PAND PADDUSB | PADDUSW PMAXUB PANDN
none PaQq | PqQq | PqQq | PqQq | PeQq | PeQq | PgQq | PgQg
F3 invalid invalid invalid invalid invalid invalid invalid invalid
D PSUBUSB | PSUBUSW PMINUB PAND PADDUSB | PADDUSW PMAXUB PANDN
66 Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq, Wdq
F2 invalid invalid invalid invalid invalid invalid invalid invalid
none PSUBSB PSUBSW PMINSW POR PADDSB PADDSW PMAXSW PXOR
Pq. Qq Pq. Qq Pq. Qq Pq. Qq Pq, Qq Pq. Qq Pq. Qq Pq, Qq
F3 invalid invalid invalid invalid invalid invalid invalid invalid
66 E PSUBSB PSUBSW PMINSW POR PADDSB PADDSW PMAXSW PXOR
Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq, Wdq
P2 invalid invalid invalid invalid invalid invalid invalid invalid
Note:
1. All two-byte opcodes begin with an OFh byte. Rows show high opcode nibble (hex), columns show low opcode nibble in hex.
2. An opcode extension Is specified in the ModRM reg field (bits 5-3). See “ModRM Extensions to One-Byte and Two-Byte Opcodes”
on page 377 for details.
3. This instruction takes a ModRM byte.

374 Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table A-4. Second Byte of Two-Byte Opcodes, Low Nibble 8-Fh (continued)
Prefix | Nibble! 8 9 A B C D E F
none PSUBB PSUBW PSUBD PSUBQ PADDB PADDW PADDD invalid
Pq. Qq Pq. Qq Pq. Qq Pq. Qq Pq, Qq Pq. Qq Pq. Qq
F3 invalid invalid invalid invalid invalid invalid invalid invalid
66 F PSUBB PSUBW PSUBD PSUBQ PADDB PADDW PADDD invalid
Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq,Wdq | Vdq, Wdq
P2 invalid invalid invalid invalid invalid invalid invalid invalid
Note:
1. All two-byte opcodes begin with an OFh byte. Rows show high opcode nibble (hex), columns show low opcode nibble in hex.
2. An opcode extension is specified in the ModRM reg field (bits 5-3). See “ModRM Extensions to One-Byte and Two-Byte Opcodes”
on page 377 for details.
3. This instruction takes a ModRM byte.

Appendix A: Opcode and Operand Encodings

375



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

A2.3 rFLAGS Table A-5 shows the rFLAGS condition codes specified by the
Condition Codes for low nibble in the second opcode byte of the CMOVcc, Jcc, and
Two-Byte Opcodes SETcc instructions.

Table A-5. rFLAGS Condition Codes for CMOVcc, Jcc, and SETcc

Low Nibble of Arithmetic
Second Opcode rFLAGS Value ¢¢c Mnemonic Condition(s)
Type
Byte (hex)
0 OF=1 0 _ Overflow
Signed
1 OF=0 NO No Overflow
2 CF=1 B, C, NAE Below, Carry, Not Above or Equal
3 CF=0 NB, NC, AE Not Below, No Carry, Above or Equal
4 IF=1 LE _ Zero, Equal
Unsigned
5 IF=0 NZ, NE Not Zero, Not Equal
6 CF=1o0rZF=1 BE, NA Below or Equal, Not Above
7 CF=0andZF=0 | NBE A Not Below or Equal, Above
8 SF=1 S _ Sign
Signed
9 SF=0 NS Not Sign
A PF=1 P, PE ’ Parity, Parity Even
n/a
B PF=0 NP, PO Not Parity, Parity Odd
C (SFxor OF) =1 L, NGE Less than, Not Greater than or Equal to
D (SF xor OF) =0 NL, GE Not Less than, Greater than or Equal to
E gSrFZt_o:r ?F) =1 LE, NG Signed Less than or Equal to, Not Greater than
F (SF xor OF) =0 NLE, G Not Less than or Equal to, Greater than
andZF=0

376 Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
A2.4 ModRM The ModRM byte, which immediately follows the last opcode
Extensions to One- byte, is used in certain instruction encodings to provide
Byte and Two-Byte additional opcode bits with which to define the function of the
Opcodes instruction. ModRM bytes have three fields—mod, reg, and r/m,

as shown in Figure A-1.

Bits: 7 6 5 4 3 2 1 0
[ mod | reg [ ym ] Modrm

513-325.eps

Figure A-1. ModRM-Byte Fields

In most cases, the reg field (bits 5-3) provides the additional
bits with which to extend the encodings of the first one or two
opcode bytes. In the case of the x87 floating-point instructions,
the entire ModRM byte is used to extend the opcode encodings.

Table A-6 on page 378 shows how the ModRM reg field is used to
extend the range of one-byte and two-byte opcodes. The opcode
ranges are organized into groups of opcode extensions. The
group number is shown in the left-most column of Table A-6.
These groups are referenced in the opcodes shown in Table A-1
on page 368 through Table A-4 on page 373. An entry of “n.a.”
in the Prefix column means that prefixes are not applicable to
the opcodes in that row. Prefixes only apply to certain 128-bit
media, 64-bit media, and a few other instructions introduced
with the SSE or SSE2 technologies.

The /0 through /7 notation for the ModRM reg field (bits 5-3)
means that the three-bit field contains a value from zero (binary
000) to 7 (binary 111).

Appendix A: Opcode and Operand Encodings 377



AMDZU

AMD 64-Bit Technology

Table A-6. One-Byte and Two-Byte Opcode ModRM Extensions

24594  Rev. 3.02 August 2002

Group Prefix | Opcode ModRM reg Field
Number /0 I /2 /3 /8 /5 /6 /7
80 ADD OR ADC SBB AND SUB XOR CmP
Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib
81 ADD OR ADC SBB AND SUB XOR cmp
Group 1 n/a Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz Ev, Iz
P 8 ADD OR ADC SBB AND SUB XOR CmP
Eb, Ib? Eb, Ib2 Eb, Ib2 Eb, Ib? Eb, Ib? Eb, Ib2 Eb, Ib2 Eb, Ib?
a3 ADD OR ADC SBB AND SUB XOR cmp
Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib Ev, Ib
POP invalid invalid invalid invalid invalid invalid invalid
Group 1a | n/a 8F By
o ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR
Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib Eb, Ib
C ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR
Ev, Ib Ev,Ib Ev,Ib Ev, Ib Ev,Ib Ev, Ib Ev,Ib Ev, Ib
Do ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR
Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1 Eb, 1
Group2 | n/a
DI ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR
Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1 Ev, 1
D2 ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR
Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL Eb, CL
D3 ROL ROR RCL RCR SHL/SAL SHR SHL/SAL SAR
Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL Ev, CL
F6 TEST NOT NEG MUL IMUL DIV IDIV
Group 3 0/a Eb,Ib Eb Eb Eb Eb Eb Eb
F7 TEST NOT NEG MUL IMUL DIV IDIV
Ev,lz Ev Ev Ev Ev Ev Ev
Group 4 n/a fE INC DEC invalid invalid invalid invalid invalid invalid
Eb Eb
Group 5 n/a - INC DEC CALL CALL JMP JMP PUSH invalid
Ev Ev Ev Ep Ev Ep Ev
Group 6 n/a OF 00 SLDT STR LLDT LTR VERR VERW invalid invalid
Mwj/Rv Mw;/Rv Ew Ew Ew Ew
Group 7 n/a OF 01 SGDT SIDT LGDT LIDT SMSW invalid LMSW  |[INVLPG Mb
Ms Ms Ms Ms Mw/Rv Ew SWAPGS'
invalid invalid invalid invalid BT BTS BTR BTC
Group8 | nja | OFBA Bib | Eub | Evb | Evlb
Note:
1. See Table A-7 on page 380 for ModRM extensions of this two-byte opcode to encode SWAPGS.
2. Invalid in 64-bit mode.
3. See Table A-7 on page 380 for ModRM extensions of this two-byte opcode to encode LFENCE, MFENCE, and SFENCE.
4. This instruction takes a ModRM byte.
5. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.
378 Appendix A: Opcode and Operand Encodings



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table A-6. One-Byte and Two-Byte Opcode ModRM Extensions (continued)

Group Prefix | Opcode ModRM reg Field
Number /0 N /2 /3 /4 /5 /6 /7
invalid | CMPXCHG8B | invalid invalid invalid invalid invalid invalid
Group9 | n/a OF C7 Mg
Group 10 | n/a OF B9 invalid invalid invalid invalid invalid invalid invalid invalid
MOV invalid invalid invalid invalid invalid invalid invalid
n/a Cé
Group 11 Eb Ib — — — — — — —
MoV invalid invalid invalid invalid invalid invalid invalid
n/a 7
Ev,lz
none invalid invalid PSRLW invalid PSRAW invalid PSLLW invalid
PRq, Ib PRg, Ib PRq, Ib
Group 12 66 OF 71 invalid invalid PSRLW invalid PSRAW invalid PSLLW invalid
VRdg, Ib VRdg, Ib VRdg, Ib
F2, F3 invalid invalid invalid invalid invalid invalid invalid invalid
none invalid invalid PSRLD invalid PSRAD invalid PSLLD invalid
PRq, Ib PRq, Ib PRq, Ib
Group 13 66 OET2 invalid invalid PSRLD invalid PSRAD invalid PSLLD invalid
VRdg, Ib VRdg, Ib VRdg, Ib
P2 F3 invalid invalid invalid invalid invalid invalid invalid invalid
none invalid invalid PSRLQ invalid invalid invalid PSLLQ invalid
PRq, Ib PRq, Ib
invalid invalid PSRLQ PSRLDQ invalid invalid PSLLQ PSLLDQ
Group 14 | 66 | OF73 VRdg,Ib | VRdg, b VRdg,Ib | VRdg, b
F2. F3 invalid invalid invalid invalid invalid invalid invalid invalid
FXSAVE | FXRSTOR | LDMXCSR | STMXCSR | invalid LFENCE> | MFENCE® | SFENCE’
none CLFLUSH
Group 15 OF AE M M d Md Mb
66, invalid invalid invalid invalid invalid invalid invalid invalid
F2, F3
Group 16 n/a. OF 18 PREFETCH | PREFETCH | PREFETCH | PREFETCH NOP* NOP* NOP* NOP*
NTA T0 T1 T2
PREFETCH | PREFETCH | Prefetch | PREFETCH | Prefetch | Prefetch | Prefetch | Prefetch
Group P | n/a OF 0D ) - 5 . 5 5 5 5
Exclusive | Modified | Reserved® | Modified | Reserved’ | Reserved” | Reserved’ | Reserved
Note:
1. See Table A-7 on page 380 for ModRM extensions of this two-byte opcode to encode SWAPGS.
2. Invalid in 64-bit mode.
3. See Table A-7 on page 380 for ModRM extensions of this two-byte opcode to encode LFENCE, MFENCE, and SFENCE.
4. This instruction takes a ModRM byte.
5. Reserved prefetch encodings are aliased to the /0 encoding (PREFETCH Exclusive) for future compatibility.

Appendix A: Opcode and Operand Encodings 379



AMDZU

AMD 64-Bit Technology

A2.5 ModRM
Extensions to
SWAPGS and
CLFLUSH Opcodes

24594  Rev. 3.02 August 2002

Table A-7 shows the ModRM r/m field encodings for the OF 01
and OF AE opcodes, shown in Table A-6. The OF 01 /7 opcode is
shared by the INVLPG and SWAPGS instructions and the OF
AE opcode is shared by the LFENCE, MFENCE, and SFENCE
instructions. The opcodes are differentiated by the fact that the
binary value of the ModRM mod field is always 11 for SWAPGS
and the xFENCE instructions, and any value except 11 for
INVLPG and CLFLUSH. The SWAPGS opcode is only valid in
64-bit mode.

Table A-7. SWAPGS and xFENCE ModRM Extensions

ModRM r/m Field

Opcode 0

1 2 3 4 5 6 7

OF 01 /7

mod=11 SWAPGS

invalid invalid invalid invalid invalid invalid invalid

OF AE /5
mod=11

LFENCE

OF AE /6
mod=11

MFENCE

OF AE /7
mod=11

SFENCE

A2.6 3DNow!™
Opcodes

The 64-bit media instructions include the MMX™ instructions
and the AMD 3DNow! instructions. The MMX instructions are
encoded using two opcode bytes, as described in “Two-Byte
Opcodes” on page 370.

The 3DNow! instructions are encoded using two OFh opcode
bytes and an immediate byte that is located at the last byte
position of the instruction encoding. Thus, the format for
3DNow! instructions is:

OFh OFh [ModRM] [SIB] [displacement] imm8_opcode

Table A-8 on page 381 and Table A-9 on page 382 show the
immediate byte following the opcode bytes for 3DNow!
instructions. In these tables, rows show the high nibble of the
immediate byte, and columns show the low nibble of the
immediate byte. Table A-8 shows the immediate bytes whose
low nibble is in the range 0-7h. Table A-9 shows the same for
immediate bytes whose low nibble is in the range 8-Fh.

Byte values shown as reserved in these tables have
implementation-specific functions, which can include an
invalid-opcode exception.

380

Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table A-8. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0-7h
Nibble' 0 1 2 3 4 5 6 7
0 reserved reserved reserved reserved reserved reserved reserved reserved
2 reserved reserved reserved reserved reserved reserved reserved reserved
3 reserved reserved reserved reserved reserved reserved reserved reserved
4 reserved reserved reserved reserved reserved reserved reserved reserved
5 reserved reserved reserved reserved reserved reserved reserved reserved
6 reserved reserved reserved reserved reserved reserved reserved reserved
7 reserved reserved reserved reserved reserved reserved reserved reserved
8 reserved reserved reserved reserved reserved reserved reserved reserved
9 PFCMPGE reserved reserved reserved PFMIN reserved PFRCP PFRSQRT
Pq, Qq Pq, Qq Pq, Qq Pq, Qq
A PFCMPGT reserved reserved reserved PFMAX reserved PFRCPIT1 PFRSQIT1
Pq, Qq Pq, Qq Pq, Qq Pq, Qq
B PFCMPEQ reserved reserved reserved PFMUL reserved PFRCPIT2 PMULHRW
Pq, Qq Pq, Qq Pq, Qq Pq, Qq
C reserved reserved reserved reserved reserved reserved reserved reserved
D reserved reserved reserved reserved reserved reserved reserved reserved
E reserved reserved reserved reserved reserved reserved reserved reserved
F reserved reserved reserved reserved reserved reserved reserved reserved
Note:
1. All 3DNow! opcodes consist of two OFh bytes. This table shows the immediate byte for SDNow! opcodes. Rows show the high nibble
of the immediate byte. Columns show the low nibble of the inmediate byte.

Appendix A: Opcode and Operand Encodings

381



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

Table A-9. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8-Fh

Nibble! 8 9 A B C D E F
0 reserved reserved reserved reserved PI2FW PI2FD reserved reserved
Pq, Qq Pq, Qq
2 reserved reserved reserved reserved PF2IW PF2ID reserved reserved
Pq, Qq Pq, Qq

3 reserved reserved reserved reserved reserved reserved reserved reserved

4 reserved reserved reserved reserved reserved reserved reserved reserved

5 reserved reserved reserved reserved reserved reserved reserved reserved

6 reserved reserved reserved reserved reserved reserved reserved reserved

7 reserved reserved reserved reserved reserved reserved reserved reserved

8 reserved reserved PFNACC reserved reserved reserved PFPNACC reserved
Pq, Qq Pq, Qq

9 reserved reserved PFSUB reserved reserved reserved PFADD reserved
Pq, Qq Pq, Qq

A reserved reserved PFSUBR reserved reserved reserved PFACC reserved
Pq, Qq Pq, Qq

B reserved reserved reserved PSWAPD reserved reserved reserved PAVGUSB

Pq, Qq Pq, Qq

C reserved reserved reserved reserved reserved reserved reserved reserved

D reserved reserved reserved reserved reserved reserved reserved reserved

E reserved reserved reserved reserved reserved reserved reserved reserved

F reserved reserved reserved reserved reserved reserved reserved reserved

Note:
1. All 3DNow! opcodes consist of two OFh bytes. This table shows the immediate byte for SDNow! opcodes. Rows show the high nibble
of the immediate byte. Columns show the low nibble of the inmediate byte.

A2.7 x87 Encodings

All x87 instructions begin with an opcode byte in the range D8h
to DFh, as shown in Table A-2 on page 369. These opcodes are
followed by a ModRM byte that further defines the opcode.
Table A-10 shows both the opcode byte and the ModRM byte for
each x87 instruction.

There are two significant ranges for the ModRM byte for x87
opcodes: 00-BFh and CO-FFh. When the value of the ModRM
byte falls within the first range, 00-BFh, the opcode uses only

382

Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

the reg field to further define the opcode. When the value of the
ModRM byte falls within the second range, CO-FFh, the opcode
uses the entire ModRM byte to further define the opcode.

Byte values shown as reserved or invalid in Table A-10 have
implementation-specific functions, which can include an
invalid-opcode exception.

Table A-10. x87 Opcodes and ModRM Extensions
ModRM ModRM reg Field
Opcode | mod | 1 n /2 /3 /a /5 /6 I
00-BF
m FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
mem32real | mem32real | mem32real | mem32real | mem32real | mem32real | mem32real | mem32real
co cs Do D8 EO E8 FO F8
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0)
C1 C9 D1 D9 E1 E9 F1 F9
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0), ST(1)| ST(0), ST(1) | ST(0), ST(1) | ST(0), ST(1) | ST(0), ST(1) | ST(0), ST(1) | ST(0), ST(1) | ST(0), ST(1)
2 CA D2 DA E2 EA F2 FA
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0), ST(2) | ST(0), ST(2) | ST(0), ST(2) | ST(0), ST(2) | ST(0), ST(2) | ST(0), ST(2) | ST(0), ST(2) | ST(0), ST(2)
G CB D3 DB E3 EB F3 FB
D8 FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
» ST(0), ST(3) | ST(0), ST(3) | ST(0), ST(3) | ST(0), ST(3) | ST(0), ST(3) | ST(0), ST(3) | ST(0), ST(3) | ST(0), ST(3)
c CC D4 DC E4 EC F4 FC
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4)
5 (6)) D5 DD E5 ED F5 FD
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5)
() CE D6 DE E6 EE F6 FE
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6)
Cc7 CF D7 DF E7 EF F7 FF
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
ST(0), ST(7)| ST(0), ST(7) | ST(0), ST(7) | ST(0), ST(7) | ST(0), ST(7) | ST(0), ST(7) | ST(0), ST(7) | ST(0), ST(7)

Appendix A: Opcode and Operand Encodings

383



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table A-10. x87 Opcodes and ModRM Extensions (continued)
ModRM ModRM reg Field
Opcode | mod ' o | n | 2| 5 | m | 5| s | n
00-BF
m FLD invalid FST FSTP FLDENV FLDCW FSTENV FSTCW
mem32real mem32real | mem32real memr:‘t/l/ 28e mem16 memrlc/ 28e mem16
co cs Do D8 EO E8 Fo F8
FLD FXCH FNOP reserved FCHS FLD1 F2XM1 FPREM
ST(0), ST(0) | ST(0), ST(0)
C1 9 D1 D9 E1 E9 F1 F9
FLD FXCH invalid reserved FABS FLDL2T FYL2X FYL2XP1
$T(0), ST(1) | ST(0), ST(1)
2 CA D2 DA E2 EA F2 FA
FLD FXCH invalid reserved invalid FLDL2E FPTAN FSQRT
ST(0), STQ) | ST(0), ST(2)
G CB D3 DB E3 EB F3 FB
D9 FLD FXCH invalid reserved invalid FLDPI FPATAN FSINCOS
0 ST, STG)| ST, STE)
ca cC D4 DC E4 EC F4 FC
FLD FXCH invalid reserved FTST FLDLG2 FXTRACT FRNDINT
ST(0), ST(4)| ST(0), ST(4)
5 (¢)) D5 DD E5 ED F5 FD
FLD FXCH invalid reserved FXAM FLDLN2 FPREM1 FSCALE
ST(0), ST(5) | ST(0), ST(5)
C6 CE D6 DE E6 EE F6 FE
FLD FXCH invalid reserved invalid FLDZ FDECSTP FSIN
ST(0), ST(6) | ST(0), ST(6)
Cc7 CF D7 DF E7 EF F7 FF
FLD FXCH invalid reserved invalid invalid FINCSTP FCOS
ST(0), ST(7) | ST(0), ST(7)
384 Appendix A: Opcode and Operand Encodings




AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table A-10. x87 Opcodes and ModRM Extensions (continued)
ModRM ModRM reg Field
Opcode | mod ' o | n | 2| 5 | m | 5| s | n
00-BF
m FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
mem32int | mem32int | mem32int | mem32int | mem32int | mem32int | mem32int | mem32int
co cs Do D8 EO E8 Fo F8
FCMOVB | FCMOVE | FCMOVBE | FCMOVU invalid invalid invalid invalid
ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0)
C1 9 D1 D9 E1 E9 F1 F9
FCMOVB FCMOVE FCMOVBE | FCMOVU invalid FUCOMPP invalid invalid
ST(0), ST(1) | ST(0), ST(1) | ST(0), ST(1) | ST(0), ST(1)
Q2 CA D2 DA E2 EA F2 FA
FCMOVB | FCMOVE | FCMOVBE | FCMOVU invalid invalid invalid invalid
ST(0), ST(2) | ST(0), ST(2) | ST(0), ST(2) | ST(0), ST(2)
c CB D3 DB E3 EB F3 FB
DA FCMOVB | FCMOVE | FCMOVBE | FCMOVU invalid invalid invalid invalid
n ST(0), ST(3) | ST(0), ST(3) | ST(0), ST(3) | ST(0), ST(3)
¢/ cC D4 DC E4 EC F4 FC
FCMOVB | FCMOVE | FCMOVBE | FCMOVU invalid invalid invalid invalid
ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4)
s (€)) D5 DD E5 ED F5 FD
FCMOVB | FCMOVE | FCMOVBE | FCMOVU invalid invalid invalid invalid
ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5)
() CE D6 DE E6 EE F6 FE
FCMOVB | FCMOVE | FCMOVBE | FCMOVU invalid invalid invalid invalid
ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6)
c7 CF D7 DF E7 EF F7 FF
FCMOVB | FCMOVE | FCMOVBE | FCMOVU invalid invalid invalid invalid
ST(0), ST(7) | ST(0), ST(7) | ST(0), ST(7) | ST(0), ST(7)
Appendix A: Opcode and Operand Encodings 385



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table A-10. x87 Opcodes and ModRM Extensions (continued)
ModRM ModRM reg Field
Opcode | mod ' o | n | 2| 5 | m | 5| s | n
00-BF
m FILD invalid FIST FISTP invalid FLD invalid FSTP
mem32int mem32int | mem32int mem80real mem80real
co (¢] DO D8 EO E8 Fo F8
FCMOVNB | FCMOVNE | FCMOVNBE | FCMOVNU | reserved | FUCOMI Fcoml invalid
ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) ST(0), ST(0) | ST(0), ST(0)
a (¢ D1 D9 El E9 Fi F9
FCMOVNB | FCMOVNE | FCMOVNBE | FCMOVNU | reserved | FUCOMI FcoMml invalid
ST(0), ST(1) | ST(0), ST(1) | ST(0), ST(1) | ST(0), ST(1) ST(0), ST(1) | ST(0), ST(1)
Q CA D2 DA E2 EA F2 FA
FCMOVNB | FCMOVNE | FCMOVNBE | FCMOVNU |  FCLEX Fucoml Fcoml invalid
ST(0), STQ) | ST(0), ST(2) | ST(0), ST(2) | ST(0), ST(2) ST(0), STQ) | ST(0), ST(2)
(& cB D3 DB E3 EB F3 FB
DB FCMOVNB | FCMOVNE | FCMOVNBE | FCMOVNU |  FINIT Fucoml Fcoml invalid
n ST, STG)| ST(), STE) | ST(0), ST(3) | ST(0), ST(3) ST(0), ST(3) | ST(0), ST(3)
(¢! cc D4 DC E4 EC F4 FC
FCMOVNB | FCMOVNE | FCMOVNBE | FCMOVNU | reserved | FUCOMI FcoMml invalid
ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4) | ST(0), ST(4) ST(0), ST(4) | ST(0), ST(4)
(o] (o)) D5 DD E5 ED F5 FD
FCMOVNB | FCMOVNE | FCMOVNBE | FCMOVNU | invalid Fucoml Fcoml invalid
ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5) | ST(0), ST(5) ST(0), ST(5) | ST(0), ST(5)
6 CE D6 DE E6 EE F6 FE
FCMOVNB | FCMOVNE | FCMOVNBE | FCMOVNU | invalid Fucoml Fcoml invalid
ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6) | ST(0), ST(6) ST(0), ST(6) | ST(0), ST(6)
7 CF D7 DF E7 EF F7 FF
FCMOVNB | FCMOVNE | FCMOVNBE | FCMOVNU | invalid Fucoml Fcoml invalid
ST(0), ST(7) | ST(0), ST(7) | ST(0), ST(7) | ST(0), ST(7) ST(0), ST(7) | ST(0), ST(7)
386 Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table A-10. x87 Opcodes and ModRM Extensions (continued)
ModRM ModRM reg Field
Opcode | mod ' o | n | 2| 5 | m | 5| s | n
00-BF
m FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
meé4real mé4real meé4real mé4real mé4real meé4real mé4real mé4real
co cs Do D8 EO E8 Fo F8
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(0), ST(0) | ST(0), ST(0) ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0)
C1 9 D1 D9 E1 E9 F1 F9
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(1), ST(0) | ST(1), ST(0) ST(1), ST(0) | ST(1), ST(0) | ST(1), ST(0) | ST(1), ST(0)
Q2 CA D2 DA E2 EA F2 FA
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(2), ST(0) | ST(2), ST(0) ST(2), ST(0) | ST(2), ST(0) | ST(2), ST(0) | ST(2), ST(0)
c CB D3 DB E3 EB F3 FB
DC FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
n ST(3), ST(0) | ST(3), ST(0) ST(3), ST(0) | ST(3), ST(0) | ST(3), ST(0) | ST(3), ST(0)
¢/ cC D4 DC E4 EC F4 FC
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(4), ST(0)| ST(4), ST(0) ST(4), ST(0) | ST(4), ST(0) | ST(4), ST(0) | ST(4), ST(0)
s D D5 DD E5 ED F5 FD
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(5), ST(0) | ST(5), ST(0) ST(5), ST(0) | ST(5), ST(0) | ST(5), ST(0) | ST(5), ST(0)
() CE D6 DE E6 EE F6 FE
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(6), ST(0) | ST(6), ST(0) ST(6), ST(0) | ST(6), ST(0) | ST(6), ST(0) | ST(6), ST(0)
c7 CF D7 DF E7 EF F7 FF
FADD FMUL reserved reserved FSUBR FSUB FDIVR FDIV
ST(7), ST(0) | ST(7), ST(0) ST(7), ST(0) | ST(7), ST(0) | ST(7), ST(0) | ST(7), ST(0)

Appendix A: Opcode and Operand Encodings

387



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table A-10. x87 Opcodes and ModRM Extensions (continued)

ModRM ModRM reg Field
Opcode | mod ' o | n | 2| 5 | m | 5| s | n
00-BF
m FLD invalid FST FSTP FRSTOR invalid FSAVE FSTSW
meé4real mé4real mé4real mem98/108 mem98/108 mem16
env env
co cs Do D8 EO E8 Fo F8
FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(0) ST(0) ST(0) ST(0), ST(0) ST(0)
C C9 D1 D9 E1 E9 F1 F9
FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(1) ST(1) ST(1) ST(1), ST(0) ST(1)
2 CA D2 DA E2 EA F2 FA
FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(2) ST(2) ST(2) ST(2), ST(0) ST(2)
G CB D3 DB E3 EB F3 FB
DD FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
» ST(3) ST(3) ST(3) ST(3), ST(0) ST(3)
¢/ cc D4 DC E4 EC F4 FC
FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(4) ST(4) ST(4) ST(4), ST(0) ST(4)
cs D D5 DD E5 ED F5 FD
FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(5) ST(5) ST(5) ST(5), ST(0) ST(5)
C6 CE D6 DE E6 EE F6 FE
FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(6) ST(6) ST(6) ST(6), ST(0) ST(6)
Cc7 CF D7 DF E7 EF F7 FF
FFREE reserved FST FSTP FUCOM FUCOMP invalid invalid
ST(7) ST(7) ST(7) ST(7), ST(0) ST(7)

388 Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table A-10. x87 Opcodes and ModRM Extensions (continued)
ModRM ModRM reg Field
Opcode | mod ' o | n | 2| 5 | m | 5| s | n
00-BF
m FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
mem1l6int | mem1l6int | meml6int | memi6int | memil6int | meml6int | memi6int | memi6int
co cs Do D8 EO E8 Fo F8
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(0), ST(0) | ST(0), ST(0) ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0) | ST(0), ST(0)
C1 9 D1 D9 E1 E9 F1 F9
FADDP FMULP reserved FCOMPP FSUBRP FSUBP FDIVRP FDIVP
ST(1), ST(0)| ST(1), ST(0) ST(1), ST(0) | ST(1), ST(0) | ST(1), ST(0) | ST(1), ST(0)
Q2 CA D2 DA E2 EA F2 FA
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(2), ST(0) | ST(2), ST(0) ST(2), ST(0) | ST(2), ST(0) | ST(2), ST(0) | ST(2), ST(0)
G CB D3 DB E3 EB F3 FB
DE FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
o [ST6)STO) STG). STO) ST(3), ST(0) | ST(3), ST(0) | ST(3), ST(0) | ST(3), ST(0)
ca cC D4 DC E4 EC Fa FC
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(4), ST(0) | ST(4), ST(0) ST(4), ST(0) | ST(4), ST(0) | ST(4), ST(0) | ST(4), ST(0)
s D D5 DD E5 ED F5 FD
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(5), ST(0) | ST(5), ST(0) ST(5), ST(0) | ST(5), ST(0) | ST(5), ST(0) | ST(5), ST(0)
() CE D6 DE E6 EE F6 FE
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(6), ST(0) | ST(6), ST(0) ST(6), ST(0) | ST(6), ST(0) | ST(6), ST(0) | ST(6), ST(0)
c7 CF D7 DF E7 EF F7 FF
FADDP FMULP reserved invalid FSUBRP FSUBP FDIVRP FDIVP
ST(7), ST(0) | ST(7), ST(0) ST(7), ST(0) | ST(7), ST(0) | ST(7), ST(0) | ST(7), ST(0)

Appendix A: Opcode and Operand Encodings

389



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table A-10. x87 Opcodes and ModRM Extensions (continued)
ModRM ModRM reg Field
Opcode | mod ' o | n | 2| 5 | m | 5| s | n
00-BF
m FILD invalid FIST FISTP FBLD FILD FBSTP FISTP
mem16int mem16int | meml6int | mem80dec m64int mem80dec m64int
co cs Do D8 EO E8 Fo F8
reserved reserved reserved reserved FSTSW FUCOMIP FCOMIP invalid
AX ST(0), ST(0) | ST(0), ST(0)
C1 C9 D1 D9 E1 E9 F1 F9
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid
ST(0), ST(1) | ST(0), ST(1)
Q CA D2 DA E2 EA F2 FA
reserved | reserved reserved reserved invalid FUCOMIP FCOmIP invalid
ST(0), ST(2) | ST(0), ST(2)
a CB D3 DB E3 EB F3 FB
DF reserved | reserved reserved reserved invalid FUCOMIP FCOmIP invalid
n ST(0), ST(3) | ST(0), ST(3)
Ca cc D4 DC E4 EC F4 FC
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid
ST(0), ST(4) | ST(0), ST(4)
Cs cD D5 DD E5 ED F5 FD
reserved reserved reserved reserved invalid FUCOMIP FCOMIP invalid
ST(0), ST(5) | ST(0), ST(5)
C6 CE D6 DE E6 EE F6 FE
reserved | reserved reserved reserved invalid FUCOMIP FCOmIP invalid
ST(0), ST(6) | ST(0), ST(6)
7 CF D7 DF E7 EF F7 FF
reserved | reserved reserved reserved invalid FUCOMIP FCOmIP invalid
ST(0), ST(7) | ST(0), ST(7)
390 Appendix A: Opcode and Operand Encodings




AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

A2.8 rFLAGS Table A-11 shows the rFLAGS condition codes specified by the
Condition Codes for opcode and ModRM bytes of the FCMOVcc instructions.
x87 Opcodes
Table A-11.  rFLAGS Condition Codes for FCMOVcc
Opcode ModRM | ModRM
(Il)1ex) mod reg rFLAGS Value ¢c Mnemonic Condition
Field Field
000 CF=1 B Below
001 ZF=1 E Equal
DA
010 CF=1orZF=1 BE Below or Equal
o011 PF=1 U Unordered
11
000 CF=0 NB Not Below
001 IF=0 NE Not Equal
DB
010 CF=0andZF=0 | NBE Not Below or Equal
o011 PF=0 NU Not Unordered
A3 Operand Encodings
Register and memory operands are encoded using the mode-
register-memory (ModRM) and the scale-index-base (SIB) bytes
that follow the opcodes. In some instructions, the ModRM byte
is followed by an SIB byte, which defines the instruction’s
memory-addressing mode for the complex-addressing modes.
A3.1 ModRM Figure A-2 on page 392 shows the format of a ModRM byte.

Operand References

There are three fields—mod, reg, and r/m. The reg field not only
provides additional opcode bits—as described above beginning
with “ModRM Extensions to One-Byte and Two-Byte Opcodes”
on page 377 and ending with “x87 Encodings” on page 382—
but is also used with the other two fields to specify operands.
The mod and r/m fields are used together with each other and,
in 64-bit mode, with the REX.R and REX.B bits of the REX
prefix, to specify the location of the instruction’s operands and
certain of the possible addressing modes (specifically, the non-
complex modes).

Appendix A: Opcode and Operand Encodings 391



AMDZU

AMD 64-Bit Technology 24594 Rev. 3.02 August 2002
Bt 7 6 5 4 3 2 1 0
[ mod | reg | r/m | ModrMm
REX.R bit of REX prefix can —T
extend this field to 4 bits
REX.B bit of REX prefix can
extend this field to 4 bits

513-305.eps

Figure A-2. ModRM-Byte Format

The two sections below describe the ModRM operand
encodings, first for 32-bit and 64-bit references, and then for 16-
bit references.

16-Bit Register and Memory References. Table A-12 shows the
notation and encoding conventions for register references using
the ModRM reg field. This table is comparable to Table A-14 on
page 395 but applies only when the address-size is 16-bit.
Table A-13 on page 393 shows the notation and encoding
conventions for 16-bit memory references using the ModRM
byte. This table is comparable to Table A-15 on page 396.

Table A-12. ModRM Register References, 16-Bit Addressing

Mnemonic ModRM reg Field

Notation /0 N /2 /3 /4 /5 /6 /1
reg8 AL CL DL BL AH CH DH BH
regl16 AX X DX BX SP BP SI DI
reg32 EAX ECX EDX EBX ESP EBP ESI EDI
mmx MMXo MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7
Xxmm XMMo XMM1 XMM2 XMM3 XMM4 XMM5 XMMé6 XMM7
sReg ES cs SS DS FS GS reserved | reserved
CReg CRO CR1 CR2 CR3 CR4 CR5 CR6 CR7
dReg DRO DR1 DR2 DR3 DR4 DR5 DR6 DR7

392 Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table A-13. ModRM Memory References, 16-Bit Addressing
ModRM ModRM reg Field? ModRM
Effective Address’ I’:'i';z o | /A2 /3 /8| /5] /6] /1 Ifl/e’::I
(binary) Complete ModRM Byte (hex) (binary)
[BX+SI] 00 [ 08 | 10 | 18 | 20 | 28 | 30 | 38 000
[BX+DI] on | 09 | 1M |19 20 |29 | 3 | 39 001
[BP+SI] 02 | 0A | 12 | 1A | 22 | 2A | 32 | 3A 010
[BP+DI| 03 | OB | 13 | 1B | 25 | 2B | 33 | 3B 011
[sl] % 04 | OC | 14 | 1C | 24 | 2C | 34 | 3C 100
[DI] 05 | 0D | 15 | 1D |25 | 2D | 35 | 3D 101
[disp6] 06 | OE | 16 | 1E | 26 | 2E | 36 | 3E 110
[BX] 07 | OF | 17 | 1F | 27 | 2F | 37 | 3F 1
[BX+Sl+disp8] 40 | 48 | 50 | 58 | 60 | 68 | 70 | 78 000
[BX+Dl+disps] 41 | 49 | 51 | 5 |61 |69 | 7|79 001
[BP+Sl+disp8] 42 | 4A | 52 | 5A | 62 | 6A | 72 | TA 010
[BP+Dl+disp8] 43 | 4B | 53 | 5B | 63 | 6B | 73 | 7B 011
[Sl+disp8] o 44 | 4C | 54 | 5C | 64 | 6C | 74 | 7C 100
[Dl+disp8] 45 | 4D | 55 | 5D | 65 [ 6D | 75 | 7D 101
[BP+disp8] 46 | 4E | 56 | 5E | 66 | 6E | 76 | 7E 110
[BX+disp8] 47 | 4F | 57 | 5F | 67 | 6F | 77 | 7F 1
[BX+Sl+disp16] 80 | 88 | 90 | 98 | A0 | A8 | Bo | B8 000
[BX+Dl+disp16] 81 | 89 | 91 | 99 | A1 | A9 | Bl | B9 001
[BP+Sl+disp16] 82 | 8A | 92 | 9A | A2 | AA | B2 | BA 010
[BP+Dl+disp16] 83 | 8B | 93 | 9B | A3 | AB | B3 | BB 011
[Sl+disp16] 0 84 | 8C | 94 | 9C | A4 | AC | B4 | BC 100
[Dl+disp16] 85 | 8D | 95 | 9D | A5 | AD | B5 | BD 101
[BP+disp16] 8 | 8E | 96 | 9E | A6 | AE | B6 | BE 110
[BX+disp16] 87 | 8F | 97 | 9F | A7 | AF | B7 | BF 1
Note:
1. “disp8” and “disp16” indicate an 8-bit or 16-bit signed displacement.
2. See Table A-12 for complete specification of ModRM “reg” field.
Appendix A: Opcode and Operand Encodings 393



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

Table A-13. ModRM Memory References, 16-Bit Addressing (continued)

ModRM ModRM reg Field? ModRM
Effective Address’ I’:'i';z o |2 /3| /a]/5]/6]| /1 Ifl/e’::i
(binary) Complete ModRM Byte (hex) (binary)
AL/AX/EAX/MMX0/XMMO0 Co| cs | Do |Ds| Eo | E8 | Fo| F8 | o000
CL/CX/ECX/MMX1/XMM1 a C | D1 D9 | E1 E9 F1 F9 001
DL/DX/EDX/MMX2/XMM2 Q|lcaa|m|aleR ||| o
BL/BX/EBX/MMX3/XMM3 C3 | CB| D3 | DB | E3 EB F3 FB on
AH/SP/ESP/MMX4/XMM4 " 4 | cc | pa|DC| Es | EC] Fa ] FC 100
CH/BP/EBP/MMX5/XMM5 C5 | CD| D5 | DD | E5 | ED | F5 | FD 101
DH/SI/ESI/MMX6/XMMé6 C6 | CE | D6 | DE | E6 EE F6 FE 110
BH/DI/EDI/MMX7/XMM7 7| | p7 | DF | E7 | EF| F7 | FF 1
Note:
1. “disp8” and “dispi16” indicate an 8-bit or 16-bit signed displacement.
2. See Table A-12 for complete specification of ModRM “reg” field.

Register and Memory References for 32-Bit and 64-Bit Addressing.

Table A-14 on page 395 shows the encoding for 32-bit and 64-bit
register references using the ModRM reg field. The first nine
rows of Table A-14 show references when the REX.R bit is
cleared to 0, and the last nine rows show references when the
REX.R bit is set to 1. In this table, Mnemonic Notation means
the syntax notation shown in “Mnemonic Syntax” on page 43
for a register, and ModRM Notation (/r) means the opcode-
syntax notation shown in “Opcode Syntax” on page 46 for the
register.

Table A-15 on page 396 shows the encoding for 32-bit and 64-bit
memory references using the ModRM byte. This table describes
32-bit and 64-bit addressing, with the REX.B bit set or cleared.
The Effective Address is shown in the two left-most columns,
followed by the binary encoding of the ModRM-byte mod field,
followed by the eight possible hex values of the complete
ModRM byte (one value for each binary encoding of the
ModRM-byte reg field), followed by the binary encoding of the
ModRM r/m field.

The /0 through /7 notation for the ModRM reg field (bits 5-3)
means that the three-bit field contains a value from zero (binary
000) to 7 (binary 111).

394

Appendix A: Opcode and Operand Encodings



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table A-14. ModRM Register References, 32-Bit and 64-Bit Addressing

Mnemonic . ModRM reg Field
. REX.R Bit

Notation /0 /1 /2 /3 /4 /5 /6 /1
regs AL L DL BL AH/SPL | CH/BPL | DH/SIL | BH/DIL
reglé AX X DX BX SP BP SI DI
reg32 EAX ECX EDX EBX ESP EBP ESI EDI
reg64 RAX RCX RDX RBX RSP RBP RSI RDI
mmx 0 MMXo MMX1 MMX2 MMX3 MMX4 MMX5 MMX6 MMX7
Xxmm XMMo XMM1 XMM2 XMM3 XMM4 XMM5 XMMeé XMM7
sReg ES cs SS DS FS GS reserved | reserved
CReg CRO CR1 CR2 CR3 CR4 CR5 CR6 CR7
dReg DRO DR1 DR2 DR3 DR4 DR5 DR6 DR7
reg8 R8B R9B R10B R11B R12B R13B R14B R15B
reg16 R8W ROW R10W RTIW R12W R13W R14W R15W
reg32 R8D RID R10D R11D R12D R13D R14D R15D
reg64 R8 R9 R10 RT1 R12 R13 R14 R15
mmx 1 MMX0 | MMX1 MMX2 MMX3 MMX4 | MMX5 | MMX6 | MMX7
Xxmm XMM8 XMM9 | XMM10 | XMM11 | XMM12 | XMM13 | XMM14 | XMM15
sReg ES cs SS DS FS GS reserved | reserved
(Reg CR8 CR9 CR10 CR1 CR12 CR13 CR14 CR15
dReg DR8 DR9 DR10 DR11 DR12 DR13 DR14 DR15

Appendix A: Opcode and Operand Encodings 395



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table A-15. ModRM Memory References, 32-Bit and 64-Bit Addressing
Effective Address' MOd’;M ModRM reg Field” ModkM
B N B a5l6]r| o
REX.B=0 REXB=1 (binary) Complete ModRM Byte (hex) (binary)
[rAX] [r8] 00 | 08 | 10 [ 18 20 | 28 | 30 | 38 000
[rCX] [r9] o1 | 09 | 11 | 19| 21 | 29| 3 | 39 001
[rDX] [r10] 02 [ 0A | 12 [ 1A | 22 | 2A | 32 | 3A 010
[BX] [rmj 03 | OB | 13 | 1B | 23 | 2B | 33 | 3B 011
[SIB]* [SIB]* % 04 | OC | 14 | 1C | 24 | 2C | 34 | 3C 100
[RIP+disp32] or [disp32)> |[rIP+disp32] or [disp32]? 05 | oD | 15 | 1D | 25 | 2D | 35 | 3D 101
[rsI] [r14] 06 | OE | 16 | 1E | 26 | 2E | 36 | 3E 110
[rDI] [r15] 07 | OF | 17 | 1F | 27 | 2F | 37 | 3F m
[rAX+disp8] [r8+disp8] 40 | 48 | 50 | 58 | 60 | 68 | 70 | 78 000
[rCX+disp8] [r9+disp8] 41 | 49 | 51 | 59 | 61 |69 | 71| 79 001
[rDX+disp8] [r10+disp8] 42 | 4A | 52 | 5A | 62 | 6A | T2 | 7A 010
[BX+dispé] [r11+disp8] 43 | 4B | 53 | 5B | 63 | 6B | 73 | 7B 011
[SIB+disp8]* [SIB+disp8]* o 44 | 4C | 54 | 5C | 64 | 6C | 74 | 7C 100
[rBP+disp8] [r13+disp8] 45 | 4D | 55 | 5D | 65 | 6D | 75 | 7D 101
[rSl+disp8] [r14+disp8] 4 | 4E | 56 | 5E | 66 | 6E | 76 | 7E 110
[rDl+disp8] [r15+disp8] 47 | 4F | 57 | 5F | 67 | 6F | 77 | TF 111
[rAX+disp32] [r8+disp32] 80 | 88 | 90 | 98 | A0 | A8 | BO | B8 000
[rCX+disp32] [r9+disp32] 81 | 89 | 91 | 99 | Al | A9 | B1 | B9 001
[rDX+disp32] [r10+disp32] 82 | 8A | 92 | 9A | A2 | AA | B2 | BA 010
[rBX+disp32] [r11+disp32] 83 | 8B | 93 | 9B | A3 | AB | B3 | BB 011
[SIB+disp32]* [SIB+disp32]* 0 84 | 8C | 94 | 9C | A4 | AC | B4 | BC 100
[rBP+disp32] [r13+disp32] 85 | 8D | 95 | 9D | A5 | AD | B5 | BD 101
[rSl+disp32] [r14+disp32] 8 | 8E | 96 | 9E | A6 | AE | B6 | BE 110
[Dl+disp32] [r15+disp32] 87 | 8F | 97 | 9F | A7 | AF | B7 | BF 1
Note:
1. “disp8” and “disp32” indicate an 8-bit or 32-bit signed displacement.
2. In 64-bit mode, the effective address is [RIP+disp32]. In all other modes, the effective address is [disp32]. If the address-size prefix
s used in 64-bit mode to override 64-bit addressing, the [RIP+disp32] effective address is truncated after computation to 64 bits.
3. See Table A-14 for complete specification of ModRM “reg” field.
4. An SIB byte follows the ModRM byte to identify the memory operand.

396

Appendix A: Opcode and Operand Encodings




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table A-15. ModRM Memory References, 32-Bit and 64-Bit Addressing (continued)

Eftective Address! ModRM ModRM reg Field® ModRM
ective Address mod r/m
Field | /O |V |2 | A5 /6T Fed
REX.B=0 REXB=1 (binary) Complete ModRM Byte (hex) (binary)
AL/rAX/MMX0/XMMO0 r8/MMX0/XMM8 Co | C8 | Do | D8 | EO E8 Fo F8 000
CL/rCX/MMX1/XMM1 ro/MMX1/XMM9 alc | |pg e || A || o
DL/rDX/MMX2/XMM2  {r10/MMX2/XMM10 C2 | CA|D2|DA|E2|EA|F|FA 010
BL/rBX/MMX3/XMM3 r11/MMX3/XMM11 3 | CB| D3 | DB | E3 EB F3 FB 011
1
AH/SPL/rSP/MMX4/XMM4 | r12/MMX4/XMM12 4| cc|pa|DC| Es|EC]| Fa]|FC 100
CH/BPL/rBP/MMX5/XMM5 | r13/MMX5/XMM13 ¢G5 | CD| D5 | DD | E5 | ED | F5 FD 101
DH/SIL/rSI/MMX6/XMM6  |r14/MMX6/XMM14 C6 | CE | D6 | DE | E6 EE F6 FE 110
BH/DIL/rD/MMX7/XMM7 |r15/MMX7/XMM15 7| | D7 | DF| E7 | EF | F7 | FF it
Note:
1. “disp8” and “disp32” indicate an 8-bit or 32-bit signed displacement.
2. In 64-bit mode, the effective address is [RIP+disp32]. In all other modes, the effective address is [disp32]. If the address-size prefix
Is used in 64-bit mode to override 64-bit addressing, the [RIP+disp32] effective address is truncated after computation to 64 bits.
3. See Table A-14 for complete specification of ModRM “reg” field.
4. An SIB byte follows the ModRM byte to identify the memory operand.

A3.2 SIB Operand Figure A-3 on page 398 shows the format of a scale-index-base

References (SIB) byte. Some instructions have an SIB byte following their
ModRM byte to define memory addressing for the complex-
addressing modes described in “Effective Addresses” in
Volume 1. The SIB byte has three fields—scale, index, and
base—that define the scale factor, index-register number, and
base-register number for 32-bit and 64-bit complex addressing
modes. In 64-bit mode, the REX.B and REX.X bits extend the
encoding of the SIB byte’s base and index fields.

Appendix A: Opcode and Operand Encodings 397



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Bt 7 6 5 4 3 2 1 0
[ scle | index | base | siB

REX.X bit of REX prefix can —T
extend this field to 4 bits

513-306.ps

REX.B bit of REX prefix can
extend this field to 4 bits

Figure A-3. SIB Byte Format

Table A-16 shows the encodings for the SIB byte’s base field,
which specifies the base register for addressing. Table A-17 on
page 399 shows the encodings for the effective address
referenced by a complete SIB byte, including its scale and index
fields. The /0 through /7 notation for the SIB base field means
that the three-bit field contains a value between zero (binary
000) and 7 (binary 111).

Table A-16. SIB base Field References

SIB base Field
REX.B Bit ModRM mod Field
/o N 2 | /3 | /A /5 /6 | /1
00 disp32
0 01 rAX rcxX rDX rBX rSP rBP+disp8 rSl rDI
10 rBP+disp32
00 disp32
1 01 r8 r9 r1o r r2 r13+disp8 r4 r15
10 r13+disp32

398 Appendix A: Opcode and Operand Encodings



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table A-17. SIB Memory References

SIB base Field'
Effective Address SIB | SIB REX.B=0: | rAX | rCX | ¥rDX | rBX | rSP |note!| rSI | rDI
scale | index | REXB=1:| r8 | r9 | r10 | r11 | 112 |note'| r14 | r15
Field | Field
o 23 /a5 /6T
REXX=0 REXX=1 Complete SIB Byte (hex)

[rAX+base] [r8+base] 000 00 | o1 [ 02| 03 | 04 | 05| 06 | 07
[rCX+base] [r9+base] 001 08 09 OA | OB oC | oD OE OF
[rDX+base] [r10+base] 010 10 1 12 13 14 15 16 17
[rBX+base] [r11+base] 00 on 18 19 1A 1B 1C 1D 1E 1F
[base] [r12+base] 100 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27
[rBP+base] [r13+base] 101 28 29 2A 2B 2C 2D 2E 2F
[rSI+base] [r14+base] 110 30 31 32 33 34 35 36 37
[rDl+base] [r15+base] m 38 39 3A 3B 3C 3D 3E 3F
[rAX*2+base] [r8*2+base] 000 40 | 42 43 44 45 46 47
[rCX*2+base] [r9*2+base] 001 48 49 4A 4B 4C 4D 4E 4F
[rDX*2+base] [r10*2+base] 010 50 51 52 53 54 55 56 57
[rBX*2+base] [r11*2+base] on 58 59 5A | 5B 5C | 5D 5E 5F
[base] [r12*2+base] o 100 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67
[rBP*2+base] [r13*2+base] 101 68 | 69 | 6A | 6B | 6C | 6D | 6E | 6F
[rSI*2+base] [r14*2+base] 110 70 Al 72 73 74 75 76 77
[rDI*2+base] [r15*2+base] 111 78 79 7A | 7B 7C | 7D 7E 7F
[rAX*4+base] [r8*4+base] 000 80 81 82 83 84 85 86 87
[rCX*4+base] [r9*4+base] 001 88 89 8A 8B 8C 8D 8E 8F
[rDX*4+base] [r10*4+base] 010 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97
[rBX*4+base] [r11*4+base] on 98 99 9A 9B 9C 9D 9E 9F
[base] [r12*4+base] 0 100 A0 Al A2 A3 Ad | A5 A6 A7
[rBP*4+base] [r13*4+base] 101 A8 A9 AA | AB AC | AD AE AF
[rSI*4+base] [r14*4+base] 110 BO B1 B2 B3 B4 B5 B6 B7
[rDI*4+base] [r15*4+base] 111 B8 B9 BA | BB | BC | BD | BE BF

Note:

1. See Table A-16 on page 398 for complete specification of SIB “base” field.

Appendix A: Opcode and Operand Encodings 399



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table A-17. SIB Memory References (continued)

SIB base Field'
REX.B=0: | rAX | rCX | ¥rDX | rBX | rSP |note!| rSI | rDI
Effective Address SIB .SIB
scale | index | REXB=1:| r8 | r9 | r10 | r11 | 112 |note'| r14 | r15
Field | Field
o 25 /A /5] /6 |1
REXX=0 REXX=1 Complete SIB Byte (hex)
[rAX*8+base] [r8*8+base] 000 c | Q| G| G| G| G|
[FCX*8+base] [r9*8+base] 001 8| 9| cA| B |cc| ]| c]|cF
[rDX*8+base] [r10*8+base] 010 Do | Di D2 | D3 | D4 | D5 | D6 | D7
[BX*8+base] [F11*8+base] ; o1 D8 | D9 | DA | DB | DC | DD | DE | DF
[base] [r12*8+base] 100 EO E1 E2 E3 E4 E5 E6 E7
[rBP*8+base] [r13*8+base] 101 E8 E9 EA EB EC ED EE EF
[rSI*8+base] [r14*8+base] 110 FO F1 F2 F3 F4 F5 F6 F7
[rDI*8+base] [r15*8+base] m F8 F9 FA FB FC FD FE FF
Note:
1. See Table A-16 on page 398 for complete specification of SIB “base” field.

400 Appendix A: Opcode and Operand Encodings



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Appendix B

General-Purpose Instructions in 64-Bit
Mode

This appendix provides details of the general-purpose
instructions in 64-bit mode and its differences from legacy and
compatibility modes. The appendix covers only the general-
purpose instructions (those described in Chapter 3, “General-
Purpose Instruction Reference”). It does not cover the 128-bit
media, 64-bit media, or x87 floating-point instructions because
those instructions are not affected by 64-bit mode, other than in
the access by such instructions to extended GPR and XMM
registers when using a REX prefix.

B.1 General Rules for 63-Bit Mode

In 64-bit mode, the following general rules apply to instructions
and their operands:

. “Promoted to 64 Bit”: If an instruction’s operand size (16-bit
or 32-bit) in legacy and compatibility modes depends on the
CS.D bit and the operand-size override prefix, then the
operand-size choices in 64-bit mode are extended from 16-bit
and 32-bit to include 64 bits (with a REX prefix), or the
operand size is fixed at 64 bits. Such instructions are said to
be “Promoted to 64 bits” in Table B-1. However, byte-operand
opcodes of such instructions are not promoted.

» Byte-Operand Opcodes Not Promoted: As stated above in
“Promoted to 64 Bit”, byte-operand opcodes of promoted
instructions are not promoted. Those opcodes continue to
operate only on bytes.

n  Fixed Operand Size: If an instruction’s operand size is fixed
in legacy mode (thus, independent of CS.D and prefix
overrides), that operand size is usually fixed at the same size
in 64-bit mode. For example, CPUID operates on 32-bit
operands, irrespective of attempts to override the operand
size.

m Default Operand Size: The default operand size for most
instructions is 32 bits, and a REX prefix must be used to
change the operand size to 64 bits. However, two groups of
instructions default to 64-bit operand size and do not need a
REX prefix: (1) near branches and (2) all instructions,

Appendix B: General-Purpose Instructions in 64-Bit Mode 401



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

except far branches, that implicitly reference the RSP. See
Table B-5 on page 434 for a list of all instructions that
default to 64-bit operand size.

Zero-Extension of 32-Bit Results: Operations on 32-bit
operands in 64-bit mode zero-extend the high 32 bits of 64-
bit GPR destination registers.

No Extension of 8-Bit and 16-Bit Results: Operations on 8-bit
and 16-bit operands in 64-bit mode leave the high 56 or 48
bits, respectively, of 64-bit GPR destination registers
unchanged.

Shift and Rotate Counts: When the operand size is 64 bits,
shifts and rotates use one additional bit (6 bits total) to
specify shift-count or rotate-count, allowing 64-bit shifts and
rotates.

Immediates: The maximum size of immediate operands is 32
bits, except that 64-bit immediates can be MOVed into 64-bit
GPRs. In 64-bit mode, when the operand size is 64 bits,
immediates are sign-extended to 64 bits during use, but
their actual size (for value representation) remains a
maximum of 32 bits.

Displacements: The maximum size of an address
displacement is 32 bits. In 64-bit mode, displacements are
sign-extended to 64 bits during use, but their actual size (for
value representation) remains a maximum of 32 bits.

Undefined High 32 Bits After Mode Change: The processor
does not preserve the upper 32 bits of the 64-bit GPRs across
switches from 64-bit mode to compatibility or legacy modes.
In compatibility or legacy mode, the upper 32 bits of the
GPRs are undefined and not accessible to software.

B.2 Operation and Operand Size in 64-Bit Mode

Table B-1 on page 403 lists the integer instructions, showing
operand size in 64-bit mode and the state of the high 32 bits of
destination registers when 32-bit operands are used. Opcodes,
such as byte-operand versions of several instructions, that do
not appear in Table B-1 are covered by the general rules
described in “General Rules for 64-Bit Mode” on page 401.

402

Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table B-1. Operations and Operands in 64-Bit Mode

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*

AAA - ASCII Adjust after Addition
37

AAD - ASCII Adjust AX before Division
D5

AAM - ASCII Adjust AX after Multiply
D4

AAS - ASCII Adjust AL after Subtraction
3F

ADC-Add with Carry
11

INVALID IN 64-BIT MODE (invalid-opcode exception)

INVALID IN 64-BIT MODE (invalid-opcode exception)

INVALID IN 64-BIT MODE (invalid-opcode exception)

INVALID IN 64-BIT MODE (invalid-opcode exception)

13 Promoted to Zero-extends 32-
64 bits 32 bits bit register results

15 ' to 64 bits.

81 /2

83 /2

Note:
1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 403



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*

ADD-Signed or Unsigned Add

01

03 Zero-extends 32-
gzolg?tgted to 32 bits bit register results

» ' to 64 bits.

81/0

83 /0

AND-Logical AND

21

23 Zero-extends 32-
zzollj?tc;ted to 32 bits bit register results

» ' to 64 bits.

81 /4

83 /4

ARPL - Adjust Requestor Privilege Level
OPCODE USED as MOVSXD in 64-BIT MODE

63
BOUND - Check Array Against Bounds o .
INVALID IN 64-BIT MODE (invalid-opcode exception)
62
BSF-Bit Scan Forward
Pron_10ted to 32 bits No GPR register results.
OF BC 64 bits.

Note:
1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rDI, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

404 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*

BSR-Bit Scan Reverse Promoted to

. 32 bits No GPR register results.

BSWAP—Byte Swap Zero-extends 32-

Promoted to 32bits | bitregister results

OF C8 through OF CF 64 bits. 0 64 bits.
BT-Bit Test
OF A3 Promoted to 32 bits No GPR register results
64 bits. 8 '
OF BA /4
BTC-Bit Test and Complement
Promoted to Zero-extends 32-
OF BB . 32 bits bit register results
64 bits. ,
to 64 bits.
OF BA /7
BTR-Bit Test and Reset
Promoted to Zero-extends 32-
OF B3 . 32 bits bit register results
64 bits. ;
to 64 bits.
OFBA/6
BTS—Bit Test and Set
Promoted to Zero-extends 32-
OF AB . 32 bits bit register results
64 bits. ,
to 64 bits.
OFBA/5

Note:
1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rDl, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 405



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*

CALL—Procedure Call Near

See “Near Branches in 64-Bit M

ode” in Volume 1.

Promoted to

RIP = RIP + 32-bit
displacement

64 bits.

. , 6
E8 64 bits. 64 bits Cant encode. sign-extended to
64 bits.
RIP = 64-bit offset
Promoted to . from register or
FF /2 64 bits Can't encode.® :

memory.

CALL—Procedure Call Far
9A

FF /3

See “Branches to 64-Bit Offsets” in Volume 1.

INVALID IN 64-BIT MODE (invalid-opcode exception)

Promoted to
64 bits.

32 bits

If selector points to a gate, then

RIP = 64-bit offset from gate, else

RIP = zero-extended 32-bit offset from
far pointer referenced in instruction.

CBW, CWDE, CDQE—Convert Byte to
Word, Convert Word to Doubleword,
Convert Doubleword to Quadword

98

Promoted to
64 bits.

32 bits
(size of desti-
nation regis-

ter)

CWDE: Converts
word to
doubleword.
Zero-extends EAX
to RAX.

CDQE (new
mnemonic);
Converts
doubleword to
quadword.

RAX = sign-

extended EAX.

bQ

see CWD, CDQ, CQO

CDQE (new mnemonic)

see CBW, CWDE, CDQE

Note:
l.
2.

3.

See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

Any pointer registers (rDI, rSl) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

406

Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
CDWE see CBW, CWDE, CDQE
CLC—Clear Carry Flag
;Same as Not relevant. | No GPR register results.
F8 egacy mode.
CLD—Clear Direction Flag
ISame as Not relevant. | No GPR register results.
FC egacy mode.
CLFLUSH—Cache Line Invalidate Same as _
| Not relevant. | No GPR register results.
OF AE /7 egacy mode.
CLI-Clear Interrupt Flag
ISame as Not relevant. | No GPR register results.
FA egacy mode.
CLTS—Clear Task-Switched Flag in CRO Same as _
| Not relevant. | No GPR register results.
OF 06 egacy mode.
CMC—Complement Carry Flag
ISame as Not relevant. | No GPR register results.
F5 egacy mode.
CMOVcc—Conditional Move Zero-extends 32-
bit register results
Promoted o | sybits | to 64 bits. his
OF 40 through OF 4F ' occurs even if the
condition is false.
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 407



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
CMP—-Compare
39
3B Promoted to . Zero-extends 32-
64 bits 32 bits bit register results
3D ' to 64 bits.
81/7
83 /7
CMPS, CMPSW, CMPSD, CMPSQ- . CMPSQ (new
; CMPSD: -~
Compare Strings Compare Strin mnemonic):
Promoted to 32 bits t?l d & | Compare String
64 bits. Doublewords. Quadwords
A7 5
See footnote See footnote®
CMPXCHG-Compare and Exchange Zero-extends 32-
Promoted to . o I
64 bits 32 bits bit register results
OF B1 ' to 64 bits.
C_MPXCHGBB—Compare and Exchange Operandsize | Zero-extends EDX Invalld'opco'de
Eight Bytes Same as ! exception with
fixed at 32 | and EAX to 64 ;
legacy mode. bit bit 64-bit operand
OFC7 )1 1. 1. size.
CPUID—Processor Identification Same as Of?fgglﬁ ;‘;e Zero-extends 32-bit register results to
OF A2 legacy mode. bits 64 bits.
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

408 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
€QO (new mnemonic) see CWD, CDQ, CQO0
CWD, CDQ, CQO—Convert Word to . CQO (new
Doubleword, Convert Doubleword to CDQ: Converts mnemonic):
doubleword to
Quadword, Convert Quadword to Double . Converts
32 bits quadword.
Quadword ) ] _ quadword to
Pron_10ted to | (size of desti- | Sign-extends EAX | double
64 bits. nation regis- | to EDL(. Zero- quadword.
99 ter) E’g;nRSA)E(?SX to Sign-extends RAX
' to RDX. RAX is
unchanged.
unchanged.

DAA - Decimal Adjust AL after Addition
27

INVALID IN 64-BIT MODE (invalid-opcode exception)

DAS - Decimal Adjust AL after Subtraction

INVALID IN 64-BIT MODE (invalid-opcode exception)

2F
Zero-extends 32-
DEC—Decrement by 1 . o
Y Pron_10ted to 32 bits bit register results
FF/1 64 bits to 64 bits
48 through 4F OPCODE USED as REX PREFIX in 64-BIT MODE
DIV-Unsigned Divide 7ero-extends 32- RDX:RAX contain
Promoted to . o a 64-bit quotient
. 32 bits bit register results .
F7 /6 64 bits. t0 64 bits (RAX) and 64-bit
' remainder (RDX).
ENTER—Create Procedure Stack Frame Promoted to '
64 bit 64 bits Can't encode®
cs ItS.

Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

Any pointer registers (rDl, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode

409



AMDZU

AMD 64-Bit Technology

Table B-1. Operations and Operands in 64-Bit Mode (continued)

24594  Rev. 3.02 August 2002

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’ Operation? Size3 Operand Size* | Operand Size*
HLT—Halt
Same as Not relevant. | No GPR register results.
legacy mode.
F4
IDIV-Signed Divide RDX:RAX contain
Zero-extends 32- . .
Promoted to . o a 64-bit quotient
. 32 bits bit register results .
F7/7 64 bits. t0 64 bits (RAX)_ and 64-bit
' remainder (RDX).
IMUL - Signed Multiply RDX:RAX = RAX *
reg/memé64
result)
reg64 =reg64 *
OF AF y .
Promoted to bi ﬁgro extends 32| reg/mem64
64 bits 32 bits it regls.ter results
' to 64 bits. regé4 =
69 reg/mem64 *
imm32
rege4 =
6B reg/meme4 *
imm8
IN-Input From Port
E5 Same as 32 bits Zero'-extends 32-bit register results to
legacy mode. 64 bits.
ED
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size Is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

410 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
INC—Increment by 1 Zero-extends 32-
Promoted to . o I
bits 32 bits bit register results
FF/0 64 bits. to 64 bits.
40 through 47 OPCODE USED as REX PREFIX in 64-BIT MODE
INS, INSW, INSD—Input String INSD: Input String Doublewords.
Same as 32 bits No GPR register results.
6D legacy mode. 5
See footnote
INT n—Interrupt to Vector
D Promoted to | See “Long-Mode Interrupt Control
bits Not relevant. Transfers” in Volume 2
INT3—Interrupt to Debug Vector 64 bits. :
CC

INTO - Interrupt to Overflow Vector

INVALID IN 64-BIT MODE (invalid-opcode exception)

CE
INVD—Invalidate Internal Caches
;Same as d Not relevant. | No GPR register results.
OF 08 egacy mode.
INVLPG—Invalidate TLB Entry
Probm_toted to Not relevant. | No GPR register results.
OF 01 /7 64 bits.

Note:

See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.
If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

Any pointer registers (rDl, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 411



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
IRET, IRETD, IRETQ—Interrupt Return IRETD: Interrupt IRETQ (ngw.
Return mnemonic);
Doubleword Interrupt Return
Promoted to , ., ' Quadword.
- 32 bits See “Long-Mode "
CF 64 bits. See “Long-Mode
Interrupt Control |
Transfers” in Interrupt C_ontro
Volume 2 Transfers” in
' Volume 2.
Jee—Jump Conditional See “Near Branches in 64-Bit Mode” in Volume 1.
RIP =RIP + 8-bit

displacement

70 through 7F sign-extended to
Promoted to . 64 bits.
. 64 bits Can't encode.5
64 bits. RIP = RIP + 32-bit
displacement
OF 80 through OF 8F sign-extended to
64 bits.
JCXZ, JECXZ, JRCXZ—Jump on CX/ECX/RCX RIP =RIP + 8-bit
Zero b y displacement
romoted to 64 bits Can'tencode® | Sign-extended to
64 bits. 64 bits
E3 '
See footnote®
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

412 Appendix B: General-Purpose Instructions in 64-Bit Mode




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
JMP—Jump Near See “Near Branches in 64-Bit Mode” in Volume 1.
RIP =RIP + 8-bit
EB displacement
sign-extended to
64 bits.
Promoted to RIP = RIP + 32-bit
. 64 bits Can't encode.’ displacement
E9 64 bits. .
sign-extended to
64 bits.
RIP = 64-bit offset
FF /4 from register or
memory.
JMP—Jump Far See “Branches to 64-Bit Offsets” in Volume 1.
EA INVALID IN 64-BIT MODE (invalid-opcode exception)
If selector points to a gate, then
Promoted to . RIP = 64-bit offset from gate, else
FE/5 64 bits. 32 bits RIP = zero-extended 32-bit offset from
far pointer referenced in instruction.
LAHF - Load Status Flags into AH Register o .
INVALID IN 64-BIT MODE (invalid-opcode exception)
9F
LAR-Load Access Rights Byte Zero-extends 32-
Same as . o
leeacy mode 32 bits bit register results
OF 02 gacymoce. to 64 bits.

Note:
1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (D], rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 413



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*

LDS - Load DS Far Pointer

INVALID IN 64-BIT MODE (invalid-opcode exception)

s
LEA—Load Effective Address Zero-extends 32-
Promoted to bi bit regi I
64 bits 32 bits it regls_ter results
8D ' to 64 bits.
LEAVE-Delete Procedure Stack Frame Promoted to _ ' ]
64 bi 64 bits Can't encode
9 its.

LES - Load ES Far Pointer

INVALID IN 64-BIT MODE (invalid-opcode exception)

4
LFENCE—Load Fence
Same as Not relevant. | No GPR register results.
OF AE /5 legacy mode.
LFS—Load FS Far Pointer Same as 3 bits Zero-extends 32-bit register results to
OF B4 legacy mode. 64 bits.
LGDT-Load Global Descriptor Table - .
Register Promoted to Of?:gjz(: ‘Z'Ze No GPR register results.
64 bits. bits Loads 8-byte base and 2-byte limit.
OF 01 /2 I5.
LGS—Load GS Far Pointer Same as 39 bifs Zero-extends 32-bit register results to
OF B5 legacy mode. 64 bits.
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size Is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

414 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
LIDT—Load Interrupt Descriptor Table - .
Register Promoted to Of?:;jz(: SG'ZE No GPR register results.
64 bits. bits Loads 8-byte base and 2-byte limit.
OF 01/3 :
LLDT—Load Local Descriptor Table Register Promoted to Operandsize | No GPR register results.
64 bits fixed at 16 | References 16-byte descriptor to load
OF 00 /2 ' bits. 64-bit base.
LMSW-Load Machine Status Word Same as Operand ssize
| fixedat 16 | No GPR register results.
OF 01 /6 egacy mode. bifs.
LODS, LODSW, LODSD, LODSQ-Load LODSD: Load
String String LODSQ (new
Doublewords. mnemonic): Load
Promotedto | . .. Zero-extends 32- | String
D 64 bits. bit register results | Quadwords.
to 64 bits. See footnote®
See footnote®
LOOP—Loop
E2 )
RIP = RIP + 8-bit
LOOPZ, LOOPE-Loop if Zero/Equal y displacement
Promoted to . ;
; 64 bits Can't encode.® sign-extended to
E1 64 bits. 64 bits.
LOOPNZ, LOOPNE—-Loop if Not See footnote’
Zero/Equal
EO
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size Is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode

415



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
LSL—Load Segment Limit Same as 32 bifs Zero-extends 32-bit register results to
OF 03 legacy mode. 64 bits.
LSS —Load SS Segment Register Same as 35 bifs Zero-extends 32-bit register results to
OF B2 legacy mode. 64 bits.
LTR-Load Task Register Operandsize | No GPR register results.
Promoted to . .
64 bits fixedat 16 | References 16-byte descriptor to load
OF 00 /3 . bits. 64-bit base.
MFENCE—Memory Fence
;Same as d Not relevant. | No GPR register results.
OF AE /6 egacy mode.
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

416 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
MOV-Move
89
8B Zero-extends 32-
bit register results . .
to 64 bits 32-bit immediate
C7 ' is sign-extended
to 64 bits.
Promoted to 5 bi — _
B8 through BF 64 bits. 32 bits 64-bit immediate.
A1 (moffset) Zero-extends 32-
bitregister results | Memory offsets
to 64 bits. are address-sized
A3 (moffset) are address-sized | Dits.
and default to 64
bits.
MOV-Move to/from Segment Registers 39 bifs Zero-extends 32-bit register results to
Same as
legacy mode. | Operand size
8E fixed at 16 No GPR register results.
bits.
MOV(CRn)—Move to/from Control . . .
. (CRn) / . The high 32 bits of control registers
Registers Operandsize | .. 2 >2 72" "
Promoted to fved at 64 differ in their writability and reserved
OF 22 64 bits. . status. See “System Resources” in
bits. .
Volume 2 for details.
OF 20
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 417



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’ Operation? Size3 Operand Size* | Operand Size*
MOV(DRn)—Move to/from Debu . . ,
. (DRn) / 8 . The high 32 bits of debug registers
Registers Operandsize | .. 2 .= 2. """
Promoted to fved at 64 differ in their writability and reserved
OF 21 64 bits. . status. See “Debug and Performance
bltS. " 1
Resources” in Volume 2 for details.
OF 23
MOVD-Move Doubleword or Quadword
Zero-extends 32-
OF 6E bit register results
to 64 bits.
OF 7E Promoted to .
64 bits. 32 bits
66 OF 6E Zero-extends 32- | Zero-extends 64-
bit register results | bit register results
66 OF 7E to 128 bits. to 128 bits.
MOVNTI-Move Non-Temporal
Doubleword Promoted to 32 bits No GPR register results.
64 bits.
OF C3
MQVS, MOVSW, MOVSD, MOVSQ—-Move MOVSD: Move MOVSQ (_ne.w
String b tedt String mnemonic):
romoted to i Move String
64 bits. 32 bits Doublewords. Quadwords
A5 5 '
See footnote See footnote®
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size Is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

418 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’ Operation? Size3 Operand Size* | Operand Size*
MOVSX—Move with Sign-Extend
OF BE Zero-extends 32- | SI8-extendsbyte
Promoted to . o to quadword.
64 bifs. 32 bits bit register results
to 64 bits. Sign-extends
OF BF word to
quadword.
MOVSXD—Move with Sign-Extend New
Doubleword instruction,
available
only in 64-bit Zero-extends 32- | Sign-extends
mode. (In 32 bits bitregister results | doubleword to
63 other modes, to 64 bits. quadword.
this opcode
is ARPL
instruction.)
MOVZX—Move with Zero-Extend
Zero-extends
OF B6 Zero-extends 32- | byte to
Promoted to . bitregister results | quadword.
: Zero-extends
OF B7 word to
quadword.
_ . . . — *
MUL-Multiply Unsigned Zero-extends 32- RDX:RAX RAX
Promoted to . o quadword in
. 32 bits bit register results .
F7 /4 64 bits. 0 64 bis register or
' memory.
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size Is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 419



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
NEG—Negate Two's Complement Zero-extends 32-
Promoted to . o I
64 bits 32 bits bit register results
F7/3 ' to 64 bits.
NOP-No Operation
Same as Not relevant. | No GPR register results.
90 legacy mode.
NOT-Negate One’s Complement Zero-extends 32-
Promoted to . o I
64 bits 32 bits bit register results
F7/2 ' to 64 bits.
OR-Logical OR
09
0B Promoted to . Zero-extends 32-
64 bits 32 bits bit register results
0D ' to 64 bits.
81 /1
83 /1
OUT-Output to Port
E7 ;Same a 32 bits No GPR register results.
egacy mode.
EF
OUTS, OUTSW, OUTSD—Output String Writes doubleword to 1/0 port.
Same as 32 bits No GPR register results.
6F legacy mode. 5
See footnote
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

420 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
POP—Pop Stack
Promoted to . No GPR register
6
8F /0 64 bits. 64 bits Cannot encode results.
58 through 5F
POP—Pop (segment register from) Stack
Same as . No GPR register
6
OF AT (POPFS) legacy mode. 64 bits Cannot encode results.
OF A9 (POP GS)
1F (POP DS)
07 (POP ES) INVALID IN 64-BIT MODE (invalid-opcode exception)
17 (POP SS)
POPA, POPAD - Pop All to GPR Words or
Doublewords INVALID IN 64-BIT MODE (invalid-opcode exception)
61
POPF, POPFD, POPFQ—Pop to rFLAGS POPFQ (new
Word, Doublword, or Quadword mnemonic): Pops
64 bits off stack,
Promoted to . writes low 32 bits
6
64 bits. 64 bits Cannot encode into EFLAGS and
9D zero-extends the
high 32 bits of
RFLAGS.
PREFETCH-Prefetch L1 Data-Cache Line | g3me as _
| d Not relevant. | No GPR register results.
OF 0D /0 egacy mode.
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 421



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
PREFETCH/evel—Prefetch Data to Cache
Level fevel same as Not relevant. | No GPR register results.
legacy mode.
OF 18 /0-3
PREFETCHW—Prefetch L1 Data-Cache Line
for Write same as Not relevant. | No GPR register results.
legacy mode.
OF 0D /1
PUSH—Push onto Stack
FF /6
Promoted to .
6
50 through 57 64 bis. 64 bits Cannot encode
6A
68
PUSH-Push (segment register) onto Stack
OF A0 (PUSH FS) Pron_10ted to 64 bits Cannot encode®
64 bits.
OF A8 (PUSH GS)
OE (PUSH CS)
1E (PUSH DS) - )
INVALID IN 64-BIT MODE (invalid-opcode exception)
06 (PUSH ES)
16 (PUSH SS)
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSl) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

422 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*

PUSHA, PUSHAD - Push All to GPR Words
or Doublewords

60

INVALID IN 64-BIT MODE (invalid-opcode exception)

PUSHF, PUSHFD, PUSHFQ—Push rFLAGS

PUSHFQ (new
Word, Doubleword, or Quadword onto Promoted to 64 bits 4e6 mnemonic):
Stack 64 bits. Cannotencode® | py\ches the 64-bit
9C RFLAGS register.
RCL—Rotate Through Carry Left
D1/2 Zero-extends 32-
gzoll;tc;ted to 32 bits bitregister results | Uses 6-bit count.
D3 /2 ' to 64 bits.
C1/2
RCR—Rotate Through Carry Right
D1/3 Zero-extends 32-
gzollj?tc;ted to 32 bits bitregister results | Uses 6-bit count.
D3 /3 ' to 64 bits.
C1/3
RDMSR—Read Model-Specific Register RDX[31:0] contains MSR[63:32],
Same as Not relevant RAX[31:0] contains MSR[31:0]. Zero-
OF 32 legacy mode. " | extends 32-bit register results to 64

bits.

Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

Any pointer registers (rDl, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode

423



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
RDPMC—Read Performance-Monitoring RDX[31:0] contains PMC[63:32],
Counters Same as Not relevant RAX[31:0] contains PMC[31:0]. Zero-
legacy mode. " | extends 32-bit register results to 64
OF 33 bits.
RDTSC—Read Time-Stamp Counter RDX[31:0] contains TSC[63:32],
Same as RAX[31:0] contains TSC[31:0]. Zero-
I de Not relevant. extends 32-bit register results to 64
OF 31 egacy mode. ) g
bits.
REP INS—Repeat Input String Same as > b Reads doubleword I/O port.
32 bits
F3 6D legacy mode. See footnote®
REP LODS—Repeat Load String b y Zero-extends EAX
romoted to 32 bits to 64 bits. See footnote®
F3 AD 64 bits. 5
See footnote
REP MOVS—Repeat Move String Promoted to o bi No GPR register results.
) its
F3 A5 64 bits. See footnote®
REP OUTS—Repeat Output String to Port Writes doubleword to 1/0 port.
Same as 32 bits No GPR register results.
legacy mode.
F3 6F 5
See footnote
REP STOS—Repeat Store String Promoted to bit No GPR register results.
. 32 bits
F3 AB 64 bits. See footnote®
REPx CMPS —Repeat Compare String Promoted to bit No GPR register results.
. 32 bits
F3 A7 64 bits. See footnote®
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

424 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
REPx SCAS —Repeat Scan String Promoted to 2 bit No GPR register results.
. its
F3 AF 64 bits. See footnote®
RET—Return from Call Near See “Near Branches in 64-Bit Mode” in Volume 1.
Q .
Promoted to . 6 | No GPRregister
3 64 bits. 64 bits Cannot encode. results.

RET—Return from Call Far Y .
See “Control Transfers” in Volume 1

(B Promoted to 32 bits and “Control-Transfer Privilege
64 bits. s
Checks” in Volume 2.
CA
ROL—Rotate Left
D1/0 Promoted to Zero-extends 32-

32 bits bit register results | Uses 6-bit count.

D3 /0 64 bits. to 64 bits.
C1/0
ROR—Rotate Right
D1/1 Promoted to Zero-extends 32-

32 bits bit register results | Uses 6-bit count.

D3 /1 64 bits. to 64 bits.

C11

RSM—Resume from System Management
Mode New SMM See “System-Management Mode” in

state-save Not relevant.
Volume 2.

OF AA darea.

Note:
1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD], rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 425



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table B-1. Operations and Operands in 64-Bit Mode (continued)

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*

SAHF - Store AH into Flags
INVALID IN 64-BIT MODE (invalid-opcode exception)

9E
SAL-Shift Arithmetic Left
D1/4 Zero-extends 32-
zzog?tcsxted to 32 bits bit register results | Uses 6-bit count.
D3 /& ' to 64 bits.
C1/4
SAR-Shift Arithmetic Right
D1/7 Zero-extends 32-
zzog?tcsxted to 32 bits bit register results | Uses 6-bit count.
D3/1 ' to 64 bits.
C1/7

SBB—Subtract with Borrow

19

1B Zero-extends 32-
gzoll;tc;ted to 32 bits bit register results

P ' to 64 bits.

81 /3

83 /3

Note:
1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rDI, rSl) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

426 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
SCAS, SCASW, SCASD, SCASQ-Scan SCASD: Scan
String String SCASQ (new
Doublewords. mnemonic): Scan
Pro||)1_10ted 0 | 25 bits Zero-extends 32- | String
AF 64 bits. bit register results | Quadwords.
to 64 bits. See footnote®
See footnote®
SFENCE—Store Fence
ISame as Not relevant. | No GPR register results.
OF AE /7 egacy mode.
SGDT-Store Global Descriptor Table - .
Register Promoted to Of[i):(:gr;(: 56126 No GPR register results.
64 bits. bits Stores 8-byte base and 2-byte limit.
OF 01 /0 :
SHL-Shift Left
D1 /4 Zero-extends 32-
Zzol?toted to 32 bits bitregister results | Uses 6-bit count.
D3 /4 5. to 64 bits.
Cl1/4
SHLD-Shift Left Double
Promoted to Zero-extends 32-
OF A4 . 32 bits bit register results | Uses 6-bit count.
64 bits. .
to 64 bits.
OF A5
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 427



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
SHR-Shift Right
D1/5 Zero-extends 32-
Zzollj?tc;ted to 32 bits bit register results | Uses 6-bit count.
D3 /5 : to 64 bits.
C1/5
SHRD-Shift Right Double
Promoted to Zero-extends 32-
OF AC . 32 bits bit register results | Uses 6-bit count.
64 bits. to 64 bits
OF AD '
SIDT—Store Interrupt Descriptor Table . )
Register Promoted to Of‘i)gjr:: ‘zze No GPR register results.
64 bits. bits Stores 8-byte base and 2-byte limit.
OF 01 /1 :
SLDT-Store Local Descriptor Table Register | game as - Zero-extends 2-byte LDT selector to 64
0F 00 /0 legacy mode. bits.
SMSW-Store Machine Status Word Zero-extends 32- Stores 64-bit
Same as o )
legacy mode 32 bit register results | machine status
OF 01 /4 ' to 64 bits. word (CRO).
STC—Set Carry Flag
Same as Not relevant. | No GPR register results.
F9 legacy mode.
STD—Set Direction Flag
Same as Not relevant. | No GPR register results.
FD legacy mode.
Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (rD, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

428 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
STI - Set Interrupt Flag
ISame as Not relevant. | No GPR register results.
FB egacy mode.
STOS, STOSW, STOSD, STOSQ- Store STOSD: Store STOSQ (n_ev.v
String b tedt String mnemonic):
romoted to i Store Strin
64 bits. 32 bits Doublewords. Quadwor d§
AB 5 )
See footnote See footnote?
STR-Store Task Register Same as - Zero-extends 2-byte TR selector to 64
0F 00 /1 legacy mode. bits.
SUB—Subtract
29
2B Zero-extends 32-
zzolg?tcsxted to 32 bits bit register results
2D ' to 64 bits.
81 /5
83 /5
SWAPGS—Swap GS Register with New
KernelGSbase MSR instruction,
available
only in 64-bit See “SWAPGS Instruction” in
Not relevant.
mode. (In Volume 2.
OF 01 /7 other modes,
this opcode
is invalid.)

Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

Any pointer registers (D, rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode 429



AMDZU

AMD 64-Bit Technology

Table B-1. Operations and Operands in 64-Bit Mode (continued)

24594  Rev. 3.02 August 2002

Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
SYSCALL~Fast System Call Promoted to See “SYSCALL and SYSRET
. Not relevant. . :
OF 05 64 bits. Instructions” in Volume 2 for details.
SYSENTER-System Call o .
INVALID IN LONG MODE (invalid-opcode exception)
OF 34
SYSEXIT—System Return o )
INVALID IN LONG MODE (invalid-opcode exception)
OF 35
SYSRET—Fast System Return Promoted to . See “SYSCALL and SYSRET
. 32 bits S .
OF 07 64 bits. Instructions” in Volume 2 for details.
TEST—Test Bits
85
Pron_10ted to 32 bits No GPR register results.
A9 64 bits.
F7 /0
UD2-Undefined Operation Same as _
| d Not relevant. | No GPR register results.
OF OB egacy mode.
VERR-Verify Segment for Reads Same as Operand ssize
| d fixed at 16 | No GPR register results.
OF 00 /4 €gacy mode. bits
VERW-Verify Segment for Writes Operand ssize
Same as . .
legacy mode fixedat 16 | No GPR register results.
0F 00 /5 gacy - bits

Note:
1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

2. The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

3. It “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

4. Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

5. Any pointer registers (D], rSI) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

6. The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

430 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table B-1. Operations and Operands in 64-Bit Mode (continued)
Instruction and Type of ::ef::':td For 32-Bit For 64-Bit
Opcode (hex)’' Operation? Size3 Operand Size* | Operand Size*
WAIT-Wait for Interrupt
ISame as Not relevant. | No GPR register results.
9B egacy mode.
WBINVD-Writeback and Invalidate All
Caches same as Not relevant. | No GPR register results.
legacy mode.
OF 09
WRMSR-Write to Model-Specific Register Same as No GPR register results.
Not relevant. | MSR[63:32] = RDX[31:0]
legacy mode. ' :
OF 30 sacy MSR[31:0] = RAX[31:0]
XADD-Exchange and Add Zero-extends 32-
Promoted to . o
bits 32 bits bit register results
OF C1 64 bits. to 64 bits.
XCHG—Exchange Register/Memory with
Register Zero-extends 32-
Promoted to . o I
g7 64 bits 32 bits bit register results
' to 64 bits.
90
XOR-Logical Exclusive OR
31
33 Zero-extends 32-
zzoll;tc;ted to 32 bits bit register results
35 ' to 64 bits.
81 /6
83 /6

Note:

1. See “General Rules for 64-Bit Mode” on page 401, for opcodes that do not appear in this table.

The type of operation, excluding considerations of operand size or extension of results. See “General Rules for 64-Bit Mode” on
page 401 for definitions of “Promoted to 64 bits” and related topics.

If “Type of Operation” is 64 bits, a REX prefix is needed for 64-bit operand size, unless the instruction size defaults to 64 bits. If
the operand size is fixed, operand-size overrides are silently ignored.

Special actions in 64-bit mode, in addition to legacy-mode actions. Zero or sign extensions apply only to result operands, not
source operands. Unless otherwise stated, 8-bit and 16-bit results leave the high 56 or 48 bits, respectively, of 64-bit destination
registers unchanged. Immediates and branch displacements are sign-extended to 64 bits.

Any pointer registers (rDI, rSl) or count registers (rCX) are address-sized and default to 64 bits. For 32-bit address size, any pointer
and count registers are zero-extended to 64 bits.

The default operand size can be overridden to 16 bits with 66h prefix, but there is no 32-bit operand-size override in 64-bit mode.

Appendix B: General-Purpose Instructions in 64-Bit Mode

431



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

B.3 Invalid and Reassigned Instructions in 64-Bit Mode

Table B-2 lists instructions that are illegal in 64-bit mode.
Attempted use of these instructions generates an invalid-
opcode exception (#UD).

Table B-2. Invalid Instructions in 64-Bit Mode

Mnemonic 0(||)1¢:;¢;e Description
AAA 37 ASCII Adjust After Addition
AAD D5 ASCII Adjust Before Division
AAM D4 ASCII Adjust After Multiply
AAS 3F ASCII Adjust After Subtraction
BOUND 62 Check Array Bounds
CALL (far) 9A Procedure Call Far (far absolute)
DAA 27 Decimal Adjust after Addition
DAS 2F Decimal Adjust after Subtraction
INTO CE Interrupt to Overflow Vector
JMP (far) EA Jump Far (absolute)
LAHF 9F Load Status Flags into AH Register
LDS (6} Load DS Far Pointer
LES Ca Load ES Far Pointer
POP DS 1F Pop Stack into DS Segment
POP ES 07 Pop Stack into ES Segment
POP SS 17 Pop Stack into SS Segment
POPA, POPAD 61 Pop All to GPR Words or Doublewords
PUSH CS OE Push CS Segment Selector onto Stack
PUSH DS 1E Push DS Segment Selector onto Stack
PUSHES 06 Push ES Segment Selector onto Stack
PUSH SS 16 Push SS Segment Selector onto Stack
PUSHA, PUSHAD 60 Push All to GPR Words or Doublewords

432 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table B-2. Invalid Instructions in 64-Bit Mode (continued)

Mnemonic 0(|I)lce(;¢;e Description
SAHF 9E Store AH into Flags
Redundant Grp1 82/2 Redundant encoding of group1 Eb,Ib opcodes
SALC D6 Set AL According to CF

Table B-3 lists instructions that are reassigned to different
functions in 64-bit mode. Attempted use of these instructions
generates the reassigned function.

Table B-3. Reassigned Instructions in 64-Bit Mode

. Opcode .
Mnemonic (hex) Description

Opcode for MOVSXD instruction in 64-bit mode.
ARPL 63 In all other modes, this is the Adjust Requestor
Privilege Level instruction opcode.

REX prefixes in 64-bit mode. In all other modes,

DEC and INC 40-4F decrement by 1 and increment by 1.

Table B-4 lists instructions that are illegal in long mode.
Attempted use of these instructions generates an invalid-
opcode exception (#UD).

Table B-4. Invalid Instructions in Long Mode

. Opcode .
Mnemonic (hex) Description
SYSENTER OF 34 System Call
SYSEXIT OF 35 System Return
B.4 Instructions with 64-Bit Default Operand Size

In 64-bit mode, two groups of instructions default to 64-bit
operand size without the need for a REX prefix:

m  Near branches —CALL, Jcc, JrCX, JMP, LOOP, and RET.

Appendix B: General-Purpose Instructions in 64-Bit Mode 433



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

mn All instructions, except far branches, that implicitly reference
the RSP—CALL, ENTER, LEAVE, POP, PUSH, and RET
(CALL and RET are in both groups of instructions).

Table B-5 lists these instructions.

Table B-5. Instructions Defaulting to 64-Bit Operand Size

Implicitly
Mnemonic Opcode Reference Description
(hex)
RSP

CALL ES, FF /2 yes Call Procedure Near

ENTER cs yes Create Procedure Stack Frame

Jec many no Jump Conditional Near

JMP E9, EB, FF /4 no Jump Near

LEAVE 9 yes Delete Procedure Stack Frame

LOOP E2 no Loop

LOOPcc Eo0, E1 no Loop Conditional

POP reg/mem 8F /0 yes Pop Stack (register or memory)

POP reg 58-5F yes Pop Stack (register)

POP FS OF Al - Pop_ Stack into FS Segment
Register

POP GS OF A9 yes Pop'Stack into GS Segment
Register

POPF, POPFD, 9D o Pop to rFLAGS Word,

POPFQ ¥ Doubleword, or Quadword

PUSH imms 6A yes Push onto Stack (sign-extended
byte)

PUSH imm32 68 yes Push onto Stack (sign-extended
doubleword)

PUSH reg/mem FF /6 yes Push onto Stack (register or
memory)

PUSH reg 50-57 yes Push onto Stack (register)

PUSH FS OF A0 yes Z;Jascl";(FS Segment Register onto

434 Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table B-5. Instructions Defaulting to 64-Bit Operand Size (continued)

Implicitly
Mnemonic Opcode Reference Description
(hex)
RSP

PUSH GS OF A8 yes Push GS Segment Register onto

Stack

Push rFLAGS Word,
PUSHF, PUSHFD, 9C yes Doubleword, or Quadword
PUSHFQ

onto Stack
RET Q,aG yes Return From Call (near)

The 64-bit default operand size can be overridden to 16 bits
using the 66h operand-size override. However, it is not possible
to override the operand size to 32 bits because there is no 32-bit
operand-size override prefix for 64-bit mode. See “Operand-
Size Override Prefix” on page 5 for details.

B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode

In 64-bit mode, the legacy encodings for the 16 single-byte INC
and DEC instructions (one for each of the eight GPRs) are used
to encode the REX prefix values, as described in “REX
Prefixes” on page 14. Therefore, these single-byte opcodes for
INC and DEC are not available in 64-bit mode, although they
are available in legacy and compatibility modes. The
functionality of these INC and DEC instructions is still
available in 64-bit mode, however, using the ModRM forms of
those instructions (opcodes FF/0 and FF/1).

B.6 NOP in 64-Bit Mode

Programs written for the legacy x86 architecture commonly use
opcode 90h (the XCHG EAX, EAX instruction) as a one-byte
NOP. In 64-bit mode, the processor treats opcode 90h specially
in order to preserve this legacy NOP use. Without special
handling in 64-bit mode, the instruction would not be a true no-
operation. Therefore, in 64-bit mode the processor treats XCHG
EAX, EAX as a true NOP, regardless of operand size or the
presence of a REX prefix.

This special handling does not apply to the two-byte ModRM
form of the XCHG instruction. Unless a 64-bit operand size is

Appendix B: General-Purpose Instructions in 64-Bit Mode 435



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

specified using a REX prefix byte, using the two byte form of
XCHG to exchange a register with itself will not result in a no-
operation because the default operation size is 32 bits in 64-bit
mode.

B.7 Segment Override Prefixes in 64-Bit Mode

In 64-bit mode, the CS, DS, ES, SS segment-override prefixes
have no effect. These four prefixes are no longer treated as
segment-override prefixes in the context of multiple-prefix
rules. Instead, they are treated as null prefixes.

The FS and GS segment-override prefixes are treated as true
segment-override prefixes in 64-bit mode. Use of the FS and GS
prefixes cause their respective segment bases to be added to
the effective address calculation. See “FS and GS Registers in
64-Bit Mode” in Volume 2 for details.

436

Appendix B: General-Purpose Instructions in 64-Bit Mode



AMDZ1

24594 Rev. 3.02 August 2002

Appendix C

AMD 64-Bit Technology

Differences between Long Mode and Legacy
Mode

Table C-1 summarizes the major differences between 64-bit
mode and legacy protected mode. The third column indicates
differences between 64-bit mode and legacy mode. The fourth
column indicates whether that difference also applies to
compatibility mode.

Table C-1. Differences Between Long Mode and Legacy Mode

Type

Subject

64-Bit Mode Difference

Applies To
Compatibility
Mode?

Application
Programming

Addressing

RIP-relative addressing available

Data and Address
Sizes

Default data size is 32 bits

REX Prefix toggles data size to 64 bits

Default address size is 64 bits

Address size prefix toggles address size to 32 bits

Instruction
Differences

Various opcodes are invalid or changed in 64-bit mode
(see Table B-2 on page 432 and Table B-3 on page 433)

no

Various opcodes are invalid in long mode (see Table B-4
on page 433)

yes

MOV reg,imm32 becomes MOV reg,immé64 (with REX
operand size prefix)

REX is always enabled

Direct-offset forms of MOV to or from accumulator
become 64-bit offsets

MOVD extended to MOV 64 bits between MMX registers
and long GPRs (with REX operand-size prefix)

no

Appendix C: Differences between Long Mode and Legacy Mode

437



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table C-1. Differences Between Long Mode and Legacy Mode (continued)
Applies To
Type Subject 64-Bit Mode Difference Compatibility
Mode?
x86 Modes Real and virtual-8086 modes not supported yes
Task Switching Task switching not supported yes
64-bit virtual addresses
Addressing 4-level paging structures yes
PAE must always be enabled
CS, DS, ES, SS segment bases are ignored
Segmentation CS, DS, ES, FS, GS, SS segment limits are ignored no
CS, DS, ES, SS Segment prefixes are ignored
All pushes are 8 bytes
16-bit interrupt and trap gates are illegal
Exception and 32-bit interrupt and trap gates are redefined as 64-bit o
System Interrupt Handling | gates and are expanded to 16 bytes y
Programming - -
SS is set to null on stack switch
SS:RSP is pushed unconditionally
All pushes are 8 bytes
16-bit call gates are illegal
Call Gates 32-bit call gate type is redefined as 64-bit call gate and is yes
expanded to 16 bytes.
SS is set to null on stack switch
Syst_em-Descnptor GDT, IDT, LDT, TR base registers expanded to 64 bits yes
Registers
System-Descriptor LGDT_and LIDT use expanded 10-byte pseudo-
Table Entries and descriptors. no

Pseudo-descriptors

LLDT and LTR use expanded 16-byte table entries.

438

Appendix C: Differences between Long Mode and Legacy Mode




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Appendix D Instruction Subsets and CPUID Feature Sets

Table D-1 is an alphabetical list of the x86-64 instruction set,
including the instructions from all five of the instruction
subsets that make up the entire x86-64 instruction-set
architecture:

m  Chapter 3, “General-Purpose Instruction Reference.”

m  Chapter 4, “System Instruction Reference.”

m  “128-Bit Media Instruction Reference” in Volume 4.

m  “64-Bit Media Instruction Reference” in Volume 5.

m  “x87 Floating-Point Instruction Reference” in Volume 5.

Several instructions belong to—and are described in—multiple
instruction subsets. Table D-1 shows the minimum current
privilege level (CPL) required to execute each instruction and
the instruction subset(s) to which the instruction belongs. For
each instruction subset, the CPUID feature set(s) that enables
the instruction is shown.

D.1 Instruction Subsets

Figure D-1 on page 440 shows the relationship between the five
instruction subsets and the CPUID feature sets. Dashed-line
polygons represent the instruction subsets. Circles represent
the major CPUID feature sets that enable various classes of
instructions. (There are a few additional CPUID feature sets,
not shown, each of which apply to only a few instructions.)

The overlapping of the 128-bit and 64-bit media instruction
subsets indicates that these subsets share some common
mnemonics. However, these common mnemonics either have
distinct opcodes for each subset or they take operands in both
the MMX and XMM register sets.

The horizontal axis of Figure D-1 shows how the subsets and
CPUID feature sets have evolved over time.

Appendix D: Instruction Subsets and CPUID Feature Sets 439



AMDA
AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

General-Purpose Instructions

Basic Long-Mode

Instructions

Instructions

e System Instructions

x87 * X87
Instructions » Instructions

128-Bit Media Instructions

AMD Extensions to

. MMX™ Instructions

AMD AMD Extensions to ' L

: 3DNow!™ Instructions || 3DNow!™ Instructions ' o

e e T T . o
Time of Introduction
Dashed-line boxes show instruction subsets. . .
Circles show major CPUID feature sets (minor feature sets are not shown). Pt Lo

513-328.eps

Figure D-1. Instruction Subsets vs. CPUID Feature Sets

440 Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

D.2 CPUID Feature Sets

The CPUID feature sets shown in Figure D-1 and listed in
Table D-1 on page 443 include:

Basic Instructions—Instructions that are supported in all
hardware implementations of the x86-64 architecture,
except that the following instructions are implemented only
if their associated CPUID function bit is set:

CLFLUSH, indicated by bit 19 of CPUID standard
function 1.

CMPXCHGS8B, indicated by bit 8 of CPUID standard
function 1 and extended function 8000_0001h.

CMOVcc (conditional moves), indicated by bit 15 of
CPUID standard function 1 and extended function
8000_0001h.

RDMSR and WRMSR, indicated by bit 5 of CPUID
standard function 1 and extended function 8000_0001h.

RDTSC, indicated by bit 4 of CPUID standard function 1
and extended function 8000_0001h.

SYSCALL and SYSRET, indicated by bit 11 of CPUID
extended function 8000 _0001h.

SYSENTER and SYSEXIT, indicated by bit 11 of CPUID
standard function 1.

x87 Instructions—Legacy floating-point instructions that use
the ST(0)-ST(7) stack registers (FPRO-FPR7 physical
registers) and are supported if the following bits are set:

On-chip floating-point unit, indicated by bit 0 of CPUID
standard function 1 and extended function 8000_0001h.

FCMOVcc (conditional moves), indicated by bit 15 of
CPUID standard function 1 and extended function
8000_0001h. This bit indicates support for x87 floating-
point conditional moves (FCMOVcc) whenever the On-
Chip Floating-Point Unit bit (bit 0) is also set.

MMX™ [nstructions—Vector integer instructions that are
implemented in the MMX instruction set, use the MMX
logical registers (FPRO-FPR7 physical registers), and are
supported if the following bit is set:

MMX instructions, indicated by bit 23 of CPUID standard
function 1 and extended function 8000_0001h.

Appendix D: Instruction Subsets and CPUID Feature Sets 441



AMDZU

AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

AMD  3DNow!™  [Instructions—Vector  floating-point
instructions that comprise the AMD 3DNow! technology, use
the MMX logical registers (FPRO-FPR7 physical registers),
and are supported if the following bit is set:

AMD 3DNow! instructions, indicated by bit 31 of CPUID
extended function 8000_0001h.

AMD Extensions to MMX™ [Instructions—Vector integer
instructions that use the MMX registers and are supported if
the following bit is set:

AMD extensions to MMX instructions, indicated by bit 22
of CPUID extended function 8000_0001h.

AMD Extensions to 3DNow!™ Instructions—Vector floating-
point instructions that use the MMX registers and are
supported if the following bit is set:

AMD extensions to 3DNow! instructions, indicated by bit
30 of CPUID extended function 8000_0001h.

SSE Instructions—Vector integer instructions that use the
MMX registers, single-precision vector and scalar floating-
point instructions that use the XMM registers, plus other
instructions for data-type conversion, prefetching, cache
control, and memory-access ordering. These instructions are
supported if the following bits are set:

SSE, indicated by bit 25 of CPUID standard function 1.

FXSAVE and FXRSTOR, indicated by bit 24 of CPUID
standard function 1 and extended function 8000_0001h.

Several SSE opcodes are also implemented by the AMD
Extensions to MMX™ Instructions.

SSEZ2 Instructions—Vector and scalar integer and double-
precision floating-point instructions that use the XMM
registers, plus other instructions for data-type conversion,
cache control, and memory-access ordering. These
instructions are supported if the following bit is set:

SSE2, indicated by bit 26 of CPUID standard function 1.

Several instructions originally implemented as MMX™
instructions are extended in the SSE2 instruction set to
include opcodes that use XMM registers.

442

Appendix D: Instruction Subsets and CPUID Feature Sets



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

m Long-Mode Instructions—Instructions introduced by AMD
with the x86-64 architecture. These instructions are
supported if the following bit is set:

- Long mode, indicated by bit 29 of CPUID extended
function 8000_0001h.

For complete details on the CPUID feature sets listed in
Table D-1, see “Processor Feature Identification” in Volume 2.

D.3 Instruction List

Table D-1. Instruction Subsets and CPUID Feature Sets

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. _— General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
ASCII Adjust After Basic
AAR Addition 3
AAD ASCII Adjust Before 3 Basic
Division
AAM ASCI'I Adjust After 3 Basic
Multiply
AAS ASCIl Ad']ust After 3 Basic
Subtraction
ADC Add with Carry 3 Basic
ADD Signed or Unsigned Add 3 Basic
ADDPD Add_Pfjcked unble- _ 3 SSE2
Precision Floating-Point
ADDPS Add .P'acked Slr)gle- ' 3 SSE
Precision Floating-Point
ADDSD Add _SFalar Dogble- . 3 SSE2
Precision Floating-Point
Add Scalar Single- SSE
ADDS5 Precision Floating-Point 3
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets 443



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
AND Logical AND 3 Basic
Logical Bitwise AND NOT SSE2
ANDNPD Packed Double-Precision | 3
Floating-Point
Logical Bitwise AND NOT SSE
ANDNPS Packed Single-Precision 3
Floating-Point
Logical Bitwise AND SSE2
ANDPD Packed Double-Precision | 3
Floating-Point
Logical Bitwise AND SSE
ANDPS Packed Single-Precision 3
Floating-Point
ARPL Ad_jL_Jst Requestor 3 Basic
Privilege Level
BOUND Check Array Bounds 3 Basic
BSF Bit Scan Forward 3 Basic
BSR Bit Scan Reverse 3 Basic
BSWAP Byte Swap 3 Basic
BT Bit Test 3 Basic
BTC Bit Test and Complement | 3 Basic
BTR Bit Test and Reset 3 Basic
BTS Bit Test and Set 3 Basic
CALL Procedure Call 3 Basic
CBW Convert Byte to Word 3 Basic
Convert Doubleword to Basic
bQ Quadword 3

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.

2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

444

Appendix D: Instruction Subsets and CPUID Feature Sets




AMDZ\
AMD 64-Bit Technology

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
Convert Doubleword to Long Mode
CDQE Quadword 3
CLC Clear Carry Flag 3 Basic
CLD Clear Direction Flag 3 Basic
CLFLUSH Cache Line Invalidate 3 CLFLUSH
CLI Clear Interrupt Flag 3 Basic
TS _Clear Task-Switched Flag 0 Basic
in CRO
cMC Complement Carry Flag 3 Basic
CMOVcc Conditional Move 3 CMOVcc
cmp Compare 3 Basic
Compare Packed SSE2
CMPPD Double-Precision 3
Floating-Point
CMPPS Com_p_are Packgd Slngle- 3 SSE
Precision Floating-Point
CMPS Compare Strings 3 Basic
CMPSB Compare Strings by Byte | 3 Basic
. . 2
CMPSD Compare Strings by 3 Basic
Doubleword
. 2
CMPSD Comp_are Scalqr Douple 3 SSE2
Precision Floating-Point
Compare Strings by Long Mode
CMPSQ Quadword 3
CMPSS Compgre Scale!r Slng!e- 3 SSE
Precision Floating-Point
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

445



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction Subset

Instruction
and CPUID Feature Set(s)’

General- 128-Bit 64-Bit

Mnemonic Description CPL Purpose Media Media

x87 System

Compare Strings by Basic

CMPSW Word

CMPXCHG Compare and Exchange 3 Basic

Compare and Exchange CMPXCHG8B
Eight Bytes

CMPXCHG8B

Compare Ordered Scalar SSE2
COMISD Double-Precision 3
Floating-Point

Compare Ordered Scalar SSE
COMISS Single-Precision 3
Floating-Point

CPUID Processor Identification 3 Basic

Convert Quadword to
Double Quadword

Convert Packed SSE2
Doubleword Integers to
Packed Double-Precision
Floating-Point

Qo Long Mode

CVTDQ2PD

Convert Packed SSE2
Doubleword Integers to
Packed Single-Precision
Floating-Point

CVTIDQ2PS

Convert Packed Double- SSE2
Precision Floating-Point
to Packed Doubleword
Integers

CVTPD2DQ

Convert Packed Double- SSE2 SSE2
Precision Floating-Point
to Packed Doubleword
Integers

CVTPD2PI

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

446 Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

AMD 64-Bit Technology

Instruction

Instruction Subset
and CPUID Feature Set(s)’

Mnemonic

Description

CPL

General-
Purpose

128-Bit
Media

64-Bit
Media

x87

System

CVTPD2PS

Convert Packed Double-
Precision Floating-Point
to Packed Single-

Precision Floating-Point

SSE2

CVTPI2PD

Convert Packed
Doubleword Integers to
Packed Double-Precision
Floating-Point

SSE2

SSE2

CVTPI2PS

Convert Packed
Doubleword Integers to
Packed Single-Precision
Floating-Point

SSE

SSE

CVTPS2DQ

Convert Packed Single-
Precision Floating-Point
to Packed Doubleword
Integers

SSE2

CVTPS2PD

Convert Packed Single-
Precision Floating-Point
to Packed Double-

Precision Floating-Point

SSE2

CVTPS2PI

Convert Packed Single-
Precision Floating-Point
to Packed Doubleword
Integers

SSE

SSE

CVTSD2SI

Convert Scalar Double-
Precision Floating-Point
to Signed Doubleword
or Quadword Integer

SSE2

CVTSD2SS

Convert Scalar Double-
Precision Floating-Point
to Scalar Single-Precision
Floating-Point

SSE2

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

447



AMDZ\
AMD 64-Bit Technology

24594  Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction Subset

Instruction

and CPUID Feature Set(s)’

Mnemonic

Description

CPL

General-
Purpose

128-Bit
Media

64-Bit
Media

x87

System

CVTSI2SD

Convert Signed
Doubleword or
Quadword Integer to
Scalar Double-Precision
Floating-Point

SSE2

CVTSI2SS

Convert Signed
Doubleword or
Quadword Integer to
Scalar Single-Precision
Floating-Point

SSE

CVTSS2SD

Convert Scalar Single-
Precision Floating-Point
to Scalar Double-
Precision Floating-Point

SSE2

CVTSS2SI

Convert Scalar Single-
Precision Floating-Point
to Signed Doubleword
or Quadword Integer

SSE

CVITPD2DQ

Convert Packed Double-
Precision Floating-Point
to Packed Doubleword
Integers, Truncated

SSE2

CVTTPD2PI

Convert Packed Double-
Precision Floating-Point
to Packed Doubleword
Integers, Truncated

SSE2

SSE2

CVTTPS2DQ

Convert Packed Single-
Precision Floating-Point
to Packed Doubleword
Integers, Truncated

SSE2

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

448

Appendix D: Instruction Subsets and CPUID Feature Sets




AMDZ\
AMD 64-Bit Technology

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
) Instruction Subset
Instruction I
and CPUID Feature Set(s)
. .. General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
Convert Packed Single- SSE SSE
Precision Floating-Point
CVTTPS2PI to Packed Doubleword 3
Integers, Truncated
Convert Scalar Double- SSE2
Precision Floating-Point
CVTTSD2SI to Signed Doubleword 3
or Quadword Integer,
Truncated
Convert Scalar Single- SSE
Precision Floating-Point
CVTTSS2SI to Signed Doubleword 3
or Quadword Integer,
Truncated
Convert Word to Basic
CWD Doubleword 3
Convert Word to Basic
CWDE Doubleword 3
Decimal Adjust after Basic
DAA Addition 3
DAS DeamaI'Adjust after 3 Basic
Subtraction
DEC Decrement by 1 3 Basic
DIV Unsigned Divide 3 Basic
DIVPD DlVlgIP._ Packed Poublg- 3 SSE2
Precision Floating-Point
Divide Packed Single- SSE
DIVPS Precision Floating-Point 3
DIVSD DIVI(.je. Scalar D.ouble? 3 SSE2
Precision Floating-Point
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

449



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
Divide Scalar Single- SSE
DIVSS Precision Floating-Point 3
EMMS Enter/Exit Multimedia 3 MMX MMX
State
ENTER Create Procedure Stack 3 Basic
Frame
E2XM1 Floating-Point Compute 3 X87
2x-1
FABS Floating-Point Absolute 3 X87
Value
FADD Floating-Point Add 3 X87
FADDP Floating-Point Add and 3 X87
Pop
Floating-Point Load X87
FBLD Binary-Coded Decimal 3
Floating-Point Store X87
FBSTP Binary-Coded Decimal 3
Integer and Pop
FCHS F!oatlng-Pomt Change 3 X87
Sign
FCLEX Floating-Point Clear 3 X87
Flags
Floating-Point X87,
FCMOVB Conditional Move If 3 CMOVcc
Below
Floating-Point X87,
FCMOVBE Conditional Move If 3 CMOVcc
Below or Equal
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

450 Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

AMD 64-Bit Technology

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
Floating-Point X87,
FCMOVE Conditional Move If 3 CMOVcc
Equal
Floating-Point X87,
FCMOVNB Conditional Move If Not 3 CMOVcc
Below
Floating-Point X87,
FCMOVNBE Conditional Move If Not 3 CMOVcc
Below or Equal
Floating-Point X87,
FCMOVNE Conditional Move If Not 3 CMOVcc
Equal
Floating-Point X87,
FCMOVNU Conditional Move If Not 3 CMOVcc
Unordered
Floating-Point X87,
FCMOVU Conditional Move If 3 CMOVcc
Unordered
FCOM Floating-Point Compare 3 X87
FCOMI Floating-Point Compare 3 X87
and Set Flags
Floating-Point Compare X87
FCOMIP and Set Flags and Pop 3
FCOMP Floating-Point Compare 3 X87
and Pop
FCOMPP FIoatlng-POI_nt Compare 3 X87
and Pop Twice
FCOS Floating-Point Cosine 3 X87
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

451



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System

Floating-Point X87

FDECSTP Decrement Stack-Top 3
Pointer

FDIV Floating-Point Divide 3 X87

EDIVP Floating-Point Divide 3 X87
and Pop

FDIVR Floating-Point Divide 3 X87
Reverse

FDIVRP Floating-Point Divide 3 X87
Reverse and Pop
Fast Enter/Exit 3DNow! | 3DNow!

FEMMS Multimedia State 3

FFREE Free: Floating-Point 3 X87
Register
Floating-Point Add X87

FIADD Integer to Stack Top 3

FICOM Floating-Point Integer 3 X87
Compare

FICOMP Floating-Point Integer 3 X87
Compare and Pop

FIDIV FI_oe_ltlng-Pomt Integer 3 X87
Divide

FIDIVR Flpgtlng-Pomt Integer 3 X87
Divide Reverse

FILD Floating-Point Load 3 X87
Integer

FIMUL FIoat_lng-Pomt Integer 3 X87
Multiply

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

452 Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

AMD 64-Bit Technology

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
Floating-Point Increment X87
FINCSTP Stack-Top Pointer 3
FINIT Floating-Point Initialize 3 X87
FIST Floating-Point Integer 3 X87
Store
FISTP Floating-Point Integer 3 X87
Store and Pop
FISUB Floating-Point Integer 3 X87
Subtract
Floating-Point Integer X87
FISUBR Subtract Reverse 3
FLD Floating-Point Load 3 X87
FLD1 Floating-Point Load +1.0 3 X87
Floating-Point Load x87 X87
FLDCW Control Word 3
FLDENV Fqutmg—Pomt Load x87 3 X87
Environment
Floating-Point Load X87
FLDL2E Log, e 3
Floating-Point Load X87
FLDL2T Log, 10 3
Floating-Point Load X87
FLDLG2 Logy, 2 3
FLDLN2 Floating-Point Load Ln 2 3 X87
FLDPI Floating-Point Load Pi 3 X87
FLDZ Floating-Point Load +0.0 | 3 X87
FMUL Floating-Point Multiply 3 X87
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

453



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

) Instruction Subset
Instruction I
and CPUID Feature Set(s)
. .. General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
EMULP Floating-Point Multiply 3 X87
and Pop
ENCLEX Floating-Point No-Wait 3 X87
Clear Flags
ENINIT Flpgtlpg-POInt No-Wait 3 X87
Initialize
ENOP FIoatlng-Pomt No 3 X87
Operation
Save No-Wait x87 and X87 X87
FNSAVE MNIX State 3
Floating-Point No-Wait X87
FNSTCW Store x87 Control Word 3
Floating-Point No-Wait X87
FNSTENV Store x87 Environment 3
Floating-Point No-Wait X87
FNSTSW Store x87 Status Word 3
FPATAN Floating-Point Partial 3 X87
Arctangent
FPREM FIoatlpg-Pomt Partial 3 X87
Remainder
EPREM] FIoatn_1g—P01nt Partial 3 X87
Remainder
FPTAN Floating-Point Partial 3 X87
Tangent
FRNDINT Floating-Point Round to 3 X87
Integer
FRSTOR Restore x87 and MMX 3 X87 X87
State
FSAVE Save x87 and MMX State 3 X87 X87
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

454 Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

AMD 64-Bit Technology

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
FSCALE Floating-Point Scale 3 X87
FSIN Floating-Point Sine 3 X87
FSINCOS FIoa_tlng-Pomt Sine and 3 X87
Cosine
Floating-Point Square X87
FSQRT Root 3
Floating-Point Store X87
FT Stack Top 3
Floating-Point Store x87 X87
FSTCW Control Word 3
FSTENV Floqtlng-Pomt Store x87 3 X87
Environment
Floating-Point Store X87
FSTP Stack Top and Pop 3
Floating-Point Store x87 X87
FSTSW Status Word 3
FSUB Floating-Point Subtract 3 X87
FSUBP Floating-Point Subtract 3 X87
and Pop
FSUBR Floating-Point Subtract 3 X87
Reverse
FSUBRP Floating-Point Subtract 3 X87
Reverse and Pop
FTST Floating-Point Test with 3 X87
Zero
Floating-Point X87
FUCOM Unordered Compare 3
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

455



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System

Floating-Point X87
FUCOMI Unordered Compare 3

and Set Flags

Floating-Point X87
FUCOMIP Unordered Compare 3

and Set Flags and Pop

Floating-Point X87
FUCOMP Unordered Compare 3

and Pop

Floating-Point X87
FUCOMPP Unordered Compare 3

and Pop Twice
FWAIT ngt for x87'FIoat1ng— 3 X87

Point Exceptions
FXAM Floating-Point Examine 3 X87
FXCH Floating-Point Exchange 3 X87
FXRSTOR Restore XMM, MMX, and 3 FXSAVE, | FXSAVE, | FXSAVE,

x87 State FXRSTOR | FXRSTOR | FXRSTOR
FXSAVE Save XMM, MMX, and 3 FXSAVE, | FXSAVE, | FXSAVE,

x87 State FXRSTOR | FXRSTOR | FXRSTOR

Floating-Point Extract X87
FXTRACT Exponent and 3

Significand
FYL2X Floating-Point y * log2x 3 X87

Floating-Point X87
FYL2XP1 y *log2(x +1) 3
HLT Halt 0 Basic
IDIV Signed Divide 3 Basic
IMUL Signed Multiply 3 Basic

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

456

Appendix D: Instruction Subsets and CPUID Feature Sets




AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
Instruction Instruction Subset 1
and CPUID Feature Set(s)
Mnemonic Description CPL gﬁ::;:t I,;zd?: ::;:ii; x87 System

IN Input from Port 3 Basic

INC Increment by 1 3 Basic

INS Input String 3 Basic

INSB Input String Byte 3 Basic

INSD Input String Doubleword | 3 Basic

INSW Input String Word 3 Basic

INT Interrupt to Vector 3 Basic

INT 3 :thtrorrpt to Debug 3 Basic
INTO {Z{;::th to Overflow 3 Basic

INVD Invalidate Caches 0 Basic
INVLPG Invalidate TLB Entry 0 Basic
IRET Interrupt Return Word 3 Basic
v | penmien
IRETQ gltf;r(;tlv%trgeturn 3 Long Mode
Jec Jump Condition 3 Basic

JoxXz Jump if CX Zero 3 Basic

JECXZ Jump if ECX Zero 3 Basic

JMP Jump 3 Basic

JRCXZ Jump if RCX Zero 3 Basic

LAHE k?—lagesgtias?;sr Flags into 3 Basic

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

457



AMDZU

AMD 64-Bit Technology

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

24594  Rev. 3.02 August 2002

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . L General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System

LAR Load Access Rights Byte 3 Basic

Load MXCSR SSE
LDMXCSR Control/Status Register 3
LDS Load DS Far Pointer 3 Basic
LEA Load Effective Address 3 Basic
LEAVE Delete Procedure Stack 3 Basic

Frame
LES Load ES Far Pointer 3 Basic
LFENCE Load Fence 3 SSE2
LFS Load FS Far Pointer 3 Basic

Load Global Descriptor Basic
LGDT Table Register 0
LGS Load GS Far Pointer 3 Basic

Load Interrupt Basic
LIDT Descriptor Table Register 0

Load Local Descriptor Basic
LLDT Table Register 0
LMSW Load Machine Status 0 Basic

Word
LODS Load String 3 Basic
LODSB Load String Byte 3 Basic
LODSD Load String Doubleword | 3 Basic
LODSQ Load String Quadword 3 Long Mode
LODSW Load String Word 3 Basic
LOOP Loop 3 Basic
LOOPE Loop if Equal 3 Basic

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

458

Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
LOOPNE Loop if Not Equal 3 Basic
LOOPNZ Loop if Not Zero 3 Basic
LOOPZ Loop if Zero 3 Basic
LSL Load Segment Limit 3 Basic
LSS Loaq SS Segment 3 Basic
Register
LTR Load Task Register 0 Basic
Masked Move Double SSE2
MASKMOVDQU Quadword Unaligned 3
Masked Move SSE, MMX
MASKMOVQ Quadword 3 Extensions
Maximum Packed SSE2
MAXPD Double-Precision 3
Floating-Point
Maximum Packed SSE
MAXPS Single-Precision 3
Floating-Point
Maximum Scalar SSE2
MAXSD Double-Precision 3
Floating-Point
MAXSS Max!mum Scalfir Slngle- 3 SSE
Precision Floating-Point
MFENCE Memory Fence 3 SSE2
Minimum Packed SSE2
MINPD Double-Precision 3
Floating-Point
MINPS Mlnlmum Pack_ed Smgle- 3 SSE
Precision Floating-Point
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

459



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
MINSD Mlnl_m_um Scalgr Dou_ble- 3 SSE2
Precision Floating-Point
Minimum Scalar Single- SSE
MINSS Precision Floating-Point 3
MOV Move 3 Basic
MOV CRn MO\_/e to/from Control 0 Basic
Registers
MOV DRn MO\_/e to/from Debug 0 Basic
Registers
Move Aligned Packed SSE2
MOVAPD Double-Precision 3
Floating-Point
Move Aligned Packed SSE
MOVAPS Single-Precision 3
Floating-Point
MOVD Move Doubleword or 3 MMX, SSE2 SSE2 MMX
Quadword
Move Quadword to SSE2 SSE2
MOVDQ2Q Quadword 3
Move Aligned Double SSE2
MOVDQA Quadword 3
Move Unaligned Double SSE2
MovDQU Quadword 3
Move Packed Single- SSE
MOVHLPS Precision Floating-Point 3
High to Low
Move High Packed SSE2
MOVHPD Double-Precision 3
Floating-Point
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

460

Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ\
AMD 64-Bit Technology

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

Instruction

Instruction Subset
and CPUID Feature Set(s)’

Mnemonic

Description

CPL

General-
Purpose

128-Bit
Media

64-Bit
Media

x87

System

MOVHPS

Move High Packed
Single-Precision
Floating-Point

SSE

MOVLHPS

Move Packed Single-
Precision Floating-Point
Low to High

SSE

MOVLPD

Move Low Packed
Double-Precision
Floating-Point

SSE2

MOVLPS

Move Low Packed
Single-Precision
Floating-Point

SSE

MOVMSKPD

Extract Packed Double-
Precision Floating-Point
Sign Mask

SSE2

SSE2

MOVMSKPS

Extract Packed Single-
Precision Floating-Point
Sign Mask

SSE

SSE

MOVNTDQ

Move Non-Temporal
Double Quadword

SSE2

MOVNTI

Move Non-Temporal
Doubleword or
Quadword

SSE2

MOVNTPD

Move Non-Temporal
Packed Double-Precision
Floating-Point

SSE2

MOVNTPS

Move Non-Temporal
Packed Single-Precision
Floating-Point

SSE

MOVNTQ

Move Non-Temporal
Quadword

3

SSE, MMX
Extensions

1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

461



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
MOVQ Move Quadword 3 SSE2 MMX
Move Quadword to SSE2 SSE2
MovQ2DQ Quadword 3
MOVS Move String 3 Basic
MOVSB Move String Byte 3 Basic
MOVSD Move String Doubleword | 3 Basic?
) 2
MOVSD Mov_e _Scalar Dpuble _ 3 SSE2
Precision Floating-Point
MOVSQ Move String Quadword 3 | Long Mode
Move Scalar Single- SSE
MOVSS Precision Floating-Point 3
MOVSW Move String Word 3 Basic
MOVSX Move with Sign-Extend 3 Basic
MOVSXD Move with Sign-Extend 3 Long Mode
Doubleword
Move Unaligned Packed SSE2
MOVUPD Double-Precision 3
Floating-Point
Move Unaligned Packed SSE
MOVUPS Single-Precision 3
Floating-Point
MOVZX Move with Zero-Extend 3 Basic
MUL Multiply Unsigned 3 Basic
MULPD Mult_lp_ly Packe_d Dout_>|e- 3 SSE2
Precision Floating-Point
MULPS Mult_lp_ly Packeq Slng|_e- 3 SSE
Precision Floating-Point
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

462

Appendix D: Instruction Subsets and CPUID Feature Sets




AMDZ1

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

AMD 64-Bit Technology

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
MULSD Mult_lp_ly Scalar_ Doub!e- 3 SSE2
Precision Floating-Point
MULSS Mult_lp_ly Scalar_ Slngle_- 3 SSE
Precision Floating-Point
NEG Two's 'Complement 3 Basic
Negation
NOP No Operation 3 Basic
NOT One s_CompIement 3 Basic
Negation
OR Logical OR 3 Basic
Logical Bitwise OR SSE2
ORPD Packed Double-Precision | 3
Floating-Point
Logical Bitwise OR SSE
ORPS Packed Single-Precision 3
Floating-Point
out Output to Port 3 Basic
ouTs Output String 3 Basic
OUTSB Output String Byte 3 Basic
Output String Basic
OUTsD Doubleword 3
ouTSw Output String Word 3 Basic
Pack with Saturation SSE2 MMX
PACKSSDW Signed Doubleword to 3
Word
Pack with Saturation SSE2 MMX
PACKSSWB Signed Word to Byte 3
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

463



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
Pack with Saturation SSE2 MMX
PACKUSWB Signed Word to 3
Unsigned Byte
PADDB Packed Add Bytes 3 SSE2 MMX
PADDD Packed Add 3 SSE2 MMX
Doublewords
PADDQ Packed Add Quadwords 3 SSE2 SSE2
PADDSB Packed_Add Signed with 3 SSE2 MMX
Saturation Bytes
PADDSW Packed'Add Signed with 3 SSE2 MMX
Saturation Words
PADDUSB chked Add .Un5|gned 3 SSE2 MMX
with Saturation Bytes
Packed Add Unsigned SSE2 MMX
PADDUSW with Saturation Words 3
PADDW Packed Add Words 3 SSE2 MMX
PAND Packed Logical Bitwise 3 SSE2 MMX
AND
Packed Logical Bitwise SSE2 MMX
PANDN AND NOT 3
PAVGB Packed Average 3 SSE2 SSE, MMX
Unsigned Bytes Extensions
PAVGUSB Paclfed Average 3 3DNow!
Unsigned Bytes
Packed Average SSE2 SSE, MMX
PAVGW Unsigned Words 3 Extensions
PCMPEQB Packed Compare Equal 3 SSE2 MMX
Bytes
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

464 Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
PCMPEQD Packed Compare Equal 3 SSE2 MMX
Doublewords
PCMPEQW Packed Compare Equal 3 SSE2 MMX
Words
Packed Compare SSE2 MMX
PCMPGTB Greater Than Signed 3
Bytes
Packed Compare SSE2 MMX
PCMPGTD Greater Than Signed 3
Doublewords
Packed Compare SSE2 MMX
PCMPGTW Greater Than Signed 3
Words
PEXTRW Packed Extract Word 3 SSE2 | SSE, MMX
Extensions
Packed Floating-Point to 3DNow!
PF2ID Integer Doubleword 3
Conversion
Packed Floating-Point to 3DNow!
PF2IW Integer Word 3 Extensions
Conversion
o :
PFACC Packed Floating-Point 3 3DNow!
Accumulate
PEADD Packed Floating-Point 3 3DNow!
Add
o :
PFCMPEQ Packed Floating-Point 3 3DNow!
Compare Equal
Packed Floating-Point 3DNow!
PFCMPGE Compare Greater or 3
Equal
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

465



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
T ,
PECMPGT Packed Floating-Point 3 3DNow!
Compare Greater Than
o :
PEMAX Pack_ed Floating-Point 3 3DNow!
Maximum
o :
PEMIN Pa'clfed Floating-Point 3 3DNow!
Minimum
o :
PEMUL Packgd Floating-Point 3 3DNow!
Multiply
o :
PENACC Packeq Floating-Point 3 3DNow!
Negative Accumulate Extensions
Packed Floating-Point 3DNow!
PFPNACC Positive-Negative 3 Extensions
Accumulate
Packed Floating-Point 3DNow!
PFRCP Reciprocal 3
Approximation
o :
PFRCPITI Pac!(ed Floating ?omt 3 3DNow!
Reciprocal, Iteration 1
Packed Floating-Point 3DNow!
PFRCPIT2 Reciprocal or Reciprocal 3
Square Root, lteration 2
Packed Floating-Point 3DNow!
PFRSQIT1 Reciprocal Square Root, 3
Iteration 1
Packed Floating-Point 3DNow!
PFRSQRT Reciprocal Square Root 3
Approximation
o :
PFSUB Packed Floating-Point 3 3DNow!
Subtract
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

466

Appendix D: Instruction Subsets and CPUID Feature Sets




AMDZ1

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

AMD 64-Bit Technology

] Instruction Subset
Instruction I
and CPUID Feature Set(s)
. .. General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
T ,
PFSUBR Packed Floating-Point 3 3DNow!
Subtract Reverse
Packed Integer to 3DNow!
PI2FD Floating-Point 3
Doubleword Conversion
Packed Integer To 3DNow!
PI2FW Floating-Point Word 3 Extensions
Conversion
PINSRW Packed Insert Word 3 55E2 | SSE, MMX
Extensions
Packed Multiply Words SSE2 MMX
PMADDWD and Add Doublewords 3
Packed Maximum SSE2 SSE, MMX
PMAXSW Signed Words 3 Extensions
PMAXUB Paclfed Maximum 3 SSE2 SSE, MMX
Unsigned Bytes Extensions
PMINSW Packed Minimum Signed 3 SSE2 SSE, MMX
Words Extensions
PMINUB Paclfed Minimum 3 SSE2 SSE, MMX
Unsigned Bytes Extensions
PMOVMSKB | Packed Move Mask Byte | 3 5SE2. | SSE, MMX
Extensions
Packed Multiply High 3DNow!
PMULHRW Rounded Word 3
Packed Multiply High SSE2 SSE, MMX
PMULHUW Unsigned Word 3 Extensions
PMULHW chked Multiply High 3 SSE2 MMX
Signed Word
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

467



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
Packed Multiply Low SSE2 MMX
PMULLW Signed Word 3
Packed Multiply SSE2 SSE2
PMULUDQ Unsigned Doubleword 3
and Store Quadword
POP Pop Stack 3 Basic
POPA Pop All to GPR Words 3 Basic
Pop All to GPR Basic
POPAD Doublewords 3
POPF Pop to FLAGS Word 3 Basic
Pop to EFLAGS Basic
POPFD Doubleword 3
Pop to RFLAGS Long Mode
POPFQ Quadword 3
POR Packed Logical Bitwise 3 SSE2 MMX
OR
PREFETCH P_refetch L1 Data-Cache 3 3DNow!
Line
PREFETCH/evel Prefetch Data to Cache 3 SSE, MMX
Level Jevel Extensions
PREFETCHW P_refetch L1 _Data-Cache 3 3DNow!
Line for Write
Packed Sum of Absolute SSE2 SSE, MMX
PSADBW Differences of Bytesinto | 3 Extensions
a Word
PSHUFD Packed Shuffle 3 SSE2
Doublewords
PSHUEHW Packed Shuffle High 3 SSE2
Words
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

468

Appendix D: Instruction Subsets and CPUID Feature Sets




AMDZ1

24594 Rev. 3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

AMD 64-Bit Technology

) Instruction Subset
Instruction I
and CPUID Feature Set(s)
. .. General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
PSHUFLW Packed Shuffle Low 3 SSE2
Words
PSHUFW Packed Shuffle Words 3 SSE, N.IMX
Extensions
PSLLD Packed Shift Left Logical 3 SSE2 MMX
Doublewords
Packed Shift Left Logical SSE2
PSLLDQ Double Quadword 3
Packed Shift Left Logical SSE2 MMX
PSLLQ Quadwords 3
PSLLW Packed Shift Left Logical 3 SSE2 MMX
Words
Packed Shift Right SSE2 MMX
PSRAD Arithmetic Doublewords 3
Packed Shift Right SSE2 MMX
PSRAW Arithmetic Words 3
PSRLD Paclfed Shift Right 3 SSE2 MMX
Logical Doublewords
Packed Shift Right SSE2
PSRLDQ Logical Double 3
Quadword
Packed Shift Right SSE2 MMX
PSRLQ Logical Quadwords 3
PSRLW Pacl_<ed Shift Right 3 SSE2 MMX
Logical Words
PSUBB Packed Subtract Bytes 3 SSE2 MMX
PSUBD Packed Subtract 3 SSE2 MMX
Doublewords
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

469



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
] Instruction Subset
Instruction I
and CPUID Feature Set(s)
. .. General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
Packed Subtract SSE2 SSE2
PSUBQ Quadword 3
Packed Subtract Signed SSE2 MMX
PSUBSB With Saturation Bytes 3
Packed Subtract Signed SSE2 MMX
PSUBSW with Saturation Words 3
Packed Subtract SSE2 MMX
PSUBUSB Unsigned and Saturate 3
Bytes
Packed Subtract SSE2 MMX
PSUBUSW Unsigned and Saturate 3
Words
PSUBW Packed Subtract Words 3 SSE2 MMX
Packed Swap 3DNow!
PSWAPD Doubleword 3 Extensions
PUNPCKHBW Uppack and Interleave 3 SSE2 MMX
High Bytes
Unpack and Interleave SSE2 MMX
PUNPCKHDQ High Doublewords 3
Unpack and Interleave SSE2
PUNPCKHQDQ High Quadwords 3
PUNPCKHWD Uppack and Interleave 3 SSE2 MMX
High Words
PUNPCKLBW Unpack and Interleave 3 SSE2 MMX
Low Bytes
Unpack and Interleave SSE2 MMX
PUNPCKLDQ Low Doublewords 3
Unpack and Interleave SSE2
PUNPCKLQDQ Low Quadwords 3
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

470

Appendix D: Instruction Subsets and CPUID Feature Sets




AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

) Instruction Subset
Instruction I
and CPUID Feature Set(s)
. .. General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
PUNPCKLWD Unpack and Interleave 3 SSE2 MMX
Low Words
PUSH Push onto Stack 3 Basic
PUSHA Push All GPR Words onto 3 Basic
Stack
Push All GPR Basic
PUSHAD Doublewords onto Stack 3
PUSHF Push EFLAGS Word onto 3 Basic
Stack
Push EFLAGS Basic
PUSHFD Doubleword onto Stack 3
PUSHFQ Push RFLAGS Quadword 3 Long Mode
onto Stack
PXOR Packe(_j Logical Bitwise 3 SSE2 MMX
Exclusive OR
RCL Rotate Through Carry 3 Basic
Left
Reciprocal Packed SSE
RCPPS Single-Precision 3
Floating-Point
RCPSS Recu_)r_ocal Scal_ar Slngle- 3 SSE
Precision Floating-Point
RCR Rptate Through Carry 3 Basic
Right
Read Model-Specific RDMSR,
RDMSR Register 0 WRMSR
RDPMC Read_ Pe_rformance- 3 Basic
Monitoring Counter
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets 471



AMDZU

AMD 64-Bit Technology

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

24594  Rev. 3.02 August 2002

. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
RDTSC Read Time-Stamp 3 TSC
Counter
RET Return from Call 3 Basic
ROL Rotate Left 3 Basic
ROR Rotate Right 3 Basic
Resume from System Basic
RSM Management Mode 3
Reciprocal Square Root SSE
RSQRTPS Packed Single-Precision 3
Floating-Point
Reciprocal Square Root SSE
RSQRTSS Scalar Single-Precision 3
Floating-Point
SAHF Store AH into Flags 3 Basic
SAL Shift Arithmetic Left 3 Basic
SAR Shift Arithmetic Right 3 Basic
SBB Subtract with Borrow 3 Basic
SCAS Scan String 3 Basic
SCASB Scan String as Bytes 3 Basic
Scan String as Basic
SCASD Doubleword 3
Scan String as Long Mode
SCASQ Quadword 3
SCASW Scan String as Words 3 Basic
SETcc Set Byte if Condition 3 Basic
SFENCE Store Fence 3 SSE, N.IMX
Extensions
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

472

Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
Store Global Descriptor Basic
SGDT Table Register 3
SHL Shift Left 3 Basic
SHLD Shift Left Double 3 Basic
SHR Shift Right 3 Basic
SHRD Shift Right Double 3 Basic
SHUEPD Shuf_fl_e Packed_DoubI_e- 3 SSE2
Precision Floating-Point
SHUFPS Shufflg Packed.SmgIe'- 3 SSE
Precision Floating-Point
Store Interrupt Basic
SIbT Descriptor Table Register 3
Store Local Descriptor Basic
SLot Table Register 3
SMSW Store Machine Status 3 Basic
Word
Square Root Packed SSE2
SQRTPD Double-Precision 3
Floating-Point
Square Root Packed SSE
SQRTPS Single-Precision 3
Floating-Point
Square Root Scalar SSE2
SQRTSD Double-Precision 3
Floating-Point
Square Root Scalar SSE
SQRTSS Single-Precision 3
Floating-Point
STC Set Carry Flag 3 Basic
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

473



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
STD Set Direction Flag 3 Basic
STl Set Interrupt Flag 3 Basic
Store MXCSR SSE
STMXCSR Control/Status Register 3
STOS Store String 3 Basic
STOSB Store String Bytes 3 Basic
Store String Basic
STOSD Doublewords 3
STOSQ Store String Quadwords 3 | Long Mode
STOSW Store String Words 3 Basic
STR Store Task Register 3 Basic
SUB Subtract 3 Basic
SUBPD Subtrqct Packefi Douple- 3 SSE2
Precision Floating-Point
SUBPS Subt@ct PackeFI Slng!e- 3 SSE
Precision Floating-Point
SUBSD Subt_rqct Scalar_ Doub_le- 3 SSE2
Precision Floating-Point
Subtract Scalar Single- SSE
SUBSS Precision Floating-Point 3
Swap GS Register with Long Mode
SWAPGS KernelGSbase MSR 0
SYSCALL,
SYSCALL Fast System Call 3 SYSRET
SYSENTER,
SYSENTER System Call 3 SYSEXIT
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

474

Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)
. Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
SYSENTER,
SYSEXIT System Return 0 SYSEXIT
SYSCALL,
SYSRET Fast System Return 0 SYSRET
TEST Test Bits 3 Basic
Unordered Compare SSE2
UCOMISD Scalar Double-Precision 3
Floating-Point
Unordered Compare SSE
UCOMISS Scalar Single-Precision 3
Floating-Point
uD2 Undefined Operation 3 Basic
UNPCKHPD Unpfjc_k High D.ouble-' 3 SSE2
Precision Floating-Point
UNPCKHps | Unpack High Single- 3 SSE
Precision Floating-Point
UNPCKLPD Unpggk Low D.ouble-' 3 SSE2
Precision Floating-Point
UNPCKLPS Unpack Low Single- 3 SSE
Precision Floating-Point
VERR Verify Segment for Reads | 3 Basic
VERW Ver'lfy Segment for 3 Basic
Writes
WAIT Wait for x87_FIoat|ng- 3 X87
Point Exceptions
WBINVD Writeback and Invalidate 0 Basic
Caches
Write to Model-Specific RDMSR,
WRMSR Register 0 WRMSR
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

Appendix D: Instruction Subsets and CPUID Feature Sets

475



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table D-1. Instruction Subsets and CPUID Feature Sets (continued)

] Instruction Subset
Instruction I
and CPUID Feature Set(s)
. . L General- 128-Bit 64-Bit
Mnemonic Description CPL Purpose Media Media x87 System
XADD Exchange and Add 3 Basic
XCHG Exchange 3 Basic
XLAT Translate Table Index 3 Basic
Translate Table Index Basic
XLATB (No Operands) 3
XOR Exclusive OR 3 Basic
Logical Bitwise Exclusive SSE2
XORPD OR Packed Double- 3
Precision Floating-Point
Logical Bitwise Exclusive SSE
XORPS OR Packed Single- 3
Precision Floating-Point
1. Columns indicate the instruction subsets. Entries indicate the CPUID feature set(s) to which the instruction belongs.
2. Mnemonic is used for two different instructions. Assemblers can distinguish them by the number and type of operands.

476 Appendix D: Instruction Subsets and CPUID Feature Sets



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

Appendix E  Instruction Effects on RFLAGS
The flags in the RFLAGS register are described in “Flags
Register” in Volume 1 and “RFLAGS Register” in Volume 2.
Table E-1 summarizes the effect that instructions have on these
flags. The table includes all instructions that affect the flags.
Instructions not shown have no effect on RFLAGS.
The following codes are used within the table:
m (0—The flag is always cleared to 0.
s 1—The flag is always set to 1.
s AH—The flag is loaded with value from AH register.
s Mod—The flag is modified, depending on the results of the
instruction.
m  Pop—The flag is loaded with value popped off of the stack.
m Tst—The flag is tested.
s U—The effect on the flag is undefined.
m  Gray shaded cells indicate that the flag is not affected by the
instruction.
Table E-1. Instruction Effects on RFLAGS
RFLAGS Mnemonic and Bit Number
Instruction
Mnemonic | 1D | VIP | VIF| AC | VM | RF | NT |IOPL| OF | DF | IF | TF | SF | ZF | AF | PF | CF
21 (20 (19 | 18 | 17 | 16 | 14 (13-12| 11 | 10 9 8 7 6 4 2 0
AAA Tst
AAS U U U Mod U |Mod
AAD
AAM U Mod |Mod| U |[Mod| U
ADC Mod Mod | Mod | Mod | Mod Tst
Mod
ADD Mod Mod | Mod | Mod | Mod | Mod
AND 0 Mod |Mod| U [Mod| 0
ARPL Mod
BSF
BSR U U [Mod| U U U
Appendix E: Instruction Effects on RFLAGS 477



AMDZU

AMD 64-Bit Technology 24594 Rev.3.02 August 2002
Table E-1. Instruction Effects on RFLAGS (continued)
RFLAGS Mnemonic and Bit Number

Instruction
Mnemonic | 1D | VIP | VIF | AC | VM | RF | NT |IOPL| OF | DF | IF | TF | SF | ZF | AF | PF | CF

21 (20 | 19 | 18 | 17 | 16 | 14 (13-12| 11 | 10 | 9 8 7 6 4 2 0
BT
Elg U U U U U [Mod
BTS
CLC 0
CLD 0
CLI Mod TST Mod
cmC Mod
CMOVcc Tst Tst | Tst Tst | Tst
CMmP Mod Mod | Mod | Mod | Mod | Mod
CMPSx Mod | Tst Mod | Mod | Mod | Mod | Mod
CMPXCHG Mod Mod | Mod | Mod | Mod | Mod
EMPXCHGS Mod
Egm:gg 0 0 [Mod| 0 |Mod|Mod
Do U Mod | Mod | % |Mod | 1"
DEC Mod Mod | Mod | Mod | Mod
DIV U U U U U U
FCMOVcc Tst Tst | Tst
FCOMI
Eﬁggﬂm Mod Mod | Mod
FUCOMIP
IDIV U uljlujujujlu
IMUL Mod U U U U [Mod
INC Mod Mod | Mod | Mod | Mod
IN Tst
478 Appendix E: Instruction Effects on RFLAGS



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
Table E-1. Instruction Effects on RFLAGS (continued)
RFLAGS Mnemonic and Bit Number
Instruction
Mnemonic | ID | VIP | VIF | AC | VM | RF | NT |IOPL| OF | DF | IF | TF | SF | ZF | AF | PF | CF
21 20 | 19 18 17 16 | 14 |13-12] 11 10 9 8 7 6 4 2 0
INSx Tst Tst
INT Tst
INT 3 Mod | Mod Mod 0 |Mod| Tst Mod| 0
Tst
INTO Mod 0 |Mod| Tst | Tst Mod | Mod
Mod
Tst Tst | Tst
IRETx Pop | Pop | Pop | Pop Pop Pop Pop | Pop Pop | Pop | Pop | Pop | Pop | Pop | Pop | Pop | Pop
Jec Tst Tst | Tst Tst | Tst
LAR Mod
LODSx Tst
LOOPE
LOOPNE Tst
LSL Mod
MOVSx Tst
MUL Mod U U U U |Mod
NEG Mod Mod | Mod | Mod | Mod | Mod
OR 0 Mod |Mod| U [Mod| 0
ouT Tst
OUTSx Tst Tst
POPFx Pop | Tst [Mod|Pop | Tst | O | Pop PTSI) Pop | Pop | Pop | Pop | Pop | Pop | Pop | Pop | Pop
Tst
RCL1 Mod Mod
Tst
RCL count U Mod
Tst
RCR1 Mod Mod
Tst
RCR count U Mod
Appendix E: Instruction Effects on RFLAGS 479



AMDA
AMD 64-Bit Technology 24594 Rev.3.02 August 2002

Table E-1. Instruction Effects on RFLAGS (continued)

RFLAGS Mnemonic and Bit Number

Instruction
Mnemonic | 1D | VIP | VIF | AC | VM | RF | NT |IOPL| OF | DF | IF | TF | SF | ZF | AF | PF | CF

21 (20 | 19 | 18 | 17 | 16 | 14 (13-12| 11 | 10 | 9 8 7 6 4 2 0
ROL 1 Mod Mod
ROL count U Mod
ROR 1 Mod Mod
ROR count U Mod
RSM Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod
SAHF AH | AH | AH | AH | AH
SAL 1 Mod Mod [Mod| U |Mod | Mod
SAL count U Mod |[Mod| U |Mod | Mod
SAR 1 Mod Mod [Mod| U |Mod | Mod
SAR count U Mod |[Mod| U |Mod | Mod
SBB Mod Mod | Mod | Mod | Mod | ¢

Mod

SCASx Mod | Tst Mod | Mod | Mod | Mod | Mod
SETcc Tst Tst | Tst Tst | Tst
el Mod Mod |Mod| U |Mod | Mod
g:kg cc?)ﬂ:tt U Mod [Mod| U |Mod | Mod
SHR 1 Mod Mod [Mod| U |Mod | Mod
SHR count U Mod |[Mod| U |Mod | Mod
STC 1
STD 1
STI Mod Tst Mod
STOSx Tst
SUB Mod Mod | Mod | Mod | Mod | Mod
SYSCALL | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod
SYSENTER 0 0 0

480 Appendix E: Instruction Effects on RFLAGS



AMDA
24594 Rev. 3.02 August 2002 AMD 64-Bit Technology

Table E-1. Instruction Effects on RFLAGS (continued)

RFLAGS Mnemonic and Bit Number

Instruction

Mnemonic | 1D | VIP | VIF | AC | VM | RF | NT |IOPL| OF | DF | IF | TF | SF | ZF | AF | PF | CF
21 20 | 19 18 17 16 | 14 |13-12] 11 10 9 8 7 6 4 2 0

SYSRET Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod | Mod

TEST 0 Mod |Mod| U [Mod| 0

UCOMISD

UCOMISS 0 0 |[Mod| 0 |Mod|Mod

VERR

VERW Mod

XADD Mod Mod | Mod | Mod | Mod | Mod

XOR 0 Mod |Mod| U [Mod| 0

Appendix E: Instruction Effects on RFLAGS 481



AMDA
AMD 64-Bit Technology 24594 Rev. 3.02 August 2002

482 Appendix E: Instruction Effects on RFLAGS



AMDZ1

24594 Rev. 3.02 August 2002 AMD 64-Bit Technology
Index
Numerics (017 1 RS 107
16-Dit NOAC e aans XV CIMPSX ettt re e enseneeans 110
R/ o3 L s 4 7o Yo (< PRRuR TR XV CMPXCHG ..cuuieieiieeeeieeeeeeeeeeeeeeneenes 113
O4-DIit NOAC..cuuuiiiiniiiineiiieeieeeiee et eeans xv CMPXCHGSB ...t 115
A (7074 ¥ 0 11 | PR XV
AAA 61 compatibility mode..........oeevvviiiieiieinnnnnnnns XV
VS S 61 con dition codes
BD s o FLAGS .. 376, 391
AAS 64 (6001 01 o 1 SO 402
ADC.. 65 CPUID ..ottt ee e 117
AD s o extended functions .. 117
address size prefix.....ccccccceceeeeeeeeeeeeeeenne. 6, 25 featl(lire ;ef[.ts TrriTennrensneesssessnsessnensnneee ‘Sl
addressing stan ar unc.tlons ................................ 7
byte registers 17 CPUID instruction
effective address. ... 393. 396, 397. 399 1cache 1n(f10rrr:iag10n e gg
PCrelatiVe . .couuueevieeeeeeeiiiieeeeeeieeeeeeieeeeens 23 ong-mof € QAAIESS S1ZES....covvrmenerneennene 11
RIP.relative ... " xx, 23 testing for....ceeviiiiiiiieiiie 7
AND oo, 69 COD oo 97
ARPL, . 290 [GA1'2 5 I 97
[GA'1'2 5 ) DR 96
B D
base field ... 398,390 D A A e 131
biased exponent.......cccccceeeeeeeieieeeeeeeneennnnnnn. XV DAS 132
BOUND .ottt et eeeveneeens 72 0 T Trirooensiimeesssssssssssssss s es e
BSF 74 datatypes
B T " 128-bit media oo 36
.............................................................. 64-bit media ... e
g%WAP ......................................................... ;g BENEral-PUIPOSE. oo 32
BTé """"""""""""""""""""""""""""""""" 81 X7 oottt ettt earaas 40
D o DEC .. 17.133. 435
D s 8 d@rec £ TOEOTOICING.ooororooreeeeeeeeeeeeeeeoooon e <vi
byte order of instructions .........cccccvvvvennnnn... 1 %1Is‘[/)1acements """""""""""""""" xvi, 22, ‘1u3)§
byte register addressing..............coocooooeeeee 17 double quadword.........cccoeeeriririiiiiiinenn.n. xvi
C doubleword .........oovvviiiiiiiiiiiie, xvi
cache configuration information............. 126 E
C?aIl:I::; 1 1 ....................................................... 51;559 ©AX—€SP TGIStET vvvvvrrrmrrrrrororeoeoen i
far ¢ ca'1'1. .................................................... s offective address .. 393, 396, 397, 399
CBW .. oo 96 effective address size.....ccooeevuevvvvvvennnnnnne. xvii
G, o effective operand SIZe ... <vii
CDQﬁ ............................................................ o EFLAGS F@ZIStET o.rvvvrroooroo i
CLC .. o 98 €IP regiSter coevivveveeiiiiccccee e, xx111
"""""""""""""""""""""""""""""""" element .....ccoooeveeiiiiiiiiii e eeieeee. XV
g%?LUSH """""""""""""""""""""""""""" 188 endian Order ......cccoevevvviiieiiiinneeiieennn, xxv, 1
CLI .. oo 292 ENTER ..ot eeeaaas 15, 137
CLTé ........................................................... 292 excep Hons. . xvii, 41
cMC .. 102 EXPONENT .evvnriniriirinerinrieerreerreereneennrennaeennes XV
CMOVCC e eivieeiieiieeeeeeeeeeeeeeeeeeenannss 103, 376
Index 483



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
F JMP...oeeeee e 15
FCMOVCC.veuiieiiieiinieieneeieisiesenieeseee s 391 far Jump ..o 168
FIUSH oot xvii NEAT JUIMP...coiiiitieieetieiieieerene et 166
G JRCXZ ..ttt 164
. JECKZ . 15
general-purpose registers ..........ccceeeeeennnnnn. 30 0
H
LAHF ...ttt 173
HLT oot eeeee e e e 295 LAR ..o 307
I LDS e 174
IDIV et 139 LEA. .. 177
IGN e XVIL  LEAVE oo e e 15,179
immediate operands...........ccoeeenene. 23,402 legacy mode .....ccccooevvuereenienienieieeieenenne xviii
IMUL...ooeeee et 141 1€8ACY X86 ..uuuennnenirernerenraaans xviii
IN e 144 LES e 174
INC e 17,146,435 LFENCE...cccccooiiiieeieeceeeie e 181, 380
index field .....ccccceeveviniiiiiiiiiiiieeeeee 399 LFS e e 174
INAITECTE covvniiiiiii e XVIIL LG T i eeeeeeeeeaaaaaaaans 15, 310
instructions LGS e 174
128-bit media.......ceoeuvrrieeeiiiiriiiiieeeeen, 443 LIDT oot 15, 312
BDNOW!™ ittt 442 LLDT oot e 15, 314
64-bit media.......ooeeeeerrriiiieieeeni e, 443 LMSW ..ottt e 316
byte order ........cueveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee, 1 LOCK PrefiX cooovveeeeeeeeeeeeieeeeeeieeeeeeeneee e 10
effects on rFLAGS ... 477 LODSX weeeoiecieeieeniieeieenreesaeeneeesanesseenseeens 182
formats...ccccovvviiiiiiiiiiiiiceee, 1 Jong mode......coooueeeeeccviiieeiieeeeeeieeeeeennen xviii
general-purpose ........cccceeeiiiniininns 59,443  long-mode address Sizes .........cceerveeunenn. 129
invalid in 64-bit mode............ccceoeniinns 432 LOOP .ottt 15
invalid in long mode.............cccceeennnis 433 LOOPCC ccoveeeeeeeeee ettt e e eeveee e 15
MMX™ it ee e e e s 441 LOOPX..iiciiiccieeeeeeeeeeeee e 184
OPCOAES ..ot 20,365  LSB ..cciioiieieeeeee e xviii
OTIZINS cevviiiniiiiiiiiiiiic e 439 IS e xviii
reassigned in 64-bit mode...................... 433 LSL oottt 317
SSE ittt 442 LSS e e 174
SSE-2 ittt 442 LTR oottt 15,319
SUDSELS «.ovveniiiiieiiner et eveee e, 27,439 M
SYSTEIM ..ttt 289, 443 mask Xix
K87 ettt 441,443 [ 5., Tmmmmmssssemmmmssssss s sn e .
INSx 148 MBZ ...t Xix
INTX o a8 MFENCE ... e 186, 380
""""""""""""""""""""""""""""""""" mod field.......cccocvvriivieiiniiiiiiniiiiiieeeneeeeeee. 396
INT 3 e 296 .
. mode-register-memory (ModRM) ........... 391
INLETTUPE VECLOTS .ceeiiieiieniceeeeeeeeeeeeeneeenen 41 modes 437
INTO ..t 159 16-bi£ """""""""""""""""""""""""""""" .
INVD oottt 299 32-bit..... v
INVLPG .ccooiiiiiiieeeeeeeeeeee e 300, 380 BADit
| P xv, 437
TRET ...ttt 301 compatibilit <v. 437
TRETD ..ooeoeeeeeeeeeeeeeeeeeeeeee s 301 legalc)y Y reneemseasnrsenseneenseacenne ot
TRETQ .coiiiiiiiiiiieeieeeeeeeeeeeee e 301 LOTE oo xviii, 437
) PTOteCted . oeeeeeeeeeeee e XX
JCC 15, 160, 376 14 =C | DR XX
JCXZ oot 164 VIFtUAL-8086 ..o xxii
JECXZ oottt 164 MOARM......ooooiiiiiiiereeeeee e 391
ModRM byte........... 19, 20, 24,377, 382, 391
484 Index



AMDZ1

24594 Rev.3.02 August 2002 AMD 64-Bit Technology
1400 1§ £ =Y AR URU SRR xix  operands
MOV e 187 €NCOAINES ...ceeevvvvriiiieieeeeeeeeeererereeeeeeees 391
1LY (O AV O X6 ) T 15 immediate .....ccoccceeeeeeeeeeeeeereniieeennnn, 23, 402
MOV DR(I).cevreeererieereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 15 ] /- 5, 401, 402, 433
MOV (CRIN) covvirieieirieieeeeeeeeeeeeeeeeeeeeeeeeeseeeeens 321 OR.ee e 211
MOV (DRI)..cooovreeieriieeiieeeereeereeeeeeeeeeeeeeseeenens R 725 T © 1 U 1 PR 214
11V 0 7 B PP 191 OUTSX cocooeieieeeeeeeeeveeeveeeeeeeeeenes 216
MOVMSKPD.....ccovviiiiiieieieieeeieeeeeeeeeeeeeee e 194 oVerfloW..ooooiee xix
MOVMSKPS ....cooiiiiiiiiereeereeereeeeeeeeeeeeeeee e 196 p
MOVNTT...ccooviiiieieeeeeeeeeeeeeeeeeeeee e eeeeee e 198 packed <X
MOVSX .cooiiiiiiiieeieeeieerreeeereeeeeeeeeeeeeeeseeseeeeens 202 PC-relative addressing...........o...ooooovvooooo.. 23
MOVSX cciiiiiiiiiiieeeeeeieerieeeerereeeeeeeeeeeeeseeseeeees 200 POP 218
MOVSXD ..cciviiiiiiiereieeiieeeeeeeeeeeeeeeeeeeeeeeseeeeens 203 pAp ma
POP FS .o 15
MOVZX .c.oooeiieieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 204
MSB POP GS..ooee e 15
B s XIX  DOP FEE oo 15
mS -------------------------------------------------------------- Xil.)( POP reg/mem .............................................. 15
MSR oo xxiii
MUL 205 POPAX ceeeteevieeveeeveeeveaeeeeees 221
""""""""""""""""""""""""""""""" POPFQ..uueiiiiiiieiieiieeeveneveeveeeeeeeseeeeeeeeees 15
N POPFX ceuueeiieetieeeveeveeeveeeveeeeeeees 222
NEG. ., 207 PREFETCHIevel .....ccoevviveviiiiiiniianenannnnn. 227
NOP ..o, 209,435 PREFETCHX.......cceoeeeeeeeeieeeieeeeeeceeeenns 225
NOT . 210  prefixes
8 70] = 1 [0 ¢ RUUURR SRR 43, 365 address SiZe ....cooeeeevveeeiiriniieeiiiieeeeenean, 6, 25
0 | 01 O G 10
OCEWOT .vvere e seeveooosveeeeee e xix gg;;g?d SIZE covvvriersssssssss s o
(0 § £:1=] SRRt Xix, 22 TR S rrrrreessseesessssesnesssnsnsssnnnsnssannan e
OPCOAES ..oiiiirriiiiiieee e e eeeeerreicree e e e e e e e eeeae e 20 REX i 14, Zg
BDNOW!IT™ ..ot 380 SEGMENt ............. P
Eroup 1., 378  processor feature identification
(rFLAGS.ID)...coooovieeieeeeeeeeeeeeeeeeeee, 117
Sroup 10 . eiiiiiiiiiiiiiiiie e, 379
PYOCESSOY NAIME ..cceveuueeeereereeerereneaananrereaens 125
group 11 i, 379 .
Eroup 12 ..o, 379 ~ DrOCESSOI SIGNATUIE ......covriremririnrereecenseoes 123
13 processor vendor ..............eeveeens 118,122,123
Sroup 13 i 379 .
14 PrOCESSOT VEISION...uiveeniiinerireirieeneernneeennns 118
SroUP 14 oot 379 rotectad mode x
Eroup 15 i 379 EUSH """"""""""""""""""""""" 229
F=d (0] b1 o I S PR PPPPRR 379 PUSH FS """""""""""""""""""""""""""" 15
F= (0] 01 o I - TR PPPR 378 PUSH GS. ..o 15
gigﬁg g """"""""""""""""""""""""""" g;g PUSH iMM32 vereeoeeeeeeeeeeeeeeeeeeeee e, 15
4 PUSH immS8 .......cccceounnenrnnnnnrnnenrneernennenennnns 15
STOUP 4 oottt eraaaes 378 PUSH 15
0] U} o 5 YU 378 FEE woveveevrmcminiiiiiciicii e
group
PUSH reg/mem........c.ccovvveeiiiinieeiiiiiieeeeeee. 15
STOUD B eevvrreiieneieeeeeiiereiiieeeeeeeeeeeennnnanenens 378 PUSHAx 231
BTOUD 7 cevvrrenieeeereeeeeenereniienseeseeeeeesnnnanensns 378 PUSHFEQ. ..o 15
BIOUD 8 rrriiiieiieieeeeeereieree e eeeeeern e 378 PUSHFx . 232
BIOUDP D it 379 Kocrrrerssssssnsssssss s
EIOUP P 379 Q
ETOUPS teeiiiiiieiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeesaaens 377 quadword ........ccceceeeeeiiiiieeeeeeee e, XX
MOoOdRM Dyte.....coevvveririieeeeeeeeeeeeeieenen. 377 R
one-byte 0pcode Map..............occvvevvveens 367 /M el 377, 380
two-byte opcode map........ccceeeeeeennnnnnn. 370 .8 15 ’xxiii
e 382 TETLS co
Index 485



AMDZU

AMD 64-Bit Technology 24594  Rev. 3.02 August 2002
1020 G o ) U XXI1T  SCASX.iiiiiiiieeeeccceeee e 258
RAZ e xx  segment prefixes.......cccceveeeeeeieeeeeeeennnne. 9, 436
RCL e 234  segment regiSters ......cccvvvveeeeeeeeeeeerrereeennnnnns 32
RCR ..o 2 S T 1 U XX
RDMSR ..ot 325  SETCCuuiiiiiiiiiieiiieiiieieeeieeeeeeeeeeeeeeeeeseees 260, 376
RDPMC ... 326  SFENCE ...ccoiiiiiiiiiiiiiiieeeieeeeereeeeeeee, 263, 380
RDTSC ... R A €1 D 1 PP 330
real address mode. See real mode Shift COUNt..ccevriiiiiiiiceeee e 402
real Mode....cccoeeeeiereviiiiiiiieeee e b'o QRN 1 = | RS 264
reg field .....ccccovvveeeiinnennns 377,392,395,396  SHLD ..ottt 265
registers SHR .t 267
EAX—ESP ..o, XXIL  SHRD....iiiiiiiccreereerenneees 269
€FLAGS......oo e, XXIL  SIB ittt rreeere e, 391
€IP e, xxiii  SIBbyte..ccccvveveeeieeeeeeiieneenn.. 19, 21, 24, 397
encodings...ccccccvviiiiiiiiiiiiiiiiee B I 1 D 332
general-purpose .....cccceveveieeiiiiiieeeieeeeeen, 30 SLDT...oiiiiiiiiiiiiiieeeeeeeeeceeeeeeeeeee e 334
1LY 0L . SR 38  SMSW .o 336
o o 1 SRS XXI1  SSE oo xxi
TAXATSP .o XXIT  SSE-2 oo xx1
TFLAGS ..., XX1V, 376, 391, 477  STC oottt eeee e 271
TIP e XXIV STD oo 272
SEEIMENT....ceeerrrrrunieereerrerrerrerenieeneseeeeeeeeenes 32 STI ittt 337
SYSEEIM ..uiieeeeieeiiitieeeeeeeeeeeeerrantieeeeeeeeeeeeanes 33 sticky DitS..coeiiiiiiiiiiiieeeee e xxi
D <~ 7 AP 40 STOSX ittt ee e 273
D€L 1\ U 35  STR.eeeeeeeeeeeeeee 339
=] b= 1 14 PO XX SUB.ceee e 275
REPX prefixes ..ooovvvveveeeieiiiiiiiiiieieieieieeeeeee, 10 SWAPGS....ooieeeeeeeeeeeeeeeeeeeeeeeeee, 341, 380
RET N2 8 1 - b QOO 43
far return .....cccceeeeeeeeeeeiiiicccceee e, 240  SYSCALL ..ottt eeeeeeee 343
1Y Ul =Y 0 b« U 238 SYSENTER ...ttt 348
) 28 D A A L=T=1 ) I 15  SYSEXIT ...ooiiieiiieieeeeeeeeeeeeeeeeeeece e 350
REX prefiXes........cccccceveeeeieeeeennnnn. 14,24,391  SYSRET ....ouuurienenrneernenrenerenereneeenees 352
REX.BDbit .ccevvreneeiiiineeeennnnnn. 17, 47,396,398  system data StruCtures.......cccccceeeeeeeeeeeeenens 34
REX.R Ditueevveeiieeiieeieieieeeeeeeeeeeeeeeeeeee, 16,395 g
REX.W DIt oo FL S XS0 278
REX-X blt ---------------------------------------------------- 16 TSS XXI
[ FLAGS conditions codes. 376,391 LSSt
rFLAGS register......cccccvvvvvieeeenennnns xxiv, 477 u
rIP register _______________________________________________ XX1V UD 2ot eaenes 356
RIP-relative addressing ________________________ XX, 23 UNAErflOW ..ouvivveiiiiiiiieec e, XX1
ROL e 244 y
ROR oo, 246 7T o1 0 ) N XX1
TOLALe COUNT...vminiiiiiiiiniii e 402 VERR ..ooooveveerieeeeie e 357
RSM ...ooiiiiiiiiiiiiiiiiiiiece 328 NV ERW oo 359
S virtual-8086 mode .........ccceevvvneiiiriinne. xxii
SAHEF ... 248 w
SAL e 249 WBINVD oo 361
SAR .ooviiiiiiii 252 WRMSR oo 362
SBB ..o 255 X
scale field ......cccoeeeeiiiiriiiicce e, 399
scale-index-base (SIB) .....cccceeeevervvrivvvnnnnnn. 391 XADD .o 280
486 Index



AMDZ1

24594 Rev. 3.02 August 2002

AMD 64-Bit Technology

XCHG . .ccouueeeiieeeeeeeeeeeeeeetieee et eeeevineeees 282

XLAT X ceevveeeeiiieeeeeetieeeeeeriieeeeeerreeeeeranneeees 284

XOR ottt 286

y 4

b ORIy W=y 113 (o) ¢ ROUU N 402

Index 487



AMDA
AMD 64-Bit Technology 24594  Rev.3.02 August 2002

488 Index



	Contents
	Figures
	Tables
	Preface
	About This Book
	Audience
	Organization
	Definitions
	Related Documents

	1 Instruction Formats
	1.1 Instruction Byte Order
	1.2 Instruction Prefixes
	1.2.1 Summary of Legacy Prefixes
	1.2.2 Operand-Size Override Prefix
	Instructions that Cannot Use the Operand-Size Prefix
	Operand-Size and REX Prefixes

	1.2.3 Address-Size Override Prefix
	1.2.4 Segment- Override Prefixes
	Segment Overrides in 64-Bit Mode

	1.2.5 Lock Prefix
	1.2.6 Repeat Prefixes
	REP
	REPE and REPZ
	REPNE and REPNZ
	Instructions that Cannot Use Repeat Prefixes
	Optimization of Repeats

	1.2.7 REX Prefixes
	REX.W: Operand Width
	REX.R: Register
	REX.X: Index
	REX.B: Base
	Encoding Examples
	Byte-Register Addressing
	Special Encodings for Registers
	Implications for INC and DEC Instructions


	1.3 Opcode
	128-Bit and 64-Bit Media Instruction Opcodes

	1.4 ModRM and SIB Bytes
	1.5 Displacement Bytes
	1.6 Immediate Bytes
	1.7 RIP-Relative Addressing
	1.7.1 Encoding
	1.7.2 REX Prefix and RIP-Relative Addressing
	1.7.3 Address-Size Prefix and RIP- Relative Addressing


	2 Instruction Overview
	2.1 Instruction Subsets
	2.2 Reference-Page Format
	2.3 Summary of Registers and Data Types
	2.3.1 General-Purpose Instructions
	Registers
	Data Types

	2.3.2 System Instructions
	Registers
	Data Structures

	2.3.3 128-Bit Media Instructions
	Registers
	Data Types

	2.3.4 64-Bit Media Instructions
	Registers
	Data Types

	2.3.5 x87 Floating- Point Instructions
	Registers
	Data Types


	2.4 Summary of Exceptions
	2.5 Notation
	2.5.1 Mnemonic Syntax
	2.5.2 Opcode Syntax
	2.5.3 Pseudocode Definitions


	3 General-Purpose Instruction Reference
	AAA
	AAD
	AAM
	AAS
	ADC
	ADD
	AND
	BOUND
	BSF
	BSR
	BSWAP
	BT
	BTC
	BTR
	BTS
	CALL (Near)
	CALL (Far)
	CBW CWDE CDQE
	CWD CDQ CQO
	CLC
	CLD
	CLFLUSH
	CMC
	CMOVcc
	CMP
	CMPSx
	CMPXCHG
	CMPXCHG8B
	CPUID
	EAX: Largest Standard Function Number
	EBX, EDX, and ECX: Processor Vendor
	EAX: Processor Signature
	EBX: Initial APIC ID, CLFLUSH Size, and Brand ID
	ECX
	EDX: Standard Feature Support
	EAX: Largest Extended Function Number
	EBX, EDX, and ECX: Processor Vendor
	EAX: Processor Signature
	EBX and ECX
	EDX: AMD Feature Support
	EDX
	EAX, EBX, and ECX
	EDX
	EAX
	EBX, ECX, and EDX

	DAA
	DAS
	DEC
	DIV
	ENTER
	IDIV
	IMUL
	IN
	INC
	INSx
	INT
	INTO
	Jcc
	JCXZ
	JMP (Near)
	JMP (Far)
	LAHF
	LDS LES LFS LGS LSS
	LEA
	LEAVE
	LFENCE
	LODSx
	LOOPcc
	MFENCE
	MOV
	MOVD
	MOVMSKPD
	MOVMSKPS
	MOVNTI
	MOVS MOVSB MOVSW MOVSD MOVSQ
	MOVSX
	MOVSXD
	MOVZX
	MUL
	NEG
	NOP
	NOT
	OR
	OUT
	OUTSx
	POP
	POPAx
	POPFx
	PREFETCHx
	PREFETCHlevel
	PUSH
	PUSHAx
	PUSHFx
	RCL
	RCR
	RET (Near)
	RET (Far)
	ROL
	ROR
	SAHF
	SAL SHL
	SAR
	SBB
	SCASx
	SETcc
	SFENCE
	SHL
	SHLD
	SHR
	SHRD
	STC
	STD
	STOSx
	SUB
	TEST
	XADD
	XCHG
	XLATx
	XOR

	4 System Instruction Reference
	ARPL
	CLI
	CLTS
	HLT
	INT 3
	INVD
	INVLPG
	IRETx
	LAR
	LGDT
	LIDT
	LLDT
	LMSW
	LSL
	LTR
	MOV(CRn)
	MOV(DRn)
	RDMSR
	RDPMC
	RDTSC
	RSM
	SGDT
	SIDT
	SLDT
	SMSW
	STI
	STR
	SWAPGS
	SYSCALL
	Legacy x86 Mode
	Long Mode

	SYSENTER
	SYSEXIT
	SYSRET
	UD2
	VERR
	VERW
	WBINVD
	WRMSR

	Appendix A Opcode and Operand Encodings
	A.1 Opcode-Syntax Notation
	A.2 Opcode Encodings
	A.2.1� One-Byte Opcodes
	A.2.2� Two-Byte Opcodes
	A.2.3� rFLAGS Condition Codes for Two-Byte Opcodes
	A.2.4� ModRM Extensions to One- Byte and Two-Byte Opcodes
	A.2.5� ModRM Extensions to SWAPGS and CLFLUSH Opcodes
	A.2.6� 3DNow!™ Opcodes
	A.2.7� x87 Encodings
	A.2.8� rFLAGS Condition Codes for x87 Opcodes

	A.3 Operand Encodings
	A.3.1� ModRM Operand References
	16-Bit Register and Memory References
	Register and Memory References for 32-Bit and 64-Bit Addressing

	A.3.2� SIB Operand References


	Appendix B General-Purpose Instructions in 64-Bit Mode
	B.1 General Rules for 64-Bit Mode
	B.2 Operation and Operand Size in 64-Bit Mode
	B.3 Invalid and Reassigned Instructions in 64-Bit Mode
	B.4 Instructions with 64-Bit Default Operand Size
	B.5 Single-Byte INC and DEC Instructions in 64-Bit Mode
	B.6 NOP in 64-Bit Mode
	B.7 Segment Override Prefixes in 64-Bit Mode

	Appendix C Differences between Long Mode and Legacy Mode
	Appendix D Instruction Subsets and CPUID Feature Sets
	D.1 Instruction Subsets
	D.2 CPUID Feature Sets
	D.3 Instruction List

	Appendix E Instruction Effects on RFLAGS
	Index

